
0
~\sun "1 microsystems

0

FORTRAN Programmer's Guide
for the Sun Workstation

(

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0
4'\sun

• microsystems

O-··

FORTRAN Programmer's Guide
for the Sun Workstation

----- -------

-----··-·-·~-------·

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300
·--- ----------

Credits and Acknowledgements

Some of the material in this manual is based on the Bell Laboratories document entitled A Port
able Fortran 77 Compiler, by S.I. Feldman and P.J. Weinberger, dated 1 August 1978. Material
on the 1/0 Library is derived from the paper entitled Introduction to the /77 I/0 Library, by
David L. Wasley, University of California, Berkeley, California 94720. Further work was done at
Sun Microsystems.

Trademarks

UNIX is a trademark of Bell Laboratories.

Sun Workstation, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Incorporated.

Copyright @ 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0
Revision History

Version Date Comments

A 15 July 1983 First release of this Programmer's Guide.

B 1 November 1983 Incorporates corrections.

C 7 January 1984 Reorganized and some extra material added.

DC¥ 19 November 1984 2.0 a release.

D/3 5 February 1985 2.0 /3 release.

D 15 May 1985 2.0 release.

0
- Ill -

0

'

01
I

0

0

0

Contents

Chapter 1 Introduction

Chapter 2 Developing and Maintaining FORTRAN programs

Chapter 3 Input and Output

Chapter 4 The Runtime Environment

1-1

2-1

3-1

4-1

Chapter 5 Debugging and Profiling FORTRAN Programs... 5-1

Chapter 6 Deviations from the Fortran 77 Standard 6-1

Chapter 7 Differences Between FORTRAN 77 and FORTRAN 66 7-1

Appendix A Ratfor - A Preprocessor for a Rational FORTRAN

Appendix B ASCII Character Set

A-1

B-1

Appendix C Runtime Error Messages ... C-1

Appendix D Bibliography... D-1

Appendix E FORTRAN Library Routines........ E-1

- v-

0

o.

0
Contents

Preface ... xu

Chapter 1 Introduction .. 1-1

Chapter 2 Developing and Maintaining FORTRAN programs 2-1
2.1. Using the FORTRAN 77 Compiler on the Sun Workstation 2-1
2.2. Compiling and Running Your Program... 2-1
2.3. Source Files that /77 Understands .. 2-2
2.4. Source Input Format.. 2-3

2.4.1. Standard Source Lines .. 2-3
2.4.2. UNIXSource Lines... 2-4

2.5. Source File Content .. 2-4
2.6. Options to the /77 Command ... 2-5

2.6.1. Language Preprocessors .. 2-6

0 2.7. Managing Program Builds With make .. 2-7
2.7.1. Use ... 2-7
2.7.2. Macros and Rules .. 2-9

2.8. Tracking and Controlling Changes to Programs with SCCS 2-10
2.8.1. Using SCCS ... 2-10

2.8.1.1. Editing Files Under SCCS Control ... 2-14
2.9. Building Libraries.................... 2-14

2.9.1. Using Libraries ... 2-15
2.9.1.1. ran lib ... 2-15

2.10. Transporting FORTRAN Programs...... 2-16
2.10.1. General Hints 2-16
2.10.2. Time Functions ... 2-17
2.10.3. Formats 2-17
2.10.4. Carriage Control 2-18
2.10.5. File Equates................... 2-18
2.10.6. Data representation.... 2-18
2.10.7. Hollerith 2-19

Chapter 3 Input and Output 3-1
3.1. The UNIX File System S-1
3.2. Gaining Access to Files From FORTRAN Programs 3-4

3.2.1. Accessing Files With Names 3-5

0
3.2.2. Accessing Files Without Names... 3-6

- vu -

3.2.3. Preconnected Units 3-6
3.2.4. Redirection .. 3-7 0
3.2.5. Piping 3-7
3.2.6. UNIX File Descriptors.. 3-8

3.3. FORTRAN 1/0 3-8
3.4. Implementation Details ... 3-9

3.4.1. Logical Units .. 3-10
3.4.2. Vertical Format Control ... 3-10
3.4.3. open .. 3-10
3.4.4. FORTRAN and UNIX file permissions ... 3-12
3.4.5. inquire .. 3-12
3.4.6. Close ... 3-15
3.4.7. Format Interpretation ... 3-15
3.4.8. List-Directed Output .. 3-15
3.4.9. 1/0 Errors .. 3-16

3.5. Non-'ANSI Standard' Extensions ... 3-16
3.5.1. Format Specifiers ... 3-16
3.5.2. Print Files .. 3-18
3.5.3. Scratch Files .. 3-18
3.5.4. List-Directed 1/0 ... 3-18

3.6. Running Older Programs ... 3-19
3.6.l. Preattachment of Logical Units ... 3-19

3.7. Magnetic Tape 1/0 .. 3-19
3.7 .I. Tape File Representation 3-20
3.7.2. End-of-File .. 3-20 0
3.7.3. Endfile 3-21
3.7.4. Backspace 3-21
3.7.5. Rewind... 3-21
3.7 .6. open 3-21
3.7.7. Accesing Files on Multiple-File Tapes .. 3-22

Chapter 4 The Runtime Environment 4-1
4.1. Command Line Arguments .. 4-1
4.2. Exiting with status 4-2
4.3. Storage Allocation.. 4-2
4.4. Data Representations 4-3

4.4.l. Representation of real and double precision 4-3
4.4.2. Representation of Extremal Numbers 4-4
4.4.3. Hexadecimal Representation of Selected Numbers............................... 4-5
4.4.4. Deviations from the Proposed IEEE Standard ... 4-5
4.4.5. Arithmetic Operations on Extreme Values 4-5

4.5. Inter-Procedure Interface 4-9
4.5.1. Procedure Names 4-9
4.5.2. Data Representations 4-9
4.5.3. Return Values. 4-9
4.5.4. Argument Lists 4-10 0

-viii-

0

0

0

4.5.5. Examples ... 4-11
4.5.5.1. Calling C from FORTRAN .. 4-12
4.5.5.2. Calling FORTRAN from C .. 4-13

4.5.6. Sharing Input/Output Streams .. 4-14

Chapter 5 Debugging and Profiling FORTRAN Programs...................................... 5-1
5.1. Introduction ... 5-1
5.2. Using dbz 5-2
5.3. Using adb 5-4
5.4. Compiler flags 5-4
5.5. Profiling Tools .. 5-5

Chapter 6 Deviations from the Fortran 77 Standard 6-1
6.1. Extensions to the FORTRAN 77 Standard.. 6-1

6.1.1. Double Complex Data Type ... 6-1
6.1.2. Internal Files ... 6-1
6.1.3. Implicit Undefined statement .. 6-1
6.1.4. Recursion .. 6-2
6.1.5. Automatic Storage .. 6-2
6.1.6. Source Input Format... 6-2
6.1.7. Include Statement... 6-3
6.1.8. Binary Initialization Constants ... 6-3
6.1.9. Character Strings .. 6-3
6.1.10. Hollerith .. 6-4
6.1.11. Equivalence Statements.. 6-4
6.1.12. One-Trip DO Loops .. 6-4
6.1.13. Commas in Formatted Input... 6-4
6.1.14. Short Integers.. 6-4
6.1.15. Additional Intrinsic Functions.. 6-5

6.2. Violations of the Standard ... 6-5
6.2.1. Dummy Procedure Arguments ... 6-5
6.2.2. T and TL Formats.. 6-5
6.2.3. Carriage Control .. 6-5
6.2.4. Assigned Goto .. 6-6
6.2.5. Default files ... 6-6
6.2.6. Lower case strings ... 6-6
6.2.7. Exponent representation on Ew.dEe output.. 6-6

6.2.8. Repeat counts for null values .. 6-6

Chapter 7 Differences Between FORTRAN 77 and FORTRAN 66 7-1
7.1. Deleted FORTRAN 66 Features.. 7-1

7.1.1. Hollerith.... ... 7-1
7.1.2. Extended Range ... 7-1

7.2. Program Form.. 7-1
7.2.1. Blank Lines.. 7-1
7.2.2. Program and Block Data Statements... 7-1

--1x-

7.2.3. ENTRY Statement... 7-2
7.2.4. DO Loops.. 7-2
7.2.5. Alternate Returns ... 7-2
7.2.6. CHARACTER Data Type ... 7-3
7.2.7. IMPLICIT Statement.. 7-3
7.2.8. PARAMETER Statement.. 7-3
7.2.9. Array Declarations ... 7-3
7.2.10. SAVE Statement... 7-4
7.2.11. INTRINSIC Statement ... 7-4

7.3. Expressions ... 7-4
7.3.1. Character Constants ... 7-4
7.3.2. Concatenation.. 7-5
7.3.3. Character String Assignment .. 7-5
7.3.4. Substrings ... 7-5
7.3.5. Exponentiation .. 7-5
7.3.6. Relaxation of Restrictions.. 7-5

7.4. Executable Statements ... 7-6
7.4.1. IF-THEN-ELSE... 7-6
7.4.2. Alternate Returns ... 7-6

7.5. Input/Output ,... 7-7
7.5.1. Format Variables... 7-7
7.5.2. END=, ERR=, and IOSTAT= Clauses.. 7-7
7.5.3. Formatted 1/0 7-7

7.5.3.1. Character Constants... 7-7
7.5.3.2. Positional Editing Codes.. 7-8
7.5.3.3. Colon... 7-8
7 .5.3.4. Optional Plus Signs ... 7-8
7.5.3.5. Blanks on Input ... 7-8
7.5.3.6. Unrepresentable Values.. 7-8
7.5.3.7. IW.m ... 7-9
7.5.3.8. Floating Point ... 7-9
7.5.3.9. 'A' Format Code ... 7-9

7.5.4. Standard Units ... 7-9
7.5.5. List-Directed Formatting ... 7-9
7.5.6. Direct 1/0 .. 7-10
7.5.7. Internal Files .. 7-10
7.5.8. open .. 7-10

7.5.8.1. close .. 7-11
7.5.8.2. inquire .. 7-11

Appendix A Ratfor - A Preprocessor for a Rational FORTRAN A-1
A.I. Introduction .. A-2

A.1.1. Using the Ratfor Translator.. A-2
A.2. Language Description ... A-3

A.2.1. Design .. A-3
A.2.2. Statement Grouping ... A-3

-x-

0

0

0

0
A.2.3. The 'else' Clause ... A-4
A.2.4. Nested if's ... A-5
A.2.5. if-else ambiguity .. A-6
A.2.6. The 'switch' Statement .. A-7
A.2.7. The 'do' Statement ... A-7
A.2.8. 'break' and 'next' ... A-8
A.2.9. The 'while' Statement ... A-9
A.2.10. The 'for' Statement .. A-11
A.2.11. The 'repeat-until' statement .. A-12
A.2.12. More on break and next .. A-12
A.2.13. 'return' Statement .. A-12
A.2.14. Cosmetics .. A-13
A.2.15. Free-form Input .. A-14
A.2.16. Translation Services ... A-14
A.2.17. 'define' Statement .. A-15
A.2.18. 'include' Statement ... A-16
A.2.19. Pitfalls, Botches, Blemishes and other Failings A-16

A.3. Implementation ... A-17
A.4. Experience ... A-18

A.4.1. Good Things .. A-18
A.4.2. Bad Things ... A-19

A.5. Conclusions .. A-20

0 Appendix B ASCII Character Set ... B-1

Appendix C Runtime Error Messages ... C-1
C.l. UNIX error messages.. C-1
C.2. Signal Handler Error Messages .. C-1
C.3. FORTRAN 1/0 Error Messages ... C-2

Appendix D Bibliography... D-1

Appendix E FORTRAN Library Routines ... E-1

0
-XI-

0

0

0

0

Tables

Table 2-1 Filename Suffixes that /77 Understands .. 2-3
Table 2-2 Example Makefile Targets and Dependencies ... 2-8
Table 3-1 Characteristics of Three 1/0 Systems ... 3-8
Table 3-2 Summary of FORTRAN Input and Output 3-9
Table 3-3 FORTRAN Format Specifiers. 3-17
Table 4-1 Representation of Real and Doubl.e Precision Numbers 4-3
Table 4-2 Hexadecimal Representation of Selected Numbers 4-5
Table 4-3 Abbreviations for Numbers... 4-6
Table 4-4 FORTRAN and C Declarations... 4-9
Table 6-1 Backslash Escape Sequences... 6-3

- Xlll -

0

0

0

0
Figures

Figure 3-1 Diagram showing UNIX file system structure ... 3-2
Figure 3-2 Absolute Path Name ... 3-3
Figure 3-3 Relative Path Name.. 3-4
Figure 3-4 Program example showing one way to construct filenames 3-5

0

0
- xv-

0

0

01

0

0

0

Preface

Purpose and Audience

This Programmer's Guide gives information you need to write FORTRAN programs on the Sun
Workstation. It contains information useful to those who already know FORTRAN but have little
familiarity with UNIXt and off, and enough basic commands to find your way around the UNIX
file system. To refresh your memory of these basics, refer to the Beginner'• Guide to the Sun
Workatation or an introductory UNIX book. Also, refer to Appendix B for a summary of the
differences between FORTRAN 66 and FORTRAN 77.

Conventions in Examples

Note the following conventions used in this manual to display information. After logging in, the
Sun UNIX system prompt looks something like this:

hostname%

The hostname is different for every Sun Workstation. The basic UNIX prompt is merely the per
cent sign (%). However, most Sun Workstations have distinct hostnames and our examples are
more easily distinguished if we use a symbol longer than a % sign. Hence, the examples in this
manual use hostname% to denote the system prompt.

The system's prompts and replies are shown in plain typewriter font shown here and in
the example below. Text the user types is shown in boldface typewriter font.

Organization

hostname% echo hello
hello
hostname%

The manual is organized as follows:

Chapter 1 is an introduction to FORTRAN programming on the Sun Workstation. It describes
how to gain access to the FORTRAN compiler, indicates tools available to the programmer, and
lists helpful related documents.

Chapter 2 deals with maintaining FORTRAN source and object files. It contains more detailed
information on using the compiler and its options. This chapter briefly discusses make, a tool
for compiling large programs contained in multiple source files. It also describes how to maintain

t UNIX is a. trademark or Bell Laboratories.

- XVll -

FORTRAN programs with SCCS (Source Code Control System) and how to build and use
libraries.

Chapter 3 describes input and output (I/0) and other run-time environment issues. It covers
gaining access to named and unnamed files and 1/0 devices.

Chapter 4 describes FORTRAN 77 representations of data in storage. This information is neces
sary for writing C, Pascal and FORTRAN 77 routines that can communicate with each other. In
addition, useful run-time variables are discussed.

Chapter 5 describes debugging tools and their use.

Chapter 6 is a summary of deviations from the ANSI standard for FORTRAN 77. These devia
tions consist of extensions and violations.

Chapter 7 contains a brief descrip,ion of the differences between FORTRAN 66 and FORTRAN 77.

Appendix A is a summary of the Ratfor language.

Appendix B is a table of the ASCII character set.

Appendix C is a list of 1/0 library error messages.

Appendix D is a bibliography.

Appendix E contains the manual pages for FORTRAN library routines from the Sy,tem Interface
Manual for the Sun Workatation.

- xviii -

0

0

0

0

0

0

Chapter 1

Introduction

The Sun Workstation provides a FORTRAN 77 compiler with several enhancements. For exam
ple, variable names can be up to 16 characters long, but they must still begin with a letter. Sun
FORTRAN also supports recursion. These enhancements are described in Appendix A, "Deviations
From the FORTRAN 77 Standard."

The Sun FORTRAN compiler is invoked with the command

hostname% f77

It implements the American National Standard (ANSI) of 1978 for FORTRAN. FORTRAN 77
includes most of the features of the 1966 standard (also called FORTRAN IV) plus new features
such as the character data type, direct 1/0, and internal 1/0.

In addition to the /77 compiler, other tools that you may find useful are summarized here.

Text Editing The major text editor for source programs is vi (vee-eye), the visual display edi
tor. It has considerable power because it offers the capabilities of both a line
and a screen editor. Vi also provides several commands specifically for editing
programs. These are options you can set in the editor. Two examples are the
autoindent option, which supplies white space at the beginning of a line, and
the showmatch option, which shows matching parentheses. For more informa
tion, see the Editing and Text Processing manual section on vi.

FORTRAN Too/a

/pr is a FORTRAN 'output filter' for prmtmg files that have FORTRAN
carriage-control characters in column one. As noted in Appendix A,
describing deviations from the ANSI standard, the UNIX implementa
tion on the Sun system does not use carriage control since there are
no explicit printer files. Thus, you use /pr when you want to
transform files formatted with FORTRAN carriage control conventions
into files formatted according to UNIX line printer conventions. For
more information on /pr, refer to the User'• Manual for the Sun
Workstation.

Debug Aida

Ratfor is 'Rational FORTRAN' - a preprocessor intended to add some con
trol structures to FORTRAN that are similar to those in C. Ratfor was
written in the days of FORTRAN 66 and is not as useful for FORTRAN
77, which has better control structures.

There are three main de bugging tools available on the Sun system:

dbz is an interactive symbolic debugger that understands FORTRAN 77
programs.

dbztool is a window- and mouse-based version of dbz.

Revision D of 15 May 1985 1-1

Introduction FORTRAN Programmer's Guide

adb is an interactive, general purpose low-level debugger - it is not as
easy to use as dbx.

The on line documentation consists of pages from the Uaer '• Manual that are called 'man pages'.
The most commonly used pages for FORTRAN are:

• /77(1)

• /pr(!)

• ratfor(I)

• /split(!)

• dbx(I)

• dbxtoo/(1)

Also, see the manual pages in Section (3f) of the Uaer'a Manual for the Sun Workatation for other
FORTRAN routines. /77 invokes the FORTRAN compiler; /pr and rat/or are FORTRAN tools briefly
explained above. /split splits a multi-routine FORTRAN file into individual files.

Other Sun manuals containing information on editing or using FORTRAN are

• Editing and Text Proceuing on the Sun Workstation

• Programming Too/a for the Sun Workatation

• Command, Reference Manual for the Sun Workatation

• System Interface Manual for the Sun Workatation

1-2 Revision D of 15 May 1985

0

0

0

0

0

0

Chapter 2

Developing and Maintaining FORTRAN programs

2.1. Using the FORTRAN 77 Compiler on the Sun Workstation

Creating, compiling, and running a FORTRAN 77 program on the Sun Workstation requires three
steps:

1. Write a program in the FORTRAN 77 language using an editor. Give the file a ./ suffix.

2. Compile the program using the /77 command.

3. Run the program by typing the name of the executable output file.

The previous chapter contains information about tools you can use to create your FORTRAN pro
gram. Once you have created a FORTRAN 77 source file and named it filename. f, invoke the
compiler using the /77 command. The specified files are then compiled, and object files are gen
erated having the same names as the source files, but with the suffix . o appended in place of
. f. For example, /77 compiles greetings. f and puts the resulting object code result into a
file named greetings. o. Finally, /77 calls the UNIX linker to create an executable file with
the name (by default) a. out. /77 also understands other filename extensions (such as . r for
Ratfor files - these topics are discussed later in this chapter).

For example, here is a very simple FORTRAN 77 program that displays a message on the worksta
tion screen.

program
print •
end

greetings
'Real programmers hack FORTRAN!'

Note: Remember to begin typing the source code in at least column seven by spacing over or
using tabs.

2.2. Compiling and Running Your Program

Compile the program greeting• using the /77 command like this:

hostname% £77 greetings.£
greetings.f:

MAIN greetings:
hostnamex

Note that /77 displays a message indicating the stage of the compilation. If you do not specify
an output filename at compilation, the results end up in an executable file called a.out. You can
then run that program by typing a.out on the command line:

Revision D of 15 May 1985 2-1

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

hostname% a.out
Real programmers hack FORTRAN!

hostname%

It is inconvenient to have the results of every FORTRAN 77 compilation end up in a file called
a. out, since if such a file already exists, it is overwritten. To solve this problem, you can

• change the name of a. out after each compilation, using the mv command

• tell the /77 compiler to place the executable file in a different file (such as one with the same
name as the source minus the ./ suffix). For example,

hostname% f77 -o greetings greetings.f
greetings.f:

MAIN greetings:
hostname%

places the executable file into greetings. Run the program by typing:

hostname% greetings
Real programmers hack FORTRAN!

hostname%

The remainder of this chapter discusses the kinds of files that /77 understands, the options that
you may type on the /77 command line, and other topics such as Makefiles and using the Source
Code Control System (SCCS).

2.3. Source Files that f77Understands

/77 is a general-purpose 'driver' command for compiling and loading FORTRAN 77 and FORTRAN
related files. As mentioned above, FORTRAN 77 source code is contained in files having a ./suffix.
Table 2-1 summarizes the filename extensions that /77 understands.

2-2 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

Table 2-1: Filename Suffixes that /77 Understands

Suffix Language Action

.J FORTRAN 77 FORTRAN 77 source programs are compiled, and the object pro
gram is left in a file in the current directory whose name 1s
that of the source with • o substituted for .f.

.F FORTRAN 77 FORTRAN 77 source programs are processed by the C preproces
sor before being compiled by /77 .

• C C C source files are compiled by the C compiler. The /77 and cc
commands generate slightly different loading sequences, since
FORTRAN 77 programs need a few extra libraries and a different
startup routine than do C programs .

. r Ratfor The Ratfor preprocessor processes source files and /77 compiles
the results .

. S Assembler The assembler processes assembly-language source files .

. o Object Files Object files are passed through to the linker.

Note: Files without the above filename extensions are simply passed to the loader.

2.4. Source Input Format

The /77 compiler accepts two kinds 0£ source lines: standard and UNIX-style.

2.4.1. Standard Source Lines

The standard source lines are in the format specified in the FORTRAN Standard:

• the first 72 characters of each line are scanned

• the first five columns must be blank or contain a numeric label

• column 6 is non blank if the line is a continuation of the previous line or lines. /77 pads such
lines to 72 characters or truncates them as required.

Revision D or 15 May 1985 2-3

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

Padding is significant in lines such as:

1 2 3 4 5 6 7
C23456789012345678901234567890123456789012345678901234567890123456789012

data sixtyh/60h
1 /

A procedure can contain both kinds of lines, but each statement can contain only one kind.

2 .. ,t.2. UNIX Source Lines

A tab in columns 1-5 marks the beginning of a UNIX -style source line. The text following the tab is
scanned as if it started in column 7. The line may be arbitrarily long. Continuation lines are identified
by an ampersand (&) in column 1.

2.5. Source File Content

The FORTRAN language places no significance on whether compilation units, main programs,
functions or subroutines reside in the same or different source files. An /77 input file can contain
any number of compilation units. However, there are two good reasons to keep each compilation
unit in a separate source file. The first reason is to reduce the compilation overhead of changing
one procedure. The second reason is to minimize loading of unreferenced functions.

/77 produces one .o file for each ./file it processes. If any routine in the .o file is referenced, the
loader Id copies in the entire .o file. For example, if the file subs. f defines subroutines a and
b, and the file main. f contains a main program that calls subroutine a but not b, then the
a. out file produced by

hostname% f77 main.f aub.f
hostname%

contains the code for subroutine b even though the subroutine is not referenced. The /split
command can be used to break up multiple-routine source files.

A final consideration in maintaining FORTRAN source files, is to maintain source in lower-case
form. The /77 compiler converts keywords and variables to lower case (unless the -U flag is
set), but does not translate characters inside strings. Thus, tests of the following form fail:

CHARACTER ANSWER*lS
INQUIRE (6, SEQUENTIAL=ANSWER)
IF (ANSWER.NE.'YES') STOP 99

99 END

The tr command can be used to translate a source file from upper case to lower case or vice
versa. For example,

tr A-Z a-z < SBENCH.f > sbench.f

2-4 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

2.6. Options to the f77 Command

The list below contains the options that /77 understands.

-C Compile code to check that subscripts are within declared array bounds.

-c Suppress loading and produce a . o file for each source file.

-Dname=def

-Dname
Define name to the C preprocessor, as if by '#define'. If no definition is given, the name is
defined as "I" (.F files only).

-11' Apply the Ratfor preprocessor to relevant files and put the result in the file with the suffix
changed to . /, but do not compile.

-fsky
Generate code that assumes the presence of a SKY floating-point processor board. Programs
compiled with this option can only be run in systems that have a SKY board installed. Pro
grams compiled without the -fsky option use the SKY board, but won't run as fast. If any
part of a program is compiled using the -fsky option, you must also use this option when
loading with the /77 command, since a different set of startup routines is required.

-g Produce additional symbol table information for dbz (I). Also pass the -lg file to Id (I).

-Idir
Search first for '#include' files whose names do not begin with '/' in the directory of the
source file, then in directories named in -I options, and finally in directories on a standard
list (. F suffix files only). Note that this does not affect FORTRAN's include statement,
only the preprocessor's.

-i2
Make the default integer and logical constants and variables short.

-m Apply the M4 preprocessor to each .r file before transforming it with the Ratfor preproces
sor.

-N[qxscn]nnn
Make static tables in the compiler bigger. /77 complains if tables overflow and suggests you
apply one or more of these flags. These flags have the following meanings:

q Maximum number of equivalenced variables. The default is 150.

x Maximum number of external names (common block names, subroutine and function
names). The default is 200.

s Maximum number of statement numbers. The default is 401.

c Maximum depth of nesting for control statements (for example, DO loops). The default
is 20.

n Maximum number of identifiers. The default is 1009.

-0 Optimize the object code.

I Sky is a trademark or SKY Computers, Inc.

Revision D of 15 May 1985 2-5

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

-o output
Name the final output file output instead of a.out.

-onetrip
Compile DO loops so that they are performed at least once if reached. FORTRAN 77 DO loops
are not performed at all if the upper limit is smaller than the lower limit.

-p Prepare object files for profiling, see pro/(1).

-pg
Produce counting code in the manner of -p, but invoke a run-time recording mechanism
that keeps more extensive statistics and produces a gmon.out file at normal termination. An
execution profile can then be generated by use of gpro/(1).

-Rx
Use the string z as a Ratfor option in processing .r files.

-s Compile the named programs, and leave the assembly-language output on corresponding files
suffixed with .• (no .o file is created).

-t1 Do not convert upper case letters to lower case. The default is to convert to lower case
except within character string constants.

-u ·Make the default type of a variable 'undefined' rather than using FORTRAN implicit typing.

-v Print the version number of the compiler and the name of each pass as the compiler exe-
cutes.

-w Suppress all warning messages.

-w66
Suppress only FORTRAN 66 compatibility warnings.

Other arguments are taken to be either linker option arguments or /77-compatible object pro
grams, typically produced by an earlier run, or perhaps libraries of /77-compatible routines.
These programs, together with the results of any compilations specified, are linked (in the order
given) to produce an executable program called (by default) a.out.

Other flags, all library names (arguments beginning with -lib), and any names not ending with
one of the understood suffixes are passed to the linker.

2.6.1. Language Preprocessors

cpp is the C language preprocessor, which is invoked during the first pass of a FORTRAN compila
tion if the source filename has the extension . F. The main uses of this preprocessor for FOR
TRAN programs are for constant definitions and conditional compilation. The details on cpp syn
tax and options are found in cpp(l). (Also see the Dname option in "Options to the /77 Com
mand.")

M4 is UNIX macro processor that is primarily used on Ratfor programs before transforming
them with the Ratfor preprocessor. Files must have an .r extension. For details about its usage
see the section called "M4 - a Macro Processor" in the Programming Tool• for the Sun Work•
tation.

2-6 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

2.7. Managing Program Builds With make

make is a program that manages the process of building big programs or libraries.

When you develop programs that depend on only a single source file and possibly a few system
supplied libraries, you simply need to run the compiler every time you change the program.
Even with the simplest compilation, the /77 command line can involve a lot of typing. If it con
tains long lists of option flags or libraries, the command line can also be hard to remember.

To save some time, you can create a simple shell script or cah alias to compile the source for you
every time. For instance, to compile a small program contained in the file example. f, that
uses the core library, you could write a shell script called fexample that contains just one
line:

f77 example.f -libcore77 -libcore -o example

Whenever you want to recompile example. f, you only have to type:

hostname% fe><alllple
hostname%

But when you are developing programs made from multiple source files, such simple methods are
insufficient. You need to remember which files have been edited since the last time they were
compiled, and compile only those files. Then link together the resulting relocatable files along
with any libraries you use into a program file.

If you forget to recompile even one of the files that has been edited, the object will be incon
sistent with the source. But if you recompile your whole program after every editing session,
you waste time, since not every source file needs recompiling. To help you recompile only what
needs compiling, use the program make.

The features of make are fully discussed in the chapter "Make - a Program for Maintaining
Computer Programs" in the Programming Tool• manual, and are summarized in the Sun U•er'•
Manual on page make(l). This section shows you how make is normally used to maintain large
FORTRAN programs, and provides a simple example.

2. 7.1. Use

In order for make to help you maintain consistent programs, you must tell it what files depend
on other files, and what to do in order to transform one object into another. You encode this
information into a file called the Makefile in the directory where you are developing the pro
gram.

When make is invoked with no arguments, it looks for a file named makefile or Makefile
in the current directory, and causes the first program or file for which it finds a dependency list
to be "made," or in other words, created. (Most people prefer to use the name Makefile,
because it is easier to find in the alphabetized output of ls.)

Suppose that you have a simple program of four files: pattern. f, computepts. f,
startupcore. f, and commonblock. Assume that commonblock is included by
pattern. f and computepts. f, and that you wish to compile them into a program called
pattern. The make paradigm for such simple programs is that programs are made from, and
thus depend on, relocatable (.o) files. And, relocatable files are made from, and thus depend on,
the corresponding source files and any included files. The dependencies for this example are

Revision D of 15 May 1985 2-7

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

shown in this table:

Table 2-2: Example Makefile Targets and Dependencies

Target Depends on

pattern pattern.a, computepts.o, startupcore.o
pattern.o pattern.£, commonblock
computepts.o computepts.f, commonblock
startupcore.o startupcore.f

Furthermore, the program pattern is made by linking together the three relocatable files (plus a
series of libraries). Each FORTRAN source file compilation produces corrresponding relocatable
files. The Makefile to express this looks like:

pattern: pattern.o computepts.o startupcore.o
f77 pattern.a camputepts.o startupcare.a -lcare77 \

-lcore -lsunwindow -lplxrect -o pattern

pattern.a: pattern.! cammanblack
f77 -c -u pattern.!

computepts.o: computepts.f commonblock
f77 -c -u camputepts.f

startupcore.o: startupcore.f
f77 -c -u startupcare.f

The model for a Makefile entry is as follows:

• The first line of an entry begins with a list of target files, separated by blank spaces.

• The targets are followed by a colon (:) and a list of the files the targets depend on.

• The second and subsequent lines are shell command lines, each indented by a tab character.

• The execution of these lines causes the target file to be brought up-to-date with the files it
depends on.

Since the command lines executed in order to create the target file are arbitrary shell commands,
they can do much more than simple compilation. To continue our example, let's say that you
want your program to print the time it was compiled when it is given a command line argument
of -v. You need to add code to your program that looks like:

if (argstring .eq. "-v") then
print *,COMPILETIME
call exit (0)

endif

and then use the C preprocessor to define the word COMPILETIME as a quoted string that can
be printed. The output of the preprocessor, for example, might be

print•, "janlS ... "

To do this, you must also change the name of the source file containing this code to
pattern. F, so the C preprocessor runs over it. We also change the compilation line for

2-8 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

pattern. F in the Makefile to look like this:

f77 "-DCOMPILETIME=\"'date'\"" -c -u pattern.F

The innermost single quotes are back-quotes or grave accents. They indicate that the output of
the command contained in them (in this case the date command) is to be substituted in place of
the backquoted word(s). The next level of quote marks is what makes this define a FORTRAN
quoted string, so it can be used in the print statement. These marks must be escaped (or
"quoted") by preceding backslashes because they are nested inside another set of quote marks.
The outermost marks indicate to the interpreting shell that the enclosed characters are to be
interpreted as a single argument to the /77 command. They are necessary because the output of
the date command contains blanks, so that without the outermost quoting it would be inter
preted as several arguments, which would not be acceptable to /77.

Note that this example is for illustrative purposes only, since you are unlikely to care when the
program was last compiled. You may, though, be interested in when the program was last edited
or changed. That information can be obtained using SCCS, as described later in this chapter.

2. 7.2. Macros and Rules

Make has several other bells and whistles that can make your job easier. Two discussed here are
macroa and rulea.

In the example above, the list of relocatable files that go into the target program pattern appears
twice: once in the dependencies, and once in the /77 command that follows. This makes modify
ing the Makefile error-prone, since the same changes must be made in two places in the file. To
help with this problem, make does some simple parameterless macro substitution in interpreting
a Makefile. In this case, you can add the following to the beginning of your Makefile:

OBJ= pattern.o computepts.o startupcore.o

and change the description of the program pattern into:

pattern: $ (OBJ)
f77 $(OBJ) -lcore77 -lcore -lsunwindow -lpixrect -o pattern

Note the peculiar syntax in the above example: a use of a macro is indicated by a dollar sign
immediately followed by the name of the macro in parentheses. For macros with single-letter
names, the parentheses may be omitted. To indicate an actual dollar sign (as when your shell
command contains shell variables), type two dollar signs: $$.

A useful property of make macros is that their initial values can be overridden with command
line options to make. For instance, if you add the line

FFLAGS=-u

to the top of your Makefile, and change each command for making FORTRAN source files into
relocatable files by deleting that flag, the compilation of computepts. f looks like this:

f77 $(!:FLAGS) -c computepts.f

and the final link looks like this:

f77 $(!:FLAGS) $(OBJ) -lcore77 -lcore -lsunwindow -lpixrect
-o pattern

When you issue the make command, everything compiles as before. But if you give the com
mand

Revision D of 15 May 1985 2-9

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

make "FE'LAGS=-u -0"

then the -0 flag, as well as the -u flag, is passed to /77,

Another form of shorthand make offers you is its set of rule,, A rule is a pattern for creating a
command that make issues to create one sort of file from another, For instance, the make rule
for making a relocatable file out of the corresponding FORTRAN source file is to use the /77 com
piler, passing as arguments any flags specified by the FFLAGS macro, the -o flag, and the
name of the source file to be compiled, Since there are three compilations in our example, two
of them the same, we can make use of this rule. You should still explicitly state the dependen
cies, and must explicitly state the nonstandard command for compiling pattern. F. The
Makefile now looks like this:

OBJ= pattern.o computepts.o startupcore.o

E'E'LAGS=-u
pattern: $ (OBJ)
-r f77 ~(OBJ) -lcore77 -lcore -lsunwindow -lpixrect -o pattern
pattern.o: pattern.F commonblock
-r f77 $ (E'E'LAGS) "-DCOMPILETIME=\"'date'\"" -c pattern,E'
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

2.8. Tracking and Controlling Changes to Programs with SCCS

SCCS stands for Source Code Control System. It provides a way to

• keep track of a source file's evolution (change history)

• prevent different programmers from changing the same source file at the same time

• keep track of the version number by providing version stamps

The SCCS system provided by Sun is explained in several papers and manual sections, the most
approachable of which is "Source Code Control System" in Programming Tool, for the Sun
Workstation. Although addressed mainly to the C language programmer, that manual provides a
thorough introduction to the mechanics of using SCCS. This section uses the previous program
to show how to maintain a FORTRAN program under SCCS.

2.8.1. Using SCCS

To begin, you must create the SCCS subdirectory beneath the directory in which your program
is being developed. Do this with the command:

hostname% lllkdir secs
hostname%

Now put your source files under SCCS control. Before doing this, though, you should put in each
file one or more SCCS "ID keywords," which are filled in with a version number each time the
file is the object of a get or delget SCCS command. There are three likely places to put
such strings:

2-10 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

• in comment lines,

• in parameter statements, or

• in initialized data.

The advantage of the last is that the version information appears in the compiled object pro
gram, and can be printed out using the what command. Included header files containing only
parameter and data definition statements should not generate any initialized data, so the key
words for those files usually are put in comments or in parameter statements. Finally, in the
case of some files, like ASCII data files or Makefiles, the source is all there is, so the SCCS infor
mation can go in comments, if anywhere.

Let's identify the Makefile with a make comment containing the keywords:

%Z%%M% %I% %E%

The source files startupcore. f and computepts. f and pattern. f can be identified by
initialized data of the form:

character*SO sccsid
data sccsid/"%Z%%M% %I% %E%\n"/

You can also replace the word COMPILETIME by a parameter that is automatically updated
whenever the file is accessed with get:

ch,,,··acter• (*) COMPILETIME
parameter (COMPILETIME="%E%")

and correspondingly remove the -DCOMPILETIME from our Makefile. Finally, the included
file "commonblock" is annotated with a FORTRAN comment:

C %Z%%M% %I% %E%

Now you can put these files under control of SCCS with the command

hostname% aces create Makefile commonl>lock atartupcore.f computepta,f pattern.F
hostname%

Your files now look like this after SCCS keyword expansion:

Revision D of 15 May 1985 2-11

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

2-12

Makefile:
@(#)Makefile 1.1 84/03/01
OBJ= pattern.o computepts.o startupcore.o
FFLAGS=-u
pattern: $(OBJ)
-r f77 $(OBJ) -lcore77 -lcore -lsunwindow -lpixrect -o pattern
pattern.a: pattern.F commonblock
computepts.o: computepts.f commonblock
startupcore.o: startupcore.f

comrrDnblock:
C

computepts.f:

C

C

C

@(#)commonblock 1.1
integer nm.ax, npoints
real x, y
parameter(nmax = 200)
common npoints
common x(nmax), y(nmax)

84/03/01

subroutine computepts
double precision t, dt, pi
parameter (pi=3.1415927)
include 'commonblock'
integer i
character*SO sccsid
data sccsid/"@(#)computepts.f 1.1 84/03/05\n"/

compute x/y coordinates of npoints points on a unit circle
as index i moves from 1 to npoints, parameter t sweeps from
0 to pi(2 + npoints/2) in increments of (pi/2)*(1 + 4/npoints)
t = 0.0
dt = (pi/2.0)*(1.0 + 4.0/dble(npoints))
do 10 i = 1, npoints+l

X (i) = COS (t)
y (i) = sin (t)
t = t+dt

10 continue

startupcore.f:

return
end

subroutine startupcore
include '/usr/include/f77/usercore77.h'

C make initializing calls to core library

integer pixwindd, InitializeCore, InitializeVwsurf, SelectVwsurf
external pixwindd
character*4 envreturn
character*SO sccsid
data sccsid/"@(#)startupcore.f 1.1 84/03/05\n"/

if (InitializeCore(BASIC, NOINPUT, TWOD) .ne.O) call exit(l)
call getenv ("WINDOW_ME", envreturn)
if (envreturn .eq. " ") then

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

write(O,*)"niust run in a window"
call exit (2)

endif
if (InitializeVwsurf(pixwindd, FALSE) .ne. 0) call exit(2)
if (SelectVwsurf(pixwindd) .ne. 0) call exit(3)
call SetWindow(-1.5, 1.5, -2.0, 2.0)
call CreateTempSeg()
return
end

subroutine closecore
include '/usr/include/f77/usercore77.h'

C make terminating calls to core library
integer pixwindd

pattern.F:

C

Revision D of 15 May 1985

external pixwindd

call CloseTempSeg()
call DeselectVwsurf(pixwindd)
call TerminateCore()
return
end

program star
drav a star of n points, argument n
include 'commonblock'
character*lO argument
integer 1, 1argc, lnblnk

character*(*) COMPILETIME
parameter (C0MPILETIME="84/03/05")
character*SO sccsid
data sccsid/"@(#)pattern.F 1.1

if (1argc() . lt. 1) then
call getarg(0, argument)
1 = lnblnk(argument)

84/03/05\n"/

write (O,*) "usage: ".argument(:1)." -v or ",argument(:1)," nnn"
call ex! t (0)

endif
call getarg(1, argument
if (argument .eq. "-v") then

print*, COMPILETIME
call exit (0)

endif
read(argument, '(13) ') npoints
npointa = npo1nts*4
if (npoints .le. O .or. npoints .gt. nmax-1) then

write (0, *) npoints/4. "out of range (1 .. ". (nm.ax-1) /4, "]"

call exit (12)

endif
call computepts
call startupcore
call moveabsJ (x(l) ,y(l)

2-13

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

call polyl1neabsl(x(l), y(l), npo1nts)
pause
call closecore

end

Of course, in doing this, you have an even more ridiculous example, since you don't need the
preprocessor any longer to drop in the compilation date and the -v argument is without pur
pose, since you can use the what command, which gives you much more detail.

2.8.1.1. Editing Fi/ea Under SCCS Control

Once your source code is under SCCS control, there are two main tasks you'll be using SCCS
for: (1) to check out a file so that you can edit it, and (2) to check in a file you are done editing.
A file is checked out using the sccs edit command. The command

hostname% aces edit computepta,f
hostname%

makes a writable copy of computepts. f in the current directory, and records your login
name. Other users are prevented from checking out the same file while you have it checked out,
but they can find out what files are checked out and by whom.

When you have completed your current editing task, check in the file using the sccs delget
command.

hostname% aces delget computepta.f
hostname%

This causes the SCCS system to do the following:

• make sure that you have the same login name as the user who checked the file out

• make a record of what was changed in this editing session

• delete the writeable copy of computepts. f from the current directory

• replace it by a read-only copy with the SCCS keywords expanded

This is actually a composite of two simpler SCCS commands called delta and get. delta
does the first three items in the above list, and get does the fourth.

2.9. Building Libraries

A library is a collection of subprograms. Each member of this collection is called a library ele
ment or module. There are many examples of libraries on the Sun system. The libraries used
implicitly or explicitly in the above example were the

• Core graphics libraries: /usr/lib/libcore.a and /usr/lib/libcore77.a

• FORTRAN libraries: /usr/lib/libF77.a, /usr/lib/libl77.a, and /usr/lib/libU77.a

• math library: /lib/libm.a

• C library: /lib/libc.a

2-14 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

A relocatable library is one whose elements are relocatable (.o) files. Relocatable libraries pro
vide an easy way for commonly used subroutines to be shared among several programs that use
them. The programmer need only name the library when linking the program and those library
modules that resolve references in the program are loaded. The advantages of doing this are:

• only the needed modules are loaded

• the programmer need not change the link command line as subroutine calls are added and
removed during program development.

2.9.1. Using Libraries

When the linker uarchea a library, it extracts from it those elements whose entry points (i.e.,
subprogram or entry names, or names of COMMON blocks initialized in BLOCKDATA subprograms)
are referenced in other parts of the program it is linking.

When the linker extracts a library element, it takes the whole thing; since an element
corresponds to the result of a compilation, this means that routines that are compiled together
are always linked together. This is a difference between UNIX and some other systems and may
affect the way you divide up your libraries.

Another important difference between UNIX and other systems is that when you link programs,
the order really matters. The linker processes its input files in the order that they appear on the
command line, (i.e., left-to-right). When the linker is to decide whether or not a library element
is to be loaded, its decision is based only on the relocatable modules it has already processed.
For example, if our FORTRAN program is in two files, main. f and graf. f, and only the latter
accesses the Core library, it would be an error to reference that library before the reference of
graf.for graf.o:

(Wrcmqll hostname%f77 main.f -lcore77 -lcore graf.f -o myprog

(Right) hostname%f77 main. f graf. f -lcore77 -lcore -o myprog

Order can matter within libraries as well. If you build a aequential library, then elements at the
end of the library should not reference entry points defined in elements that precede them. This
is because these libraries are searched in the order in which they are presented (i.e., front-to
back). There are two ways to get around this problem: make sure the library is constructed in
the right order, or build a random library. The programs /order and t,ort are usually sufficient
for ordering interdependent library elements for one-pass linking: see the manual page lorder{l)
for instructions.

2.9.1.1. ranlib

Random libraries are built from sequential libraries using the program ranlib. ranlib
builds a table of contents for the library, indicating to the linker which entry points are defined
in library elements. Elements in random libraries can refer to one another indiscriminately.
Random libraries are preferred on the Sun system, and the linker issues a warning message if it
encounters any sequential libraries. Random libraries have the unfortunate property that ran-
1 ib must be rerun on them whenever the library is changed or copied. Extremely careful indi
viduals use lorder and tsort to sort their libraries, and then apply ranlib to them.

Revision D of 15 May 1985 2-15

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

The -M flag, which /77 passes to the loader, is useful for determining what routines are obtained
from libraries.

Using the program example from the previous section, suppose you want to put the module
startupcore. o into a library. Also suppose that you take out the calls to the Core library·
from the main program, and encapsulate them in a routine drawpoly, which you place in the
file drawpoly. f:

subroutine drawpoly(x, y, n)
integer n
real x(n), y(n)
character*SO sccsid
data sccsid/"@(#)drawpoly.f 1.1 84/03/05\n"/
call moveabs2 (x (l) , y (l))
call polylineabs2(x(2), y(2), n)
end

The following statement can call this routine from the main program:

call drawpoly(x, y, npoints)

The library named polylib. a is created using the ar and ran lib commands:

hostname% ar crv polylib.a atartupcore.o drawpoly.o
hostname% ranlib polylib.a

and can be referenced in an /77 command line:

hostname% f77 pattern.o computepta.o polylib.a -lcore -launwindow
-lpixrect -o pattern
hostname%

If a library element is recompiled and must be replaced m its lihrary, use ar and ranlib
agam:

hostname% ar rv polylib.a drawpoly.o
hostname% ranlib polylib.a
hostname%

This time ar is given the rv flags; o is used only for creating. A library need not be specially
flagged for the linker; the linker recognizes a library when it encounters one.

2.10. Transporting FORTRAN Programs

If you have developed FORTRAN code on another system, parts of it may need to be changed so
it can run on Sun Workstations. This section describes some implementation details you need to
know when you transport FORTRAN programs.

2.10.1. General Hints

Keep these Sun FORTRAN conventions in mind when transporting your program from another
machine:

• Your source code must have a . f filename extension to be recognized by the FORTRAN com
piler (171).

2-16 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

• If you are entering in code manually (instead of downloading), you must make sure to start
typing in your code in column six or greater (this can be done conveniently by tabbing over).

2.10.2. Time Functions

These are the time functions supported in the Sun Extension to standard FORTRAN

idate() - Returns date in integer array
itime () - Returns time in integer array
ctime(), gmtime(), time() - Returns system time
dtime(), etime() - Returns elapsed system time

You should check your code to make sure that these functions are used in place of other time
functions. For example, Sun does not support the following features which are found on other
machines:

(CAL)
mclock(h) -- time-of-day in 10h format
mdate(h) -- date in !Oh format
mi/sec() -- milliseconds of job CP time
second() -- seconds of job CP time {floating)

(CRAY)
clock(h) -- like mclock
date(h) -- line mdate
date(h) -- julian date in ASCII
second() -- as above
time/() -- wallclock time since last call to timef, fp mill.

2.10.3. Formats

In most cases, formats in other FORTRAN programs are transportable to Sun Workstations. Sun
FORTRAN format features that may be different from other versions of FORTRAN are

a behaves as usual on non-string data, but be careful to use only four characters to a
word.

r sets arbitrary radix for following i formats

$ suppresses newline

conditional termination

h FORTRAN 66 feature

au select unsigned output for following i formats:

format(z4) => format(su, 16r, 14)

For example, these format specifiers are not available with FORTRAN

d same as e {HP, CRAY)

Revision D of 15 May 1985 2-17

Developing and Maintaining FORTRAN programs

g used on integers or logicals (IBM)

k,IIP,o
octal (HP, CRAY)

q extended precision (real*16XIBM)

FORTRAN Programmer's Guide

r right-justified characters (on old FORTRAN versions, usually left-justified inside a word)
(CRAY, HP)

z hexadecimal (IBM,CRA Y)

2.10.4- Carriage Control

UNIX doesn't really have carriage control (see "Carriage Control" in Chapter 3). There are two
ways that FORTRAN carriage control conventions can be accomodated:

• For simple jobs, use open (N, form=' pr int') . You then get single or double spacing,
formfeed, and stripping off of column 1 (remember, it's legal to reopen unit 6 if you're just
changing the form parameter to 'print', for example open(6,form='print')).

• Use the /pr filter to transform FORTRAN carriage control conventions into the UNIX carriage
control format (see /pr(l)). You can then print files using /pr.

2.10.5. File Equates

See the 1/0 section on "Gaining Access to Files", about piping and redirection. You can also use
hard or soft links.

2.10.6. Data representation

See the section in Chapter 4 concerning data representation for exact representation of different
kinds of data. This section points out information necessary for transporting FORTRAN pro
grams. You should remember the following:

• The first four bytes of a real *8 are not the same as a real *4

• The default sizes for reals, integers, and logicals are the same (as they should be, according
to the standard) except when the -i2 flag is used, which shrinks integers and logicals to two
bytes but leaves reals as four bytes.

• There is no logical*l. Use character*l instead.

• Character variables can be freely mixed and equivalenced with variables of other types, but
you should be careful of potential alignment problems.

• Integer, logical, real, double precisions, complex, double complex types must always be
aligned on even-byte boundaries. The compiler does this for you, but may create holes in
common blocks if character variables are mixed with any of the other types. Programs hav
ing knowledge of holes created by more restrictive alignment on other machines are not
portable.

• Our floating-point arithmetic does not cause exceptions on overflow or divide-by-zero. It

0

0

does deliver IEEE indeterminate forms in cases where exceptions would otherwise be sig- 0
naled. See the data representation section in Chapter 4 for more details. The extreme finite, '

2-18 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Developing and Maintaining FORTRAN programs

normalized values are delivered by the flmin(), flmax(), etc. functions (see range(3f)). The
indeterminate forms can be written and read using formatted and list-directed 1/0 state
ments.

2.10. 7. Hollerith

The information in this section is useful for transporting older programs - not for writing or
heavily modifying a program. It is recommended that you use character variables for the pur
pose covered in this section.

You can initialize things as with standard FORTRAN , but remember that Sun Workstations are
32-bit machines. Thus, the maximum number of characters per data type is as follows:

DATA TYPE
integer*2
integer*4
logical
integer
real
real*4
double precision
real*8
complex
double complex
comolex*16

For example:

MAX CHARACTERS PER DATUM
2
4
4 (or 2 if -12 flag given)
4 (or 2 if -12 flag given)
4
4
8
8
8
16
16

double complex x(2)
data x /16hllello there, sai, 16hlor, new in town/
write (6, '(4a8, "?") ') x
end

You cannot pass Holleriths as parameters or used them in expressions, or even comparis
ons. They are interpreted as character-type expressions in these contexts. If you must,
you can initialize a data item of a compatible type with a Hollerith, and then pass it
around. For example,

integer function DoYouLoveMe()
double precision fortran, beloved
integer yes, no
data yes,no/ 3hyes, 2hno /
data fortran/ 7hfortran/

10 format("Whom do you love?",~)
write (6, 10)
read (5,20) beloved

20 format (a8)
DoYouLoveMe = no
if (beloved .eq. fortran) DoYouLoveMe = yes
return
end

Revision D of 15 May 1985 2-19

Developing and Maintaining FORTRAN programs FORTRAN Programmer's Guide

2-20

program trouble
integer yes, no
integer DoYouLoveMe
data yes,no/ 3hyes, 2hno /

if (DoYouLoveMe() .eq. yes) then
print• 'You are sick'

else
print• 'See if I ever speak to you again'

endif
end

All these things produce warnmg messages from the compiler. Use the -w66 flag to
suppress these messages.

Revision D of 15 May 1985

0

0

0

0

0

0

Chapter 3

Input and Output

The first half of this chapter describes the UNIX file system and how it relates to the
FORTRAN 1/0 system. The second half discusses FORTRAN 1/0 as implemented on the
Sun Workstation. Topics covered include:

• Accessing files

• Logical units and preconnected units

• UNIX file descriptors

• FORTRAN 1/0, file access modes, and file types

• FORTRAN 77 implementation

• Extensions to FORTRAN 77 1/0

• Running older programs

• Magnetic Tape 1/0

For a more detailed discussion of the UNIX file system structure, refer to the Beginner'a
Guide to the Sun Workatation.

3.1. The UNIX File System

The UNIX system file structure is analogous to an upside-down tree. The top of the file sys
tem is the root: directories, subdirectories and files all branch down from the root. Direc
tories and subdirectories are considered nodes on the directory tree, and can have subdirec
tories or ordinary files branching down from them. The only directory that is not a sub
directory is the root directory, so except for this instance, we do not make a distinction
between directories and subdirectories.

A sequence of branching directory and filenames in the file system tree describe a path.
Files are at the ends of paths, and can not have anything branching from them. Wben mov
ing around in the file system, down means away from the root and up means toward the
root. Refer to Figure 3-1 for a diagram showing the UNIX file system tree structure.

Revision D of 15 May 1985 3-1

Input and Output

file

file

root
directory

FORTRAN Programmer's Guide

subdirectory subdirectory

subdirectory file

file file

Figure 3-1: Diagram showing UNIX file system structure

All UNIX files have names and all files branch from directories. Directories are just files with
special properties and follow the same naming rules as files. The only exception is the root
directory, which is named slash (/).

While you are logged on to a UNIX system, you are said to be in a directory. When you first
log on, you are in your home directory. At any time, wherever you are, that directory is
called your current working directory. It is often useful to list your current working direc
tory. The pwd command and the getcwd library call print the current working directory
name. You can change your current working directory simply by moving to another direc
tory. The cd shell command and the chdir library call change to a different current working
directory. Additional explanations of the file system organization and relevant shell com
mands are located in the Beginner'• Guide to the Sun Workatation.

You can use almost any character in a filename. The name can be up to 1024 characters
long, but individual components can be only 512 characters long. However, to prevent the
shell from misinterpreting certain special punctuation characters, you should restrict your
use of punctuation in filenames to the dot(.), underscore(_), comma(,), plus(+), and minus
(-). The slash(/) character has a specific meaning in a filename, and is only used to separate

0

0

components of the pathname (as described below). Also, you should avoid using blanks in Q·. ,

filenames.

3-2 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Input and Output

To describe a file anywhere in the directory structure, you can list the sequence of directory,
subdirectory and filenames, separated by slash characters, between the root and the file you
want to describe. This is called an ab,olute path name because it begins at the root of the
directory tree (indicated by the first /). It is also the complete filename for this file. An
example of an absolute path name is shown in Figure 3-2.

/usr /you/mail/record

I

"-.....

usr

..........

you

..........

mail

.......... ...
record

Figure 3-2: Absolute Path Name

Alternatively, from anywhere in the directory structure, you can describe a relative path
name of a file. Relative path names begin in the directory you are in (the current directory)
instead of the root. Refer to Figure 3-3 for an illustration of a relative path name.

A complete UNIX file specification has the general form:

/directory/directory/ ... /directory/file

A typical example of a complete UNIX file specification, or absolute path name is:

/usr/src/sun/doc/fortran.manuals/programmers.guide

There can be any number of directory names between the root (/) and the file at the end of
the path as long as the total number of characters in a given path name is less than or equal
to 1024.

Revision D of 15 May 1985 3-3

Input and Output FORTRAN Programmer's Guide

3-4

mail/record (from /usr/you)

/usr/you

.............

mail

"-

record

Figure 3-3: Relative Path Name

3.2. Gaining Access to Files From FORTRAN Programs

Data is transferred to or from devices or files by specifying a logical unit number in an 1/0
statement. FORTRAN 1/0 statements are

• open

• close

• read

• vrite

• print

• backspace

• endfile

• revind

• inquire

Logical unit numbers can be nonnegative integers or the character'*'. The'*' stands for the
ltandard input if it appears in a read statement, or the ltandard output if it appears in a
write or print statement. Standard input and standard output are explained in the section
on preconnected units found later in this chapter.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Input and Output

3.2.1. Accessing Files With Names

Before a program can access a file with a read, write, or print statement, the file
needs to be created and a connection established for communication between the program
and the file. The file can already exist or be created at the time the program executes. The
FORTRAN 77 open statement establishes a connection between the program and file to be
accessed. open can take a filename parameter (file=filename) to specify the file.
Filenames can be

• quoted character constants
[ez: file='myfile.out', ...

• character variables
[ez: file=filnam, ... J

• character expressions
[ez: file=prefix(:lnblnk(prefix)) // '/' // name(:lnblnk (name)), ... J

Some ways a program can get filenames are

• by reading from a file or terminal with a FORTRAN read statement
[ez: read(4,401) filnam J

• from the command line by way of the getarg function
[ez: call getarg (argumentnumber, filnam) J

• from the environment with getenv
[ez: call getenv(string, filnam)

The program fragment in Figure 3-4 shows one way filenames may be constructed.

C

eharacter*1024 function fullname (n ...)
character•(•) name
eharacter*l024 prefix

C in path names starting vith •·;•. replace
C the tilde with the home directory name;
C prefix relative path namea vith path to current working directory;
C leave abaolute path namea unchanged.
C

if (name(l:1) .eq. '/') then
fullname = name

else if (name(l:2) .eq. ••; 1
) then

call getenv('HOM!'. prefix)
fullname = prefix(:lnblnk(prefix)) // nam.e(2:lnblnk(nam.e))

ela•
call getcvd(prefix)
fullname = prefix(:lnblnk(prefix)) // '/' // na.me(:lnblnk(name))

endlf
end

Figure 3-4: Program example showing one way to construct filenames

Revision D of 15 May I 985 3-5

Input and Output FORTRAN Programmer's Guide

3-6

3.2.2. Accessing Files Without Names

When a program opens a FORTRAN file without a name, the runtime system supplies a
filename. There are several ways it can do this. If status=' scratch' is specified in the
open statement, then the run-time system opens a file with a name of the form
tmp .Fnnnnnn, where nnnnnn is replaced by the current process ID. This file is deleted
upon termination of the program or execution of a close statement, unless
status= 'keep' is specified in the close statement.

If a FORTRAN program has a file already open, an open statement that specifies only the
file's logical unit number and the parameters to change can be used to change some of the
file's parameters (specifically blank= and form=). The runtime system determines that it
should not really open a new file, but just change the parameter values. Thus, this looks
like a case where the run-time system would make up a name, but is not.

In all other cases, the run-time system opens a file with a name of the form fort.n, where n
is the logical unit number given in the open statement.

The inquire statement can also be used to determine the name of an open file by giving
its logical unit number. More information on the open and inquire statements is found
later in this chapter.

The UNIX file system does not have any notion of temporary filename binding (or file equat
ing) as some other systems do. Filename binding is the facility that is often used to associate
a FORTRAN logical unit number with a physical file without changing the program. This
mechanism evolved to communicate filenames more easily to the running program, because
in FORTRAN 66 you could not open files by name. With UNIX, there are several satisfac
tory ways to communicate filenames to a FORTRAN 77 program including command line
arguments and environment variable values. For example, see the routine ioini t. f in
libU77, which is discussed in "Preattachment of Logical Units" later in this chapter. The
program can then use those logical names to open the files. The next section recommends
two additional ways to change a program's input and output files without changing the pro
gram, called piping and redirection.

3.2.3. ?reconnected Units

When a UNIX FORTRAN or C language program begins execution, there are usually three
units already open. These are called preconnected units. Their names are .tandard input,
atandard output, and atandard error. In FORTRAN programs,

• standard input is logical unit 5

• standard output is unit 6

• standard error is unit 0

All three are connected to your terminal or window, unless file redirection or piping is done
at the command level.

All other units are pre connected to files named fort. n where n is the ccorresponding unit
number. These files need not exist, and are only created if their units are used and an
open statement does not override the preconnected name. For example, the program

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide

write (15) 2
end

writes a single unformatted record in file fort, 15.

3.2.,/. Redirection

Input and Output

Redirection is a way of changing the files that a program uses without passing a filename to
the program. Both input to and output from a program can be redirected. The symbol for
redirecting standard input is the 'less than' sign (<), and for standard output is the 'greater
than' sign (>).

File redirection is a function performed by the command interpreter or ,hell when a pro
gram is invoked by it. As shown in the example below, the shell command line

hostname% myprog < mydata

causes the file mydata (which must already exist) to be connected to the standard input of
the program myprog when it is run. This means that if myprog is a FORTRAN program
and reads from unit 5, it reads from the file mydata. Similarly, the shell command line

hostname% myprog > myoutput

causes the file myoutput (which is created if it does not exist or rewound and truncated if
it does) to be connected to the standard output of the program myprog when it is run. So
if the FORTRAN program myprog writes to unit 6, it writes to the file myoutput.

Both standard input and standard output may be redirected to and from different files on
the same command line. Standard error may also be redirected so it does not appear on
your terminal. (In general, this is not a good idea, since you usually want to see error mes
sages from the program immediately, rather than sending them to a file.)

The shell syntax to redirect standard error varies, depending on whether you are using the
Bourne shell or the C shell. Refer to the Beginner's Guide to the Sun Workatation for more
information on redirecting standard error.

3.2.5. Piping

It is also possible, in UNIX to connect the standard output of one program directly to the
standard input of another without using an intervening temporary file. The mechanism to
accomplish this is called a pipe. A shell command line using a pipe looks like this:

hostname% firatprog I aecondprog

This causes the standard output (unit 6) of firstprog to be piped to the standard input
(unit 5) of secondprog. Piping and file redirection can be combined in the same command
line. A simple example is:

hostname% myprog < mydata I we> datacount

in which the program myprog takes its standard input from the file mydata, and has its stan
dard output piped into the standard input of the we command, the standard output of which
is redirected into the file datacount.

Revision D of 15 May 1985 3-7

Input and Output FORTRAN Programmer's Guide

3.2.6. UNIX File Descriptors

In almost every discussion of input and output in FORTRAN 77 programs, I/0 channels are in
terms of FORTRAN unit numbers. The UNIX 1/0 system does not actually deal with these
units, but with UNIX file de,criptor,. The FORTRAN runtime system always translates from
one to the other, so most FORTRAN programs don't have to have to know about file descrip
tors.

The information in this section is of interest mostly to users writing C routines that interface
to FORTRAN 77 programs. More about this is covered in Chapter 4, "Data Representations."
In addition to FORTRAN units and UNIX file descriptors, many C programs use a set of sub
routines called ,tandard I/ 0 (or stdio). Many of the functions of the FORTRAN 77 I/0
system are implemented using standard I/0, which in turn is implemented using the UNIX
I/0 system calls. Some of the characteristics of these systems are listed in Table 3-1.

Table 3-1: Characteristics of Three 1/0 Systems

FORTRAN-77 Standard 1/0 File UNIX file
Units Pointers Descriptors

Files Open opened for reading opened for reading; or opened for reading; or
and writing opened for writing; or opened for writing; or

opened for both; or opened for both
opened for appending
see open(3S)

Attributes formatted or unformat- always unformatted, but always unformatted
led can be read or written

with format·interpreting
routines

Access direct or sequential direct access if the phy- direct access if the
sical file representation physical file representa-
is direct access, but can tion is direct access,
always be read sequen· but can always be read
tially sequentially

Structure record byte stream byte stream

Form arbitrary, nonnegative pointers to structures in integers Crom 0-19
integers the user's address space

3.3. FORTRAN 1/0

UNIX is not as format-oriented as FORTRAN. UNIX treats all files as sequences of bytes

0

0

instead of collections of record structures. The FORTRAN run-time system keeps track of file O·
formats and access modes. It provides the FORTRAN file facilities using the FORTRAN 1/0

3-8 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Input and Output

system, which includes the FORTRAN libraries and the standard 1/0 library.

Table 3-2: Summary of FORTRAN Input and Output

Access mode
Type of file

Sequential Direct

internal file must be character variable, character ar- file must be a. character array;
ray element, character array, or 8ub:,tring ea.ch "record" is a single cle-

ment of the array

Formatted
external contains only formatted records of same or contains only formatted

variable length records; all must be the same
length

internal (not allowed) (not allowed)

unformatted external contains only unformatted records reads: one logical record at a
time; write11: lea.vc11 unfilled
pa.rt of record undefined

internal reads: bytes are read until the I/0 list is (not allowed)
satisfied, or until 'end-of-file' is reached; im-
plemented to make command line decoding
easier; writes: record3 a.re filled until I/0 list

List-directed is satisfied; WRITES SHOULD BE AVOID-
ED

external no associated format statement; values input (not allowed)
or output depend on types in I/0 list

Note: Under List-directed internal files, writes should be avoided because the number of
items written on a line of output and the lengths of the items vary with the values of the
items (see "List-Directed Output" later in this chapter).

3.4. Implementation Details

Some details of the current implementation may be useful m understanding constraints on
FORTRAN 77 1/0.

Revision D of 15 May 1985 3-9

Input and Output FORTRAN Programmer's Guide

3-10

3.4-1. Logical Units

The maximum number of logical units that a program can have open at one time is the
same as the UNIX system limit, currently 20.

The standard logical units, 0, 5, and 6, are named internally stderr, stdin, and stdout
respectively. These are not actual filenames and can not be used for opening these units.
Inquire does not return these names and indicates that the above units are not named
unless they have been opened to real files. However, these units can be redefined with an
open statement.

The names stderr, stdin, and stdout are meant to make error reporting more mean
ingful. To preserve error reporting, it is an error to close logical unit O although it can be
reopened to another file.

If you want to open the default filename for any preconnected logical unit, remember to
close the unit first. Redefining the standard units may impair normal console 1/0. An
alternative is to use shell redirection to externally redefine the above units.

To redefine default blank control or the format of the standard input or output files, use the
open statement specifying the unit number and no filename (see below).

3.4-2. Vertical Format Control

Simple vertical format control is implemented. The logical unit must be opened for sequen
tial access with form = 'print. ' Control codes 'O' and 'l' are replaced in the output file
with '\n' and '\f', respectively. The control character '+' is not implemented and, like any
other character in the first position of a record written to a 'print' file, is dropped. No verti
cal format control is recognized for direct formatted output or list-directed output. See
/pr(l) for an alternative way of mapping FORTRAN carriage control to ASCII control charac
ters.

3.f3. open

The open statement connects a file with a unit, or alters some property of the connection.
It has the following format:

open (parameter list)

where

parametera is a list of optional keywordd specifiers, separated by commas. Valid specifiers
are as follows:

unit

file

A required nonnegative integer that specifies the FORTRAN unit number to con
nect to. If the unit is first in the parameter list, then unit= can be omitted.

An optional character expression naming the file to open. If not specified, a
default filename can be created. An open statement need not specify a
filename.

If you open a unit that's already open without specifying a filename (or with
the previous filename), FORTRAN thinks you are reopening the file to change
parameters. The only parameters you are allowed to change are blank=

Revision D of 15 May 1985

0

0

0

0

0

FORTRAN Programmer's Guide Input and Output

('null' or 'ZERO'), form= ('formatted' or 'print'). To change any other
parameters, you must close, then reopen the file.

If status = 'scratch' is specified, a temporary file with a name of the form
'tmp.Fnnnn' is opened, and (by default) deleted when closed or during termina
tion of program execution. Any other status= specifier without an associated
filename results in opening a file named 'fort.n', where n is the specified logical
unit number. (See below for a general description of the status parameter.)

access An optional character expression. The options are 'sequential' or 'direct'.

form

reel

If not specified, 'sequential' is assumed.

If access='direct' is specified, reel must also be given, since all 1/0 transfers
are done in multiples of fixed-size records. Only directly accesible files are
allowed; thus, tty, pipes and magnetic tape are not allowed. If
form='unformatted' the size of each transfer depends upon the data
transferred. If form is not specified, unformatted transfer is assumed.

If access='sequentia l' rec 1 is prohibited since records are of varying size.
No padding of records is done and files don't have to be randomly accessible;
thus, tty, pipes and tapes can be used. If not specified form='formatted' is
assumed. If form=' formatted' each record is terminated with a newline (0
character. This means that each record actually has one extra byte per record.
If form='print' the file acts like a form='formatted' file except for the
interpretation of column-1 characters on output (0 = double space, 1 = formfeed,
and blank = single space). If form='unformatted' each record is preceded
and terminated with an integer * 4 count making each record 8 bytes longer
than normal. This is inconsistent with UNIX, thus is only useful for communicat
ing between FORTRAN programs. In addition, each write defines one record
and each read reads one record (unread bytes are flushed). With magnetic tape
records cannot span tape blocks, so fileopt='buffer= ... ' suboption must be
at least 8 bytes greater than the largest record you write.

An optional character expression. The options are 'formatted', 'UNformat
ted' or 'print.' If not specified, formatted is assumed. Interacts with
access.

rec !=length specifies the record length in bytes.
access='direct', prohibited if access='sequential.'

Required if

err An optional statement label to jump to if an error occurs during the open.

iostat An optional variable name that receives the error status from an open.

Note: Either err=label or iostat=name must be coded to avoid a disaster
when an error occurs on an open.

blank An optional character expression that indicates how blanks are treated. For for
matted input only; the options are 'zero' (blanks treated as zeroes), and 'null'
(blanks ignored during numeric conversion). If not specified, 'null' is assumed.

status An optional character expression. The possible values are

• 'old' - the file already exists (nonexistence is an error);

Revision D of 15 May 1985 3-11

Input and Output FORTRAN Programmer's Guide

• 'new'- the file doesn't exist (existence is an error) and file=name 1s
required;

• 'unknown' - existence is unknown (the default); and

• 'scratch' - file=name is prohibited and the file is removed upon close
(exception: if you specify status='keep' in an explicit closefP of the
unit).

fileopt An optional character expression. The options are

• 'nopad' - don't extend records with blanks if you read past the end-of
record (formatted input only);

• 'buffer=nnnn' - the size of the 1/0 buffer to use (magnetic tape only).
buffer is only necessary when writing, since the 1/0 system defaults to 65
character buffers for tape, allowing reads to anything smaller than that;

• 'eof' - opens a file at end-of-file rather than at the beginning (useful for
appending data to the file). For example:

open(7, f ile='junkfile', form=' formatted', f ileoptg='eo f,buf fer=2048')

By default, files are positioned at their beginning upon opening, but see ioinit(3f) for alter
natives. Existing files are never truncated on opening. Sequentially-accessed, external files
are truncated to the current file position on close, backspace, or rewind only if the
last access to the file was a write. An endfile always causes such files to be truncated to
the current file position.

3.4-4- FORTRAN and UNIX file permissions

In C, programmers traditionally open up input files for reading, output files for writing or
some files for both since UNIX allows for reading and/or writing permissions by the owner,
owner's group or anyone. In FORTRAN it's not possible for the system to forsee what use you
make of the file since there's no parameter to the open statement that gives us that infor
mation. Thus, FORTRAN always attempts to open a file with the maximum permissions
possible: first for both reading and writing, then for each separately. This occurs tran
sparently and should only be of concern if you try to perform a READ, WRITE, or END
file that you don't have permission to do. The only exception is with magnetic tape,
where if you could have write permission but without a write ring, an error displays on the
screen.

3-12

3.,4.5. inquire

The inquire statement gives information about a unit (inquire-by-unit) or a file (inquire
by-file). It sets values of integer, logical, and character variables by specifing keywords that
correspond to the values of unit, connection, or file properties. These properties can be
grouped as follows:

• Unit properties: A unit alone only has the properties of existence and of being con
nected or not. Only units that exist can be opened but you can inquire about a unit
even if it doesn't exist.

Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Input and Output

exist (if inquire-by-unit) 0 number (if inquire-by-file)

0

0

• Connection properties: The association between a FORTRAN unit and a file. It can have
associated with it properties associated with the open statement: sequential or direct,
formatted or unformatted, and a record length. Its properties interact with file proper
ties. For example, some types of connections (e.g., direct) may not be allowed with some
files (e.g., magnetic tape).

opened

access

form

reel

nextrec

blank

• File properties: File properties are its name, existence and how it can be connected
(formatted, unformatted, sequential and direct).

exist (if inquire-by-file)

named (if inquire-by-unit)

name (if inquire-by-unit)

sequential

direct

formatted

unformatted

Simple examples are:

inquire(unit=3, namexx)
inquire (file=1junk1, exist=l, opened=isopen, number=n)

The options to inquire are as follows:

file=

unit=-

a character variable specifies the file the inquire is about. Trailing blanks in
the filename are ignored. Files have the properties of a name, existence (or
nonexistence), and the ability to be connected to in certain ways (formatted,
UN formatted, sequential, or direct). It can be connected to a unit in
the current program or not.

a positive integer variable that refers to files after they are opened. Exactly
one of file= or unit= must be used.

iostat=, err=
are as before.

exist- a logical variable that is set to . true. if the file or unit exists and . false.
otherwise.

opened= a logical variable that is set to . true. if the file is connected to a unit or the
unit is connected to a file, and . false. otherwise.

Revision D of 15 May 1985 3-13

Input and Output FORTRAN Programmer's Guide

3-14

number= an integer variable that is assigned the number of the unit connected to the file,
if any.

named= a logical variable that is assigned . true. if the file has a name, or . false.
otherwise.

name= a character variable that is assigned the name of the file (inquire- by-file) or the
name of the file connected to the unit (inquire-by-unit). The name is the full
name of the file. When performing an inquire-by-unit, the name parameter is
undefined unless both the opened and named parameters indicate .true ..

access= a character variable that is assigned the value 1sequential1 if the connection is
for sequential 1/0, 1direct1 if the connection is for direct 1/0. The value is
undefined if there is no connection.

sequential=
a character variable that is assigned the value 1yes1 if the file could be con
nected for sequential 1/0, 1no1 if the file could not be connected for sequential
1/0, and 1unknown1 if the system can't tell.

direct= a character variable that is assigned the value 1yes1 if the file could be con
nected for direct 1/0, 'no' if the file could not be connected for direct 1/0, and
1unknown1 if the system can't tell.

form= a character variable which is assigned the value I formatted' if the file is con
nected for formatted 1/0, or 'unformatted' if the file is connected for unfor
matted 1/0.

0

formatted=
a character variable that is assigned the value 1yes1 if the file could be con- 0
nected for formatted 1/0, 1no1 if the file could not be connected for formatted
1/0, and 'unknown' if the system can't tell.

unformatted=

reel=

nextrec=

a character variable that is assigned the value 1yes1 if the file could be con
nected for unformatted 1/0, 'no' if the file could not be connected for unformat
ted 1/0, and 'unknown' if the system can't tell.

an integer variable that is assigned the record length of the records in the file if
the file is connected for direct access.

an integer variable that is assigned one more than the number of the the last
record read from a file connected for direct access.

blank= a character variable that is assigned the value 1null 1 if null blank control is in
effect for the file connected for formatted 1/0, 'zero' if blanks are being con
verted to zeros and the file is connected for formatted 1/0.

Remember that the people who wrote the ANSI standard probably weren't thinking of your
needs. Here is an example, in which declarations are omitted.

open (1, file=" /dev/console")

On a UNIX system this statement opens the console for formatted sequential 1/0. An
inquire statement for either unit 1 or file "/dev/console" would reveal that the file exists,
is connected to unit 1, has the name, "/dev /console", is opened for sequential 1/0, could be
connected for sequential 1/0, can't be connected for direct 1/0 (can't seek), is connected for

Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Input and Output

formatted 1/0, can be connected for formatted 1/0, can't be connected for unformatted 1/0
(can't seek), has neither a record length nor a next record number, and is ignoring blanks in
numeric fields.

In the UNIX system environment, the only way to discover what permissions you have for a
file is to use the acceaa(3f) function. The inquire statement does not determine permis
sions.

3.-.f.6. Close

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= (see open for meanings), and status=
'keep' or 'delete.' keep is the default (except for scratch files). delete means that the
file will be removed. A simple example is

close(3, err=17)

s.4- 7. Format Interpretation

In the Sun implementation, most formats are compiled; only those that are unknown until
runtime require parsing at runtime. Upper- as well as lower-case characters are recognized in
format statements and all the alphabetic arguments to the 1/0 library routines.

If the external representation of a datum is too large for the field width specified, the
specified field is filled with asterisks (•).

Nondestructive tabbing is implemented for both internal and external formatted 1/0. Tab
bing left or right on output does not affect previously written portions of a record. Tabbing
right on output causes unwritten portions of a record to be filled with blanks. Tabbing right
off the end of an input logical record is an error. Tabbing left beyond the beginning of an
input logical record leaves the input pointer at the beginning of the record. The format
specifier T must be followed by a positive nonzero number. If it is not, it has a different
meaning. Tabbing left requires the ability to seek on the logical unit. Therefore it is not
allowed in 1/0 to a terminal or pipe. Likewise, nondestructive tabbing in either direction is
possible only on a unit that can seek. Otherwise tabbing right or spacing with X writes
blanks on the output.

s.4-8. List-Directed Output

In formatting list-directed output, the 1/0 system tries to prevent output lines longer than
80 characters. Each pair of external data is separated by two spaces. List-directed output
of complex values includes an appropriate comma. List-directed output distinguishes
between real and double precision values and formats them differently. The output
system reasonably interprets the output of a character string that includes '\n.'

Revision D of 15 May 1985 3-15

Input and Output FORTRAN Programmer's Guide

3-16

3.,4.9. I/0 Errors

If the user's program does not trap 1/0 errors an appropriate error message is written to
stderr before aborting. An error number is printed in square brackets, [), along with a
brief error message showing the logical unit and 1/0 state. Error numbers < 100 refer to
UNIX errors; these are described in intro(2) in the Sun Sy.tern Interface Manual. Error
numbers > 100 come from the 1/0 library, and are described further in Appendix C of this
manual. For external 1/0, part of the current record will be displayed if the error was
caused during reading from a file that can backspace. For internal 1/0, part of the string is
printed with a vertical bar (D at the current position in the string.

3.5. Non-'ANSI Standard' Extensions

Several extensions have been added to the 1/0 system to provide for functions omitted or
poorly defined in the standard. Programmers should be aware that these are not portable.
Refer to Chapter 6 for a complete description of deviations from the FORTRAN 77 standard.

3.5.1. Format Specifiers

FORTRAN 77 provides additional specifiers to the FORTRAN 66 format specifications I, F, E,
G, D, H, X, A, and L. A brief description of some of the expanded features follows here.
Table 3-3 summarizes FORTRAN 66, FORTRAN 77 and extended /77 format specifiers.

Revision D of 15 May 1985

0

0

0

0

0

0

FOHTHAN Programmer's Guide Input and Output

Table 3-3: FORTRAN Format Specifiers

Format Specifier FORTRAN 66 FORTRAN 77 /77
Extensions

lnte~er Editin~ lw lw.m

Floating-Point Fw.d, Ew.d, Gw.d, Ew.dEe, Dw.dEe, Ew.d.e, Dw.d.e,
Editin~ Dw.d Gw.dEe Gw.d.e

Character Editing wH,Aw "zzzz" (string con-
stant). A

Lo~ical EditiM Lw

Position Editin~ wX. I Tn. TLn. TRn

Position Control nT.T

Si~n Control SSP SSSP

Blank Control BN BZ B

Scale Control nP p

Conditional Newline $

Conditional Termi- :
nation of Format
Editin~

Signed/Unsigned SU
lnteuer Control

Radix Control nR

The FORTRAN 66 formats lw, Ew.d, and Gw.d have been extended in FORTRAN 77 to include
the forms

lw.m Ew.dEe Gw.dEe

The e field specifies the minimum number of digits or spaces in the exponent field on output.
The form Ew.d.e is allowed but is not standard. If the value of the exponent is too large,
the exponent notation e or d is dropped from the output to allow one more character posi
tion. If this is still not adequate, the e field is filled with asterisks (*). The default value for e
is 2.

An additional form of tab control specification has been added. The ANSI standard forms
TRn, TLn, and Tn are supported, where n is a positive nonzero number. If T or nT is
specified, tabbing is to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics
can be lined up without counting.

P by itself is equivalent to OP. It resets the scale factor to the default value, 0.

B is an acceptable edit control specifier. It causes return to the default mode of blank
interpretation. This is consistent with S, which returns to default sign control.

A format control specifier has been added to suppress the newline at the end of the last
record of a formatted sequential write. The specifier is a dollar sign ($) and is constrained by
the same rules as the colon(:). It is used typically for console prompts. For example:

Revision D of 15 May 1985 3-17

Input and Output FORTRAN Programmer's Guide

3-18

write(*, "('enter value for x: ',$)")
read (•,•) x

Radixes other than 10 can be specified for formatted integer 1/0 conversion. The specifier is
patterned after P, the scale factor for floating-point conversion. It remains in effect until
another radix is specified or format interpretation is complete. The specifier is R or [n]R,
where 2 :-=; n < 36. If n is omitted, the default decimal radix is restored. The 1/0 item is
treated as a 32-bit integer.

In conjunction with the above, a sign-control specifier has been added to cause integer values
to be interpreted as unsigned during output conversion. The specifier is SU and remains in
effect until another sign control specifier is encountered, or format interpretation is com
plete. Radix and 'unsigned' specifiers could be used to format a hexadecimal dump, as fol
lows:

2000 format (SU, 16R, Bil0.8)

Note: Unsigned integer values greater than (2 .. 30 - 1), cannot be read by FORTRAN 77
input routines. All internal values are output correctly.

3.5.2. Print Files

The ANSI standard is ambiguous regarding the definition of a 'print' file. Since UNIX has no
default 'print' file, an additional form= specifier is now recognized in the open statement.
Specifying form = 'print' implies formatted output and enables vertical format control
for that logical unit. Vertical format control is interpreted only on sequential formatted
writes to a 'print' file (see "Vertical Format Control" earlier in the chapter).

The inquire statement returns print in the form= string variable for logical units
opened as 'print' files. It returns -1 for the unit number of an unopened file.

If a logical unit is already open, an open statement including the form= option or the
blank= option does nothing but redefine those options. This instance of the open state
ment need not include the filename, and must not include a filename if unit= refers to
standard input or output. Therefore, to redefine the standard output as a 'print' file, use

open (unit=6, form='print')

3.5.3. Scratch Files

A close statement with status= 'keep' must be specified for temporary files. It is the
default for all other files. Remember to get the scratch file's real name, using inquire, if
you want to reopen it later.

3.5 .. ,$. List-Directed 1/0

List-directed input has been modified to allow reading of a string not enclosed in quotes.
The string must not start with a digit, and cannot contain separators (commas or slashes (/))
or whitespace (spaces or tabs). A newline terminates the string unless escaped with a

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Input and Output

backslash (\). Any string not meeting the above restrictions must be enclosed in single or
double quotes.

Internal, list-directed 1/0 has been implemented. During internal, list-directed reads, bytes
are consumed until the input list is satisfied or the 'end-of-file' is reached. During internal,
list-directed writes, records are filled until the input list is satisfied. The length of an inter
nal array element should be at least 20 bytes to avoid logical record overflow when writing
double-precision values. Internal, list-directed read was implemented to make command line
decoding easier. Internal, list-directed output should be avoided.

3.6. Running Older Programs

Traditional FORTRAN 77 environments usually assume carriage control on all logical units.
They usually interpret blank spaces on input as zeroes and often provide attachment of glo
bal filenames to logical units at runtime. There are several routines in the 1/0 library to
provide these functions.

If a program reads and writes only units 5 and 6, then including the -1I66 flag in the /77
command causes carriage control to be interpreted on output and cause blanks to be zeroes
on input without further modification of the program. If this is not adequate, the routine
ioinit(3f) can be called to specify control parameters separately, including whether files
should be positioned at their beginning or end upon opening.

3. 6.1. Pre attachment of Logical Units

The ioinit routine can also be used to attach logical units to specific files at runtime. It looks
for names of a user-specified form in the environment and opens the corresponding logical
unit for sequential formatted 1/0. Names must be of the form PREFIXnn, where PREFIX is
specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers < 10
must include the leading 'O.'

ioinit should prove adequate for most programs as written. However, it is written in FOR
TRAN 77 specifically so that it may serve as an example for similar user-supplied routines. A
copy may be retrieved by issuing the command

hostname% ar x /usr/lib/libI77,a ioinit,f

3.7. Magnetic Tape 1/0

Previously, magnetic tape was not seriously usable from UNIX FORTRAN programs. This is
because of the simple implementation of the FORTRAN 1/0 system in terms of UNIX's
Standard 1/0 package, which is set up to deal only with disks and sequential devices such as
terminals and pipes.

The /77 tape 1/0 package implemented at Berkeley (see topen(3f)) offers a partial solution
to the problem. FORTRAN programmers can transfer blocks between the tape drive and
buffers declared as FORTRAN character variables. The programmer can then use internal 1/0
to fill and empty these buffers. This facility does not integrate with the rest of FORTRAN
1/0 (it even has its own set of tape logical units); thus, its use is discouraged.

Revision D of 15 May 1985 3-19

Input and Output FORTRAN Programmer's Guide

Sun Microsystems has reimplemented parts of the FORTRAN 1/0 system so that FORTRAN
programmers are allowed to nse magnetic tape transparently. We provide facilities that
make it easy to use tape as sequentially-accessed formatted files. Since the standard 1/0
package buffering scheme provided is still used, there is no bound on formatted record size,
and records may span physical tape blocks.

Connecting a magnetic tape for unformatted access is less satisfactory. Because of the
implementation of unformatted records as a sequence of bytes preceded and followed by byte
counts, the first word of the record must be backpatched after the length of the entire
record is known. This is due to the sequential property of the medium, which makes it
impossible to seek back and rewrite this word. Thus, the size of a record (+ 8 bytes of over
head) cannot be bigger than the buffer size.

As long as this restriction is honored, the 1/0 system does not write records that span physi
cal tape blocks, but writes short blocks when necessary. This representation of unformatted
records is preserved (even though it is inappropriate for tape), so files can be freely copied
bewteen disk and tapes. (Note that, since the block-spanning restriction does not apply to
tape READs, files can be copied from disk to tape without any special considerations.)

3. 7.1. Tape File Representation

A FORTRAN file is represented on tape by a sequence of data records followed by an endfile
record. The data is grouped into blocks, the maximum size determined when the file is
opened. The records are represented the same as records in disk files: formatted records

0

are followed by newlines, unformatted records are preceded and followed by byte counts. In

0
,

general, there is no relation between FORTRAN records and tape blocks; that is, records can
span blocks, which can contain parts of several records. The only exception is that FOR-
TRAN won't write an unformatted record that spans blocks; thus, the largest unformatted
record is eight less than the size of the block.

An endfile record in FORTRAN maps directly into a tape mark. Thus, FORTRAN files are the
same as tape system files. Because the representation of FORTRAN files on tape is the same
as that used in the rest of UNIX , naive FORTRAN programs cannot read 80-column card
images from tape. If you have an existing FORTRAN program and an existing data tape you
wish to read with it, you should translate the tape using the dd{1} utility, which adds new
lines and strips trailing blanks. For example,

dd if=/dev/rmtO ibs=20b cbs=BO conv=unblock I fort_prog

If you write or modify a program and don't want to use dd, you can use the getc{SF} library
routine to read characters from the tape. You can then assemble the bytes into a character
variable and use internal 1/0 to transfer formatted data. See also topen{SF}.

3. 7.2. End-of-File

The end-of-file condition is reached when an endfile record is encountered during execution
of a READ statement. The standard states that the file is positioned after the endfile
record. In real life, this means that the tape read head is poised at the beginning of the next
file on the tape. Thus, it would seem that you should be able to continue reading the next

0
_

file on the tape; however, it doesn't work and is prohibited by the standard. .

3-20 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Input and Output

The standard also says that a BACK SP ACE or REWIND statement may he used to reposi
tion the file. This means that after reaching end-of-file, you can backspace over the endfile
record and further manipulate the file (such as writing more records at the end), rewind the
file, and reread or rewrite it.

3. 7.3. Endfile

When writing to a UNIX disk file, endfile causes the file to be truncated at the current posi
tion. This is because in disk files, the "endfile" record is represented by the end of the file.

Two endfile records signify the end-of-tape mark. When writing to a tape file, endfile ca.uses
two endfile records to be written, then the tape backspaces over the second one. If the file is
closed at this point, both end-of-file and end-of-tape are marked. If more records a.re written
at this point (either by continued WRITE statements or by another program if you are using
no-rewind magnetic tape), the first tape mark stands (endfile record), and is followed by
another data file, then by more tape marks, and so on. This is consistent with the standard.

3. 7.,t. Backspace

Backspace does one of two things, depending on whether or not end-of-file has been reached.
If it has, then backspace backs up over the endfile record - on a disk file, this does nothing
but on a tape it corresponds to backing up over the tape mark, and positioning the tape
after the la.st data record of the file but before the endfile record. Otherwise, backspace
backs up over the la.st data record read or written (i.e., the la.st FORTRAN logical record
which may involve reading one or more physical records). For formatted records, search
backwards looking for the record separator (newline or - J); for UN formatted records, use
the byte-count trailer that is part of the record.

3. 7.5. Rewind

REWIND positions you at the beginning of the file you were just reading or writing. When
writing a sequential file (such as tape), it does an implicit END file action first. If you are
reading the endfile record, rewind backspaces over that and all the data records preceeding.

REWIND does not necessarily rewind a tape to its beginning. If you are reading the second
file on a tape, then it rewinds to the beginning of the second file. To fully rewind a tape, use
the mt(J) utility program, which can be invoked from a FORTRAN program by using the
system{Sf} library call.

3.7.6. open

open determines the type of file named, whether the connection specified is legal for the file
type (for instance, direct access is illegal for tape and tty devices), and allocates buffers
for the connection if the file is a tape or if the fileoptg='buffer= . .' subparameter is
specified. The default buffer size for tape is 64K bytes.

Revision D of 15 May 1985 3-21

Input and Output FORTRAN Programmer's Guide

3-22

3. 7. 7. Accesing Files on Multiple-File Tapes

Each tape drive can be opened by many names. The name used determines certain charac
teristics of the connection, which are the recording density and whether the tape is automat
ically rewound upon open and close. To access a file on a multiple-file tape, you should use
the mt{l) utility to position the tape to the correct file, then open the file as a no-rewind
magnetic tape such as "/dev/nrmtO." Using the tape with this name also prevents it from
being repositioned when it is closed. This means that if your program reads the file until
end-of-file, then reopens it, it can access the next file on the tape. Any. following programs
can access the tape where you left it (preferably at the beginning of a file, or past the endfile
record). Thus, if your program terminates prematurely it could leave the tape positioned in
an unpredictable place.

Revision D of 15 May 1985

0

0

0

0

0

0

Chapter 4

The Runtime Environment

This chapter describes useful runtime parameters, /77 data representations, and the conven
tions you must be aware of to interface C and FORTRAN 77 procedures. It is intended as a
guide to write modules in languages other than FORTRAN 77 and have those modules inter
face to FORTRAN 77 code. The Pascal-FORTRAN interface is covered in Appendix C of
the Paacal Programmer'a Guide.

4.1. Command Line Arguments
It is often useful to pass a program parameters on the command line. The function iargc(l)
returns the number of command line parameters. The subroutine getarg(l) copies a parame
ter into a variable in the program (similar to the C shell's echo command). For example,

character arg*70
C

c find out how many command line arguments there were
nargs=iarc ()

c one at a time, get an argument and write it out
do 10 i = l, nargs
call getarg(i, arg)
print '(a)', arg

10 continue
end

The program loops through the parameter list copying a parameter into arg and then writ
ing it to standard output. Since arg is only 70 characters long, any longer parameter is
truncated. If it is compiled in myecho you can test it as follows:

hostname% myecho this is a sample
this
is
a
sample

hostname% myecho •
calc.f
mycat. f
myecho
myecho.f
myecho.o

Revision D of 15 May 1985 4-1

The Runtime Environment FORTRAN Programmer's Guide

4.2. Exiting with status

Using the subroutine exit(), a FORTRAN program can set the shell status variable to indi
cate whether the program was successful or not. The default is that status is set to zero.
The following statement:

call exit (8)

sets status to 8, then terminates execution of the program. The current value of status
can be listed by typing

hostname% echo •statue

Note that the echo command sets the variable back to zero after listing its value. The
value of status can be used in shell script conditional statements or in batch jobs.

abort can be used to terminate a program setting status to 138, dumping memory to the
file core, and printing a message on standard error as in

call abort(" sample error message")

and causes a program to terminate after writing out

abort: sample error message
Bus error (core dumped)

4.3. Storage Allocation

This section describes the way storage is allocated to variables of different types.

In general, any word value (a value that occupies 16 bits) is always aligned on a word boun
dary. Anything larger than a word is also aligned on a word boundary. Values that can fit
into a single byte are aligned on a byte boundary.

integer*2
occupies 16 bits (two bytes or one word), aligned on a word boundary.

integer or integer*4
occupies 32 bits (four bytes or two words), aligned on a word boundary.

real or real*4
occupies 32 bits (four bytes or two words), aligned on a word boundary. A real ele
ment has a sign bit, an 8-bit exponent and a 23-bit fraction. FORTRAN 77 real ele
ments conform to the proposed IEEE standard1. The layout of a real element is
shown in Table 4-1.

double precision or real*8
elements occupies 64 bits (eight bytes or four words), aligned on a word boundary. A
double precision element has a sign bit, an 11-bit exponent and a 52-bit fraction.
FORTRAN 77 double precision elements conform to the IEEE standard for double
precision floating-point data as defined in [25]. The layout of a double precision
element is shown in Table 4-1.

1 See p.754 [26].

4-2 Revision D of 15 May 1985

0

0

I 01
i
I

0

0

0

FORTRAN Programmer's Guide The Runtime Environment

complex
elements are represented by two real elements. The first element represents the real
part of the number, and the second represents the imaginary part.

double complex
elements are represented by two double precision elements. The first element
represents the real part of the number, and the second represents the imaginary part.

logical*2
occupies two bytes (16 bits) of storage, aligned on a word boundary. The value 0
represents . false. and 1 represents . true .. Any other value is an 'undefined' logi
cal value.

logical or logical* 4
occupies four bytes (32 bits) of storage, aligned on a word boundary. The value 0
represents the value . false. and 1 represents . true .. Any other value is an
'undefined' logical value.

4.4. Data Representations

Whatever the size of the data element in question, the most significant bit of the data ele
ment is always in the lowest numbered byte of the byte sequence required to represent that
object.

4-4.1. Representation of real and double precision

real and double precision data elements are represented according to the proposed
IEEE standard:

Table 4-1: Representation of Real and Double Precision Numbers

Single Preciaion Double Preciaion

Sign bit 31 bit 63

Exponent bits 30-23 bits 62-52
bias 127 bias 1023

Fraction bits 22-0 bits 51-0

real and double precision numbers are composed of the following parts:

• a one-bit sign. The sign bit is a 1 if the number is negative.

• a biased exponent. The exponent is eight bits for a real number, and is eleven bits for
a double precision number. The values of all zeroes and ones are reserved values.

• a normalized significand, with the high-order 1 bit 'implicit.' The fraction is 23 bits for
a real number and 52 bits for a double precision number. A real or double

Revision D of 15 May 1985 4-3

The Runtime Environment FORTRAN Programmer's Guide

4-4

precision number is represented by the form:

2ezponent-biH * 1.f

where / is the bits in the mantissa.

4.4-2. Representation of Extremal Numbers

zero (signed)
is represented by an exponent of zero, and a fraction of zero.

subnormal numbers
are nonzero numbers with an exponent of zero. The form of a subnormal number is

2ezponent-biatr+l * O.f

where / is the bits in the fraction.

signed infinity
(that is, affine infinity) is represented by the largest value that the exponent can assume
(all ones), and a zero fraction.

Not-a.-Number (NaN)
is represented by the largest value that the exponent can assume (all ones), and a
nonzero fraction.

Normalized real and double precision numbers have an implicit leading bit that pro
vides one more bit of precision than usual.

0

The largest finite double precision number is approximately l.797693e+308; the smal- 0
lest positive normalized double precision number is approximately 2.225074e-308. The
largest finite real number is approximately 3.402823e+38; the smallest positive, normalized
real number is approximately l.I75494e-38.

0
Revision D of 15 May 1985

FORTRAN Programmer's Guide The Runtime Environment

0 4-4.s. Hexadecimal Representation of Selected Numbers

Table 4-2: Hexadecimal Representation or Selected Numbers

Value Real Double Precision

+o 00000000 0000000000000000
-0 80000000 8000000000000000

+1.0 3F800000 3FFOOOOOOOOOOOOO
-1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7Fxxxxxx 7FFxxxxxxxxxxxxx

4.4.4. Deviations from the Proposed IEEE Standard

0 Deviations from the proposed IEEE standard in this implementation are as follows:

0

• Remainder is not provided

• Ordered comparisons involving NaNs do not conform

• User-defined rounding modes are not supported. Only round-to-nearest mode is provided
for most operations, except that conversion from a floating-point number to an integer
value in either integer format (INT) or floating format (AINT) is provided only in round
toward-zero mode

• Exceptions are neither recorded nor reported

• Signaling NaNs are not provided

4.4-5. Arithmetic Operations on Extreme Values

This section describes the results from the basic arithmetic operations using combinations or
extremal and ordinary values. No traps or any other exception actions are taken. All inputs
are assumed to be positive. Overflow and underflow are assumed not to happen. Table 4-3
summarizes the abbreviations used in the following tables:

Revision D of 15 May 1985 4-5

The Runtime Environment

4-6

FORTRAN Programmer's Guide

Table 4-3: Abbreviations for Numbers

Abbreviation

Sub
Num
Inf
NaN
Uno

Meaning

Subnormal Number
Normalized Number
Infinity (positive or negative)
Not a Number
Unordered

Revision D of 15'May 1985

0 .
.

0

0

FORTRAN Programmer's Guide The Runtime Environment

0
Addition and Subtraction

Left Ri1<ht O >erand
Operand 0 Sub Num In£ NaN

0 0 Sub Num In£ NaN

Sub Sub Sub Num In£ NaN

Num Num Num Num In£ NaN

Inf In£ Inf Inf See Note NaN

NaN NaN NaN NaN NaN NaN

Note: In£ + In£ = Inf; Inf - Inf = NaN

Multiplication

Left Ri1<ht O oerand
Operand 0 Sub Num Inf NaN

0 0 0 0 NaN NaN

0 Sub 0 0 NS Inf NaN

Num 0 NS Num Inf NaN

Inf NaN Inf Inf Inf NaN

NaN NaN NaN NaN NaN NaN

Note: NS means either Num or Sub result possible.

Division

Left Ri~ ht O ,erand
Operand 0 Sub Num Inf NaN

0 NaN 0 0 0 NaN

Sub Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

NaN NaN NaN NaN NaN NaN

0
Revision D of 15 May 1985 4-7

The Runtime Environment FORTRAN Programmer's Guide

4-8

Comparison

Left Rie:ht 0 erand
Operand 0 Sub Num Inf NaN

0 - < < < Uno

Sub > < < Uno

Num > > < Uno

Inf > > > = Uno

NaN Uno Uno Uno Uno Uno

Notes:

• If either x or y is NaN, then x.EQ.y is FALSE and x.NE.y is TRUE, while x.LT.y, x.LE.y,
x.GT.y and x.GE.y are undefined.

• +O compares equal to -0.

Max

Left Rie:ht 0 erand
Operand 0 Sub Num Inf

0 0 Sub Num Inf

Sub Sub Sub Num Inf

Num Num Num Num Inf

Inf Inf Inf Inf Inf

Min

Left Right 0 erand
Operand 0 Den Num Inf

0 0 0 0 0

Sub 0 Sub Sub Sub

Num 0 Sub Num Num

Inf 0 Sub Num Inf

Note: Results of Max and Min are undefined if any argument is NaN.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide The Runtime Environment

4.5. Inter-Procedure Interface

To write C procedures that call or are called by FORTRAN 77 procedures, you must know the
conventions for procedure names, data representation, return values, and argument lists that
both languages use.

4-5.1. Procedure Names

/77 appends an underscore to the name of a common block or procedure to distinguish it
from C procedures or external variables with the same user-assigned name. FORTRAN 77
library procedure names have embedded underscores to avoid clashes with user-assigned sub
routine names.

4.5.2. Data Representations

Table 4-4 summarizes corresponding FORTRAN 77 and C declarations:

Table 4-4: FORTRAN and C Declarations

FORTRAN C

integer•2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character•6 x

short int x;
long int x;
long int x;
float x;
double x;
struct { float r, i; } x;
struct { double dr, di; } x;
char x[6];

According to FORTRAN 77 rules, integer, logical, and real data occupy the same
amount of memory.

4-5.3. Return Values

A FORTRAN function of type integer, logical, real, or double precision is
equivalent to (as far as returning values is concerned) a C function that returns the
corresponding type. A complex or double complex function is equivalent to a C rou
tine having an additional initial argument that points to the return value storage location.
Thus,

complex function f(...)

is equivalent to

Revision D of 15 May 1985 4-9

The Runtime Environment FORTRAN Programmer·s Guide

4-10

L(temp, . . .)
struct { float r, i; } •temp;

A character-valued FORTRAN function is equivalent
arguments: data address and length. Thus,

to a C routine with two extra initial

character•lS function g(...)

is equivalent to

g_(result, length, ...)
char result[];
long int length;

and could be invoked in C with

char chars[lS];

g_(chars, lSL, ...) ;

Subroutines are invoked as if they were integer-valued functions whose values specify which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. If the subroutine
has no entry points with alternate return arguments, the returned value is undefined. The
statement

call nret (•1, •2, •3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4. 5.4. Argument Lists

All FORTRAN 77 arguments are passed by reference. In addition, for every argument that is
of type character or that is a dummy procedure, an argument is passed giving the length
of the value. The string lengths are long int quantities passed by value. The order of
arguments is then:

• Extra arguments for the return values of complex and character functions

• Address for each datum or function

• A long int for each character or procedure argument

Thus, the FORTRAN call in

external f
character•? s
integer b (3)

call sam(f, b(2), s)

is equivalent to the C call in

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide

int f_ () ;

char s [7];
long int b[3];

Sa.JIL(f_, &b[l], s, OL, 7L);

The Runtime Environment

Note that the first element of a C array always has subscript zero, but FORTRAN 77 arrays
begin at 1 by default. FORTRAN 77 arrays are stored in column-major order, C arrays are
stored in row-major order.

4.5.5. JExarnples

This section presents two examples that illustrate interlanguage conventions. The first
example shows how a C function can be called from a FORTRAN program and the second
shows how a FORTRAN function can be called from a C program. The called function has the
task of building a character string by repeating a character n times, where the character and
n are arguments.

Revision D of 15 May 1985 4-11

The Runtime Environment

.J.5.5.1. Calling C from FORTRAN

file "main. f"

CHARACTER STRING*lOO,
STRING=REPEAT('*',10)
PRINT *, STRING
END

file "repeat.c"
#include <stdio.h>

FORTRAN Programmer's Guide

REPEAT*SO

repeat_(retval_ptr, retval_len, char_ptr, n_ptr, char_len)
char *retval_ptr, *char_ptr;
int retval_len, •n_ptr, char_len;
{

}

int count, i;
char •cp;

count= •n_ptr;
if(count > retval_len) {

}

fprintf (stderr, "repeat count too largeO);
count= retval_len;

cp = retval_ptr;
for(i=O;i<count;i++) {

*cp++ = *char_ptr;
}

for(i=count;i<retval_len;i++) {
*cp++ : t I;

}

This program can be compiled with the command

% f77 maln.f repeat.c

Since the /77 compiler appends a trailing underscore to all external names in FORTRAN pro
grams, you need to add an underscore to the name of the C function called. repeat's list of
formal arguments is more complicated than the list of actual arguments in MAIN. The addi
tional complication is due to housekeeping details related to the management of character
strings. If repeat were a FORTRAN function, the compiler would hide these details; how
ever, since repeat is written in "C" the housekeeping must be explicit.

4-12

MAIN declares repeat as a function that returns a character string· of length 50. The
mechanism used to return character strings is to prepend two additional arguments to the
beginning of the argument list. The first of these (retval_ptr) points to the start of the
string and the second (retval_len) gives the string's length. MAIN passes two actual
arguments: a character string and an integer. Both char _ptr and n_ptr are passed by
address. Finally, for every character argument in the list of actuals, an additional argument
giving the character's length is passed. In this example, char _len gives the length of the
string pointed to by char _ptr. Note that FORTRAN strings are always accompanied by a

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide The Runtime Environment

length and need not terminate with a null character.

If MAIN declares repeat as an integer, logical, real, or double precision
function, then the two initial arguments would not be present, so the return value could be
passed back to the FORTRAN program with a return statement. In the current implemen
tation of the C compiler it is impossible to return a float, since the language requires it be
promoted to a double whenever 1) it is used in an expression and 2) the left hand side of a
return statement is an expression.

To construct a C function that returns a FORTRAN rea 1 it is necessary to use a trick as is
illustrated below. Iner is a FORTRAN callable function that returns a real value one
greater than its its real argument.

int/• actually returns a single precision floating point value•;
incr _ (float_ptr)
float •float_ptr;
{

float f;

f = • float_ptr;
f ++;

return •((lnt•)&f);
}

Thus, the program

prints 2 ..

real incr
print •,incr(l.)
end

,1.5.5.2. Calling FORTRAN from C

The second example illustrates a C program that calls a FORTRAN function.

Revision D of 15 May 1985 4-13

The Runtime Environment FORTRAN Programmer's Guide

file "main.c"

#include <stdio.h>

main()
{

char string[lOO), repeat_val[SOJ;
int repeat_(), repeat_len, i, count;

repeat_len = slzeof(repeat_val);
count= 10;
repeat_(repeat_val, repeat_len, "*", &count, sizeof("*")-1);

}

strncpy(string,repeat_val,repeat_len);
for(l=repeat_len;l<lOO;l++) {

repeat_val [i] = ' '·
}
printf ("%s0, repeat_val);

file "repeat.f"

function repeat(c,n)
character repeat*(*),c*(*)
if(n.gt.len(repeat)) then

write(O, '(a)') 'repeat count too large'
n = len(repeat)

endif
repeat = ''
dolOl=l,n

10 repeat(l:l)=c(l:l)
return
end

This program can be compiled with the command

% cc main.c repeat.f -IF77 -1177 -IU77 -le -Im

The observations made above now apply in reverse. The caller must set up more actual
arguments than are apparent as formal parameters to the FORTRAN function. Arguments
that are not lengths of character strings must be passed by address. The two statements fol
lowing the call to repeat are equivalent to the work done by the character assignment
statement in repeat. f.

Note that the FORTRAN function attempts to reference the stderr stream (unit 0). Before
a FORTRAN program starts, the FORTRAN 1/0 library is initialized to connect units 0, 5 and
6 to stderr, stdin and stdout respectively. In this example, the initialization does not
occur since execution begins with the C main. Thus output is written to a file named
fort. 0 instead of to the stderr stream.

4.5.6. Sharing Input/Output Streams

A C function called from a FORTRAN program must take the FORTRAN 1/0 environment into
consideration to perform 1/0 on open file descriptors. The FORTRAN 1/0 library is imple
mented largely on top of the C standard 1/0 library. Every open unit in a FORTRAN

4-14 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide The Runtime Environment

program has an associated standard 1/0 file structure. For the stdin, stdout and
stderr streams, the file structure need not be explicitly referenced, so it is easy to share
these streams between a FORTRAN program and a C function (as illustrated in the first
example).

It is more difficult to share a stream that a FORTRAN program explicitly opens, since there is
no way to obtain and pass the file structure. One possible solution that allows shared writ
ing is to call flush (3f) to empty the stream associated with a unit, and then to call
get fd(3f) to obtain the UNIX file descriptor associated with that unit number. This file
descriptor can then be passed to the C function, which can use it as an argument to
vrite(2) calls.

Revision D of 15 May 1985 4-15

0

0

0

0

0

0

Chapter 5

Debugging and Profiling FORTRAN Programs

5.1. Introduction

This chapter describes tools for debugging and measuring the resource usage of FORTRAN
programs. The most versatile and powerful tool for debugging FORTRAN programs on the
Sun workstation is the symbolic debugger dbx, or its window- and mouse-based version
dbxtool. With dbx you can display and modify variables, set breakpoints, trace variables and
invoke procedures in the program being debugged without having to recompile.

dbxtool is a Sun workstation debugger that lets you make more effective use of dbx by replac
ing the original, terminal-oriented interface with a window- and mouse-based interface. adb
is an older binary-oriented, debugger, which is occasionally useful as a supplement to dbx.

The /77 compiler provides two flags that are useful for debugging:

• The -C flag causes the compiler to generate subscript checking code that catches certain
kinds of out-of-bounds array subscripts.

• The -u flag causes all variables to be initially declared "UNDEFINED", so that an error
is flagged for variables that are not explicitly declared.

The simplest way to measure resource consumption is with the lime(!) command. The
gprof(I) command provides a detailed procedure-by-procedure analysis of execution time,
including how many times a procedure was called, who called it and who it called, and how
much time was spent in the procedure and by the routines that it called.

To provide examples of how these tools work, the following program is used throughout this
chapter:

file al. f:

program silly
real twobytwo(2,2)
data twobytwo/4•-l/
n=2
call mkidentity(twobytwo,n)
print •,determinant(twobytwo)
end

Revision D of 15 May 1985 5-1

Debugging and Profiling FORTRAN Programs

file a2. f:

subroutine mkidentity(matrix,dim)
real matrix(dim,dim)
integer dim
do 10,m=l,dim
do 20,n=l,dim
if(m.eq.n) then

matrix(m,n) = 1.
else

endif
20
10

file a3. f:

matrix(m,n) = 0.

continue
continue
return
end

real function determinant(m)
real m(2,2)
determinant=m(l,l)*m(2,2) - m(l,2)/m(2,1)
return
end

5.2. Using dbx

FORTRAN Programmer's Guide

This section briefly summarizes the use of dbz and describes some of its FORTRAN specific
aspects. Complete documentation for dbz and dbxtool can be found in the dbz(l) and
dbxtoo/(1) man pages.

To use dbz, you must compile and load your program with the -g flag. For example,

hostname4 rn -o silly -g al.f aZ.f a3,f

or

hostname4 rt7 -c -g al.f aZ,f a3,f ; rt7 -g -o allly al.o aZ.o a3.o

To run the program under the control of dbx, type the following command in the directory
where the sources and programs reside:

hostname4 dbx Billy

To set a breakpoint before the first executable statement, type

(dbx) atop in IL\XR

after the (dbx) prompt appears, then type "run" to begin execution. When the break
point is reached, dbz displays a message showing that it is stopped at line 4 of file al. f.

The where command shows where in the program execution stopped and how execution
reached this point.

0

0

The command print n at this point displays 0, since the statement n=2 has not been exe- Q,

cuted yet. The command next advances execution to line 5, and if the pr int n

5-2 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Debugging and Profiling FORTRAN Programs

command is now repeated it displays a 2.

The command print twobytwo displays the entire matrix, one element per line. Note
that square brackets (not parentheses) are used to reference array elements. The command
pr int matrix fails because subroutine mkidenti ty is not active at this point and the
bounds of the adjustable array matrix are not known.

Throughout a debugging session, dbx defines a procedure and a source file (the file that con
tains the source for the current procedure) as "current." Requests to set breakpoints and to
print or set variables are interpreted relative to the current function and file. Thus, stop
at 5 sets one of three different breakpoints depending on whether the current file is al. f,
a2. f or a3. f. Likewise, print n displays a different storage location when the current
function is "MAIN" than when it is mkidentity. The which command shows exactly
which variable n is being referenced. The function and file commands can be used to
alter dbx's definition of the current procedure. The status command lists the breakpoints
in effect and the delete command removes breakpoints.

Execution can be continued in three ways: continue resumes execution without setting
further breakpoints, next sets a one-time breakpoint at line 5 of file al. f and continues
execution until that point is reached; and step sets a breakpoint at the next source line to
be executed-in this case, line 4 of file a2. f.

It is possible to call a subroutine or function in the program at any point when execution has
stopped. The effect is exactly as if the source had contained a call at that point. For exam
ple if, after the initial breakpoint described above, you typed print
determinant (twobytwo) the value O would display, since mkidentity had not yet
modified twobytwo.

This facility is often useful for special-case printing. For example, in a program it might be
meaningful to trace the row and column sums of different matrices. A subroutine called
matsum that does this, could be compiled into your program and invoked by the user at
appropriate breakpoints.

Assume that file a3. f was modified as follows:

real function determinant(m,dim)
real m (dim, dim)
integer dim
determinant=m(l,l)*m(2,2) - m(l,2)*m(2,l)
return
end

Execution results in a "segmentation violation" as soon as determinant is invoked and a
core file (a copy of the program's image in memory) is produced. The command dbx
silly core correlates this program image with the program, which then allows where
commands to determine which routines were active at the time of the exception:

determinant(m = ARRAY, dim= 16776938), line 5 in "a3.f"
MAIN, line 6 in "al.f"
main(Oxl, OxfffebO, Oxfffeb8) at Ox82fa

Revision D of 15 May 1985 5-3

Debugging and Profiling FORTRAN Programs FORTRAN Programmer's Guide

5-4

5.3. Using adb

The adb debugger can also be used to provide a stack traceback but at a lower level. For
example, adb silly core starts up adb and the command $c displays something like

_abort(d590] () + 4
_sigdie[O] (b,0,fffe30) + 152
~sigtramp[llabO] () + 20
determinant(Bldc) (1801c) + 36
MAIN(8074] () + 36
_main(82a0] (l,fffeb0,fffeb8) + 54

This is to be interpreted as follows. The startup routine main, called the FORTRAN MAIN
routine, which in turn called the function determinant (note the underscores appended to
FORTRAN external names). Somewhere around 36 (hex) bytes from the beginning of deter
minant an exception occurred. The exception is recorded as a call to the signal dispatcher
sigtramp. sigtramp noted that the particular signal was handled by sigdie, a signal
handling routine in the FORTRAN library, and then called it. sigdie printed a message
and then called abort to halt execution. The command determinant_, 10? ia displays
lO(hex) machine instructions and their addresses starting from the entry point deter
minant.

adb can be used on any program regardless of whether it was compiled with the debugging
flag. Variables can be displayed in a variety of formats, but their addresses must be known.
The addresses of some external variables are easy to determine. For example, the command
__ BLNK __ /D prints the first four bytes after label __ BLNK __ in a decimal format (which is

0

equivalent to the dbz print n command if n is the first variable in blank common). The

0 addresses of local variables are usually difficult to determine.

As another example, consider the program

write (4) 4
end

When executed, this program creates a file named fort. 4 which contains a single unfor
matted record. An unformatted record includes two count words containing the record
length at the beginning and end of the record. To examine this file you could type

% adb fort.4 -

to invoke adb, and the command O, 3?D to display the first three words of the file m
decimal (location O with a repeat count of three).

5.4. Compiler flags

The compiler provides three optional flags that are useful for debugging a FORTRAN pro
gram: -C, -u, and -v. The -C flag causes the compiler to generate code that tests whether
subscript expressions are in bounds. For example, if line 7 of file a2. f were changed to

matrix(2*m,2*n) = 1.

Execution would produce the message

Subscript out of range on file line 7, procedure mkidenti.
Attempt to access the 10-th element of variable matrix.

Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Debugging and Profiling FORTRAN Programs

Note that the current implementation does not catch all out of range subscripts. For exam
ple, if dim is greater than 2, then a reference of the form matrix (2*dim, 1), though ille
gal, does not produce an error. An error is flagged only if a subscript expression causes a
reference outside the linearized internal representation of the array.

The -u flag is useful for discovering mistyped variables. When -u is set, all variables are
treated as undefined until explicitly declared. Use of an undefined variable is accompanied
by an error message. The -v flag produces a log of the various phases of the compiler along
with information about the resources used by each phase. This can be useful in tracking the
origin of ambiguous error messages and in reporting compiler failures.

5.5. Profiling Tools

The simplest way to gather data about the resources consumed by a program is to use the
time command or, in the C shell to issue the set time command. After the program ter
minates, the shell prints a line like this:

6.Su 17.ls 1:16 31% 11+2lk 354+210io 135pf+OW

This indicates that the program spent six seconds executing user code, 17 seconds executing
kernel code on behalf of the user, and took one minute and 16 seconds to complete, so that
approximately 31 per cent of the machine's resources were dedicated to this program.
Memory usage during execution averaged 11 kilobytes of shared (program) memory and 21
kilobytes of private (data) memory. Input and output operations done by the program
resulted in 564 disk accesses of which 354 were reads and 210 were writes. The program
caused 135 page faults and was never swapped out.

To obtain a more detailed account of how the program spent its time we can compile and
link it with the -pg flag, for example,

hostname% f77 -o silly -pg a1.f a2.f a3.f

After execution completes, a file named gmon. out is written in the working directory. This
file contains profiling data that can be interpreted with gpro f. To generate meaningful
timing information, execution must complete normally. The command gprof silly
invokes gprof and asks it to correlate the gmon.out file with the program in file silly.
gprof produces two summaries of how the total time (user time plus system time) the pro
gram uses is distributed across the program's procedures Both user routines and library rou
tines are considered.

The "flat" profile lists the procedures along with the number of times each procedure was
called and the number of seconds spent in the routine. This information can be useful but
does not allow you to determine the calling structure of the program and how time is distri
buted across it. For example, if you discover that a vector cross product function that is
called from many points in a program is taking up most of the execution time, you can't tell
who calls it most often and causes it to do the most work. The second summary produced
by gprof, the "graph" profile, can help us answer these questions.

For example, if you modify MAIN to call mkidentity 1000 times, then compile your
source files with the -pg flag and call gpro f to produce timing profiles, an entry in the
graph profile might look like this:

Revision D of 15 May 1985 5-5

Debugging and Profiling FORTRAN Programs FORTRAN Programmer's Guide

5-6

95.5
0.18
0.18
0.24

0.24
0.24
0.00

1000/1000
1000
4000/4000

MAIN [4] O·
mkidentity [3] . [3]
lmult [5]

In a graph profile, the line that ends with "[3]" is called function line, the lines above it the
"parent lines", and the lines below it the "descendant" lines. The function line in the exam
ple above reveals that mkidenity was called 1000 times, a total of 0.18 seconds were spent
in mkidentity itself and 0.24 seconds were spent in routines called by mkidentity. 95.5
per cent of the program's execution time is attributable to mkidenti ty and its descen
dants.

The single parent line reveals that MAIN was the only procedure to call mkidenti ty, that
is, all 1000 invocations of mkidentity came from MAIN. Thus, all of the 0.18 seconds
spent in mkidenti ty were spent on behalf of MAIN and all 0.24 seconds of
mkidenti ty's "descendant time" descendants were spent on behalf of MAIN. If mkiden
ti ty had been called from two procedures there would be two parent lines and the 0.18
seconds of "self" time and 0.24 seconds of "descendant time" would be divided between
MAIN and the other caller.

The descendant lines are interpreted similarly. In this example, mkidentity has only
called one function, lmul t, the 32-bit integer multiply routine. lmul t is called 4000 times
in this program and all of these calls come from mkidentity. lmul t has a descendant
time of zero, which suggests that it calls no other routines (this could be confirmed by exa
mining the lmul t entry).

When you enable profiling, the running time of a program is significantly increased. The
fact that mcount, the utility routine used to gather the raw profiling data, is usually at the
top of the flat profile shows this. to eliminate this overhead in the completed version of the
program, recompile all source files without the -pg flag. The overhead incurred by mcount
should be ignored when interpreting the flat profile. The graph profile automatically sub
tracts time attributed to mcount when computing percentages of total runtime.

For programs that wish to keep track of their own timing, the FORTRAN library includes two
routines that return the total time used by the calling process - see dtime(3F) and
etime(3F).

Revision D of 15 May 1985

0

0

0

0

0

Chapter 6

Deviations from the Fortran 77 Standard

FORTRAN 77 includes almost all of FORTRAN 66 as a subset. Chapter 7 contains a brief
description of the differences between FORTRAN 66 and FORTRAN 77.

The most important additions are a character string data type, file-oriented input/output
statements, and random access 1/0. Also, the language has been cleaned up considerably.

This chapter is in two major parts. The first part describes extensions to the ANSI standard
that the Sun FORTRAN compiler (/71) and run-time system implement. The second part
describes areas where this compiler and runtime system violate the ANSI standard, usually
because the compiler or runtime system cannot correctly implement the ANSI standard.

6.1. Extensions to the FORTRAN 77 Standard

In addition to implementing the language specified in the ANSI standard, the Sun /77 com
piler implements some extensions. Some of them are useful additions to the language. The
remaining ones make it easier to communicate with C procedures or to permit compilation of
old FORTRAN 66 programs.

6.1.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair of
double-precision real variables. A double complex version of each complex built-in func
tion is provided. The specific function names begin with z instead of c.

6.1.2. Internal Files

The FORTRAN 77 standard introduces 'internal files' (memory arrays) but restricts their use
to formatted sequential 1/0 statements. The Sun /77 1/0 system also permits internal files
to be used in direct formatted reads and writes.

6.1.3. Implicit Undefined statement

FORTRAN 66 has a fixed rule that the type of a variable that does not appear in a type state
ment is integer if its first letter is i, j, k, 1, m, or n, and real otherwise. FORTRAN
77 has an implicit statement for overriding this rule. As an aid to good programming
practice, the Sun /77 compiler has an additional data type named undefined. The state
ment

Revision D of 15 May 1985 6-1

Deviations from the Fortran 77 Standard FORTRAN Programmer's Guide

6-2

implicit undefined(a-z)

turns off the automatic data typing mechanism, and /77 issues a diagnostic for each variable
that is used but does not appear in a type statement. Specifying the -u compiler flag on
the command line is equivalent to beginning each procedure with this statement.

6.1.,t. Recursion

Procedures can call themselves, directly or through a chain of other procedures. But note
that a subroutine or function can not pass its own name as a procedure parameter. To do so
would require the name to appear in an externa 1 statement, which is prohibited by the
ANSI standard. Note also that use of recursion makes FORTRAN programs nonportable.

6.1.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords can appear
as 'types' in type statements and in IMPLICIT statements. Local variables are static by
default; there is exactly one copy of the datum, and its value is retained between calls.
There is one copy of each variable declared automatic for each invocation of the pro
cedure. Automatic variables cannot appear in equivalence, data, or save statements.

6.1.6. Source Input Format

The standard expects programs to to be in 72-column format. Except in comment lines, the
first five characters are the statement number, the sixth is the continuation character, and
the next 66 are the body of the line. If a line of this format contains fewer than 72 charac
ters, /77 pads it with blanks. Characters after the 72nd are ignored.

In order to make it easier to type FORTRAN 77 programs, this compiler also accepts input in
variable-length lines. An ampersand ('&') in the first position of a line indicates a continua
tion line; the remaining characters form the body of the line. A tab character in one of the
first six positions of a line signals the end of the statement number and continuation part of
the line; the remaining characters form the body of the line. A tab elsewhere on the line is
treated as another kind of blank by /77. Lines containing a tab among the first six charac
ters or lines beginning with an ampersand are not padded with blanks, nor does /77 ignore
characters past the 72nd character in lines of this format.

In the standard, there are only 26 letters - FORTRAN 77 is a one-case language. Consistent
with ordinary UNIX system usage, this compiler expects lower-case input. By default, the
compiler converts all upper case characters to lower-case except those inside character con
stants. However, if the -U compiler flag is specified, upper-case letters are not transformed.
In this mode, it is possible to specify external names with upper-case letters in them, and to
have distinct variables differing only in case. However, when -U is specified, FORTRAN 77
reserved words are only recognized in lower case.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Deviations from the Fortran 77 Standard

6.1. 7. Include Statement

The statement

include 'stuff'

is replaced by the contents of the file stuff. includes can be nested to a reasonable
depth, currently ten.

6.1.8. Binary Initialization Constants

A logical, real, or integer variable can be initialized in a data statement by a
binary constant denoted by a letter and followed by a quoted string. If the letter is b, the
string is binary, and only zeroes and ones are permitted. If the letter is o, the string is
octal, with digits 0-7. If the letter is z or x, the string is hexadecimal, with digits 0-9,
a-f. Thus, the statements

integer a (3)
data a / b 110101

, 0
112', z'a' /

initialize all three elements of a to ten.

6.1. 9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

Table 6-1: Backslash Escape Sequences

Character Meaning

\n newline
\t tab
\b backspace
\f form feed
\0 null
\' apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)

\\ \
\z z, where z is any other character

Standard FORTRAN 77 has only one quoting character - the apostrophe. This compiler and
1/0 system recognize both the apostrophe (1

) and the double-quote ("). If a string begins
with one variety of quotation marks, the other can be embedded within it without using the
repeated quote or backslash escapes.

Every unequivalenced scalar local character variable and every character string constant is
aligned on a word boundary. Each character string constant appearing outside a data
statement is followed by a null character to ease communication with C routines.

Revision D of 15 May 1985 6-3

Deviations from the Fortran 77 Standard FORTRAN Programmer's Guide

6-4

6.1.10. Hollerith

FORTRAN 77 does not have the old Hollerith (nh) notation, although the FORTRAN 77 stan
dard recommends implementing the Hollerith feature in order to improve compatibility with
old programs. In this compiler, Hollerith data can be used in place of character string con
stants, and can also be used to initialize noncharacter variables in data statements.

6.1.11. Equivalence Statements

As a very special and peculiar case, FORTRAN 66 permits an element of a multidimensional
array to be represented by a singly-subscripted reference in equivalence statements.
FORTRAN 77 does not permit this usage, since subscript lower bounds may now be different
from 1. The Sun /77 compiler permits single subscripts in equivalence statements,
under the interpretation that all missing subscripts are equal to 1. A warning message is
printed for each such incomplete subscript.

6.1.12. One-Trip DO Loops

The FORTRAN 77 standard requires that the range of a do loop not be performed if the ini
tial value is already past the limit value, as in

do 10 1 = 2, 1

The FORTRAN 66 standard states that the effect of such a statement is undefined, but it is

0

common practice that the range of a do loop is performed at least once. In order to accom- 0,
modate old programs, though they violate the FORTRAN 66 standard, the -onetrip compiler
flag makes /77 generate nonstandard loops.

6.1.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than described in the standard when it seems
worthwhile. When doing a formatted read of noncharacter variables, commas can be used as
value separators in the input record, overriding the field lengths given in the format state
ment. Thus, the format

(110, f20.10, 14)

reads the record

-345, .OSe-3, 12

correctly.

6.1.L/. Short Integers

/77 accepts declarations of type integer•2. Ordinary integers follow the FORTRAN 77
rules about occupying the same space as a rea 1 variable; they are assumed to be equivalent
to the C type long int, and halfword integers are of C type short int. An expression
involving only objects of type integer•2 is of that type. Generic functions return short or O·
long integers depending on the actual types of their arguments. If a procedure is compiled

Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Deviations from the Fortran 77 Standard

using the -i2 flag, all integer constants that fit are of type integer•2. If the precision of
an integer-valued intrinsic function is not determined by the generic function rules, one is
chosen that returns the prevailing length (integer•2 when the -i2 command flag is in
effect). When the -i2 option is in effect, all quantities of type logical are short. Note
that these short integer and logical quantities do not obey the standard rules for storage
association.

6.1.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the FORTRAN 77 standard.
In addition, there are functions for performing bitwise Boolean operations (or, and, xor,
and not) and for accessing the UNIX command arguments (getarg and iargc) and
environment (getenv).

6.2. Violations of the Standard

There are only a few ways in which this implementation of FORTRAN 77 system violates the
ANSI FORTRAN 77 standard.

6.2.1. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dummy procedure arguments of
that procedure must be declared in an externa 1 statement. This requirement arises as a
subtle corollary of the way character string arguments are represented and of the one-pass
nature of the compiler. A warning is printed if a dummy procedure argument is not
declared external. Code is correct without any external declarations if there are no
character arguments.

6.2.2. T and TL Formats

The implementation of the t (absolute tab) and tl (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record that has already been processed.
The 1/0 library uses seeks, so if the unit is not one which allows seeks, such as a terminal,
the program is in error. A benefit of the implementation chosen is that there is no upper
limit on the length of a record, nor is it necessary to predeclare any record lengths except
where specifically required by FORTRAN 77 or the operating system.

6.2.3. Carriage Control

The ANSI standard leaves the logical unit(s) that are treated as 'printer' files as
implementation-dependent. In this implementation, there are no printer files and thus car
riage control specifiers such as '+' are not implemented. It would be difficult to implement
these carriage-control characters correctly and still provide UNIX-like file 1/0.

Furthermore, the carriage control implementation is asymmetrical. A file written with car
riage control interpretation cannot be read again with the same characters in column 1.

Revision D of 15 May 1985 6-5

Deviations from the Fortran 77 Standard FORTRAN Programmer's Guide

6-6

An alternative to interpreting carriage control internally is to run the output file through a
FORTRAN 'output filter' before printing (see the /pr(l) command in the Uaer'aManual).

6.2 .. ,t. Assigned Goto

The optional list associated with an assigned goto statement is not checked against the
actual assigned value during execution.

6.2.5. Default files

Files created by default uses of rewind or endfile statements are opened for sequen
tial formatted access. There is no way to redefine such a file to allow direct or
unformatted access.

6. 2. 6. Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case or
not. As currently written, the inquire statement returns lower-case strings for any
alphanumeric data.

6.2. 7. Exponent representation on Ew.dEe output

0

If the field width for the exponent is too small, the ANSI standard allows dropping the 0
exponent character, but only if the exponent is > 99. This system does not enforce that res-
triction.

6.2.8. Repeat counts for null values

Repeat counts for null values on list-directed input are not recognized correctly.

0
Revision D of 15 May 1985

0

0

0

Chapter 7

Differences Between FOR TRAN 77 and FOR
TRAN 66

The following is a very brief description of the differences between the 1966 [2] and 1977 [l]
standard languages. We assume that you are familiar with FORTRAN 66.

7.1. Deleted FORTRAN 66 Features

7.1.1. Hollerith

The notion of 'Hollerith' (n h) as data has officially been removed from the standard,
although this compiler, like almost all in the foreseeable future, still supports this anachron
ism.

7.1.2. Extended Range

In FORTRAN 66, under a set of very restrictive and rarely understood conditions, it is permis
sible to jump out of the range of a do loop, then jump back into it. Extended range has
been removed in the FORTRAN 77 language. The restrictions are so special, and the imple
mentation of extended range is so unreliable in many compilers, that this change really
counts as no loss.

7.2. Program Form

7.2.1. Blank Lines

Completely blank lines are now legal comment lines.

7.2.2. Program and Block Data Statements

A main program can now begin with a statement that gives that program an external name:

program work

Block data procedures can also have a name:

Revision D of 15 May 1985 7-1

Differences Between FORTRAN 77 and FORTRAN 66 FORTRAN Programmer's Guide

7-2

block data stuff

There is now a rule that only one unnamed block data procedure can appear in a program.
This system does not enforce that rule. The standard does not specify the effect of the pro
gram and block data names, but they are clearly intended to aid conventional loaders.

7.2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms can have addi
tional entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations
must precede all executable statements in the procedure. If the procedure begins with a
subroutine statement, each entry point is a subroutine name. If it begins with a func
tion statement, each entry is a function entry point, with the type determined by declared
entry name type. If any entry is a character-valued function, then all entries must be. In a
function, an entry name of the same type as that where control entered must be assigned a
value.

Arguments do not retain their values between calls. The ancient trick of calling one entry
point with a large number of arguments so that the procedure 'remembers' the locations of
those arguments, then invoking an entry with just a few arguments for later calculation is
still illegal. Furthermore, the trick doesn't work in this implementation, since arguments are
not kept in static storage.

7.2 . ..f. DO Loops

do variables and range parameters may now be of integer, real, or double pre
cision types. The use of floating-point do variables is very dangerous because of the pos
sibility of unexpected roundoff, and we strongly recommend against it. The action of the do
statement is now defined for all values of the do parameters. The statement

do 10 i = l, u, d

performs max(O, l(u-1)/ d J) iterations. The do variable has a predictable value when exiting
a loop - the value at the time a goto or return terminates the loop; otherwise, it is the
value that failed the limit test.

7.2.5. Alternate Returns

In a subroutine or subroutine entry statement, some of the arguments can be denoted
by an asterisk, as in

subroutine s(a, •, b, •)

The meaning of the 'alternate returns' is described in the section named "Alternate Returns"
found later in this chapter.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Differences Between FORTRAN 77 and FORTRAN 66

7.2.6. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data
type. Local and common character variables must have a length denoted by a constant
expression:

character•17 a, b(3,4)
character•(6+3) c

If the length is omitted, it is assumed equal to 1. A character string argument can have a
constant length, or the length can be declared to be the same as that of the corresponding
actual argument at runtime by a statement like

character*(*) a

There is an intrinsic function len that returns the actual length of a character string.
Character arrays and common blocks containing character variables must be packed: in an
array of character variables, the first character of one element must follow the last character
of the preceding element, without holes.

7.2. 7. IMPLICIT Statement

The traditional implicit declaration rules still hold - a variable whose name begins with i,
j, k, 1, m, or n is of type integer, other variables are of type real, unless other
wise declared. This general rule may be overridden with an implicit statement:

implicit real (a-c,g), complex(w-z), character•(17) (s)

declares that variables whose names begin with an a , b, c, or g are real, those begin
ning with w, x, y, or z are assumed complex, and so on. It is still poor practice to
depend on implicit typing, but this statement is part of the standard.

7.2.8. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

parameter (x=l 7, y=x/3, pi=3 .14159d0, s='hello1
)

The type of each parameter name is governed by the same implicit and explicit rules as for a
variable. The right side of each equal sign must be a constant expression (an expression
made up of constants, operators, and already defined parameters).

7.2.9. Array Declarations

Arrays can now have as many as seven dimensions - only three were permitted in FOR
TRAN 66. The lower bound of each dimension can be declared to be other than 1 by using
a colon. Furthermore, an adjustable array bound can be an integer expression involving con
stants, arguments, and variables in common:

real a(-5:3, 7, m:n), b(n+l:2•n)

The upper bound on the last dimension of an array argument can be denoted by an asterisk
to indicate that the upper bound is not specified:

Revision D of 15 May 1985 7-3

Differences Between FORTRAN 77 and FORTRAN 66 FORTRAN Programmer's Guide

7-4

integer a(S, •), b(•), c(0:1, -2:o)

7.2.10. SA VE Statement

A FORTRAN 66 rule that is not widely known is that local variables in a procedure do not
necessarily retain their values between invocations of that procedure. At any instant in the
execution of a program, if a common block is neither declared in the currently executing
procedure nor in any of the procedures in the chain of callers, all of the variables in that
common block also become undefined. The only exceptions are variables that have been
defined in a data statement and never changed. These rules permit overlay and stack
implementations for the affected variables. FORTRAN 77 permits one to specify that certain
variables and common blocks are to retain their values between invocations. The declara
tion

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b
unaffected by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must
be saved in every procedure in which it is declared if the desired effect is to occur.

7.2.11. INTRINSIC Statement

All of the functions specified in the standard are in a single category, 'intrinsic functions,'
rather than being divided into 'intrinsic' and 'basic external' functions. If an intrinsic func
tion is to be passed to another procedure, it must be declared intrinsic. Declaring it
external (as in FORTRAN 66) passes a function other than the built-in one.

7 .3. Expressions

7.3.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apos
trophe is to be included in a constant, it is repeated:

1abc'
'ain"t'

There are no null (zero-length) character strings in FORTRAN 77. The Sun compiler has two
different quotation marks, " ' "' and " " ".

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Differences Between FORTRAN 77 and FORTRAN 66

7,3.2. Concatenation

Character string concatenation has been added and is marked by a double slash (' //'). The
result of a concatenation is the string containing the characters of the left operand followed
by the characters of the right operand. The values of

1ab1
//

1cd1

and
1abcd1

are equal. The strings being concatenated must be of constant length in all concatena
tions that are not the right sides of assignments. (The only concatenation expressions in
which a character string declared adjustable with a '•(•)' modifier, or a substring deno
tation with nonconstant position values can appear are on the right sides of assign
ments).

7.3.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed
implementation of character assignment is to copy characters from the right to the left side.)
If the left side is longer than the right, it is padded with blanks. If the left side is shorter
than the right, trailing characters are discarded.

7.3 .. 4, Substrings

It is possible to extract a substring of a character variable or character array element, using
the colon notation:

a (i, j) (m:n)

is the string of {n-m+1) characters beginning at the m" character of the character array ele
ment a{i,j). The result is undefined unless m<=n. Substrings may be used on the left sides
of assignments and as procedure actual arguments.

7.3.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real
or complex powers. The principal part of the logarithm is used. Also, multiple exponentia
tion is now defined:

a**b**C = a •• (b**c)

7.3. 6. Relaxation of Restrictions

Mixed mode expressions are now permitted. For instance, it 1s permissible to combine
integer and complex quantities in an expression.

Revision D of 15 May I 985 7-5

Differences Between FORTRAN 77 and FORTRAN 66 FORTRAN Programmer's Guide

7-6

Constant expressions are permitted where a constant is allowed, except in data statements.
(A constant expression is made up of explicit constants and parameters and the FORTRAN
operators, except for exponentiation to a floating-point power). An adjustable dimension
may now be an integer expression involving constants, arguments, and variables in common.

Subscripts may now be general integer expressions; the old cv±c' rules have been removed.
do loop bounds may be general integer, real, or double-precision expressions. Computed
goto expressions and 1/0 unit numbers can be general integer expressions.

7 .4. Executable Statements

7.,t.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to FORTRAN. It 1s called a
'Block If'. A Block If begins with a statement of the form

if(...)then

and ends with an

end if

statement. Two other new statements can appear in a Block If. There can be several

else if(...) then

0

statements, followed by at most one else statement. If the logical expression in the Block 0
If statement is . true., the statements following it up to the next else if, else, or
end if are executed. Otherwise, the next else if statement in the group is executed.
If none of the else if conditions are true, control passes to the statements following the
else statement, if any. The else must follow all else ifs in a Block If. Of course,
there may be Block Ifs embedded inside of other Block If structures. A case construct can
be set up:

if (s .eq. 1ab1
) then

else if (s .eq. 1cd1
) then

else

end if

7.4,2. Alternate Returns

Some of the arguments of a subroutine call can be statement labels preceded by an asterisk,
as m

call joe(j, *10, m, •2)

A return statement may have an integer expression, such as

return k

Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Differences Between FORTRAN 77 and FORTRAN 66

If the entry point has n alternate return (asterisk) arguments and if 1::,;k::,;n, the return is
followed by a branch to the k" statement label; otherwise the usual return to the statement
following the ca 11 is executed.

7.5. Input/Output

7.5.1. Format Variables

A format can be the value of a character expression (constant or otherwise), or be stored in
a character array, as in

write(&, 1 (15) 1
) x

7.5.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement can contain end=, err=, and iostat= clauses, as in

write(&, 101, err=20, iostat=a(4))
read(S, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the .units on which the 1/0 is done, 101 is the statement number of the
associated format, 20 and 30 are statement numbers, and a and x are integers. If an error
occurs during 1/0, control returns to the program at statement 20. If the end of the file is
reached, control returns to the program at statement 30. In any case, the variable referred
to in the iostat= clause is given a value when the 1/0 statement finishes (the value is
assigned to the name on the right side of the equal sign). This value is zero if all went well,
negative for end of file, and positive for an error.

7.5.3. Formatted I/0

7.5.9.1. Character Conatant,

Character constants in formats are copied literally to the output. Character constants can
not be read into.

write(G, 1 (12, 11 isn1111t 11 ,11) 1
) 7, 4

produces

7 isn't 4

Here the format is the character constant

(12, 1 isn11t 1,il)

and the character constant

isn't

is copied into the output.

Revision D of 15 May 1985 7-7

Differences Between FORTRAN 77 and FORTRAN 66 FORTRAN Programmer's Guide

7-8

7.5.9.2. Positional Editing Codes

t, tl, tr, and x codes control where the next character is in the record. trn or nx
specifies that the next character is n to the right of the current position. tin specifies that
the next character is n to the left of the current position, allowing parts of the record to be
reconsidered. tn says that the next character is to be character number n in the record.

7.5.9.9. Colon

A colon in the format terminates the 1/0 operation if there are no more data items in the
1/0 list, otherwise it has no effect. In the fragment

x='("hello", " there", 14) 1

write(6, x) 12
write(6, x)

the first write statement prints:

hello there 12

while the second only prints

hello

7.5.9.,1. Optional Plua Sign•

0

According to the standard, each implementation has the option of putting plus signs in front 0
of nonnegative numeric output. The sp format code can be used to make the optional plus
signs actually appear for all subsequent items while the format is active. The ss format
code guarantees that the 1/0 system does not insert the optional plus signs, and the s for-
mat code restores the default behavior of the 1/0 system. Since /77 doesn't normally put
out optional plus signs, the ss and s codes have the same effect.

7.5.9.5. Blank, on Input

Blanks in numeric input fields, other than leading blanks are ignored following a bn code in
a format statement, and are treated as zeros following a bz code in a format statement.
The default for a unit can be changed by using the open statement. Blanks are ignored by
default.

7.5.9.6. Unrepreaentab/e Value,

The ANSI standard requires that if a numeric item cannot be represented m the form
required by a format code, the output field must be filled with asterisks.

Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Differences Between FORTRAN 77 and FORTRAN 66

7.5.9. 7. iw.m

A new integer output code iw.m, is the same as iw, except that there are at least m digits in
the output field, including, if necessary, leading zeros. The case iw.O is special, since if the
value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

7.5.9.8. Floating Point

On input, exponents can start with the letter E, D, e, or d. All have the same meaning.
On output, always use e. The e and d format codes also have identical meanings. A lead
ing zero before the decimal point in e output without a scale factor is optional with the
implementation. /77 does not print it. There is a gw,d format code which is the same as
ew.d and fw.d on input, but which chooses f or e formats for output depending on the
size of the number and of d.

7.5.9.9. 'A' Format Code

A codes are used for character values. aw use a field width of w, while a plain a uses the
length of the character item.

7.5.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in

read(•, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit in
a write:

print 10
write(•, 10)

7.5.5. List-Directed Formatting

List-directed 1/0 is a kind of free-form input for sequential 1/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, •) a,b,c

On input, values are separated by strings of blanks and (possibly) a comma. Values, except
for character strings, cannot contain blanks. End of record counts as a blank, except in
character strings, where it is ignored. Complex constants are given as two real constants
separated by a comma and enclosed in parentheses. A null input field, such as between two
consecutive commas, means that the corresponding variable in the 1/0 list is not changed.
Values can be preceded by repetition counts, as in

Revision D of 15 May I 985 7-9

Differences Between FORTRAN 77 and FORTRAN 66 FORTRAN Programmer's Guide

4•(3.,2.) 2•, 4•1hello1

which stands for 4 complex constants, 2 null values, and 4 string constants.

For output, a suitable format is chosen for each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using list-directed
input.

7.5.6. Direct I/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records can be written or read in any order,
using direct access 1/0 statements.

Direct access read and write statements have an extra argument, rec=, which gives the
record number to be read or written.

read(2, rec=l3, err=20) (a(i), i=l, 203)

reads the thirteenth record into the array a.

The size of the records must be given by an open statement (see below). Direct access files
can be connected for either formatted or unformatted 1/0.

7.5. 7. Internal Files

0

Internal files are character string objects such as variables or substrings, or arrays of type Q,
character. In the former case, there is only a single record in the file but in the latter case,
each array element is a record. The ANSI standard includes only sequential formatted 1/0
on internal files. (I/0 is not a very precise term to use here, but internal files are dealt with
using read and write.) Internal files are used by giving the name of the character object
in place of the unit number, as in

character*BO x
read(S,'(a)') x
read(x,'(i3,i4)') nl,n2

which reads a card image into x and then reads two integers from the front of it. A sequen
tial read or write always starts at the beginning of an internal file.

/77 also supports a compatible extension, direct 1/0 on internal files. This is like direct 1/0
on external files, except that the number of records in the file cannot be changed. In this
case, a record is a single element of an array of character strings.

7-10

7.5.8. open

The open statement connects a file with a unit, or alters some property of the connection.

It has the following format:

open(parameter liat)

Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Differences Between FORTRAN 77 and FORTRAN 66

where

parameter, is a list of optional specifiers, separated by commas. For valid specifiers see the
section called "open" in Chapter 3.

7.5.8.1. close

close severs the connection between a unit and a file. The unit number must be given.
The optional parameters are iostat= and err= with their usual meanings, and status=
either 'keep' or 'delete.' Scratch files cannot be kept; otherwise keep is the default.
delete means the file will be removed. A simple example is

close(3, err=l7)

7.5.8.2. inquire

The inquire statement gives information about a unit (inquire by unit) or a file (inquire
by file). It sets values of integer, logical, and character variables by specifing keywords that
correspond to the values of unit, connection, or file properties. For the semantics of this
command see "inquire" in Chapter 3.

Revision D of 15 May 1985 7-11

0

0

0 : .

0

0

0

Appendix A

Ratfor - A Preprocessor for a Rational FOR
TRAN

FORTRAN has the advantages of universality and relative efficiency. The Ratfor language
attempts to conceal the main deficiencies of FORTRAN 66 while retaining its desirable quali
ties by providing decent control flow statements. Ratfor features include:

statement grouping
using { and } in the style of C

decision making
via if-else and switch statements

looping constructs
using while, for, do, and repeat-until statements

controlled exits fron loops
using break and next statements

free-form input
multiple statements per line and automatic continuation

unobtrusive comments
signalled by a # sign anywhere on the line

translation
of >, >-, etc., into .GT., .GE., etc.

return (ezpreuion)
statement for functions

symbolic parameters
via the de fine statement

source file inclusion
via the include statement

Ratfor is implemented as a preprocessor that translates this language into FORTRAN.

Once the control flow and cosmetic deficiencies of FORTRAN are hidden, the resulting
language is remarkably pleasant to use. Ratfor programs are markedly easier to read, write,
de bug, maintain, and modify than their FORTRAN equivalents.

You can easily write Ratfor programs that are portable to other environments. Ratfor itself
is written in this way, making it portable; versions of Ratfor are now available on at least
two dozen different types of computers at over 500 locations.

This appendix discusses design criteria. for a FORTRAN preprocessor, the Ratfor language and
its implementation, and user experience.

Revision D of 15 May 1985 A-1

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

Note that since the original Ratfor was designed, the new FORTRA."I 77 language has
appeared on the scene. FORTRAN 77 provides some of the control structures that were the
major reasons for Ratfor's existence and so Ratfor might not be as appropriate in the Sun
system (which supports FORTRAN 77) but is still useful for porting programs written in it to
Sun \Vorkstations.

A.1. Introduction

FORTRAN is often chosen, since it is frequently the only language supported on a local com
puter. It is the closest thing to a universal programming language currently available -
with care you can write large, truly portable FORTRAN 66 programs. Finally, FORTRAN 66 is
often the most 'efficient' language available, particularly for programs requiring much com
putation.

But FORTRAN can be unpleasant. Perhaps the worst deficiency is in the control flow state
ments - conditional branches and loops, which express the logic of the program. The condi
tional statements in FORTRAN are primitive. The arithmetic IF forces the user into at least
two statement numbers and two (implied) GOTO's; it leads to unintelligible code. The logical
IF is better in that the test part can be stated clearly, but is hopelessly restrictive because
only one FORTRAN statement can follow the IF statement. And of course there can be no
ELSE part to a FORTRAN IF - you can't specify an alternative action if the IF is not satisfied.

The FORTRAN DO restricts the user to going forward in an arithmetic progression. It is fine
for 'I to N in steps of I (or 2 or ...)', but there is no direct way to go backwards, or even (in
ANSI FORTRAN) to go from I to N-1. The DO is also useless if one's problem doesn't map
into an arithmetic progression.

The result of these failings is that FORTRAN programs must be written with numerous labels
and branches. The resulting code is particularly difficult to read and understand, and thus
hard to debug and modify.

Ratfor defines a new language that overcomes these deficiencies, and translates it into the
unpleasant one with a preprocessor. The preprocessor idea is not new. A recent listing
shows more than 50 preprocessors, at least half a dozen of which are widely available.

A.1.1. Using the Ratfor Translator

Ratfor is the basic translator; it takes either a list of file names or the standard input and
writes FORTRAN on the standard output. Options include -6z, which causes the character
given for z to be used as a continuation character in column 6 (UNIX uses & in column I),
and -C, which copies Ratfor comments into the generated FORTRAN.

Re provides an interface to the Ratfor command, which is much the same as cc. Thus

hostname% re [options] file ...

compiles the specified filea. Files with names ending in .r are Ratfor source; other files are
assumed to be for the loader. The flags -C and -6z described above are recognized, as are

1 This chapter is a revised and expanded version of a pa.per published in So/tw4rt: - Practice a.nd Ezperi
ence, October 1975.

A-2 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

-c compile without loading

-r save intermediate FORTRAN .f files

-r Ratfor only; implies -c and -r
-U

flag undeclared variables (not universally available). Other flags are passed on to the
loader.

A.2. Language Description

A.2.1. Design

The language is the same as standard FORTRAN 66 except for two aspects. First, since con
trol flow is central to any program regardless of the specific application, the primary task of
Ratfor is to conceal this part or FORTRAN from the user by providing decent control flow
structures. These structures are sufficient and comfortable for structured programming
without GOTO's. Second, since the preprocessor must examine an entire program to
translate the control structure, it is possible at the same time to clean up many of the
'cosmetic' deficiencies of FORTRAN, to provide a language that is easier and more pleasant to
read and write.

Beyond these two aspects - control flow and cosmetics - Ratfor does nothing about the
host of other weaknesses of FORTRAN 66. Although it would be straightforward to extend it
to provide character strings, they are not needed by everyone, and the preprocessor would
be harder to implement. Throughout, the design principle used has been that Ratfor doe•n't
know any FORTRAN. Any language feature requiring that Ratfor really understand FORTRAN
has been omitted.

The rest of this appendix contains an informal description of the Ratfor language. The con
trol flow aspects and cosmetic changes will look familiar if you are used to languages like
Algol, PL/I, and Pascal.

A.2.2. Statement Grouping

FORTRAN 66 provides no way to group statements together, short of making them into a
subroutine. The standard construction 'if a condition is true, do this group of things,' for
example,

if (x > 100)
{ call error("x>lOO"); err= 1; return}

can't be written directly in FORTRAN. Instead a programmer is forced to translate this rela
tively clear thought into murky FORTRAN, by stating the negative condition and branching
around the group of statements:

Revision D or 15 May 1985 A-3

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

A-4

10

if (x .le. 100) goto 10
call error(Shx>lOO)
err= 1
return

When the program doesn't work or must be modified, it must be translated back into a
clearer form before you can be sure what it's doing.

Ratfor eliminates this error-prone and confusing back and forth translation; the first form is
the way the computation is written in Ratfor. A group of statements can be treated as a
unit by enclosing them in braces { and }. This is true throughout the language - wherever
a single Ratfor statement can be used, there can be several enclosed in braces. (Braces seem
clearer and less obtrusive than begin and end , do and end.

Cosmetics contribute to the readability of code. The character '>' is clearer than '.GT.', so
Ratfor translates it appropriately. Although many FORTRAN compilers permit character
strings in quotes (like '""'x>lOO""") , they are not allowed in ANSI FORTRAN, so Ratfor
converts quoted strings into the right number of L 's: computers count better than people
do.

Ratfor is a free-form language - statements can appear anywhere on a line, and several can
appear on one line if they are separated by semicolons. The example above could also be
written as

if (x > 100) {

}

call error("x>lOO")
err= 1
return

In this case, no semicolon is needed at the end of each line, since Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation is needed here because the statement on the first line is clearly continued
on the second. In general Ratfor continues lines when it seems obvious that they are not yet
done. (The continuation convention is discussed in detail later.)

Although a free-form language allows freedom in formatting styles, it is wise to pick one that
is readable, then stick to it. In particular, proper indentation is vital to make the logical
structure of the program clear.

A. 2.3. The 'else' Clause

Ratfor provides an ''else' ' statement to handle the construction 'if a condition is true,
do this, otherwiae do that.'

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

if (a<= b)
{ sw = O; write(6, 1) a, b}

else
{ sw = l; write(6, 1) b, a}

This writes out the smaller of a and b, then the larger, and sets sw appropriately.

The FORTRAN equivalent of this code is circuitous indeed:

if (a .gt. b) goto 10
SW= 0
write(6, 1) a, b
goto 20

10 SW = 1
write(6, 1) b, a

20

This is a mechanical translation, so shorter forms exist but all translations suffer from the
same problem: they are less clear and understandable than untranslated code. To under
stand the FORTRAN version, you must scan the entire program to make sure that no other
statement branches to statements 10 or 20 before you know that this is an if-else con
struction. With the Ratfor version, there is no question about how you get to the parts of
the statement, since the if-else is a single unit that can be read, understood, or ignored
as required.

As mentioned before, if the statement following an if or an else is a single statement,
then no braces are needed:

if (a <= b)
SW= 0

else
SW= 1

The syntax of the if statement is

if (legal FORTRAN condition)
Ratfor statement

else
Ratfor statement

where the else part is optional. The legal FORTRAN condition is anything that can legally
go into a FORTRAN Logical IF. Ratfor does not check this clause, since it does not know
enough FORTRAN to know what is permitted. The Ratfor atatement is any Ratfor FORTRAN
statement, or a collection of them surrounded by braces.

A.2.4- Nested if's

Since the statement that follows an if or an else can be any Ratfor statement, it is possi
ble for another if or else to follow it. As a useful example, consider this problem: the
variable f is to be set to -1 if x is less than zero, to + 1 if x is greater than 100, and to 0
otherwise. In Ratfor, you would write

Revision D of 15 May 1985 A-5

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

A-6

if (x < 0)
f = -1

else if (x > 100)
f = +1

else
f = 0

Here the statement after the first else is another if-else. Logically it is just a single
statement, although it is rather complicated.

Any version written in straight FORTRAN is necessarily indirect because FORTRAN does not
let you say what you mean.

Following an else with an if is one way to write a multi-way branch in Ratfor. In general,
the structure

if (...)

else if (...)

else if(...)

else

provides a way to specify the choice of exactly one of several alternatives. (Ratfor also pro
vides a svitch statement that does the same job in certain special cases; in more general
situations, you must make do with spare parts.) The tests are laid out in sequence, and each
one is followed by the code associated with it. Read down the list of decisions until one is
satisfied. The code associated with this condition is executed, and then the entire structure
is exited. The trailing else part handles the 'default' case, where none of the other condi
tions apply. If there is no default action, this final else part is omitted:

if (x < 0)
X = 0

else if (x > 100)
X = 100

A.2.5. if-else ambiguity

There is one thing to notice about complicated structures involving nested i f's and
else's, Consider

if (x > 0) if (y > 0)
vrite(6, 1) x, y

else
vrite(6, 2) y

There are two if's and only one else, so you don't know which if goes with the else.

This is a genuine ambiguity in Ratfor. The ambiguity is resolved by saying that in such
cases the else goes with the closest previous else'ed un- if. In this case, the else
goes with the inner if, as is indicated by the indentation.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

It is a wise practice to resolve such cases by explicit braces. In the case above, you would
write

if (x > 0) {
if (y > 0)

write(6, 1) X, y
else

write(6, 2) y
}

which does not change the meaning but leaves no doubt in the reader's mind. If you want
the other association, you muat write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

A. 2. 6. The 'switch' Statement

The switch statement provides a clean way to express multi-way branches that branch on
the value of some integer-valued expression. The syntax is

switch (expression) {

case exprl
statements

case expr2, exprS :
statements

default:
statements

}

Each case is followed by a list of comma-separated integer expressions. The expreasion fol
lowing switch is compared against the case expressions exprl, expr2, and so on in turn
until one matches, at which time the statements following that case are executed. If no
case matches expreuion, and there is a default section, the statements in it are executed;
if there is no default, nothing is done. In all situations, as soon as some block of state
ments is executed, the entire switch is exited immediately. (Readers familiar with C
should beware that this behavior is not the same as the C switch.)

A.2. 7. The 'do' Statement

The do statement in Ratfor is quite similar to the DO statement in FORTRAN, except that it
uses no statement number. The statement number, serves only to mark the end of the DO,
and this can be done just as easily with braces. Thus

Revision D of 15 May 1985 A-7

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

A-8

do i = l, n {
X (i) = 0.0
y(i) = 0.0
z (i) = 0.0

}

is the same as

do 10 i = l, n
x(i) = 0.0
y(i) = 0.0
z (i) = 0.0

10 continue

The syntax is:

do legal-FORTRAN-DO-text
Ratfor statement

The part that follows the keyword do has to be something that can legally go into a FOR
TRAN DO statement. Thus, if a local version of FORTRAN allows DO limits to be expressions
(which is not permitted in ANSI FORTRAN 66), they can be used in a Ratfor do.

The Ratfor atatement part is often enclosed in braces, but like the if, a single statement
need not have braces around it. This code sets an array to zero:

do i = l, n
x(i) = 0.0

A slightly more complicated routine,

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero.

do i = l, n
do j = l, n

if (i < j)
m(i, j) = -1

else if (i == j)
m(i, j) = O

else
m(i, j) = +l

sets the upper triangle of m to -1, the diagonal to zero, and the lower triangle to +l. (The
operator == is 'equals', that is, '.EQ.'.) In each case, the statement that follows the do is
logically a single statement, even though complicated, and thus needs no braces.

A.2.8. 'break' and 'next'

Ratfor provides a statement for leaving a loop early, and one for beginning the next itera
tion. break causes an immediate exit from the do; in effect it is a branch to the statement
after the do. next is a branch to the bottom of the loop, so it causes the next iteration to
be done. For example, this code skips over negative values in an array:

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

do i = l, n {
if (x (i) < 0.0)

next
process positive element

}

break and next also work in the other Ratfor looping constructions which are discussed in
the next few sections.

break and next can be followed by an integer that indicates the level to break or iterate
the enclosing loop; thus,

break 2

exits from two levels of enclosing loops, and break 1 is equivalent to break. next 2

iterates the second enclosing loop. (Realistically, multi-level break's and next's are not
likely to be much used because they lead to code that is hard to understand and somewhat
risky to change.)

A. 2. 9. The 'while' Statement

One of the problems with the FORTRAN 66 DO statement is that it generally must be done at
least once, regardless of its limits. If a loop begins

DO I= 2, 1

it is typically done once with I set to 2, even though commonsense suggests that perhaps it
shouldn't be. Of course a Ratfor do can easily be preceded by a test such as

if (j <= k)
do i = j, k {

}

but is often overlooked by programmers.

A more serious problem with the DO statement is that it encourages a program to be written
in terms of an arithmetic progression with small positive steps, even though that may not be
the best way to write it. If code has to be adjusted to fit the requirements imposed by the
FORTRAN DO, it is that much harder to write and understand.

To overcome these difficulties, Ratfor provides a vhile statement, which is simply a loop:
'while some condition is true, repeat this group of statements.' It has no preconceptions
about why looping is happening. For example, the routine to compute sin(x) using the
Maclaurin series combines two termination criteria.

Revision D of 15 May 1985 A-9

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x**3/3! + x••s/5! -

sin= x
term= x

i = 3
while (abs(term)>e & 1<100) {

}

return
end

term= -term• x••2 / float(i*(i-1))
sin= sin+ term
i = i + 2

Notice that if the routine is entered with term already smaller than e, the loop is done
zero timea, that is, no attempt is made to compute x• • 3; thus, a potential underflow is
avoided. Since the test is made at the top of a while loop instead of the bottom, a special
case disappears - the code works at one of its boundaries. (The test i <100 is the other
boundary - making sure the routine stops after some maximum number of iterations.)

As an aside, a sharp character '#' in a line marks the beginning of a comment. Comments
and code can coexist on the same line, which is not possible with FORTRAN's 'C in column 1'
convention. Blank lines are also permitted anywhere (they are not in FORTRAN 66) to
emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal FORTRAN condition)
Ratfor statement

As with if, legal FORTRAN condition is something that can go into a FORTRAN logical IF,
and Ratfor atatement is a single statement or multiple statements in braces.

The while encourages a style of coding not normally practiced by FORTRAN programmers.
For example, suppose nextch is a function that returns the next input character both as a
function value and in its argument. Then a loop to find the first nonblank character is

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which is necessary here to mark the end of the
while; if it were not present, the while would control the next statement. When the loop
is exited, ich contains the first nonblank. Of course the same code can be written in FOR
TRAN as

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few compilers) believe this line is illegal. The
language at one's disposal strongly influences how one thinks about a problem.

A-10 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

A.2.10. The 'for' Statement

The for statement is another Ratfor loop, which attempts to carry the separation of loop
body from reason-for-looping a step further than the while. A for statement allows
explicit initialization and increment steps as part of the statement. For example, a DO loop
is just

for (i = 1; 1 <= n; 1 = 1 + 1) ...

This is equivalent to

1 = 1
while (1 <= n) {

1 = 1 + 1

}

Initializing and incrementing i has been moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the advantage that they are done zero times if n is less
than l; this is not true of the do.

The loop of the sine routine in the previous section can be rewritten with a for as

for (1=3; abs(term) > e & 1 < 100; 1=1+2) {
term= -term• x••2 / float(i*(i-1))
sin= sin+ term

}

The syntax of the for statement is

for (init ; condition ; increment
Ratfor statement

init is any single FORTRAN statement, which gets done once before the loop begins. incre
ment is any single FORTRAN statement that gets done at the end of each pass through the
loop before the test. condition is anything that is legal in a logical IF. Any of init, condi
tion, and increment can be omitted, although the semicolons mud always be present. A
nonexistent condition is treated as always true, so II for (;;) 11 is an infinite repeat. (But
see the repeat-until in the next section.)

The for statement is particularly useful for such things as backward loops, chaining along
lists, and loops that might be done zero times, which are hard to express with a DO state
ment as well as obscure to write out with !F's and GOTO's. For example, here is a backwards
DO loop that finds the last nonblank character on a card:

for (i = 80; 1 > O; 1 = 1 - 1)
if (card(i) I= blank)

break

('!=' is the same as '.NE.'). The code scans the columns from 80 down to 1. If a nonblank is
found, the loop is immediately exited. break and next work in for's and vhile's just
as in do's. If i reaches zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN DO, since the loop must go for
ward, and you must explicitly set up proper conditions when you fall out of the loop. For
getting this is a common error. Thus,

Revision D of 15 May 1985 A-11

Ratfor - A Preprocessor for a Rational FORTRAN

DO 10 J = l, 80
I= 81 - J

FORTRAN Programmer's Guide

IF (CARD(!) .NE. BLANK) GO TO 11
10 CONTINUE

I = 0
11

The version that uses the for handles the termination condition properly for free; i is
zero when you fall out of the for loop.

The increment in a for need not be an arithmetic progression; the following program walks
along a list (stored in an integer array ptr) until a zero pointer is found, adding up ele
ments from a parallel array of values:

sum= 0.0
for (i = first; i > O; i = ptr (i))

sum= sum+ value(i)

Notice that the code works correctly if the list is empty. Again, placing the test at the top
of a loop instead of the bottom eliminates a potential boundary error.

A.2.11. The 'repeat-until' statement

In spite of warnings, there are times when you really need a loop that tests at the bottom
after one pass through. This service is provided by the repeat-until:

repeat
Ratfor statement

until (legal FORTRAN condition)

The Ratfor atatement part is done once, then the condition is evaluated. If it is .true., the
loop is exited; if it is .false., another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify an infinite
loop. Of course such a loop must ultimately be broken by some transfer of control such as
stop, return, or break, or an implicit stop such as running out of input with a READ
statement.

As a matter of observed fact, the repeat-unti 1 statement is much less used than the
other looping constructions; in particular, it is typically outnumbered ten to one by for and
while. Be cautious about using it, for loops that test only at the bottom often don't handle
null cases well.

A.2.12. More on break and next

break exits immediately from do, while, for, and repeat-until. next goes to the
test part of do, while and repeat-until, and to the increment step of a for.

A.2.13. 'return' Statement

0

0

The standard FORTRAN mechanism for returning a value from a function uses the name of
the function as a variable that can be assigned to. The last value stored in it is the function 0

A-12 Revision D of 15 May 1985

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

value upon return. For example, here is a routine equal that returns 1 if two arrays are
identical, and zero if they differ. The array ends are marked by the special value -1.

equal

- compare strl to str2;
return 1 if equal, 0 if not
integer function equal(strl,
integer strl(lOO), str2(100)
integer i

str2)

for (i = l; strl(i) == str2(i); i = i + 1)
if (strl(i) == -1) {

}
equal= 0
return
end

equal= 1
return

In many languages (e.g., PL/I) one instead says

return (expression)

to return a value from a function. Since this is often clearer, Ratfor provides such a
return statement - in a function F, return (expression) is equivalent to

{ F = expression; return}

For example, here is equal again:

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(lOO), str2(100)
integer i

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == -1)

return (1)
return(O)
end

If there is no parenthesized expression after return, a normal RETURN is made. (Another
version of equal is presented shortly.)

A.2.14- Cosmetics

As we said above, the visual appearance of a language has a substantial effect on how easy it
is to read and understand. Accordingly, Ratfor provides a number of cosmetic facilities that
can be used to make programs more readable.

Revision D of 15 May 1985 A-13

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

A.2.15. Free-form Input

Statements can be placed anywhere on a line. Long statements are continued automatically,
as are long conditions in if, vhile, for, and until. Blank lines are ignored. Multiple
statements can appear on one line if they are separated by semicolons. No semicolon is
needed at the end of a line, if Ratfor can make some reasonable guess about whether the
statement ends there. Lines ending with any of these characters

= + • &

are assumed to be continued on the next line. Underscores are discarded wherever they
occur; all others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN label, and
placed in columns 1-5 upon output. Thus

write (6, 100); 100 format ("hello")

is converted into

write (6, 100)
100 format (Shhello)

A.2.16, Translation Services

Text enclosed in matching single or double quotes is converted to nH ••• but is otherwise
unaltered (except for formatting - it may get split across card boundaries during the refor
matting process). Within quoted strings, the backslash '\' serves as an escape character:
the next character is taken literally. This provides a way to get quotes (and of course the
backslash itself) into quoted strings:

"\ \ \'"
is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character '%' is left absolutely unaltered except for stripping
off the '%' and moving the line one position to the left. This is useful for inserting control
cards, and other things that should not be transmogrified (like an existing FORTRAN pro
gram). Use '%' only for ordinary statements, not for the condition parts of if, vhile,
etc., or the output may come out in an unexpected place.

The following character translations are made, except within single or double quotes or on a
line beginning with a '%':

A-14 Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

character translation character translation

== . eq. != .ne .
> .gt. >= .ge .
< . It. <= .le .
& .and. I .or. I

. not. .not .

In addition, the following translations are provided for input devices with restricted charac
ter sets.

character translation character translation

I { I }
($ { $) }

A.2.17. 'define' Statement

Any string of alphanumeric characters can be defined as a name; thereafter, whenever that
name occurs in the input (delimited by nonalphanumerics) it is replaced by the rest of the
definition line. (Comments and trailing whitespace are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.

define is typically used to create symbolic parameters:

define ROWS 100
define COLS 50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS)

Alternately, definitions can be written as

define(ROWS, 100)

In this case, the defining text is everything after the comma up to the balancing right
parenthesis, which allows for multi-line definitions.

It is generally a wise practice to use symbolic parameters for most constants, since they help
clarify the function of what would otherwise be mysterious numbers. As an example, here is
the routine equal again, this time with symbolic constants.

Revision D of 15 May 1985 A-15

Ratfor - A Preprocessor for a Rational FORTRAN

define YES
define NO
define EOS
define ARB

1
0
-1
100

equal

~ compare strl to str2;
return YES if equal, NO if not
integer function equal(strl, str2)
integer strl(ARB), str2(ARB)
integer i

FORTRAN Programmer's Guide

for (i = 1; strl(i) == str2(i); i = i + 1)
if (strl(i) == EOS)

return(YES)
return(NO)
end

A,2,18, 'include' Statement

The statement

include file

0

inserts the file found on input stream file into the Ratfor input in place of the include
statement. The standard usage is to place COMMON blocks on a file, and include that file
whenever a copy is needed: 0

subroutine x
include commonblocks

end

subroutine y
include commonblocks

end

This ensures that all copies of the COMMON blocks are identical

A.2.1{1. Pitfalls, Botches, Blemishes and other Failings

Ratfor catches certain syntax errors, such as missing braces, else clauses without an if,
and most errors involving missing parentheses in statements. Beyond that, since Ratfor
knows no FORTRAN, the FORTRAN compiler reports any errors, so you will need to occasion
ally have to relate a FORTRAN diagnostic back to the Ratfor source.

Keywords are reserved - using if, else, etc., as variable names typically wreak havoc.
Don't leave spaces in keywords or use the Arithmetic IF.

The FORTRAN nH convention is not recognized anywhere by Ratfor; use quotes instead.

A-16 Revision D of 15 May 1985

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

A.3. Implementation

Ratfor was originally written in C on the UNIX operating system. The language is specified
by a context-free grammar, and the compiler constructed using the YACC compiler-compiler.

The Ratfor grammar is simple and straightforward, being essentially

prog

stat

stat
prog stat
if (...) stat

I if (...) stat else stat
I while (...) stat
I for (... ; ... ; ...) stat
I do ... stat

I
I
I

stat repeat
repeat
switch

stat until (...)
(...) { case ... : prog

return
break
next
digits stat
{ prog}

default: prog}

anything unrecognizable

The observation that Ratfor knows no FORTRAN follows directly from the rule that says a
statement is 'anything unrecognizable.' In fact, most of FORTRAN falls into this category,
since any statement that does not begin with one of the keywords is by definition 'unrecog
nizable.'

Code generation is also simple. If the first thing on a source line is not a keyword (like if,
else, etc.) the entire statement is simply copied to the output with appropriate character
translation and formatting. (Leading digits are treated as a label.) Keywords cause only
slightly more complicated actions. For example, when if is recognized, two consecutive
labels L and L+ 1 are generated and the value of L is stacked. The condition is then iso
lated, and the code

if (.not. (condition)) goto L

is output. The .tatement part of the if is then translated. When the end of the statement
is encountered (which may be some distance away and include nested irs), the code

L continue

is generated, unless there is an else clause, in which case the code is

goto L+l
L continue

In this latter case, the code

L+l continue

is produced after the .tatement part of the else. Code generation for the various loops is
equally simple.

Revision D of 15 May 1985 A-17

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

One might argue that more care should be taken in code generation. For example, if there
is no trailing else, 0

if (i > 0) X = a

should be left alone and not converted into

if (.not. (i . gt. 0)) goto 100
X = a

100 continue

But what are optimizing compilers for, if not to improve code? It is a rare program where
this kind of 'inefficiency' makes even a measurable difference. In the few cases where it is
important, the offending lines can be protected by'%'.

The use of a compiler-compiler is definitely the preferred method of software development.
The language is well-defined, with few syntactic irregularities. Implementation is quite sim
ple; the original construction took under a week. The language is sufficiently simple, how
ever, that an ad hoc recognizer can be readily constructed to do the same job if no
compiler-compiler is available.

The C version of Ratfor is used on UNIX. C compilers are not as widely available as FOR
TRAN, however, so there is also a Ratfor written in itself and originally bootstrapped with
the C version. The Ratfor version was written so it could be translated into the portable
subset of FORTRAN described in [22]. Thus it is portable, having been run essentially without
change on at least twelve distinct machines. The main restrictions of the portable subset
are: only one character per machine word; subscripts in the form c'v±c; avoiding expres-
sions in places like DO loops; consistency in subroutine argument usage and in COMMON 0,
declarations. Ratfor itself does not generate nonstandard FORTRAN.

The Ratfor version is about 1500 lines of Ratfor (compared to about 1000 lines of C); this
compiles into 2500 lines of FORTRAN. This expansion ratio is somewhat higher than average,
since the compiled code contains unnecessary occurrences of COMMON declarations. The
execution time of the Ratfor version is dominated by two routines that read and write cards.
Clearly these routines could be replaced by machine-coded local versions; unless this is done,
the efficiency of other parts of the translation process is largely irrelevant.

A.4. Experience

A.4-1. Good Things

'It's so much better than FORTRAN' is the most common response of users when asked how
well Ratfor meets their needs. Although cynics might consider this to be vacuous, it does
seem to be true that decent control flow and cosmetics convert FORTRAN 66 from a bad
language into quite a reasonable one, assuming that FORTRAN data structures are adequate
for the task at hand.

Although there are no quantitative results, users feel that coding in Ratfor is at least twice
as fast as in FORTRAN. More important, debugging and subsequent revision are much faster
than in FORTRAN. Partly this is because the code can be read. The looping statements that
test at the top instead of the bottom seem to eliminate or at least reduce the occurrence of a

A-18 Revision D of 15 May I 985

0

0

0

0

FORTRAN Programmer's Guide Ratfor - A Preprocessor for a Rational FORTRAN

wide class of boundary errors. And of course it is easy to do structured programming in Rat
for; this self-discipline also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend to be as read
able as programs written in languages like Pascal. Once you are freed from the shackles of
FORTRAN's clerical detail and rigid input format, it is easy to write code that is readable,
even esthetically pleasing. For example, here is a Ratfor implementation of the linear table
search discussed by Knuth in [17]:

A(m+l) = X

for (i = 1; A (i) ! = X; i = i + 1)

if (i > m) {
m = i
B(i) = 1

}
else

B(i) = B(i) + 1

A large corpus (5400 lines) of Ratfor, including a subset of the Ratfor preprocessor itself, can
be found in [15].

A .. {2. Bad Things

The biggest single problem is that the FORTRAN compiler detects many syntax errors - not
Ratfor. The compiler then prints a message in terms of the generated FORTRAN, which in a
few cases may be difficult to relate back to the offending Ratfor line, especially if the imple
mentation conceals the generated FORTRAN. This problem could be dealt with by tagging
each generated line with some indication of the source line that created it, but this is
inherently implementation-dependent, so no action has yet been taken. Error message
interpretation is actually not as difficult as you might think. Since Ratfor generates no vari
ables (only a simple pattern of !F's and GOTO's), data,.related errors like missing DIMENSION
statements are easy to find in FORTRAN. Furthermore, Ratfor's ability to catch trivial syn
tactic errors like unbalanced parentheses and quotes has steadily improved.

There are a number of implementation weaknesses that are a nuisance, especially to new
users. For example, keywords are reserved. This rarely makes any difference, except for
those hardy souls who want to use an Arithmetic IF. A few standard FORTRAN constructions
are not accepted by Ratfor, which could be a problem to users with many existing FORTRAN
programs. Protecting every line with a '%' is not really a complete solution, although it
serves as a stopgap. The best long-term solution is provided by the program Struct [3],
which converts arbitrary FORTRAN programs into Ratfor.

Users who export programs often complain that the generated FORTRAN is 'unreadable'
because it is not tastefully formatted and contains extraneous CONTINUE statements. To
some extent this can be ameliorated (Ratfor now has an option to copy Ratfor comments into
the generated FORTRAN), but it has always seemed that effort is better spent on the input
language than on the output esthetics.

One final problem is partly attributable to success - since Ratfor is relatively easy to
modify, there are now several dialects of Ratfor. Fortunately, most of the differences so far
are in character set, or in invisible aspects like code generation.

Revision D of 15 May 1985 A-19

Ratfor - A Preprocessor for a Rational FORTRAN FORTRAN Programmer's Guide

A.5. Conclusions

Ratfor demonstrates that with modest effort it is possible to convert FORTRAN from a bad
language into a good one. A preprocessor is clearly a useful way to improve the facilities of
a base language.

When designing a language, it is important to concentrate on the essential requirement of
providing the user with the best language possible for a given effort. One must avoid throw
ing in 'features' - things that the user can trivially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of its input or output. You are presumably
capable of the self-discipline required to prepare neat input that reflects your thoughts. It is
much more important that the language provide free-form input so you can format it neatly.
No one should read the output anyway except in the most dire circumstances.

A-20 Revision D of 15 May 1985

0

0

0

0 Appendix B

ASCII Character Set

dee ·" ... nomt dee oct . .. namt dee oct . .. namt dee oct ... name

0 000 00 NUL 32 040 20 SP 64 100 40 @ 96 140 60 '

1 001 01 SOH 33 041 21 ! 65 101 41 A 97 141 61 a

2 002 02 STX 34 042 22 " 66 102 42 B 98 142 62 b

3 003 03 ETX 35 043 23 # 67 103 43 C 99 143 63 C

4 004 04 EOT 36 044 24 $ 68 104 44 D 100 144 64 d

5 005 05 ENQ 37 045 25 % 69 105 45 E 101 145 65 e

6 006 06 ACK 38 046 26 & 70 106 46 F 102 146 66 f
7 007 07 BEL 39 047 27 I 71 107 47 G 103 147 67 g

• 010 OB BS 40 050 28 (72 110 48 H 104 150 68 h

9 011 09 HT 41 051 29) 73 111 49 I 105 151 69 i

10 012 OA LF 42 052 2A * 74 112 4A J 106 152 6A j

0
11 013 OB VT 43 053 2B + 75 113 4B K 107 153 6B k

12 014 oc FF 44 054 2C '
76 114 4C L 108 154 6C 1

13 015 OD CR 45 055 2D - 77 115 4D M 109 155 6D m

14 016 OE so 46 056 2E 78 116 4E N 110 156 6E n

15 017 OF SI 47 057 2F I 79 117 4F 0 111 157 6F 0

16 020 10 DLE 48 060 30 0 BO 120 50 p 112 160 70 p
17 021 11 DCl 49 061 31 1 81 121 51 Q 113 161 71 q

18 022 12 DC2 50 062 32 2 82 122 52 R 114 162 72 r

19 023 13 DC3 51 063 33 3 83 123 53 s 115 163 73 s

20 024 14 DC4 52 064 34 4 84 124 54 T_ 116 164 74 t
21 025 15 NAK 53 065 35 5 es 125 55 u 117 165 75 u
22 026 16 SYN 54 066 36 6 86 126 56 V 118 156 76 V

23 027 17 ETB 55 067 37 7 87 127 57 w 119 167 77 "
24 030 18 CAN 56 070 38 8 •• 130 58 X 120 170 78 X

25 031 19 EM 57 071 39 9 89 131 59 y 121 171 79 y
26 032 1A SUB 58 072 3A : 90 132 SA z 122 172 7A z
27 033 lB ESC 59 073 3B ; 91 133 SB [123 173 7B {

28 034 lC FS 60 074 3C < 92 134 SC \ 124 174 7C I
29 035 1D GS 61 075 3D = 93 135 SD] 125 175 70 }
30 036 lE RS 62 076 3E > 94 136 SE

~

126 176 7E
H

31 037 lF us 63 077 3F ? 95 137 SF - 127 177 7F DEL

0
Revision D of 15 May 1985 B-1

0

0

0

0

0

0

Appendix C

Runtime Error Messages

The FORTRAN 1/0 library, the FORTRAN signal handler or parts of the UNIX operating sys
tem (when called by FORTRAN library routines) can all generate FORTRAN error messages.
UNIX error messages include system call failures, C library errors, and shell diagnostics.

C.1. UNIX error messages

UNIX error messages include system call failures, C library errors, and shell diagnostics. The
system call error messages are found in intro(2) in the Sun Syatem Interface Manual. The
following system routine in the FORTRAN library calls C library routines which produce an
error message.

call system ("rm /")
end

The following message is printed:

rm:/ directory

This example shows that system calls made via the FORTRAN library do not produce error
messages directly. For example, the program

integer unlink
i=unlink ("/")
if(i.ne.O) call perror ("unlink")
end

produces the message

unlink: Invalid argument

whereas the program

integer unlink
i=unlink ("/")
end

produces no output.

C.2. Signal Handler Error Messages

Before beginning execution of a program, the FORTRAN library sets up a signal handler
(aigdie) for signals that could cause termination of the program. aigdie prints a message that
describes the signal, flushes any pending output and generates a core image.

Presently the only arithmetic exception caught is the integer •2 division with a denominator
of zero. All other arithmetic exceptions are silently ignored.

Revision D of 15 May 1985 C-1

Runtime Error Messages FORTRAN Programmer's Guide

C-2

As an example of a signal handler error, the subroutine sub tries to access parameters that
are not passed:

call sub()
end
subroutine sub(i,j,k)
i=j+k
return
end

The following error message is printed:

*** Segmentation violation
Illegal instruction (core dumped)

C.3. FORTRAN 1/0 Error Messages
The following error messages are generated by the FORTRAN 1/0 library. The error
numbers are returned in the iostat= variable if the err= return is taken. For example,
this program tries to do an unformatted write to a file opened for formatted output:

write(6) 1
end

sue: [103] unformatted lo not allowed
logical unit 6, named 'stdout'
lately: writing sequential unformatted external IO
Illegal instruction (core dumped)

100 error in format
See error message output for the location of the error in the format. Can be caused by
more than 10 levels of nested parentheses, or an extremely long format statement.

101 illegal unit number
It is illegal to close logical unit 0. Negative unit numbers are not allowed. The upper
limit is zsi-1.

102 formatted io not allowed
The logical unit was opened /or unformatted 1/0.

103 unformatted io not allowed
The logical unit was opened /or formatted 1/0.

104 direct io not allowed
The logical unit was opened for sequential access, or the logical record length was
specified as 0.

105 aequential io not allowed
The logical unit was opened /or direct access 1/0.

106 can't backapace file
The file associated with the logical unit can't seek. May be a device or a pipe.

107 off beginning of record
The format specified a left tab beyond the beginning of an internal input record.

Revision D of 15 May 1985

0

0

0

0

0

0

FORTRAN Programmer's Guide Runtime Error Messages

108 can 'I a/al file
The system can't return status information about the file. Perhaps the directory 1s
unreadable.

109 no • after repeat count
Repeat counts in list-directed 1/0 must be followed by an * with no blank spaces.

110 off end of record
A formatted write tried to go beyond the logical end-of-record. An unformatted read or
write will also cause this.

lll truncation failed
The truncation of an external sequential file on close, backspace, or revind could
not be done.

ll2 incomprehemible li,t input
List input has to be just right.

ll3 out of free ,pace
The library dynamically creates buffers for internal use. You ran out of memory for this
(i.e., your program is too big).

ll4 unit not connected
The logical unit was not open.

ll5 read unexpected character
Certain format conversions can't tolerate nonnumeric data. Logical data must be Tor F.

ll6 blank logical input field

ll 7 'new' file exist,
You tried to open an existing file with status=' nev'.

118 can 'I find 'old' file
You tried to open a nonexistent file with status=' old'.

119 unknown ayatem error
Shouldn't happen, but

120 require, ,eek ability
Direct access requires seek ability. Sequential unformatted 1/0 requires seek ability on
the file due to the special data structure required. Tabbing left also requires seek ability.

121 illegal argument
Certain arguments to open, etc. will be checked for legitimacy. Olten only non-default
forms are looked for.

122 negative repeat count
The repeat count for list-directed input must be a positive integer.

123 illegal operation for unit
An operation was requested, which was not possible for a device associated with the logi
cal unit. This error is returned by the tape 1/0 routines if attempting to read past end
ol-tape, etc.

Revision D of 15 May 1985 C-3

0

0

0

0

0

0

Appendix D

Bibliography

The following books or documents describe aspects of FORTRAN 66, FORTRAN 77, Ratfor and
related subjects. This list ia not necessarily complete. No particular endorsement is implied.

1. American National Standards Institute. 1978. American National Standard Program
ming Language FORTRAN, ANSI XS.9-1978. New York.

2. -. 1966. American National Standard FORTRAN. New York.

3. Baker, B. S. December 1975. Struct - A Program which Structure• FORTRAN. Bell
Laboratories internal memorandum.

4. Brainerd, Walter S., et al. 1978. FORTRAN 77 Programming. Harper and Row.

5. Day, A. C. 1979. Compatible Fortran. Cambridge University Press.

6. Dock, V. Thomas. 1979. Structured FORTRAN 77 Programming. West.

7. Feldman, S. I. June 1979. The Programming Language EFL. Bell Laboratorie• Techni
cal Report.

8. For-word: FORTRAN Development Newsletter, August 1975.

9. Hall, A. D. August 1971. The Altran System for Rational Function Manipulation - A
Survey. CACM.

10. Hume, J. N., and R. C. Holt. 1979. Programming FORTRAN 77. Reston.

11. Johnson, S. C. January 1978. A Portable Compiler: Theory and Practice. Proc. 5th
ACM Symp. on Principle, of Programming Language•

12. Johnson, S. C. 1978. YACC - Yet Another Compiler-Compiler. Bell Laboratoriea
Computing Science Technical Report #92.

13. Katzan, Harry, Jr. 1978. FORTRAN-77. Van Nostrand-Reinhold.

Revision D of 15 May 1985 D-1

Bibliography FORTRAN Programmer's Guide

14. Kernighan, B. W., and D. M. Ritchie. 1978. The C Programming Language, Prentice
Hall.

15. Kernighan, B. W. January 1977. RATFOR - A Preprocessor for a Rational Fortran.
Bell Laboratoriea Computing Science Technical Report #55,

16. Kernighan, B. W., and P. J. Plauger. 1976. Software Too/a. Addison-Wesley.

17. Knuth, D. E. December 1974. Structured Programming with goto Statements. Com
puting Surveya.

18. Meissner, Loren P., and Elliott I. Organick. 1979. FORTRAN-77 Featuring Structured
Programming. Addison-Wesley.

19. Merchant, Michael J. 1979. ABC'a of FORTRAN 77 Programming. \.Vadsworth.

20. Page, Rex, and Richard Didday. 1980. FORTRAN 77 for Humana. West.

21. Ritchie, D. M., and K. L. Thompson. July 1974. The UNIX Time-sharing System.
CACM.

0

22. Ryder, B. G. October 1974. The PFORT Verifier. Software-Practice ff Experience. o

D-2

23. United States or America Standards Institute. March 7, 1966. USA Standard FOR
TRAN, USAS XS.9-1966. New York. Clarified in Comm. ACM 12, 289 {1969} and
Comm. ACM 14, 628 {1971}.

24. Wagener, Jerrold L. 1980. Principlea of FORTRAN 77 Programming. Wiley.

25. A Propoaed Standard For Binary Floating-Point Arithmetic, Drart 10.0 or IEEE Task,
p754. December 1982.

Revision D or 15 May 1985

0

0 Appendix E

FOR TRAN Library Routines

0

0

Revision D of 15 May 1985

0

0

0

0

0

0

INTR0(3F) FORTRAN LIBRARY ROUTINES INTR0(3F)

NAME
intro - introduction to FORTRAN library runctions

DESCRIPTION
This section describes those runctions that are in the FORTRAN run-time library. The runctions
listed here provide an interrace rrom /77 programs to the system in the same manner as the C
library does ror C programs. They are automatically loaded as needed by the FORTRAN 77
compiler /77(1).

Most or these runctions are in libU77.a. Some are in libF77.a or libI77.a. A rew intrinsic runctions
are described for the sake or completeness.

For efficiency, the SCCS ID strings are not normally included in the a.out file. To include them,
simply declare

external r77lid

in any /77 module.

LIST OF FUNCTIONS
Name Appears on Page Description

abort abort.3r terminate abruptly with memory image
access access.3f
alarm alarm.3r
bessel functions
bit bit.3r
chdir chdir .3r
chmod chmod.3f
ctime time.3r
dflmax range.3r
dflmin range.3r
drand rand.3r
dtime etime.3r
etime etime.3r
exit exit.3f
fdate rdate.3r
fgetc getc.3f
fl max range.3f
fl min range.3f
flush flush.3r
fork fork.3f
fpecnt trpfpe.3f
fputc putc.3f
fseek fseek.3f
fstat stat.3f
ftell fseek.3f
gerror perror .3f
getarg getarg.3f
getc getc.3f
getcwd getcwd.3f
getenv getenv .3f
getfd getfd.3f
getgid getuid.3f
getlog getlog.3f
getpid getpid.3r

Sun Release 2.0

determine accessibility or a file
execute a subroutine arter a specified time
bessel.3ror two kinds ror integer orders
and, or, xor, not, rshirt, lshift, bic, bis, bit, setbit functions
change derault directory
change mode or a file
return system time
return extreme values
return extreme values
return random values
return elapsed execution time
return elapsed execution time
terminate process with status
return date and time in an ASCII string
get a character from a logical unit
return extreme values
return extreme values
flush output to a logical unit
create a copy of this process
trap and repair floating point faults
write a character to a FORTRAN logical unit
reposition a file on a logical unit
get file status
reposition a file on a logical unit
get system error messages
return command line arguments
get a character from a logical unit
get pathname or current working directory
get value or environment variables
get the file descriptor or an external unit number
get user or group ID or the caller
get user's login name
get process id

Last change: 15 May 1985 1

INTR0(3F) FORTRAN LIBRARY ROUTINES INTR0(3F)

getuid getuid.3r get user or group ID or the caller 0 gmtime time.3r return system time
hostnm hostnm.3r get name or current host
iargc getarg.3r return command line arguments
idate idate.3r return date or time in numerical form
ierrno perror.3r get system error messages
index index.3r tell about character objects
inmax range.3r return extreme values
ioinit ioinit.3r change £77 1/0 initialization
irand rand.3r return random values
isatty ttynam.3r find name or a terminal port
itime idate.3f return date or time in numerical form
kill kill.3f send a signal to a process
len index.3f tell about character objects
link link.3f make a link to an existing file
lnblnk index.3f tell about character objects
loc loc.3f return the address or an object
long long.3r integer object conversion
!stat stat.3r get file status
!time time.3r return system time
perror perror .3r get system error messages
putc putc.3f write a character to a FORTRAN logical unit
qsort qsort.3r quick sort
rand rand.3f return random values
rename rename.3f rename a file
rindex index.3f tell about character objects
short long.3f integer object conversion 0 signal signal.3f change the action for a signal
sleep sleep.3f suspend execution for an interval
stat stat.3f get file status
symlnk link.3f make a link to an existing file
system system.3f execute a UNIX command
tclose topen.3f £77 tape 1/0
time time.3f return system time
topen topen.3f £77 tape 1/0
tread topen.3f £77 tape 1/0
trewin topen.3f £77 tape 1/0
trpfpe trpfpe.3f trap and repair floating point faults
tskipf topen.3f £77 tape J/0
tstate topen.3f £77 tape 1/0
ttynam ttynam.3f find name of a terminal port
twrite topen.3f £77 tape 1/0
unlink unlink.3f remove a directory entry
wait wait.3f wait for a process to terminate

0
2 Last change: 15 May 1985 Sun Release 2.0

0

0

0

ABORT(3F) FORTRAN LIBRARY ROUTINES

NAME
abort - terminate abruptly with memory image

SYNOPSIS
subroutine abort (string)
characteu(•) string

DESCRIPTION

ABORT(3F)

Abort cleans up the 1/0 buffers and then aborts producing a core file in the current directory. If
string is given, it is written to logical unit O preceeded by "abort:".

FILES
/usr /Iib/libF77.a

SEE ALSO
abort(3)

Sun Release 2.0 Last change: 13 3

ACCESS(3F) FORTRAN LIBRARY ROUTINES ACCESS (3F)

NAME
access - determine accessibility of a file

SYNOPSIS
Integer function acceao (name, mode)
characteu(•) name, mode

DESCRIPTION

FILES

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more or:

r test for read permission

w test for write permission

x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all or
the specified modes. 0 is returned if the specified access would be successful.

/usr /lib/libU77.a

SEE ALSO
access(2), perror(3F)

4 Last change: 23 August rn83 Sun Release 2.0

0

0

0

0

0

0

ALARM(3F) FORTRAN LIBRARY ROUTINES

NAME
alarm - execute a subroutine after a specified time

SYNOPSIS
Integer function alarm (time, proc)
Integer time
external proc

DESCRIPTION

ALARM(3F)

This routine arranges for subroutine proc to be called after time seconds. If time is "O", the
alarm is turned off and no routine will be called. The returned value will be the time remaining
on the last alarm.

FILES
/usr /lib/libU77.a

SEE ALSO
alarm(3C), sleep(3F), signal(3F)

BUGS
A subroutine cannot pass its own name to alarm because of restrictions in the standard.

Sun Release 2.0 Last change: 16 February 1984 s

BESSEL(3F) FORTRAN LIBRARY ROUTINES

NAME
bessel functions - of two kinds for integer orders

SYNOPSIS
function besjO (x)

function beaj 1 (x)

function besj n (n, x)
lnteger•4 n

function besyO (x)

function besyl (x)

function beayn (n, x)
lntegeu4 n

double precision function dbeaJO (x)
double precision x

double precision function dbeajl (x)
double precision x

double precision function dbeajn (n, x)
lntegeu4 n
double precision x

double precision function dbeayO (x)
double precision x

double precision function dbeayl (x)
double precision x

double precision function dbesyn (n, x)
lntegeu4 n
double preclalon x

DESCRIPTION

BESSEL(3F)

These functions calculate Bessel functions or the first and second kinds for real arguments and
integer orders.

DIAGNOSTICS
Negative arguments cause besyO, besyl, and besyn to return a huge negative value. The system
error code will be set to EDOM (33).

FILES
/usr /lib/libF77.a

SEE ALSO
j0(3m), perror(3F)

6 Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

BIT(3F) FORTRAN LIBRARY ROUTINES B1T(3F)

NAME
bit - and, or1 xor, not, rshift, lshift, hie, bis, bit, setbit functions

SYNOPSIS
(generic) function and (wordl, word2)

(generic) function or (wordl, word2)

(generic) function xor (wordl, word2)

(generic) function not (word)

(generic) function rshlft (word, obits)

(generic) function !shift (word, nblto)

subroutine blc {bltnum, word)
lntegen4 bltnum, word

subroutine bis {bltnum, word)
lntegen4 bltnum, word

subroutine aetblt (bltnum, word, state)
lnteger•4 bltnum, word, state

logical function bit (bltnum, word)
lntegen4 bltnum, word

DESCRIPTION

FILES

The and, or, zor, not, rshift, and /shift functions are generic functions expanded inline by the
compiler. Their arguments must be Integer or logical values (short or long). The returned
value has the data type of the first argument.

and computes the bitwise 'and' of its arguments.

or computes the bitwise 'or' of its arguments.

xor computes the bitwise 'exclusive or' of its arguments.

not returns the bitwise complement of its argument.

lahift is a logical left shift with no end around carry.

rahift is an arithmatic right shift with sign extension. No test is made for a reasonable value of
nbits.

Bic, bis, and setbil are external subroutines which operate on integeu4 arguments.

bls sets bitnum in word.

blc clears bitnum in word.

setblt sets bitnum in word to 1 if state is nonzero and clears it otherwise.

bit is an external function which tests bitnum in word and returns .true. if bitnum is a 1
(one), and returns .false. if bitnum is a O (zero).

/usr /Iib/libF77.a

Sun Release 2.0 Last change: 9 January 1984 7

CHDIR(3F) FORTRAN LIBRARY ROUTINES CHDIR(3F)

NAME
chdir - change default directory

SYNOPSIS
Integer function chdlr (dlrname)
character•(•) dlrname

DESCRIPTION

FILES

The default directory for creating and locating files will be changed to dirname. Zero is returned
if successful; an error code otherwise.

/usr /lib/libU77.a

SEE ALSO

BUGS

8

chdir(2), cd(l), perror(3F)

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Use of this function may cause Inquire by unit to fail.

Certain FORTRAN file operations reopen files by name. Using chdir while doing 1/0 may result
in the run-time system to lose track of files created with relative pathnames (including files
created by OPEN statements without file names).

Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

CHM0D(3F) FORTRAN LIBRARY ROUTINES

NAME
chmod - change mode of a file

SYNOPSIS
Integer function chmod (name, mode)
characten(•) name, mode

DESCRIPTION

CHM0D(3F)

This function changes the filesystem mode of file name. Mode can be any specification recognized
by chmod(l). Name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

FILES
/usr /lib/libU77.a
/bin/chmod

SEE ALSO
chmod(l)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Sun Release 2.0 Last change: 13 June 1983 9

ETIME(3F) FORTRAN LIBRARY ROUTINES ETIME(3F)

NAME
etime, dtime - return elapsed execution time

SYNOPSIS
real function etlme (tarray)
real tarray(2)

real function dtlme (tarray)
real tarray(2)

DESCRIPTION

FILES

These two routines return elapsed runtime in seconds for the calling process. Dtime returns the
elapsed time since the last call to dtime, or the start of execution on the first call.

The argument array returns user time in the first element and system time in the second ele
ment. Elapsed time, the returned value, is the sum of user and system time.

The resolution is determined by the system clock frequency.

/usr /Iib/IibU77.a

SEE ALSO
getrusage(2)

IO Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

EXIT(3F) FORTRAN LIBRARY ROUTINES

NAME
exit - terminate process with status

SYNOPSIS
subroutine exit (statuo)
Integer statua

DESCRIPTION

EXIT(3F)

Exit flushes and closes all the process's files, and notifies the parent process if it is executing a
wait. The low-order 8 bits of status are available to the parent process. (Therefore status should
be in the range O - 255)

This call will never return.

The C function exit may cause cleanup actions before the final 'sys exit'.

FILES
/usr /!ib/!ibF77 .a

SEE ALSO
exit(2), fork(2), fork(3f), wait(2), wait(3f)

Sun Release 2.0 Last change: 13 June 1983 11

FDATE(3F) FORTRAN LIBRARY ROUTINES FDATE(3F)

NAME
fdate - return date and time in an ASCII string

SYNOPSIS
subroutine fdate (string)
characteu24 string

characteu24 function fdate()

DESCRIPTION

FILES

Fdate returns the current date and time as a 24 character string in the format described under
ctime(3). Neither 'newline' nor NULL will be included.

Fdate can be called either as a function or as a subroutine. If called as a function, the calling
routine must define its type and length. For example:

character•24 fdate
write(•,•) fdate()

/usr /lib/libU77.a

SEE ALSO
ctime(3), time(3F), idate(3F)

12 Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

FLUSH(3F) FORTRAN LIBRARY ROUTINES FLUSH(3F)

NAME
flush - flush output to a logical unit

SYNOPSIS
subroutine flush (!unit)

DESCRIPTION
Flush causes the contents of the buffer for logical unit /unit to be flushed to the associated file.
This is most useful for logical units O and 6 when they are both associated with the control ter
minal.

FILES
/usr /lib/libl77.a

SEE ALSO
fclose(3S)

Sun Release 2.0 Last change: 13 June 1983 13

FORK(3F) FORTRAN LIBRARY ROUTINES FORK(3F)

NAME
fork - create a copy of this process

SYNOPSIS
Integer function fork()

DESCRIPTION

FILES

Fork creates a copy of the calling process. The only distinction between the 2 processes is that
the value returned to one of them (referred to as the 'parent' process) will be the process id if the
copy. The copy is usually referred to as the 'child' process. The value returned to the 'child'
process will be zero.

All logical units open for writing are flushed before the fork to avoid duplication of the contents
of 1/0 buffers in the external file(s).

If the returned value is negative, it indicates an error and will be the negation of the system
error code. See perror(3F).

A corresponding ezec routine has not been provided because there is no satisfactory way to
retain open logical units across the exec. However, the usual function of fork/ exec can be per
formed using system(3F).

/usr /lib/libU77.a

SEE ALSO
fork(2), wait(3F), ki11(3F), system(3F), perror(3F)

14 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

FSEEK(3F) FORTRAN LIBRARY ROUTINES FSEEK(3F)

NAME
rseek, rtell - reposition a file on a logical unit

SYNOPSIS
Integer function faeek (!unit, offset, from)
Integer offset, from

Integer function ftell (!unit)

DESCRIPTION

FILES

/unit must rerer to an open logical unit. offset is an offset in bytes relative to the position
specified by from. Valid values for from are:

0 meaning 'beginning or the file'
1 meaning 'the current position'
2 meaning 'the end or the file'

The value returned by /seek will be O ir successrul, a system error code otherwise. (See
perror(3F))

Fie/I returns the current position or the file associated with the specified logical unit. The value is
an offset, in bytes, from the beginning of the file. If the value returned is negative, it indicates an
error and will be the negation of the system error code. (See perror(3F))

/usr /lib/IibU77.a

SEE ALSO
fseek(3S), perror(3F)

Sun Release 2.0 Last change: 13 June 1983 15

GETARG(3F) FORTRAN LIBRARY ROUTINES

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
characteu(•) arg

function large ()

DESCRIPTION

GETARG(3F)

A call to getarg will return the kth command line argument in character string arg. The 0th
argument is the command name.

large returns the index of the last command line argument.

FILES
/usr/lib/libU77.a

SEE ALSO
execve(2), getenv(3F)

16 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

GETC(3F) FORTRAN LIBRARY ROUTINES GETC(3F)

NAME
getc, fgetc - get a character from a logical unit

SYNOPSIS
Integer function getc (char)
character char

Integer function fgetc (!unit, char)
character char

DESCRIPTION

FILES

These routines return the next character from a file associated with a fortran logical unit,
bypassing normal fortran 1/0. Getc reads from logical unit 5, normally connected to the control
terminal input.

The value or each function is a system status code. Zero indicates no error occured on the read;
-1 indicates end of file was detected. A positive value will be either a UNIX system error code
or an f77 1/0 error code. See perror(3F).

/usr /lib/libU77 .a

SEE ALSO
getc(3S), intro(2), perror(3F)

Sun Release 2.0 Last change: 13 June 1983 17

GETCWD(3F) FORTRAN LIBRARY ROUTINES

NAME
getcwd - get pathname or current working directory

SYNOPSIS
Integer function getcwd (dlrname)
characteu(•) dlrname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating files will be returned in dirname.
The value of the function will be zero if successful; an error code otherwise.

FILES
/usr /!ib/libU77.a

SEE ALSO
chdir(3F), perror(3F), getwd(3)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

18 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

GETENV(3F) FORTRAN LIBRARY ROUTINES

NAME
getenv - get value or environment variables

SYNOPSIS
subroutine getenv (ename, evalue)
character•(•) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv searches the environment list (see environ(5)) for a string of the form ename=va/ue and
returns value in eva/ue if such a string is present, otherwise fills eva/ue with blanks.

FILES
/usr /Iib/libU77.a

SEE ALSO
execve(2), environ(5)

Sun Release 2.0 Last change: 13 June 1983 19

GETFD(3F) FORTRAN LIBRARY ROUTINES

NAME
getfd - get the file descriptor of an external unit number

SYNOPSIS
Integer function getfd(unltn)
Integer unltn

DESCRIPTION

GETFD(3F)

Getfd returns the 'file descriptor' of an external unit number if the unit is connected and -1 oth
erwise.

FILES
/usr /Iib/IibI77.a

SEE ALSO
open(2)

20 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

GETLOG(3F) FORTRAN LIBRARY ROUTINES

NAME
getlog - get user's login name

SYNOPSIS
subroutine getlog (name)
characteu(•) name

characteu(•) function getlog()

DESCRIPTION

GETLOG(3F)

Getlog will return the user's login name or all blanks if the process is running detached from a
terminal.

FILES
/usr /lib/libU77.a

SEE ALSO
getlogin(3)

Sun Release 2.0 Last change: 13 June 1983 21

GETPID(3F) FORTRAN LIBRARY ROUTINES GETPID(3F)

NAME
getpid - get process id 0

SYNOPSIS
Integer function getpld()

DESCRIPTION
Getpid returns the process ID number of the current process.

FILES
/usr/lib/libU77.a

SEE ALSO
getpid(2)

0

0
22 Last change: 13 June 1983 Sun Release 2.0

0

0

0

GETUID(3F) FORTRAN LIBRARY ROUTINES

NAME
getuid, getgid - get user or group ID or the caller

SYNOPSIS
Integer function getuld()

Integer function getgld(}

DESCRIPTION
These functions return the real user or group ID or the user or the process.

FILES
/usr/lib/libU77.a

SEE ALSO
getuid(2)

Sun Release 2.0 Last change: 13 June 1983

GETUID(3F)

23

H0STNM(3F) FORTRAN LIBRARY ROUTINES

NAME
hostnm - get name of current host

SYNOPSIS
Integer function hoetnm (name)
characteu(•) name

DESCRIPTION

H0STNM(3F)

This function puts the name of the current host into character string name. The return value
should be O; any other value indicates an error.

Fll,ES
/usr /Iib/libU77.a

SEE ALSO
gethostname(2)

24 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

IDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
subroutine !date (!array)
Integer larray(3)

subroutine !time (!array)
Integer larray(3)

DESCRIPTION

IDATE(3F)

/date returns the current date in iarray. The order is: day, mon, year. Month will be in the
range 1-12. Year will be~ 1969.

/lime returns the current time in iarray. The order is: hour, minute, second.

FILES
/usr /Iib/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

Sun Release 2.0 Last change: 13 June 1983 25

INDEX(3F) FORTRAN LIBRARY ROUTINES INDEX(3F)

NAME
index, rindex, lnblnk, !en - tell about character objects

SYNOPSIS
(Intrinsic) function Index (string, substr)
characteu(•) string, subotr

Integer function rlndex (string, substr)
characteu(•) string, subotr

function lnblnk (string)
characteu(•) string

(Intrinsic) function Jen (otrlng)
characteu(•) string

DESCRIPTION

FILES

26

Indez (rindez} returns the index of the first (last) occurrence of the substring substr in string, or
zero if it does not occur. Jndez is an f77 intrinsic function; rindez is a library routine.

Lnblnk returns the index of the last non-blank character in string. This is useful since all f77
character objects are fixed length, blank padded. Intrinsic function /en returns the size of the
character object argument.

/usr /Iib/libF77.a

Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

. IOINIT (3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

NAME
ioinit - change f77 1/0 initialization

SYNOPSIS
logical function lolnlt (cctl, bzro, apnd, preftx, vrboae)
logical cctl, bzro, apnd, vrbose
characteu(•) preflx

DESCRIPTION
This routine will initialize several global parameters in the f77 J/0 system, and attach externally
defined files to logical units at run time. The effect of the flag arguments applies to logical units
opened after ioinit is called. The exception is the preassigned units, 5 and 6, to which cct/ and
bzro will apply at any time. loinit is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. If cell is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data fields are ignored. If bzro is .true. then
such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is sometimes
necessary or convenient to open at the END-OF-FILE so that a write will append to the existing
data. If apnd is .true. then files opened subsequently on any logical unit will be positioned at
their end upon opening. A value of .false. will restore the default behavior.

Many systems provide an automatic association of global names with fortran logical units when a
program is run. There is no such automatic association in f77. However, if the argument prefix
is a non-blank string, then names of the form preftxNN will be sought in the program environ
ment. The value associated with each such name found will be used to open logical unit NN for
formatted sequential access. For example, if f77 program myprogram included the call

call ioinit (.true., .false., .false., 'FORT', .false.)

then when the following sequence

% setenv FORTOl mydata
% setenv FORT12 myresults
% myprogram

would result in logical unit 1 opened to file mydata and logical unit 12 opened to file myresu/te.
Both files would be positioned at their beginning. Any formatted output would have column 1
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored on
input.

If the argument vrbose is .true. then ioinit will report on its activity.

The effect of

call ioinit (.true., .true., .false.,", .false.)

can be achieved without the actual call by including "-ll66" on the /77 command line. This
gives carriage control on all logical units except 0, causes files to be opened at their beginning,
and causes blanks to be interpreted as zero's.

The internal flags are stored in a labeled common block with the following definition:

integer•2 ieof, ictl, ibzr
common /ioiflg/ ieof, ictl, ibzr

Sun Release 2.0 Last change: 13 June 1983 27

IOINIT(3F) FORTRAN LIBRARY ROUTINES IOINIT (3F)

FILES
/usr /Iib/libl77.a
/usr /Iib/libl66.a

f77 1/0 library
sets older fortran 1/0 modes

SEE ALSO

BUGS

28

getarg(3F), getenv(3F), "Introduction to the f77 1/0 Library"

Prefix can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The "+" carriage control does not work.

Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

KILL(3F) FORTRAN LIBRARY ROUTINES

NAME
kill - send a signal to a process

SYNOPSIS
function klll (pld, slgnum)
Integer pld, slgnum

DESCRIPTION

KILL(3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal number
(see signal(3)). The returned value will be O if successful; an error code otherwise.

FILES
/usr /lib/IibU77.a

SEE ALSO
kill(2), signal(3), signal(3F), fork(3F), perror(3F)

Sun Release 2.0 Last change: 26 August 1983 29

LINK(3F) FORTRAN LIBRARY ROUTINES

NAME
link, symlnk - make a link to an existing file

SYNOPSIS
function link (namel, nameZ)
character•(•) namel, nameZ

Integer function symlnk (namel, name2)
characte,.(•) namel, nameZ

DESCRIPTION

LINK(3F)

Name! must be the pathname or an existing file. Name£ is a pathname to be linked to file
name!. Name!! must not already exist. The returned value will be O if successful; a system error
code otherwise.

Symln/c creates a symbolic link to name!.

FILES
/usr /lib/libU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

30 Last change: 13 June 1983 Sun Release 2.0

0

0

0

LOC(3F) FORTRAN LIBRARY ROUTINES LOC(3F)

0 NAME
Joe - return the address or an object

SYNOPSIS
function loc (arg)

DESCRIPTION
The returned value will be the address or arg.

FILES
/usr /Iib/libU77.a

0

0

Sun Release 2.0 Last change: 13 June 1983 31

LONG(3F) FORTRAN LIBRARY ROUTINES LONG(3F)

NAME
long, short - integer ,,bject conversion

SYNOPSIS
lnteg~r•4 function l<mg (lntZ)
lnteg6uZ lntZ

lntegenll function short (lnU)
lntegeu4 lnU

DESCRIPTION

FILES

32

These functions provide conversion between st~ort and long integer objects. Long is useful when
constants are used in calls to library routines and the code is to be compiled with '-i2'. Short is
useful in similar context when an otherwise long object must be passed as a short integer.

/usr /Iib/IibF77.a

Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

PERROR(3F) FORTRAN LIBRARY ROUTINES PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
characteu(•) string

subroutine gerror (string)
character•(•) string

characteu(•) function gerror()

function lerrno()

DESCRIPTION

FILES

Perror will write a message to fortran logical unit O appropriate to the last detected system
error. String will be written preceding the standard error message.

Gerror returns the system error message in character variable string. Gerror may be called
either as a subroutine or as a function.

/errno will return the error number of the last detected system error. This number is updated
only when an error actually occurs. Most routines and I/0 statements that might generate such
errors return an error code after the call; that value is a more reliable indicator of what caused
the error condition.

/usr /!ib/!ibU77.a

SEE ALSO
intro(2), perror(3), "Introduction to the f77 I/0 Library"

BUGS
String in the call to perror can be no longer than 127 characters.

The length of the string returned by gerror is determined by the calling program.

NOTES
UNIX system error codes are described in intro(2). The f77 I/0 error codes and their meanings
are:

100 (!error in format"
101 "illegal unit number"
102 "formatted io not allowed"
103 "unformatted io not allowed"
104 "direct io not allowed"
105 "sequential io not allowed"
106 "can't backspace file"
107 "off beginning of record"
108 "can't stat file"
10g "no• after repeat count"
110 "off end of record"
111 "truncation failed"
112 "incomprehensible list input"
113 "out of free space"
114 "unit not connected"
115 "read unexpected character"
116 "blank logical input field"
117 '"new' file exists"

Sun Release 2.0 Last change; 13 June 1983 33

PERROR(3F)

34

118
119
120
121
122
123

FORTRAN LIBRARY ROUTINES

"can't find 'old' file"
"unknown system error"
"requires seek ability"
"illegal argument"
"negative repeat count"
"illegal operation for unit"

Last change: 13 June 1983

PERROR(3F)

0

0

0
Sun Release 2.0

---r---

0

0

0

PUTC(3F) FORTRAN LIBRARY ROUTINES PUTC(3F)

NAME
putc, fputc - write a character to a FORTRAN logical unit

SYNOPSIS
Integer function putc (char)
character char

Integer function tputc (!unit, char)
character char

DESCRIPTION

FILES

These funtions write a character to the file associated with a FORTRAN logical unit bypassing
normal FORTRAN 1/0. Pule writes to logical unit 6, normally connected to the control terminal
output.

The value of each function will be zero unless some error occurred; a system error code other
wise. See perror(3F).

/usr /Iib/IibU77.a

SEE ALSO
putc(3S), intro(2), perror(3F)

Sun Release 2.0 Last change: 13 June 1983 35

QS0RT(3F) FORTRAN LIBRARY ROUTINES QS0RT(3F)

NAME
qsort - quick sort

SYNOPSIS
subroutine qsort (array, ten, !size, compar)
external compar
lntegeu2 compar

DESCRIPTION

FILES

One dimensional array contains the elements to be sorted. len is the number of elements in the
array. isize is the size of an element, typically -

4 for Integer and real
8 for double precision or complex
16 for double complex
(length of character object) for character arrays

Compar is the name of a user supplied integer•2 function that will determine the sorting order.
This function will be called with 2 arguments that will be elements of array. The function must
return -

negative if arg 1 is considered to precede arg 2
zero if arg 1 is equivalent to arg 2
positive if arg I is considered to follow arg 2

On return, the elements of array will be sorted.

/usr /Iib/libU77.a

SEE ALSO
qsort(3)

36 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

RAND(3F) FORTRAN LIBRARY ROUTINES RAND(3F)

NAME
rand, drand, irand - return random values

SYNOPSIS
function !rand (!flag)

function rand (!flag)

double precision function drand (!flag)

DESCRIPTION

FILES

These functions use random(3) to generate sequences of random numbers. Ir iflag is 'l', the gen
erator is restarted and the first random value is returned. If iftag is otherwise non-zero, it is
used as a new seed for the random number generator, and the first new random value is
returned. The three functions share the same 256 byte state array.

!rand returns positive integers in the range O through 2147483647. Rand and drand return
values in the range 0.0 through 1.0 .

/usr /Iib/libF77.a

SEE ALSO
random(3)

Sun Release 2.0 Last change: g January 1984 37

RANGE{3F) FORTRAN LIBRARY ROUTINES RANGE(3F)

NAME
fl.min, fl.max, dftmin, dftmax, inmax - return extreme values

SYNOPSIS
function ftmln()

function ftmax()

double precision function dftmln()

double precision function dftmax()

function lnmax()

DESCRIPTION

Fll,ES

38

Functions ftmin and ftmaz return the m1mmum and maximum positive floating point values
respectively. Functions dftmin and dftmaz return the minimum and maximum positive double
precision floating point values. Function inmaz returns the maximum positive integer value.

These functions can be used by programs that must scale algorithms to the numerical range of
the processor.

The values returned by ftmin and dftmin are the smallest normalized IEEE format floating point
values. The values returned by ftmaz and dftmaz are the largest finite IEEE format floating point
values.

The approximate values of these functions for the Sun Workstation are:

ftmln 1.175494e-38

ftmax 3.402823e+38

dftmln 2.2250738590e-308

dftmax
1.7976931349e+308

lnmax 2147483647

/usr /lib/libF77 .a

Last change: 16 February 1984 Sun Release 2.0

0

0

0

~-----

0

0

0

RENAME(3F) FORTRAN LIBRARY ROUTINES

NAME
rename - rename a file

SYNOPSIS
Integer function rename (from, to)
character•(•) from, to

DESCRIPTION

RENAME(3F)

From must be the pathname or an existing file. To will become the new pathname for the file. Ir
to exists, then both from and to must be the same type or file, and must reside on the same
filesystem. Ir to exists, it will be removed first.

The returned value will be O if successful; a system error code otherwise.

FILES
/usr /Iib/libU77.a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXP ATHLEN as defined in <sys/param.h>.

Sun Release 2.0 Last change: 13 June 1983 39

SIGNAL(3F) FORTRAN LIBRARY ROUTINES S1GNAL(3F)

NAME
signal - change the action for a signal

SYNOPSIS
Integer function olgnal(slgnum, proc, flag)
integer eignum, flag
external proc

DESCRIPTION

FILES

When a process incurs a signal (see ,igna1(3)) the default action is usually to clean up and abort.
The user may choose to write an alternative signal handling routine. A call to •ignal is the way
this alternate action is specified to the system.

Signum is the signal number (see signa/(3)). Ir ft•g is negative, then proc must be the name of
the user signal handling routine. Ir flag is zero or positive, then proc is ignored and the value of
flag is passed to the system as the signal action definition. In particular, this is how previously
saved signal actions can be restored. Two possible values for flag have specific meanings: 0
means "use the default action" (See NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action definition. A value greater than 1 is the address
of a routine that was to have been called on occurrence of the given signal. The returned value
can be used in subsequent calls to signal in order to restore a previous action definition. A nega
tive returned value is the negation of a system error code. (See perror(3F))

/usr /lib/libU77.a

SEE ALSO

NOTES

40

kill(l), signal(3), kill(3F)

f77 arranges to trap certain signals when a process is started. The only way to restore the
default f77 action is to save the returned value from the first call to ,ignal.

If the user signal handler is called, it will be passed the signal number as an integer argument.

Last change: 26 August 1983 Sun Release 2.0

0

0

0

0

0

0

SLEEP(3F) FORTRAN LIBRARY ROUTINES SLEEP(3F)

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine sleep (!time)

DESCRIPTION
Sleep causes the calling process to be suspended for itime seconds. The actual time can be up to
1 second less than itime due to granularity in system timekeeping.

FILES
/usr /Iib/libU77.a

SEE ALSO
sleep(3)

Sun Release 2.0 Last change: 13 June 1983 41

STAT(3F) FORTRAN LIBRARY ROUTINES STAT(3F)

NAME
stat, !stat, fstat - get file status

SYNOPSIS
Integer function stat (name, atatb)
character•(•) name
Integer statb(12)

Integer function latat (name, statb)
characteu(•) name
Integer statb(l2)

Integer function fstat (!unit, atatb)
Integer statb(12)

DESCRIPTION

FILES

These routines return detailed information about a file. Stat and /stat return information about
file name; fstat returns information about the file associated with fortran logical unit /unit. The
meaning of the information returned in array statb is as described for the structure stat under
stat(2). 'Spare' values are not included, the order is shown below.

The value of either function will be zero if successful; an error code otherwise.

statb(l)
statb(2)
statb(3)
statb(4)
statb(5)
statb(6)
statb(7)
statb(S)
statb(9)
statb(IO)
statb(ll)
statb(I2)
statb(l3)

/usr /Iib/IibU77.a

device inode resides on
this inode's number
protection
number of hard links to the file
user-id of owner
group-id of owner
the device type, for inode that is device
total size of file
file last access time
file last modify time
file last status change time
optimal blocksize for file system ifo ops
actual number of blocks allocated

SEE ALSO
stat(2), access(3F), perror(3F), time(3F)

BUGS
Pathnames can be no longer than MAXP ATHLEN as defined in <sys/param.h>.

42 Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

SYSTEM(3F) FORTRAN LIBRARY ROUTINES SYSTEM(3F)

NAME
system - execute a UNIX command

SYNOPSIS
Integer function oyotem (otrlng)
characteu(•) otrlng

DESCRIPTION

FlLES

System causes string to be given to your shell as input as if the string had been typed as a com
mand. If environment variable SHELL is found, its value will be used as the command inter
preter (shell); otherwise sh(l) is used.

The current process waits until the command terminates. The returned value will be the exit
status of the shell. See wait(2) for an explanation of this value.

/usr /lib/libU77.a

SEE ALSO
execve(2), wait(2), system(3)

BUGS
String can not be longer than NCARGS-50 characters, as defined in <sys/param.h>.

Sun Release 2.0 Last change: 13 June 1983 43

TIME(3F) FORTRAN LIBRARY ROUTINES TIME(3F)

NAME
time, ctime, ltime, gmtime - return system time

SYNOPSIS
Integer function time()

character*2-& function ctlme (otlme)
Integers-& stlme

subroutine !time (stlme, tarray)
integer•4 stlme, tarray(9)

subroutine gmtlme (stlme, tarray)
lnteger•4 otlme, tarray(9)

DESCRIPTION

FILES

Time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured in seconds. This is the value
of the UNIX system clock.

Clime converts a system time to a 24 character ASCII string. The format is described under
ctime(3). No 'newline' or NULL will be included.

Ltime and gmtime disect a UNIX time into month, day, etc., either for the local time zone or as
GMT. The order and meaning of the 9 elements returned in tarray is described under ctime(3).

/usr /Iib/libU77.a

SEE ALSO
ctime(3), idate(3F), fdate(3F)

44 Last change: 9 January 1984 Sun Release 2.0

0

0

0

0

0

0

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - f77 tape 1/0

SYNOPSIS
Integer function topen (tlu, devnam, label)
Integer tlu
characteu(•) devnam
logical label

Integer function tclose {tlu)
Integer tlu

Integer function tread (tlu, buffer)
Integer tlu
character•(•) buffer

Integer function twrlte {tlu, buffer)
Integer tlu
characteu(•) buffer

Integer function trewln {tlu)
Integer tlu

Integer function tsklpf (tlu, nfiles, nrecs)
Integer tlu, nfiles, nrecs

Integer function tstate {tlu, fileno, recno, errf, eoff, eotf, tcsr)
Integer tlu, fileno, recno, tcsr
logical errf, eoff, eotf

DESCRIPTION
These functions provide a simple interface between f77 and magnetic tape devices. A "tape logi
cal unit", tlu, is "topen"ed in much the same way as a normal f77 logical unit is "open"ed. All
other operations are performed via the tlu. The tlu has no relationship at all to any normal f77
logical unit.

Topen associates a device name with a tlu. Tiu must be in the range O to 3. The logical argu
ment label should indicate whether the tape includes a tape label. This is used by trewin below.
Topen does not move the tape. The normal returned value is 0. If the value of the function is
negative, an error has occured. See perror(3f) for details.

Tc/ose closes the tape device channel and removes its association with tlu. The normal returned
value is 0. A negative value indicates an error.

Tread reads the next physical record from tape to buffer. Buffer must be of type character.
The size of buffer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0, the
end-of-file has been detected. A negative value indicates an error.

Twrite writes a physical record to tape from buffer. The physical record length will be the size
of buffer. Buffer must be of type character. The number of bytes written will be returned. A
value of O or negative indicates an error.

Trewin rewinds the tape associated with tlu to the beginning of the first data file. If the tape is a
labelled tape (see to pen above) then the label is skipped over after rewinding. The normal
returned value is 0. A negative value indicates an error.

Sun Release 2.0 Last change: 13 June 1983 45

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

FILES

Tskipf allows the user to skip over files and/or records. First, nfi/es end-of-file marks are
skipped. If the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to reset
the EOF status for a tlu.) Next, nrecs physical records are skipped over. The normal returned
value is 0. A n~gative value indicates an error.

Finally, !state allows the user to determine the logical state of the tape 1/0 channel and to see
the tape drive control status register. The values of fi/eno and recno will be returned and indi
cate the current file and record number. The logical values err/, eoff, and eot/indicate an error
has occurred, the current file is at EOF, or the tape has reached logical end-of-tape. End-of-tape
(EOT) is indicated by an empty file, often referred to as a double EOF mark. It is not allowed to
read past EOT although it is allowed to write. The value of tcsr will reflect the tape drive con
trol status register. See tm(4S) for details.

/usr /lib/IibU77.a

SEE ALSO
tm(4S), perror(3f)

46 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

TRPFPE(3F) FORTRAN LIBRARY ROUTINES TRPFPE(3F)

NAME
trpfpe, fpecnt - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numesg, rtnval)
double precision rtnval

Integer function fpecnt ()

common /fpeflt/ fperr
logical fperr

DESCRIPTION

FILES

NOTE: This routine applies only to Vax computers. It is a null routine on the PDPll.

Trpfpe sets up a signal handler to trap arithmetic exceptions. If the exception is due to a floating
point arithmetic fault, the result of the operation is replaced with the rtnva/ specified. Rtnva/
must be a double precision value. For example, "OdO" or "dflmax()".

The first numesg occurrences or a floating point arithmetic error will cause a message to be writ·
ten to the standard error file. Any exception that can't be repaired will result in the default
action, typically an abort with core image.

Fpecnt returns the number of faults since the last call to trpfpe.

The logical value in the common block labelled fpeftt will be set to .true. each time a fault
occurs.

/usr /lib/IibF77.a

SEE ALSO

BUGS

signal(3f), range(3f)

This routine works only for faults, not traps. This is primarily due to the Vax architecture.

If the operation involves changing the stack pointer, it can't be repaired. This seldom should be
a problem with the f77 compiler, but such an operation might be produced by the optomizer.

The POLY and EMOD opcodes are not dealt with.

Sun Release 2.0 Last change: 13 June 1983 47

TTYNAM(3F) FORTRAN LIBRARY ROUTINES TTYNAM(3F)

NAME
ttynam, isatty - find name or a terminal port 0

SYNOPSIS
character•(•) function ttynam (!unit)

logical function lsatty (!unit)

DESCRIPTION
Ttynam returns a blank padded path name or the terminal device associated with logical unit
/unit.

Jsatty returns .true. if /unit is associated with a terminal device, .false. otherwise.

FILES
/dev/•
/usr /lib/libU77.a

DIAGNOSTICS
Ttynam returns an empty string (all blanks) if /unit is not associated with a terminal device in
directory '/dev'.

0

0
48 Last change: 13 June 1983 Sun Release 2.0

0

0

0

UNLINK(3F) FORTRAN LIBRARY ROUTINES

NAME
unlink - remove a directory entry

SYNOPSIS
Integer function unlink (name)
character•(•) name

DESCRIPTION

UNLINK(3F)

Unlink causes the directory entry specified by pathname name to be removed. Ir this was the
last link to the file, the contents of the file are Jost. The returned value will be zero if successful;
a system error code otherwise.

FILES
/usr /Jib/JibU77.a

SEE ALSO
unlink(2), link(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Sun Release 2.0 Last change: 13 June rn83 49

WAIT(3F) FORTRAN LIBRARY ROUTINES WAIT(3F)

NAME
wait - wait for a process to terminate

SYNOPSIS
Integer function wait (statu,)
Integer status

DESCRIPTION

FILES

Wait causes its caller to be suspended until a signal is received or one or its child processes ter
minates. If any child has terminated since the last wait, return is immediate; if there are no chil
dren, return is immediate with an error code.

If the returned value is positive, it is the process ID or the child and statue is its termination
status (see wait(2)). If the returned value is negative, it is the negation or a system error code.

/usr /lib/libU77.a

SEE ALSO
wait(2), signal(3F), kill(3F), perror(3F)

50 Last change: 13 June 1983 Sun Release 2.0

0

0

0

0

0

0

READER COMMENT SHEET

Dear Customer,
We who work here at Sun Microsystems wish to provide the best possible documentation for
our products. To this end, we solicit your comments on this manual. We would appreciate
your telling us about errors in the content of the manual, and about any material which you
feel should be there but isn't.

Typographical Errors:
Please list typographical errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Please list errors of fact by page number and actual text of the error.

0

0

