
0

0

0

~\sun ~ microsystems

Networking
on the Sun Workstation

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0

0

Networking
on the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

Part No: x00-1177-01
Rcvi\ion A of JS :\'fa\' .. 1985

Copyright © 1985 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0
Revision History

Rev Date Comments

A-o: 19 November 1984 First release of this manual; mostly new material.
A-{J 1 February 1985 Second release of this manual, with minor revisions.
A 15 April 1985 Third release of this manual, for customer shipment.

0

0
- Ill -

0

0

0 Sun's Network File System

0

o·

0

0

0
Contents

1. Introduction ... 1
1.1. Computing Environments 2
1.2. Terms and Concepts 3
1.3. Comparison with Predecessors .. 3

1.3.1. NFS and RCP 4
1.3.2. NFS and ND 4

2. Examples of How it Works 6
2.1. Mounting a Remote Filesystem 5
2.2. Exporting a Filesystem 6
2.3. Administering a Server Machine . 6

3. Architecture of NFS 7
3.1. Design Goals .. 7

3.1.1. Transparent Information Access ... 7
3.1.2. Different Machines and Operating Systems ... 7
3.1.3. Easily Extensible .. 7
3.1.4. Easy Network Administration .. 7
3.1.5. Reliable .. 8
3.1.6. High Performance ... 8

3.2. The NFS Implementation ... 9
3.3. The NFS Interface 10

4. Network Documentation Roadmap .. 12

0

0

I

0

O !
I
'

0

0

0 '

Sun's Network File System

1. Introduction

This document gives an overview of Sun's network file system, which allows users to mount
directories across the network, and then to treat remote files as if they were local. The first sec
tion is a bit elementary, so advanced users may want to skip straight to the examples of how it
works. Beginning users may not be interested in the third section, which discusses network file
system architecture.

The Network File System (NFS) is a facility for sharing files in a heterogeneous environment of
machines, operating systems, and networks. Sharing is accomplished by mounting a remote
filesystem, then reading or writing files in place. The NFS is open-ended, and Sun Microsystems
encourages customers and other vendors to take advantage of the interface to extend the capa
bilities of other systems.

A distributed network of personal workstations can provide more aggregate computing power
than a mainframe computer, with far less variation in response time over the course of the day.
Thus, a network of personal computers is generally more cost-effective than a central mainframe
computer, particularly when considering the value of people's time. However, for large program
ming projects and database applications, a mainframe has often been preferred, because all files
can be stored on a single machine.

Those who work with unconnected personal computers know the inconveniences resulting from
data fragmentation. Even in a network environment, sharing programs and data has sometimes
been difficult. Files either had to be copied to each machine where they were needed, or users
had to log in to the remote machine with the required files. Network logins were time
consuming, and having multiple copies of a file got confusing as incompatible changes were made
to separate copies.

To solve this problem, Sun designed a distributed filesystem that permits client systems to gain
access to shared files on a remote system. Client machines request resources provided by other
machines, called servers. A server machine makes particular filesystems available, which client
machines can mount as local filesystems. Thus, users can access remote files as if they were on
the local machine.

The NFS was no't designed by extending the UNIXt operating system onto the network. Instead,
the NFS was designed to fit into Sun's network services architecture. Thus, NFS is not a distri
buted operating system, but rather, an interface to allow a variety of machines and operating
systems to play the role of client or server. Sun has opened the NFS interface to customers and
other vendors, in order to encourage the development of a rich set of applications working
together on a single network.

t UNIX is a. trademark of Bell Laboratories.

~ ~~ Sun Microsystems Release 2.0

Page 2 Network File System

1.1. Computing Environments

The current computing environment in many businesses and universities looks like this:

terminall

Mainframe

terminal3

terminal4

The major problem with this environment is competition for CPU cycles. The workstation
environment solves that problem, but introduces more disk drives into the picture. A network of
workstations looks like this:

workstation2 workstation3 workstation4

I ethernet

workstationl server

printer

,...l I I
-.....

Sun's goal with NFS was to make all disks available as needed. Individual workstations have
access to all information residing anywhere on the network. Printers and supercomputers may
also be available somewhere on the network.

,..,
~~ Sun Microsystems Release 2.0

0

0

0

0

0

Network File System Page 3

1.2. Terms and Concepts

A machine that provides resources to the network is a server, while a machine that employs
these resources is a client. A machine may be both a server and a client. A person logged in on
a client machine is a user, while a program or set of programs that run on a client is an applica•
lion. There is a distinction between the code implementing the operations of a filesystem,
(called file,yatem operations), and the data making up the filesystem's structure and contents.
(called filesy,tem data).

A traditional UNIX filesystem is composed of directories and files, each of which has a
corresponding in ode (index node), containing administrative information about the file, such as
location, size, ownership, permissions, and access times. Inodea are assigned unique numbers
within a filesystem, but a file on one filesystem could have the same number as a file on another
filesystem. This is a problem in a network environment, because remote filesystems need to be
mounted dynamically, and numbering conflicts would cause havoc. To solve this problem, Sun
has designed the virtual file system (VFS), based on the vnode, a generalized implementation of
inodea that are unique across filesystems.

The Remote Procedure Call (RPC) facility provides a mechanism whereby one process (the
caller process) can have another process (the aerver process) execute a procedure call, as if the
caller process had executed the procedure call in its own address space (as in the local model of a
procedure call). Because the caller and the server are now two separate processes, they no
longer have to live on the same physical machine.

The RPC mechanism is implemented as a library of procedures, plus a specification for portable
data transmission, known as the eXternal Data Representation (XDR). Both RPC and XDR are
portable, providing a kind of standard I/0 library for interprocess communication. Thus pro
grammers now have a standardized access to sockets without having to be concerned about the
low-level details of the accept, bind, and select procedures.

The Yellow Pages (YP) is a network service to ease the job of administering networked
machines. The YP is a centralized read-only database. For a client on the network file system,
this means that an application's access to data served by the YP is independent of the relative
locations of the client and the server. The YP database on the server provides password, group,
network, and host information to client machines.

1.3. Comparison with Predecessors

The Network File System (NFS) is composed of a modified UNIX kernel, a set of library routines,
and a collection of utility commands. The NFS presents a network client with a complete
remote filesystem. Since NFS is largely transparent to the user, this document tells you about
things you might not otherwise notice. Sun's NFS is an open system that can accommodate
other machines on the net, even non-UNIX systems, without compromising security.

Sun users may be familiar with two previous networking schemes, rep and ND. The first is a
remote copy utility program that uses the networking facilities of 4.2 BSD to copy files from one
machine to another. The second is a proprietary device driver for the Sun that makes raw disk
available over the network. The NFS does not completely replace ND, so servers and clients will
be running both ND and NFS.

Because machines need ND to boot, an NFS server still needs a /pub partition. However, unlike
the old ND configuration, under NFS this partition contains only /pub/vmuniz, /pub/boot,

• Sun Microsystems Release 2.0

Page 4 Network File System

/ pub/ .tand and /pub/bin. There is a separate file system mounted on /uar contammg every
thing else important. For example, /uar/bin used to be a symbolic link to /pub/uar/bin; now
the server gets /u•r/bin off its own disk, while a client gets it by mounting the remote /u•r
filesystem onto the local /u•r directory. This is true of /lib as well. The other standard NFS
remote mount is called /uar2, where users' home directories reside.

An exception arises when a client mounts a server's / uar filesystem on its directory. Some files
in /uar should be private, such as /uar/adm, /uar/apool, /uar/tmp, among others. To get
around the problem, these private files are symbolic links to /private/uar. In an ND
configuration, a few files in / uar/lib, such as crontab, aliaaea, and aendmail.c/ were private;
these files are now symbolic links to /private/uar/lib.

1.9.1. NFS and RCP

The remote copy utility (rep) allows data transfer only in units of files. The client of rep sup
plies the path name of a file on a remote machine, and receives a stream of bytes in return.
Access control is based on the client's login name and host name.

The major problem with rep is that it is not transparent to the user, who winds up with a
redundant copy of the desired file. The NFS, by contrast, is transparent - only one copy of the
file is necessary. Another problem is that rep does nothing but copy files. In a sense, there
needs to be one remote command for every regular command: for example, rdi ff to perform
differential file comparisons across machines. By providing entire filesystems, NFS makes this
unnecessary.

1.9.2. NFS and ND

Sun's Network Disk (ND) is a device driver that makes a raw disk available using a simple proto
col. The ND client builds its own filesystem, given the disk. Disk space on the server machine is
partitioned, and diskless client machines mount one partition as their root filesystem, and
another as their / uar filesystem. Symbolic links can be made between this pseudo-filesystem and
files on the server machine.

Under ND, access control of disk areas is based solely on the requester's Internet Protocol (IP)
address. Since IP addresses are assumed to be unique, this does not permit file sharing by the
ND server. The NFS, on the other hand, allows file sharing. The use of the IP address as the
basis of access control has two other drawbacks: first, an erroneous or malicious piece of network
software can easily corrupt a user's disk just by supplying an IP address; and second, it violates
protocol layering concepts and makes it difficult to change a client's IP address or ND server.
Since the server emulates only a disk and not a filesystem, there can be no cacheing on the
server side. The NFS permits cacheing, with concomitant performance improvements.

~ ~ Sun Microsystems Release 2.0

0

0

0

I~

0

Network File System Page 5

2. Examples of How it Works

2.1. Mounting a Remote Filesystem

Suppose that you want to read some on-line manual pages. These pages are not available on the
server machine, called server, but are available on a machine called docserv. You can
mount the directory containing the manuals as follows:

client# /etc/mount docaerv:/uar/man /uar/man

Note that you have to be superuser in order to do this. Now you can use the man command
whenever you want. Try running the df command after you've mounted the remote filesystem.
Its output will look something like this:

Filesystem kbytes used avail capacity Mounted on

/dev/ndO 4775 2765 1532 64% I
/dev/ndpO 5695 3666 1459 72% /pub
server : /lib 7295 4137 2428 63% /lib
server:/usr 39315 31451 3932 89% /usr
server:/usr2 326215 245993 47600 84% /usr2
docserv:/usr/man 346111 216894 94605 70% /usr/man

Here is a diagram of the three machines involved here. Ellipses represent machines, boxes
represent remote filesystems, and dotted boxes represent ND partitions.

server docserv

/lib /usr /usr2 /lib /usr

/usr/bin /usr/man

/lib

bin lib /usr/man

• Sun Microsystems Release 2.0

Page 6 Network File System

2.2. Exporting a Filesystem

Suppose that you and a colleague need to work together on a programming project. The source
code is on your machine, in the directory /uar/proj. It does not matter whether your worksta
tion is a diskless node, or has local disk. Suppose that after creating the proper directory, your
colleague tried to remote mount your directory. Unless you have explicitly exported the direc
tory, your colleague's remote mount will fail with a "permission denied" message.

To export a directory, become superuser, and edit the file /etc/exports. If your colleague is on a
machine named cohort, then you need to put this one line in /etc/exports:

/usr/proj cohort

Without the keyword cohort, anybody on the network could remote mount your directory
/usr /pro j. The NFS mount request server mountd(Sc) will read the /etc/exports file if neces
sary whenever it receives a request for a remote mount. Now your colleague can remote mount
the source directory by issuing this command:

cohort# /etc/mount client:/usr/proj /usr/proj

Since both you and your colleague will be able to change files on /uar/proj, it would be best to
use the scca(l) source code control system for concurrency control.

2.3. Administering a Server Machine

System administrators must know how to set up the NFS server machine so that client worksta-

0

tions can mount all the necessary filesystems. You export filesystems (that is, make them avail- 0
able) by placing appropriate lines in the /etc/exports file. Here is a sample /etc/exports file for :
a typical server machine:

I
/usr
/usr2
/usr/src staff

The pathnames specified in /etc/exports must be real filesystems - that is, directory mount
points for disk devices. The root filesystem must be exported so that /lib is available to NFS
clients. A netgroup, such as staff, may be specified after the filesystem, in which case remote
mounts are limited to machines that are a member of this netgroup. At any one time, the sys
tem administrator can see which filesystems have been remote mounted, by executing the
showmount(8) command.

• Sun Microsystems Release 2.0

0

0

0

0

Network File System Page 7

3. Architecture of NFS

3.1. Design Goals

3.1.1. Transparent Information Access

Users are able to get directly to the files they want without knowing the network address of the
data. To the user, all universes look alike: there seems to be no difference between reading or
writing a file contained on a private disk, and reading or writing a file on a disk in the next
building. Information on the network is truly distributed.

3.1.2. Different Machines and Operating Systems

No single vendor can supply tools for all the work that needs to get done, so appropriate services
must be integrated on a network. In keeping with its policy of supplying open systems, Sun is
promoting the NFS as a standard for the exchange of data between different machines and
operating systems.

3.1.3. Easily Extensible

A distributed system must have an architecture that allows integration of new software technolo
gies without disturbing the extant software environment. To allow this, the NFS provides net
work services, rather than a new network operating system. That is, the NFS does not depend
on extending the underlying operating system onto the network, but instead offers a set of proto
cols for data exchange. These protocols can be easily extended.

3.1.4- Easy Network Administration

The administration of large networks can be complicated and time-consuming. Sun wishes to
make sure that a set of network filesystems is no more difficult to administer than a set of local
filesystems on a timesharing system. UNIX has a convenient set of maintenance commands
developed over the years. Some new utilities are provided for network administration, but most
of the old utilities have been retained.

The Yellow Pages (YP) facility is the first example of a network service made possible with NFS.
By storing password information and host addresses in a centralized database, the yellow pages
ease the task of network administration. An overview of the YP facility is presented in the Net
work Servicea Guide.

The most obvious use of the YP is for administration of /etc/paaawd. Since the NFS uses a
UNIX protection scheme across the network, it is advantageous to have a common /etc/paaawd
database for all machines on the network. The YP allows a single point of administration, and
gives all machines access to a recent version of the data, whether or not it is held locally. To
install the YP version of /etc/paaawd, existing applications were not changed; they were simply
relinked with library routines that know about the YP service. Conventions have been added to

• Sun Microsystems Release 2.0

Page 8 Network File System

library routines that access /etc/paaawd to allow each client to administer its own local subset of
/etc/paaawd; the local subset modifies the client's view of the system version. Thus, a client is o-
not forced to completely bypass the system administrator in order to accomplish a small amount
of personalization.

The YP interface is implemented using RPC and XDR, so the service is available to non-UNIX
operating systems and non-Sun machines. YP servers do not interpret data, so it is possible for
new databases to take advantage of the YP service without modifying the servers.

3.1.5. Reliable

Reliability of the UNIX-based filesystem derives primarily from the robustness of the 4.2BSD
filesystem. In addition, the file server protocol is designed so that client workstations can con
tinue to operate even when the server crashes and reboots. This property is shared with the
current ND protocol, and has proven to be quite desirable. Sun achieves continuation after
reboot without making assumptions about the fail-stop nature of the underlying server hardware.

The major advantage of a stateless server is robustness in the face of client, server, or network
failures. Should a client fail, it is not necessary for a server (or human administrator) to take
any action to continue normal operation. Should a server or the network fail, it is only necessary
that clients continue to attempt to complete NFS operations until the server or network gets
fixed. This robustness is especially important in a complex network of heterogeneous systems,
many of which are not under the control of a disciplined operations staff, and which may be run
ning untested systems often rebooted without warning.

3.1.6. High Performance

The flexibility of the NFS allows configuration for a variety of cost and performance trade-offs.
For example, configuring servers with large, high-performance disks, and clients with no disks,
may yield better performance at lower cost than having many machines with small, inexpensive
disks. Furthermore, it is possible to distribute the filesystem data across many servers and get
the added benefit of multiprocessing without losing transparency. In the case of read-only files,
copies can be kept on several servers to avoid bottlenecks.

Sun has also added several performance enhancements to the NFS, such as "fast paths" to elim
inate the work done for high-runner operations, asynchronous service of multiple requests, cache
ing of disk blocks, and asynchronous read-ahead and write-behind. The fact that cacheing and
read-ahead occur on both client and server effectively increases the cache size and read-ahead
distance. Cacheing and read-ahead do not add state to the server; nothing (except performance)
is los, if cached information is thrown away. In the case of write-behind, both the client and
server attempt to flush critical information to disk whenever necessary, to reduce the impact of
an unanticipated failure; clients do not free write-behind blocks until the server verifies that the
data is written.

Our performance goal was to achieve the same throughput as a previous release of the system
that used the network only as a disk (and thus did not permit sharing). This goal has been
achieved.

~
~:(, Sun Microsystems Release 2.0

0

0

0

0

0

Network File System Page 9

3.2. The NFS Implementation

In the Sun implementation of the NFS, there are three entities to be considered: the operating
system interface, the virtual file system (VFS) interface, and the network file system (NFS) inter
face. The UNIX operating system interface has been preserved in the Sun implementation of the
NFS, thereby insuring compatibility for existing applications.

Vnodea are a re-implementation of inodea that cleanly separate filesystem operations from the
semantics of their implementation. Above the VFS interface, the operating system deals in
vnodea; below this interface, the filesystem may or may not implement inodea. The VFS inter
face can connect the operating system to a variety of filesystems (for example, 4.2 BSD or MS
DOS). A local VFS connects to filesystem data on a local device.

The remote VFS defines and implements the NFS interface, using the remote procedure call
(RPC) mechanism. RPC allows communication with remote services in a manner similar to the
procedure calling mechanism available in many programming languages. The RPC protocols are
described using the external data representation (XDR) package. XDR permits a machine
independent representation and definition of high-level protocols on the network.

The figure below shows the flow of a request from a client (at the top left) to a collection of
filesystems.

sys calls

/
vnode

~ /
vnode

other VFS remote NFS 4.2BSD
VFS VFS server VFS

RPC/ RPC/ -XDR XDR

-

I ethernet I
In the case of access through a local VFS, requests are directed to filesystem data on devices con
nected to the client machine. In the case of access through a remote VFS, the request is passed
through the RPC and XDR layers onto the net. In the current implementation, Sun uses the
UDP /IP protocols and the Ethernet. On the server side, requests are passed through the RPC
and XDR layers to an NFS server; the server uses vnodea to access one of its local VFSs and ser
vice the request. This path is retraced to return results.

~
~~ Sun Microsystems Release 2.0

Page 10 Net work File System

Sun's implementation of the NFS provides five types of transparency:

1. Fileayatem Type: The vnode, in conjunction with one or more local VFSs (and possibly 0
remote VFSs) permits an operating system (hence client and application) to interface tran-
sparently to a variety of filesystem types.

2. Fileayatem Location: Since there is no differentiation between a local and a remote VFS, the
location of filesystem data is transparent.

3. Operating Syatem Type: The RPC mechanism allows interconnection of a variety of operat
ing systems on the network, and makes the operating system type of a remote server tran
sparent.

4. Machine Type: The XDR definition facility allows a variety of machines to communicate on
the network and makes the machine type of a remote server transparent.

5. Network Type: RPC and XDR can be implemented for a variety of network and internet
protocols, there by making the network type-transparent.

Simpler NFS implementations are possible at the expense of some advantages of the Sun version.
In particular, a client (or server) may be added to the network by implementing one side of the
NFS interface. An advantage of the Sun implementation is that the client and server sides are
identical; thus, it is possible for any machine to be client, server or both. Users at client
machines with disks can arrange to share over the NFS without having to appeal to a system
administrator, or configure a different system on their workstation.

3.3. The NFS Interface

As mentioned in the preceding section, a major advantage of the NFS is the ability to mix 0
filesystems. In keeping with this, Sun encourages other vendors to develop products to interface
with Sun network services. RPC and XDR have been placed in the public domain, and serve as
a standard for anyone wishing to develop applications for the network. Furthermore, the NFS
interface itself is open and can be used by anyone wishing to implement an NFS client or server
for the network.

The NFS interface defines traditional filesystem operations for reading directories, creating and
destroying files, reading and writing files, and reading and setting file attributes. The interface is
designed so that file operations address files with an uninterpreted identifier, starting byte
address, and length in bytes.

Commands are provided for NFS servers to initiate service (mountd), and to serve a portion of
their filesystem to the network (/etc/export•). Many commands are provided for constructing
the YP database facility. A client builds its view of the filesystems available on the network
with the mount command.

The NFS interface is defined so that a server can be atateleu. This means that a server does
not have to remember from one transaction to the next anything about its clients, transactions
completed or files operated on. For example, there is no open operation, as this would imply
state in the server; of course, the UNIX interface uses an open operation, but the information in
the UNIX operation is remembered by the client for use in later NFS operations.

An interesting problem occurs when a UNIX application unlinks an open file. This is done to
achieve the effect of a temporary file that is automatically removed when the application ter-
minates. If the file in question is served by the NFS, the unlink will remove the file, since the Q-. -

server does not remember that the file is open. Thus, subsequent operations on the file will fail.

• Sun Microsystems Release 2.0

0

0

0

Network File System Page 11

In order to avoid state on the server, the client operating system detects the situation, renames
the file rather than unlinking it, and unlinks the file when the application terminates. In certain
failure cases, this leaves unwanted "temporary" files on the server; these files are removed as a
part of periodic filesystem maintenance.

Another example of how the NFS provides a friendly interface to UNIX without introducing state
is the mount command. A UNIX client of the NFS "builds" its view of the filesystem on its local
devices using the mount command; thus, it is natural for the UNIX client to initiate its contact
with the NFS and build its view of the filesystem on the network via an extended mount com
mand. This mount command does not imply state in the server, since it only acquires informa
tion for the client to establish contact with a server. The mount command may be issued at any
time, but is typically executed as a part of client initialization. The corresponding unmount
command (which replaces the UNIX umount) is only an informative message to the server, but it
does change state in the client by modifying its view of the filesystem on the network.

The major advantage of a stateless server is robustness in the face of client, server or network
failures. Should a client fail, it is not necessary for a server (or human administrator) to take
any action to continue normal operation. Should a server or the network fail, it is only necessary
that clients continue to attempt to complete NFS operations until the server or network is fixed.
This robustness is especially important in a complex network of heterogeneous systems, many of
which are not under the control of a disciplined operations staff and may be running untested
systems and/or may be rebooted without warning.

An NFS server can be a client of another NFS server. However, a server will not act as an
intermediary between a client and another server. Instead, a client may ask what remote
mounts the server has and then attempt to make similar remote mounts. The decision to disal
low intermediary servers is based on several factors. First, the existence of an intermediary will
impact the performance characteristics of the system; the potential performance implications
are so complex that it seems best to require direct communication between a client and server.
Second, the existence of an intermediary complicates access control; it is much simpler to require
a client and server to establish direct agreements for service. Finally, disallowing intermediaries
prevents cycles in the service arrangements; Sun prefers this to detection or avoidance schemes.

The NFS currently implements UNIX file protection by making use of the authentication
mechanisms built into RPC. This retains transparency for clients and applications that make
use of UNIX file protection. Although the RPC definition allows other authentication schemes,
their use may have adverse effects on transparency.

Although the NFS is UNIX-friendly, it does not support all UNIX filesystem operations. For
example, the "special file" abstraction of devices is not supported for remote filesystems because
it is felt that the interface to devices would greatly complicate the NFS interface; instead, dev
ices are implemented in a local / dev VFS. Other incompatibilities are due to the fact that NFS
servers are stateless. For example, file locking and guaranteed APPEND_MODE are not sup
ported in the remote case.

Our decision to omit certain features from the NFS is motivated by a desire to preserve the
stateless implementation of servers and to define a simple, general interface to be implemented
and used by a wide variety of customers. The availability of open RPC and NFS interfaces
means that customers and users who need stateful or complex features can implement them
"beside" or "within" the NFS. Sun is considering implementation of a set of tools for use by
applications that need file or record locking, replicated data, or other features implying state
and/or distributed synchronization; however, these will not be ma.de part of the base NFS
definition.

II> ~l' Sun Microsystems Release 2.0

Page 12 Network File System

4. Network Documentation Roadmap

The document Network Service, Guide is intended for users who have a general interest in net
work services. It explains the yellow pages facility in some detail. Although it is not a manual
for system administrators, the material is heavily slanted in that direction.

The document Remote Procedure Call Programming Guide is intended for programmers who
wish to write network applications using remote procedure calls, thus avoiding low-level system
primitives based on sockets. Readers must be familiar with the C programming language, and
should have a working knowledge of network theory.

The document External Data Repreaentation Protocol Specification is intended for programmers
writing complicated applications using remote procedure calls, who need to pass complicated
data across the network. It is also a reference guide for system programmers implementing Sun's
Network File System on new machines.

The document Remote Procedure Call Protocol Specification is a reference guide for system pro
grammers implementing Sun's Network File System on new machines. It is of little interest to
programmers writing network applications.

The document Network File Syatem Protocol Specification is a reference guide for system pro
grammers implementing Sun's Network File System on new machines. It is of little interest to
programmers writing network applications.

The document Yellow Page• Protocol Specification is a reference guide for system programmers
implementing a Yellow Pages database facility on new machines. It is of little interest to pro
grammers writing network applications.

The document lnter-Procea, Communication• Primer, taken from Berkeley's 4.2 release, is for
system programmers who need to use low-level networking primitives based on sockets. Since
remote procedure calls are easier to use than sockets, this primer is of little interest to most net
work programmers.

The document Network Implementation describes the low-level networking primitives in the 4.2
UNIX kernel. It is of interest primarily to system programmers and aspiring UNIX gurus.

I!!.' +~ Sun Microsystems Release 2.0

C

0

0
Network Services Guide

0

0

0

0

0

0

0

0

Contents

1. Introduction

2. What Are The Yellow Pages? ...
2.1. The YP Map
2.2. The YP Domain
2.3. Servers And Clients
2.4. Masters and Slaves

3. Overview of the Yellow Pages.
3.1. The YP Network Service

3.1.1. Naming ...
3.1.2. Data Storage
3.1.3. Servers
3.1.4. Clients

3.2. Default YP Files ..
3.2.1. Hosts
3.2.2. Passwd
3.2.3. Others
3.2.4. Changing your passwd

1

1
I
I
2
2

3
3
3
3
4
4

4
4
5
5
5

0

0

0

0

0

0

Network Services Guide

1. Introduction

This document is intended for users who have a general interest in network services. Although
this is not a manual for system administrators, the material is heavily slanted in that direction.

Sun provides several network services, such as Network Disk (ND), and the Network File System
(NFS), discussed in the document Sun'• Network File Suatem. The yellow pages are another net
work service offered for the first time on the 2.0 release. They permit password information and
host addresses for an entire network to be held in a single database. This greatly eases the task
of system and network administration. Sun will provide more network services in the future.

2. What Are The Yellow Pages?

The yellow pages (YP) constitute a distributed network lookup service:

• YP is a lookup service: it maintains a set of databases for querying. Programs can ask for
the value associated with a particular key, or all the keys, in a database.

• YP is a network service: programs need not know the location of data, or how it is stored.
Instead, they use a network protocol to communicate with a database server that knows
those details.

• YP is distributed: databases are fully replicated on several machines, known as YP servers.
Servers propagate updated databases among themselves, ensuring consistency. At steady
state, it doesn't matter which server answers a request; the answer is the same everywhere.

2.1. The YP Map

The yellow pages serve information stored in YP map•. Each map contains a set of keys and
associated values. For example, the hoata map contains (as keys) all host names on a network,
and (as values) the corresponding Internet addresses. Each YP map has a mapname, used by
programs to access data in the map. Programs must know the format of the data in the map.
Currently, most maps are derived from ASCII files formerly found in /etc: pa .. wd, group, ho.ta,
network., and others. The format of data in the YP map is in most cases identical to the format
of the ASCII file. Maps are implemented by dbm(3) files located in subdirectories of /etc/up on
YP server machines.

2.2. The YP Domain

A YP domain is a named set of YP maps. You can determine your YP domain by executing the
domainname(l) command. Note that YP domains are different from both Internet domains and
aendmail domains. A YP domain is simply a directory in /etc/up containing a set of maps .

• Sun Microsystems Release 2.0

Page 2 Net work Services

A domain name is required for retrieving data from a YP database. For instance, if your YP
domain is aun and you want to find the Internet address of host Jbaerver, you must ask YP for
the value associated with the key dbaerver in the map hoata.byname within the YP domain aun.
Each machine on the network belongs to a default domain, set in /etc/re.local at boot time with
the Jomainname(8) command.

A YP server holds all the maps of a YP domain in a subdirectory of /etc/yp, named after the
domain. In the example above, maps for the aun domain would be held in /etc/yp/aun. Every
YP server must have the directory /etc/yp/yp_private, which contains information about
servers, domains, and maps. This information is used internally by the YP. For completeness,
the YP server machine is its own client.

2.3. Servers And Clients

Servers provide resources, while clients consume them. A server or a client is not necessarily the
same thing as a machine. To illustrate, let's consider three different services: ND (network disk),
the YP, and the NFS (network file system).

ND ND is a method of providing virtual disk, used by diskless nodes. With ND, it makes sense
to speak of server and client machines, since both provider and consumer are coterminous
with machines. Furthermore, the server and client are always the same.

NFS The NFS allows client machines to mount remote filesystems and access files in place, pro
vided a server machine has exported the filesystem. However, a server that exports filesys
tems may also mount remote filesystems exported by other machines, thus becoming a

0

client. So a given machine may be both server and client, or client only, or server only. Q·. .

Furthermore, NFS servers and clients need not coincide with ND servers and clients.

YP The YP server, by contrast, is a process rather than a machine, running on a machine that
may be neither ND server nor NFS server. All processes that make use of YP services are
YP clients. Sometimes clients are served by YP servers on the same machine, but other
times by YP servers running on another machine. To further muddy the waters, processes
on master YP server machines (discussed below) don't use YP services at all, and aren't YP
clients. But processes using YP services on slave YP servers are YP clients.

2.4. Masters and Slaves

YP servers are either master or slave. For any map, one YP server is designated the master,
and all changes to the map should be made on that machine. The changes propagate from mas
ter to slaves. A newly built map is timestamped internally when makedbm creates it. If you
build a YP map on a slave server, you will break the YP update algorithm (temporarily), and
you will have to get all versions in synch manually. Moral: after you decide which server is the
master, do all database updates and builds there, not on slaves.

It is possible for different maps to have different servers as master. Therefore, a given server
may be a master with regard to one map, and a slave with regard to another. This can get
confusing quickly. It is suggested that a single server be master for all the maps created by
ypinit in a single domain. This document assumes the simple case, in which one server is the
master for all maps in the database.

• Sun Microsystems Release 2.0

0

0

0

0

Network Services Page 3

3. Overview of the Yellow Pages

In releases before 2.0, each machine on the network had its own copy of /etc/hoata, a file con
taining the Internet address of each machine on the network. Every time a machine was added
to the network, each / etc/ hoata file had to be updated.

The YP is a network service containing network-wide databases such as / etc/ hoata. There are
servers spread throughout the network containing copies of the databases. When an arbitrary
machine on the network wants to look up something in / etc/ hoata, it makes an RPC call to one
of the servers to get the information. One server is the master - .the only one whose database
may be modified. The other servers are slaves, and they are periodically updated so that their
information is in synch with that of the master.

The YP can serve up any number of databases. Normally that will include files that previously
lived in /etc, such as /etc/hoata and /etc/network,. However, users can add their own data
bases to the YP.

The YP itself simply serves up information, and has no idea what it means. Thus there are two
parts of YP we need to consider: how it operates, and what files formerly in / etc now live in the
YP. This has serious ramifications for users. ·

3.1. The YP Network Service

3.1.1. Naming

Imagine a company with two different networks, each of which has its own separate list of hosts
and passwords. Within each network, user names, numerical user IDs, and host names are
unique. However, there is duplication between the two networks. If these two networks are ever
connected, chaos could result. The host name, returned hy the hoatname(l) command and the
gethostname() system call, may no longer uniquely identify a machine. Thus a new command
and system call, domainname(l) and getdomainname{2) have been added. In the example
above, each of the two networks could he given a different domain name. However, it is always
simpler to use a single domain whenever possible.

The relevance of domains to YP is that data is stored in /etc/yp/ domainname. In particular, a
machine can contain data for several different domains.

3.1.2. Data Storage

The data is stored in dbm(3) format. Thus the database hoata.byname for the domain aun is
stored as / etc/ yp/ aun/ hoata.byname.pag and / etc/yp/ aun/ hoata.byname.dir. The command
makedbm(B) takes an ASCII file such as /etc/hoata and converts it into a dbm file suitable for
use by the YP. However, system administrators normally use the makefile in /etc/yp to create
new dbm files (read on for details). This makefile in turn calls makedbm.

• Sun Microsystems Release 2.0

Page 4 Net work Services

9.1.9. Servers

To become a server, a machine must contain the YP databases, and must also be running the YP
daemon ypaerv. The ypinit(8) command invokes this daemon automatically. It also takes a flag
saying whether you are creating a master or a slave. When updatin_g the master copy of a data
base, you can force the change to be propagated to all the slaves with the yppuah(8) command.
This pushes the information out to all the slaves. Conversely, from a slave, the yppul/(8) com
mand gets the latest information from the master. The makefile in /etc/yp first executes mak
edbm to make a new database, and then calls yppuah to propagate the change throughout the
network.

9.1.,t. Clients

Remember that a client machine (which is not a server) does not contain any data itself, but
rather makes an RPC call to a YP server each time it needs information from a YP database.
The ypbind(8) daemon caches the name of a server. When a client boots, ypbind broadcasts ask
ing for the name of the YP server. Similarly, if the cached server crashes, ypbind broadcasts
asking for the name of a new server. The ypwhich(l) command gives the name of the server
that ypbind currently points at.

Since client machines no longer have entire copies of files in the YP, a new command ypcat(l)
has been provided. The command ypcat hosts is equivalent to cat /etc/hosts in a pre
2.0 system; as you might guess, ypcat passvd is equivalent to cat /etc/passvd. To look
for someone's password entry, searching through the password file no longer suffices; you have to
issue the following command

% ypcat passwd I grep userid

where you replace user id with the login name you're searching for.

3.2. Default YP Files

By default, Sun workstations have six files from /etc in the YP: /etc/paaawd, /etc/group,,
/etc/network,, / etc/ hoata, / etc/ aervicea, and /etc/protocol,. In addition, there is a new file
netgroup, which many sites ought to create and put in the YP database.

Library routines such as ,getpwent(3) ,getgrent(3) and gethoatent(3) have been rewritten to take
advantage of the YP. Thus, C programs that call these library routines will have to be relinked
in order to function correctly.

9.2.1. Hosts

The hosts file is stored as two different files in the YP. The first, ho.ta.byname, is indexed by
hostname. The second, hoata.byaddr, is indexed by Internet address. Remember that this actu
ally expands into four files, with suffixes .pag, and .dir. When a user program calls the library
routine gethoatbyname(3), a single RPC call to a server retrieves the entry from the
hoata.byname file. Similarly, gethoatbyaddr(3) retrieves the entry from the hoata.byaddr file. Of
course if the YP is not running (which is caused by commenting ypbind out of the /etc/re file),

0

0

then gethoatbyname will read the / etc/ hoata files, just as it always has. o
+ Sun Microsystems Release 2.0

0

0

0

Network Services Page 5

Although the ypcat command is a general YP database print· program, it knows about the stan
dard files in the YP. Thus ypcat hosts is translated into ypcat hosts .byaddr, since
there is no file called hoata in the YP.

Normally, the hosts file for the YP will be the same as the /etc/hoaia file on the machine serving
as a YP master. In this case, the makefile in /etc/yp will check to see if /etc/hoata is newer
than the dbm file. If it is, it will use a simple aed script to recreate hoata.byname and
hoata.byaddr, run them through makedbm(B) and then call yppuah(8). See ypmake(B) for details.

3.2.2. Passwd

The pa .. wd file is similar to the ho.ta file. It exists as two separate files, paaawd.byname and
pa .. wd.byuid. The ypcat program prints it, and ypmake updates it. However, if getpwent(3)
always went directly to the YP as does getho,tent(3), then everyone would be forced to have an
identical password file! Consequently, getpwent reads the local /etc/pa .. wd file, just as it always
did. But now it interprets "+" entries in the password file to mean, interpolate entries from the
YP database. If you wrote a simple program using getpwent to print out all the entries from
your password file, it would print out a virtual password file: rather than printing out + signs, it
would print out whatever entries the local password file included from the YP database. The
difference between / etc/ hoata and / etc/ paaawd is discussed in more detail in the section "How
Security is Changed with the Yellow Pages," part of the Sy.tern Adminiatrator'a Manual.

3.2.S. Others

Of the other four files in /etc, /etc/group is treated like / etc/ paaawd, in that getgrent() will
only consult the YP if explicitly told to do so by the /etc/group file. The files /etc/network,,
/etc/protocol,, / etc/ aervicea, and /etc/network, are treated like / etc/ hoata: for these files, the
library routines go directly to the YP, without consulting the local files.

3.2 .. ,1. Changing your passwd

To change data in the YP, you must log onto the master machine, and edit databases there;
ypwhich(I) tells where the master server is. However, since changing a password is so commonly
done, the yppa .. wd(l) command has been provided to change your YP password. It has the
same user interface as the paaawd(I) command. This command will only work if the
yppaaawdd(8c) server has been started up on the YP master server machine.

~, Sun Microsystems Release 2.0

0

0

0

0

0

0

Remote Procedure Call

Programming Guide

0

0

0

0

0

Contents

2. Introductory Examples 3
2.1. Highest Layer.. 3
2.2. Intermediate Layer ... 4
2.3. Assigning Program Numbers ... 5
2.4. Passing Arbitrary Data Types ... 6

3. Lower Layers of RPC 9
3.1. More on the Server Side 9
3.2. Memory Allocation with XDR 11
3.3. The Calling Side .. 13

4. Other RPC Features 15
4.1. Select on the Server Side
4.2. Broadcast RPC .. .

4.2.1. Broadcast RPC Synopsis
4.3. Batching
4.4. Authentication

4.4.1. The Client Side
4.4.2. The Server Side

15
15
16
16
20
20
21

4.5. Using lnetd 23

5. More Examples... 24
5.1. Versions... 24
5.2. TCP 25
5.3. Callback Procedures 29

-1-

0

0

0

0

0

0

Remote Procedure Call

Programming Guide

1. Introduction

This document is intended for programmers who wish to write network applications using remote
procedure calls (explained below), thus avoiding low-level system primitives based on sockets.
The reader must be familiar with the C programming language, and should have a working
knowledge of network theory.

Programs that communicate over a network need a paradigm for communication. A low-level
mechanism might send a signal on the arrival of incoming packets, causing a network signal
handler to execute. A high-level mechanism would be the Ada rendezvous. The method used
at Sun is the Remote Procedure Call (RPC) paradigm, in which a client communicates with a
server. In this process, the client first calls a procedure to send a data packet to the server.
When the packet arrives, the server calls a dispatch routine, performs whatever service is
requested, sends back the reply, and the procedure call returns to the client.

The RPC interface is divided into three layers. The highest layer is totally transparent to the
programmer. To illustrate, at this level a program can contain a call to rnusers (), which
returns the number of users on a remote machine. You don't have to be aware that RPC is
being used, since you simply make the call in a program, just as you would call mal loc ().

At the middle layer, the routines registerrpc () and cal lrpc () are used to make RPC
calls: registerrpc () obtains a unique system-wide number, while ca 11 rpc () executes a
remote procedure call. The rnusers () call is implemented using these two routines The
middle-layer routines are designed for most common applications, and shield the user from know
ing about sockets.

The lowest layer is used for more sophisticated applications, which may want to alter the
defaults of the routines. At this layer, you can explicitly manipulate sockets used for transmit
ting RPC messages. This level should be avoided if possible.

Section 2 of this manual illustrates use of the highest two layers while Section 3 presents the
low-level interface. Section 4 of the manual discusses miscellaneous topics. The final section
summarizes all the entry points into the RPC system.

Although this document only discusses the interface to C, remote procedure calls can be made
from any language. Even though this document discusses RPC when it is used to communicate
between processes on different machines, it works just as well for communication between
different processes on the same machine.

There is a diagram of the RPC paradigm on the next page.

• Sun Microsystems Release 2.0

Page 2

client
program

Machine A

program
continues

callrpc ()
function

:

return
reply

I
I
I
I

service 1

daemon:
I
I
I

execute
request

I
I
I
I

I
I
I
I
I

request
completed

I
I
I
I
I
I
I
I

~

call
service

return
answer

RPC Programming

Machin eB

service
executes

Figure 1: Network Communication with the Remote Procedure Call

• Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 3

2. Introductory Examples

2.1. Highest Layer

Imagine you're writing a program that needs to know how many users are logged into a remote
machine. You can do this by calling the library routine rnusers (), as illustrated below:

#include <stdio.h>

main(argc, argv)

{

}

int argc;
char **argv;

unsigned num;

if (argc < 2) {

}

fprintf(stderr, "usage: rnusers hostname\n");
exit (1);

if ((num = rnusers(argv[l))) < 0) {
fprintf(stderr, "error: rnusers\n");
exit(-1);

}
printf ("%d users on %s\n", num, argv [l]);
exit(O);

RPC library routines such as rnusers () are included in the C library l ibc. a. Thus, the pro
gram above could be compiled with

% cc program.c

Some other library routines are rstat () to gather remote performance statistics, and
ypmatch () to glean information from the yellow pages (YP). The YP library routines are docu
mented on the manual page ypc/nt(3N).

• Sun Microsystems Release 2.0

Page 4 RPC Programming

2.2. Intermediate Layer

The simplest interface, which explicitly makes RPC calls, uses the functions callrpc () and
registerrpc () . Using this method, another way to get the number of remote users is:

#include <stdio.h>
#include <rpcsvc/rusers.h>

main(argc, argv)

{

}

int argc;
char ••argv;

unsigned long nusers;

if (argc < 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit (-1);

if (callrpc(argv[l], RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM,
xdr_void, 0, xdr_u_long, &nusers) != 0) {

fprintf(stderr, "error: callrpc\n");
exit(l);

}
printf("number of users on %s is %d\n", argv[l], nusers);
exit (0);

A program number, version number, and procedure number defines each RPC procedure. The
program number defines a group of related remote procedures, each of which has a different pro
cedure number. Each program also has a version number, so when a minor change is made to a
remote service (adding a new procedure, for example), a new program number doesn't have to be
assigned. When you want to call a procedure to find the number of remote users, you look up
the appropriate program, version and procedure numbers in a manual, similar to when you look
up the name of memory allocator when you want to allocate memory.

The simplest routine in the RPC library used to make remote procedure calls is cal lrpc (). It
has eight parameters. The first is the name of the remote machine. The next three parameters
are the program, version, and procedure numbers. The following two parameters define the
argument of the RPC call, and the final two parameters are for the return value of the call. If it
completes successfully, ca 11 rpc () returns zero, but nonzero otherwise. The exact meaning of
the return codes is found in <rpc/clnt .h>, and is in fact an enum clnt_stat cast into an
integer.

Since data types may be represented differently on different machines, ca 11 rpc () needs both
the type of the RPC argument, as well as a pointer to the argument itself (and similarly for the
result). For RUSERSPROC_NUM, the return value is an unsigned long, so cal lrpc () has
xdr _u_long as its first return parameter, which says that the result is of type unsigned
long, and &nusers as its second return parameter, which is a pointer to where the long result
will be placed. Since RUSERSPROC_NUM takes no argument, the argument parameter of
callrpc () is xdr _void.

After trying several times to deliver a message, if callrpc () gets no answer, it returns with an
error code. The delivery mechanism is UDP, which stands for User Datagram Protocol.
Methods for adjusting the number of retries or for using a different protocol require you to use
the lower layer of the RPC library, discussed later in this document. The remote server

:it,
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

procedure corresponding to the above might look like this:

char*
nuser (indata)

{

}

char *indata;

static int nusers;

/*
* code here to compute the number of users
* and place result in variable nusers
*/

return ((char *)&nusers);

Page 5

It takes one argument, which is a pointer to the input of the remote procedure call (ignored in
our example), and it returns a pointer to the result. In the current version of C, character
pointers are the generic pointers, so both the input argument and the return value are cast to
char *.

Normally, a server registers all of the RPC calls it plans to handle, and then goes into an infinite
loop waiting to service requests. In this example, there is only a single procedure to register, so
the main body of the server would look like this:

#include <stdio.h>
#include <rpcsvc/rusers.h>

char •nuser () ;

main()
{

registerrpc(RUSERSPROG, RUSERSVERS, RUSERSPROC_NUM, nuser,

}

xdr_void, xdr_u_long);
svc_run(); /* never returns*/
fprintf(stderr, "Error: svc_run returned!\n");
exit(l);

The registerrpc () routine establishes what C procedure corresponds to each RPC procedure
number. The first three parameters, RUSERPROG, RUSERSVERS, and RUSERSPROC_NUM
are the program, version, and procedure numbers of the remote procedure to be registered;
nuser is the name of the C procedure implementing it; and xdr _void and xdr _u_long are
the types of the input to and output from the procedure.

Only the UDP transport mechanism can use registerrpc () ; thus, it is always safe in conjunc
tion with calls generated by cal lrpc ().

Warning: the UDP transport mechanism can only deal with arguments and results less than 8K
bytes in length.

2.3. Assigning Program Numbers

Program numhers are assigned in groups of Ox20000000 (536870912) according to the following
chart:

• Sun Microsystems Release 2.0

Page 6 RPC Programming

0 - lfffffff defined by sun
20000000 - 3fffffff defined by user
40000000 - Sfffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

Sun Microsystems administers the first group of numbers, which should be identical for all Sun
customers. If a customer develops an application that might be of general interest, that applica
tion should be given an assigned number in the first range. The second group of numbers is
reserved for specific customer applications. This range is intended primarily for debugging new
programs. The third group is reserved for applications that generate program numbers dynami
cally. The final groups are reserved for future use, and should not be used.

The exact registration process for Sun defined numbers is yet to be established.

2.4. Passing Arbitrary Data Types

In the previous example, the RPC call passes a single unsigned long. RPC can handle arbi
trary data structures, regardless of different machines' byte orders or structure layout conven
tions, by always converting them to a network standard called eXternal Data Repreaentation
(XDR) before sending them over the wire. The process of converting from a particular machine
representation to XDR format is called aerializing, and the reverse process is called deaerializing.
The type field parameters of ca 11 rpc () and registerrpc () can be a built-in procedure like
xdr _u_long () in the previous example, or a user supplied one. XDR has these built-in type
routines:

xdr_int()
xdr _long()
xdr_short()

xdr_u_int()
xdr _u_long ()
xdr _u_short ()

xdr_enum()
xdr_bool ()
xdr _string()

As an example of a user-defined type routine, if you wanted to send the structure

struct simple {
int a;
short b;

} simple;

then you would call ca 11 rpc as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_simple, &simple ...);

where xdr _simple() is written as:

~ ~{fl Sun Microsystems Release 2.0

0

C

0

0

0

0

RPC Programming

#include <rpc/rpc.h>

xdr_simple(xdrsp, simplep)
XDR •xdrsp;

{

}

struct simple •simplep;

if (lxdr_int(xdrsp, &simplep->a))
return (O);

if (lxdr_short(xdrsp, &simplep->b))
return (0);

return (l);

Page 7

An XDR routine returns nonzero (true in the sense of C) if it completes successfully, and zero
otherwise. A complete description of XDR is in the XDR Protocol Specification, so this section
only gives a few examples of XDR implementation.

In addition to the built-in primitives, there are also the prefabricated building blocks:

xdr _array() xdr _bytes()
xdr_reference() xdr_union()

To send a variable array of integers, you might package them up as a structure like this

struct varintarr {
int •data;
int arrlnth;

} arr;

and make an RPC call such as

callrpc(hostname, PROGNUM, VERSNUM, PROCNUM, xdr_varintarr, &arr ...);

with xdr _varintarr () defined as:

xdr_varintarr(xdrsp, varintarr)

{

}

XDR •xdrsp;
struct varlntarr *arrp;

xdr_array(xdrsp, &arrp->data, &arrp->arrlnth, MAXLEN,
sizeof(int), xdr_int);

This routine takes as parameters the XDR handle, a pointer to the array, a pointer to the size of
the array, the maximum allowable array size, the size of each array element, and an XDR rou
tine for handling each array element.

If the size of the array is known in advance, then the following could also be used to send out an
array of length SIZE:

~
\~ Sun Microsystems Release 2.0

Page 8 RPC Programming

int intarr[SIZEJ;

xdr_intarr(xdrsp, intarr)
XDR •xdrsp;

{
int intarr[];

inti;

for (i = O; i < SIZE; i++) {

}

if (!xdr_int(xdrsp, &intarr[i]))
return (O);

return (1);
}

XOR always converts quant1t1es to 4-byte multiples when deserializing. Thus, ir either or the
examples above involved characters instead or integers, each character would occupy 32 bits.
That is the reason for the XOR routine xdr _bytes(), which is like xdr _array() except that
it packs characters. It has four parameters, the same as the first four parameters or
xdr _array(). For null-terminated strings, there is also the xdr _string() routine, which is
the same as xdr _bytes() without the length parameter. On serializing it gets the string
length from strlen (), and on deserializing it creates a null-terminated string.

Here is a final example that calls the previously written xdr _simple() as well as the built-in
functions xdr _string() and xdr _reference() , which chases pointers:

struct finalexample {
char *string;
struct simple *simplep;

} finalexample;

xdr_finalexample(xdrsp, finalp)
XDR •xdrsp;

{

}

struct finalexample •finalp;

int i;

if (!xdr_string(xdrsp, &finalp->string, MAXSTRLEN))
return (O);

if (!xdr_reference(xdrsp, &finalp->simplep,
sizeof(struct simple), xdr_simple);

return (O);
return (l);

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 9

3. Lower Layers of RPC

In the examples given so far, RPC takes care of many details automatically for you. In this sec
tion, we'll show you how you can change the defaults by using lower layers of the RPC library.
It is assumed that you are familiar with sockets and the system calls for dealing with them. If
not, consult The [PC Tutorial.

3.1. More on the Server Side

There are a number of assumptions built into registerrpc () . One is that you are using the
UDP datagram protocol. Another is that you don't want to do anything unusual while deserializ
ing, since the deserialization process happens automatically before the user's server routine is
called. The server for the nusers program shown below is written using a lower layer of. the
RPC package, which does not make these assumptions.

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>

int nuser ();

main()
{

}

SVCXPRT •transp;

transp = svcudp_create(RPC...ANYSOCK);
if (transp == NULL){

}

fprintf(stderr, "couldn't create an RPC server\n");
exit (1) ;

pmap_unset(RUSERSPROG, RUSERSVERS);
if (!svc_register(transp, RUSERSPROG, RUSERSVERS, nuser,

IPPROTO_UDP)) {

}

fprintf(stderr, "couldn't register RUSER service\n");
exit(l);

svc_run(); ;• never returns•/
fprintf(stderr, "should never reach this point\n");

• Sun Microsystems Release 2.0

Page 10 RPC Programming

nuser(rqstp, tranp)

{

struct svc_req *rqstp;
SVCXPRT *transp;

unsigned long nusers;

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

case RUSERSPROC_NUM:
/*
* code here to compute the number of users
• and put in variable nusers
*/

if (lsvc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

default:
svcerr_noproc(transp);
return;

}
}

First, the server gets a transport handle, which is used for sending out RPC messages.
registerrpc () uses svcudp_create () to get a UDP handle. If you require a reliable pro
tocol, call svctcp_create () instead. If the argument to svcudp_create () is
RPC__ANYSOCK, the RPC library creates a socket on which to send out RPC calls. Otherwise,
svcudp_create () expects its argument to be a valid socket number. If you specify your own
socket, it can be bound or unbound. If it is bound to a port by the user, the port numbers of
svcudp_create () and clntudp_create () (the low-level client routine) must match.

When the user specifies RPC__ANYSOCK for a socket or gives an unbound socket, the system
determines port numbers in the following way: when a server starts up, it advertises to a port
mapper demon on its local machine, which picks a port number for the RPC procedure if the
socket specified to svcudp_create () isn't already bound. When the c lntudp_create ()
call is made with an unbound socket, the system queries the port mapper on the machine to
which the call is being made, and gets the appropriate port number. If the port mapper is not
running or has no port corresponding to the RPC call, the RPC call fails. Users can make RPC
calls to the port mapper themselves. The appropriate procedure numbers are in the include file
<rpc/pmap_prot. h>.

After creating an SVCXPRT, the next step is to call pmap_unset () so that if the nusers
server crashed earlier, any previous trace of it is erased before restarting. More precisely,
pmap_unset () erases the entry for RUSERS from the port mapper's tables.

Finally, we associate the program number for nusers with the procedure nuser () . The final

0

0

argument to svc_register () is normally the protocol being used, which, in this case, is
JPPROTO_UDP. Notice that unlike registerrpc (), there are no XDR routines involved in 0
~,

'-~ Sun Microsystems Release 2.0

0

0

0

RPC Programming Page 11

the registration process. Also, registration is done on the program, rather than procedure, level.

The user routine nuser () must call and dispatch the appropriate XDR routines based on the
procedure number. Note that two things are handled by nuser () that registerrpc () han
dles automatically. The first is that procedure NULLPROC (currently zero) returns with no
arguments. This can be used as a simple test for detecting if a remote program is running.
Second, there is a check for invalid procedure numbers. If one is detected, svcerr _noproc ()
is called to handle the error.

The user service routine serializes the results and returns them to the RPC caller via
svc_sendreply (). Its first parameter is the SVCXPRT handle, the second is the XDR rou
tine, and the third is a pointer to the data to be returned. Not illustrated above is how a server
handles an RPC program that passes data. As an example, we can add a procedure
RUSERSPROCJ300L, which has an argument nusers, and returns TRUE or FALSE depend
ing on whether there are nusers logged on. It would look like this:

case RUSERSPROC_BOOL: {
int bool;

}

unsigned nuserquery;

if (!svc_getargs(transp, xdr_u_int, &nuserquery) {
svcerr_decode(transp);

}
;•

return;

• code to set nusers = number of users
•;

if (nuserquery == nusers)
bool = TRUE;

else
bool = FALSE;

if (lsvc_sendreply(transp, xdr_bool, &bool){
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

The relevant routine is svc_getargs (), which takes an SVCXPRT handle, the XDR routine,
and a pointer to where the input is to be placed as arguments.

3.2. Memory Allocation with XDR

XDR routines not only do input and output, they also do memory allocation. This is why the
second parameter of xdr _array() is a pointer to an array, rather than the array itself. If it is
NULL, then xdr _array() allocates space for the array and returns a pointer to it, putting the
size of the array in the third argument. As an example, consider the following XDR routine
xdr _chararrl (), which deals with a fixed array of bytes with length SIZE:

~ \(# Sun Microsystems Release 2.0

Page 12 RPC Programming

xdr_chararrl(xdrsp, chararr)
XDR •xdrsp;

{
char chararr [] ;

char •p;
int len;

p = chararr;
len = SIZE;
return (xdr_bytes(xdrsp, &p, &len, SIZE));

}

It might be called from a server like this,

char chararr[SIZE];

svc_getargs(transp, xdr_chararrl, chararr);

where chararr has already allocated space. If you want XOR to do the allocation, you would
have to rewrite this routine in the following way:

xdr_chararr2(xdrsp, chararrp)
XDR •xdrsp;
char **chararrp;

{
int len;

len = SIZE;
return (xdr_bytes(xdrsp, charrarrp, &len, SIZE));

}

Then the RPC call might look like this:

char *arrptr;

arrptr = NULL;
svc_getargs(transp, xdr_chararr2, &arrptr);

I*
* use the result here
•;

svc_freeargs(xdrsp, xdr_chararr2, &arrptr);

After using the character array, it can be freed with svc_freeargs (). In the routine
xdr _finalexample () given earlier, if finalp->string was NULL in the call

svc_getargs(transp, xdr_finalexample, &finalp);

then

svc_freeargs(xdrsp, xdr_finalexample, &finalp);

frees the array allocated to hold finalp->string; otherwise, it frees nothing. The same is
true for finalp->simplep.

To summarize, each XOR routine is responsible for serializing, deserializing, and allocating
memory. When an XOR routine is called from cal lrpc (), the serializing part is used. When
called from svc_getargs () , the deserializer is used. And when called from
svc_freeargs (), the memory deallocator is used. When building simple examples like those
in this section, a user doesn't have to worry about the three modes. The XOR reference manual
has examples of more sophisticated XOR routines that determine which of the three modes they
are in to function correctly.

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

RPC Programming Page 13

3.3. The Calling Side

When you use ca 11 rpc, you have no control over the RPC delivery mechanism or the socket
used to transport the data. To illustrate the layer of RPC that lets you adjust these parameters,
consider the following code to call the nusers service:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/rusers.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)

{

}

int argc;
char * * argv;

struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock= RPC...ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
unsigned long nusers;

if (argc < 2) {

}

fprintf(stderr, "usage: nusers hostname\n");
exit(-1);

if ((hp= gethostbyname(argv[l])) == NULL) {

}

fprintf(stderr, "cannot get addr for '%s'\n", argv[l]);
exit(-1);

pertry_timeout.tv_sec = 3;
pertry_timeout.tv_usec = O;
addrlen = sizeof(struct sockaddr_in);
bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = O;
if ((client= clntudp_create(&server_addr, RUSERSPROG,

RUSERSVERS, pertry_timeout, &sock)) -- NULL) {
perror("clntudp_create");
exit(-1);

}
total_tlmeout.tv_sec = 20;
total_timeout.tv_usec = O;
clnt_stat = clnt_call(client, RUSERSPROC_NUM, xdr_void, 0,

xdr_u_long, &nusers, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit (-1);

}
clnt_destroy(client);

The low-level version of callrpc () is clnt_call (), which takes a CLIENT pointer rather

~,
~~ Sun Microsystems Release 2.0

Page 14 RPC Programming

than a host name. The parameters to clnt_call () are a CLIENT pointer, the procedure
number, the XOR routine for serializing the argument, a pointer to the argument, the XOR rou- 0
tine for deserializing the return value, a pointer to where the return value will be placed, and :
the time in seconds to wait for a reply.

The CLIENT pointer is encoded with the transport mechanism. callrpc () uses UDP, thus it
calls clntudp_create () to get a CLIENT pointer. To get TCP (Transport Control Protocol),
you would use clnttcp_create ().

The parameters to c lntudp_create () are the server address, the length of the server
address, the program number, the version number, a timeout value (between tries), and a pointer
to a socket. The final argument to clnt_call () is the total time to wait for a response.
Thus, the number of tries is the clnt_call () timeout divided by the clntudp_create ()
timeout.

There is one thing to note when using the c lnt_destroy () call. It deallocates any space asso
ciated with the CLIENT handle, but it does not close the socket associated with it, which was
passed as an argument to c lntudp_create () . The reason is that if there are multiple client
handles using the same socket, then it is possible to close one handle without destroying the
socket that other handles are using.

To make a stream connection, the call to clntudp_create () is replaced with a call to
clnttcp_create().

clnttcp_create(&server_addr, prognum, versnum, &socket, inputsize,
outputsize);

There is no timeout argument; instead, the receive and send buffer sizes must be specified.
When the c lnttcp_create () call is made, a TCP connection is established. All RPC calls
using that CLIENT handle would use this connection. The server side of an RPC call using TCP Q, · '

has svcudp_create () replaced by svctcp_create () .

0
• Sun Microsystems Release 2.0

0

0

0

RPC Programming Page 15

4. Other RPC Features

This section discusses some other aspects of RPC that are occasionally useful.

4.1. Select on the Server Side

Suppose a process is processing RPC requests while performing some other activity. If the other
activity involves periodically updating a data structure, the process can set an alarm signal
before calling svc_run () . But if the other activity involves waiting on a a file descriptor, the
svc_run () call won't work. The code for svc_run () is as follows:

void
svc_run()
{

int readfds;

for(;;) {
readfds = svc_fds;
switch (select(32, &readfds, NULL, NULL, NULL)) {

}

case -1:

case 0:

if (errno == EINTR)
continue;

perror("rstat: select");
return;

break;
default:

svc_getreq(readfds);
}

}

You can bypass svc_run () and call svc_getreq () yourself. All you need to know are the
file descriptors of the socket(s) associated with the programs you are waiting on. Thus you can
have your own select() that waits on both the RPC socket, and your own descriptors.

4.2. Broadcast RPC

The pmap and RPC protocols implement broadcast RPC. Here are the main differences between
broadcast RPC and normal RPC calls:

1) Normal RPC expects one answer, whereas broadcast RPC expects many answers (one or
more answer from each responding machine).

2) Broadcast RPC can only be supported by packet-oriented (connectionless) transport proto
cols like UPD /IP.

3) The implementation of broadcast RPC treats all unsuccessful responses as garbage by filter
ing them out. Thus, if there is a version mismatch between the broadcaster and a remote
service, the user of broadcast RPC never knows.

• Sun Microsystems Release 2.0

Page 16 RPC Programming

4) All broadcast messages are sent to the portmap port. Thus, only services that register them
selves with their portmapper are accessible via the broadcast RPC mechanism.

.4-2.1. Broadcast RPG Synopsis

#include <rpc/pmap_clnt.h>

enum clnt_stat clnt_stat;

clnt_stat =
clnt_broadcast(prog, vers,
u_long prog;
u_long
u_long
xdrproc_t
caddr_t

vers;
proc;
xargs;
argsp;

xdrproc_t xresults;
caddr_t resultsp;
bool_t (•eachresult) ();

proc, xargs, argsp, xresults, resultsp, eachresult)
/• program number•/
/• version number•/
/* procedure number*/
/* xdr routine for args */
/• pointer to args •;
/• xdr routine for results•/
/• pointer to results•/
/• call with each result obtained•/

The procedure eachresul t () is called each time a valid result is obtained. It returns a
boolean that indicates whether or not the client wants more responses.

bool_t

done=
eachresult(resultsp,
caddr_t
struct sockaddr_in

done;

raddr)
resultsp;
raddr; / address of machine that sent response*/

If done is TRUE, then broadcasting stops and clnt_broadcast () returns successfully. Oth
erwise, the routine waits for another response. The request is rebroadcast after a few seconds of
waiting. If no responses come back, the routine returns with RPC_TIMEDOUT. To interpret
c lnt_stat errors, feed the error code to c lnt_perrno () .

4.3. Batching

The RPC architecture is designed so that clients send a call message, and wait for servers to
reply that the call succeeded. This implies that clients do not compute while servers are process
ing a call. This is inefficient if the client does not want or need an acknowledgement for every
message sent. It is possible for clients to continue computing while waiting for a response, using
RPC batch facilities.

RPC messages can be placed in a "pipeline" of calls to a desired server; this is called batching.
Batching assumes that: I) each RPC call in the pipeline requires no response from the server,
and the server does not send a response message; and 2) the pipeline of calls is transported on a
reliable byte stream transport such as TCP /IP. Since the server does not respond to every call,
the client can generate new calls in parallel with the server executing previous calls. Further
more, the TCP /IP implementation can buffer up many call messages, and send them to the
server in one vr i te system call. This overlapped execution greatly decreases the interprocess
communication overhead of the client and server processes, and the total elapsed time of a series
of calls.

~
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 17

Since the batched calls are buffered, the client should eventually do a legitimate call in order to
flush the pipeline.

A contrived example of batching follows. Assume a string rendering service (like a window sys
tem) has two similar calls: one renders a string and returns void results, while the other renders
a string and remains silent. The service (using the TCP /IP transport) may look like:

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>

void windowdispatch();

main()
{

}

void

SVCXPRT •transp;

transp = svctcp_create(RPC..)INYSOCK, 0, O);
if (transp == NULL){

}

fprintf(stderr, "couldn't create an RPC server\n");
exit(l);

pmap_unset(WINDOWPROG, WINDOWVERS);
if (!svc_register(transp, WINDOWPROG, WINDOWVERS, windowdispatch,

IPPROTO_TCP)) {

}

fprintf(stderr, "couldn't register WINDOW service\n");
exit(l);

svc_run(); /• never returns•/
fprintf(stderr, "should never reach this point\n");

windowdispatch(rqstp, transp)
struct svc_req •rqstp;
SVCXPRT •transp;

{
char *s = NULL;

switch (rqstp->rq_proc) {
case NULLPROC:

if (lsvc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

case RENDERSTRING:
if (!svc_getargs(transp, xdr_wrapstring, &s)) {

fprintf(stderr, "couldn't decode arguments\n");
svcerr_decode(transp); ;• tell caller he screwed up•/
break;

}
;•

• call here to to render the strings
•;

if (!svc_sendreply(transp, xdr_void, NULL)) {
fprintf(stderr, "couldn't reply to RPC call\n");

I;-~ . ~~ Sun Microsystems Release 2.0

Page 18

}

exit(l);
}
break;

case RENDERSTRING_BATCHED:

RPC Programming

if (lsvc_getargs(transp, xdr_wrapstring, &s)) {
fprintf(stderr, "couldn't decode arguments\n");

}
1•

I*
* we are silent in the face of protocol errors

•1
break;

• call here to to render the strings,
• but sends no reply!
•1

break;
default:

svcerr_noproc(transp);
return;

}

I*
• now free string allocated while decoding arguments
•/

svc_freeargs(transp, xdr_wrapstring, &s);

Of course the service could have one procedure that takes the string and a boolean to indicate
whether or not the procedure should respond.

In order for a client to take advantage of batching, the client must perform RPC calls on a
TCP-based transport and the actual calls must have the following attributes: I) the result's XDR
routine must be zero (NULL), and 2) the RPC call's timeout must be zero.

Here is an example of a client that uses batching to render a bunch of strings; the batching is
flushed when the client gets a null string:

~ ,~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 19

#include <stdio.h>
#include <rpc/rpc.h>
#include <rpcsvc/windows.h>
#include <sys/socket.h>
#include <sys/time.h>
#include <netdb.h>

main(argc, argv)

{

}

int argc;
char ••argv;

struct hostent *hp;
struct timeval pertry_timeout, total_timeout;
struct sockaddr_in server_addr;
int addrlen, sock= RPC...ANYSOCK;
register CLIENT *client;
enum clnt_stat clnt_stat;
char buf[lOOO];
char •s = buf;

/*
* initial as in example 3.3
*/

if ((client= clnttcp_create(&server_addr, WINDOWPROG,
WINDOWVERS, &sock, 0, 0)) == NULL) {

perror("clnttcp_create");
exit (-1);

}
total_timeout.tv_sec = O;
total_timeout.tv_usec = O;
while (scanf(11%s 11

, s) I= EOF) {

}

clnt_stat = clnt_call(client, RENDERSTRING_BATCHED,
xdr_wrapstring, &s, NULL, NULL, total_timeout);

if (clnt_stat != RPC_SUCCESS) {

}

clnt_perror(client, "batched rpc");
exit(-1);

/*
• now flush the pipeline
*/

total_timeout.tv_sec = 20;
clnt_stat = clnt_call(client, NULLPROC,

xdr_void, NULL, xdr_void, NULL, total_timeout);
if (clnt_stat != RPC_SUCCESS) {

clnt_perror(client, "rpc");
exit (-1);

}

clnt_destroy(client);

Since the server sends no message, the clients cannot be notified of any of the failures that may
occur. Therefore, clients are on their own when it comes to handling errors.

~
~~ Sun Microsystems Release 2.0

Page 20 RPC Programming

The above example was completed to render all of the (2000) lines in the file /etc/termcap. The

f
renderingfi servi~e did

1
n)othinhg. buttto _thr

1
ofw the

1
linesRaPwCay.

2
)The eh~ample ~aslfrunb in hthde fRolploCwing) O·

our con gurat1ons: mac me o 1tse , regu ar ; mac me to 1tse , ate e ; 3
machine to another, regular RPC; and 4) machine to another, batched RPC. The results are as
follows: 1) 50 seconds; 2) 16 seconds; 3) 52 seconds; 4) 10 seconds. Running fscanf () on
/etc/termcap only requires six seconds. These timings show the advantage of protocols that
allow for overlapped execution, though these protocols are often hard to design.

4.4. Authentication

In the examples presented so far, the caller never identified itself to the server, and the server
never required an ID from the caller. Clearly, some network services, such as a network filesys
tem, require stronger security than what has been presented so far.

In reality, every RPC call is authenticated by the RPC package on the server, and similarly, the
RPC client package generates and sends authentication parameters. Just as different transports
(TCP /IP or UDP /IP) can be used when creating RPC clients and servers, different forms of
authentication can be associated with RPC clients; the default authentication type used as a
default is type none.

The authentication subsystem of the RPC package is open ended. That is, numerous types of
authentication are easy to support. However, this section deals only with ,miz type authentica
tion, which besides none is the only supported type.

4-.4-1. The Client Side

When a caller creates a new RPC client handle as in:

clnt = clntudp_create(address, prognum, versnum, wait, sockp)

the appropriate transport instance defaults the associate authentication handle to be

clnt->cl_auth = authnone_create();

The RPC client can choose to use uniz style authentication by setting clnt->cl_auth after
creating the RPC client handle:

clnt->cl_auth = authunix_create_default();

This causes each RPC call associated with clnt to carry with it the following authentication
credentials structure:

;•
• Unix style credentials.
•;

struct authunix_parms {
u_long aup_time;
char *aup_machname;
int aup_uid;
int aup_gid;
u_int
int

aup_len;
•aup_gids;

/* credentials creation time*/
/* host name of where the client is calling*/
/* client's UNIX.effective uid */
/* client's current UNIX group id*/
/* the element length of aup_gids array*/
/* array of 4.2 groups to which user belongs*/

0

};

These fields are set by authunix_create_defaul t () by invoking the appropriate system 0
~
~~ Sun Microsystems Release 2.0

0

0

0

RPC Programming Page 21

calls.

Since the RPC user created this new style of authentication, he is responsible for destroying it
with:

auth_destroy(clnt->cl_auth);

4-4-2. The Server Side

Service implementors have a harder time dealing with authentication issues since the RPC pack
age passes the service dispatch routine a request that has an arbitrary authentication style asso
ciated with it. Consider the fields of a request handle passed to a service dispatch routine:

1•
* An RPC Service request
•1

struct svc_req {
u_long rq_prog;
u_long rq_vers;
u_long rq_proc;
struct opaque_auth rq_cred;
caddr_t rq_clntcred;

};

/• service program number•;
/• service protocol version number•/
/• the desired procedure number•/
/• raw credentials from the ··wire'' •/
/• read only, cooked credentials•/

The rq_cred is mostly opaque, except for one field of interest: the style of authentication
credentials:

1•
• Authentication info. Mostly opaque to the programmer.
•1

struct opaque_auth {

};

enum.....t oa_flavor;
caddr_t oa_base;
u_int oa_length;

;• style of credentials•;
/• address of more auth stuff•/
/• not to exceed MAX_.AUTH_BYTES •/

The RPC package guarantees the following to the service dispatch routine:

I) That the request's rq_cred is well formed. Thus the service implementor may inspect the
request's rq_cred. oa_ flavor to determine which style of authentication the caller used.
The service implementor may also wish to inspect the other fields of rq_cred if the style is
not one of the styles supported by the RPC package.

2) That the request's rq_clntcred field is either NULL or points to a well formed structure
that corresponds to a supported style of authentication credentials. Remember that only
unix style is currently supported, so (currently) rq_clntcred could be cast to a pointer to
an authunix_parms structure. If rq_clntcred is NULL, the service implementor may
wish to inspect the other (opaque) fileds of rq_cred in case the service knows about a new
type of authentication that the RPC package does not know about.

Our remote users service example can be extended so that it computes results for all users
except UID 16:

Ill, .. f\~ Sun Microsystems Release 2.0

Page 22 RPC Programming

nuser(rqstp. tranp)

{

}

struct svc_req •rqstp;
SVCXPRT •transp;

struct authunix_parms *unix_cred;
int uid;
unsigned long nusers;

;•
• we don't care about authentication for the null procedure
•;

if (rqstp->rq_proc == NULLPROC) {

}
;•

if (lsvc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

• now get the uid
•;

switch (rqstp->rq_cred.oa_flavor) {
case AUT!LUNIX:

unix_cred = (struct authunix_parms •) rqstp->rq_clntcred;
uid = unix_cred->aup_uid;
break;

case AUTH_NULL:
default:

svcerr_weakauth(transp);
return;

}
switch (rqstp->rq_proc) {
case RUSERSPROC_NUM:

;•
• make sure the caller is allow to call this procedure.

•;
if (uid == 16) {

svcerr_systemerr(transp);
return;

}
;•

* code here to compute the number of users
* and put in variable nusers
•;

if (lsvc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(!);

}
return;

default:
svcerr_noproc(transp);
return;

}

• Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 23

A few things should be noted here. First, it is customary not to check the authentication param
eters associated with the NULLPROC (procedure number zero). Second, if the authentication
parameter's type is not suitable for your service, you should call svcerr _veakauth (). And
finally, the service protocol itself should return status for access denied; in the case of our exam
ple, the protocol does not have such a status, so we call the service primitive
svcerr _systemerr () instead.

The last point underscores the relation between the RPC authentication package and the ser
vices; RPC deals only with authentication and not with individual services' access control. The
services themselves must implement their own access control policies and reflect these policies as
return statuses in their protocols.

4.5. Using lnetd

An RPC server can be started from inetd. The only difference from the usual code 1s that
svcudp_create () should be called as

transp = svcudp_create(O);

since inet passes a socket as file descriptor 0. Also, svc_register () should be called as

svc_register(PROGNUM, VERSNUM, service, transp, O);

with the final flag as 0, since the program would already be registered by inetd. Remember
that if you want to exit from the server process and return control to inet, you need to expli
citly exit, since svc_run () never returns.

The format of entries in /etc/servers for RPC services is

rpc udp server program version

where server is the C code implementing the server, and program and veraion are the program
and version numbers of the service. The key word udp can be replaced by tcp for TCP-based
RPC services.

If the same program handles multiple versions, then the version number can be a range, as m
this example:

rpc udp /usr/etc/rstatd 100001 1-2

~
'\~ Sun Microsystems Release 2.0

Page 24 RPC Programming

5. More Examples

5.1. Versions

By convention, the first version number of program FOO is FOOVERS_ORIG and the most
recent version is FOOVERS. Suppose there is a new version of the user program that returns
an unsigned short rather than a long. If we name this version RUSERSVERS_8HORT,
then a server that wants to support both versions would do a double register.

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_ORIG, nuser,
IPPROTO_TCP)) {

}

fprintf(stderr, "couldn't register RUSER service\n");
exit(l);

if (!svc_register(transp, RUSERSPROG, RUSERSVERS_SHORT, nuser,
IPPROTO_TCP)) {

}

fprintf(stderr, "couldn't register RUSER service\n");
exit (1);

,0. Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 25

Both versions can be handled by the same C procedure:

nuser(rqstp, tranp)

{

struct svc_req *rqstp;
SVCXPRT •transp;

unsigned long nusers;
unsigned short nusers2

switch (rqstp->rq_proc) {
case NULLPROC:

if (!svc_sendreply(transp, xdr_void, 0)) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit(l);

}
return;

case RUSERSPROC_NUM:

default:

;•
* code here to compute the number of users
• and put in variable nusers
•;

nusers2 = nusers;
if (rqstp->rq_vers == RUSERSVERS_ORIG)

else

return;

if (!svc_sendreply(transp, xdr_u_long, &nusers) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit (1) ;

}

if (!svc_sendreply(transp, xdr_u_short, &nusers2) {
fprintf(stderr, "couldn't reply to RPC call\n");
exit (1);

svcerr_noproc(transp);
return;

}
}

5.2. TCP

Here is an example that is essentially rep. The initiator of the RPC snd () call takes its stan
dard input and sends it to the server rev() , which prints it on standard output. The RPC call
uses TCP. This also illustrates an XDR procedure that behaves differently on serialization than
on deserialization.

~ ~~ Sun Microsystems Release 2.0

Page 26 RPC Programming

1•
* The xdr routine:
•
* on decode, read from wire, write onto fp
* on encode, read from fp, write onto wire
•1

#include <stdio.h>
#include <rpc/rpc.h>

xdr_rcp(xdrs, fp)

{

XDR •xdrs;
FILE •fp;

unsigned long size;
char buf[MAXCHUNK], •p;

if (xdrs->x_op -- XDR_FREE)/• nothing to free•/
return 1;

while (1) {
if (xdrs->x_op == XDR_ENCODE) {

if ((size= fread (buf, sizeof(char), MAXCHUNK, fp))
-- 0 && ferror(fp)) {

}
}

fprintf(stderr, "couldn't fread\n");
exit(l);

}
}
p = buf;
if (lxdr_bytes(xdrs, &p, &size, MAXCHUNK))

return O;
if (size == 0)

return 1;
if (xdrs->x_op -- XDR_DECODE) {

}

if (fwrite(buf, sizeof(char), size, fp) != size) {
fprintf (stderr, "couldn't fwrite\n");
exit(l);

}

*'' ~(fl Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

;•
* The sender routines
•;

#include <stdio.h>
#include <netdb.h>
#include <rpc/rpc.h>
#include <sys/socket.h>
#include <sys/time.h>

main(argc, argv)

{

int argc;
char **argv;

int err;

if (argc < 2) {

}

fprintf(stderr, "usage: %s server-name\n", argv[O));
exit(-1);

if ((err= callrpctcp(argv[l], RCPPROG, RCPPROC_FP, RCPVERS,
xdr_rcp, stdin, xdr_void, 0) I= 0)) {

clnt_perrno(err);
fprintf(stderr, "couldn't make RPC call\n");
exit(l);

}
}

callrpctcp(host, prognum, procnum, versnum, inproc, in, outproc, out)
char *host, *in, *out;

{
xdrproc_t inproc, outproc;

struct sockaddr_in server_addr;
int socket= RPC...)INYSOCK;
enum clnt_stat clnt_stat;
struct hostent *hp;
register CLIENT •client;
struct timeval total_timeout;

if ((hp= gethostbyname(host)) == NULL) {

}

fpr int f (stderr, "cannot get addr for • %s '\n" , host) ;
exit(-1);

bcopy(hp->h_addr, (caddr_t)&server_addr.sin_addr, hp->h_length);
server_addr.sin_family = AF_INET;
server_addr.sin_port = O·
if ((client= clnttcp_create(&server_addr, prognum,

versnum, &socket, BUFSIZ, BUFSIZ)) == NULL) {
perror("rpctcp_create");
exit(-1);

}
total_timeout.tv_sec = 20;
total_timeout.tv_usec = O;

Page 27

clnt_stat = clnt_call(client, procnum, inproc, in, outproc, out, total_timeout);
clnt_destroy(client)
return (int)clnt_stat;

}

• Sun Microsystems Release 2.0

Page 28

/*
* The receiving routines
*/

#include <stdio.h>
#include <rpc/rpc.h>

main()
{

register SVCXPRT *transp;

RPC Programming

if ((transp = svctcp_create(RPC....,ANYSOCK, 1024, 1024)) -- NULL) {
fprintf("svctcp_create: error\n");

}

exit(l);
}
pmap_unset(RCPPROG, RCPVERS);
if (lsvc_register(transp, RCPPROG, RCPVERS, rcp_service, IPPROTO_TCP)) {

fprintf(stderr, "svc_register: error\n");
exit (1) ;

}
svc_run(); /* never returns*/
fprintf(stderr, "svc_run should never return\n");

rcp_service(rqstp, transp)

{

}

register struct svc_req *rqstp;
register SVCXPRT •transp;

switch (rqstp->rq_proc) {
case NULLPROC:

if (svc_sendreply(transp, xdr_void, OJ == 0) {
fprintf(stderr, "err: rcp_serv±ce");
exit(l);

}
return;

case RCPPROC_FP:
if (!svc_getargs(transp, xdr_rcp, stdout)) {

svcerr_decode(transp);
return;

}
if (!svc_sendreply(transp, xdr_void, 0)) {

fprintf (stderr, "can't reply\n");
return;

}
exit(O);

default:
svcerr_noproc(transp);
return;

}

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 29

5.3. Callback Procedures

Occasionally, it is useful to have a server become a client, and make an RPC call back the pro
cess which is its client. An example is remote debugging, where the client is a window system
program, and the server is a debugger running on the remote machine. Most of the time, the
user clicks a mouse button at the debugging window, which converts this to a debugger com
mand, and then makes an RPC call to the server (where the debugger is actually running), tel
ling it to execute that command. However, when the debugger hits a breakpoint, the roles are
reversed, and the debugger wants to make an rpc call to the window program, so that it can
inform the user that a breakpoint has been reached.

In order to do an RPC callback, you need a program number to make the RPC call on. Since
this will be a dynamically generated program number, it should be in the transient range,
Ox40000000 - Ox5fffffff. The routine gettransient () returns a valid program number in the
transient range, and registers it with the portmapper. It only talks to the portmapper running
on the same machine as the gettransient () routine itself. The call to pmap_set () is a test
and set operation, in that it indivisibly tests whether a program number has already been
registered, and if it has not, then reserves it. On return, the sockp argument will contain a
socket that can be used as the argument to an svcudp_create () or svctcp_create () call.

• Sun Microsystems Release 2.0

Page 30 RPO Programming

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/socket.h>

gettransient(proto, vers, sockp)

{

}

int *sockp;

static int prognwn = Ox40000000;
int s, len, socktype;
struct sockaddr_in addr;

switch(proto) {

}

case IPPROTO_UDP:
socktype = SOCK_DGRAM;
break;

case IPPROTO_TCP:

default:

socktype = SOCK_STREAM;
break;

fprintf(stderr, "unknown protocol type\n");
return O;

if (*sockp -- RPC...ANYSOCK) {

}
else

if ((s = socket(AF_INET, socktype, 0)) < 0) {
perror("socket");
return (O);

}
*sockp = s;

s = *sockp;
addr.sin_addr.s_addr = O;
addr.sin_family = AF_INET;
addr.sin_port = O;
len = sizeof(addr);
/*
•maybe already bound, so don't check for err
*/

bind(s, &addr, len);
if (getsockname(s, &addr, &len)< 0) {

perror("g~tsockname");
return (0);

}
while (pmap_set(prognum++, vers, proto, addr.sin_port) -- 0)

continue;
return (prognum-1);

The following pair of programs illustrate how to use the gettransient () routine. The client
makes an RPO call to the server, passing it a transient program number. Then the client waits
around to receive a callback from the server at that program number. The server registers the
program EXAMPELPROG, so that it can receive the RPO call informing it of the callback pro
gram number. Then at some random time (on receiving an ALRM signal in this example), it
sends a callback RPO call, using the program number it received earlier.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

1•
• client
·1

#include <stdio.h>
#include <rpc/rpc.h>

int callback() ;
char hostname[256];

main(argc, argv)

{
char * * argv;

int x, ans, s;
SVCXPRT •xprt;

gethostname(hostname, sizeof(hostname));
s = RPC...}'.NYSOCK;
x = gettransient(IPPROTO_UDP, l, &s);
fprintf (stderr, "client gets prognum %d\n", x);

if ((xprt = svcudp_create(s)) == NULL) {

}

fprintf (stderr, "rpc_server: svcudp_create\n");
exit(l);

(void)svc_register(xprt, x, l, callback, O);

ans= callrpc(hostname, EXAMPLEPROG, EXAMPLEPROC_CALLBACK,
EXAMPLEVERS, xdr_int, &x, xdr_void, O);

if (ans I= 0) {

}

fprintf(stderr, "call: ");
clnt_perrno(ans);
fprintf (stderr, "\n");

svc_run();

Page 31

fprintf(stderr, "Error: svc_run shouldn't have returned\n");
}

.. Sun Microsystems Release 2.0

Page 32 RPC Programming

callback{rqstp, transp)

{

}

register struct svc_req *rqstp;
register SVCXPRT •transp;

switch (rqstp->rq_proc) {
case 0:

case 1:

}

if (svc_sendreply(transp, xdr_void, 0) -- FALSE) {
fprintf(stderr, "err: rusersd\n");
exit{l);

}
exit(O);

if (!svc_getargs(transp, xdr_void, 0)) {
svcerr_decode(transp);
exit(l);

}
fprintf(stderr, "client got callback\n");
if (svc_sendreply{transp, xdr_void, 0) -- FALSE) {

fprintf(stderr~ "err: rusersd");
exit(l);

}

• Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming Page 33

• server
•;

#include <stdio.h>
#include <rpc/rpc.h>
#include <sys/signal.h>

char *getnewprog();
char hostname[256];
int docallback();
int pnum;

main(argc, argv)
char **argv;

{

/*program number for callback routine*/

gethostname(hostname, sizeof(hostname));
registerrpc(EXAMPLEPROG, EXAMPLEPROC_CJ\.LLBACK, EXAMPLEVERS,

}

getnewprog, xdr_int, xdr_void);
fprintf(stderr, "server going into svc_run\n");
alarm(lO);
signal(SIGJ\.LRM, docallback);
svc_run();
fprintf(stderr, "Error: svc_run shouldn't have returned\n");

char*
getnewprog(pnump)

char •pnump;
{

pnum = *(int *)pnump;
return NULL;

}

docallback ()
{

int ans;

ans= callrpc(hostname, pnum, l, l, xdr_void, 0, xdr_void, O);
if (ans I= 0) {

}
}

fprintf (stderr, "server: ") ;
clnt_perrno(ans);
fprintf(stderr, "\n");

~
\~ Sun Microsystems Release 2.0

Page 34

Appendix A. Synopsis of RPC Routines

auth_destroy()

void
auth_destroy(auth)

AUTH •auth;

RPC Programming

A macro that destroys the authentication information associated with auth. Destruction usually
involves deallocation of private data structures. The use of auth is undefined after calling
auth_destroy () .

authnone_create()

AUTH •
authnone_create()

Creates and returns an RPC authentication handle that passes no usable authentication informa
tion with each remote procedure call.

authunix_create()

AUTH •
authunix_create(host, uid, gid, len, aup_gids)

char 'host;
int uid, gid, len, •aup_gids;

Creates and returns an RPC authentication handle that contains UNIXt authentication informa
tion. The parameter host is the name of the machine on which the information was created;
uid is the user's user ID; gid is the user's current group ID; len and aup_gids refer to a
counted array of groups to which the user belongs. It is easy to impersonate a user.

authunix_create_default()

AUTH •
authunix_create_default()

Calls authunix_create () with the appropriate parameters.

callrpc()

callrpc(host, prognurn, versnum, procnum, inproc, in, outproc, out)
char •host;
u_long prognum, versnum, procnum;
char •in, •out;
xdrproc_t inproc, outproc;

Calls the remote procedure associated with prognum, versnum, and procnum on the machine,
host. The parameter in is the address of the procedure's argument(s), and out is the address
of where to place the result(s); inproc is used to encode the procedure's parameters, and
outproc is used to decode the procedure's results. This routine returns zero if it succeeds, or

j UNIX is a trademark of Bell Laboratories.

ff,,
~~ Sun Microsystems Release 2.0

0

I
01

I

0

0

0

0

RPC Programming Page 35

the value of enum clnt_stat cast to an integer if it fails. The routine clnt_perrno () is
handy for translating failure statuses into messages. Warning: calling remote procedures with
this routine uses UDP /IP as a transport; see clntudp_create () for restrictions.

clnt_broadcast()

enum clnt_stat
clnt_broadcast(prognum, versnum. procnum, inproc, in, outproc, out, eachresult)

u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
resultproc_t eachresult;

Like ca 11 rpc (), except the call message is broadcast to all locally connected broadcast nets.
Each time it receives a response, this routine calls eachresul t, whose form is

eachresult(out, addr)
char *out;
struct sockaddr_in *addr;

where out is the same as out passed to clnt_broadcast (), except that the remote
procedure's output is decoded there; addr points to the address of the machine that sent the
results. If eachresul t () returns zero, clnt_broadcast () waits for more replies; otherwise
it returns with appropriate status.

clnt_call()

enum clnt_stat
clnt_call(clnt, procnum, inproc, in, outproc, out, tout)

CLIENT *clnt; long procnum;
xdrproc_t inproc, outproc;
char *in, *out;
struct tlmeval tout;

A macro that calls the remote procedure procnum associated with the client handle, c lnt,
which is obtained with an RPC client creation routine such as c lntudp_create. The parame
ter in is the address of the procedure's argument(s), and out is the address of where to place
the result(s); inproc is used to encode the procedure's parameters, and outproc is used to
decode the procedure's results; tout is the time allowed for results to come back.

clnt_destroy()

clnt_destroy(clnt)
CLIENT *clnt;

A macro that destroys the client's RPC handle. Destruction usually involves deallocation of
private data structures, including clnt itself. Use of clnt is undefined after calling
clnt_destroy (). Warning: client destruction routines do not close sockets associated with
clnt; this is the responsibility of the user.

~ 'b,.;fiJ Sun Microsystems Release 2.0

Page 36

clnt_freeres()

clnt_freeres(clnt, outproc, out)
CLIENT *clnt;
xdrproc_t outproc;
char •out;

RPC Programming

A macro that frees any data allocated by the RPC/XDR system when it decoded the results of
an RPC call. The parameter out is the address of the results, and outproc is the XDR routine
describing the results in simple primitives. This routine returns one if the results were success
fully freed, and zero otherwise.

clnt_geterr()

void
clnt_geterr(clnt, errp)

CLIENT *clnt;
struct rpc_err *errp;

A macro that copies the error structure out of the client handle to the structure at address
errp.

clnt_pcreateerror()

void
clnt_pcreateerror(s)

char *s;

0

Prints a message to standard error indicating why a client RPC handle could not be created. O·-"
The message is prepended with string s and a colon.

clnt_perrno()

void
clnt_perrno(stat)

enum clnt_stat;

Prints a message to standard error corresponding to the condition indicated by stat.

clnt_perror()

clnt_perror(clnt, s)
CLIENT *clnt;
char *s;

Prints a message to standard error indicating why an RPC call failed; clnt is the handle used to
do the call. The message is prepended with string s and a colon.

+ Sun Microsystems Release 2.0

0

0

0

0

RPC Programming

clntraw_create()

CLIENT •
clntraw_create(prognum, versnum)

u_long prognum, versnum;

Page 37

This routine creates a toy RPC client for the remote program prognum, version versnum. The
transport used to pass messages to the service is actually a buffer within the process's address
space, so the corresponding RPC server should live in the same address space; see
svcraw_create (). This allows simulation of RPC and acquisition of RPC overheads, such as
round trip times, without any kernel interference. This routine returns NULL if it fails.

clnttcp_create()

CLIENT •
clnttcp_create(addr, prognum, versnum, sockp, sendsz, recvsz)

struct sockaddr_in *addr;
u_long prognum, versnum;
int •sockp;
u_int sendsz, recvsz;

This routine creates an RPC client for the remote program prognum, version versnum; the
client uses TCP /IP as a transport. The remote program is located at Internet address *addr.
If addr->sin_port is zero, then it is set to the actual port that the remote program is listen
ing on (the remote portmap service is consulted for this information). The parameter *sockp is
a socket; if it is RPC_ANYSOCK, then this routine opens a new one and sets *sockp. Since
TCP-based RPC uses buffered 1/0, the user may specify the size of the send and receive buffers
with the parameters sendsz and recvsz; values of zero choose suitable defaults. This routine
returns NULL if it fails.

clntudp_create()

CLIENT •
clntudp_create(addr, prognum, versnum, wait, sockp)

struct sockaddr_in •addr;
u_long prognum, versnum;
struct timeval wait;
int •sockp;

This routine creates an RPC client for the remote program prognum, version versnum; the
client uses use UDP /IP as a transport. The remote program is located at Internet address
*addr. If addr->sin_port is zero, then it is set to actual port that the remote program is
listening on (the remote portmap service is consulted for this information). The parameter
*sockp is a socket; if it is RPC_ANYSOCK, then this routine opens a new one and sets
*sockp. The UDP transport resends the call message in intervals of wait time until a response
is received or until the call times out. Warning: since UDP-based RPC messages can only hold
up to 8 Kbytes of encoded data, this transport cannot be used for procedures that take large
arguments or return huge results.

• Sun Microsystems Release 2.0

Page 38

get_myaddress()

void
get_myaddress(addr)

struct sockaddr_in *addr;

RPC Programming

Stuffs the machine's IP address into *addr, without consulting the library routines that deal
with /etc/hoata. The port number is always set to htons (PMAPPORT).

pmap_getmaps()

struct pmaplist •
pmap_getmaps(addr)

struct sockaddr_in •addr;

A user interface to the portmap service, which returns a list of the current RPC program-to-port
mappings on the host located at IP address *addr. This routine can return NULL. The com
mand rpcinfo -puses this routine.

pmap_getport()

u_short
pmap_getport(addr, prognum, versnum, protocol)

struct sockaddr_in *addr;
u_long prognum, versnum, protocol;

A user interface to the portmap service, which returns the port number on which waits a service
that supports program number prognum, version versnum, and speaks the transport protocol
associated with protocol. A return value of zero means that the mapping does not exist or that
the RPC system failured to contact the remote portmap service. In the latter case, the global
variable rpc_createerr contains the RPC status.

pmap_rmtcall()

enum clnt_stat
pmap_rmtcall(addr, prognum, versnum, procnum,

inproc, in, outproc, out, tout, portp)
struct sockaddr_in *addr;
u_long prognum, versnum, procnum;
char *in, *out;
xdrproc_t inproc, outproc;
struct tlmeval tout;
u_long *portp;

A user interface to the portmap service, which instructs portmap on the host at IP address
• addr to make an RPC call on your behalf to a procedure on that host. The parameter
*portp will be modified to the program's port number if the procedure succeeds. The
definitions of other parameters are discussed in callrpc () and clnt_call (); see also
clnt_broadcast().

,., l'q4' Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

pmap....set()

pmap_set(prognum, versnum, protocol, port)
u_long prognum. versnum, protocol;
u_short port;

Page 39

A user interface to the portmap service, which establishes a mapping between the triple
[prognum, versnum,protocol] and port on the machine's portmap service. The value of
protocol is most likely IPPROTO_UDP or IPPROTO_TCP. This routine returns one if it
succeeds, zero otherwise.

pmap_unset()

pmap_unset(prognum, versnum)
u_long prognum, versnum;

A user interface to the portmap service, which destroys all mappings between the triple
[prognum, versnum, *] and ports on the machine's portmap service. This routine returns
one if it succeeds, zero otherwise.

registerrpc()

reglsterrpc(prognum, versnum. procnum, procname, inproc, outproc)
u_long prognum, versnum, procnum;
char *(*procname) ();
xdrproc_t lnproc, outproc;

Registers procedure procname with the RPC service package. If a request arrives for program
prognum, version versnum, and procedure procnum, procname is called with a pointer to its
parameter(s); progname should return a pointer to its static result(s); inproc is used to decode
the parameters while outproc is used to encode the results. This routine returns zero if the
registration succeeded, -1 otherwise. Warning: remote procedures registered in this form are
accessed using the UDP /IP transport; see svcudp_create () for restrictions.

rpc_createerr

struct rpc_createerr rpc_createerr;

A global variable whose value is set by any RPC client creation routine that does not succeed.
Use the routine clnt_pcreateerror () to print the reason why.

svc_destroy()

svc_destroy(xprt)
SVCXPRT *xprt;

A macro that destroys the RPC service transport handle, xprt. Destruction usually involves
deallocation of private data structures, including xprt itself. Use of xprt is undefined after cal
ling this routine.

~ ~~ Sun Microsystems Release 2.0

Page 40 RPC Programming

svc_fds

int svc_fds;

A global variable reflecting the RPC service side's read file descriptor bit mask; it is suitable as a
parameter to the select system call. This is only of interest if a service implementor does not
call svc_run () , but rather does his own asynchronous event processing. This variable is read
only (do not pass its address to select!), yet it may change after calls to svc_getreq () or
any creation routines.

svc_freeargs()

svc_freeargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

A macro that frees any data allocated by the RPC/XDR system when it decoded the arguments
to a service procedure using svc_getargs () . This routine returns one if the results were suc
cessfully freed, and zero otherwise.

svc_getargs()

svc_getargs(xprt, inproc, in)
SVCXPRT *xprt;
xdrproc_t inproc;
char *in;

0

A macro that decodes the arguments of an RPC request associated with the RPC service tran- O, _,

sport handle, xprt. The parameter in is the address where the arguments will be placed;
inproc is the XDR routine used to decode the arguments. This routine returns one if decoding
succeeds, and zero otherwise.

svc_getcaller()

struct sockaddr_in
svc_getcaller(xprt)

SVCXPRT *xprt;

The approved way of getting the network address of the caller of a procedure associated with
the RPC service transport handle, xprt.

svc_getreq()

svc_getreq(rdfds)
int rdfds;

This routine is only of interest if a service implementor does not call svc_run (), but instead
implements custom asynchronous event processing. It is called when the select system call has
determined that an RPC request has arrived on some RPC socket(s); rdfds is the resultant read
file descriptor bit mask. The routine returns when all sockets associated with the value of
rdfds have been serviced.

+ Sun Microsystems Release 2.0

0

0

0

0

RPC Programming

svc_register()

svc_register(xprt, prognum, versnum, dispatch, protocol)
SVCXPRT *xprt;
u_long prognum, versnum;
void (*dispatch)();
u_long protocol;

Page 41

Associates prognum and versnum with the service dispatch procedure, dispatch. If
protocol is non-zero, then a mapping of the triple [prognum, versnum, protocol] to
xprt- >xp_port is also established with the local portmap service (generally protoco 1 is
zero, IPPROTO_UDP or IPPROTO_TCP). The procedure dispatch() has the following
form:

dispatch(request, xprt)
struct svc_req •request;
SVCXPRT *xprt;

The svc_register routine returns one if it succeeds, and zero otherwise.

svc_run()

svc_run()

This routine never returns. It waits for RPC requests to arrive and calls the appropriate service
procedure (using svc_getreq) when one arrives. This procedure is usually waiting for a
select system call to return.

svc___sendreply()

svc_sendreply(xprt, outproc, out)
SVCXPRT *xprt;
xdrproc_t outproc;
char *out;

Called by an RPC service's dispatch routine to send the results of a remote procedure call. The
parameter xprt is the caller's associated transport handle; outproc is the XDR routine which
is used to encode the results; and out is the address of the results. This routine returns one if it
succeeds, zero otherwise.

svc_unregister()

void
svc_unregister(prognum, versnum)

u_long prognum, versnum;

Removes all mapping of the double [prognum, versnum] to dispatch routines, and of the triple
[prognum, versnum, *] to port number.

~ ~~ Sun Microsystems Release 2.0

Page 42

svcerr_auth()

void
svcerr_auth(xprt, why)

SVCXPRT *xprt;
enum auth....stat why;

RPC Programming

Called by a service dispatch routine that refuses to perform a remote procedure call due to an
authentication error.

svcerr _decode()

void
svcerr_decode(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that can't successfully decode its parameters. See also
svc_getargs () .

svcerr _noproc()

void
svcerr_noproc(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine that doesn't implement the desired procedure number the
caller request.

svcerr _noprog()

void
svcerr_noprog(xprt)

SVCXPRT *xprt;

Called when the desired program is not registered with the RPC package. Service implementors
usually don't need this routine.

svcerr _progvers()

void
svcerr_progvers(xprt)

SVCXPRT *xprt;

Called when the desired version of a program is not registered with the RPC package. Service
implementors usually don't need this routine.

svcerr Jystemerr()

void
svcerr_systemerr(xprt)

SVCXPRT *xprt;

Called by a service dispatch routine when it detects a system error not covered by any particular
protocol. For example, if a service can no longer allocate storage, it may call this routine.

+ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

svcerr_weakauth()

void
svcerr_weakauth(xprt)

SVCXPRT •xprt;

Page 43

Called by a service dispatch routine that refuses to perform a remote procedure call due to
insufficient (but correct) authentication parameters. The routine calls
svcerr_auth(xprt,AUTH_TOOWEAK).

svcraw_create()

SVCXPRT •
svcraw_create ()

This routine creates a toy RPC service transport, to which it returns a pointer. The transport is
really a buffer within the process's address space, so the corresponding RPC client should live in
the same address space; see clntraw_create (). This routine allows simulation of RPC and
acquisition of RPC overheads (such as round trip times), without any kernel interference. This
routine returns NULL if it fails.

svctcp_create()

SVCXPRT •
svctcp_create(sock, send_buf_size, recv_buf_size)

int sock;
u_int send_buf_size, recv_buf_size;

This routine creates a TCP /IP-based RPC service transport, to which it returns a pointer. The
transport is associated with the socket sock, which may be RPC_ANYSOCK, in which case a
new socket is created. If the socket is not bound to a local TCP port, then this routine binds it
to an arbitrary port. Upon completion, xprt->xp_sockis the transport's socket number, and
xprt->xp_port is the transport's port number. This routine returns NULL if it fails. Since
TCP-based RPC uses buffered 1/0, users may specify the size of the send and receive buffers;
values of zero choose suitable defaults.

svcudp_create()

SVCXPRT •
svcudp_create(sock)

int sock;

This routine creates a UDP /IP-based RPC service transport, to which it returns a pointer. The
transport is associated with the socket sock, which may be RPC_ANYSOCK, in which case a
new socket is created. If the socket is not bound to a local UDP port, then this routine binds it
to an arbitrary port. Upon completion, xprt->xp_sock is the transport's socket number, and
xprt->xp_port is the transport's port number. This routine returns NULL if it fails. Warn
ing: since UDP-based RPC messages can only hold up to 8 Kbytes of encoded data, this tran
sport cannot be used for procedures that take large arguments or return huge results.

• Sun Microsystems Release 2.0

Page 44 RPC Programming

xdr_accepted_reply()

xdr_accepted_reply(xdrs, ar) ~
XDR *xdrs;
struct accepted_reply *ar;

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package.

xdr_array()

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR *xdrs;
char **arrp;
u_int *sizep, maxsize, elsize;
xdrproc_t elproc;

A filter primitive that translates between arrays and their corresponding external representa
tions. The parameter arrp is the address of the pointer to the array, while sizep is the
address of the element count of the array; this element count cannot exceed maxsize. The
parameter elsize is the sizeof () each of the array's elements, and elproc is an XDR filter
that translates between the array elements' C form, and their external representation. This rou
tine returns one if it succeeds, zero otherwise.

xdr _authunix_parms()

xdr_authunix_parm.s(xdrs, aupp)
XDR *xdrs;
struct authunix_parms *aupp;

Used for describing UNIX credentials, externally. This routine is useful
generate these credentials without using the RPC authentication package.

xdr_bool()

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

for users who wish to

A filter primitive that translates between booleans (C integers) and their external representa
tions. When encoding data, this filter produces values of either one or zero. This routine
returns one if it succeeds, zero otherwise.

xdr_bytes()

xdr_bytes(xdrs, sp, sizep, maxsize)
XOR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external representations.
The parameter sp is the address of the string pointer. The length of the string is located at
address sizep; strings cannot be longer than maxsize. This routine returns one if it succeeds,
zero otherwise.

"' ~~ Sun Microsystems Release 2.0

0

0

0

0

0

RPC Programming

xdr _callhdr()

void
xdr_callhdr(xdrs, chdr)

XDR •xdrs;
struct rpc__msg 'chdr;

Page 45

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package.

xdr _callmsg()

xdr_callmsg(xdrs, cmsg)
XDR *xdrs;
struct rpc_msg •cmsg;

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package.

xdr _double()

xdr_double(xdrs, dp)
XDR •xdrs;
double *dp;

A filter primitive that translates between C double prec1s1on numbers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_enum()

xdr_enum(xdrs, ep)
XDR •xdrs;
enUDLt *ep;

A filter primitive that translates between C enums (actually integers) and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_float()

xdr_float(xdrs, fp)
XDR *xdrs;
float • fp;

A filter primitive that translates between C floats and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr _inline()

long•
xdr_inline(xdrs, len)

XDR •xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine
returns a pointer to a contiguous piece of the stream's buffer; len is the byte length of the
desired buffer. Note that pointer is cast to long •. Warning: xdr _in line() may return 0

~
\~ Sun Microsystems Release 2.0

Page 46 RPC Programming

(NULL) if it cannot allocate a contiguous piece of a buffer. Therefore the behavior may vary
among stream instances; it exists for the sake of efficiency.

xdr_int()

xdr_int(xdrs, ip)
XOR *xdrs;
int *ip;

A filter primitive that translates between C integers and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr_long()

xdr_long(xdrs, lp)
XDR *xdrs;
long *lp;

A filter primitive that translates between C long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr _opaque()

xdr_opaque(xdrs, cp, cnt)
XOR *xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its external representation.
The parameter cp is the address of the opaque object, and cnt is its size in bytes. This routine
returns one if it succeeds, zero otherwise.

xdr _opaque_auth()

xdr_opaque_auth(xdrs, ap)
XDR *xdrs;
struct opaque_auth •ap;

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package.

xdr_pmap()

xdr_pmap(xdrs, regs)
XOR *xdrs;
struct pmap *regs;

Used for describing parameters to various portmap procedures, externally. This routine is useful
for users who wish to generate these parameters without using the pmap interface.

If, _f, Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

xdr _pmaplist()

xdr_pmaplist(xdrs, rp)
XOR •xdrs;
struct pmaplist ••rp;

Page 47

Used for describing a list of port mappings, externally. This routine is useful for users who wish
to generate these parameters without using the pmap interface.

xdr _reference()

xdr_reference(xdrs, pp, size, proc)
XDR •xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address of
the pointer; size is the sizeo f () the structure that *pp points to; and proc is an XDR pro
cedure that filters the structure between its C form and its external representation. This routine
returns one if it succeeds, zero otherwise.

xdr _rejected_reply()

xdr_rejected_reply(xdrs, rr)
XDR *xdrs;
struct rejected_reply •rr;

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC-style messages without using the RPC package.

xdr _replymsg()

xdr_replymsg(xdrs, rmsg)
XDR •xdrs;
struct rpc_msg *rmsg;

Used for describing RPC messages, externally. This routine is useful for users who wish to gen
erate RPC style messages without using the RPC package.

xdr_short()

xdr_short(xdrs, sp)
XDR *xdrs;
short •sp;

A filter primitive that translates between C short integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

+ Sun Microsystems Release 2.0

Page 48

xdrstring()

xdr_string(xdrs, sp, maxsize)
XDR *xdrs;
char ••sp;
u_int maxsize;

RPC Programming

A filter primitive that translates between C strings and their corresponding external representa
tions. Strings cannot cannot be longer than maxsize. Note that sp is the address of the
string's pointer. This routine returns one if it succeeds, zero otherwise.

xdr_u_int()

xdr_u_int{xdrs, up)
XDR *xdrs;
unsigned •up;

A filter primitive that translates between C unsigned integers and their external representa
tions. This routine returns one if it succeeds, zero otherwise.

xdr _u_long()

xdr_u_long(xdrs, ulp)
XDR •xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_u_short()

xdr_u_short(xdrs, usp)
XDR •xdrs;
unsigned short *usp;

A filter primitive that translates between C unsigned short integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_union()

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR *xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

A filter primitive that translates between a discriminated C union and its corresponding exter
nal representation. The parameter dscmp is the address of the union's discriminant, while unp
in the address of the union. This routine returns one if it succeeds, zero otherwise.

II> '4.~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Programming

xdr_void()

xdr_void{)

This routine always returns one.

xdr_wrapstring()

xdr_wrapstring(xdrs, sp)
XOR •xdrs;
char **sp;

Page 49

A primitive that calls xdr _string (xdrs, sp, MAXUNSIGNED) ; where MAXUNSIGNED is the
maximum value of an unsigned integer. This is handy because the RPC package passes only two
parameters XDR routines, whereas xdr _string(), one of the most frequently used primitives,
requires three parameters. This routine returns one if it succeeds, zero otherwise.

xprt_register()

void
xprt_register(xprt)

SVCXPRT •xprt;

After RPC service transport handles are created, they should register themselves with the RPC
service package. This routine modifies the global variable svc_fds. Service implementors usu
ally don't need this routine.

xprt_unregister()

void
xprt_unreglster(xprt)

SVCXPRT •xprt;

Before an RPC service transport handle is destroyed, it should unregister itself with the RPC
service package. This routine modifies the global variable svc_fds. Service implementors usu
ally don't need this routine.

~, Sun Microsystems Release 2.0

0

0

0

0

0

0

External Data Representation

Protocol Specification

0

C

0

0

0

0

Contents

1. Introduction

2. Justification

1

1

3. XDR Library Primitives....... 8
3.1. Number Filters 6
3.2. Floating Point Filters ... 6
3.3. Enumeration Filters...... 7
3.4. No Data 7
3.5. Constructed Data Type Filters .. 7

3.5.1. Strings... 8
3.5.2. Byte Arrays 8
3.5.3. Arrays
3.5.4. Opaque Data
3.5.5. Fixed Sized Arrays
3.5.6. Discriminated Unions ...
3.5.7. Pointers

3.5.7.1. Pointer Semantics and XDR
3.6. Non-filter Primitives

9
11
11
12
13
14
15

3.7. XDR Operation Directions...... 15

4. XDR Stream Access 18
4.1. Standard 1/0 Streams 16
4.2. Memory Streams 16
4.3. Record (TCP /JP) Streams 17

5. XDR Stream Implementation . 18
5.1. The XDR Object 18

6. XDR Standard .. 20
6.1. Basic Block Size .. 20
6.2. Integer 20
6.3. Unsigned Integer 20
6.4. Enumerations 20
6.5. Booleans .. 21
6.6. Hyper Integer and Hyper Unsigned 21
6.7. Floating Point and Double Precision... 21

-1-

6.8. Opaque Data
6.9. Counted Byte Strings
6.10. Fixed Arrays
6.11. Counted Arrays
6.12. Structures
6.13. Discriminated Unions
6.14. Missing Specifications .. .
6.15. Library Primitive / XOR Standard Cross Reference

7. Advanced Topics .. .
7.1. Linked Lists

A. The Record Marking Standard .. .

B. Synopsis of XOR Routines

- 11 -

22
22 0 22
23
23
23
23
24

25
25

29

30

0

0

0

0

0

External Data Representation

Protocol Specification

1. Introduction

This manual describes library routines that allow a C programmer to describe arbitrary data
structures in a machine-independent fashion. The eXternal Data Representation (XDR) standard
is the backbone of Sun's Remote Procedure Call package, in the sense that data for remote pro
cedure calls is transmitted using the standard. XDR library routines should be used to transmit
data that is accessed (read or written) by more than one type of machine.

This manual contains a description of XDR library routines, a guide to accessing currently avail
able XDR streams, information on defining new streams and data types, and a formal definition
of the XDR standard. XDR was designed to work across different languages, operating systems,
and machine architectures. Most users (particularly RPC users) only need the information in
sections 2 and 3 of this document. Programmers wishing to implement RPC and XDR on new
machines will need the information in sections 4 through 6. Advanced topics, not necessary for
all implementations, are covered in section 7.

On Sun systems, C programs that want to use XDR routines must include the file
<rpc/rpc. h>, which contains all the necessary interfaces to the XDR system. Since the C
library libc. a contains all the XDR routines, compile as normal.

cc program.c

2. Justification

Consider the following two programs, writer:

#include <stdio.h>

main() /• writer.c •/
{

long i;

for (i = O; i < 8; i++) {
if (fwrite((char •)&i, sizeof(i), l, stdout) I= 1) {

fprintf(stderr, "failedl\n");
exit(l);

}
}

}

and reader:

~
'-~ Sun Microsystems Release 2.0

Page 2

#include <stdio.h>

main()
{

long i, j;

/* reader.c */

for (j = O; j < 8; j++) {

XDR Protocoi Spec

if (fread((char *)&i, sizeof (i), 1, stdin) != 1) {
fprintf(stderr, "failed!\n");

}

exit(l);
}
printf("%ld ", i);

}
print£ ("\n");

The two programs appear to be portable, because (a) they pass lint checking, and (b) they
exhibit the same behavior when executed on two different hardware architectures, a Sun and a
VAX.

Piping the output of the writer program to the reader program gives identical results on a
Sun or a VAX.+

sun% writer I reader
01234567
sun%

vax% writer I reader
01234567
vax%

With the advent of local area networks and Berkeley's 4.2 BSD UNIXf came the concept of "net
work pipes" - a process produces data on one machine, and a second process consumes data on
another machine. A network pipe can be constructed with writer and reader. Here are the
results if the first produces data on a Sun, and the second consumes data on a VAX.

sun% writer I rsh vax reader
0 16777216 33554432 50331648 67108864 83886080 100663296 117440512

sun%

Identical results can be obtained by executing writer on the VAX and reader on the Sun.
These results occur because the byte ordering of long integers differs between the VAX and the
Sun, even though word size is the same. Note that 16777216 is 224

- when four bytes are
reversed, the I winds up in the 24th bit.

Whenever data is shared by two or more machine types, there is a need for portable data. Pro
grams can be made data-portable by replacing the read{) and wd. te () calls with calls to an
XDR library routine xdr _long{), a filter that knows the standard representation of a long
integer in its external form. Here are the revised versions of writer:

+ VAX is a. trademark of Digital Equipment Corporation.
j UNIX is a trademark or Bell Laboratories.

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

XDR Protocol Spec Page 3

#include <stdio.h>
#include <rpc/rpc.h> /* xdr is a sub-library of the rpc library*/

main()
{

}

and reader:

/* wrlter.c */

XDR xdrs:
long l;

xdrstdlo_create(&xdrs, stdout, XDR_ENCODE);
for (1 = O; 1 < 8; l++) {

}

if (I xdr_long(&xdrs, &l}} {
fprlntf(stderr, "falledl\n"):
exit (1) :

}

#include <stdlo.h>
#include <rpc/rpc.h> /* xdr is a sub-library of the rpc library*/

main()
{

}

/* reader.c */

XDR xdrs:
long i, j;

xdrstdlo_create(&xdrs, stdin, XDR_DECODE);
for (j = O: j < 8: j + +) {

if (I xdr_long(&xdrs, &l}} {
fprlntf(stderr, "failedl\n"):
exlt(l);

}
printf("%ld ", i);

}
printf("\n"):

The new programs were executed on a Sun, on a VAX, and from a Sun to a VAX; the results are
shown below.

sun% writer J reader
0 1 2 3 4 5 6 7
sun%

vax% writer I reader
0 1 2 3 4 5 6 7
vax%

sun% writer I rsh vax reader
01234567
sun%

Dealing with integers is just the tip of the portable-data iceberg. Arbitrary data structures
present portability problems, particularly with respect to alignment and pointers. Alignment on
word boundaries may cause the size of a structure to vary from machine to machine. Pointers
are convenient to use, but have no meaning outside the machine where they are defined.

~ ~~ Sun Microsystems Release 2.0

Page 4 XDR Protocol Spec

The XDR library package solves data portability problems. It allows you to write and read arbi-
trary O constructs in a consistent, specified, well-documented manner. Thus, it makes sense to 0,
use the library even when the data is not shared among machines on a network.

The XDR library has filter routines for strings (null-terminated arrays of bytes), structures,
unions, and arrays, to name a few. Using more primitive routines, you can write your own
specific XDR routines to describe arbitrary data structures, including elements of arrays, arms of
unions, or objects pointed at from other structures. The structures themselves may contain
arrays of arbitrary elements, or pointers to other structures.

Let's examine the two programs more closely. There is a family of XDR stream creation rou
tines in which each member treats the stream of bits differently. In our example, data is mani
pulated using standard I/0 routines, so we use xdrstdio_create () . The parameters to XOR
stream creation routines vary according to their function. In our example,
xdrstdio_create () takes a pointer to an XDR structure that it initializes, a pointer to a
FILE that the input or output is performed on, and the operation. The operation may be
XDR_ENOODE for serializing in the writer program, or XDRJ)EOODE for deserializing in
the reader program.

Note: RPO clients never need to create XDR streams; the RPO system itself creates these
streams, which are then passed to the clients.

The xdr _long() primitive is characteristic of most XDR library primitives and all client XOR
routines. First, the routine returns FALSE (0) if it fails, and TRUE (I) if it succeeds. Second,
for each data type, xxx, there is an associated XDR routine of the form:

xdr_xxx(xdrs, fp)

{
}

XDR *xdrs;
XXX *fp;

In our case, xxx is long, and the corresponding XDR routine is a primitive, xdr _long. The
client could also define an arbitrary structure xxx in which case the client would also supply the
routine xdr _xxx, describing each field by calling XDR routines of the appropriate type. In all
cases the first parameter, xdrs can be treated as an opaque handle, and passed to the primitive
routines.

XDR routines are direction independent; that is, the same routines are called to serialize or
deserialize data. This feature is critical to software engineering of portable data. The idea is to
call the same routine for either operation - this almost guarantees that serialized data can also
be deserialized. One routine is used by both producer and consumer of networked data. This is
implemented by always passing the address of an object rather than the object itself - only in
the case of deserialization is the object modified. This feature is not shown in our trivial exam
ple, but its value becomes obvious when nontrivial data structures are passed among machines.
If needed, you can obtain the direction of the XDR operation. See section 3.7 for details.

Let's look at a slightly more complicated example. Assume that a person's gross assets and lia
bilities are to be exchanged among processes. Also assume that these values are important
enough to warrant their own data type:

struct gnumbers {
long g_assets;
long g_liabilities;

};

The corresponding XDR routine describing this structure would be:

ll,. ..
~~ Sun Microsystems Release 2.0

0

0

0

0

0

XDR Protocol Spec

bool_t /* TRUE is success, FALSE is failure*/
xdr_gnumbers(xdrs, gp)

{

}

XDR *xdrs;
struct gnumbers •gp;

if (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities))

return(TRUE);
return(FALSE);

Page 5

Note that the parameter xdrs is never inspected or modified; it is only passed on to the subcom
ponent routines. It is imperative to inspect the return value of each XDR routine call, and to
give up immediately and return FALSE if the subroutine fails.

This example also shows that the type bool_t is declared as an integer whose only values are
TRUE (1) and FALSE (0). This document uses the following definitions:

#define bool_t int
#define TRUE 1
#define FALSE 0

#define enWJLt int /• enwn_t's are used for generic enum's */

Keeping these conventions in mind, xdr _gnumbers () can be rewritten as follows:

xdr_gnumbers(xdrs, gp)

{

}

XDR *xdrs;
struct gnumbers *gp;

return (xdr_long(xdrs, &gp->g_assets) &&
xdr_long(xdrs, &gp->g_liabilities));

This document uses both coding styles.

~, Sun Microsystems Release 2.0

Page 6 XDR Protocol Spec

3. XDR Library Primitives

This section gives a synopsis of each XOR primitive. It starts with basic data types and moves
on to constructed data types. Finally, XOR utilities are discussed. The interface to these primi
tives and utilities is defined in the include file <rpc/xdr .h>, automatically included by
<rpc/rpc. h>.

3.1. Number Filters

The XDR library provides primitives that translate between C numbers and their corresponding
external representations. The primitives cover the set of numbers in:

[signed ,unsignedJ *[short ,int ,long J

Specifically, the six primitives are:

bool_t xdr_int(xdrs, ip)
XOR *xdrs;
int •1p;

bool_t xdr_u_int(xdrs, up)
XOR *xdrs;
unsigned •up;

bool_t xdr_long(xdrs, lip)
XDR *xdrs;
long *lip;

bool_t xdr_u_long(xdrs, lup)
XDR *xdrs;
u_long *lup;

bool_t xdr_short(xdrs, sip)
XDR *xdrs;
short *sip;

bool_t xdr_u_short(xdrs, sup)
XOR •xdrs;
u_short *sup;

The first parameter, xdrs, is an XDR stream handle. The second parameter is the address of
the number that provides data to the stream or receives data from it. All routines return TRUE
if they complete successfully, and FALSE otherwise.

3.2. Floating Point Filters

The XDR library also provides primitive routines for C's floating point types:

bool_t xdr_float(xdrs, fp)
XOR •xdrs;
float *fp;

~ '\~ Sun Microsystems Release 2.0

0

I
ol

0

0

0

0

XDR Protocol Spec

bool_t xdr_double(xdrs, dp)
XDR •xdrs;
double *dp;

Page 7

The first parameter, xdrs is an XDR stream handle. The second parameter is the address of
the floating point number that provides data to the stream or receives data from it. All routines
return TRUE if they complete successfully, and FALSE otherwise.

Note: Since the numbers are represented in IEEE floating point, routines may fail when decoding
a valid IEEE representation into a machine-specific representation, or vice-versa.

3.3. Enumeration Filters

The XDR library provides a primitive for generic enumer:}tions. The primitive assumes that a C
enum has the same representation inside the machine as a C integer. The boolean type is an
important instance of the enum. The external representation of a boolean is always one (TRUE)
or zero (FALSE).

#define bool_t int
#define FALSE 0
#define TRUE 1

#define enum.....t int

bool_t xdr_enum(xdrs, ep)
XDR *xdrs;
enum._t •ep;

bool_t xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

The second parameters ep and bp are addresses of the associated type that provides data to, or
receives data from, the stream xdrs. The routines return TRUE if they complete successfully,
and FALSE otherwise.

3.4. No Data

Occasionally, an XDR routine must be supplied to the RPC system, even when no data is passed
or required. The library provides such a routine:

bool_t xdr_void(); ;• always returns TRUE•;

3.5. Constructed Data Type Filters

Constructed or compound data type primitives require more parameters and perform more com
plicated functions then the primitives discussed above. This section includes primitives for
strings, arrays, unions, and pointers to structures. Constructed data type primitives may use
memory management. In many cases, memory is allocated when deserializing data with
XDRJ)ECODE. Therefore, the XDR package must provide means to deallocate memory. This
is done by an XDR operation, XDRJ'REE. To review, the three XDR directional operations are
XDR_ENCODE, XDRJ)ECODE, and XDRJ'REE.

+ Sun Microsystems Release 2.0

Page 8 XDR Protocol Spec

3. 5.1. Strings

In C, a string is defined as a sequence of bytes terminated by a null byte, which is not considered 0
when calculating string length. However, when a string is passed or manipulated, a pointer to it
is employed. Therefore, the XDR library defines a string to be a char •, and not a sequence of
characters. The external representation of a string is drastically different from its internal
representation. Externally, strings are represented as sequences of ASCII characters, while inter-
nally, they are represented with character pointers. Conversion between the two representations
is accomplished with the routine xdr _string() :

bool_t xdr_string(xdrs, sp, maxlength)
XOR •xdrs;
char ••sp;
u_int maxlength;

The first parameter xdrs is the XDR stream handle. The second parameter sp is a pointer to a
string (type char **). The third parameter maxlength specifies the maximum number of
bytes allowed during encoding or decoding; its value is usually specified by a protocol. For
example, a protocol specification may say that a file name may be no longer than 255 characters.
The routine returns FALSE if the number of characters exceeds max length, and TRUE if it
doesn't.

The behavior of xdr _string() is similar to the behavior of other routines discussed in this
section. The direction XDR__ENCODE is easiest to understand. The parameter sp points to a
string of a certain length; if it does not exceed maxlength, the bytes are serialized.

The effect of deserializing a string is subtle. First the length of the incoming string is deter
mined,· it must not exceed maxlength. Next sp is dereferenced·, if the the value is NULL, then
a string of the appropriate length is allocated and •sp is set to this string. If the original value 0
of •sp is non-NULL, then the XDR package assumes that a target area has been allocated,
which can hold strings no longer than maxlength. In either case, the string is decoded into the
target area. The routine then appends a null character to the string.

In the XDR_FREE operation, the string is obtained by dereferencing sp. If the string is not
NULL, it is freed and •sp is set to NULL. In this operation, xdr _string ignores the
maxlength parameter.

3.5.2. Byte Arrays

Often variable-length arrays of bytes are preferable to strings. Byte arrays differ from strings in
the following three ways: I) the length of the array (the byte count) is explicitly located in an
unsigned integer, 2) the byte sequence is not terminated by a null character, and 3) the external
representation of the bytes is the same as their internal representation. The primitive
xdr _bytes() converts between the internal and external representations of byte arrays:

bool_t xdr_bytes(xdrs, bpp, lp, maxlength)
XOR •xdrs;
char ••bpp;
u_int *lp;
u_int maxlength;

The usage of the first, second and fourth parameters are identical to the first, second and third
parameters of xdr _string() , respectively. The length of the byte area is obtained by dere
ferencing lp when serializing; * lp is set to the byte length when deserializing.

,,. ..
\~ Sun Microsystems Release 2.0

o!

0

0

0

XDR Protocol Spec Page 9

3.5.3. Arrays

The XDR library package provides a primitive for handling arrays or arbitrary elements. The
xdr _bytes() routine treats a subset or generic arrays, in which the size or array elements is
known to be 1, and the external description or each element is built-in. The generic array primi
tive, xdr _array() requires parameters identical to those or xdr _bytes() plus two more: the
size of array elements, and an XDR routine to handle each or the elements. This routine 1s
called to encode or decode each element or the array.

bool_t xdr_array(xdrs, ap, lp, maxlength, elementsize, xdr_element)
XDR •xdrs;
char ••ap;
u_int *lp;
u_int maxlength;
u_int elementsize;
bool_t (*xdr_element) ();

The parameter ap is the address or the pointer to the array. If *ap is NULL when the array is
being deserialized, XDR allocates an array or the appropriate size and sets *ap to that array.
The element count of the array is obtained from * lp when the array is serialized; * lp is set to
the array length when the array is deserialized. The parameter maxlength is the maximum
number of elements that the array is allowed to have; elementsize is the byte size of each ele
ment of the array (the C function sizeof() can be used to obtain this value). The routine
xdr _element is called to serialize, deserialize, or free each element of the array.

Example,

Before defining more constructed data types, it is appropriate to present three examples.

Example A

A user on a networked machine can be identified by (a) the machine name, such as krypton:
see getho.tname(3); (b) the user's UID: see geteuid(2); and (c) the group numbers to which the
user belongs: see getgroupa(2). A structure with this information and its associated XDR routine
could be coded like this:

struct netuser {

};

char
int
u_int
int

*nu_machinename;
nu_uid;
nu_glen;
•nu_gids;

#define NLEN 255 ;• machine names must be shorter than 256 chars•/
#define NGRPS 20 ;• user can't be a member of more than 20 groups•;

bool_t
xdr_netuser(xdrs, nup)

{

}

XDR •xdrs;
struct netuser •nup;

return (xdr_string(xdrs, &nup->nu_machinename, NLEN) &&
xdr_int(xdrs, &nup->nu_uid) &&
xdr_array(xdrs, &nup->nu_gids, &nup->nu_glen, NGRPS,

sizeof (int), xdr_int));

~ \~ Sun Microsystems Release 2.0

Page 10 XDR Protocol Spec

Ezample B

A party or network users could be implemented as an array or netuser structure. The declara
tion and its associated XDR routines are as follows:

struct party {
u_int p_len;
struct netuser *p_nusers;

};
#define PLEN 500 /• max number of users in a party•/

bool_t
xdr_party(xdrs, pp)

{

}

XDR •xdrs;
struct party •pp;

return (xdr_array(xdrs, &pp->p_nusers, &pp->p_len, PLEN,
sizeof (struct netuser), xdr_netuser));

Ezample C

The well-known parameters to main(), argc and argv can be combined into a structure. An
array of these structures can make up a history of commands. The declarations and XDR rou
tines might look like:

struct cmd {
u_int c_argc;
char ••c_argv;

};
#define ALEN 1000 /• args can be no longer than 1000 chars•/
#define NARGC 100 /• commands may have no more t-han 100 args •/

struct history {
u_int h_len;
struct cmd *h_cmds;

};
#define NCMDS 75 /• history is no more than 75 commands•/

bool_t
xdr_wrap_strlng(xdrs, sp)

XDR •xdrs;
char **sp;

{
return (xdr_string(xdrs, sp, ALEN));

}

bool_t
xdr_cmd(xdrs, cp)

{

}

XOR •xdrs;
struct cmd *cp;

return (xdr_array(xdrs, &cp->c_argv, &cp->c_argc, NARGC,
slzeof (char•), xdr_wrap_string));

~
"..,~ Sun Microsystems Release 2.0

0

0

I
i

o'

0

0

0

XOR Protocol Spec

bool_t
xdr_history(xdrs, hp)

XDR *xdrs;
struct history *hp;

{

}

return (xdr_array(xdrs, &hp->h_cmds, &hp->h_len, NCMDS,
sizeof (struct cmd), xdr_cmd));

Page 11

The most confusing part of this example is that the routine xdr _wrap_string () is needed to
package the xdr _string() routine, because the implementation of xdr _array() only passes
two parameters to the array element description routine; xdr _wrap_string () supplies the
third parameter to xdr _string().

By now the recursive nature of the XOR library should be obvious. Let's continue with more
constructed data types.

3.5.,t. Opaque Data

In some protocols, handles are passed from a server to client. The client passes the handle back
to the server at some later time. Handles are never inspected by clients; they are obtained and
submitted. That is to say, handles are opaque. The primitive xdr _opaque () is used for
describing fixed sized, opaque bytes.

bool_t xdr_opaque(xdrs, p, len)
XDR *xdrs;
char *p;
u_int len;

The parameter p is the location of the bytes; len is the number of bytes in the opaque object.
By definition, the actual data contained in the opaque object are not machine portable.

3.5.5. Fixed Sized Arrays

The XOR library does not provide a prtm1tlve for fixed-length arrays (the prtm1tlve
xdr _array() is for varying-length arrays). Example A could be rewritten to use fixed-sized
arrays in the following fashion:

#define NLEN 255 /* machine names must be shorter than 256 chars*/
#define NGRPS 20 /* user cannot be a member of more than 20 groups*/

struct netuser {
char *nu_machinename;
int nu_uid;
int nu_gids[NGRPS];

};

~
"~ Sun Microsystems Release 2.0

Page 12 XDR Protocol Spec

bool_t
xdr_netuser(xdrs, nup)

XDR •xdrs;

{
struct netuser •nup;

inti;

if (! xdr_string(xdrs, &nup->nu__machinename, NLEN))
return (FALSE);

if (! xdr_int(xdrs, &nup->nu_uid))
return (FALSE);

for (i = O; i < NGRPS; i++) {

}

if (! xdr_int(xdrs, &nup->nu_gids[i]))
return (FALSE);

return (TRUE);
}

Exercise: Rewrite example A so that it uses varying-length arrays and so that the netuser
structure contains the actual nu_gids array body as in the example above.

3.5.6. Discriminated Unions

The XOR library supports discriminated unions. A discriminated union 1s a C umon and an
enum_t value that selects an "arm" of the union.

struct xdr_discrim {
enum.__t value;
bool_t (*proc) ();

};

bool_t xdr_union(xdrs, dscmp, unp, arms, defaultarm)
XDR •xdrs;
enum.__t *dscmp;
char *unp;
struct xdr_discrim *arms;
bool_t (*defaultarm) (); /• may equal NULL•/

First the routine translates the discriminant of the union located at *dscmp. The discriminant
is always an enum_t. Next the union located at *unp is translated. The parameter arms is a
pointer to an array of xdr _discrim structures. Each structure contains an order pair of
[value,proc]. If the union's discriminant is equal to the associated value, then the proc is
called to translate the union. The end of the xdr _discr im structure array is denoted by a
routine of value NULL (0). If the discriminant is not found in the arms array, then the
defaul tarm procedure is called if it is non-NULL; otherwise the routine returns FALSE.

Ezample D

Suppose the type of a union may be integer, character pointer (a string), or a gnumbers struc
ture. Also, assume the union and its current type are declared in a structure. The declaration
1s:

ff,
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XDR Protocol Spec

enum utype { INTEGER=l, STRIN~2, GNUMBERS=3 };

struct u_tag {

Page 13

enum utype utype;
union {

/* this is the union's discriminant*/

};

int ival;
char *pval;
struct gnumbers gn;

} uval;

The following constructs and XDR procedure (de)serialize the discriminated union:

struct xdr_discrim u_tag_arms[4] = {
{ INTEGER, xdr_int },

}

{ GNUMBERS, xdr_gnumbers}
{ STRING, xdr_wrap_string },
{ ~dontcare~, NULL}
/* always terminate arms with a NULL xdr_proc */

bool_t
xdr_u_tag(xdrs, utp)

XDR *xdrs;
struct u_tag *utp;

{
return (xdr_union(xdrs, &utp->utype, &utp->uval, u_tag_arms,

NULL)) ;
}

The routine xdr _gnumbers () was presented in Section 2; xdr _wrap_string () was
presented in example C. The default arm parameter to xdr _union() (the last parameter) is
NULL iu this example. Therefore the value of the union's discriminant legally may take on only
values listed in the u_tag_arms array. This example also demonstrates that the elements of
the arm's array do not need to be sorted.

It is worth pointing out that the values of the discriminant may be sparse, though in this exam
ple they are not. It is always good practice to assign explicitly integer values to each element of
the discriminant's type. This practice both documents the external representation of the
discriminant and guarantees that different C compilers emit identical discriminant values.

Exercise: Implement xdr _union() using the other primitives in this section.

3.5. 7. Pointers

In C it is often convenient to put pointers to another structure within a structure. The primitive
xdr _reference() makes it easy to serialize, deserialize, and free these referenced structures.

bool_t xdr_reference(xdrs, pp, size, proc)
XDR *xdrs;
char ••pp;
u_int ssize;
bool_t (*proc) ();

~
~~ Sun Microsystems Release 2.0

Page 14 XDR Protocol Spec

Parameter pp is the address of the pointer to the structure; parameter ssize is the size in
bytes of the structure (use the C function sizeo f () to obtain this value); and proc is the XDR
routine that describes the structure. When decoding data, storage is allocated if *pp is NULL.

There is no need for a primitive xdr _struct () to describe structures within structures,
because pointers are always sufficient.

Exercise: Implement xdr _reference() using xdr _array(). Warning: xdr _reference()
and xdr _array() are NOT interchangeable external representations of data.

Example E

Suppose there is a structure containing a person's name and a pointer to a gnumbers structure
containing the person's gross assets and liabilities. The construct is:

struct pgn {
char *name;
struct gnumbers *gnp;

};

The corresponding XDR routine for this structure is:

bool_t
xdr_pgn(xdrs, pp)

XDR *xdrs;
struct pgn *pp;

{
if (xdr_string(xdrs, &pp->name, NLEN) &&

xdr_reference(xdrs, &pp->gnp, sizeof(struct gnumbers),
xdr _gnumbers))

return(TRUE);
return(FALSE);

}

9.5. 7.1. Pointer Semantic, and XDR

In many applications, C programmers attach double meaning to the values of a pointer. Typi
cally the value NULL (or zero) means data is not needed, yet some application-specific interpre
tation applies. In essence, the C programmer is encoding a discriminated union efficiently by
overloading the interpretation of the value of a pointer. For instance, in example E a NULL
pointer value for gnp could indicate that the person's assets and liabilities are unknown. That
is, the pointer value encodes two things: whether or not the data is known; and if it is known,
where it is located in memory. Linked lists are an extreme example of the use of application
specific pointer interpretation.

The primitive xdr _reference () cannot and does not attach any special meaning to a NULL
value pointer during serialization. That is, passing an address of a pointer whose value is NULL
to xdr _reference() when serialing data will most likely cause a memory fault and, on UNIX,
a core dump for debugging.

It is the explicit responsibility of the programmer to expand non-dereferenceable pointers into
their specific semantics. This usually involves describing data with a two-armed discriminated
union. One arm is used when the pointer is valid; the other is used when the pointer is invalid
(NULL). Section 7 has an example (linked lists encoding) that deals with invalid pointer
interpretation.

~ 'b.,_~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XDR Protocol Spec Page 15

Exercise: After reading Section 7, return here and extend example E so that it can correctly deal
with null pointer values.

Exercise: Using the xdr _union(), xdr _reference() and xdr _void() primitives, imple
ment a generic pointer handling primitive that implicitly deals with NULL pointers. The XDR
library does not provide such a primitive because it does not want to give the illusion that
pointers have meaning in the external world.

3.6. Non-filter Primitives

XDR streams can be manipulated with the primitives discussed in this section.

u_int xdr_getpos(xdrs)
XOR *xdrs;

bool_t xdr_setpos(xdrs, pos)
XOR *xdrs;
u_int pos;

xdr_destroy(xdrs)
XDR *xdrs;

The routine xdr _getpos () returns an unsigned integer that describes the current position in
the data stream. Warning: In some XDR streams, the returned value of xdr _getpos () is
meaningless; the routine returns a -1 in this case (though -1 should be a legitimate value).

The routine xdr _setpos () sets a stream position to pas. Warning: In some XDR streams,
setting a position is impossible; in such cases, xdr _setpos () will return FALSE. This routine
will also fail if the requested position is out-of-bounds. The definition of bounds varies from
stream to stream.

The xdr _destroy() primitive destroys the XDR stream. Usage of the stream after calling this
routine is undefined.

3.7. XDR Operation Directions

At times you may wish to optimize XDR routines by taking advantage of the direction of the
operation (XDR_ENCODE, XDR_DECODE, or XDR_FREE). The value xdrs->x_op always
contains the direction of the XDR operation. Programmers are not encouraged to take advan
tage of this information. Therefore, no example is presented here. However, an example in Sec
tion 7 demonstrates the usefulness of the xdrs->x_op field.

• Sun Microsystems Release 2.0

Page 16 XOR Protocol Spec

4. XOR Stream Access

An XDR stream is obtained by calling the appropriate creation routine. These creation routines
take arguments that are tailored to the specific properties of the stream.

Streams currently exist for (de)serialization of data to or from standard 1/0 FILE streams,
TCP /IP connections and UNIX files, and memory. Section 5 documents the XDR object and how
to make new XOR streams when they are required.

4.1. Standard 1/0 Streams

XOR streams can be interfaced to standard 1/0 using the xdrstdio_create () routine as fol
lows:

#include <stdio.h>
#include <rpc/rpc.h> /• xdr streams are a part of the rpc library•/

void
xdrstdio_create(xdrs, fp, x_op)

XDR •xdrs;
FILE *fp;
enum xdr_op x_op;

The routine xdrstdio_create () initializes an XDR stream pointed to by xdrs. The XDR
stream interfaces to the standard 1/0 library. Parameter fp is an open file, and x_op is an
XOR direction.

4.2. Memory Streams

Memory streams allow the streaming of data into or out of a specified area of memory:

#include <rpc/rpc.h>

void
xdrmem_create(xdrs, addr, len, x_op)

XDR *xdrs;
char *addr;
u_int len;
enum xdr_op x_op;

The routine xdrmem_create () initializes an XOR stream in local memory. The memory is
pointed to by parameter addr; parameter len is the length in bytes of the memory. The
parameters xdrs and x_op are identical to the corresponding parameters of
xdrstdio_create (). Currently, the UDP/IP implementation of RPC uses
xdrmem_create () . Complete call or result messages are built in memory before calling the
sendto () system routine.

,..,
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XOR Protocol Spec Page 17

4.3. Record (TCP /JP) Streams

A record stream is an XOR stream built on top of a record marking standard that is built on top
of the UNIX file or 4.2 BSD connection interface. -

#include <rpc/rpc.h> /* xdr streams are a part of the rpc library*/

xdrrec_create(xdrs, sendsize, recvsize, iohandle, readproc, writeproc)
XDR *xdrs;
u_int sendsize, recvsize;
char *iohandle;
int (*readproc) (), (*writeproc) ();

The routine xdrrec_create () provides an XOR stream interface that allows for a bidirec
tional, arbitrarily long sequence of records. The contents of the records are meant to be data in
XOR form. The stream's primary use is for interfacing RPC to TCP connections. However, it
can be used to stream data into or out of normal UNIX files.

The parameter xdrs is similar to the corresponding parameter described above. The stream
does its own data buffering similar to that of standard 1/0. The parameters sendsize and
recvsize determine the size in bytes of the output and input buffers, respectively; if their
values are zero (0), then predetermined defaults are used. When a buffer needs to be filled or
flushed, the routine readproc or writeproc is called, respectively. The usage and behavior
of these routines are similar to the UNIX system calls read() and write(). However, the first
parameter to each of these routines is the opaque parameter iohandle. The other two parame
ters (buf and nbytes) and the results (byte count) are identical to the system routines. If xxx
is readproc or wr i teproc, then it has the following form:

/* returns the actual number of bytes transferred.
* -1 ls an error
*/

int
xxx(iohandle, buf, len)

char *iohandle;
char *buf;
int nbytes;

The XOR stream provides means for delimiting records in the byte stream. The implementation
details of delimiting records in a stream are discussed in appendix 1. The primitives that are
specific to record streams are as follows:

bool_t
xdrrec_endofrecord(xdrs, flushnow)

XOR *xdrs;
bool_t flushnow;

bool_t
xdrrec_skiprecord(xdrs)

XOR *xdrs;

bool_t
xdrrec_eof(xdrs)

XOR *xdrs;

The routine xdrrec_endo frecord () causes the current outgoing data to be marked as a
record. If the parameter flushnow is TRUE, then the stream's writeproc () will be called;
otherwise, writeproc () will be called when the output buffer has been filled.

~ ~,~ Sun Microsystems Release 2.0

Page 18 XDR Protocol Spec

The routine xdrrec_skiprecord () causes an input stream's position to be moved past the
current record boundary and onto the beginning of the next record i_!l the stream.

If there is no more data in the stream's input buffer, then the routine xdrrec_eo f () returns
TRUE. That is not to say that there is no more data in the underlying file descriptor.

5. XDR Stream Implementation

This section provides the abstract data types needed to implement new instances of XDR
streams.

5.1. The XDR Object

The following structure defines the interface to an XDR stream:

enum xdr_op { XDR_ENCODE = 0, XDR_DECODE = 1, XDR_FREE = 2 };

typedef struct {

} XDR;

enum xdr_op x_op;
struct xdr_ops {

booLt (*x_getlong) ();
booLt (*x_putlong) () ;
bool_t (*x_getbytes) ();
bool_t (*x_putbytes) () ;
u_int (*x_getpostn) ();
bool_t (*x_setpostn) () ;
caddr_t (*x_inline) ();
VOID (*x_destroy) () ;

} *x_ops;
caddr_t
caddr_t
caddr_t
int

x_public;
x_private;
x_base;
x_handy;

/* operation; fast additional param */

/* get a long from underlying stream*/
/* put a long to"*/
/* get some bytes from " • /
/* put some bytes to"*/
/* returns byte offset from beginning*/
/* repositions position in stream*/
/* buf quick ptr to buffered data*/
/* free privates of this xdr_stream */

/* users' data*/
/* pointer to private data*/
/* private used for position info*/
/* extra private word*/

The x_op field is the current operation being performed on the stream. This field is important
to the XDR primitives, but should not affect a stream's implementation. That is, a stream's
implementation should not depend on this value. The fields x_private, x_base, and
x_handy are private to the particular stream's implementation. The field x_pub 1 ic is for the
XDR client and should never be used by the XDR stream implementations or the XDR primi
tives.

Macros for accessing operations x_getpostn (), x_setpostn (), and ,e.'._destroy () were
defined in Section 3.6. The operation x_inline () takes two parameters: an XDR •, and an
unsigned integer, which is a byte count. The routine returns a pointer to a piece of the stream's
internal buffer. The caller can then use the buffer segment for any purpose. From the stream's
point of view, the bytes in the buffer segment have been consumed or put. The routine may
return NULL if it cannot return a buffer segment of the requested size. (The x_inline routine
is for cycle squeezers. Use of the resulting buffer is not data-portable. Users are encouraged not
to use this feature.)

0

0

The operations x_getbytes () and x_putbytes () blindly get and put sequences of bytes

0 from or to the underlying stream; they return TRUE if they are successful, and FALSE

~ '\~ Sun Microsystems Release 2.0

0

0

0

XDR Protocol Spec

otherwise. The routines have identical parameters (replace xxx):

bool_t
xxxbytes(xdrs, buf, bytecount)

XDR •xdrs;
char *buf;
u_int bytecount;

Page 19

The operations x_getlong () and x_putlong () receive and put long numbers from and to
the data stream. It is the responsibility of these routines to translate the numbers between the
machine representation and the (standard) external representation. The UNIX primitives
htonl () and ntohl () can be helpful in accomplishing this. Section 6 defines the standard
representation of numbers. The higher-level XDR implementation assumes that signed and
unsigned long integers contain the same number of bits, and that nonnegative integers have the
same bit representations as unsigned integers. The routines return TRUE if they succeed, and
FALSE otherwise. They have identical parameters:

bool_t
xxxlong(xdrs, lp)

XDR •xdrs;
long •lp;

Implementors of new XDR streams must make an XDR structure (with new operation routines)
available to clients, using some kind of create routine.

~,
\~ Sun Microsystems Release 2.0

Page 20 XDR Protocol Spec

6. XDR Standard

This section defines the external data representation standard. The standard is independent of
languages, operating systems and hardware architectures. Once data is shared among machines,
it should not matter that the data was produced on a Sun, but is consumed by a VAX (or vice
versa). Similarly the choice of operating systems should have no influence on how the data is
represented externally. For programming languages, data produced by a C program should be
readable by a FORTRAN or Pascal program.

The external data representation standard depends on the assumption that bytes (or octets) are
portable. A byte is defined to be eight bits of data. It is assumed that hardware that encodes
bytes onto various media will preserve the bytes' meanings across hardware boundaries. For
example, the Ethernet standard suggests that bytes be encoded "little endian" style. Both Sun
and VAX hardware implementations adhere to the standard.

The XDR standard also suggests a language used to describe data. The language is a bastardized
C; it is a data description language, not a programming language. (The Xerox Courier Standard
uses bastardized Mesa as its data description language.)

6.1. Basic Block Size

The representation of all items requires a multiple of four bytes (or 32 bits) of data. The bytes
are numbered O through n-1, where (n mod 4)=0. The bytes are read or written to some byte
stream such that byte m always precedes byte m+l.

6.2. Integer

An XDR signed integer is a 32-bit datum that encodes an integer in the range
[-2147483648, 2147483647]. The integer is represented in two's complement notation. The
most and least significant bytes are O and 3, respectively. The data description of integers is
integer.

6.3. Unsigned Integer

An XDR unsigned integer is a 32-bit datum that encodes a nonnegative integer in the range
[O, 4294967295]. It is represented by an unsigned binary number whose most and least

significant bytes are O and 3, respectively. The data description of unsigned integers is
unsigned.

6.4. Enumerations

Enumerations have the same representation as integers. Enumerations are handy for describing
subsets of the integers. The data description of enumerated data is as follows:

typedef enum {name= value, } type-name;

For example the three colors red, yellow and blue could be described by an enumerated type:

• Sun Microsystems Release 2.0

0

0

0

0

0

0

XDR Protocol Spec Page 21

typedef enum {RED= 2, YELLOW= 3, BLUE= 5} colors;

6.5. Booleans

Booleans are important enough and occur frequently enough to warrant their own explicit type
in the standard. Boolean is an enumeration with the following form:

typedef enum {FALSE= 0, TRUE= 1} boolean;

6.6. Hyper Integer and Hyper Unsigned

The standard also defines 64-bit (8-byte) numbers called hyper integer and hyper
unsigned. Their representations are the obvious extensions or the integer and unsigned defined
above. The most and least significant bytes are O and 7, respectively.

6.7. Floating Point and Double Precision

The standard defines the encoding for the floating point data types float (32 bits or 4 bytes)
and double (64 bits or 8 bytes). The encoding used is the IEEE standard for normalized single
and double-precision floating point numbers. See the IEEE floating point standard for more
information. The standard encodes the following three fields, which describe the floating point
number:

S The sign or the number. Values O and 1 represent positive and negative, respectively.

E The exponent or the number, base 2. Floats devote 8 bits to this field, while doubles devote
11 bits. The exponents for float and double are biased by 127 and 1023, respectively.

F The fractional part of the number's mantissa, base 2. Floats devote 23 bits to this field,
while doubles devote 52 bits.

Therefore, the floating point number is described by:

(-1)S *2E-B"' *1.F

Just as the most and least significant bytes of a number are O and 3, the most and least
significant bits of a single-precision floating point number are O and 31. The beginning bit (and
most significant bit) offsets or S, E, and Fare 0, 1, and 9, respectively.

Doubles have the analogous extensions. The beginning bit (and most significant bit) offsets or S,
E, and F are 0, 1, and 12, respectively.

The IEEE specification should be consulted concerning the encoding for signed zero, signed
infinity (overflow), and denormalized numbers (underflow). Under IEEE specifications, the
"NaN" (not a number) is system dependent and should not be used.

~
', ... ~ Sun Microsystems Release 2.0

Page 22 XDR Protocol Spec

6.8. Opaque Data

At times fixed-sized uninterpreted data needs to be passed among machines. This data is called
opaque and is described as:

typedef opaque type-name[n];
opaque name[n];

where n is the (static) number of bytes necessary to contain the opaque data. If n is not a multi
ple of four, then the n bytes are followed by enough (up to 3) zero-valued bytes to make the
total byte count of the opaque object a multiple of four.

6.9. Counted Byte Strings

The standard defines a string of n (numbered O through n-1) bytes to be the number n encoded
as unsigned, and followed by the n bytes of the string. If n is not a multiple of four, then the
n bytes are followed by enough (up to 3) zero-valued bytes to make the total byte count a multi
ple of four. The data description of strings is as follows:

typedef string type-name<N>;
typedef string type-name<>;
string name<N>;
string name<>;

Note that the data description language uses angle brackets (< and >) to denote anything that
is varying-length (as opposed to square brackets to denote fixed-length sequences of data).

0

The constant N denotes an upper bound of the number of bytes that a string may contain. If N 0
is not specified, it is assumed to be 232-1, the maximum length. The constant N would normally .
be found in a protocol specification. For example, a filing protocol may state that a file name
can be no longer than 255 bytes, such as:

string filename<255>;

The XDR specification does not say what the individual bytes of a string represent; this impor
tant information is left to higher-level specifications. A reasonable default is to assume that the
bytes encode ASCII characters.

6.10. Fixed Arrays

The data description for fixed-size arrays of homogeneous elements is as follows:

typedef elementtype type-name[n];
elementtype name[n];

Fixed-size arrays of elements numbered O through n-1 are encoded by individually encoding the
elements of the array in their natural order, 0 through n-1.

+ Sun Microsystems Release 2.0

0

0

XDR Protocol Spec Page 23

6.11. Counted Arrays

Counted arrays provide the ability to encode varyiable-length arrays of homogeneous elements.
The array is encoded as: the element count n (an unsigned integer), followed by the encoding of
each of the array's elements, starting with element O and progressing through element n-l. The
data description for counted arrays is similar to that of counted strings:

typedef elementtype type-name<N>;
typedef elementtype type-name<>;
elementtype name<N>;
elementtype name<>;

Again, the constant N specifies the maximum acceptable element count of an array; if N is not
specified, it is assumed to be 202-I.

6.12. Structures

The data description for structures is very similar to that of standard C:

typedef struct {
component-type component-name;

} type-name;

The components of the structure are encoded in the order of their declaration in the structure.

Q 6.13. Discriminated Unions

0

A discriminated union is a type composed of a discriminant followed by a type selected from a
set of prearranged types according to the value of the discriminant. The type of the discrim
inant is always an enumeration. The component types are called "arms" of the union. The
discriminated union is encoded as its discriminant followed by the encoding of the implied arm.
The data description for discriminated unions is as follows:

typedef union switch (discriminant-type) {
discriminant-value: arm-type;

default: default-arm-type;
} type-name;

The default arm is optional. If it is not specified, then a valid encoding of the union cannot take
on unspecified discriminant values. Most specifications neither need nor use default arms.

6.14. Missing Specifications

The standard lacks representations for bit fields and bitmaps, since the standard is based on
bytes. This is not to say that no specification should be attempted.

+ Sun Microsystems Release 2.0

Page 24 XDR Protocol Spec

6.15. Library Primitive / XOR Standard Cross Reference

The following table describes the association between the C library primitives discussed in Sec
tion 3, and the standard data types defined in this section:

C Primitive XDR Tvne Sections
xdr_int

xdr_long integer 3.1, 6.2
xdr_short
xdr_u_int

xdr_u_long unsigned 3.1, 6.3
xdr u_short

- hyper integer 6.6
hvoer unsigned

xdr_float float 3.2. 6.7
xdr double double 3.2. 6.7
xdr enum enurn_t 3.3. 6.4

xdr boo] boo! t 3.3, 6.5
xdr_string string 3.5.1, 6.9
xdr bvtes 3.5.2
xdr array (varving arrays) 3.5.3 6.11

- (fixed arravs) 3.5.5. 6.10
xdr onaoue onaoue 3.5.4 6.8

xdr union union 3.5.6 6.13
xdr_reference - 3.5.7

- struct 6.6

~
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XOR Protocol Spec Page 25

7. Advanced Topics

This section describes techniques for passing data structures that are not covered in the preced
ing sections. Such structures include linked lists (of arbitrary lengths). Unlike the simpler exam
ples covered in the earlier sections, the following examples are written using both the XOR C
library routines and the XOR data description language. Section 6 describes the XOR data
definition language used below.

7 .1. Linked Lists

The last example in Section 2 presented a C data structure and its associated XOR routines for a
person's gross assets and liabilities. The example is duplicated below:

struct gnumbers {
long g_assets;
long g_liabilities;

};

bool_t
xdr_gnumbers(xdrs, gp)

{

}

XDR •xdrs;
struct gnumbers *gp;

if (xdr_long(xdrs, &(gp->g_assets)))
return (xdr_long(xdrs, &(gp->g_liabilities)));

return (FALSE);

Now assume that we wish to implement a linked list of such information. A data structure could
be constructed as follows:

typedef struct gnnode {

};

struct gnumbers gn_numbers;
struct gnnode *nxt;

typedef struct gnnode •gnumbers_list;

The head of the linked list can be thought of as the data object; that is, the head is not merely a
convenient shorthand for a structure. Similarly the nxt field is used to indicate whether or not
the object has terminated. Unfortunately, if the object continues, the nxt field is also the
address of where it continues. The link addresses carry no useful information when the object is
serialized.

The XOR data description of this linked list is described by the recursive type declaration of
gnumbers_list:

struct gnumbers {
unsigned g_assets;
unsigned g_liabilities;

};

• Sun Microsystems Release 2.0

Page 26 XOR Protocol Spec

typedef union switch (boolean) {
case TRUE: struct {

};

struct gnumbers current_element;
gnumbers_list rest_of_list;

case FALSE: struct {};
} gnumbers_list;

In this description, the boolean indicates whether there is more data following it. If the boolean
is FALSE, then it is the last data field of the structure. If it is TRUE, then it is followed by a
gnumbers structure and (recursively) by a gnumbers_list (the rest of the object). Note that
the C declaration has no boolean explicitly declared in it (though the nxt field implicitly carries
the information), while the XOR data description has no pointer explicitly declared in it.

Hints for writing a set of XOR routines to successfully (de)serialize a linked list of entries can be
taken from the XOR description of the pointer-less data. The set consists of the mutually recur
sive routines xdr _gnumbers_list, xdr _wrap_list, and xdr _gnnode.

bool_t
xdr_gnnode(xdrs, gp)

XOR •xdrs;

{

}

bool_t

struct gnnode *gp;

return (xdr_gnumbers(xdrs, &(gp->gn_numbers)) &&
xdr_gnumbers_list(xdrs, &(gp->nxt)));

xdr_wrap_list(xdrs, glp)
XOR *xdrs;
gnumbers_list *glp;

{

}

return (xdr_reference(xdrs, glp, sizeof(struct gnnode),
xdr_gnnode));

struct xdr_discrim choices[2] = {
/* called if another node needs (de)serializing */
{ TRUE, xdr_wrap_list },
/* called when there are no more nodes to be (de)serialized */

{ FALSE, xdr_void}
}

bool_t
xdr_gnumbers_list(xdrs, glp)

{

}

XDR *xdrs;
gnumbers_list *glp;

bool_t more_data;

more_data = (*glp != (gnumbers_list)NULL);
return (xdr_union(xdrs, &more_data, glp, choices, NULL);

The entry routine is xdr _gnumbers_list (); its job is to translate between the boolean value
more_data and the list pointer values. If there is no more data, the xdr _union () primitive

fl>' ,,.,.~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XOR Protocol Spec Page 27

calls xdr _ void and the recursion is terminated. Otherwise, xdr _union() calls
xdr _wrap_list (), whose job is to dereference the list pointers. The xdr _gnnode () routine
actually (de)serializes data of the current node of the linked list, and recursively calls
xdr _gnumbers_list () to handle the remainder of the list.

You should convince yourself that these routines function correctly in all three directions
(XDR__ENCODE, XDR_J)ECODE and XDRJ'REE) for linked lists of any length (including
zero). Note that the boolean more_data is always initialized, but in the XDR_J)ECODE case it
is overwritten by an externally generated value. Also note that the value of the bool_t is lost
in the stack. The essence of the value is reflected in the list's pointers.

The unfortunate side effect of (de)serializing a list with these routines is that the C stack grows
linearly with respect to the number of nodes in the list. This is due to the recursion. The rou
tines are also hard to code (and understand) due to the number and nature of primitives involved
(such as xdr _reference, xdr _union, and xdr _void).

The following routine collapses the recursive routines. It also has other optimizations that are
discussed below.

bool_t
xdr_gnumbers_list(xdrs, glp)

XDR •xdrs;
gnumbers_list *glp;

{

}

bool_t more_data;

while

}

(TRUE) {
more_data = (*glp I= (gnumbers_list)NULL);
if (! xdr_bool(xdrs. &more_data))

return (FALSE);
if (! more_data)

return (TRUE); /• we are done•;
if (! xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers))
return (FALSE);

glp = &((*glp)->nxt);

The claim is that this one routine is easier to code and understand than the three recursive rou
tines above. (It is also buggy, as discussed below.) The parameter glp is treated as the address
of the pointer to the head of the remainder of the list to be (de)serialized. Thus, glp is set to
the address of the current node's nxt field at the end of the while loop. The discriminated
union is implemented in-line; the variable more_data has the same use in this routine as in the
routines above. Its value is recomputed and re-(de)serialized each iteration of the loop. Since
*glp is a pointer to a node, the pointer is dereferenced using xdr _reference(). Note that
the third parameter is truly the size of a node (data values plus nxt pointer), while
xdr _gnumbers () only (de)serializes the data values. We can get away with this tricky optimi
zation only because the nxt data comes after all legitimate external data.

The routine is buggy in the XDRJ'REE case. The bug is that xdr _reference() will free the
node *glp. Upon return the assignment glp = & ((*glp) ->nxt) cannot be guaranteed to
work since • glp is no longer a legitimate node. The following is a rewrite that works in all
cases. The hard part is to avoid dereferencing a pointer which has not been initialized or which
has been freed.

~ \~ Sun Microsystems Release 2.0

Page 28 XOR Protocol Spec

bool_t
xdr_gnumbers_llst(xdrs, glp)

XDR •xdrs;
gnumbers_list *glp;

{
bool_t more_data;
bool_t freeing;
gnumbers_list *next; /* the next value of glp */

freeing= (xdrs->x_op -- XDR_FREE);
while (TRUE) {

more_data = (*glp I= (gnumbers_l~st)NULL);
if (! xdr_bool(xdrs, &more_data))

return (FALSE);
1 f (I more_data)

return (TRUE); /* we are done*/
if (freeing)

next = & ((*glp) ->nxt);
if (! xdr_reference(xdrs, glp, sizeof(struct gnnode),

xdr_gnumbers))

}

return (FALSE);
glp = (freeing) ? next : &((*glp)->nxt);

}

Note that this is the first example in this document that actually inspects the direction of the
operation (xdrs->x_op). The claim is that the correct iterative implementation is still easier
to understand or code than the recursive implementation. It is certainly more efficient with
respect to C stack requirements.

• Sun Microsystems Release 2.0

0

C

0

0

0

XDR Protocol Spec Page 29

Appendix A. The Record Marking Standard

A record is composed of one or more record fragments. A record fragment is a four-byte header
followed by Oto 2"-1 bytes of fragment data. The bytes encode an unsigned binary number; as
with XDR integers, the byte order is from highest to lowest. The number encodes two values -
a boolean that indicates whether the fragment is the last fragment of the record (bit value 1
implies the fragment is the last fragment), and a 31-bit unsigned binary value which is the length
in bytes of the fragment's data. The boolean value is the high-order bit of the header; the length
is the 31 low-order bits.

(Note that this record specification is not in XDR standard form and cannot be implemented
using XDR primitives!)

• Sun Microsystems Release 2.0

Page 30

Appendix B. Synopsis of XDR Routines

xdr_array()

xdr_array(xdrs, arrp, sizep, maxsize, elsize, elproc)
XDR •xdrs;
char **arrp;
u_lnt *sizep, maxsize, elsize;
xdrproc_t elproc;

XDR Protocol Spec

A filter primitive that translates between arrays and their corresponding external representa
tions. The parameter arrp is the address of the pointer to the array, while sizep is the
address of the element count of the array; this element count cannot exceed maxsize. The
parameter elsize is the sizeof () each of the array's elements, and elproc is an XDR filter
that translates between the array elements' C form, and their external representation. This rou
tine returns one if it succeeds, zero otherwise.

xdr_bool()

xdr_bool(xdrs, bp)
XDR *xdrs;
bool_t *bp;

A filter primitive that translates between booleans (C integers) and their external representa
tions. When encoding data, this filter produces values of either one or zero. This routine
returns one if it succeeds, zero otherwise.

xdr_bytes()

xdr_bytes(xdrs, sp, sizep, maxsize)
XDR *xdrs;
char **sp;
u_int *sizep, maxsize;

A filter primitive that translates between counted byte strings and their external representations.
The parameter sp is the address of the string pointer. The length of the string is located at
address sizep; strings cannot be longer than maxsize. This routine returns one if it succeeds,
zero otherwise.

xdr_destroy()

void
xdr_destroy(xdrs)

XDR *xdrs;

A macro that invokes the destroy routine associated with the XDR stream, xdrs. Destruction
usually involves freeing private data structures associated with the stream. Using xdrs after
invoking xdr _destroy() is undefined.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

XDR Protocol Spec

xdr_double()

xdr_double(xdrs, dp)
XOR •xdrs;
double •dp;

Page 31

A filter primitive that translates between C double precision numbers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_enum()

xdr_enum(xdrs, ep)
XOR •xdrs;
enum._t *ep;

A filter primitive that translates between C enums (actually integers) and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_ftoat()

xdr_float(xdrs, fp)
XDR •xdrs;
float 'fp;

A filter primitive that translates between C floats and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr__getpos()

u_int
xdr_getpos(xdrs)

XDR •xdrs;

A macro that invokes the get-position routine associated with the XDR stream, xdrs. The rou
tine returns an unsigned integer, which indicates the position of the XDR byte stream. A desir
able feature of XDR streams is that simple arithmetic works with this number, although the
XDR stream instances need not guarantee this.

xdr _inline()

long•
xdr_inline(xdrs, len)

XDR *xdrs;
int len;

A macro that invokes the in-line routine associated with the XDR stream, xdrs. The routine
returns a pointer to a contiguous piece of the stream's buffer; len is the byte length of the
desired buffer. Note that the pointer is cast to long *. Warning: xdr _in line() may return
0 (NULL) if it cannot allocate a contiguous piece of a buffer. Therefore the behavior may vary
among stream instances; it exists for the sake of efficiency.

~ ..
\~ Sun Microsystems Release 2.0

Page 32

xdr_int()

xdr_int(xdrs, ip)
XDR •xdrs;
int •ip;

XDR Protocol Spec

A filter primitive that translates between C integers and their external representations. This
routine returns one if it succeeds, zero otherwise.

xdr_long()

xdr_long(xdrs, lp)
XDR •xdrs;
long •lp;

A filter primitive that translates between C long integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr_opaque()

xdr_opaque(xdrs. cp, cnt)
XDR •xdrs;
char *cp;
u_int cnt;

A filter primitive that translates between fixed size opaque data and its external representation.
The parameter cp is the address of the opaque object, and cnt is its size in bytes. This routine
returns one if it succeeds, zero otherwise.

xdr _relerence()

xdr_reference(xdrs, pp, size, proc)
XDR •xdrs;
char **pp;
u_int size;
xdrproc_t proc;

A primitive that provides pointer chasing within structures. The parameter pp is the address of
the pointer; size is the sizeof () the structure that *pp points to; and proc is an XDR pro
cedure that filters the structure between its C form and its external representation. This routine
returns one if it succeeds, zero otherwise.

xdr_setpos()

xdr_setpos(xdrs, pos)
XOR *xdrs;
u_int pos;

A macro that invokes the set position routine associated with the XDR stream xdrs. The
parameter pas is a position value obtained from xdr _getpos () . This routine returns one if
the XDR stream could be repositioned, and zero otherwise. Warning: it is difficult to reposition
some types of XDR streams, so this routine may fail with one type of stream and succeed with
another.

~ lb..~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XOR Protocol Spec

xdr....short()

xdr_short(xdrs, sp)
XOR *xdrs;
short •sp;

Page 33

A filter primitive that translates between C short integers and their external representations.
This routine returns one if it succeeds, zero otherwise.

xdr....string()

xdr_string(xdrs, sp, maxsize)
XOR *xdrs;
char **sp;
u_int maxsize;

A filter primitive that translates between C strings and their corresponding external representa
tions. Strings cannot cannot be longer than maxsize. Note that sp is the address of the
string's pointer. This routine returns one if it succeeds, zero otherwise.

xdr_u_int()

xdr_u_int(xdrs, up)
XOR *xdrs;
unsigned *up;

A filter primitive that translates between C unsigned integers and their external representa
tions. This routine returns one if it succeeds, zero otherwise.

xdr _u_long()

xdr_u_long(xdrs, ulp)
XDR *xdrs;
unsigned long *ulp;

A filter primitive that translates between C unsigned long integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

xdr_u....short()

xdr_u_short(xdrs, usp)
XOR *xdrs;
unsigned short *usp;

A filter primitive that translates between C unsigned short_ integers and their external
representations. This routine returns one if it succeeds, zero otherwise.

.. Sun Microsystems Release 2.0

Page 34

xdr_union()

xdr_union(xdrs, dscmp, unp, choices, dfault)
XDR •xdrs;
int *dscmp;
char *unp;
struct xdr_discrim *choices;
xdrproc_t dfault;

XDR Protocol Spec

A filter primitive that translates between a discriminated C union and its corresponding exter
nal representation. The parameter dscmp is the address of the union's discriminant, while unp
in the address of the union. This routine returns one if it succeeds, zero otherwise.

xdr_void()

xdr_void()

This routine always returns one. It may be passed to RPC routines that reqmre a function
parameter, where nothing is to be done.

xdr _ wrapstring()

xdr_wrapstring(xdrs, sp)
XOR *xdrs;
char ••sp;

A primitive that calls xdr _string (xdrs, sp, MAXUNSIGNED) ; where MAXUNSIGNED is the
maximum value of an unsigned integer. This is handy because the RPC package passes only two
parameters XDR routines, whereas xdr _string(), one of the most frequently used primitives,
requires three parameters. This routine returns one if it succeeds, zero otherwise.

xdrmem_create()

void
xdrmem_create(xdrs, addr, size, op)

XDR •xdrs;
char *addr;
u_int size;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The stream's data is written
to, or read from, a chunk of memory at location addr whose length is no more than size bytes
long. The op determines the direction of the XDR stream (either XDR_ENCODE,
XDRJ)ECODE, or XDRYREE).

xdrrec_create()

void
xdrrec_create(xdrs, sendsize, recvsize, handle, readit, writeit)

XDR •xdrs;
u_int sendsize, recvsize;
char *handle;
int (*readit) (), (*writeit) ();

This routine initializes the XDR stream object pointed to by xdrs. The stream's data is written

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

XDR Protocol Spec Page 35

to a buffer of size sendsize; a value of zero indicates the system should use a suitable default.
The stream's data is read from a buffer of size recvsize; it too can be set to a suitable default
by passing a zero value. When a stream's output buffer is full, vriteit () is called. Similarly,
when a stream's input buffer is empty, readi t () is called. The behavior of these two routines
is similar to the UNIX system calls read and vrite, except that handle is passed to the
former routines as the first parameter. Note that the XDR stream's op field must be set by the
caller. Warning: this XDR stream implements an intermediate record stream. Therefore there
are additional bytes in the stream to provide record boundary information.

xdrrec_endofrecord()

xdrrec_endofrecord(xdrs, sendnov)
XOR •xdrs;
int sendnow;

This routine can be invoked only on streams created by xdrrec_create (). The data in the
output buffer is marked as a completed record, and the output buffer is optionally written out if
sendnov is non-zero. This routine returns one if it succeeds, zero otherwise.

xdrrec_eof()

xdrrec_eof(xdrs)
XDR *xdrs;
int empty;

This routine can be invoked only on streams created by xdrrec_create () . After consuming
the rest of the current record in the stream, this routine returns one if the stream has no more
input, zero otherwise.

xdrrecJkiprecord()

xdrrec_skiprecord(xdrs)
XDR *xdrs;

This routine can be invoked only on streams created by xdrrec_create (). It tells the XDR
implementation that the rest of the current record in the stream's input buffer should be dis
carded. This routine returns one if it succeeds, zero otherwise.

xdrstdio_create()

void
xdrstdio_create(xdrs, file, op)

XDR *xdrs;
FILE * file;
enum xdr_op op;

This routine initializes the XDR stream object pointed to by xdrs. The XDR stream data is
written to, or read from, the Standard 1/0 stream file. The parameter op determines the
direction of the XDR stream (either XDR_ENCODE, XDR_j)ECODE, or XDR_FREE). Warn
ing: the destroy routine associated with such XDR streams calls fflush () on the file stream,
but never fclose ().

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

Remote Procedure Call

Protocol Specification

oi

0

I o;

0

0

0

Contents

1. Introduction 1
I.I. Terminology.. l
l.2. The RPC Model l
l.3. Transports and Semantics 2
1.4. Binding and Rendezvous Independence ... 2
l.5. Message Authentication 2

2. Requirements 3
2.l. Remote Programs and Procedures.. 3
2.2. Authentication 4
2.3. Program Number Assignment ... 4

3. Other Uses and Abuses of the RPC Protocol
3.1. Batching .. .
3.2. Broadcast RPC

4. The RPC Message Protocol

6
5
5

6

A. Authentication Parameter Specification .. 9
A.I. Null Authentication....... 9
A.2. UNIX Authentication 9

C. Port Mapper Program Protocol 11
C.l. The Port Mapper RPC Protocol ... 11

-,-

0

0

0

0

0

Remote Procedure Call

Protocol Specification

1. Introduction

This document specifies a message protocol used in implementing Sun's Remote Procedure Call
(RPC) package. The message protocol is specified with the eXternal Data Representation (XOR)
language.

This document assumes that the reader is familiar with both RPC and XOR. It does not
attempt to justify RPC or its uses. Also, the casual user of RPC does not need to be familiar
with the information in this document.

1.1. Terminology

The document discusses servers, services, programs, procedures, clients and versions. A server is
a machine where some number of network services are implemented. A service is a collection of
one or more remote programs. A remote program implements one or more remote procedures;
the procedures, their parameters and results are documented in the specific program's protocol
specification (see Appendix C for an example). Network clients are pieces of software that ini
tiate remote procedure calls to services. A server may support more than one version of a
remote program in order to be forward compatible with changing protocols.

For example, a network file service may be composed of two programs. One program may deal
with high level applications such as file system access control and locking. The other may deal
with low-level file 1/0, and have procedures like "read" and "write". A client machine of the
network file service would call the procedures associated with the two programs of the service on
behalf of some user on the client machine.

1.2. The RPC Model

The remote procedure call model is similar to the local procedure call model. In the local case,
the caller places arguments to a procedure in some well-specified location (such as a result regis
ter). It then transfers control to the procedure, and eventually gains back control. At that
point, the results of the procedure are extracted from the well-specified location, and the caller
continues execution.

The remote procedure call is similar, except that one thread of control winds through two
processes - one is the caller's process, the other is a server's process. That is, the caller process
sends a call message to the server process and waits (blocks) for a reply message. The call mes
sage contains the procedure's parameters, among other things. The reply message contains the
procedure's results, among other things. Once the reply message is received, the results of the
procedure are extracted, and caller's execution is resumed.

~ \~ Sun Microsystems Release 2.0

Page 2 RPC Protocol Spec

On the server side, a process is dormant awa1tmg the arrival of a call message. When one
arrives the server process extracts the procedure's parameters, computes the results, sends a O·
reply message, and then awaits the next call message. Note that in this model, only one of the
two processes is active at any given time. That is, the RPC protocol does not explicitly support
multi-threading of caller or server processes.

1.3. Transports and Semantics

The RPC protocol is independent of transport protocols. That is, RPC does not care how a mes
sage is passed from one process to another. The protocol only deals with the specification and
interpretation of messages.

Because of transport independence, the RPC protocol does not attach specific semantics to the
remote procedures or their execution. Some semantics can be inferred from (but should be expli
citly specified by) the underlying transport protocol. For example, RPC message passing using
UDP /IP is unreliable. Thus, if the caller retransmits call messages after short time-outs, the
only thing he can infer from no reply message is that the remote procedure was executed zero or
more times (and from a reply message, one or more times). On the other hand, RPC message
passing using TCP /IP is reliable. No reply message means that the remote procedure was exe
cuted at most once, whereas a reply message means that the remote procedure was exactly once.
(Note: At Sun, RPC is currently implemented on top of TCP /IP and UDP /IP transports.)

1.4. Binding and Rendezvous Independence

The act of binding a client to a service is NOT part of the remote procedure call specification. 0
This important and necessary function is left up to some higher level software. (The software
may use RPC itself; see Appendix C.)

Implementors should think of the RPC protocol as the jump-subroutine instruction (" JSR") of a
network; the loader (binder) makes JSR useful, and the loader itself uses JSR to accomplish its
task. Likewise, the network makes RPC useful, using RPC to accomplish this task.

1.5. Message Authentication

The RPC protocol provides the fields necessary for a client to identify himself to a service and
vice versa. Security and access control mechanisms can be built on top of the message authenti
cation.

*'' ~~ Sun Microsystems Release 2.0

0

0

0

0

RPC Protocol Spec Page 3

2. Requirements

The RPC protocol must provide for the following:

1. Unique specification of a procedure to be called.
2. Provisions for matching response messages to request messages.
3. Provisions for authenticating the caller to service and vice versa.

Besides these requirements, features that detect the following are worth supporting because of
protocol roll-over errors, implementation bugs, user error, and network administration:

1. RPC protocol mismatches.
2. Remote program protocol version mismatches.
3. Protocol errors (like mis-specification of a procedure's parameters).
4. Reasons why remote authentication failed.
5. Any other reasons why the desired procedure was not called.

2.1. Remote Programs and Procedures

The RPC call message has three unsigned fields: remote program number, remote program ver
sion number, and remote procedure number. The three fields uniquely identify the procedure to
be called. Program numbers are administered by some central authority (like Sun). Once an
implementor has a program number, he can implement his remote program; the first implemen
tation would most likely have the version number of 1. Because most new protocols evolve into
better, stable and mature protocols, a version field of the call message identifies which version of
the protocol the caller is using. Version numbers make speaking old and new protocols through
the same server process possible.

The procedure number identifies the procedure to be called. These numbers are documented in
the specific program's protocol specification. For example, a file service's protocol specification
may state that its procedure number 5 is read and procedure number 12 is write.

Just as remote program protocols may change over several versions, the actual RPC message
protocol could also change. Therefore, the call message also has the RPC version number in it;
this field must be two (2).

The reply message to a request message has enough information to distinguish the following error
conditions:

1) The remote implementation of RPC does speak protocol version 2. The lowest and highest
supported RPC version numbers are returned.

2) The remote program is not available on the remote system.

3) The remote program does not support the requested version number. The lowest and
highest supported remote program version numbers are returned.

4) The requested procedure number does not exist (this is usually a caller side protocol or pro
gramming error).

5) The parameters to the remote procedure appear to be garbage from the server's point of
view. (Again, this is caused by a disagreement about the protocol between client and ser
vice.)

~ ',,~ Sun Microsystems Release 2.0

Page 4 RPC Protocol Spec

2.2. Authentication

Provisions for authentication of caller to service and vice versa are provided as a wart on the
side of the RPC protocol. The call message has two authentication fields, the credentials and
verifier. The reply message has one authentication field, the response verifier. The RPC proto
col specification defines all three fields to be the following opaque type:

enum auth_flavor {
AUTH_NULL = 0,
AUTH_UNIX = l,
AUTILSHORT = 2

1· and more to be defined •1
};

struct opaque_auth {

};

union switch (enum auth_flavor) {
default: string auth_body<400>;

};

In simple English, any opaque_auth structure is an auth_flavor enumeration followed by a
counted string, whose bytes are opaque to the RPC protocol implementation.

The interpretation and semantics of the data contained within the authentication fields is
specified by individual, independent authentication protocol specifications. Appendix A defines
three authentication protocols.

If authentication parameters were rejected, the response message contains information stating
why they were rejected.

2.3. Program Number Assignment

Program numbers are given out in groups of Ox20000000 (536870912) according to the following
chart:

0 - lfffffff defined by Sun
20000000 - 3fffffff defined by user
40000000 - Sfffffff transient
60000000 - 7fffffff reserved
80000000 - 9fffffff reserved
aOOOOOOO - bfffffff reserved
cOOOOOOO - dfffffff reserved
eOOOOOOO - ffffffff reserved

The first group is a range of numbers administered by Sun Microsystems, and should be identical
for all Sun customers. The second range is for applications peculiar to a particular customer.
This range is intended primarily for debugging new programs. When a customer develops an
application that might be of general interest, that application should be given an assigned
number in the first range. The third group is for applications that generate program numbers
dynamically. The final groups are reservered for future use, and should not be used.

The exact registration process for Sun defined numbers is yet to be established.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Protocol Spec Page 5

3. Other Uses and Abuses of the RPC Protocol

The intended use of this protocol is for calling remote procedures. That is, each call message is
matched with a response message. However, the protocol itself is a message passing protocol
with which other (non-RPC) protocols can be implemented. Sun currently uses (abuses) the
RPC message protocol for the following two (non-RPC) protocols: batching (or pipelining) and
broadcast RPC. These two protocols are discussed (but not defined) below.

3.1. Batching

Batching allows a client to send an arbitrarily large sequence of call messages to a server; batch
ing uses reliable bytes stream protocols (like TCP /IP) for their transport. In the case of batch
ing, the client never waits for a reply from the server and the server does not send replies to
batch requests. A sequence of batch calls is usually terminated by a legitimate RPC in order to
flush the pipeline (with positive acknowledgement).

3.2. Broadcast RPC

In broadcast RPC based protocols, the client sends an a broadcast packet to the network and
waits for numerous replies. Broadcast RPC uses unreliable, packet based protocols (like
UDP /IP) as their transports. Servers that support broadcast protocols only respond when the
request is successfully processed, and are silent in the face of errors.

4. The RPC Message Protocol

This section defines the RPC message protocol in the XDR data description language. The mes
sage is defined in a top down style. Note: This is an XDR specification, not C code.

enum msg_type {
CALL= 0,
REPLY= 1

};

;•
* A reply to a call message can take on two forms:
• the message was either accepted or rejected.
•;

enum reply_stat {
MSG...ACCEPTED = 0,
MSG_DENIED = 1

};

~
~~ Sun Microsystems Release 2.0

Page 6 RPC Protocol Spec

;•
• Given that a call message was accepted, the following is the status of
• an attempt to call a remote procedure.

•;
enum accept_stat {

SUCCESS= 0,
PROG_UNAVAIL = 1,
PROG_MISMATCH = 2,
PROC_UNAVAIL = 3,
GARBAGE....ARGS = 4

/* remote procedure was successfully executed*/
/* remote machine exports the program number*/
/* remote machine can't support version number*/
;• remote program doesn't know about procedure•;
/* remote procedure can't figure out parameters*/

};

I'
* Reasons why a call message was rejected:
•;

;• RPC version number was not two (2) •/
enum reject_stat {

RPC_MISMATCH = 0,
AUTH_ERROR = 1 ;• caller not authenticated on remote machine•;

};

I'
• Why authentication failed:
•;

enum auth_stat {
/• bogus credentials (seal broken) •;
/• client should begin new session•/
/• bogus verifier (seal broken) •/

AUTH_BADCRED = 1,
AUTH_REJECTEDCRED = 2,
AUTH_BADVERF = 3,
AUTH_REJECTEDVERF = 4,
AUTH_TOOWEAK = 5,

/• verifier expired or was replayed•;
/• rejected due to secu_!ity reasons•/

};

;•
• The RPC message:
* All messages start with a transaction identifier, xid, followed by
* a two-armed discriminated union. The union's discriminant ls a msg_type
• which switches to one of the two types of the message. The xid of a
* REPLY message always matches that of the initiating CALL message.
• NB: The xid field is only used for clients matching reply messages with
* call messages; the service side cannot treat this id as any type of
* sequence number.
•;

struct rpc_msg {

};

unsigned xid;
union switch (enum msg_type) {

CALL: struct call_body;
REPLY: struct reply_body;

};

~ .

'b.,~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Protocol Spec Page 7

;•
• Body of an RPC request call:
•Inversion 2 of the RPC protocol specification, rpcvers must be equal to 2.
• The fields prog, vers, and proc specify the remote program, its version,
• and the procedure within the remote program to be called. These fields are
• followed by two authentication parameters, cred (authentication credentials)
• and verf (authentication verifier). The authentication parameters are
•followed* by the parameters to the remote procedure; these parameters are
• specified by the specific program protocol.
•;

struct call_body {
unsigned rpcvers; /• must be equal to two (2) */
unsigned prog;
unsigned vers;
unsigned proc;
struct opaque_auth cred;
struct opaque_auth verf;
/* procedure specific parameters start here*/

};

;•
• Body of a reply to an RPC request.
• The call message was either accepted or rejected.
•;

struct reply_body {

};

union switch (enum reply_stat) {
MSG_ACCEPTED: struct accepted_reply;
MSG_DENIED: struct rejected_reply;

};

~
~~ Sun Microsystems Release 2.0

Page 8 RPC Protocol Spec

;•
• Reply to an RPC request that was accepted by the server.
• Note: there could be an error even though the request was accepted.
• The first field is an authentication verifier which the server generates
• in order to validate itself to the caller. It is followed by a union
• whose discriminant is an enum accept_stat. The SUCCESS arm of the union is
• protocol specific. The PROG_UNAVAIL, PROC_UNAVAIL, and G/IRBAGE..)IRGS arms
• of the union are void. The PROG_MISMATCH arm specifies the lowest and
• highest version numbers of the remote program that are supported by the

* server.
•;

struct accepted_reply {

};

;•

struct opaque_auth verf;
union switch (enum accept_stat) {

SUCCESS: struct {

};

};

;•
• procedure-specific results start here
•;

PROG_MISMATCH: struct {
unsigned low;
unsigned high;

};
default: struct {

};

;•
*void.Cases include PROG_UNAVAIL,
• PROC_UNAVAIL, and G/IRBAGE..)IRGS.
•;

'Reply to an RPC request that was rejected by the server.
• The request can be rejected because of two reasons - either the server is
• not running a compatible version of the RPC protocol (RPC_MISMATCH), or
• the server refused to authenticate the caller (AUTH_ERROR). In the case of
• an RPC version mismatch, the server returns the lowest and highest supported
• RPC version numbers. In the case of refused authentication, the failure
* status ls returned.
•;

struct rejected_reply {

};

union switch (enum reject_stat) {
RPC_MISMATCH: struct {

unsigned low;
unsigned high;

};
AUTH_ERROR: enum auth_stat;

};

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Protocol Spec Page 9

Appendix A. Authentication Parameter Specification

As previously stated, authentication parameters are opaque, but open-ended to the rest of the
RPC protocol. This section defines some "flavors" of authentication which have been imple
mented at (and supported by) Sun.

A.I. Null Authentication

Often calls must be made where the caller does not know who he is and the server does not care
who the caller is. In this case, the auth_flavor value (the discriminant of the opaque_auth's
union) of the RPC message's credentials, verifier, and response verifier is AUTH_NULL (0). The
bytes of the auth_body string are undefined. It is recommended that the string length be zero.

A.2. UNIX Authentication

The caller of a remote procedure may wish to identify himself as he is identified on a UNIXt sys
tem. The value of the credential'• discriminant of an RPC call message is AUTH_UNIX (1).
The bytes of the credential'• string encode the the following (XDR) structure:

struct auth_unlx {
unsigned stamp;
string machinename<255>;
unsigned uid;
unsigned gid;
unsigned gids<lO>;

};

The stamp is an arbitrary id which the caller machine may generate. The machinename is the
name of the caller's machine (like "krypton"). The uid is the caller's effective user id. The
gid is the callers effective group id. The gids is a counted array of groups which contain the
caller as a member. The verifier accompanying the credentials should be of AUTH_NULL
(defined above).

The value of the discriminate of the reaponae verifier received in the reply message from the
server may be AUTH_NULL or AUTH_SHORT (2). In the case of AUTH_SHORT, the bytes of
the reaponae verifier's string encode an auth_opaque structure. This new auth_opaque
structure may now be passed to the server instead of the original AUTH_UNIX flavor creden
tials. The server keeps a cache which maps short hand auth_opaque structures (passed back via
a AUTH_SHORT style response verifier) to the original credentials of the caller. The
caller can save network bandwidth and server cpu cycles by using the new credentials.

The server may flush the short hand auth_opaque structure at any time. If this happens, the
remote procedure call message will be rejected due to an authentication error. The reason for
the failure will be AUTH_REJECTEDCRED. At this point, the caller may wish to try the origi
nal AUTH_UNIX style of credentials.

j UNIX is a trademark or Bell Laboratories.

• Sun Microsystems Release 2.0

Page 10 RPC Protocol Spec

Appendix B. Record Marking Standard

When RPC messages are passed on top of a byte stream protocol (like TCP /IP), it is necessary,
or at least desirable, to delimit one message from another in order to detect and possibly recover
from user protocol errors. This is called record marking (RM). Sun uses this RM/TCP /IP tran
sport for passing RPC messages on TCP streams. One RPC message fits into one RM record.

A record is composed of one or more record fragments. A record fragment is a four-byte header
followed by O to e91-1 bytes of fragment data. The bytes encode an unsigned binary number;
as with XDR integers, the byte order is from highest to lowest. The number encodes two values
- a boolean which indicates whether the fragment is the last fragment of the record (bit value 1
implies the fragment is the last fragment) and a 31-bit unsigned binary value which is the length
in bytes of the fragment's data. The boolean value is the highest-order bit of the header; the
length is the 31 low-order bits. (Note that this record specification is not in XDR standard
form!)

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

RPC Protocol Spec Page 11

Appendix C. Port Mapper Program Protocol

The port mapper program maps RPC program and version numbers to UDP /IP or TCP /IP port
numbers. This program makes dynamic binding of remote programs possible.

This is desirable because the range of reserved port numbers is very small and the number of
potential remote programs is very large. By running only the port mapper on a reserved port,
the port numbers of other remote programs can be ascertained by querying the port mapper.

C.1. The Port Mapper RPC Protocol

The protocol is specified by the XDR description language.

Port Mapper RPC Program Number: 100000

;•

Version Number: 1
Supported Transports:

UDP/IP on port 111
RM/TCP/IP on port 111

* Handy transport protocol
•;

numbers

#define IPPROTO_TCP 6
#define IPPROTO_UDP 17

/• protocol number used for rpc/rm/tcp/ip •;
/* protocol number used for rpc/udp/ip •/

/*Procedures•;

;•
* Convention: procedure zero of any protocol takes no parameters
* and returns no results.
•;

0. PMAPPROC_NULL () returns ()

;•
• Procedure l, setting a mapping:
* When a program first becomes available on a
• machine, it registers itself with the port mapper program on the
• same machine. The program passes its program number (prog),
• version number (vers), transport protocol number (prot),
• and the port (port) on which it awaits service request. The
* procedure returns success whose value is TRUE if the procedure
• successfully established the mapping and FALSE otherwise. The
• procedure will refuse to establish a mapping if one already exists
• for the tuple [prog, vars, prot] .
•;

1. PMAPPROC_SET (prog, vers, prot, port) returns (success)
unsigned prog;
unsigned vers;
unsigned prot;
unsigned port;
boolean success;

+ Sun Microsystems Release 2.0

Page 12 RPC Protocol Spec

;•
* Procedure 2, Unsetting a mapping:
• When a program becomes unavailable, it should unregister itself
• with the port mapper program on the same machine. The parameters
• and results have meanings identical to those of PMAPPROC_SET.
•;

2. PMAPPROC_UNSET (prog, vers, dummyl, dummy2) returns (success)
unsigned prog;

;•

unsigned vers;
unsigned dummyl;
unsigned dummy2;
boolean success;

/• this value is always ignored•/
/• this value is always ignored•/

• Procedure 3, looking-up a mapping:
• Given a program number (prog), version number (vers) and
• transport protocol number (prot), this procedure returns the port
• number on which the program is awaiting call requests. A port
• value of zeros means that the program has not been registered.
•;

3. PMAPPROC_GETPORT (prog, vers, prot, dummy) returns (port)
unsigned prog;
unsigned vers;

•;
unsigned prot;
unsigned dummy;
unsigned port;

/• this value is always ignored
/• zero means the program is not registered•/

;•
• Procedure 4, dumping the mappings:
• This procedure enumerates all entries in the port mapper's database.
* The procedure takes no parameters and returns a ''list'' of
* [program, version, prot, port] values.
•;

4. PMAPPROC_DUMP () returns (maplist)
struct maplist {

union switch (boolean) {

};
} mapllst;

,,.,
~~ Sun Microsystems

FALSE: struct {/•void, end of list•/};
TRUE: struct {

unsigned prog;
unsigned vers;
unsigned prot;
unsigned port;
struct maplist the_rest;

};

Release 2.0

0

0

0

0

0

0

RPC Protocol Spec

I*
• Procedure 5, indirect call routine:
* The procedures allows a caller to call another remote procedure
* on the same machine without knowing the remote procedure's port

Page 13

• number. Its intended use is for supporting broadcasts to arbitrary
• remote programs via the well-known port mapper's port. The parameters
• prog, vers, proc, and the bytes of args are the program number,
* version number, procedure number, and parameters the the remote
* procedure .
•
* NB:
• 1. This procedure only sends a response if the procedure was
• successfully executed and is silent (No response) otherwise.
• 2. The port mapper communicates with the remote program via
* UDP/IP only .
•
• The procedure returns the port number of the remote program and
• the bytes of results are the results of the remote procedure.
*/

5. PMAPPROC_CALLIT (prog, vers, proc, args) returns (port, results)
unsigned prog;
unsigned vars;
unsigned proc;
string args<>;
unsigned port;
string results<>;

+) Sun Microsystems Release 2.0

0

0

0

0

0

Network File System

Protocol Specification

0

0

0

0

0

0

Contents

1. Introduction
1.1. Remote Procedure Call
1.2. External Data Representation
1.3. Stateless Servers

2. NFS Protocol Definition
2.1. Version 2

2.1.1. Server/Client Relationship
2.1.2. Permission Issues
2.1.3. RPC Information
2.1.4. Sizes
2.1.5. Basic Data Types

2.1.5.1. stat
2.1.5.2. ftype
2.1.5.3. fhandle
2.1.5.4. timeval .. .
2.1.5.5. fat tr .. .

1
1
1
2

3
3

3
4
4
5
6

6
7
7
8
8

2.1.5.6. sattr 9
2.1.5.7. filename ... 9
2.1.5.8. path ... 9
2.1.5.9. attrstat IO
2.1.5.10. diropargs IO
2.1.5.11. diropres IO

2.1.6. Server Procedures 11
2.1.6.1. Do Nothing (Procedure 0, Version 2) 11
2.1.6.2. Get File Attributes (Procedure 1, Version 2) 11
2.1.6.3. Set File Attributes (Procedure 2, Version 2) 12
2.1.6.4. Get Filesystem Root (Procedure 3, Version 2) 12
2.1.6.5. Look Up File Name (Procedure 4, Version 2) 12
2.1.6.6. Read From Symbolic Link (Procedure 5, Version 2) 12
2.1.6.7. Read From File (Procedure 6, Version 2) ... 13
2.1.6.8. Write to Cache (Procedure 7, Version 2) ... 13
2.1.6.9. Write to File (Procedure 8, Version 2) ... 13
2.1.6.10. Create File (Procedure 9, Version 2) .. 14
2.1.6.11. Remove File (Procedure 10, Version 2) ... 14
2.1.6.12. Rename File (Procedure 11, Version 2) ... 14
2.1.6.13. Create Link to File (Procedure 12, Version 2) 14

2.l.6.14. Create Symbolic Link (Procedure 13, Version 2) 15
2.l.6.15. Create Directory (Procedure 14, Version 2)
2.l.6.16. Remove Directory (Procedure 15, Version 2)

15 0 15
2.l.6.17. Read From Directory (Procedure 16, Version 2) 16
2.l.6.18. Get Filesystem Attributes (Procedure 17, Version 2) 16

3. Mount Protocol Definition 18
3.1. Version 1 18

3.1.1. RPC Information .. . 18
3.1.2. Sizes .. . 18
3.1.3. Basic Data Types .. . 19

3.1.3.1. fhandle .. . 19
3.1.3.2. fhstatus 19
3.1.3.3. dirpath .. . 19
3.1.3.4. name 19

3.1.4. Server Procedures .. . 20
3.1.4.1. Do Nothing (Procedure 0, Version 1) 20
3.1.4.2. Add Mount Entry (Procedure 1, Version 1) 20
3.l.4.3. Return Mount Entries (Procedure 2, Version 1) 20
3.l.4.4. Remove Mount Entry (Procedure 3, Version 1) 21
3.l.4.5. Remove All Mount Entries (Procedure 4, Version 1) 21
3.1.4.6. Return Export List (Procedure 5, Version 1) 21

0

0
- II -

0

0

0

1. Introduction

Network File System

Protocol Specification

The Sun Network Filesystem (NFS) protocol provides transparent remote access to shared
filesystems over local area networks. The NFS protocol is designed to be machine, operating sys
tem, network architecture, and transport protocol independent. This independence is achieved
through the use of Remote Procedure Call (RPC) primitives built on top of an eXternal Data
Representation (XDR).

The supporting mount protocol allows the server to hand out remote access privileges to a res
tricted set of clients. Thus, it allows clients to attach a remote directory tree at any point on
some local filesystem.

1.1. Remote Procedure Call

Sun's remote procedure call specification, described in the RPG Programming Guide, provides a
clean, procedure-oriented interface to remote services. Each server supplies a program that is a
set of procedures. The combination of host address, program number, and procedure number
specifies one remote service procedure.

RPC is a high-level protocol built on top of low-level transport protocols. It does not depend on
services provided by specific protocols, so it can be used easily with any underlying transport
protocol. Currently the only supported transport protocol is UDP /IP.

The RPC protocol includes a slot for authentication parameters on every call. The contents of
the authentication parameters are determined by the "flavor" (type) of authentication used by
the server and client. A server may support several different flavors of authentication at once:
AUTH_NONE passes no authentication information (this is called null authentication);
AUTH_UNIX passes the UNIXt uid, gid, and groups with each call.

Servers have been known to change over time, and so can the protocol that they use. So RPC
provides a version number with each RPC request. Thus, one server can service requests for
several different versions of the protocol at the same time.

1.2. External Data Representation

Sun's external data representation specification, described in the XDR Protocol Specificatiori,
provides a common way of representing a set of data types over a network. This takes care of
problems such as different byte ordering on different communicating machines. It also defines

t UNIX is a trademark or Bell Laboratories.

~ ~~ Sun Microsystems Release 2.0

Page 2 NFS Protocol Spec

the size of each data type so that machines with different structure alignment algorithms can
share a common format over the network.

In this document we use the XDR data definition language to specify the parameters and results
of each RPC service procedure that a NFS server provides. The XDR data definition language
reads a lot like C, although a few new constructs have been added. The notation

string name[SIZEJ;
string data<DSIZE>;

defines name, which is a fixed size block of SIZE bytes, and data, which is a variable size block
of up to DSIZE bytes. This same notation is used to indicate fixed length arrays, and arrays
with a variable number of elements up to some maximum.

The discriminated union definition

union switch (enum status)
NFS_OK:

struct {
filename
filename
integer

}
NFS_ERROR:

struct {
errstat
integer

}
default:

struct {}
}

{

filel;
file2;
count;

error;
errno;

means the first thing over the network is an enumeration type called status; if its value is
NFS_OK, the next thing on the network will be the structure containing filel, file2, and
count. If the value of status is neither NFS_OK nor NFS_ERROR, then there is no more data
to look at.

1.3. Stateless Servers

The NFS protocol is stateless. That is, a server does not need to maintain state about any of its
clients in order to function correctly. Stateless servers have a distinct advantage over stateful
servers in the event of a crash. With stateless servers, a client need only retry a request until
the server responds; it does not even need to know that the server has crashed. The client of a
stateful server, on the other hand, needs to detect a server crash and rebuild the server's state
when it comes back up.

This may not sound like an important issue, but it affects the protocol in some strange ways. We
feel that it is worth a bit of extra complexity in the protocol to be able to write very simple
servers that don't need fancy crash recovery.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec Page 3

2. NFS Protocol Definition

The NFS protocol is designed to be operating system independent, but let's face it, it was
designed in a UNIX environment. As such, it has some features which are very UNIXish. When
in doubt about how something should work, a quick look at how it is done on UNIX will probably
put you on the right track.

The protocol definition is given as a set of procedures with arguments and results defined using
XDR. A brief description of the function of each procedure should provide enough information
to allow implementation on most machines. There is a different section provided for each sup
ported version of the protocol. Most of the procedures, and their parameters and results, are
self-explanatory. A few do not fit into the normal UNIX mold, however.

The LOOKUP procedure looks up one component of a pathname at a time. It is not obvious at
first why it does not just take the whole pathname, traipse down the directories, and return a file
handle when it is done. There are two good reasons not to do this. First, pathnames need
separators between the directory components, and different operating systems use different
separators. We could define a Network Standard Pathname Representation, but then every
pathname would have to be parsed and converted at each end. Second, if pathnames were
passed, the server would have to keep track of the mounted filesystems for all of its clients, so
that it could break the pathname at the right point and pass the remainder on to the correct
server.

Another procedure which might seem strange to UNIX people is the READDIR procedure. What
READDIR does is provide a network standard format for representing directories. The same
argument as above could have been used to justify a READDIR procedure that returns only one
directory entry per call. The problem is efficiency. Directories can contain many entries, and a
remote call to return each would just be too slow.

2.1. Version 2

The released version of the NFS protocol is actually the second. Even in the second version,
there are various obsolete procedures and parameters, which will probably be removed in later
versions.

2.1.1. Server/Client Relationship

The NFS protocol is designed to allow servers to be as simple and general as possible. Some
times the simplicity of the server can be a problem, if the client wants to implement complicated
filesystem semantics.

For example, UNIX allows removal of open files. A process can open a file and, while it is open,
remove it from the directory. The file can be read and written as long as the process keeps it
open, even though the file has no name in the filesystem. It is impossible for a stateless server to
implement these semantics. The client can do some tricks like renaming the file on remove, and
only removing it on close. We believe that the server provides enough functionality to imple
ment most filesystem semantics on the client.

Every NFS client can also be a server, and remote and local mounted filesystems can be freely
intermixed. This leads to some interesting problems when a client travels down the directory
tree of a remote filesystem and reaches the mount point on the server for another remote

• Sun Microsystems Release 2.0

Page 4 NFS Protocol Spec

filesystem. Allowing the server to following the second remote mount means it must do loop
detection, server lookup, and user revalidation. Instead, we decided not to let clients cross a
server's mount point. When a client does a LOOKUP on a directory that the server has mounted 0
a filesystem on, the client sees the underlying directory instead of the mounted directory. A
client can do remote mounts that match the server's mount points to maintain the server's view.

2.1.2. Permission Issues

The NFS protocol, strictly speaking, does not define the permission checking used by servers.
However, it is expected that a server will do normal UNIX permission checking using
AUTH_UNIX style authentication as the basis of its protection mechanism. The server gets the
client's effective uid, effective gid and groups on each call, and uses them to check permission.
There are various problems with this method that can been resolved in interesting ways.

Using uid and gid implies that the client and server share the same uid list. Every server and
client pair must have the same mapping from user to uid and from group to gid. Since every
client can also be a server this tends to imply that the whole network shares the same uid/gid
space. This is acceptable for the short term, but a more workable network authentication
method will be necessary before long.

Another problem arises due to the semantics of open. UNIX does its permission checking at open
time and then that the file is open, and has been checked on later read and write requests. With
stateless servers this breaks down, because the server has no idea that the file is open and it
must do permission checking on each read and write call. On a local filesystem, a user can open
a file then change the permissions so that no one is allowed to touch it, but will still be able to
write to the file because it is open. On a remote filesystem, by contrast, the write would fail.
To get around this problem the server's permission checking algorithm should allow the owner of 0
a file to access it no matter what the permissions are set to.

A similar problem has to do with paging in from a file over the network. The UNIX kernel
checks for execute permission before opening a file for demand paging, then reads blocks from
the open file. The file may not have read permission but after it is opened it doesn't matter. An
NFS server can't tell the difference between a normal file read and a demand page-in read. To
make this work the server allows reading of files if the uid given in the call has execute or read
permission on the file.

In UNIX, the user ID zero has access to all files no matter what permission and ownership they
have. This super-user permission is not allowed on the server since anyone who can become
super-user on their workstation could gain access to all remote files. Instead, the server maps
uid O to -2 before doing its access checking. This works as long as the NFS is not used to sup
ply root filesystems, where super-user access cannot be avoided. Eventually setvers will have to
allow some kind of limited super-user access.

2.1.9. RPG Information

Authentication
The NFS service uses AUTH_UNIX style authentication except in the NULL procedure where
AUTH_NONE is also allowed.

Protocols
NFS currently is supported on UDP /IP only.

• Sun Microsystems Release 2.0

0

0

0

0

NFS Protocol Spec Page 5

Constants
These are the RPC constants needed to call the NFS service. They are given in decimal.

PROGRAM
VERSION

Port Number

100003
2

The NFS protocol currently uses the UDP port number 2049. This is a bug in the protocol
and will be changed very shortly.

2.1.,t. Sizes

These are the sizes, given in decimal bytes, of various XDR structures used in the protocol.

MAXDATA 8192
The maximum number of bytes of data in a READ or WRITE request.

MAXP A THLEN 1024
The maximum number of bytes in a pathname argument.

MAXNAMLEN 255
The maximum number of bytes in a file name argument.

COOKIESIZE 4
The size in bytes of the opaque "cookie" passed by READDIR.

FHSIZE 32
The size in bytes of the opaque file handle.

~
\(, Sun Microsystems Release 2.0

Page 6 NFS Protocol Spec

2.1.5. Basic Data Types

The following XDR definitions are basic structures and types used in other structures later on.

£.1.5.1. .tat

typedef enum {

} stat;

NFS_OK = 0,
NFSERR_PERM=l,
NFSERR_NOENT=2,
NFSERR_IO=S,
NFSERR_NXI0=6,
NFSERR_ACCES=l3,
NFSERR_EXIST=l7,
NFSERR_N0DEV=l9,
NFSERR_NOTDIR=20,
NFSERR_ISDIR=21,
NFSERR_FBIG=27,
NFSERR_N0SPC=28,
NFSERR_ROFS=30,
NFSERR_NAMETOOLONG=63,
NFSERR_NOTEMPTY=66,
NFSERR_DQUOT=69,
NFSERR_STALE=70,
NFSERR_WFLUSH=99

The stat type is returned with every procedure's results. A value of NFS_OK indicates that the
call completed successfully and the results are valid. The other values indicate some kind of
error occurred on the server side during the servicing of the procedure. The error values are
derived from UNIX error numbers.

NFSERRYERM
Not owner. The caller does not have correct ownership to perform the requested operation.

NFSERR_NOENT
No such file or directory. The file or directory specified does not exist.

NFSERR_IO
1/0 error. Some sort of hard error occurred when the operation was in progress. This could
be a disk error, for example.

NFSERR_NXIO
No such device or address.

NFSERR_ACCES
Permission denied. The caller does not have the correct permission to perform the requested
operation.

NFSERR__EXIST
File exists. The file specified already exists.

NFSERR_NODEV
No such device.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec Page 7

NFSERR_NOTDIR
Not a directory. The caller specified a non-directory in a directory operation.

NFSERRJSDIR
Is a directory. The caller specified a directory in a non-directory operation.

NFSERR_FBIG
File too large. The operation caused a file to grow beyond the server's limit.

NFSERR_NOSPC
No space left on device. The operation caused the server's filesystem to reach its limit.

NFSERR__ROFS
Read-only filesystem. Write attempted on a read-only filesystem.

NFSERR_NAMETOOLONG
File name too long. The file name in an operation was too long.

NFSERR_NOTEMPTY
Directory not empty. Attempted to remove a directory that was not empty.

NFSERR_DQUOT
Disk quota exceeded. The client's disk quota on the server has been exceeded.

NFSERR_STALE
The fhandle given in the arguments was invalid. That is, the file referred to by that file
handle no longer exists, or access to it has been revoked.

NFSERR_ WFLUSH
The server's write cache used in the WRITECACHE call got flushed to disk.

2.1.5.2. /type

typedef enum {
NFNON = 0,
NFREG = l,
NFDIR = 2,
NFBLK = 3,
NFCIIR = 4,
NFLNK = 5

} ftype;

The enumeration ftype gives the type of a file. The type NFNON indicates a non-file, NFREG is
a regular file, NFDIR is a directory, NFBLK 1s a block-special device, NFCHR is a character
special device, and NFLNK is a symbolic link.

2.1.5.9. /handle

typedef opaque fhandle[FHSIZE];

The !handle is the file handle that the server passes to the client. All file operations are done
using file handles to refer to a file or directory. The file handle can contain whatever informa
tion the server needs to distinguish an individual file.

• Sun Microsystems Release 2.0

Page 8

2.1.5.,l. timeval

typedef struct {
unsigned
unsigned

} timeval;

seconds;
useconds;

NFS Protocol Spec

The timeval structure is the number of seconds and microseconds since midnight January l,
1970 Greenwich Mean Time. It is used to pass time and date information.

2.1.5.5. /attr

typedef struct {
ftype type;
unsigned mode;
unsigned nlink;
unsigned uid;
unsigned gid;
unsigned size;
unsigned blocksize;
unsigned rdev;
unsigned blocks;
unsigned fsid;
unsigned fileid;
timeval atime;
timeval mtime;
timeval ctime;

} fattr;

The fattr structure contains the attributes of a file; type is the type of the file; nlink is the
number of hard links to the file, that is, the number of different names for the same file; uid is
the user identification number of the owner of the file; gid is the group identification number of
the group of the file; size is the size in bytes of the file; blocksize is the size in bytes of a
block of the file; rdev is the device number of the file if it is type NFCHR or NFBLK; blocks is
the number of blocks that the file takes up on disk; fsid is the file system identifier for the
filesystem that contains the file; fi leid is a number that uniquely identifies the file within its
filesystem; atime is the time when the file was last accessed for either read or write; mtime is
the time when the file data was last modified (written); and ctime is the time when the status of
the file was last changed. Writing to the file also changes ctime if the size of the file changes.

Mode is the access mode encoded as a set of bits. The bits are the same as the mode bits
returned by the atat(2) system call in UNIX. Notice that the file type is specified both in the
mode bits and in the file type. This is really a bug in the protocol and should be fixed in future
versions. The descriptions given below specify the bit positions using octal numbers.

0040000 This is a directory. The type field should be NFDIR.

0020000 This is a character special file. The type field should be NFCHR.

0060000 This is a block special file. The type field should be NFBLK.

0100000 This is a regular file. The type field should be NFREG.

0120000 This is a symbolic link file. The type field should be NFLNK.

~
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec

0140000 This is a named socket. The type field should be NFNON.

0004000 Set user id on execution.

0002000 Set group id on execution.

0001000 Save swapped text even after use.

0000400 Read permission for owner.

0000200 Write permission for owner.

0000100 Execute and search permission for owner.

0000040 Read permission for group.

0000020 Write permission for group.

0000010 Execute and search permission for group.

0000004 Read permission for others.

0000002 Write permission for others.

0000001 Execute and search permission for others.

2.1. 5. 6. aattr

typedef struct {
unsigned
unsigned
unsigned
unsigned
timeval
timeval

} sattr;

mode;
uid;
gid;
size;
atime;
mtime;

Page 9

The sattr structure contains the file attributes which can be set from the client. The fields are
the same as for fattr above. A size of zero means the file should be truncated. A value of
-1 indicates a field that should be ignored.

2.1.5. 7. filename

typedef string filename<MAXNAMLEN>;

The type filename is used for passing file names or pathname components.

2.1.5.8. path

typedef string path<MAXPATHLEN>;

The type path is a pathname. The server considers it as a string with no internal structure, but
to the client it is the name of a node in a filesystem tree.

I',, ...
'\,~ Sun Microsystems Release 2.0

Page 10

2.1.5.9. attratat

typedef union switch (stat status) {
NFS_OK:

attributes; fattr
default:

struct {}
} attrstat;

NFS Protocol Spec

The attrstat structure is a common procedure result. It contains a status and, if the call
succeeded, it also contains the attributes of the file on which the operation was done.

2.1.5.10. diroparga

typedef struct {
!handle dir;
filename name;

} diropargs;

The diropargs structure is used in directory operations. The fhandle dir is the directory
in which to find the file name. A directory operation is one in which the directory is affected.

2.1.5.11. diroprea

typedef union switch (stat status) {
NFS_OK:

struct {
!handle file;
fattr attributes;

}
default:

struct {}
} diropres;

The results of a directory operation are returned in a diropres structure. If the call succeeded
a new file handle file and the attributes associated with that file are returned along with
the status.

+ Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec Page n

2.1. 6. Server Procedures

The following sections define the RPC procedures supplied by a NFS server. The RPC pro
cedure number and version are given in the header, along with the name of the prodedure. The
synopsis of prodecures has this format:

<proc #>. <proc name> (<arguments>) returns (<results>)
<argument declarations>
<results declarations>

In the first line, proc name is the name of the procedure, argument. is a list of the names of the
arguments, and rewlta is a list of the names of the results. The second and third lines give the
XDR argument declaration• and reaulta declaration•. Afterwards, there is a description of what
the procedure is expected to do, and how its arguments and results are used. H there are bugs
or problems with the procedure, they are listed at the end.

All of the procedures in the NFS protocol are assumed to be synchronous. When a procedure
returns to the client, the client can assume that the operation has completed and any data asso
ciated with the request is now on stable storage. For example, a client WRITE request may
cause the server to update data blocks, filesystem information blocks (such as indirect blocks in
UNIX), and file attribute information (size and modify times). When the WRITE returns to the
client, it can assume that the write is safe, even in case of a server crash, and it can discard the
data written. This is a very important part of the statelessness of the server. H the server
waited to flush data from remote requests the client would have to save those requests so that it
could resend them in case of a server crash.

/J.1.6.1. Do Nothing {Procedure O, Veraion !J)

0. NFSPROC_NULL () returns ()

This procedure does no work. It is made available in all RPC services to allow server response
testing and timing.

IJ.1.6./J. Get File Attribute• {Procedure 1, Veraion !J)

l. NFSPROC_GETATTR (file) returns (reply)
fhandle file;
attrstat reply;

H reply. status is NFS_OK then reply. attributes contains the attributes for the file
given by file.

Bugs: the rdev field in the attributes structure is a UNIX device specifier. It should be removed
or generalized.

~
\~ Sun Microsystems Release 2.0

Page 12

2.1.6.9. Set File Attributes {Procedure 2, Version 2)

2. NFSPROC_SETATTR (file, attributes) returns (reply)
fhandle file;
sattr attributes;
attrstat reply;

NFS Protocol Spec

The attributes argument contains fields which are either -1 or are the new value for the
attributes of file. If reply. status is NFS_OK then reply. attributes has the attributes
of the file after the setattr operation has completed.

Bugs: the use of -1 to indicate an unused field in attributes is wrong.

2.1.6 . .J. Get Filesystem Root {Procedure 9, Version 2}

3. NFSPROC_ROOT () returns ()

Obsolete. This procedure is no longer used because finding the root file handle of a filesystem
requires moving pathnames between client and server. To do this right we would have to define
a network standard representation of pathnames. Instead, the function of looking up the root
file handle is done by the MNTPROC_MNT procedure (see section entitled Mount Protocol
Definition for details).

2.1.6.5. Look Up File Name (Procedure .J, Version 2}

4. NFSPROC_LOOKUP (which) returns (reply)
diropargs which;
diropres reply;

If reply .status is NFS_OK then reply. file and reply. attributes are the file handle
and attributes for the file which.name in the directory given by which.dir.

Bugs: there is some question as to what is the correct reply to a LOOKUP request when
which. name is a mount point on the server for a remote mounted filesystem. Currently, we
return the fhandle of the underlying directory. This is not completely acceptable, as the
clients see a different view of the filesystem than the server does.

2.1.6.6. Read From Symbolic Link {Procedure 5, Version 2}

5. NFSPROC_READLINK (file) returns (reply)
fhandle file;
union switch (stat status) {

NFS_OK:
path data;

default:
struct {}

} reply;

If status has the value NFS_OK then reply. data is the data in the symbolic link given by
file.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec

e.1.6. 7. Read From File {Procedure 6, Veraion e)

6. NFSPROC_REAO (file, offset, count, totalcount) returns (reply)
fhandle file;
unsigned offset;
unsigned count;
unsigned totalcount;
union switch (stat status) {

NFS_OK:
fattr attributes;
string data<MAXDATA>;

default:
struct {}

} reply;

Page 13

Returns up to count bytes of data from the file given by file, starting at offset bytes irom
the beginning of the file. The first byte of the file is at offset zero. The file attributes after the
read takes place are returned in attributes.

Bugs: the argument totalcount is unused, and should be removed.

f!.1.6.8. Write to Cache {Procedure 7, Version f!}

7. NFSPROC_WRITECACHE () returns ()

Obsolete.

f!.1.6.9. Write to File {Procedure 8, Version f!}

8. NFSPROC_WRITE (file,beginoffset,offset,totalcount,data) returns (reply)
fhandle file;
unsigned beginoffset;
unsigned offset;
unsigned totalcount;
string data<MAXDATA>;
attrstat reply;

Writes data beginning offset bytes from the beginning of file. The first byte of the file is
at offset zero. If reply. status is NES_OK then reply. attributes contains the attributes
of the file after the write has completed. The write operation is atomic. Data from this WRITE
will not be mixed with data from another client's WRITE.

Bugs: the arguments begino ff set and total count are ignored and should be removed.

~ ~4' Sun Microsystems Release 2.0

Page 14

f!.1.6.10. Create File (Procedure 9, Veraion f!}

9. NFSPROC_CREATE (where, attributes) returns (dir)
diropargs
sattr
diropres

where;
attributes;
dir;

NFS Protocol Spec

The file where. name is created in the directory given by where. dir. The initial attributes of
the new file are given by attributes. A reply.status of NFS_OK indicates that the file
was created and reply. file and reply. attributes are its file handle and attributes. Any
other reply. status means that the operation failed and no file was created.

Bugs: this routine should pass an exclusive create flag meaning, create the file only if it is not
already there.

f!.1.6.11. Remove File {Procedure 10, Version f!}

10. NFSPROC_REMOTE (which) returns (status)
diropargs which;
stat status;

The file which. name is removed from the directory given by which. dir. A status of
NFS_OK means the directory entry was removed.

f!.1.6.12. Rename File {Procedure 11, Veraion f!}

11. NFSPROC_RENAME (from, to) returns (status)
diropargs from;
diropargs to;
stat status;

The existing file from. name in the directory given by from. dir is renamed to to. name in
the directory given by to. dir. H status is NFS_OK the file was renamed. The RENAME
operation is atomic on the server; it cannot be interrupted in the middle.

f!.1.6.19. Create Link to File {Procedure 12, Version f!}

12. NFSPROC_LINK (from, to) returns (status)
fhandle from;
diropargs to;
stat status;

Creates the file to. name in the directory given by to. dir, which is a hard link to the existing
file given by from. If the return value of status is NFS_OK a link was created. Any other
return value indicates an error and the link is not created.

A hard link should have the property that changes to either of the linked files are reflected in
both files. When a hard link is made to a file, the attributes for the file should have a value for
nlink which is one greater than the value before the link.

11.' ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec

2.1.6.1,1. Create Symbolic Link {Procedure 19, Veraion 2}

13. NFSPROC_SYMLINK (from, to, attributes) returns (status)
diropargs from;
path to;
sattr
stat

attributes;
status;

Page 15

Creates the file from. name with ftype NFLNK in the directory given by from. dir. The new
file contains the pathname to and has initial attributes given by attributes. If the return
value of status is NFS_OK a link was created. Any other return value indicates an error and
the link is not created.

A symbolic link is a pointer to another file. The name given in to is not interpreted by the
server, just stored in the newly created file. A READLINK operation returns the data to the
client for interpretation.

Bugs: on UNIX servers the attributes are never used, smce symbolic links always have mode
0777.

2.1.6.15. Create Directory {Procedure LJ, Veraion 2}

14. NFSPROC_MKDIR (where, attributes) returns (reply)
diropargs
sattr
diropres

where;
attributes;
reply;

The new directory where. name is created in the directory given by where. dir. The initial
attributes of the new directory are given by attributes. A reply.status of NFS_OK indi
cates that the new directory was created and reply. file and reply. attributes are its file
handle and attributes. Any other reply. status means that the operation failed and no direc
tory was created.

2.1.6.16. Remove Directory {Procedure 15, Veraion 2)

15. NFSPROC_RMDIR (which) returns (status)
diropargs which;
stat status;

The existing, empty directory which. name in the directory given by which. dir is removed.
If status is NFS_OK the directory was removed.

• Sun Microsystems Release 2.0

Page 16 NFS Protocol Spec

2.1.6.17. Read From Directory (Procedure 16, Veraion 2}

16. NFSPROC_REJ\DDIR (dir, cookie, count) returns (entries)
fhandle dir;
opaque cookie[COOKIESIZE];
unsigned count;
union switch (stat status) {

NFS_OK:
typedef union switch (boolean valid) {

TRUE:
struct {

unsigned
filename

}
FALSE:

opaque
entry

struct {}
} entry;
boolean eo f;

default:
} entries;

fileid;
name;
cookie[COOKIESIZE];
nextentry;

Returns a variable number of directory entries, with a total size of up to count bytes, from the
directory given by dir. Each entry contains a fileid which is a unique number to identify
the file within a filesystem, the name of the file, and a cookie which is an opaque pointer to the
next entry in the directory. The cookie is used in the next READDIR call to get more entries
starting at a given point in the directory. The special cookie zero (all bits zero) can be used to
get the entries starting at the beginning of the directory. The fileid field should be the same
number as the fileid in the the attributes of the file (see the section entitled fattr under Baaic
Data Type•). The eo f flag has a value of TRUE if there are no more entries in the directory;
valid is used to mark the end of the entries. If the returned value of status is NFS_OK then
it is followed by a variable number of entries.

2.1.6.18. Get Fileayatem Attribute• (Procedure 17, Veraion 2)

17. NFSPROC_STATFS {file) returns (reply)
fhandle file;
union switch (stat status) {

NFS_OK:
struct {

unsigned
unsigned
unsigned
unsigned
unsigned

} fsattr;
default:

struct {}
} reply;

tsize;
bsize;
blocks;
bfree;
bavail;

If reply. status is NFS_OK then reply. fsattr gives the attributes for the filesystem that
contains file. The attribute fields contain the following values:

~) Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec Page 17

tsize The optimum transfer size of the server in bytes. This is the number of bytes the
server would like to have in the data part of READ and WRITE requests.

bsize The block size in bytes of the filesystem.

blocks The total number of bsize blocks on the filesystem.

bfree The number of free bsize blocks on the filesystem.

bavail The number of bsize blocks available to non-privileged users.

Bugs: this call does not work well if a filesystem has variable size blocks.

• Sun Microsystems Release 2.0

Page 18 NFS Protocol Spec

3. Mount Protocol Definition

The mount protocol is separate from, but related to, the NFS protocol. It provides all or the
operating system specific services to get the. NFS off the ground - looking up path names, vali
dating user identity, and checking access permissions. Clients use the mount protocol to get the
first file handle, which allows them entry into a remote filesystem.

The mount protocol is kept separate from the NFS protocol to make it easy to plug in new
access checking and validation methods without changing the NFS server protocol.

Notice that the protocol definition implies stateful servers because the server maintains a list of
client's mount requests. The mount list information is not critical for the correct functioning of
either the client or the server. It is intented for advisory use only, for example, to warn possible
clients when a server is going down.

3.1. Version 1

Version one of the mount protocol communicates with the version two of the NFS protocol. The
only connecting point is the fhandle structure, which is the same for both protocols.

3.1.1. RPG Information

Authentication
The mount service uses AUTH_UNIX style authentication only.

Protocols
The mount service is currently supported on UDP /IP only.

Constants
These are the RPC constants needed to call the MOUNT service. They are given in
decimal.

PROGRAM 100005
VERSION 1

Port Number
Consult the server's portmapper, described in the RPG Protocol Specification, to find which
port number the mount service is registered on.

3.1. 2. Sizes

These are the sizes given in decimal bytes of various XDR structures used in the protocol.

MNTPATHLEN 1024
The maximum number or bytes in a pathname argument.

MNTNAMLEN 255
The maximum number or bytes in a name argument.

FHSIZE 32
The size in bytes of the opaque file handle.

~
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

NFS Protocol Spec Page 19

3.1.3. Basic Data Types

9.1.9.1. /handle

typedef opaque fhandle[FHSIZEJ;

The fhandle is the file handle that the server passes to the client. All file operations are done
using file handles to refer to a file or directory. The file handle can contain whatever informa
tion the server needs to distinguish an individual file.

This is the same as the fhandle XDR definition in version 2 of the NFS protocol; see the sec
tion on fhandle under Baaic Data Typea.

9.1.9.2. fhstatua

typedef union switch (unsigned status) {
0:

}

fhandle directory;
default:

struct {}

If a status of zero is returned, the call completed successfully, and a file handle for the
directory follows. A non-zero status indicates some sort of error. In this case the status is a
UNIX error number.

9.1.9.9. dirpath

typedef string dirpath<MNTPATHLEN>;

The type dirpath is a normal UNIX pathname of a directory.

9.1.9.,l. name

typedef string name<MNTNAMLEN>;

The type name is an arbitrary string used for various names.

~ ~~ Sun Microsystems Release 2.0

Page 20 NFS Protocol Spec

s.1..4. Server Procedures

The following sections define the RPC procedures supplied by a mount server. The RPC pro- 0
cedure number and version are given in the header, along with the name of the procedure. The
synopsis of procedures has this format:

<proc #>. <proc name> (<arguments>) returns (<results>)
<argument declarations>
<results declarations>

In the first line, proc name is the name of the procedure, argumenta is a list of the names of the
arguments, and reau/ta is a list of the names of the results. The second and third lines give the
XOR argument declaration, and reaulta declaration,. Afterwards, there is a description of what
the procedure is expected to do, and how its arguments and results are used. If there are bugs
or problems with the procedure, they are listed at the end.

9.1.4-1. Do Nothing (Procedure O, Veraion 1)

0. MNTPROC_NULL () returns ()

This procedure does no work. It is made available in all RPC services to allow server response
testing and timing.

9.1.,1.2. Add Mount Entry (Procedure 1, Veraion 1)

1. MNTPROC_MNT (directory) returns (reply)
dirpath dirname;
fhstatus reply;

If reply. status is 0, reply. directory contains the file handle for the directory dirname.
This file handle may be used in the NFS protocol. This procedure also adds a new entry to the
mount list for this client mounting dirname.

9.1.,1.9. Return Mount Entriea {Procedure 2, Veraion 1)

2. MNTPROC_OUMP () returns (mountlist)
union switch (boolean more_entries) {

TRUE:
struct {

}
FALSE:

name
dirpath
mount list

struct {}
} mountlist;

hostname;
directory;
nextentry;

Returns the list of remote mounted filesystems. The mountlist contains one entry for each
hostname and directory pair.

~
\~ Sun Microsystems Release 2.0

0

0

0

/""\ u

0

NFS Protocol Spec

9.1 . .J..J. Remove Mount Entry {Procedure S, Version 1)

3. MNTPROC_UMNT (directory) returns ()
dirpath directory;

Removes the mount list entry for directory.

9.1 . .J.5. Remove All Mount Entries {Procedure 4, Version 1)

4. MNTPROC_UMNTALL () returns ()

Removes all of the mount list entries for this client.

9.1..J.6. Return Export Liat {Procedure 5, Version 1}

5. MNTPROC_EXPORT () returns (exportlist)
union switch (boolean more_entries) {

TRUE:
struct {

}
FALSE:

dirpath filesys;
typedef union switch (boolean more_groups) {

TRUE:
struct {

}
FALSE:

naine grname;
groups nextgroup;

struct {}
} groups;
mount list nextentry;

struct {}
} export list;

Page 21

Returns in export list a variable number of export list entries. Each entry contains a filesys
tem name and a list of groups that are allowed to import it. - The filesystem name is in
export list. filesys, and the group name is in export list. groups. grname.

Bugs: the exportlist should contain more information about the status of the filesystem, such as a
read-only flag.

~, Sun Microsystems Release 2.0

o'
' i

0

0

0
Index

A filename, 9
atime, 8 from, 14
attributes, 10, 12, 13, 14, 15, 15 from.dir, 14, 15
attrstat, 10 from.name, 14, 15
AUTlLNONE, 1, 4 fsid, 8
AUTH_UNIX, l, 4, 4, 18 ftype, 7

B G
beginoffset, 13 gid, 8
blocks, 8
blocksize, 8 H

hostname, 20
C

cookie, 16 L
COOKIESJZE, 5 LOOKUP, 3, 4
count, 2, 13, 16
ctime, 8 M

0
MAXDATA, 5

D MAXNAMLEN, 5
data, 2, 13, 13 MAXPATHLEN, 5
dir, 10, 16 MNTNAMLEN, 18
directory, 19, 20, 21 MNTPATHLEN, 18
dirname, 20, 20 MNTPROC....DUMP, ZO
diropargs, 10 MNTPROC_EXPORT, 21
diropres, 10 MNTPROC_MNT, 20, 12
dirpath, 19, 19 MNTPROCJWLL, ZO
DSIZE, 2 MNTPROC_UMNT, Zl

MNTPROC_UMNTALL, Zl
E Mode, 8

entries, 16 mountlist, 20
entry, 16 mtime, 8
eof, 16
exportlist, 21 N
exportlist.filesys, 21 name, 19, 2, 10, 16, 19
exportlist.groups.grname, 21 NFBLK, 7, 8

NFCHR, 7,8
F NFDIR, 7, 8

fattr, 8 NFLNK, 7, 8, 15
fhandle, 7, 7, 18, 19 NFNON, 7,9
FHSIZE, 5, 18 NFREG, 7,8
fhstatus, 19 NFS_ERROR, 2
file, 10, 11, 12, 12, 13, 13, 16 NFS_OK, 2, 6
filel, 2 NFSERR..ACCES, 11

0
file2, 2 NFSERR....DQUOT, 7
fileid, 8, 16, 16 NFSERR_EXJST, 11

-i-

NFSERRJ'BIG, 7
NFSERRJO, II
NFSERRJSDIR, 7
NFSERR_NAMETOOLONG, 7
NFSERR_NODEV,11
NFSERR_NOENT, II
NFSERR_NOSPC, 7
NFSERR_NOTDIR, 7
NFSERR_NOTEMPTY,7
NFSERR_NXIO, II
NFSERR..PERM, II
NFSERR_ROFS, 7
NFSERR_STALE, 7
NFSERR_\VFLUSH,7
NFSPROC_CREA TE, 14
NFSPROC_GETATTR, 11
NFSPROCJ,INK, 14
NFSPROCJ,OOKUP, 1Z
NFSPROC...MKDIR, 15
NFSPROC_NULL, 11
NFSPROC_READ, 13
NFSPROC_READDIR, 111
NFSPROC_READLINK, 12
NFSPROC_REMOVE, 14
NFSPROC_RENAME, 14
NFSPROC_RMDIR, 15
NFSPROC_ROOT, 12
NFSPROC_SETATTR, 12
NFSPROC_STATFS, 111
NFSPROC..SYMLINK, 15
NFSPROC_ WRITE, 13
NFSPROC_ WRITECACHE, 13
nlink, 8, 14
NULL, 4

0
offset, 13, 13

p
path, II

R
rdev, 8, 11
READDIR, 3, 5
reply .attributes, 11, 13, 14, 15
reply .data, 12
reply.directory, 20
reply.file, 14, 15
reply.fsattr, 16
reply.status, 11, 13, 14, 14, 15, 15, 16, 20

s
sattr, II
SIZE, 2, 8

- ii -

stat, II
status, 2, 10, 10, 12, 14, 14, 14, 15, 15, 16, 19

T
timeval, 8
to, 15
to.dir, 14, 14
to.name, 14, 14
totalcount, 13, 13
type, 8

u
uid, 8

V
valid, 16

w
where.dir, 14, 15
where.name, 14, 15
which.dir, 12, 14, 15
which.name, 12, 14, 15
WRITECACHE, 7

0

0

0

0

0

0

Yellow Pages

Protocol Specification

0

0

0

0

0

0

Contents

1. Introduction and Terminology .
1.1. RPC - Remote Procedure Call.
1.2. XDR - External Data Representation

2. YP Data Base Servers .. .
2.1. Maps and Operations on Maps

2.1.l. Map Structure
2.1.2. YP Private Key Symbols
2.1.3. Match Operation
2.1.4. Map Entry Enumeration Operations ...
2.1.5. Map Update

2.2. Master and Slave YP Data Base Servers .. .
2.3. Map Propagation, and Consistency

2.3.1. Functions to Aid in Map Propagation
2.3.2. Map Transfer Mechanism

2.4. Domains
2.5. Non-features

2.5.l. Map Update Within the YP .
2.5.2. Version Commitment Across Multiple Requests
2.5.3. Guaranteed Global Consistency
2.5.4. Access Control

2.6. YP Data Base Server Protocol Definition .. .
2.6.l. RPC Constants .. .
2.6.2. Other Manifest Constants .. .
2.6.3. Remote Procedure Return Values
2.6.4. Basic Data Structures

1
I
2

3
3
3
3
3
3
4
4
4
5
5
5
6
6
6
6
6
6
6

7
7
7

2.6.5. YP Data Base Server Remote Procedures .. IO
2.6.5.1. Do Nothing (Procedure O, Version I).. IO
2.6.5.2. Do You Serve This Domain? (Procedure I, Version 1) IO
2.6.5.3. Answer Only If You Serve This Domain (Procedure 2,

Version I)... IO
2.6.5.4. Return Value of a Key (Procedure 3, Version I) IO
2.6.5.5. Get First Key-Value Pair in Map (Procedure 4, Version

I) II
2.6.5.6. Get Next Key-Value Pair in Map (Procedure 5, Version

I) II
2.6.5.7. Return Map Parameters (Procedure 6, Version I)..................... II

-1-

2.6.5.8. Tell Peers About New Map (Procedure 7, Version 1)
2.6.5.9. Get Latest Version of Map (Procedure 8, Version 1)
2.6.5.10. Get New Map Version From Here (Procedure 9,

11
12 0

Version 1) 12

3. YP Binders 13
3.1. Introduction 13
3.2. YP Binder Protocol Definition 13

3.2.1. RPC Constants 13
3.2.2. Other Manifest Constants 14
3.2.3. Basic Data Structures 14
3.2.4. YP Binder Remote Procedures .. . 16

3.2.4.1. Do Nothing (Procedure 0, Version 1) 16
3.2.4.2. Get Current Binding for a Domain (Procedure 1,

Version 1) 16
3.2.4.3. Set Domain Binding (Procedure 2, Version 1) 16

0

0
- ii -

0

0

0

Yellow Pages

Protocol Specification

1. Introduction and Terminology

The Yellow Pages (YP), Sun's distributed lookup service, is a network service providing read
access to a replicated database. The lookup service is provided by a set of YP database servers,
which communicate among themselves to keep their databases consistent. The client interface
to this service uses the Remote Procedure Call (RPC) mechanism.

Translating or mapping a name to its value is one of the most common operations performed in
computer systems. Common examples are the translation of a variable name to a virtual
memory address, the translation of a user name to a system ID or list of capabilities, and the
translation of a network node name to an internet address. There are two fundamental read
only operations that can be performed on a map: matching and enumeration. Match means to
look up a name (which we call a key) and return its current value. Enumerate means to return
each key-value pair in turn.

The YP supplies matching and enumeration operations in a network environment, in which high
availability and reliability are required. It provides that availability and reliability by replicating
both databases and database servers on multiple nodes within a single local net, and within the
internet. The database is replicated, but not distributed: all changes are made at a single server
and eventually propagate to the remaining servers without locking. The YP is appropriate for
an environment in which changes to the mapping databases occur on the order of tens per day.

The YP operates on an arbitrary number of map databases. Map names provide the lower of
two levels of a naming hierarchy. Maps are themselves grouped into named sets, called
domains. Domain names provides a second, higher level of naming. Map names must be unique
within a domain, but may be duplicated in different domains. The YP client interface requires
that both a map name and a domain name be supplied to perform match and enumeration
operations.

The YP achieves high availability by replication. One area not addressed by the protocol which
has to be addressed by the implementors is global consistency among the replicated copies of the
database. Every implementation should be designed so that at steady state a request yields the
same result when it is made of any YP database server. Update and update-propagation
mechanisms must be implemented to supply the required degree of consistency.

1.1. RPC - Remote Procedure Call

Sun's Remote Procedure Call (RPC) mechanism defines a paradigm for interprocess communica
tion modeled on function calls. Clients call functions that optionally return values. All inputs
and outputs to the functions are in the client's address space. The function is executed by a
server program.

~ \?, Sun Microsystems Release 2.0

Page 2 YP Protocol Spec

Using RPC, clients address servers by a program number (this identifies the application level
protocol that the server speaks), and a version number. Additionally, each server procedure has Q,.

a procedure number assigned to it.

In an internet environment, a client must also know the server's host internet address, and the
server's rendezvous port. The server listens for service requests at ports that are associated with
a particular transport protocol - TCP /IP and/or UDP /IP.

The format of the data structures used as inputs to and outputs from the remotely-executed pro
cedures are typically defined by header files that are included when the client interface functions
are compiled. Levels above the client interface package need not know any particulars of the
RPC interface to the server.

1.2. XOR - External Data Representation

The Sun External Data Representation (XOR) specification establishes standard representations
for basic data types (such as strings, signed and unsigned integers, and structures and unions) in
a way that allows them to be transferred among machines with varying architectures. XOR pro
vides primitives to encode (that is, translate from the local host's representation to the standard
representation) and decode (translate from the standard representation to the local host's
representation) basic data types. Constructor primitives allow arbitrarily complex data types to
be made from the basic types.

The YP's RPC input and output data structures are described using XDR's data description
language. In general, the data description language looks like the C language, with a few extra
constructs. One such extra construct is the diacriminated union. This is like a C language
union, in that it can hold various objects, but differs from it in that a discriminant indicates 0·
which object it currently holds. The discriminant is the first thing across the wire. Consider a
simple example:

union switch (long int) {
1:

}

string exmpl_name<16>
0:

unsigned int exmpl_error_code
default:

struct {}

The example should be interpreted as follows: the first object to be encoded/decoded (that is,
the discriminant) is a long integer. If it has the value one, the next object is a string. If the
discriminant has the value zero, the next object is an unsigned integer. If the discriminant takes
any other value, don't encode or decode any more data.

A atring data type in the XOR data definition language adds the ability to specify the maximum
number of elements in an byte array or string of potentially variable size. For instance:

string domain<YPMAXDOMAIN>;

states that the byte sequence domain may be less than or equal to YPMAXDOMAIN bytes long.

An additional primitive data type is a boolean, which takes the value one to mean TRUE and
zero to mean FALSE.

~~ . ~~ Sun Microsystems Release 2.0

0

0

0

0

YP Protocol Spec Page 3

2. YP Data Base Servers

2.1. Maps and Operations on Maps

2.1.1. Map Structure

Maps are named sets of key-value pairs. The keys and their values are counted binary objects.
The keys and their values may be ASCII information, but they need not be. The data compris
ing a map is determined by the client applications that are the final customers for the data, not
by the YP. The YP has no syntactic nor semantic knowledge or the map contents. Neither does
the YP determine or know any map's name. Map names are managed by the YP's clients.
Conflict in the map namespace must be resolved by human administrators outside the YP sys
tem.

Typical implementations for YP maps are files or DBMS systems. The design or the YP's map
database is an implementation detail, and is unspecified by the protocol.

2.1.2. YP Private Key Symbols

It is useful to be able to embed key-value pairs that may be used by the YP subsystem itself, or
by human administrators or administration programs within all maps. Keys beginning with YP _
may be conventionally used to embed out-of-band information within a map, and should be con
sidered to be YP-private. The client interface to the YP's enumeration functions should be
implemented to filter out YP-private keys. Client programs should not see them; they won't
know what to do with them, and client parsers should not be forced to do the filtration.

A unfiltered interface to the YP enumeration functions may also be supplied for programs that
need to see YP-private keys. Alternatively, it could be assumed that any client that needs to see
a YP-private key knows the name or that key. H that assumption is made, the YP match opera
tion is sufficient, and no unfiltered flavor of the YP enumeration operations needs to be supplied.

The price paid for the ability to imbed administrative information within maps is that the key
namespace is reduced.

2.1.S. Match Operation

The YP supports an exact match operation in the YPPROC_MATCH procedure. That is, ii a
match string and some key in the map are exactly the same, the value or the key is returned.
No pattern matching, case conversion, or wildcarding is supported.

2.1.,t. Map Entry Enumeration Operations

The two operations which exist to enumerate the entries or a map are a "get first key-value
pair" operation (the YPPROC_FIRST procedure), and a "get next key-value pair" operation (the
YPPROC_NEXT procedure). If "get first" is called once, and then "get next" is called until the
return value indicates that there are no more entries in the map, each entry in the map will be

~ ~~ Sun Microsystems Release 2.0

Page 4 YP Protocol Spec

seen exactly once. Further, if the same sequence of calls is made again on the same map at the
same YP database server, the order in which the entries will be seen is the same.

The actual ordering function is unspecified, and may not be assumed. It also may not be
assumed that enumerating a map at a different YP database server will return the entries in the
same order, whether that server represents the same implementation or not.

2.1.5. Map Update

The update of YP maps is an implementation detail which is outside the specification of the YP
service.

2.2. Master and Slave YP Data Base Servers

The protocols assume that for each map there is one distinguished YP database server, called the
map's ma.ter. Map updates take place only on the master. An updated map should be
transferred from the master to the rest of the YP database servers, which are a/ave servers for
this map.

It is possible for each map to have a different YP database server as its master, or for all maps to
have the same master, or any other combination. The choice of how to set up map masters is
one of implementation and administrative policy.

2.3. Map Propagation, and Consistency

Getting map updates from the master to the slaves is called map propagation. Neither technol
ogy nor algorithms for map propagation are specified by the protocol. Map propagation may be
entirely manual: for instance, a person could copy the maps from the master to the slaves at a
regular interval, or when a change is made on the master. This is unnecessarily labor intensive.
There are hooks within the protocol for automatic convergence. The procedures designed for
server-to-server communications are described in the next section.

In order to escape from the idiosyncrasies of any particular implementation, all maps should be
uniformly timestamped internally. An internal timestamp allows the map to be copied to or
reconstructed at any number of nodes, without the time format, local clock time, or file creation
or modification algorithms at that site having any effect on the map's version.

The timestamp should be created at the site where the map was created, or was last modified.
The timestamp is out-of-band data, as far as the applications using the map are concerned, and
should be associated with the YP-private key YP _LAST_MODIFIED. Its value should be an
ASCII numeric sequence representing the time the map was created or last modified as the
number of seconds since January 1, 1970 (GMT). The ASCII numeric sequence may be zero
padded to the left, up to a total length of ten characters. Each YP database server can read the
YP _LAST_MODIF !ED entry from each map it serves, and compare it with the version its peers
have.

The intent is for a slave to try to get the current copy from the master. If the master is
unreachable, the subnet can still converge at the highest available order number. The slaves
communicate among themselves to guarantee that all agree on the current version.

,.,
\~ Sun Microsystems Release 2.0

I o!

0

0

0

0

0

YP Protocol Spec Page 5

2.9.1. Functions to Aid in Map Propagation

Any YP database server can communicate with any other. Any server may call
YPPROC_MATCH, YPPROC_FIRST, or YPPROC_NEXT in a second server, in which case the first
server is a client of the second. The protocol also has four functions that exist to help servers
converge on a single version of a map.

YPPROC_GET is called by a master server in a peer slave server. It tells the slave server to get a
new version of a map from the master.

YPPROC_PUSH is called by an administrative program in a master. It tells the master to notice
that a new version of the map exists, and tell the peer slaves to get the new version.

YPPROC_PULL is called by an administrative program in a slave. It tells the slave to get a new
version of a map.

YPPROC_POLL can be called either by a server or by an administrative program in any server.
It is called to find out what the server's current map version is, and which server it thinks is the
map's master.

2.9.2. Map Transfer Mechanism

The way a map is transferred from one server to another is not specified by the protocol. One
possibility is the manual process described above. Another might be that a YP database server
could activate some other process that would exist only to do the map transfer. A third might
be for a server to enumerate the more recent version of the map, by using the normal client map
enumeration functions.

If the enumeration method is used, it will take several functions to transfer the whole map, and
the map version may change at the supplying site. A version change over the lifetime of the
transfer can be detected by the consumer server if the consumer brackets the enumeration with
calls to the YPPROC_POLL procedure in the supplier.

2.4. Domains

Domain provide a second level for naming within the YP subsystem. They are names for sets of
maps, therefore create separate map name spaces. Domains provide an opportunity to break
large organizations up into administerable chunks, and the ability to create parallel, non
interfering test and production environments.

Ideally, the domain of interest to a client ought to be associated with the invoking user, but in
practice it is useful for client machines to be in a default domain. Implementations of the YP
client interface should supply some mechanism for telling processes the domain name they should
use. This is needed not only because the concept of domain is a useless one as far as most pro
grams are concerned, but, more importantly, so that programs can be written that are insensi
tive to both location and the invoking user.

Information logically associated with all domains (or to no domain) can be held in a domain that
is really a meta-domain. This domain may have a well-known name, so that information within
it can be accessed regardless of the machine's default domain, or of the domain of the invoking
user.

~, Sun Microsystems Release 2.0

Page 6 YP Protocol Spec

2.5. Non-features

The following capabilities are not included in the current YP protocols:

2.5.1. Map Update Within the YP

All write (and delete) access to the YP's map database is assumed to be outside of the YP sub
system. It is probable that write access to the map database will be included in later versions of
the YP protocols.

2.5.2. Version Commitment Across Multiple Requests

The YP protocol was designed to keep the YP database server stateless with regard to its clients.
Therefore, there is no facility for contracting with a server to preallocate any resource beyond
that required to service any single request. In particular, there is no way to get a server to com
mit to use a single version of a map while trying to enumerate that map's entries.

2. 5.3. Guaranteed Global Consistency

There is no facility for locking maps during the update or propagation phases, therefore it is vir
tually guaranteed that the map database be globally inconsistent during those phases. The set of
client applications for which the YP is an appropriate lookup service is one that (by definition)
must be tolerant of transient inconsistencies.

2.5.,t. Access Control

The YP database servers make no attempt to restrict access to the map data by any means. All
syntactically correct requests are serviced.

2.6. YP Data Base Server Protocol Definition

This section describes version 1 of the protocol. It is likely that changes will be made to succes
sive versions as the service matures.

2.6.1. RPG Constants

All numbers are in decimal.

YPPROG 100004
The YP database server protocol program number.

YPVERS 1
The current YP protocol version.

,. ...
lb.,.~ Sun Microsystems Release 2.0

0

0

0

0

0

0

YP Protocol Spec

2.6.2. Other Manifest Constants

All numbers are in decimal.

YPMAXRECORD 1024

Page 7

The total maximum size of key and value for any pair. The absolute sizes of the key and
value may divide this maximum arbitrarily.

YPMAXDOMAIN 64
The maximum number of characters in a domain name.

YPMAXMAP 64
The maximum number of characters in a map name.

YPMAXPEER 256
The maximum number of characters in a YP server host name.

2.6.3. Remote Procedure Return Values

This section presents the return status values returned by several of the YP remote procedures.
All numbers are in decimal.

typedef enum {
YP_TRUE = 1, ;• General purpose success code. •;
YP_NOMORE = 2, ;• No more entries in map. •;
YP_FALSE = 0, ;• General purpose failure code.*/
YP_NOMAP = -1, ;• No such map in domain.*/
YP_NODOM = -2, ;• Domain not supported.*/
YP_NOKEY = -3, ;• No such key in map.•/
YP_BADOP = -4, ;• Invalid operation.•/
YP_BADDB = -5, ;• Server database is bad.*/
YP_YPERR = -6, ;• YP server error.•/
YP_BADARGS = -7 ;• Request arguments bad.*/

} ypstat;

2. 6.4. Basic Data Structures

This section defines the data structures used as inputs to and outputs from the YP remote pro
cedures.

domainname

typedef string domainname<YPMAXDOMI\IN>

mapname

typedef string mapname<YPMAXMAP>

peername

typedef string peername<YPMAXPEER>

~ ~, Sun Microsystems Release 2.0

Page 8

keydat

typedef string keydat<YPMAXRECORD>

valdat

typedef string valdat<YPMAXRECORD>

ypmap_parms

struct ypmap_parms {
domainname
mapname

}

unsigned long int ordernum
peername

YP Protocol Spec

This contains parameters giving information about map mapname within domain domainname.
The peername parameter is the name of the map's master YP database server. If any of the
three string pointers represent unknown (or unavailable) information, the parameters will be null
strings. The ordernum parameter contains a binary value representing the value of the map's
YP _LAST_MODIFIED key. If the YP _LAST_MODIFIED value is unavailable, ordernum contains
the value 0.

yprequest

struct yprequest {

}

union switch (enum ypreqtype) {
YPREQ_KEY:

}

struct {

}
YPREQ_NOKEY:

struct {

}
YPREQ_MAP_FARMS:

domainname
mapname
keydat

domainname
mapname

struct ypmap_parms
default:

{}

~ 'b..~ Sun Microsystems Release 2.0

0

0

0

0

0

0

YP Protocol Spec

ypresponse

struct ypresponse {

}

union switch (enum ypresptype) {
YPRESP _VAL:

struct {

}
YPRESP _KEY_ VAL :

ypstat
valdat

struct {
ypstat
valdat
keydat

}
YPRESP__MAP_FARMS:

struct ypmap_parms
default:

{}
}

~
\~ Sun Microsystems

Page 9

Release 2.0

Page 10 YP Protocol Spec

2.6.5. YP Data Base Server Remote Procedures

This section contains a specification for each function that can be called as a remote procedure.
The input and output parameters are described using the XDR data definition language. When
ever the input parameter is a struct yprequest, the mapname and domainname parameters
fully specify the map.

2.6.5.1. Do Nothing (Procedure 0, Veraion 1)

0. YPPROC_NULL () returns ()

This does no work. It is made available in all RPC services to allow server response testing and
timing.

2.6.5.2. Do You Serve Thia Domain? (Procedure 1, Veraion 1)

1. YPPROC_DOMAIN (domain) returns (servesp)
domainname domain;
boolean servesp;

The server returns TRUE if it serves the passed domain, and FALSE otherwise. This function
allows a potential client to ascertain whether or not a given server supports a named domain.

2.6.5.9. Amwer Only If You Serve Thia Domain (Procedure 2, Veraion 1}

2. YPPROC_DOMAIN_NONACK (domain) returns (servesp)
domalnname domain;
boolean servesp;

The server returns TRUE if it serves the passed domain; otherwise it does not return. The
intent of the function is that it be called in a broadcast environment, in which it is useful to res·
trict the number of useless messages. If this function is called, the client interface implementa
tion must be written so as to regain control in the negative case, for instance by means of a
timeout on the response.

Sun's current implementation currently does return in the FALSE case by forcing an RPC
decode error.

2.6.5.,l. Return Value of a Key (Procedure 9, Veraion 1}

3. YPPROC_MATCH (req) returns (resp)
struct yprequest req;
struct ypresponse resp;

The type of the req must be YPREQ_KEY. This returns the value associated with the key
keydat. The type of the resp is YPRESP_VAL. If the ypstat parameter in the resp has the
value YP _TRUE, the value data are returned in valdat.

~ '\~ Sun Microsystems Release 2.0

0

0

0

0

0

0

YP Protocol Spec

Z.6.5.5. Get Firat Key-Value Pair in Map (Procedure ,I, Veraion 1)

4. YPPROC_FIRST (req) returns (resp)
struct yprequest req;
struct ypresponse resp;

Page 11

The type of the req must be YPREQ_NOKEY. The reap is of type YPRESP _KEY_ VAL. If the
value of the ypstat is YP _TRUE, this returns the first key-value pair from the map named in
the req to the keydat and valdat parameters. An empty map is indicated by ypstat con
taining the value YP _NOMORE.

Z.6.5.6. Get Next Key-Value Pair in Map {Procedure 5, Veraion 1}

5. YPPROC_NEXT (req) returns (resp)
struct yprequest req;
struct ypresponse resp;

The type of the req must be YPREQ_KEY. The resp is type YPRESP _KEY_ VAL. If the value
of the ypstat is YP _TRUE, this returns the key-value pair following the key-value named in the
req parameter to the keydat and va ldat parameters within resp. If the passed key is the
last key in the map, the value of ypstat is YP _NOMORE.

Z.6.5. 7. Return Map Parametera {Procedure 6, Veraion 1}

6. YPPROC_POLL (req) returns (resp)
struct yprequest req;
struct ypresponse resp;

The type of the req must be YPREQ_NOKEY. The resp is of type YPREQ_MAP _PARMS. The
YP server returns the order number (binary timestamp value) and master server name for the
map. If the domain is not supported, the domainname is a null string. If the map is unknown,
the mapname is a null string. If unknown, the ordernum parameter has the value zero. If unk
nown, the peername is a null string.

Z.6.5.8. Tell Peera About New Map {Procedure 1, Veraion 1}

7. YPPROC_FUSH (req) returns ()
struct yprequest req;

The type of the req must be YPREQ_NOKEY. The master server rechecks the named map to
make sure that the map parameters are up-to-date. It then calls the YPPROC_GET procedure in
each reachable peer. If the server is not the master of the named map, it takes no action.

~ ~~ Sun Microsystems Release 2.0

Page 12

f!.6.5.9. Get Lated Veraion of Map {Procedure 8, Veraion 1)

8. YPPROC_FULL (req) returns ()
struct yprequest req;

YP Protocol Spec

The type of the req must be YPREQ_NOKEY. The slave server attempts to get a more recent
version of the named map from a peer. The master, if reachable, is checked first. If the master's
version is not greater than the slave's version, the slave does not try any further. If the master's
version is greater than the slave's, the slave attempts to transfer the map. If the master is not
reachable, the slave attempts to find a greater version held at some other peer. If the server is
the master of the named map, it takes no action.

f!.6.5.10. Get New Map Veraion From Here {Procedure 9, Veraion 1)

9. YPPROC_GET (req) returns ()
struct yprequest req;

The type of the req must be YPREQ_NOKEY. The server assumes that the caller is the master
of the map, and tries to get a new version from that master server. In terms of version numbers
and peer reachability, it follows the course of action described for YPPROC_PULL. If the server
is the master of the named map after replacing the master peer's name with the caller's name, it
takes no action. That is, if a master calls YPPROC_GET in itself, it takes no action.

~ ~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

YP Protocol Spec Page 13

3. YP Binders

3.1. Introduction

In order that any network service be usable, there must be some way for potential clients to find
the servers. This section describes the YP binder, an optional element in the YP subsystem that
supplies YP database server addressing information to potential YP clients.

In order to address a YP server in an ARPA internet environment, a client must know the
server's internet address, and the port at which the server is listening for service requests. No
contract is negotiated between a YP server and a potential client, therefore the addressing infor
mation is sufficient to bind the client to the server.

Of the many possible ways for a client to get the addressing information, one alternative is to
supply an entity to cache the bindings, and to serve that binding database to potential YP
clients. The theory is that if finding the service takes a lot of work, allocate a specialist to do it,
rather than burden every client with a job that is irrelevant to its real function. A YP binder
only makes sense if it is easier for a client to find the YP binder than to find a YP database
server, and if the YP binder can itself find a YP database server.

We make the assumption that a YP binder is present at every network node, and because of
this, addressing the YP binder is easier than addressing a YP database server. The scheme for
finding a local resource is implementation-specific, but given that a resource is guaranteed to be
local, there may be some efficient way of finding it. We further assume that the YP binder can
find a YP database server in some way, but that that way is either complicated or time
consuming to do. If either of these assumptions is untrue, then probably your implementation is
not a good bet for a YP binder.

If a YP binder is implemented, it can provide added value beyond the binding: it can verify that
the binding is correct and that the YP database server is alive and well, for instance. The
degree of sureness in a binding that the YP binder gives to a client is a parameter that can be
tuned appropriately in the implementation.

3.2. YP Binder Protocol Definition

This section describes version 1 of the protocol. It is likely that changes will be made to succes
sive versions as the service matures.

9.2.1. RPG Constants

All numbers are decimal.

YPBINDPROG 100007
The YP binder protocol program number.

YPBINDVERS 1
The current YP binder protocol version.

• Sun Microsystems Release 2.0

Page 14

3.2.2. Other Manifest Constants

All numbers are decimal.

YPMAXDOMAIN 64

YP Protocol Spec

The maximum number of characters in a domain name. This is identical to the constant
defined above within the YP database server protocol section.

ypbind_resptype

enum ypbind_resptype {
YPBIND_SUCC_VAL = l,
YPBIND_FAIL_VAL = 2

}

This discriminates between success responses and failure responses to a
YPBINDPROC_DOMAIN request.

ypbinderr

/* Internal error*/
typedef enum {

YPBIND_ERR_ERR 1
YPBIND_ERR_NOSERV 2
YPBIND_ERR_RESC 3

/* No bound server for passed domain*/
/* System resource allocation failure*/

} ypbinderr

The error case of most interest to a YP binder client is YPBIND_ERR_NOSERV; it means that
the binding request cannot be satisfied because the YP binder doesn't know how to address any
YP database server in the named domain.

3.2.3. Basic Data Structures

This section defines the data structures used as inputs to and outputs from the YP binder
remote procedures.

domainname

typedef string domainname<YPMAXDOMAIN>

This is identical to the domainname string defined above within the YP database server protocol
section.

ypbind_binding

struct ypbind_binding {

}

unsigned long int ypbind_binding_addr
unsigned short int ypbind_binding_port

This contains the information necessary to bind a client to a YP database server in the ARPA
internet environment. ypbind_binding_addr holds the host IP address (4 bytes), and
ypbind_binding_port holds the port address (2 bytes). Both IP address and port address must be
in ARPA network byte order (most significant byte first, or big endian), regardless of the host
machine's native architecture.

~
'\~ Sun Microsystems Release 2.0

0

0

0

0

0

0

YP Protocol Spec

ypbind_resp

struct ypbind_resp {

}

union switch (enum ypbind_resptype status) {
YPBIND_SUCC_VAL:

struct ypbind_binding
YPBIND_FAIL_VAL:

ypbinderr
default:

{}
}

This is the response to a YPBINDPROC_DOMAIN request.

ypbind...setdom

struct ypbind_setdom {
domalnname
struct ypbind_binding

}

This is the input data structure for the YPBINDPROC_SETDOM procedure.

11,,'
~~ Sun Microsystems

Page 15

Release 2.0

Page 16 YP Protocol Spec

9.2 .. ,t. YP Binder Remote Procedures

Like the YP procedures earlier, these procedures are described using the XDR data definition
language.

9.2.,1.1. Do Nothing {Procedure 0, Version 1)

0. YPBINDPROC_NULL () returns (

This does no work. It is made available in all RPC services to allow server response testing and
timing.

9.2.,1.2. Get Current Binding for a Domain {Procedure 1, Veraion 1)

1. YPBINDPROC_DOMAIN (domain) returns (resp)
domainname domain;
struct ypbind_resp resp;

This returns the binding information necessary to address a YP database server within the
ARPA internet environment.

9.2.,1.9. Set Domain Binding {Procedure 2, Ver•ion 1)

2. YPBINDPROC_SETDOM (setdom) returns ()
struct ypblnd_setdom setdom;

This instructs a YP binder to use the passed information as its current binding information for
the passed domain.

,., ..
~~ Sun Microsystems Release 2.0

0

0

0

0

0

A
ARPA network byte order, 14

B
boolean, 2
byte order, 14

D
discriminated union, 2
domain, I
domainname, '1, 14

E
enumeration, I, 3
enumeration defined, 1

G
global consistency, 1

K
keydat, 8

M
map, 1
mapname, 7
master, 4
match, I, 3
match defined, 1

p
peername, 7
propagation, 1

slave, 4
string, 2

s

T
timestamps, 4

u
update, 1

Index

-i-

V
valdat, 8

X
XOR data description language, 2

y
YP binder detailed error codes, 14
YP private keys, 3
YP server return status values, '1
YP J,AST_MODIFIED, 4, 8
yp bind_binding, 14
ypbind_resp, 15
ypbind_resptype, 14
ypbind....setdom, 15
ypbinderr, U
YPBINDPROC...DOMAIN, 16
YPBINDPROCJWLL, 16
YPBINDPROC_SETDOM, 16
YPBINDPROG, 13
YPBINDVERS, 13
ypmap_parms, 8
YPMAXDOMAIN, 7, 14
YPMAXMAP,7
YPMAXPEER,7
YPMAXRECORD, 7
YPPROCJ)OMAIN, 10
YPPROC...DOMAJN_NONACK, 10
YPPROCJ'IRST, 11
YPPROC_GET, U
YPPROC_MATCH, 10
YPPROC_NEXT, 11
YPPROCJWLL, 10
YPPROCYOLL, 11
YPPROCYULL, 12
YPPROCYUSH, 11
YPPROG, 6
yprequest, 8
ypresponse, 9
ypstat, 7
YPVERS, 6

I

O '.
\

I

0., !

0

0

0

0

Inter-Process Communication

Primer

I

ol
I

0

0

0

0

0

Contents

1. Introduction

2. Basics
2.1. Socket Types
2.2. Socket Creation

1

2
2
3

2.3. Binding Names 3
2.4. Connection Establishment 4
2.5. Data Transfer 6
2.6. Discarding Sockets ... 6
2.7. Connectionless Sockets 6
2.8. Input/Output Multiplexing 7

3. Network Library Routines
3.1. Host Names
3.2. Network Names
3.3. Protocol Names
3.4. Service Names
3.5. Miscellaneous· .. .

4. Client/Server Model .
4.1. Servers
4.2. Clients
4.3. Connectionless Servers

5. Advanced Topics
5.1. Out of Band Data

8
8
9

IO
IO
IO

13
13
15
16

20
20

5.2. Signals and Process Groups ... 21
5.3. Pseudo Terminals 21
5.4. Internet Address Binding 22
5.5. Broadcasting and Datagram Sockets ... 24
5.6. Signals .. 24

-i-

o!

01

0

0

0

0

Inter-Process Communication

Primer

This document provides an introduction to the inter-process communication (!PC) facilities on
Sun's version of the UNIXt operating system. It discusses the overall model for !PC, and intro
duces !PC primitives that have been added to the system. The majority of the document consid
ers the use of these primitives in developing applications. The reader is expected to be familiar
with the C programming language, as all examples are written in C.

1. Introduction

One of the most important features added in the Berkeley 4.2 release of the UNIX operating sys
tem is substantial new !PC facilities. These facilities are the result of more than two years of
discussion and research. The facilities provided in this release incorporate many of the ideas
from current research, while trying to maintain simplicity and conciseness. These !PC facilities
have already established a de facto standard.

UNIX has previously been weak in doing !PC. Until recently, the only standard mechanism that
allowed two processes to communicate were pipes (the mpx files in Version 7 were experimental).
Unfortunately, pipes are restrictive in that two communicating processes must be related
through a common ancestor. Further, the semantics of pipes makes them impossible to maintain
in a distributed environment.

Earlier attempts at extending the !PC facilities of UNIX have met with mixed reaction. The
majority of problems have been related to these facilities being tied to the UNIX filesystem,
either through naming or implementation. Consequently, the !PC facilities provided in this
release have been designed as a totally independent subsystem, and allow processes to rendez
vous in many ways. Processes may rendezvous through a UNIX filesystem-like name space (a
space where all names are path names) as well as through a network name space. In fact, new
name spaces may be added at a future time with only minor changes visible to users. Further
more, the communication facilities have been extended to include more than the simple byte
stream provided by pipes. These extensions have resulted in a completely new part of the sys
tem, which users will need time to familiarize themselves with. It is likely that as more use is
made of these facilities, they will be refined; only time will tell.

The remainder of this document is organized in four sections. Section 2 introduces new system
calls and the basic model of communication. Section 3 describes some of the supporting library
routines users may find useful in constructing distributed applications. Section 4 is concerned
with the client/server model used in developing applications; it includes examples of the two
major types of servers. Section 5 delves into advanced topics that sophisticated users may need
to know when using !PC facilities.

t UNIX is a trademark of Bell Laboratories.

~
\~ Sun Microsystems Release 2.0

Page 2 !PC Primer

2. Basics

The basic building block for communication is the aocket. A socket is an endpoint of communi
cation to which a name may be bound. Each socket in use has a type and one or more associated
processes. Sockets exist within communication domain,. A communication domain is an
abstraction introduced to bundle common properties of processes communicating through sock
ets. One such property is the scheme used to name sockets. For example, in the UNIX com
munication domain sockets are named with UNIX path names; e.g. a socket may be named
/ dev/foo. Sockets normally exchange data only with sockets in the same domain (it may be pos
sible to cross domain boundaries, but only if some translation process is performed). The !PC
supports two separate communication domains: the UNIX domain, and the Internet domain is
used by processes which communicate using the the DARPA standard communication protocols.
The underlying communication facilities provided by these domains have a significant influence
on the internal system implementation as well as the interface to socket facilities available to a
user. An example of the latter is that a socket operating in the UNIX domain sees a subset of
the possible error conditions which are possible when operating in the Internet domain.

2.1. Socket Types

Sockets are typed according to the communication properties visible to a user. Processes are
presumed to communicate only between sockets of the same type, although there is nothing that
prevents communication between sockets of different types should the underlying communication
protocols support this.

Three types of sockets are currently available to a user. A atream socket provides for the
bidirectional, reliable, sequenced, and unduplicated flow of data without record boundaries.
Aside from the bidirectionality of data flow, a pair of connected stream sockets provides an
interface nearly identical to that of pipes. 1

A datagram socket supports bidirectional flow of data that is not promised to be sequenced, reli
able, or unduplicated. That is, a process receiving messages on a datagram socket may find dupli
cate messages, and possibly in an order different from the order in which it was sent. An impor
tant characteristic of a datagram socket is that record boundaries in data are preserved.
Datagram sockets closely model the facilities found in many contemporary packet switched net
works such as the Ethernet.

A raw socket provides access to underlying communication protocols that support socket abstrac
tions. These sockets are normally datagram oriented, though their exact characteristics depend
on the interface provided by the protocol. Raw sockets are not intended for the general user;
they have been provided mainly for those interested in developing new communication protocols,
who must gain access to the more esoteric facilities of an existing protocol.

Two interesting, but implemented, socket types are the aequenced packet socket and the reliably
delivered mea,age socket. The first is identical to a stream socket, except that record boundaries
are preserved; it is similar to the Xerox NS Sequenced Packet protocol. The second has similar
properties to a datagram socket, but with reliable delivery. This document discusses only imple
mented sockets.

1 In the UNIX domain, in Ca.ct, the semantics are identical and, as one might expect, pipes have been
implemented internally as simply a pair or connected stream sockets.

~ ',,/) Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer Page 3

2.2. Socket Creation

To create a socket, use the aocket system call:

s = socket(domain, type, protocol);

This call requests that the system create a socket in the specified domain and of the specified
type. A particular protocol may also be requested. If the protocol is left unspecified (a value of
0), the system will select an appropriate protocol from those protocols which comprise the com
munication domain and which may be used to support the requested socket type. The user is
returned a descriptor (a small integer number) which may be used in later system calls which
operate on sockets. The domain is specified as one of the manifest constants defined in the file
<ay•/ aocket.h>. For the UNIX domain the constant is AF _UNIX;2 for the Internet domain
AF JNET. The socket types are also defined in this file and one of S0CK_8TREAM,
SOCK....DGRAM, or SOCKJlAW must be specified. To create a stream socket in the Internet
domain the following call might be used:

s = socket(AF_INET, SOCK_STREAM, O);

This call would result in a stream socket being created with the TCP protocol providing the
underlying communication support. To create a datagram socket for on-machine use a sample
call might be:

s = socket(AF_UNIX, SOCK_DGRAM, O);

To obtain a particular protocol one selects the protocol number, as defined within the communi
cation domain. For the Internet domain the available protocols are defined in <netinet/in.h>
or, better yet, one may use one of the library routines discussed in section 3, such as getproto
byname:

#include <sys/types.h>
#include <sys/socket.h>
#include <netlnet/in.h>
#include <netdb.h>

pp = getprotobyname("tcp");
s = socket(AF_INET, SOCK_STREAM, pp->p_proto);

There are several reasons a socket call may fail. Aside from the rare occurrence of lack of
memory (ENOBUFS), a socket request may fail due to a request for an unknown protocol
(EPROTONOSUPPORT), or a request for a type of socket for which there is no supporting pro
tocol (EPROTOTYPE).

2.3. Binding Names

A socket is created without a name. Until a name is bound to a socket, processes have no way
to reference it and, consequently, no messages may be received on it. The bind call is used to
assign a name to a socket:

2 The mani(est constants a.re named AF _whatever as they indicate the adtlreH format to use in
interpreting names.

• Sun Microsystems Release 2.0

Page 4 !PC Primer

bind(s, name, namelen);

The bound name is a variable length byte string which is interpreted by the supporting
protocol(s). Its interpretation may vary from communication domain to communication domain
(this is one of the properties which comprise the domain). In the UNIX domain names are path
names while in the Internet domain names contain an Internet address and port number. If one
wanted to bind the name / dev/foo to a UNIX domain socket, the following would be used:

#include <sys/un.h>
struct sockaddr_un sun;
sun.sun_family = AF_UNIX;
strcpy(sun.sun_path, "/dev/foo");
bind(s, &sun, strlen("/dev/foo")+2);

In binding an Internet address things become more complicated. The actual call is simple,

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

bind(s, &sin, sizeof (sin));

but the selection of what to place in the address •in requires some discussion. We will come
back to the problem of formulating Internet addresses in section 3 when the library routines used
in name resolution are discussed.

2.4. Connection Establishment

With a bound socket it is possible to rendezvous with an unrelated process. This operation is
usually asymmetric with one process a client and the other a aerver. The client requests ser
vices from the server by initiating a connection to the server's socket. The server, when willing
to offer its advertised services, passively Ii.ten& on its socket. On the client side the connect call
is used to initiate a connection. Using the UNIX domain, this might appear as,

struct sockaddr_un server;
connect(s, &server, strlen(server.sun_path)+2);

while in the Internet domain,

struct sockaddr_in server;
connect(s, &server, sizeof (server));

If the client process's socket is unbound at the time of the connect call, the system will automati
cally select and bind a name to the socket; c.f. section 5.4.3 An error is returned when the con
nection was unsuccessful (any name automatically bound by the system, however, remains).
Otherwise, the socket is associated with the server and data transfer may begin.

Many errors can be returned when a connection attempt fails. The most common are:

ETIMEDOUT
After failing to establish a connection for a period of time, the system decided there was no
point in retrying the connection attempt any more. This usually occurs because the

.s You must do a getaocl:name (2) call to retrieve the binding.

,.,
"'.,.~ Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer Page 5

destination host is down, or because problems in the network resulted in transmissions being
lost.

ECONNREFUSED
The host refused service for some reason. When connecting to a host running the 0.9 release
version of UNIX this is usually due to a server process not being present at the requested
name.

ENETDOWN or EHOSTDOWN
These operational errors are returned based on status information delivered to the client
host by the underlying communication services.

ENETUNREACHorEHOSTUNREACH
These operational errors can occur either because the network or host is unknown (no route
to the network or host is present), or because of status information returned by intermediate
gateways or switching nodes. Many times the status returned is not sufficient to distinguish
a network being down from a host being down. In these cases the system is conservative and
indicates the entire network is unreachable.

For the server to receive a client's connection it must perform two steps after binding its socket.
The first is to indicate a willingness to listen for incoming connection requests:

listen (s, 5) ;

The second parameter to the li,ten call specifies the maximum number of outstanding connec
tions which may be queued awaiting acceptance by the server process. Should a connection be
requested while the queue is full, the connection will not be refused, but rather the individual
messages which comprise the request will be ignored. This gives a harried server time to make
room in its pending connection queue while the client retries the connection request. Had the
connection been returned with the ECO NNREFUSED error, the client would be unable to tell if
the server was up or not. As it is now it is still possible to get the ETIMEDOUT error back,
though this is unlikely. The backlog figure supplied with the listen call is limited by the system
to a maximum of 5 pending connections on any one queue. This avoids the problem of processes
hogging system resources by setting an infinite backlog, then ignoring all connection requests.

With a socket marked as listening, a server may accept a connection:

fromlen = sizeof (from);
snew = accept(s, &from, &fromlen);

A new descriptor is returned on receipt of a connection (along with a new socket). If the server
wishes to find out who its client is, it may supply a buffer for the client socket's name. The
value-result parameter from/en is initialized by the server to indicate how much space is associ
ated with from, then modified on return to reflect the true size of the name. If the client's name
is not of interest, the second parameter may be zero.

Accept normally blocks. That is, the call to accept will not return until a connection is available
or the system call is interrupted by a signal to the process. Further, there is no way for a pro
cess to indicate it will accept connections from only a specific individual, or individuals. It is up
to the user process to consider who the connection is from and close down the connection if it
does not wish to speak to the process. If the server process wants to accept connections on more
than one socket, or not block on the accept call there are alternatives; they will be considered in
section 5.

,,. ...
~~ Sun Microsystems Release 2.0

Page 6 IPC Primer

2.5. Data Transfer

With a connection established, data may begin to flow. To send and receive data there are a
number of possible calls. With the peer entity at each end of a connection anchored, a user can
send or receive a message without specifying the peer. As one might expect, in this case, then
the normal read and write system calls are useable,

write(s, buf, sizeof (buf));
read(s, buf, sizeof (buf));

In addition to read and write, the new calls •end and recu may be used:

send(s, buf, sizeof (buf), flags);
recv(s, buf, sizeof (buf), flags);

While aend and recu are virtually identical to read and write, the extra flag• argument is impor
tant. The flags may be specified as a non-zero value if one or more of the following is required:

MSG_OOB
MSG_FEEK
MSG_DONTROUTE

send/receive out of band data
look at data without reading
send data without routing packets

Out of band data is a notion specific to stream sockets, and one which we will not immediately
consider. The option to have data sent without routing applied to the outgoing packets is
currently used only by the routing table management process, and is unlikely to be of interest to
the casual user. The ability to preview data is, however, of interest. When MSGYREVIEW is
specified with a recv call, any data present is returned to the user, but treated as still unread.
That is, the next read or recv call to the socket will return data previously previewed.

2.6. Discarding Sockets

Once a socket is no longer of interest, it may be discarded by applying a cloae to the descriptor,

close(s);

If data is associated with a socket which promises reliable delivery (e.g. a stream socket) when a
close takes place, the system will continue to attempt to transfer the data. However, after a
fairly long period of time, if the data is still undelivered, it will be discarded. Should a user have
no use for any pending data, it may perform a •hutdown on the socket prior to closing it. This
call is of the form:

shutdown(s, how);

where how is O if the user is no longer interested in reading data, l if no more data will be sent,
or 2 if no data is to be sent or received. Applying shutdown to a socket causes any data queued
to be immediately discarded.

2. 7, Connectionless Sockets

To this point we have been concerned mostly with sockets which follow a connection oriented
model. There is also support for connectionless interactions typical of datagram facilities found
in contemporary packet switched networks. A datagram socket provides a symmetric interface

0

0

to data exchange. While processes are still likely to be client and server, there is no requirement O·

for connection establishment. Instead, each message includes the destination address.

,0. Sun Microsystems Release 2.0

0

0

0

!PC Primer Page 7

Datagram sockets are created as before, and each should have a name bound to it in order that
the recipient of a message may identify the sender. To send data, the aendto primitive is used,

sendto(s, buf, buflen, flags, &to, tolen);

The a, bu/, buften, and ftaga parameters are used as before. The to and to/en values are used to
indicate the intended recipient of the message. When using an unreliable datagram interface, it
is unlikely any errors will be reported to the sender. Where information is present locally to
recognize a message which may never be delivered (for instance when a network is unreachable),
the call will return -1 and the global value errno will contain an error number.

To receive messages on an unconnected datagram socket, the recvfrom primitive is provided:

recvfrom(s, buf, buflen, flags, &from, &fromlen);

Once again, the from/en parameter is handled in a value-result fashion, initially containing the
size of the from buffer.

In addition to the two calls mentioned above, datagram sockets may also use the connect call to
associate a socket with a specific address. In this case, any data sent on the socket will automat
ically be addressed to the connected peer, and only data received from that peer will be
delivered to the user. Only one connected address is permitted for each socket (i.e. no multi
casting). Connect requests on datagram sockets return immediately, as this simply results in the
system recording the peer's address (as compared to a stream socket where a connect request ini
tiates establishment of an end to end connection). Other of the less important details of
datagram sockets are described in section 5.

2.8. Input/Output Multiplexing

One last facility often used in developing applications is the ability to multiplex 1/0 requests
among multiple sockets and/or files. This is done using the ae/ect call:

select(nfds, &readfds, &writefds, &execptfds, &timeout);

Select takes as arguments three bit masks, one for the set of file descriptors for which the caller
wishes to be able to read data on, one for those descriptors to which data is to be written, and
one for which exceptional conditions are pending. Bit masks are created by or-ing bits of the
form l<<fd. That is, a descriptor fd is selected if a 1 is present in the /d'th bit of the mask.
The parameter nfda specifies the range of file descriptors (i.e. one plus the value of the largest
descriptor) specified in a mask.

A timeout value may be specified if the selection is not to last more than a predetermined period
of time. If timeout is set to 0, the selection takes the form of a poll, returning immediately. If
the last parameter is a null pointer, the selection will block indefinitely.4 Select normally returns
the number of file descriptors selected. If the aelect call returns due to the timeout expiring,
then a value of -1 is returned along with the error number EINTR.

Select provides a synchronous multiplexing scheme. Asynchronous notification of output comple
tion, input availability, and exceptional conditions is possible through use of the SIGIO and
SIGURG signals described in section 5.

' To be more specific, a. return takes place only when a descriptor is seleeta.ble, or when a. signal is
received by the ca.Iler, interrupting the system call.

• Sun Microsystems Release 2.0

Page 8 !PC Primer

3. Network Library Routines

The discussion in section 2 indicated the possible need to locate and construct network addresses
when using the !PC facilities in a distributed environment. To aid in this task a number of rou
tines have been added to the standard C run-time library. In this section we will consider the
new routines provided to manipulate network addresses. While the Sun system release network
ing facilities support only the DARPA standard Internet protocols, these routines have been
designed with flexibility in mind. As more communication protocols become available, we hope
the same user interface will be maintained in accessing network-related address data bases. The
only difference should be the values returned to the user. Since these values are normally sup
plied the system, users should not need to be directly aware of the communication protocol
and/or naming conventions in use.

Locating a service on a remote host requires many levels of mapping before client and server
may communicate. A service is assigned a name which is intended for human consumption; for
example, "the login aerver on host monet". This name, and the name of the peer host, must
then be translated into network addreue• which are not necessarily suitable for human consump
tion. Finally, the address must then used in locating a physical location and route to the service.
The specifics of these three mappings is likely to vary between network architectures. For
instance, it is desirable for a network to not require hosts be named in such a way that their
physical location is known by the client host. Instead, underlying services in the network may
discover the actual location of the host at the time a client host wishes to communicate. This
ability to have hosts named in a location independent manner may induce overhead in connec
tion establishment, as a discovery process must take place, but allows a host to be physically
mobile without requiring it to notify its clientele of its current location.

Standard routines are provided for: mapping host names to network addresses, network names to
network numbers, protocol names to protocol numbers, and service names to port numbers and
the appropriate protocol to use in communicating with the server process. The file <netdb.h>
must be included when using any of these routines.

3.1. Host Names

A host name to address mapping is represented by the ho•tent structure:

struct hostent {
char *h_name; /* official name of host */
char **h_aliases; /* alias list */
int h_addrtype; /* host address type */
int h__length; /* length of address */
char *h__addr; /* address */

};

Note that the h_addr field in the structure definition is defined as a pointer to char. In the case
of Internet addresses (the only case implemeted to date) you should cast this to a (struct
in_addr *) when using the item.

The official name of the host and its public aliases are returned, along with a variable length
address and address type. The routine gethoatbyname(_3N) takes a host name and returns a ho•
tent structure, while the routine getho•tbyadd,{3N) maps host addresses into a ho•tent structure.
It is possible for a host to have many addresses, all having the same name. Gelhoatybyname
returns the first matching entry in the data base file /etc/ho•t•; if this is unsuitable, the lower

• Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer Page 9

level routine gethoaten~3N) may be used. For example, to obtain a ho.tent structure for a host
on a particular network the following routine might be used (for simplicity, only Internet
addresses are considered):

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netdb.h>

struct hostent *
gethostbynameandnet(name, net)

char *name;

{
int net;

register struct hostent *hp;
register char **cp;

sethostent(O);
while ((hp= gethostent()) I= NULL) {

if (hp->h_addrtype I= AF_INET)
continue;

if (strcmp(name, hp->h_name)) {
for (cp = hp->h_aliases; cp && •cp I= NULL; cp++)

if (strcmp(name, *cp) -- 0)
goto found;

continue;
}

found:
if (in_netof(*(struct in_addr *)hp->h_addr)) -- net)

}

break;
}
endhostent(O);
return (hp) ;

(in_neto/(3N) is a standard routine which returns the network portion of an Internet address.)

3.2. Network Names

As for host names, routines for mapping network names to numbers, and back, are provided.
These routines return a netent structure:

;•
* Assumption here is that a network number
• fits in 32 bits probably a poor one.
*/

struct netent {
char *n_name; ;• official name of net */
char **n_aliases; ;• alias list •;
int n_addrtype; ;• net address type •;
int n_net; /* network # •;

};

The routines getnetbyname(3N), getnetbynumber(3N), and getnetent(3N) are the network

~~ . '\~II Sun Microsystems Release 2.0

Page 10 IPC Primer

counterparts to the host routines described above.

3.3. Protocol Names

For protocols the protoent structure defines the protocol-name mapping used with the routines
getprotobyname(3N), getprotobynumber(3N), and getprotoent(3N):

struct protoent {

};

char
char
int

*p_name;
**p_aliases;
p_proto;

3.4. Service Names

;• official protocol name•;
;• alias list•/
/•protocol#•/

Information regarding services is a bit more complicated. A service is expected to reside at a
specific port and employ a particular communication protocol. This view is consistent with the
Internet domain, but inconsistent with other network architectures. Further, a service may
reside on multiple ports or support multiple protocols. If either of these occurs, the higher level
library routines will have to be bypassed in favor of homegrown routines similar in spirit to the
gethoatbynameandnet routine described above. A service mapping is described by the urvent
structure,

struct servent {
char •s_name; ;• official service name•/
char ••s_aliases; ;• alias list •;
int s_port; ;• port # •/
char •s_proto; ;• protocol to use •;

};

The routine getaervbyname(3N) maps service names to a servent structure by specifying a ser
vice name and, optionally, a qualifying protocol. Thus the call

sp = getservbyname ("telnet", (char *) 0);

returns the service specification for a telnet server using any protocol, while the call

sp = getservbyname("telnet", "tcp");

returns only that telnet server which uses the TCP protocol. The routines getservbyport(3N)
and getaervent(3N) are also provided. The getaervbyport routine has an interface similar to that
provided by getaervbyname; an optional protocol name may be specified to qualify lookups.

3.5. Miscellaneous

0

0

With the support routines described above, an application program should rarely have to deal
directly with addresses. This allows services to be developed as much as possible in a network
independent fashion. It is clear, however, that purging all network dependencies is very difficult.
So long as the user is required to supply network addresses when naming services and sockets
there will always some network dependency in a program. For example, the normal code
included in client programs, such as the remote login program, is of the form shown in Figure l. 0
~

'\~ Sun Microsystems Release 2.0

0

0

0

!PC Primer Page U

#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <stdio.h>
#include <netdb.h>

main(argc, argv)

{

}

char • argv [] ;

struct sockaddr_in sin;
struct servent *sp;
struct hostent *hp;
int s;

sp = getservbyname("login". "tcp");
if (sp == NULL) {

}

fprintf(stderr, "rlogin: tcp/login: unknown service\n");
exit(l);

hp= gethostbyname(argv[l]);
if (hp== NULL) {

}

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

bzero((char *)&sin, sizeof (sin));
bcopy(hp->h__addr, (char *)&sin.sin_addr, hp->h__length);
sin.sin_family = hp->h__addrtype;
sin.sin_port = sp->s_port;
s = socket(AF_INET, SOCK_STREAM, O);
if (s < 0) {

}

perror("rlogin: socket");
exit(3);

if (connect (s, (char *) &sin, sizeof (sin)) < 0) {
perror(11 rlogin: connect");
exit(S);

}

Figure 1: Remote login client code

This example will be considered in more detail in section 4.

If we wanted to make the remote login program independent of the Internet protocols and
addressing scheme we would be forced to add a layer of routines which masked the network
dependent aspects from the mainstream login code. For the current facilities available in the
system this does not appear to be worthwhile. Perhaps when the system is adapted to different
network architectures the utilities will be reorganized more cleanly.

Aside from the address-related data base routines, there are several other routines available in
the run-time library which are of interest to users. These are intended mostly to simplify

~
~~ Sun Microsystems Release 2.0

Page 12 !PC Primer

manipulation of names and addresses. The following table summarizes the routines for manipu
lating variable length byte strings and handling byte swapping of network addresses and values.

C Run-Time Routines

Call Svnonsis

bcmp(sl,s2,n) compare byte-strings; 0 if same, not O otherwise
bcopy(sl,s2,n) copy n bytes from sl to s2
bzero (base, n) zero-fill n bytes starting at base
htonl (val) convert 32-bit quantity from host to network byte order
htons(val) convert 16-bit quantity from host to network byte order
ntohl (val) convert 32-bit quantity from network to host byte order
ntohs/val\ convert 16-bit auantitv from network to host bvte order

The byte swapping routines are provided because the operating system expects addresses to be
supplied in network order. On a VAX, or machine with similar architecture, this is usually
reversed. Consequently, programs are sometimes required to byte swap quantities. The library
routines which return network addresses provide them in network order so that they may simply
be copied into the structures provided to the system. This implies users should encounter the
byte swapping problem only when interpreting network addresses. For example, if an Internet
port is to be printed out the following code would be required:

printf ("port number %d\n", ntohs (sp->s_port));

On machines other than the VAX these routines are defined as null macros.

~ ,~ Sun Microsystems Release 2.0

0

0

0

0

0

0

JPC Primer Page 13

4. Client/Server Model

The most commonly used paradigm in constructing distributed applications is the client/server
model. In this scheme client applications request services from a server process. This implies an
asymmetry in establishing communication between the client and server which has been exam
ined in section 2. In this section we will look more closely at the interactions between client and
server, and consider some of the problems in developing client and server applications.

Client and server require a well known set of conventions before service may be rendered (and
accepted). This set of conventions comprises a protocol which must be implemented at both
ends of a connection. Depending on the situation, the protocol may be symmetric or asym
metric. In a symmetric protocol, either side may play the master or slave roles. In an asym
metric protocol, one side is immutably recognized as the master, with the other the slave. An
example of a symmetric protocol is the TELNET protocol used in the Internet for remote termi
nal emulation. An example of an asymmetric protocol is the Internet file transfer protocol, FTP.
No matter whether the specific protocol used in obtaining a service is symmetric or asymmetric,
when accessing a service there is a client proce83 and a urver proceaa. We will first consider
the properties of server processes, then client processes.

A server process normally listens at a well know address for service requests. Alternative
schemes which use a service server may be used to eliminate a flock of server processes clogging
the system while remaining dormant most of the time. The Xerox Courier protocol uses the
latter scheme. When using Courier, a Courier client process contacts a Courier server at the
remote host and identifies the service it requires. The Courier server process then creates the
appropriate server process based on a data base and splices the client and server together, void
ing its part in the transaction. This scheme is attractive in that the Courier server process may
provide a single contact point for all services, as well as carrying out the initial steps in authenti
cation. However, while this is an attractive possibility for standardizing access to services, it
does introduce a certain amount of overhead due to the intermediate process involved. Imple
mentations which provide this type of service within the system can minimize the cost of client
server rendezvous.

4.1. Servers

In this release, most servers are accessed at well known Internet addresses or UNIX domain
names. When a server is started at boot time it advertises it services by listening at a well know
location. For example, the remote login server's main loop is of the form shown in Figure 2.

The first step taken by the server is look up its service definition:

sp = getservbyname("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit(l);

}

This definition is used in later portions of the code to define the Internet port at which it listens
for service requests (indicated by a connection).

Step two is to disassociate the server from the controlling terminal of its invoker. This is impor
tant as the server will likely not want to receive signals delivered to the process group of the
controlling terminal.

• Sun Microsystems Release 2.0

Page 14

main(argc, argv)

{

int argc;
char **argv;

int f;
struct sockaddr_in from;
struct servent *sp;

sp = getservbyname("login", "tcp");
if (sp == NULL) {

IPC Primer

fprintf(stderr, "rlogind: tcp/login: unknown service\n");
exit (1) ;

}

#ifndef DEBUG
<<disassociate server from controlling terminal>>

#endif

}

sin.sin_port = sp->s_port;

f = socket(AF_INET, SOCK_STREAM, O);

if (bind(f, (caddr_t)&sin, sizeof (sin)) < 0) {

}

listen(f, 5);
for(;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continue;

if (fork() == 0) {
close (f) ;
dolt (g, &from);

}
close (g) ;

Figure 2: Remote login server

Once a server has established a pristine environment, it creates a socket and begins accepting
service requests. The bind call is required to insure the server listens at its expected location.
The main body of the loop is fairly simple:

~
'\~ Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer

for (; ;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len);
if (g < 0) {

}

if (errno != EINTR)
perror("rlogind: accept");

continue;

if (fork() == O) {
close (f) ;
dolt (g, &from);

}
close (g) ;

Page 15

An accept call blocks the server until a client requests service. This call could return a failure
status if the call is interrupted by a signal such as SIGCHLD (to be discussed in section 5).
Therefore, the return value from accept is checked to insure a connection has actually been esta
blished. With a connection in hand, the server then forks a child process and invokes the main
body of the remote login protocol processing_. Nate how the socket used by the parent for queue
ing connection requests is closed in the child, while the socket created as a result of the accept is
closed in the parent. The address of the client is also handed the doit routine because it requires
it in authenticating clients.

4.2. Clients

The client side of the remote login service was shown earlier in Figure 1. One can see the
separate, asymmetric roles of the client and server clearly in the code. The server is a passive
entity, listening for client connections, while the client process is an active entity, initiating a
connection when invoked.

Let us consider more closely the steps taken by the client remote login process. As in the server
process the first step is to locate the service definition for a remote login:

sp = getservbyname ("login", "tcp");
if (sp == NULL) {

fprintf(stderr, "rlogin: tcp/login: unknown service\n"):
exit(l);

}

Next the destination host is looked up with a gethoatbyname call:

hp= gethostbyname(argv[l]);
if (hp== NULL) {

}

fprintf(stderr, "rlogin: %s: unknown host\n", argv[l]);
exit(2);

With this accomplished, all that is required is to establish a connection to the server at the
requested host and start up the remote login protocol. The address buffer is cleared, then filled
in with the Internet address of the foreign host and the port number at which the login process
resides:

~ ~~ Sun Microsystems Release 2.0

Page 16

bzero((char *)&sin, sizeof (sin));
bcopy(hp->h_addr, (char •)sin.sin_addr, hp->h_length);
sin.sin_family = hp->h_addrtype;
sin.sin_port = sp->s_port;

A socket is created, and a connection initiated.

s = socket(hp->h_addrtype, SOCK_STREJ\M, O);
if (s < 0) {

}

perror("rlogin: socket");
exit(3);

if (connect(s, (char •)&sin, sizeof (sin)) < 0) {
perror("rlogin: connect");
exit(4);

}

The details of the remote login protocol will not be considered here.

4.3. Connectionless Servers

!PC Primer

While connection-based services are the norm, some services are based on the use of datagram
sockets. One, in particular, is the rwho service which provides users with status information for
hosts connected to a local area network. This service, while predicated on the ability to broad
caBI information to all hosts connected to a particular network, is of-interest as an example usage
of datagram sockets.

A user on any machine running the rwho server may find out the current status of a machine
with the ruptime(l) program. The output generated is illustrated in Figure 3.

arpa up 9:45, 5 users, load 1.15, 1. 39, 1.31

cad up 2+12:04, 8 users, load 4.67, 5.13, 4.59

calder up 10:10, 0 users, load 0.27, 0.15, 0.14

dali up 2+06:28, 9 users, load 1.04, 1.20, 1.65

degas up 25+09:48, 0 users, load 1.49, 1.43, 1.41

ear up 5+00:05, 0 users, load 1.51, 1.54, 1.56

ernie down 0:24
esvax down 17:04
ingres down 0:26
kim up 3+09:16, 8 users, load 2.03, 2.46, 3.11

matisse up 3+06:18, 0 users, load 0.03, 0.03, 0.05

medea up 3+09:39, 2 users, load 0.35, 0.37, 0.50

merlin down 19+15:3
miro up 1+07: 20, 7 users, load 4.59, 3.28, 2.12

monet up 1+00:43, 2 users, load 0.22, 0.09, 0.07

oz down 16:09
statvax up 2+15:57, 3 users, load 1.52, 1.81, 1.86

ucbvax up 9:34, 2 users, load 6.08, 5.16, 3.28

Figure 3: ruptime output

• Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer Page 17

Status information for each host is periodically broadcast by rwho server processes on each
machine. The same server process also receives the status information and uses it to update a
database. This database is then interpreted to generate the status information for each host.
Servers operate autonomously, coupled only by the local network and its broadcast capabilities.

The rwho server, in a simplified form, is pictured in Figure 4. There are two separate tasks per
formed by the server. The first task is to act as a receiver of status information broadcast by
other hosts on the network. This job is carried out in the main loop of the program. Packets
received at the rwho port are interrogated to insure they've been sent by another rwho server
process, then are time stamped with their arrival time and used to update a file indicating the
status of the host. When a host has not been heard from for an extended period of time, the
database interpretation routines assume the host is down and indicate such on the status reports.
This algorithm is prone to error as a server may be down while a host is actually up, but serves
our current needs.

~,
"..~ Sun Microsystems Release 2.0

Page 18 IPC Primer

main() { 0
sp = getservbyname("who", "udp");
net= getnetbyname("localnet");
sin.sin_addr = inet_;nakeaddr(INADDR...,ANY, net);
sin.sin_port = sp->s_port;

s = socket(AF_INET, SOCK_DGRAM, O);

bind(s, &sin, sizeof (sin));

sigset(SIGALRM, onalrm);
onalrm();
for(;;) {

struct whod wd;
int cc, whod, len = sizeof (from);

cc= recvfrom(s, (char •)&wd, sizeof (struct whod), 0, &from, &len)
if (cc<= 0) {

}
}

}

if (cc< 0 && errno I= EINTR)
perror("rwhod: recv");

continue;

if (from.sin_port I= sp->s_port) {

}

fprintf(stderr, "rwhod: %d: bad from port\n",
ntohs(from.sin_port));

continue;

if (lverify(wd.wd_llostname)) {

}

fprintf(stderr, "rwhod: malformed host name from %x\n",
ntohl(from.sin_addr.s_addr));

continue;

(void) sprintf(path, "%s/whod.%s", RWHODIR, wd.wd_llostname);
whod = open(path, O_FWRONLY!O_FCR_EATEIO_FTRUNCATE, 0666);

(void) time(&wd.wd_recvtime);
(void) write(whod, (char •)&wd, cc);
(void) close(whod);

Figure 4: rwho server

The second task performed by the server is to supply information regarding the status of its
host. This involves periodically acquiring system status information, packaging it up in a mes
sage and broadcasting it on the local network for other rwho servers to hear. The supply func
tion is triggered by a timer and runs off a signal. Locating the system status information is
somewhat involved, but uninteresting. Deciding where to transmit the resultant packet does,
however, indicates some problems with the current protocol.

ti.' 'b..,~ Sun Microsystems Release 2.0

0

0

0

0

0

!PC Primer Page 19

Status information is broadcast on the local network. For networks which do not support the
notion of broadcast another scheme must be used to simulate or replace broadcasting. One pos
sibility is to enumerate the known neighbors (based on the status received). This, unfortunately,
requires some bootstrapping information, as a server started up on a quiet network will have no
known neighbors and thus never receive, or send, any status information. This is the identical
problem faced by the routing table management process in propagating routing status informa
tion. The standard solution, unsatisfactory as it may be, is to inform one or more servers of
known neighbors and request that they always communicate with these neighbors. If each server
has at least one neighbor supplying it, status information may then propagate through a neighbor
to hosts which are not (possibly) directly neighbors. If the server is able to support networks
which provide a broadcast capability, as well as those which do not, then networks with an arbi
trary topology may share status information. 5

The second problem with the current scheme is that the rwho process services only a single local
network, and this network is found by reading a file. It is important that software operating in a
distributed environment not have any site-dependent information compiled into it. This would
require a separate copy of the server at each host and make maintenance a severe headache.
The Sun system attempts to isolate host-specific information from applications by providing sys
tem calls which return the necessary information.6 The rwho server performs a lookup in a file to
find its local network. A better, though still unsatisfactory, scheme used by the routing process
is to interrogate the system data structures to locate those directly connected networks. A
mechanism to acquire this information from the system would be a useful addition.

6 One must, however, be concerned about loops. That is, if a host is connected to multiple networks, it
will receive status information Crom itself. This can lead to an endless, wasteful, exchange of information.

8 An example or such a system call is the gethostname(2) call which returns the host's official name.

~ ~~ Sun Microsystems Release 2.0

Page 20 !PC Primer

5. Advanced Topics

A number of facilities have yet to be discussed. For most users of the !PC the mechanisms
already described will suffice in constructing distributed applications. However, others will find
need to utilize some of the features which we consider in this section.

5.1. Out of Band Data

The stream socket abstraction includes the notion of out of band data. Out of band data is a
logically independent transmission channel associated with each pair of connected stream sock
ets. Out of band data is delivered to the user independently of normal data along with the
SIGURG signal. In addition to the information passed, a logical mark is placed in the data
stream to indicate the point at which the out of band data was sent. The remote login and
remote shell applications use this facility to propagate signals from between client and server
processes. When a signal is expected to flush any pending output from the remote process(es),
all data up to the mark in the data stream is discarded.

The stream abstraction defines that the out of band data facilities must support the reliable
delivery of at least one out of band message at a time. This message may contain at least one
byte of data, and at least one message may be pending delivery to the user at any one time. For
communications protocols which support only in-band signaling (that is, the urgent data is
delivered in sequence with the normal data) the system extracts the data from the normal data
stream and stores it separately. This allows users to choose between receiving the urgent data in
order and receiving it out of sequence without having to buffer all the intervening data.

To send an out of band message the MSG_OOB flag is supplied to a •end or •endto calls, while
to receive out of band data MSG_OOB should be indicated when performing a recvfrom or recv
call. To find out if the read pointer is currently pointing at the mark in the data stream, the
SIOCATMARK ioctl is provided:

ioctl(s, SIOCATMARK, &yes);

If yea is a 1 on return, the next read will return data after the mark. Otherwise (assuming out of
band data has arrived), the next read will provide data sent by the client prior to transmission of
the out of band signal. The routine used in the remote login process to flush output on receipt of
an interrupt or quit signal is shown in Figure 5.

~
~~ Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer

oob ()
{

}

int out= l+l;
char waste[BUFSIZJ, mark;

signal(SIGURG, oob);
/* flush local terminal input and output*/
ioctl(l, TIOCFLUSH, (char *)&out);
for (; ;) {

if (ioctl(rem, SIOCATMARK, &mark) < 0) {
perror(11 ioctl");
break;

}
if (mark)

break;
(void) read(rem, waste, sizeof (waste));

}
recv(rem, &mark, 1, MSG_OOB);

Figure 5: Flushing terminal J/0 on receipt of out of band data

5.2. Signals and Process Groups

Page 21

Due to the existence of the SIGURG and SIGIO signals each socket has an associated process
group (just as is done for terminals). This process group is initialized to the process group of its
creator, but may be redefined at a later time with the SIOCSPGRP ioctl:

ioctl(s, SIOCSPGRP, &pgrp);

A similar ioctl, SIOCGPGRP, is available for determining the current process group of a socket.

5.3. Pseudo Terminals

Many programs will not function properly without a terminal for standard input and output.
Since a socket is not a terminal, it is often necessary to have a process communicating over the
network do so through a p$eudo terminal. A pseudo terminal is actually a pair of devices, mas
ter and slave, which allow a process to serve as an active agent in communication between
processes and users. Data written on the slave side of a pseudo terminal is supplied as input to a
process reading from the master side. Data written on the master side is given the slave as
input. In this way, the process manipulating the master side of the pseudo terminal has control
over the information read and written on the slave side. The remote login server uses pseudo
terminals for remote login sessions. A user logging in to a machine across the network is pro
vided a shell with a slave pseudo terminal as standard input, output, and error. The server pro
cess then handles the communication between the programs invoked by the remote shell and the
user's local client process. When a user sends an interrupt or quit signal to a process executing
on a remote machine, the client login program traps the signal, sends an out of band message to
the server process who then uses the signal number, sent as the data value in the out of band

~
"~ Sun Microsystems Release 2.0

Page 22 IPC Primer

message, to perform a ki//pfi.2) on the appropriate process group.

5.4. Internet Address Binding

Binding addresses to sockets in the Internet domain can be fairly complex. Communicating
processes are bound by an aaaociation. An association is composed of local and foreign
addresses, and local and foreign ports. Port numbers are allocated out of separate spaces, one
for each Internet protocol. Associations are always unique. That is, there may never be dupli
cate <protocol, local address, local port, foreign address, foreign port> tuples.

The bind system call allows a process to specify half of an association, <local address, local
port>, while the connect and accept primitives are used to complete a socket's association.
Since the association is created in two steps the association uniqueness requirement indicated
above could be violated unless care is taken. Further, it is unrealistic to expect user programs to
always know proper values to use for the local address and local port since a host may reside on
multiple networks and the set of allocated port numbers is not directly accessible to a user.

To simplify local address binding the notion of a wildcard address has been provided. When an
address is specified as INADDR_ANY (a manifest constant defined in <netinet/in.h>), the sys
tem interprets the address as meaning, any valid address. For example, to bind a specific port
number to a socket, but leave the local address unspecified, the following code might be used:

#include <sys/types.h>
#include <netinet/in.h>

struct sockaddr_in sin;

s = socket(AF_INET, SOCK_STREAM, O);
sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR....ANY;
sin.sin_port = MYPORT;
bind (s, (char •) &sin, sizeof (sin));

Sockets with wildcarded local addresses may receive messages directed to the specified port
number, and addressed to any of the possible addresses assigned a host. For example, if a host is
on networks 46 and 10 and a socket is bound as above, then an accept call is performed, the pro
cess will be able to accept connection requests which arrive either from network 46 or network
10.

In a similar fashion, a local port may be left unspecified (specified as zero), in which case the sys
tem will select an appropriate port number for it. For example:

sin.sin_addr.s_addr = MYADDRESS;
sin.sin_port = 0;
bind(s, (char *)&sin, sizeof (sin));

The system selects the port number based on two criteria. The first is that ports numbered 0
through IPPORT__RESERVED-1 are reserved for privileged users (that is, the super user). The
second is that the port number is not currently bound to some other socket. In order to find a
free port number in the privileged range the following code is used by the remote shell server:

~ ~ Sun Microsystems Release 2.0

0

0

0

0

0

0

IPC Primer

struct sockaddr_ln sin;

lport = IPPORT_RESERVED - 1;
sin.sin_addr.s_addr = INADDR...,ANY;

for (; ;) {

}

sin.sin_port = htons((u_short)lport);
if (bind(s, (caddr _t)&sin, sizeof (sin)) >= 0)

break;
if (errno != EADDRINUSE && errno != EADDRNOTAVAIL) {

perror("socket");
break;

}
lport--;
if (lport == IPPORT_RESERVED/2) {

}

fprintf(stderr, "socket: All ports in use\n");
break;

Page 23

The restriction on allocating ports was done to allow processes executing in a secure environment
to perform authentication based on the originating address and port number.

In certain cases the algorithm used by the system in selecting port numbers is unsuitable for an
application. This is due to associations being created in a two step process. For example, the
Internet file transfer protocol, FTP, specifies that data connections must always originate from
the same local port. However, duplicate associations are avoided by connecting to different
foreign ports. In this situation the system would disallow binding the same local address and
port number to a socket if a previous data connection's socket were around. To override the
default port selection algorithm then an option call must be performed prior to address binding:

setsockopt(s, SOL_SOCKET, SO_REUSEADDR, (char *)O, O);
bind (s, (char •) &sin, sizeof (sin));

With the above call, local addresses may be bound which are already in use. This does not
violate the uniqueness requirement as the system still checks at connect time to be sure any
other sockets with the same local address and port do not have the same foreign address and
port (if an association already exists, the error EADDRINUSE is returned).

Local address binding by the system is currently done somewhat haphazardly when a host is on
multiple networks. Logically, one would expect the system to bind the local address associated
with the network through which a peer was communicating. For instance, if the local host is
connected to networks 46 and 10 and the foreign host is on network 32, and traffic from network
32 were arriving via network 10, the local address to be bound would be the host's address on
network 10, not network 46. This unfortunately, is not always the case. For reasons too compli
cated to discuss here, the local address bound may be appear to be chosen at random. This pro
perty of local address binding will normally be invisible to users unless the foreign host does not
understand how to reach the address selected. 1

7 For example, if network 46 were unknown to the host on network 32, and the local address were bound
to that located on network 46, then even though a. route between the two hosts existed through network
IO, a connection would Ca.ii.

~
\~ Sun Microsystems Release 2.0

Page 24 !PC Primer

5.6. Broadcasting and Datagram Sockets

By using a datagram socket it is possible to send broadcast packets on many networks supported
by the system (the network itself must support the notion of broadcasting; the system provides
no broadcast simulation in software). Broadcast messages can place a high load on a network
since they force every host on the network to service them.

To send a broadcast message, an Internet datagram socket should be created:

s = socket(AF_INET, SOCK_DGRAM, O);

and at least a port number should be bound to the socket:

sin.sin_family = AF_INET;
sin.sin_addr.s_addr = INADDR....ANY;
sin.sin_port = MYPORT;
bind (s, (char *) &sin, sizeof (sin));

Then the message should be addressed as:

dst.sin_family = AF_INET;
inet_makeaddr(net, INADDR....ANY);
dst.sin_port = DESTPORT;

and, finally, a sendto call may be used:

sendto(s, buf, buflen, 0, &dst, sizeof (dst));

Received broadcast messages contain the senders address and port (datagram sockets are
anchored before a message is allowed to go out).

There are a couple of minor problems in the above example. One is created because
INADDR...ANY has two meanings:

l. Fill in my own address, and,

2. Broadcast.

Unfortunately, broadcast must at some time in the future be changed to -1 instead of 0, so that
broadcast will no longer be The second problem is how do you get your net number? You could
use the SJOCGJCONF ioctl call, or you could get your own address and do a inet_netof on that.
INADDR...ANY.

5.6. Signals

Two new signals have been added to the system which may be used in conjunction with the !PC
facilities. The SIGURG signal is associated with the existence of an urgent condition. The
SJGJO signal is used with interrupt driven 1/0 (not presently implemented). SJGURG is
currently supplied a process when out of band data is present at a socket. If multiple sockets
have out of band data awaiting delivery, a select call may be used to determine those sockets
with such data.

An old signal which is useful when constructing server processes is SIGCHLD. This signal is
delivered to a process when any children processes have changed state. Normally servers use the
signal to reap child processes after exiting. For example, the remote login server loop shown in
Figure 2 may be augmented as follows:

~ .
~@ Sun Microsystems Release 2.0

0

0

0

0

0

0

!PC Primer

int reaper () ;

signal(SIGCHLD, reaper);
listen (f. 10) ;
for(;;) {

}

int g, len = sizeof (from);

g = accept(f, &from, &len, O);
if (g < 0) {

}

if (errno I= EINTR)
perror(ffrlogind: acceptff);

continue;

#include <wait.h>
reaper()
{

union wait status;

while (wait3(&status, WNOHANG, 0) > 0)

}

Page 25

If the parent server process fails to reap its children, a large number of zombie processes may be
created.

~
\~ Sun Microsystems Release 2.0

0

01

0

0 Network Implementation

0

0

0

0

0

0

0

Contents

1, Introduction

2. Overview ...

3. Goals

4. Internal Address Representation

5. Memory Management

6. Internal Layering
6.1. Socket Layer

6.1.1. Socket State
6.1.2. Socket Data Queues
6.1.3. Socket Connection Queueing ..

6.2. Protocol Layer(s)
6.3. Network-Interface Layer ...

1

1

2

2

2

4
4
5
6

6
7
8

8. Protocol/Protocol Interface 13
8.1. pr_output 13
8.2. pr_input 14
8.3. pr_ctlinput 14
8.4. pr_ctloutput 15

9. Protocol/Network-Interface Interface 15
9.1. Packet Transmission 15
9.2. Packet Reception 15

10. Gateways and Routing Issues .. 16
10.1. Routing Tables .. 16
10.2. Routing Table Interface 18
10.3. User-Level Routing Policies 18

11, Raw Sockets 18
11.1. Control Blocks 19

-,-

11.2. Input Processing 19
11.3. Output Processing .. . 20 0

12. Buffering and Congestion Control 20
12.1. Memory Management 20
12.2. Protocol Buffering Policies .. . 21
12.3. Queue L1m1tmg 21
12.4. Packet Forwarding .. . 21

13. Out of Band Data 22

A. Acknowledgements and References 22

B. References 22

0

0
- II -

0

0

0

Network Implementation

1. Introduction

This report describes the internal structure of the networking facilities of the Sun Workstation
version of the UNIXt operating system. These facilities are derived from the networking facili
ties added at U.C. Berkeley in the Berkeley 4.2 release of the system. The system provides a
uniform user interface to networking, and a structure that permits system implementors to add
new facilities. The internal structure is not visible to the user, rather it is intended to aid imple
mentors of communication protocols and network services by providing a framework that pro
motes code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system interface, as
described in the Sy.tern Interface Overview at the beginning of the Sun Sy.tern Interface
Manual. Basic understanding of network communication concepts is assumed; where required
any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding, when
possible, those portions utilized only by the interprocess communication facilities.

2. Overview

If we consider the International Standards Organization's (ISO) Open System Interconnection
(OSI) model of network communication {IS081] [Zimmermann80], the networking facilities
described here correspond to a portion of the session layer (layer 3) and all of the transport and
network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal addressing
structure. Addressing at this level is normally host to host, with implicit or explicit routing
optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and service
addressing are normally included. Reliability is usually managed by explicit acknowledgement of
data delivered. Failure to acknowledge a transfer results in retransmission of the data. Sequenc
ing may be handled by tagging each message handed to the network layer by a aequence number
and maintaining state at the endpoints of communication to utilize received sequence numbers in
reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into formats
required by the transport layer, service authentication and client authentication, etc. Various
systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility rou
tines, then examine the internal layering. The contents of each layer and its interface are con
sidered. Certain of the interfaces are protocol implementation specific. For these cases

t UNIX is a trademark or Bell Laboratories .

• Sun Microsystems Release 2.0

Page 2 Network Implementation

examples have been drawn from the Internet !Cerf78] protocol family. Later sections cover rout-
ing issues, the design of the raw socket interface and other miscellaneous topics. o
3. Goals

The networking system was designed with the goal of supporting multiple protocol familiea and
addressing styles. This required information to be "hidden" in common data structures which
could be manipulated by all the pieces of the system, but which required interpretation only by
the protocols which "controlled" it. The system described here attempts to minimize the use of
shared data structures to those kept by a suite of protocols (a protocol family), and those used
for rendezvous between "synchronous" and "asynchronous" portions of the system (for example,
queues of data packets are filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could easily be supported. To this end, a great deal of effort has been extended to
create utility routines which hide many of the more complex and/or hardware dependent chores
of networking. Later sections describe the utility routines and the underlying data structures
they manipulate.

4. Internal Address Representation

Common to all portions of the system are two data structures. These structures are
represent addresses and various data objects. Addresses, internally are described
aockaddr structure,

struct sockaddr {
short sa_family;
char sa_data[14];

};

/• data format identifier•/
/*address•/

used to
by the

All addresses belong to one or more addreu familie• which define their format and interpreta
tion. The ••-family field indicates which address family the address belongs to, the aa_data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a
study of current address formats

5. Memory Management

A single mechanism is used for data storage: memory buffers, or mbufs. An mbuf is a structure
of the form:

struct mbuf {
struct mbuf •m...next; 1• next buffer in chain•/
u_long m_off; /• offset of data •1
short DLlen; 1• amount of data in this mbuf •1
short m...type; /• mbuf type (accounting) •1
u_char m_dat[MLEN]; 1• data storage•;
struct mbuf •m...act; 1• link in higher-level mbuf list •1

};

0

The m_nezt field is used to chain mbufs together on linked lists, while the m_act field allows lists o,

of mbufs to be accumulated. By convention, the mbufs common to a single object (for example,

• Sun Microsystems Release 2.0

0

0

0

Network Implementation Page 3

a packet) are chained together with the m_next field, while groups of objects are linked via the
m_act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_Jat. The m_len field indicates the
amount of data, while the m_off field is an offset to the beginning of the data from the base of
the mbuf. Thus, for example, the macro mtoJ, which converts a pointer to an mbuf to a pointer
to the data stored in the mbuf, has the form

#define mtod(x,t) ((t) ((int) (x) + (x) ->m.._off))

(note the t parameter, a C type cast, is used to cast the resultant pointer for proper assignment).

In addition to storing data directly in the mbuf's data area, data of page size may be also be
stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for this
purpose and manipulate a private page map for such pages. The virtual addresses of these data
pages precede those of mbufs, so when pages of data are separated from an mbuf, the mbuf data
offset is a negative value. An array of reference counts on pages is also maintained so that copies
of pages may be made without core to core copying (copies are created simply by duplicating
the relevant page table entries in the data page map and incrementing the associated reference
counts for the pages). Separate data pages are currently used only when copying data from a
user process into the kernel, and when bringing data in at the hardware level. Routines which
manipulate mbufs are not normally aware if data is stored directly in the mbuf data array, or if
it is kept in separate pages.

The following utility routines are available for manipulating mbuf chains:

m = m_copy(mO, off, len);
The m_copy routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes of
data, starting off bytes from the front of the chain, are copied. Where possible, reference
counts on pages are used instead of core to core copies. The original mbuf chain must have
at least off + /en bytes of data. If /en is specified as M_COPYALL, all the data present,
offset as before, is copied.

m_cat(m, n);
The mbuf chain, n, is appended to the end of m. Where possible, compaction is performed.

m_adj (m, di ff) ;
The mbuf chain, m is adjusted in size by Jiff bytes. If Jiff is non-negative, Jiff bytes are
shaved off the front of the mbuf chain. If Jiff is negative, the alteration is performed from
back to front. No space is reclaimed in this operation, alterations are accomplished by
changing the m_len and m_off fields of mbufs.

m = m_pullup(mO, size);
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is
guaranteed to have at least aize bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mtoJ macro). If the original data was less than size bytes long,
/en was greater than the size of an mbuf data area (112 bytes), or required resources were
unavailable, m is O and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be "pulled up" with a single m_pullup call. If the call fails the
invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the mbuf
associated with a data area by masking off the low bits of the virtual address. This allows

• Sun Microsystems Release 2.0

Page 4 Network Implementation

modules to store data structures in mbufs and pass them around without concern for locating the
original mbuf when it comes time to free the structure. The dtom macro is used to convert a
pointer into an mbuf's data area to a pointer to the mbuf,

#define dtom(x) ((struct mbuf •) ((int) x & - (MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as memory allo
cated for packets. Statistics are maintained on mbuf usage and can be viewed by users using the
netsta~8) program.

6. Internal Layering

The internal structure of the network system is divided into three layers. These layers
correspond to the services provided by the socket abstraction, those provided by the communica,.
tion protocols, and those provided by the hardware interfaces. The communication protocols are
normally layered into two or more individual cooperating layers, though they are collectively
viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the interfaces each
must conform to.

6.1. Socket Layer

The socket layer deals with the interprocess communications facilities provided by the system.
A socket is a bidirectional endpoint or communication which is "typed" by the semantics of com
munication it supports. The system calls described in the Syatem Interface Overview are used to
manipulate sockets.

A socket consists or the following data structure:

struct socket {

};

short
short
short
short
caddr_t
struct
struct
struct
short
struct
short
short
struct
struct
short

so_type;
so_options;
so_linger;
so_state;
so_pcb;
protosw *so_proto;
socket *so_head;
socket *so_qO;
so_qOlen;
socket *so_q;
so_qlen;
so_qllmit;
sockbuf so_snd;
sockbuf so_rcv;
so_timeo;

u_short so_error;
short so_oobmark;
short so_pgrp;

/• generic type•/
;• from socket call•/
/• time to linger while closing•/
/• internal state flags•/
/• protocol control block•/
/* protocol handle•/
/• back pointer to accept socket*/
/* queue of partial connections*/
/• partials on so_qO •/
/• queue of incoming connections•/
;• number of connections on so_q •/
;• max number queued connections•;
/• send queue•/
/• recei,n, queue•/
/• connection timeout•/
/• error affecting connection•/
/• chars to oob mark•/
/• pgrp for signals•/

Each socket contains two data queues, ao_rcv and ao_and, and a pointer to routines which

~) Sun Microsystems Release 2.0

0

0

0

0

0

0

Network Implementation Page 5

provide supporting services. The type of the socket, ao_type is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting protocol
is selected at socket creation time and recorded in the socket data structure for later use. Pro
tocols are defined by a table of procedures, the protoaw structure, which will be described in
detail later. A pointer to a protocol specific data structure, the "protocol control block" is also
present in the socket structure. Protocols control this data structure and it normally includes a
back pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number in the ao_error field). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
socket characteristics (for example, options supplied at the time a socket is created), and main
taining a socket's state.

Processes "rendezvous at a socket" in many instances. For instance, when a process wishes to
extract data from a socket's receive queue and it is empty, or lacks sufficient data to satisfy the
request, the process blocks, supplying the address of the receive queue as an "wait channel' to be
used in notification. When data arrives for the process and is placed in the socket's queue, the
blocked process is identified by the fact it is waiting "on the queue".

6.1.1. Socket State

A socket's state is defined from the following:

#define SS_NOFDREF OxOOl /* no file table ref any more*/
#define SS_ISCONNECTED Ox002 /* socket connected to a peer*/
#define SS_I SCONNECTING Ox004 /* in process of connecting to peer */
#define SS_ISDISCONNECTING Ox008 /* in process of disconnecting*/
#define SS_CANTSENDMORI! Ox010 /* can't send more data to peer*/
#define SS_CANTRCVMORE Ox020 /* can't receive more data from peer*/
#define SS_CONNAWAITING Ox040 /* connections awaiting acceptance*/
#define SS_RCVATMARK Ox080 /* at mark on input*/
#define SS_PRIV OxlOO /* privileged */
#define SS_NBIO Ox200 /* non-blocking ops */
#define SS_ASYNC Ox400 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system calls).
When a socket is created the state is defined based on the type of input/output the user wishes
to perform. "Non-blocking" 1/0 implies a process should never be blocked to await resources.
Instead, any call which would block returns prematurely with the error EWOULDBLOCK (the
service request may be partially fulfilled, for example, a request for more data than is present).

1£ a process requested "asynchronous" notification of events related to the socket the SJGJO sig
nal is posted to the process. An event is a change in the socket's state, examples of such occu
rances are: space becoming available in the send queue, new data available in the receive queue,
connection establishment or disestablishment, etc.

A socket may be marked "priviledged" if it was created by the super-user. Only priviledged
sockets may send broadcast packets, or bind addresses in priviledged portions of an address
space.

""' ~~ Sun Microsystems Release 2.0

Page 6 Network Implementation

6.1.2. Socket Data Queues

A socket's data queue contains a pointer to the data stored in the queue and other entries
related to the management of the data. The following structure defines a data queue:

struct sockbuf {
short sb_cc; ;• actual chars in buffer •;
short sb_hiwat; ;• max actual char count •;
short sb_mbcnt; ;• chars of mbufs used •;
short sb_mbmax; ;• max chars of mbufs to use •;
short sb_lowat; ;• low water mark •;
short sb_timeo; ;• timeout •;
struct mbuf *sb_mb; ;• the mbuf chain •;
struct proc *sb_sel; ;• process selecting read/write •;
short sb_flags; ;• flags, see below*/

};

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as high and
low water marks are used by the protocols in controlling the flow of data. The socket routines
cooperate in implementing the flow control policy by blocking a process when it requests to send
data and the high water mark has been reached, or when it requests to receive data and less
than the low water mark is present (assuming non-blocking 1/0 has not been specified).

When a socket is created, the supporting protocol "reserves" space for the send and receive
queues of the socket. The actual storage associated with a socket queue may fluctuate during a
socket's lifetime, but is assumed this reservation will always allow a protocol to acquire enough
memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing various
portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in acquiring
resources;

#define SB_LOCK OxOl ;• lock on data queue (so_rcv only) •;
#define SB_WANT Ox02 ;• someone is waiting to lock•/

#define SB_WAIT Ox04 ;• someone is waiting for data/space*/

#define SB_SEL Ox08 ;• buffer is selected •/
#define SB_COLL OxlO ;• collision selecting*/

The last two flags are manipulated by the system in implementing the select mechanism.

6.1.3. Socket Connection Queueing

In dealing with connection oriented sockets (for example, SOCK_STREAM) the two sides are
considered distinct. One side is termed active, and generates connection requests. The other
side is called paaaive and accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specified, creat
ing two queues of sockets: •o_qO for connections in progress and 3o_q for connections already
made and awaiting user acceptance. As a protocol is preparing incoming connections, it creates
a socket structure queued on 3o_qO by calling the routine •onewconn(). When the connection is
established, the socket structure is then transfered to •o_q, making it available for an accept.

• Sun Microsystems Release 2.0

0

0

0

0

0

0

Network Implementation Page 7

If an SO....ACCEPTCONN socket is closed with sockets on either ao_qO or ao_q, these sockets are
dropped.

6.2. Protocol Layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics, some of
which are used in deciding which socket type(s) they may support.

An entry in the "protocol switch" table exists for each protocol module configured into the sys
tem. It has the following form:

struct protosw {
short pr_type; ;• socket type used for •;
short pr _family; I* protocol family•;
short pr _protocol; ;• protocol number*/
short pr _flags; ;• socket visible attributes •;

;• protocol-protocol hooks •;
int (•pr _input) (); ;• input to protocol (from below)
int (•pr _output) (); ;• output to protocol (from above)
int (•pr_ctlinput) (); ;• control input (from below) •;
int (•pr_ctloutput) (); ;• control output (from above) •;

;• user-protocol hook•;
int (•pr _usrreq) () ; ;• user request•;

;• utility hooks•/
int (•pr_init) (); ;• initialization routine•/
int (•pr _fasttimo) (); ;• fast timeout (200ms) •;
int (•pr _slowtimo) (); ;• slow timeout (SOOms) •;
int (•pr _drain) (); ;• flush any excess space possible

};

A protocol is called through the pr_init entry before any other. Thereafter it is called every 200
milliseconds through the pr....fa.ttimo entry and every 500 milliseconds through the pr_alowtimo
for timer based actions. The system will call the pr_drain entry if it is low on space and this
should throw away any non-critical data.

Protocols pass data between themselves as chains of mbufs using the pr_input and pr_output rou
tines. Pr_input passes data up (towards the user) and pr_output passes it down (towards the net
work); control information passes up and down on pr_ctlinput and pr_ctloutput. The protocol is
responsible for the space occupied by any the arguments to these entries and must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.

The pr_flaga field is constructed from the following values:

#define PR..ATOMIC OxOl 1• exchange atomic messages only•/
#define PR..ADDR Ox02 ;• addresses given with messages•/
#define PR_CONNREQUIRED Ox04 ;• connection required by protocol•;
#define PR_WANTRCVD OxOB ;• want PRU_B.CVD calls•;
#define PR_R.ICIITS OxlO ;• passes capabilities•;

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket
routines will never attempt to send data before a connection has been established. If the
PR_ WANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket's receive queue. This allows the protocol to implement ack
nowledgement on user receipt, and also update windowing information based on the amount of

~ ~~ Sun Microsystems Release 2.0

•;
•;

•;

Page 8 Network Implementation

space available in the receive queue. The PR__ADDR field indicates any data placed in the
socket's receive queue will be preceded by the address of the sender. The PR__ATOMIC flag
specifies each 1uer request to send data must be performed in a single protocol send request; it is
the protocol's responsibility to maintain record boundaries on data to be sent. The PR__RIGHTS
flag indicates the protocol supports the passing of capabilities; this is currently used only the
protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an appropriate
protocol to support the type of socket being created. The pr_type field contains one of the possi
ble socket types (for example, S0CK-8TREAM), while the pr-family field indicates which proto
col family the protocol belongs to. The pr_protocol field contains the protocol number of the
protocol, normally a well known value.

6.3. Network-Interface Layer

Each network-interface configured into a system defines a path through which packets may be
sent and received. Normally a hardware device is associated with this interface, though there is
no requirement for this (for example, all systems have a software "loopback" interface used for
debugging and performance analysis). In addition to manipulating the hardware device, an inter
face module is responsible for encapsulation and deencapsulation of any low level header infor
mation required to deliver a message to it's destination. The selection of which interface to use
in delivering packets is a routing decision carried out at a higher level than the network
interface layer. Each interface normally identifies itself at boot time to the routing module so
that it may be selected for packet delivery.

An interface is defined by the following structure,

• Sun Microsystems Release 2.0

0

0

0

0

0

0

Network Implementation Page 9

struct ifnet {
char *if_name; /* name, for example, ""'"en'' or .. "lo•'
short if_unit; /* sub-unit for lower level driver
short if_mtu; /* maximum transmission unit */
int if_net; I* network number of interface */
short if_flags; /* up/down, broadcast~ etc. */
short if_timer; /* time 'til if_watchdog called
int if_host[2]; /* local net host number
struct sockaddr if_addr; /* address of interface
union {

struct
struct

} if_ifu;

sockaddr ifu_broadaddr;
sockaddr ifu_dstaddr;

ifqueue if_snd;
(*if_init) ();
(*if_output) ();

/* output queue*/
/* init routine*/
/* output routine*/
/* ioctl routine*/
/* bus reset routine*/
/* timer routine*/

*/
*/

*/

struct
int
int
int
int
int
int
int
int
int
int
struct

c· if_ioctl) () ;
(*if_reset) ();
(*if_watchdog) ();
if_ipackets;
if_lerrors;

/* packets received on interface*/
/* input errors on interface*/

};

i f_opackets;
if_oerrors;
if_colllslons;
ifnet *if_next;

/* packets sent on interface*/
/* output errors on interface*/
/* collisions on csma interfaces*/

Each interface has a send queue and routines used for initialization, i/_init, and output,
,J_output. If the interface resides on a system bus, the routine i/_reaet will be called after a bus
reset has been performed. An interface may also specify a timer routine, if_watchdog, which
should be called every if_timer seconds (if non-zero).

The state of an interface and certain characteristics are stored in the if_flaga field. The follow
ing values are possible:

#define IFF_UP Oxl /* interface is up*/
#define IFF_BROADCAST Ox2 /* broadcast address valid */
#define IFF_DEBUG Ox4 /* turn on debugging*/
#define !FL.ROUTE Ox8 /* routing entry installed*/
#define IFF _POINTOPOINT OxlO /* interface is point-to-point link */
#define IFF_NOTRAILERS Ox20 /* avoid use of trailers*/
#define IFF_RUNNING Ox40 /* resources allocated*/

If the interface is connected to a network which supports transmission of broadcaat packets, the
!FF _BROADCAST flag will be set and the if_broadaddr field will contain the address to be used
in sending or accepting a broadcast packet. If the interface is associated with a point to point
hardware link (for example, a DEC DMR-11), the IFFYOINTOPOINT flag will be set and
if_dstaddr will contain the address of the host on the other side of the connection. These
addresses and the local address of the interface, if_addr, are used in filtering incoming packets.
The interface sets !FF _RUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests when
an interface's address is changed. The IFF _NOTRAILERS flag indicates the interface should
refrain from using a trailer encapsulation on outgoing packets. 1

1 Trailer protocols are normally disabled on the Sun Workstation.

fl>' '4,.~ Sun Microsystems Release 2.0

*/
*/

Page 10 Network Implementation

The information stored in an i/net structure for point to point communication devices is not
currently used by the system internally. Rather, it is used by the user level routing process in
determining host network connections and in initially devising routes (refer to chapter 10 for
more information).

Various statistics are also stored in the interface structure. These may be viewed by users using
the netata~l) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls.
SIOCSIFADDR is used to initially define each interface's address; SIOGSIFFLAGS can be used
to mark an interface down and perform site-specific configuration.

7. SocketjProtocollnterface

The interface between the socket routines and the communication protocols is through the
pr_uarreq routine defined in the protocol switch table. The following requests to a protocol
module are possible:

#define PRU__ATTACH 0 /* attach protocol*/
#define PRU_DETACH 1 /* detach protocol*/
#define PRU_BIND 2 /* bind socket to address */
#define PRU_LISTEN 3 /* listen for connection*/
#define PRU_CONNECT 4 /* establish connection to peer*/
#define PRU__ACCEPT 5 /* accept connection from peer */
#define PRU_DISCONNECT 6 /* disconnect from peer*/
#define PRU_SHUTDOWN 7 /* won't send any more data*/

#define PRU_RCVD 8 /* have taken data; more room now */
#define PRU_SEND 9 /* send this data*/
#define PRU__ABORT 10 /* abort (fast DISCONNECT, DETATCH)
#define PRU_CONTROL 11 /* control operations on protocol
#define PRU_SENSE 12 /* return status into m */
#define PRU_RCVOOB 13 /* retrieve out of band data
#define PRU_SENDOOB 14 /* send out of band data*/
#define PRU_SOCKADDR 15 /* fetch socket's address*/
#define PRU_PEERADDR 16 /* fetch peer's address*/
#define PRU_CONNECT2 17 /* connect two sockets */
/* begin for protocols internal use*/
#define PRU_FASTTIMO 18 /* 200ms timeout*/
#define PRU_SLOWTIMO 19 /* SOOms timeout*/
#define PRUJ'ROTORC'I 20 /* receive from below */
#define PRUJ'ROTOSEND 21 /* send to below•/

A call on the user request routine is of the form,

error= (*protosw[J.pr_usrreq) (up, req, m, addr, rights);
int error;
struct socket •up;
int req;
struct mbuf *m~ *rights;
caddr_t addr;

*/

*/
*/

The mbuf chain, m, and the address are optional parameters. The right, parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the ,endmag and
recvmag system calls). The protocol is responsible for disposal of both mbuf chains. A non-zero
return value gives a UNIX error number which should be passed to higher level software. The

() Sun Microsystems Release 2.0

0

0

0

0

0

0

Network Implementation Page 11

following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the •ocket system call) the protocol module is
called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The "attach" request will always precede any of the other requests,
and should not occur more than once.

PRUJ)ETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted. The
protocol module may deallocate any resources assigned to the socket.

PRUJ31ND
When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

PRUJ,ISTEN
The "listen" request indicates the user wishes to listen for incoming connection requests on
the associated socket. The protocol module should perform any state changes needed to
carry out this request (if possible). A "listen" request always precedes a request to accept a
connection.

PRU_CONNECT
The "connect" request indicates the user wants to a establish an assoc1at1on. The addr
parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP [Postel80b], use
this request to initiate establishment of a TCP connection. Datagram protocols, such as
UDP [Postel79], simply record the peer's address in a private data structure and use it to tag
all outgoing packets. There are no restrictions on how many times a connect request may be
used after an attach. If a protocol supports the notion of multi-ca•ting, it is possible to use
multiple connects to establish a multi-cast group. Alternatively, an association may be bro
ken by a PRUJ)JSCONNECT request, and a new association created with a subsequent con
nect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following a successful PRUJ,ISTEN request and the arrival of one or more connections, this
request is made to indicate the user has accepted the first connection on the queue of pend
ing connections. The protocol module should fill in the supplied address buffer with the
address of the connected party.

PRU.J)ISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter
indicates the direction of the shutdown, as encoded in the •••hutdown system call). The pro
tocol may, at its discretion, deallocate any data structures related to the shutdown.

PRU..RCVD
This request is made only if the protocol entry in the protocol switch table includes the
PR_ WANTRCVD flag. When a user removes data from the receive queue this request will
be sent to the protocol module. It may be used to trigger acknowledgements, refresh win
dowing information, initiate data transfer, etc.

~
~~ Sun Microsystems Release 2.0

Page 12 Network Implementation

PRU_SEND
Each user request to send data is translated into one or more PRU_SEND requests (a proto- o
col may indicate a single user send request must be translated into a single PRU_8END
request by specifying the PR_ATOMIC flag in its protocol description). The data to be sent
is presented to the protocol as a list of mbufs and an address is, optionally, supplied in the
addr parameter. The protocol is responsible for preserving the data in the socket's send
queue if it is not able to send it immediately, or if it may need it at some later time (for
example, for retransmission).

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any
existing association(s).

PRU_CONTROL
The "control" request is generated when a user performs a UNIX ioctl system call on a
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific
operations to be provided outside the scope of the common socket interface. The addr
parameter contains a pointer to a static kernel data area where relevant information may be
obtained or returned. The m parameter contains the actual ioctl request code (note the
non-standard calling convention).

PRU_SENSE
The "sense" request is generated when the user makes an /.tat system call on a socket; it
requests status of the associated socket. There currently is no common format for the status
returned. Information which might be returned includes per-connection statistics, protocol
state, resources currently in use by the connection, the optimal transfer size for the connec
tion (based on windowing information and maximum packet size). The addr parameter con
tains a pointer to a static kernel data area where the status buffer should be placed.

PRU_RCVOOB
Any "out-of-band" data presently available is to be returned. An mbuf is passed in to the
protocol module and the protocol should either place data in the mbuf or attach new mbufs
to the one supplied if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The address
format (protocol specific) is returned in the addr parameter.

PRUYEERADDR
The address of the peer to which the socket is connected is returned. The socket must be in
a SSJSCONNECTED state for this request to be made to the protocol. The address format
(protocol specific) is returned in the addr parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection between
the two without binding any addresses, if possible. This call is used in implementing the
aocketpair(2) system call.

The following requests are used internally by the protocol modules and are never generated by
the socket routines. In certain instances, they are handed to the pr_uarreq routine solely for
convenience in tracing a protocol's operation (for example, PRU-8LOWTIMO).

+ Sun Microsystems Release 2.0

0

0

0

0

0

Network Implementation Page 13

PRU_F ASTTIMO
A "fast timeout" has occured. This request is made when a timeout occurs in the protocol's
pr...Jaatimo routine. The addr parameter indicates which timer expired.

PRU_SLOWTIMO
A "slow timeout" has occured. This request is made when a timeout occurs in the protocol's
pr_alowtimo routine. The addr parameter indicates which timer expired.

PRU_FROTORCV
This request is used in the protocol-protocol interface, not by the routines. It requests
reception of data destined for the protocol and not the user. No protocols currently use this
facility.

PRUYROTOSEND
This request allows a protocol to send data destined for another protocol module, not a user.
The details of how data is marked "addressed to protocol" instead of "addressed to user"
are left to the protocol modules. No protocols currently use this facility.

8. Protocol/Protocol Interface

The interface between protocol modules is through the pr_uarreq, pr_input, pr_output,
pr_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_uarreq routine
are expected to be specific to the protocol modules and are not guaranteed to be consistent
across protocol families. We will examine the conventions used for some of the Internet proto
cols in this section as an example.

8.1. pr_output

The Internet protocol UDP uses the convention,

error= udp_output(inp, m);
int error;
struct inpcb *inp;
struct mbuf •m;

where the inp, "internet protocol control block", passed between modules conveys per connec
tion state information, and the mbuf chain contains the data to be sent. UDP performs con
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to
the IP module:

error= ip_output(m, opt, ro, allowbroadcast);
int error;
struct mbuf •m, *opt;
struct route *ro;
int allowbroadcast;

The call to IP's output routine is more complicated than that for UDP, as befits the additional
work the IP module must do. The m parameter is the data to be sent, and the opt parameter is
an optional list of IP options which should be placed in the IP packet header. The ro parameter
is is used in making routing decisions (and passing them back to the caller). The final parame
ter, allowbroadcaat is a flag indicating if the user is allowed to transmit a broadcast packet. This
may be inconsequential if the underlying hardware does not support the notion of broadcasting.

,. ..
\~ Sun Microsystems Release 2.0

Page 14 Network Implementation

All output routines return O on success and a UNIX error number if a failure occured which could
be immediately detected (no buffer space available, no route to destination, etc.).

8.2. pr _input

Both UDP and TCP use the following calling convention,

(void) (*protosw[) .pr _input) (m);
struct mbuf *m;

Each mbuf list passed is a single packet to be processed by the protocol module.

The IP input routine is a software interrupt level routine, and so is not called with any parame
ters. It instead communicates with network interfaces through a queue, ipintrq, which is identi
cal in structure to the queues used by the network interfaces for storing packets awaiting
transmission.

8.3. pr _ctlinput

This routine is used to convey "control" information to a protocol module (i.e. information which
might be passed to the user, but is not data). This routine, and the pr_ctloutput routine, have
not been extensively developed, and thus suffer from a "clumsiness" that can only be improved
as more demands are placed on it.

The common calling convention for this routine is,

(void) (*protosw[].pr_ctlinput) (req, info);
int req;
caddr_t info;

The req parameter is one of the following,

#define PRC_Il:'DOWN 0 /* interface transition*/
#define PRC_ROUTEDEAD l /* select new route if possible */
#define PRC_QUENCH 4 /* some said to slow down*/
#define PRC_HOSTDEAD 6 /* normally from IMP*/
#define PRCJ!OSTUNREACH 7 /* ditto*/
#define PRC_UNREACH_NET 8 /* no route to network*/
#define PRC_UNREACH_HOST 9 /* no route to host*/
#define PRC_UNREACH_PROTOCOL 10 /* dst says bad protoco 1 • /
#define PRC_UNREACH_PORT ll /* bad port # */
#define PRCJ!SGSIZE 12 /* message size forced drop */
#define PRC_REDIRECT_NET 13 /* net routing redirect*/
#define PRC_REDIRECTJIOST 14 /* host routing redirect*/
#define PRC_TIMXCEED_INTRANS 17 /* packet lifetime expired in transit */
#define PRC_TIMXCEED_REASS 18 1• lifetime expired on reass q •;
#define PRC_FARAMPROB 19 1• header incorrect*/

while the info parameter is a "catchall" value which is request dependent. Many of the requests
have obviously been derived from ICMP (the Internet Control Message Protocol), and from error
messages defined in the 1822 host/IMP convention [BBN78J. Mapping tables exist to convert
control requests to UNIX error codes which are delivered to a user.

~ .
"~ Sun Microsystems Release 2.0

0

0

0

0

0

0

Network Implementation Page 15

8.4. pr_ctloutput

This routine is not currently used by any protocol modules.

9. Protocol/Network-Interface Interface

The lowest layer in the set of protocols which comprise a protocol family must interface itself to
one or more network interfaces in order to transmit and receive packets. It is assumed that any
routing decisions have been made before handing a packet to a network interface, in fact this is
absolutely necessary in order to locate any interface at all (unless, of course, one uses a single
"hardwired" interface). There are two cases to be concerned with, transmission of a packet, and
receipt of a packet; each will be considered separately.

9.1. Packet Transmission

Assuming a protocol has a handle on an interface, ifp, a (struct ifnet *), it transmits a fully for
matted packet with the following call,

error= (*ifp->if_output) (ifp, m, dst)
int error;
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr *dst;

The output routine for the network interface transmits the packet m to the dat address, or
returns an error indication (a UNIX error number). In reality transmission may not be immedi
ate, or successful; normally the output routine simply queues the packet on its send queue and
primes an interrupt driven routine to actually transmit the packet. For unreliable mediums,
such as the Ethernet, "successful" transmission simply means the packet has been placed on the
cable without a collision. On the other hand, an 1822 interface guarantees proper delivery or an
error indication for each message transmitted. The model employed in the networking system
attaches no promises of delivery to the packets handed to a network interface, and thus
corresponds more closely to the Ethernet. Errors returned by the output routine are normally
trivial in nature (no buffer space, address format not handled, etc.).

9.2. Packet Reception

Each protocol family must have one or more "lowest level" protocols. These protocols deal with
internetwork addressing and are responsible for the delivery of incoming packets to the proper
protocol processing modules. In the PUP model [Boggs78[these protocols are termed Level I
protocols, in the ISO model, network layer protocols. In our system each such protocol module
has an input packet queue assigned to it. Incoming packets received by a network interface are
queued up for the protocol module and a software interrupt is posted to initiate processing.

Three macros are available for queueing and dequeueing packets,

IF_ENQUEUE(ifq, m)
This places the packet m at the tail of the queue ifq.

• Sun Microsystems Release 2.0

Page 16 Network Implementation

IF_DEQUEUE(ifq, m)
This places a pointer to the packet at the head of queue i/q in m. A zero value will be
returned in m if the queue is empty.

IF YREPEND(ifq, m)
This places the packet m at the head of the queue ifq.

Each queue has a maximum length associated with it as a simple form of congestion control.
The macro IF _QFULL(ifq) returns 1 if the queue is filled, in which case the macro IF _DROP(ifq)
should be used to bump a count of the number of packets dropped and the offending packet
dropped. For example, the following code fragment is commonly found in a network interface's
input routine,

if (IF_QFULL(inq)) {
IF_DROP(inq);
DLfreem(m);

} else
IF_ENQUEUE(inq, m);

10. Gateways and Routing Issues

0

The system has been designed with the expectation that it will be used in an internetwork
environment. The "canonical" environment was envisioned to be a collection of local area net
works connected at one or more points through hosts with multiple network interfaces (one on
each local area network), and possibly a connection to a long haul network (for example, the
ARPANET). In such an environment, issues of gatewaying and packet routing become very 0
important. Certain of these issues, such as congestion control, have been handled in a simplistic ;
manner or specifically not addressed. Instead, where possible, the network system attempts to
provide simple mechanisms upon which more involved policies may be implemented. As some of
these problems become better understood, the solutions developed will be incorporated into the
system.

This section will describe the facilities provided for packet routing. The simplistic mechanisms
provided for congestion control are described in chapter 12.

10.1. Routing Tables

The network system maintains a set of routing tables for selecting a network interface to use in
delivering a packet to its destination. These tables are of the form:

struct rtentry {
u_long
struct
struct
short
short
u_long
struct

};

rt_hash;
sockaddr rt_dst;
sockaddr rt_gateway;
rt_flags;
rt_refcnt;
rt_use;
ifnet •rt_ifp;

/* hash key for lookups*/
/* destination net or host*/
/* forwarding agent*/
/* see below*/
/*no.of references to structure*/
/* packets sent using route*/
/* interface to give packet to*/

The routing information is organized in two separate tables, one for routes to a host and one for

0 routes to a network. The distinction between hosts and networks is necessary so that a single

• Sun Microsystems Release 2.0

0

0

0

Network Implementation Page 17

mechanism may be used for both broadcast and multi-drop type networks, and also for networks
built from point-to-point links (e.g DECnet [DEC80]).

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by
routines defined for each address family; one based on the destination being a host, and one
assuming the target is the network portion of the address. Each hash value is used to locate a
hash chain to search (by taking the value modulo the hash table size) and the entire 32-bit value
is then used as a key in scanning the list of routes. Lookups are applied first to the routing table
for hosts, then to the routing table for networks. If both lookups fail, a final lookup is made for
a "wildcard" route (by convention, network 0). By doing this, routes to a specific host on a net
work may be present as well as routes to the network. This also allows a "fall back" network
route to be defined to an "smart" gateway which may then perform more intelligent routing.

Each routing table entry contains a destination (who's at the other end of the route), a gateway
to send the packet to, and various flags which indicate the route's status and type (host or net
work). A count of the number of packets sent using the route is kept for use in deciding
between multiple routes to the same destination (see below), and a count of "held references" to
the dynamically allocated structure is maintained to insure memory reclamation occurs only
when the route is not in use. Finally a pointer to the a network interface is kept; packets sent
using the route should be handed to this interface.

Routes are typed in two ways: either as host or network, and as "direct" or "indirect". The
host/network distinction determines how to compare the rt_dat field during lookup. If the route
is to a network, only a packet's destination network is compared to the rt_dst entry stored in the
table. If the route is to a host, the addresses must match bit for bit.

The distinction between "direct" and "indirect" routes indicates whether the destination is
directly connected to the source. This is needed when performing local network encapsulation.
If a packet is destined for a peer at a host or network which is not directly connected to the
source, the internetwork packet header will indicate the address of the eventual destination,
while the local network header will indicate the address of the intervening gateway. Should the
destination be directly connected, these addresses are likely to be identical, or a mapping
between the two exists. The RTF_GATEWAY flag indicates the route is to an "indirect" gate
way agent and the local network header should be filled in from the rt_gateway field instead of
rt_dst, or from the internetwork destination address.

It is assumed multiple routes to the same destination will not be present unless they are deemed
equal in cost (the current routing policy process never installs multiple routes to the same desti
nation). However, should multiple routes to the same destination exist, a request for a route will
return the "least used" route based on the total number of packets sent along this route. This
can result in a "ping-pong" effect (alternate packets taking alternate routes), unless protocols
"hold onto" routes until they no longer find them useful; either because the destination has
changed, or because the route is lossy.

Routing redirect control messages are used to dynamically modify existing routing table entries
as well as dynamically create new routing table entries. On hosts where exhaustive routing
information is too expensive to maintain (for example, work stations), the combination of wild
card routing entries and routing redirect messages can be used to provide a simple routing
management scheme without the use of a higher level policy process. Statistics are kept by the
routing table routines on the use of routing redirect messages and their affect on the routing
tables. These statistics may be viewed using netatat(I).

Status information other than routing redirect control messages may be used in the future, but
at present they are ignored. Likewise, more intelligent "metrics" may be used to describe routes

+ Sun Microsystems Release 2.0

Page 18 Network Implementation

in the future, possibly based on bandwidth and monetary costs.

10.2. Routing Table Interface

A protocol accesses the routing tables through three routines, one to allocate a route, one to free
a route, and one to process a routing redirect control message. The routine rtalloc performs
route allocation; it is called with a pointer to the following structure,

struct route {
struct
struct

};

rtentry *ro_rt;
sockaddr ro_dst;

The route returned is assumed "held" by the caller until disposed of with an rt/ree call. Proto
cols which implement virtual circuits, such as TCP, hold onto routes for the duration of the
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free routes
on each transmission.

The routine rtredirect is called to process a routing redirect control message. It is called with a
destination address and the new gateway to that destination. If a non-wildcard route exists to
the destination, the gateway entry in the route is modified to point at the new gateway supplied.
Otherwise, a new routing table entry is inserted reflecting the information supplied. Routes to
interfaces and routes to gateways which are not directly accesible from the host are ignored.

10.3. User-Level Routing Policies

Routing policies implemented in user processes manipulate the kernel routing tables through two
ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries,
respectively; the tables are read through the /dev/kmem device. The decision to place policy
decisions in a user process implies routing table updates may lag a bit behind the identification of
new routes, or the failure of existing routes, but this period of instability is normally very small
with proper implementation of the routing process. Advisory information, such as ICMP error
messages and IMP diagnostic messages, may be read from raw sockets (described in the next sec
tion).

One routing policy process has already been implemented. The system standard "routing dae
mon" uses a variant of the Xerox NS Routing Information Protocol [Xerox82] to maintain up to
date routing tables in our local environment. Interaction with other existing routing protocols,
such as the Internet GGP (Gateway-Gateway Protocol), may be accomplished using a similar
process.

11. Raw Sockets

A raw socket is a mechanism which allows users direct access to a lower level protocol. Raw
sockets are intended for knowledgeable processes which wish to take advantage of some protocol
feature not directly accessible through the normal interface, or for the development of new pro
tocols built atop existing lower level protocols. For example, a new version of TCP might be
developed at the user level by utilizing a raw IP socket for delivery of packets. The raw IP

0

0

socket interface attempts to provide an identical interface to the one a protocol would have if it o
were resident in the kernel.

.. Sun Microsystems Release 2.0

0

0

0

Network Implementation Page 19

The raw socket support is built around a generic raw socket interface, and (possibly) augmented
by protocol-specific processing routines. This section will describe the core of the raw socket
interface.

11.1. Control Blocks

Every raw socket has a protocol control block of the following form,

struct rawcb {
struct rawcb •rcb_next; ;• doubly linked list •;
struct rawcb *rcb_prev;
struct socket *rcb_socket; ;• back pointer to socket •;
struct sockaddr rcb_faddr; ;• destination address •;
struct sockaddr rcb_laddr; ;• socket's address •;
caddr_t rcb_pcb; ;• protocol specific stuff •;
short rcb_flags;

};

All the control blocks are kept on a doubly linked list for performing lookups during packet
dispatch. Associations may be recorded in the control block and used by the output routine in
preparing packets for transmission. The addresses are also used to filter packets on input; this
will be described in more detail shortly. If any protocol specific information is required, it may
be attached to the control block using the rcb_pcb field.

A raw socket interface is datagram oriented. That is, each send or receive on the socket requires
a destination address. This address may be supplied by the user or stored in the control block
and automatically installed in the outgoing packet by the output routine. Since it is not possible
to determine whether an address is present or not in the control block, two flags, RAWJ,ADDR
and RAW_FADDR, indicate if a local and foreign address are present. Another flag,
RAW__DONTROUTE, indicates if routing should be performed on outgoing packets. If it is, a
route is expected to be allocated for each "new" destination address. That is, the first time a
packet is transmitted a route is determined, and thereafter each time the destination address
stored in rcb_route differs from rcb_Jaddr, or rcb_route.ro_rt is zero, the old route is discarded
and a new one allocated.

11.2. Input Processing

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. Each
network interface or protocol gives packets to the raw input routine with the call:

raw_input(m, proto, src, dst)
struct mbu f *m;
struct sockproto •proto, struct sockaddr •src, *dst;

The data packet then has a generic header prepended to it of the form

struct raw_header {

};

struct sockproto raw_proto;
struct sockaddr raw_dst;
struct sockaddr raw_src;

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from this

,,.,
~~ Sun Microsystems Release 2.0

Page 20 Network Implementation

queue are copied into any raw sockets that match the header according to the following rules,

1) The protocol family of the socket and header agree. 0
2) If the protocol number in the socket is non-zero, then it agrees with that found in the packet

header.

3) If a local address is defined for the socket, the address format of the local address is the
same as the destination address's and the two addresses agree bit for bit.

4) The rules of 3) are applied to the socket's foreign address and the packet's source address.

A basic assumption is that addresses present in the control block- and packet header (as con
structed by the network interface and any raw input protocol module) are in a canonical form
which may be "block compared".

11.3. Output Processing

On output the raw pr_mrreq routine passes the packet and raw control block to the raw proto
col output routine for any processing required before it is delivered to the appropriate network
interface. The output routine is normally the only code required to implement a raw socket
interface.

12. Buffering and Congestion Control

One of the major factors in the performance of a protocol is the buffering policy used. Lack of a o
proper buffering policy can force packets to be dropped, cause falsified windowing information to '
be emitted by protocols, fragment host memory, degrade the overall host performance, etc. Due
to problems such as these, most systems allocate a fixed pool of memory to the networking sys-
tem and impose a policy optimized for "normal" network operation.

The networking system developed for UNIX is little different in this respect. At boot time a fixed
amount of memory is allocated by the networking system. At later times more system memory
may be requested as the need arises, but at no time is memory ever returned to the system. It is
possible to garbage collect memory from the network, but difficult. In order to perform this gar
bage collection properly, some portion of the network will have to be "turned off" as data struc
tures are updated. The interval over which this occurs must kept small compared to the average
inter-packet arrival time, or too much traffic may be lost, impacting other hosts on the network,
as well as increasing load on the interconnecting mediums. In our environment we have not
experienced a need for such compaction, and thus have left the problem unresolved.

The mbuf structure was introduced in chapter 5. In this section a brief description will be given
of the allocation mechanisms, and policies used by the protocols in performing connection level
buffering.

12.1. Memory Management

The basic memory allocation routines place no restrictions on the amount of space which may be
allocated. Any request made is filled until the system memory allocator starts refusing to allo
cate additional memory. When the current quota of memory is insufficient to satisfy an mbuf
allocation request, the allocator requests enough new pages from the system to satisfy the

~
~(, Sun Microsystems Release 2.0

0

0

Network Implementation Page 21

current request only. All memory owned by the network is described by a private page table
used in remapping pages to be logically contiguous as the need arises. In addition, an array of
reference counts parallels the page table and is used when multiple copies of a page are present.

Mbufs are 128 byte structures, 16 fitting in a 2048 byte page of memory. When data is placed in
mbufs, if possible, it is copied or remapped into logically contiguous pages of memory from the
network page pool. Data smaller than the size of a page is copied into one or more 112 byte
mbuf data areas.

12.2. Protocol Buffering Policies

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time.
These amounts define the high and low water marks used by the socket routines in deciding
when to block and unblock a process. The reservation of space does not currently result in any
action by the memory management routines, though it is clear if one imposed an upper bound on
the total amount of physical memory allocated to the network, reserving memory would become
important.

Protocols which provide connection level flow control do this based on the amount of space in
the associated socket queues. That is, send windows are calculated based on the amount of free
space in the socket's receive queue, while receive windows are adjusted based on the amount of
data awaiting transmission in the send queue. Care has been taken to avoid the "silly window
syndrome" described in [Clark82] at both the sending and receiving ends.

Q 12.3. Queue Limiting

0

Incoming packets from the network are always received unless memory allocation fails. How
ever, each Level 1 protocol input queue has an upper bound on the queue's length, and any pack
ets exceeding that bound are discarded. It is possible for a host to be overwhelmed by excessive
network traffic (for instance a host acting as a gateway from a high bandwidth network to a low
bandwidth network). As a "defensive" mechanism the queue limits may be adjusted to throttle
network traffic load on a host. Consider a host willing to devote some percentage of its machine
to handling network traffic. If the cost of handling an incoming packet can be calculated so that
an acceptable "packet handling rate" can be determined, then input queue lengths may be
dynamically adjusted based on a host's network load and the number of packets awaiting pro
cessing. Obviously, discarding packets is not a satisfactory solution to a problem such as this
(simply dropping packets is likely to increase the load on a network); the queue lengths were
incorporated mainly as a safeguard mechanism.

12.4. Packet Forwarding

When packets can not be forwarded because of memory limitations, the system generates a
"source quench" message. In addition, any other problems encountered during packet forward
ing are also reflected back to the sender in the form of ICMP packets. This helps hosts avoid
unneeded retransmissions.

Broadcast packets are never forwarded due to possible dire consequences. In an early stage of
network development, broadcast packets were forwarded and a "routing loop" resulted in net
work saturation and every host on the network crashing.

~
\~ Sun Microsystems Release 2.0

Page 22 Network Implementation

13. Out of Band Data

Out of band data is a facility peculiar to the stream socket abstraction defined. Little agreement
appears to exist as to what its semantics should be. TCP defines the notion of "urgent data" as
in-line, while the NBS protocols [Burruss81] and numerous others provide a fully independent
logical transmission channel along which out of band data is to be sent. In addition, the amount
of the data which may be sent as an out of band message varies from protocol to protocol; every
thing from 1 bit to 16 bytes or more.

A stream socket's notion of out of band data has been defined as the lowest reasonable common
denominator (at least reasonable in our minds); clearly this is subject to debate. Out of band
data is expected to be transmitted out of the normal sequencing and flow control constraints of
the data stream. A minimum of 1 byte of out of band data and one outstanding out of band
message are expected to be supported by the protocol supporting a stream socket. It is a proto
cols prerogative to support larger sized messages, or more than one outstanding out of band mes
sage at a time.

Out of band data is maintained by the protocol and usually not stored in the socket's send
queue. The PRU_SENDOOB and PRU__llCVOOB requests to the pr_uarreq routine are used in
sending and receiving data.

Appendix A. Acknowledgements and References

The internal structure of the system is patterned after the Xerox PUP architecture [Boggs79].

0

while in certain places the Internet protocol family has had a great deal of influence in the o
design. The use of software interrupts for process invocation is based on similar facilities found ·
in the VMS operating system. Many of the ideas related to protocol modularity, memory
management, and network interfaces are based on Rob Gurwitz's TCP /IP implementation for
the 4.lBSD version of UNIX on the VAX [Gurwitz81].

Appendix B. References

[Boggs79J Boggs, D. R., J. F. Shoch, E. A. Taft, and R. M. Metcalfe; PUP: An Inter
network Architecture. Report CSL-79-10. XEROX Palo Alto Research
Center, July 1979.

[BBN78] Bolt Beranek and Newman; Specification for the Interconnection of Hoat
and IMP. BBN Technical Report 1822. May 1978.

[Cerf78J Cerf, V. G.; The Catenet Model for lnternetworking. Internet Working
Group, !EN 48. July 1978.

[Clark82J Clark, D. D.; Window and Acknowledgement Strategy in TCP. Internet
Working Group, !EN Draft Clark-2. March 1982.

[DEC80J

[Gurwitz81 J

• Sun Microsystems

Digital Equipment Corporation; DECnet DIGITAL Network Architecture
- General Deacription. Order No. AA-K179A-TK. October 1980.

Gurwitz, R. F.; VAX-UNIX Networking Support Project - Implementa
tion Description. Internetwork Working Group, JEN 168. January 1981.

Release 2.0

0

0

0

0

Network Implementation Page 23

[IS081]

[Joy82aj

[Postel79J

[Paste 180a]

[Postel80bJ

[Xerox81]

[Zimmermann80J

• Sun Microsystems

International Organization for Standardization. ISO Open Sy.tern• Inter
connection - Baaic Reference Model. ISO/TC 97/SC 16 N 719. August
1981.

Joy, W.; Cooper, E.; Fabry, R.; Leffler, S.; and McKusick, M.; Sy.tern
Interface 011er11iew. Computer Systems Research Group, Technical
Report 5. University of California, Berkeley. Draft of September 1, 1982.

Postel, J., ed. DOD Standard Uaer Datagram Protocol. Internet Working
Group, !EN 88. May 1979.

Postel, J., ed. DOD Standard Internet Protocol. Internet Working
Group, JEN 128. January 1980.

Postel, J., ed. DOD Standard Tranamiaaion Control Protocol. Internet
Working Group, !EN 129. January 1980.

Xerox Corporation. Internet Tranaport Protocol•. Xerox System Integra
tion Standard 028112. December 1981.

Zimmermann, H. OSI Reference Model - The ISO Model of Architecture
for Open Systems Interconnection. IEEE Transactions on Communica
tions. Com-28(4); 425-432. April 1980.

Release 2.0

0

oi

0

0

0

0

0

O i. i

0

