
0

0

tt\sun
• microsystems

Writing Device Drivers
for the Sun Workstation

0 Sun Microsy;tems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0 ~\sun
• microsystems

o-_-

---·-----·

Writing Device Drivers
for the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part Nu: SOil-!195-01
Rcv1-.;1on E of I) Iv1ay, 1985

Acknowledgements

Copyright Q 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0
Revision History

Rev Date Comments

A 15 July 1983 First release of this Manual as part of the Sy.tern Internals Manual
for the Sun Workstation.

B 15 August 1983 Minor corrections.

C 15 November 1983 Minor corrections.

D 19 November 1984 Minor corrections.

E 15 May 1985 Separated out of the Sy.tern Internals Manual for the Sun Works-
tation to form a standalone manual. Added narrative to deal with
VMEbus and support for vectored interrupts.

0

0
- Ill -

0

0

0

0
Contents

Chapter 1 Introduction .. 1-1
1.1. General Overview .. 1-1

Chapter 2 General Hardware and Software Topics .. 2-1
2.1. Device Names and Device Numbers - The /dev Directory..................... 2-1
2.2. The Sun Hardware and the Multibus or VMEbus .. 2-4

2.2.1. Multibus Memory Address Space and 1/0 Address Space 2-5
2.2.2. Byte Ordering Issues ... 2-5
2.2.3. Things to Watch for in Multibus Boards... 2-7

2.3. DMA Devices ... 2-8
2.3.1. Sun Main Bus DVMA ... 2-8

2.4. Allocation of Multibus Memory and 1/0 in the Sun System 2-9
2.5. Allocation of VMEbus Memory in the Sun System .. 2-12
2.6. Interrupt Vector Assignments .. 2-13

0 2.7. Main Bus Resource Management ... 2-14
2.8. Getting the Board Working and in a Known State ... 2-16

2.8.1. Using the Sun CPU PROM Monitor ... 2-17

Chapter 3 Device Drivers 3-1
3.1. User Address Space versus Kernel Address Space 3-1
3.2. User Context and Interrupt Context... 3-1
3.3. Device Interrupts .. 3-2
3.4. Interrupt Levels 3-3
3.5. Vectored Interrupts and Polling Interrupts ... 3-3
3.6. Some Common Service Functions ... 3-6

3.6.1. Timeout Mechanisms ... 3-6
3.6.2. Sleep and Wakeup Mechanism ... 3-6
3.6.3. Raising and Lowering Interrupt Priorities.. 3-7
3.6.4. Main Bus Resource Management Routines 3-8

3.7. Kernel printf Function .. 3-8
3.7.1. Macros to Manipulate Device Numbers ... 3-8

3.8. Overall Layout of a Device Driver ... 3-8
3.9. A Very Basic Skeleton Device Driver ... 3-9
3.10. General Declarations in Driver ... 3-11
3.11. Autoconfiguration Procedures ... 3-12
3.12. Probe Routine .. 3-12

0
3.13. Open and Close Routines ... 3-13

-v-

3.14. Read and Write Routines .. . 3-15
3.14.1. Some Notes About the UIO Structure .. 3-16

3.15. Skeleton Strategy Routine ... 3-16
3.16. Skeleton Start Routine - Initiate Data Transfers.......................... 3-17
3.17. Interrupt Routines .. 3-18
3.18. Ioctl Routine .. 3-19
3.19. Devices That Do DMA ... 3-19
3.20. Multibus or VMEbus DVMA .. 3-19
3.21. Changes to the Driver ,................. 3-20
3.22. Errors 3-21
3.23. Memory Mapped Devices 3-22

Chapter 4 Configuring the System to Add Skeleton Driver 4-1

Appendix A Summary of Functions
A.l. Standard Error Numbers
A.2. Device Driver Routines

A.2.1. Autoconfiguration Routines
A.2.1.1. probe - Determine if Hardware is There ..

A.2.2. Open and Close Routines
A.2.2.1. open - Open a Device for Data Transfers
A.2.2.2. close - Close a Device .. .

A.2.3. Read, Write, and Strategy Routines
A.2.3.1. read - Read Data from Device
A.2.3.2. write - Write Data to Device
A.2.3.3. strategy Routine .. .
A.2.3.4. minphys - Determine Maximum Block Size

A.2.4. ioctl - Special Interface Function
A.2.5. Low Level Routines

A.2.5.1. intr - Handle Vectored Interrupts .. .
A.2.5.2. poll - Handle Polling Interrupts

A.3. Common Service Routines
A.3.1. sleep - Sleep on an Event ..
A.3.2. wakeup - Wake Up a Process Sleeping on an Event
A.3.3. mbsetup - Set Up to Use Main Bus Resources
A.3.4. mbrelse - Free Main Bus Resources
A.3.5. physic - Lock in User's Buffer Area .. .
A.3.6. iowai t - Wait for 1/0 to Complete .. .
A.3.7. iodone - Indicate 1/0 Complete
A.3.8. pritospl - Convert Priority Level
A.3.9. spln() - Set Specific Priority Level .. .
A.3.10. splx - Reset Priority Level
A.3.11. uiomove - move data to or from the uio structure
A.3.12. ureadc and uwritec - transfer bytes to or from a uio

structure
A.3.13. peek, peekc - Check Whether an Address Exists and

Read

-VI-

A-1
A-1
A-1
A-1
A-1
A-1
A-2
A-2
A-2
A-2
A-3
A-3
A-3
A-4
A-4
A-4
A-4
A-4
A-5
A-5
A-5
A-5
A-6
A-6
A-6
A-6
A-6
A-7
A-7

A-7

A-8

0

0

0

0

0

0

A.3.14. poke, pokec - Check Whether an Address Exists and
Write .. A-8

A.3.15. geteblk -Allocate Dynamic Buffer... A-8
A.3.16. brelse - Free Dynamic Buffer.. A-8
A.3.17. swab - Swap Bytes ... A-8

Appendix B Sample Drivers B-1

- Vil -

0

0

0

0

0

0

Tables

Table 2-1 A sample listing of the /dev Directory.. 2-2
Table 2-2 Character Device Number Assignments... 2-4
Table 2-3 Sun-2 Multibus Memory Map ... 2-10
Table 2-4 16-bit VMEbus Address Space Blocks .. 2-12
Table 2-5 24-bit VMEbus Address Space Blocks ... 2-12
Table 2-6 VMEbus Address Assignments for Individual Devices 2-13
Table 2-7 Vectored Interrupt Assignments ... 2-14

- IX-

0

0

0

0

0

0

Chapter 1

Introduction

This document is a guide to adding software drivers for new devices to the kernel.

One of the UNIXt Operating System's major services to application software is a device
independent view of the hardware that stores and retrieves data and communicates with the out
side world. The interface between UNIX application software and a given piece of raw hardware
is provided by a device driver for that piece of hardware. A device driver provides an interface
between the UNIX operating system's device-independent scheme of things and the special
characteristics of a particular piece of hardware.

1.1. General Overview

The kernel supplied with the Sun system is a configurable kernel, meaning that it is possible
(within limits) to make changes to the kernel and to add new device driver modules. A detailed
explanation of how to configure and build a kernel is in Building UNIX Systems with Config in
the System Manager'• Manual.

This document is aimed at the Sun user who has some expertise in writing UNIX device drivers,
and who wishes to connect a new Multibus or VMEbus device to the Sun system. The UNIX sys
tem that runs on the Sun Workstation supports several different types of devices, and the scope
of this document is limited to writing device drivers for the kinds of devices not already supplied
by Sun. If you have no previous experience writing UNIX device drivers, you should expect to
seek some advice from the Sun technical support organization or an outside consultant experi
enced in writing UNIX drivers. We can classify devices and their drivers into seven major
categories:

1. Co-processors.

2. Disks and tapes.

3. Network interface drivers such as Ethernet or X.25.

4. Serial communications multiplexors.

5. General DMA devices such as driver boards for raster-oriented printers or plotters.

6. Programmed 1/0 devices.

t UNIX is a trademark ot Bell Laboratories.

Revision E of 15 May 1985 1-1

Introduction Device Drivers for the Sun Workstation

7. Frame buffers.

This manual only addresses devices and drivers in categories 5, 6, and 7. There is a wide range 0
of devices which Sun does not support for which you might want to write a device driver. This
document is primarily concerned with creating device drivers for devices such as parallel inter-
faces, analog to digital (A/D) converters, digital to analog (D/A) converters, interfaces to special
outboard processors, frame buffers, memory-mapped graphics boards, and so on. Such devices
can be cast into the model of unatructured or character 1/0 devices in the UNIX 1/0 system
scheme, as opposed to block 1/0 devices that support a UNIX file system. Character 1/0 devices
may support read and write operations, and may provide an ioctl interface for controlling the
devices. Such devices may also provide for being mapped into the user's virual address space by
supporting the mmap system call.

This document doea not address devices and drivers in categories 1 thru 4. In particular, the
considerations in writing device drivers for disks, tapes, serial communication devices, and local
network interface drivers are quite involved - we do not discuss the construction of such drivers
in this document. Most Sun customers should find that the extensive use of standards in the Sun
product line should allow them to use hardware interfaces already provided by Sun to drive such
peripherals.

To add a new hardware device-controller and its device driver to the system you must:

1. Get the device controller hardware into a state where you know it works as advertised - it
is eztremely difficult to debug your device driver software (step 4 below) if the hardware is
not known to be working,

2. Write the device driver itself,

3. Add it to the system configurator's data base, describe a system containing the driver, and
compile this system containing the new device driver,

4. Debug the driver.

Chapter 2 is a general overview of the hardware and software environment provided by the Sun
Workstation.

Chapter 3 is a description of the 1/0 system and device drivers. Chapter 3 provides a model of
a very simple device driver and describes the issues involved in programming device drivers on
the Sun system.

Chapter 4 is a description of how to add a new device driver to the kernel.

Finally, samples of actual drivers are included with this document so that the reader can see how
the actual code is used. The drivers we have included as samples are:

cgone A simple memory-mapped driver for the black and white framebuffer.

aky A simple programmed 1/0 driver for the SKY floating-point board.

vp A DMA device driver for the Versatec printer/plotter.

Hint: Spend as much time as you need in the Sun Workstation PROM monitor poking, prodding
and cajoling your device until you are thoroughly familiar with its behavior. This will save you a
lot of grief later. There is a discussion a little later on the kinds of things you can do with the
PROM monitor.

1-2 Revision E of 15 May 1985

0

0

0

0

0

Chapter 2

General Hardware and Software Topics

2.1. Device Names and Device Numbers - The /dev Directory

All devices and special files are defined externally in the / dev directory. Devices are character
ized by a major device number, a minor device number, and a class (block or character). When
a file of any type is opened, the device driver to call is obtained from the entry in the / dev direc
tory. Entries in the / dev directory are created via the mknod(8) (make a node) administration
command. Here is a fragment of what the / dev directory looks like from an Is -I command:

Revision E of 15 May 1985 2-1

General Hardware and Software Topics Device Drivers for the Sun Workstation

Table 2-1: A sample listing of the /dev Directory

T per- a own- maJ- min
11 mi, .. i er or or date

name

p asona z
e e

C rw--w--w- 1 henry 0, 0 Feb 21 09:45 console
C rw-r--r-- 1 root 3, 1 Dec 28 16:18 kmem
C rw------- 1 root 3, 4 Jan 13 23:07 mbio
C rw------- 1 root 3, 3 Jan 13 23:07 mbmem
C rv-r--r-- 1 root 3, 0 Dec 28 16:18 mem
C rw-rw-rw- 1 root 13, 0 Dec 28 16:18 mouse
C rw-rw-rw- 1 root 3, 2 Feb 22 16:40 null
C rw------- 1 root 9, 0 Dec 28 16:19 rxyOa
C rw------- 1 root 9, 1 Dec 28 16:19 rxyOb

C rw------- 1 root 9, 6 Feb 25 1984 rxyOg
C rw------- 1 root 9, 7 Dec 28 16:19 rxyOh
b rw------- 1 root 3, 0 Feb 25 1984 xyOa
b rw------- 1 root 3, 1 Jan 17 20:12 xyOb

b rv------- 1 root 3, 6 Dec 28 16:19 xyOg
b rw------- 1 root 3, 7 Dec 28 16:19 xyOh

The connection between the specific device name in the / dev directory is made through two C
structures named bdev,w (block device switch table) and cdevaw (character device switch table)
in the file called conf.c. When you add a new device driver you must add entries to the
corresponding structure. Since we are discussing only character-oriented devices in this manual,
you can ignore the bdevaw structure and concentrate on the cdevaw structure.

Application programs make calls upon the operating system to perform services such as opening
a file, closing a file, reading data from a file, writing data to a file, and other operations that are
done in terms of the file interface. The operating system code turns these requests into specific
requests on the device driver involved with that particular file. The glue between the specific
file operation involved and the device driver entry-point is through the bdevaw and cdevaw
tables.

Entries in bdevaw or cdevaw contain an array of entry points into the device drivers. The posi
tion in the structure corresponds to the major device number assigned to the device. The minor
device number is passed to the device driver as an argument. The minor number has no
significance other than that attributed to it by the driver. Usually, the driver uses the minor
number to access one of several identical physical devices.

The cdevaw table specifies the interface routines present for character devices. Each character
device may provide seven functions: open, cloae, read, write, ioctl, aelect, and mmap. If a call

2-2 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

on the routine should be ignored, (for example open on non-exclusive devices that require no
setup) the cdevaw entry can be given as nulldev; if it should be considered an error, (for example
write on read-only devices) nodev is used. For terminals, the cdevaw structure also contains a
pointer to the array of tty structures associated with the driver.

Here is what the declaration of the character device switch looks like. Each entry (row) is the
only link between the main unix code and the driver. The initialization of the device switches is
in the file conf.c.

struct cdevsw
{
int (•d_open) (); ;• routine to call to open the device •;
int (•d_close) () ; ;• routine to call to close the device •;
int (•c;!_read) () ; ;• routine to call to read from the device •;
int (•d_write) (); ;• routine to call to write to the device •;
int (•d_ioctl) (); ;• special interface routine •;
int (•d_stop) () ;
int (•d_reset) ();
struct tty •d_ttys; ;• tty structure •;
int (•d_select) (); ;• routine to call to select the device •;
int (•d_mmap) () ; ;• routine to call to mmap the device •;
};

Only teletype-like devices (such as the the console driver, the mti driver, and the za driver) use
the tty structure. All other devices set this field to zero.

And here is a typical line from the conf.c file which fills in the requisite pointers in the cdevaw
structure:

All the other cdevsw entries between O and 19 appear first
{

cgoneopen,
cgoneioct 1,
seltrue,

},

cgoneclose,
nodev, nodev,
cgonemm.ap,

nodev,
0,

nodev,

Then all the other cdevsw entries from 15 upwards

;•14•/

In the Sun system, a number of devices in cdevaw are preassigned. The table below shows the
assignments to date. Those major device numbers shown as 'For -Local Use' are available for
user-written device drivers.

Revision E of 15 May 1985 2-3

General Hardware and Software Topics Device Drivers for the Sun Workstation

Table 2-2: Character Device Number Assignments

Major Device
Number

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
40-??

Character-Device Number Assignments

Device
Abbreviation

en
unused
sy
Memory special files
lp
tm
vp
Not available
ar
xy
mti
des
ZS
ms
cg
win
11

sd
st
nd
pts
ptc
fb
rope
sky
pl
bwone
bwtwo
vpc
kbd
xt
cgtwo
For Local Use

Device
Deacription

Sun Console
no device
Indirect TTY

Raw Interphase Disk Device
Raw Tapemaster Tape Device
Ikon Versatec Parallel Controller

Archive Tape Controller
Raw Xylogics Disk Device
Systech MT!
DES Chip
On board UARTS
Mouse
Color Graphics Board
Window Pseudo Device
INGRES lock device
Raw SCSI disk
Raw SCSI tape
Raw Network Disk Device
Pseudo TTY
Pseudo TTY
Monochrome Video board
RasterOp Chip
SKY Floating Point Board
Parallel input device
Sun-1 Monochrome frame buffer
Sun-2 Monochrome frame buffer
Parallel driver for Versatec printer
Sun keyboard driver
Xylogics 472 Tape Controller
Sun-2 Color Frame Buffer

2.2. The Sun Hardware and the Multibus or VMEbus

The Sun system hardware is built around the IEEE-P796 Multibus or the VMEbus in some
models. This section discusses several issues relevant to the Multibus or VMEbus and devices
that can be obtained for it.

2-4 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

There are data structures in the kernel's interface to device drivers that are named mb aome
thing or other. These structures are for setting up linked lists of controllers and devices and the
information associated with them. The mb used to stand for Multibus, but with the advent of
Sun systems supporting the VMEbus, the Multibus, and possibly VMEbus based systems with
VMEbus to Multibus adaptors, the mb has been used to stand for 'Main bus'.

2.2.1. Multibus Memory Address Space and 1/0 Address Space

Although Sun uses Motorola MC68000 family processors for its products, the systems are actually
built around the IEEE-P796 Multibus. The MC68000 processors do what is known as 'memory
mapped' input-output in that you just store data somewhere or fetch data from somewhere to
transfer data to or from a peripheral device or memory - there is no distinction between the
memory and peripherals. The Multibus, on the other hand, was originally designed for proces
sors that have one kind of instruction for storing data in memory or fetching data from memory
(instructions such as MOV), and a different kind of instruction (such as IN and OUT) for
transferring data to or from peripheral devices. Thus the Multibus has the notion of two
separate address spaces:

Multibu• memory •pace
is simply used for memory or devices that look like memory, in that you talk to such devices
simply by writing data to memory locations or reading from memory locations. The Sun
color controller board is a good example of a device that is addressed as memory in the Mul
tibus memory address space. Devices that look like memory are called 'memory mapped'
devices.

Multibua I/ 0 addreu •pace
is another 'space' that is typically used for device control registers. Devices using the 1/0
address space are said to be '1/0 mapped' devices.

This concept of two different address spaces derives from the Intel 8080 family of processors.
The MC68000 family doesn't have this separation of memory and 1/0, but treats the entire
universe as one address space. The Sun memory management hardware can map any portion of
the system's address space to the Multibus memory space or the Multibus 1/0 address space.
Ultimately, the different kinds of address-space end up just waggling different control lines on the
Multibus.

Be aware though, that the memory space of the Multibus is designed for a 20-bit r or a 24-bit
addressing scheme (Sun uses 20-bit addresses), whereas the 1/0 space of the Multibus is only an
8-bit or a 16-bit addressing scheme (Sun uses 16-bit addresses), and some older Multibus boards
only accept 8-bit 1/0 addresses.

2.2.2. Byte Ordering Issues

The Sun processor is a Motorola MC68000 processor, built on an IEEE-P796 Multibus board.
IEEE-P796 and Motorola do not agree on the addressing of bytes in a word. IEEE-P796 and
Motorola both agree that there are 16 bits in a word and that is about all they agree on. The
disagreement about which end of the word contains byte O leads us into two separate problems,
with two separate fixes you must apply:

1. You are moving a single byte across the interface between the MC68000 and the P796 Bus.
Because of the disagreement about which end of the word the byte actually appears in, you
have to toggle the least significant bit of the byte address.

Revision E of 15 May- 1985 2-5

General Hardware and Software Topics Device Drivers for the Sun Workstation

2. You are moving a whole 16-bit word across the interface between the MC68000 and the
P796 Bus. This word actually contains a byte structure destined for the device on the other
side of the bus. The device will interpret the byte-order different from what you thought,
and so in this case you must physically swap the bytes in the word before you ship the word
across the bus interface.

Here are a few pictures describing the problem in detail:

Motorola Byte Ordering

bit 15 bit 0

Byte 0 Byte 1
I

IEEE-P798 Byte Ordering

bit 15 bit 0

Byte 1 Byte 0

That is, Motorola places byte O in bits 8 thru 15 of the word, whereas IEEE-P796 places byte 1
in those bits. The only place where this causes trouble is when you are moving a single byte

0

across the interface between the MC68000 and the Multibus. If you did everything with the 0
68000, or everything .on the Multibus, there would never be any conflict, since things would be
consistent. However, as soon as you cross the boundary between them, the byte order is
reversed. What this means in practice is that you have to toggle the least significant bit of the
address of any byte destined for the Multibus.

To clarify this, consider an interface for a hypothetical Multibus board containing only two 8-bit
1/0 registers, namely a control and status register (csr) and a data register (we actually use this
design later on in our example of a simple device driver). In this board, we place the command
and status register at Multibus byte location 600, and the data register at Multibus byte location
601. The Multibus picture of that device looks like this:

Hypothetical Board Registers

bit 15

Location 801

DATA

bit 0

Location 800

CSR

But the 68000 processor views that device as looking like this:

2-6 Revision E of 15 May 1985

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

Hypothetical Board Registers

bit 15

Location 600

CSR

bit 0

Location 601

DATA

so that if you were to read location 600 from the point of view of the 68000 processor, you'd
really end up reading the DATA register off the Multibus instead. So, when we define the akdev
ice data structure for that board, we define it like this:

struct skdevice {

};

char
char

sk_data;
sk_csr;

/* 01: Data Register • /
/• 00: command(w) and status(r) • /

This rule (flipping the least significant bit of the address) holds good for all byte transfers which
cross the line between the MC68000 and the Multibus.

Take special care when a Multibus device structure contains mixed bytes and words. Many of
the Multibus device controllers on the market are geared up for the 8-bit 8080 and Z80 style
chips, and don't understand 16-bit data transfers. Because of this, such controllers are quite
happy to place what is really a word quantity (such as a 16-bit address which must be two-byte
aligned in the MC68000) starting on an odd byte boundary. Some of the device drivers use 16-
bit or 20-bit addresses (many don't know about 24-bit addresses), and it often happens that you
have to chop an address into bytes by shifting and masking, and assign the halves or thirds of
the address one at a time, because the device controller wants to place word-aligned quantities
on odd byte boundaries. Note also that many Multibus boards are geared up for the 8086 family
with its segmented adress scheme. An 8086 (20-bit) address really consists of a 4-bit segment
number and a 16-bit address. You usually have to deal with the 4-bit part and the 16-bit part
separately. For a good example of what we're talking about here, look at the code for vp.c,
(attached as an appendix to this document).

2.2.3. Things to Watch for in Multibus Boards

Although there are a myriad of vendors offering Multibus products, be aware that the Multibus is
a 'standard' that evolved from a bus for 8-bit systems to a bus for 16-bit systems. Read vendors'
product literature carefully (especially the fine print) when selecting a Multibus board. The
memory address space of the Multibus is wppoud to be 20 bits wide or 24 bits wide and the
I/0 address space of the Multibus is auppoaed to be 16 bits wide. In practice, some older boards
are limited to 16 bits of address space and only 8 bits of 1/0 space. In particular, watch for the
following things:

• For a memory-mapped board, ensure that the board can actually handle a full twenty bits of
addressing. Older Multibus boards often can only handle sixteen address lines. The Sun sys
tem assumes there is a 20-bit Multibus memory space out there. If the Multibus board you're
talking at can only handle 16-bit addresses, it will ignore the upper four address lines, and
this means that such a board 'wraps around' every 64K, which means that in our system, the
addresses that such a board responds to would be replicated sixteen times through the one-

Revisi;:,n E of 15 May 1985 2-7

General Hardware and Software Topics Device Drivers for the Sun Workstation

Megabyte address space on the Multibus.

• A memory-mapped Multibus board that uses 24-bit addressing (thereby using the P2 bus on Q
the backplane) must use a P2 bus that is physically isolated from the P2 bus that any Sun
boards use. See the Sun Configuration Guide for information on configuring boards in the
backplane.

• For an 1/0-mapped board (one that uses 1/0 registers), make sure that the board can handle
16--bit 1/0 addressing. Some older boards can't cope and only use eight-bit 1/0 addressing.
In our system, the address spaces of such boards would find themselves replicated every 256
bytes in the 1/0 address space. Trying to fit such a board into the Sun System would
severely curtail the number of 1/0 addresses available in the system.

• Watch out for boards containing PROM code that expects to find a CPU busmaster with an
Intel 8080, 8085, or 8086 on it. Such boards are of course useless in the Sun System.

• Take special care to determine how the board generates interrupts. A board should put up
an interrupt when the device it is controlling is ready for more data and the board is ready
for more data - we have experienced designs where the interrupt indicated that the board
was ready, or the device was ready, but not both at once. A board should ideally come up in
its power up state with interrupts disabled and only start interrupting when told to. There
should also be a way to determine that a board has actually generated an interrupt. Finally,
an interrupting board should shut off its interrupt when it is told to.

2.3. DMA Devices

Many device controller boards are capable of what is known as Direct Memory Access or DMA. o
This means that the processor tells the device controller the address in memory where a data
transfer is to take place, plus the length of the data transfer, and then tells the device controller
to start the transfer. The data transfer then takes place without further intervention on the
part of the processor. When the transfer is complete, the device controller interrupts to say that
the transfer is finished.

2.3.1. Sun Main Bus DVMA

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun memory manage
ment unit that allows DMA from devices on the Main Bus to Sun processor memory, or from
Main Bus master devices directly to Main Bus slaves without going through processor memory.
DVMA uses the first 255K bytes of the Main Bus address memory address space to map
addresses between Sun processor memory and the Main Bus memory address space.

On the Sun-2, the memory management unit is always listening to the Main Bus for memory
references. When a request to read or write Multibus memory between addresses O and 256K
comes up, the DVMA hardware takes the address, adds OxFOOOOO to it, 1 and goes through the
kernel memory map to find the location in processor memory that will be used. On VMEbus sys
t,ems, DVMA responds to the least significant 1 Megabyte of the VMEbus physical address space
(OxOOOOOO to OxlOOOOO) and maps it into the most significant l Megabyte of system context
virtual address space (Ox fOOOOO). Thus if you wish to do DMA over the Main Bus, you must

1 The system places the Ma.in Bus memory address space at location OxFOOOOO in the virtual address
space.

2-8 Revision E of 15 May 1985

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

make the appropriate entries in the kernel memory map. As you might expect, there are func
tions to help with this chore.

2.4. Allocation of Multibus Memory and 1/0 in the Sun System

Here are some simple rules for the way that Multibus memory resources are doled out in the Sun
system.

No devices may be assigned addresses below 256K in Multibus memory space or below 1 Mega
byte in VMEbus space - the CPU uses these addresses for DVMA.

Devices that interface to the Sun system do so either through 1/0 registers in Multibus address
space, or through the Multibus memory space. In some cases, a device may have both 1/0 regis
ters and memory on the Multibus. The Sun system makes the assumption that any address
lower than 64K is a Multibus 1/0 address. This is a reasonable assumption given that user
installed Multibus memory cannot appear in this region of the address space anyway. This
assumption is carried through into the autoconliguration routines in that addresses less than 64K
are automatically mapped to the Multibus 1/0 address space.

To configure such a device,

1. the probe function for the device driver must return the amount of Multibus memory space
that the device uses,

2. Multibus 1/0 address space is at 'mbio' and may be addressed as such. Alternatively, use
virtual address OxebOOOO.

3. the autoconliguration utility (conlig) can not deal with 1/0 address space at the same time as
memory address space for the same device.

The table on the next page shows a map of how Multibus memory is laid out in the Sun system.

Revision E of 15 May 1985 2-9

General Hardware and Software Topics Device Drivers for the Sun Workstation

Table 2-3: Sun-2 Multibus Memory Map

Address Device
0

OxOOOOO DVMA Space

. (256 Kbytes)

Ox3£800 DVMA Space

Ox40000 Sun Ethernet Memory (#1)

. (256 Kbytes)

Ox7£800 Sun Ethernet Memory (#1)

Ox80000 SCSI (#1)

. (16 Kbytes)

Ox83800 SCSI (#1)

Ox84000 SCSI (#2)

. (16 Kbytes)

Ox87800 SCSI (#2)
0

Ox88000 Sun Ethernet Control Info (#1)

. (16 Kbytes)

Ox8b800 Sun Ethernet Control Info (#1)

Ox8c000 Sun Ethernet Control Info (#2)

. (16 Kbytes)

Ox8f800 Sun Ethernet Control Info (#2)

Ox90000 *** FREE •••
. (64 Kbytes

Ox9f800 *** FREE •••

0
2-10 Revision E of 15 May 1985

Device Drivers for the Sun Workstation General Hardware and Software Topics

Address Device

OxaOOOO Sun Ethernet Memory (#2) 0
. (64 Kbytes)

Oxaf800 Sun Ethernet Memory (#2)

OxbOOOO ••• FREE •••

. (64 Kbytes)

Oxbf800 ••• FREE •••

OxcOOOO Sun Model 100 or Model 150 Frame Buffer

. (128 Kbytes)

Oxdf800 Sun Model 100 or Model 150 Frame Buffer

OxeOOOO 3COM Ethernet (#1)
Oxe0800 3COM Ethernet (#1)
OxelOOO 3COM Ethernet (#1)
Oxe1800 3COM Ethernet (#1)

0 Oxe2000 3COM Ethernet (#2)
Oxe2800 3COM Ethernet (#2)
Oxe3000 3COM Ethernet (#2)
Oxe3800 3COM Ethernet (#2)

Oxe4000 *** FREE ***

. (16 Kbytes)

Oxe7c00 ••• FREE •••
Oxe8000 Sun Color

. (64 Kbytes)

Oxf7800 Sun Color

Oxf8000 ••• FREE •••
. (16 Kbytes)

Oxff800 *** FREE ***

0
Revision E of 15 May 1985 2-11

General Hardware and Software Topics Device Drivers for the Sun Workstation

2.5. Allocation of VMEbus Memory in the Sun System

This section defines blocks of address space which will be used for specific devices. Assignments
for individual devices appear at the bottom.

Table 2-4: 16-bit VMEbus Address Space Blocks

16-bit VMEbua addreaa apace block,

Addreu Range
Number of Allocated
Page, Uaed From

Deacription of Uae

0000-8000

8000-FFFF

16
16

Low
High

Reserved for OEM/user devices
Reserved for Sun devices

Note: The Multibus/VME Adapter will put cards into the same place in 16-bit VMEbus space as
they were in Multibus 1/0 space. This may place the standard Multibus addresses for some
cards into the OEM/user area on the VMEbus.

Addreu Range

000000-100000

100000-200000

200000-300000

300000-400000

400000-800000

800000-COOOOO

COOOOO-DOOOOO

DOOOOO-EOOOOO

EOOOOO-FOOOOO

EOOOOO-FFOOOO

FFOOOO-FFFFFF

Table 2-5: 24-bit VMEbus Address Space Blocks

/!,I-bit VMEbua addre86 apace block•
Number of Allocated
Page• Uaed From

512
512
512
512

2048
2048
512
512
512
480
32

Low
High
(Taken)
High
Low
High

Deacription of Uae

CPU board DVMA space
Reserved for the Future.
Reserved for small Sun devices
Reserved for large Sun devices
Reserved for huge Sun devices
Reserved for huge OEM/user devices
Reserved for large OEM/user devices
Reserved for small OEM/user devices
Multibus-to-VMEbus memory space
Reserved for the Future
Not addressable (CPU references 16-bit space)

32-bit-address VMEbus space can be dealt with later, when we have a CPU which can generate
32-bit-address accesses.

These same assignments apply to both 16-bit-data and 32-bit-data VMEbus accesses. Currently
no Sun devices generate or respond to 32-bit-data references.

The 'Alloc from' field shows whether we allocate individual devices from the high end of the
range or the low end. The idea is to keep the maximum size 'hole' in the middle in case we need
to shift the boundary later.

2-12 Revision E of 15 May 1985

o!
I

0

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

Table 2-6: VMEbus Address Assignments for Individual Devices

Device Addreaaing Addreu Space

VMEbus SKY Board 16-bit 8000 - 8FFF

VMEbus SCSI Board 24-bit 200000 - 200800

VMEbus TOD Chip 24-bit 200800 - 2008FF

Sun-2 Color Board 24-bit 400000 - 4FF800

The VME Sky board occupies addresses 8000-9000 m 16 bit address space. The Sky board
requires that the high nibble of the address be '8'.

2.6. Interrupt Vector Assignments

The table below shows the assignments of interrupts vectors for those devices which can supply
interrupts through the VMEbus vectored interrupt interface.

Revision E of 15 May 1985 2-13

General Hardware and Software Topics Device Drivers for the Sun Workstation

Table 2-7: Vectored Interrupt Assignments

Vector Number, De•cription

64 thru 71 scO, sc? - Serial Communications Controllers

72 thru 79 xycO, xycl, xyc? - Xylogics Disk Controllers
80 thru 95 future disk controllers

96 thru 99 tmO, tml, tm? - TapeMaster Tape Controllers

100 thru 103 xtcO, xtcl, xtc? - Xylogics Tape Controllers
104 thru lll future tape controllers

ll2 thru ll5 ec? - 3COM Ethernet Controller
ll6 thru ll9 ie? - Sun Ethernet Controller
120 thru 127 future ethernet devices

128 thru 131 vpc? - Systech VPC-2200
132 thru 135 vp? - Ikon Versatec Parallel Interface

136 thru 139 mtiO, mti? - Systech Serial Multiplexors
140 thru 163 future serial devices

164 thru 175 future frame buffer devices

176 thru 179 skyO, ? - SKY Floating Point Board

180 thru 199 Reserved for Sun

200 thru 255 Reserved for Customer Use

2.7. Main Bus Resource Management

The following data structures in fact reflect the layout of information in the configuration file
which we describe in a later part of this paper. Controllers and devices can be thought of as
being attached to the Main Bus Certain kinds of devices (disks and tapes) are then thought of as
being slaves to their controllers. This layout gives rise to three data structures whose descrip
tions exist in the header file /u•r/include/•undeu/mbuar.h.

Main Bu•

Controller

2-14

The first data structure is the Main Bus header data structure. The fact that it is
called 'Main Bus' is a complete red herring - it is simply a hook to hang all the
other data structures on. The Main Bus data structure contains a list of controll
ers using this resource.

Contains a list of structures that describe controllers. There is sometimes consid
erable confusion as to exactly what is a controller and what is a device. Essentially
a controller is a piece of hardware that can control more than one device, but only

Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

Device

one data tranafer can be active at a time. Each device controller on the Main Bus
has a structure associated with it. The structure is called mb_ctlr and can be
found in /uar/include/aundev/mbvar.h.

Contains a list of devices. Each device driver has a data structure describing how
the Main Bus resource-management routines view the driver. The per-driver data
structure is called mb_driver and can be found in /uar/include/aundev/mbvar.h.
The device data structures are either hooked directly onto the Main Bus header
structure, or they are hooked to controller structures in which case the devices are
said to be alavea to their controllers. The device structure, mb_driver, is the
really important data structure that you need to be concerned with when writing a
driver. Here is the layout of the mb_driver structure:

struct mb_driver {

};

int (•mdr _probe) () ;
int (•mdr_slave) ();
int (•mdr_attach) ();
int (•mdr_go) ();
int (•mdr _done) () ;
int (•mdr_intr) ();
int
char
struct
char
struct
short
struct

mdr_size;
*mdr_dname;
mb_device ••mdr_dinfo;

*mdr_cname;
mb_ctlr **mdr_cinfo;
mdr _flags;
mb_driver *mdr_link;

/• see if a driver is really there•/
/• see if a slave is there•/
/• setup driver for a slave•/
/• routine to start transfer•/
;• routine to finish transfer•/
/• polling interrupt routine•;
/• amount of memory space needed•/
/• name of a device•/
/• backpointers to mbdinit structs •/
/• name of a controller•/
;• backpointers to mbcinit structs •/
/* want exclusive use of Main Bus*/
/• interrupt routine linked list•/

Here is a brief discussion of the fields in the mb_dr i ver structure and what parts of it you need
to fill in when declaring mb_driver:

mdr_probe
is a pointer to a probe function within your driver. Probe determines if the device for
which this driver is written is really there in the system. Fill in this field only if your driver
has a probe routine (it generally will).

mdr_slave
is a pointer to a a/ave function within your driver. Fill in this field for controllers that have
more than one device. The a/ave function always returns a 1.

mdr_attach
is a pointer to an attach function within your driver. The attach function does preliminary
setup work for a slave device. Typical applications include reading the label from a disk.
Fill in this field only if there is an attach routine in your driver. In general, the drivers we
are considering in this paper don't have attach routines, and so you fill in a zero (0) in this
field.

mdr_go
mdr_done

are pointers to go and done functions within your driver. These fields are usually zero for
the types of drivers we talk about in this paper. They are normally for disk drivers who
can't afford to wait for mbsetup.

mdr_intr
is a pointer to a polling interrupt routine (function) within your driver. Fill in this field if

Revision E of 15 May 1985 2-15

General Hardware and Software Topics Device Drivers for the Sun Workstation

your driver actually has a polling interrupt routine {in general it will). If your driver doesn't
have a polling interrupt routine, fill in a zero (0) in this field.

mdr_size
is the size in bytes of the amount of memory that a memory-mapped device requires. This
field mud be filled in if mdr_maddr is used for a memory-mapped device.

mdr_dname
is the name of the device for which this driver is written. This field takes the form of a reg
ular null-terminated C string.

mdr_dinfo
an array of pointers to mb_device structures. Auto configuration fills in the pointers, then
the driver can access mb_device structures if it wants to.

mdr_cname
is the name of the controller for which this driver is written. This field takes the form of a
regular null-terminated C string. Fill in this field if you actually have a controller.

mdr_cinfo
an array of pointers to mb_controller structures. Auto configuration fills in the pointers,
then the driver can access mb_controller structures if it wants to.

mdr_flags
consists of some flags, as follows:
MDR...XCLU

needs exclusive use of bus
MDR..DMA

device does Main Bus DMA
MDR_SWAB

Main Bus buffer must be swabbed
MDR_OBIO

device in on-board 1/0 space

These flags must be OR'ed together if you wish to place any of that information there.
Place a zero (0) in this field if none of the flags apply to this driver.

mdr_link
This field is used by the autoconfiguration routines and is not for the driver's use.

2.8. Getting the Board Working and in a Known State

This section discusses getting the hardware device controller operational and in a known state,

Before you even think about writing any code you should check out the Multibus or VMEbus
board by performing various tests.

First, make sure that the board is properly set up as defined in the vendor's manual. Things you
have to select in general are:

• 1/0 register addresses for those boards that use 1/0 ports on the Multibus,

• Memory base address for those boards that use memory space on the Multibus,

• Interrupt level selection.

2-16 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation General Hardware and Software Topics

• Interrupt vector number for VMEbus devices.

Then, take your system down and power it off. Plug your Multibus or VMEbus board into the
card cage and attempt to bring the system back up. If you cannot boot the system, then there is
a problem such as the board not really working or the board responding at an address used by
other boards in the system. You must resolve this problem before proceeding further.

Next take your system down again and see if the device responds. from the monitor, try some of
the following things:

• Try reading from the board status register(s) if there are any.

• Try writing to the board control or data register(s) if there are any. Then try reading the
data back to see if it got written properly (assuming that the board can read back what you
wrote).

• Try sending data to the actual device itself through the board if this is possible.

• Switch the actual device offiine and online and watch the status bits go on and off (if this is
possible).

For example, if you have a line printer, try to print a line with a few characters. The section
just below on U,ing the Sun CPU PROM Monitor has some hints on reading and writing device
registers. Be aware that bit and byte ordering issues are critical in this process; the main reason
for doing this step is to discover what the board really does. When you have developed
confidence in how the board works you can proceed to write a driver for it.

2.8.1. Using the Sun CPU PROM Monitor

To do some of the poking around as described in the previous paragraphs, you can use the CPU
PROM monitor whose commands are described in detail in the Sy.tern Internal• Manual. The
PROM monitor has commands for looking at memory locations. So if you have located your new
Multibus or VMEbus board at a specific place in the address space, you could use the monitor to
look at that place to see if there's anything there. For example, if you think your board has an
1/0 control register at location Ox600, you could use the monitor's 'open a byte location' com
mand to look at that place in memory:

> o eb0600

and so on. If you get a bus error timeout, the board isn't there and you have to go back to the
manual to see if you've set the address jumpers correctly. Note that locations starting at
ebOOOO is where the PROM monitor maps the Multibus 1/0 space, hence the eb0600 in the
example above to get at location 0600.

Here are a couple of notes about using the monitor to look at devices. When you use the
Monitor's 'o' command to open a location, the Monitor read, the contents of that location and
displays them before asking you what you want to put there (if anything). Now some devices
(the Intel 8251A and the Signetics 2651 immediately spring to mind) use the same location (regis
ter) to address two separate internal mode registers, and the chip has internal state-logic that
sequences around them in 1-2-1-2 ... order. So suppose you want to put something in mode regis
ter 1 of the 8251? You open that location, the Monitor displays the contents, and you then write
the byte. Being cautious, you then open that location again and bingo! the data you wrote isn't
there - it's in the second register because the action of reading that location sequenced you on
to the second register. To do this thing right you have to use the Monitor's 'write without

Revision E of 15 May 1985 2-17

General Hardware and Software Topics Device Drivers for the Sun Workstation

looking' facility and then read the locations back later to check.

Another chip that has internal sequencing logic of this type is the NEC PD7201 PCC. This chip 0
has a a bunch of internal data registers. You load data-register O with the number of the data
register into which the next byte of data will go, then you send the byte of data and it goes into
that specific data register, and then you are back to data-register O again, all done with internal
sequencing logic.

Another chip of a similar ilk is the AMD 9513 timer. This chip has a data pointer register for
pointing at the data-register into which a data byte will go. When you send a byte to the data
register, the pointer gets incremented. The design of the chip is such that you can't read the
pointer regiater to find out what'• in it!

2-18 Revision E of 15 May 1985

0

0

0

0

0

Chapter 3

Device Drivers

This section discusses the major issues in creating a device driver for< the system.

A first step in writing a device driver is deciding what sort of interface the device should provide
to the system. The way in which read and vr i te operations should occur, the kinds of con
trol operations provided via ioctl, and whether the device can be mapped into the user's
address space using the mmap system call, should be decided early in the process of designing the
driver.

Device drivers have access to the memory management and interrupt handling facilities of the
UNIX system. The device driver is called each time the user program issues an open, close,
read, vrite, mmap, or ioctl system call. The device driver can arrange for 1/0 to happen
synchronously, or it can allocate buffers so that output can proceed while the user process runs,
or gather input while the user process is not waiting.

3.1. User Address Space versus Kernel Address Space

A device driver is a part of the kernel. The kernel uses a completely different virtual address
space from the virtual address space that a user process uses. When a device driver function is
invoked through a system call, the driver must often map data from the user virtual address
space to the kernel's virtual address space (most often in the case of some DMA devices). Func
tions and macros are provdied to allow this 'dual' mapping of data. Normally the kernel can
only access data that is addressable in its own address space.

3.2. User Context and Interrupt Context

A device driver has a top half and a bottom half. The top half is the part of the driver that runs
only in the context of a user process making requests on the driver. The top half of a driver can
start tasks which can cause long delays during which the system would want to switch to another
process and continue doing useful work. When this happens the driver uses the sleep primi
tive to wait for a particular event to occur. Thus if a user program issues a read on (say) an
A/D converter, the process would normally sleep until some input arrived. The driver could
also use the iowait call for transfers that have already started.

The bottom half of a device driver is the part that runs at interrupt level. Thus in an A/D con
verter driver, the converter might interrupt when a sample was available. The bottom half of
the driver could then store the data in a buffer and wakeup any user process sleeping in the top

Revision E of 15 May 1985 3-1

Device Drivers Device Drivers for the Sun Workstation

ha.If so that that process could retrieve the data.. If there wa.s no user process sleeping in the top
ha.If, the wakeup would do nothing, but the next process to read the A/D driver would find the o
data already there and would not have to sleep.

3.3. Device Interrupts

Each hardware device interrupts (that is, the device should interrupt) at some priority level,
trapping from wherever the system is currently executing, into the bottom ha.If of the device
driver at that priority level. This means that the top half of the device driver can be interrupted
at any time by the bottom half of the driver. The top half and the bottom half share data. struc
tures which they wish to keep consistent. An example of such a. data structure might be a
pointer to a current buffer and a character counter. The top ha.If of the driver must protect
itself so that data structures can be updated a.s atomic actions, that is, the bottom ha.If must not
be allowed to interrupt during the time that the top ha.If is updating some shared data. structure.
The way this protection is done is to bracket the critical sections of code (that updates or exam
ines shared data structures) with a. subroutine call that raises the processor priority to a level
where the bottom half cannot interrupt. Such a piece of code looks like:

s = splN();
critical section of code which cannot be interrupted

(void) splx (s) ;

Note here that we raised the processor priority level a.nd then restored the processor priority
level after the protected section of code. (Determining the correct hardware_priority will be dis-
cussed later.) One section of code that almost always needs to be protected is the section where o,

the top half checks to see if there is any data ready for it to read, or whether it can write data
or start the device. Since the device can interrupt at any time, the section of code that checks
for input in this fashion is wrong:

if (no input ready)
sleep (awaiting input, software_priority)

because the device might well interrupt while the if condition 1s being tested, or while the
preamble code for the sleep function is being executed.

The above section of code must be rewritten to look like this:

s = splN();
while (no input ready)

sleep (awaiting input, software_priority)
(void) splx (s) ;

If the top half executes the sleep system call, the bottom ha.If will be allowed to interrupt,
because the ha.rdwa.re priority level is reset to O as soon a.s the sleep context switches a.way
from this process.

3-2 Revision E of 15 May 1985

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

3.4. Interrupt Levels

In many cases it is possible to set the interrupt level a device will interrupt at by setting
switches on the board. If so, you must decide what level this device is going to interrupt at. At
first it may seem that your device is very high priority, but you must consider the consequences
of locking out other devices:

• If you lock out the clock (level 5) time will not be accurate, and the UNIX scheduler will be
suspended.

• If you lock out the on-board UARTS (level 6) characters may be lost.

• If you lock out the Ethernet (level 3), packets may be lost and retransmissions needed.

• If you lock out the disks (level 2), disk rotations may be missed.

• Level 1 is used for software interrupts and cannot be used for real devices.

In general, it is best to use level 2 to avoid the consequences of locking out other important sys
tem activities.

3.5. Vectored Interrupts and Polling Interrupts

This section contains a general discussion of device interrupts. When using Multibus devices, the
Sun UNIX kernel was set up to use auto-vectored interrupts. With auto-vectoring, the interrupt
vector used when a device interrupts is based only on the priority level of the device. A given
configuration of boards in the card cage may result in more devices than there are interrupt lev
els available. This means that several devices may have to share the same interrupt level, and
there must be a way to determine which device driver should handle the spcific interrupt. In
systems that only have auto-vectored interrupts, the kernel 'polls' the polling interrupt routine
of each device driver for the appropriate level until some driver eventually indicates that the
interrupt was from a device that it is set up to handle.

Typically, a driver's polling interrupt routine is called zzpoll, where zz is the two-letter name
of the driver.

With the VMEbus we can take advantage of vectored interrupts. A vectored interrupt passes
control directly to a short stub of code which then calls the appropriate interrupt routine, pass
ing an argument to identify which device interrupted.

Typically, a driver's vectored interrupt routine is called zzintr, where zz is the two-letter name
of the driver.

It is possible that a given device driver can support both vectored interrupts and polling inter
rupts. In such a case, the polling interrupt routine just calls the vectored interrupt routine to
actually service the interrupt.

For devices which interrupt in a VMEbus based system, the vector number (as opposed to the
vector address) is in the range 64 to 255. Note that vector numbers 200 and above are reserved
for customer use only.

By default, when zzintr is called it is passed the controller or unit number of the device which
interrupted. In addition it is possible for the driver to modify the variable passed to the con
troller.

Revision E of 15 May 1985 3-3

Device Drivers Device Drivers for the Sun Workstation

There are cases where no separate :rxpoll routine is needed. The first case is where a driver
knowa that it supports a maximum of one device per system. In this case only a zzintr routine
need exist and can provide the functionality of the zzpoll routine. In this case zzintr is
specified in the mb_device structure for the auto-vectored case and in the config input file for
the vectored interrupt case. The zzintr routine should return a value for supporting the pol
ling case.

The other case where the zzpo 11 routine is not needed is when a driver will never support pol
ling. In this (unlikely) case the interrupt routine specified in the mb_device should be O while
zzintr is specified in the config input file.

Note that the first case points out the fact that in the easiest case nothing need be done to a
driver to make it work with vectored interrupts, although some efficiency will be lost for the vec
tored interrupts. The zzintr routine which still implements polling can be called for the polling
case and vectored interrupt case. However when the interrupt routine is called in the vectored
case and the routine goes through polling all of its devices to find out which one interrupted
unnecessary cycles are wasted since the interrupting unit number is passed to the routine. Thus
it is suggested that all appropriate drivers be have separate zzintr and zzpoll routines.

Another issue that may require changes to the driver is that of setting up the interrupting vector
number. When using the VMEbus-Multibus adapter or certain VMEbus devices, the vector
number is set by jumpers on the circuit board. But some devices require that software set up
the device to tell which vector number to use on interrupts. Presen!lY, the only place where this
can be done is at "attach" time. The mb_device and mb_ctlr structures have md_intr and
mc_intr fields respectively, which point to an array of vec structures (a value of NULL indi
cates that no vectors where specified in the config file). This array is terminated by an entry of
all Os for the last structure and is always guaranteed to have at least one non-zero entry.

The zzattach routine can look at the mb_device or mb_ctlr structure to find out the vector
number (if any) specified in the config file.

zzattach must also examine the global "cpu" variable to determine if the CPU is capable of
vectored interrupts (cpu == SUN2_ VME). Based on this information the driver can then set the
card to interrupt using the auto-vectors if (cpu ! = SUN2_ VME) or if no vectored interrupts
were specified (the vector for auto-vectoring is 24 + m[cd]_intpri). Otherwise it can set the card
to use the vector number specified in the config file by using m [cd] _intr->v_vec.

Also, if the driver chooses to pass a value other than the unit number to the vectored interrupt
routine, this is set up at zzattach time.

If the driver is capable of supporting multiple vectored interrupts, then it should perform any
checking needed and install the vectors and/or the values to be passed as required. Remember
that the order of the vec structures corresponds to the order specified in the config file. For
any device which supports multiple vectored interrupts, the order of vector specifications in the
config file is very important.

Thus a skeleton for a "typical" driver supporting both vectored and polling interrupts which
uses software to set interrupt vectors might look like:

3-4. Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

struct mb_driver zzdriver = {
z,:probe, 0, zzattach, 0, 0, z,:poll,
sizeof (struct zz_device), "zz", zzinfo, 0, 0, 0,

};

;•
• Attach routine - device zz must set vector number in software.
• We know that there is a maximum one vectored interrupt to look at.

•;
zzattach (md)

struct mb_device *md;

{
register struct zzctlr •c = &zzctlrs[md->md_unit];

if ((cpu == SUN2_VME) && md->md_intr) {
;•

* use vectored interrupts, set up the interrupt vector
* plus set up to pass xzctlr structure pointer.

} else {

}

*/
c->c_addr->intvec = md->md_intr->v_vec;
*(md->md_intr->v_vptr) = (int)c;

/*setup for using auto-vectoring*/
c->c_addr->intvec = 24 + md->md_intpri;

/* any other attach code*/
}

/*
* Handle xx interrupt - called from zzpoll and for vectored interrupts
* Note that we expect to be called with a pointer to the controller.

*/
zzintr (c)

{

}

/*

struct zxctlr *c;

/* handle the interrupt here*/

* Handle zz polling auto-vectored interrupt
•/

z,:poll ()
{

struct xzctlr *c;
int serviced= O;

for (c = zzctlrs; c < &zzctlrs[NXX]; c++) {
if (lc->c_present I I (c->c_iobp->status & XlC_INTR) -- 0)

continue;
serviced= 1;
zzintr (c) ;

}
return (serviced);

}

Revision E of 15 May 1985 3-5

Device Drivers Device Drivers for the Sun Workstation

3.6. Some Common Service Functions

The kernel provides clusters of common service functions which device drivers can take advan
tage of. The common service functions fall into these major catagories:

Timeout Facilitiea
are available when a device driver needs to know about real-time intervals.

Sleep and Wakeup Facilitiea
suspend and resume execution of a process.

Raiaing and Lowering Interrupt Prioritiea
Lock out devices by raising processor priority !eve to stop the devices interrupting during
critical operations (such as accessing shared data structures).

Main Bua Reaource Management
includes the routines mbsetup and mbrelse for scheduling the Main Bus resources.

Buffer Header Management
Manages the in-memory disk buffer cache. We aren't dealing with disk drivers here so this
needn't concern us.

There is also a kernel-specific version of the printf routine. The kernel printf is described
later in this section.

3.6.1. Timeout Mechanisms

If a device needs to know about real-time intervals,

timeout(func, arg, interval)

is useful. timeout arranges that after interval clock-ticks (fiftieths of a second), the June is
called with arg as argument, in the style {'func){arg). Timeouts are used, for example, to pro
vide real-time delays after function characters like new-line and tab in typewriter output, and to
terminate an attempt to read a device if there is no response within a specified number of
seconds (that is, there was a lost interrupt). Also, the specified June is called at clock-interrupt
time, so it should conform to the requirements of interrupt routines in general (you can't call
sleep from within June for instance).

3.6.2. Sleep and Wakeup Mechanism

The other major help available to device handlers is the sleep-wakeup mechanism. The call

sleep(event, software_priority)

makes the process wait (allowing other processes to run) until the event occurs; at that time, the
process is marked ready-to-run and the call returns when there is no process with higher
aoftware_priority.

The call

wakeup(event)

0

0

indicates that the event has happened, that is, causes processes sleeping on the event to be awak-

0 ened. The event is an arbitrary quantity agreed upon by the sleeper and the waker-up. By

3-6 Revision E of 15 May 1985

0

0

0

Device Drivers for the Sun Workstation Device Drivers

convent.ion, it is the address of some data area used by the driver (for a specific device if there is
more than one minor device), which guarantees that events are unique.

Processes sleeping on an event should not assume that the event has really happened when they
are awakened; they should check that the conditions which caused them to sleep no longer hold.

Software priorities can range from O to 127; a higher numerical value indicates a less-favored
scheduling situation. A distinction is made between processes sleeping at priority less than the
parameter PZERO and those at numerically larger priorities. The former cannot be interrupted
by signals. Thus it is a bad idea to sleep with priority less than PZERO on an event which
might never occur. On the other hand, calls to sleep with larger priority may never return if
the process is terminated by some signal in the meantime. In general, sleeps at less than PZERO
should only be waiting for fast events like disk and tape I/0 completion. Waiting for human
activities like typing characters should be done at priorities greater than PZERO. Incidentally,
it is a gross error to call sleep in a routine called at interrupt time, since the process which is
running is almost certainly not the process which should go to sleep. Likewise, none of the vari
ables in the user area 'u.' should be touched, let alone changed, by an interrupt routine.

9. 6.9. Raising and Lowering Interrupt Priorities

At certain places in a device driver it is necessary to raise the hardware interrupt priority so
that a section of critical code cannot be interrupted, for example, while adding or removing
entries from a queue, or modifying a data structure common to both halves of a driver.

The splx function changes the interrupt priority to a specified level, and returns a value which
is what the level was before it changed.

For configuration reasons, the routine:

pritospl(md->md_intpri)
or

pritospl(mc->mc_intpri)

must be used to convert from the Main Bus hardware interrupt level to the CPU hardware prior
ity level. Here is how you normally use the pritospl and splx functions in a hypothetical
strategy routine:

hypo_strategy(bp)

{

}

register struct buf *bp;

register struct mb_ctlr •me= hypoinfo[minor(bp->b_dev)J;
int s;

s = splx(pritospl(md->md_intpri));
while (bp->b_flags & B_BUSY)

sleep((caddr_t)bp, PRIBIO);

here is some critical code section

(void) splx (s) ; /* Set priority to what it was previously • /

Revision E of 15 May 1985 3-7

Device Drivers Device Drivers for the Sun Workstation

9.6.,t. Main Bus Resource Management Routines

The routine mbsetup is called when the device driver wants to start up a transfer to the device
using Main Bus resource management.

At some later time, when the transfer is complete, the device driver calls the mbrelse routine
to inform the Main Bus resource manager that the transfer is complete and the resources are no
longer required.

3. 7. Kernel printf Function

The kernel provides a printf function analogous to the printf function supplied with the
standard 1/0 package for user programs. The kernel printf writes directly to the console
however. The kernel printf function can be used to debug a driver.

There are three items of interest about the kernel printf function that you should be aware of:

1. When using the kernel printf, you should not use any floating-point conversions.

2 The kernel printf function raises the priority level and therefore may Jock out interrupts
while it is sending data to the console).

3. The kernel printf displays its messages directly on the console, that is, the boot device,
unless specifically redirected by the TIOCCONS ioctl.

9. 7.1. Macros to Manipulate Device Numbers

A device number (in this system) is a 16-bit number divided into two parts called the major dev
ice number and the minor device number. There are macros provided for the purpose of isolat
ing the major and minor numbers from the whole device number. The macro

major(dev)

returns the major portion of the device number dev, and the macro

minor(dev)

returns the minor portion of the device number. Finally, given a major and a minor number z
and y, the macro

makedev (x, y)

creates a device number from the two portions.

3.8. Overall Layout of a Device Driver

Here is a summary of the kit of parts that comprises a typical device driver. In any given driver,
some routines may be missing. In a complex driver, all of these routines may well be present. A
typical device driver consists of a number of major sections, containing the routines described
below.

3-8 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

Auto Configuration
called by the kernel at system startup time to determine if the devices actually exist. This
section contains the probe routine.

Opening and Clo6ing the Device
The open routine is called for each instance of an open or create request against that file.
The close routine is called when a close request is made against that file for the last
time.

Reading and Writing from or to the Device
The read and write routines are called to get data from the device, or to send data to
the device. The read and write routines may use the tty interfaces for devices such as
terminals, or they might use a atrategy routine to handle devices that transfer data in
chunks. Strategy is most often used for DMA (Direct Memory Access) transfers, where the
actual data buffer must be mapped in for the duration of the transfer.

Start Routine
The 6tart routine is called to actually initiate the 1/0 operation. Start is needed in drivers
that queue requests; it is called from the read, write or atrategy routine to start the
queue and is also called from the interrupt routine to start the next element on the queue.

Mmap Routine
The mmap routine is present in cases where it is required to map the device into user
memory - a frame buffer for instance.

Polling Interrupt Routine
The polling interrupt routine of a device driver is called to service interrupts, possibly from
the device for which this driver exists. However, there can be more than one device sharing
the same interrupt level, and it is then also the task of the polling interrupt routine to deter
mine if the interrupt is actually destined for this driver.

Ioctl Routine
The ioctl routine is called when the user process does an ioctl system call. A typical
use is to change the baud-rate for a serial interface.

3.9. A Very Basic Skeleton Device Driver

At this stage, we quit discussing the 1/0 system and start writing a very simple device driver.
This model will be one of the simplest drivers we can produce. There is a complete version of
this driver in the attachments to this manual - the parts are presented piecemeal here with
some discussion on their functions.

What we do here is to invent an interface board called a Skeleton controller. The Skeleton
board is a very simple 1/0 mapped board, that is, it uses 1/0 ports in the Multibus 1/0 address
space. The Skeleton board has a single-byte command/status register, and a single-byte data
register. You can only write data to the outside world from the Skeleton board. This board is
not a slow teletype style interface - you can provide vast blocks of data and the board sends it
all out very fast. The Skeleton board interrupts when it is ready for a data transfer. The board
comes up in the power on state with interrupts disabled and everything else in a 'normal' state.

The status register of the Skeleton interface is located at Ox600 in Multibus 1/0 space, and the
data register at Ox601. The status register is both a read and a write register. The bit assign
ments are as shown in the tables below.

Revision E of 15 May 1985 3-9

Device Drivers Device Drivers for the Sun Workstation

BIT 8 7 6 5 4 3 2 1

Read
Inter· Device Interf&ee Interrupt
runt Ready Ready Ena.bled

BIT 8 7 6 5 4 3 2 1

Write
Enable

Interru:p'

Here is a brief description of what the bits mean:

When reading from the status register

bit 8 is a 1 when the board is interrupting, 0 otherwise.

bit 4 is a 1 when the device that the board controls is ready for data transfers.

bit 3 is a 1 when the Skeleton board itself is ready for data transfers.

bit 1 is a 1 when interrupts are enabled, 0 when interrupts are disabled.

When writing to the status register

bit 3 resets the Skeleton board to its startup state - interrupts are disabled and the
board should indicate that it is ready for data transfers.

bit I enables interrupts by writing a 1 to this bit, disables interrupts by writing a 0.

0

The header file for this interface is in akreg.h. By convention, we put the register and control 0
information for a given device (say zy) in a file called zyreg,h. The actual C code for the zy
driver would by convention be placed in a file called zy.c. The header file for the Skeleton
board looks like this:

/•
• Register, for Skeleton Mu/tibus I/0 Interface
•;

struct sk_reg {
char
char

sk_data;
sk_csr;

};

1• sk_csr bits (read)
#define SK_INTR OxBO
#define SK_DEVREADY
#define SK_INTREADY
#define SK_INTENAB

/* sk_csr bits (write)
#define SK..RESET
#define SK_ENABLE

•;
Ox08
Ox04
OxOl

•;
Ox04
OxOl

/• 01: Data Register * /
/• 00: command(w) and status(r) • /

;• 1 if device is interrupting •1
;• Device is Ready • /
;• Interface is Ready •;
/* Interrupts are enabled */

/* reset the device and interface * I
/* Enable interrupts * /

The complete device driver for the Skeleton board consists of the following parts:

skprobe o
is the autoconfiguration routine called at system startup time to determine if the ak board is ·

3-10 Revision E of 15 May 1985

0

0

0

Device Drivers for the Sun Workstation Device Drivers

actually in the system.

akopen and akcloae
routines for opening the device for each time the file corresponding to that device is opened,
and for closing down after the last file has been closed.

akwrite
routine which is called to send data to the device.

akatrategy
routine which is called from the write routine via physio to initiate transfers of data.

skstart
routine which is called for every byte to be transferred.

skpoll
the polling interrupt routine which services interrupts and arranges to transfer the next byte
of data to the device.

The subsections to follow describe these routines in more detail.

3.10. General Declarations in Driver

In addition to including a bunch of system header files, there are some data structures which the
driver must define.

#include "sk.h" ;• header file generated by config {defines NSK} • /

#define SKPRI (PZER0-1) ;• software sleep priority for sk • /

#define SKUNIT(dev)

struct buf rskbuf[NSK];

int skprobe(), skpoll();

(minor(dev))

struct mb_device •skdinfo[NSK];
struct mb_driver skdriver = { skprobe, 0, 0, 0, 0, skpoll,

sizeof(struct sk_reg), "sk", skdinfo, 0, 0, 0,
};

struct sk_device {
struct buf •sk_bp;
int sk_count;
char •sk_cp; /•
char sb_busy;

} skdevice[NSK];

;• current buf • /
/• number of bytes to send • /

nezt byte to send • /
/* true if device is busy • /

Here's a brief discussion on the declarations in the above example.

ak.h file is generated by the config program (discussed later). It contains the definition of
NSK, the number of sk devices configured into the system.

Revision E of 15 May 1985 3-11

Device Drivers Device Drivers for the Sun Workstation

SKPRI declaration declares the software priority level at which this device driver will sleep.

SKUNIT macro is a common way of obtaining the minor device number in a driver. Study Q
just about any device driver and you will find a declaration like this - it is a stylized

rakbuf

way of referring to the minor device number. One reason for this is that sometimes a
driver will encode the bits of the minor device number to mean things other than just
the device number, so using the SKUNIT convention is an easy way to make sure that
is things change, the code will not be affected.

array is necessary so that there will be bu/ structures to pass to the physic routine.
physic will fill in certain fields before calling our atrategy routine with the bu/struc
ture as the argument.

• Then there is a definition of the system dependent entry points into the device driver. In this
driver, the only entry points we use are skprcbe (probes the Multibus during system
configuration time) and skpc 11 (interrupt routine).

akdinfo is the device structure for this driver. The system autoconfiguration routines fill in
the apporpriate fields in this structure at startup time.

akdriver is a definition of the driver structure for this driver. An explanation of the fields in
this structure and when they should be filled in appears earlier in this chapter.

Note that this data structure is the major linkage to the kernel. The structure muat
be called driver-namedriver where driver-name is the name of your device driver
- the config(8) program (described later) that builds your kernel from a description
file assumes that all device driver structures have names of the form driver
namedriver.

sk_device 0
is a definition of a structure that holds state information for each unit. This is infor-
mation specific to this driver that needs to be remembered between subroutine calls.

3.11. Autoconfiguration Procedures

Part of a device driver's work is handling the automatic determination of the system
configuration. When the Sun UNIX system boots up, it determines the peripheral configuration
details by probing the memory space and I/0 space located on the various buses of the machine.

Note that the ccnfig(8) program does the mapping of where things are in the system. You use
the [mach space] clause to specify exactly where devices reside in the address space. If you
don't specify where devices are, ccnfig uses these assumptions for backwards compatibility:

• Any address less than 64K is assumed to be Multibus 1/0 address space.

• Addresses less than 256K are assumed to be Multibus memory addresses.

3.12. Probe Routine

There should be a probe function in every driver. Probe is called at system initialization time
with an address to be probed. Probe has two functions:

1. To determine if the device that this driver is written for exists at the specified address, and:

3-12 Revision E of 15 May 1985

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

2. To make the kernel aware of how much of the system's resources to reserve for that device.

Under normal circumstances, addressing non-existent memory or 1/0 space on the Multibus or
the VMEbus generates a bus error in the CPU. The kernel provides some functions to probe the
address space, recover from possible bus errors, and return an indication as to whether the
attempt to address a specific location generated a bus error.

Determining whether a device actually exists or not is assisted by the functions peek, peekc,
poke, and pokec. These functions provide for accessing possibly non-existent addresses on the
bus without generating bus errors that would terminate the process trying to access those
addresses. Peek and poke read and write, respectively, 16-bit words (short's in the Sun system).
Peekc and pokec read and write 8-bit characters. In general, you will use the character routines
for probing single-byte I/0 registers. See the section Summary of Functiona for details on these
routines.

Having determined whether the device exists in the system, the probe function returns either:

• the size (in bytes) of the device structure if it does exist. The kernel uses the value returned
from probe to reserve memory resources for that device. For _1/0 mapped devices, probe
returns the amount of 1/0 space that the device registers consume. For memory-mapped dev
ices, probe returns the amount of memory that the device consumes.

• a value of O (zero) if the device does not exist.

Now we can write skprobe:

/• ARGSUSED •/
skprobe(reg, unit)

caddr_t reg;
int unit;

{

}

register struct sk_reg *sk_reg;
register int c;

sk_reg = (struct sk_reg •)reg;
c = peekc((char •)&sk_reg->sk_csr);
if (c == -1)

return (O);

return (sizeof (struct sk_reg));

The reg argument is the purported address of the device. The unit argument is usually not
needed.

If the probe routine determines that the device actually exists and it returns the amount of
resources that the deevice uses, the system startup routines set the md_alive field in the device
structure to non-zero. The md_alive field is then used subsequently by other driver functions to
check that the device was probed successfully at startup time.

3.13. Open and Close Routines

During the processing of an open or creat call for a special file, the system always calls the
device's open routine to allow for any special processing required (rewinding a tape, turning on

Revision E of 15 May 1985 3-13

Device Drivers Device Drivers for the Sun Workstation

the data-terminal-ready lead of a modem, etc.). However, the close routine is called only
when the last process closes a file, that is, when the i-node table entry is being deallocated. Thus
it is not feasible for a device driver to maintain, or depend on, a count of its users, although it is
quite possible to implement an exclusive-use device which cannot be reopened until it has been
closed.

The Open routine for the sk driver is simple. Skopen is called with two arguments, namely, the
device which must be opened, and a flag indicating whether the device should be opened for
reading, writing, or both. The first task is to check whether the device number to be opened
actually exists - akopen returns an error indication if not. The second check is whether the
open is for writing. Since sk is a 'write only' device, it is an error to open it for reading only. If
all the checks succeed, akopen enables interrupts from the device, and then returns a zero (0) as
an indication of success. Here is the code for the akopen routine:

skopen(dev, flags)
dev_t dev;
int flags;

{

}

register struct mb_device *md;
register struct sk_reg *sk_reg;

if (SKUNIT(dev) >= NSK I I
(md = skdinfo[SKUNIT(dev)]) -- 0 II md->md_alive -- 0)

return (ENXIO);

if (flags & FREAD)
return (ENODEV);

/* enable interrupts */
sk_reg = (struct sk_reg *)md->md_addr;
sk_reg->sk_csr = SK_ENABLE;

return (O);

The first if statement checks if the device actually exists. Note the use of the SKUNIT macro to
obtain the minor device number - we discussed this earlier on.

The close routine for the sk driver is very simple - all it does is disable interrupts:

3-14

/*ARGSUSED*/
skclose(dev. flags)

{

}

dev_t dev;
int flags;

register struct mb_device *md;
register struct sk_reg *sk_reg;
md = skdinfo[SKUNIT(dev)];

/* disable interrupts */
sk_reg = (struct sk_reg *)md->md_addr;
sk_reg->sk_csr 1= ·sK_ENABLE;

Revision E of 15 May 1985

0

0

0

0

Q

0

Device Drivers for the Sun Workstation Device Drivers

skclose could in fact be more complicated than this. Some of the actions that could take
place in a close routine might be to deallocate any resources that were allocated for this dev
ice driver, and possibly to sleep on completion of 1/0 transfers for that device.

3.14. Read and Write Routines

When a read or vr i te takes place, the user's arguments and the file table entry are used to
set up the variables iovec. iov_base, iovec. iov_len, and uio. uio_offset which
respectively contain the (user) address of the 1/0 target area, the byte-count for the transfer,
and the current location in the file. If the file referred to is a character-type special file, the
appropriate read or vrite routine is called - this read or vrite routine is responsible for
transferring data and updating the count and current location appropriately as discussed below.

The write routine for the skeleton driver is very simple. write simply calls the •trategy routine
through the physic system routine. physio ensures that the user's memory space is avail
able to the driver for the duration of the data transfer. physio also takes care of updating the
count and current location as appropriate. The write routine looks like this:

skwrite(dev, uio)

{

dev_t dev;
struct uio *uio;

if (SKUN!T(dev) >= NSK)
return (ENXIO);

see below for some notes on this

return (physio(skstrategy, &rskbuf[SKUNIT(dev)], dev, B_WRITE,
skminphys, uio));

}

The •kminphy• routine is called by physio to determine the largest reasonable blocksize to
transfer at once. If the user has requested more bytes than this, physio will call •katrategy
repeatedly, requesting no more than this blocksize each time. The case where this is important
is when DVMA transfers are done. (DVMA is covered in more detail below.) The reasoning is
that only a finite amount of address space is available for DMVA transfers and it is not reason
able for any device to tie up too much of it. A disk or a tape might reasonably ask for as much
as 64 Kbytes; slow devices like printers should only ask for one to four Kbytes since they will tie
up the resource for a relatively long time.

Here is the akminphy, routine.

skminphys(bp)

{

}

struct buf •bp;

if (bp->b_bcount > MAX_SK_BSIZE)
bp->b_count = MAX_SK_BSIZE;

Note that if you don't supply you own minphy• routine, you place the name of the system sup
plied minphya routine, whose name is minphy•, as the argument to the .trategy routine at that
place, and the system supplied minphya routine gets used instead.

Revision E of 15 May 1985 3-15

Device Drivers Device Drivers for the Sun Workstation

s.14.1. Some Notes About the UIO Structure

When the system is reading and writing data from or to a device, the uio structure is used
extensively. The uio structure is a general structure to allow for what is called gather-write
and scatter-read. That is, when writing to a device, the blocks of data to be written don't have
to contiguous in the user's memory but can be in physically discontiguous areas. Similarly, when
reading from a device into memory, the data comes off the device in a continuous stream but can
go into physically discontiguous reas of the user's memory. Each discontiguous area of memory
is described by a structure called an iovec (I/0 vector). Each iovec contains a pointer to the
data area to be transferred, and a count of the number of bytes in that area. The uio structure
describes the complete data transfer. uio contains a pointer to an array of these iovec struc
tures. Thus when you want to write a number of physically discontiguous blocks of memory to a
device, you can set up an array of iovec structures, and place a pointer to the start of the
array in the uio structure. In the trivial case, there is generally just one block of data to be
transferred, and so the uio structure is fairly simple.

3.15. Skeleton Strategy Routine

The •trategy routine is called by physio after the user buffer has been locked into memory.
The .trategy routine must check that the device is ready and initiate the data transfer. Strategy
then waits for the the completion of the data transfer, which will be signaled by the interrupt
routine.

3-16

skstrategy(bp)

{

}

register struct buf *bp;

register struct mb_device •md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)]
sk_reg = (struct sk_reg *)md->md_addr;
sk = &sk_device[SKUNIT(dev)];
s = splx(pritospl(md->md_intpri));
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = 1;
sk->sk_bp = bp;
sk->sk_cp = bp->b_un.b_addr;
sk->sk_count = bp->b_bcount;
skstart(sk, (struct sk_reg *)md->md_addr,);
sk->sk_busy = O;
wakeup((caddr_t) sk};
(void) splx (s) ;

Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

3.16. Skeleton Start Routine - Initiate Data Transfers

The 8/art routine is responsible for getting the actual data bytes out to the device itself. Start is
called once by atrategy to get the very first byte out to the interface. After that, it is assumed
that the device will interrupt every time it is ready for a new data byte, and so atart is
thereafter called from the interrupt routine. Here is the atart routine:

skstart(sk, sk_reg)

{

}

struct sk_device *sk;
struct sk_reg *sk_reg;

sk_reg->sk_data = *sk->sk_cp++;
sk->sk_count--;
sk_reg->sk_csr = SK_ENABLE;

This routine will work, but there is a lot of overhead in taking an interrupt from the device on
every character. Since we know that the device can take characters very quickly. it would be
more efficient to try to give characters quickly. What we will do is to check after each character
and give another one if the device is ready. Here is the new, more efficient skstart routine.

skstart(sk, sk_reg)

{

}

struct sk_device *sk;
struct sk_reg *sk_reg;

do {
sk_reg->sk_data = *sk->sk_cp++;
sk->sk_count--;

} while (sk->sk_count && sk_reg->sk_csr & SK_OEVREADY);
if (sk->sk_count) /* more characters to go */

else {

}

sk_reg->sk_csr = SK_ENABLE;

sk_reg->sk_csr = O;
iodone(sk->sk_bp);

/* disable interrupts • /

We give characters to the device as long as there are more characters and the device is ready to
receive them. If we run out of characters, we disable interrupts to keep the device from bother
ing us and call iodone to mark the buffer as done.

It may be that the device is not quite quick enough to take a character and raise the
SK_DEVREADY bit in the time we can decrement and test the counter. If so, it would be very
worthwhile to busy wait for a short time. The reasoning is that while busy waiting is a waste,
servicing an interrupt costs lots more CPU time, and if busy waiting works fairly often it is a big
win. There is a macro DELAY which takes an integer argument which is approximately the
number of microseconds to delay, so we could add

DELAY(lO);

just before the while. Clearly this is an area where experimentation with the real device 1s
called for.

Revision E of 15 May 1985 3-17

Device Drivers Device Drivers for the Sun Workstation

3.17. Interrupt Routines

Each device should have appropriate interrupt-time routines. When an interrupt occurs, it is
turned into a C-compatible call on the devices's interrupt routine. After the interrupt has been
processed, a return from the interrupt handler returns from the interrupt itself.

The address of the polling interrupt routine for a particular device driver is contained in the
per-driver (that is, mb_driver) data structure for that device driver. The address of the pol
ling interrupt routine is filled in statically at the time the data structure is declared and initial
ized.

Since there may be many devices sharing a common interrupt level, it is the specific driver's
responsibility to determine if the interrupt is intended for it or not. If the interrupt ia for this
driver, the driver must service the interrupt and return a non-zero value to indicate that the
interrupt has been serviced. If the interrupt is not for this device driver, the polling interrupt
routine must return a zero value.

It is expected that the device actually indicates when it is interrupting. If there are any more
bytes to transfer, the interrupt routine calls the &tart routine to transfer the next byte. If there
are no more bytes to transfer, the interrupt routine disables the interrupt (so that the device
won't keep interrupting when there is nothing to do), and finishes up by calling iodone. Here
are the interrupt routines for this device:

3-18

skpoll()
{

}

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;
int serviced;

serviced= O;
for (i = 0; i < NSK; i++) {

md = &skdinfo[i];
sk_reg = (struct sk_reg *)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

}
}

serviced = l;
skintr(i);

return (serviced);

Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation

skintr (i)
int i;

{
register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device *sk;
int serviced;

md = &skdinfo(i);
sk = &sk_device(i);
sk_reg = (struct sk_reg *)md->md_addr;
if (sk->sk_count == 0) {

Device Drivers

sk_reg->sk_csr = O; /* Clear interrupt */
iodone(sk->sk_bp);

} else
skstart(sk, sk_reg);

}

3.18. Ioctl Routine

The ioctl routine is used to perform any tasks that can't be done by the regular open,
close, read, or write routines. Typical applications are: 'what is the status of this device',
or 'tell me the partitions on disk xyl'. This device does not need any special functions so we
don't have an ioctl routine.

3.19. Devices That Do DMA

Devices that are capable of doing DMA are treated a little differently than the skeleton device
we have been working with so far. Let us assume that we have a new version of the skeleton
board; call it the Skeleton II. It can do DMA transfers and we want to use this feature since it is
much more efficient. First we must describe DMA on the Sun-2.

3.20. Multibus or VMEbus DVMA

On the Sun-2, the processor board is always listening to the Multibus or VMEbus for memory
references. When a request to read or write Multibus or VMEbus memory between addresses 0
and 256K comes up, the DVMA hardware takes the address, adds OxFOOOOO to it, and goes
through the kernel memory map to find the location in processor memory that will be used.
Thus if you wish to do DMA over the Multibus or VMEbus, you must make the appropriate
entries in the kernel memory map. As you might expect, there are subroutines to help with this
chore. mbsetup sets up the map and mbre lse releases the map.

Revision E of 15 May 1985 3-19

Device Drivers Device Drivers for the Sun Workstation

3.21. Changes to the Driver

The changes to the driver are surprisingly simple. First we must extend the sk_reg structure
which defines the device registers. We assume that the Skeleton II supports the following struc
ture.

struct sk_reg {
char sk_data; /* 01: Data Register • /
char
short

sk_csr;
sk_count;

/* 00: command{w) and etatue(r) • /
/* bytes to be transferred • I

caddr_t sk_addr; /* DMA address */
};

Next we assume another bit in the csr.

#define SK_DMA OxlO /* Do DMA transfer • /

And we must add another element in the sk_device structure for use by maetup and
mbdone.

int sk_mbinfo;

Now we. change the akatrategy routine to use the OMA feature.

skstrategy(bp)

{

}

3-20

register struct buf *bp;

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct struct sk_device *sk;
int s;

md = skdinfo[SKUNIT(bp->b_dev)]
sk_reg = (struct sk_reg *)md->md_addr;
sk = &sk_device[SKUNIT(dev)];
s = splx(pritospl(md->md_intpri));
while (sk->sk_busy)

sleep((caddr_t) sk, SKPRI);
sk->sk_busy = l;
sk->sk_bp = bp;
/* this is the part that is changed • /
sk->sk_mbinfo = mbsetup(md->md_hd, bp, O);
sk_reg->sk_count = bp->b_count;
sk_reg->sk_addr = MBI_ADDR(sc->sc_mbinfo);
sk_reg->sk_csr = SK_ENABLE I SK_DMA;
/* end of changes • /
iowait(bp);
sk->sk_busy = O;
wakeup((caddr_t) sk);
splx(s);

Revision E of 15 May 1985

'

I 01
!

0

0

0

0

0

Device Drivers for the Sun Workstation Device Drivers

The need for the skstart routine is completely gone and thus we will delete it. All the I/0
now is started by •katrategy and continues until skpoll is called. Thus we can delete the
sk_cp and •c_count variables from the sk_device structure.

skintr is also simplified. There is no longer any need to check the count since all the data goes
out through DMA. Therefore iodone will always be called. Also, we need to free up the Main
Bus resources, so we will call the mbrelse routine. Here is the new skpoll and skintr
routines:

skpoll()
{

}

register struct mb_device •md;
register struct sk_reg •sk_reg;
register struct sk_device •sk;
int serviced;

serviced= O;
for (i = O; i < NSK; i++) {

md = &skdinfo[i];

}

sk_reg = (struct sk_reg •)md->md_addr;
if (sk_reg->sk_csr & SK_INTR) {

}

serviced= 1;
skintr(i);

return (serviced);

skintr (i)
int

{

i·
'

}

register struct mb_device *md;
register struct sk_reg *sk_reg;
register struct sk_device •sk;
int serviced;

md = &skdinfo[i];
sk = &sk_device[i];
sk_reg = (struct sk_reg •)md->md_addr;

/• This is the part that changed • /
sk_reg->sk_csr = O; /• Clear interrupt •/
mbrelse(md->md_hd, &sk->sk_mbinfo);
iodone(sk->sk_bp);

3.22. Errors

We have been pretty casual about errors up till now. Most devices have at least an error bit in
the csr, and usually more detailed error information is available. Also, we should check whether
the DMA count is exhausted.

Revision E of 15 May 1985 3-21

Device Drivers Device Drivers for the Sun Workstation

Detection and treatment of errors varies greatly from device to device and is not very generalis
able, so it wouldn't add much to this tutorial to show some elaborate error checking. Nonethe
less, error checking is important because if you don't check for errors and they do happen your
users will be very unhappy.

You should read the Product Specification manual for your device very carefully to determine
what error indications can be given and what you should do when they do come up. At the very
least, check for errors and if you can't figure out what to do about them, use the kernel printf
function to display a message to the console just to let the world know that everything is not
perfectly OK.

3.23. Memory Mapped Devices

Devices such as frame buffers are frequently accessed by mapping the buffer into the user
address space and allowing the user to update them at will. The user accomplishes this through
a mmap(2) system call. This call is translated by the kernel into a call to the driver's mmap rou
tine. The call has three parameters, dev, off and prot. Dev is of course the device major and
minor number, off is the offset into the frame buffer from the user's mmap system call, and prot
is a flag indicating whether write protection applies to the page(s). The constants PROT_READ,
PROT_WRITE and PROT_EXEC are defined in the header file mman.h. Each constant is a bit
turned on to indicate that the appropriate access is allowed.

Here is the mmap routine from the Sun Color Graphics driver.

cgmmap(dev, off, prot)
dev_t dev;
off_t off;

{

}

int prot;

register caddr_t addr;
register int page, uc;

addr = cginfo[minor(dev)]->md_addr;
if (off>= CGSIZE)

return (-1);
page= getkpgmap(addr + off) & PG_FFNUM;
return (page);

The PG_PFNUM constant gets rid of extraneous bits that getkpgmap returns and just leaves
the page number plus page type, which is what we have to return.

The routine first gets the address of the frame buffer from the Main Bus device structure.
Remember that this is generated by config based on the user's input as to where devices are
configured. Next the offset is checked to be sure the user isn't mapping beyond the end of the
frame buffer. Next comes a call to getkpgmap to do the actual mapping. The page number
returned by getkpgmap is then returned by cgmap. In this case, prot is not checked since
the driver permits open to succeed only if the user is opening for both read and write, thus all
access are permitted.

3-22 Revision E of 15 May 1985

0

0

0

0

0

0

Chapter 4

Configuring the System to Add Skeleton Driver

Now we've written the Skeleton driver, we'll go through the steps required to add it to the sys
tem. A detailed description of how to configure and build a kernel is in the document Building
UNIX Sy.tern• With Config in the Syatem Manager'• Manual. Here we just cover what is
needed to add a new driver.

New device drivers require entries in /aya/aun/conf.c and in /aya/conf/filea.aun. They are
included by mentioning the device name in the configuration file.

The examples to follow assume that you are adding a driver for the Skeleton board (sk) to the
system. The new system will be called SKELETON. Here is a representative section from
aun/ conf.c:

#include "sk.h"
#if NSK> 0
int skopen(), skclose(), skread(), skwrite(), skmmap();
#else
#define
#define
#define
#define
#define
#endif

{

skopen nodev
skclose nodev
skread nodev
skwrite nodev
skmap nodev

skopen, skclose, skread, skwrite,
nodev, nodev, nodev, 0,
seltrue, skmmap,

},

;• 40 •;

If NSK is greater than 0, this will add the driver routines into the cdevsv table so the kernel
knows where they are. (NSK is set by the config program based on the kernel configuration
file discussed below.) The entres added are, in order, the open, close, read, vrite,
ioctl, stop and reset routines, a tty structure address and finally the select and mmap
routines. We do not have an ioctl routine so this entry calls nodev which is a special rou
tine that always returns an error. Since we are not a tty we do not have a stop routine which
would be used for flow control, nor do we have a tty structure. The reset routine is not
used so all devices use nodev for this one. The select routine is called when a user process
does a select(2) system call; it returns true if the device can be-immediately selected. Since
our sk device is write only and fast, it is always selectable so we use the default sel true rou
tine which always returns true.

Here is the line you must add to filea.aun:

Revision E of 15 May 1985 4-1

Configuring the System to Add Skeleton Driver Device Driv~rs for the Sun Workstation

sundev/sk.c optional sk device-driver

This says that the file aunde11/ak.c contains the source code for the optional ak device and that it
is a device driver.

Now, you can go through the process of building the system just as described in the chapter on
configuration: Choose a name for your configuration of the system - in our case it will be called
SKELETON. Then create the configuration file and directory:

gala# cp GIIDllC 8JCltU'1'()S

gala# lllkdir • ./8JCltU'l'()S

Edit SKELETON to reflect your system - you must add a description of the device to the SKELE
TON file:

device skO at mbO csr all virt Oxeb0600 priority 2 [vector skintr 200]

This entry says we have an sk device (the first device is always number 0) on the Multibus, the
control/status register (device register) is at Multibus address Ox600 (this is passed to out probe
routine at boot time), this device will interrupt at level 2, and that if we are on a system that
supports vectored interrupts, vector number 200 is set up to call the skintr routine.

Note the all virt keys and the address given as Oxeb0600 instead of simply as Ox0600: this
means that the system will handle this device both on the Multibus, or in systems with a
VMEbus with a Multibus adaptor, since the monitor maps the equivalent of the Multibus 1/0
space (the 16-bit VMEbus space that the adapter listens to) to Oxeb0600.

Then you can run / etc/ config to make the configuration files for the new device driver:

gala# /etc/config 8JCltU'1'()S

/ etc/ config uses SKELETON, file•, and filea.aun as input, and generates a number of files in the
•• / SKELETON directory.

Now you can change directory to the new configuration directory, • • /SKELETON in this case, and
make the new system:

gala#
gala#
gala#

Cd • • /SDL.ftOII'
make depend
make

The make depend command creates the dependency tree for any new C source files you might
have created during the process of adding new drivers or whatever to the system.

Now you must add a new device entry to the / de11 directory. The connections between the UNIX
operating system kernel and the device driver is established through the entries in the / de11
directory. Using the example above as our model, we want to install the device for the Skeleton
driver.

Making new device entries is done via a shell script called MAKEDEV in the / de11 directory. It is
worth while looking inside MAKEDEV to find out the kinds of things that go on in there. The
lines of shell script below reflect what you would add to MAKEDEV for the new Skeleton device.
First, there are lines of commentary at the start of the MAKEDEV file:

4-2 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation Configuring the System to Add Skeleton Driver

#1 /bin/sh
MAKEDEV 4.3 83/03/31
Graphics
sk• Skeleton Board

Then there is the actual shell 'code' which makes the device entries:

skeletonJskJskO)
/etc/mknod skO c 40 0 ; chmod 666 skO

This makes the special inode /dev /skO as a character special device with major device number
40 and minor device number 0, and then sets the mode of the file so that anyone can read or
write the device.

Having added the new device entry, you can install the new system and try it out.

gaia#
gaia#

cp vmunix /vmunix+
/etc/halt

The system goes through the h•lt sequence, then
the monitor displays its prompt, •t which point you
c•n boot the system in single-user state

> b vmunlx+ -1

The system boots up in single user state •nd
then you c•n try things out

gaia#

If the system appears to work, save the old kernel under a different name and install the new one
in /vmunix:

gaia# cd /
gaia# mv vmunix ovmunix
gaia# mv vmunix+ vmunix
gaia#

Make sure that the new version of the kernel is actually called 1Jm11niz - because programs
such as pa and netatat use that exact name to look for things, and if the running version of the
kernel is called something other than 1/muniz the results from such programs will be wrong.

Revision E of 15 May 1985 4-3

ol
I

0

0

0

0

0

Appendix A

Summary of Functions

A.l. Standard Error Numbers

The system has a collection of standard error numbers that a driver can return to its callers.
These numbers are described in detail in intro(2), the introductory pages of the Syatem Inter
face Manual. A complete listing of the error numbers appears in <•11a/ errno.h>.

A.2. Device Driver Routines

A.2.1. Autoconfiguration Routines

A.l!.1.1. probe - Determine if Hardware ia There

probe(reg, unit)
caddr_t reg;
int unit;

probe determines whether the device at address reg actually exists and is the correct device for
this driver. If the device exists and is correct, probe returns

return (sizeof (struct device));

If the device does not exist, or is the wrong device for this driver, probe returns O (zero).

A .. lU!. Open and Close Routines

Revision E of 15 May 1985 A-1

Summary of Functions

A.2.2.1. open - Open o Device for Doto Trana/era

open(dev, flags)
dev_t dev;
int flags;

Device Drivers for the Sun Workstation

open checks that the minor device number passed in the dev argument is in range. The integer
argument flaga contains bits telling whether the open is for reading, writing, or both. The con
stants FREAD and FWRITE are available to be and'ed with floga. open returns:

return (ENXIO);

(meaning a non-existent device) if the minor device number is out of range. Then open
attempts to initialize the device, and if there are any errors, open returns:

return (EIO) ;

to mean an 1/0 error. If the open is successful, open returns O (zero).

A.2.2.2. close - Cloae o Device

close(dev, flags)
dev_t dev;
int flags;

Cloae does whatever it has to do to indicate that data transfers cannot be made on this device
until it has been reopened. Flag• is the same as for open.

A.2.9. Read, Write, and Strategy Routines

A.2.9.1. read - Read Doto from Device

read(dev, uio)
dev_t dev;
struct uio •uio;

read is the high-level routine called to perform data transfers from the device. read must
check that the minor device number passed to it is in range. If the minor device number is out
of range, read returns:

return (ENXIO);

meaning that the device is non-existent. Subsequent actions of read differ depending on
whether the device is a character-at-a-time device such as a teletype, or is a block transfer dev
ice.

For the block-transfer devices, read simply calls on the atrotegy function via phyaio:

0

return (physio(strategy, &rbuf[minor(dev)], dev, B_READ, minphys, uio)); ~

A-2 Revision E of 15 May 1985

0

0

0

Device Drivers for the Sun Workstation

A.2.9.2. vrite - Write Data to Device

vrite(dev, uio)
dev_t dev;
struct uio 'ulo;

Summary of Functions

write is the high-level routine called to perform data transfers to the device. write must
check that the minor device number passed to it is in range. Ir the minor device number is out
of range, write returns:

if (VPUNIT(dev) >= NVF)
return (ENXIO);

Subsequent actions of write differ depending on whether the device is a character-at-a-time
device such as a teletype, or is a block transfer device.

For the block-transfer devices, write simply calls on the alrategy function via phyaio:

return (physio(strategy, &rbuf[minor(dev)], dev, B_WRITE, minphys, uio));

A.2.9.9. strategy Routine

strategy(bp)
register struct buf *bp;

Strategy is the high level routine responsible for getting the data to the actual device. For DMA
devices, atrategy calls on mbgo to schedule the Main Bus resources. atrategy does not return any
value.

A.2.9.,1. minphys - Determine Maximum Block Size

int block = some 'reasonable' block size for transfers
must be a multiple of 101!,I bytes

unsigned minphys(bp)
register struct buf *bp;

Minphya determines a 'reasonable' block size for transfers, so as to avoid tying up too many
resources. Minphya is passed as an argument to phyaio. In the absence 0£ a minphy• functions
supplied by the device driver itself, a system supplied version of minphy• is used instead. Min
phya shoulld perform the calculation:

if (bp->b_bcount > block)
bp->b_bcount = block;

Revision E of 15 May 1985 A-3

Summary of Functions

A.2.4. ioctl - Special Interface Function

ioctl(dev, cmd, data, flag)
dev_t dev;
int cmd;
caddr_t data;
int flag;

Device Drivers for the Sun Workstation

ioctl differs for every device and covers the functions that aren't done by read and vrite.
ioctl does whatever it has to do, then returns O (zero) if there were no errors, and returns:

return (ENOTTY);

in the case that the command requested did not apply to this device. Note that ENOTTY gives
rise to the error message 'Not a typewriter', which may be misleading.

A.2.5. Low Level Routines

Routines in this area are low level and can potentially be called from the interrupt side of the
driver. sleep calls may never be made from the routines described here.

A.l?.5.1. intr - Handle Vectored Interrupta

intr(unit)
int unit;

intr is responsible for fielding vectored interrupts from the device. unit is the unit number of
the device that interrupted.

A.e.s.e. poll - Handle Polling lnterrupta

poll()

po 11 is responsible for fielding non-vectored interrupts from the device. In situations where
more than one device share the same interrupt level, poll must determine if the interrupt was
actually destined for this driver or not. poll returns O (zero) to indicate that the interrupt was
not serviced by this driver, and non-zero to indicate that the interrupt was serviced. It is a gross
error for po 11 to say that it serviced an interrupt when it really did not.

If a device driver handles both vectored interrupts and polling interrupts, the poll routine typi
cally calls the intr routine with the proper arguments, normally the unit number of the device
that interrupted.

A.3. Common Service Routines

A-4 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation

A.3.1. sleep - Sleep on an Event

sleep(address, priority)
caddr_t address;
int priority;

Summary of Functions

sleep is called to put a process to sleep. The addre .. argument is typically the address of a
location in memory. Priority is the software priority the process will have after it is woken up.
The process which has been put to sleep can be woken up again by issuing a wakeup call with
the same addre... sleep should never be called from the low level side of a driver.

A.3.2. wakeup - Wake Up a Process Sleeping on an Event

wakeup (address)
caddr_t address;

wakeup is called when a process waiting on an event must be awakened. Addreu is typically
the address of a location in memory. wakeup is typically called from the low level side of a
driver when (for instance) all data has been transferred to or from the user's buffer and the pro
cess waiting for the transfer to complete must be awakened.

A.3.3. mbsetup - Set Up to Use Main Bus Resources

mbsetup(md_hd, bp, flag)
struct mb_hd *mb_hd;
struct buf *hp;
int flag;

Mbaetup is called to set up the memory map for a Main Bus DVMA transfer. flag is
MB_CANTWAIT if the caller desires not to wait for map resources if none are available. Nor
mally this will be zero which means the driver will wait. Mbaetup returns an integer which must
be saved for the call to mbrelae.

A.3 .. f mbrelse - Free Main Bus Resources

mbrelse(md_hd, mbinfop)
struct mb_hd *mb_hd;
int *mbinfop;

Mbrelae releases the Main Bus DVMA resources allocated by mbaetup. Note that the second
parameter is a pointer to the integer returned by mbaetup.

Revision E of 15 May 1985 A-5

Summary of Functions Device Drivers for the Sun Workstation

A.9.5. physic - Lock in User's Buffer Area

physio(strat, buf, dev, flag, minphys, uio)
void (*strat) ();
struct buf *buf;
dev_t dev;
int flag;
void (*minphys) () ;
struct uio *uio;

A.9.6. iowai t - Wait for I/0 to Complete

iowait(bp)
struct buf *bp;

iowai t waits on the buffer header addressed by bp for the DONE flag to be set. iowai t actu
ally does a sleep on the buffer header.

A.9. 7. iodone - Indicate I/0 Complete

iodone(bp)
struct buf *bp;

iodone is called to indicate that 1/0 associated with the buffer header bp is complete. iodone
sets the DONE flag in the buffer header, then does a wakeup call with the buffer pointer as argu
ment.

A.9.8. pr i tospl - Convert Priority Level

pritospl (value)
int value;

pritospl is a macro that converts the hardware priority level given by value, which is a Main
Bus priority level, to a CPU hardware priority level used by splx. pritospl is used to
parameterize the setting of priority levels.

A.9.9. spln () - Set Specific Priority Level

The apln() functions are available for setting the priority level to n, where n ranges from Oto 7.
These routines should probably never be used in any device driver.

A-6 Revision E of 15 May 1985

0

0

0

0

0

0

Device Drivers for the Sun Workstation Summary of Functions

A.9.10. splx - Reset Priority Level

splx (s)
int s;

splx called with an argument a sets the priority level to a, which was returned from a previous
spln(), pritospl(), or splx() call. splx is typically used to restore the priority level to
a previously remembered level. splx () returns the previous level.

A.9.11. uiomove - move data to or from the uio structure

uiomove(cp, n, rw, uio)
register caddr_t cp;
register int n;
enum uio_rw rw;
register struct *uio;

Device drivers use uiomove to move a specified number of bytes between an area defined by a
uio structure (normally passed to the driver when it is called) and an area in the kernel's
address space (where it can be used by the driver). Uiomove moves n bytes from or to the iovec
pointed to by the uio structure out of or into the area specified by cp. The read/write flags
(which specify the direction of the data transfer) are defined in <uio.h>. Uiomove replaces the
older copyin and copyout routines which are no longer supported. Uiomove can also be used to
copy kernel uio structures - it checks uio->uio_aegftag.

A.9.12. urea de and uwr i tee - transfer bytes to or from a uio structure

ureadc(c, uio)
int c;
register struct •uio;

Ureadc transfers a character represented by c in the definition into the iovec pointed at by the
uio structure (normally passed to the driver when it is called). Ureadc is normally used when
'reading' a character in from a device.

uwritec(uio)
register struct *uio;

Uwritec returns the next character in the iovec pointed at by the uio structure (normally passed
to the driver when it is called), or returns -1 on error. Uwritec is normally used when 'writing'
a character out to a device.

Note that 'read' and 'write' are slightly confusing in the above contexts, since ureadc actually
obtains a character from somewhere and places the character into the iovec pointed to by the
uio structure, whereas uwritec obtains a character from the iovec and 'writes' the character
somewhere.

Ureadc and uwritec replace the routines cpaaa and paaac, which are no longer supported.

Revision E of 15 May 1985 A-7

Summary of Functions Device Drivers for the Sun Workstation

A.3.13. peek, peekc - Check Whether an Address Exists and Read

peek (address)
short *address;

peekc(address)
char *address;

peek and peekc are called with an address from which you want to read. Both peek and peekc
return -1 if the addressed location doesn't exist, otherwise they return the value which was
fetched from that location.

A.3.14, poke, pokec - Check Whether an Address Exists and Write

poke(address, value)
short *address;
short value;

pokec(address, value)
char *address;
char value;

poke and pokec are called with an addreaa you want to store into, and value is the value you

0

want to store there. Both poke and pokec return 1 if the addressed location doesn't exist, and O 0
if the addressed location does exist. :

A.3.15. geteblk - Allocate Dynamic Buff er

struct buf •geteblk(size)
int *size;

geteblk allocates a buffer dynamically. The aize of the block 1s limited to a maximum of 8K
bytes, and must be a multiple of 512 bytes.

A.3.16. brelse - Free Dynamic Buffer

brelse(bp)
struct buf bp;

brelae frees a buffer previously allocated by geteblk.

A.3.17. swab - Swap Bytes

A-8 Revision E of 15 May 1985

0

0

0

0

Device Drivers for the Sun Workstation

swab(from, to, nbytes)
caddr _t from;
caddr_t to;
int nbytes;

Summary of Functions

awab swaps bytes within words. nbyte, is the number of bytes to swap, and is rounded up to a
multiple of two. The from and to areas can overlap each other since the bytes are swapped one
at a time.

Revision E of 15 May 1985 A-9

ol

0

0

0

0

0

Appendix B

Sample Drivers

The C code listings supplied here are sample drivers for devices that the Sun system supports.
There are three drivers listed here:

CGONE
is a device driver for the Sun-1 color graphics board. It 1s one of the simplest drivers
around, being memory mapped.

SKY
is a programmed 1/0 driver for the SKY floating-point board, with both polling interrupts
and vectored interrupts. However, the interrupt routines don't do a whole lot.

VP is a fairly good example of a DMA device driver.

Revision E of 15 May 1985 B-1

Mar 29 17:28 1986 cgreg.h Page 1

@(#)cgreg.h 1.3 84/12/22 SMI

I*
* Copyright (cl 1983 by Sun Microsystems, Inc.
*I

I*
* Register definitions for Sun Color Board
*I

#define CGSIZE (16*1024) I* 16K of address space *I

define GR bd sel

define GR x select
define GR_y_select
define GR_y_fudge
define GR_update
define GR x rhaddr

define GR x rladdr

define GR_y_rhaddr
define GR_y_rladdr

define GR setO
define GR set1

define GR_red_cmap
define GR_grn_cmap
define GR_blu_cmap

CGXBase

Ox0800
OxOOOO
Ox0200
Ox2000
Ox1b80

Ox1b00

Ox1bc0
Ox1b40

OxOOOO
Ox0400

Ox1000
Ox1100
Ox1200

define GR sr select Ox1800
define GR er select Ox1900
define GR fr select Ox1a00

I* Select Color Board *I

I* Access a column in the frame buffer *I
I* Access a rov in the frame buffer *I
/* Bit 9 not used at all *I
I* Update frame buffer if this bit set *I
I* Location to read X address bits A9-A8.

Data put into D1-DO. *I
I* Location to read X address bits A7-AO.

Data put into D7-DO. *I
I* Location to read Y address bits A9-A8. *I
I* Location to read Y address bits A7-AO. *I

/* Address Register pair 0. *I
/* Address Register pair 1. *I

I* Address to select Red Color Map
I* Addr for Green Color Map *I
I* Addr for Blue Color Map *I

I* Addr to select status register

*I

*I
I* Addr to select mask (color) register
/* Addr to select function register *I

*I

/* The folloving are pointers to the mask(color), status, and function regs. *I

define GR_creg
define GR mask
define GR_sreg
define GR_freg

(u_cbar *)(GR bd sel + GR_cr_select)
(u char *) (GR -bd···sel + GR er select)
(u-cbar *)(GR-bd-sel + GR-sr-select)
(u=char •l(GR=bd=sel + GR=fr=select)

I* These assignments
define GRWO_cplane
define GRW1_cplane
define GRW2_cplane
define GRW3_cplane

are for
OxOO
Ox01
Ox02
Ox03

define GRVO_cplane Ox04
define GRV1_cplane Ox06
define GRV2_cplane Ox06
define GRV3_cplane Ox07

bits
I*
I*
I*
I*

in the Status Register *I
Select CMap Plane number zero for R/W *I
Select CMap Plane number one for R/W *I
Select CMap Plane number tvo for R/W *I
Select CMap Plane number three for R/W *I

I* Select CMap Plane number zero for video *I
I* Select CMap Plane number one for video *I
I* Select CMap Plane number tvo for video *I
I* Select CMap Plane number three for video *I

0

0

0

0

0

0

Mar 29 17:28 1986 cgreg.h Page 2

define GR inten Ox10 I* Enable Interrupt to start at start
of next vertical retrace. Must clear bit to
clear interrupts. *I

define GR_paint Ox20 I* Enable Writing five pixels in parallel *I
define GR_disp_on Ox40 I* Enable Video Display *I

define GR vretrace Ox80 I* Unused on write. On read, true if monitor in
vertical retrace. *I

I* This define returns true if the board is in vertical retrace *I
define GR_retrace (*GR_sreg & GR_vretrace)

I* The following are function register encodings *I
define GR_copy exec I* Copy data reg to Frame buffer *I
define GR_copy_invert Ox33 I* Copy inverted data reg to FB *I
define GR_vr_creg OxFO I* Copy color reg to Frame buffer *I
define GR vr mask OxFO I* Copy mask to Frame buffer *I
define GRinv_wr_creg OxOF I* Copy inverted Creg to FB *I
define GRinv wr mask OxOF I* Copy inverted Mask to FB *I
define GR ram invert O:x:55 I* 'Invert' color in Frame buffer *I
define GR er and dr OxCO I* Bitwise and of color and data regs - - -
define GR clear OxOO I* Clear frame buffer *I
define GR er xor fb Ox5A I* Xor frame buffer data and Crag *I

*I

Mar 29 17:28 1985 cgone.c Page 1

#ifndef lint
static char sccsid[] = •@(#)cgone.c 1.12 85/02/05 Copyr 1983 Sun Micro•;
#endif

I*
* Copyright (c) 1983 by Sun Microsystems, Inc.
*I

#include •cgone.h•
#include •win.h"
#if NCGONE > 0

I*
* Sun One Color Graphics Board(s) Driver
*I

#include • . ./h/param. h •
#include • . ./h/systm. h •
#include • . ./h/dir.h"
#include • . ./h/user. h •
#include • . ./h/proc. h •
#include • . ./h/buf. h •
#include • . ./h/conf. h •
#include • . . /h/file.h•
#include • .. /h/uio .h •
#include • . ./h/ioctl .h"

#include • .. /machine/mmu.h"
#include • .. /machine/pte.h•

#include • . ./sun/fbio. h •

#include • .. /sundev/mbvar.h"
#include• .. /pixrect/pixrect.h'
#include • .. /pixrect/pr_util.h"
#include • .. /pixrect/cg1reg.h"
#include • .. /pixrect/cg1var.h"

#if NWIN > 0
#define CG1_0PS &cg1_ops
struct pixrectops cg1_ops = {

};

cg1_rop,
cg1_putcolormap,
cg1_putattributes,

#else
#define CG1 OPS (struct pixrectops *)O
#endif

#define CG1SIZE (sizeof (struct cg1fb))
struct cg1pr cgoneprdatadefault =

{ 0, 0, 256, 0, 0 };
struct pixrect cgonepixrectdefault =

{ CG1_0PS, { CG1_WIDTH, CG1_HEIGHT }, CG1_DEPTH, I* filled in later*/ 0 };

0

0

0

0

0

0

Mar 29 17:28 1986 cgone.c Page 2

I*
* Driver information for auto-configuration stuff.
*I

int cgoneprobe(), cgoneintr();
struct pixrect cgonepixrect[NCGONE];
struct cg1pr cgoneprdata[NCGONE];
struct mb_device •cgoneinfo[NCGONE];
struct mb_driver cgonedriver = {

cgoneprobe, 0, 0, 0, 0, cgoneintr,
CG1SIZE, •cgone•, cgoneinfo, 0, 0, 0,

};

I*
* Only allov opens for vriting or reading and vrit1ng
* because reading is nonsensical.
•I

cgoneopen(dev, flag)
dev_t dev;

{
return(fbopen(dev, flag, NCGONE, cgoneinfo));

}

I•
* \lben close driver destroy pixrect.
*I

/•ARGSUSED*/
cgoneclose(dev, flag)

{

}

dev_t dev;

register int un1t = minor(dev);

1f ((caddr_t)tcgoneprdata[unit] == cgonepixrect[unit] .pr_data) {
bzero((caddr_t)&cgoneprdata[unit], sizeof (struct cglpr));
bzero((caddr_t)&cgonepixrect[unit], sizeof (struct pixrect));

}

/•ARGSUSED*/
cgoneioctl(dev, cmd, data, flag)

dev t dev;

{
caddr_t data;

register 1nt unit= minor(dev);

svitcb (cmd) {

case FBIOGTYPE: {
register struct fbtype *fb = (struct fbtype •)data;

fb->fb_type = FBTYPE_SUN1COLOR;
fb->fb_height = 480;
fb->fb_vidtb = 640;
fb->fb_deptb = 8;
fb->fb_cmsize = 256;
fb->fb size= 512*640;
break;

Mar 29 17:28 1986 cgone.c Page 3

}

}

case FBIOGPIXRECT: {

default:

register struct fbpixrect *fbpr = (struct fbpixrect *)data;
register struct cgifb *cg1fb =

(struct cg1fb *)cgoneinfo[(unit)]->md_addr;

I*
* "Allocate• and initialize pixrect data with default.
*I

fbpr->fbpr_pixrect = &cgonepixrect[unit];
cgonepixrect[unit] = cgonepixrectdefault;
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];
cgoneprdata[unit] = cgoneprdatadefault;
I*
* Fixup pixrect data.
*I

cgoneprdata[unit] .cgpr_va = cg1fb;
I*
* Enable video
*I

cg1_setreg(cg1fb, CG_FUNCREG, CG_VIDEOENABLE);
I*
* Clear interrupt
*I

cg1_intclear(cg1fb);
break;
}

return (ENOTTY);
}
return (O);

I*
* We need to handle vertical retrace interrupts here.
* The color map(s) can only be loaded during vertical
* retrace; we should put in ioctls for this to synchronize
* with the interrupts.
* FOR NOW, see comments in the code.
•I

cgoneintclear(cg1fb)

{
struct cg1fb •cg1fb;

I*
* The Sun 1 color frame buffer doesn't indicate that an
* interrupt is pending on itself so we don't know if the interrupt
* is for our device. So, just turn off interrupts on the cgone board.
* This routine can be called from any level.
*I

cgl intclear(cg1fb);
I• -
* We return O so that if the interrupt is for some other device
* then that device will have a chance at it.
*I

return(O);

0

0

0

0

0

0

Mar 29 17:28 1985 cgone.c Page 4

}

int
cgoneintrO
{

return(fbintr(NCGONE, cgoneinfo, cgoneintclear));
}

/*ARGSUSED*/
cgonemmap(dev, off, prot)

dev_t dev;

{

}

off_t off;
int prot;

return(fbmmap(dev, off, prot, NCGONE, cgoneinfo, CG1SIZE));

#include ' .. /sundev/cgreg.h'
I*
* Note: using old cgreg.h to peek and poke for nov.
*I

I*
* We determine that the thing ve're addressing is a color
* board by setting it up to invert the bits ve vrlte and then vr1t1ng
* and reading back DATA1, making sure to deal vith FIFOs going and coming.
*I

#define DATA1 Ox5C
#define DATA2 Ox33
/*ARGSUSED*/
cgoneprobe(reg, unit)

{

caddr t reg;
int unit;

register caddr_t CGXBase;
register u char *Xaddr, *yaddr;

CGXBase = reg;
if (pokec((caddr t)GR freg, GR_copy_invert))

return (O); -
if (pokec((caddr t)GR mask, 0))

return (O); -
xaddr = (u char *)(CGXBase + GR x select+ GR update+ GR_setO);
yaddr = Cu-char *)(CGXBase + GR-y-select + GR=setO);
if (pokec((caddr t)yaddr, 0)) - -

return Co);
if (pokec((caddr_t)xaddr, DATA1))

return (O);
(void) peekc((caddr t)xaddr);
(void) pokec((caddr-t)xaddr, DATA2);
if (peekc ((caddr t) xaddr) == (-DATAi lt OxFF)) {

I* -
* The Sun 1 color frame buffer doesn't indicate that an
* interrupt is pending on itself.
* Also, the interrupt level is user program changable.
* Thus, the kernel never knovs vhat level to expect an
* interrupt on this device and doesn't knov ls an interrupt

Mar 29 17:28 1986 cgone.c Page 6

}

#endif

}

* is pending.
* So, ve add the cgoneintr routine to a list of interrupt
* handlers that are called if no one handles an interrupt.
* Add_default_intr screens out multiple calls vith the same
* interrupt procedure.
*I

add default intr(cgoneintr);
roturn (CG1SIZE);

return (O);

0

0

0

0

0

0

Har 29 17:34 1985 skyreg.h Page 1

@(#)skyreg.h 1.3 84/12/22 SHI

I*
* Copyright (c) 1983 by Sun Microsystems, Inc.
•I

I•
* Sky FFP
•I

struct skyreg {
u_short sky_command;
u short sky status;
union { -

} skyu;

short
long

skyu _ d\lord [2] ;
skyu_dlong;

#define sky data skyu.skyu_dlong
#define sky=dlreg skyu.skyu_d\lord[O]

long sky_ucode;
u_short sky_vector; I* VHE: interrupt vector number•/

};

I• commands *I
#define SKY SAVE Ox1040
#define SKY RESTOR Ox1041
#define SKY NOP Ox1063
#define SKY STARTO Ox1000
#define SKY START1 Ox1001

I* status bits •I
#define SKY IHALT OxOOOO
#define SKY INTRPT OX0003
#define SKY INTENB Ox0010
#define SKY RUNENB Ox0040
#define SKY SNGRUN Ox0060
#define SKY RESET Ox0080
#define SKY IODIR Ox2000
#define SKY IDLE Ox4000
#define SKY IORDY Ox8000

Mar 29 17:36 1986 sky.c Paga 1

#ifndaf lint
static char sccsid[] = •@(#)sky.c 1.13 86/03/02 Copyr 1983 Sun Micro•;
#andif

I*
* Copyright Cc) 1985 by Sun Microsystems, Inc.
*I

* Sky FFP

#include• .. /h/param.h"
#include • .. /h/buf.h"
#include • .. /h/fila.h"
#include• .. /h/dir.h"
#include • .. /h/user.h"
#include • .. /mach1ne/pte.h"
#include• .. /machine/mmu.h"
#include• .. /machine/cpu.h"
#include• .. /machine/scb.h"
#include• .. /sundev/mbvar.h"
#include • .. /sundev/skyreg.h"

I*
* •page• size for VME sky board
* user page (0) doesn't allow access to nasty registers
* supervisor page (1) does
*I

#define SKYPGSIZE Ox800

I*
* Driver information for auto-configuration stuff.
*I

int skyprobe(), skyattach(), skyintr();
struct mb_device *skyinfo[1]; I* XXX only supports 1 board *I
struct mb_driver skydr1ver = {

skyprobe, O, skyattacb, o, O, skyintr,
2 * SKYPGSIZE, "sky", skyinfo, 0, 0, 0,

};

struct skyreg *skyaddr;
int skyinit = o. skyisnev = O;

/*ARGSUSED*/
skyprobe(reg. unit)

{

caddr_t reg;
int unit;

register struct skyreg *skybase = (struct skyreg *)reg;

if (peek((short *)skybase) == -1)
return (O);

if (poke((short *)tskybase->sky status. SKY_IHALT))
return (O); -

skyaddr = (struct skyreg *)(SKYPGSIZE + reg);
if (cpu -- SUN2 120 I I poke((short *)tskyaddr->sky status, SKY_IHALT)) {

0

0

0

0

0

0

Mar 29 17:36 1986 sky.c Page 2

}

} else

I* old VMEbus or Multibus *I
skyisnev = O;
skyaddr = (struct skyreg *)reg;

skyisnev = 1;
return (sizeof (struct skyreg));

I*
* Initialize the VME interrupt vector to be identical to
* the 68000 auto-vector for the appropriate interrupt level
* unless vectored interrupts have been specified.
*I

skyattach(md)
struct mb device *md;

{

}

if (skyisnev) {
if (!md->md intr) {

} else {

}
}

I* use auto-vectoring *I
(void) poke((short *)&skyaddr->sky_vector,

AUTOBASE + md->md_intpri);

I* use vectored interrupts *I
(void) poke((short *)&skyaddr->sky vector,

md->md_intr->v_vec); -

/*ARGSUSED*/
skyopen(dev, flag)

{

dev _ t dev;
int flag;

int 1;
register struct skyreg *s = skyaddr;

if (skyaddr == O)
return (ENXID);

if (skyinit == 2) {
I*
* Initialize the FFP.
* VME users can't do this themselves;
* since the status isn't writeable
*I

s->sky_status = SKY_RESET;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_START1;
s->sky_status = SKY_RUNENB;
u.u_skyctx.usc_used = 1;
u.u skyctx.usc cmd = SKY NOP;
for-(1=0; 1<8;-1++) -

u.u_skyctx.usc_regs[i] = O;
skyrestore O ;

Mar 29 17:36 1986 sky.c Page 3

}

} else if (flag a FNDELAY)
skyin1t = 1;

else
return (ENXIO) ;

return (O);

/*ARGSUSED*/
skyclose(dev, flag)

dev_t dev;
int flag;

{

}

* We have to save context here in case the user aborted
* and left the board 1n an unclean state.
*I

1f (sky1n1t == 2)
skysave();

1f (sky1n1t == 1)
skyin1t = 2;

u.u skyctx.usc used= O;
return (O); -

0

/*ARGSUSED*/
skymmap(dev, off, prot)

dev _ t dev;
off_t off;
int prot; 0

{

}

1f (off)
return (-1);

off= (off_t)skyaddr;
1f (skyisnew aa skyinit == 2) I* use user page *I

off-= SKYPGSIZE;
off= getkpgmap((caddr_t)off) a PG_PFNUM;
return (off);

/*ARGSUSED*/
skyintr(n)

int n;
{

static u_short skybooboo = O;

if (skyaddr aa (skyaddr->sky status a (SKY INTENBISKY INTRPT))) {
1f (skyaddr->sky_status a SKY_INTENB) { -

pr1ntf("skyintr: sky board interrupt enabled, status= Ox%x\n•,
skyaddr->sky_status);

skyaddr->sky status .It= -csKY INTENBJSKY INTRPT);
return (1); - - -

}
if (!skybooboo aa (skyaddr->sky status a SKY INTRPT)) { 0

pr1ntf("sky1ntr: sky board unrecognized status, status= Ox~x\

0

0

0

Mar 29 17:36 1986 sky.c Page 4

}
}

skybooboo = skyaddr->sky_status);
return (O);

return (O);
}

skysave()
{

reg1ster short 1;
reg1ster struct skyreg *S = skyaddr;
reg1ster u_short stat;

for (i = O; i < 100; i++) {
stat= s->sky status;
if (stat a SKY_IDLE) {

u.u_skyctx.usc_cmd = SKY_NDP;
goto sky_save;

}

if (stat a SKY_IDRDY)
goto sky_ioready;

}

printf('skyO: hung\n');
skyinit = O;
u.u_skyctx.usc_used = O;
return;

I*
*I/Dis ready, is it a read or vrite?
*I

sky_ioready:
I* set single step mode *I s->sky_status = SKY_SNGRUN;

if (stat a SKY_IDDIR)
i = s->sky_dtreg;

else
s->sky_d1reg = 1;

I*
* Check again since data may have been a long word.
*I

stat= s->sky_status;
if (stat a SKY IDRDY)

if (stat & SKY_IODIR)
i = s->sky_dtreg;

else
s->sky_d1reg = 1;

I•
* Read and save the command register.
* Decrement by 1 since command register
* is actually FFP program counter and we
* want to back it up.
•I

u.u_skyctx.usc_cmd = s->sky_command - 1;

Mar 29 17:36 1985 sky.c Page 5

* Reinitialize the FFP.
*I

s->sky_status = SKY_RESET;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_STARTO;
s->sky_command = SKY_START1;
s->sky_status = SKY_RUNENB;

I•
* Finally, actually do the context save function.
* (Unrolled loop for efficiency.)
*I

sky_save:
s->sky_command = SKY_NOP; I* set FFP in a clean mode *I

}

s->sky command= SKY SAVE;
u.u skyctx.usc regs[O] = s->sky data;
u.u-skyctx.usc-regs[l] = s->sky-data;
u.u-skyctx.usc-regs[2] = s->sky-data;
u.u=skyctx.usc=regs[3] = s->sky=data;
u.u skyctx.usc regs[4] = s->sky data;
u.u-skyctx.usc-regs[S] = s->sky-data;
u.u=skyctx.usc=regs[6] = s->sky=data;
u.u_skyctx.usc_regs[7) = s->sky_data;

skyrestore()
{

}

register struct skyreg *S = skyaddr;

if (skyinit != 2) {
u.u_skyctx.usc_used = O;
return;

}
s->sky_command = SKY_NOP;

I*

I* set FFP in a clean mode *I

* Do the context restore function.
*I

s->sky command= SKY RESTOR;
s->sky-data = u.u skyctx.usc regs[O);
s->sky-data = u.u-skyctx.usc-regs[l];
s->sky-data = u.u-skyctx.usc-regs[2);
s->sky=data = u.u=skyctx.usc=regs[3];
s->sky data= u.u skyctx.usc regs[4];
s->sky-data = u.u-skyctx.usc-regs[S];
s->sky-data = u.u-skyctx.usc-regs[6];
s->sky=data = u.u=skyctx.usc=regs[7);
s->sky_command = u.u_skyctx.usc_cmd;

0

0

0

0

0

0

Mar 29 17:30 1985 vpreg.h Page 1

@(#)vpreg.h 1.4 84/12/22 SM!

I*
* Copyright (c) 1983 by sun Microsystems, Inc.
*I

I*
* Registers for Ikon 10071-6 Multibus/Versatec interface
* Only lov byte of each vord is used. (16 vords total)
* Warning - read bits are not identical to vritten bits.

*' struct vpdevice {

u short vp_status; I* 00: mode (v) and status (r) *I
u short vp_cmd; I* 02: special command bi ts (v) *I
u short vp_pioout; I* 04: PIO output data (v) *I
u short vp_hiaddr; I* 06: bi vord of Multibus DMA address
u short vp_icadO; I* 08: ado of 8259 interrupt controller
u_short vp_icad1; /* OA: ad1 of 8269 interrupt controller
I* The rest of the fields are for the 8237 DMA controller *I
u short vp_addr;
u short vp_vc;
u short vp_dmacsr;
u short vp_dmareq;
u short vp_smb;
u short vp_mode;
u short vp_clrff;
u short vp_clear;
u short vp_clrmask;
u short vp _ allmask;

};
I* vp_status bits (read) *I
#define VP IS8237 Ox80
#define VP REDY OX40
#define VP DRDY Ox20
#define VP IRDY Ox10
#define VP PRINT Ox08
#define VP NOSPP Ox04
#define VP ONLINE Ox02
#define VP NOPAPER Ox01
I* vp_status bits (vri tten) *I
#define VP PLOT Ox02
#define VP SPP Ox01

I* vp_cmd bits *I
#define VP RESET Ox10
#define VP CLEAR Ox08
#define VP FF Ox04
#define VP EOT Ox02
#define VP TERM Ox01

#define VP DMAMODE Ox47

#define VP ICPOLL oxoc
#define VP ICEOI Ox20

I* OC: OMA vord address *I
I* OE: OMA vord count *I
I* 10: command and status *I
I* 12: request *I
I* 14: single mask bit *I
I* 16: dma mode *I
I* 18: clear first/last flip-flop
I* 1A: OMA master clear *I
I* 1C: clear mask register *I
I* 1E: all mask bits *I

/* 1 if 8237 (sanity checker) *I
I* printer ready *I
I* printer and interface ready *I
I* interface ready *I
I* print mode *I
I* not in SPP mode *I
I* printer online *I
I* printer out of paper *I

I* enter plot mode *I
I* enter SPP mode *I

I* reset the plotter and interface
I* clear the plotter *I
I* form feed to plotter *I
I* EOT to plotter *I
I* line terminate to plotter *I

I* magic for vp_mode *I

*I

*I

(v) *I
*I
*'

Mar 29 17:29 1985 vp.c Page 1

#ifndef lint
stat1c char sccsid[] = •@(#)vp.c 1.13 85/02/05 Copyr 1983 Sun Micro•;
#endif

I*
* Copyright Cc) 1983 by Sun Microsystems, Inc.
*I

#include •vp.h"
#if NVP > 0
I*
* Versatec matrix printer/plotter
* dma interface driver for Ikon 10071-5
*I

#include • . ./h/param. h •
#include • . ./h/dir. h •
#include • . ./h/user. h •
#include • . ./h/buf .h"
#include • . ./h/systm. h •
#include • . ./h/kerne l. h •
#include • . ./h/map.h"
#include • . ./h/ioctl . h •
#include • . ./h/vcmd. h •
#include • . ./h/uio.h"

#include • .. /machine/psl.h"
#include • .. /machine/mmu.b•
#include • .. /sundev/vpreg.h•
#include • .. /sundev/mbvar.h"

#define VPPRI (PZER0-1)

struct vp softc {
int sc_state;
struct buf *sc_bp;
int sc mbinfo;

} vp softc[NVP]; -

#define VPSC BUSY 0400000

Multibus/Versatec interface

I* sc_state bits - passed in VGETSTATE and VSETSTATE ioctls *I
#define VPSC MODE
#define VPSC SPP
#define VPSC PLOT
#define VPSC PRINT
#define VPSC CMNDS
#define VPSC OPEN

#define VPUNIT (dev)

struct buf rvpbuf[NVP];

int vpprobe(), vpintr();

0000700
0000400
0000200
0000100
0000076
0000001

(minor (dev))

struct mb device *Vpdinfo[NVP];
struct mb_driver vpdriver = {

vpprobe, 0, 0, 0, 0, vpintr,

0

0

0

0

0

0

Mar 29 17:29 1986 vp.c Page 2

sizeof (struct vpdevice), •vp•, vpdinfo, 0, 0, 0,
};

vpprobe (reg)

{

}

caddr_t reg;

register struct vpdevice •vpaddr = (struct vpdevice •)reg;
register int x;

x = peek((short •)&vpaddr->vp_status);
if (x == -1 II (x & VP IS8237) == 0)

return (0) ; -
if (poke((short *)&vpaddr->vp_cmd, VP_RESET))

return (O);
/• initialize 8269 so ve don't get constant interrupts •I
vpaddr->vp_icadO = Ox12; I• ICW1, edge-trigger •I
DELAY(l);
vpaddr->vp_icadl = OxFF; I* ICW2 - don't care (non-zero) •I
DELAY(l);
vpaddr->vp_icadl = OxFE; I* IRO - interrupt on DRDY edge •I
I* reset 8237 *I
vpaddr->vp_clear = 1;

return (sizeof (struct vpdevice));

vpopen (dev)

{

}

dev_t dev;

register struct vp_softc *sc;
register struct mb_device *md;
register int s;
static int vpvatch = O;

if (VPUNIT(dev) >= NVP II
((sc = &vp softc[minor(dev)])->sc state&VPSC OPEN) I I
(md = vpdin!o[VPUNIT(dev)]) == 0 Tl md->md alive== 0)

return (ENXIO); -
1f (! vpvatch) {

vpvatch = 1;
vptimo();

}

sc->sc state= VPSC OPENIVPSC PRINT I VPC_CLRCOMIVPC_RESET;
vhile (sc->sc state-& VPSC CMNDS) {

}

s = splx(pritospl(md->md_intpri));
if (vpvait(dev)) {

vpclose (dev) ;
return (EIO) ;

}

vpcmd(dev);
(void) splx(s);

return (0);

vpclose (dev)

Mar 29 17:29 1985 vp.c Page 3

dev_t dev;
{

reglster struct vp_softc *Sc= avp_softc[VPUNIT(dev)];

sc->sc state= O;
}

vpstrategy(bp)

{

}

register struct buf *bp;

register struct vp_softc *sc = &vp_softc[VPUNIT(bp->b_dev)];
register struct mb_device *md = vpdinfo[VPUNIT(bp->b_dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md addr;
int s;
int. pa, vc;

if (((1nt)bp->b_un.b_addr a 1) II bp->b_bcount < 2) {
bp->b_flags I= B_ERROR;
iodone(bp);
return;

}

s = splx(pritospl(md->md_intpri));
vhile (sc->sc bp != NULL) I* single thread *I

sleep((caddr_t)sc, VPPRI);
sc->sc bp = bp;
(void)-vpvait(bp->b dev);
sc->sc_mbinfo = mbsetup(md->md_hd, bp. 0);
vpaddr->vp_clear = 1;
pa= MBI ADDR(sc->sc mbinfo);
vpaddr->vp hiaddr =(pa>> 16) a OxF;
pa= (pa>> 1) a Ox7FFF;
vc = (bp->b_bcount >> 1) - 1;
bp->b_resid = O;
vpaddr->vp_addr = pa a OxFF;
vpaddr->vp_addr =pa>> 8;
vpaddr->vp_vc = vc a OxFF;
vpaddr->vp_vc = vc >> 8;
vpaddr->vp_mode = VP_DMAMODE;
vpaddr->vp clrmask = 1;
sc->sc state I= VPSC BUSY;
(vold)-splx(s); -

/*ARGSUSED*/
vpvrite(dev, uio)

{

}

dev_t dev;
struct uio *Ulo:

if (VPUNIT(dev) >= NVP)
return (ENXIO);

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE,
minphys. uio)) ;

vpval t (dev)

0

0

0

0

0

0

Mar 29 17:29 1985 vp.c Page 4

{

}

dev_t dev;

register struct vpdevice *Vpaddr =
(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;

register struct vp_softc *sc = avp_softc[VPUNIT(dev)];

for(;;) {

}

if ((sc->sc state a VPSC BUSY)== o aa
vpaddr->vp_status a VP_DRDY)

break;
sleep((caddr_t)sc, VPPRI);

return (0); I* NO ERRORS YET*/

struct pair {
char
char

soft;
hard;

I* softvare bit *I
/* hardvare bit *I

} vpbi ts[] = {
VPC_RESET,
VPC_CLRCOM,
VPC_EOTCOM,
VPC_FFCOM,
VPC_TERMCOM,

VP_RESET,
VP_CLEAR,
VP_EOT,
VP_FF,
VP_TERM,

0, 0,
};

vpcmd(dev)
dev_t;

{

}

register struct vp_softc *SC= avp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr =

(struct vpdevice *)vpdinfo[VPUNIT(dev)]->md_addr;
register struct pair *bit;

for (bit= vpbits; bit->soft != O; bit++) {
if (sc->sc_state a bit->soft) {

vpaddr->vp_cmd = bit->hard;
sc->sc state I= -bit->soft;

}
}

DELAY(100); I* time for DROY to drop *I
return;

f*ARGSUSED*/
vpioctl(dev, cmd, data, flag)

dev _ t dev;

{

int cmd;
caddr_t data;
int flag;

register int m;
register struct mb_device *md = vpdinfo[VPUNIT(dev)];
register struct vp_softc *SC= avp_softc[VPUNIT(dev)];
register struct vpdevice *vpaddr = (struct vpdevice *)md->md_addr;

Mar 29 17:29 1986 vp.c Page 6

}

vplntr()
{

int s;

swi tcb (cmd) {

case VGETSTATE:
*(int *)data= sc->sc_state;
break;

case VSETSTATE:

default:

m = *(int *)data;
sc->sc state=

(sc->sc_state & -ypsc_MODE)
break;

return (ENOTTY);
}
s = splx(pritospl(md->md intpr1));
(void) vpwait(dev); -
if (sc->sc state&VPSC SPP)

(m&(VPSC_MODEIVPSC_CMNDS));

vpaddr->vp status= VP SPPIVP PLOT;
else if (sc->sc_state&VPSC_PLOT) -

vpaddr->vp_status = VP_PLOT;
else

vpaddr->vp_status = O;
while (sc->sc state & VPSC CMNDS) {

(void) vpwait(dev);
vpcmd (elev) ;

}

(void) splx(s);
return (O);

register int dev;
register struct mb_device *md;
register struct vpdevice *vpaddr;
register struct vp_softc *sc;
register int found= O;

for (dev = O; dev < NVP; dev++) {
if ((md = vpdinfo[dev]) == NULL)

continue;
vpaddr = (struct vpdevice *)md->md_addr;
vpaddr->vp 1cad0 = VP ICPOLL;
DELAY(1); - -
if (vpaddr->vp_icadO & Ox80) {

found= 1;
DELAY(1);
vpaddr->vp_icadO = VP_ICEOI;

}

sc = &vp_softc[dev];

0

0

if ((sc->sc_state&VPSC_BUSY) && (vpaddr->vp_status & VP_DRDY)) {
sc->sc state&= -ypsc BUSY; o
if (sc=>sc_state & VPSC_SPP) {

0

0

0

Mar 29 17:29 1986 vp.c Page 6

}

vptimo()
{

}

}

}

sc->sc state I= ·VPsc SPP;
sc->sc=state I= VPSC=PLOT;
vpaddr->vp_status = VP_PLOT;

iodone(sc->sc_bp);
sc->sc bp = NULL;
mbrelse(md->md_hd, &sc->sc_mbin!o);

vakeup((caddr_t)sc);
}
return (found);

int s;
register struct mb_device *md = vpdin!o[O];

s = splx(pritospl(md->md intpri));
(void) vpintr (); -
(void) splx(s);
timeout(vptimo, (caddr_t)O, hz);

#endif NVP > 0

Qt

0

0

0

0

0

B
bdevsw, 2-2
block devices, 2-1
bottom half of driver, 3-1
building a kernel, 4-1
byte order, 2-5

C
cdevsw, 2-2
character devices, 2-1
configuring the system, 4-1

D
/ dev directory, 2-1
device class, 2-1
device names, 2-1
device numbers, 2-1
devices numbers

macros to manipulate, 3-8
DMA devices, 2-8 ·

I
1/0 mapped devices, 2-5
interrupt context, 3-1
interrupt levels, 3-3
interrupt priorities

raising and lowering, 3-7
interrupts, 3-2

polling, 3-3
vectored, 3-3

K
kernel address space, 3-1
kernel pr int f function, 3-8

M
major device number, 2-1
major macro, 3-8
makedev macro, 3-8
MAKEDEV shell script, 4-2
memory mapped devices, 2-5
minor device number, 2-1
minor macro, 3-8
Multibus, 2-5
Multibus 1/0 address space, 2-5
Multibus memory address space, 2-5

Index

- xi -

multibus resource management, 3-8

p
polling interrupts, 3-3
pr int f function in kernel, 3-8

R
raising and lowering interrupt priorities, 3-7

s
service functions, 3-6

multibus resource management, 3-8
raise and lower interrupt priorities, 3-7
sleep and wakeup, 3-6
timeout, 3-6

sleep and wakeup mechanism, 3-6
Sun Main Bus DVMA, 2-8
system configuration, 4-1

T
timeout mechanisms, 3-6
top half of driver, 3-1

u
user address space, 3-1
user context, 3-1

V
vectored interrupts, 3-3
VMEbus, 2-4
VMEbus address space, 2-12

0

0

0

