
0 • 4}~sun
• microsystems

0

Beginner's Guide
to the Sun Workstation

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0.

0

0 • f}'+sun
• microsystems

0

Beginner's Guide
to the Sun Workstation

---------- ----

------------------- ---------------

---- ----

---------- ------ --------------------,

------·----------. -----

Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

J'.:o; 000--ll69-0l

Credits and Acknowledgements

Material in this Beginner'a Guide to the Sun Workatation comes from a number of sources: Intro
ducing the UNIX Syatem, Henry McGilton, Rachel Morgan, McGraw-Hill; UNIX for Beginner.,
Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey; An Introduction to the C-She/1,
William Joy, University of California, Berkeley; An Introduction to the Bourne Shell, S. R.
Bourne, Bell Laboratories, Murray Hill, New Jersey; Mail Reference Manual, Kurt Sheens,
revised by Craig Leres; How to Read the Network Newa, Mark. R. Horton, Bell Telephone
Laboratories, Columbus, Ohio; and A Dial-Up Network of the UNIX Syatema, D. A. Nowitz and
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey. These materials are gratefully ack
nowledged.

Trademarks

Sun Workstation, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of Bell Laboratories.
Ethernet is a trademark of Xerox Corporation.

Copyright ©> 1985 by Sun Microsystems Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

Revision History

Revision Date Comments

Aa 19 November 1984 Alpha 2.0 release of this Beginner's Guide to the Sun
Workstation.

A 15 April 1985 2.0 release of this Beginner's Guide to the Sun Worksta-
tion.

0

0
- 111 -

0

0

i
I

ol

0

0

0

Preface - Part One

Welcome to the Sun Workstation. This manual provides a tutorial introduction to teach you the
basic tools you need to use the system. We assume that you are a first-time Sun system user
with some knowledge of an operating system, a terminal keyboard, and a text editor. We pro
vide explanations and exercises for learning to use the Sun system and Sun Workstation in par
ticular, however, most of the information is also applicable to using UNIX on ASCII terminals.

If you already know something about UNIX, much of this material will look familiar, but its
organization may be somewhat foreign. This format provides exercises for learning to use the
system and does not explain the internals of the commands and programs. For more in-depth
information on the Sun system and the UNIX operating system in general, there is a plethora of
Sun documentation and literature, which is listed in the appendix. We refer to these manuals
from time to time in this tutorial to draw you a roadmap of where to go from here with your
education.

After reading Part One of the Beginner'a Guide to the Sun Workatation, you wil have the basic
tools you need to learn to use the Sun system. Part Two provides information on how to use the
Shells, the mail facility, and the network news. Also included is a glossary and an annotated
bibliography.

The chapters in Part One are:

1. Getting Started - Explains how to log in, the UNIX system file directory structure, how to
use some basic system commands, and how to log out.

2. Working With Files - Describes commands for manipulating your files.

3. Using The Shell - Instructs you how to use the Shell commands and Sun Windows to make
your work easier.

4. Creating and Editing Text Files - The 'vi' Editor - Provides instructions on the most use
ful editor commands.

5. Printing and Formatting Documents - Explains how to use the most useful text formatters
and macro packages and how to display and print document copies.

6. Communications - Introduces the communication facilities and describes how to use the
mail system, how to talk to users on other systems, and how to use your local network.

You should have a couple of other documents with you for easy reference as you begin. The
most important is the Commanda Reference Manual ; it's often easier to tell you to read about
something in the Commanda Reference Manual than to repeat its contents here. The Com
manda Reference Manual also lists all the manuals supplied with the Sun Workstation. The
other useful document is the Editing and Te:it Proceaaing on the Sun Work.talion, which
explains how to use the text formatters and the vi editor.

- v-

0

0

01

0

0

0

Contents

Chapter 1 Getting Started ... 1-1

Chapter 2 Working with Files . .. 2-1

Chapter 3 Using the Shell

Chapter 4 Creating and Editing Text Files - the vi Editor

Chapter 5 Printing and Formatting Documents

Chapter 6 Communications

- VII -

3-1

4-1

5-1

6-1

I

I o·
I

I

0

0

0

0

0

Contents

Chapter 1 Getting Started 1-1
I.I. Logging In 1-1
l.2. What to Do If Something Goes Wrong .. 1-4

1.2.l. Special Keys and Control Characters ... 1-4
1.2.2. Things That Go Bump in the Night............ 1-5

l.3. Changing Your Password - the 'passwd' Command..................................... 1-6
1.4. Logging Out......................... 1-6
l.5. What is the Shell? ... 1-7

1.5.l. Login Profile 1-7
l.6. The File System 1-8

1.6.l. Changing to Other Directories with 'cd' .. 1-9
1.6.2. Listing Your Files- the 'ls' Command 1-9
1.6.3. Making Directories with 'mkdir' .. 1-10
l.6.4. Removing Directories with 'rmdir' 1-11
1.6.5. Copying Files with 'cp' 1-12
1.6.6. Moving and Renaming Files with 'mv' .. 1-13
1.6.7. Removing Files with the 'rm' Command 1-15

1.7. Security................................... 1-16
1.7.l. Changing File Permissions with 'chmod' 1-17

l.8. Finding Out What Is Going On In the System ... 1-17
1.8.l. Who Is Logged On - the 'who' Command ... 1-18
1.8.2. What is the Date and Time- the 'date' Command 1-18
1.8.3. What Is the System Doing - the 'ps' Command 1-18
1.8.4. Who's Doing What - the 'w' Command .. 1-19

Chapter 2 Working with Files 2-1
2.1. Paging Through a File with 'more' 2-2
2.2. Browsing Through a File with 'view' 2-3
2.3. Look at the First Few Lines of a File with 'head' .. 2-4
2.4. Look at the Last Few Lines of a File with 'tail' .. 2-4
2.5. Counting Characters, Words, and Lines in a File with 'we' 2-5
2.6. Searching for Patterns in a File with 'grep' ... 2-5

2.6.1. Regular Expressions in Text Patterns ... 2-7
2.6.2. Match Beginning and End of Line with ' and $ 2-7
2.6.3. Matching any Character with '.' and '* 2-8
2.6.4. Character Classes with [and) and 2-9
2.6.5. Subsets of Regular Expressions . 2-9

- IX -

2.7. Sorting Text Files with 'sort' ... 2-10
2.8. Finding Differences Between Files with 'diff' .. 2-12

Chapter 3 Using the Shell 3-1
3.1. Redirecting standard input and standard output ... 3-1
3.2. Connecting Processes with Pipes 3-4
3.3. Controlling Jobs 3-5

3.3.1. Foreground and Background Processes .. 3-5
3.3.1.1. Running Jobs in the Background with'&'....................................... 3-6

3.3.2. Stopping and Resuming Jobs 3-7
3.3.3. Placing Jobs in the Background ... 3-7
3.3.4. Bringing Jobs to the Foreground 3-7
3.3.5. Killing Jobs and Processes with 'kill' 3-8

3.4. Recalling Previous Commands with 'history' .. 3-9
3.5. Substituting with 'alias' ... 3-11
3.6. Using Sun Windows....... 3-12

3.6.1. Working with Windows - the Tool Manager ... 3-14
3.6.2. Copying Text ... 3-16
3.6.3. Quick Tool Manager Functions ... 3-17
3.6.4. Simple Graphics Demos 3-17
3.6.5. Quitting Sun Windows ... 3-17
3.6.6. Customizing Sun Windows - the .•untool• File 3-18

Chapter 4 Creating and Editing Text Files - the vi Editor 4-1
4.1. Command and Insert Modes ... 4-1
4.2. Moving the Cursor... 4-2

4.2.1. 1, h, k, j - Forward, Backward, Up, and Down 4-2
4.2.2. ', O and $ - Move to Beginning or End of Line . 4-2
4.2.3. H, M, L - Move to Home, Middle, and Last Line on Screen 4-3
4.2.4. w, b, e - Moving by Words ... 4-3
4.2.5. (,), {, } - Moving by Sentences and Paragraphs 4-3

4.3. Scrolling the Screen 4-4
4.3.1. Moving to Specific Lines in the File.......... 4-4

4.4. Inserting New Text ... 4-5
4.5. Creating a New File ... 4-5
4.6. Deleting or Changing Text... 4-6

4.6.1. Deleting Text with 'x' ... 4-6
4.6.2. Deleting Words and Lines with 'dw' and 'dd' .. 4-7
4.6.3. Changing Text... 4-7

4.7. Writing Your File and Quitting the Editor ... 4-7
4.8. Correcting Mistakes with 'u' and 'U' .. 4-8
4.9. Repeating a Command with '.' ... 4-8
4.10. Running Sun Commands from Inside the Editor .. 4-8
4.11. A Bit About the 'ex' Editor .. 4-9
4.12. Other Text Editors 4-9

-x-

O'
I

0

0

0

0

0

Chapter 5 Printing and Formatting Documents .. .
5.f. Printing a File with 'pr' and '!pr'
5.2. Simple Text Formatting with 'fmt' .. .
5.3. Running 'nroff'
5.4. A Package Deal - the 'ms' Macros .. .

5.4.1. Paragraphs - '.PP' and '.LP'
5.4.2. Quoted Paragraphs - '.QP' .. .
5.4.3. Lists and Descriptions - '.IP'
5.4.4. Relative Indents - '.RS' and '.RE' .. .
5.4.5. Section and Paragraph Headings

5.4.5.1. Un-numbered Headings - '.SH' .. .
5.4.5.2. Numbered Headings - '.NH'

5.4.6. The Date - '.ND' and '.DA' .. .
5.4.7. Displays - '.LE' and '.LE'
5.4.8. Keeping Text Together - '.KS' '.KF' and '.KE'
5.4.9. Titles and Cover Sheets
5.4.10. Overall Page Layout

5.5. Laying Out Tables with 'tbl' .. .
5.6. Formatting Mathematical Equations with 'eqn' .. .
5.7. Formatting with 'nroff' or 'troff'

5.7.1. Page Breaks - '.hp'
5.7.2. Blank Lines - '.sp'
5.7.3. Centering and Underlining - '.ce' and '.ul'
5.7.4. Indentation - '.in'
5.7 .5. Temporary Indents - '.ti'
5.7.6. Filling - '.nf' and '.fi'

5-1
5-1
5-3
5-3
5-3
5-4
5-5
5-5
5-7
5-7
5-8
5-8
5-9
5-9

5-10
5-11
5-11
5-12
5-15
5-16
5-17
5-17
5-17
5-19
5-19
5-20

Chapter 6 Communications 6-1
6.1. The Electronic 'mail' System 6-1

6.1.1. Reading Your Mail ... 6-1
6.1.2. Replying to Mail........ 6-3

6.1.2.1. Your Own Mailbox or 'mbox' ... 6-3
6.1.3. Sending Mail 6-4
6.1.4. Personalizing Your Mail in Your .mailrc File... 6-4

6.1.4.1. Distribution Lists and Aliases....... .. 6-5
6.2. Writing to Other Users with 'write' 6-5
6.3. Preventing Message Interruptions with 'mesg' ... 6-8
6.4. Network Facilities ... 6-9

6.4.1. Using the Network File System ... 6-9
6.4.2. Making Connections with 'rlogin' and 'rsh' ... 6-9
6.4.3. Copying Files From Other Systems with 'rep' ... 6-10

6.5. Additional Communication Facilities ... 6-10
6.5.1. Network News... 6-11
6.5.2. Dialing to Remote Systems with 'tip' ... 6-11

- XI -

0

0

Q,

0

0

0

Tables

Table 2-1 Common Regular Expressions .. 2-9
Table 3-1 Quick Tool Manager Functions........................ 3-17
Table 6-1 Mail Quick Summary... 6-3

- Xlll -

0 .

0

0

0

0

0

Figures

Figure 1-1 File Hierarchy Structure
Figure 1-2 Sample File Hierarchy
Figure 3-1 Sample Window
Figure 3-2 Overlapping Windows .. .
Figure 3-3 Copying Text
Figure 3-4 Sample .suntools Set Up

- xv-

1-8
1-11
3-13
3-15
3-16
3-19

0

o.

0

0

0

0

Chapter 1

Getting Started

Sit down at your Sun Workstation. To use this tutorial, do the exercises and then experiment
with the suggested options. Look up the commands in the Commands Reference Manual to get
an idea of their additional capabilities. If you don't get a desired response, poke around with the
available options and commands until you do. Don't be afraid to sample other commands
described in the Commands Reference Manual; experimenting will quickly teach you how to
work your way around the system.

1.1. Logging In

Examine the workstation screen. Since every system has a name, your screen displays something
like

tutorial login:

where tutorial is the system's name or hoatname. Your installation may have a naming theme,
such as naming all systems after planetary bodies, but for our purposes, let's use the hostname
tutorial. It's important to remember your system's hostname and the names of your colleagues
so you can communicate with them and share files over the network.

To begin, you also need a login name (also known as an account), which your ayatem adminiatra
tor aeta up for you along with your ,yatem. To ,et up your own account or add a uaer, refer to
the adduaer command in the Command, Reference Manual.

Be aware that the Sun system has a strong orientation towards lower-ca,e character, and make,
a definite distinction between upper and lower caae. Type your name in lower ca,e if po .. ible -
if you type in upper ca,e, the Sun ,ystem a88ume, your terminal can't talk lower caae and ,o
talk, at you in upper ca,e from here on. Sun ,y,tem command, are a/moat alway, in lower ca,e.
If we begin a ,entence with a command name in thi, manual, the firat letter ia capitalized aa a
courleay lo Engliah.

After you have typed your login name, and pressed the RETURN key, the system prompts you for
a password if your account is set up with one. For example, your screen looks like:

tutorial login: evan
Password:

when it is waiting for your password. Type your password and press RETURN. The system
doesn't display or echo your password, nor does the cursor even move as you type. This keeps
your password secret from anyone who is looking over your shoulder. If you don't have a pass
word, typing your login name and pressing RETURN gets you straight onto the system. If you
make a mistake typing in your login name, press the DEL key. It backs up over your mistake one
character at a time. Retype the correct characters. You can also simply press the RETURN key
several times until you see the 'tutorial login:' prompt again and start over. If you mistype your
password, you see the same message as if you had mistyped your login name:

Revision A of 15 April 1985 1-1

tutorial login: evan
Password:
Login incorrect
tutorial login:

Simply retype your login name and password to log in.

You know you've logged on successfully when the system displays some messages and then
displays a ready prompt. The display is either:

or

tutorial login: evan
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Release 1.1.1) (SUN) #4:Fri Jan 11 00:20:28 PST 1985

tutorial%

tutorial login: evan
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Release 1.1.1) (SUN) #4:Fri Jan 11 00:20:28 PST 1985 PDT 1983

$

The '%' and '$' prompts indicate that the UNIX command interpreter, the Shell, is waiting for
you to type commands at it. There are two versions of the Shell, the C-Shell and the Bourne
Shell. Which character you get as a prompt (% or $) depends on which Shell is listening to you.
We use the C-Shell, whose prompt is the '%' sign in all our examples, but refer to it simply as
the 'Shell' for simplicity's sake. The Bourne Shell's prompt is the '$' sign. The Sh'(lls are
described in the chapter Uaing the Shell and in more detail in Part Two of this manual. You can
also refer to the Command• Reference Manual for the Sun Workatation page• on cah for the C
She/1 and on ah for the Bourne Shell.

Now try the following; at the 'tutorial%' prompt, type:

tutorial% echo Hello there.
Hello there.
tutorial%

Don't forget to press RETURN (also called a carriage-return) after the command, or nothing will
happen. If you think you're being ignored, press RETURN, and something should happen. We
won't mention this again, but don't forget to press RETURN at the end of each line.

The first word you typed to the 'tutorial%' prompt on the command line is the Sun system com
mand echo. Echo does what it says, it 'echoes' or displays whatever follows it. When you type
something to the 'tutorial%' prompt, the first word is always a command, which is also called a
program. At this point, you are asking the Shell to look for that command and execute it.

Now substitute your name in place of yourname in the example below:

tutorial% echo Hello yourname
Hello ...
tutorial%

Always separate a command from whatever follows by a space. Now try:

1-2 Revision A of 15 April 1985

0

0

0

0

0

0

tutorial% echo Thia 11 fun.
This is fun.

tutorial%

These are very simple examples. What follows a command is an argument. Often this argument
is the name of a file or filename, but in the simple example above, it's merely some text.

If you want to compile a program written in the C programming language, for instance, you
type:

tutorial% cc data.c
tutorial%

Here the command is cc, the C compiler program. The argument to cc is a file called data.c,
containing the program's source text.

You can name a file almost anything you want, but limit yourself to alphanumeric characters,
the underscore character '-', and the period '.'. Other characters such as the asterisk (*), slash
(/), and question mark (?) have special meanings when the Shell reads them. These special char
acters called metacharactera are described later.

There is one more thing that you can type on the command line after the 'tutorial%' prompt.
This is called an option or flag argument. Type it after the command, but separate the two by a
space. Flag arguments modify the command. For example, if you want to suppress the load
phase of the compilation of your program data.c and produce an object file, you type the cc com
mand with the -c option:

tutorial% cc -c data.c
tutorial%

Sun system commands usually have several options.

Here's a good opportunity to open up the Commanda Reference Manual to learn more about
commanda and about thia important manual which containa information on moat of the com
manda uaed in thia tutorial. Turn to the cc pages and glance through them. You firat see NAME,
which gives you the command name as you type it at the Shell prompt 'tutorial%' and a brief
phraae describing what the command does. Here, you aee that cc is the 'C compiler.' Next you
see the SYNOPSIS, which shows the command line format and all the optiom. Yea, there are
plenty of options for the C compiler. Moat commands do not have thia many however.

Following is the DESCRIPTION, which explains in more detail what the command does. OPTIONS
lists and describes the flag arguments. The remaining entries, EXAMPLE, FILES, SEE ALSO, DIAG
NOSTICS and BUGS provide additional information.

If you're interested in the wealth of information that the Command• Reference Manual pro
vides, turn to the front of that manual and read on about the Sun system manuals in general to
become familiar with the other reference sources.

Note that important terms and command names in the text of this tutorial are printed in italics,
cc for example, and options in bold, like -c. In the exercises, bold face type like this indi
cates what you should type at your workstation.

In general, when you type characters to the Sun system, they are gathered up until you type
RETURN or a newline (also called LINEFEED). Up to the point you type RETURN, you have the
opportunity to correct typing mistakes - you can back up over characters or words, or you can
delete the entire line typed so far and start over. Once you have typed a RETURN, though, the
line is passed on to whatever program you asked for (or maybe none at all if you misspelled the

Revision A of 15 April 1985 1-3

program's name).

If you make a mistake typing the command name, and refer to a non-existent command, you will Q,

be told. For example, type 'whom':

tutorial% whom
whom: not found
tutorial%

Clearly, 'whom' is not a command. Of course, if you inadvertently type the name of some other
command, it will run with more or less mysterious results.

The Sun system handles the keyboard and screen in full-duplex - it ha, full read-ahead, meaning
that you can continue typing even while the ,yatem i, di,playing output on the ureen. Of courae,
thia mean• that what you type in aa input i, all mixed up with what the aystem display• - thia
may or may not bother you. However, what you type i, aaved up and interpreted in correct
aequence.

Try one more command; type the who am i command:

tutorial% who am I
tutorial!evan console Jan 11 14:19
tutorial%

The first name, 'tutorial,' is the system hostname; the second is the user's login name, 'evan' in
this case.

Briefly, what's happening when you run a program on the Sun system by typing the command
name and pressing RETURN is this: the executing program takes input or data and produces out
put or reau/t,. A program usually expects to read the input from your keyboard, which is called
the atandard input, and the program usually writes its output to your workstation called the Q
atandard output. You can change these standards by redirecting the input and output to come
from and go to other places, such as files, line printers, and so. This is explained in U,fog the
Shell.

1.2. What to Do If Something Goes Wrong

Sometimes your system may not respond correctly. Here are two brief sections on what to do.

1.2.1. Special Keys and Control Characters

If you make a typing mistake, and see it before you press RETURN, there are several ways to
recover using the following keys and control characters. You can also use some of these charac
ters to start and terminate programs. Glance over the list now to become familiar with them.

Called the eraae character, DEL1 back• up over and eraaea the previoualy typed character. Suc
ceaaive uaea of DEL eraae character, back to the beginning of the line, but not beyond.

·u Called the
kill character, 'U eraaea the entire line you juat typed. 2 If the line i, fouled up, type a

1 On older keyboards, use the BACKTAB key as the DEL key.

1-4 Revision A of 15 April 1985

0

0

0

0

• U and atart over.

This wipes out the previous word you typed. (A word is a sequence of characters del
imited by space(s) and/or tab(s).)

·c 'C aborts or interrupt• a currently running program. Use 'C to stop a long printout,
for example. (Programs, like editors, can either ignore 'C altogether or be notified
when it is typed instead of being terminated.)

·s This atop• output from a running program. It is useful for preventing text being
displayed from zipping off your workstation screen.

·Q 'Q resumes output from a program whose display was suspended with 'S.

·o This throws output away without interrupting the program.

·\ The Quit character quit, a program and saves an image of that program m a file
called core. This is mostly used by programmers debugging programs.

Tab Tabs are used freely in the Sun system source programs. If your terminal does not
have the tab function, use the ,tty command {de,cribed in the Command, Reference
Manual} to turn tab character, into ,paces during output, and to be echoed as space,
during input. Tab, are aet every eight column•.

You can find out what the control characters are anytime with the atty command:

tutorial% atty all
new tty, speed 9600 baud; tabs
crt
erase kill werase rprnt
·? ·u ·w ·R
tutorial%

flush
·o

Some of these, like 'Z, are explained later on.

1.2.2. Things That Go Bump in the Night

I next susp intr quit
·v ·z;·y ·c ., ·s;-2

stop
·o

Sometimes you can get into a state where your workstation or terminal acts strangely. For
example, you may not be able to move the cursor, your cursor may disappear, there is no echo
ing of what you type, or typing RETURN may not cause a linefeed or return the cursor to the left
margin. Try the following solutions:

• First, type ·q to resume possibly suspended output. (You might have typed 'S, freezing
the screen.)

• Another possibility is that you accidentally typed a NO SCRL key (also called SET UP /NO
SCROLL on some terminals) on your keyboard. This also freezes the keyboard like typing
a ·s. Try typing 'Q, which toggles you back to proper operation if you did indeed type
the NO SCRL key in the first place.

• Try typing 'C to interrupt the currently running program.

2 We use the convention , .. whate11er' to mean control-w/iate11er - that is, hold down the CONTROL {or
CTRL} keg while typing a whate11er character. '"'D' mean, hold down the CONTROL J:e11 while tuping either 'd'
or 'D'.

Revision A of 15 April 1985 1-5

eof

• Next, try pressing the LINEFEED key, followed by typing 'reset', and pressing LINEFEED

agam.

• If that doesn't help, try logging out and logging back in (see Logging Out). if you are
using a terminal, try powering it off and on to regain normal operation.

1.3. Changing Your Password - the 'passwd' Command

Paaawd is the command that changes your password or installs one for you if you don't already
have one. Pa88wd is interactive so that when you type paaawd, it prompts you for input as fol
lows:

tutorial% passwd
Changing password for evan
Old password: zxxxzx
New password: zzzzzz
Retype new password: zzzzzz
tutorial%

The system doesn't echo what you type (shown by the x's and z's above), but it does ask you to
type your new password twice to prevent typographical accidents and to provide better security.
You will have to provide a password at least 16 characters unless you are persistent.

1.4. Logging Out

0

When you have finished your login session, there are several ways to log out. One way is to use o·
the logout command:

tutorial% logout
tutorial login:

You can type an end-of-file indication, 'D (the EOF character). Your system responds:

tutorial% ('D) logout
tutorial login:

Finally, you can also change users directly with the login command and another login name:

tutorial% login Jerry
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 UNIX (Release 1.1.1) (SUN) #4: Fri Jan 11 00:20:28 PST 1985
tutorial%

Try these logout methods now.

Note that if you are using a terminal, it is usually not sufficient just to turn off the terminal to
log out. Most Sun systems do not use a time-out mechanism, so you'll still be logged in unless
you logout explicitly.

1-6 Revision A of 15 April 1985

0

0

0

0

1.5. What is the Shell?

As discussed earlier, after you log in and the 'tutorial%' prompt appears, a utility program called
the Shell li.tena to what you type. In general, what you type to the Shell i, a command line. A
command alway, con,i,t, of the command name, ,uch a, the cc which compile, C program,.
Thi, i, alway, the fir.t thing on the line. Thi, command name can be followed by optional argu·
ment., wch a, the -c option or a filename. A command'• argument, are •eparated from the
command, and from each other, by ,pace, and/ or tab,. The Shell aearchea for the command in
aeveral well-known place,, .tart, up the command, and pa88e8 the argument, on to it. When the
command ha, completed it, job, the Shell regain• control and again liaten, to what you type.

Most commands are simply executable programs that the Shell looks for, but some commands
are 'built-in' to the Shell, and the Shell interprets such commands directly. The Shell has many
other capabilities, which are detailed in the user's manual in the c,h {C-Shell) and ,h (Shell)
entrie,. The,e are the two main Shella that you can run.

The Shells are different for all but the most simple terminal usage. For instance, the C-Shell has
history and alia, feature,, which greatly enhance it, power when uaed interactively. The C-Shell
also auppor/8 a ,el of job-control faciliti... See the reference material on Shell, in Part Two for
more detailed information.

1.5.1. Login Profile

When you log in to the Sun system, you are logging in to the C-Shell. The Shell looks for files
called .login and .c,hrc. If there are such files in your home directory, (described later) it runs
any commands it finds in them.

You only execute the .login file when the Shell is called up as part of the process of logging in. A
sample .login file is:

setenv EXINIT 'set noai wrapmargin=S'
set path=(./ /bin /usrjbin /usr/local /usr/ucb /usrjhosts)
set mail=(/usr/spool/mail/$USER)

We won't explain now what all these entries mean; see Using the C-Shell in Part Two for detail,.

The file .cshrc is executed any time the Shell is invoked; for example, when you start or fork a
new Shell. You'll find that "re" is a part of several such filenames, .mailrc for example. The
"re" is related to the phrase "run command," and is used for any file that contains start-up
information for a command. A sample .c,hrc file is:

if (! $?prompt) exit
set history=36
alias lf ls -F
alias cursor echo ,~[[s'
alias pq 'lpq -P'
alias tutorial cd supplements/tutorial

The hi.tory and alia, entries are described later. Again, see U,ing the C-Shell for more detail•.

Revision A of 15 April 1985 1-7

1.6. The File System

Sun system files are arranged in a hierarchy of directories. This hierarchy resembles an inverted
tree structure: the file system begins at the root directory and branches to the limits of the avail
able mass storage. Root is the name of the directory at the 'beginning' of the file system. It is
represented by a alaah '/ '. Do not be confused by the two meanings of '/ ': it's both the name
of the root and a separator in filenames. Root contains references to files and subdirectories
which contain other files and subdirectories and so on. Each directory is thus like a node on the
tree - directories contain files (which contain data) and subdirectories (which contain files).
Here is a picture which makes this clearer:

bin
/1\

(root)

/!\ /:, ;Ur\ 11\ t/lp\

steve evan karen

I \ ~tutr
inlro temp

Figure 1-1: File Hierarchy Structure

0

You can either move to another directory to work on the files held there, or you can gain access o
to those files from where you are, but you need to know where you are and what the direction or
pathname is to the directory you want. If you are in / uar for example, and want to work on a
file in evan, then you need specify only the relative pathname as the directories are on the same
branch. Look at this as a sort of 'how to get there from here' situation. If you are in uar and
want to gain access to something in / bin, you need to indicate the abaolute or full pathname,
which specifies 'how to get there from the system root.'

You can always find out where you are in this structure. Use the pwd (print working directory)
command and type:

tutorial% pwd
/usr/evan/intro
tutorial%

to get your current or working directory. Here we are in /uar/evan/intro. There is a special
notation that indicates, among other things, the current directory. This is the '.' or 'dot'. Two
dots ' .. ' means the parent directory, that is, the directory that the current directory ('. ') is a
subdirectory of. This convention is constant wherever you are in the directory hierarchy.

The initial slash '/' in the response to the pwd command above names root, and successive
slashes separate directory names. Here the current working directory is intro, which is a sub
directory of the directory evan, which is in uar, which is in '/'. The pwd command displays the
full pathname to your directory.

Your system administrator sets up your account by creating a directory, normally using the same
name as your login name. This is called your home directory. Everytime you log in, your work-
ing directory will be set to your home directory. You own your home directory. This means you o·
have full permission to read, write, or destroy its contents. You can also create new files and

1-8 Revision A of 15 April 1985

0

0

0

subdirectories within your home directory as needed, and do with them as you please. Access to
files that others own is carefully controlled.

There are two kinds of directories, •y•tem directories and uaer directories. System directories
contain files and subdirectories that apply to the whole system. You and your fellow users can
make user directories as needed as we show below. We describe how to do this later. For exam
ple, earlier you saw a user directory for Evan, /uar/evan. There can be lots of user directories;
it depends on how big the system is and on how many people can use it. You can have
/uar/henry for user Henry, and /uar/gang, for a. particular project's user directory, for example.

There are also system directories, such as /bin, which holds most of the executable system com
mands, / etc which contains system maintenance commands, and / uar, which contains other
directories. For instance, your login name, encrypted password, and other information a.re con
tained in the pauwd file in the / etc system directory.

That's enough detail - let's move on to how you can use files and directories.

1.6.1. Changing to Other Directories with 'cd'

To move to other directories, use the cd (change working directory) command. If you're in your
home directory now a.t /uar/evan, and you want to change to the /etc directory, type:

tutorial% cd /etc
tutorial%

You've moved to /etc. If you then check your working directory with pwd, you'll see:

tutorial% pwd
/etc
tutorial%

A cd command without any argument always returns you to your home directory. So if you get
lost, type cd to get home:

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

And to change to the directory directly above the one you are currently in, type:

tutorial% cd ..
tutorial%

Try changing to some of the other directories noted above, such as /bin.

1.6.2. Listing Your Files- the 'ls' Command

You can see what a. directory contains using the l• or 'list' command. See what files a.re con
tained in the root directory '/'. Type the /, command:

Revision A of 15 April 1985 1-9

tutorial% Is /
bin etc mnt sys usr
boot lib pub testfile vmunix
dev lost+found stand tmp
tutorial%

You see several columns of files and directories. Try changing to some of these directories and
using 16 to list the contents.

Now change back to your home directory and use la to list files there.

tutorial% cd
tutorial% la
tutorial%

You don't have any files in your home directory so la doesn't list anything. There are, however,
some 'hidden' files, which the /, command with the -al option reveals. First try:

tutorial% la -al
total 14
drwxr-xr-x
drwxr-xr-x
tutorial%

2 evan 32
12 root 240

Mar 12 20:31
Jul 7 15:22

The -a option lists 'all' files. The -I asks for a 'long' listing, for without it, only the fil~names
and subdirectory names are listed. Details on what all the parts of the -I listing mean are pro
vided later. You'll also notice here that you can combine flags as a sort of shorthand.

Again, the'.' is your home directory, and the' .. ' your parent directory or /uar.

There is another variant la -F, which marks which files contain executable programs, which files
are directories, and which files are symbolic links (link a file or directory to another file or direc
tory). Try listing the contents of the root directory with the -F option:

tutorial% ls -F /
bin/
boot*
dev/
tutorial%

etc/
lib/
lost+found/

mnt/
pub/
stand/

sys/
testfile
tmp/

usr/
vmunix@

An entry without any following mark is a simple file. Those entries marked with an asterisk sign
'*' are executable. Those marked with a slash character '/' are directories and contain more files
or subdirectories. Those marked with an 'at' sign '@' are symbolic links. Note: Except on a
client machine, vmunix should never be a symbolic link.

1.6.3. Making Directories with 'mkdir'

Let's assume you now want to create some subdirectories to hold documentation and related
memos for a customer demonstration of your new product. These will be user directories in
/uar/evan. Return to your home directory and make sure you know where you are:

1-10

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

Revision A of 15 April 1985

0

0

0

0

0

0

Use the mkdir command to create (or 'make') directories for this project:

tutorial% mkdlr docs letters
tutorial% cd docs
tutorial% mkdlr specs price.list prod.announce
tutorial% 11 -1
total 3
drwxr-xr-x
drwxr-xr-x

2 evan
2 evan

drwxr-xr-x 2 evan
tutorial% cd .. /letters

24 Aug
24 Aug
24 Aug

19 09:12 price.list
19 09:12 prod.announce
19 09:12 specs

tutorial% mkdlr meet.min memos
tutorial% Is -I
total 2
drwxr-xr-x 2 evan
drwxr-xr-x 2 evan
tutorial% cd
tutorial%

The file system hierarchy here looks like:

(root)

dev usr

evan

letters

meet.min memos

24 Aug 19 09:15 meet.min
24 Aug 19 09:15 memos

tmp

docs

specs price.list prod.announce

Figure 1-2: Sample File Hierarchy

1.6.4. Removing Directories with 'rmdir'

Use rmdir to remove directories. The directory must not contain any files or subdirectories if it
is to be removed. For example, try to remove the letter• directory:

Revision A of 15 April 1985 1-11

tutorial% rmdlr letters
rmdir: letters: Directory not empty
tutorial%

What happened? The lettera directory still has subdirectories in it. Before you can move it, you
must delete all files or subdirectories under it. Remove them like this:

tutorial% rmdlr letters/meet.min lettero/memoo letters
tutorial%

Rmdir also lets you know if you try to remove a non-existent directory:

tutorial% rmdlr void
rmdir: void: No such file or directory
tutorial%

You can also use rm -r to delete directories:

tutorial% rm -r letters

rm -r works exactly the same as rmdir.

1.6.5. Copying Files with 'cp'

To make a copy of another file, use the cp (copy) command on the /etc/hoata.equiv file:

tutorial% cp /etc/boats.equiv hoata.machlnea
tutorial%

This copies hoata.equiv file in the / etc directory into a file called hoata.machinea in your current
working directory. Use this simple command to make as many copies of any file you want.

Check your current working directory with the la command to see what it now contains.

tutorial% la -I
total 6
drwxr-xr-x
-rw-r--r-
tutorial%

5 evan
1 evan

512 Aug 19 09:12 docs
480 Aug 19 09:23 hosts.machines

Remember the order of the cp command: cp copies the first file (or 'argument') to the last:

tutorial% cp this that
tutorial%

To copy the same named file into your own directory, mention the filename twice:

tutorial% cp /etc/hosts.equiv boats.equiv
tutorial%

This puts a copy of the file called ho.ta.equiv into the current directory.

If the second argument is an existing directory, you can use cp to copy the file named as the first
argument into that directory and retain the same filename. It's a little faster too.

tutorial% cp /etc/boats.equiv .
tutorial%

This copies /etc/hoata.equiv into your current directory; the 'dot' (.) agam stands for the
current directory.

1-12 Revision A of 15 April 1985

0

0

0

0

0

0

You can copy a file into another file in your current directory or into one of your subdirectories
as follows:

tutor ialX cp /etc/hosts.equiv docs
tutorial%

Or you can copy as many files as you need into a directory:

tutor ialX cp docs/specs doco/prlce.llot .
tutorial% lo -I
total
drwxr-xr-x 5 evan 512 Aug
-rw-r- -r- - 1 evan 480 Aug
-rw-r--r-- 1 evan 480 Aug
-rwxr-xr-x 1 evan 24 Aug
-rwxr-xr-x 1 evan 24 Aug
tutorial%

19 09:28 docs

19 09:27 hosts.equiv
19 09:23 hosts.machines
19 09:29 price.list
19 09:29 specs

Notice that in the above example, the first two arguments are files and that the last argument is
the destination directory.

Cautiona:

There ian 't any warning if you try to copy a file to another that already exists. The existing
file is written over, and you lose that version.

If a file is protected from being written on for security reasons, or if you try to copy into a
non-existing directory, you see the message:

tutorial% cp notes lntro/leBBono
cp: cannot create intro/lessons
tutorial%

And if for security reasons, you do not have read permission on the source file, write permis
sion to the directory, or if again, the source file or directory does not exist, you see:

tutorial% cp data/today tomorrow
Permission denied.
tutorial%

1.6.6. Moving and Renaming Files with 'mv'

To move files and directories from one place in the file system to another, use the mv (move)
command. Mv renames a file. Moving differs from copying in that the original file disappears.

Try using mv as follows:

Revision A of 15 April 1985 1-13

tutorial,: 11 -1

drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- 1 evan 480 Aug 19 09:27 hosts.equiv
-rw-r--r-- l evan 480 Aug 19 09:23 hosts.machines

-rwxr-xr-x l evan 24 Aug 19 09:29 price. list

-rwxr-xr-x 1 evan 24 Aug 19 09:29 specs

tutorial,: mv hoat1.equlv host•
tutorial% 11 -1

drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- l evan 480 Aug 19 09:27 hosts

-rw-r--r-- 1 evan 480 Aug 19 09:23 hosts.machines

-rwxr-xr-x 1 evan 24 Aug 19 09:29 price.list

-rwxr-xr-x 1 evan 24 Aug 19 09:29 specs

tutorial,:

The file hoata.equiv has been renamed hoata. Caution:

If you move a file to a name that already exists, the second file contents are removed without
warning:

tutorial,: mv hosta host1.machlnea
tutorial,: ls -1

drwxr-xr-x 5 evan 512
-rw-r--r-- 1 evan 480
-rwxr-xr-x l evan 24
-rwxr-xr-x 1 evan 24
tutorial,:

Aug 19 09:28 docs
Aug 19 09:27 hosts.machines
Aug 19 09:29 price.list
Aug 19 09:29 specs

If the target file is write-protected, mv asks you if you really want to write over the file. If you
respond with y (yes), the file is moved. Otherwise, nothing happens.

To move a file from one directory to another, make the second argument to mv the name of the
destination directory, if the destination directory exists:

tutorial% 11 -I
total
drwxr-xr-x 5 evan 512 Aug 19 09:28 docs
-rw-r--r-- 1 evan 480 Aug 19 09:27 hosts.machines
-rwxr-xr-x 1 evan 24 Aug 19 09: 29 specs
tutorial,: mv hosts.machines docs/specs
tutorial,: la -1
total
drwxr-xr-x 5 evan
-rwxr-xr-x 1 evan
tutorial,: la -1 doc1/1peca
total 1
-rw-r--r--
tutorial,:

1 evan

512 Aug 19 09:28 docs
24 Aug 19 09:29 specs

480 Aug 19 09:27 hosts.machines

You can move more than one file at a time into a destination directory, just be sure to make the
destination directory the last argument on the command line.

1-14 Revision A of 15 April 1985

0

0

0

0

0

0

You can also move an entire directory to another name, but unlike files, you can only move
directories if the second name does not already exist. See the Commanda Reference Manual on
mv for details on all the
facilities.

You can't move or rename a file that doesn't exist. You'll see the message:

tutorial% mv Illusion delusion
mv: cannot access illusion
tutorial%

1.6. 7. Removing Files with the 'rm' Command

The rm command removes files from a directory. See what 1s m one of your directories, and
remove a file of little importance:

tutorial% cd docs
tutorial% la -I docs
total 3
-rw-r--r-
drwxr-xr-x
drwxr-xr-x
tutorial% rm hoots.equiv
tutorial% lo -I docs
total 2
drwxr-xr-x
drwxr-xr-x
tutorial%

1 evan
2 evan
2 evan

2 evan
2 evan

480 Aug 19 09:28 hosts.equiv
24 Aug 19 09:12 price.list

512 Aug 19 09:45 specs

24 Aug 19 09:12 price.list
512 Aug 19 09:45 specs

Again, like the cp command, you can work on more than one file at a time. And if any file is
write-protected, rm asks you whether you really want to remove a file. Responding y tells rm
'yes,' and rm removes the file. Typing n or simply typing the RETURN key prevents rm from
removing the file. Even if you own the file and have read permission on it, you cannot remove a
file from a directory if you don't have write permission on that directory.

If you are worried about removing files that you really don't want to remove, use the -i option
to rm to get an 'interactive' prompt on every file.

There is also the -f option that 'forces' the rm command to remove a file, even if it is write
protected.

With -r (recursive) option, the rm command searches down the directory tree, removing all files
it finds. When a subdirectory is empty, rm then removes that subdirectory. This command does
this for every file in every subdirectory (and so on) that it finds in the specified directory.

Make copies of some of the files in /uar or /etc and try these options. Use the la -F command to
copy text files, not executable files or directories.

Caution:

There are several special characters called "metacharacters" in the Sun system. We'll
describe them in more detail later, but for now be careful about using the metacharacter "*"
with "rm", and especially with the -r recursive option.

Revision A of 15 April 1985 1-15

tutorial% rm -r •
tutorial%

removes EVERYTHING from the current directory on down as does the rm -r . command, so
be careful!

Trying to remove a non-existent file results in:

tutorial% rm nobody.home
rm: nobody.home non-existent
tutorial%

You may have a file with non-ASCII characters m its filename, perhaps from a typographical
error. Try rm -i or rm -r to remove it.

1. 7. Security

If you are worried about all the freedom that the Sun system provides to copy files, change direc
tories, and such, rest assured that it also supplies a security system to control access to files and
directories. For every file and directory, there are three classes of users who may have access,
and for each of these classes, there are three 'permissions,' allowing or prohibiting access to a
particular file.

The three classes are:

1. Owner - the person who created the file.

2. Group - the group of users who share ownership of a file. (This 1s set up m the
/etc/paaawd file along with your login name and in the /etc/group file.)

3. Public - all other system users.

For each of these classes, the three permissions are:

1. Read - allows reading the file.

2. Write - allows changes to the file.

3. Execute - allows listing files in a directory, and execution of programs and Shell scripts.

Consider some of the files and directories from before:

drwxr-xr-x
-rw-r--r--
-rwxr-xr-x

5 evan 512
1 evan 460
1 evan 24

Aug 19 09:26 docs
Aug 19 09:27 hosts.machines
Aug 19 09:29 specs

Here's how you interpret all that stuff at the beginning of the lines. Consider the doc• directory:

drwxr-xr-x 5 evan 512 Aug 19 09:26 docs

The 'drwxr-xr-x' order shows 'user, group, public.' The first 'rwx' belongs to the user 'evan' who
has read-write-execute permission. The second 'r-x' belongs to the 'group' which has read
execute permission for the file. The third 'r-x' belongs to the 'public' which also has read
execute permission. Hyphens indicate the absence of a permission. The leading 'd' indicates
that it is a directory.

1-16 Revision A of 15 April 1985

0

0

0

0

0

0

1. 7.1. Changing File Permissions with 'chmod'

Suppose you need to change the permissions on a file or directory so others can access them to
do work. The chmod command changes those permissions or the 'mode' of the file. There are
four common modes that set the permissions. The following numbers are based on the octal
number format. (Read more about chmod in the Commanda Reference Manual if there doesn't
seem to be any rhyme or reason.)

• 644 indicates '-rw-r--r--'. The owner can read and write the file, but everyone else can
only read it.

• 755 indicates 'rwxr-xr-x'. The owner can read, write, and execute the file, and everyone
else can read and execute it. This is the default permission. Your system creates files
with these permissions unless you give it other instructions. This permission lets you
have control over your files and lets others 'look but not touch'. You can imagine why
you might not want your fellow users writing changes to your files without your permis
sion.

• 600 indicates 'rw-------' for a file (use 700 for a directory). The owner can read and write
the file, and everyone else has no access.

• 444 indicates 'r--r--r--'. Everybody can only read the file.

Suppose you have some directories like 'evan' above, and you decide that only you should be
able to read and write the doca directory, while everyone else cannot do anything. As it is now,
the permissions are:

tutorial% 11 -I
drwxr-xr-x
tutorial%

5 evan 512 Aug 19 09:28 docs

Using the chmod command with the '700' permission, type:

tutorial% chmod 700 docs
tutorial% 11 -I
drwx-----
tutorial%

5 evan 512

The '755' permission is the default.

Caution:

Aug 19 09:28 docs

This directory must have execute permission if you want to access it.

You can't change the mode of a file that doesn't exist, nor can you change the mode of a file that
you don't own (remember ownership is indicated by the login name, 'evan' in the example
above).

1.8. Finding Out What Is Going On In the System

You now have a basic understanding of your personal directory. Let's take a step outside and
see what the system can do for you.

Revision A of 15 April 1985 1-17

1.8.1. Who Is Logged On - the 'who' Command

See who is currently logged in with the who command:

tutorial% who
evan console Jan 16
smith ttypO Jan 16
tutorial%

09:11
09:25

The first entry is the user's login name, the second entry is the system's idea of what terminal
the user is on, and the date and time is when the user logged in.

1.8.2. What is the Date and Time- the 'date' Command

Another useful command is the date command. Try typing:

tutorial% date
Fri Aug 19 10:15:08 PST 1985
tutorial%

and you get back not only the day and date, but also the time (that is, the system's idea of what
time it is).

1.8.3. What Is the System Doing - the 'ps' Command

0

Because this is a multi-tasking system, you can run several processes at once. (We'll explain how o·
to do this in Uaing the Shell.) When you do execute several commands at one time, you may need
to know how far along they are. Use the pa (process status) command for this:

tutorial% pa
PID TT
2025 02
tutorial%

STAT
R

TIME
0:01

CMD
ps

This lists the processes belonging to you. PID indicates the 'process identification' number, TT
the terminal from which the process was started, STAT the state of the process, TIME the
amount of computer time used so far, and CMD the command line that was typed Lo initiate the
process.

As you can see, there is one process in operation, the pa process.

With the -x option, the p• command displays all your processes:

tutorial% pa -x
PIO TT STAT
2028
2029

02
08

tutorial%

s
s

TIME
0:05
0:05

CMD
ps
-csh (csh)

Looking at the TT column, note that in our example, you are logged on twice, once on tty02 and
once on tty08. Pa displays all processes associated with the user, not those associated with a par
ticular workstation or terminal.

Also try the p• command with the -ax option, which tells about 'all' processes going on in the
system. For example:

1-18 Revision A of 15 April 1985

0

0

0

0

tutorial% pa -ax
PIO TT STAT TIME COMMAND
0 ? D 2:33 swapper
l ? I 0:20 /etc/init -
2 ? D 0:08 pagedaemon

< etc. >
5535 co s 0:22 -csh (csh)
5696 co R 0:03 ps -ax
tutorial%

1.8.4- Who's Doing What - the 'w' Command

If you get really nosey, try the w command to check whether there is anyone else logged in to
your system and what that user is doing. Try this now and decipher the abbreviations using
your knowledge of what the who and p• commands display.

tutorial% w
evan console Febl5 11:28
evan ttypO Febl5 11:29
evan ttypl Febl5 11:29
evan ttyp2 Feb15 11:35
tutorial%

Here, 'evan' is logged in to the 'console' and is running several shells within his window system.

It's also polite to run w before using write to write a message to someone (we explain this in the
Communication• chapter). Check what your colleague is doing first; it's not nice to interrupt
him in the middle of editing a file, for example.

Revision A of 15 April 1985 1-19

Getting Started Beginner's Guide

0

0

0
1-20 Revision A of 15 April 1985

0

0

0

Chapter 2

Working with Files

This chapter explains how to view your text files and how to do simple operations on them.
First, you need a file to play with. Step through the instructions to prepare the /uar/lib/unit,
system file for the exercises that follow. The /uar/lib/unit, file converts units of measure and is
something of a hodge-podge, but it's interesting to glance through. The instructions do not pro
vide explanations of each command here, but you can always refer to the Command, Reference
Manual if you're particularly curious about something at this point. By the end of this tutorial,
you will be able to look back at this sequence and understand each step.

Remember: If you make a typing mistake, use the 2DEL key to back up and correct the error.
You can also type RETURN to which the system will respond 'Command not found' or
'Unmatched'. You can then retype the command.

1. Be sure you are in your home directory with cd:

tutorial% cd
tutorial% pwd
/usr/evan
tutorial%

2. Use the head command with the -30 line option on the /uar/lib/unit, file, and redirect
it to a file called ,tart.here:

tutorial% head -30 /usr /lib/units > start.here
tutorial%

3. Use the tail command with the -30 line option on the /uar/lib/unit, file and append the
results to the ,tart.here file:

tutorial% tall -30 /usr/llb/unlta >> start.here
tutorial%

4. Use the tr (translate) command to change tabs to spaces in the ,tart.here file so the file
is easier to work with. The sequence of keystrokes here is a little bit tricky; after the
first apostrophe, type the TAB key. This jumps the cursor one tab space, and you can
continue typing in the rest of the command line, putting spaces between the apos
trophes. Here you also create your practice file called playfile:

5.

tutorial% tr '
tutorial%

' ' ' < start.here > pla;yflle

Check your home directory with the la command to see that the playfile is there.

tutorial% la
playfile start.here
tutorial%

The original &tart.here file is there too.

Revision A of 15 April 1985 2-1

Working with Files Beginner's Guide

You are now ready to begin working with a file of text.

2.1. Paging Through a File with 'more'

The more command reads one or more text files and displays the contents a screenful at a time.
Try it on playfile, for instance:

tutorial% more playflle
/ dimensions
m *a*
kg *b*
sec *c*

< etc. >
wey 40 bu
weymass 252 lb
--More-- (47%)

The '47%' message informs you what percentage of the current file's characters has been
displayed so far. A 0% percentage may be displayed if you are looking at a very large file
because more displays only integer percentages.

To display one more line at the bottom of the screen, press the RETURN key. To see the next
screenful, press the space bar. To see the next 11 lines, type 'd' or ·o.
To terminate more, simply type 'q' for 'quit' and you return to the 'tutorial%' prompt:

strike 2 bu
surveyfoot british-ft
surveyorschain 66 ft

< etc. >
Xunit l.00202-13m
k 1.38047-16 erg/degC
--More-- (97%)
<q>
tutorial%

More has options that help you get to a specific line or text pattern in a file. For instance, to get
to line 45 in the file playfile, type:

tutorial% more +45 playflle
tablespoon 4 fldr
teaspoon 413 fldr
tesla weber/m2

< etc. >
weymass 252 lb
Xunit l.00202-13m
k 1.38047-16 erg/degC
tutorial%

To start displaying text at the first line which contains a string, 'circle' for example, type:

2-2 Revision A of 15 Apr\! 1985

0

0

0

0

0

0

Beginner's Guide

tutorial% more +/'circle' playflle
... skipping

degree
circle
slug

11180 pi-radian
2 pi-radian

lb-g-sec2/ft
< etc. >

weymass 252 lb
Xunit 1.00202-13m
--More-- (97%)

Working with Files

This is one of the few instances of prefixing an option with a '+'. As you saw earlier, most
options are prefixed with a'-'.

There is another command, the cat command (for 'concatenate' or join), which also displays a
file on the screen. However, if your file has more than one screenful of data (and yours does, as
it has two workstation screens or 60 lines), it zips off the screen before you can see it. Try using
cat now just to see what it does:

tutorial% cat playftle
< zip!! >

tutorial%

We simply mention cat here along with the other file viewing commands and describe its more
useful capabilities later in Uaing the Shell.

2.2. Browsing Through a File with 'view'

With the more command, you can page through a file by typing the space bar or move through a
file line by line by typing RETURN. When you want to scroll forward and backward through a
file, use the view command:

tutorial% view playflle
/ dimensions
m *a*
kg *b*

< etc. >
span 9 in
spat 4 pi sr
''playfile'' (Read only) 60 lines, 959 characters

Use the following characters to move the screen:

·o scrolls down one half screen
·u scrolls up one half screen
AF moves forward one screenful
·e moves backward one screenful

Remember, the ,., means 'Hold down the CTRL key while typing the letter.'

To exit or 'quit' viewing the file, type ESC:q!, which is echoed at the bottom of the screlm and
returns you to the 'tutorial%' prompt.

Caution:

Do not try any commands not mentioned here with view or you may get stuck in an editor
and be unable to quit it.

Revision A of 15 April 1985 2-3

Working with Files Beginner's Guide

You'll see in Creating and Editing Fi/ea - The 'vi' Editor that the vi editor uses these same
characters.

2.3. Look at the First Few Lines or a File with 'head'

When you need to check the first few lines of a file, use the head command. This is one of the
commands you typed to make the playfile. Head gives you the first ten lines if you don't specify
how many you want. Here let's specify the first three lines, for instance:

tutorial% head -3 playflle
/ dimensions
m •a•
kg •b•
tutorial%

Head also accepts a list of filenames and will then display the first few lines from each with a
special header to indicate the filename. You have two files, playfile and atart.here, so let's use
those.

tutorial% head -4 playflle start.here
==> playfile <==
/ dimensions
m •a•
kg •b•
sec •c•

==>start.here<==
/ dimensions
m
kg
sec
tutorial%

Here you have two separate files, showing the first four (if there are four) lines of each. Each file
has a separate entry and the filename is enclosed in ==> <== as shown.

2.4. Look at the Last Few Lines or a File with 'tail'

The tail command is similar to the head command, but displays the tail-end of the file. Again, if
you do not specify a number, you see the last ten lines. For example, to see the last three lines
of the file, type:

tutorial% tall -3 playflle
weymass 252 lb
Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

Precede the number given to tail by a minus sign to indicate that the last z number of lines are
to be displayed. If you precede the number with a plus sign, tail shows all the lines from that
specified to the end of the file. Note that unlike head, tail does not work on more than one file
at a time.

2-4 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide

tutorial% tail +55 playflle
tun 8 barrel
water .2249112.54 kg/m2-sec2
wey 40 bu
weymass 252 lb
Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

Working with Files

2.5. Counting Characters, Words, and Lines in a File with 'we'

When you need to count the lines of source code in a program or the number of words in a docu
ment, use the we (word count) command. Try it now on your file. For example:

tutorial% wc playflle
60 147 959 playfile

tutorial%

We provides the number of lines, words, and characters in the file. If you only want one of the
three counts, use the -I option to count lines, the -w option to count words, and the -c option
to count characters. Try we with the -w option to count the number of words:

tutorial% wc -w playflle
147 playfile

tutorial%

Playfile has 147 words.

2.6. Searching for Patterns in a File with 'grep'

Grep searches one or more files for lines which contain strings of a certain pattern. Such lines
are said to match the pattern.

Grep looks for a pattern which consists of a fixed character string. It is also possible to describe
more complex patterns, called 'regular expressions.' (Grep stands for 'global regular expression
print,' if that helps.)

To search for a character string, give grep a fixed character string. To find the string 'iii.ch' in
the file, for instance, type:

tutorial% grep Inch playflle
tutorial%

The 'tutorial%' prompt returns for the next command, indicating that there is no match in this
case.

Now try to find the string 'mercury' in the file. Type:

tutorial% grep mercury playflle
mercury 1.33322+5 kg/m2-sec2
hg mercury
tutorial%

0 This shows that there are two such strings in the file.

Revision A of 15 April 1985 2-5

Working with Files Beginner's Guide

Or, if you are not sure which file contains the desired string, scan more than one file at the same
time:

tutorial% grep mercury playflle start.here
playfile:mercury 1.33322+5 kg/m2-sec2
playfile:hg mercury
start.here:mercury 1.33322+5 kg/m2-sec2
start.here:hg mercury
tutorial%

Here you see that grep labels 'mercury' with the name of the file in which the string is contained.

If the filename is not important, suppress it with the -h (omit file header) option. Now consider
the example as:

tutorial% grep -h fuzz playflle start.here
fuzz 1
c 2.997925+8 m/sec fuzz
au 1.49597871+11 m fuzz
mole 6.022169+23 fuzz
e 1.6021917-19 coul fuzz
fuzz 1
C

au
mole
e
tutorial%

2.997925+8 m/sec fuzz
1.49597871+11 m fuzz
6.022169+23 fuzz
1.6021917-19 coul fuzz

This gives you several references to the string 'fuzz'.

When you want to find a specific string and not a lot of extraneous references, type it exactly as
you want to find it. For instance, if you are generally interested in finding references to 'survey',
type:

tutorial% grep survey playflle
surveyfoot british-ft
surveyorschain 66 ft
surveyorslink 661100 ft
tutorial%

You see three words containing the string 'survey'. However, if you want to find the specific
string 'surveyorschain', type that string:

tutorial% grep surveyorschaln playflle
surveyorschain 66 ft
tutorial%

If the pattern you're looking for contains spaces, '2 pi', for example, surround it with quote signs
(') so that it forms one argument.

tutorial% grep 'Z pl' playflle
circle 2 pi-radian
tutorial%

A space is used to separate arguments, so a pattern which also contains spaces must be enclosed
in quotes.

If you want to find all the lines except those that match the string, use the -v (for invert)
option. We'll leave this up to you to experiment with.

2-6 Revision A of 15 April 1985

0

0

o;

I

0

0

0

Beginner· s Guide Working with Files

At times you want to find a string regardless of whether it is in upper or lower case. Use the -i
grep option to 'ignore case'. As the playfile is almost solely lower case, here's an example of
using grep with the -i option to find the string 'boo!' in the file optionaw.c:

tutorial% grep -I boo! optlonaw.c
#define OPT_BOOL 1

case OPT_BOOL: optb_destroy(ip->oi_data);
struct optb_data
optsw_bool(struct optionsw *optsw; int line, left; char *label
optsw_bool(struct optionsw *optsw; struct rect r; char *label;

This finds all the lines containing 'boo!' in either upper or lower case.

Use the -n (number) option to show the line numbers of lines that match the string or pattern,
for example:

tutorial% grep -n fuzz playftle
15: fuzz 1
17:c 2.997925+8 m/sec fuzz
19:au 1.49597871+11 m fuzz
20:mole 6.022169+23 fuzz
21:e 1.6021917-19 coul fuzz
tutorial%

This helps when you are using an editor or some other command to process the file usmg line
numbers.

2.6.1. Regular Expressions in Text Patterns

To search for more complex strings than simple fixed character strings, give grep a pattern (or
template) of the text to search for. For example, you may wish to express a pattern meaning
'find all words ending in ing,' or 'all 4-digit numbers appearing at the end of a line.' When using
grep, such a pattern or template is called a 'regular expression.'

Grep uses certain characters called metacharactera that represent something other than them
selves and have a special meaning. Metacharacters help you define the pattern or regular
expression. We describe these below with examples, but what you need to know now is that
sometimes you may want to use these metacharacters to represent themselves. That is, if you
want to find a string with a dollar sign '$', you need to remove its special metacharacter
significance. ('$' matches the end of a line.) To remove the special significance of metacharac
ters, precede them with the backslash ' \ ' character. In this case then, grep considers the '$'
sign as a dollar sign, rather than the metacharacter that matches a line end.

Also, enclose the regular expression in quotes. Single quotes (') are safest, but often double
quotes (") are sufficient.

2.6.2. Match Beginning and End of Line with ' and$

To match a string at the beginning of a line, use the ,,, character. For example, to find the
string 'fuzz' at the beginning of a line, type:

Revision A of 15 April 1985 2-7

Working with Files

tutorial% grep ··ruzz' playflle
fuzz 1
tutorial%

The ' • ' finds only those lines starting with the word 'fuzz'.

Beginner's Guide

To match a string at the end of a line, use ' $ '. For instance, to find 'fuzz' at the end of a line,
type:

tutorial% grep 'fuzz$' playflle
e 2.997925+8 m/sec fuzz
au 1.49597871+11 m fuzz
mole 6.022169+23 fuzz
e 1.6021917-19 eoul fuzz
tutorial%

The ' $ ' selects only those lines ending with the word 'fuzz'.

Preceding an expression by ' • ' and following it with ' $ ' as in:

tutorial% grep •·ruzz$' playflle
tutorial%

selects only those lines consisting of 'fuzz', and nothing else. This is called an 'anchored match'
because it is anchored at a specific place on a line. Here, grep doesn't find any string to match.

If you put the '·' and ' $ ' characters in places other than the beginning of the pattern, or the
end of the pattern, respectively, they lose their special meanings.

Find blank lines in a file with the expression '· $'. This pattern finds lines which have only a new
line, and no other text. It doesn't locate spaces, tabs or other non-printing characters on the
line. Use it with the -n line number option to specify where those blank lines are:

tutorial% grep •D •·$• playflle
12:
14:
26:
28:
tutorial%

2.6.9. Matching any Character with '.' and '*

Use the period (or 'dot') metacharacter to match any character at all. So the string ' w ... '
selects all strings starting with the letter 'w', and having three more characters. To find such
strings at the beginning of a line, use •·w ... '. To find such strings at the end of a line, use the
expression 'w ... $'. Remember that spaces are counted as part of the string.

As an example, 'w .. .' finds the patterns:

tutorial% grep •·w ... ' playflle
water .2249112.54 kg/m2-sec2
wey 40 bu
weymass 252 lb
tutorial%

To find a real period at the end of a sentence, use the ' \ ' escape character to remove any spe
cial significance. Thus, use the expression 'w ... \.'. The period metacharacter never matches the

2-8 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Working with Files

newline at the end of a line. A consequence of this is that text patterns never match across
lines; they only match within a line.

Use the +2*-2 (star) metacharacter the same way you would use the period to match any string.

2.6.,4. Character Classes with f and J and -

To specify a set of characters, enclose them in brackets, '[]'. This matches any one of the char
acters inside the brackets. The expression ''[abcxyz]' finds all lines beginning with 'a' or 'b' or
'c' or 'x' or 'y' or 'z'.

Use the hyphen character' - 'to specify a range of characters inside'[[', for example ''[a-cx-z]'.
Here are the common regular expressions:

Table 2-1: Common Regular Expressions

Exnression
[a-z]
[A-Z]
I0-91

Translates to
all lowercase letters
all uppercase letters
all di~its

If you are looking for four-character strings that begin with 'l' or 'L' and contain only letters, use
the pattern '[Ll]la-z]la-z]la-z]', assuming that only the initial letter can be in uppercase.

In the example ''[a-cx-z]' note that the ' ' 'metacharacter (match the beginning of the line) is
outside the brackets. If it's inside '[]', it inverts the selection process. So the expression '
['Ll]la-z]la-zl[a-z] ' specifies all four-letter words that begin with something other than 'L' or 'l',
and the pattern ''['a-z]' finds all lines except those that begin with lowercase letters.

It should be emphasized that ranges of characters pertain to the ASCII character set, so that the
pattern '[A-z]' gets you all upper and lowercase letters and the characters J] ' '

This sort of confusion occurs most often when dealing with digits. The pattern '[1-30]' does
NOT mean 'numbers in the range one through 30'; it means 'digits in the range 1 through 3, or
O'. It is the same as a pattern that looks like '[1230]' or '[0-3]'.

If you really wish to include ' - ' in the class of characters, it isn't necessary to escape it so long
as it is positioned such that it won't be confused with a range specification. For example, a
hyphen at the beginning of the pattern stands for itself: [-ab] means the pattern ' - ' or 'a' or
'b'. The same is true for the characters '[' and ']'.

2.6.5. Subsets of Regular Expressions

Here are some possible situations using regular expressions. You can find all but blank lines from
a file by:

Revision A of 15 April 1985 2-9

Working with Files

tutorial% grep -v •·$• playflle
/ dimensions
m *a*
kg *b*

< etc. >
k 1.38047-16 erg/degC
tutorial%

Beginner's Guide

The regular expression ,.$, finds all the blank lines, and the -v saves all the other lines and
ignores the blank lines. This gets rid of lines that are really blank.

You can delete the apparently blank lines as well, with:

tutorial% grep -v •· *$' playflle
/ dimensions

kg *b*
< etc. >

k 1.38047-16 erg/degC
tutorial%

The regular expression says, in effect, 'look for a beginning of line, followed by any number of
spaces (including no spaces), followed by an end of line.'

If the apparently empty line contains tabs as well as spaces, replace the simple space in the
above regular expression with an expression that says 'space or tab', shown here by the 'T
which means type ·1. This is the tab character, or TAB key. You used this tab character with
the tr command to set up the playfile. Your screen shows: .. [J *$.

Also add the -n option to list the line numbers of the blank lines.

tutorial% grep -n •·[·1)*$' playflle
12:
14:
26:
28:
tutorial%

2.7. Sorting Text Files with 'sort'

To order the contents of a file alphabetically or numerically, use aort. There are many options
which control the sort order. The most useful are described here. For more details, refer to the
aort utility description in the Command, Reference Manual for the Sun Workstation.

Sort does not expect fields on a line to appear in a fixed columnar layout. It just works on fielda,
which are normally separated by spaces or tabs (you can specify any field-separator you want).
This provides a typewriter oriented approach, rather than the historical punched card orienta
tion.

Create a file with a random list of classical music composers and their birthdates by typing the
following:

0

0

cat Franz Haydn 1732 Franz Schubert 1797 Gustav Mahler 1860 Johannes Brahms 1833 W~

2-10 Revision A of 15 April 1985

0

0

0

Beginner's Guide

Gustav Mahler 1860 Johannes Brahms

tutorial% sort composers
Franz Haydn 1732
Franz Schubert 1797
Gustav Mahler 1860
Johannes Brahms 1833
Wolfgang Mozart 1756
tutorial%

Working with Files

1833 Wolfgang Mozartl 756 Sort it as follows:

Sort orders and displays the list alphabetically by first names. You can tell •ort to sort on the
last name too. Each line in the file is considered to consist of fields, the fields being separated by
spaces. To get your file in order of last name, tell the program to skip one field, the first names,
and then start sorting:

tutorial% sort +1 composers
Johannes Brahms 1833
Franz Haydn 1732
Gustav Mahler
Wolfgang Mozart
Franz Schubert
tutorial%

1860
1756
1797

This works as long as there are only two fields, and no middle initials, for example. Plan your
sort accordingly to account for the number of fields. See the Commanda Reference Manual page
on aort for more details.

For numerically ordered sorting in this example, skip two fields before starting to sort. Type:

tutorial% sort -b +21 composers
Franz Haydn 1732
Wolfgang Mozart 1756
Franz Schubert 1797
Johannes Brahms 1833
Gustav Mahler 1860
tutorial%

The -b option tells •ort to ignore blanks in all fields on the line. Without this option, each field
is considered to start immediately after the end of the previous field, so the spaces between the
last name and the birthdate count as part of the birthdate. Also, aort considers ASCII charac
ters, and the character for space has a lower value than any of the characters for the digits 0
through 9.

To restrict the effect of ignoring blanks to only the numeric field, use the b option in this way:

tutorial% sort +Zb composers
Franz Haydn 1732
Wolfgang Mozart 1756
Franz Schubert
Johannes Brahms
Gustav Mahler
tutorial%

1797
1833
1860

Here the +2b is called a 'flag,' rather than an option, and gives the same results as before. How
ever, in other situations, you will use one or the other depending on the desired results.

If you need to sort a file by numbers that do not have the same number of digits, tell aort that
the charaFranz Schubert 1797 Gustav Mahler 1860 Johannes Brahms 1833 Wolfgang
Mozartl 756cters in the field are to be treated as numbers, and to sort according to the

Revision A of 15 April 1985 2-11

Working with Files Beginner's Guide

arithmetic values of those numbers. Add the letter n (for numeric) after the number of the
fields skipped before the field that is to be treated in this way:

tutorial% oort +2n +1 oymphonles
Johannes Brahms 4
Gustav Mahler 9
Franz Schubert 9
Wolfgang Mozart 41
Franz Haydn 104
tutorial%

Using the numeric option implies that spaces are ignored, so you don't have to use the b option.
Mahler and Schubert composed the same number of symphonies, and they are listed in alphabet
ical order by ordering that field (by + 1).

To tell aort to reverse the order of sorting of a field, add the letter r (for reverse) after that field:

tutorial% oort +2nr +1 oymphonle1
Franz Haydn 104
Wolfgang Mozart 41
Gustav Mahler 9
Franz Schubert 9
Johannes Brahms 4
tutorial%

Reversing the sorting order with r is not restricted to numeric sorting, although that's where
you'll usually use it.

0

To save the output in a file, use the -o (for output) option followed by the name of the file that
is to contain the output. You can give all the filenames to join sorted files. Q
And if your input files are already sorted, you can simply merge them by using the -m (for
merge) option. Refer to the Commands Reference Manual for more details on these options, and
then experiment with them.

The -m option saves •ort some work by indicating that the files are already sorted, and need
only be merged.

You can also get rid of possible duplications of names in files with the -u (for unique) option.

Normally •ort assumes fields are separated by spaces or tabs, but they can be separated by
something else. Use the -t option to tell •ort this. For example:

tutorial% oort -t: +5 /etc/puowd
tutorial%

sorts the /etc/pa88wd file, which uses the colon character':' as its field separator.

2.8. Finding Differences Between Files with 'diff'

When you need to tell what differences there are between one version of a file and another, use
the diff utility. For example, if you want to find the new ski team members between last year's
and this year's lists, type:

2-12 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide

tutorial% dlff eklteame.8Z eklteame.83
2c2
< Shelley Curtis

> Norman Travers
7d6
< Harry Cuthbertson
lOalO
> Karen Stevens
tutorial%

Working with Files

This indicates that there are three changes to the file. The second line has changed ('2c2'), but
it is still the same line number. The first file (or old version of the line in this case) is preceded
by a'<', and the second file (the new version in this case) is preceded by a'>'. The '7d6' shows
that line 7 of the original file has been deleted. And 'lOalO' indicates the third change, the addi
tion of a new line after line 10 in the original file.

Try the diff command on your two files, playfile and ,tart.here:

tutorial% dlff playflle start.here

The results zip off the screen pretty quickly (we'll explain how to manipulate that display for
examination later), but you see that there are lots of differences. Try the Jiff command on some
other files and interpret the results.

There are several options to the diff command that you should read about in the Command,
Reference Manual.

Revision A of 15 April 1985 2-13

0

0

Qi

0

0

0

Chapter 3

Using the Shell

You have seen how the Shell is the interface between you and the various Sun system com
mands. Here we describe some more Shell facilities that you should experiment with to do your
tasks. There is also a description of how to use Sun Windows to facilitate working on several jobs
at once in the window system.

3.1. Redirecting standard input and standard output

When you run a program on the Sun system, it usually expects some input (data) and produces
some output (results). This input or atandard input is the place from which a program expects to
read its input, usually your keyboard. The output or atandard output is the 'file' to which the
program writes its results, usually your workstation screen.

You can change these defaults by telling the Shell to take the standard input for a command
from a file, or to write the standard output of a command to a file. This process is called
'redirection' and uses those '>' and '<' characters you saw in some of the examples in the
chapter on Working With Fi/ea.

You can also take the standard input of a command directly from the standard output of another
command, and similarly to direct the standard output of one command straight to the standard
input of the next command. This feature is called piping, and a string of commands hooked
together in this way is called a pipeline.

If a filename argument to a command is prefixed by the '>' character, the standard output of
that command is redirected to that file instead of going to your workstation screen. For exam
ple, the la command displays a list of the directory contents on your workstation screen, but if
you use '> filea' as a redirection indicator, the command line puts the contents listing of the
current working directory into a file called file•, which is placed into the current directory. Try
this now from your home directory as indicated in the following example:.

tutorial% cd
tutor !al% lo -I > flleo
tutor !al% lo -I
total 202
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan

tutorial%

0 Aug 6 14:03 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

You can also see that your directory now contains three files, playfile, .tart.here, and filea, which
contains the long la listings of all the files. If the named file to which output is redirected doesn't
already exist, it is created.

Revision A of 15 April 1985 3-1

Using the Shell Beginner's Guide

You can now view the file at your leisure, or change it around for any useful purposes of your
own. Look in your new filea file with the more command:

tutorial% more files
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
tutorial%

0 Aug
959 Aug
959 Aug

6 11: 40 files
6 11:20 playfile
6 11:18 start.here

You have your current directory listing, including filea, which is created before the command
runs.

Caution:

if the file to which you redirect the standard output already exists, the previous contents of
the file are lost! The C-Shell has a noclobber variable that you can set to prevent this from
happening. Read about this in the cah description in the Command• Reference Manual.

If you don't want to lose the contents of an existing file, but want the output of a command
appended to the end of it, prefix the filename with two right chevron signs'>>'. You used this
notation before to prepare playfile. As another example, type:

tutorial% pwd >> files
tutorial% more flleo
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan
tutorial%

0 Aug
959 Aug
959 Aug

6 11:40 files
6 11:20 playfile
6 11:18 start,here

which prints the name of the current working directory at the end of the contents listing of the
directory.

In many ways'>>' is safer to use than'>' because it doesn't destroy previous information.

Just as the '>' character or the '>>' sign redirects the standard output of a command to a file,
you can redirect the standard input for a command to come from a file, instead of your worksta
tion keyboard. Prefix the file name with a left chevron sign'<'. For example:

tutorial% mall< gosalp
tutorial%

takes mail messages from the file go••ip, created previously by an editor.

You'll use redirection of output more often than redirection of input because a lot of commands
are designed to take their input from files anyway.

If you do not specify any files, commands use the standard input. The cat command, which we
mentioned briefly in Working with Fi/ea as a file viewing command, is one:

3-2 Revision A of 15 April 1985

0

C

0

0

0

0

Beginner's Guide

tutorial% cat
Type what you want here.
Cat then displays It on the standard output,
your workstation screen.
·n
Type what you want here.
Cat then displays it on the standard output,
your workstation screen.
tutorial%

Typing a 'D tells cat that you have finished.

Using the Shell

There are many commands which only act on the standard input, that is, what you type at your
keyboard. If you want these to work on a file instead, you have to redirect the input to be from
that file; for instance:

tutorial% cat < flle1
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/usr/evan
tutorial%

0 Aug 6 11:40 files
959 Aug 6 11:20 playfile
959 Aug 6 11:18 start.here

concatenates the contents of the file called filea to the standard output.

Also consider the tr (translate) command, which you can also redirect to operate on a file as
input instead of the standard input:

tutorial% tr a-z A-Z < flies > FILES
tutorial% more FILES
·RW-R--R-- 1 EVAN
-RW-R--R-- 1 EVAN
-RW-R--R-- 1 EVAN
/USR/EVAN
tutorial%

0 AUG 6 11:40 FILES
959 AUG 6 11:20 PLAYFILE
959 AUG 6 11:18 START.HERE

As you saw above, the cat command can use the standard input or, with redirection, a file as
input. What cat really does best is indeed what it says, it 'concatenates' or joins files with the
appropriate redirection. For example, to join two files, filea and playfile, to form a third file
meu that contains both, type:

tutorial% cat files playflle > mess
tutorial% more mess
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
-rw-r--r-
/usr/evan
/ dimensions
m *a*

< etc. >

1 evan

Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

0 Aug
959 Aug
959 Aug

6 11:40 files
6 11:20 playfile
6 11:18 start.here

You then have the meu file that contains filea followed by playfile.

Revision A of 15 April 1985 3-3

Using the Shell Beginner's Guide

To add one file to the end of another, use cat and the double chevron redirection symbol'>>'.
If you want to add the contents of playfile to the end of file•, type:

tutorial% cat playflle > > flle1
tutorial% more flle1
-rw-r--r-- 1 evan 0 Aug

959 Aug
959 Aug

-rw-r--r--
-rw-r--r--
/usr/evan

< etc. >

1 evan
1 evan

Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

6 11:40 files
6 11:20 playfile
6 11:18 start.here

You then have two files, the original playfile file and a new filea file that contains filea followed
by playfile.

Caution:

Be careful that you do not use the same filename when redirecting both standard input and
Standard Output. The first thing that happens when you use '>' is that the file it points to
is created. If that file already exists and if there's something in it, the contents are lost. For
example:

tutorial% cat< now> then
tutorial%

works, but in the following cases, the files are clobbered:

tutorial% cat < thlsdata > thlsdata

or

cat: input - is output
tutorial%

tutorial% cat thlsdata > thledata
cat: input thisdata is output
tutorial%

The cat command warns you with 'cat: input - is output' that something is wrong, but con
tinues to overwrite or clobber your file anyway. Another such problem occurs if you try:

tutorial% cat ab> B
tutorial%

which clobbers b before running cat. See the cah 'noclobber' option to prevent this.

3.2. Connecting Processes with Pipes

You can run the standard output of one process (or program) as the standard input of another
process when you form a 'pipeline.'

Using the we and who commands, and the T (vertical bar) 'pipe' symbol, find out how many peo
ple are logged in:

3-4

tutorial% who I wc -1
1

tutorial%

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Using the Shell

Here who feeds its standard output to the standard input of the wc command, which counts lines
with the -1 option. And yes, that number 1 is you, if you are the only one on your system.

A pipeline is a flow of data that several programs (or processes) operate on in turn. If you write
the sequence:

tutorial% ls -1 /usr I grep evan I sort +3nr I !pr
tutorial%

you have a string of connected commands or a 'pipeline.' The standard output of the command
to the left of the 'I' becomes the standard input to the command on the right of 'I'.
Here the long la listing of files and subdirectories in /uar is passed to the grep command instead
of to the default standard output, the workstation screen. Grep selects all lines containing the
string 'evan' from its standard input, and aort sorts the fourth field of all those selected lines in
reverse numerical order.

Lpr routes its input to a printer, so you get a print-out instead of seeing the results on the
screen. This, in fact, is the most common use of piping. Since all commands except /pr provide
output to the standard output, the only way to get a hard copy print-out of a file at the end of
such a pipe sequence is to pipe it to /pr.

You can type all the commands in the pipeline one at a time, but here the system does all the
intermediate work for you, and it's much quicker because you don't have to wait for each com
mand to finish.

Some commands are special. La does not accept the standard input because its 'input' is a direc
tory whose contents are to be listed. You can only use la as the first command in a pipeline.
The /pr command does not write to the standard output, instead its 'output' is to a printer some
where. You can only use /pr as the last command in a pipeline.

You can use both redirection of input and output with pipelines.

3.3. Controlling Jobs

Because the Sun operating system is a multi-tasking system, you can run more than one job or
'process' at a time. You can manipulate your jobs by running them in either the foreground or
the background, stopping, suspending, or killing them as we describe below.

3.3.1. Foreground and Background Processes

You saw what processes are running with the pa (process status) command. Everytime you ask
the Shell to run a command, it runs that command as a separate process. The processes which
converse with your workstation are called 'foreground' processes because they are in the fore
ground of your attention. Normally, each command you type, or each pipeline of commands,
runs as foreground processes, and they run at your workstation 'while you wait.' Each window on
your screen represents at least one foreground process.

This couid mean a lot of waiting for processes to finish, so you can also run commands in the
'background.' Your system prompt re-appears immediately after you type the command, and you
can continue with another task while it completes. This is particularly useful for commands that
take a. long time to run.

Revision A of 15 April 1985 3-5

Using the Shell Beginner's Guide

9.9.1.1. Running Job• in the Background with '&'

To run a command in the background, type an ampersand '&' at the end of the command and 0
its arguments:

tutorial% sort flleo &
[1] 2042
tutorial%

The '[1]' is the job number and the '2042' number reply is the PID (or process identity number
you saw earlier with the pa command) that the operating system associates with the command
you typed. Sometimes the process you put in the background calls up other processes which you
don't know about, but only the number for the primary (or parent) process is shown when you
type the command. In this example, aort displays the sorted filea files on your screen.

You can then type another command to have the Sun system doing several things for you at the
same time. Or you can log off, and the background command continues running.

Avoid having too many things going on at the same time; your system has to play ringmaster in
your multi-ringed circus, so it might end up taking just as long to complete all your tasks as if
you had done them one by one at the keyboard waiting for the prompt each time in the fore
ground.

Caution:

if your background process is taking input from a file, don't start another command, either
in the background or in the foreground, which will modify the contents of that file. Results
can be unpredictable.

To ensure that your output goes to the right place and is not mixed up with other files or lost, 0
redirect the output of the background command to a file:

tutorial% sort flies > files.sorted &
[1] 2043
tutorial%

Now the output of your background command will not disturb you when you execute commands
in the foreground. And you can view it at your leisure with more:

tutorial% more files.sorted
-rw-r--r-- 1 evan
-rw-r--r-- 1 evan
/ constants

< etc. >
way 40 bu
weymass 252 lb
tutorial%

959 Aug
959 Aug

Or you can pipe the results to the printer:

tutorial% 1ort flle1 i lpr &
[1] 1043 1044
tutorial%

3-6

6 11:18 start.here
6 11:20 playfile

Revision A of 15 April 1985

0

Beginner's Guide Using the Shell

3.3.2. Stopping and Resuming Jobs

0 If you start a foreground job, you can stop it temporarily with a ·z and resume it later:

tutorial% apell pla;yflle > mlapell

0

0

·z
Stopped
tutorial%

If you put a job in the background, you can stop it with a atop command:

tutorial% aort playflle &
[2] 2345
tutorial% atop %2
[2]+ Stopped (signal) sort playfile

You need to type the job number prefixed by the '%' after the atop command to indicate which
job to suspend if you're running more than one. You can resume a stopped job later as you'll
learn in Bringing Joba to the ForeGround.

3.3.3. Placing Jobs in the Background

If you start a job in the foreground, and then decide you want to work on something else while it
is completing, use the following sequence:

tutorial% spell playflle > mlapell
·z
Stopped
tutorial% bg
[1] spell playfile > mispell &
tutorial%

Here you start running the apell utility, which finds those ubiquitous spelling errors, then you
decide to work on something else, and stop it with ·z. Typing bg then puts that job in the
background for completion.

3.3.,t. Bringing Jobs to the Foreground

If you put a job in the background, and then decide you need it back in the foreground, use the
following sequence:

Revision A of 15 April 1985 3-7

Using the Shell

tutorial% spell playflle > mlspell &
[1] 321
tutorial,:: ls -F > mydlr &
[2] 322
tutorial% who i we
·z
Stopped
[3] 323 324
tutorial% jobs
[1] - Running
[2] Running
[3] + Stopped
tutorial% fg %2
ls -F > mydir
tutorial,:: more mydlr

spell playfile > mispell
ls -F > mydir
who I we

Beginner's Guide

Typing the joba command displays a job table to remind you which job is which. It also gives
you the status: '+' for the current job and '-' for the previous job.

The fg 'foreground' command brings the background job la -F to the foreground. Note that to
bring a particular command to the foreground, you precede the job number with the '%' sign.
Note that you can also type the command you want to bring to the foreground; that is, in this
example '%ls' would mean the same thing as '%2'. You only need to type a unique part of the
full command, hence the Is, and not the whole sequence.

You can also use fg to restart a job previously suspended with "Z'.

3.3.5. Killing Jobs and Processes with 'kill'

If you start a command running in the background, and then change your mind for some reason,
you can stop the process with the kill command and the PID. Don't forget that you can also
interrupt a running command with ·c.
From the other example, we got a procces ID of321. To kill it you type:

tutorial% spell playflle > mlspell &
[1] 321
tutor !al% kill 3:U
[1] Killed spell playfile > mispell
tutor.ial,::

You can also type kill %1 to kill the process running as job number 1.

A process can use several subprocesses called children. To kill them one by one may take some
time. To stop them all, find the subprocess' P!Ds with the pa command and stop them all with
the same kill. Some processes are clever enough to ignore the stop signal number that the sys
tem sends them. If this is the case, but you really want to kill a certain command, type:

tutorial% kill -II 321
[2] Killed spell playfile > mispell
tutorial%

The signal number 9 is a sure kill signal option. You can also use kill 0, to kill everything that's
either running in the background or stopped.

3-8 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Using the Shell

3.4. Recalling Previous Commands with 'history'

The C-Shell has a built-in history mechanism to keep track of some number of the commands
you type. This is handy for re-executing long commands and for changing parts of and re
executing previously typed commands,

You determine the number of commands by setting a variable called 'history' in your .cshrc file
with an editor:

set history=30

After reading the chapter on the editor, come back to this part and create a .cshrc file with the
hiBtory option. A typical display from the history buffer is:

tutorial% history
1 ls -1
2 cd /intro/lessons
3 history

tutorial%

Here you clearly have not been logged on very long because you've only typed three commands.
Note that the history command also appears as the last command.

If the 'history' variable is set to 30, the history command displays the last 30 commands you
typed during the current login session.

The first thing to look at is correcting the previous command. If you mistype something, such as
changing directories, and get the 'No such file or directory' message, you don't need to retype
the whole cd command and pathname. Simply use the ,., character to bracket the incorrect and
correct spellings and make the substition as follows:

tutorial% cd /usr /evan/lntro/lesons
/usr/evan/intro/lesons: No such file or directory
tutorial%

To correct this 'lesons' typo, type:

tutorial% ·1esons·leHon1·
cd /usr/evan/intro/lessons
tutorial%

or even Just:

tutorial% ·,o·sso·
cd /usr/evan/intro/lessons
tutorial%

History echoes the command it is executing.

The ,., characters act as delimiters to surround the two strings. The first string is the thing you
want changed. The second string is the thing you want to change it to. The corrected command
is echoed back at you.

Use the history facility to see what happened to the commands:

Revision A of 15 April 1985 3-9

Using the Shell

tutorial% hlotory
1 ls -1
2 cd intro/lessons
3 history
4 cd /usr/evan/intro/lesons
5 cd /usr/evan/intro/lessons
6 history

tutorial%

Beginner's Guide

The two cd commands from the examples above, the erroneous one and the corrected one, now
appear in the history buffer.

To run the previous command again, simply type:

tutorial% !!
history

1 ls -1
2 cd intro/lessons
3 history
4 cd /usr/evan/intro/lesons
5 cd /usr/evan/intro/lessons
6 history
7 history

tutorial%

To avoid typing out a long command line that you have run previously, type an exclamation
mark in front of a unique number of characters from the previous command. For example,
assume you want to re-run the cd command noted before. Use the '!' character and cd to ask
the She II to search backwards through the history file for a command beginning with the letters
'cd'.

tutorial% !cd
cd /usr/evan/intro/lessons
tutorial%

You don't have to to type the whole command name, just enough of the previous command to
make it unique. So you can also type the cd command like this:

tutorial% !c
cd /usr/evan/intro/lessons
tutorial%

and it will do just as well.

If you ask for a command that the Shell cannot find, an error message is displayed:

tutorial% !xd
xd: Event not found.
tutorial%

You can also refer directly to a previous command in the history file, by typing the exclamation
mark followed by the number of the command in the history buffer. For example, you can re
run command number 1 in the buffer like this:

3-10 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

tutorial% !1
ls -1

< output from the Is command >
tutorial%

The number must immediately follow the exclamation mark.

Using the Shell

Another version of 'repeat a previous command' is to use the dollar sign '$' to refer to the la.st
argument of the previous command:

tutorial% mv /usr/evan/lntro/leHons/notea extra
tutorial% pr!$llpr
pr extra I lpr
tutorial%

As well a.s simply repeating a previous command, you can make changes to the command at the
same time. Consider the history buffer after the la.st few changes:

tutorial% history
1 ls -1
2
3
4
5
6
7
8
9

10

cd intro/lessons
history
cd /usr/evan/intro/lesons
cd /usr/evan/intro/lessons
history
history
cd /usr/evan/intro/lessons
cd /usr/evan/intro/lessons
ls -1

11 mv /usr/evan/intro/lessons/notes extra
12 pr extra I lpr
13 history

tutorial%

You can see the substitutions that were made in previous commands.

Assume that the file you want to move from Evan's directory wa.s actually the data file, not the
notea file. To avoid all the tiresome typing of the whole pathname again, use the Shell substitu
tion capability:

tutorial% !11:a/notes/data
mv /usr/evan/intro/lessons/data extra
tutorial%

3.5. Substituting with 'alias'

The Shell also provides a method of making shorthand names or aliaaea for frequently used but
long-winded commands.

Assume that you are updating a series of plans for a large software project. Each plan and its
related meeting minutes are in a separate directory named /miac/maater/project/ documenta.
The la.st element in the pathname is plana for project plan A, planb for project plan B, and so
on. Instead of typing these long pathnames everytime your group makes changes in a plan,
define an alia.s in your .cahrc file in your home directory:

Revision A of 15 April 1985 3-11

Using the Shell Beginner's Guide

alias plana cd /misc/master/project/documents/plana
alias planb cd /misc/master/project/documents/planb
alias plane cd /misc/master/project/documents/plane
alias pland cd /misc/master/project/documents/pland
alias plane cd /misc/master/project/documents/plane

Now you have some new commands, so all you have to do to change directory to one is type:

tutorial% planb
tutorial% pwd
/misc/master/project/documents/planb
tutorial%

You don't even have to define five separate alias lines; one suffices if you use '\!$':

alias plan cd /misc/master/project/documents/plan\!$

The '\!$' notation refers to the last argument typed on the command line. The ' \ ' (escape)
character prevents the '!$' from being expanded until a plan command is actually typed. Now
you can change to the plane directory like this:

tutorial% plane
tutorial% pwd
/misc/master/project/documents/plane
tutorial%

The C-Shell constructs plane out of the argument you typed, e, and the plan that was defined in
the alias.

3.6. Using Sun Windows

To use Sun Windows, you must have / u,r / bin in your path in your .login file in your home direc
tory, Your .login file might look something like:

setenv EXINIT 'set noai wrapmargin~S'
set path=(./ /bin /usrfbin /usr/local /usr/localfbin /usr/ucb /etc /usrfhosts)
set mail=(lO /usr/spool/mail/$USER)

To create the appropriate devices, set your userid to root, change directory to / dev, and run the
Shell script MAK.LEV on winO and mouae. That sequence is:

tutorial% au
Password:
tutorial# cd /dev
tutorial# MAK.LEV wlnO
tutorial# MAK.LEV mouse
tutorial# ·o
tutorial%

You are then ready to use Sun Windows. To start, type:

tutorial% auntoola

Your workstation screen turns grey and the arrow cursor that tracks the mouse motions appears
in the upper lefthand corner. You always have one window open called the Root Window, which
contains the grey pattern you see on the screen now. This grey is the background for the

3-12 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide Using the Shell

auntoola environment.

You may have to circle the mouse on the pad several times in large, slow circles to orient it
properly or to make the cursor to appear. The long side of the mouse should be parallel to the
short side of the mousepad.

To display a window, press the right or menu button on the mouse. You see the Root Manager
menu similar to:

Root Me:r
New Shell
New Graohics
Exit
Redisolav All

Move the cursor to the New Shell box and release the button. You'll note that the item you
select shows in reverse video.

We use the word curaor here to mean the arrow that tracks the mouse movements. In general,
pressing the button displays a menu. Move the cursor over a menu item then release the button
to put the specified item into action. When we say Prea,, we mean press the button and hold it
down until you have positioned the arrow cursor at the desired place. Sometimes all you need to
do is click the button, that is, press and release it immediately. We will make the distinction
when necessary because the effects are different.

A window appears on your screen:

Figure 3-1: Sample Window

You can now use the window for whatever purpose you need, executing Shell commands or edit
ing a file for example.

Revision A of 15 April l 985 3-13

Using the Shell Beginner's Guide

You'll note that you have to keep the cursor in the window area to do work. Ir you move it to
the grey area and try to type a command to the shell, for instance, nothing happens.

3.6.1. Working with Windows - the Tool Manager

There are several functions you can perform that facilitate your work, such as moving windows
from one place to another, closing one down into its icon image, or uncovering an overlapped
window. For these you'll use the Tool Manager menu. Move the cursor onto the window's
namestripe or one of the window's borders. Now press the right mouse button, and select what
you want to do on the Tool Manager menu:

Tool M1<r
Close
Move
Stretch
Expose
Hide
ReDisnlav
Ouit

To shrink a window tool to a small icon in the corner of the workstation screen, you use the
Clo.e function. The processes continue to run even though the window is closed.

0

To move or stretch a window, position the cursor in the name stripe (the black border at the top
of the window) or on an outer window boundary, and invoke the Move or Stretch function. In Q.
these cases, additional action is required. You are prompted on the screen with:

Press the left or middle button near the side or corner you
wish to drag and hold the button down while dragging the
bounding box to the location you want; then release the
button. To cancel nress the ri~ht button now.

To bring to the front of the window stack or expoae the overlapped windows, use the Expose
item. This brings the specified window to the front. Hide puts a window on the bottom of the
stack.

ReDisplay repaints a window in case something was written over it. If several of the windows
are been written over, use the Root Manager menu ReDisplay All to redraw all the windows
you have open.

To reopen a closed window, position the cursor over the icon shell and use the Open function.

There are faster ways to do several of the above maneuvers. We describe them in Quick Tool
Manager Function,.

Use Quit to terminate a window.

3-14 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide

You can change your mind, as the screen shows:

Press the left mouse button
to confirm Quit. To cancel,
press the right mouse button
now.

Using the Shell

To get another window, simply position the arrow cursor on the grey area and press the right
button again to call up the Root Manager menu to create a new Shell. The new window will
overlap the first as shown:

on top<, •)'OU< o<o ""'"""' n ot .. tor \O «OotO , .. ,_,.,
1< c,n oo, .. ,,, bo ,,..<od by &!'I\'...,,._. '"''"'"'""' .,,,...,.,. oo tno , .. _ •• , .. _,oup.

• tho""""''""" ,, od >'Id ... 11, , bHn ,,,.to<!,
'-9'°'"' ,. ,,.,hblo to, ,\1 '"'"'"'t<I P'"""' to poot to .

. H2"U.or!otorloeoo•

• .. m.,..,in, .. ,..,,""
fop,og, .. 1,, .. la.:ottptH"""'°'"" .. "·'""''•

il<dtooh)'OoodWt1to\1""",.outotypo
'::!::'~''"'""'O!'"""''ll""lngyoutouooom,,.ntc""''""rfoeoo

• \",IP\(bo
.\".\"thedof...,ltlntorfocodoocrtbed,oo,,to'""''''"'"'"'•
.\"oioic>.fngtl'!eotyloofU..O.,kol.,\f..,;o\fPo•OO•""·
.\"h, .. oyou1f)'OU...,,tt.horootoft,..•ougo,1t.,
.1•01001 .. <ngthot>o><!er •
. IP \10\·"fP 1'

\U\-clfP option 0,.,,1,,.. tno tho """'" """II'• hndo, ond >ooy,
··-·· ,.,,. ,go.
·-""""''""'"'"'"'-"'"°Rlll''"'"'"''· tit 1, 11,,,01.,..., .. ,, to<1ntho '\f~·lfP' oufl!x

,~,i::;~•::·~,;~;:-~·~~~~;~~11-.,\fP '""''"'"·
tn\••'""• bocouoo lt •<•tco \ho \s-MI,\o9 p,og,,. of,.,,
• IP \llootl\fP
"' lflootl\fi' <aio,,oc,, ,v,tlo~I• w1th ,.,
fl!\-IO\fPopt1on. '""""-" '"' \flootl\lP
,ao••d".ctly, ono"o11o.o,outo,,,a
!t.ht.hO ,_..,,,,,ou,pdootl.
h1• 101.0,foct aay not..,.._ oo \l<'<Jf ayot• - it nq .. !rH, *""""I vora!on of ••il wl\h,
fl!\-1\fi'0,,'100.)
,\".IP\(bo

·'"'"""'--··''""~'"" .,·,11"""°"'°"'""'""''"-"''"''11
!P\(bo H)'Ol>rfo..,,..1to•ot1.,.., .. .,,01nto,f,co,

lnellldiog/Oln/aotl""' ••11

·'"atll·•""""'· -..oo"ll9511"''•S782Zchoro<toto
,111 .. ,21,1, ,,11,
'""""''"· .. . _ ""·"' glo.,,M -•.<,,fd<tof.•• _,,... , .. , .,.,,... ..,,."'''""·"'

'"""""""·- -···· &1\10<128,oc,-llp•·Plw·•

Figure 3-2: Overlapping Windows

You can start something in one window, then move the mouse to another window, and type or
use the mouse again without waiting for whatever you started in the first window to complete.
You can also of course expose, bide, move windows, and so on to make the arrangement
appropriate to whatever you are working on. In this figure we are editing a text file with one
shelltool and listing a directory contents with the other. Both have been moved from their
default positions to show more of the text.

You will usually use the mouse buttons like this:

• 1.eft - selecting objects

• middle - adjusting selections to more or fewer objects

• right - invoking menus

If you change your mind after calling up a menu and indicating a function, simply move the
arrow cursor off the menu and release the mouse button to cancel the command.

Revision A of 15 April 1985 3-15

Using the She II Beginner's Guide

3.6.2. Copying Text

When you want to copy some text from one place to another in the same window or from one
window to another, position the cursor at the start of the text you want to copy and click the
left button. A small box marks the spot. The text within the box displays in reverse video.

Reposition the cursor at the end of the text and click the middle button to expand the box
around the body of text you want to copy.

Now position the arrow cursor in the window where you want the text to appear at the spot
marked by the regular cursor. Press the right button, indicate Stull' with the arrow cursor and
release the button.

The text is copied to the new position:

Selection
Stuff

11" , •• ;,, ..,.., •

Figure 3-3: Copying Text

Here we have copied a cd command to avoid having to retype the long directory name. You can
of course also copy blocks of text within an editor.

Note: You must be in insert mode to copy text if you are editing a file with the vi editor.
Beware that if you copy a shell command that includes a carriage return, your new line will be
executed immediately as it will contain that carriage return too.

Practice copying text a few times to learn the button sequence.

3-16 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Using the Shell

3.6.9. Quick Tool Manager Functions

You can quickly invoke several of the tool manager functions without having to bring up a menu
by simply pressing one of the mouse buttons with the mouse cursor in the appropriate spot.
These acceleratora are described in the following table:

Table 3-1: Quick Tool Manager Functions

Function
Open an icon

Move a window or an icon

Expose a window

Help

Insert text

How to Dolt
Click the left button with the cursor over the icon

Press the middle button with the cursor in the tool
window's name stripe or outer boundary

Click the left mouse button with the cursor in the
name stripe of the window you want to expose

Type a question mark with the cursor in the name
stripe of any window to display a message describ
ing possible actions

Hold down the SHIFT key on your keyboard while
clickin" the ri.,ht mouse button to insert text.

If nothing happens, recheck the cursor position to be sure it is in an appropriate place - on a
name stripe, border, or icon.

9.6.4, Simple Graphics Demos

Now try some sample graphics. Call up the New Graphics tool window through the Root
Manager:

Try the bouncing ball demo bouncedemo:

tutorial% cd /uer/demo
tutorial% bouncedemo

Use ·c to stop the demo.

Also sample the simulated cruise through the galaxy jumpdemo:

tutorial% cd /usr/demo
tutorial% Jumpdemo

For information on more graphics tools, refer to the Command, Reference Manual on auntools.

9. 6. 5. Quitting Sun Windows

To leave Sun Windows, use the Root Manager to Exit. This closes all windows and terminates
the associated processes.

Revision A of 15 April 1985 3-17

Using the She II Beginner's Guide

Caution:

Be sure you complete everything before you start exiting SunWindows, especially any files
you are editing. All processes left running are terminated without warning.

9.6.6. Customizing Sun Windows - the .suntools File

If you want several application programs or tool, to start up automatically when you type sun
tools, put a .auntoola file in your home directory. The .auntoola file works a lot like the .login
file; it starts several processes in motion as soon as you type suntools.

If you want a .auntoola file now, you can either learn how to create and edit a file to make your
own by reading ahead to Creating and Editing Text Fi/ea - the 'vi' Editor or by reading ahead
to Copying File, from Other Syatema with 'rep' in Communcationa. This latter section provides
details on how to copy a file from someone else's machine to your home directory. The latter is
perhaps the easier of the two methods. In either case, exit SunWindows then reenter SunWin
dows for the new .auntoola file to go into effect. The command sequence for copying someone
else's file is:

tutorial% cd
tutorial% rep angel:/usr /henry /.suntools
tutorial%

Here is a sample .auntoola file for a Model 100/150 you may want to copy:

clocktool 680 10 334 60 960 0 64 64 1
shelltool 10 O 732 792 960 672 64 64 o
shell tool 680 80 334 410 960 736 64 64 1 -c

This automatically makes an open shelltool window, and puts a working clock and a console win
dow represented as icons on your screen.

3-18

. .. : .
!l .. ,,,on 2.18 ,110183. ,,... 1 for ""'•·

/uot/opool-<l/1 .. ·:1 .. , .. 11'1-
>N ,..........,. ... ,...,Mon~ocull,•o ,11mo•,,... .. ,,,.,.., .. ,, •
• 0011' I:

"" onu,1onldUWlllcn "'" U 11,40:IIC IIIIIS ,.,,Mon,u .. ,e1,,,2,,1.,.,
.... , - {1111 ShvnOO) ., , u, -

Joc<: """,or,\.., of 11&1\

I'• told tlllt , typo ln ,.,. ••'"'""·tntt,.ot l!ot P"-tod thto
, .. g<t"na tO ""'I' of you. If ... ,oco,vo th•o IWl<O, ay opolOQIOI,)

ho spt• v .,n, ptogr• 11,, - roploctd tho &or""lo, 11&11 prog,,.
.,. ,.... s.e ,., ,. 2.,--otlln, "'''"" ol "''' nw .. 11
'"II''" " - ... ,1o.,, .. "'"'"""""''',_,..,1, .. - ... ""'' to ln~•Yl>t..,,M,lnow/N11,1, Tho Mn POii" lo ..-011<1~ m<l<O\o

..,,..,. .i-o,10 .. oblo •• •• It~,.,, tttp. Oho .. o p,og,oo
tu•llt,only,Hclobl•by-lolngroupn,<1""kt)'O\on. II

.,.no,-.,,.,... pooplo ot>d-M 11kt ••,,.,.•ho _ .. ,1
,... lot M -.-. Vou "'°"lo 1notoll tho M11 o•og, .. ,~)'''"
b!oOt,oo\or;,o, .. ,,..,1ucb"'*110,1uo,/loo•l"'*tl, N<)l"

tMN\1.

hoNJ••-INM••-•<nt0thollnd11tt1b<J'1onol"1t1
,og, .. ,. tho lbtllty <o """' -· •tgn0t1d" hHdo• 1,,,., -

1 .. 1v<11,ig .. 11 '" , toply •• .._ ••••,ig .. n lo , tt1•. s.,
1 11,0yolgn0r•" to your .Mt\..:to..,.b1•th!ol•"""'· ro, .. , • .. 11,_ , •. hoto"O"Y ... t\.., t<h
",1oo1.,,.,of"1010"'"Y•",.1""· hooOI• 11.,..,

o, q,,lo\ <"•2' loldo,..,11 ..,, .. \oplll'NIO•II ... ld 1l ... 11tgnOtO
n t0<0,cf.•"'O,lJr0<

1gn0•••I• ,,,,,,....,,1r••••• ,,,. """" ,,..,m..,, .. ;o-to ••tom·po\n

t N - of •")' p, ... 1000 >""' ftt>d Of "WOl\t- IO" alght

•
,111,,12,00-llp,·Pl•·•

Figure 3-4: Sample .suntools Set Up

Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide Using the Shell

The first set of numbers represents the location and size of the open windows, and the second set
of numbers represents the location and size of the closed windows' icons. Here we automatically
call up one open window, a clock icon in the upper righthand corner of the screen, and a CON
SOLE shell icon in the lower righthand corner. In each set, the numbers represent the z coordi
nate, the y coordinate, the length, and the height respectively. The last single number indicates
that the tools will either be "open" as in the case of the shelltool window or "closed" as in the
cases of the clocktool and CONSOLE shelltool, which are represented as icons.

For the Model 120 with a Sun-2 video board, a sample .auntoola file looks like:

/usrfbin/clocktool
/usrfbin/shelltool
/usrfbin/shelltool
/usr/bin/shelltool

794 676 200 61 1084 4 64 64 1
0 333 650 567 1014 12 64 64 0 ·C
0 0 650 567 944 12 64 64 0
504 71 647 829 874 12 64 64 0

See the .auntoola description m the Commanda Reference Manual for detaila on what else you
can do in your .auntoola file.

Revision A of 15 April 1985 3-19

o·

0

0

0

0

0

Chapter 4

Creating and Editing Text Files - the vi Editor

The Sun system supports several editors, vi (pronounced 'vee-eye') ez (pronounced 'ee-ex'), ed,
and aed. This chapter provides the basics for learning to use the 'display' or 'screen' editor vi,
which is a screen-oriented version of ez. Many of the more useful operations that can be per
formed in vi call upon ez functions, so in learning vi, you're also gaining an understanding of ez.
In addition, ez is based on the ed editor, but has many extensions and additional features. Here
you learn about the top of the line, and a little bit about the others too. Refer to the Editing
and Tezt Proceuing on the Sun Work.tation for more details.

Vi displays a portion of your file on your workstation screen. You can move the cursor around
on the screen to make changes by adding, de le ting, or replacing text, and you can move the
screen itself around to edit different parts of the file.

Almost every key on the keyboard is a vi command. There are also combinations of the SIIlFT
key and the other keys, and combinations of the CTRL key and other keys. Note that when we
say 'A,' we mean uppercase 'A'. Lowercase 'a' means something different.

4.1. Command and Insert Modes

There are two modes in vi, command mode and inaert mode. In command mode, you can move
the cursor around the screen, scroll the screen, search for patterns, save the file, and do other
operations which don't involve entering fresh text. To enter new text into the file you must be
in insert mode, which you can get with the a, A, i, I, 0, o, and C commands. You get out of
insert mode by typing the ESC (ESCAPE) key (or ALT on some keyboards). The significant
characteristic of insert mode is that commands can't be used, so anything you type (except ESC)
is inserted into the file. If you change your mind anytime using vi, pressing ESC cancels the com
mand you started and reverses to command mode. Also if you are unsure of which mode you are
in, press ESC until the screen flashes or the bell rings; this means that you are back in command
mode.

Start working on your playfile. To use the vi editor, type:

tutorial% vi playflle

The screen displays something like:

/ dimensions
m •a•
kg •b•

< etc. >
spat 4 pi sr
''playfile'' 60 lines, 959 characters

with the cursor at the upper lefthand corner.

Revision A of 15 April 1985 4-1

Creating and Editing Text Files - the vi Editor Beginner's Guide

Use playfile in the next section to practice moving the cursor, scrolling the screen, and so on.

4.2. Moving the Cursor

There are several ways of changing the position of the cursor. You can move it character by
character, word by word, sentence by sentence, forward, backward, from one screen to another,
and on and on. We present the more useful ways here, but you'll want to read further on vi to
learn all the facilities.

4-2.1. I, h, k, j - Forward, Backward, Up, and Down

To position the cursor a character at a time, use the four keys h, j, k, l, which move the cursor
as follows:

h move the cursor one character to the left

1 move the cursor one character to the right
k move the cursor up one line
j move the cursor down one line

After a little practice, you'll find these easy to use because they're right under your finger11.

The BACKSPACE key on your workstation keyboard has the same function as 'H; you can use
it to move the cursor to the left. Typing 'h' without holding the control key works too. Both - J
and 'N move the cursor down to the next line. The LINEFEED key has the same function as
- J. Test out all these possibilities on your workstation or terminal.

You can move the cursor several lines or characters by pressing the key repeatedly, or you can
hold down the key as you go for an automatic repeat. (Some terminals have a key marked
REPEAT. If you hold this key down while typing some other character, that character is
repeated until you let go.) Use these features when you have long distances to move the cursor.

You can give the cursor positioning commands a preceding count to move the cursor a specified
number of characters or lines. For instance, '81' moves the cursor eight characters to the right.

If the cursor is towards the end of a line, and you move it down to a shorter line, then the cursor
is placed at the end of that shorter line. However it reverts to its original horizontal position on
any line that is long enough.

Moving the cursor down one line past the last line of the screen scrolls the screen up one line.
You cannot go past the end of the file, there is no wrap around to the beginning. Moving the
cursor up one line from the top line of the screen scrolls the screen down one line.

Some of the vi commands use the bottom line of the screen, to display the command or its result.
The bottom line initially shows the filename and length.

4-2.2. ', 0 and$ - Move to Beginning or End of Line

For horizontal motions along the lines, three useful functions are:

4-2

0
$

move cursor to first non-blank character of line
move cursor to the real beginning of line
move cursor to end of line

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Creating and Editing Text Files - the vi Editor

4-2.s. H, M, L - Move to Home, Middle, and Last Line on Screen

Three more basic cursor movements are:

H home
M middle
L last

The H command homes the cursor onto the top line or the screen, M moves the cursor to the
middle line or the screen, and L moves it to the last line or the screen. H and L take preceding
counts, for example, 3H moves to the 3rd line on the screen, 2L moves to the second line from
the bottom. H you have a key marked HOME on your terminal, this usually achieves the same
as the H command.

4-2.4. w, b, e - Moving by Words

To move over the text a word at a time instead or only character-by-character, use the com
mands:

w move forward to beginning of next word
e move to end of this word
b move back to beginning of word

H you are already at the beginning or a word when you type a 'b', the cursor goes to the begin
ning or the previous word. U you are at the end or a word when you type an 'e', the cursor
moves to the end or the next word.

A 'word' is anything consisting or letters, digits and underscores, surrounded by anything which
is not a letter, a digit or an underscore. This definition covers identifiers in most programming
languages, so the commands are useful for editing both programs and documentation.

H your file is shorter than the screen, on-screen lines not present in the file are indicated by the
tilde character C) to avoid confusion with blank lines in the file.

All the commands 'w', 'b', and 'e', move past the end or a line. 1£ you use them to move past the
upper or lower limits or the screen, the lines scroll up the screen accordingly.

You can use a preceding count with these commands, so '5w' moves the cursor forward five
words, for example.

,4.2.5. (,), {, } - Moving by Sentences and Paragraphs

The '(' and ')' commands move the cursor over sentences, ')' to the beginning or the next sen
tence, and '(' to the beginning or the previous sentence. These commands take counts too, so '2}'
moves forward 2 sentences; '3{' moves back three sentences. A sentence is defined as string or
words ending with one or the characters'.', '!'or'?' followed by two spaces, or occurring at the
end or a line.

The '}' (beginning or next paragraph) and '{' (beginning of previous paragraph) commands work
similarly to the '(' and ')' commands except they jump the cursor by paragraphs instead or sen
tences. However, ir your file is text to be input to the nroff text formatter using the macro pack
ages -m• or -mm, vi recognizes the 'start or paragraph' macros available in these packages, and
positions the cursor accordingly.

Revision A or 15 April 1985 4-3

Creating and Editing Text Files - the vi Editor Beginner's Guide

If the file you are editing contains text to be formatted using one of the nroff macro packages
described in Printing and Formatting Document,, you can also tell vi to move forward or back
ward whole sections by using']]' to move forward a section, and '[[' to move back a section.

If the text you are editing is C programming language source text, '[[' and 'I]' move forward or
backward over whole procedures.

4.3. Scrolling the Screen

Try the following commands to scroll the screen:

·o scroll down half screen
·u scroll up half screen
"F scroll down a full screen
·a scroll up a full screen

With 'F and '8, two lines from the 'old' screen are retained in the 'new' screen for continuity.
These are the same commands you use to scroll the screen with view.

4-s.1. Moving to Specific Lines in the File

When editing, you may wish to position the cursor at some specific line. The command you use
to do this is 'G' or 'go to' command. For example, to move to the beginning, type '1 Q1 '. To
move to line 45, type '45G'. Typing the G command with no preceding line number moves the
cursor to the last line of the file.

To find a particular character string anywhere in the file, you use the standard '/' command. It
is echoed at the bottom line of the screen where you then type the string you want to search for,
either as a fixed character string, or as a regular expression. Vi uses the same regular expres
sions you learned about with grep. To signal the end of the character string, type either ESC, or
RETURN.

Vi places the cursor at the start of the next string that matches what you typed, going forward
through the file.

If the string is not in the current screen, the screen is changed to display that part of the file
which contains the string. Try this now with a string that is not on the screen, and notice how
the screen moves to track it.

Searches wrap around the file, so if the string isn't found between the current position and the
end of the file, it wraps around and continues from the beginning of the file. If the string is not
found, 'Pattern not Found' is displayed on the bottom line of the screen.

Use the '?' command plus a string to search backward through the file instead of forward.
Again, what you type is echoed on the bottom line of the screen.

To repeat a forward search, type '//'. To repeat a backward search, use '??'. Or use two other
commands:

n to find next occurrence of same string in same direction
N to find next occurrence of same string in reverse direction

4-4 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Creating and Editing Text Files - the vi Editor

4.4. Inserting New Text

The two basic commands to enter new text into a file are a, which appends text after the
current cursor position, and i which inserts text before the current cursor position. When you
give either of these commands, any following text you type gets put in the file. To stop text
entry, press the ESC key.

If you are using a dumb terminal, when you type in the additional text, it might look as if you
are over-typing the existing text. Typing ESC straightens it out.

If you make a mistake while entering new text, correct it in the usual way with the .LEL, BACK
SPACE or 'H keys.

You can also use s for 'substitute' to enter new text; it replaces a single character with lots of
characters, until you type ESC.

There are two other simple commands for entering additional text:

I insert text at the beginning of the line
A append text at the end of the line

Regardless of where the cursor is positioned on a line, the I command inserts text at the begin
ning of that line;

Similarly, A adds text at the end of the line, regardless of the cursor position. Blank lines of
text can be inserted by using the A command and making the first character you enter a
RETURN.

Two other commands that can be used to add new lines of text are the 'open lines' comm!nds, o
and 0. The o command opens up a blank line following the current line, and the cursor is
placed at the beginning of the new line. Anything you type from now on, until you type ESC,
becomes the new line or lines. To get just a blank line, type ESC immediately following the o.

The O command works like the o command, except that it opens a line above the current one,
instead of below. This is the easiest way to add lines before the beginning of a file.

The uppercase R command replaces (overtypes) characters until you tell it to stop by pressing
the ESC key. The R command is useful when you have a fixed format, for example, where you
want to preserve column alignment.

Lowercase r 'replaces' a single character. For example, if you misspelled 'character' as 'cherac
ter,' place the cursor on the 'e' typo, type the r, then type the correct 'a'. The 'r' command does
not require typing ESC, since you are replacing only one character.

4.5. Creating a New File

To create a new file, simply call up vi with the name of the file you want to create:

tutorial% vlatuff

The screen goes almost completely blank:

Revision A of 15 April 1985 4-5

Creating and Editing Text Files - the vi Editor Beginner's Guide

"stuff" !New filel

The cursor is in the top left hand corner with a row of tildes ,-, down the left hand edge of the
screen. The ,-,s indicate that there are no lines in the file corresponding to these lines on the
display. The bottom line displays the name of the file you are creating, and an indication that it
is a new file.

Type a or i and type in all the text you want.

When you have finished and want to write the file away and quit the editor, type :wq. A mes
sage like:

··stuff'' 50 lines, 3172 characters

appears at the bottom of the screen. After you have quit the editor, you see the 'tutorial%'
hostname prompt again.

0

You can now use the editor to create a .c,hrc file in your home directory to set the hiatarv and o
to contain alia,e,.

4.6. Deleting or Changing Text

There are several ways to delete and change characters and text.

,1.6.1. Deleting Text with 'x'

The simplest command to use is the 'delete character' command x. If you want to delete five
consecutive characters, you can do it in two different ways. You can either repeat the x five
times, or you give the command a leading count and say 5x.

However, if you change your mind, and want the characters replaced, the command you gave in
the first place matters a lot. If you gave the 5x command, you can get them all back with an
undo command of u (described later). However, if you said xxxxx, the u command only undoes
the last x command. To restore the line to its original state, use U.

The difference between xxxxx and 5x is also important if you are going to use '.' (also described
later) to repeat changes.

You cannot delete characters beyond the end of a line.

4-6 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Creating and Editing Text Files - the vi Editor

.,t.6.2. Deleting Words and Lines with 'dw' and 'dd'

To delete a whole word, position the cursor at the beginning of the word, and type dw. Again,
you can give this command a count and delete more than one word at a time by typing 5dw, for
instance.

To delete a whole line, position the cursor anywhere on that line and type dd. The dd com
mand also takes a count, 5dd for example, to delete five lines.

Uppercase D deletes from the cursor position to the end of a line.

,t.6.3. Changing Text

To change just one word of text, 'dimensions' from playfile for example, put the cursor on the
beginning of the word and type cw. You see:

/ dimension$

with the cursor on the first letter of 'dimensions' for example. The '$' at the end of the word
marks which word you are changing. Then type the word you want to substitute and ESC. This
exchanges one word for the other and adjusts the space accordingly.

4.7. Writing Your File and Quitting the Editor

Consider the following ways to save all your good work. Remember that you have to be in com
mand mode to do this, otherwise you'll find yourself entering these characters into the file.

To save your changes, type:

:w

We recommend typing :w every few minutes while editing to insure that your changes are saved.

If you want to save your changes and exit the editor, type any of the following:

:wq
or
:x
or
zz

Note the subtle differences here: :wq always writes out the file and then quits. The others :x
and ZZ only write the file out if changes are made, and then quit. If no changes are made, they
quit without writing.

Note also that with ZZ, you do not have to type RETURN.

If you want to exit the editor without having made any changes, type:

.:q

If you want to exit the editor without saving your changes, type:

:q!

The '!' overrides any warning. If you are going to edit a file but might want to get back to the
previous version, make a back-up copy of the file before running vi.

Revision A of 15 April 1985 4-7

Creating and Editing Text Files - the vi Editor Beginner's Guide

4.8. Correcting Mistakes with 'u' and 'U'

When you make mistakes while making changes or adding text, there are two 'undo' commands,
namely u and U, which make corrections easy. The lowercase u simply undoes the last change
you made. 1£ you have moved the cursor away from the position at which you did the change,
the cursor is repositioned to its original place after the change has been undone. Similarly, if the
screen has been moved since you did the change, it is moved back to its original display. The u
command undoes any change to the edit buffer, even if that change affected many lines.

Be careful. Giving another u command undoes the original 'undo' command, thus applying the
change all over again, but you can undo that also if necessary.

The uppercase U command can undo several changes, but only those made on the same line.
Once you move the cursor off the line, however, you can no longer use a U on that line.

Beware of using u and U in succession; the one does not undo the effects of the other.
Remember that you can also use :q!.

4.9. Repeating a Command with '.'

Use ' .', the period character, called 'dot,' to repeat a change, either at the same positio11 or at
the new position.

4.10. Running Sun Commands from Inside the Editor

When you need to return to the Shell temporarily to process a job or get some information, you
don't have to leave the editor. Simply type :!command where command is the name of the com
mand you want. For example, to display your current directory from vi type:

:!pwd
/usr/evan
Hit return to continue.

The system displays the results of the command at the bottom of the screen, then prompts you
with 'Hit return to continue.'

You can also use the ex editor commands from vi. The 'r' (read) command, for example, adds or
'reads' another file into the one you are editing with vi. The 'r' command adds the second file to
the first after the current line, that is, the line where the cursor is in command mode. To be
sure you know where the current line is, type a z<CR> on the line after which you want the
second file to be placed. This marks the current line and repositions it at the top of the screen.
When you type the colon ':' character, it is echoed at the bottom of the screen. Whatever you
type up to RETURN is interpreted as an ex command, and also echoed at the bottom of the
screen as you type it.

Use the ex 'r' command plus the name of the file you want to read in. For instance, to read in
the file file, into the existing playfile, type:

:r Illes

This puts file, after the current line, that is, the line on which the cursor was before you typed
:r files. Be sure you know what your current line is. The bottom line of the screen displays the
number of lines read in. This is a handy way to join files.

4-8 Revision A of 15 April 1985

0

0

I

ol

0

0

0

Beginner's Guide Creating and Editing Text Files - the vi Editor

To read the results of a Sun system command into the edit buffer, type:

:r !11 -1

for instance. This reads the current directory listing into the current file.

You now have quite a bit of information in your playfile, so you can play around with several
screens full to become more facile with vi.

4.11. A Bit About the 'ex' Editor

For the most part, you'll probably use vi once you become handy with its facilities. However,
the ex editor does have local and global text substitution capabilities that you can use from vi.
For instance, if you decide to change the string 'dollar' in playfile to 'greenback', type:

1/dollar/1/dollar/greenback/

The first 'dollar' finds the string to change, and 's' says to substitute for 'dollar' the string
'greenback'. This only changes the first occurrence of the string in a file.

To change the first occurrence of the string 'dimension' to 'measure' in each line in the file, use
the global substitution command ':g':

:g/dlmenslon/1/dlmen1lon/measure/

Check through the playfile to see the result. Note that not only is the first 'dimension' now
'measure', but the string 'dimensionless' is now 'measureless'. Be careful how you specify the
strings. This command does a global search for any string with the characters 'dimension' in it
and substitutes 'measure' for the fir,t occurrence in every line.

To substitute 'lint' for every occurrence of 'fuzz' in every line, use:

1g/fuzz/1/tuzz/llnt/g

The first ':g' command searches globally, and the second 'g' makes the substitution called by
's/fuzz/lint/' global as well.

4.12. Other Text Editors

The Sun system also supports the ed and aed editors. Ed is the interactive line editor that forms
part of the basic UNIX system. Sed is the 'stream editor' that is similar to ed in the operations
it performs, but it is not interactive; it cannot move backwards in the edit file. You don't use
aed to make permanent changes in a file, but to 'filter' parts of a file as you do with the grep,
aort, and awk utilities for example.

Read more about these editors in Editing and Text Proceaaing on the Sun Workatation.

Revision A of 15 April 1985 4-9

0

0

0

0

0

0

Chapter 5

Printing and Formatting Documents

The most commonly used formatter on the Sun system is nroff. Nroff reads an input file con
taining unformatted text, interspersed with formatting requests and produces a neatly laid out
document. The troff text formatter is an advanced program that produces output for a photo
typesetter. Troff has fine control over sizes of characters, multiple fonts, and so on. Troff and
nroff are compatible, ao it'a poaaible to prepare input acceptable to both.

Basically, nroff makes all output lines the same length, and adjusts the spacing to justify the left
and right margins. You can also select page size, number of lines on the page, length of the
lines, size of margins, control indentation, center headings, and underline things. With the help
of macroa, either one uou make yourself or a package like -ma described later in this chapter,
you can get footnotes, automatic generation of table of contents. This manual was formatted
using -ma macros with troff.

When you want to print something without any fancy formatting, headers or footers, use the /pr
command You used this before in piping the sorted playfile to the line printer with:

tutor lal% sort playflle I lpr
tutorial%

The result is raw, unformatted text.

The pr command 'prepares' a file for printing with running headers and footers, the filename,
and the date and time the job is run.

The /mt command is a simple text formatter command. Give it a number option, and it fills
lines up to the given number of columns.

Brief descriptions of these follow, but if you want something fancier, use nroff and troff.

5.1. Printing a File with 'pr' and 'lpr'

The contents of a file can be printed using the pr and /pr commands. The pr or 'print file' com
mand prints to the standard output, which is normally your workstation screen. An example of
running pr on your playfile file and piping the output through more is:

Revision A of 15 April 1985 5-1

Printing and Formatting Documents

tutorial% pr playflle I more
Aug 6 11:20 1983 playfile Page 1
/ dimensions
m *a*
kg *b*
sec •c•

< etc. >
township 36 mi2
tun 8 barrel
water .22491J2.54 kg/m2-sec2

< etc. >
Aug 6 11:20 1983 playfile Page 2
wey 40 bu
weymass 252 lb
Xunit 1.00202-13m
k 1.38047-16 erg/degC
tutorial%

Beginner's Guide

Pr separates the output into pages and puts a five-line header at the top and a five-line trailer at
the foot of each page. The trailer at the foot of the page consists of blank lines. In the header,
one of the lines forms a title consisting of a date, the filename and a page number. The date
shown in the header is the date the file was last modified. You can change the header by various
options to the pr command.

What pr really does is 'prepare' a file for printing. Generally you use pr in conjunction with the
lpr 'line printer' command, which routes files to the printer:

tutorial% pr muolc I lpr -P printer
tutorial%

You can also call pr with the -p option of the /pr command as follows:

tutorial% !pr -p -Pprinter music
tutorial%

Lpr routes the named file(s), or the standard input if there are no named files, to the printer. It
does nothing else, so your file is printed beginning at the very top of the page. Also, if your file
takes more than one page, the printing carries over the perforations (assuming you are using con
tinuous form paper) without a break. This is why you use lpr in conjunction with pr.

Only error messages are displayed on the workstation screen. The exact workings of this com
mand and its options vary from one installation to another, since they largely depend on the
number and the types of printers available. See the Command, Reference Manual for the Sun
Work.talion for details on /pr.

Your system has variations of the /pr command, or options to the command, which give you the
capability of displaying the printer queue (usually the command variation /pq) and removing
requests from the queue (usually the command variation lprm).

The pr command has many options for preparing a file. See the pr details in the Command,
Reference Manual.

5-2 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Printing and Formatting Documents

5.2. Simple Text Formatting with 'fmt'

Fmt is simple and fast. Try it on your playfile:

tutorial% fmt playflle
/ dimensions m *a* kg *b* sec *c* coul
dollar *f* radian *g* bit *h* erlang

< etc. >

d candela
i degC *j*

e

m2/sec2 tonne 1+6 gm torr mm hg
water .2249112.54 kg/m2-sec2 wey
1.00202-13m k 1.38047-16 erg/degC
tutorial%

township 36 mi2 tun 8 barrel
40 bu weymass 252 lb Xunit

Fmt makes the lines of text reasonably even in length.

5.3. Running 'nroff'

After creating your file containing text to be formatted interspersed with formatting requests,
format the output with nroff and pipe it through more for viewing on your workstation screen:

tutorial% nroff file l more

Now you can proofread it. Or you can print it by piping the output to the printer.

5.4. A Package Deal - the '-ms' Macros

The -m• macro package provides an easier way to format documents than basic nroff if you
want something more than straight paragraphs. It provides indented block and itemized para
graphs, page headers and footers, and page numbering.

Some examples of calls on -ma macros are:

.LS

.PP

.NH 2

.IP "first stanza' 14

.LE

As you will see, the -m• calls look very similar to nroff formatting requests. Each consists of a
'dot' followed by two characters, optionally followed by arguments to the macro. All letters are
upper case, and each macro call must be on a line of its own. It also must be the first thing on
the line.

Create a new file with the editor, perhaps using the king.art text below, and sample the -m•
macros. Then format your file with nroff and the ma macro option:

tutorial% nroff -ms filename l more
tutorial%

Here you have the most useful calls for basic document formatting. For the full selection, see
the Editing and Text Proce33ing on the Sun Workatation.

Revision A of 15 April 1985 5-3

:>rinting and Formatting Documents Beginner's Guide

5.,4.1. Paragraphs - '.PP' and '.LP'

.\.f, provides two basic paragraph forms, an indented paragraph (that is, the first line is
ndented), and a block paragraph. A standard paragraph example, unformatted and formatted
s:

tutorial% more king.art
.PP
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clyde, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

tutorial%

And the formatted version looks like:

tutorial% nroff -ma king.art
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.
tutorial%

For a left block paragraph, use the '.LP' macro:

tutorial% more king.art

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien, and Kynon, the son of Clydo, and Kay, th
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.
tutorial%

The formatted result is:

5-4 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Printing and Formatting Documents

tutorial,:; nroff -ma king.art

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clyde, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.
tutorial%

If you don't like these paragraph layouts, you can change them. Refer to the Editing and Tezt
Proceaaing on the Sun Workatation for details.

5.4-2. Quoted Paragraphs - '.QP'

If you want a paragraph or paragraphs indented from the surrounding text at both the left and
right edges, use the '.QP' (quotation) macro:

tutorial% more mark.twain
As Mark Twain wrote:
.QP

We should be careful to get out of an experience only the wisdom that is
in it - and stop there; lest we be like the cat that sits down on a
hot stove lid.

She will never sit down on a hot stove like again - and that is
well; but also she will never sit down on a cold one any more.

When formatted, this yields the following:

tutorial% nroff -ma mark.twain
As Mark Twain wrote:

We should be careful to get out of an experience only the wisdom that is in it
- and stop there; lest we be like the cat that sits down on a hot stove lid. She
will never sit down on a hot stove like again - and that is well; but also she
will never sit down on a cold one any more.
tutorial%

Try this now.

5.,1.9. Lists and Descriptions - '.IP'

Use the '.IP' macro to create the so-called 'hanging indent' type of paragraph, most commonly
used for lists. You can give '.IP' an argument, for instance, the number of a list item. To pro
duce a list, format your text as follows:

Revision A of 15 April 1985 5-5

Printing and Formatting Documents Beginner's Guide

.IP 1.
The '.IP' macro creates lists that you can use in many documents.
The ' . IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
. IP 2 •
The ' . IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
. IP 3 .

The '.IP' macro creates lists that you can use in many documents.
The '. IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

The formatted version looks like:

l. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

2. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

3. The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.
The '.IP' macro creates lists that you can use in many documents.

You can also make a description list, where you see the name of something on the left of the
page, and a paragraph describing it on the right. In this case, you give '.IP' two arguments, the
first argument is the name that is to appear on the left, and the second argument is how far to
indent the text on the right. The unformatted version looks like:

. IP Monday 12
Finish debugging program .
. IP Tuesday 12
Meet with customers for demonstration .
. IP Wednesday 12
Discuss documentation plans .
. IP Thursday 12
Outline training class .
. IP Friday 12
Lunch with manager.

When formatted, this looks like:

5-6 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

Monday

Tuesday

Finish de bugging program.

Meet with customers for demonstration.

Wednesday Discuss documentation plans.

Thursday Outline training class.

Friday Lunch with manager.

5.4-4. Relative Indents - '.RS' and '.RE'

Printing and Formatting Documents

When you need to indent text in relation to previously indented text, use the '.RS' and '.RE'
(relative indent start and end) macros. For example:

.IP 1.
pigs cows chickens ducks
.RS
.IP • 3
pigs cows chickens ducks
.IP • 3
pigs cows chickens ducks
.RE
.IP 2.
pigs cows chickens ducks
.RS
.IP • 3
pigs cows chickens ducks
.IP • 3
pigs cows chickens ducks
.RE

when formatted looks like:

l. pigs cows chickens ducks

•
•

pigs cows chickens ducks

pigs cows chickens ducks

2. pigs cows chickens ducks

•
•

pigs cows chickens ducks

pigs cows chickens ducks

This is particularly useful for outlines.

5.,t.5. Section and Paragraph Headings

You can have numbered headings up to five levels and un-numbered headings. All headings are
underlined by default (headings are made boldface if you are using troff), and may occupy
several lines if required.

Revision A of 15 April 1985 5-7

Printing and Formatting Documents Beginner's Guide

5.,1.5.1. Un-numbered Headinga - '.SH'

Use the '.SH' (section heading) macro to introduce an un-numbered heading. For instance, the
output:

text and more text at the end of a paragraph.

A Section Heading

A new paragraph of text and more text
that continues and continues and continues.

was generated by using the formatting macros:

text and more text at the end of a paragraph .
. SH

A Section Heading
.PP

A new paragraph of text and more text
that continues and continues and continues.

Put the macro 011 one line and the actual heading on the following line or lines of the input text.
Begin the first paragraph following the heading with a '.LP' or '.PP' macro to signal the end of
the heading.

5.,1.5.fJ. Numbered Headinga - '.NH'

To introduce a numbered heading, use '.NH'. '.NH' implies a level 1 heading, and '.NH n' where
'n' is a number calls the corresponding level number. For instance, consider the formatting of
this chapter in outli11e form:

.NH
Printing and Formatting Documents
.LP
.NH 2
Printing a File with 'pr' and 'lpr'
.LP
.NH 2

Simple Text Formatting with 'fmt'
.LP
.NH 2
Running 'nroff'
.LP
.NH 2

A Package Deal - the '-ms' Macros
.LP
.NH 3
Paragraphs - '.PP' and '.LP'
.LP

When formatted, it looks like:

5-8 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Printing and Formatting Documents

5. Printing and Formatting Documents

5.1 Printing a File with 'pr' and 'lpr'

5.2 Simple Text Formatting with '(mt'

5.3 Running 'nroff'

5.4 A Package Deal - the '-ms' Macros

5.4.1 Paragraphs - '.PP' and '.LP'

5.,t.6. The Date - '.ND' and '.DA'

The -ma macro package automatically puts the date at the bottom or every page or your docu
ment. To avoid this, put the macro call '.ND' at the beginning or your input text.

To change the date shown on the bottom or every page, put the '.DA' macro at the beginning or
your input text:

.DA 8 June 1982

This also allows you to specify the exact format or date that you want, for example:

.DA 1982-6-8

5.4. 7. Displays - '.LE' and '.LE'

A 'display' is some text that you want to appear as you typed it without any filling of lines,
indented from the surrounding text, and kept together on the same page. Use the two macros
'.LE' (display start) and '.LE' (display end); the text that appears between these forms the
display. Consider the following formatted text:

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

which was formatted by:

Revision A of 15 April 1985 5-9

Printing and Formatting Documents Beginner's Guide

.LS
King Arthur was at Caerleon upon Usk;
and with him were Dwain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow .
. LE

You can further format your displays with the macros '.LE B', which justifies the left margin,
then centers the whole display, '.LE L', which displays the text a.sis without indenting, and '.LE
C', which centers each line of text individually on the page.

We used the '.LE' and '.LE' macros throughout this manual to offset the screen displays.

5 .. ,t.8. Keeping Text Together - '.KS' '.KF' and '.KE'

To keep lines of text together on one page, for a quotation, for example, use '.KS' to mark the
start of the text to be kept together (keep start), and '.KE' (keep end) to mark the end of the
text to be kept together. This is particularly useful for keeping the text of a table or list
together for example. If there is not sufficient room on the current page for the formatted ver
sion of the text between these two macro calls, -m• starts a new page, leaving the remainder of
the current page blank. An example looks like:

.KS

. IP Monday 12
Finish debugging the compiler .
. IP Tuesday 12
Meet with customers for demonstration .
. IP Wednesday 12
Discuss documentation plans .
. IP Thursday 12
Outline training class .
. IP Friday 12
Lunch with manager .
. KE

If you are working with text that must be kept together, but that need not immediately follow
the reference to it, use the floating keep '.KF' and '.KE' macro pair. The text is kept together,
and the remainder of the current page is filled with the following text.

5-10 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

.KF

.IP Monday 12
Finish debugging the compiler .
. IP Tuesday 12
Meet with customers for demonstration .
. IP Wednesday 12
Discuss documentation plans .
. IP Thursday 12
Outline training class .
. IP Friday 12
Lunch with manager .
. KE

5.4, 9. Titles and Cover Sheets

Printing and Formatting Documents

If you want to include a title and an author, or maybe even several authors on your document,
use the '.TL' macro to specify the title of the document and the '.AU' macro to show the author
or authors. Only the '.DA' or '.ND' macro calls to change or suppress the date may appear
before these macros.

Here is an example of calling the macros:

.TL
Beginner's Guide
.AU
Sonny Systems
.NH
GETTING STARTED
.LP
Sit down at your Sun Workstation.

The first page of formatted text produced looks like:

Beginner'• Gulde

Sonny Systems

1. GETTING STARTED

Sit down at your Sun Workstation.

5.4,10. Overall Page Layout

By default, -ma provides page numbers in the center at the top of each page of the form '-2-'.
The run date appears at the bottom of each page when run with nroff. The top and bottom page
margins are set to one inch. The line length is set to six inches, and there is no page offset.
Many of these default parameters can be changed. See Formatting Documenta with the -ma
Macro Package in the Editing and Tezt Proceaaing manual.

Revision A of 15 April 1985 5-11

Printing and Formatting Documents Beginner's Guide

5.5. Laying Out Tables with 'tbl'

Assume you have material that you want to lay out in tabular format, in rows and columns of
text with captions, headers, and such. Numeric material requires column alignment different
from alphabetic material. For this, use the tbl utility, which is a pre-processor for troff and for
nroff. In general, the tbl capabilities can only be fully exploited when used in conjunction with
troff, but some of the simpler aspects work with nroff.

Use the '.TS' and '.TE' macros just as you do any other set of begin and end macros to bracket
the desired text:

.TS
Description of the Table Layout
Data to be Laid Out
.TE

Leaving out one or the other of this set can have all sorts of weird results on your output.

The tbl processor sees a table in terms of three distinct parts:

1. The overall layout or form of the table. For instance, whether the table is centered on
the page, or whether the table is to be enclosed in a box.

2. The layout of each line of data in the table. This part determines how each column in
the table is laid out. For instance, whether it is left-adjusted, or centered, or whether
numeric data must be aligned on the decimal point.

3. The actual data (the textual material) of the table itself.

Study the following simple example:

.TS
tab (/) ;
1 1 1 .
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797/9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

The line with tab (/) ; on it is the so called 'options' part of the table. This is the first part in
the list above. In this particular case, the only option to tbl is to tell it that the 'tab' character is
to be a slash character. Normally, tbl expects to see the columns of data in the data part of a
table separated by real tab ('I) characters. Our example uses a visible character that is not part
of the data, the slash character /, in this case because it's easier to see what's going on. Ter
minate the options part of the table by a semicolon.

0

0

The next part of the table header is the description of how the actual columns of data are to be
laid out, part 2 from the list above. In this case, there are three left-adjusted columns, indicated
by the / format letters. You can have many lines of format descriptions. Each line of format
description in part 2 of the table corresponds to a single data line in part 3, the data part of the
table. If, however, there are more lines of data in the data part of the table than there are for
mat description lines, the last line of the format description part applies to all the remaining
lines of the data. Here, the three letter / format letters apply to every line in the data part of o
the table. Terminate the format descriptions with a period at the end of the last one.

5-12 Revision A of 15 April 1985

0

0

0

Beginner's Guide Printing and Formatting Documents

Then add the actual data of the table, each field of which is separated from the next by the /
character. Here you learn the birthdates and number of symphonies composed by several well
known classical composers.

Now create a file called mu,ic with this text, format the table and display it for viewing by typ
mg:

tutorial% tbl music J nroff' -ms J more

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

1732 104
1756 41
1770 9
1797 9
1833 4
1860 9

You can of course also redirect the output to a file with '>', or give tbl a list of files, which are
processed one by one in the order in which you specified them on the command line. Here the
table appears on the left hand side of the page. You probably would prefer it centered in run
ning text, in which case you add a center option to the options part of the text:

.TS
center tab (/) ;
1 1 1 .
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797/9
Johannes Brahms/1833/4
Gustav Mah.ler /1860/9
.TE

When formatted, this looks like:

tutorial% tbl music J nroff' -ms J more

Franz Joseph Haydn
Wolfgang Amadeus Mozart
Ludwig van Beethoven
Franz Schubert
Johannes Brahms
Gustav Mahler

1732 104
1756 41
1770 9
1797 9
1833 4
1860 9

To align numerical entries, you must treat numbers as numbers, not just as any character.
Change the format specification letters for the birthdate and number of symphonies:

.TS
center tab (/) ;
1 n n .
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797/9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

Revision A of 15 April 1985 5-13

Printing and Formatting Documents Beginner's Guide

The format specification part indicates that the second and third columns are numerically ('n')
aligned columns so the data in the second and third columns of each line is aligned properly to
the right. The formatted version looks like:

tutorial% tbl music l nroff -ms j more

Franz Joseph Haydn 1732 104
Wolfgang Amadeus Mozart 1756 41
Ludwig van Beethoven 1770 9
Franz Schubert 1797 9
Johannes Brahms 1833 4
Gustav Mahler 1860 9

To add captions for the individual columns, see what has been included in the following:

.TS
center tab (/) ;
C C C

1 n n .
Composer/Birthdate/No. of Symphonies
.sp
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797/9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

The example above now shows an extra line in the format description part, and some extra data
in the data part. The first line of the format descriptions indicates that there are to be three
columns of data, each one centered within its column. This format applies to the very first line
of the data. The second (and last) line of the format description part is the same as before, and
it applies to all the remaining data lines in the table.

This new layout looks like:

tutor ia1% tbl music i nroff -ma i more

Composer Birthdate No. of Symphonies

Franz Joseph Haydn 1732 104
Wolfgang Amadeus Mozart 1756 41
Ludwig van Beethoven 1770 9
Franz Schubert 1797 9
Johannes Brahms 1833 4
Gustav Mahler 1860 9

By the way, when you describe a table, the format description part, part 2 of the table, must
always describe the largest number of columns which that table has. If there are some lines
which have fewer columns of data, you must indicate what to do with those specific lines.

You can also print a table with a centered overall heading line for the entire table. This is called
a 'spanned heading,' meaning that that a column of data spans across into the next column.

5-14 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Printing and Formatting Documents

.TS
center tab (/)
C S S

C C C

1 n n
Music Trivia
.sp
Composer/Birthdate/No. of Symphonies
.sp
Franz Joseph Haydn/1732/104
Wolfgang Amadeus Mozart/1756/41
Ludwig van Beethoven/1770/9
Franz Schubert/1797/9
Johannes Brahms/1833/4
Gustav Mahler/1860/9
.TE

Here the result is:

tutorial% tbl music J nroff -ms J more

Music Trivia

Composer Birthdate

Franz Joseph Haydn 1732
Wolfgang Amadeus Mozart 1756
Ludwig van Beethoven 1770
Franz Schubert 1797
Johannes Brahms 1833
Gustav Mahler 1860

No. of Symphonies

104
41

9
9
4
9

The first line of the format description part now shows a centered, spanned column. A spanned
element can span as many or as few columns as you like.

Read the Editing and Text Proceaaing on the Sun Workatatin for the details of tbfs other capabil
ities.

5.6. Formatting Mathematical Equations with 'eqn'

The eqn and neqn packages aid preparation of documents containing mathematical equations.
Eqn is a preprocessor for troff, and neqn is a preprocessor for nroff. The preprocessors set the
mathematics while troff and nroff do the text of a document. These turn English-like descrip
tions of an equation into the formatting request for generating the mathematical symbols for that
equation. The capabilities are restricted by the limitations of typewriter-like printers. Enclose
equations with '.EQ' and '.EN' to tell eqn where the equations begin and end. A simple example
1s:

.EQ
x=y+z
.EN

which produces:

Revision A of 15 April 1985 5-15

Printing and Formatting Documents Beginner's Guide

z=y+z

You can print mathematical symbols and names and the Greek alphabet with eqn .

. EQ
x=2 pi int sin (omega t)dt
.EN

which produces:

x=2ir f sin(wt)di

(Note that your printer may not handle these fancy fonts.) You can also produce superscripts
and subscripts for example with the words aup and aub:

.EQ
y = c sub 1 x sup 2 + c sub 2 x + c sub 3
.EN

which produces:

eqn does not process '.EQ' and '.EN' other than to take care of the equation between them. So
you have to center, number, and justify the equations yourself or use eqn in conjunction with the
-ma macro package, which as you know, takes care of those things for you. See Editing and
Text Procea,ing for details.

5.7. Formatting with 'nroff' or 'troff'

Prepare the input file, using an editor, and embed the nroff or troff requests in the text of the
document to be formatted. Put each request itself at the beginning of a line. A request cannot
appear on the same line as the text to be formatted, although sometimes part of the text to be
formatted can be given as an argument to a request. A formatting request consists of a basic
nroff instruction, (a period or 'dot' followed by one or two characters), or a call to an nroff
macro, optionally followed by one or more arguments separated by spaces.

Some examples look like:

.sp

.po 8

.bp

.in 5

.ti -3

.in +5

.ce 4

.ul

Putting a space between the instruction and any numerical value that an argument may take
makes the requests easier to read, although it's not necessary.

0

0

An argument may also be a number preceded by a plus sign or a minus sign. This means a
change relative to the existing value of whatever it is you're altering. For example,. '.in +5' 0

5-16 Revision A of 15 April 1985

0

0

0

Beginner's Guide Printing and Formatting Documents

means indent the margin 5 spaces more than what it is now, and similarly '.in -4' means back off
that indent by 4 spaces.

5. 7.1. Page Breaks - '.bp'

To do your own page breaks, insert the '.hp' (break page) at strategic points in your document.
The macro package automatically does this, but sometimes you may want to force a new page.

5. 7.2. Blank Lines - '.sp'

You can put blank lines in the output by using the '.sp' request. The appropriate namber of
blank lines are left in the output text. For example, to put three blank lines between sentences,
use '.sp 3':

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window .
. sp 3
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

which when formatted is:

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

An '.sp' request with no argument leaves one blank line in the output. Or you can produce a
blank line by just leaving blank lines in the input text. Using '.sp' is better because it is easier to
change later if you decide to add more or fewer blank lines.

5. 7.3. Centering and Underlining - '.ce' and '.ul'

Use the '.ce' request to center lines of text. The '.ce' request without an argument centers one
line, for example:

Revision A of 15 April 1985 5-17

Printing and Formatting Documents

.ce
Beginner's Guide

centers the following line of text:

Beginner's Guide

To center more than one line of text, type:

.ce 3
ducks chickens
cows ducks chickens
pigs cows ducks chickens

centers the following three lines of text:

ducks chickens
cows ducks chickens

pigs cows ducks chickens

Beginner's Guide

Filling is temporarily turned off when lines are centered, so each line in the input appears as a
line in the output, centered between the left and right margins.

If you don't want to count how many lines you want centered, use the '.ce' request with a
number greater than the maximum number of lines you think you want centered. In the follow
ing example, use the number 100:

,Ce 100
Some random number of text lines

< etc. >
.ce 0

The '.ce O' request simply stops the centering process.

Note that the argument to the '.ce' request only applies to following text lines in
nroff request lines are not counted.

the input.

Underlining is somewhat misleading, for nroff underlines and troff italicizea the words. If you
want to 'underline' a heading for example, and format the text with nroff, use the '.ul' nroff
request, and type:

.ul
ducks

which underlines as:

You can use the same numbering count with '.ul' as with '.ce'.

You can of course also this to emphasize single words:

The best way to learn a new system is
not just to read about it, but to
.ul
use
the facilities it provides.

troff produces: 'The best way to learn a new system is not just to read about it, but to uae the
facilities it provides.' Notice that you have to arrange your input so that the word you want
underlined appears on a line of its own.

5-18 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Printing and Formatting Documents

5. 7.,l. Indentation - '.in'

To indent lines of text, use the '.in' request. For example, '.in 5' indents all following lines five
spaces .

. in 5
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Dwain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window .
. in 0
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

Use '.in O' to turn off the indent.
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clyde, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

5. 7.5. Temporary Indents - '.ti'

For a temporary indent in relation to the current, use the '.ti' (temporary indent) request. This
works on the following line only. For example:

.ti 5
King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were Dwain, the son of Urien,
and Kynon, the son of Clydo, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

produces:
King Arthur was at Caerleon upon Usk;

and one day he sat in his chamber,
and with him were Owain, the son of Urien,
and Kynon, the son of Clyde, and Kay, the son of Kyner,
and Guenever and her handmaidens at needlework by the window.

Revision A of 15 April l 985 5-19

Printing and Formatting Documents Beginner's Guide

5. 7. 6. Filling - '. nf' and '.fi'

If you don't want lines filled in, use the '.nf' (no fill) request. Lines are still left justified. To
turn filling back on after you've entered text, type the '.fi' (filling) request. The formatted ver
sion follows the unformatted version here.

5-20

King Arthur was at Caerleon upon Usk;
and one day he sat in his chamber,
and with him were
.nf
Owain, the son of Urien,
and Kynon, the son of Clydo,
and Kay, the son of Kyner,
and Guenever
and her handmaidens at needlework by the window .
. fl
In the centre of the chamber King Arthur sat,
upon a seat of green rushes,
over which was spread a covering of
flame-covered satin,
and a cushion of red satin was under his elbow.

King Arthur was at Caerleon upon Usk; and one day he sat in his chamber,
and with him were
Owain, the son of Urien,
and Kynon, the son of Clydo,
and Kay, the son of Kyner,
and Guenever
and her handmaidens at needlework by the window.
In the centre of the chamber King Arthur sat, upon a seat of green
rushes, over which was spread a covering of flame-covered satin, and a
cushion of red satin was under his elbow.

Revision A of 15 April 1985

0

0

0

0

0

0

Chapter 6

Communications

The Sun system provides several facilities for communicating with local and remote hosts. You
can use mail to send messages, which your friends can read at their leisure, save and respond to
as necessary. For a quick message, there's the write command that sends the message to another
user immediately. The network news provides a widely distributed network for communicating
news items. The tip utility provides dial-up phone access to other systems. For more informa
tion on mail and the network news, refer to the Mail Uaer 'a Guide and the Network Newa Uaer 'a
Guide in Part Two of this manual. For information on write and tip, see the Command& Refer
ence Manual/or the Sun Workatation.

For set-up instructions on either of these two facilities, refer to the Syatem Manager'a Manual
for the Sun Workatation.

6.1. The Electronic 'mail' System

When you send mail to another user, the messages pile up in a 'mailbox.' If your recipient is
logged in and has ael mail set in his .login file, he is notified that mail has arrived when he com
pletes whatever command he is using at the time. If he is not logged in, your message is saved in
the mailbox file, and the recipient is notified that he has mail the next time he logs in.

The mail program keeps track of what you do with your mail; it records whether you throw a
message away, save it in your mailbox, write it to a separate file, or respond to it, for example.

When you log in, or sometime during a work session, you will receive the message:

You have mail.

or

You have new mall.

indicating that you have mail in your 'mailbox.'

6.1.1. Reading Your Mail

To read your mail, type:

tutorial% mall
Mail version 2.17 12/26/82. Type? for help.
''/usr/spool/mail/evan'': 1 message 1 unread
>U 1 lori@tutorial Tue Oct 29 12:43
&

The system responds with a numbered list of messages. To read your mail, type either RETURN
for the next message or:

Revision A of 15 April 1985 6-1

Communications

& p
From lori Fri May 4 21:20:03 1983
Date: 4 May 83 21:19:54 PDT (Fri)
From: lori (Lori Rosen)
Message-Id: <8307020419.AA01512@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA01512; 4 May 83 21:19:54 PDT (Fri)
To: evan
Status: R

Are you going to the birthday party this evening?
I need a ride.
&

Beginner's Guide

for the current message, or pn where the number n is for the message of that number. The
example above is an approximate representation as the message heading varies with who sent
you the mail, from what system, and so on.

To save the message in a file for future reference, type:

& • filename

where filename is your chosen filename. Note that this appends the message to the named file
and does not overwrite any existing contents.

To quit the mail program and have your mail correspondence updated automatically on what
messages you have and bave not read, type:

& q

To delete the message you just read, type:

& d

To delete a specific message, number 5 for instance, type:

& d5

Your mail is erased, unless you 'undelete' a specified message with the II command before you
leave mail.

And if you want to leave mail and get back to the Shell without making any changes to your
messages or reading any of your mail, type:

& X

for 'exit.' Any deleted messages are undeleted.

You can get help at any time during this correspondence by typing a '?' sign, and mail displays a
quick and dirty summary of the most helpful responses.

6-2 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

& ?

c <directory>
d <message list>
e <message list>
f <message list>
h
m <user list>
n
p <message list>
pre <message list>
q
r <message list>
R <message list>
s <message list> file
t <message list>
top <message list>
u <message list>
w <message list> file
X

!

Table 6-1: Mail Quick Summary

chdir to directory or home if none given
delete messages
edit messages
show from lines of messages
print out active message headers
mail to specific users
goto and type next message
print messages
make message go back to system mailbox
quit, saving unresolved messages in mbox
reply to sender only of messages
reply to messages
append messages to file
type messages (same as print)
show top lines of messages
undelete messages
append messages to file, without from line
quit, do not change system mailbox
shell escape

A <message list> consists of integers, ranges of same, or user names separated
by spaces. If omitted, Mail uses the last message typed.

6.1.2. Replying to Mail

Communications

There are two ways to reply to mail. You can type an 'r', which sends a response only to the
sender of the message and not to any of the names listed as Cc:'s (more on this later).

Or, you can type a 'R' to respond to everyone who received the original message. To reply to
the sender only, type:

& reply

at the mail prompt or just 'r' for short.

& r
To: lorl

You see the message header 'To: Jori' for example, and you can type m your response, ter
minated by a ·D.

6.1.f!.1. Your Own Mailbox or 'mbo:i'

To save the mail in your mbo:i (mailbox) file, type:

& q

for 'quit' when you are done reading your mail. This appends any messages you have read, but

Revision A of 15 April 1985 6-3

Communications Beginner's Guide

not deleted during the current session to the mbox file in your home directory or creates the file
the first time you use 'quit'. Also, any messages you have saved are deleted rather than added to
your mbox.

6.1.3. Sending Mail

Assuming that you are using the Sun system network, and that you are sending mail to one of
your colleagues on another host system, use the mail command and indicate the recipient and his
hostname. For instance, to send mail to 'kathy' whose hostname is 'venus,' type:

tutorial% mall kathy@venus
We are moving the project due date up one week.
Let me know If this causes a problem.
·o
EOT
tutorial%

Ask your system administrator for the names of other users' hosts.

To send mail to someone with an account on the same system is even easier. Assuming you are
logged in to 'angel' and want to send mail to Steve, who also has an account on 'angel', simply
type:

angel% mall steve
Wlll you be out of town on business next week?
·o
angel%

Try sending mail to yourself. Be patient; mail delivery is not instantaneous, and it often takes a
few seconds for you to be notified that 'You have new mail.' (Mail is handled by a background
process.)

6.1.,l. Personalizing Your Mail in Your .mailrc File

Just as you have a .login and a .cahrc file in which you can customize your account, you can also
create a .mai/rc file in your home directory to prompt you for additional information in messages
and to provide the same kind of aliaa shorthand as in your .cahrc file.

If you would like to be prompted for a 'Subject:' header, include the 'ask' option in your .mailrc
file:

set ask

Now try sending yourse If mail as follows:

tutorial% mall lorl
Subject: Sending Mall
This shows how to get a 'Subject:' header
when sending mall.
·o
tutorial%

If you want to send copies of a letter to other users, edit your .mailrc file to include:

set askcc

which will then prompt you with 'Cc:' when you terminate a message with ·o. Again, try it on

6-4 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

yourself:

tutor !al% mall lorl
Subject : Sending Cople1
Thia ahow1 how to 1end copies
of message,.
·o
Cc: Chrl1
tutorial%

6.1 . .J.1. Diatribution Liata and A/iaaea

Communications

As you learned in the chapter on Uaing the Shell, you can set aliases for long lists of commands
or names. This is particularly useful here for distributing copies of letters to the various
members of a project group for instance.

Put an 'alias' in your .mailrc file, for example:

alias gang jon tom marty steve evan@venus

which specifies the members of a particular project.

tutorial% mall gang
Subject: Prlorltle1
It 11 critical to get the product completed by November.
·o
tutorial%

Remember that all these message rec1p1ent names are really login names, but the alias may
include 'evan@venus' for mailing to remote hosts.

6.2. Writing to Other Users with 'write'

The write command immediately sends a message to a specified user, when you type the mes
sage, provided that the recipient is logged in to the same system at the time. Use write only
when it's a real emergency because it does bother some people when messages start appearing
while they're trying to type at the workstation.

If your recipient is logged in over a phone line, their phone will be continuously busy, so write
may be the easiest way to reach them.

A typical example of how to use write is:

tutorial% write Joann
Is the customer demo readyf
·o
tutorial%

You are not prompted after you type write and the login name, so simply type in the message
you want to send, as many lines as you like, and end it with the end-of-text character, ·o. You
don't get any indication that your message has actually been received.

What the recipient, "joann", sees is:

Revision A of 15 April 1985 6-5

Communications

Message from tutoriallbrad on ttyOB at 10:42 ...
Is the customer demo ready?
EOF

Beginner's Guide

'tutorial' is the hostname of the system that Joann and Brad are using. The EOF indicates that
the message is finished, and Brad has quit writing.

This is a simple one-line message, but if you send more than one line, your recipient doesn't get
it all at once. He sees each line only after a RETURN is typed, so the EOF is the only indication
that the message is complete. This causes problems for a two-way conversation, which is usually
what you'll use. For example, suppose Brad tries to get in touch with Jay:

tutorial% write Jay

but doesn't immediately enter the message to see if Jay is logged on. Jay receives a message that
says:

Message from tutoriallbrad on tty08 at 10:45 ...

At this point Jay gives his own write command:

tutor ia1% write brad
HI. Whatr

Jay doesn't type ·o, so now Jay and Brad are 'talking' to each other, until one of them types ·o
to drop out of the conversation.

At the end of the conversation, Brad's screen might look like this:

tutor ia1% write Jay
Message from tutorialljay on tty04 at 10:45
Hi. What?
How about discussing the project this afternoon?
There's a department meeting. Sorry.
Maybe tomorrow
morning?
Sounds good.
·n
tutorial%

What Brad has typed is shown boldface, Jay's replies are in normal type. Jay's screen looks like:

tutorial% Message from tutoriallbrad tty08 at 10:45 ...
write brad
HI. What?
How about discussing the project this afternoon?
There's a department meeting. Sorry.
Maybe tomorrow
morning?
Sounds good.
EOF
·n
tutorial%

Here we have shown what Jay typed boldface, and Brad's contributions in normal type. Here
the dialogue consisted of simple one-line questions, but if you are going to provide several lines of
information rather than ask questions, use the protocol, which suggests that you terminate each
message with the character o, for 'over', and when you are about to quit the conversation, type
oo, for 'over and out'. You can also set up your personal protocol with your colleagues.

6-6 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

If you try to write to someone who is not logged in, you get a message:

tutorial% write aylvla
sylvia not logged in.
tutorial%

Communications

and write terminates. You get the same response if you try to write to someone who is not a
user, because write doesn't check for known system users, only for users logged in. Remember
that you can always use the who command to see who is logged in:

tutorial% who
susan ttyOO 08:30
henry tty03 08:31
jay tty04 09:05
susan tty06 09:15
hank tty07 09:15
brad tty08 09:10
tutorial%

If you have already started typing your message when the system finds that the user is not
logged in, and decides to ignore your command, cancel what you have typed using your line kill
character (·u). This is not critical, but it can be disconcerting when the system tries to inter
pret your partial message as a command next time you press RETURN.

You may try to write to someone and get the response:

tutorial% write hank
Permission denied.
tutorial%

This means that the recipient is using one of the system commands that 'locks out' the write
command to prevent messages from messing up nicely formatted output. This is the same mes
sage you get if you try to write to a user who has used me•g to prevent you writing to his works
tation. Me•g is described later.

What's really happening here is that you are writing to the user's workstation or terminal, for
example, to tty08, where our who example shows Brad is logged in.

The example of the who command shows that the user 'susan' is logged in to the system twice,
once on ttyOO, and again on tty06. Choose one, and if you don't get a response, quit that write
and try to get the user on the other:

tutorial% write ouoan ttyOII
Are you thereT
·o
tutorial% write auaan ttyOO
Are you thereT
Message from tutorial!susan ttyOO ...
Yes. What's up?
Working lateT
Yes. See you tomorrow.
EOF
·o
tutorial%

If you don't specify a terminal, write chooses one for you:

Revision A of 15 April 1985 6-7

Communications

tutorial% write susan
susan logged more than once
writing to ttyOO

Beginner's Guide

Write chooses the lowest number terminal, so if you don't get a response there, specify the par
ticular tty number to get messages sent to the other terminal.

If you have a long message to communicate, use a text editor to prepare the message in a file and
correct any mistakes before anyone else sees them. Send this message by redirecting the Stan
dard Input:

tutorial% write jay< message
tutorial%

The recipient receives the message all at once. There is no waiting between lines, as there is
when the message is typed following the write command. Use the mail command described
above to send very long messages so your recipient can choose his own time to read them.

Here as in the editor, you can use the exclamation mark character ! to call a system command.
For instance, suppose you want to find the location of some files and let someone else know. You
change to the desired directory and start writing. If you forget the name of the directory, you
can find out in the middle of writing by saying:

tutorial% write Joe
The files you want are in the directory:
!pwd
/dd/projectjbrad/docs/memos
I
/dd/project/brad/docs/memoa
·n
tutorial%

You still have to type in the output of the command called by'!'. Of course, the command you
give following '!' may have nothing to do with the message you are sending. You may also
redirect the Standard Output of the command, so you don't see any output on the screen. The
second '!' signals command termination.

6.3. Preventing Message Interruptions with 'mesg'

If you dislike being interrupted by your friends' messages while you are programming at your
workstation and especially when you are using a text editor, set the me,g command to 'n' to stop
incoming messages:

tutorial% mesg n
tutorial%

This 'no' tells the system to prevent someone else from writing to you. The message sender sees:

Permission denied.

The default is 'yes', and you can check how yours is set by typing:

tutorial% mesg
is y
tutorial%

As a first-time user, yours is undoubtedly still enabled. Setting meag to 'no' only lasts for your

6-8 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Communications

current login session unless you set it permanently. To do this, edit your your .login file to
include:

mesg n

6.4. Network Facilities

Your Network File System lets you mount a file system from a remote system onto your own
machine, where you can work on it as you will. If you need to access a machine that is not part
of the Network File System, you must log in to the system to copy files or do work.

When you want to access information on another machine, try the procedure given in Uaing the
Network File Syatem described below. If the procedure given there doesn't work, try logging in
to the remote system or using the remote commands discussed below.

6.4,1. Using the Network File System

To mount a file system from another machine onto your machine, type the following:

tutorial% 1u
tutorial% your superuser password
tutorial% /etc/mount remote-pathname local-pathname
tutorial%

For a concrete example, let's suppose you don't have any games on your system and you have a
sudden urge to play some. In this example, games are located on another machine named panic.
To get the games onto your machine give the command

tutorial% 1u
tutorial% your superuser password
tutorial% /etc/mount panic:/usr/games /usr/games
tutorial%

6.4,2. Making Connections with 'rlogin' and 'rsh'

Use the rlogin (remote login) command to log in to another system. For example, to do a remote
login to the 'angel' system from your host 'tutorial,' use the rlogin command:

tutorial% rlogln angel
Last login: Mon Jul 11 22:23:40 am ttypO
Sun UNIX 4.2 (UNIX) (SUN) #4: Fri Jan 11 00:20:28 PST 1985
angel%

You can then login as you normally do, although a password is not necessary if you log in as the
same user on an equivalent host. In both cases, your local user name must exist on the remote
host to allow remote command execution as there isn't any password prompt. Your system
administrator sets this up for you.

You can write to another user on the system or send mail without having to provide a hostname
if you 're on the same system.

Revision A of 15 April 1985 6-9

Communications

Log out as you normally do:

angel% logout
Connection closed.
tutorial%

You can go on with your local work as before.

Beginner's Guide

If you want to execute a single command on another system, use the rah (remote Shell) com
mand. For instance, to find out who is logged in on 'angel', say:

tutorial% reh angel who
lori console Jul 28 09:48
tutorial%

6.4"3. Copying Files From Other Systems with 'rep'

Your local network also allows you to copy files from one system to another with the rep (remote
copy) command. For example, if you need one of your colleague's files from another system,
type:

tutorial% rep krypton:/usr/henry/mlse/plan.
tutorial%

This copies from /uar/henry/miac on system 'krypton' the plan file into your current (or dot'.')
directory on your host 'tutorial'. If you need to copy a directory with its contents, use the -r
(recursive) option:

0

tutorial% rep -r krypton:/usr/henry/mlae. 0
tutorial% ·

This copies all of the miac directory, including any subdirectories and files, into your current
directory.

Note that if you're using '[]' '*' '$' ,-, '<' '>' ''' or '?' as with rah you must enclose the ' ' ' ' ' ' . ' ' path in quotes. For example:

tutorial% rep -r 'venus:/usr/kathy/mlse/ehap*'.
tutorial%

This quotation prevents some strange and undesirable filename expansion.

6.5. Additional Communication Facilities

The Sun system supports several additional communication facilities for which detailed descrip
tions are beyond the scope of this manual. We introduce these facilities to you here and recom
mend that you read the indicated documentation and the Commanda Reference Manual pages
for instructions on how to use them if you are interested.

The uucp (UNIX-to-UNIX copy) utility provides networking of machines over phone lines. The
mail facility uses it to send mail to users at remote sites and the network news facility described
below uses it to transmit news articles. The tip facility permits file transfers between machines.

6-10 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Communications

6.5.1. Network News

The network news, or simply netnewa, provides access to the USENET (User's Network). Netnewa
is a communication facility for sharing information among a large number of users. It can be
described as an electronic bulletin board. You can send articles from one machine to another for
limited or very wide distribution, post an article to interested persons, browse through old news,
post follow-up articles, and send direct electronic mail replies to the author of an article. You
can select the articles, which are arranged in categories called newagroupa.

See the Network New• Uaer '• Guide in Part Two of this manual for details.

6.5.2. Dialing to Remote Systems with 'tip'

With the tip utility, you can dial in with a phone hook-up to a remote system to transfer files
from one machine to another. You must have a login name on the remote machine. You can
use either the name of the remote system or the phone number with the tip command to make
the connection.

A typical example is:

tutorial% tip tymnet
dialing ... connected

Or you can use the phone number of the desired system by typing:

tutorial% tip XXX XXXXXXX
dialing ... connected

where XXX XXXXXXX is the phone number. Ask your system administrator for specific details.

Occasionally, you may receive the response:

dialing ... no answer
EOT

or

all ports busy

which can mean a number of things, such as all outgoing lines are busy.

A tilde C) at the beginning of a line is the escape character.

To logout, type - •.

For a full description of tip, refer to the Command, Reference Manual for the Sun Workatation.

Revision A of 15 April 1985 f>-11

I

I

0,
'

0

0

0

0

Contents

Chapter 1 Using the C-Shell 1-1

Chapter 2 Using the Bourne Shell .. 2-1

Chapter 3 Mail User's Guide

Chapter 4 Network News User's Guide

Appendix A Glossary

Appendix B Bibliography

- I -

3-1

4-1

A-1

B-1

0

0

0

0

0

Contents

Preface - Part Two .. 1

Chapter 1 Using the C-Shell 1-1
1.1. What is a Shell?... 1-1
1.2. C-Shell Commands ... 1-2

1.2.1. Specifying Optional Capabilities with Flag Arguments 1-3
1.2.2. C-Shell Metacharacters ... 1-3
1.2.3. Redirecting Output to Files with '>'. .. 1-3
1.2.4. Redirecting Input from Files with '<' 1-4
1.2.5. Chaining Commands in a Pipeline 1-5
1.2.6. Pathnames and Filenames 1-6
1.2.7. Filename Expansion - '*' '?' '[]' .-, '{ }' .. 1-7
1.2.8. Quoting Away the Metacharacters .. 1-9
1.2.9. How to Terminate C-Shell Commands... 1-9
1.2.10. Changing Shells... 1-12

1.3. C-Shell Details.. 1-12
1.3.1. Starting and Terminating the C-Shell ... 1-12
1.3.2. C-Shell Variables 1-13
1.3.3. The History Mechanism .. . 1-15
1.3.4. The Alias Mechanism... 1-18
1.3.5. The Redirection Notation'>>' and'>&' .. 1-20
1.3.6. Running Jobs in the Background, Foreground, or Suspended....... 1-20
1.3.7. The C-Shell's Working Directory 1-25
1.3.8. Useful Built-in Commands 1-27

1.4. Programming the C-Shell 1-29
1.4.1. Variable Substitution 1-29

1.5. C-Shell Metacharacter Summary 1-31

Chapter 2 Using the Bourne Shell................................... 2-1
2.1. What is a Shell?... 2-1
2.2. Logging In 2-2
2.3. Changing the Shell Prompt 2-2
2.4. Simple Shell Commands.. 2-2

2.4.1. Background Commands... 2-3
2.4.2. Input/Output Redirection 2-3
2.4.3. Pipelines and Filters . .. 2-4
2.4.4. Filename Expansion '*' '?' '[]' .. 2-5

-111 -

2.4.5. Quoting the Metacharacters with '" ' and ' ' ... 2-6
2.5. Programming the Shell .. 2-7
2.6. Shell Metacharacter Summary .. 2-10 0

Chapter 3 Mail User"s Guide .. 3-1
3.1. Sending Mail 3-1

3.1.l. Sending Mail on the Local Network ... 3-1
3.1.2. Sending Mail on the Same Host... 3-2
3.1.3. Sending Mail on the Network ... 3-3

3.2. Reading Your Mail 3-3
3.3. Replying to Mail 3-4
3.4. Customizing Your Mail 3-6

3.4.l. Forwarding Your Mail from Other Accounts ... 3-6
3.4.2. Setting Your Options with 'set' ... 3-6
3.4.3. Streamlining Your Mail with 'alias'... 3-7

3.5. More on Reading Mail 3-8
3.6. Printing a Mail Message .. 3-9
3.7. Quitting Mail 3-9
3.8. Mail Help - '?' .. 3-10
3.9. Collecting Groups of Messages in Folders ... 3-11
3.10. Sending Mail with Tilde Escapes ... 3-12

3.10.l. Displaying the Message Text with ,-p, ... 3-12
3.10.2. Editing a Message - ,-e' and •-v, ... 3-12
3.10.3. Including a File in Your Message with •-r, .. 3-13
3.10.4. Using the 'dead.letter' File with ,-d' ... 3-13 0
3.10.5. Saving Message Text in a File with •-w' ... 3-13
3.10.6. Forwarding a Message with •-m' and 'T ... 3-13
3.10.7. Adding People to the Message List with ,-t' ... 3-14
3.10.8. Adding a Message Subject with ,-s' .. 3-14
3.10.9. Sending Copies with ,-c' and ,-b' .. 3-14
3.10.10. Editing the Header Fields with ,-h' ... 3-15
3.10.11. Escaping to the Shell with 'T ... 3-15
3.10.12. Escaping to 'mail' Command Mode with•-:, 3-16
3.10.13. Changing the Tilde Escape and Using a Tilde as a Tilde 3-16
3.10.14. If You Need Help - ,-?' ... 3-17

3.11. Special Recipients .. 3-17
3.12. Additional Features .. 3-18

3.12.1. Message Lists ... 3-18
3.12.2. List of Commands for Receiving Mail ... 3-19
3.12.3. Setting Custom Binary and Valued Options ... 3-23
3.12.4. Command Line Options .. 3-25

3.13. Message Format .. 3-26
3.14. Summary of Commands, Options, and Escapes .. 3-28

3.14.l. 'mail' Command Summary ... 3-28
3.14.2. 'set' Command Option Summary ... 3-30
3.14.3. 'mail' Command Line Flags 3-31

0
- iv -

3.14.4. Tilde Escape Summary ... 3-31

0 3.14.5. 'mail' Help ... 3-32

Chapter 4 Network News User's Guide ... 4-1
4.1. Making the Connection with Your News Host System 4-1
4.2. How to Read the News with 'readnews' .. 4-2
4.3. Reading News for the First Time ... 4-2
4.4. Printing a News Article .. 4-4
4.5. Changing Your Subscription List 4-5
4.6. Submitting New Articles with 'postnews' .. 4-5
4.7. Submitting News with 'inews' .. 4-6
4.8. Browsing Through Old News .. 4-7
4.9. Getting News When You Log In - Your Morning Newspaper 4-7
4.10. Creating New Newsgroups .. 4-8
4.11. User Interfaces... 4-8
4.12. Rules of the Net .. 4-9
4.13. Frequently Asked Questions .. 4-11
4.14. List of Newsgroups ... 4-12

4.14.l. Local Newsgroups .. 4-12
4.14.2. FA Newsgroups .. 4-12
4.14.3. Net Newsgroups ... 4-13

0 Appendix B Bibliography B-1

0
-v-

0

01
I

0

0

0

0

Tables

Table 1-1 Syntactic Metacharacters .. 1-31
Table 1-2 Filename Metacharacters 1-31
Table 1-3
Table 1-4
Table 1-5
Table 1-6
Table 2-1
Table 2-2
Table 2-3

Quoting Metacharacters ... 1-32
Input/output Metacharacters .. 1-32
Expansion/substitution Metacharacters ... 1-32
Other Metacharacters 1-32
Syntactic Metacharacters
Filename Expansion Metacharacters
Substitution Metacharacters

······· 2-10
2-10
2-10

Table 2-4 Quoting Metacharacters ... 2-10
Table 3-1 mail Commands 3-29
Table 3-2 mail Binary and Valued Options ... 3-30
Table 3-3 mail Command Line Flags 3-31
Table 3-4 mail Tilde Escapes 3-31

- Vil -

0

0

0

0
Figures

Figure 1-1 Sample hiatory Use 1-18

0

0
-1x-

0:

0

ot

0

0

0

Preface - Part Two

Part Two of the Beginner'a Guide to the Sun Workatation includes user's guides to the Shells,
the mail facility, the network news, a glossary and an annotated bibliography. The user's guides
provide details, examples and explanations of many of those commands and facilities presented in
Part One.

The Sun system supports two Shells, the C-Shell and the Bourne Shell. These Shells are more or
less the same in basic essentials, but they vary a lot in detail. To provide complete, basic
descriptions of both Shells, the Shell user's guides in Part Two contain some material that is
similar and even repetitious. For specific information on the Shells, see the cah and ah pages in
the Commanda Reference Manual for the Sun Workatation. For detailed information on how to
program the Shella, aee the Programming Too/a for the Sun Workatation.

The chapters in Part Two are:

1. Using the C-Shell - Introduces the C-Shell command interpreter and some commonly
used Sun system commands.

2.

3.

4.

5.

6.

Using the Bourne Shell - Introduces the Version 7 UNIX Shell, the Bourne Shell.

Mail User's Guide - Provides details on the electronic mail facilities.

Network News User's Guide - Describes what the network news is, how to subscribe to
newsgroups, how to read the news, and how to post your own news.

Glossary - Provides brief definitions of terms and common commands.

Bibliography - Provides an annotated list of Sun system and UNIX reference material.

For additional details on any of the information presented in Part Two, refer to the Commanda
Reference Manual for the Sun Workatation and to the Syatem Interface Manual for the Sun
Workatation.

- XI -

0

0

0

0

0

0

Chapter 1

Using the C-Shell

U,ing the C-She/11 introduces the basics of the C-Shell. It gives you a broad understanding of the
shell's operation, then provides more detailed information for learning to use the different C
Shell facilities.

1.1. What is a Shell?

A Shell is a program which provides you with interactive access to the operating syster., via a
combined command and programming language. A Shell's primary purpose is to translate com
mand lines typed at the workstation into system actions, such as the invocation of other pro
grams. Because a Shell is a user program, just like any you might write, there is more than one
available. The Shell you get when you log in is specified in your password file.

Shell features include control-flow primitives, parameter passing, and variable and string substi
tution. The Shell supports constructs such as while, if-then-el,e, caae, and /or. Two-way com
munication is possible between the Shell and commands. String-valued parameters, typically
filenames or flags, may be passed to a command. Commands set a return code. that may be used
as Shell input.

You can use the Shell to modify the environment in which commands run. You may redirect
input and output to files, call processes that communicate through pipea, and define a directory
searching sequence in the file system to call commands. Commands can be read either from the
workstation or from a file, so command procedures can be stored in a file for later use.

A Shell in the Sun operating system acts mostly as a medium through which other programs are
invoked. While it has a set of built-in functions that it performs directly, most commands cause
execution of programs that are external to the Shell. The Shell is thus distinguished from the
command interpreters of other systems both by the fact that it is just a user program, and by
the fact that it is used almost exclusively as a mechanism for invoking other programs.

The Sun system supports two Shells, the C-Shell (c,h) developed by William Joy at the Univer
sity of California at Berkeley and the Bourne Shell (,h) developed by S. R. Bourne at Bell
Laboratories. After you log in to the Sun system, the C-Shell displays the '%' prompt to indi
cate it is waiting for input. The Bourne Shell displays the '$' prompt; this is an easy way to tell
which Shell your system is running. The C-Shell permits its prompt to be modified and, in this
guide, we show the prompt as 'tutorial%'.

1 The material in this chapter is derived from An Introduction to the o.SAell, William N. Joy.

Revision A of 15 April 1985 1-1

Using the C-Shell Beginner's Guide

1.2. C-Shell Commands

Command• in the Sun system consist of a list of strings or worda. They are interpreted as a
command name followed by argument•. Thus the command:

tutorial% mall aam

consists of two words. The first word mail names the command to be executed, in this case the
mail program, which sends messages to other users. The C-Shell uses the name of the command
in attempting to execute it for you. It looks in a number of directoriea for a file with the name
mail, which contains the mail program.

The rest of the words of the command are given as argument• to the command itself when it is
executed. In this case, the argument is aam, which is interpreted by the mail program to be the
name of a user to whom mail is to be sent. You can use the mail command as follows:

tutorial% mall aam
la the project meeting at 3:00?
I may have another appointment.

Joe
·o
EOT
tutorial%

Here Joe sent the user 'sam' a message and ended his message with a ·n,2 which sent an end-of
file to the mail program. The mail program then echoed the characters 'EOT' and transmitted
Joe's message. The C-Shell displays the 'tutorial% ' prompt before and after the mail command
to indicate that it is awaiting input.

After displaying the 'tutorial%' prompt, the C-Shell reads command input from your worksta,
tion. When you type a complete command such as mail aam, the C-Shell executes the appropri
ate program, mail in this case, with an argument, aam. It then hands control over to the mail
program and waits for mail to complete. The mail program reads input from your workstation
until you signal an end-of-file by typing a ·n. This causes mail to complete; the Shell notices
that mail has completed and displays another 'tutorial%' prompt to signal you that it is ready to
read another command from the workstation again.

This is the essential pattern of all interaction with the Sun system through the C-Shell. You
type a complete command that the C-Shell executes. When this execution completes, the C
Shell prompts for a new command. If you run the editor for an hour, the C-Shell waits patiently
for you to finish editing and obediently prompts you again when you finish.

An example of a useful command you can execute now is the taet command, which sets the eraae
and kill characters on your terminal - the erase character erases the last character you typed,
and the kill character erases the entire line you have entered so far. By default, the erase char
acter is 'DEL' or 'BACKTAB', and the kill character is •·u'. You may prefer to use the back
space ('H) character as your erase character. You can make this change by using the taet com
mand with the -e option:

2 The notation "D is read 'control-D' and means that you should hold down the CONTROL (or CTRL)
key while pressing the D key. The shift key is ignored so that '"d' and 1"D1 are equivalent.

1-2 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

tutorial% tset -e
Erase set to Ctrl~H
Kill is Ctrl-U
tutorial%

This tells the program t•et to set the erase character to 'H.

1.2.1. Specifying Optional Capabilities with Flag Arguments

Using the C-Shell

While many arguments to commands specify filenames or user names, some arguments called flag
arguments specify an optional capability of a command that you wish to use. By convention,
such flag arguments begin with the character '-' (hyphen). So, to produce a simple list of the
files in the current working directory, use the 1• command:

tutorial% Is
bin dead.letter disk.usage mbox misc
tutorial$

The flag option -s is the size option, which gives the size of each file in blocks of 512 characters;
for example:

tutorial% Is -s
total 9

1 bin
5 mbox

tutorial%

1 dead.letter
1 misc

1 disk.usage

shows the number of 512-character blocks in each file. Refer to the Command• Reference
Manual for available options for each command. Some commands like the la command have a
large number of useful options, while other commands have either no options or only one or two.

1.2.2. C-Shell Metacharacters

The C-Shell has a number of special characters called metacharactera that have special func
tions. In general, most characters which are neither letters nor digits have special meaning to
the C-Shell. There is a method of quoting that prevents the C-Shell from treating these meta
characters in any special way. This notation is described in Quoting Away the Metacharactera.

Metacharacters normally have effect only when the C-Shell is reading your input. You need not
worry about placing C-Shell metacharacters in a letter you are sending with mail or when you
are typing in text or data to some other program, for example. Note that the C-Shell is only
reading input when it has prompted with 'tutorial%'. See the C-Shell Metacharactera Summary
for a complete list with meanings.

1.2.3. Redirecting Output to Files with '>'

Commands that normally read input from or write output to the workstation can instead be exe
cuted using a file rather than the workstation for input and output .. The date command nor
mally displays the current date on your workstation screen because your screen is the default
atandard output for the date command:

Revision A of 15 April 1985 1-3

Using the C-Shell

tutorial% date
Thu Aug 4 10:58:37 PDT 1983
tutorial%

Beginner's Guide

Suppose you wish to save the current date in a file called today. You can redirect the standard
output of a command through a notation using the metacharacter '>' to the today file rather
than to the screen:

tutorial% date > today
tutorial%

This command places the current date and time into the file today. Note that the date com
mand does not know that its output is going to a file rather than to the workstation. The C
Shell sets up this redirection before the command begins executing.

One other thing to note here is that the C-Shell creates the file if it does not exist. The file
today need not have existed before date was executed. And if the file does exist, its previous
contents are discarded. You can set the C-Shell option noclobber to prevent this from happening
accidentally; see the C-Shell Variablea section on noclobber.

The system normally keeps files that you create with '>' permanently. If you wish to create a
file which will be removed automatically you must have an entry in crontab. Begin the file's
name with a '#', the 'scratch' character, to denote that the file will be a scratch file. The sys
tem removes such files after a couple of days, or sooner if file space becomes very tight. So if
you don't really want to save the output in the example above permanently, use the notation:

tutorial% date> #today
tutorial%

1.2.4. Redirecting Input from Files with '<'

In the same way that you can redirect the standard output of a command to a file with '>', you
can also redirect the atandard input of a command from a file with the '<' character. This is not
often necessary, however, since most commands read from a file whose name is given as an argu
ment. Redirection of input to the aort command looks like:

tutor ia1% oort < fruit

apples
bananas
blueberries
lemons
limes
nectarines
oranges
peaches
pears
plums
strawberries

tutorial%

0

0

where the command reads its input from the file fruit. You would more likely let aort open the
file fruit for input itself since this is less typing: Q

1-4 Revision A of 15 April 1985

0

0

0

Beginner's Guide

tutor lal% oort fruit

apples
bananas

< etc. >
plums
strawberries

tutorial%

Note that if you just type aort and do not redirect the standard input, as in:

tutorial% oort

Using the C-Shell

the aort program sorts lines from its standard input, the workstation, taking what you type as
data, until you type a -o to indicate an end-of-file. The default standard input for programs
comes from the workstation keyboard.

1.2.5. Chaining Commands in a Pipeline

In the C-Shell, you can connect the standard output of one command to the standard input of
another; that is, you can run the commands in a sequence known as a pipeline. For instance, the
la command with the -11 option normally produces a list of the files in your directory with the
size of each in 512-character blocks:

tutor lal% lo -•
total 388

1 Makefile 286 doc.tbl 40 gloss
56 mall.all 5 refs.all

tutorial%

If you are interested in learning which of your files is largest, you want to sort the list by size.
You can look at the many la options to see if there is an option to do this, but you would eventu
ally discover that there is not.

Instead you can use a couple of simple aort options and combine them with la with the T nota
tion to invoke the pipe mechanism to get what you want. Thus, you can pipe la to aort by typ
mg:

tutorial% lo-• I oort -n
total 388
1 Makefile
5 refs.all
40 gloss
56 mall .all
286 doc.tbl
tutorial%

This runs the la command with the option -s and pipea this la output to the aort command with
the numeric option -n. Your list of files is sorted by size with the smallest first. You can then
use the -r reverse aort option and the head command in conjunction with the previous com
mand:

Revision A of 15 April 1985 1-5

Using the C-Shell

tutorial% ls -s I sort -n -r I head -3
286 doc.tbl
56 mail.all
40 gloss
tutorial%

Beginner's Guide

Here you take a list of your files sorted alphabetically, each with the size in blocks. You pipe
this to the standard input of aort asking it to sort numerically in reverse order, that is, largest
first. This output is then piped into the head command, which shows you the first few lines. In
this case you ask head for the first three lines. Thus this pipeline gives you the names and sizes
of your three largest files.

The C-Shell connects commands separated by ':' characters, and the standard output of each is
run into the standard input of the next. The leftmost command in a pipeline normally takes its
standard input from the workstation keyboard, and the rightmost normally sends its standard
output to the workstation screen. Other examples of pipelines are provided later in the descrip
tion of foreground and background jobs.

1.2.6. Pathnames and Filenames

Sun system pathnamea consist of a number of componenta separated by a slash '/'. Each com
ponent, except the last, names a directory in which the next component resides, in effect specify
ing the path of directories to follow to gain access to the file. Thus the pathname:

/ etc/mold

specifies a file in the directory /etc, which is a subdirectory of the root directory'/'. Within this
directory the file named is motd, the 'message of the day' file. A pathname that begins with a
slash is said to be an abaolute pathname since it specifies a complete path from the absolute top
of the directory hierarchy of the system, the root. Pathnames which do not begin with '/' are
interpreted as starting in the current working directory, which is by default, your home directory
and which you can change dynamically with the cd (change directory) command. Such path
names are said to be relative to the working directory since they are found by starting in the
working directory and descending to lower levels of directories for each component of the path
name. If the pathname does not contain any slashes at all, the file is contained in the working
directory itself, and the pathname is merely the name of the file in this directory. Absolute
pathnames have no relation to the working directory.

Most filenames consist of a number of alphanumeric characters and '.'s (dots). In fact, filenames
can have all printing characters except '/'. Remember that it is inconvenient to have most non
alphabetic characters in filenames because many of these characters are metacharacters that
have special meaning to the C-Shell. The character'.' (dot) is not a C-Shell metacharacter and
often separates the ezten,ion of a filename from the baae of the name. Consider the following
four related files:

data.e data.o data.errs data.output

The files share a base portion, 'data', of a name and have different extensions, 'c', 'o', 'errs', and
'output'. The file data.c might be the source for a C program, the file data.o the corresponding
object file, the file data.err, the errors resulting from a compilation of the program, and the file
data.output the output of a run of the program.

1-6 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Using the C-Shell

1.2. 7. Filename Expansion - '*' '?' '/]' ,-, '{}'

Consider again the following four related files: data.c, data.o, data.output, and data.errs. If you
want to refer to all four of these files in a command, use the '*' notation, which the C-Shell
expands to match any sequence, including the empty sequence, of characters in a filename. For
example, if you use:

data.•

the C-Shell expands this word into a list of names which begin with 'data' before executing the
command to which it is an argument. The names that match data.• are alphabetically sorted
and placed in the argument liat of the command. Thus the echo command and this '*' notation
display the four related files as:

tutorial% echo data.•
data.c data.errs data.o data.output
tutorial%

Note that the names are in sorted order here and a different order than you listed them above.
The echo command receives four words as arguments, even though you only directly type one
word as an argument. Filename ezpanaion of the one input word, data.• generates the four
words.

As '*' matches any sequence of characters in a filename, the character '?' matches any aingle
character in a filename. So, to echo a line of filenames, type:

tutorial% echo ? ?? ???

This echoes first those with one-character names, then those with two-character names, and
finally those with three- character names. The names of each length are independently sorted.

Another mechanism matches any single character from a sequence of characters between '[)'.
So to match:

data.c data.a

in the example above, use:

tutorial% echo data.[co)
data.c data.o
tutorial%

You can also place two characters around a'-' in the '[)' notation to denote a range. Thus to
match:

chap.l chap.2 chap.3 chap.4 chap.5

if they exist, use:

tutorial% echo chap.[1-5)
chap.l chap.2 chap.3 chap.4 chap.5
tutorial%

'This is shorthand for

chap. [12345)

and otherwise equivalent.

Note that if a list of arguments to a command, that is, an argument list, contains filename
expansion syntax that fails to match any existing filenames, the C-Shell considers this to be an
error and displays the diagnostic:

Revision A of 15 April 1985 1-7

Using the C-Shell Beginner's Guide

No match.

and does not execute the command.

Another important point is that files with the character '.' (dot) at the beginning of their names
are specially treated. Neither'*', '?' nor the '[]' mechanism matches it. This special treatment
prevents accidental matching of the filenames '.' and ' • .' in the working directory; these files
have special meaning to the system.

Another filename expansion mechanism gives access to the pathname of the home directory of
other users. This notation consists of the character ,-, (tilde) followed by another user's login
name. For instance, -.am maps to the pathname /uar/aam if the home directory for 'sam' is
/uar/ aam. Use this notation when you need to gain access to other users' files in directories with
different prefix directory names. It's an easier and more reliable method than typing out the
entire pathname.

A special case of this notation consists of a ,-, alone, such as -/mboz. The C-Shell expands this
notation into the file mboz in your home directory, that is, into /uar/aam/mbox for your fellow
user Sam. This is very useful if Sam uses cd to change to another directory and finds a file he
wants to copy to his home directory using cp. The C-Shell expands ,-, into /uar/aam, Sam's
home directory, and copies the file thatatuffthere if 'sam' types:

tutorial% cd programs
tutorial% pwd
/usr/sam/programs
tutorial% cp thatstuff •
tutorial% cd
tutorial% la
thatstuff
tutorial%

Another form of filename expansion uses the characters '{ }'. Braces specify that the contained
strings, separated by a comma (,) are to be consecutively substituted into the containing char
acters and the results expanded left to right. So, you can abbreviate a set of words that have
common parts but cannot be abbreviated by the above mechanisms because they are not files, or
because they are the names of files which do not yet exist. Thus:

A{strl,str2, ... strn}B

expands to:

Astr1B Astr2B ... AstrnB

The contained strings 'strl,str2 ... strn' are consecutively substituted into the containing charac
ters 'A' and 'B' and expanded left to right. This expansion occurs before the other filename
expansions, and may be applied recursively, that is, nested. The results of each expanded string
are sorted separately, left to right order being preserved. If the resulting filenames don't exist,
they are created if you don't use other expansion mechanisms. You can use this mechanism to
generate arguments which are not filenames, but which have common parts. A typical use below
makes subdirectories doca, memo• and lettera in your home directory:

tutorial% mkdlr • /{doca,memoa,lettera}
tutorial% la
docs letters memos
tutorial%

0

0

This mechanism is most useful when the common prefix is longer than m this example, for 0
1-8 Revision A of 15 April 1985

0

0

0

Beginner's Guide Using the C-Shell

instance, to list all the directories below without typing each individually, use the '{ }' mechan
ism:

tutorial% lo /uor/ucb/ {pl, wherelo}
/usr/ucb/pi
/usr/ucb/whereis
tutorial%

See the C-She/1 Metacharacter, Summary for a quick reference list of these characters.

1.2.8. Quoting Away the Metacharacters

Because the C-Shell uses these metacharacters for special purposes, you cannot use them directly
as parts of words. If you try to use the echo command and '*' as its argument, it doesn't work
properly because of the special significance of '*'. Thus the echo command does not show the
character '*':

tutorial% echo •

It either echos a sorted list of filenames in the current working directory, or displays the message
'No match.' if there are no files in the working directory.

To place characters that are neither numbers, digits, '/', '.' nor '-' in an argument word to a
command, enclose them with single quotation characters '' '. For example, to quote away the
special meaning of'*', type:

tutorial% echo ·• •
•
tutorial%

Here the echo command displays the '*' character, and ignores any special meaning.

There is one special character '!' that the hiatory mechanism uses and that you cannot escape by
placing within '' ' characters. Precede '!' and the character '' ' itself by a single ' \' to prevent
their special meanings. So to echo''!', use:

tutorial% echo \ • \!
, I

tutorial%

With these two mechanisms, you can place any printing character into a word which is an argu
ment to a C-Shell command. You can combine the two mechanisms, as in:

tutorial% echo \ · ·• ·
'*
tutorial%

The first'\' escapes the first'' ', and the'*' was enclosed between'' 'characters, so neither
retains its special meaning to the C-Shell.

1.2.9. How to Terminate C-Shell Commands

When the C-Shell is waiting for an executing command to complete, there are several ways to
stop that command. For instance, if you list all system users with the cat command:

Revision A of 15 April 1985 1-9

Using the C-Shell

tutorial% cat /etc/pasawd
bugs:nologin:7:10:bug reporting:/usrjbugs:/dev/null
prot:ZSMXce0kDv9hw:11:l0:Vic Prot:/usr/prot:jbin/csh

< etc. >
sam:Iu2nX,wzcjYBo:953:10:Sam Brown:/usr/sam:jbin/csh
rjb:9rYbUmD9JrJvw:954:20:Robert Baker:/usr/rjb:/bin/csh
tutorial%

Beginner's Guide

this list is likely to continue scrolling off your screen for several seconds unless you stop it. You
can send an INTERRUPT signal to the cat command by typing "C (or the.DEL or RUBOUT key
if that's the way your keyboard is set up). Since the cat command does not take any precautions
to avoid or otherwise handle this signal, the "C terminates cat. The C-Shell notices that cat has
terminated and prompts you again with 'tutorial%'. If you type a "C again, the Shell just
repeats its prompt since it ignores INTERRUPT signals and continues executing commands
rather than terminating like cat did. Terminating at this point would otherwise have the effect
of logging you out.

Many programs terminate when they get an end-of-file from their standard input. Thus, you ter
minated this mail program in the first example above by typing a "D, which generates an end
of-file from the standard input. The C-Shell also terminates when it gets an end-of-file and
displays 'logout'; the Sun operating system then logs you off the system. Since this means that
typing too many "D's can accidentally log you off, the C-Shell provides a mechanism to prevent
this. See the ignoreeo/ description in the C-She/1 Variablea section.

If you redirect a command's standard input from a file, the command normally terminates when
it reaches the end of that file. So if you redirect input to the mail command with:

0

tutorial% mall aam < doc.text
tutorial% 0

mail terminates without your typing a "D because it reads to the end-of-file of your file doc.tezt.
You can also use the pipe mechanism to pipe the standard output of the cat command to the
mail command:

tutorial% cat doc.text l mall aam
tutorial%

The cat command then writes the text through the pipe to the standard input of the mail com
mand. When cat completes, it terminates, closing down the pipeline, and the mail command
receives an end-of-file from it and terminates also. Using a pipe here is more complicated than
redirecting input, so use the first form. Typing "C also stops both of these commands.

Another way to stop a command is to suspend its execution temporarily, with the possibility of
continuing execution later. Do this by sending a STOP signal with "Z. This signal suspends all
running commands, but there may be more than one if a pipeline is executing. The C-Shell
notices that the command(s) have been suspended, displays 'Stopped' and then prompts for a
new command. The previously executing command has been suspended, but is otherwise
unaffected by the STOP signal. Any other commands can be executed while the original com
mand remains suspended. You can then continue the suspended command using the fg (fore
ground) command without any arguments. The C-Shell redisplays the command to remind you
which command is being continued, and resumes the command execution, The suspension has no
effect whatsoever on the execution of the command unless the input files that the suspended
command is using have been changed in the meantime. Suspending commands can be very use
ful during editing, when you need to look at another file before continuing. An example of com-
mand suspension follows: 0

1-10 Revision A of 15 April 1985

0

0

0

Beginner's Guide

tutorial% mall peter
You can copy the source from the directory named
·z
Stopped
tutorial% la
data.c
data.o
muchstuff
tutorial% Jobs
[1] + Stopped Mail peter
tutorial% fg
Mail peter
(continue)
data.c. Let's dlscuBB the project later.
·o
EOT
tutorial%

Using the C-Shell

In this example you send a message to Peter but forget the name of the file you want to mention.
You stop the mail command by typing ·z. When the C-Shell notices that mail is suspended, it
displays 'Stopped' and prompts for a new command. You then use the la command to find out
the name of the file. You then type the joba command to see which command was suspended,
mail peter in this case. You type the fg command to continue mail execution. Input to the mail
program is then continued and ended with a 'D which indicates the end of the message. Mail
displays EOT for end-of-transmission.

Type • Z only at the beginning of a line since everything typed on that current line is discarded
when a signal is sent from the keyboard. This also happens with the ·c (INTERRUPT) and '\
(QUIT) signals. See the section on Running Joba for more information on suspending and con
trolling jobs.

If you write or run programs which are not fully debugged, it may be necessary to stop them
somewhat ungracefully. Send them a QUIT signal by typing a '\. This usually provokes the C
Shell to produce a message like:

Quit (Core dumped)

indicating that a file core has been created contammg information about the program's state
when it was terminated by the QUIT signal. You can examine this core file yourself using a
debugger, or forward information to the maintainer of the program telling him where the core
file is.

When you run background commands, they ignore INTERRUPT and QUIT signals at the works
tation. To stop the background commands, you must use the kill command. See the Running
Joba section for an explanation and examples.

If you want to examine the output of a command without having it zip off the screen as the out
put of the cal command below does:

tutorial% cat /etc/paaawd

use the more paging command to display it a page at a time:

tutorial% more /etc/paaawd

The more program pauses after each complete screenful and displays '--More--' at which
point you can type a space to get another screenful, press RETURN to get another line, or type
a 'q' to end more. You can also use more as a filter through which to pipe the cat command:

Revision A of 15 April I 985 1-11

Using the C-She II Beginner's Guide

tutorial% cat /etc/puswd I more

This works just like the simple more command above.

For stopping output of commands not involving more, use the 'S key to stop the typeout. The
typeout resumes when you type ·q. Typing ·s and ·q works well on low-speed terminals, but
use more if you find it hard to type 'S and ·q fast enough to paginate the output nicely.

You can also use the ·o flush output character. Typing 'O quickly throws away or 'flushes' all
output from the current command until the next input read occurs or until the next Shell
prompt. Use ·o to complete a command's execution without your having to suffer through the
output on a slow terminal. Typing ·o toggles output flushing on and off.

1.2.10. Changing Shells

If you are running the C-Shell, log in normally and follow the examples provided in the C-Shell
Detail, section.

If you are not running the C-Shell when you log in, you are using the Bourne Shell, /bin/ ah or
ah. In fact, much of the above discussion is applicable to /bin/ ah, as is noted in Uaing the
Bourne Shell in Part Two.

If you are not using the C-Shell now, log in and change to the C-Shell with the cah command:

$ csh
tutorial%

To change back to the Bourne Shell, use the ah command:

tutorial% sh
$

1.3. C-Shell Details

This section describes more advanced features and details of the C-Shell.

1.3.1. Starting and Terminating the C-Shell

When you log in, the system starts the C-Shell running in your home directory. The C-Shell
begins by reading commands from the .cahrc file in this directory. All Shells which you may
start during your workstation session read from this file. You can put specific commands there
that are described later. For now, however, you do not need this file, and the C-Shell does not
complain about its absence.

This first C-Shell is called the login Shell. This login Shell reads commands from .cahrc, after
which it reads commands from a file called .login, also in your home directory. This .login file
contains commands which you wish to execute once each time you log in to the system. A .login
file looks something like:

1-12 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

set ignoreeof
setenv EXINIT 'set noai wrapmargin=8'
set path=(. /usr/ucb /bin /usr/bin)
set mail=(/usr/spool/mail/sam)

Using the C-Shell

The first is a ,et command, which the C-Shell interprets directly. Set turns on the C-Shell vari
able ignoreeof, which prevents the C-Shell from logging you out if you type 'D. Rather, you use
the logout command to log off the system.

The aetenv command sets the value of an environment variable, in this case to use the editors ez
and vi without automatic cursor indentation (aet noa1) and with an automatic cursor return or
'wrap' to the left side of the screen eight columns from the right screen edge (wrapmargin=8).

The path variable defines the search path through which the C-Shell looks for files and programs.
The mail variable sets the location of the user Sam's system mailbox. When the mail program
finishes checking for your mail, the C-Shell finishes processing your .login file and begins reading
commands from the workstation, prompting for each with 'tutorial%'. When you log off with
·o, the C-Shell displays 'logout' and executes commands from the file .logout if it exists in your
home directory. After that the C-Shell terminates, and you are logged off the system. You then
receive a new login message. In any case, after you type logout, the C-Shell is committed to
terminating and will take no further input from your keyboard.

1.3.2. C-Shell Variables

The C-Shell maintains a set of variable,. Each C-Shell variable has an array of zero or more
airing• as its value. Use the aet command to assign values to C-Shell variables. Set has several
forms, the most useful of which was already given above in the .login example as:

set name=value

C-Shell variables may store values which are used in commands later through a substitution
mechanism. However, the most commonly used C-Shell variables are those which the C-Shell
itself refers to. By changing the values of these variables called built-in variables, you can
directly affect the C-Shell's behavior.

One of the most important variables is path, which contains a sequence of directory names where
the C-Shell searches for commands. The aet command without an argument shows the value of
all variables currently defined or 'set' in the C-Shell. You can see what the default value for
path is by typing the aet command:

Revision A of 15 April 1985 1-13

Using the C-Shell

tutorial% oet
argv
cwd
history
home
mail
path
prompt
shell
status

()
/usr/saJJl
30
/usr/saJJl
(/usr/spool/mail/s=)
(. /usr/ucb /bin /usrjbin)
tutorial%
jbin/csh
0

term sun
user sam
tutorial%

Beginner's Guide

This output indicates that the variable path points to the current directory, symbolized by '.'
(dot) and then /mr/ucb, /bin and /uar/bin. Commands developed at the University of Califor
nia at Berkeley live in /uar/ucb, while commands developed at Bell Laboratories live in /bin and
/usr/bin. A number of commands developed at Sun, particularly commands that used to live in
/uar/auntool, now live in /uar/bin also.

A number of locally developed programs on the system live in the directory /uar/loca/. If you
want all Shells which you invoke to have access to these new programs, place the command:

set path=(. /usr/local /usr/ucb /usr/bin /bin)

in your file .login in your home directory. Try doing this, and then log out and back in. Now
type the aet command again to see that the value assigned to path has changed:

tutorial% set
argv ()
cwd /usr/s=

< etc.>
path (. /usr/ucb /bin /usrjbin /usr/local)

< etc. >
user sam
tutorial%

Be aware that the C-Shell initially examines each directory in your path and determines which
commands are contained there. Except for the current directory '.', which the C-Shell treats
specially, this means that if commands are added to a directory in your search path after you
have started the C-Shell, the C-Shell will not necessarily find them. If you wish to use a com
mand which has been added in this way, use the rehaah command to recompute the C-Shell's
internal hash table of command locations so that it finds the newly added command:

tutorial% rehash
tutorial%

If you do not run rehaah, the hashing algorithm may tell the C-Shell that the command wasn't in
that directory when the hash table was computed. Since the C-Shell has to look in the current
directory '.' on each command, it can always find commands in the current working directory.

Other useful built-in variables are the variable home, which shows your home directory, cwd,
which contains your current working directory, and the variable ignoreeof, which can be set in
your .login file to tell the C-Shell not to exit when it receives an end-of-file from your keyboard.

0

0

The variable ignoreeof is one of several variables that only have the value aet or unaet. Thus, to 0
set this variable you simply type the following in your .login file:

1-14 Revision A of 15 April 1985

0

0

0

Beginner's Guide Using the C-Shell

set ignoreeo f

If you type the character 'D accidentally, you get the message 'Use "exit to leave csh"'. Then
use the logout command to terminate the login Shell.

To unset the ignoreeof option temporarily for that login session, type:

tutorial% unset lgnoreeof
tutorial%

These actions do not give the ignoreeof variable a value, but none is desired or required.

Another useful built-in C-Shell variable is the noclobber variable. If you use the metasyntax:

> filename

to redirect the standard output of a command, you normally overwrite and destroy the previous
contents (if any) of the named file, here filename. Because of this, you may accidentally
overwrite a valuable file. If you want to prevent the C-Shell from overwriting files in this way,
add the noclobber variable to your .login file:

set noclobber

Then try to redirect date into the today file:

tutorial% date > today
today: File exists.
tutorial%

Noclobber warns you if today already exists. If you really want to overwrite the contents of
today, you can use the '!' character to force the action:

tutorial% date >! today
tutorial%

The '>!' is a special metasyntax indicating that clobbering the file is allowed. The space
between the '!' and the filename today is critical here, as '!today' would be an invocation of the
hi•tory mechanism, and have a totally different effect.

See cah in the Command• Reference Manual for aet variables.

1.3.3. The History Mechanism

The C-Shell can maintain a hi•tory liat into which it places the words of previous commands.
You can reuse these commands or words from them to form new commands. You can also use
hiatory to repeat previous commands or to correct minor typing mistakes.

To use the hi•tory mechanism, edit your .cahrc file to contain:

set history=30

Then type:

tutorial% aource.cahrc
tutorial%

to have the change take effect. Then after you have typed several commands, you see that typ
ing just hiatory shows the contents of the history list:

Revision A of 15 April 1985 1-15

Using the C-Shell

tutorial% history
1 ls
2 mkdir misc
4 cd misc
5 vi tut.memo
6 spell tut.memo> mem.sp &

7 pwd
8 cd supplements/tutorial
9 history> hist.list

tutorial%

Beginner's Guide

You can use the numbers given with the history events to refer to previous events, which are
difficult to refer to using the contextual mechanisms introduced above. For example, to reuse
command number 8, type simply:

tutorial% !8
cd supplements/tutorial
tutorial% pwd
/usr/sam/supplements/tutorial
tutorial%

The figure on the following page gives a sample session involving typical history mechanism com

mands.

1-16 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide

tutorial% cat bug.c
main()

{
print£ ("hello);

}
tutorial% cc !$
cc bug.c

"bug.c", line 4: newline in string or char constant
"bug.c", line 5: syntax error
tutorial% ed !$
ed bug.c
29
4s/);/"&/p

print£ ("hello");
w

30
q
tutorial% !c
cc bug.c
tutorial% a.out
hellotutorial% le
ed bug.c
30
4s/lo/lo\\n/p

print£ ("hello\n");
w
32
q
tutorial% !c -o bug
cc bug.c -o bug
tutorial% size a.out bug
a.out: 2784+364+1028 = 4176b = OxlOSOb
bug: 2784+364+1028 = 4176b = OxlOSOb
tutorial% 11 -1 !*
ls -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
tutorial% bug
hello
tutorial% at -n bug.c I spp
spp: Command not found.

3932 Dec 19 09:41 a.out
3932 Dec 19 09:42 bug

tutorial% grep -v •·[aptab)*(0.9)*(1ptab)*$'
at -n bug.c I ssp

1 main()
3 {
4
5 }

tutorial% !! I !pr

print£ ("hello\n");

at -n bug.c I ssp I lpr
tutorial%

Using the C-Shell

0 Figure 1-1: Sample hiatory Use

Revision A of 15 April 1985 1-17

Using the C-Shell Beginner's Guide

In this example you have a very simple C program, with a bug (or two) in the file bug.c, which
you cat out on your workstation. You then try to run the C compiler on it, referring to the file o
again as '!$', meaning the last argument to the previous command. Here the '!' is the history
mechanism invocation metacharacter, and the '$' stands for the last argument, by analogy to '$'
in the editor, which stands for the end of the line. The C-Shell echoes the command, as it would
have been typed without use of the history mechanism, and then executes it. The compilation
yields error diagnostics, so you now run the editor on the file you are trying to compile, fix the
bug, and run the C compiler again. This time you refer to this command simply as '!c'. This
repeats the last command which started with the letter 'c'. If you have used other commands
starting with 'c' recently, you have to say '!cc'. Typing '!cc:p' prints the last command starting
with 'cc' without executing it, so you can check which previous command you want.

After this recompilation, you run the resulting a.out file, and then note that there still is a bug,
and run the editor again. After fixing the program you run the C compiler again, but tack onto
the command an extra '-o bug' telling the compiler to place the resultant binary in the file bug
rather than a. out. In general, you can use the history mechanism anywhere in the formation of
new commands, and you can place other characters before and after the substituted commands.

You then run the aize command to see how large the binary program images you have created
are, and then an la -I command with the same argument list, denoting the argument list '!*'.
Finally, you run the program bug to see that its output is indeed correct.

To make a numbered listing of the program, you run the at -n command on the file bug.c. To
remove blank lines in at -n output, you run the output through the following command sequence:

grep -v '"[sptab]*[0.9]*[sptab)*$ 1

Note that the symbols 't' and '·' are the same thing. This is similar to the substitute command
in the editor. Finally, you repeat the same command with '!!', but send its output to the line o·
printer.

There are other mechanisms available for repeating commands. Hiatory displays a number of
previous commands with numbers by which they can be referenced. There is a way to refer to a
previous command by searching for a string which appeared in it, and there are other, ways to
select arguments to include in a new command. Refer to the C-Shell pages in the Command&
Reference Manual for a complete deacription.

1.3.,S. The Alias Mechanism

The aliaa mechanism substitutes one string for another before the C-Shell executes it. Use the
C-Shell's aliaa mechanism to supply default arguments to commands, or to perform transforma
tions on commands and their arguments. The aliaa facility is similar to a macro facility. Some
of the features obtained by aliasing can also be obtained using C-Shell command files, but these
take place in another instance of the Shell and cannot directly affect the current Shell's environ
ment or involve commands such as cd, which must be done in the current Shell.

As an example, suppose that there is a new version of the mail program called newmail on the
system. You would rather use it than the standard mail program, which is called mail. If you
place the C-Shell command:

alias mail newmail

in your .cahrc file, the C-Shell transforms an input line of the form

1-18 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Using the C-Shell

tutorial% mall 1am

into a call on newmail. Suppose you want the command la to always show which list entries are
subdirectories, which are files, and which are symbolic links to other directories, that is to always
use a -F option. Put the following alias in your .cahrc file:

alias ls ls -F

If you then type la, you actually use la -F:

tutorial% 11
bin/ lint. mss mbox misc/ supplements/

You can also use:

alias 1 f ls -F

to create a new command syntax if that calls la -F. So, using this alias on the home directory of
'sam', you get:

tutorial% It ·sam
bin/ dead.letter mbox misc/ supplements/
tutorial%

or a list of files and directories in /uar/aam with the -F indications of'/' for a directory.

Thus the aliaa mechanism creates short names for commands, provides default arguments, and
defines new short commands in terms of other commands. You can also define aliases which con
tain multiple commands or pipelines, showing where the arguments to the original command are
to be substituted using the facilities of the history mechanism. To call an Is command after each
cd (change directory) command, use the alias:

alias cd 'cd \I* ; ls'

Enclose the entire alias definition in '' ' characters to prevent most filename expansions from
occurring and the character ';' from being recognized as a metacharacter. The '!' here is escaped
with a '\' to make it apply to the argument list of the aliased cd command itself rather than
searching the history list for a previous command. The '\!*' here substitutes the entire argu
ment list to the pre-aliasing cd command without giving an error if there aren't any arguments.
The ';' separating commands indicates that one command is to be done and then the next.
Remember to run the aource command on your .cahrc file to have any changes you make take
effect:

tutorial% 1ource.c1hrc
tutorial%

When you use this alias, it looks like:

tutorial%
abuse
adventure
arithmetic

tutorial%

cd /uar/game1
bed
boggle fish

< etc. >

cribbage
monop

mille
snake

scifi
wump

worms

This cd command not only changes directories, here to /uar/games, but it also lists all the games
available.

Similarly to define a command which looks up its first argument in the password file, put in your
.cahrc file:

Revision A of 15 April 1985 1-19

Using the C-Shell Beginner's Guide

alias whois 'grep \!- /etc/passwd'

Then, when you type whoia plus a username, the C-Shell calls grep to look in the /etc/pauwd
file:

tutorial% whol1 allce
alice:IBkUBlXESfxGY:55:20:Alice Smith:/usr/alice:/bin/csh
tutorial%

Use the unaliaa command at the 'tutorial%' prompt to remove aliases temporarily for that Shell
session.

Warning: the C-Shell currently reads the .cahrc file each time it starts up, so if you place a large
number of commands there, the C-Shell will tend to start slowly. Try to limit the number of
aliases to 10 or 15.

1.3.5. The Redirection Notation '>>' and '>cf'

In addition to the standard output, commands also have a diagnoatic output, which is normally
directed to the workstation screen even when the standard output is redirected to a file or a
pipe. You occasionally may want to direct the diagnostic output along with the standard output.
For instance, if you want to redirect the output of a long running command into a file and wish
to have a record of any error diagnostic it produces, you can type:

tutorial% command>& file
tutorial%

0

The '>&' here tells the C-Shell to route both the diagnostic output and the standard output into 0
file. Use the command form command >&! file if noclobber is set and file already exists to
overwrite file.

Similarly you can route both standard and diagnostic output through the pipe to the line printer
lpr by typing:

tutorial% command:& !pr
tutorial%

Finally, to place standard output at the end of an existing file, type:

tutorial% command > > file
tutorial%

If noclobber is set, an error message 'file: No such file or directory.' results if file for example,
does not exist; otherwise the C-Shell creates the named file. The form command > >! file elim
inates the error condition if file does not exist when noclobber is set.

1.3.6. Running Jobs in the Background, Foreground, or Suspended

When one or more commands are typed together as a pipeline or as a sequence of commands
separated by .semicolons, the C-Shell creates a single job consisting of these commands together
as a unit. Single commands without pipes or semicolons create the simplest jobs. Usually, every
line typed to the C-Shell creates a job. Some lines that create jobs (one per line) are

1-20 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide

tutorial% oort < data

tutorial% ls -s : sort -n : head -5

tutorial% mail harold

Using the C-Shell

The job is started as a background job if you type the metacharacter '&' at the end of the com
mands. This means that the C-Shell does not wait for the command to complete but immedi
ately prompts for another. The job runs in the background at the same time that the C-Shell
continues to read and execute normal jobs, called foreground jobs. Thus, to redirect the output
of the du program to a file called diak.uaage, for instance, type:

tutorial% du> disk.usage &
[1] 503
tutorial%

Du reports on the disk usage of your working directory, as well as any directories below it. This
command sequence puts the output into the file diak.uaage, and the Shell returns immediately
with a prompt for the next command without waiting for du to finish. The du program continues
executing in the background until it finishes, even though you can type and execute more com
mands in the meantime. When a background job terminates, the C-Shell displays a message just
before the next prompt telling you that the job has completed. In the following example, the du
job finishes sometime during the execution of the mail command and its completion is reported
just before the prompt after the mail job is finished.

tutorial% du > disk.usage &
[1] 503
tutorial% mall sam
How do you know when a background job la finished?
·n
EOT
[1] - Done
tutorial%

du> disk.usage

If the job did not terminate normally, the 'Done' message might say something else like
'Stopped.' If you want the terminations of background jobs to be reported at the time they
occur, which may interrupt the output of other foreground jobs, you can set the notify variable
in your .cahrc file. In the previous example this would mean that the 'Done' message might have
come right in the middle of the message to Sam. The STOP, INTERRUPT, or QUIT signals
mentioned earlier, when typed on the keyboard, do not affect background jobs.

Until they terminate, jobs are recorded in a table inside the C-Shell. The C-Shell remembers the
command names, arguments and the proceaa numbera of all commands in the job in this table as
well as the working directory where the job was started. Each job in the table is either running
in the foreground with the C-Shell waiting for it to terminate, running in the background, or
auapended. Only one job can be running in the foreground at one time, but several jobs can be
suspended or running in the background at once. As each job is started, it is assigned a small
identifying number called the job number which you can use later to refer to the job in the com
mands described below. Job numbers remain the same until the job terminates and then are re
used.

Before prompting you for another command, the C-Shell displays the background job's number,
as well as the process numbers of all its top-level commands. For example, if you run the follow
ing command in the background by typing the ampersand '&' character at the end:

Revision A of 15 April 1985 1-21

Using the C-She II

tutorial% 11 -1 i 1ort -n > flle,ll1t &
[2] 2034 2035
tutorial%

Beginner's Guide

the la program runs with the -s option, pipes this output to the aort program with the -n
option, which puts its output into the file file./iat. The '&' at the end of the line starts these two
programs together as a background job. After starting the job, the C-Shell displays the job
number in brackets, 2 in this case, followed by the process number of each program started in
the job. Then the C-Shell immediately prompts for a new command, leaving the job running
simultaneously.

As mentioned in the How to Terminate C-She/1 Commanda section, typing ·z suspends currently
running foreground jobs. You can suspend a background job by using the atop command
described below. When jobs are suspended, they merely stop any further progress until started
again, either in the foreground or the background. The C-Shell notices when a job becomes
stopped and reports this fact, much like it reports the termination of background jobs. Stopping
a foreground job looks like:

tutorial% du > disk.usage
·z
Stopped
tutorial%

The C-Shell displays the 'Stopped' message when it notices that the du program stopped. For
background jobs, using the atop command, it is:

tutorial% 1ort disk.usage &
[l] 2345
tutorial% atop %1
[l] + Stopped (signal) sort disk.usage
tutorial%

The '(signal)' indicates that the job has been stopped by an indirect signal, as opposed to being
stopped by • Z. Suspending background jobs can be very useful when you need to temporarily
change what you are doing, that is, execute other commands, and then return to the suspended
job. Also, you can suspend foreground jobs and then continue them as background jobs using
the bg command. Thus, you can continue other work and stop waiting for the foreground job to
finish. For example:

tutorial% du > dlsk.uaage
·z
Stopped
tutorial% bg
[1] du> disk.usage &

tutorial%

starts du in the foreground, stops it before it finishes, then continues it in the background so you
can execute more foreground commands. The bg command runs a suspended job in the back
ground. It is usually used after stopping the currently running foreground job with the ·z STOP
signal. The combination of the STOP signal and the bg command changes a foreground job into
a background job. This is especially helpful when a foreground job ends up taking longer than
you expected, and you wish you had started it in the background in the beginning.

0

0

All job control commands can take an argument that identifies a particular job. Begin all job
name arguments with the character '%', since some of the job control commands also accept

0 process numbers, as displayed by the pa command. If you do not specify a job, a job control

1-22 Revision A of 15 April 1985

0

0

0

Beginner's Guide Using the C-Shell

command uses the default job, that is, the current job. This current job is identified by a '+' in
the output of the joba command, which shows which jobs you have. When only one job is
stopped or running in the background as is the usual case, it is always the current job, so no
argument is needed. If a job is stopped while running in the foreground, it becomes the current
job and the existing current job becomes the previous job, identified by a '-' in the joba output.
When the current job terminates, the previous job becomes the current job. When given, the
argument is either '%-', which indicates the previous job, '%#' where # is the job number,
'%pref' where pref is some unique prefix of the command name and arguments of one of the
jobs, or '%?' followed by some string found in only one of the jobs.

The joba command displays the table of jobs, giving the job number, status ('Stopped' or 'Run
ning') and command name for each background or suspended job:

tutorial% du> disk.usage &
[l] 3398
tutorial% ls -s I •ort -n > myflle &
[2] 3405
tutorial% mail bill
·z
Stopped
tutorial% jobs
[1 J - Running
[2] Running
[3] + Stopped
tutorial%

du> disk.usage
ls -s I sort -n > myfile
mail bill

With the -I option the process numbers are also displayed:

tutorial% jobs -1
[l] 3398 - Running
[2] 3405 Running
[3) + Stopped mail
tutorial%

du
ls

bill

> disk.usage
-s I sort -n > myfile

Continuing with the same series, you can use the fg command to bring the la job to the fore
ground:

tutorial% fg %la
ls -s I sort -n > myfile
tutorial% more myflle

The fg (foreground) command runs a suspended or background job in the foreground. It restarts
a previously suspended job or changes a background job to run in the foreground, allowing sig
nals or input from the workstation. In the above example you use fg to change the la job from
the background to the foreground since you want to wait for it to finish before looking at its out
put file.

The atop command suspends a background job.

tutorial% atop %1
[l]- Stopped (signal) du> disk.usage
tutorial%

You can use the kill command to terminate a background or suspended job immediately. In
addition to job numbers, you can give it process numbers as arguments, as displayed by pa.
Thus, in the above example, you can terminate the running du command with kill:

Revision A of 15 April 1985 1-23

Using the C-Shell

tutorial% klll %1
[l) Terminated du> disk.usage
tutorial%

Beginner's Guide

The notify command (not the ,et command variable mentioned earlier) reports termination of a
specific job at the time the job finishes instead of waiting for the next prompt.

If a job running in the background tries to read input from the workstation, it is automatically
stopped. You can give input to the job, when you return such a job to the foreground. If
desired, you can return the job to the background until it requests input again. This is illus
trated in the following sequence where the , (substitute) command in the text editor might take
a long time:

tutorial% ed blgflle
120000
l,$s/thisword/thatword/
·z
Stopped
tutorial% bg
[1] ed bigfile &
tutorial%

some foreground commands
[l) Stopped (tty input) ed bigfile
tutorial% fg
ed bigfile
w
120000
q
tutorial%

After you called the , command, you stopped the ed job with ·z, and then put it in the back
ground using bg. Sometime later when the , command was finished, ed tried to read another
command and was stopped because jobs in the background cannot read from the workstation.
Typing the fg command returned the ed job to the foreground where it could once again accept
commands from the terminal.

To stop all background jobs when they are about to write output to the workstation, use the atty
(set terminal output) command:

tutor ia 1% stty tostop
tutorial%

This prevents messages from background jobs from interrupting foreground job output so you
can run a job in the background without losing workstation output. You can also use it for
interactive programs that sometimes have long periods without interaction. Thus each time a
background job prompts for more input, it stops before the prompt. You run the job in the fore
ground using fg, give it more input and, if necessary, stop and return it to the background. This
atty command is a good thing to put in your .login file if you do not like output from background
jobs interrupting your work. It can also reduce the need for redirecting the output of back
ground jobs if the output is not very big:

1-24 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

tutorial% atty toatop
tutorial% we hugeflle &:
[1] 10387
tutorial% ed text

. some time later
q
[1] Stopped (tty output)
tutorial% fg %we
wc hugefile

13371 30123 302577
tutorial% atty -toatop
tutorial%

Using the C-Shell

wc hugefile

Thus after some time the wc command, which counts the lines, words and characters in a file,
had one line of output. When it tried to write this to the workstation it stopped. By restarting
it in the foreground, it writes on the workstation exactly when you are ready to look at its out
put. Stty tostop allows bg job output to go to the workstation. Programs which attempt to
change the mode of a terminal will also stop, whether or not tostop is set, as it would be very
unpleasant to have a background job change the state of a terminal.

Since the joba command only displays jobs started in the currently executing C-Shell, it knows
nothing about background jobs started in other login sessions or within C-Shell files. Use the pa
command in this case to find out about background jobs not started in the current C-Shell.

1.3. 7. The C-Shell's Working Directory

As mentioned in Filename• and Pathname,, the C-Shell is always in a particular working direc
tory. The cd (change directory) command changes the working directory of the C-Shell, that is,
changes the directory you are located in.

It is useful to make a directory for each project you wish to work on and to place all files related
to that project in that directory. The mkdir command (make directory) creates a new directory.
The pwd (print working directory) command reports the absolute pathname of the working direc
tory of the C-Shell, that is, the directory you are located in. Thus in the example below, Sam
creates and moves to the directory newpaper, where he might place a group of related files:

tutorial% pwd
/usr/sam
tutorial% mkdlr newpaper
tutorial% cd newpaper
tutorial% pwd
/usr/sam/newpaper
tutorial%

No matter where you move to in a directory hierarchy, you can return to your home login direc
tory by typing cd without any arguments:

tutorial% cd
tutorial% pwd
/usr/sam
tutorial%

The name' .. ' (dot dot) always means the directory above the current one in the hierarchy, so to
change the C-Shell's working directory to the one directly above the current one, use:

Revision A of 15 April 1985 1-25

Using the C-Shell

tutorial% cd ..
tutorial% pwd
/usr
tutorial%

Beginner's Guide

The name ' •• ' can he used in any pathname. To change to the directory program, contained in
the directory above the current one, type:

tutorial% cd • . /programs

If you have several directories for different projects under, say, your home directory, use this
shorthand notation to switch easily between them.

The C-Shell always remembers the pathname of its current working directory in the variable
cwd. You can also request that the C-Shell remember the previous directory when you change to
a new working directory. If you use the puahd (push directory) command in place of the cd com
mand, the C-Shell saves the name of the current working directory on a directory atack before
changing to the new one. You can see this directory stack at any time by typing the directoriea
command dira:

tutorial% pushd newpaper/references
·;newpaper/references
tutorial% pushd /usr /llb/tmac
/usr/lib/tmac •;newpaper/references
tutorial% dlrs
/usr/lib/tmac ·;newpaper/references
tutorial%
tutorial%

0

The list is displayed in a horizontal line, reading left to right, with a tilde C) as shorthand for o-
your home directory - in this case /uu/aam. The directory stack is displayed whenever there
is more than one entry in it and it changes. Dira is usually faster and more informative than
pwd since it shows the current working directory as well as any other directories remembered in
the stack. The puahd command without any arguments alternates the current directory with the
first directory in the list.

The popd (pop directory) command without an argument returns you to the directory you were
in prior to the current one, discarding the current directory from the stack and forgetting it.
Typing popd several times in a series takes you backward through the directories you had
changed to with the puahd command:

tutorial% popd
•/newpaper/references
tutorial% popd

tutorial%

There are other options to puahd and popd to manipulate the contents of the directory stack and
to change to directories not at the top of the stack; see the cah Command, Reference Manual
page for details.

Regardless of what directory changes you make, the C-Shell remembers the working directory in
which each job was started. It warns you if you try to restart a job in the foreground which has
a different working directory than the current C-Shell working directory. Thus if you start a
background job, change the C-Shell's working directory, and then run the background job in the
foreground, the C-Shell warns you that the working directory of the currently running fore- o
ground job is different from that of the C-Shell:

1-26 Revision A of 15 April 1985

0

0

0

Beginner's Guide

tutorial% dlrs -1
/doc/sam
tutorial% cd myproject
tutorial% dlrs
"/myproject
tutorial% ed prog,c
1143
·z
Stopped
tutorial% cd ..
tutorial% 11
myproject
text file
tutorial% fg
ed prog.c (wd: "/myproject)

Using the C-Shell

The C-Shell warns you that the working directory of the ed program is -; myproject, not the
current working directory of doc/ aam. The ed job was still in / doc/ aam/myproject even though
the C-Shell had changed to / doc/ aam.

You get a similar warning when such a foreground job terminates or is suspended using the 'Z
STOP signal, since returning to the C-Shell again implies a change of working directory.

tutorial% fg
ed prog.c (wd: "/myproject)
... after some editing

q
(wd now: ")
tutorial%

These messages are sometimes confusing if you use programs that change their own working
directories. The C-Shell only remembers which directory a job is started in, and assumes the job
stays there. The joba -I option displays the working directory of suspended or background jobs
when it is different from the current working directory of the C-Shell.

1.3.8. Useful Built-in Commands

This section describes several of the more useful built-in C-Shell commands. For a complete list,
see cah in the Command, Reference Manual.

The echo command plays back its argument list to the screen. It is often used in Shell acripta or
as an interactive command to see what filename expansions will produce. We saw this earlier in
Filename Ezpanaion. To determine the effect of a command such as rm, type:

tutorial% echo rm (ca)*
rm a aA aB aC cl clO ... cS c6 c7 c8 c9
tutorial%

Using echo here is a good way to learn the effects of the metacharacters without affecting any
files or directories.

The limit command restricts the use of resources. With no arguments, it displays the current
limitations:

Revision A of 15 April 1985 1-27

Using the C-Shell

tutorial% llmlt
filesize
datasize
stacksize
coredumpsize
memoryuse
tutorial%

unlimited
1984 kbytes

512 kbytes
unlimited

unlimited

Limits can be set, for instance:

tutorial% llmlt coredumpslze 12:Sk
tutorial%

Beginner's Guide

for the current login session. Most reasonable units abbreviations work. See the cah Commanda
Reference Manual page for more details.

Use repeat to repeat a command several times. To make four copies of the file data in the file
four, type:

tutorial% repeat 4 cat data>> four
tutorial%

The aetenv command sets variables in the environment. For example:

setenv TERM sun

or

setenv TERM adm3a

This sets the value of the environment variable TERM to 'sun' or 'adm3a', depending on your
terminal. Umetenv removes variables from the environment.

The printenv user program displays the environment. It might show:

tutorial% prlntenv
HOME=/usr/lori
SHELL=fbin/csh
PATH=.:/:/bin:/usr/bin:/usr/lori/bin:/usr/local:/usr/local/bin:/usr/ucb:/etc:/usr/h
TERM=sun
USER=lori
EXINIT=set noai wrapmargin=B
tutorial%

Use the aource command noted before to force the current Shell to read commands from a file:

tutorial% 111ource .c11hrc
tutorial%

Running aource on the .cahrc file makes any changes you made take effect immediately, that is,
before the next time you login.

Use the time command to time a command no matter how much CPU time it takes:

0

0

0
1-28 Revision A of 15 April 1985

0

0

0

Beginner's Guide

tutorial%
O.Ou O.ls
tutorial%

52
52

104

time cp /etc/re /uor/oam/rc
0:01 8% 2+1k 3+2io lpf+Ow
time we /etc/re /uor /sam/rc

178 1347 /etc/re
178 1347 /usr/saJD/rc
356 2694 total

O.lu 0.ls 0:00 13% 3+3k 5+3io 7pf+Ow
tutorial%

Using the C-Shell

The first indicates that the cp command used a negligible amount of user time (u) and about
1/lOth of a second system time (s); the elapsed time was 1 second (0:01); 8% of CPU cycles over
period when active; there was an average memory usage of 2k bytes of program space and lk
bytes of data space over the CPU time involved (2+1k); the program did three disk reads and
two disk writes (3+2io), took one page fault and was not swapped (lpf+Ow). The word count
command wc on the other hand used 0.1 seconds of user time and 0.1 seconds of system time in
less than a second of elapsed time. The percentage '13%' indicates that over the period when it
was active, wc used an average of 13 percent of the available CPU cycles of the machine.

1.4. Programming the C-Shell

You can use the C-Shell to read and execute C-Shell command acripta. C-Shell scripts are files
that contain a group of c,h commands.

A command script may be interpreted by saying:

tutorial% coh acrlpt ...

where acript is the name of the file containing a group of cah commands and ' .. .' is replaced by a
sequence of arguments. The C-Shell places these arguments in the variable argv and then begins
to read commands from the script. These parameters are then available through the same
mechanisms which are used to reference any other C-Shell variables.

You can make the file executable with the chmod command:

tutorial% chmod 755 acrlpt
tutorial%

If you place a C-Shell comment at the beginning of the Shell script as well, that is, begin the file
with a'#' character, then /bin/cah is automatically invoked to execute acript when you type:

tutorial% script

If the file does not begin with a '#' then the standard Shell /bin/ ah executes it. In this way, you
can convert your older shell scripts to use cah.

1.,t.1. Variable Substitution

After each input line is broken into words and history substitutions are done on it, the input line
is parsed into distinct commands. Before each command is executed a mechanism known as
variable aubatitution is done on these words. Keyed by the character '$' this substitution
replaces the names of variables by their values. Thus

echo $argv

Revision A of 15 April 1985 1-29

Using the C-Shell Beginner's Guide

when placed in a command script echoes the current value of the variable argv to the output of
the shell script. You must have argv set at this point; otherwise, it is an error.

A number of notations are provided for accessing components and attributes of variables. The
notation

$?name

expands to '1' if name is aet or to 'O' if name is not aet. This is the fundamental mechanism used
for checking whether particular variables have been assigned values. All other forms of refer
ence to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name. Thus

tutorial% aet argv=(a b c)
tutorial% echo $?argv
1
tutorial% echo $#argv
3
tutorial% unset argv
tutorial% echo $?argv
0
tutorial% echo $argv
Undefined variable: argv.
tutorial%

It is also possible to access the components of a variable which has several values. Thus

$argv [1]

gives the first component of argv or in the example above 'a'. Similarly

$argv [$#argv)

would give 'c', and

$argv[l-2)

would give 'ab'. Other notations useful in shell scripts are:

$n

where n is an .integer as a shorthand for

$argv [nJ

the nth parameter and

$*

which is a shorthand for

$argv

The form

$$

0

0

expands to the process number of the current Shell. Since this process number is unique in the
system it can be used to generate unique temporary filenames. The form o
1-30 Revision A of 15 April 1985

0

0

0

Beginner· s Guide Using the C-Shell

$<

is quite special. It is replaced by the next line of input read from the Shell's standard input, not
the Shell script it is reading. This is useful for writing Shell scripts that are interactive, reading
commands from the workstation or terminal, or even writing a Shell script that acts as a filter,
reading lines from its input file. Thus the sequence

echo -n 'yes or no?'
set a=($<)

writes out the prompt 'yes or no?' without a newline and then reads the answer into the variable
'a'. In this case '$#a' would be 'O' if either a blank line or end-of-file ('D) is typed.

There is one minor difference between '$n' and '$argv[n]'. The form '$argv[n]' will yield an
error if n is not in the range 'l-$#argv', while '$n' will never yield an out of range subscript
error. This is for compatibility with the way older shells handled parameters.

Another important point is that it is never an error to give a subrange of the form 'n-'; if there
are less than n components of the given variable then no words are substituted. A range of the
form 'm-n' likewise returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is in range.

See Programming Too/a for the Sun Workatation for more information on programming the C
Shell.

1.5. C-Shell Metacharacter Summary

The following table lists the special cah and Sun system characters. A number of these characters
also have special meaning in expressions. See the cah manual section for a complete list.

1
()
&

I
?

•
[]

{ }

Revision A of 15 April 1985

Table 1-1: Syntactic Metacharacters

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Table 1-2: Filename Metacharacters

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directorie
used to specify groups of arguments with common parts

1-31

Using the C-Shell

1-32

\

"

<
>

$

%

Beginner's Guide

Table 1-3: Quoting Metacharacters

prevents meta-meaning of following single character
prevents meta-meaning of a group of characters
like', but allows variable and command expansion

Table 1-4: Input/output Metacharacters

indicates redirected input
indicates redirected output

Table 1-5: Expansion/substitution Metacharacters

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Table 1-6: Other Metacharacters

begins scratch file names; indicates Shell comments
prefixes option (flag) arguments to commands
prefixes job name specifications

Revision A of 15 April 1985

0

0

0

0

0

0

Chapter 2

Using the Bourne Shell

Uaing the Bourne Shel/3 describes the UNIX system version 7 Shell called the Bourne Shell (ah).
The design of the Bourne Shell, here referred to simply as the 'Shell,' is based in part on the ori
ginal UNIX Shell and the PWB/UNIX Shell. Similarities also exist with the command interpreters
of the Cambridge Multiple Access System and of CTSS.

See the Command, Reference Manual for more detail, on ah. Alao aee the reference, in the
appendix for more information.

2.1. What is a Shell?

A Shell is both a command language and a programming language that provides an interface to
the operating system and interprets commands which you type. The Shell's primary purpose is
to translate command lines typed at the workstation into system actions, such as the invocation
of other programs. Because the Shell is a user program, just like any you might write, there is
more than one available. The Shell you get when you log in is specified in your password file
entry field, which contains the pathname to it.

The Shell's features include variables, control-flow primitives, parameter passing, subroutines,
interrupt handling, and string substitution. The Shell supports control structures such as while,
if-then-elae, caae, and for. Two-way communication is possible between the Shell and commands.
String-valued parameters, typically filenames or flags, may be passed to a command. Commands
set a return code that may be used as Shell input.

You can use the Shell to modify the environment in which commands run by redirecting input
and output to files, by calling processes that communicate through pipe,, and by defining a direc
tory searching sequence in the file system to call commands. Commands can be read either from
the workstation or from a file, so command procedures can be stored for later use.

A Shell in the Sun operating system acts mostly as a medium through which other programs are
invoked. The Shell is thus distinguished from the command interpreters of other systems both
by the fact that it is just a user program, and by the fact that it is used almost exclusively as a
mechanism for invoking other programs.

The Sun system supports two shells, the Bourne Shell and the C-Shell, which are available as the
programs ah and c,h respectively. The Shell you get when you log in is specified in a field in
your password file entry, which contains the pathname to the Shell to he used. If your system is
running the Bourne Shell, it displays the '$' prompt. The C-Shell displays the '%' prompt.

8 The material in this chapter is derived from An Introduction to the Bourne Sh.ell, S. R. Bourne.

Revision A of 15 April 1985 2-1

Using the Bourne Shell Beginner's Guide

2.2. Logging In

The Shell is a program that runs automatically when you log in to the Sun system. When you
log in, the Shell reads any commands from the file .profile, if you have such a file in your login
directory, before reading any commands from the workstation.

It reads each command that you type and interprets what you've asked for. The Shell expands
any file-matching metacharacters you use. If you redirect the standard input and output, or the
diagnostic output, the Shell handles that too. The Shell examines the command you type in,
calls up the command from wherever it lives, and passes all the arguments to that program and
starts it up.

The Shell is the interface between you the user and the Sun system utility programs. Because it
is just an ordinary program, you can use it by typing the command ah followed by an argument,
which is the name of a file containing Sun system commands. See Programming the Shell for
some simple examples.

2.3. Changing the Shell Prompt

The Shell displays a prompt before reading a command. By default this prompt is '$ '. Or you
can change it to the string 'yesdear', for example:

PSl=yesdear

0

If a newline is typed and further input is needed, the Shell displays the prompt '> '. Sometimes
mistyping a quote mark causes this. If it is unexpected, an INTERRUPT ('C) returns the Shell O· _
to read another command. You can change this'>' prompt by saying, for example:

PS2=more

2.4. Simple Shell Commands

Simple Shell commands consist of one or more words separated by blanks. The first word is the
name of the command to be executed; any remaining words are passed as arguments to the com
mand. These arguments can be flag arguments or filenames. For example, to print the names of
users logged in, type the who command:

$ who
lori console Jul 26 07:40
$

This shows user 'lori' is logged in on the console.

To show a detailed list of files in the current directory, use the la command with the -l option:

2-2 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Using the Bourne Shell

$ 11 -I
total 1064
-rw-r--r-- 1 lori 181 Jul 25 17:14 Makefile
-rw-r--r-- l lori 460654 Jul 24 17:16 doc.cat

< etc. >
-rw-r--r-- l lori 67 Jul 23 12:31 tabs
-rw-r--r-- 1 lori 22980 Jul 17 15:42 uucp
$

The argument -I tells la to print status information, size and the creation date for each file.

2.4.1. Background Commands

To execute a command, the Shell normally creates a new proceu and waits for it to finish. You
may run a command in the background without waiting for it to finish. For example, to put a
call to the C compiler in the background, you type the cc command line with an ampersand '&'
at the end of the line:

$ cc pgm.c II,,
321
$

This compiles the file pgm.c. The trailing & is the operator that instructs the Shell not to wait
for the command to finish. To keep track of a process, the Shell reports its process number, 321
in this case, following its creation. You can obtain a list of currently active processes using the
p• (process status) command.

2.4.2. Input/Output Redirection

Most commands produce output on the standard output, that is your workstation or terminal.
You can send this output to a file instead of the standard output by typing, for example:

$ 11 -I > file.list
$

The Shell interprets the notation > file.lid and does not pass it as an argument to la. If file.liat
does not exist, the Shell creates it; otherwise the output from la replaces the original contents of
file.liat. You can append output to a file with the'>>' notation:

$ 11 -1 > > flle.l11t
$

A second la -I directory contents listing is appended to the first in file.liat. In this case file.liat is
also created if it does not already exist.

A command can take the standard input from a file instead of the workstation by typing the '<'
redirection character as in:

$ we < flle.l11t
30 234 1546 file. list

$

The command wc reads its standard input, in this case redirected from file.liat, and displays the
number of characters, words and lines found. If only the number of lines is required, use the -1
option:

Revision A of 15 April 1985 2-3

Using the Bourne Shell

$ WC -1 < flle,l11t
30 file. list

$

2.4.s. Pipelines and Filters

Beginner's Guide

Two or more commands connected by the pipe operator ':' form a pipeline. A filter is a com
mand that reads its standard input, transforms it in some way, and displays the result as output.
Pipelines and filters are often used together.

Use the pipe operator, 'I' to connect the standard output of one command to the standard input
of another. In the example above, the two commands la -1 > file.liat and we -1 < file.liat were
run to get one desired result. You can run both together; that is, you can process the la output
with the wc command by typing:

$ 11 -1: WC

19
$

146 963

Here, the output of the la command is piped as input to wc. Two commands connected in this
way constitute a pipeline, and the overall effect is the same as:

$ 11 -1 > file.list; wc < flle,llat
$

0

except that no file.liat is used. Instead a pipe connects the two processes, which are run in paral-
lel. Pipes are unidirectional and synchronization is achieved by halting wc when there is nothing o
to read and halting la when the pipe is full.

A filter command transforms its standard input in some way. One such filter, grep, selects from
its input those lines that contain some specified string. For example, to list those lines, if any,
from la that contain the string 'all', type:

$ I• : grep all
mail .all
news.all
refs.all
shell.all
summ.all
$

Grep takes the output of la and searches for the string 'all'. Another useful filter is aort, which
orders or 'sorts' a file in several different ways. For example, to display an alphabetically sorted
list of names in the file name.liat, type:

$ 1ort name.llat

Dan
Joe
Mary
Mike
Susie

$

Read more about aort in the Commanda Reference Manual.

2-4 Revision A of 15 April 1985

0

0

0

Beginner's Guide Using the Bourne Shell

A pipeline may consist of more than two commands. You can pipe la to grep and then to we, for
example:

$ 11 : grep all : we -I
5

$

to display the number of filenames in the current directory containing the string 'all' as in the
example above.

2.4-4. Filename Expansion '*' '?' '[}'

As described in the Simple Shell Commanda section, the first word of a command is the name of
the command to be executed. Other words on the command line are arguments to that com
mands. Many commands accept arguments that are filenames. For example, use the la com
mand with the -I option to display information relating to the file main.c:

$ 11 -I maln.c
-rw-r--r-- 1 lori 136783 Jul 26 11:10 main.c

The file main.c is the argument to the la command.

The Shell provides a mechanism for generating a list of filenames that match a pattern. For
example, to generate, as arguments to la, all filenames in the current directory that end in '.all',
type:

$ 11 -I • .all
-rw-r--r-- 1 lori 57022 Jul 23 12:15 mail .all
-rw-r--r-- 1 lori 25643 Jul 23 12:15 news.all
-rw-r--r-- 1 lori 4965 Jul 25 16:50 refs.all
-rw-r- -r- - 1 lori 136783 Jul 26 11:10 shell .all
-rw-r--r-- 1 lori 34121 Jul 25 17:14 summ.all
$

The Shell expands '*' to match any string including the null string, that is, all the files whose
names end with '.all' in the working directory. In general patterna are specified as follows:

•
?

I I

Matches any string of characters including the null string.

Matches any single character.

Matches any one of the characters enclosed. A pair of characters separated by a
minus matches any character lexically between the pair.

To match all names in the current directory beginning with one of the letters a through z, use:

$ 11 -1 (a-z]•
mailref:
total 121
-rw-r--r-- 1 lori 460654 Jul 24 17:16 doc.cat
-rw-r--r-- 1 lori 292152 Jul 24 16:47 doc.tbl

< etc. >
-rw-r--r-- 1 lori 58334 Jul 20 17:42 mail.all
-rw-r--r-- 1 lori 201 Jun 30 23:18 mailO.nr
$

0 The Shell expands the '[a--z)*' argument to all files beginning with any lower-case letter. Be

Revision A of 15 April 1985 2-5

Using the Bourne Shell Beginner's Guide

careful; this may display a very long list of files.

The '?' character matches all names that consist of a single character in the directory. So you 0
can use the I• command with '?' on /uar/fred/teat and say:

$ la /usr/tred/teat/r
/usr/fred/test/a
/usr/fred/test/b
$

to match the files a and b. If no filename is found that matches the pattern, the pattern is passed
unchanged as an argument, and 'No match.' is displayed.

This filename expansion notation saves typing and provides name selection according to some
pattern. It makes finding a file easy. For example, to find and display the names of all core files
in subdirectories of /u•r/fred, say:

$ echo /uar /tred/" /core
/usr/fred/misc/core /usr/fred/test/core
$

The '*' finds the files core in subdirectories miac and teat. As you saw before, echo is a standard
command that displays its arguments, separated by blanks. This last search feature however,
can be expensive, requiring a scan of all subdirectories of /uar/fred.

There is one exception to the general rules given for patterns. The character '.' ('dot') at the
start of a filename must be explicitly matched. For instance, using '*' to match any character
does not match a '.' at the beginning of a filename:

$ echo•
Makefile doc.tbl file shell.all uucp
$

Instead, it echos all filenames in the current directory not beginning with '.' even if the current
directory is your home directory, which contains your .profile file. To match the'.' character at
the beginning of a filename, type:

$ echo.•
$

This echos all those filenames that begin with '.' including the names '.' and ' • .' which mean 'the
current directory' and 'the parent directory' respectively.

See the Shell Metacharacter Summary section for a quick reference list of the metacharacters.

2.4.5. Quoting the Metacharacters with '' ' and '\'

Characters that have a special meaning to the Shell, such as' < >', '*','?'I'&', are called meta
charactera. Any character preceded by a ' \' is quoted or eacaped and loses its special meaning,
if any. The ' \' is called the eacape character and elided so that to echo a single '?', type:

$ echo \r
?
$

And to echo a single '<', type:

2-6 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide

$ echo\<
<
$

The ' \' prevents the Shell from using the special meanings of '?' and '<'.

Using the Bourne Shell

To continue long commands over more than one line, the sequence \newline is ignored.

The ' \' is convenient for quoting single characters, but when more than one character needs
quoting, it is clumsy and error prone. Enclose the string of characters between single quotes.
For example, to quote a series of four asterisks so that they lose their special matching capabil
ity, type:

$ echo x.x'****'xx
xx****xx
$

The quoted string may not contain a single quote, but may contain newlines, which are
preserved. This quoting mechanism is the most simple and is recommended for casual use.

A third quoting mechanism using double quotes prevents interpretation of some but not all meta
characters.

2.5. Programming the Shell

Use the Shell to read and execute commands contained in a file. A file containing commands is
called a command procedure or Shell procedure.

A simple Shell procedure uses the echo command:

$ cat > welcome
echo Good morning!
·o
$

To call the Shell to read commands from welcome, use the ah command:

$ ah welcome
Good morning!
$

In general, this format looks like:

$ ah file / args ... /

in which ah calls commands from file.

You can either execute a Shell procedure with ah or make the procedure executable. The chmod
(change mode) command can make a file readable, writable and ezecutab/e.

For example, to make welcome executable, type:

$ chmod +x welcome

Following this, the command:

$ welcome
Good morning!
$

Revision A of 15 April 1985 2-7

Using the Bourne Shell

is equivalent to:

$ eh welcome
Good morning!
$

You can also use the chmod command in the following format:

$ cbmod '755 welcome
$ welcome
Good morning!
$

Beginner's Guide

which has the same effect as the first. See the Commanda Reference Manual for details on the
chmod command.

An executable command is noted with an asterisk '*' in an la -F directory listing. So if you
were to list the directory contents now, it would show among other things:

$ le -F
< etc. >

welcome*
$

The Shell also has the capability to define a named variable and assign a value to it. The sim
plest way to set a Shell variable is to use an auignment atatement:

variable=value

You can then use the assigned value by preceding the name of the variable with a dollar sign:

$variable

Now make a file called bliss which contains the assignment statements:

food=bread
drink=wine
person=thou
echo $food, $drink, $person Ahl

Make bliaa executable with chmod, and execute it:

$ cbmod '755 bliss
$ bliss
bread, wine, thou Ah I
$

As another example, make a string-searching file called lag (for 'ls-grep') that contains:

ls I grep $1

Make it executable with chmod and use it to find filenames containing the string 'all' m the
current directory:

2-8

$ cbmod '755 lag
$ leg 'all'
allnames
allx
mail .all
$

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Using the Bourne Shell

You can thus use Shell procedures and programs interchangeably.

As well as providing names for the positional parameters, the number of positional parameters in
the call is available as $#. You can refer to the name of the file being executed as $0.

There are some predefined Shell variables, some of which are modifiable and some of which are
read-only. You have already seen:

HOME - Set to the user's home directory.

PATH - Set of directories that the Shell searches in order to find commands.

PSl - Primary prompt string, here the '$'.

You can also set a Shell variable from the output of a command. For example:

$ now='date'
$ echo $now
Fri Aug 12 08:23:12 PST 1983
$

Note that the characters surrounding the command are grave accents, not apostrophes.

To set a Shell variable equal to a value contained in a file, use:

todo='cat plan'

This calls the cat command with the argument plan, where the plan file contains:

Eat breakfast.
Go to work.

The resulting value of '$todo' is:

$ echo $todo
Eat breakfast.
Go to work.
$

A different type of Shell variable is one which is passed to the Shell procedures when it is called.
These arguments called poaitional parametera and are referred to by number, $1, $2, ... Con
sider the following simple Shell procedure:

$ cat > reverse
echo $11 $5 $4 $3 $:Z $1
·o
$ chmod 755 reverse
$ reverse do re mi fa so la
la so fa mi re do
$

You can also use the flow control programming constructs if.. elae, while .. do, and others to con
trol the action taken by the procedure. See the Programming Too/a for the Sun Workatation for
more information on programming the Shell.

Revision A of 15 April 1985 2-9

Using the Bourne Shell

2.6. Shell Metacharacter Summary

Table 2-1: Syntactic Metacharacters

pipe symbol

command separator

& background commands

() command grouping

< input redirection

> output redirection

Beginner's Guide

Table 2-2: Filename Expansion Metacharacters

•
?

[...]

match any character(s) including none

match any single character

match any of the enclosed characters

Table 2-3: Substitution Metacharacters

${ ••• } substitute Shell variable

' ' substitute command output

Table 2-4: Quoting Metacharacters

\ quote the next character

' ' quote the enclosed characters except for '

" " quote the enclosed characters except for $ ' \ "

2-10 Revision A of 15 April 1985

0

0

0

Beginner's Guide Using the Bourne Shell

0

0

0
Revision A of 15 April 1985 2-11

0

0

O ;
\

0

0

0

Chapter 3

Mail User's Guide

The Mail Uaer 'a Guide4 describes how to use the mail program to send and receive messages. It
also provides summary information and quick reference pages at the end for easy use. It assumes
you are familiar with the C-Shell, a text editor like vi or ez, and some of the common Sun system
commands. If you are not, read the Introduction to the Sun Syatem in Part One of this manual.
For additional details on Sun system commands, consult the Commanda Reference Manual for
the Sun Workatation. Set-up information for the mail facility ia in the Syatem Adminiatration
Guide for the Sun Workatation.

Mail provides a communication facility for sending and receiving mail among users on the same
host, users on different hosts linked to your local network, and users linked to the ARPANET, and
UUCP networks. You use a set of editing commands to manipulate messages, and to define and
send mail to names which label user groups.

Briefly, here is how mail handles messages: mail divides incoming mail into its constituent mes
sages so you can deal with them in any order you please. The mail system collects the messages
for you from other people in a file, called your ayatem mailbox. When you login, the system
notifies you if there are any messages waiting in this system mailbox. When you read your mail
using mail, it reads your system mailbox and separates that file into the individual messages that
have been sent to you. You can then read, reply to, delete, or save these messages. Each mes
sage is marked with its author, the date sent, and the message subject among other things.

3.1. Sending Mail

The mail command has three ways to send mail, depending on where your recipient has a login
account. If he has a host machine linked to your local network, use the method described in
Sending Mail on the Local Network. If he has a login account on the same host as yours, use the
method described in Sending Mail on the Same Hoat. if your recipient logs in on a machine con
nected to yours by UUCP, use the method described in Sending Mail on the Network.

3.1.1. Sending Mail on the Local Network

To send mail to users on other hosts linked to yours on the local network, use the mail command
followed by the login name and the host machine name of your recipient; for example, type:

.f. The material in this guide is derived from the Mail Reference Manual, Kurt Shoens, Craig Leres.

Revision A of 15 April 1985 3-1

Mail User's Guide

tutorial% mall Joe@venus
la the meeting planned for this afternoon f
·n
EOT
tutorial%

Beginner's Guide

This sends mail to 'joe', which is the login name of the person you're sending mail to. Joe's host.
name is 'venus', which is where he has an account and logs in. End your message with a 'D (an
EOT) at the beginning of a line. Mail echoes EOT and returns you to the Shell.

The message 'joe' reads consists of the message you typed, preceded by several header lines tel
ling who sent the message (your login name), the date and time it was sent, and various other
details.

If, while you are composing the message you decide that you do not wish to send it after all, you
can abort the letter with your current interrupt character (the default is 'C). Typing a single
INTERRUPT causes mail to display:

(Interrupt -- one more to kill letter)

Typing a second INTERRUPT saves your partial letter in the file dead.letter in your home direc
tory and aborts the letter. Once you have sent mail to someone, there is no way to undo the
act, so be careful.

3.1.2. Sending Mail on the Same Host

Sending mail to a plain login name without a hostname sends mail to that person assuming he

0

has an account on your machine. To send a message to 'roger', who has a login account on your o-
host, type:

tutorial% mall roger
Let's play tennis this afternoon.
·n
EOT
tutorial%

End your message with a 'D (an EOT) at the beginning of a line as before. Mail echoes EOT
and returns you to the Shell. Later, the user 'roger' to whom you sent mail receives the mes
sage:

You have mail.

or

You have new mail.

or

New mail has arrived.

to tell him he has a message waiting.

If you want to send the same message to several other people, you can list their login names on
the command line. For instance:

3-2 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Mail User's Guide

tutorial% mall John marty davld
Meeting at three o'clock.
Please be on time.
·o
EOT
tutorial%

sends the reminder to John, Marty, and David.

3.1.3. Sending Mail on the Network

If your recipient logs in on a machine connected to yours by the telephone line network called
uucp (unix to unix copy), you must know the list of machines through which your message must
travel to arrive at his site. So, if his machine is directly connected to yours, you can send mail
to him using his hostname, the '!' or 'bang' character, and his login name. If you are using the
C-Shell as our example shows, you must also escape the special '!' character with a backslash ' \'.
For example:

tutorial% mall venus\!Joe

sends mail to the user 'joe' whose uucp hostname is 'venus'. The general syntax is:

tutorial% mall hostname\!name

If your message must go through an intermediate system first, use the syntax:

tutorial% mall intermediate\!hostname\!username

Ask your system administrator about a 'map' of all the systems in the network connected to your
site.

There are several advanced facilities to learn about in the section Sending Mail with Tilde
Eacapea.

3.2. Reading Your Mail

If, when you log in, you see the message:

Last login: Tue Aug 6 13:42:21 on console
Sun UNIX 4.2 UNIX (Release 1.1.1) (SUN) #4:Fri Jan 11 00:20:28 PST 1985
You have mail.
tutorial%

you can read the mail by typing simply:

tutorial% mall

Mail responds by displaying its version number and date and then listing the messages you have
waiting. Then it prompts you and waits for your command. The messages are assigned numbers
starting with 1, so you refer to the messages with these numbers. Consider the following:

Mail version 2.17 12/26/82. Type? for help.
''/usr/spool/lori'': 2 messages 2 new
>N 1 steve Wed Sep 21 09:21 12/277 "Weekly Meeting"

N 2 wendy Tue Sep 20 22: 55

Revision A of 15 April 1985 3-3

Mail User's Guide Beginner's Guide

Mail keeps track of which messages are 'new', that is, have been sent since you last read your
mail, and which messages are 'read', that is, that you have read. New messages have an N next
to them in the header listing and old, but unread messages have a U next to them. Mail keeps
track of new /old and read/unread messages by putting a header field called 'Status' into your
messages.

To look at a specific message, use the print command, which may be abbreviated to simply p.
You can examine the first message above by typing:

& print 1
Message 1:
From stave Tue Aug 2 10:28:33 1983
Date: 2 Aug 83 10:28:27 PDT (Tue)
From: stave (Steve Smith)
Subject: Weekly Meeting
Message-Id: <8308021728.AA05502@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA05502; 2 Aug 83 10:28:27 PDT (Tue)
To: henry
Status: R

Meeting at three o'clock.
Please be on time.
&

Many mail commands that operate on messages take a message number as an argument like the
print command. These commands have a notion of a current message. When you enter the mail
program, the current message is initially the first new message. Thus, you can often omit the
message number and use a simple p to display the current message:

& p

Another shorthand method is to display a message by simply g1vmg its message number. To
display the first new message, say:

& 1

Frequently, it is useful to read the messages in your mailbox in order, one after another. You
can read the next message in mail by simply typing a newline. As a special case, you can type a
newline as your first command to mail to type the first unread message.

3.3. Replying to Mail

If you wish to send a reply immediately after reading a message, you can do so with either the
reply or the Reply command. There is a distinct difference between the two commands.

Sometimes you will receive a message that has been sent to several people and wish to reply only
to the person who sent it. In this case, use a simple lowercase r to reply to the sender only. A
reply, like type, takes a message number as an argument. To reply to the sender and to every
one who received the original message, use the Reply command. Type in your reply, followed by
a 'D at the beginning of a line, as before. Mail displays EOT and the ampersand prompt to indi
cate its readiness to accept another command.

In our example, if you wish to reply to the first message after reading it, use the command:

3-4 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

& Reply
To: steve
Subject: Re: Weekly Meeting

Mail User's Guide

and enter your letter. You are now in the message collection mode, and mail gathers up your
message up to a 'D. Note that it copies the header from the original message to make it easy to
recognize. If there are other header fields in the message, that information will also be used.
For example, if your letter has a 'To:' header listing several recipients, mail sends your reply to
those same people as well. Similarly, if the original message contained a 'Cc:' (carbon copies to)
field, your reply goes to those users, too. Mail is careful, though, not to send the message to you,
even if you appear in the 'To:' or 'Cc:' field, unless you ask to be included explicitly. More on
this later.

When you use the Reply command to respond to a letter, there is a problem of figuring out the
names of the users in the 'To:' and 'Cc:' lists 'relative to the current machine.' If the original
letter was sent to you by someone on the local machine, then this problem does not exist, but if
the message came from a remote machine, the problem must be dealt with. Mail uses a heuristic
to build the correct name for each user relative to the local machine. So, when you reply to
remote mail, the names in the 'To:' and 'Cc:' lists may change somewhat. After typing in your
letter, your correspondence looks like:

& Reply
To: stave
Subject: Weekly Meeting

Thanks tor the reminder
·n
EOT
&

The Reply command is especially useful for sustaining extended conversations over the message
system, with other 'listening' users receiving copies of the conversation. Abbreviate the Reply
command to R once you get the hang of things.

Use replyaender to respond to the sender only and use replyall to respond to everyone who
received the message regardless of how the replyall option is set in your .mailrc file. In other
words, replyall and replyunder override all other settings. The replyall option is different than
the replyall command; see Setting Your Option• with 'aet' for a description of the replyall
option.

If you wish, while reading your mail, to send a message to someone, but not as a reply to one of
your messages, send the message directly with the mail command, which takes as arguments the
names of the recipients you wish to send to. For example, to send a message to Wendy, type:

& mall wendy
Your presentation yesterday was very Informative.
B"D
EOT
&

Normally, each message you read is saved in your mailbox or mboz file in your login directory at
the time you leave mail. Often, however, you will not want to save a particular message you
have received because it is only of passing interest. To avoid saving a message in mboz, delete it
by typing:

Revision A of 15 April 1985 3-5

Mail User's Guide Beginner's Guide

& delete 1

This makes message I from Steve disappear altogether, along with its number. Abbreviate the 0
delete command to d.

3.4. Customizing Your Mail

There are several ways to customize the mail facility. If you have accounts on several systems
and want to direct your mail to a single account, you need a .forward file in the home directories
of those other accounts. You can also use the ,et and aliaa commands to tailor many mail
features to your personal uses.

3.,4.1. Forwarding Your Mail from Other Accounts

If there is a large number of systems at your site or if you are linked to USENET, you may have
accounts on several machines. To forward your mail to a single account where mail will notify
you that you have mail, create a .forward file in the home directories of all the accounts from
which you want mail forwarded. For example, you may have an account on 'venus' where other
users sometimes send you mail, but you usually log in to your account on 'tutorial'. Create a
.forward file on your account on 'venus' and add:

sam@tutorial

substituting your login name for 'sam.' Mail sent to your account on 'venus' will then be for
warded to your account on 'tutorial'.

Another way of forwarding mail is to use aliaaea. See Streamlining Your Mail with 'aliaa' for
details.

3.,4.2. Setting Your Options with 'set'

Set has two forms, one for setting a binary option and one for setting a valued option. Binary
options are either on or off, while valued options let you select from several choices. For exam
ple, you can choose which editor to use by setting the EDITOR option. You can use these options
after entering mail or you can set them permanently by putting the appropriate line in your
.login or .mailrc file. To use them from mail, you type:

& set option

To include them in your .login or .mailrc file, edit the file to include the line:

set option

A complete list of mail options appears in Additional Feature,.

As a C-Shell (cah) user, you will be notified when new mail arrives if you inform the C-Shell of
the location of your system mailbox in the directory /uar/ apool/mail in a file with your login
name. If your login name is 'karen', you can make cah notify you of new mail by including the
following line in your . cahrc file in your home directory:

1et mall=/usr /spool/mall/karen

3-6 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide Mail User's Guide

Another useful option is aak, which informs mail that you want to be prompted for a subject
header to be included in the message. To set the aak option in mail, type:

& aet ask

To set this option permanently, put the line set ask in your .mailrc file in your home directory.

Set the rep/ya/I option if you want reply to respond to everyone who received a message and
Reply to respond to the sender only. In a sense, the replya/1 option reverses the meanings of the
reply and Reply commands.

Another useful option is hold, which tells mail to keep your messages in the system mailbox
instead of moving them to your mboz file in your home directory as it normally does when you
leave mail.

Use valued options to adapt mail to your personal use. For example, the SHELL option tells
which Shell you like to use, and is specified by:

& set SHELL=/bln/sh

Note that no spaces are allowed in 'SHELL=/bin/sh.' A default Shell is used if none is specified.

Another important valued option is crt, which prevents long messages from flying by too quickly
for you to read them. Setting the crt option sends any message longer than a given number of
lines through the paging program more. Try setting this option for your workstation as:

"' set crt=34

(or 24 if you are using a terminal) to paginate messages that will not fit on your screen. More
displays a screenfull of information, then shows --MORE--. Type a space to see the next screen
full or RETURN to see the next line. It is not necessary to type in these aet commands each time
you run mail. See the discussion of .mailrc in Streamlining Your Mail with 'alias'.

S.,t.S. Streamlining Your Mail with 'alias'

Mail has an aliaa adaptation, similar to the C-Shell. An alias is simply a name which stands for
one or more real user names. When you send mail to an alias, you are really sending it to the
list of real users associated with it. For example, define an alias for the members of a project, so
that you can send mail to the whole project by sending mail to just a single name. Suppose that
the users in a project are named Dan, Rick, Tom, and John. Define an alias 'project' for their
project group by typing:

& alias project dan rick tom John

You can then send mail to all of them by typing:

& mall project
< etc. >

·o
EOT
tutorial%

Use aliaa to provide a convenient name for someone whose user name is inconvenient. For exam
ple, if a user named Margaret Cunningham has the login name 'margaret', you can set an alias
with:

& alias mar margaret

so that you can send mail to the shorter name, 'mar'.

Revision A of 15 April 1985 3-7

Mail User's Guide Beginner's Guide

The alia• and aet commands let you customize mail, but you wouldn't want to have to retype
them each time you enter mail. To make them more convenient to use, put the aet options and o
aliases you want in your .mailrc file in your home directory. For example, a .mailrc file can look
like:

set ask nosave crt=24 SHELL=/bin/csh
alias project dan rick tom john

What happens here is that mail always looks for two files when it is invoked. It first reads a
system-wide file /uar/lib/Mail.rc, then your user-specific file, .mailrc in your home directory.
The system administrator at your site maintains the system-wide file, which contains aet com
mands that are applicable to all users of the system.

The mail delivery system aendmail provides a system-wide aliaaea file called /uar/lib/ aliaaea
which provides a more efficient way to keep a large database of mail aliases. For details, refer to
the Sendmail lnatallation and Operation Guide in the Syatem A dminiatration Manual for the Sun
Workatation.

3.5. More on Reading Mail

You have seen that you can invoke mail with command line arguments that name people to send
the message to, or with no arguments to read mail. Specifying the -f flag on the command line
causes mail to read messages from a file other than your system mailbox. For example, if you
have a collection of messages in the file lettera, use mail to read them with:

tutorial% mall -r letters
~~letters'': 3 messages
& n
>1 lori Tue Jul 26 14:55 11/102 ''Company Party''

<etc.>
& 1
From lori Tue Jul 26 14:55:09 1983
Date: 26 Jul 83 14:55:04 PDT (Tue)
From: lori (Lori Rosen)
Subject: Company Party
Message-Id: <8307262155.AA04140@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA04140; 26 Jul 83 14:55:04 PDT (Tue)
To: steve
Status: R
Please make plans for the company
party in October.
&

You can use all the mail commands described in this manual to examine, modify, or delete mes
sages from your lettera file, which is rewritten when you leave mail with the quit command
described be low.

Since mail that you read is saved in the file mboz in your home directory by default, you can
read it by using simply:

3-8 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide Mail User's Guide

tutorial% mall -f
''/usr/lori/mbox'': 7 messages
&

Normally, messages that you examine using the print command are saved in the mboz file in your
home directory if you leave mail with the quit command described below. If you wish to retain a
message in your system mailbox you can use the pre•erve command to tell mail to leave it there.
Pre•erve accepts a list of message numbers, just like print and may be abbreviated to pre.

Messages in your system mailbox that you do not examine are normally retained in your system
mailbox automatically. If you wish to have such a message saved in mboz without reading it, use
the mboz command to save it. For instance:

& mbox Z
& quit
Saved 1 message in mbox
Held 1 message in /usr/spool/mail/lori
tutorial%

saves the second message in mboz when you give the quit command. The mboz command is also
the way to direct messages to your mboz file if you have set the hold option described above.
You can abbreviate mboz tomb.

3.6. Printing a Mail Message

To print a message, save the message in a file, and then send it to your printer:

text of mail
& 1 good.letter
"/usr /evan/good.letter" !New file} 37 /1530
&q
tutorial% pr good.letter I !pr -Pprinter
tutorial%

3. 7. Quitting Mail

When you have read all the interesting messages, you can finish the mail session with t~e quit
command. Quit does different things with the messages depending on whether you read a mes
sage, skipped over it, or deleted it:

• Messages that you read but didn't delete are appended to mboz in your home directory.

• Messages which you simply skipped over and didn't delete are kept in the system mail
box so you can read them the next time you use mail.

• Deleted messages are gone forever.

Note that you can retrieve deleted messages with the u (undelete) command as long as you are
still in mail. Once you quit the mail program however, deleted messages are irretrievable.

To quit mail, type:

Revision A of 15 April 1985 3-9

Mail User's Guide

& quit
Saved 1 message in mbox
Held 1 message in /usr/spool/mail/lori
tutorial%

You can abbreviate the quit command to q.

Beginner's Guide

If you wish for some reason to leave mail quickly without altering either your system mailbox or
mbox, type:

& X

tutorial%

(short for exit) which immediately returns you to the Shell without changing anything.

If, instead, you want to execute a Shell command without leaving mail, type the command pre
ceded by an exclamation point, just as in the text editor. For instance:

& !date
Tue Jul 26 12:32:12 PDT 1983
I

'&

display~ the current date without leaving mail.

3.8. Mail Help - '!'

Type a question mark '?' to get a brief summary of the mail command abbreviations:

&?

c <directory>
d <message list>
e <message list>
f <message list>
h
m <user list>
n
p <message list>
pre <message list>
q
r <message list>
R <message list>
s <message! list> file
t <message list>
top <message list>
u <message list>
w <message list> file
X

!

chdir to directory or home if none given
delete messages
edit messages
show from lines of messages
print out active message headers
mail to specific users
goto and type next message
print messages
make message go back to system mailbox
quit, saving unresolved messages in mbox
reply to sender only of messages
reply to messages
append messages to file
type messages (same as print)
show top lines of messages
undelete messages
append messages to file, without from line
quit, do not change system mailbox
shell escape

A <message list> consists of integers, ranges of same, or user names separated
by spaces. If omitted, Mail uses the last message typed.

3-10 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Mail User's Guide

3.9. Collecting Groups of Messages in Folders

Mail includes a simple facility for maintaining groups of messages together in folders.

To use the folder facility, put a line like:

set tolder=letters

in your .mai/rc file to indicate where your folder directory should be kept. Each folder of mes
sages is a single file, and all of your folders are kept in that directory. If, as in the example
above, your folder directory does not begin with a'/,' mail assumes that your folder directory is
to be found starting from your home directory. Thus, if your home directory is /uar/peraon the
above example puts your folder directory in /uar/peraon/lettera.

Anywhere a filename is expected, you can use a folder name, preceded with '+'. For example, to
put a message into a folder with the aave command, use:

& save +records
''/usr/username/letters/records'' (New file] 13/272
&

This saves the current message in the recorda folder. If the record, folder does not yet exist, it
is created. Note that messages which are saved with the aave command are automatically
removed from your system mailbox.

To copy a message into a folder without removing it from your system mailbox, type:

& copy +records
''/usr/username/letters/records'' [Appended] 11/282
&

This copies the current message into the recorda folder and leaves a copy in your system mail
box. The 'appended' message indicates that you already have a message in the recordalfolder.
Copy is identical in all other respects to aave.

Use the folder command to read the contents of a different folder. For example:

& folder +records

causes mail to close the file it is currently reading (as if you had typed q) and direct its attention
to the contents of the recorda folder. All of the commands that you can use on your system
mailbox are also applicable to folders, including print, delete, and reply. To inquire which folder
you are currently editing, use simply:

& folder

To list your current set of folders, use the folders command:

& folders

If you want to start reading one of your folders, use the -r option described previously. For
example:

tutor !al% mall -f +record•

reads your recorda folder without looking at your system mailbox.

Revision A of 15 April 1985 3-11

Mail User's Guide Beginner's Guide

3.10. Sending Mail with Tilde Escapes

While typing in a message to be sent to others, it is often useful to be able to invoke the text
editor on the partial message, display the message, execute a Shell command, or do some other
auxiliary function. Mail provides these capabilities through 'tilde escapes,' which consist of a
tilde ,-, at the beginning of a line, followed by a single character which indicates the function to
be performed.

3.10.1. Displaying the Message Text with ,-p'

If you are typing in a long message and ·want to to display the text of the message so far, use the
,-p, escape:

tutorial% mall lorl
A very long message ...
-p

Message contains:
To: lori
Subject: Company Party
A very long message ...
(continue)

The ,-p, displays a line of dashes, the recipients of your message, and the text of the message so
far. Since mail requires two consecutive 'C's (RUBOUTs, INTERRUPTs, DEU!:11!S) to abort a letter,

0

you can use a single ·c to abort the output of ,-p, or any other,-, escape without killing your

0 letter.

3.10.2. Editing a Message - ,-e• and ,-v'

If you are dissatisfied with the message as it stands, you can use a text editor on it. To use the
default line editor ex, type:

-e

The ,-e' escape copies the message into a temporary file for editing. After modifying the message
to your satisfaction, write it out and quit the editor. Your screen displays:

(continue)

after which you may continue typing text which will be appended to your message, or type ·oat
end the message. Mail provides a standard text editor, but you can override this default by set
ting the valued option 'EDITOR' to something else. For example, you might prefer to use the vi
display editor from Berkeley instead of the ex editor. Edit your .login file to contain:

aetenv EDITOR /u1r/ucb/vl

Mail also defines a default visual display editor, v,: To use vi for editing your current message,
use the escape:

-v

The ,-v' escape works like ,-e', but invokes the visual rather than the text editor. If it does not
suit you, you can set the valued option 'VISUAL' to the pathname of a different editor. 0
3-12 Revision A of 15 April 1985

0

0

0

Beginner's Guide Mail User's Guide

3.10.S. Including a File in Your Message with ,-r•

If you want to read the contents of some file into your message, the escape ,-r' appends the
named file:

-r datafile
"datafile" 14/512

In this case, datafile is added to your current message. If the read is successful, the number of
lines and characters appended to your message is printed, after which you may continue append
ing text. Mail complains if the file doesn't exist or can't be read; for example:

tutorial% mall lorl
Subject: Company Party
-r budget
budget: No such file or directory.

The filename may contain Shell metacharacters like '*' and '?', which are expanded according to
the conventions of your Shell.

S.10 .. ,t. Using the 'dead.letter' File with ,-d'

Similar to the ,-r' escape is the ,-d' escape which reads the file dead.letter in your home direc
tory. For instance:

-d
··;usr/lori/dead.letter'' 2/24

reads in dead.letter to your current message. You can use ''d' to recycle a message you aborted
with ·c, since mail copies the text of aborted messages into dead.letter.

S.10.5. Saving Message Text in a File with ,·w•

To save the current text of your message in a file, use the ''w' escape:

-w itinerary
11itinerary": 7 /180

Mail displays the number of lines and characters written to the file, after which you may con
tinue appending text to your message. You can use Shell metacharacters in the filename, as with
,-r'.

S.10.6. Forwarding a Message with ''m' and'}'

If you are sending mail from within maifs command mode, you can read a message sent to you
into the message you are writing with the escape:

& mall Jorl
Subject: Company Party

-m"
Interpolating: 4
(continue)

which reads message 4 into the current message, shifted right by one tab stop. You can name

Revision A of 15 April 1985 3-13

Mail User· s Guide Beginner's Guide

any non-deleted message, or list of messages.

You can also forward messages without having them indented by a tab stop in the text with the o
,-f' escape.

& mall lorl
Subject: Company Party -, "
Interpolating: 4
(continue)

3.10. 7. Adding People to the Message List with ,-t'

If, in the process of composing a message, you decide to add additional people to the list of mes
sage recipients, you can do so with the escape:

-t namel name£ ...

You may name as few or many additional recipients as you wish. Note that the users originally
on the recipient list will still receive the message; you cannot remove someone from the recipient
list with '"t'.

3.10.8. Adding a Message Subject with ,-s'

If you wish, you can pick a subject for your message or change the one you originally chose if
you have the a$k option set, by using the ,-s' escape:

·s New Message Subject

The ,-s, replaces any previous subject with 'New Message Subject.' The subject, if given, is
placed in the 'Subject' heading near the top of the message. It's a good idea to use the '"p'
escape to see what the message will look like if you make a lot of changes which are not immedi
ately displayed as you type in text.

3.10.9. Sending Copies with ,-c' and ,-b'

If you want to 'copy' people on a message, use the ,-c' escape:

-c namel name£ ...

The ,-c' escape adds the named people to the 'Cc:' list.

To add blind copy recipients to a message, that is, people who will receive a copy of your mes
sage but whose names will not be listed on the message, use the ,-b, escape:

•b name 1 name£ ...

Again, use ,-P, to see what the message will look like.

3-14 Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide

tutor ia1% mall lorl
Subject: Company Party
text
-c Joe dan
-b ohelley
-p

Message contains:
To: lori
Subject: Company Party
Cc: joe dan
Bee: shelley

text
(continue)

3.10.10. Editing the Header Fields with ,-h'

Mail User's Guide

The recipients of the message together constitute the 'To:' field, the subject the 'Subject:' field,
and the carbon copies the 'Cc:' field. If you wish to edit these fields in ways impossible with the
,-t•, ,-s', and,-c' escapes, you can use the ,-h' escape, which displays each of the fields in turn:

-h
To: lori
Subject: Company Party
Cc:
Bee:
(continue)

The ,-h' escape first displays 'To:' followed by the current list of recipients and leaves the cursor
at the end of the line. Typing in ordinary characters appends them to the end of the current list
of recipients. You can also use your erase character DEL to erase back into the list of recipients,
or your kill character ·u to erase them altogether. Typing a newline, advances to the 'Subject'
field, where the same rules apply. Another newline brings you to the 'Cc:' field, and so on.
Another newline leaves you appending text to the end of your message. You can use ,-p• to
display the current text of the header fields and the body of the message.

3.10.11. Escaping to the Shell with '-!'

To escape to the Shell temporarily to execute a command, use the ,-!' escape:

-!pwd
/usr/lori/tutorial
I

You can use a Shell command and return to mailing mode without altering the text of your mes
sage. If you wish, instead, to filter your message through a Shell command, you can use the 'T
escape:

"":command
(continue)

which pipes your message through the command and uses the output as the new text of your

Revision A of 15 April 1985 3-15

Mail User's Guide Beginner's Guide

message. If the command does not produce any output, mail assumes that something is amiss and
retains the old version of your message. A frequently-used filter is the command /mt, which
justifies the message text. For example, you can type a message like the following and run it
through /mt:

tutorial% mall ateve
Subject: Company Party
Pleue make plane tor the company party In October.
We have a
lot ot scheduling and budgeting to do.
I will be on vacation
tor three week• In September,
so we should ff.rm up
the plan• before I leave.
-:,mt
(continue)
·n
EOT
tutorial%

to send your recipient 'steve' the formatted version:

From lori Fri Aug 5 16:18:02 1983
Date: 5 Aug 83 16:17:55 PDT (Fri)
From: lori (Lori Rosen)
Subject: Company Party
Message-Id: <8308052317.AA00232@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA00232; 5 Aug 83 16:17:55 PDT (Fri)
To: stave
Status: R

Please make plans for the company party in October. We have a lot
of scheduling and budgeting to do. I will be on vacation for three
weeks in September, so we should firm up the plans before I leave.

3.10.12. Escaping to 'mail' Command Mode with ,-:'

To escape to mail command mode temporarily, use the ,- :' escape:

-,mail command

This is especially useful for reshowing the message you are replying to by using for example:

It is also useful for setting options and modifying aliases.

3.10.13. Changing the Tilde Escape and Using a Tilde as a Tilde

If you want or need to change the escape character to something other than the tilde ,-,, use the
'escape' option. For instance:

3-16 Revision A of 15 April 1985

0

01
I

0

0

0

0

Beginner's Guide Mail User's Guide

aet eocape=)

lets you use a right bracket instead of a tilde. Changing the escape character removes the spe
cial meaning of the tilde ,-,.

If you wish for some reason to send a message that contains a line beginning with a tilde, you
must double it. Thus, for example:

- -Thia line begin a with a tilde,

sends the line:

-This line begins with a tilde.

If you ever need to send a line beginning with your new escape character, such as the right
bracket as suggested above, double it, just as for ,-,.

3.10.14, If You Need Help - ,-?'

If you forget which tilde escape does what and need a quick reminder while you are sending
someone a message, type the ,-?' escape:

-r

The ,-?' displays a brief summary of the available tilde escapes.

3.11. Special Recipients

AB described previously, you can send mail to either user names or alias names. Special conven
tions provide the capability of sending messages directly to files or to programs. If a recipient
name has a '/' in it or begins with a '+', it is assumed to be the pathname of a file to which to
send the message. If the file already exists, the message is appended to the end of the file. If
you want to name a file in your current directory (that is, one for which a '/' would not usually
be needed) you can precede the name with './'. So, to send mail to the file memo in the current
directory, type:

tutorial% mall ./memo

If the name begins with a '+', it is expanded into the full pathname of the folder name in your
folder directory. Sending mail to files can be used for a variety of purposes, such as maintaining
a journal and keeping a record of mail sent to a certain group of users. You can keep a record
automatically by including the full pathname of the record file in the alia, command for the
group. Using our previous alias example, you can say:

allu project dan rick tom john /uor /project/mall_record

Then, all mail sent to 'project' is saved in the file /uar/project/maiLrecord as well as being sent
to the members of the project. You can examine this file using mail -f.

When you need to send mail directly to a program, preface the program name with a T, Mail
treats recipient names that begin with a T as a program to send the mail to. For example, you
might write a project billboard program and want to access it using mail. To send messages to
the billboard program, send mail to the special name 'I billboard'. You can set up an alias to
refer to a T prefaced name if desired.

Revision A of 15 April 1985 3-17

Mail User's Guide Beginner's Guide

Caveata: Because the Shell treats T specially, you must quote the 'j program' on the command
line to present it as a single argument to mail. Surround the entire name with quotes. This also 0
applies to use with the aliaa command. For example, if you want to alias '/usr/local/bugliler' to
'bugfiler', say:

allaa bugfller 'i /uar /local/bugfller'

3.12. Additional Features

This section describes some additional commands for handling lists of messages, receiving your
mail, and setting options.

3.12.1. Message Lists

Several mail commands accept a meaaage liat as an argument. Along with print and delete,
described above, there is the from command, which displays the message headers associated with
the message list passed to it. Use from in conjunction with some of the message list features
described below.

A message list consists of a list of meaaage numbera, rangea, and namea, separated by spaces or
tabs. Message numbers may be either decimal numbers, which directly specify messages, or one
of the special characters ''', '.' or'$' to specify the first relevant, current, or last relevant mes
sage, respectively. 'Relevant' means 'not deleted' for most commands, and 'deleted' for the
undelete command.

A range of messages consists of two message numbers separated by a hyphen. So, to display the 0
first four messages, use:

& print 1-4

and to display all the messages from the current message to the last message, use:

& print.-$

A name is a user name. The user names given in the message list are collected, and each mes
sage selected by other means is checked to make sure that one of the named users sent it. If the
message consists entirely of user names, then every message that is relevant and sent by one of
those users is selected. Thus, to display every message that peter sent to you, type:

& print peter

As a shorthand notation, you can specify simply '*' to get every 'relevant' (same sense) message.
So to display all undeleted messages, type:

& print•

To delete all undeleted messages, type:

& delete•

And to undelete all deleted messages, type:

& undelete•

3-18 Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Mail User's Guide

You can search for the presence of a word in subject lines with'/'. For example, to display the
headers of all messages that contain the word 'PASCAL', say:

& from /pucal

Note that subject searching ignores upper /lower case differences.

3.12.2. List of Commands for Receiving Mail

This section describes all the mail commands available when receiving mail.

& !command
Escape to the Shell to process command.

& - Go to the previous message and display it.

& ? Display a brief help summary about mail commands. Same as help.

aliu Define a name to stand !or a set of other names. Use this when you want to send
messages to a certain group of people and want to avoid retyping their names. For
example:

cd

copy

delete

dp

dt

edit

else

endif

alias gang jon marty steve evan darryl

creates an alias gang, which expands to the five people 'jon', 'marty', 'steve', 'evan',
and 'darryl'. If the given alias already exists, the listed names are added to it.

Change current directory. Cd takes a single argument, the pathname of the direc
tory to change to. If no argument is given, cd changes to your home directory.

Copy messages into a file without deleting them when you quit. See aave.

Delete a list of messages. Reclaim deleted messages with the undelete command.

Delete the current message and display the next message. The dp command is useful
!or quickly reading and disposing of mail.

Same as dp.

Edit individual messages using the text editor. Edit takes a list of messages as
described under the type command and writes each into the file Meuagez (where 'x'
is the message number being edited) !or editing. When you have edited the message,
write the message and quit. Mail reads the message back and removes the file. You
may abbreviate edit to e.

Mark the end of the theD-part of an if statement and the beginning of the part to
take effect if the condition of the if statement is false.

Mark the end of an if statement.

exit Leave mail without updating the system mailbox or the file you were reading. Thus,
if you accidentally delete several messages, use ezit to avoid scrambling your mailbox.

file List the names of the folders in your folder directory. Same as folder.

folder or folders
Switch to a new mail file or folder. With no arguments, folder tells you which file
you are currently reading. If you give it an argument name, it writes out changes
(such as deletions) you have made in the current file and reads the new file. Use
these special conventions for the name.

Revision A of 15 April 1985 3-19

Mail User's Guide Beginner's Guide

from

Name

%
%name
&
+folder

Meaninsr
Previous file read
Your system mailbox
Name's system mailbox
Your - /mbox file
A file in your folder directory

Display header lines for each message in a list. To display all the message headers
from 'lori' for example, type:

from Jori
1 lori
2 lori
5 lori

Fri Jul 22 10:10:38 10/128 ''Subject''
Wed Jul 27 10:15:20 11/120
Fri Jul 29 10:16:52 13/150

headers Reprint the current list of message headers. When you start up mail to read your
mail, it lists the message headers that you have. These headers tell you who each
message is from, when it was sent, how many lines and characters each message has,
and the 'Subject:' header field if present. In addition, mail tags the message header
of each message that has been the object of the preaerve command with a 'P'. A'*'
flags messages that have been saved or written. Finally, deleted messages are not
shown at all. Headera (and thus the initial header listing) only lists the first so many
message headers. The number of headers listed depends on the speed of your system.
You can override this by specifying the number of headers you want with the acreen

0

command. Mail maintains a notion of the current 'window' into your messages for Q. _
the purpose of displaying headers. Use the z command to move forward and back a
window. You can change the notion of the current window directly to a particular
message by using, for example:

& headers 40

to move maifs attention to the messages around message 40. You can abbreviate the
headera command to h.

help Display a brief help message about the mail commands.

hold Hold a list of messages in the system mailbox, instead of moving them to the mboz
file in your home directory. If you set the binary option hold, this will happen by
default. Same as preaerve.

if

3-20

Execute commands in your .mailrc file conditionally depending on whether you are
sending or receiving mail with the if command. For example, you can do:

if receive
commands ...

endif

An else form is also available:

Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Mail User's Guide

ignore

list

mail

mbox

next

if send
commands ...

else
commands ...

endif

Note that the only allowed conditions are receive and a end.

Add the list of header fields named to the 'ignore list.' Header fields in the ignore list
are not shown on your screen when you display a message so you can suppress the
display of certain machine-generated header fields, such as Via which are not usually
of interest. Use the Type and Print commands to display a message in its entirety,
including ignored fields. If ignore is executed without arguments, it lists the current
set of ignored fields.

List the valid mail commands.

Send mail to one or more people. If you have the aak option set, you are prompted
for a subject to your message. Then you can type in your message, using tilde
escapes as described earlier to edit, display, or modify your message. To send your
message, type ·n at the beginning of a line, or a '.' alone on a line if you set the
option dot. To abort the message, type two interrupt characters ('C) in a row or use
the ,-q' escape.

Send a list of messages to mboz in your home directory when you quit. This is the
default action for messages if you do not have the hold option set.

Go to the next message and show it. If given a message list, nezt goes to the first
such message and shows it. For example, to go to the next message sent by ateve and
show it, type:

& next ateve

You can abbreviate the nezt command to simply a newline, which means that you
can go to and type a message by simply giving its message number or one of the
magic characters''','.', or'$'. So, to display the current message, type:

& •

And to display message 4, say:

& 4

preserve Keep a list of messages in your system mailbox when you quit. Same as hold.

Print

print

quit

Reply

Like print, but also displays ignored header fields. See also print ignore.

Display each message your on workstation. Abbreviate to p. Same as type.

Leave mail and update the file, folder, or system mailbox you were reading. Mes
sages that you have examined are marked as 'read' and messages that existed when
you started are marked as 'old.' If you were editing your system mailbox and if you
have set the binary option hold, all messages which have not been deleted, saved, or
mboxed are retained in your system mailbox. If you were editing your system mail
box and you did not have hold set, all messages which have not been deleted, saved,
or preserved are moved to the mboz file in your home directory.

Reply to a single message. The reply is sent to the person who sent you the message
to which you are replying, plus all the people who received the original message,

Revision A of 15 April 1985 3-21

Mail User's Guide Beginner's Guide

except you. You can add people using the -t and -c tilde escapes. The subject in
your reply is formed by prefacing the subject in the original message with 'Re:' unless
it already begins so. If the original message included a 'reply-to' header field, the
reply only goes to the recipient named by 'reply-to.' Type in your message using the
same conventions available through the mail command.

reply Reply to a one or more messages. The reply or replies if you are using this on multi
ple messages, is sent ONLY to the person who sent you the message, respectively, the
set of people who sent the messages you are replying to. You can add people using
the ,-t' and,-c' tilde escapes. The subject in your reply formed by prefacing the sub
ject in the original message with 'Re:' unless it already begins so. If the original mes
sage included a 'reply-to' header field, the reply goes only to the recipient named by
'reply-to.' You type in your message using the same conventions available through
the mail command. The reply command is especially useful for replying to messages
that were sent to enormous distribution groups when you really just want to send a
message to the originator.

replyall Reply to all names in the original message, regardless of how the replyall option is
set.

replysender

save

Reply to the sender only, regardless of how the replyall option is set.

Save messages on related topics in a file. Save takes as an argument a list of message
numbers, followed by the name of the file in which to save the messages. The mes
sages are appended to the named file, so you can keep several messages in the file,
stored in the order they were put there. You can abbreviate the aave command to a.
You can save messages 1 and 2 in good.mail for example, by typing:

& • 1 :I good.mall

Saved messages are deleted and not automatically saved in mboz at quit time. They
are not selected by the next command described above unless explicitly specified.

set Customize mail with options or with valued options. See the Setting Cuatom Binary
and Valued Optiona information that follows. Options can be binary, in which case
they are on or off, or valued. To set a binary option on, do:

Shell

source

top

3-22

1et option

where option is the option name. To give a valued option a value, say:

1et option=value

Several options can be specified in a single aet command.

Escape to the Shell to type commands to it. When you leave the Shell, you return to
mail. Mail assumes the default Shell, but you can override this default by setting the
valued option SHELL:

set SHELL=/bin/sh

Read mail commands from a file. It is useful when you are changing your .mailrc file
and you need to read in the changes.

Display the first five lines of each addressed message in a message list. It may be
abbreviated to t. If you wish, you can change the number of lines that top displays
by setting the valued option toplinea. On a CRT terminal, you might prefer:

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Mail User's Guide

eet topllnee=lO

Type Displays each message with header fields. Identical to the Print command.

type Display a list of messages on your screen. If you have set the crt option to a number,
and the total number of lines in the messages you are displaying exceeds that
specified by crt, the messages are displayed by a paging program such as more.
(Same as print).

undelete

unset

visual

write

JI

Restore a deleted message. Only messages that have been deleted may be undeleted.
This command may be abbreviated to u.

Reverse the action of setting a binary or valued option.

Invoke a display-oriented editor. The operation of the viaual command is otherwise
identical to that of the edit command. Both the edit and vi,ual commands assume
some default text editors. You can override these default editors with the valued
options EDITOR and VISUAL for the standard and screen editors. The defaults are:

EDITOR=/uar /ucb/ex VISUAL=/uar /ucb/vl

Write the message into a file. Just like ,ave, except that write deletes the first (nor
mally 'From:' line) and last (normally blank) lines. Write has the same syntax as a ave
and can be abbreviated to simply w. Thus, you can write the second message by
doing:

& w 2 ftle.eave

Move the message header window forward. Type:

& z+

Analogously, you can move to the previous window with:

& z-

3.12.3. Setting Custom Binary and Valued Options

This section describes each of the options in alphabetical order, including some that you have
not yet seen. To avoid confusion, please note that the options are either all lowercase letters or
all uppercase letters. We begin sentences with capitalized option names as a courtesy to English.
Unless otherwise stated, the default value of all binary options is false (unset).

EDITOR Define the pathname of the text editor to be used in the edit command and ,-e'. If
not defined, ez is used. A valued option.

SHELL Give the pathname of your Shell. This Shell is used for the '!' command and 'T
escape. In addition, it expands filenames with Shell metacharacters like '*' and '?' in
them. Default is cah. A valued option.

VISUAL Define the pathname of your screen editor for use in the viaua/ command and ,-v'
escape. Invokes vi unless otherwise defined. A valued option.

append Appends messages to the end of your mboz file rather than to the beginning. Nor
mally, messages are put in mboz in the same order that the system puts messages in

Revision A of 15 April 1985 3-23

Mail User's Guide Beginner's Guide

your system mailbox. A binary option. This option 1s set in the system file
/uar/lib/Mail.rc. So by default, messages are appended to the end of the system o
mailbox and, your mboz file. You may override it in your .mailrc or your system
administrator may remove it, if desired.

ask

askcc

autoprint

crt

debug

Prompt you for the subject of each message you send. If you respond with simply a
newline, no subject field is sent. A binary option.

Prompt you for additional 'carbon copy' recipients at the end of each message.
Responding with a newline shows your satisfaction with the current list. A binary
option.

Cause the delete command to behave like dt. After deleting a message, the next one
is displayed automatically. This is useful for quickly scanning and deleting messages
in your mailbox. A binary option.

Designate the minimum numbers of lines displayed before the message is displayed by
more for easier viewing. For example, set crt=30 causes any message longer than
30 lines to be displayed with more. A valued option.

Display de bugging information. Same as using the -d command line flag. A binary
option.

dot Cause mail to interpret a period alone on a line as the terminator of a message you
are sending. A binary option. This is set in the default system file /uar/lib/ Mail.re.
It may be removed or overridden in your .mailrc.

escape

folder

hold

ignore

ignoreeof

Allow you to change the escape character used when sending mail. Only the first
character of the eacape option is used, and it must be doubled if it is to appear as the
first character of a line of your message. If you change your escape character, then
,-, loses all its special meaning, and need no longer be doubled at the beginning of a
line. A valued option.

Determine the name of the directory to use for storing folders of messages. If this
name begins with a'/' mail considers it to be an absolute pathname; otherwise, the
folder directory is found relative to your home directory.

Hold messages that have been read but not manually dealt with in the system mail
box to prevent them from being automatically swept into your mboz. A binary
option.

Ignore 'C's (or RUBOUT) characters from your system and echo them as '@'s' while
you are sending mail. The ·c characters retain their original meaning in mail com
mand mode. Setting the ignore option is equivalent to supplying the -i flag on the
command line. A binary option.

Make mail refuse to accept your current EOF character ('D by default) as the end of
a message. lgnoreeof also applies to mail command mode, and is related to dot.

keep Truncate mail system mailbox instead of deleting it when it is empty. This is useful
if you elect to protect your mailbox, which you do with the Shell command:

tutorial% chmod 1100 /u1r/1pool/mall/yourname

0

where yourname is your login name. If you do not do this, anyone can probably read

~~- 0
3-24 Revision A of 15 April 1985

0

0

0

Beginner's Guide Mail User's Guide

keepsave

metoo

nosave

quiet

record

replyall

screen

sendmail

toplines

Retain all saved messages. When you save a message in a file, mail usually discards
it when you quit.

Include yourself as a recipient when sending mail to an alias. Otherwise, mail does
not send you a copy if you are included in the alias. A binary option.

Prevent mail from copying a partial letter to the dead.letter file in your home direc
tory when you abort a message with two 'C's (RUBOUT's). A binary option.

Suppress the display of the mail version when mail is first invoked and the message
number from the type command. A binary option.

Name a record file to save your outgoing mail. Each new message you send is
appended to the end of the file. A valued option.

Makes reply respond to everyone who received the message and Reply respond to the
sender only. Setting replyall in the system-wide equivalent of .mailrc called
uu/lib/ Mail.re makes this the default and sets it for everyone.

Override any terminal speed consideration that may affect how mail prints the mes
sage headers. Usually, the faster your terminal, the more it displays. The value of
screen specifies how many message headers you want displayed. This number is also
used for scrolling with the z command. A valued option.

Use an alternate delivery system. Set the ,endmail option to the full pathname of
the program to use. Note: this is not for everyone! Most people should use the
default delivery system. A valued option, set to the full pathname of the program to
use.

Define the number of lines that the top command displays instead of the default five
lines. A valued option.

verbose Invoke aendmail with the -v flag to use verbose mode and announce expansion of
aliases, etc. Equivalent to invoking mail with the -v flag. A binary option.

9.12 .. ,1. Command Line Options

This section describes the use of mail command line options.

-N Suppress the initial printing of headers. For example, to get into mail, type:

-d

-t file

-i

tutorial% mall -N
&

Turn on debugging information. Not of general interest.

Show the messages in file instead of your system mailbox. If file is omitted, mail
reads mboz in your home directory.

Ignore tty interrupt signals while typing in a mail message. You can still use •-q, to
interrupt the message. Useful on noisy phone lines, which generate spurious RUBOUT
or D= characters. This is usually unnecessary if your INTERRuPT character is the
default ·c or if you're not logged in over a phone line. (See the atty Shell command

Revision A of 15 April 1985 3-25

Mail User's Guide

-n

-s airing

in the Commanda Reference Manual for details.)

Inhibit reading of /uar/lib/ Mail.re.

Beginner's Guide

Denote the subject of a message when sending mail. If airing contains blanks, sur
round it with quote marks.

-u name Read namea's mail instead of your own. Unwitting others often neglect to protect
their mailboxes, but discretion is advised.

-T file Arrange to print on file the contents of the article-id fields of all messages that were
either read or deleted. -Tis for the readnewa program and should NOT be used for
reading your mail.

-v Use the -v flag when invoking aendmail. This feature may also be enabled by set
ting the option verboae. Useful for diagnosing mail delivery problems.

3.13. Message Format

A sample message format is:

From lori Wed Jul 27 10:16:52 1983
Date: 27 Jul 83 10:16:45 PDT (Wed)
From: lori (Lori Rosen)
Subject: Company Cruise
Message-Id: <8307271716.AAOSlSS@sun.uucp>
Received: by sun.uucp (3.320/3.14)

id AA05188; 27 Jul 83 10:16:45 PDT (Wed)
To: alison
Status: R

Messages begin with a from line, which consists of the word 'From' followed by a user name, fol
lowed by anything (usually null), followed by a date in the format returned by the clime library
routine described in the Commanda Reference Manual. The clime date may be optionally fol
lowed by a single space and a time zone indication, which should be three capital letters, such as
PDT.

Following the from line are zero or more header field lines. Each header field line is of the form:

name: information

Name can be anything, but only certain header fields are recognized as having any meaning.
The recognized header fields are: article-id, bee, cc, from, reply-to, aender, aubject, and to.
Other header fields are also significant to other systems; see, for example, the current ARPANET
message standard for more on this topic. A header field can be continued onto following lines by
making the first character on the following line a space or tab character.

If any headers are present, they must be followed by a blank line. The part that follows is called
the body of the message, and must be ASCII text, not containing null characters. Each line in
the message body must be terminated with an ASCII newline character and no line may be
longer than 512 characters. If binary data must be passed through the mail system, it is sug
gested that this data be encoded in a system which encodes six bits into a printable character.
For example, you could use the upper and lower case letters, the digits, and the characters

0

0

comma and period to make up the 64 characters. Then, you can send a 16-bit binary number as 0
three characters. Pack these characters into lines, preferably lines about 70 characters long as

3-26 Revision A of 15 April 1985

0

0

0

Beginner's Guide Mail User's Guide

long lines are transmitted more efficiently. The programs /uar/bin/uuencodi and
/uar/bin/uudecode are useful for encoding and decoding binary data into the recommended
form.

The message delivery system always adds a blank line to the end of each message. This blank
line must not be deleted.

The UUCP message delivery system sometimes adds a blank line to the end of a message each
time it is forwarded through a machine.

Note that some network transport protocols enforce limits on the lengths of messages.

Revision A of 15 April 1985 3-27

Mail User's Guide Beginner's Guide

3.14. Summary of Commands, Options, and Escapes

This section gives a quick summary of the mail commands, binary and valued aet options, and

tilde escapes.

3.14,1. 'mail' Command Summary

The following table describes the commands.

3-28
Revision A of 15 April 1985

0

0

0

Beginner's Guide Mail User's Guide

0 Table 3-1: mail Commands

Command Description
! Single command escape to Shell

Back up to previous message
Print Show message with ignored fields
Reply Reply to a message
Type Show message with ignored fields
alias Define an alias as a set of user names
alternates List other names you are known by
cd Change working directory, home by default
copy Copy a message to a file or folder
delete Delete a list of messages
dt Delete current message, type next message
endif End of conditional statement; see if
edit Edit a list of messages
else Start of else part of conditional; see i/
exit Leave mail without changing anything
file Interrogate/change current mail file
folder Same as file
folders List the folders in your folder directory
from List headers of a list of messages
headers List current window of messages

0 help Print brief summary of mail commands
hold Same as preaerve
if Conditional execution of mail commands
ignore Set/examine list of ignored header fields
list List valid mail commands
mail Send mail to specified names
mbox Arrange to save a list of messages in mbo:e
next Go to next message and show it
preserve Arrange to leave list of messages in system mailbox
print Show messages
quit Leave mail; update system mailbox, mbo:e as appropriate
reply Reply to author of message only
replyall Reply to message and all other recipients
replysender Reply to message sender only
save Append messages, headers included, on a file
set Set binary or valued options
shell Invoke an interactive Shell
top Show first so many (5 by default) lines of list of messages
type Show messages
undelete Undelete list of messages
unset Undo the operation of a aet command
visual Invoke visual editor on a list of messages
write Append messages to a file, not including headers

0
z Scroll to next/orevious screenfull of headers

Revision A of 15 April 1985 3-29

Mail User's Guide Beginner's Guide

3.14.2. 'set' Command Option Summary

The following table describes the options. Each option is shown as being either a binary or 0
valued option.

Table 3-2: mail Binary and Valued Options

Ootion Tvne Descrintion
EDITOR valued Pathname of editor for ,-e' and edit
SHELL valued Pathname of Shell for ahell, ,-p and '!'
VISUAL valued Pathname of screen editor for ,-v', viaual
append binary Always append messages to end of mboz
ask binary Prompt user for 'Subject:' field when sending
askcc binary Prompt user for additional 'Cc's' at end of message
autoprint binary Print next message after delete
crt valued Set minimum number of lines before using more
debug binary Display debugging information
dot binary Accept '.' alone on line to terminate message input
escape valued Escape character to be used instead of,-,
folder valued Set directory to store folders in
hold binary Hold messages in system mailbox by default
ignore binary Ignore 'C's (RUBOUT) while sending mail
ignoreeof binary Don't terminate letters/command input with D
keep binary Don't unlink system mailbox when empty
keepsave binary Don't delete saved messages by default
metoo binary Include sending user in aliases

0
nosave binary Don't save partial letter in dead.letter
quiet binary Suppress printing of mail version
record valued File to save all outgoing mail in
replyall binary Reverse action of reply and Reply
screen valued Size of window of message headers for z, etc.
sendmail valued Choose alternate mail de livery system
toplines valued Number of lines to print in top
verbose binary Invoke aendmail with the -v flait

0
3-30 Revision A of 15 April 1985

Beginner· s Guide Mail User· s Guide

0 3.Lf.3. 'mail' Command Line Flags

0

0

The following table shows the command line flags that mail accepts.

Flaa:

-N
-T file
-d
-f file
-i
-n
-s atring
-T file

-u name
-v

Table 3-3: mail Command Line Flags

Descriotion
Suppress the initial printing of headers
Article-id's of read
Turn on de bugging
Show messages in file or -
Ignore tty interrupt aignala
Inhibit reading of
Use atring a• aubject in outgoing mail
Print article-id contents on file for read
new,
Read name'• mail inatead of your own
Invoke aendmail with the -v fverboae) Rao

Note: Do not use -T and -d for normal operation.

3.14,4, Tilde Escape Summary

The following table summarizes the tilde escapes available while sending mail.

Escaoe
-,

C

-d

e
-f
-h

ID

p
q
r

-s
t

-V
-w
-1

I

Ar"uments
command
name ...

meaaagea

filename
airing
name ...

filename
command
alrina

Revision A of 15 April 1985

Table 3-4: mail Tilde Escapes

Descrintion
Execute Shell command
Add names to 'Cc:' field
Read dead.letter into message
Invoke text editor on partial message
Read named messages
Edit the header fields
Read named messages, right shift by tab
Display message entered so far
Abort entry of letter; like INTERRUPT ('C or RUBOUT)
Read file into message
Set 'Subject:' field to airing
Add names to 'To:' field
Invoke screen editor vi on message
Write message on file
Pipe message through command
Ouote a,-, in front of alrinn

3-31

Mail User's Guide

j Escape Arguments Description

3. LJ. 5. 'mail' Help

Following is the help summary displayed when you type:

&T

c <directory>
d <message list>
e <message list>
f <message list>
h
m <user list>
n
p <message list>
pre <message list>
q
r <message list>
R <message list>
s <message! list> file
t <message list>
top <message list>
u <message list>
w <message list> file
X

!

chdir to directory or home if none given
delete messages
edit messages
show from lines of messages
print out active message headers
mail to specific users
goto and type next message
print messages
make message go back to system mailbox
quit, saving unresolved messages in mbox
reply to messages
reply to sender (only) of messages
append messages to file
type messages (same as print)
show top lines of messages
undelete messages
append messages to file, without from line
quit, do not change system mailbox
shell escape

A <message list> consists of integers, ranges of same, or user names separated
by spaces. If omitted, Mail uses the last message typed.

Beginner's Guide

3-32 Revision A of 15 April 1985

0

0

0

0

0

0

Chapter 4

Network News User's Guide

The network news, or simply netnewa, is the set of programs that provide access to the User's
Network called USENET. This chapter describes how to use the network news and related pro
grams and provides a quick reference page for easy use.

With netnewa, you can post news articles for limited or very wide distribution on the USENET.
You can post an article, which will be sent out to the network to be read by others interested in
that topic. There are facilities for browsing through old news, posting follow-up articles, and
sending direct electronic mail replies to the author of an article.

Whenever you read the news, you are presented with interesting articles that you have not yet
read. These are divided into topics or newagroupa. You can specify which topics you are
interested in with a wbacription liat. At the end of this guide, there is a list of newsgroups to
help you determine which newsgroups you may want to subscribe to. Netnewa keeps old articles
around until they expire, which is usually about two weeks, so you can browse through old news
from time to time.

USENET is a bulletin board shared among many computer systems in the computer science com
munity, around the United States, Canada, Europe, Asia, and Australia. USENET is a logical net
work, sitting on top of several physical networks, including uucp, BLICN, and Berknet. Sites on
USENET include many universities, private companies and research organizations.

USENET is useful in a number of ways:

• to share useful information,

• to report bugs and fixes without mass mailings, and

• to have discussions involving many people at different locations without having to get
everyone together.

For additional options and details on the network news, refer to the Command, Reference
Manual on readnewa, checknewa, poatnewa, and inew•.

4.1. Making the Connection with Your News Host System

To use netnew•, a host system at your site (the news host) must connect regularly by uucp to
another site from which news can be forwarded. This must be arranged directly between your
system administrator and the forwarding site. See the Sy.tern Admini•tration Manual for the
Sun Workatation for more information. If your system itself is the news host, you can run read
new• directly. If the news host is another machine on your local Ethernet, you must do a remote
login (rlogin). Let's assume your news host system is called 'mercury'. Log in to 'mercury' by

4 The material in this guide is derived from How to Reatl the Ntt1DQrk New,, Mark R. Horton, Bell Tele
phone Laboratories.

Revision A of 15 April 1985 4-1

Network News User's Guide Beginner's Guide

typing:

tutorial% rlogln mercury
Last login: Tue Aug 5 13:41:36 on ttypO
Sun UNIX 4.2 (Release 1.1.1) (SUN) #4: Fri Jan 11 00:20:28 PST 1985
mercury,:

You are now ready to read the news.

For additional information on how to connect your system to the USENET, refer to the Syatem
Adminiatration Manual for the Sun Work81ation.

When you are finished reading the news, use 'D to logout from the news host:

mercury,: ·n
Connection closed.
tutorial%

4.2. How to Read the News with 'readnews'

The following assumes that your system 'mercury%' is directly hooked up to USENET via uucp.

Use the readnewa command to read the news:

mercury% readnewa
Header of news article

For each newsgroup to which you subscribe, an article at a time is presented. You will be shown

0

the article header, containing the name of the author, the subject, and the length of the article.

0 You are asked if you want to read more. The three most common responses are:

• Type ;y for 'yes' (or simply press RETURN) to display the rest of the message. A":" at
the end of a long message indicates that readnewa is waiting for you to finish reading the
displayed part of the message before the next header forces it off the top of the screen.
Type a space or press RETURN to see more of the message.

• Type 'n' for 'no' to indicate you are not interested in the message; it will not be offered
to you again.

• Type 'q' for 'quit' to make a record of which articles you read (or refused) and to exit
nelnewa. When you have read all the news, this happens automatically. The quit com
mand is useful if you are in a hurry and don't have time to read all the news right now.
This updates .newarc if the -I or -x options are not used.

To see a complete list of possible responses, type '?' for help.

4.3. Reading News for the First Time

If you are reading news for the first time, you may find yourself swamped by the volume of
unread news, especially if the subscription list default is 'all'. Decide which newagroup, you
want to read about. If you are getting newsgroups in which you have no interest, you can
change your subscription list as we show below. Also, bear in mind that what you see is prob
ably at least two weeks accumulation of news. If you want to just get rid of all old news and
start anew, use the readnew, command with the -p and -n options, which throw away all arti- o
cles and any diagnostic output into /dev/nu/1, the "wastebasket" file. Note that this take a long

4-2 Revision A of 15 April 1985

0

0

0

Beginner's Guide Network News User's Guide

time, so it's best to run the command in the background by typing an '&' at the end of the com
mand line:

mercurY% readnewo -p -n all> /dev/null &
[1] 2345
mercury%

This throws away all old news, recording that you have seen it.

Once you catch up or ignore all the old news, the news comes in daily at a more manageable
rate. If the daily rate is still too much you may wish to change your subscription list to exclude
some of the high volume newsgroups. Finally, note that while you are displaying an article, you
can type a ·c (an INTERRUPT or D=) to throw away the rest of the article.

Other commands you can type after seeing the article header are:

U Unsubscribe from this newsgroup. Goes on to the next group. Your .newarc file
is edited to change the ":" for that newsgroup to an "!", preventing you from
being shown that newsgroup again unless you edit your .newarc file (see below).

x Exit readnewa. Unlike quit, does not update the record of which articles you have
read and pretends you never started readnewa.

N newagroup

s filename

r

r

b

Go on to the next newagroup. The remaining articles in the current newsgroup
are considered 'unread' and are offered to you again the next time you read news.

Save the article in a file with the given filename. What usually happens is that
an article is displayed, and then readnewa goes on to display the header of the
next article before you get a chance to type anything. To write out the previoua
message, that is, the last one you have read in full, use the form s- filename.
Article is appended to file. Default is Artie/ea.

Reply to the author of the message. You are placed in the editor with a set of
headers derived from the message you are replying to. Type in your message
after the blank line. If you want to edit the header list to add more recipients or
send carbon copies, for instance, you can edit the header lines. Anyone listed on
a line beginning with "To:" or "Cc:" will receive a copy of your reply. A mail
command is then started up, addressed to the persons listed in the header. Exit
ing the editor returns you to readnewa. Use r- to reply to the previous message.
Beware that this may sometimes generate an incorrect address. Check the
address and correct it with -h if necessary. Another variation on this is rd-,
which puts you in $MAILER or mail by default, to type in your reply directly.

Poat a follow-up meaaage to the aame newagroup. Type in the body of yotlr reply
and type 'D. Thia poata an article on thia newsgroup with the aame title aa the
original article. Be aure your article ia worthy of poating; many follow-up articlea
ahould be repliea. Uae 'F-' to follow up the previoua meaaage. If you type thia by
accident, type ·c (an INTERRUPT) to abort the follow-up. Note that the people
who adminiater the machinea on USENET are concerned about people aending
newa to inappropriate newagroupa. We auggeat you read aeveral week'a worth of
newa and read up on network etiquette before poating any newa.

Backup one article in current group.

Revision A of 15 April 1985 4-3

Network News User's Guide Beginner's Guide

4-4

k

+n

d

C

r

r title

Mark remainder of articles in group as read.

Skip the article for now or skip n articles. The next time you read news, you are
offered this article again.

Go back to the previous article. This toggles, so that two '-' 's get you the
current article.

Divide digest article.

Cancel an article you posted.

Reply to article author via mail.

Post follow-up article to the same newsgroup. This posts an article on this news
group with the same title as the original article. You are placed in the editor.
Enter your message and exit. The f- command follows up a previous message.
Another case, Cd- allows you to type the follow-up in directly without having to
use an editor. If you start this by accident, type ·c to abort the follow-up. The
default editor is vi unless you set it otherwise in your environment.

s I command

e

h

number

Run command with article as input.

Erase. Forget that this article was read. It will be offered again. Use
e- to see if there have already been followups to the article.

Shows the verbose article header with article ID path the date or the
newsgroups; also H for an even more verbose header.

Escape to Shell to execute command.

Go to article number.

v Display current version of news software.

D Decrypt crypted jokes.

X ,yatem Send article to •11•tem.

? Display a summary of valid commands. The '?' ts also displayed if
you type any unrecognized command.

Put a '-' after c, r, f, e, s, and h to indicate the previous article.

4.4. Printing a News Article

To print a news article, save it in a file with s filename, and then send it to your printer:

Article 10 of 12, or general; Mon 11:12,
Subject: HP2621P Function Keys
Path: .. lcbosgdlhenry
Newsgroups: btl.general,net.followup
(31 lines) More? [ynq] • hp.functlon.ke;ya
,/hp.function.keys: New file
(31 lines) More? [ynq] q
mercury% pr hp.functlon.ke;ya I !pr -P printer
mercury%

Remember that if you decide you want to write an article to a file after you have read it,

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

you have to use the '-' to indicate the previoua article:

(31 lines) More? [ynq] s- hp.function.keys

4.5. Changing Your Subscription List

Network News User's Guide

If you don't take any special action, you will subscribe to a default subscription list. This
default varies locally. To find out your local default, type:

mercurY% readnews -•
Subscription list: general,all.general,general

Typically this list includes all newsgroups ending in 'general', such as 'general', and
'net.general'.

To change this, create a file in your home directory named .newarc and type as its first line:

optlon11 -n newsgroup newsgroup newsgroup ...

Continue long lines on subsequent lines by beginning them with a tab or space. The netnewa
system updates this file by writing update lines to record which articles you have read.
Ignore these lines unless you want to edit them. For example, if you are creating a subscrip
tion list for the first time, and have already read news, you will find some update text in
your .newarc file, recording which articles you have read. Put your option• line before the
first line of the file. For instance, a .newarc file can look like:

options -n general net.al fa.telecom
net.chess: 1-224
net.games.rogue: 1-45
net.games.trivia: 1-234

The update text shows three articles and the option• lines that subscribes to the three news
groups, 'general,' 'net.ai', and 'fa.telecom.'

The easiest way to subscribe to news is to subscribe to "all", and then use the "U"to unsub
scribe to newsgroups you don't want to read. This way you will see new newsgroups as they
are created, get a chance to evaluate them, and then unsubscribe to those that don't interest
you.

To exclude certain newsgroups, you can also type:

!newsgroup

and add the word 'all' as a wild card to represent any newsgroup. You can also use 'all' as
a prefix or suffix to match a class of newsgroups. For example:

options -n all !fa.all !net.Jokes !all,unlx-all

subscribes to all newsgroups except for ARPANET news, jokes, and any UNIX information.
The metacharacter '.' is like'/' to the Shell, and 'all' is like'*'.

4.6. Submitting New Articles with 'postnews'

Use the poatnewa command to submit a news article on a new topic. You are prompted for
an article subject, newsgroup(s), article distribution, and your news. You are then put in the
editor. Enter the text of your article after the blank lines, and exit the editor. This sends

Revision A of 15 April 1985 4-5

Network News User's Guide Beginner's Guide

4-6

your article immediately.

mercuryX poatnewa
Subject:
Newsgroups (general):
Distribution (general):
Type news, exit editor
mercury%

Typing RETURN after the 'Newsgroups' and 'Distribution' prompts uses the default news
group, 'general.' That is almost certainly a larger distribution than you want! To change the
distribution, type the name of the newsgroup class you want the article distributed to.
Although you can use any newsgroup name, ordinarily you'll just type the name of the news
group class, such as 'usa' or 'net'. Take an extra moment to think about how applicable
your news is, and to what area of the country or world. Sending messages to people who
have no interest in them is one of the most annoying problems on the net today. When
creating a new article, specifying the newsgroup controls the level of distribution.

If you change your mind about the headers while you are still in the editor, you can edit
them as well. You can also add extra headers before the blank line.

If your article is related to a previous article, you should use the f followup command to
readnewa, instead of posting a new article. This creates an article with references to the
previous article, so that persons who are not interested in the topic can shut it off.

Yoti can also use:

mercuryX postnews filename

in which case poatnewa uses the specified filename as the article.

If you make a mistake, get out of the editor without writing the article with :q for example.
[new• lets you know that your incomplete news article was not sent:

:q
inews: You didn't really want to post THAT!.
Article saved in /usr2/lori/dead.article

4.7. Submitting News with 'inews'

You can also use the inewa command to send news. /new• provides several options for speci
fying such additional information as the article expiration date and the name of the $ender.
A sample inewa format is:

mercury% !news -t title -n newsgroup (-e expiration date) [-t sender)
body of article
·o
EOT
mercury%

/newa does not prompt you like poatnew, does.

You can also use an editor with inewa to prepare the body of your article. Edit your file,
then type:

mercuryX lnewa -t title (-n newsgroup] < file

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Network News User's Guide

to send the edited file as your news article. A sample command line looks like:

mercurY% !news -t •emlnar -n net.micro -e next frlday < semlnfo

This article announces a seminar to the 'net.micro' newsgroup readers. This expiration date
option is useful if you are announcing a meeting for a particular date after which the
announcement will no longer be valid.

On some systems, it is possible to post news articles by sending mail. See the section on
mail in Uaer lnterfacea in this guide or refer to mail in the Commanda Reference Manual.

4.8. Browsing Through Old News

Readnewa command line options that help you find an old article again are:

-n newagroupa
Restricts your search to certain newsgroups.

-x Ignores the record of articles read kept in your .newarc file. This displays all
articles in all newsgroups to which you subscribe, even those which you have
already seen. It also prevents readnewa from updating the .newarc file.

-& date Asks for news received since the given date. Note that even with the -a option,
only articles you have not already seen are displayed, unless you combine it with
the -x option. Articles are kept on file until they expire, typically after two
weeks.

-t titlea
Restricts the query to articles mentioning one of the tit/ea in the title of the arti
cle. If you try:

mercury-% readnewa -n net.unix-wizards -x -a last friday-t setuid

you see all articles in newsgroup net.unix-wizards since last Friday about the
setuid feature. The -t option finds articles about the specific keyword; it does
not find articles about 'suid', 'Setuid', nor articles with no title or whose author
did not use the word 'setuid' in the title.

-I Lists only the headers of articles - a useful form for browsing through lots of
messages.

-p Prints the messages without asking for any input.

-r Produces articles in reverse order, from newest to oldest.

-l Prevents any follow-up articles from being printed.

-h Prints articles in much less verbose format.

4.9. Getting News When You Log In -Your Morning Newspa
per

To be told if there is any news when you first log in, put checknewa or readnewa in your
.login or .profile file on your account on your news host. This way you are reminded of news
when you log in to the news host.

Revision A of 15 April 1985 4-7

Network News User's Guide Beginner's Guide

4-8

The readnewa command tries to find all unread news (assuming you are going to read it), and
takes a lot of time to do it, so it's better to use the smaller, faster checknewa, which tells you
if there is any news. Checknewa was designed especially for a login file. There are also
options to be silent if there is or is not news, and to start up readnewa automatically if there
1s news.

The checknewa options are:

-y Print 'There is news' if there is any news arrives during a login session. This is
the default if no other options are specified.

-v If both -v and -y are given, instead of printing 'There is news', print 'News:
newagroup .. .' giving the name of the first newsgroup containing unread news.

-n Print 'No news' if there is no unread news.

-e Start up readnewa if there is any unread news. Any additional arguments after
the -e are passed to readnewa.

-q Make checknewa quiet. The exit status indicates news: 0 means 'no news' and l
means 'there is news.' It does not prin.t a message.

Thus, checknewa -yn tells you whether there is any unread news. Checknewa -y tells you if
there is news, and is silent if there is no news.

4.10. Creating New Newsgroups

To create a newsgroup, post an article to an appropriate 'general' newsgroup suggesting the
new newsgroup. For example, for a new 'net' or 'fa' newsgroup, post to 'net.general' or for a
new local newsgroup, post to 'general'. Include another copy to 'net.news.group', for exam
ple:

mercurY% pootnewo
Subject: Suggeoted new newogroup on Celtic Culture and Language
Newsgroups : net.general, net.newo.group
mercury%

Other users will follow-up to 'net.news.group', giving opinions about whether the suggested
newsgroup makes sense, should have a different name, etc.

When agreement is reached and it is established that there is interest in the topic, ask your
local netnews administrator to create the newsgroup. It can actually be created by any net
news administrator anywhere on the net, within the scope of the newsgroup. Once the news
group is created and the first article has been posted, the newsgroup is available for all
interested persons to post to.

4.11. User Interfaces

The uaer interface of a program is the face it presents to the user, that is, what it displays
and what it allows you to type. Readnewa has options allowing you to use different user
interfaces. These are:

-e The -e option displays the the entire message, header and body, and
prompts you at the end of the message. The command options are the same
as the msgs interface, but it is usually not necessary to use the '·' suffix on

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

mail

•

Network News User's Guide

the reply, aave, or followup commands. This interface is call1d the
'/bin/mail' interface, because it mimics the UNIX program of that name.

The mail interface, available with the -M option, invokes the mail program
directly, and allows you to read news with the same commands as you read
mail. This interface may not work on your system - it requires a special ver
sion of mail with a -T option.)

Use your favorite mail system as an interface, including /bin/mail and mail.
Any mail system with an option to specify an alternative mailbox can be used
to read news. For example, to use mail without the -M option, type:

mercury% readnewa -c "mall -t %"

The Shell command in quotes is invoked as a child of readnewa. The -f option to mail names
the alternative mailbox. Readnews puts the news in a temporary file, and gives the name of this
file to the mailer in place of the '%'. There is an important difference when using this kind of
interface. The mailers do not give any indication of which articles you read and which ones you
skipped. Readnews assumes you read all the articles, even if you didn't, and marks them all
read. By contrast, the -M option uses the -T option to mail, asking mail to tell readnews
which articles you read.

4.12. Rules of the Net

The network news provides a unique method of communication for many people. Some news
groups are intended for discussions and some for announcements or queries. Try to keep this in
mind when posting or responding to an article. If you are unhappy with what some user said,
send that user mail. Please consider the following guidelines when using USENET and the net
work news:

Revision A of 15 April 1985 4-9

Network News User's Guide Beginner's Guide

• Put all items in an appropriate group.

• Use mail instead of a followup news item.

• Be careful when preparing articles for submission.

• Read followups before responding.

• Use an editor to prepare items for submission.

• Don't be rude or abusive.

• Avoid sarcasm and facetious remarks.

• Use descriptive titles.

• Whenever possible, cite references.

• Make a summary of the original item in followups.

• In posting summaries of replies, do make a summary.

• Don't force people to read the same thing more than once.

• Be as brief as possible.

• Follow local customs.

• Be fair - Remember that the net is a large audience. Be sure of your facts.

• Mark puzzles.

• Do not submit items berating violators of these rules.

Puzzles are questions to which you know the answer. When submitting a puzzle, make it clear
that you know the answer to prevent others from putting the solution into followup articles and
to avoid having other people who know the solution from feeling they have to help you find the
answer.

Before posting an article, think about where it is going. If you post it to a "net." newsgroup, it
goes to the USA, Canada, Europe, and Australia. For articles of local interest, use the inewa -n
newagroup feature to restrict distribution to certain newsgroups in your local area.

The net is not intended for advertising. You may provide informative announcements or profes
sional products or services on USENET, but they should be of benefit to everyone on the net.
Mark your announcement as such in the subject. Post the announcement to the appropriate
newsgroup, never a general-purpose newsgroup such as net.general. Never repeat such an
announcement and submit only one article per product.

Some newsgroups are moderated, such as net.announce. In these groups, you cannot post
directly, either by convention or because the software prevents it. To post to these newsgroups,
send mail to the moderator.

Some newsgroups have special purpose rules. Consider the following newsgroups and rules for
their use.

4-10

net.announce
Moderated. No direct postings. Good for short announcements and queries that
need to reach everyone on the net. To post an important announcement for
everyone send mail to the net.announce moderator at c bosgd!announce.

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Network News User's Guide

net.general Announcements only. No discussions.

net.general Short announcements an queries that require a wide audience, but are map
propriate for net.announce. Results of surveys. No discussions.

net.followup
For followups to items in net.general.

net.misc For discussions that have no other natural location.

net.wanted For posting queries for help, such as "I want an x." No discussions. Try to limit
the distribution to a reasonable geographic area. Not that some institutions have
rules against using computers for such purposes.

net.flame All the rules are off in this newsgroup. Total anarchy prevails.

net.jokes Clean jokes only. Anything offensive must be encrypted. No discussions. Jokes
only. Discussions go in net.jokes.d.

net.movies Don't post anything that reveals the plot of a movie without marking it "spoiler"
in the subject.

net.news Discussion of all aspects of USENET itself.

net.news.group
Before you create a new group, submit an item here and to specific groups that
may share interests with your proposed new group. If after a week or two, you
have received support for the idea and no serious objections, go ahead and create
the group. Also create an item in the new group with a distant expiration date
describing wht the group is about.

net.sources For useful programs and shell scripts after they are announced in some appropri
ate place. These programs should be well commented so that people who miss
the announcement can understand what they do.

net.test For USENET administrators to test the functioning of the software. Use net.test
only as a last resort as items posted here go to all machines. Try "mh.test",
"test" or "ucb.test" as smaller test group.

net.women.only
Men are discouraged from participating and are forbidden from criticizing a topic
or person in this newsgroup.

4.13. Frequently Asked Questions

If you are a newcomer to the USENET, read over the following frequently submitted items.

• What does UNIX stand for?

UNIX is not an acronym but a pun on "MULTICS." MULTICS is a large operating system
that was being developed at Bell Laboratories about the same time as UNIX was created.

• What does "- (nf)" in a news item's title mean?

It means that the item was created by "notefiles," an alternative netnew, interface.

• What does ":-)" mean?

Revision A of 15 April 1985 4-11

Network News User's Guide Beginner's Guide

This is the net convention for a "smiley face," indicating that something is being said in
jest.

• How do I decrypt jokes in net.jokes?

The standard cypher used in net.jokes is called rot19. Each Jetter is replaced by the
letter 13 letters farther along in the alphabet, wrapping around at the end of the alpha
bet. You can create a shell script with the tr (translate) command to do the same thing.
See tr in the Command, Reference Manual.

• Where can I get the source for empire or rogue?

The source for empire and rogue is not available at the request of their authors.

4.14. List of Newsgroups

This lists the active newsgroups to help you decide which you want to subscribe to. Note that
the list is constantly changing; about five new lists are added each month. Check with your net
news administrator for a local list.

There are two basic subcategories of netwide newsgroups:

l. The 'net.all' group consists of USENET bulletin board newsgroups that are circulated around
the entire net.

2. The 'fa.all' group is a set of groups that are connected by gateways to USENET from the
ARPANET. These groups consist mainly of digests, although there are some bulletin boards.

Some of the 'net.all' and 'fa.all' groups are gatewayed between the networks, that is, items sub
mitted from the ARPA side to the digest are split up and submitted to the USENET group, while
articles submitted on the USENET side are bundled up and submitted to the digest.

4,14,1. Local Newsgroups

Local groups are kept on the current machine only. Local names can be identified by the lack of
a prefix, that is, there are no periods in local newsgroup names.

general News and important announcements to be read by everyone on the local
machine. This newsgroup is usually mandatory to ensure that important
announcements reach all users. This newsgroup is usually mandatory. The
list of mandatory newsgroups varies locally.

4,14,2. FA Newsgroups

FA groups are 'from the ARPANET' and are mostly copies of mailing lists or 'digests' distributed
on that network. A digest is a collection of mail, much like a newsletter, that is put together by
an editor and sent out every so often.

FA groups and their corresponding mailing lists can reach a very large user community, includ
ing USENET sites on UUCP, Berknet, BLN, and the ARPANET, as well as sites on the ARPANET
which are not on USENET, who get the news via direct electronic mailing.

fa.arms-d People worried about nukes.

4-12 Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide Network News User's Guide

fa.arpa-bboard Announcements that are posted to all arpanet boards are also fed into this
newsgroup.

fa.digest-p

fa.editor-p

fa.energy

fa.human-nets

fa.info-cpm

fa.info-micro

fa.info-terms

fa.info-vax

fa.poli-sci

fa.sf-lovers

fa.space

fa.tcp-ip

fa.telecom

fa.teletext

fa. unix-cpm

fa.works

People who deal with digests. Mostly the people who moderate them.

Interest group in computer editors, both text and program.

Topics relating to alternate energy production, conservation, etc.

A daily moderated digest with discussions of computer-aided human-to-human
communications. Probably the most widely read ARPANET publication.

CP fM and other operating systems for micro computers.

Microprocessor discussions.

Opinions/queries about what's a good/bad computer terminal.

VAX interest group. Seems to be mostly VMS issues, but some hardware dis
cussions too.

Political Science discussions digest.

Science Fiction book/movie reviews, etc.

Digest containing comments on the space program and outer space in general.

Digest relating to the TCP and IP network protocols.

Technical topics relating to telecommunications, especially the telephone sys
tem. A digest recently spun off from fa.human-nets.

Teletext discusses all aspects of "esoteric" data systems. This includes
teletext, viewdata, closed-captioning, and digicasting.

CPM/UNIX discussions.

Interest group on personal workstations (e.g. Sun, Apollo, Perq, Xerox Star,
etc).

,t.1.,$.3. Net Newsgroups

Net groups are intended to be available to all people on the entire network who read netnews.
This does not mean they go to every machine, since some machines restrict the volume of news
that comes in. Net groups reach all of USENET, including USENET sites on the ARPANET, but do
not reach any sites that are not on USENET. That is, USENET is defined as all sites that receive
'net.general'.

net.general

net.applic

net.auto

net.auto.vw

net.aviation

net.bugs

Articles to be read by everyone on the whole net.

Functional programming (applicative) languages.

Notes of interest to owners of particular cars. Main subgroup is net.auto.vw.

For owners of Volkswagens.

Private pilots.

Bug reports and fixes. Subscribing to 'net.bugs' gets all bug reports, but bugs
are normally posted to one of 'net.bugs.2bsd', 'net.bugs.4bsd', 'net.bugs.v7', or
'net.bugs.u3', for the 2nd and 4th Berkeley Software Distribution, Version 7,
or UNIX system III, as appropriate.

Revision A of 15 April 1985 4-13

Network News User's Guide Beginner's Guide

net.chess

net.columbia

net.cooks

net.cycle

net.eunice

net.games

net.ham-radio

net.jokes

net.Ian

net.lsi

net.misc

net.movies

net.music

net.news

net.oa

net. periphs

net.rec

net.records

net.rumor

net.sf-lovers

net.sources

net.space

4-14

Interest group for computer chess. This newsgroup is connected into an
ARPANET mailing list but appears as a normal newsgroup to USENET, so it is
called 'net.chess' instead of 'fa.chess'.

Newswire items and comments on the Space Shuttle, and on the space pro
gram in general.

Food, cooking, cookbooks, and recipes.

Motorcycle interest group.

Topics of interest to sites running SRl's Eunice system, which simulates UNIX
on VMS.

Discussion of computer games (of the /usr/games/variety). Subgroups include
'net.games.rogue', 'net.games.frp' (for fantasy role playing games,) and
'net.games.trivia'.

Topics of interest to amateur radio operators.

The latest good joke you've heard.

Local area network interest group.

Large Scale Integrated Circuit discussions.

Miscellaneous discussions that start in net.general but are not permanent
enough for their own newsgroup.

Movie reviews by members of USENET.

Computer generated music.

Discussion of netnewa itself. Subgroups discuss or post various aspects of net
news, including 'net.news.b' for the 8 version of netnewa, 'net.news.directory'
to post all or part of the USENET directory, 'net.news.group' for discussions
about proposed new newsgroups, 'net.news.map' to post maps of USENET or
additions/corrections to previously posted maps, 'net.news.newsite' to
announce a new site. 'net.news' itself is used for discussions relating to
USENET policies and the like, rather than any specific software.

Office Automation/Word Processing interest group.

Queries and discussions about particular peripherals. ("Does anyone have a
driver for a frammis-11 ?")

Recreational games. This differs from 'net.sport' in that 'net.rec' discusses
games where one generally participates, but 'net.sport' is for spectator sports.
'net.games' is for computer type games. Subgroups of 'net.rec' include
'net.rec.bridge' for contract bridge discussions, 'net.rec.scuba' for scuba divers,
and 'net.rec.ski' for skiers.

Discussions of phonograph records, albums, record stores, etc.

For posting of rumors.

For science fiction lovers.

For posting source code for software distribution.

Undigested, immediate distribution version of fa.space.

Revision A of 15 April 1985

0

0

0

0

0

0

Beginner's Guide

net.sport

net.taxes

net.test

Network News User's Guide

Spectator sports. Subgroups include 'net.sport.baseball', 'net.sport.football',
and 'net.sport.hockey'.

Tax advice and queries.

Test messages are posted here. Generally this is not interesting to ordinary
readers.

net.travel Requests, suggestions, and opinions about traveling.

net.ucds Circuit drawing system.

net.unix-wizards ARPANET mailing list for UNIX Wizards. Anything and everything relating to
UNIX is discussed here. This list is connected to the ARPANET mailing list but
appears like a regular 'net' newsgroup to USENET.

net.wines Information and recommendations about wines and alcoholic beverages.

Revision A of 15 April 1985 4-15

0

0

0

0

0

Appendix A

Glossary

This glossary lists the most important terms in this introduction to the Sun system.

a.out

The name of your current directory displayed by the command pwd; also see dira.
Usually the first component of the search path contained in the variable path, so
commands in '.' are found first. At the beginning of a component of a pathname, '.'
is treated specially and not matched by the filename expansion metacharacters '?',
'*', and '[' ')' pairs. The character '.' is also used in separating filename components.

Each directory has a file ' . .' in which is a reference to its parent directory. After
changing into a directory with cd, you can return to the parent directory by typing
cd . .. Then check the current directory with pwd.

The default file that contains the executable images that compilers create.

absolute pathname
A pathname which begins with a '/' is abaolute since it specifies the path of direc
tories from the beginning of the entire directory system - called the root directory.
Pathname, which are not abaolute are called relative (see relative pathname).

access mode

alias

argument

The protection information for a file, ensuring a degree of privacy and safety for the
user's files in a shared system. Acceaa mode details the operations allowed (reading,
writing, or executing) by the three classes of users (owner, group, and public). Also
called acceaa privilege.

An aliaa specifies a shorter or different name for a Sun system command, or a com
mand transformation to be performed in the Shell. The Shell has an a/iaa command
that establishes aliaaea and can show their current values. The command unaliaa
removes aliaaea.

Additional information that is passed to a command. The command name and its
arguments are separated from one another by spaces and/or tabs. Arguments are
usually used to direct the operation of a command. Thus the command echo a b c
consists of the command name echo and three argument words 'a', 'b' and 'c'. The
set of arguments after the command name is the argument liat of the command.

background process

base

bg

A process that runs unattended in a manner that allows other programs to be m1-
tiated and interacted with while the background process is running.

That part of a filename before any'.' character. See also filename and eztenaion.

The bg command causes a suspended job to continue execution in the background.

Revision A of 15 April 1985 A-1

Glossary

bin

Beginner's Guide

A directory containing binaries of programs and Shell scripts to be executed. The
standard system bin directories are /bin, containing the most heavily used commands
and /uar/bin, which contains most other user programs. Programs developed at UC
Berkeley live in /uar/ucb, while locally written programs live in /uar/local. Games
are kept in the directory /uar/gamea. You can place binaries in any directory. If
you wish to execute them often, the name of the directories should be a component of
the variable path.

Bourne Shell
The Shell program used in Version 7 UNIX. Named after its author S. R. Bourne.

built-in A command that the Shell executes directly. Most commands in the Sun system are
not built into the Shell, but rather exist as files in bin directories.

buffer A place where data are stored temporarily.

CLanguage
A general-purpose programming language that is the primary language of the UNIX
system.

cat The cat command concatenates a list of specified files on the standard output.

cd The cd command changes the working directory. With no arguments, cd changes
your working directory to be your home directory.

child process
Each call to 'fork' creates a new process called the child of the original parent pro
cess. Each time you spin off a background job, the Shell executing it is a child of
your current Shell. A command, or any process, can then spawn more children to

0

complete specific portions of the task. A process id is specified in the pa (process O• ·
status) command by PID. See also parent proceaa.

chsh The chah command changes the Shell which you use on the Sun system. By default,
you use the C-Shell which resides in /bin/cah.

command
An order directing the system to perform some function. A built-in command is han
dled internally by the Shell. However, most commands result in the execution of a
program.

command name
When a command is issued, it consists of a command name, which is the first word of
the command, followed by arguments. The convention is that the first word of a
command names the function to be performed.

command file
An ordinary file that contains Shell commands; usually used when referring to a file
that contains just one or a few commands. The term Shell program is usually used
when there are a lot of commands or when the Shell's facilities for looping and condi
tional execution are used.

command interpreter
A component of an operating system which decodes and executes the commands
entered by the user. The Sun System command interpreter is called the Shell.

command name

A-2

The first word of a command. The words following the command name are called
the argument&.

Revision A of 15 April 1985

0

0

0

0

Beginner's Guide Glossary

compiler A computer program that translates a text file containing a program written in some
high level programming language into a machine language output that can be exe
cuted. The machine language output from a compiler is called the object file.

component
The part of a pathname between '/' characters. A variable which has multiple
strings as a value is said to have several component•; each string is a component of
the variable.

concatenate
To combine several files, one after the other; usually performed with the cat com
mand.

context search
Searching for a body of text in a given file by entering a text pattern you want the
system to locate. You can perform a context search within the editor or you can per
form context searches using the grep command.

continue The built-in command that causes execution of the enclosing foreach or while loop to
cycle prematurely. Similar to the continue command in the programming language
C.

control- Certain special characters called control characters control various functions, such as
cursor movement or printing functions. They are produced by holding down the
CTRL key on your terminal and simultaneously pressing another character, much
like the SHIFT key is used to produce upper-case characters. To produce control-c
(or 'C), hold down the CTRL key while pressing the C key. Usually the Sun system
shows a caret (') followed by the corresponding letter when you type a control char
acter.

core dump
When a program terminates abnormally, the system places an image of its current
state in a file named core. This core dump can be examined with the system
de bugger adb or dbx to determine what went wrong with the program. The Shell
may produce a message of the form 'Illegal instruction (core dumped)' where 'Illegal
instruction' is only one of several possible messages.

cp The cp (copy) program copies the contents of one file into another file.

csh The name of the Shell program for the C-Shell.

.cshrc The file .cahrc in your home directory that each Shell reads as it begins execution. It
is usually used to change the setting of the variable path and to set alias parameters
which are to take effect globally.

current directory
The directory whose files are directly accessible. At any time, there is a current
directory, whose name you can display by typing the pwd command.

cwd The cwd variable in the Shell holds the absolute pathname of the current working
directory. The Shell changes it whenever your current working directory changes,
and it should not be changed otherwise.

daemon Continually running processes, such as routed, the route daemon, /pd, the line printer
daemon, and rahd, the remote shell daemon, that supervise events and manage sys
tem resources accordingly. The delivermail daemon, for example, sends mail to the
correct place when it notices that mail has arrived.

Revision A of 15 April 1985 A-3

Glossary Beginner's Guide

date The date command displays the current date and time.

debugging Q
The process of correcting mistakes in programs and Shell scripts. The Shell has ,
several options and variables which may be used to aid in Shell debugging.

LELETE The DELETE or RUBOUT key on a terminal normally sends an INTERRUPT to the
current job. The workstation default is 'C.

detached
A process that continues running in the background after you logout.

diagnostic

directory

An error message produced by a program. Most error messages are written to the
diagnostic output, so diagnostics usually appear on the workstation screen. The diag
nostic output may be directed away from the workstation.

Directories contain files and are used to organize and structure the file system. At
any time you are in one particular directory whose name can be shown by the com
mand pwd. The cd command changes you to another directory, and makes the files
in that directory visible. The directory which you are in when you first log in is your
home directory.

directory stack
The C-Shell saves the names of previous working directories in the directory alack
when you change your current working directory with the pu,hd command. To
display the directory ,tack use the dir• command, which includes your current work
ing directory as the first directory name on the left.

dir11 The dir• command displays the C-Shell's directory stack.

du

echo

EOF

Short for 'disk usage,' the du command shows the number of disk blocks in all direc
tories below and including your current working directory.

The echo command displays its arguments.

An end-of-file is generated by a 'D, and whenever a command reads to the end of a
file which it has been given as input. Commands receiving input from a pipe receive
an end-of-file when the command sending them input completes. Most commands
terminate when they receive an EOF.

erase character

escape

Erases previously typed characters on the current input line one at a time. The
default is the.LEL key, which you can reassign with the atty command.

A character ' \' that prevents the special meaning of a metacharacter; it eacapes the
metacharacters from their special meanings.

/etc/passwd
The file containing the major login information (password, login name, userid
number, the name of the user's shell) for each user of the system. The /etc/pa,awd
file consists of a line for each account with fields separated by ':' characters.

execute permission

0

For ordinary files execute permission is an access mode that allows you to execute the
file. For directory files execute permission is an access mode that allows you to
search them in the course of resolving a pathname. 0

A-4 Revision A of 15 April 1985

0

0

0

Beginner's Guide Glossary

expansion

extension

The replacement of strings in the Shell input which contain metacharacters by other
strings. The replacement of the word '*' by a sorted list of files in the current direc
tory is a 'filename expansion.' Similarly the replacement of the characters '!!' by the
text of the last command is a 'history expansion.'

Filenames often consist of a baae name and an eztemion separated by the character
'.'. By convention, groups of related files often share the same root name. Thus if
prog.c were a C program, the object file for this program would be stored in prog.o.
Similarly a paper written with the -m• nroff macro package might be stored in
paper.ma, while a formatted version of this paper might be kept in paper.out and a
list of spelling errors in paper.erra.

lg The job control command that runs a background or suspended job in the fore
ground.

filename Each file in the Sun system has a name consisting of characters, not including the
character '/', which is used in pathname building. Most filename• do not begin with
the character '.', and contain only letters and digits with perhaps a '.' separating the
base portion of the filename from an extension.

filename expansion
Filename ezpamion (also called filename generation) is the procedure that the Shell
follows to expand command line words containing metacharacters '*', '?' and '[' and
']' into the corresponding list of filenames. You can name all the files in the current
directory, or all files which have a common root name. Other filename expansion
mechanisms use the metacharacter ,-, to easily name files in other users' directories.

file system
The hierarchical collection of files and file management structures (inodes).

flag Many Sun system commands accept arguments which are not the names of files or
other users, but modify the action of the commands. These are referred to as flag
options or simply optiona, and by convention consist of one or more letters usually
preceded by the character'-'. Thus the la (list files) command has an option -s to
list the sizes of files.

foreground

grep

group

When commands are executing in the normal way such that the Shell is waiting for
them to finish before prompting for another command, they are said to be foreground
joba or running in the foreground. Typing different control characters at the key
board stops foreground jobs. See also background proceaa.

The grep command searches through a list of argument files for a specified string.
Grep scans for regular ezpre .. iona in the sense of the editors ed and ez. Grep stands
for 'global regular expression print.'

Several users who are members of the same department, working on the same pro
ject, or related in some other way. Each system file is associated with a certain
group, and members of that group have specified privileges for accessing the file.

head The head command shows the first few lines of one or more files. Head also describes
the part of a pathname before and including the last '/' character.

heade,- field
At the beginning of a message, a line that contains information that is part of the

Revision A of 15 April 1985 A-5

Glossary Beginner's Guide

structure of the message. Header fields include to, cc, and aubject.

history The hiatory mechanism of the Shell repeats previous commands, possibly after 0
modification to correct typing mistakes or to change the meaning of the command.
The Shell has a hiatory liat where these commands are kept, and a hiatory variable
which controls how large this list is.

home directory

ignoreeof

inode

input

interrupt

Each user has a home directory, which is defined in his entry in the password file,
/ etc/ pauwd. This is the directory which you are placed in when you first log in.
The cd command with no arguments takes you back to this directory, whose name is
recorded in the Shell variable home. You can also access the home directories of
other users by forming filenames using a filename expansion notation and the charac
ter ,-,.

Normally, your Shell will exit, displaying 'logout' if you type a 'D at a hostname
prompt. This is the way you usually log off the system. You can set the ignoreeo/
variable if you wish in your .login file and then use the command logout to logout.
This is useful if you sometimes accidentally type too many 'D characters, logging
yourself off.

The key internal structure for managing files. !nodes contain all the information per
taining to the mode, type, owner, and location of a fie.

The information that many Sun system commands take from the workstation or files
and act on. Commands normally read for input from their atandard input which is,
by default, the workstation or terminal. This standard input can be redirected from
a file using the Shell metanotation character'<'. Many commands also read from a
file specified as argument. Commands placed in pipelines read from the output of the
previous command in the pipeline. The leftmost command in a pipeline reads from
the workstation or terminal if you neither redirect its input nor give it a filename to
use as standard input. Special mechanisms exist for supplying input to commands in
Shell scripts.

A signal to a program that is generated by typing 'C (or the RUBOUT or.LELETE
key on some terminals), which causes most programs to stop execution. Certain pro
grams, such as the Shell and the editors, handle an interrupt in special ways, usually
by stopping what they are doing and prompting for another command. While execut
ing another command and waiting for it to finish, the Shell does not listen to inter
rupts. Typing an interrupt often wakes up the Shell because many commands die
when interrupted.

job One or more commands typed on the same input line separated by 'I' or ';' characters
and run together. Simple commands run by themselves without any 'I' or ';' charac
ters are the simplest jobs. Jobs are classified as foreground, background, or
suspended.

job control
The built-in functions that control the execution of jobs. These functions are bg, Jg,
atop, and kill

0

job number
When each job is started it is assigned a small job number, which is displayed next O,
to the job in the output of the joba command. Use this number, preceded by a '%'

A-6 Revision A of 15 April 1985

0

0

0

Beginner's Guide Glossary

jobs

kernel

character, a.s an argument to job control commands to indicate a specific job.

The joba command displays a table showing jobs that are either running in the back
ground or are suspended.

The memory resident part of the UNIX operating system, containing all of the sys
tem functions that are needed immediately and frequently. The kernel supervises the
1/0 transactions, manages and controls the hardware, and schedules the user
processes for execution.

kill A command which sends a signal to a job causing it to terminate.

kill character

.login

The ·u character, used to era.se the entire current line. This may be rea.ssigned with
the atty command.

The file .login in your home directory is read by the Shell each time you log in to the
Sun system, and the commands contained there are executed. A number of com
mands are usually placed in .login, especially aet commands to the Shell itself.

login directory
Same a.s home directory.

login Shell

logout

The Shell that is started on your workstation when you log in. It is different from
other Shells which you may run (such a.s on Shell scripts) in that it reads the .login
file before reading commands from the workstation or terminal, and it reads the
.logout file after you logout.

The logout command causes a login Shell to exit. Normally, a login shell exits when
you type "D generating an end-of-file, but if you have set ignoreeo/in your .login file,
this will not work and you must use logout to log off the Sun system .

. logout When you log off the Sun system, the Shell executes commands from the file .logout
in your home directory after it displays 'logout.'

!pr The line printer daemon command. The standard input of /pr is spooled and printed
on the line printer. You can also give /pr a list of filenames a.s arguments to be
printed.

ls With no argument filenames, the la command shows the names of the files in the
current directory. It ha.s a number of useful flag arguments, and can also be given
the names of directories a.s arguments, in which ca.se it lists the names of the files in
these directories.

macro package
A set of high level nroff/troff text formatting requests for more convenient text pro
cessing functions.

mail The mail transmits memos, messages, and letters to other users of the same system
and to users on other systems.

mailbox The place where your mail is stored, typically in the directory /uar/apool/mail.

message A single letter from someone, initially stored in your mailboz.

message list
A string used in mail command mode to describe a sequence of messages.

Revision A of 15 April 1985 A-7

Glossary Beginner's Guide

metacharacter

mkdir

modifier

more

noclobber

noglob

The characters that are neither letters nor digits that have special meaning either to o,

the Shell or to the Sun system. Enclose them in quotes if it is necessary to place
these characters in arguments to commands without them having their special mean-
ing. An example of a metacharacter is the character '>' which indicates placement
of output into a file. For the purposes of the hiatory mechanism, most unquoted
metacharacters form separate words.

The mkdir command creates a new directory.

Substitutions with the hiatory mechanism, keyed by the character '!' or by variables
using the metacharacter '$', are often subjected to modifications, indicated by placing
the character':' after the substitution and following this with the modifier itself.

The more program shows a file on your workstation and allows you to control how
much text is displayed at a time. More can move through the file screenful by
screenful, line by line, search forward for a string, or start again at the beginning of
the file.

The Shell variable that prevents accidental destruction of files by the '>' output
redirection metasyntax of the Shell if set in the file .login.

The Shell variable that suppresses the filename expansion of arguments containing
the metacharacters ,-,, '*', '?','['and')'.

notify The notify variable tells the Shell to report on the termination of a specific back-

object file

ground job at the exact time it occurs as opposed to waiting until just before the o
next prompt to report the termination. If set, the notify variable causes the Shell to ·
always report the termination of background jobs exactly when they occur.

A file containing machine language that can be executed by the workstation. An
object file is the result of a compilation.

ordinary file

output

Used for storing data in the form of programs, documents, letters data bases, and
other types of information.

The lines of text resulting from many Sun system commands. This output is usually
placed on what is known as the standard output, which is normally connected to the
user's workstation. The Shell has a syntax using the metacharacter '>' for redirect
ing the atandard output of a command to a file. Using the pipe mechanism and the
metacharacter 'I' it is also possible for the standard output of one command to·
become the standard input of another command. Certain commands such as the line
printer daemon lpr do not place their results on the standard output but rather on
the line printer. Similarly the write command places its output on another user's
workstation rather than its own standard output. Commands also have a diagnostic
output where they write their error messages. Normally these go to the workstation
even if the standard output has been sent to a file or another command, but it is pos
sible to direct error diagnostics along with standard output using a special notation.

parent process
A process from which other processes called children are run. Parents can run simul- o
taneously with their children, or can wait for the children to 'die' before proceeding, '

A-8 Revision A of 15 April 1985

0

0

0

Beginner's Guide Glossary

path

pathname

depending on the task. Specified as PPID, the parent process id number, by the pa
(process status) command. See also child proceaa.

The Shell variable that gives the names of the directories in which it searches for the
commands which it is given. Path always checks first to see if the command it is
given is built into the Shell. If it is, then it need not search for the command as it
can do it internally. If the command is not built in, the Shell searches for a file with
the name given in each of the directories in the path variable, left to right. Since the
normal definition of the path variable is /uar/ucb /bin /uar/bin, the Shell normally
looks in the current directory, and then in the standard system directories /uar/ucb,
/bin and /uar/bin for the named command. If the command cannot be found the
Shell displays an error diagnostic. Scripts of Shell commands are executed using
another Shell to interpret them if they have 'execute' permission set. If you add new
commands to a directory in the path, use the command rehaah.

A path through the file system that leads to a file. It is formed by listing directory
names separated by slashes (l's) to define the path. Each component of a pathname,
between successive '/' characters, names a directory in which the next component file
resides. Pathnames which begin with the character '/' are interpreted relative to the
root directory in the filesystem. Other pathnames are interpreted relative to the
current directory as reported by pwd. The last component of a pathname may name
a directory, but usually names a file.

permissions

pipe

pipeline

popd

port

pr

printenv

The access modes associated with a file. See acceaa mode.

A connection between the standard output of one program and the standard input of
another program. The Shell metacharacter T indicates the pipe mechanism.

A group of commands connected together, the standard output of each being con
nected to the standard input of the next.

The popd command changes the Shell's working directory to the directory you most
recently left using the puahd command. It returns to the directory without having to
type its name, forgetting the name of the current working directory before doing so.

The part of a computer system to which each terminal is connected is called a port.
Usually the system has a fixed number of ports, some of which are connected to tele
phone lines for dial-up access, and some of which are permanently wired directly to
specific terminals.

The pr command prepares listings of the contents of files with headers giving the
name of the file and the date and time at which the file was last modified.

The printen11 command displays the current setting of variables in the environment.

procesa A program that is being executed; an entry in the system's process table. The sys
tem assigns each process a unique proceaa id number (PIO) when it is started. Use
process id numbers to stop individual processes with the kill or atop commands when
the processes are part of a detached background job. See also child and parent pro
ceaa.

program Usually synonymous with command; a binary file or Shell command script that per
forms a useful function.

Revision A of 15 April 1985 A-9

Glossary Beginner's Guide

prompt The indication by a program on the screen that it is ready to accept input. The
Shell prompts for input with 'hostname% ' and occasionally with '?' when reading o
commands from the workstation. The Shell has a variable prompt which may be set
to a different value to change the Shell's main prompt. This is mostly used when
debugging the Shell.

ps The pa command shows processes you are currently running, each process being
listed with its unique process number, an indication of the terminal name it is
attached to, an indication of the state of the process (whether it is running, stopped,
awaiting some event (sleeping), or whether it is swapped out), and the amount of
CPU time it has used so far. A command is identified by listing some of the words
used when it was invoked. Shells, such as the cah you use to run the pa command,
are not normally shown in the output.

pushd The puahd command, which means 'push directory', changes the Shell's working
directory and also remembers the current working directory before the change is
made, so you can return to the same directory with the popd command later without
retyping its name.

pwd The pwd command displays the full pathname of the current working directory, simi
lar to the dira built-in command.

quit The signal generated by a control-\ ('\), that terminates programs which are behav
ing unreasonably. Quit normally produces a core image file.

quoting The process by which metacharacters are prevented from having their special mean
ing, usually by using the character '' ' in pairs, or by using the character '\ '.

read permission
Allows a person to execute a program that reads data from a file.

redirection
The Shell's reassigning of standard input to a file other than the workstation and of
reassigning the standard output to a specified file.

regular expression

rehash

A regular expression specifies a set of strings of characters.

The rehaah command tells the Shell to rebuild its internal table of which commands
are found in which directories in your path. This is necessary when a new program is
installed in one of these directories.

relative pathname

repeat

root

A-10

A pathname that does not begin with a '/' since it is interpreted relative to the
current working directory. The first component of such a pathname refers to some
file or directory in the working directory, and subsequent components between '/'
characters refer to directories below the working directory. See also abao/ute path-
name,.

The repeat command iterates another command a specified number of times.

The directory that is at the top of the entire directory structure; it is the 'root' of
the entire tree structure of directories. The '/' indicates the root name in path
names. Pathnames starting with '/' are absolute since they start at the root direc
tory. Root is also used as the part of a pathname that is left after removing the
extension. See filename for a further explanation.

Revision A of 15 April 1985

0

0

0

0

0

Beginner's Guide Glossary

scratch file

set

setenv

shell

Files whose names begin with a '#' and are automatically removed by the system
after a couple of days of non-use, or more frequently if disk space becomes tight.

The built-in command that assigns new values to Shell variables and when used by
itself shows the values of the current variables. Many Shell variables have special
meaning to the Shell itself, so using the aet command can affect the behavior of the
Shell.

The built-in command that changes variables in the environment 'environ'. The
printenv command displays the value of the variables in the environment.

A command language interpreter. It is possible to write and run your own Shell, as
Shells are no different than any other programs as far as the system is concerned.

shell program

signal

sort

source

A program written using the Shell programming language. Shell programs can be
written and executed interactively, although most Shell programs are stored in ordi
nary files.

A short message that is sent to a running program which affects that process. Signals
are sent either by typing special control characters on the keyboard or by using the
kill or atop commands.

The aort program sorts a sequence of lines in ways that you can control with argu
ment flags.

The aource command reads commands from a specified file. It is most useful for
reading files such as .cahrc after changing them.

special character
See metacharactera.

special file
Files that provide an interface to 1/0 devices.

standard 1/0

status

stop

string

atty

Many programs need to read commands and data from the user, write messages to
the user, and write error messages. Therefore, the Shell prepares three standard 1/0
connections for each program, the standard input, the standard output, and the stan
dard error. The standard channels are usually connected to the user's workstation
although they can be reassigned using redirection.

A command normally returns a atatua when it finishes. By convention a status of
zero indicates that the command succeeded. Commands may return non-zero status
to indicate that some abnormal event has occurred. The Shell variable atatua is set
to the status returned by the last command. It is most useful in Shell command
scripts.

The atop command suspends a background job.

A sequential group of characters taken together. Strings can contain any printable
characters.

The atty program changes certain parameters inside the Sun system to determine
how your workstation or terminal is handled. See atty in the Command• Reference
Manual for a complete description.

Revision A of 15 April 1985 A-11

Glossary Beginner's Guide

subdirectory
A directory below another directory in the file system hierarchy.

substitution

superuser

The Shell implements a number of aubatitutiona where sequences indicated by meta
characters are replaced by other sequences. Notable examples of this are history
substitution keyed by the metacharacter '!' and variable substitution indicated by '$'.
We also refer to substitutions as expanaiona.

A special privilege level that exists to allow system managers to perform certain func
tions that are denied to ordinary users. The superuser is not constrained by the nor
mal file access mode system.

suspended
A job becomes ,u,pended after a STOP signal is sent to it, either by typing a ·z (for
foreground jobs) or by using the atop command (for background jobs). When
suspended, a job temporarily stops running until it is restarted by either the fg or bg
command.

system call
A request by an active process for a service by the kernel. System calls perform I/0,
control, coordinate, and create processes, and read and set various status elements of
the system.

termination

0

Occurs when a command which is being executed finishes. Commands normally ter
minate when they read an end-of-file from their standard input. It is also possible to
terminate commands by sending them an interrupt or quit signal. The kill program Q, -
terminates specified jobs.

time The time command measures the amount of CPU and real time used by a specified
command as well as the amount of disk I/0, memory utilized, and number of page
faults and swaps taken by the command.

tset The taet program sets standard erase and kill characters and tells the system what
kind of terminal you are using. It is often invoked in a .login file.

tty The historical abbreviation for 'teletype' which is frequently used in the Sun system
to indicate the port to which a given workstation is connected. The tty command
displays the name of the tty or port to which your workstation or terminal is
presently connected.

unalias The unalia, command removes aliases.

UNIX The operating system on which the Sun system is based.

unset The unaet command removes the definitions of Shell variables.

variable expansion
See variable, and expan,ion.

variables
Contain one or more strings as value and control the behavior of the Shell.

verbose A Shell variable that echoes commands after they are expanded by the hiatory
mechanism. This is often useful in debugging Shell scripts. The verbo,e variable is

0 set by the Shell's -v command line option.

A-12 Revision A of 15 April 1985

0

0

0

Beginner's Guide Glossary

WC

word

The we (word count) command counts the number of characters, words, and lines in
the files whose names are given as arguments.

A sequence of characters which forms an argument to a command. Many characters
which are neither letters, digits, '-', '.' nor '/' form words all by themselves even if
they are not surrounded by blanks. Any sequence of characters may be made into a
word by surrounding it with '' ' characters except for the characters '' ' and '!'
which require special treatment. This process of placing special characters in words
without their special meaning is called quoting.

working directory

write

The particular directory you are in at any given time. Pwd displays this directory's
name and I• lists its files. You can change working directories using ed.

The write command communicates with other users who are logged in to the system.

write permission
Allows a user's programs to write data to a file.

Revision A of 15 April 1985 A-13

0

0

Qi

0

0

0

Appendix A

Bibliography

General Sun System Reference

Commands Reference Manual for the Sun Workatation, Sun Microsystems Inc. The Sun system
command reference manual.

The UNIX Syatem, S. R. Bourne, Addison-Wesley Publishing Co., 1982. A comprehensive practi
cal introduction for users from novices to experts.

The UNIX Operating Syatem, Kaare Christian, John Wiley and Sons, 1983. Geared to the begin
ning user in Part One and the advanced user in Part Two, provides system basics as well as
extensive coverage of the Version 7 Shell, internal system organization, information for program
mers and managers, and introductions to several utility programs.

The UNIX Programming Environment, Brian Kernighan and Rob Pike, Prentice-Hall, Inc., Engle
wood Cliffs, New Jersey, 1984.

Introducing the UNIX System, Henry McGilton and Rachel Morgan, McGraw-Hill Book Company,
1983. An introduction to UNIX for beginners and more sophisticated users. Covers the usual,
plus communication facilities, editors, document formatting, software tool development, Berkeley
UNIX, and system management. Packed with helpful examples.

UNIX Primer Plus, Mitchell Waite, Donald Martin, Stephen Prata, Howard W. Sams and Co.,
Inc., 1983. Provides hands-on examples for both Berkeley and Bell Labs UNIX.

A User Guide to the UNIX Sy.tern, Jean Yates and Rebecca Thomas, Osborne/McGraw-Hill,
1982. A tutorial introduction to the 40 most used system commands.

The UNIX Time-sharing System, D. M. Ritchie and K. L. Thompson, CACM, July 1974. An
overview of the UNIX system for people interested in operating systems and worth reading by
anyone who programs. Contains a remarkable number of one-sentence observations on how to
do things right.

The Bell System Technical Journal (BSTJ) Special Issue on UNIX, July/August, 1978. Contains
many papers describing developments and some retrospective material.

The 2nd International Conference on Software Engineering (October, 1976). Contains Jeveral
papers describing the use of the Programmer's Workbench (PWB) version of UNIX.

Document Preparation

Editing and Tezt Procesaing on the Sun Work.talion, Sun Microsystems Inc. Tutorial and refer
ence material on the editors and text processors.

Software Development Tools

Syatem Interface Manual for the Sun Work.talion, Sun Microsystems Inc. Contains system calls,
library functions, and file formats and is of particular interest to programmers.

Revision A of 15 April 1985 A-1

Bibliography Beginner's Guide

Programming Tool, for tho Sun Work,tation, Sun Microsystems Inc. Contains information of
general interest to anyone using the Sun system to write programs.

Fortran and Paacal for the Sun Workatation, Sun Microsystems Inc. Information specific to the
Fortran and Pascal programming languages.

SunCore for the Sun Workatation, Sun Microsystems Inc. Describes the SunCore graphics pack
age.

The C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1978. Con
tains a tutorial introduction, complete discussions of all language features, and a reference
manual.

Shell Reference

The UNIX Shell, S. R. Bourne, Bell System Technical Journal, July-August 1978, Volume 57,
Number 6, Part 2. An introduction to the Bourne Shell and how to program it.

A-2 Revision A of 15 April 1985

0

0

0

0

0

0

Appendix B

Bibliography

General Sun System Re(erence

Command• Reference Manual for the Sun Work.talion, Sun Microayatema Inc. The Sun ayatem
command reference manual.

The UNIX Syatem, S. R. Bourne, Addiaon-Wealey Publiahing Co., 1982. A comprehenaive practi
cal introduction for u•era from novice• to expert,.

The UNIX Operating Syatem, Kaare Chriatian, John Wiley and Sona, 1989. Geared to the begin
ning uaer in Part One and the advanced uaer in Part Two, provide• ayatem baaica aa well aa
extenaive coverage of the Veraion 7 Shell, internal ayatem organization, information for program
mera and managera, and introduction• to aeveral utility program,.

The UNIX Programming Environment, Brian Kernighan and Rob Pike, Prentice-Hall, Inc., Engle
wood Cliff•, New Jeraey, 198,1.

Introducing the UNIX System, Henry McGilton and Rachel Morgan, McGraw-Hill Book Com
pany, 1983. An introduction to UNIX for beginners and more sophisticated users. Covers the
usual, plus communication facilities, editors, document formatting, software tool development,
Berkeley UNIX, and system management. Packed with helpful examples.

UNIX Primer Plua, Mitchell Waite, Donald Martin, Stephen Prata, Howard W. Sama and Co.,
Inc., 1989. Provide, handa-on example, for both Berkeley and Bell Laba UNIX.

A Uaer Guide to the UNIX Syatem, Jean Yatea and Rebecca Thoma•, Oaborne/ McGraw-Hill,
1982. A tutorial introduction to the ,10 moat uaed ayatem command,.

The UNIX Time-aharing Syatem, D. M. Ritchie and K. L. Thompaon, CACM, July 197,1. An
overview of the UNIX ayatem for people intere,ted in operating •y•tema and worth reading by any
one who program,. Contain• a remarkable number of one-aentence obaervationa on how to do
thing• right.

The Bell System Technical Journal (BSTJ) Special Issue on UNIX, July/August, 1978. Contains
many papers describing developments and some retrospective material.

The 2nd International Conference on Software Engineering (October, 1976). Contains several
papers describing the use of the Programmer's Workbench (PWB) version of UNIX.

Document Preparation

Editing and Text Proceuing on the Sun Workatation, Sun Microayatema Inc. Tutorial and refer
ence material on the editor, and text proceaaora.

Software Development Tools

Sy.tern Interface Manual for the Sun Workatation, Sun Microayatema Inc. Cont aim ayatem calla,
library functiona, and file format• and ia of particular intereat to programmera.

Revision A of 15 April 1985 B-1

Bibliography Beginner's Guide

Programming Tool, for the Sun Workatation, Sun Microayatema Inc. Contain, information of
general intere,t to anyone uaing the Sun ayatem to write program,.

Fortran and Paacal for the Sun Workatation, Sun Microayatema Inc. Information apecific to the
Fortran and Pa,cal programming language,.

Sun Core for the Sun Workatation, Sun Microayatema Inc. Deacribea the Sun Core graphic, pack
age.

The C Programming Language, B. W. Kernighan and D. M. Ritchie, Prentice-Hall, 1918. Con
tain, a tutorial introduction, complete diacuaaiona of all language feature,, and a reference
manual.

Shell Reference

The UNIX Shell, S. R. Bourne, Bell Syatem Technical Journal, July-Auguat 1978, Volume 51,
Number 6, Part 2. An introduction to the Bourne Shell and how to program it.

B-2 Revision A of 15 April 1985

0

0

0

0

0

0

0

0
I

I

O'

