
0

0

~\sun
• microsystems

Programmer's Reference Manual
for Sun Windows

0 Sun Microsystems, Inc. • 2550 Garcia Avenue • Mountain View, CA 94043 • 415-960-1300

0

0

0

0
~\sun

• microsystems

0

Programmer's Reference Manual
for Sun Windows

0
Part 1,0: 8011-lll,7-ili

Revision of l:i !985

Acknowledgements

A preliminary implementation of the Sun Window System was written at Sun Microsystems, Inc.
in December 1982 and January 1983. It incorporated a number of low-level operations and data,
including raster operations and fonts, provided by Tom Duff of Lucasfilm, Inc. The present ver
sion is a major rework of the preliminary implementation, aimed at generality, extensibility, and
reliability.

Trademarks

Sun Workstation, Sun Windows and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.

Sun Microsytems and Sun Workstation are registered trademarks of
Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of Bell Laboratories.

Copyright «:> 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, translated, transcribed, or transmit
ted, in any form, or by any means manual, electric, electronic, electro-magnetic, mechanical,
chemical, optical, or otherwise, without prior explicit written permission from Sun Microsystems.

0

0

0

0

0

0

Rev

A
B
C
D

E
F

G

Date

15 July 1983
15 September 1983
1 November 1983
7 January 1984

19 November 1984
1 February 1985

15 April 1985

Revision History

Comments

Preliminary draft of this Programmer's Reference Manual
0.9 release of this Programmer's Reference Manual
Additions to pixrect creation, input handling, and tool facilities
Many corrections, additions, changes, and deletions to user inter
face, option subwindow, graphics subwindow, and window
manager; changes to sunwindow library to accomodate color and
multiple screens, and to the pixrect library to support color pix
rectss
2.0 a release of this Programmer's Reference Manual.
2.0 p release. Addition of panel subwindow package. Removal of
option subwindow package to Appendix F in favor of panel pack
age; addition of Appendix G showing how to convert programs that
use option subwindows to make use of the panel package. Addi
tion of Appendix E on how to write a pixrect driver.
2.0 final release. Many corrections and minor changes.

0

I
O'

0

0

0

0

Contents

Chapter 1 Overview 1-1

Chapter 2 Pixel Data and Operations ... 2-1

Chapter 3 Overlapped Windows: Imaging Facilities .. 3-1

Chapter 4 Window Manipulation .. 4-1

Chapter 5 Input to Application Programs 5-1

Chapter 6 Sun tool: Tools and Subwindows .. .

Chapter 7 Suntool: Subwindow Packages

6-1

7-1

Chapter 8 The Panel Subwindow Package... 8-1

Chapter 9 Suntool: User Interface Utilities 9-1

Appendix A Rects and Rectlists .. A-1

Appendix B Sample Tool B-1

Appendix C Sample Graphics Programs C-1

Appendix D Programming Notes .. D-1

Appendix E Writing a Pixrect Driver ... E-1

Appendix F Option Subwindow F-1

Appendix G Converting from Option Subwindow to Panel Subwindow G-1

-v-

Qi

01

0

0

0

Contents

Preface 15

Chapter 1 Overview .. 1-1
1.1. What is Sun Windows?... 1-1
1.2. Hardware and Software Support .. 1-1
1.3. Layers of Implementation ... 1-2

1.3.1. Pixrect Layer ... 1-2
1.3.2. Sunwindow Layer ... 1-3
1.3.3. Sun tool Layer.. 1-3

Chapter 2 Pixel Data and Operations ... 2-1
2.1. Pixrects .. 2-1

2.1.1. Pixels: Coordinates and Interpretation ... 2-2
2.1.2. Geometry Structs .. 2-2
2.1.3. The Pixrect Struct ... 2-3

2.2. Operations on Pixrects ... 2-3
2.2.1. The Pixrectops Struct .. 2-4
2.2.2. Conventions for Naming Arguments to Pixrect Operations 2-4
2.2.3. Pixrect Errors .. 2-5
2.2.4. Creation and Destruction of Pixrects ... 2-5

2.2.4.1. Open: Create a Primary Display Pixrect .. 2-5
2.2.4.2. Region: Create a Secondary Pixrect .. 2-5
2.2.4.3. Close / Destroy: Release a Pixrect's Resources............................ 2-6

2.2.5. Single-Pixel Operations ... 2-6
2.2.5.1. Get: Retrieve the Value of a Single Pixel .. 2-6
2.2.5.2. Put: Store a Value into a Single Pixel .. 2-7

2.2.6. Constructing an Op Argument... 2-7
2.2.6.1. Specifying a RasterOp Function.. 2-7
2.2.6.2. Ops with a Constant Source Value.. 2-8
2.2.6.3. Controlling Clipping in the RasterOp ... 2-9
2.2.6.4. Examples of Complete Op Argument Specification 2-9

2.2.7. Multi-Pixel Operations... 2-9
2.2.7.1. Rop: RasterOp Source to Destination... 2-9
2.2.7.2. Stencil: RasterOps through a Mask .. 2-10
2.2.7.3. Replrop: Replicating the Source Pixrect ... 2-11
2.2.7.4. Batch RasterOp: Multiple Source to the Same

Destination .. 2-11

- Vil -

2.2.7.5. Vector: Draw a Straight Line ... 2-12
2.2.7.6. Draw Curved Shapes (pr_traprop) .. 2-13
2.2.7.7. Polygon: Textured Polygons with Holes .. 2-16

2.2.8. Colormap Access .. 2-17
2.2.8.1. Get Colormap ... 2-17
2.2.8.2. Put Colormap 2-17
2.2.8.3. Provision for Inverted Video Pixrects ... 2-18

2.2.9. Attributes for Bitplane Control ... 2-19
2.2.9.1. Get Attributes .. 2-19
2.2.9.2. Put Attributes ... 2-19

2.2.10. Efficiency Considerations... 2-20
2.3. Text Facilities for Pixrects 2-20

2.3.l. Pixfonts and Pixchars .. 2-20
2.3.2. Operations on Pixfonts .. 2-22
2.3.3. Pixrect Text Display .. 2-22

2.4. Memory Pixrects ... 2-24
2.4.l. The Mpr_data Struct .. 2-24
2.4.2. Pixel Layout in Memory Pixrects ... 2-25
2.4.3. Creating Memory Pixrects .. 2-25

2.4.3.l. Mem_create 2-25
2.4.3.2. mem_point .. 2-25
2.4.3.3. Static Memory Pixrects .. 2-26

2.5. File 1/0 Facilities for Pixrects ... 2-27
2.5.l. Writing of Complete Raster Files 2-27
2.5.2. Reading of Complete Raster Files .. 2-28
2.5.3. Details of the Raster File Format... 2-29
2.5.4. Writing Parts of a Raster File 2-30
2.5.5. Reading Parts of a Raster File .. 2-31

Chapter 3 Overlapped Windows: Imaging Facilities .. 3-1
3.1. Window Issues: Controlled Display Generation.. 3-1

3.1.l. Clipping and Locking.. 3-1
3.1.2. Damage Repair and Fixups ... 3-2
3.1.3. Retained Windows .. 3-2
3.1.4. Colormap Sharing ... 3-2
3.1.5. Process Structure .. 3-3
3.1.6. Imaging with Windows... 3-3
3.1.7. Libraries and Header Files .. 3-3

3.2. Data Structures ... 3-3
3.2.1. Rects .. 3-4
3.2.2. Pixwins ... 3-4
3.2.3. Pixwin_clipdata Struct .. 3-6
3.2.4. Pixwin_clipops Struct ... 3-7

3.3. Pixwin Creation and Destruction .. 3-7
3.3.1. Region Creation.. 3-8

3.4. Locking and Clipping ... 3-8

- viii -

0

0

0

0

0

0

3.4.1. Locking
3.4.2. Clipping

. p· . ' p· l 3.5. Accessmg a 1xwm s 1xe s
3.5.1. Write Routines
3.5.2. Drawing A Polygon within a Pixwin
3.5.3. Draw Curved Shapes .. .
3.5.4. Read and Copy Routines
3.5.5. Bitplane Control .. .

3.6. Damage
3.6.1. Handling a SIGWINCH Signal .. .

3.7. Colormap Manipulation .. .
3. 7 .1. Initialization
3.7.2. Background and Foreground .. .
3.7.3. A New Colormap Segment
3.7.4. Colormap Access
3.7.5. Surface Preparation .. .

3-8
3-10
3-11
3-11
3-13
3-14
3-14
3-15
3-15
3-15
3-17
3-17
3-18
3-19
3-20
3-20

Chapter 4 Window Manipulation .. 4-1
4.1. Window Data .. 4-1
4.2. Window Creation, Destruction, and Reference .. 4-1

4.2.l. A New Window... 4-2
4.2.2. An Existing Window 4-2
4.2.3. References to Windows ... 4-2

4.3. Window Geometry 4-3
4.4. The Window Hierarchy .. 4-4

4.4.1. Setting Window Links .. 4-4
4.4.2. Activating the Window.. 4-5
4.4.3. Modifying Window Relationships.. 4-5

4.5. User Data... 4-6
4.6. Minimal-Repaint Support ... 4-7
4.7. Multiple Screens... 4-7
4.8. Cursor and Mouse Manipulations 4-10

4.8.l. Cursors ... 4-10
4.8.2. Mouse Position ... 4-11

4.9. Providing for Naive Programs ... 4-12
4.9.1. Which Window to Use .. 4-12
4.9.2. The Blanket Window .. 4-12

4.10. Window Ownership ... 4-13
4.11. Error Handling .. 4-13

Chapter 5 Input to Application Programs .. 5-1
5.1. The Virtual Input Device .. 5-2

5.1.1. Uniform Input Events... 5-2
5.1.2. Event Codes.. 5-3

5.1.2.l. ASCII Events... 5-3
5.1.2.2. Function Events .. 5-3

- ix-

5.1.2.3. Pseudo Events .. 5-4
5.1.3. Event Flags.. 5-5
5.1.4. Shift Codes .. 5-5 0

5.2. Reading Input Events .. 5-5
5.3. Input Serialization and Distribution .. 5-6

5.3.1. Input Masks 5-7
5.3.2. Seizing All Inputs .. 5-9

5.4. Event Codes Defined 5-10

Chapter 6 Suntool: Tools and Subwindows .. 6-1
6.1. Tools Design .. 6--2

6.1.1. Non-Pre-emptive Operation... 6--2
6.1.2. Division of Labor ... 6--2

6.2. Tool Creation 6--2
6.2.1. Tool Attributes 6--3

6.2.1.1. The Tool Struct ... 6--8
6.2.2. Tool Initialization Parameters 6--9

6.2.2.1. Command Line Parsing .. 6--9
6.2.3. Creating the Tool Window .. 6--11
6.2.4. Subwindow Creation ... 6--12
6.2.5. Subwindow Layout ... 6--14
6.2.6. Subwindow Initialization .. 6--14
6.2.7. Tool Installation .. 6--15
6.2.8. Tool Destruction .. 6--15
6.2.9. Programmatic Tool Creation ... 6--15

6.2.9.1. Forking the Tool ... 6--15
0

6.2.9.2. Environment Parameters .. 6--16
6.3. Tool Processing 6--17

6.3.1. Toolio Structure ... 6--17
6.3.2. File Descriptor and Timeout Notifications ... 6--18
6.3.3. Window Change Notifications ... 6--18
6.3.4. Child Process Maintenance ... 6--19
6.3.5. Changing the Tool's Attributes .. 6--19
6.3.6. Terminating Tool Processing ... 6--20
6.3.7. Replacing Toolio Operations .. 6--20
6.3.8. Boilerplate Tool Code 6--21
6.3.9. Old Style Tool Creation .. 6--22

Chapter 7 Suntool: Subwindow Packages ... 7-1
7.1. Minimum Standard Subwindow Interface .. 7-1
7.2. Empty Subwindow ... 7-3
7.3. Graphics Subwindow .. 7-3

7.3.1. In a Tool Window ... 7-4
7.3.2. Overlaying an Existing Window .. 7-5

7.4. Message Subwindow ... 7-7
7.5. Terminal Emulator Subwindow .. 7-9

0
-x-

0

0

0

7.5.1. The Tool Specific TTY Subwindow Type ... 7-11
7.5.2. TTY-Based Programs in TTY Subwindows ... 7-13
7.5.3. Driving a TTY Subwindow ... 7-14
7.5.4. Extending a TTY Subwindow .. 7-14

Chapter 8 The Panel Subwindow Package 8-1
8.1. Introduction ... 8-1
8.2. Definition and Uses of Panels ... 8-1
8.3. Panel Item Types and Their Uses ... 8-3
8.4. A Sample Panel .. 8-4
8.5. Attributes and Attribute-Lists .. 8-6
8.6. Creating Pane ls 8-7
8.7. Creating and Positioning Items................................ 8-9

8.7.1. Creating Items.................................. 8-9
8.7.2. Positioning Items Within a Panel ... 8-10
8.7.3. Laying Out Components Within an Item .. 8-11

8.8. Description of Each Item Type ... 8-11
8.8.1. Messages .. 8-12
8.8.2. Buttons 8-12
8.8.3. Choices 8-14
8.8.4. Toggles 8-17
8.8.5. Text ... 8-19
8.8.6. Sliders 8-23

8.9. Modifying and Retrieving Attributes of Panels or Items
8.10. Painting Panels and Individual Items .. .
8.11. Destroying Panels and Individual Items .. .
8.12. Creating Reusable Attribute Lists
8.13. Summary of Panel Functions
8.14. Tables of Attributes .. .

8-25
8-27
8-28
8-28
8-30
8-32

Chapter 9 Suntool: User Interface Utilities .. 9-1
9.1. Full Screen Access.. 9-1
9.2. Icons 9-2

9.2.1. Icon Display Facility... 9-2
9.2.2. Making a Static Icon ... 9-3
9.2.3. Dynamic Icon Loading ... 9-5

9.3. Pop-up Menus 9-6
9.4. Prompt Facility 9-8
9.5. Selection Management .. 9-8
9.6. Window Management .. 9-10

9.6.1. Window Manipulation .. 9-10
9.6.2. Tool Invocation ... 9-12
9.6.3. Utilities .. 9-13

Appendix A Rects and Rectlists .. A-1
A.1. Rects .. A-1

- XI-

A.LL Macros on Rects .. A-1
A.1.2. Procedures and External Data for Rects .. A-2

A.2. Rectlists ... A-3
A.2.1. Macros and Constants Defined on Rectlists .. A-4
A.2.2. Procedures and External Data for Rectlists ... A-4

Appendix B Sample Tool .. B-1
B.l. gfxtool.c Code .. B-1

Appendix C Sample Graphics Programs ... C-1
C.1. bouncedemo.c Source ... C-1
C.2. framedemo.c Source .. C-3

Appendix D Programming Notes .. D-1
0.1. What Is Supported? ... D-1
0.2. Program By Example ... 0-1
0.3. Header Files Needed... 0-1
0.4. Lint Libraries... D-2
0.5. Library Loading Order.. D-2
0.6. Shared Text .. 0-2
0.7. Error Message Decoding ... D-3
D.8. Debugging Hints... D-3
D.9. Sufficient User Memory ... D-4
D.10. Coexisting with UNIX..... .. 0-5

D.10.1. Tool Initialization and Process Groups... D-5
D.10.LL Signals from the Control Terminal ... D-5
D.10.1.2. Job Control and the C-Shell .. D-5

Appendix E Writing a Pixrect Driver ... E-1
E.L Glossary...................... E-1
E.2. What You'll Need ... E-2
E.3. Implementation Strategy E-2
E.4. Files Generated .. E-3

E.4.1. Memory Mapped Devices .. E-3
E.5. Pixrect Private Data E-4
E.6. Creation and Destruction E-4

E.6.1. Creating a Primary Pixrect ... E-4
E.6.2. Creating a Secondary Pixrect .. E-7
E.6.3. Destroying a Pixrect .. E-7

· E.6.4. The prJnakefun Operations Vector .. E-8
E.7. Pixrect Kernel Device Driver.. E-9

E.7.L Configurable Device Support .. E-9
E.7.2. Open ... E-11
E.7.3. Mmap .. E-12
E.7.4. Ioctl .. E-12
E.7.5. Close .. E-14

- xii -

0

0

0

0

0

0

E.7.6. Plugging Your Driver into UNIX ... E-14
E.8. Access Utilities .. E-15
E.9. Rop .. E-15
E.10. Batchrop ... E-16
E.11. Vector ... E-16

E.11.1. Importance or Proper Clipping ... E-16
E.12. Colormap .. E-16

E.12.1. Monochrome .. E-16
E.13. Attributes ... E-17

E.13.1. Monochrome .. E-17
E.14. Pixel ... E-17
E.15. Stencil ... E-17

Appendix F Option Subwindow ... F-1
F.1. Option Subwindow Standard Procedures.. F-2
F.2. Option Items... F-3

F.2.1. Boolean Items.. F-3
F.2.2. Command Items... F-4
F .2.3. Enumerated Items .. F-4
F.2.4. Label Items ... F-4
F.2.5. Text Items ... F-5

F.3. Item Layout and Relocation - SIGWINCH Handling F-6
F.4. Client Notification Procedures ... F-7
F.5. Explicit Client Reading and Writing or Item Values F-8
F.6. Miscellany ... F-9

Appendix G Converting from Option Subwindow to Panel Subwindow G-1

- Xlll -

0

O !
i

0

0

0

0

Tables

Table 2-1 Argument Name Conventions... 2-4
Table 2-2 Useful Combinations of RasterOps .. 2-8
Table 3-1 Clipping State .. 3-7
Table 6-1 Summary of Tool Attributes ... 6-4
Table 6-2 Generic tool arguments ... 6-10
Table 7-1 Differences between Sun terminal and Sun Windows tty

emulator ..•.................................. 7-9
Table 7-2 Escape sequences for tty tool subwindow .. 7-12
Table 8-1 Some Sample Panel Attributes... 8-6
Table 8-2 Frequently Used Panel Data Types... 8-7
Table 8-3 Example uses of the PANEL_CU() macro .. 8-10
Table 8-4 Notification behavior ... 8-20
Table 8-5 Possible return values from notify procedures ... 8-21
Table 8-6 Panel Attributes ... 8-32
Table 8-7 Generic Item Attributes ... 8-34
Table 8-8 Choice and Toggle Item Attributes 8-37
Table 8-9 Text Item Attributes 8-40
Table 8-10 Slider Item Attributes 8-41
Table A-1 Rectlist Predicates... A-5
Table A-2 Rectlist procedures A-6
Table D-1 Header Files Required ... D-2
Table D-2 aunwindow Variables for Disabling Locking........ D-4
Table F-1 Option Image Types F-2

-xv-

0

0

O'

0
Figures

Figure 2-1 Typical trapezon with source and destination pixrects 2-13
Figure 2-2 Some figures drawn by pr _traprop ... 2-13
Figure 2-3 Trapezon with clipped falls ... 2-16
Figure 2-4 Character and pc_pr origins ... 2-21
Figure 8-1 icontool - a tool that uses panels .. 8-2

0

0
- XVll -

0

0

0

0

0

- 15 -

Preface

The Programmer'• Reference Manual for Sun Window• provides primarily reference material on
Sun Windows, the Sun window system. It is intended for programmers of applications using win
dow system facilities.

Manual Contents

The contents of the manual are:

Chapter l - Overview - Describes basic hardware and software support and the layers of
implementation of Sun Windows, the pi:zrect layer, the •unwindow layer, and the •untool layer.

Chapter 2 - Pizel Data and Operation• - Describes pixel data and operations in the lowest
level output facilities of SunWindows, pixrects, pixrectops, memory pixrects, and text facilities
for pixrects.

Chapter 3 - Overlapped Window•: Imaging Facilitie• - Explains image generation on windows
which may overlap other windows.

Chapter 4 - Window Manipulation - Describes the •unwindow layer facilites for creating, posi
tioning, and controlling windows.

Chapter 5 - Input to Application Program• - Discusses how user input is made available to
application programs.

Chapter 6 - Suntool: Tool• and Subwindow• - Discusses how to write a tool, and covers crea
tion and destruction of a tool and its subwindows, the strategy for dividing work among subwin
dows, and the use of routines provided to accomplish that work.

Chapter 7 - Suntool: Subwindow Package• - Discusses aubwindow• as building blocks in the
construction of a tool, covers the currently existing subwindows, and suggests the approach for
creating new kinds of subwindows.

Chapter 8 - The Panel Subwindow Package - Describes the use of panels, which are subwin
dows that present information and choices to the application user.

Chapter 9 - Suntool: Uaer Interface Utilitiea Covers user interface utilities, the independent
packages for use with the •untool• environment, includes the actual window manipulation rou
tines used by tool window•, the icon facility, the •election manager, the full•creen access mechan
ism, and menu• and prompt,.

Appendix A - Rect• and Rectliat• - Describes the geometric structures used with the aunwin
dow layer and provides a full description of the operations on these structures.

- 16 -

Appendix B - Sample Tool, - Provides an annotated collection o(some simple tools to be used
both as illustrations and as templates for client programmers.

Appendix C - Sample Graphic• Program• - Provides an annotated selection of several graphics
programs for writing your own graphics programs; includes code for a bouncing ball demonstra
tion and for a "movie camera" program that displays files as frames from a movie.

Appendix D - Programming Note• - Contains useful hints for programmers using the Sun Win
dows library procedures.

Appendix E - Writing a Pizrect Driver - Explains how to to construct a device driver for a
pixel-addressable device so that it will provide Sun's device-independent interface to the frame
buffer.

Apendix F - Option Subwindow - Describes a subwindow that implements a type of user inter
face to application programs. The material here is being phased out; programmers are
encouraged to use the panel subwindow instead.

Note: This manual is neither a user guide nor an explanation of the internals of the window sys
tem. It presents the material in a bottom-up fashion with primitive concepts and facilities
described first. It is not intended to be read linearly front-to-back; glance at the table of con
tents and the chapters on tools to get a general idea of how to use the rest of the material.

The Programmer'• Tutorial to Sun Window• supplies the basics needed to build Sun Windows
tools.

The Uaer'• Manual for the Sun Work,tation provides user information under auntool,(l) for
Sun Windows and under the appropriate entry for the particular application programs. The
Beginner'• Guide to the Sun Workstation provides a brief tutorial on general use of the mouse
and the Sun Windows pop-up menus.

A Note About Special Terms

Several terms in this manual have meanings distinct from their common definitions or introduce
concepts that are specific to programming in the Sun Windows environment. We discuss the
most important here.

The word client indicates a program that uses window system facilities. This 1s m contrast to
uur, which refers to a human.

Terms referring to display hardware, such as framebuffer, pizel, and raaterop, are used in well
established senses; novices who are confused should consult one of the standard texts, such as
Fundamental, of Interactive Computer Graphic, by J.D. Foley and A. Van Dam, Addison
Wesley, 1983.

The position of the mouse is indicated by a curaor on the screen; this is any small image that
moves about the screen in response to mouse motions. The term "cursor" is used elsewhere to
indicate the location at which type-in will be inserted, or other editor functions performed. The
two concepts are not often distinguished. To keep them distinct, we use the term caret to refer
to the type-in location.

A menu is a list of related choice items displayed on the screen in response to a user mouse
action. The user chooses one menu item by pointing at it with the cursor. Such menus are

0

i
01

0

0

0

0

- 17 -

called tramient or pop-up; they are displayed only while a mouse button is depressed, and are
typically used for invoking parameterless operations.

A reel is a structure that defines a rectangle.

A rect/iat is a structure that defines a list of rects.

Up-down encoded keyboards are devices from which it is possible to receive two distinct signals
when a key is pressed and then released.

An icon is a small form of a window that typically displays an identifying image rather than a
portion of the window contents; it is frequently used for dormant application programs. For
example, the default icon for a closed Shell Tool is a likeness of a CRT terminal.

0

Q,

0

0

0

0

Chapter 1

Overview

1.1. What is SunWindows?

Sun Windows is the Sun window system. It is a tool bo:i: and parta kit, not a closed, finished, end
product. Its design emphasizes extensibility, accessibility at multiple layers, and provision of
appropriate parts and development tools. Specific applications are provided here both as exam
ples and because they are valuable for further development. The system is designed to be
expanded by clients.

The system is explicitly layered with interfaces at several levels for client programs. There is
open access to lower levels, and also convenient and powerful facilities for common requirements
at higher levels. For instance, it is always possible for a client to write directly to the screen,
although in most circumstances it is preferable to employ higher-level routines.

1.2. Hardware and Software Support

The Sun Microsystems Workstation provides hardware and software support for the construction
or high-quality user interfaces. Hardware features include:

• provision or a processor for each user, a prerequisite for powerful, responsive, cost-effective
systems;

• a bit-mapped display which allows arbitrary fonts and graphics to be used freely to make
applications programs easier to learn and use;

• hardware support of fast and convenient manipulation or image data;

• a mouse pointing device for selecting operations from menus or for pointing at text, graphics
and icons; and

• an up-down encoded keyboard that supports sophisticated function-key interfaces at once
simpler and more efficient than most command languages.

Sun software is similarly structured to support high-quality interactions. The software features
are:

• a uniform interface to varied pixel-oriented devices that allows convenient incorporation of
new devices into the system, and clean access to all these devices by application programs;

• extended device independence for input such as function keys and locators, as well as for
other user-interface features;

Revision G or 15 April 1985 1-1

Overview Sun Windows Reference Manual

• a window management facility that keeps track of multiple overlapping windows, allowing
their creation and rearrangement at will. The facility arbitrates screen access, detects des
tructive interactions such as overlapping, and initiates repairs. It also serializes and distri
butes user inputs to the multiple windows, allowing full type-ahead -and mouse-ahead; and

• built on all these facilities, an executive and application environment that provides a system
for running existing UNIX programs and new applications, taking advantage of icons, menus,
prompts, mouse-driven selections, interprocess data exchange, a forms-oriented interface and
useful cursor manipulations.

1.3. Layers of Implementation

There are three broad layera of Sun Windows. These layers may be identified by the libraries
that contain their implementations. The organization of the reference part of this manual
reflects the three layers as described below.

1. The pixrect level provides a device-independent interface to pixel operations.

2. The wnwindow1 level implements a manager for overlapping windows, including 1magmg
control, creation and manipulation of windows, and distribution of user inputs.

3. The suntool level implements a multi-window executive and application environment. In its
user interface, it includes a number of relatively independent packages, supporting, for
instance, menus and selections.

1.3.1. Pixrect Layer

Chapter 2 describes the pixrect layer of the system. This level generalizes RasterOp display
functions to arbitrary rectangles of pixels. Peculiarities of specific pixel-oriented devices, such as
dimensions, addressing schemes, and pixel size and interpretation, are encapsulated in device
specific implementations, which all present the same uniform interface to clients.

The concept of a pixrect is quite general; it is convenient for referring to a whole display, as well
as to the image of a single character in a font. It may also be used to describe the image which
tracks the mouse.

There is a balance between functionality and efficiency. All pixrects clip operations that extend
beyond their boundaries. Since this may require substantial overhead, clients which can guaran
tee to stay within bounds may disable this feature. Where hardware support exists, it is taken
advantage of without sacrificing generality: all pixrects support the same set of operations on
their contents.

These operations include general raster operations on rectangular areas, vectors, batch opera
tions to handle common applications like text, and compact manipulation of constant or
regularly-patterned data. A stencil operation provides spatial, two-dimensional masking of the
source pixrect with a mask pixrect to control the areas of the destination pixrect to be written.

Color pixrects, as well as monochrome pixrects, are supported. There are uniform operations for
accessing a pixrect's colormap. A colormap maps a pixel value to a screen color. The pixel

1 Note that the term 'sunwindow' rerers to the layer or level or implementation while the word
1SunWindows' is the na.me or the Sun window system.

1-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overview

planes affected by other operations can be controlled as well. Monochrome pixrects support the
same interface as color pixrects. Programs intended primarily for color pixrects usually produce
reasonable images on monochrome pixrects, and vice versa.

1.3.2. Sunwindow Layer

Chapters 3 through 5 introduce windows and operations on them. A window is a rectangular
display area, along with the process or processes responsible for its contents. This layer of the
system maintains a database of windows which may overlap in both time and space. These win
dows may be nested, providing for distinct subwindows within an application's screen space.

Windows may be created, destroyed, moved, stretched or shrunk, set at different levels in the
overlapping structure, and otherwise manipulated. The sunwindow level of the system provides
facilities for performing all these operations. It also allows definition of the image which tracks
the mouse while it is in the window, and inquiry and control over the mouse position.

Windows existing concurrently may all access a display; the window system provides locking
primitives to guarantee that these accesses do not conflict.

Arbitration between windows is also provided in the allocation of display space. Where one win
dow limits the space available to another, it is necessary to provide clipping, so neither interferes
with the other's image. One such conflict handled by the sunwindow layer arises when windows
share the same coordinates on the display: one overlaps the other.

When one window impacts another window's image without any action on the second window's
part, Sun Windows informs the affected window of the damage it has suffered, and the areas that
ought to be repaired. Windows may either recompute their contents for redisplay, or they may
elect to have a full backup of their image in main memory, and merely copy the backup to the
display when required.

On color displays, colormap entries are a scarce resource. When shared among multiple applica
tions, they become even more scarce. Arbitration between windows is provided in the allocation
of colormap entries. Provisions are made to share portions of the colormap.

Separate collections of windows may reside on separate screens. The user interacts with these
multiple screens with his single keyboard and mouse.

User inputs are unified into a single stream at this level, so that actions with the mouse and key
board can be coordinated. This unified stream is then distributed to different windows, accord
ing to user or programmatic indications. Windows may be selective about which input events
they will process, and rejected events will be offered to other windows for processing. This
enables terminal-based programs to run within windows which will handle mouse interactions for
them.

1.3.3. Suntool Layer

Chapters 6 through 9 of this manual describe the suntool level of the system. While the first two
layers provide client interfaces, the suntool level provides the user interface.

We refer to an application program that is a client of this level of the window system as a tool.
This term covers the one or more programs and processes which do the actual application pro
cessing. It also refers to the collection of windows through which the tool interacts with the
user. This collection often includes a special icon, which is a small form the tool may take to be

Revision G of 15 April 1985 1-3

Overview Sun Windows Reference Manual

unobtrusive on the screen but still identifiable. Some examples of tools are a calculator, a bit
map editor, and a terminal emulator. Sun provides a few ready-built tools, several of which are
illustrated in Appendix B. Customers can develop their own tools to suit their specific needs.

Sun Windows provides some common components of tools:

• an executive framework that supplies the usual "main loop" of a program and coordinates
the activities of the various subwindows;

• a standard tool window that frames the active windows of the tool, identifying it with a
name stripe at the top and borders around the subwindows. Each tool window has a facility
for manipulating itself in the overlapped window environment. This includes adjusting its
size and position, including layering, and moving the boundaries between subwindows;

• several commonly used aubwindow types that can be instantiated in-the tool;

• a standard scheme for laying out those subwindows; and

• a facility that provides a default icon for the tool.

The auntoola program initializes the window environment. It provides for:

• automatic startup of a specified collection of tools;

• dynamic invocation of standard tools;

• management of the default window called the root window, which underlies all the tools; and

• the user interface for leaving the window system.

Users who wish some other form of environment management can replace the auntools program,
while retaining the tools and supporting utilities.

The facilities provided in the auntool library are relatively independent; they can be used with
window contexts other than suntool,. The icon facility mentioned above is in this category, as
are the window manipulation facilities of suntools. There is also a package for presenting menus
to the user and interpreting the response.

1-4 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Overview

0

0

0
Revision G of 15 April 1985 1-5

0

Oi

0

0

0

0

Chapter 2

Pixel Data and Operations

This chapter discusses pixel data and operations in the lowest-level output facilities of Sun Win
dows. These facilities will frequently be accessed indirectly, through higher-level abstractions
described in chapters 3 through 9. However, some client implementors will deal at this level, for
instance to include new display devices in the window system. The header file
<pixrect/pixrect_hs. h> includes the header files that you need to work at this level of the
window system. It will also suffice to include <suntool/suntool_hs .h> or
<sunwindow/sunwindow_hs.h>.

2.1. Pixrects

The fundamental object of pixel manipulation in the window system is the pizrect. A pixrect
encapsulates a rectangular array of pixels along with the operations which are defined on that
data. Pixrects are designed along the model of objecta in an object-oriented programming sys
tem. They combine both data and operations, presenting their clients with a simple interface: a
well-defined set of operations produces desired results, and details of representation and imple
mentation are hidden inside the object.

The pixrect presents only its dimensions, a pointer to its operations, and a pointer to private
data which those operations may use in performing their tasks. Further, the set of operations is
the same across all pixrects, though of course their implementations must differ. This object
oriented style allows similar things which differ in small details to be gathered into a unified
framework; it allows clients to use the same approach to all of them, and allows implementors to
add new members or improve old ones without disturbing clients.

The pixrect facility satisfies two broad objectives:

• To provide a uniform interface to a variety of device, for independence from device charac
teristics where they are irrelevant. Such characteristics include the actual device (pixrects
may exist in memory and on printers as well as on displays), the dimensions and addressing
schemes of the device, and the definition of the pixels, that is, how many bits in each, how
they are aligned, and how interpreted. Color and monochrome devices use the same interface.
Programs intended primarily for color pixrects usually produce reasonable images on mono
chrome pixrects, and vice versa.

• To provide a proper balance of functionality and efficiency for a full range of pixel operations
with performance close to that achieved by direct access to the hardware. Pixrect operations
include generalized rasterops, vectors, text and other batch operations, compact manipulation
of uniform and regularly-patterned data, as well as single-pixel reads and writes. All provide
for clipping to the bounds of the rectangle if desired; this facility may be bypassed by clients
which can perform it more efficiently themselves. A stencil function provides spatial masking
of the source pixrect with a stencil pixrect to control the areas of the destination pixrect to be
written. Where specialized hardware exists and can be used for a particular operation, it is

Revision G of 15 April 1985 2-1

Pixel Data and Operations Sun Windows Reference Manual

used, but not at the expense of violating the device-independent interface.

2.1.1. Pixels: Coordinates and Interpretation

Pixels in a pixrect are addressed in two dimensions with the origin in the upper left corner, and z
and y increasing to the right and down. The coordinates of a pixel in a pixrect are integers from
0 to the pixrect's width or height minus 1.

A pixrect is characterized by a depth, the number of bits required to hold one pixel. A large
class of displays uses a single bit to select black or white (or green or orange, depending on the
display technology). On these monochrome displays and in memory pixrects one bit deep, a 1
indicates foreground and a O background. No further interpretation is applied to memory. The
default interpretation on Sun displays is a white background and a black foreground.

Other displays use several bits to identify a color or gray level. Typically, though not neces
sarily, the pixel value is used as an index into a colormap, where colors may be defined with
higher precision than in the pixel. A common arrangement is to use an 8-bit pixel to choose one
of 256 colors, each of which is defined in 24 bits, 8 each of red, green and blue. Memory pixrect
depths of 1, 8, 16, and 24 are supported. Frame buffer pixrects are either 1 bit or 8 bits (color)
per pixel. You can write depth 1 or 8 pixrects to a color frame buffer.

2.1.2. Geometry Structs

As a preliminary to the discussion of pixrects, it is convenient to define a few structs which con
tain useful geometric information.

The struct that defines a position in coordinates (z, y) is:

struct pr_pos {
int X, y;

};

Leaving a pixrect undefined for the moment, this struct defines a point within a specified pixrect:

struct pr_prpos {
struct pixrect *pr;
struct pr_pos pos;

};

It contains a pointer to the pixrect and a position within it.

The following struct defines the width and height of an area:

struct pr_size {
int X, y;

};

The following struct defines a sub-area within a pixrect:

struct pr_subregion {
struct pixrect *pr;
struct pr_pos pos;
struct pr_size size;

};

It contains a pointer to the pixrect, an origin for the area, and its width and height.

2-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.1.3. The Pixrect Struct

A particular pixrect is described by a pixrect struct. This combines the definition of a rec
tangular array of pixels and the means of accessing operations for manipulating those pixels:

struct pixrect {

};

struct pixrectops *pr_ops;
struct pr_size pr_size;
int pr_depth;
caddr_t pr_data;

The width and height of the rectangle are given in pr _size, and the number of bits in each
pixel in pr _depth. For programmers more comfortable referring to "width" and "height,"
there are also two convenient macros:

#define pr_width (pr_size.x)
#define pr_height (pr_size.y)

All other information about the pixrect (in particular, the location and values of pixels), is data
private to it. Pixels are manipulated only by the set or pixrect operation• described below.
These operations will generally use information accessed through pr _data to accomplish their
tasks.

(This restriction is relaxed somewhat in the case of pixrects whose pixels are stored in memory;
this provides an escape to mechanisms outside the pixrect facility for constructing and convert
ing pixrects or differing types. Memory pixrects are described in Memory Pixrect,.)

2.2. Operations on Pixrects

Procedures are provided to perform the following operations on pixrects:

• create and destroy a pixrect (open, region and destroy)

• read and write the values or single pixels (get and put)

• use RasterOp functions to affect multiple pixels in a single operation:
write from a source to a destination pixrect (rep)
write from a source to a destination under control or a mask (stencil)
replicate a constant source pattern throughout a destination (replrop)
write a batch of sources to different locations in a single destination (batchrop)
draw a straight line or a single source value (vector)

• read and write a colormap (getcolormap, putcolormap)

• select particular bit-planes for manipulation on a color pixrect (getattr ibutes, putat-
tr ibutes)

Some of these operations are the same for all pixrects, and are implemented by a single pro
cedure. These device-independent procedures are called directly by pixrect clients. Other
operations must be implemented differently for each device on which a pixrect may exist. Each
pixrect includes a pointer (in its pr _ops) to a pixrectops structure, that holds the addresses
of the particular device-dependent procedures appropriate to that pixrect. This allows clients to
access those procedures in a device-independent fashion, by calling through the procedure
pointer, rather than naming the procedure directly. To facilitate this indirection, the pixrect

Revision G or 15 April 1985 2-3

Pixel Data and Operations Sun Windows Reference Manual

facility provides a set of macros which look like simple procedure calls to generic operations, and
expand to invocations of the corresponding procedure in the pixrectops structure.

The description of each operation will specify whether it is a true procedure or a macro, since
some of the arguments to macros are expanded multiple times, and could cause errors if the
arguments contain expressions with side effects. (In fact, two sets of parallel macros are pro
vided, which differ only in whether their arguments use the geometry structs defined above.
Each is described with the operation.)

2.2.1. The Pixrectops Struct

The pixrectops struct is a collection of pointers to the device-dependent procedures for a partic
ular device:

struct pixrectops {
int (*pro_rop) () ;
int (*pro_stencil) () ;
int (*pro_batchrop) ();
int (*pro_nop) () ;
int (*pro_destroy) ();
int (*pro_get) () ;
int (*pro_put) ();
int (*pro_vector) () ;
struct pixrect • (*pro_region) () ;
int (*pro_putcolormap) ();
int (*pro_getcolormap) ();
int (*pro_putattributes) ();
int (*pro_getattributes) ();

};

All other operations are implemented by device-independent procedures.

2.2.2. Conventions for Naming Arguments to Pixrect Operations

In general, the following conventions are used in naming the arguments to pixrect operations:

2-4

Table 2-1: Argument Name Conventions

Argument

d
s
x and y
wand h

Meaning

destination
source
left and top origins
width and hei~ht

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.2.3. Pixrecl Errors

Pixrect procedures which return a pointer to a structure will return NULL when they fail. Other
wise, a return value of.PIX...ERR (-1) indicates failure and O indicates success. The section describ
ing each library procedure makes note of any exceptions to this convention.

2.2.4. Creation and Destruction of Pixrects

Pixrects are created by the procedures pr _open and mem_create, by the procedures
accessed by the macro pr _region, and at compile-time by the macro mpr _static. Pixrects
are destroyed by the procedures accessed by the macro pr _destroy. mem_create and
mpr _static are discussed in the section Memory Pixrects; the rest of these are described here.

12.12.,1.1. Open: Create a Primary Display Pixrect

The properties of a non-memory pixrect depend on an underlying UNIX device. Thus, when
creating the first pixrect for a device you need to open it by a call to:

struct pixrect *pr_open(devicename)
char *devicename;

The default device name for your display is /dev/fb (fb stands for framebuffer). Any other
device name may be used provided that it is a display device, the kernel is configured for it, and
it has pixrect support, for example, /dev/bwoneO, /dev/bwtwoO, /dev/cgoneO or
/dev/cgtwoO.

pr _open does not work for creating a pixrect whose pixels are stored in memory; that function
is served by the procedure mem_create, discussed in the section Memory Pixrects.

pr _open returns a pointer to a primary pixrect struct which covers the entire surface of the
named device. If it cannot, it returns NULL, and prints a message on stderr.

12.12.,l.!2. Region: Create a Secondary Pixrect

Given an existing pixrect, it is possible to create another pixrect which refers to some or all of
the same pixels of the same pixrect. This is called a secondary pixrect, and is created by a call
to the procedures invoked by the macros pr _region and prs_region:

#define struct pixrect •pr_region(pr, x, y, w, h)
struct plxrect *pr;
int x, y, w, h;

#define struct pixrect *prs_region(subreg)
struct pr_subregion subreg;

The existing pixrect is addressed by pr; it may be a pixrect created by pr _open,
mem_create or mpr _static (a primary pixrect); or it may be another secondary pixrect
created by a previous call to a region operation. The rectangle to be included in the new pixrect
is described by x, y, wand h in the existing pixrect; (x, y) in the existing pixrect will map to
(0, O} in the new one. prs_region does the same thing, but has all its argument values col
lected into the single struct subreg. Each region procedure returns a pointer to the new

Revision G of 15 April 1985 2-5

Pixel Data and Operations Sun Windows Reference Manual

pixrect. If it fails, it returns NULL, and prints a message on atderr.

If an existing secondary pixrect is provided in the call to the region operation, the result is o
another secondary pixrect referring to the underlying primary pixrect; there is no further con-
nection between the two secondary pixrects. Generally, the distinction between primary and
secondary pixrects is not important; however, no secondary pixrect should ever be used after its
primary pixrect is destroyed.

2.2.,J.9. Cloae / Destroy: Releaae a Pizrect'a Reaourcea

The following macros invoke device-dependent procedures to destroy a pixrect, freeing resources
that belong to it:

#define pr _close (pr)
struct pixrect *pr;

#define pr _destroy (pr)
struct pixrect *pr;

#define prs_destroy(pr)
struct pixrect *pr;

The procedure returns O if successful, PIX.ERR if it fails. It may be applied to either primary or
secondary pixrects. If a primary pixrect is destroyed before secondary pixrects which refer to its
pixels, those secondary pixrects are invalidated; attempting any operation but destroy on
them is an error. The three macros are identical; they are all defined for reasons of history and
stylistic consistency.

2.2.5. Single-Pixel Operations

The next two operations manipulate the value of a single pixel.

2.2.5.1. Get: Retrieve the Value of a Single Pixel

The following macros invoke device-dependent procedures to retrieve the value of a single pixel:

#define pr_get(pr, x, y)
struct pixrect •pr;
int X, y;

#define prs_get(srcprpos)
struct pr_prpos srcprpos;

pr indicates the pixrect in which the pixel is to be found; x and y are the coordinates of the
pixel. For prs_get, the same arguments are provided in the single struct srcprpos. The
value of the pixel is returned as a 32-bit integer; if the procedure fails, it returns PIX.ERR.

2-6 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.2.5.2. Put: Store a Value into a Single Pixel

The following macros invoke device-dependent procedures to store a value in a single pixel:

#define pr_put(pr, x, y, value)
struct pixrect *pr;
int x, y, value;

#define prs_put(dstprpos, value)
struct pr_prpos dstprpos;
int value;

pr indicates the pixrect in which the pixel is to be found; x and y are the coordinates of the
pixel. For prs_put, the same arguments are provided in the single struct dstprpos.
value is truncated on the left if necessary, and stored in the indicated pixel. 1£ the procedure
fails, it returns PIX..ERR.

2.2.6. Constructing an Op Argument

The multi-pixel operations described in the next section all use a uniform mechanism for specify
ing the operation which is to produce destination pixel values. This operation is given in the op

argument and includes several components.

Generally, op identifies a RasterOp. This is a logical function of two or three inputs; it com
putes the value of each pixel in the destination as a function of the previous value of that desti
nation pixel, of a corresponding source pixel, and possibly a corresponding pixel in a mask.

Two other facilities are also specified in the op argument:

• a single, constant, source value may be specified as a color in op, and

• the clipping which is normally performed by every pixrect operation may be turned off by set
ting the PIX_DONTCLIP flag in the op.

We describe these three components of the op argument in order.

2.2.6.1. Specifying a RasterOp Function

Four bits of the op are used to specify one of the 16 distinct logical functions which combine
monochrome source and destination pixels to give a monochrome result. This encoding is gen
eralized to pixels of arbitrary depth by specifying that the function is applied to corresponding
bits of the pixels in parallel. This emphasizes that the pixrects must be of the same depth.
Some functions are much more common than others; the most useful are identified in the table
Useful Combinations of Raster Ops.

A convenient and intelligible form of encoding the function into four bits is supported by the fol
lowing definitions:

#define PilC_SRC
#define PilC_DST
#define PilC_NOT(op)

Ox18
Ox14
(OxlE & ("op))

PIX_SRC and PIX....DST are defined constants, and PIX_NOT is a macro. Together, they allow a
desired function to be specified by performing the corresponding logical operations on the

Revision G of 15 April 1985 2-7

Pixel Data and Operations Sun Windows Reference Manual

appropriate constants. (The explicit definition of PIX...NOT is required to avoid inverting non
function bits of op).

A particular application of these logical operations allows definition of aet and clear operations.
The definition of the aet operation that follows is always true, and hence sets the result:

#define PilC__SET (PilC__SRC I PIX_NOT(PilC__SRC))

The definition of the clear operation is always false, and hence clears the result:

#define PIX_CLR (PilC__SRC & PilC_NOT(PilC_SRC))

Other common RasterOp functions are defined in the following table:

Table 2-2: Useful Combinations of RasterOps

PIX_SRC

PIX_DST

PIX_SRC

Op with Value

PIX_DST

PIX_SRC & PIX_DST

PIX_NOT(PIX_SRC) & PIX_DST

PIX_NOT(PIX_DST)
PIX_SRC ~ PIX_DST

2.2.6.2. Opa with a Conatant Source Value

Result

write (same as source argument)

no-op (same as destination argument)

paint (OR of source and destination)

mask (AND of source and destination)

erase (AND destination with negation of source)

invert area (negate the existing values)

inverting paint (XOR of source and destination)

In certain cases, it is desirable to specify an infinite supply of pixels, all with the same value.
This is done by using NULL for the source pixrect, and encoding a color in bits 5 - 31 of the op
argument. The following macro supports this encoding:

#define PilC_COLOR(color)

This macro extracts the color from an op:

#define PIX_OPCOLOR(op)

((color) «5)

((op) »5)

If no color is specified in an op, 0 appears by default. The color specified in the op is used in
the case of a null source pixrect or to specify the color of the 'ink' in a depth l pixrect.

Note that the color is not part of the function component of an op argument; it should never be
part of an argument to PIX...NOT.

The color component of op is also used when a depth l pixrect is written to a depth > l pixrect.
In this case:

• if the value of the source pixels - 0, they are painted 0, or background.

2-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

• if the value of the source pixels = 1, they are painted color.

If the color component of op is O (e.g., because no color was specified), the color will default to
-1 (foreground).

2.2.6.9. Controlling Clipping in the RaaterOp

Pixrect operations normally clip to the bounds of the operand pixrects. Sometimes this can be
done more efficiently by the client at a higher level. If the client can guarantee that only pixels
which ought to be visible will be written, it may instruct the pixrect operation to bypass clipping
checks, thus speeding its operation. This is done by setting the following flag in the op argu
ment:

#define PilC_DONTCLIP Oxl

The result of a pixrect operation is undefined and may cause a memory fault if PIX.J)ONTCLIP is
set and the operation goes out of bounds.

Note that the PIX.J)ONTCLIP flag is not part of the function component of an op argument; it
should never be part of an argument to Pl)(_NOT.

2.2.6.,1. Example, of Complete Op Argument Specification

A very simple op argument will specify that source pixels be written to a destination, clipping
as they go:

op= PIX_SRC;

A more complicated example will be used to affect a rectangle (known to be valid) with a con
stant red color defined elsewhere. (The function is syntactically correct; it's not clear how useful
it is to XOR a constant source with the negation of the OR of the source and destination):

op= (PIX_SRC • PilC_NOT(PilC_SRC I PilC_DST)) l PilC_COLOR(red) I PilC_DONTCLIP

2.2. 7. Multi-Pixel Operations

The following operations all apply to multiple pixels at one time: rop, stencil, replrop, batchrop,
and vector. With the exception of vector, they refer to rectangular areas of pixels. They all use
a common mechanism, the op argument described in the previous section, to specify how pixels
are to be set in the destination.

2.2. 7.1. Rop: RaaterOp Source to Deatination

Device-dependent procedures invoked by the following macros perform the indicated raster
operation from a source to a destination pixrect:

#define pr_rop(dpr, dx, dy, dw, dh, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy, dw, dh, op, sx, sy;

Revision G of 15 April 1985 2-9

Pixel Data and Operations Sun Windows Reference Manual

#define prs_rop(dstregion, op, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr_prpos srcprpos;

dpr addresses the destination pixrect, whose pixels will be affected; (d>c, dy) is the origin (the
upper-left pixel) of the affected rectangle; dw and dh are the width and height of that rectan
gle. spr specifies the source pixrect, and (sx, sy) an origin within it. spr may be NULL, to
indicate a constant source specified in the op argument, as described previously; in this case sx
and sy are ignored. op specifies the operation which is performed; its construction is
described in preceding sections.

For prs_rop, the dpr, d>c, dy, dw and dh arguments are all collected Ill a
pr _subregion structure, defined previously
under Geometry Structa.

Raster operations are clipped to the source dimensions, if those are smaller than the destination
size given. Rop procedures return Prx..ERR if they fail, 0 if they succeed.

Source and destination pixrects generally must be the same depth. The only exception allows
depth=l pixrects to be sources to a destination of any depth. In this case, source pixels = 0 are
interpreted as O and source pixels = 1 are written as the maximum value which can be stored in
a destination pixel.

2.2. 1.2. Stencil: RasterOp• through a Mask

Device-dependent procedures invoked by the following macros perform the indicated raster
operation from a source to a destination pixrect only in areas specified by a third (stencil) pix
rect:

#define pr_stencil(dpr,dx,dy,dw,dh,op,stpr,stx,sty,spr,sx,sy)
struct pixrect *dpr, *stpr, *spr;
int dx,dy,dw,dh,op,stx,sty,sx,sy;

#define prs_stencil(dstregion, op, stenprpos, srcprpos)
struct pr_subregion dstregion;
int op;
struct pr_prpos stenprpos, srcprpos;

Stencil is identical to rop except that the source pixrect is written through a stencil pixrect
which functions as a spatial write-enable mask. The stencil pixrect must be a memory pixrect
with depth = 1. The indicated raster operation is applied only to destination pixels where the
stencil pixrect is non-zero. Other destination pixels remain unchanged. The rectangle from (sx,
sy) in the source pixrect spr is aligned with the rectangle from (stx, sty) in the stencil pix
rect stpr, and written to the rectangle at (d>c, dy) with width dw and height dh in the desti
nation pixrect dpr. The source pixrect spr may be NULL, in which case the color specified in
op is painted through the stencil. Clipping restricts painting to the intersection of the destina
tion, stencil and source rectangles. Stencil procedures return Prx..ERR if they fail, 0 if they
succeed.

2-10 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixe I Data and Operations

2.2. 7.9. Replrop: Replicating the Source Pixrect

Often the source for a raster operation consists of a pattern that is used repeatedly, or replicated
to cover an area. If a single value is to be written to all pixels in the destination, the best way is
to specify that value in the color component of a rop operation. But when the·pattern is larger
than a single pixel, a mechanism is needed for specifying the basic pattern, and how it is to be
laid down repeatedly on the destination. The pr _replrop procedure replicates a source pat
tern repeatedly to cover a destination area:

pr_replrop(dpr,
struct
int

dx, dy, dw, dh, op,
pixrect *dpr, *spr;
dx, dy, dw, dh, op,

spr, sx,

sx, sy;

#define prs_replrop(dsubreg, op, sprpos)
struct pr_subregion dsubreg;
struct pr_prpos sprpos;

sy)

dpr indicates the destination pixrect. The area affected is described by the rectangle defined by
dx, dy, dw, dh. spr indicates the source pixrect, and the origin within it is given by sx,
sy. The corresponding prs_replrop macro generates a call to pr _replrop, expanding its
dsubreg into the five destination arguments, and sprpos into the three source arguments.
op specifies the operation to be performed, as described above under Conatructing Op Argu
ment$.

The effect of replrop is the same as though an infinite pixrect were constructed using copies of
the source pixrect laid immediately adjacent to each other in both dimensions, and then a rop
was performed from that source to the destination. For instance, a standard gray pattern may
be painted across a portion of the screen by constructing a pixrect that contains exactly one tile
of the pattern, and by using it as the source pixrect.

The alignment of the pattern on the destination is controlled by the source origin given by sx,
sy. If these values are O, then the pattern will have its origin aligned with the position in the
destination given by dx, dy. Another common method of alignment preserves a global align
ment with the destination, for instance, in order to repair a portion of a gray. In this case, the
source pixel which should be aligned with the destination position is the one which has the same
coordinates as that destination pixel, modulo the size of the source pixrect. replrop will perform
this modulus operation for its clients, so it suffices in this case to simply copy the destination
position (dx, dy) into the source position (sx, sy).

Replrop procedures return PIX.ERR if they fail, 0 if they succeed. Internally replrop may use rop
procedures. In this case, rop errors are detected and returned by replrop.

2.2. 7.,1. Batch Ra.terOp: Multiple Source to the Same De.tination

Applications such as displaying text perform the same operation from a number of source pix
rects to a single destination pixrect in a fashion that is amenable to global optimization. Device
dependent procedures invoked by the following macros perform raster operations on a sequence
of sources to successive locations in a common destination pixrect:

Revision G of 15 April 1985 2-11

Pixel Data and Operations Sun Windows Reference Manual

#define pr_batchrop(dpr, dx, dy, op, items, n)
struct pixrect *dpr; C)
int dx, dy, op, n;
struct pr_prpos items[];

#define prs_batchrop(dstpos, op, items, n)
struct pr_prpos dstpos;
int op, n;
struct pr_prpos items[];

items is an array of pr _prpos structures used by a batchrop procedure as a sequence of
source pixrects. Each item in the array specifies a source pixrect and an advance in x and y.
The whole of each source pixrect is used, unless it needs to be clipped to fit the destination pix
rect: advance is used to update the destination position, not as an origin in the source pixrect.

Batchrop procedures take a destination, specified by dpr, dx and dy, or by dstpos in the
case of prs_batchrop; an operation specified in op, as described in Conatructing Op Argu
ment• above, and an array of pr _prpos addressed by the argument items, and whose length
is given in the argument n.

The destination position is initialized to the position given by dx and dy. Then, for each
item, the offsets given in pas are added to the previous destination position, and the operation
specified by op is performed on the source pixrect and the corresponding rectangle whose origin
is at the current destination position. Note that the destination position is updated for each
item in the batch, and these adjustments are cumulative.

The most common application of batchrop procedures is in painting text; additional facilities to
support this application are described below under Tezt Faci/itiea for Pizrecta. Note that the
definition of batchrop procedures supports variable-pitch and rotated fonts, and non-roman writ
ing systems, as well as simpler text.

Batchrop procedures return PIX..ERR if they fail, 0 if they succeed. Internally batchrop may use
rop procedures. In this case, rop errors are detected and returned by batchrop.

2.2. 7.5. Vector: Draw a Straight Line

Device-dependent procedures invoked by the following macros draw a vector one unit wide
between two points in the indicated pixrect:

#define pr_vector(pr, xO, yO, xl, yl, op, value)
struct pixrect *pr;
int xO, yO, xl, yl, op, value;

#define prs_vector(pr, posO, posl, op, value)
struct pixrect *pr;
struct pr_pos posO, posl;
int op, value;

Vector procedures draw a vector in the pixrect indicated by pr, with endpoints at (xO, yO)
and (xl, yl), or at posO and posl in the case of prs_vector. Portions of the vector lying
outside the pixrect are clipped as long as PIXJ)ONTCLIP is O in the op argument. The op argu
ment is constructed as described previously under Conatructing Op Argument•; and value
specifies the resulting value of pixels in the vector. If the color in op is non-zero, it takes pre
cedence over the value argument.

2-12 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.2. 7.6. Draw Curved Shapea {pr_traprop}

pr _traprop is an advanced pixrect operation analogous to pr _rap. pr _traprop operates
on a region called a trapezon, rather than on a rectangle.

A trapezon is a region with an irregular boundary. Like a rectangle, a trapezon has four sides:
top, bottom, left, and right. The top and bottom sides of a trapezon are straight and horizontal.
A trapezon differs from a rectangle in that its left and right sides are irregular curves, called
falls, rather than straight lines.

A fall is a line of irregular shape. Vertically, a fall may only move downward. Horizontally, a
fall may move to the left or to the right, and this horizontal motion may reverse itself. A fall
may also sustain pure horizontal motion, that is, horizontal motion with no vertical motion.

The figures below show a typical trapezon with source and destination pixrects, and some exam
ples of filled regions that were drawn by pr _traprop.

dest pr

----------,
I
I
I
I
I
I
I
I

I I

L-----------~

source pr

sx,sy

Figure 2-1: Typical trapezon with source and destination pixrects

1
Figure 2-2: Some figures drawn by pr _traprop

Revision G of 15 April 1985 2-13

Pixel Data and Operations Sun Windows Reference Manual

pr_traprop(dpr, dx, dy, t, op, spr, sx, sy)
struct pixrect *dpr, *spr;
struct pr_trap t;
int dx, dy, sx, sy op;

dpr and spr are pointers to the destination and source pixrects, respectively. t is the trapezon
to be used. dx and dy specify an offset into the destination pixrect. sx and sy specify an
offset into the source pixrect. op is an op-code as specified previously (see the section entitled
Constructing an Op Argument).

struct pr _trap {
struct pr _fall *left, *right;
int yO, yl;

};

struct pr _fall {
struct pr _pos pos;
struct pr_chain *chain;

};

struct pr_chain {
struct pr_chain *next;
struct pr_size size;
int *bits;

};

pr_ traprop performs a rasterop from the source to the destination, clipped to the trapezon's
boundaries. A program must call pr _traprop once per trapezon; therefore this procedure
must be called at least twice to draw the letter 'A' in the figure Some figurea drawn by
pr_traprop.

The source pixrect is aligned with the destination pixrect; the pixel at (sx,sy) in the source pix
rect goes to the pixel at (dx,dy) in the destination pixrect (see the figure Typical trapezon with
aource and dedination pixrecta).

Positions within the trapezon are relative to position (dx,dy) in the destination pixrect. Thus, a
position defined as (0,0) in the trapezon would actually be at (dx,dy) in the destination pixrect.

The structure pr _trap defines the boundaries of a trapezon. A trapezon consists of pointers to
two falls (*left and *right) and two y coordinates specifying the top and bottom of the tra
pezon (yo and yl). Note that the trapezon's top and bottom may be of zero width; yO and yl
may simply serve as points of reference.

Each fall consists of a starting position (pas) and a pointer to the head of the list of chains
describing the path the fall is to take (*chain). A fall may start anywhere above the trapezon
and end anywhere below it. pr _traprop ignores the portions of a fall that lie above and
below the trapezon. If a fall is shorter than the trapezon, pr _traprop will clip the trapezon
horizontally to the endpoint of the fall in question. The figure Trapezon with clipped fa/la illus
trates the way this works.

A chain is a member of a linked list of structures that describes the movement of the fall. Each

0

0

chain describes a single segment of the fall. Each chain consists of a pointer to the next member O•

of the chain (*next), the size of the bounding box for the chain (size), and a pointer to a bit

2-14 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

vector contatntng motion commands (*bits). Please see the section Geometry Structa for a
description of the pr _size structure.

Each chain may specify motion to the right and/or down, or motion to the left and/or down;
however, a single chain may not specify both rightward and leftward motion. Remember that
motion may not proceed upward, and that straight horizontal motion is permitted.

The x value of the chain's size determines the direction of the motion: a positive x value indi
cates rightward motion, while a negative x value indicates leftward motion. The y value of the
chain's size must always be positive, since a fall may not move upward (in the direction of
negative y).

A chain's bit vector is a command string that tells pr _traprop how to draw each segment of
the fall. Each set (1) bit in the vector is a command to move one pixel horizontally and each
clear (0) bit is a command to move one pixel vertically. The bits within the bit vector are stored
in byte order, from most significant bit to least significant bit. This ordering corresponds to the
left-to-right ordering of pixels within a memory pixrect.

The fall begins at the starting position specified in pr _fall. The motion proceeds downward
as specified in the first bit vector in the chain, from the high-order bit to the low-order bit.
When the fall reaches the bottom of the bounding box, it continues at the top of the next chain's
bounding box. Note that the fall will always begin and end at diagonally opposite corners of a
given bounding box.

If a bit vector specifies a segment of the fall that would run outside of the bounding box,
pr_ traprop clips that segment of the fall to the bounding box. This would occur when the
sum of the l's in a chain's bit vector exceeds the chain's x size, or when the sum of the O's in the
chain's bit vector exceeds the chain's y size. When this happens, the segment in question runs
along the edge of the bounding box until it reaches the corner of the bounding box diagonally
opposite to the corner in which it started.

If the fall is to have a straight vertical segment, the x size of its chain must be 0. If the fall is to
have a straight horizontal segment, the y size of its chain must be 0.

yO

left fall

yl

Revision G of 15 April 1985

right->pos

-r------
i f chain bounding box

I
I
I
I
: chain bounding box

I
I
I
I
I

-------1
: f chain bounding box

_ _J _____________ _

Figure 2-3: Trapezon with clipped falls

2-15

Pixel Data and Operations Sun Windows Reference Manual

The following program draws the octagon shown in the figure Some figures drawn by
pr_traprop". Make sure to give cc the library argument - lpixrect.

jinclude <pixrect/pixrect_hs.h>

int shallowsteep[) = {Oxbbbbbbbb, Oxbbbbbbbb, Ox44444444, Ox44444444},
steepshallow[J = {Ox44444444, Ox44444444, Oxbbbbbbbb, Oxbbbbbbbb};

struct pr_chain leftl = {O, {64, 64}, steepshallow},

struct pr _fall

struct pr_trap

main()
{

leftO = {&leftl, {-64, 64}, shallowsteep},
rightl = {O, {-64, 64}, steepshallow},
rightO = {&rightl, {64, 64}, shallowsteep};

left_oct
right_oct

octagon

= {{O, O}, &leftO},
= {{O, O}, &rightO};

= {&left_oct, &right_oct, 0, 128};

pr_traprop(pr_open("/dev/fb"), 576, 450, octagon, PIJLSET, 0, 0, O);
}

pr _chain specifies the left lower, the left upper, the right lower, and the right upper sides of
the octagon, in that order. pr _fall specifies first the left side, then the right side of the octa
gon.

0

Each of the eight sides of the octagon is half a chain. The two upper left sides correspond to o
chain leftO. The bits start out with mostly I's (Oxb is binary 1011) for the shallow uppermost '
left edge. They turn to mostly O's (Ox4 is binary 0100) for the next edge down, which is steeper.

2.2. 7. 7. Polygon: Textured Polygon• with Ho/ea

pr _polygon_2 draws a polygon in a pixrect. The polygon can have holes. In addition, you can
fill it with an image or a texture. You invoke pr _polygon_2 as follows:

pr_polygon_2(dpr, dx, dy, nbnds, npts, vlist, op, spr, sx, sy)
struct pixrect *dpr, *spr;
int dx, dy
int nbnds, npts[);
struct pr_pos *vlist;
int op, sx, sy;

This routine is like pr _rap except that nbnds, npts and vlist specify the destination
region instead of (dw, dh) .

nbnds is the number of individual closed boundaries (vertex lists) in the polygon. For example,
the polygon may have one boundary for its exterior shape and several boundaries delimiting inte
rior holes. The boundaries may self intersect or intersect each other. Those pixels having an
odd wrapping number are painted. That is, if any line connecting a pixel to infinity crosses an
odd number of boundary edges, the pixel will be painted.

For each of the nbnds boundaries npts specifies the number of points in the boundary. Hence 0
the npts array is nbnds in length. The vlist contains all of the boundary points for all of ,

2-16 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Pixe I Data and Operations

the boundaries. The number of points in order are npts[OJ+ ... +npts[nbnds-1].
pr _polygon_2 joins the last point and first point to close each boundary.

The spr source pixrect fills the interior of the polygon as in pr _rop. The position sx, sy in
spr coordinates coincides with position dx, dy in dpr coordinates. If sx = -5 and sy =
-10, for example, the source pixrect is positioned at (dx+5, dy+!O) in dpr coordinates.
pr _polygon_2 clips to both spr and dpr except in the case of NULL spr, where the polygon
is filled with the color value in op. The source offset sx, sy is used to superimpose the source
image over the polygon. The spr must have depth less than or equal to the depth of dpr. A
point (pts[n] .x, pts[n] .y) in the boundary of a polygon is mapped to (dx + pts[n] .x,
dy + pts [n] . y) .

2.2.8. Colormap Access

A co/ormap is a table which translates a pixel value into 8-bit intensities in red, green, and blue.
For a pixrect of depth n, the corresponding colormap will have 2° entries. The two most com
mon cases are depth=l (monochrome with two entries) and depth=8 (with 256 entries). Memory
pixrects do not have colormaps.

2.2.8.1. Get Co/ormap

The following macros invoke device-dependent procedures to read all or part of a colormap into
arrays m memory:

#define pr_getcolormap(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red(], green[], blue[];

#define prs_getcolormap(pr, index, count, red, green, blue)
struct pixrect *pr;
int index, count;
unsigned char red[], green(], blue(];

These two macros have identical definitions; both are defined to allow consistent use of one set
of names for all operations.

pr identifies the pixrect whose colormap is to be read; the count entries starting at index
(zero origin) are read into the three arrays.

For monochrome pixrects the same value is read into corresponding elements of the red,
green and blue arrays. These array elements will have their bits either all cleared, indicating
black, or all set, indicating white. By default, the 0th (background) element is white, and the 1st
(foreground) element is black. Colormap procedures return -1 if the index or count are out of
bounds, and O if they succeed.

2.2.8.2. Put Co/ormap

The following macros invoke device-dependent procedures to store from memory into all or part
of a colormap:

Revision G of 15 April 1985 2-17

Pixel Data and Operations Sun Windows Reference Manual

#define pr_putcolormap(pr, index, count, red, green, blue)
struct pixrect
int
unsigned char

*pr;
index, count;
red[], green[], blue[];

#define prs_putcolormap(pr, index, count, red, green, blue)
struct pixrect
int
unsigned char

*pr;
index, count;
red[] , green[] , blue[] ;

These two macros have identical definitions; both are defined to allow consistent use of one set
or names for all operations.

The count elements starting at index (zero origin) in the colormap for the pixrect identified
by pr are loaded from corresponding elements of the three arrays.

For monochrome pixrects, the only value considered is red [OJ. If this value is 0, then the pix
rect will be set to a dark background and light foreground. If the value is non-zero, the fore
ground will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by default.

Note: Full functionality of the colormap is not supported for depth=l pixrects. Colormap
changes to depth=l pixrects apply only to subsequent operations whereas a colormap change to
a color device instantly changes all affected pixels on the display surface.

2.2.8.9. Provision for Inverted Video Pizrecta

Video inversion is accomplished by manipulation of the colormap of a pixrect. The colormap of
a depth=l pixrect has two elements. The following procedures provide video inversion control:

pr_blackonwhite(pr, min, max)
struct pixrect *pr;
int min, max;

pr_whiteonblack(pr, min, max)
struct pixrect *pr;
int min, max;

pr_reversevideo(pr, min, max)
struct plxrect *pr;
int min, max;

In each procedure, pr identifies the pixrect to be affected; min is the lowest index in the color
map, specifying the background color, and max is the highest index, specifying the foreground
color. These will most often be O and 1 for monochrome pixrects; the more general definitions
allow colormap-sharing schemes, such as the one described in Colormap Sharing, in the chapter
Overlapped Window,: Imaging Facilities.

"Black-on-white" means that zero (background) pixels will be painted at full intensity, which is
usually white. pr _blackonwhite sets all bits in the entry for colormap location min and
clears all bits in colormap location max.

"White-on-black" means that zero (background) pixels will be painted at minimum intensity,
which is usually black. pr •• whiteonblack clears all bits in colormap location min and sets
all bits in the entry for colormap location max.

2-18 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual

pr _reversevideo exchanges the min and max color intensities.

These procedures are ignored for memory pixrects.

Pixel Data and Operations

Note: These procedures are intended for global foreground/background control, not for local
highlighting. For monochrome frame buffers, aubaequent operations will have inverted intensities.
For color frame buffers, the colormap is modified immediately, which affects everything in the
display.

2.2.9. Attributes for Bitplane Control

In a color pixrect, it is often useful to define bitplanes which may be manipulated independently;
operations on one plane leave the other planes of an image unaffected. This is normally done by
assigning a plane to a constant bit position in each pixel. Thus, the value of the ith bit in all the
pixels defines the ith bitplane in the image. It is sometimes beneficial to restrict pixrect opera
tions to affect a subset of a pixrect's bitplanes. This is done with a bitplane mask. A bitplane
mask value is stored in the pixrect's private data and may be accessed by the attribute opera
tions.

2. 2. 9.1. Get A !tribute,

Device-dependent procedures invoked by the following macros retrieve the mask which controls
which planes in a pixrect are affected by other pixrect operations:

#define pr_getattributes(pr, planes)
struct pixrect •pr;
int *planes;

#define prs_getattributes(pr, planes)
struct pixrect *pr;
int *planes;

pr identifies the pixrect; its current bitplanes mask is stored into the word addressed by
planes. If planes is NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use of the same
style of names.

2.2.9.2. Put Attribute,

Device-dependent procedures invoked by the following macro manipulate a mask which controls
which planes in a pixrect are affected by other pixrect operations:

#define pr__putattributes(pr, planes)
struct pixrect •pr;
int *planes;

#define prs__putattributes(pr, planes)
struct pixrect *pr;
int *planes;

Revision G of 15 April 1985 2-19

Pixel Data and Operations Sun Windows Reference Manual

The two macros are identically defined; both are provided to allow consistent use of the same
style of names.

pr identifies the pixrect to be affected.

The *planes argument is a pointer to a bitplane write-enable mask. Only those planes
corresponding to mask bits having a value of 1 will be affected by subsequent pixrect operations.
If *planes is NULL, no operation is performed.

Note: If any p 1 anes are masked off by a call to pr _putattr ibutes, no further write access
to those planes is possible until a subsequent call to pr _putattributes unmasks them. How
ever, these planes can still be read.

2.2.10. Efficiency Considerations

For maximum execution speed, remember the following points when you write pixrect programs:

• pr _get and pr _put are relatively slow. For fast random access of pixels it is usually faster
to read an area into a memory pixrect and address the pixels directly.

• pr _rop is fast for large rectangles.

• pr_ vector is fast.

• functions run faster when clipping is turned off. Do this only if you can guarantee that all
accesses are within the pixrect bounds.

• pr _rop is three to five times faster than pr _stencil

• pr _batch_rop cuts down the overhead of painting many small pixrects.

2.3. Text Facilities for Pixrects

Displaying text is an important task in many applications, so pixrect-level facilities are provided
to address it directly. These facilities fall into two main categories: a standard format for
describing fonts and character images, with routines for processing them; and a set of routines
which take a string of text and a font, and handle various parts of painting that string in a pix
rect.

2.3.1. Pixfonts and Pixchars

The following two structures describe fonts and character images for pixrect-level text facilities:

struct pixchar {
struct pixrect *pc_pr;
struct pr_pos pc.J,ome;
struct pr_pos pc_adv;

};

struct pixfont {
struct pr_size p f_defaul tsize;
struct pixchar pf_char [256];

};

2-20 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

The pixchar defines the format of a single character in a font. The actual image of the char
acter is a pixrect (a separate pixrect for each character) addressed by pc_pr. The entire pix
rect gets painted. Characters that do not have a displayable image will have NULL in their entry
in pc_pr. pc_home is the origin of pixrect pc_pr (its upper left corner) relative to the
character origin. A character's origin is the leftmost end of its baae/ine, which is the lowest
point on characters without descenders. The figure below illustrates the pc_pr origin and the
character origin.

The leftmost point on a character is normally its origin, but kerning or mandatory letter spacing
may move the origin right or left of that point. pc_adv is the amount the destination position
is changed by this character; that is, the amounts in pc_adv added to the current character
origin will give the origin for the next character. While normal text only advances horizontally,
rotated fonts may have a vertical advance. Both are provided for in the font.

A pixfont contains an array of pixchars, indexed by the character code; it also contains
the size (in pixels) of its characters when they are all the same. (If the size of a font's characters
varies in one dimension, that value in p f_de faul tsize will not have anything useful in it;
however, the other may still be useful. Thus, for non-rotated variable-pitch fonts,
pf_defaul tsize. y will still indicate the unleaded interline spacing for that font.)

Note: The definition of a pixfont is expected to change.

Figure 2-4: Character and pc_pr origins

•pc_pr origin *pc_pr origin

t i

g A
pixrect pixrect baseline

baseline
character origin

Revision G of 15 April 1985 2-21

Pixel Data and Operations Sun Windows Reference Manual

2.3.2. Operations on Pixfonts

Before a client may use a font, it must ensure that the font has been loaded into virtual memory;
this is done with p f_open:

struct pixfont •pf_open(name)
char *name;

This procedure opens the file with the given name. The file should be a font file as described in
vfont(5): the file is converted to pixfont format, allocating memory for its associated structs and
reading in the data for it from disk. A NULL is returned if the font cannot be opened.

The procedure:

struct pixfont *pf_default()

performs the same function for the system default font, normally a fixed-pitch, 16-point sans serif
font with upper-case letters 12 pixels high. If the environment parameter DEFAULT..FONT is set,
its value will be taken as the name of the font file to be opened by p f_de fault. The entire
path name of the font file must be specified, for example:

my font = pf_open (" /usr /lib/fonts/fixedwidthfonts/screen. r. 7");

Note: p f_open and p f_de fault load a new copy of the font every time they are called, even
if the font has already been loaded. To conserve memory, clients may use pw_pfsysopen,
described in Overlapped Windowa: Imaging Facilitiea, or take care only to open a font once in a
process.

When a client is finished with a font, it should call pf_close to free the memory associated
with it:

pf_close (pf)
struct pixfont *pf;

pf should be a font handle returned by a previous call to p f_open or p f_de fault.

2.3.3. Pixrect Text Display

Characters are written into a pixrect with the pf_text procedure:

pf_text (where,
struct
int
struct
char

op, font, text)
pr_prpos where;
op;
pixfont •font;
*text;

The where argument is the destination for the start of the text (nominal left edge, baseline; see
Pizfonta); op is the raster operation to be used in writing the text, as described in Conatructing
Op Argument•; font is a pointer to the font in which the text is to be displayed; and text is
the actual null-terminated string to be displayed. No error indicators are returned. Note: The
color specified in the op specifies the color of the ink. The background of the text is painted 0
(background color).

The following procedure paints "transparent" text: it doesn't disturb destination pixels in blank
areas of the character's image:

2-22 Revision G of 15 April 1985

0

Q

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

pf_ttext(where, op, font, text)
struct pr_prpos where;
int op;
struct pixfont *font;
char *text;

The arguments to this procedure are the same as for p Ltext. The characters' bitmaps are
used as a stencil, and the color specified in op is squirted through the stencil. No error indica
tors are returned.

(For monochrome pixrects, the same effect can be achieved by using PIX..SRC I PDU)ST as the
function in the op; this procedure is for color pixrects.)

Auxiliary procedures used with pf_ text include:

struct pr_size pf_textbatch(where, lengthp, font, text)
struct pr_pos where[);
int *lengthp;
struct pixfont *font;
char *text;

struct pr_size pf_textwidth(len, font, text)
int len;
struct pixfont *font;
char *text;

pf_textbatch is used internally by pf_text; it constructs an array of pr _pos structures
and records its length, as required by batchrop (see Batch Raater Op). where should be the
address of the array to be filled in, and lengthp should point to a maximum length for that
array. text addresses the null-terminated string to be put in the batch, and font refers to
the pixfont to be used to display it. When the function returns, * lengthp will refer to a word
containing the number of pr _pos structures actually used for text. The pr _size returned
is the sum of the pc_adv fields in their pixchar structs.

pf_textwidth returns a pr _size which contains the sum of the len characters in the text
of the pc_adv in their pixchar structs.

The following routine may be used to find the bounding box for a string of characters in a given
font.

pf_textbound(bound, len, font, text)
struct pr_subregion *bound;
int len;
struct pixfont *font;
char •text;

bound->pos is the top-left corner of the bounding box, bound->size. x is the width, and
bound->size. y is the height. bound->pr is not modified. bound->pos is computed rela
tive to the location of the character origin (base point) of the first character in the text.

Revision G of 15 April 1985 2-23

Pixel Data and Operations Sun Windows Reference Manual

2.4. Memory Pixrects

Pixrects which store their pixels in memory, rather than displaying them on some display, are
similar to other pixrects but have several special properties. Like all other pixrects, their dimen
sions are visible in the pr _size and pr _depth elements of their pixrect struct, and the
device-dependent operations appropriate to manipulating them are available through their
pr _ops. Beyond this, however, the format of the data which describes the particular pixrect is
also public: pr _data will hold the address of an mpr _data struct, described below. Thus, a
client may construct and manipulate memory pixrects using non-pixrect operations. There is
also a public procedure, mem_create, which dynamically allocates a new memory pixrect, and
a macro, mpr _static, which can be used to generate an initialized memory pixrect in the code
of a client program.

2.4-1. The Mpr_data Struct

The pr _data element of a memory pixrect points to an mpr _data struct, which contains the
information needed to deal with a memory pixrect:

struct mpr_data {
int md_linebytes;
short *md_image;
struct pr_pos md_offset;
short md_primary;
short md_flags;

};
#define MP_DISPLAY
#define MP_REVERSEVIDEO

linebytes is the number of bytes stored in a row of the primary pixrect. This is the difference
in the addresses between two pixels at the same x-coordinate, one row apart. Because a secon
dary pixrect may not include the full width of its primary pixrect, this quantity cannot be com
puted from the width of the pixrect - see Region. The actual pixels of a memory pixrect are
stored someplace else in memory, usually an array, which md_image points to; the format of
that area is described in the next section. The creator of the memory pixrect must ensure that
md_image contains an even address. md_offset is the x, y position of the first pixel of this
pixrect in the array of pixels addressed by md_image. md_primary is 1 if the pixrect is pri
mary and had its image allocated dynamically (e.g. by mem_create). In this case, md_image
will point to an area not referenced by any other primary pixrect. This flag is interrogated by
the destroy routine: if it is 1 when that routine is called, the pixrect's image memory will be
freed.

(md_flags & MP ..DISPLAY) is non-zero if this memory pixrect is in fact a display device. Other
wise, it is 0. (md_flags & MP ...REVERSEVIDEO) is 1 if re11erae11ideo is currently in effect for the
display device. md_ flags is present to support memory-mapped display devices like the
Sun-2 black-and-white video device.

Several macros exist to aid in addressing memory pixrects. The following macro obtains a
pointer to the mpr _data of a memory pixrect.

#define mpr_d(pr)
((struct mpr_data *) (pr)->pr_data)

2-24 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

The following macro computes the bytes per line of a primary memory pixrect given its width in
pixels and the bits per pixel. This includes the padding to word bounds. It is useful for incre
menting pixel addresses in the y direction.

#define mpr_linebytes (width,depth)
(((pr_product(width,depth)+15)>>3) &·1)

2 .. ,t.2. Pixel Layout in Memory Pixrects

In memory, the upper-left corner pixel is stored at the lowest address. This address must be
even. That first pixel is followed by the remaining pixels in the top row, left-to-right. Pixels are
stored in successive bits without padding or alignment. For pixels more than 1 bit deep, it is pos
sible for a pixel to cross a byte boundary. However, rows are rounded up to 16-bit boundaries.
After any padding for the top row, pixels for the row below are stored, and so on through the
whole rectangle. Currently, memory pixrects are only supported for pixels of 1, 8, 16, or 24 bits.
If source and destination are both memory pixrects they must have an equal number of bits per
pixel.

2.4-s. Creating Memory Pixrects

fL/.9.1. Mem_create

0 A new primary pixrect is created by a call to the procedure mem_create:

struct pixrect •mem...create(w, h, depth)

0

int w, h, depth;

w, h, and depth specify the width and height in pixels, and depth in bits per pixel, of the new
pixrect. Sufficient memory to hold those pixels is allocated and cleared to 0, new mpr _data
and pixrect structs are allocated and initialized, and a pointer to the pixrect is returned. If
this can not be done, the return value is NULL.

2.,1.9.2. mem_point

The mem_point routine builds a pixrect structure that points to a dynamically created image
in memory. Client programs may use this routine as an alternative to mem_create if the
image data is already in memory.

height, depth, data)
struct pixrect •
mem...point(width,

int
short

width, height, depth;
*data;

width and height are the width and height of the
depth of the new pixrect, in number of bits per pixel.
ated with the pixrect.

Revision G of 15 April 1985

new pixrect, in pixels. depth is the
data points to the image to be associ-

2-25

Pixel Data and Operations Sun Windows Reference Manual

2.,1.9.9. Static Memory Pizrecta

A memory pixrect may be created at compile time by using the mpr _static macro:

#define mpr_static(name, w, h, depth, image)
int w, h, depth;
short *image;

where name is a token to identify the generated data objects; w, h, and depth are the width
and height in pixels, and depth in bits of the pixrect; and image is the address of an even-byte
aligned data object that contains the pixel values in the format described above.

The macro generates two structs:

struct mpr_data name_data;
struct pixrect name;

The mpr _data is initialized to point to all of the image data passed in; the pixrect then refers
to mem_ops and to name_data. Note: Contrary to its name, this macro generates structs of
storage class extern.

2-26 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.5. File 1/0 Facilities for Pixrects

Sun has specified a file format for files containing raster images. This format is defined by the
header file <raster file .h>. The pixrect library contains routines to perform 1/0 operations
between pixrects and files in the raster file format. This 1/0 is done using the routines of the C
Library Standard 1/0 package, requiring the caller to include the header file <stdio. h>.

The raster file format allows for multiple types of raster images. This means that both unen
coded and encoded images are supported. In addition, the pixrect library routines that read and
write raster files support the notion of customer defined formats. This support is implemented
by passing raster files with non-standard types through filters found in the directory
/usr/lib/rasfilters. This directory also includes sample source code for a filter that
corresponds to one of the standard raster file types.

2.5.1. Writing of Complete Raster Files

The following procedure stores the image described by a pixrect onto a file. It normally returns
0, but if any error occurs it returns PIX...ERR.

int
pr_dump(input_pr, output, colormap, type, copy_flag)

struct pixrect *input_pr;
FILE •output;
colormap_t *colormap;
int type, copy_flag;

The input_pr pixrect can be a secondary pixrect. This allows the caller to write a rectangular
sub-region of a pixrect by first creating an appropriate input_pr via a call to pr _region.
The output file is specified via output. The desired output type should either be one of the fol
lowing standard types or correspond to a customer provided filter.

#define RT_OLD 0
#define RT_STANDARD 1
#define RT_BYTE_ENCODED 2

The RT_STANDARD type is the common raster file format in the same sense that memory pixrects
are the common pixrect format: every raster file filter is required to read and write this format.
The RT_OLD type is very close to the RT_STANDARD type; it was the former standard generated
by old versions of Sun software. The RT...BYTE_.ENCODED type implements a run-length encoding
of bytes of the pixrect image; usually this results in shorter files. Specifying any other output
type causes pr _dump to pipe a raster file of RT_STANDARD type to the filter named
/usr /1 ib/ras f i 1 tars/convert. type, where type is the ASCII corresponding to the
specified type in decimal. The output of the filter is then copied to output.

It is strongly recommended that customer-defined formats use a type of 100 or more, to avoid
conflicts with additions to the set of standard types. To aid in development of filters for
customer-defined formats, pr _dump recognizes the RT....EXPERIMENTAL type as special, and uses
the filter named

#define RT_EXPERIMENTAL 65535

For pixrects displayed on devices with colormaps, the values of the pixels are not sufficient to
recreate the displayed image. Thus, the image's colormap can also be specified in the call to

Revision G of 15 April 1985 2-27

Pixel Data and Operations Sun Windows Reference Manual

pr _dump. If the colormap is specified as NULL but input_pr is not of depth=!, pr _dump
will attempt to write the colormap obtained from input_pr (via pr _getcolormap assuming o
a 256 element RGB colormap). The following struct is used to specify the colormap associated ·
with input_pr:

typedef struct {
int
int
unsigned char

} colormap_t;

type;
length;

*map [3];

The colormap type should be one of the Sun supported types:

#define RMT_NONE 0
#define RMT_EQUAL_RGB 1

II the colormap type is RMT_NONE, then the colormap length must be 0. This case usually arises
when dealing with monochrome displays and depth=l pixrects. If the colormap type is
RMT_EQUALJWB, then the map array should specify the red (map [OJ), green (map [1]) and blue
(map [2]) colormap values, with each vector in the map array being of the same specified color
map length. For developers of customer-defined formats, the following colormap type is provided
but not interpreted by the pixrect software:

#define RMT_RAW 2

Finally copy _flag specifies whether or not input_pr should be copied to a temporary pix
rect before the image is output. There are two situations in which the copy_flag value
should be non-zero:

• if the output type is RT..BYTE_ENCODED - This is because the encoding algorithm does the
encoding in place and will destroy the image data of input_pr if it fails while working on
input_pr directly.

• if input_pr is a pixrect in a framebuffer that is likely to be asynchronously modified -
Note that use of copy_flag will still not guarantee that the correct image will be output
unless the pr _rop to copy from the framebuffer is atomic or otherwise made uninterrupt
able.

2.5.2. Reading of Complete Raster Files

The following procedure can be used to retrieve the image described by a file into a pixrect.

struct pixrect *
pr_load(input, colormap)

FILE *input;
colormap_t *colormap;

The raster file's header is read from input, a pixrect of the appropriate size is dynamically
allocated, the colormap is read and placed in the location addressed by *colormap, and finally
the image is read into the pixrect and the pixrect returned. If any problems occurs, pr _load
returns NULL instead.

0

As with pr _dump, if the specified raster file is not of standard type, pr _load first runs the file
through the appropriate filter to convert it to RT_STANDARD type and then loads the output of Q,

the filter.

2-28 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

Additionally, if colormap is NULL, pr _load will simply discard any and all colormap informa
tion contained in the specified input raster file.

2.5.3. Details of the Raster File Format

A handful of additional routines are available in the pixrect library for manipulating pieces of
raster files. In order to understand what they do, it is necessary to understand the exact layout
of the raster file format.

The raster file is in three parts: first, a small header containing 8 ints; second, a (possibly empty)
set of colormap values; third, the pixel image, stored a line at a time, in increasing y order.

The image is essentially laid out in the file the exact way that it would appear in a memory pix
rect. In particular, each line of the image is rounded out to a multiple of 16 bits, corresponding
to the rounding convention used by the memory pixrects.

The header is defined by the following structure:

struct raster file {
int ras_magic;
int ras_width;
int rasJieight;
int ras_depth;
int ras_length;
int ras_type;
int rasJDaptype;
int rasJDaplength;

};

The ras_magic field always contains the following constant:

#define RAS_MAGIC Ox59a66a95

The ras_width, ras_height, and ras_depth fields contain the image's width and height
in pixels, and its depth in bits per pixel, respectively. The depth is usually either 1 or 8,
corresponding to the standard frame buffer depths.

The ras_length field contains the length in bytes of the image data. For an unencoded image,
this number is computable from the ras_width, ras_height, and ras_depth fields, but
for an encoded image it must be explicitly stored in order to be available without decoding the
image itself. Note that the length of the header and of the possibly empty colormap values are
not included in the value in the ras_length field; it is only the image data length. For histori
cal reasons, files of type RT_OLD will usually have a O in the ras_length field, and software
expecting to encounter such files should be prepared to compute the actual image data length if
it is needed. The ras_maptype and ras_maplength fields contain the type and length in
bytes of the colormap values, respectively.

If the ras_maptype is not RMT__NONE and the ras_maplength is not 0, then the colormap
values are the ras_maplength bytes immediately after the header. These values are either
uninterpreted bytes (usually with the ras_maptype set to RMT....RAW) or the equal length red,
green and blue vectors, in that order (when the ras_maptype is RMT...EQUAL..RGB). In the
latter case, the ras_maplength must be three times the size in bytes of any one of the vec
tors.

Revision G of 15 April 1985 2-29

Pixel Data and Operations Sun Windows Reference Manual

2.5.,4. Writing Parts of a Raster File

The following routines are available for writing the various parts of a raster file. Many of these
routines are used to implement pr _dump. First, the raster file header and the colormap can be
written by calling:

int
pr_dump_header(output, rh,

FILE
struct rasterfile
colormap_t

colormap)
•output;
*rh;
*colormap;

This routine returns PIX.ERR if there is a problem writing the header or the colormap, otherwise
it returns 0. If the colormap is NULL, no colormap values are written.

For clients that do not want to explicitly initialize the rasterfile struct the following routine can
be used to set up the arguments for pr _dump_header:

struct pixrect •
pr_dump_init(input_pr, rh,

struct pixrect
struct rasterfile
colormap_t
int

colormap, type, copy_flag)
*input_pr;
*rh;
•colormap;
type, copy_flag;

The arguments to pr _dump_init correspond to the arguments to pr _dump. However,
pr _dump_ini t returns the pixrect to write, rather than actually writing it, and initializes the
struct pointed to by rh rather than writing it. If colormap is NULL, the ras_maptype and
ras_maplength fields of rh will be set to RMT_NONE and 0, respectively.

If any error is detected by pr _dump_ini t, the returned pixrect is NULL. If there is no error
and the copy_flag is zero, the returned pixrect is simply input_pr. However, if
copy_flag is non-zero, the returned pixrect is dynamically allocated and the caller is responsi
ble for deallocating the returned pixrect after it is no longer needed.

The actual image data can be output via a call to:

int
pr_dump_image(pr, output, rh)

struct pixrect
FILE

*pr;
*output;

struct rasterfile *rh;

This routine returns O unless there is an error, in which case it returns PIX.ERR.

Since these routines sequentially advance the output file's write pointer, pr _dump_image must
be called after pr _dump_header.

2-30 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.5.5. Reading Parts of a Raster File

The following routines are available for reading the various parts of a raster file. Many of these
routines are used to implement pr _load. Since these routines sequentially advance the input
file's read pointer, rather than doing random seeks in the input file, they should be called in the
order presented below.

First, the raster file header can be read by calling:

int
pr_load_header(input, rh)

FILE
struct rasterfile

*input;
*rh;

This routine reads the header from the specified input, checks it for validity and initializes the
specified rasterfile struct from the header. The return value is O unless there is an error, in
which case it returns PIX.ERR.

If the header indicates that there is a non-empty set of colormap values, they can be read by cal
ling:

int
pr_load_colormap(input, rh, colormap)

FILE *input;
struct rasterfile
colormap_t

*rh;
*colormap;

If the specified colormap is NULL, this routine will skip over the colormap values by reading and
discarding them. Note that the caller is responsible for looking at the raster file header and set
ting up an appropriate colormap struct before calling this routine.

The return value is O unless there is an error, in which case it returns PIX.ERR.

Finally, the image can be read by calling:

struct pixrect •
pr_load_image(input,

FILE
rh, colormap)

*input;
struct rasterfile
colormap_t

*rh;
*colormap;

If the input is a standard raster file type, this routine reads in the image directly. Otherwise, it
writes the header, colormap, and image into the appropriate filter and then reads the output of
the filter. In this case, both the rasterfile and the colormap structs will be modified as a side
effect of calling this routine. In either case, a pixrect is dynamically allocated to contain the
image, the image is read into the pixrect, and the pixrect is returned as the result of calling the
routine. If there is an error, the return value is NULL instead of a pixrect containing the image.

If it is known that the image is from a standard raster file type, then it can be read in by calling:

struct pixrect •
pr_load_std_image(input, rh,

FILE
struct rasterfile

colormap)
*input;
*rh;

This routine is identical to pr _load_image, except that it will not invoke a filter on non
standard raster file types.

Revision G of 15 April 1985 2-31

0

0

0

0

0

0

Chapter 3

Overlapped Windows: Imaging Facilities

This chapter and the following two deal with the aunwindow layer of the window system, which
provides facilities for managing windows with overlap and concurrency. This chapter is
specifically concerned with generating images in such an environment. Chapter 4 deals with con
trol of the windows, manipulating their size, location, and other structural characteristics.
Chapter 5 describes the facilities for serializing multiple input streams and distributing them
appropriately to multiple windows. The term "sunwindow layer" comes from the name of the
library that contains its implementation.

At this level of the system, a window is treated as a device: it is named by an entry in the
/dev directory; it is accessed by the open(2) system call; and the usual handle on the window
is the Ji.le deacriptor (or fd) returned from that call.

For this chapter, however, a window may be considered as simply a rectangular area with con
tents maintained by some process. Multiple windows, maintained by independent processes, may
coexist on the same screen; Sun Windows allows them to overlap, sharing the same (x, y) coordi
nates, and proceeding concurrently, while maintaining their separate identities.

Window system facilities may also be used to construct a non-overlapped environment; the win
dow system facilities required are much the same as for constructing an overlapping environ
ment.

3.1. Window Issues: Controlled Display Generation

Multiple windows on a display introduce two new issues, which may be broadly characterized as:
1) preventing the window from painting where or when it shouldn't, and 2) ensuring that it does
paint whenever and wherever it should. The first includes clipping and locking; the latter covers
damage repair and fixupa.

3.1.1. Clipping and Locking

Clipping constrains a window to draw only within the boundaries of its portion of the screen.
Even this area is subject to changes beyond the control of a window's process - another window
may be opened on top of the first, covering part of its contents, or a window may be shrunk to
make room for another alongside it. Thus, it is convenient for the window system to maintain
up-to-date information on which portions of the screen belong to which windows, and for the
windows to consult that information whenever they are about to draw on the screen.

Locking prevents window processes from interfering with each other in several ways:

• Raster hardware may require several operations to complete a change to the display; one
process' use of the hardware should be protected from interference by others during this
critical interval.

Revision G of 15 April 1985 3-1

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

• Changes to the arrangement of windows must be prevented while a process is painting, lest
an area be removed from a window as it is being painted.

• A software cursor that the window process does not control (the kernel is usually responsible
for the cursor) may have to be removed so that it does not interfere with the window's
image.

Use of explicit locking calls is extremely important for achieving maximum display performance.
Clipping and locking are described in more detail in Locking and Clipping.

3.1.2. Damage Repair and Fixups

A window whose image does not appear entirely as it should on the screen is said to be damaged.
A common cause of damage is being first overlaid, and then uncovered, by another window.
When a window is damaged, a portion of the window's image must be repaired. Note that the
requirement for repairing damage may arise at any time; it is completely outside the window's
control.

When a process performs some operation which includes reading a portion of its window, for
instance copying a part of the image from one region to another to implement scrolling, it may
find the source pixels obscured. This necessitates a fixup, in which that portion of the image is
regenerated, similar to repairing damage. Unlike damage generation, the need to do some fixup
is provoked only in response to an action of the window's process, e.g., scrolling.

3.1.3. Retained Windows

Either form of regeneration may be done by recomputing the image; this approach is reasonable
for applications like text where there is some underlying representation from which the display
can be recomputed easily. For images which require considerable computation, Sun Windows
provides a retained window, whose image is maintained in memory as well as on the display.
Such a window may have its image recopied to the display as needed to repair damage. The
mechanism for making a window retained is described in the section entitled Pixwina.

3.1.,/. Co/ormap Sharing

On color displays, colormap entries are a limited resource. When shared among multiple appli
cations, colormap usage requires arbitration. For example, consider the following applications
running on the same display at the same time in different windows:

• Application program X needs 64 colors for rendering VLSI images.

• Application program Y needs 32 shades of gray for rendering black and white photographs.

• Application program Z needs 256 colors (assume this is the entire colormap) for rendering full
color photographs.

Colormap usage control is handled as follows:

• To determine how X and Y figure out what portion of the colormap they should use so they
don't access each others' entries, Sun Windows provides a resource manager that allocates a
colormap aegment to each window from the ahared colormap. To reduce duplicate colormap
segments, they are named and can be shared among cooperating processes.

3-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

• To hide concerns about knowing the correct offset to the start of a colormap segment from
routines that access the image, Sun Window initializes the image of a window with the color
map segment offset. This effectively hides the offset from the application.

• To accommodate Z if its large colormap segment request cannot be granted, Z's colormap is
loaded into the hardware, replacing the shared colormap, whenever input is directed towards
Z's window. Z's request is not denied even though it is not allocated its own segment in the
shared colormap.

9.1.5. Process Structure

In Sun Windows, access to the screen is performed in each user process, instead of in a single,
central, fully debugged screen management process. This increases the possibility of an incorrect
user process damaging the display area of other application processes. Several compensating fac
tors justify this approach:

• Clients may access this open system at whichever level is most convenient. Clients who
require the ultimate efficiency of direct screen access need not sacrifice the window manage
ment functions of the window system.

• Leaving processing in user processes promotes efficiency in both implementation and execu
tion: making and testing extensions and modifications is much easier in user code than in the
kernel.

9.1.6. Imaging with Windows

A detailed discussion of imaging with windows follows. We begin with a description of the basic
data structures that are used in this level of Sunwindows. These are a primitive geometric facil
ity, the rect, for describing rectangles, and the basic structure, the pixwin, that describes a win
dow on the screen with its associated state and operation vectors.

Following is a brief discussion of the simple process of creating and destroying pixwins. This is
followed by a detailed description of the approach to locking and clipping, which leads naturally
into a discussion of library routines that access a pixwin's pixels. Detecting and repairing dam
age is treated next.

9.1. 7. Libraries and Header Files

The procedures described in this chapter are provided in the aunwindow library
(/usr/lib/libsunwindow.a). The header file <sunwindow/window_hs.h> contains the
declarations that must be #include'ed in a program that uses the facilities described in this
chapter.

3.2. Data Structures

Here are some data structures used in the implementation of pixwins. Be sure you understand
recta before proceeding. Descriptions of the data structure internals are also provided for addi
tional information.

Revision G of 15 April 1985 3-3

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

3.2.1. Rects

Throughout Sunwindows, images are dealt with in rectangular chunks; where complex shapes are
required, they are built up out of groups of rectangles. The basic description of a rectangle is
the rect struct, defined in the header file <sunvindov/rect .h>. The same file contains
definitions of several useful macros and procedures for dealing with recta.

Where a window is partially obscured, its visible portion generally cannot be described by a sim
ple rectangle; instead a list of non-overlapping rectangular fragments which together cover the
visible area is used. This rectlist is declared, along with its associated macros and pro
cedures in the file <sunvindov/rectlist .h>.

At this point we only discuss the rect struct and its most useful macros; a full description of
both rect. and rectlist• is in Appendix A.

#define coord short

struct rect {

};

coord
coord
short
short

r_left;
r_top;
r_width,
r_height;

In the context of a window, the rectangle lies in a coordinate system whose origin is in the upper
left-hand corner, and whose dimensions are given in pixels. Two macros determine an edge not
given explicitly in the rect. These macros are:

#define rect_right(rp)
#define rect_bottom(rp)

struct rect *rp;

These macros return the coordinate of the last pixel within the rectangle on the right or bottom,
respectively.

3.2.2. Pixwins

Pixwina are the basic imaging elements of the overlapped window system. The window layer of
the system uses pixwins to represent pixrects on a window surface. The pixwin thus describes
the window image and a set of routines to operate on the window.

A client of the window system has a rectangular window in which it displays information for the
user. Because of overlapping, however, it is not always possible to display information in all parts
of a client's window. Parts of an image may have to be displayed at some point long after they
were generated, as a portion of the window is uncovered. The clipping and repainting necessary
to preserve the identity of the rectangular image across interference with other objects on the
screen is handled by manipulations on pixwins.

The pixwin struct is defined in <sunvindov/pixvin. h>:

3-4 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

struct pixwin {
struct
caddr_t

};

int
int
struct
struct
struct
struct
struct
char

pixrectops *pw_ops;
pw_opshandle;
pw_opsx;
pw_opsy;
rectlist pw_fixup;
pixrect •pw_pixrect;
pixrect •pw_prretained;
pixwin_clipops *pw_clipops;
pixwin_clipdata *pw_clipdata;
pw_cmsname[20];

The pixwin refers to a portion of some device, typically a display; the device is identified by
pw_pixrect.

If the image displayed in the pixwin required a large effort to compute, it will be worth saving a
backup copy of the whole image, making the window a retained window. This is done by creat
ing an appropriate memory pixrect as described in Memory Pixrect•, and storing a pointer to it
in pw_prretained.

Portions of the image which could not be accessed by an operation which attempted to read pix
els from the pixwin are indicated by pw_ fixup.

pw_ops is a pointer to a vector of operations used in screen access macros to call the pixwin
software level or, as an optimization, to call the pixrect software directly. The structure pix
rectops was discussed in Pixrectop•. The pw_opshandle is the data handle passed to the
operations of pw_ops. pw_opsx and pw_opsy are additional offset information that screen
access macros use. These three fields are dynamically altered based on locking and clipping
status.

pw_clipdata is a collection of information of special interest for locking and clipping.
pw_clipops points to a vector of operations which are used in locking and clipping. The
declarations of these last two structs are discussed more fully in pixwin_clipdata Struct,
pixwin_clipop• Struct, and subsequent sections.

pw_cmsname is the identifier of the colormap segment that this pixwin is currently using. This
value should only be accessed via pw_setcmsname and pw_getcmsname described below.

Revision G of 15 April 1985 3-5

Overlapped Windows: Imaging Facilities

3.2.3. Pixwin_clipdata Struct

struct pixwin_clipdata {
int pwcd_windowfd;

pwcd_state;
rectlist pwcd_cllpping;
pwcd_clipid;
pwcd_damagedid;
pwcd_lockcount;
pixrect *pwcd_prmulti;
pixrect •pwcd_prsingle;
pixwin_prlist •pwcd_prl;

Sun Windows Reference Manual

short
struct
int
int
int
struct
struct
struct
struct
struct

rectlist pwcd_clippingsorted(RECTS_SORTS];
rect •pwcd_regionrect;

};

#define PWCD_NULL 0

#define PWCD_MULTIRECTS 1
#define PWCD_SINGLERECT 2
#define PWCD_USERDEFINE 3

struct pixwin_prlist {
struct pixwin_prlist •prl_next;
struct pixrect •prl_plxrect;
int prl_x, prl_y;

};

pwcd_windowfd is a file descriptor for the window being accessed. Within the owning process,
it is the standard handle on a window. A description of the interplay between windows and
pixwins continues in Pizwin Creation and De,truction. The portions of the window's area acces-
sible through the pixwin are described by the rectlist pwcd_clipping
pwcd_regionrect, if not NULL, points to a reel that is intersected with pwcd_clipping to
further restrict the portions of the window's area accessible through the pixwin.
pwcd_c 1 ipid and pwcd_damagedid identify the most recent rectlists retrieved for a win
dow. pwcd_lockcount is a reference count used for nested locking, as described in Locking
below. Copies of pwcd_clipping, sorted in directions convenient for copy operations, are
stored in pwcd_clippingsorted.

3-6 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

pwcd_state can be one of the following:

Table 3-1: Clipping State

State

PWCD_NULL

PWCD_MULTIRECTS

PWCD_SINGLERECT

PWCD_USERDEFINE

Meaning

no part of window visible

must clip to multiple rectangles

need clip to only one rectangle

the client program will be
responsible for setting up the
clipping

pwcd_prmul ti is the pixrect for clipping during drawing when there are multiple rectangles
involved in the clipping. pwcd_prsingle is the pixrect for clipping during drawing when
there is only one rectangle visible.

pwcd_prl is a list of pixrects that may be used for clipping when there are multiple rectangles
involved. For vector drawing, these clippers muat be used to maintain stepping integrity across
abutting rectangle boundaries. The prl_x and prl_y fields in the pixwin_prlist struc
ture are offsets from the window origin for the associated pr l_pixrect.

Q 3.2.f Pixwin_clipops Struct

0

struct
int
int
int
int

};

pixwin_clipops {
(*pwco_lock) () ,
(*pwco_unlock) (),
(•pwco_reset) () ,
(•pwco_getclipping) ();

The pw_clipops struct is a vector of pointers to system-provided procedures that implement
correct screen access. These are accessed through macros described in Locking and Clipping.

3.3. Pixwin Creation and Destruction

To create a pixwin, the window to which it will refer must already exist. This task is accom
plished with procedures like win_getnewwindow and win_setrect, described in Window
Manipulation, or, at a higher level, tool_create and tool_createsubwindow, described
in Suntool: Too/a and Subwindowa. The pixwin is then created for that window by a call to
pw_open:

struct pixwin •pw_open(fd)
int fd;

pw_open takes a file descriptor for the window on which the pixwin is to write. A pointer to a
pixwin struct is returned. At this point the pixwin describes the exposed area of the window. If
the client wants a retained pizwin, pw_prretained should be set to point to an

Revision G of 15 April 1985 3-7

Overlapped Windows: Imaging Facilities Sun \Vindows Reference Manual

appropriately-sized memory pixrect after pv_open returns.

When a client is finished with a window, it should be released by a call to:

pv_close (pv)
struct plxvln *pv;

pw_close frees any dynamic storage associated with the pixwin, including its
pv_prretained pixrect if any. If the pixwin has a lock on the screen, it is released.

3.3.1. Region Creation

One can use pixwins to clip rectangular regions within a window's own rectangular area. The
region operation creates a new pixwin that refers to an area within an existing pixwin:

struct pixwln *pw_reglon(pw, x, y, w, h)
struct plxwln *pw;
int X, y, W, h;

The pixwin which is to serve as the source is addressed by pv; x, y, v and h describe the
rectangle to be included in the new pixwin. The upper left pixel in the returned pixwin is at
coordinates (0,0); this pixel has coordinates (x, y) in the source pixwin.

3.4. Locking and Clipping

Before a window process reads from or writes to the screen, it must satisfy several conditions:

• It should obtain exclusive use of the display hardware,

• The position of windows on the screen should be frozen,

• The window's description of what portions of its window are visible should be up-to-date,
and

• The window should confine its activities to those visible areas.

The first three of these requirements is met by locking; the last amounts to clipping the image
the window will write to the bounds of its ezpoaed area. All are handled implicitly by the access
routines described in Acce8"ing II Pizwin '• Pizela.

3.,t.1. Locking

Locking allows a client program to obtain exclusive use of the display.

Making correct and judicious use of explicit display locking is EXTREMELY impor
tant for getting the best display speed possible.

Note that if the client program does not obtain an explicit lock, the window system will. For
example, if an application program is to draw one hundred lines, it can either explicitly lock the
display once, draw the lines, and unlock explicitly, or it can ignore locking and simply draw the
lines. In the latter case, the window system will perform locking and unlocking around each
drawing operation, in effect acquiring and releasing the lock one hundred times instead of once.

3-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

For efficiency's sake, application programs should lock explicitly around a body of
screen access operations.

The pw_lock macro:

pw_lock (pw, r)
struct
struct

pixwin *pw;
rect *r;

uses the lock routine pointed to by the window's pw_clipops to acquire a lock for the user
process that made this call. pw addresses the pixwin to be used for the ouput; r is the rectan
gle in the window's coordinate system that bounds the area to be affected. pw_lock blocks if
the lock is unavailable, for example, if another process currently has the display locked.

Lock operations for a single pixwin may be nested; inner lock operations merely increment a
count of locks outstanding, pwcd_lockcount in the window's pw_clipdata struct. Their
affected rectangles must lie within the original lock's. ·

A similar macro is:

pw_unlock(pw)
struct pixwin *pw;

which decrements the lock count. If this brings it to 0, the lock is actually released.

Since locks may be nested, it is possible for a client procedure to find itself, especially in error
handling, with a lock which may require an indefinite number of unlocks. To handle this situation
cleanly, another routine is provided. The following macro sets pw's lock count to O and releases
its lock:

pw_reset (pw)
struct pixwin •pw;

Like pw_lock and pw_unlock, pw_reset calls a routine addressed m the pixwin's
pixwin_clipops struct, in this case the one addressed by pwco_reset.

Acquisition of a lock has the following effects:

• If the cursor is in conflict with the affected rectangle, it is removed from the screen. While
the screen is locked, the cursor will not be moved in such a way as to disrupt any screen
accessmg.

• Access to the display is restricted to the process acquiring the lock.

• Modification of the database that describes the positions of all the windows on the screen is
prevented.

• The id of the most recent clipping information for the window is retrieved, and compared
with that stored in pwcd_clipid in the pixwin's pw_clipdata. If they differ, the routine
addressed by pwco_getclipping is invoked, to make all the -fields in pw_clipdata
accurately describe the area which may be written into.

• Once the correct clipping is in hand, the pwcd_state variable's value determines how to
set pw_ops, pw_opshandle, pw_opsx and pw_opsy. This setting is done in anticipa
tion of further screen access operations being done before a subsequent unlock. These values
can often be set to bypass the pixwin software by going directly to the pixrect level.

Revision G of 15 April 1985 3-9

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

Nested locking is cheap, but initial locking is moderately expensive as it involves two system

c~ltlhs.
1

Cklients
1

wkithb a gkroup tohf scrtehen
1
upkd.ates to dho cdan ~

1
a
1
in n

1
otbice~bly bydsurrounAding the gr

1
oupf O·

w1 oc -un oc rac ets; en e oc mg over ea w1 on y e mcurre once. n examp e o
such a group is displaying a line of text, or a series of vectors with pre-computed endpoints.

While it has the screen locked, a process should not:

• do any significant computation unrelated to displaying its image;

• invoke any system calls, including other 1/0, which might cause it t,o block; or

• invoke any pixwin calls except pw_unlock and those described in Acceaaing a Pixwin'a Pix
els. In any case, the lock should not be held longer than about a quarter of a second, even
following all these guidelines.

As a deadlock resolution approach, when a display lock is held for more than 10 seconds, the
lock is broken. However, the offending process is not notified by signal; the idea is that a process
shouldn't be aborted for this infraction. A message is displayed on the console.

s.4-2. Clipping

Output to a window is clipped to the window's pwcd_clipping rectlist; this is a series of rec
tangles which, taken together, cover the valid area that this window may write to. There are
two routines which set the pixwin's clipping:

pw_exposed (pw)
struct pixwin *pw;

pw_damaged (pw)
struct pixwin *pw;

pw_damaged is discussed in Damage. pw_exposed is the normal routine for discovering what
portion of a window is visible. It retrieves the rectlist describing that area into the pixwin's
pwcd_clipping, and stores the id identifying it in pwcd_clipid. It also stores its own
address in the pixwin's pwco_getclipping, so that subsequent lock operations will get the
correct area description.

Clipping, even more than locking, should normally be left to the library output routines. For the
intrepid, the strategy these routines follow is briefly sketched here; the rectliat data structures
and procedures in Appendix A are required reading.

Some procedure will set the pixwin's pwcd_clipping so that it contains a rectliat describing
the region which may be painted. This is done by a lock operation which makes a call through
*pwco_getclipping, or an explicit call to one of pw_open, pw_donedamaged,
pw_exposed or pw_damaged. This rectliat is essentially a list of rectangular fragments which
together cover the area of interest. As an image is generated, portions of it which lie outside the
rectangle list must be masked off, and the remainder written to the window through a pixrect.

The clipping aid pwcd_prmul ti is set up to be a pixrect which clips for the entire rectangular
area of the window. Any clipping using this pixrect must utilize the information in
pwcd_clipping to do the actual clipping to multiple rectangles.

0

pwcd_prl is set up to parallel each of the rectangles in pwcd_clipping. Thus, if one draws
to each of the pixrects in this data structure, the image will be correctly clipped. pwcd_state Q.
1s set by exammmg the makeup of the pwcd_clipping. If pwcd_state IS

3-10 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

PWCD_SINGLERECT, a pixrect is set up in pwcd_prsingle also. When this case exists, after
pw_lock and before pw_unlock, most screen accesses will directly access the pixrect level of
software. Thus, in this common case, screen access is as fast in the window system as it is on the
raw pixrect software outside of the window system. Also, pwcd_prsingle is set up with a
zero height and width pixrect when pwcd_state is PWCDJWLL.

As an escape, none of the pixrect setup described above takes place when pwcd_state 1s
PWCD_USERDEFINE. This means that clipping is the responsibility of higher level software.

A client may write to the display with an operation which specifies no clipping:

(op I PilC_DONTCLIP)

This means that it is doing the clipping at a higher level. Note that clipping data is only valid
during the time the client may write to the screen, that is when the window's owner process
holds a lock on the screen. If the clipping is done wrong, it is possible to damage another
window's image. In particular, the client must clip to all of the rectangles in the rectlist, not just
the bounding rectangle for the rectlist.

3.5. Accessing a Pixwin's Pixels

Procedures described in this section provide all the normal facilities for output to a window and
should be used unless there are special circumstances. Each contains a call to the standard lock
procedure, described in Locking. Each takes care of clipping to the rect/i~t in pw_clipping.
Since the routines are used both for painting new material in a window and for repairing dam
age, they make no assumption about what clipping information should be gotten. Thus, there
should be some previous call to either pw_open, pw_donedamaged, pw_exposed or
pw_damaged, to initialize pwo_getclipping correctly.

The procedures described in this section will maintain the memory pixrect for a retained pixwin.
That is, they check the window's pw_prretained, and if it is not NULL, perform their opera
tion on that data in memory, as well as on the screen.

3.5.1. Write Routines

pw_write(pw, xd, yd, width, height, op, pr, xs, ys)
struct pixwin *pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect •pr;

pw_writebackground(pw, xd, yd, width, height, op)

Pixels are written to the pixwin pw in the rectangle defined by xd, yd, width, and height,
using rasterop function op (as defined in Conatructing an Op Argument). They are taken from
the rectangle with its origin at xs, ys in the source pixrect pointed to by pr.
pw_writebackground simply supplies a null pr which indicates that an infinite source of pix
els, all of which are set to zero, is used. The following draws a pixel of value at (x, y) in the
addressed pixwin:

Revision G of 15 April 1985 3-11

Overlapped Windows: Imaging Facilities

pw_put(pw, x,
struct
int

y, value)
pixwin *pw;
x, y, value;

Sun Windows Reference Manual

The next draws a vector of pixel value from (xO, yO) to (xl, yl) in the addressed pixwin using
rasterop op:

pw_vector(pw, xO, yO, xl, yl, op, value)
struct pixwin *pw;
int op, xO, yO, xl, yl, value;

pw_rop performs the indicated rasterop from source to destination:

pw_rop(dpw, dx, dy, w, h, op, sp, sx, sy)
struct pixwin *dpw;
struct
int

pixrect *sp;
dx, dy, w, h, op, sx, sy;

For further information, please see Rop: Ra.terOp Source to Deatination.

pw_replrop (pw,
struct
int
struct
int

xd, yd, width, height, op, pr,
pixwin *pw;
op, xd, yd, width, height;
pixrect *pr;
XS, ys;.

XS, ys)

This procedure uses the indicated raster op function to replicate a pattern (found in the source
pixrect) into a destination in a pixwin. For a full discussion of the semantics of this procedure,
refer to the description of the equivalent procedure pr _replrop in Pizel Data and Operation,.
The following two routines:

pw_text(pw, X, y, op, font, s)
struct pixwin *pw;
int X, y, op;
struct pixfont *font;
char *s;

pw_char (pw, X, y, op, font, c)
struct pixwin *pw;
int X, y, op;
struct pixfont *font;
char c;

write a string of characters and a single character respectively, to a pixwin, using rasterop op as
above. pw_text and pw_char are distinguished by their own coor·dinate system: the desti
nation is given as the left edge and baaeline of the first character. The left edge does not take
into account any kerning (character position adjustment depending on its neighbors), so it is pos
sible for a character to have some pixels to the left of the x-coordinate. The baseline is the y
coordinate of the lowest pixel of characters without descenders, 'L' or 'o' for example, so pixels
will frequently occur both above and below the baseline in a string. font may be NULL in
which case the ayatem font is used.

3-12 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

The system font is the same as the font returned from pf_default. In addition, the system
font is reference counted and shared between software packages. To get the system font call
pw_pfsysopen:

struct pixfont •pw_pfsysopen()

When you are done with the system font call pw_pfsysclose:

pw_p fsysclose ()

Note: A font to be used in pw_text is required to have the same pc_home .y and character
height for all characters in the font.

The following routine:

pw_ttext(pw, x, y, op, font, s)
struct pixwin *pw;
int x, y, op;
struct pixfont *font;
char *s;

is just like pw_text except that it writes tranaparent text. Transparent text writes the shape
of the letters without disturbing the background behind it. This is most useful with color
pixwins. Monochrome pixwins can use pw_text and a PIX...SRC : PIXJ)ST op, which is faster.

Applications such as displaying text perform the same operation on a number of pixrects in a
fashion that is amenable to global optimization. The batchrop procedure is provided for these
situations:

pw_batchrop(pw, dx, dy, op, items, n)
struct pixwin *pw;
int dx, dy, op, n;
struct pr_prpos items [l ;

pw_batchrop is analogous to pr _batchrop described in Pixel Data and Operationa. Please
refer to that section for a detailed explanation of pw_batchrop.

Stencil ops are like raster ops except that the source pixrect is written through a stencil pixrect
which functions as a spatial write enable mask. The indicated raster operation is applied only to
destination pixels where the stencil pixrect 1s non-zero. Other destination pixels remam
unchanged.

pw_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, sty, spr, sx, sy)
struct pixwin *dpw;
struct
int

pixrect *stpr, *spr;
dx, dy, dw, dh, op, stx, sty, sx, sy;

pw_stencil is exactly analogous to pr _stencil described in Pixel Data and Operationa.
Refer there for a detailed explanation of pw_stencil.

9.5.2. Drawing A Polygon within a Pixwin

The following macro draws a polygon within a pixwin:

Revision G of 15 April 1985 3-13

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

pw_polygon_2(pw, dx, dy, nbds, npts, vlist, op, spr, sx, sy)
struct pixwin *pw;
int dx, dy;
int nbds;
int npts [];
struct pr_pos *vlist;
int op;
struct pixrect *spr;
int sx, sy;

You can create a polygon filled with a solid or textured pattern. pw_polygon_2 is analogous
to pr _polygon_2 described in Pixel Data and Operation•. Refer to pr _polygon_2 for
further details on this procedure.

3.5.3. Draw Curved Shapes

pw_traprop is a pixwin operation analogous to pw_rop. The main difference is that
pw_traprop operates on a trapezon rather than a rectangle. Refer to the section Draw Curved
Shape• {pr_traprop} for detailed information about trapezons.

The function

pr _traprop (dpw, dx, dy, t, op, spr, sx, sy)
struct pixwin *dpw;
struct pr_trap t;
struct pixrect *spr;
int dx, dy, op, sx, sy;

writes the source pixrect (spr) into the destination pixwin (dpw) via the operation op. op
works in the same manner as pw_rop. The function then clips the output to the trapezon t.

3.5.4. Read and Copy Routines

The following routines use the window as a source of pixels. They may_find themselves thwarted
by trying to read from a portion of the pixwin which is hidden, and therefore has no pixels.
When this happens, pw_fixup in the pixwin structure will be filled in by the system with the
description of the source areas which could not be accessed. The client must then regenerate
this part of the image into the destination. Retained pixwins will always return rl_null in
pw_fixup because the image is refreshed from pw_prretained. The following returns the
value of the pixel at (x, y) in the addressed pixwin:

pw_get(pw,
struct
int

x, y)
pixwin 'pw;
X, y,;

Pixels are read from the pixwin into a pixrect by:

3-14

pw_read(pr,
struct
int
struct

xd, yd, width, height,
pixwin 'pw;
op, xd, yd, width,
pixrect *pr;

op, pw, xs, ys)

height, xs, ys;

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

Pixels are read from the rectangle defined by xs, ys, width, height, in the pixwin pointed
to by pw, using rasterop function op. The pixels are stored in the rectangle with its origin at
xd, yd in the pixrect pointed to by pr.

Copy is used when both source and destination are pixwins:

pw_copy(dpw, xd, yd, width, height, op, spw, xs, ys)
struct pixwin *dpw, *spw;
int op, xd, yd, width, height, xs, ys;

Note: Currently dpw and spw must be the same pixwin.

3. 5. 5. Bitplane Control

For pixwins on color display devices, one must be able to restrict access to certain bitplanes.

pw_putattributes(pw, planes)
struct pixwin *pw;
int *planes;

p 1 anes is a bitplane access enable mask. Only those bits of the pixel corresponding to a 1 in
the same bit position of *planes will be affected by pixwin operations. pw_putattributes
sets the access enable mask of pw. If the planes argument is NULL, that attribute value will
not be written.

Note: Use pw_putattributes with care; it changes the internal state of the pixwin until
pw_putattributes is next called. Don't forget to restore the internal state once through
accessing in this special mode.

pw_getattributes(pw, planes)
struct pixwin *pw;
int *planes;

retrieves the value of the access enable mask into *planes.

3.6. Damage

When a portion of a client's window becomes visible after having been hidden, it is damaged.
This may arise from several causes. For instance, an overlaying window may have been
removed, or the client's window may have been stretched to give it more area. The client is
notified that such a region exists by the signal SIGWINCH; this simply indicates that something
about the window has changed in a fashion that probably requires repainting. It is possible that
the window has shrunk, and no repainting of the image is required at all, but this is a degenerate
case. It is then the client's responsibility to repair the damage by painting the appropriate pixels
into that a,rea. The following section describes how to do that.

3.6.1. Handling a SIGWINCH Signal

Note: it is a common programming error to try to access the pixwin at the time a
SIGWINCH is received, rather than after returning from the SIGWINCH handler.
Please read this section and avoid this problem.

Revision G of 15 April 1985 3-15

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

There are several stages to handling a SIGWINCH. First, in almost all cases, the procedure that
catches the signal should not immediately try to repair the damage indicated by the signal.
Since the signal is a software interrupt, it may easily arrive at an inconvenient time, halfway
through a window's repaint for some normal cause, for instance. Consequently, the appropriate
action in the signal handler is usually to set a flag which will be tested elsewhere. Conveniently,
a SIGWINCH is like any other signal; it will break a process out of a select system call, so it is
possible to awaken a client that was blocked, and with a little investigation, discover the cause of
the SIGWINCH. See the select(2) system call and refer to the tool_select mechanism in
Tool Proce,aing for an example of this approach.

Once a process has discovered that a SIGWINCH has occurred and arrived at a state where it's
safe to do something about it, it must determine exactly what has changed, and respond
appropriately. There are two general possibilities: the window may have changed size, and/or a
portion of it may have been uncovered.

win_getsize (described in Window Manipulation) can be used to inquire the current dimen
sions of a window. The previous size must have been remembered, for instance from when the
window was created or last adjusted. These two sizes are compared to see if the size has
changed. Upon noticing that its size has changed, a window containing other windows may wish
to rearrange the enclosed windows, for example, by expanding one or more windows to fill a
newly opened space.

\,Vhether a size change occurred or not, the actual images on the screen must be fixed up. It is
possible to simply repaint the whole window at this point - that will certainly repair any dam
aged areas - but this is often a bad idea because it typically does much more work than neces
sary.

Therefore, the window should retrieve the description of the damaged area, repair that damage,
and inform the system that it has done so: The pw_damaged procedure:

pw_damaged (pw)
struct pixwin •pw;

is a procedure much like pw_exposed. It fills in pwcd_clipping with a rectlist describ
ing the area of interest, stores the id of that rectlist in the pixwin's pw_opshandle and in
pwcd_damagedid as well. It also stores its own address in pwco_getclipping, so that a
subsequent lock will check the correct rectlist. All the clippers are set up too. Colormap
segment offset initialization is done, as described in Surface Preparation.

NOTE: A call to pw_damaged should ALWAYS be made in a sigwinch handling rou
tine. Likewise, pw_donedamaged should ALWAYS be called before returning from
the sigwinch handling routine. While a program that runs on monochrome displays
may appear to function correctly if this advice is not followed, running such a pro
gram on a color display will produce peculiarities in color appearance.

Now is the time for the client to repaint its window - or at least those portions covered by the
damaged rectlist; if the regeneration is relatively expensive, that is if the window is large, or
its contents complicated, it may be worth restricting the amount of repainting before the clip
ping that the rectlist will enforce. This means stepping through the rectangles of the
rectlist, determining for each what data contributed to its portion of the image, and recon
structing only that portion. See Appendix A for details about rect/i,ta.

For retained pixwins, the following call can be used to copy the image from the backup pixrect
to the screen:

3-16 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

pw_repairretained(pw)
struct pixwln *pw;

When the image is repaired, the client should inform the window system with a call to:

pw_donedamaged(pw)
struct plxwin *pw;

pv_donedamaged allows the system to discard the rectlist describing this damage. It is
possible that more damage will have accumulated by this time, and even that some areas will be
repainted more than once, but that will be rare.

After calling pv_donedamaged, the pixwin describes the entire visible area of the window.

A process which owns more than one window can receive a SIGWINCH for any of them, with no
indication of which window generated it. The only solution is to fix up all windows. Fortunately,
that should not be overly expensive, as only the appropriate damaged areas are returned by
pv_damaged.

3. 7. Colormap Manipulation

Pixwins provide an interface to a basic colormap sharing mechanism. Portions of the colormap,
colormap segments, are named and can be shared among cooperating processes. Use of a
colormap segment, as opposed to the entire colormap, is essentially invisible to clients. Routines
that access a pixwin's pixels do not distinguish between windows which use colormap segments
and those which use the entire colormap.

8. 7.1. Initialization

pv_open and pv_region both create and return a pixwin. If a colormap segment is already
defined for the window of the pixwin, this is the colormap segment used in the new pixwin.
However, if the window has no colormap segment defined for it, the default colormap segment is
setup for the pixwin.

The default colormap segment is usually the monochrome colormap segment defined in
<sunwindow/cms_mono .h>. However, the default colormap segment can be programmatically
changed.

#define CMS_NAMESIZE 20

struct colormapseg {
int cms_size;
int
char

cms_addr;
cms_name[CMS_NAMESIZE];

};

struct cms_map {
unsigned char
unsigned char
unsigned char

};

Revision G of 15 April 1985

•cm_red;
*cm_green;
*cIIL.blue;

3-17

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

pw_setdefaultcms(cms, map)
struct colormapseg *ems;
struct cms_map *map;

pw_setde faul tems copies the data in ems and map to serve as the default colormap seg
ment. ems->ems_name is the name of the colormap segment (more on names below) and
ems->ems_size is its size (ems->ems_addr should be 0). There are ems->ems_size bytes
in each of the arrays of map. A -1 is returned if ems->ems_size is greater than 256. Other
wise, 0 is returned.

pw_getdefaultcms(cms, map)
struct colormapseg *ems;
struct cms_map *map;

pw_getdefaul tems copies the data in the default colormap segment into the data pointed to
by ems and map. Before the call, the byte pointers in map should be initialized to arrays of
size ems->ems_size. A -1 is returned if ems->ems_size is less than the size of the default
colormap segment. Otherwise, 0 is returned.

Note: the correct way to access an existing pixwin's colormap is via pw_puteolormap and
pw_getcolormap.

3. 7.2. Background and Foreground

Every colormap segment has two distinguished values, its background and foreground. The back
ground color is defined as the value at the first position of a colormap segment. The foreground
color is defined as the value at the last position of a colormap segment (the colormap segment's
size min us 1).

The foreground is important in terms of color/monochrome compatibility. Any source color,
other than 0, that is written on a monochrome pixrect is translated to the foreground color.

pw_open sets the background and foreground of the returned pixwin to be those of the default
colormap segment if the pixwin's window has not defined a colormap segment. pw_region
inherits the background and foreground of the source pixwin.

Here are handy utilities to set two specific colormap segment entries:

pw_reversevideo(pw, min, max)
struct pixwin *pw;
int min, max;

pw_blackonwhite(pw, min, max)
struct pixwin *pw;
int min, max;

pw_whiteonblack(pw, min, max)
struct pixwin *pw;
int min, max;

min and max should be the first and last entries, respectively, in the colormap segment. If min
is the background and max is the foreground and pw is a color pixwin, these calls do nothing.

3-18 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

3. 7.3. A New Colormap Segment

Changing a pixwin's colormap requires two steps. First, the colormap segment must be appropri
ately named (see pw_setcmsname, below). Second, the colormap segment is loaded with the
actual colors desired (see pw_putcolormap, covered in the next section).

If a colormap segment is not to be shared by another window then the name should be unique.
One would certainly want a unique colormap segment if that segment was to be used for color
map animation. A common way to generate a unique name is to append your process id to a
more meaningful string that describes the usage of the colormap segment.

If a colormap segment's usage is static in nature, by all means try to use a shared colormap seg
ment definition. There are three basic types of shared colormap segments:

• A colormap segment used by a single program. Sharing occurs when multiple instances of
the same program are running. An example of such a program might be a color terminal
emulator in which the terminal has a fixed selection of colors.

• A colormap segment used by a group of highly interrelated programs. Sharing occurs when
ever two or more programs of this group are running at the same time. An example of such
a group might be a series of CAD /CAM programs in which it is common to have multiple
programs running at the same time.

• A colormap segment used by a group of unrelated programs. Sharing occurs whenever two
or more programs of this group are running. An example of such a colormap segment is
CMS...MONOCHROME, as defined in <sunwindow/cms_mono .h>. This colormap segment is,
by convention, the default colormap. Examples of other colormap segment definitions that
could be shared with other windows are in <sunwindow/cms_ * .h>. These are
cms_rgb. h, cms_grays. h, cms_mono. h, and cms_rainbow. h.

Remember that colormap entries are scarce so try to share them.

pw_setcmsname(pw, cmsname)
struct pixwin *pw;
char cmsname[CMS_NAMESIZE];

cmsname is the name that pw will call its window's colormap segment. Just setting the name
resets the colormap segment to a NULL entry. Usually, the very next call after
pw_setcmsname should be pw_putcolormap, to set the size of the colormap (see section fol
lowing).

Colormap segments are associated with windows, not pixwins. Each window can have only one
colormap segment. Pixwins provide an interface for managing that one colormap segment.
Since more than one pixwin may exist per window, care should be taken to avoid changing the
colormap segment definition out from underneath another pixwin on the same window.

pw_getcmsname(pw, cmsname)
struct pixwin *pw;
char cmsname (CMS_NAMESIZE) ;

The colormap segment name of pw is copied into cmsname.

Revision G of 15 April 1985 3-19

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

3. 7.,t. Colormap Access

pw_putcolormap(pw, index, count, red, green, blue)
struct pixwin •pw;
int index, count;
unsigned char red[], green[], blue[];

Note: Before accessing the colormap, you must call pw_setcmsname.

The count elements of the pixwin's colormap segment starting at index (zero origin) are
loaded with the first count values in the three arrays. A colormap has three components each
indexed by a given pixel value to produce an RGB color. Monochrome pixwins assume red
equals green equals blue. Pixrects of depth 8 have colormaps with 256 (2 to the eighth) entries.
Background and foreground values are forced to the values defined by the screen if they are the
same.

pw_getcolormap(pw, index, count, red, green, blue)
struct pixwin •pw;
int index, count;
unsigned char red[], green[], blue[];

finds out the state of the colormap segment. The arguments are analogous to those of
pw_putcolormap.

The utility:

pw_cyclecolormap(pw, cycles, index, count)
struct pixwin •pw;
int cycles, index, count;

is handy for taking a portion of pw's colormap segment, starting at index for count entries,
and rotating those entries among themselves for cycles. A cycle is defined as the count
shifts it takes one entry to move through every position once.

3. 7.5. Surface Preparation

In order for a client to ignore the offset of his colormap segment the image of the pixwin must be
initialized to the value of the offset. This surface preparation is done automatically by pixwins
under the following circumstances:

• The routine pw_damaged does surface preparation on the area of the pixwin that is dam
aged.

• The routine pw_putcolormap does surface preparation over the entire exposed portion of
a pixwin if a new colormap segment is being loaded for the first time.

For monochrome displays, nothing is done during surface preparation. For color displays, when
the surface is prepared, the low order bits (colormap segment size minus 1) are not modified.
This means that surface preparation does not clear the image. Initialization of the image (often
clearing) is still the responsibility of client code.

There is a case in which surface preparation must be done explicitly by client code. When win
dow boundaries are knowingly violated (see win_grabio), as in the case of pop-up menus, the
following procedure must be called to prepare each rectangle on the screen that is to be written

3-20 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

upon:

pw_preparesurface(pw, rect)
struct pixwin *pw;
struct rect *r;

rect is relative to pw's coordinate system. Most commonly, a saved copy of the area to be
written is made so that it can be restored later.

Revision G of 15 April 1985 3-21

Qi

o:

0

0

0

0

Chapter 4

Window Manipulation

This chapter describes the sunwindow facilities for creating, positioning, and controlling windows.
It continues the discussion begun in Overlapped Windowa: Imaging Facilitiea, on the aunwindow
level that allows displaying images on windows which may be overlapped.

The structure that underlies the operations described in this chapter is maintained within the
window system, and is accessible to the client only through system calls and their procedural
envelopes, it will not be described here. The window is presented to the client as a device; it is
represented, like other devices, by a file descriptor returned by open. It is manipulated by
other 1/0 calls, such as select, read, ioctl, and close. write to a window is not
defined, since all the facilities of the previous chapter on Overlapped Window,: Imaging Facilitie,
are required to display output on a window.

The header file <sunwindow/window_hs .h> includes the header files needed to work at this
level of the window system.

4.1. Window Data

The information about a window maintained by the window system includes:

• two rectangles which refer to alternative sizea and position• for the window on the screen;

• a series of links that describe the window's position in a hierarchical database, which deter
mines its overlapping relationships to other windows;

• clipping information used in the processing described in Overlapped Windows: Imaging Facil
itiea;

• the image used to track the mouse when it is in the window;

• the id of the process which should receive SIGWINCH signals for the window (this is the owner
process);

• a mask that indicates what user input actions the window should be notified of;

• another window, which is given any input events that this window does not use; and

• 32 bits of data private to the window client.

4.2. Window Creation, Destruction, and Reference

As mentioned above, windows are device&. As such, they are special files in the /dev directory
with names of the form "/dev /win n", where n is a decimal number. A window is created by
opening one of these devices, and the window name is simply the filename of the opened device.

Revision G of 15 April 1985 4-1

Window Manipulation Sun Windows Reference Manual

,t.2.1. A New Window

The first process to open a window becomes its owner. A process can obtain a window it is
guaranteed to own by calling:

int win_getnewwindow()

This finds the first unopened window, opens it, and returns a file descriptor which refers to it. If
none can be found, it returns -1. A file descriptor, often called the windowfd, is the usual han
dle for a window within the process that opened it.

When a process is finished with a window, it may close it. This is the standard close(2) system
call with the window's file descriptor as argument. As with other file descriptors, a window left
open when its owning process terminates will be closed automatically by the operating system.

Another procedure is most appropriately described at this point, although in fact clients will
have little use for it. To find the next available window, win_getnewwindow uses:

int win_nextfree(fd)
int fd;

where fd is a file descriptor it got by opening /dev /winO. The return value is a window
number, as described in References to Windowa below; a return value of WIN...NULLLINK indicates
there is no available unopened window .

. ,f.2.2. An Existing Window

0

It is possible for more than one process to have a window open at the same time; Providing for
Naive Program• presents one plausible scenario for using this capability. The window will remain 0
open until all processes which opened it have closed it. The coordination required when several
processes have the same window open is described in Providing for Naive Programa.

4.2.3. References to Windows

Within the process which created a window, the usual handle on that window is the file descrip
tor returned by open and win_getnewwindow. Outside that process, the file descriptor is
not valid; one of two other forms must be used. One form is the window name (e.g.,
/dev /win12); the other form is the window number, which corresponds to the numeric com
ponent of the window name. Both of these references are valid across process boundaries. The
window number will appear in several contexts below.

Procedures are supplied for switching the various window identifiers back and forth.
win_numbertoname stores the filename for the window whose number is winnumber into the
buffer addressed by name:

win_numbertoname(winnumber, name)
int winnumber;
char *name;

name should be WIN_NAMESIZE long as should all the name buffers in this section.

win_nametonumber returns the window number of the window whose name IS passed m
name:

4-2 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Window Manipulation

int win_nametonumber(name)
char*name;

Given a window file descriptor, win_fdtoname stores the corresponding device name into the
buffer addressed by name:

win_fdtoname(windowfd, name)
int windowfd;
char *name;

The following returns the window number for the window whose file descriptor is windowfd:

int win_fdtonumber(windowfd)
int windowfd;

4.3. Window Geometry

Once a window has been opened, its size and pos1t1on may be set. The same routines used for
this purpose are also helpful for adjusting the screen positions of a window at other times, when
user-interface actions indicate that it is to be moved or stretched, for instance. The basic pro
cedures are:

win_getrect(windowfd, rect)
int windowfd;
struct rect *rect;

win_getsize(windowfd, rect)
int windowfd;
struct rect *rect;

short win_getheight(windowfd)
int windowfd;

short win_getwidth(windowfd)
int windowfd;

win_getrect stores the rectangle of the window whose file descriptor is the first argument into
the rect addressed by the second argument; the origin is relative to that window's parent. Set
ting Window Links explains what is meant by a window's "parent."

win_getsize is similar, but the rectangle is self-relative - that is, the origin is (0,0).

win_getheight and win_getwidth return the single requested dimension for the indicated
window. win_setrect copies the rect argument's data into the rect of the indicated window:

win_setrect(windowfd, rect)
int windowfd;
struct rect *rect;

This changes its size and/or position on the screen. The coordinates are in the coordinate sys
tem of the window's parent.

Revision G of 15 April 1985 4-3

Window Manipulation Sun Windows Reference Manual

win_getsavedrect(windowfd, rect)
int windowfd;
struct rect *rect;

win_setsavedrect(windowfd, rect)
int windowfd;
struct rect *rect;

A window may have an alternate size and location; this facility is useful for icon, (see Icon,).
The alternate rectangle may be read with win_getsavedrect, and written with
win_setsavedrect. As with win_getrect and win_setrect, the coordinates are rela
tive to the window's parent.

4.4. The Window Hierarchy

Position in the window database determines the nesting relationships of windows, and therefore
their overlapping and obscuring relationships. Once a window has been opened and its size set,
the next step in creating a window is to define its relationship to the other windows in the sys
tem. This is done by setting links to its neighbors, and inserting it into the window database.

4.4.1. Setting Window Links

0

The window database is a strict hierarchy. Every window (except the root) has a parent; it also

0
, _

has O or more aiblinga and children. In the terminology of a family tree, age corresponds to depth
in the layering of windows on the screen: parei.,ts underlie their offspring, and older windows
underlie younger siblings which intersect them on the display. Parents also enclose their chil-
dren, which means that any portion of a child's image that is not within its parent's rectangle is
clipped. Depth determines overlapping behavior: the uppermoat image for any point on the
screen is the one that gets displayed. Every window has links to its parent, its older and younger
siblings, and to its oldest and youngest children.

Windows may exist outside the structure which is being displayed on a screen; they are in this
state as they are being set up, for instance.

The links from a window to its neighbors are identified by link aelec/013; the value of a link is a
window number. An appropriate analogy is to consider the link aelector as an array index, and
the associated window number as the value of the indexed element. To accommodate different
viewpoints on the structure there are two sets of equivalent selectors defined for the links:

WL_PARENT
WL_OLDERSIB
WL_YOUNGERSIB
WL_OLDESTCHILD
WL_YOUNGESTCHILD

WL_ENCLOSING
WL_COVERED

-- WL_COVERING
-- WL_BOTTOMCHILD
-- WL_TOPCHILD

A link which has no corresponding window, for example, a child link of a "leaf" window, has the
value WIN...NULLLINK.

When a window is first created, all its links are null. Before it can be used for anything, at least

tbhe pa~enthlink. mdust be se
1
t
1
. Tlfhth~ wd_i~ddow

1
i
1
~ tko bef att~chded to anyb s!blings, tdhosedlinhks shdoubld Q,.

e set m t e wm ow as we . e m 1v1 ua m s o a wm ow may e mspecte an c ange y

4-4 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Window Manipulation

the following procedures.

win_getlink returns a window number.

int win_getlink(windowfd, link_selector)
int windowfd, link_salector;

This number is the value of the selected link for the window associated with windowfd.

win_setlink(windowfd, link_selector, value)
int windowfd, link_selector, value;

win setlink sets the selected link in the indicated window to be value, which should be
another window number. The actual window number to be supplied may come from one of
several sources: if the window is one of a related group, all created in the same process, file
descriptors will be available for the other windows. Their window numbers may be derived from
the file descriptors via win_fdtonumber. The window number for the parent of a new win
dow or group of windows is not immediately obvious, however. The solution is a convention that
the WINDOWYARENT environment parameter will be set to the filename of the parent. See
Passing Parameters to a Tool for an example of this environment parameter's usage.

4.4-2. Activating the Window

Once a window's links have all been defined, the window is inserted into the tree of windows and
attached to its neighbors by a call to

win_insert(windowfd)
int windowfd;

This call causes the window to be inserted into the tree, and all its neighbors to be modified to
point to it. This is the point at which the window becomes available for display on the screen.

Every window should be inserted after its rectangle(s) and link structure have been set, but the
insertion need not be immediate: if a subtree of windows is being defined, it is appropriate to
create the window at the root of this subtree, create and insert all of its descendants, and then,
when the subtree is fully defined, insert its root window. This activates the whole subtree in a
single action, which typically will result in a cleaner display interaction.

Once a window ha.s been inserted in the window databa.se, it is available for input and output.
At this point, it is appropriate to call pw_open and access the screen.

4.4.s. Modifying Window Relationships

Windows may be rearranged in the tree. This will change their overlapping relationships. For
instance, to bring a window to the top of the heap, it should be moved to the "youngest" posi
tion among its siblings. And to guarantee that it is at the top of the display heap, each of its
ancestors must likewise be the youngest child of ita parent.

To accomplish such a modification, the window should first be removed:

win_remove(windowfd)
int windowfd;

Revision G of 15 April 1985 4-5

Window Manipulation Sun Windows Reference Manual

After the window has been removed from the tree, it is safe to modify its links, and then reinsert
it.

A process doing multiple window tree modifications should lock the window tree before it begins.
This prevents any other process from performing a conflicting modification. This is done with a
call to:

win_lockdata(windowfd)
int windowfd;

After all the modifications have been made and the windows reinserted, the lock is released with
a call to:

win_unlockdata(windowfd)
int windowfd;

Nested pairs of calls to lock and unlock the window tree are permitted. The final unlock call
actually releases the lock.

Note that if a client program uses any of the window manager routines, use of win_lockdata
and win_unlockdata is not necessary. See Window Management in Chapter 9 for more
details.

Most routines described in this chapter, including the four above, will block temporarily if
another process either has the database locked, or is writing to the screen, and the window
adjustment has the possibility of conflicting with the window that is being written.

As a method of deadlock resolution, SIGXCPU is sent to a process that spends more that 10
seconds of real time inside a window data lock, and the lock is broken.

4.5. User Data

Each window has 32 bits of data associated with it. These bits are used to implement a minimal
inter-process window-related status-sharing facility. Bits OxOl through Ox08 are reserved for the
basic window system; OxOl is currently used to indicate if a window is a blanket window. Bits
OxlO through Ox80 are reserved for the user level window manager; OxlO is currently used to
indicate if a window is iconic. Bits OxlOO through Ox80000000 are available for client program
mer use. This data is manipulated with the following procedures:

int win_getuserflags(windowfd)
int windowfd;

int win_setuserflags(windowfd, flags)
int windowfd;
int flags;

int win_setuserflag(windowfd, flag, value)
int windowfd;
int flag;
int value;

win_getuserflags returns the user data. win_setuserflags stores its flags argument
into the window struct. win_setuserflag uses flag as a mask to select one or more flags
in the data word, and sets the selected flags on or off as value is TRUE or FALSE.

4-6 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Window Manipulation

4.6. Minimal-Repaint Support

This section has strong connections to the preceding chapter and to Appendix A on Reeta and
Rectlista. Readers should refer to both from here.

Moving windows about on the screen may involve repainting large portions of their image in new
places. Often, the existing image can be copied to the new location, saving the cost of regenerat
ing it. Two procedures are provided to support this function:

win_computeclipping(windowfd)
int windowfd;

causes the window system to recompute the e:zpoaed and damaged rectlists for the window
identified by windowfd while withholding the SIGWINCH that will tell each owner to repair
damage.

win_partialrepair(windowfd, r)
int windowfd;
struct rect *r;

tells the window system to remove the rectangle r from the damaged area for the window
identified by windowfd. This operation is a no-op if windowfd has damage accumulated from
a previous window database change, but has not told the window system that it has repaired
that damage.

Any window manager can use these facilities according to the following strategy:

0 • The old exposed areas for the affected windows are retrieved and cached. (pw_exposed)

0

• The window database is locked and manipulated to accomplish the rearrangement.
(win_lockdata, win_remove, win_setlink, vin_setrect, win_insert ...)

• The new area is computed, retrieved, and intersected with the old.
(win_computeclipping, pw_exposed, rl_intersection)

• Pixels in the intersection are copied, and those areas are removed from the subject window's
damaged area. (pw_lock, pr _copy, win_partialrepair)

• The window database is unlocked, and any windows still damaged get the signals informing
them of the reduced damage which must be repaired.

4. 7. Multiple Screens

Multiple displays may be simultaneously attached to a workstation, and clients may want win
dows on all of them. Therefore, the window database is a forest, with one tree of windows for
each display. Thus, there is no overlapping of window trees that belong to different screens. For
displays that share the same mouse device, the physical arrangement of the displays can be
passed to the window system, and the mouse cursor will pass from one screen to the next as
though they were continuous.

Revision G of 15 April 1985 4-7

Window Manipulation

struct singlecolor {
u_char

};

struct screen
char

};

char
char
char
struct
struct
int
struct

{

red. green, blue;

scr_rootname[SCR_NAMESIZE];
scr_kbdname[SCR_NAMESIZE];
scr_msname[SCR_NAMESIZE];
scr_fbname[SCR_NAMESIZE];
singlecolor scr_foreground;
singlcolor scr_background;
scr _flags;
rect scr_rect;

#define
#define

SCR_NAMESIZE 20
SCR_SWITCHBKGRDFRGRD Oxl

Sun Windows Reference Manual

The screen structure describes a client's notion of the display screen. There are also fields
indicating the input devices associated with the screen. scr _rootname is the device name of
the window which is at the base of the window display tree for the screen; the default is
/dev /vinO. scr _kbdname is the device name of the keyboard associated with the screen;
the default is /dev /kbd. scr _msname is the device name of the mouse associated with the
screen; the default is /dev/mouse. scr _fbname is the device name of the frame buffer on
which the screen is displayed; the default is /dev/fb. scr _kbdname, scr _msname and
scr _fbname can have the string "NONE" if no device of the corresponding type is to be asso
ciated with the screen. scr _foreground is three RGB color values that define the fore
ground color used on the frame buffer; the default is { colormap size-1, colormap size-1, color
map size-1}. scr _background is three RGB color values that define the background color
used on the frame buffer; the default is {O, 0, O}. The default values of the background and fore
ground yield a black on white image. scr _flags contains boolean flags; the default is 0.
SCR_SWITCHBKGRDFRGRD is a flag that directs any client of the background and foreground data
to switch their positions, thus providing a video reversed image (usually yielding a white on black
image). scr _rect is the size and position of the screen on the frame buffer; the default is the
entire frame buffer surface.

win_screennew:

int win_screennew(screen)
struct screen •screen;

opens and returns a window file descriptor for a root window. This new root window resides on
the new screen which was defined by the specifications of *screen. Any zeroed field in
*screen tells vin_screennev to use the default value for that field (see above for defaults).
Also, see the description of vin_initscreenfromargv below. If -1 is returned, an error
message is displayed to indicate that there was some problem creating the screen.

There can be as many screens as there are frame buffers on your machine and dtop devices
configured into your kernel. The kernel calls screen instances deaktop• or dtopa.

w in_screenget:

win_screenget(windowfd, screen)
int vindowfd;
struct screen •screen;

4-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Window Manipulation

fills in the addressed struct screen with information for the screen with which the window
indicated by windowfd is associated.

vin_screendestroy:

win_screendestroy(windowfd)
int windowfd;

causes each window owner process (except the invoking process) on the screen associated with
windowfd to be sent a SIGTERM signal.

win_setscreenpositions informs the window system of the logical layout of multiple
screens:

win_setscreenpositions(windowfd, neighbors)
int windowfd, neighbors[SCR_POSITIONS];

#define SCR_NORTH 0
#define SCR_EAST 1
#define SCR_SOUTH 2
#define SCR_WEST 3

#define SCR_FOSITIONS 4

This enables the cursor to cross to the appropriate screen. windowfd's window is the root for
its screen; the four slots in neighbors should be filled in with the window numbers of the root
windows for the screens in the corresponding positions. No diagonal neighbors are defined, since
they are not strictly neighbors.

win_getscreenpositions fills in neighbors with windowfd's screen's neighbors:

win_getscreenpositions(windowfd, neighbors)
int windowfd, neighbors[SCR_FOSITIONS];

win_setkbd:

int win_setkbd(windowfd, screen)
int windowfd;
struct screen *screen;

is used to change the keyboard associated with windowfd's screen. Only the data pertinent to
the keyboard is used (i.e., screen->scr _kbdname).

vin_setms:

int win_setms(windowfd, screen)
int windowfd;
struct screen •screen;

is used to change the mouse associated with windowfd's screen. Only the data pertinent to the
mouse is used (i.e., screen->scr _msname).

win_initscreenfromargv:

int win_initscreenfromargv(screen, argv)
struct screen *screen;
char **argv;

can be used to do a standard command line parse of argv into *screen. *screen is first
zeroed. The syntax is:

Revision G of 15 April 1985 4-9

Window Manipulation Sun Windows Reference Manual

(-d di,play device] [-m mou,e device] [-k keyboard device] [-i] [-r red green blue] [-b red green blue]

See suntools (1) for semantics and details.

4.8. Cursor and Mouse Manipulations

This section describes the interface to the mouse and the cursor that follows the mouse. Both of
these are maintained by the window system internals.

,I. 8.1. Cursors

The cursor is the image which tracks the mouse on the screen:

struct cursor
short

};

int
struct

{
cur_xhot, cur_yhot;
cur_function;
pixrect •cur_shape;

#define CUR_MAXIMAGEWORDS 16

0

cur _shape points to a memory pixrect which holds the actual image for the cursor. The win
dow system supports a cur _shape. pr _data->md_image up to CUR..MAXIMAGEWORDS
words. This means that a cursor has a maximum size of 256 pixels, due to alignment constraints
inherent in memory pixrects. The pixels in a cursor are usually arranged 16 x 16, although 8 pix-
els high by 32 wide is also possible. 0
The "hot spot" defined by (cur _xhot, cur _yhot) associates the cursor image, which has
height and width, with the mouse position, which is a single point on the screen. The hot spot
gives the mouse position an offset from the upper-left corner of the cursor image.

Most cursors have a hot spot whose position is dictated by the image shape: the tip of an arrow,
the center of a bullseye, the center of a cross-hair. Cursors can also be used as a status feedback
mechanism, an hourglass to indicate that some processing is occurring for instance. This type of
cursor should have the hot spot located in the middle of its image so the user has a definite spot
for pointing and does not have to guess where the hot spot is.

The function indicated by cur _function is a rasterop (as described in Conatructing an Op
Argument), which will be used to paint the cursor. PDLSRC I PIX.DST is generally effective on
light backgrounds, for example in text, but invisible over solid black. PDLSRC • PIX.DST is a rea-

. sonable compromise over many different backgrounds, although it does poorly over a gray pat
tern.

win_getcursor(windowfd, cursor)
int windowfd;
struct cursor *cursor;

stores a copy of the cursor that is currently being used on the screen into the buffer addressed
by cursor. Note that the caller must have set cursor->cur _shape to point to a pixrect
large enough to hold the cursor image.

4-10 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Window Manipulation

win_setcursor(windowfd, cursor)
int windowfd;
struct cursor *cursor;

sets the cursor and function that will be used whenever the mouse position is within the indi
cated window.

If a window process does not want a cursor displayed, the appropriate mechanism is to set the
cursor to one whose dimensions are both 0.

Use the following macro as an aid in making your own cursor:

DEFINE_CURSOR_FROM__IMAGE(name, hot_x, hot_y, func, image)

This macro makes a cursor that is 16 bits wide by 16 bits high. It generates several static struc
tures. The first argument to the macro is the name that will be given to the cursor struct. The
second and third arguments are the x and y positions of the hotspot relative to the upper
lefthand corner of the cursor shape. The fourth argument is the RasterOp function used to
display the cursor, and the final argument is an array which contains 16 shorts that are the bit
pattern of the cursor image. Typically this array will be declared as follows

static short cursor_image[] = {
#include "file_generated_by_icontool"
};

For example, DEFINE_CURSOR....FROMJMAGE might be used as follows:

#include <suntool/win_cursor.h>
static short hour_glass_image[] = {
#include "hourglass.pr"
};
DEFINE_CURSOR_FROM__IMAGE(hour_glass, 8, 8,

PllC__SRC]PllC__NOT, hour_glass_image);

This defines a cursor called hour _glass which could then be used in some window. For exam
ple,

win_setcursor(windowfd, &hour_glass);

As an alternative, use the following macro; it takes the actual shorts for the image (il through
il6) rather than the array.

DEFINE_CURSOR(name, hot_x, hot_y, func, 11, 12, 13, 14, 15, 16,
17, 18, 19, 110, ill, 112, 113, 114, 115, 116)

Note that due to the restictions imposed by the C pre-processor, you cannot use a #include in
the call to the DEFINE_CURSOR macro to obtain 11 through 116 from a file .

. ,t.8.2. Mouse Position

Determining the mouse's current position is treated under Input to Application Programa. We
note here that the standard procedure for a process to track the mouse is to arrange to receive
an input event every time the mouse moves; and in fact, the mouse position is passed with every
user input a window receives.

Revision G of 15 April 1985 4-11

Window Manipulation Sun Windows Reference Manual

The mouse position can be reset under program control; that is, the cursor can be moved on the
screen, and the position that is given for the mouse in input events can be reset without the
mouse being physically moved on the table top:

win_setmouseposition(windowfd, x, y)
int windowfd, x, y;

puts the mouse position at (x, y) in the coordinate system of the window indicated by vin
dowfd. The result is a jump from the previous position to the new one without touching any
points between. Input events occasioned by the move, window entry and exit and cursor changes,
will be generated. This facility should be used with restraint, as users are likely to lose a cursor
that moves independently of their control.

Occasionally it is necessary to discover which window underlies the cursor, usually because a
window is handling input for all its children. The procedure used for this purpose is:

int win_findintersect(windowfd, x, y)
int windowfd, x, y;

where windowfd is the calling window's file descriptor, and (x, y) define a screen position in
that window's coordinate space. The returned value is a window number. x and y may lie
outside the bounds of the window.

4.9. Providing for Naive Programs

There is a large class of applications that are relatively unsophisticated about the window sys
tem, but want to run in windows anyway. For example, a simple-minded graphics program may
want a window in which to run, but doesn't want to know about all the details of creating and
positioning it. This section describes a way of allowing for these applications.

4-0.1. Which Window to Use

Sun Windows defines an important environment parameter, WINDOW_GFX. By convention,
WJNDOW_GFX is set to a string that is the device name of a window in which graphics programs
should be run. This window is already opened and installed in the window tree. Routines exist
to read and write this parameter:

int we_getgfxwindow(name)
char *name

we_setgfxwindow(name)
char *name

we_getgfxvindow returns a non-zero value if it cannot find a value .

. 4-9.2. The Blanket Window

A good way to take over an existing window is to create a new window that becomes attached to
and covers the existing window. Such a covering window is called a blanket window. The
covered window will be called the parent window in this subsection because of its window tree
relationship with a blanket window. Note: It's a bad idea to take over an existing window using
win_setovner.

4-12 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Window Manipulation

The appropriate way to make use of the blanket window facility is as follows: Using the parent
window name from the environment parameter WINDOW_GFX (described above), open(2) the
parent window. Get a new window to be used as the blanket window usmg
win_getnewwindow. Now call:

int win_insertblanket(blanketfd, parentfd)
int blanketfd, parentfd;

A non-zero return value indicates success. As the parent window changes size and position the
blanket window will automatically cover the parent.

To remove the blanket window from on top of the parent window call:

win_removeblanket(blanketfd)
int blanketfd;

If the process that created the blanket window dies before win_removeblanket can be called,
the blanket window will automatically be removed and destroyed upon automatic closure of the
window device. This automatic closure happens because the only open file descriptor on the win
dow will be in the creating process.

A non-zero return value from win_isblanket indicates that blanketfd is indeed a blanket
window.

int win_isblanket(blanketfd)
int blanketfd;

Q 4.10. Window Ownership

0

Note: Do not use the two routines in this section for temporarily taking over another window.
These routines are included for backwards compatibility reasons.

SIGWINCH signals are directed to the process that owna the window, the owner normally being
the process that created the window. The following procedures may read from and write to the
window:

int win_getowner(windowfd)
int windowfd;

win_setowner(windowfd, pid)
int windowfd, pid;

win_getowner returns the process id of the indicated window owner. If the owner doesn't
exist, zero is returned. win_setowner makes the process identified by pid the owner of the
window indicated by windowfd. win_setowner causes a SIGWINCH to be sent to the new
owner.

4.11. Error Handling

Except as explicitly noted, the procedures described in this section do not return error codes.
The standard error reporting mechanism inside the aunwindow library is to call an error handling
routine that displays a message, typically identifying the ioctl call that detected the error.
After the message display, the calling process resumes execution.

Revision G of 15 April 1985 4-13

Window Manipulation Sun Windows Reference Manual

This default error handling routine may be replaced by calling:

int (*win_errorhandler(win_error)) ()
int (*win_error) ();

The win_errorhandler procedure takes the address of one procedure, the new error handler,
as an argument and returns the address of another procedure, the old error handler, as a result.
Any error handler procedure should be a function that returns an integer.

win_error(errnum, winopnum)
int errnum, winopnum;

errnum will be -1 indicating that the actual error number is found in the global errno.
winopnum is the ioctl number that defines the window operation that generated the error.
See Error Me68age Decoding in Programming Notea in the appendix.

4-14 Revision G of 15 April 1985

0

0

0

0

0

0

Chapter 5

Input to Application Programs

This chapter continues the description of the aunwindow level of the Sun window system. Here
we discuss how user input is made available to application programs. Unless otherwise noted,
the structures and procedures discussed in this section are found in the header file
/usr/include/sunwindow/win_input.h.

The window system provides facilities which meet two distinct needs regarding input to an appli
cation program:

• A uniform interface to multiple input devices allows programs to deal with varying key
boards and positioning devices, ignoring complexities due to facilities which the programs do
not use.

• Several different keyboards are available with Sun systems; they differ in the number and
arrangement of keys. At a minimum, some clients will require ASCII characters, one per
keystroke. More sophisticated clients will assign special values to non-standard keys (such as
"META" characters in the range Ox80 and above). Some clients will assign functions to par
ticular keys on the keyboard, and will distinguish key-down from key-up events.

• The standard positioning device on a Sun workstation is the mouse, which reports a location
and the state of three buttons. Alternatively, some clients may use a tablet and stylus, or in
place of the stylus, a "puck" with as many as IO buttons on it.

• In some client systems, the time between input events is significant; for example, when
smoothing a user's stylus trace, or assigning special meaning to multiple clicks of a button
within a short period.

The window system allows clients with only the simplest requirements to ignore all the complica
tions, while providing more sophisticated clients the facilities they require. The mechanism for
accomplishing this is called the virtual input device. This mechanism with its input events is
described in Virtual Input Device.

The second major section of this chapter describes how user inputs are collected from multiple
sources, serialized, and distributed among multiple consumers. Multiple clients are able to
accept inputs concurrently, and a slow consumer does not affect other clients' ability to receive
their inputs. Type-ahead and mouse-ahead are fully supported.

• Client programs operate under the illusion that they have the user's full attention, leav
ing the window system to handle the multiplexing. Therefore, a client sees precisely
those input events that the user has directed to that application.

• Conversely, the client may require inputs from multiple devices, where the exact
sequences across all those devices is significant. The order of mouse and function key
events is likely to be significant, for instance. This is provided for via a single unified
input stream, rather than requiring polling of multiple streams, which would be unac
ceptable in a multi-processed environment.

Revision G of 15 April 1985 5-1

Input to Application Programs Sun Windows Reference Manual

• The distribution of input events takes into account the window's indication of what
events it is prepared to handle; other events are redirected, allowing a division of labor
among the various components of a system.

5.1. The Virtual Input Device

This section describes the virtual device which generates user input, and how the input is
presented to the client process. The device appears as an extended keyboard, different from
existing keyboards, but incorporating the common features of most of them. It also incorporates
a locator which indicates a screen position, and a clock which reports a time in seconds and
microseconds.

5.1.1. Uniform Input Events

Each user action generates an input event, which is reported in a uniform format regardless of
the event. An event is reported in the following struct:

struct inputevent {

};

short
short
short
short
short
struct

ie_code;
ie_flags;
ie_shiftmask;
ie_locx;
ie_locy;
timeval ie_time;

ie_code identifies the source of the event, as a switch position on a Virtual Input Device. The
exact definition of the codes is given in Event Code,. In general, the input events fall into one of
three classes: events that generate a single ASCII character; events related to locator motion and
window geometry; and events identified with invocation of a special function, usually involving
the depression or release of a single special button on the mouse or keyboard. These classes are
known as ASCII, pseudo, and function events, respectively.

The information provided by the code in ie_code is interpreted according to event flags in
ie_ flags. (See Event Flag• below.)

The remaining elements of the struct provide general status information which may be useful on
any event:

ie_shiftmask
is used to report the state of certain shift-keys that is, to modify the meaning of
other events.

ie_locx and

ie_locy

ie_time

5-2

provide the position of the locator in the window's coordinate system at the time
the event occurred.

provides a timestamp for the event, in the format of a system timeval, as
defined in <sys/time .h>.

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Input to Application Programs

5.1.2. Event Codes

Event codes can take on any value in the range from O to 65535 inclusive. Of the codes defined
in the header file, 256 are assigned to the ASCII event class and the other 128 are partitioned
between the pseudo and function event classes. The following constants define the number of
codes and the first and last code in the latter two classes:

#define VKEY_CODES
#define VKEY_FIRST
#define VKEY_LAST

5.1.2.1. ASCII Event•

128
32512
VKEY_FIRST+VKEY_CODES-1

The event codes in the range O to 255 inclusive are assigned to the ASCII event class. This class
is further sub-divided:

#define ASCII_FIRST 0
#define ASCII_LAST 127

In particular, striking a key which has an obvious ASCII meaning causes the Virtual Input Dev
ice to enqueue for the client an event whose code is the 7-bit ASCII character corresponding to
that key. Such a key with an obvious ASCII meaning is one in the main typing array labelled
with a single letter of the alphabet. This is independent of the physical keyboard actually used.
A slight complication occurs because of the presence of both upper- and lower-case characters in
ASCII: if the user "shifts" the physical keyboard by depressing the CAPS-LOCK, SHIFT-LOCK,
or SHIFT key the ie_code contains the shifted ASCII character corresponding to the struck
key.

For physical keystations that are mapped to cursor control keys, the current implementation
transmits a series of events with codes that correspond to the ANSI X3.64 7-bit ASCII encoding
for the cursor control function. For physical keystations that are mapped to function keys, the
current implementation transmits a series of events with codes that correspond to an ANSI
X3.64 user-definable escape sequence. For further details, see kbd(5).

#define META....FIRST 128
#define META....LAST 255

Event codes from 128 to 255 inclusive are generated when the client has META translation
enabled and the user strikes a key that would generate a 7-bit ASCII code while the META key is
also depressed. In this case, the event code is the 7-bit ASCII code added to META....FIRST.

5.1.2.2. Function Event•

Event codes in the function class correspond to button strikes that do not result in generation of
an event code in the ASCII class.

In the function class are the event codes associated with locator buttons:

#define BUT (1)

A physical locator often has up to 10 buttons connected to it. Alternatively, even though the
physical locator does not have any buttons physically available on it; it may have buttons on

Revision G of 15 April 1985 5-3

Input to Application Programs Sun Windows Reference Manual

another device assigned to it. A light pen is an example of such a locator. In either case, each of

the_ n bduttons (wtherde 0th< ~th<=b tltO) ~soci~teddwtihth thde V
8
ir
0
tTua(I.)JnpuTthDevic3-e'bs locator are Q.

ass1gne an even co e; e 1- u on 1s ass1gne e co e 1 . us a utton mouse
reports x and y and buttons 1 - 3.

In the function class are the event codes associated with keyboard function keys that don't gen
erate single ASCII charaters:

#define KEY_LEFT(i)
#define KEY_RIGHT(i)
#define KEY_TOP(i)
#define KEY_BOTTOMLEFT
#define KEY_BOTTOMRIGHT

The function keys in the Virtual Input Device define an idealized standard layout that groups
keys by location: 16 left, 16 right, 16 top and 2 bottom. While the actual position on the key
board may be different, it is convenient to provide some grouping for the large number of func
tion keys. The mapping to physical keys on various keyboards is defined in <sundev /kbd. h>
and discussed in kbd(5).

5.1.2.9. Paeudo Event•

#define VKEY_FIRSTPSEUDO
#define VKEY_LASTPSEUDO

Event codes in the pseudo class are events that involve locator movement instead of physical
button striking. The physical locator constantly provides an (x, y) coordinate position in pixels; Q, ·

this position is transformed by the Virtual Input Device to the coordinate system of the window
receiving an event. In order to watch actual locator movement (or lack thereof), the client must
be enabled for the events with codes.

#define LOC_MOVE
#define LOC_MOVEWHILEBUTDOWN
#define LOC_STILL

A LOC...MOVE is reported only when the locator actually moves. Since fast motions may yield
non-adjacent locations in consecutive events, the locator tracking mechanism reports the current
position at a set sampling rate, currently 40 times per second.

LOC...MOVEWHILEBUTDOWN is like LOC...MOVE but happens only when a button on the locator is
down.

A single LOC_STILL event is reported when the locator has been still for a specified period,
currently 1/5 of a second.

Clients can be notified when the locator has entered or exited a window via the event codes:

#define LOC_WINENTER
#define LOC_WINEXIT

5-4 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Input to Application Programs

5.1.9. Event Flags

Only one event flag is currently defined:

#define IE_NEGEVENT

indicates the event was "negative." Positive events include depression of any button or key,
including buttons on the locator, motion of the locator device while it is available to this client,
and entry of the cursor into a window. The only currently defined negative event is the release
of a depressed button. Stopping of the locator and locator exit from the window are positive
events, distinct from locator motion and window entry. This asymmetry allows a client to be
informed of these events without the performance penalty associated with receiving all negative
events and then discarding all but these two.

Two macros are defined to inquire about the state of this flag:

#define win_inputnegevent(ie)
#define wln_lnputposevent(ie)

struct inputevent *ie;

These are TRUE or FALSE if the IE..NEGEVENT bit is 1 or O respectively in the input event pointed
to by ie.

5.1.,t. Shift Codes

ie_shi ftmask contains a set of bit flags which indicate an interesting state when an input
event occurs. The most obvious example is the state of the Shift or Control keys when some
other key is pressed. Eventually, clients will be able to declare any Virtual Input switch as an
"interesting" shift switch. For now, only the following bits are reported:

#define
#define
#define
#define

CAPSMASK
SHIFTMASK
CTRLMASK
UPMASK

OxOOOl
OxOOOE
Ox0030
Ox0080

These are defined in <sundevjkbd.h>, and described in kbd(5).

5.2. Reading Input Events

A library routine exists for reading the next input event for a window:

int lnput_readevent(fd, ie)
int fd;
struct lnputevent *le;

This fills in the indicated struct, and returns O if all went well. In case of error, it sets the global
variable errno, and returns -1; the client should check for this case.

A window can be set to do either blocking or non-blocking reads via a standard fcntl system
call, as described in fcntl (2) (using F_SETFL) and fcntl (5) (using FNDELAY). A window is
defaulted to blocking reads. The blocking status of a window can be determined by the fcntl
system call.

Revision G of 15 April 1985 5-5

Input to Application Programs Sun Windows Reference Manual

A window process can ask to be sent a SIGIO if any input is pending in a window. Enabling this
option is also via a standard fcntl system call, as described in fcntl (2) (using F_SETFL) and O·
fcntl (5) (using FASYNC). The programmer can set up a signal catcher for SIGIO by using the
signal (3) call.

The number of character in the input queue of a window can be determined via a FBIONREAD

ioctl (2) call. FBIONREAD is described in tty(4). Note that the value returned is the number
of bytes in the input queue. If you want the number of inputevents then you need to divide
by sizeof (struct inputevent).

The recommended normal style for handling input uses blocking 1/0 and the select(2) system
call to await both input events and signals such as SIGWINCH. This allows a signal handler to
merely set a flag, and leave substantial processing to be performed synchronously when the
select returns. The tool_select mechanism described in chapter 6 illustrates this
approach. Using blocking 1/0 and read(2) without a prior select forces the client to process
SIGWJNCH signals entirely in the asynchronous interrupt handler. This necessitates extra care to
avoid race conditions and other asynchronous errors.

Non-blocking 1/0 may be useful in a few circumstances. For example, when tracking the mouse
with an image which requires significant computation, it may be desirable to ignore all but the
last in a queued sequence of motion events. This is done by reading the events, but not process
ing them until a non-motion event is found, or until all events are read. Then the most recent
mouse location is displayed, but not all the points covered since the last display. When all
events have been read and the window is doing non-blocking 1/0, input_readevent returns
-1 and the global variable errno is set to EWOULDBLOCK.

5.3. Input Serialization and Distribution

With the exception of some of the pseudo event codes, the Virtual Input Device described in
preceding sections is not logically tied to the Sun window system; the scheme could be used by
any system desiring that form of unification. This section is more specific to the window system,
since it discusses how events are selected and distributed among the various windows which
might use them.

Each user input event is formatted into an inputevent, which is then assigned to some reci
pient. There are three ways a process gets to receive an input event:

• Most commonly, it reads the window which lies under the cursor, and that window has an
input ma,k which matches the event. Input masks are described in Input Ma,k,. If several
windows are layered under the cursor, the event is tested first against the input mask of the
topmost window.

• If the event does not match the input mask of one window, other windows will be given a
chance at it, as described below.

• Much less frequently, a window will be made the recipient of all input events; this is dis-
cussed under win_grabio below.

0

Each window designates another window to be offered events which the first will not accept. By
default this is the window's parent; another backstop may be designated in a call to
win_setinputmask, described in the next section. If an event is offered unsuccessfully to the
root window, it is discarded. Windows which are not in the chain of designated recipients never
have a chance to accept the event. 0

5-6 Revision G of 15 April 1985

0

0

Sun Windows Reference Manual Input to Application Programs

If a recipient is found, the locator coordinates are adjusted to the coordinate system of the reci
pient, and the event is appended to the recipient's input stream. Thus, every window sees a sin
gle stream of input events, in the order in which the events happened (and time-stamped, so that
the intervals between events can also be computed), and including only the events that window
has declared to be of interest.

5.9.1. Input Masks

The input masks facilitate two things:

• Events can be accepted or rejected by classes; for instance, a process may want only ASCII
characters.

• The times when events are accepted can be controlled, minimizing the processing required to
accept and ignore uninteresting events. For instance, a process may track the mouse only
when it is inside one of its windows, or when one of the mouse buttons is down.

Clients specify which input events they are prepared to process by setting the input mask for
each window being read.

struct inputmask {
short i111_flags;
char i111_inputcode[IM_CODEARRAYSIZE];
short i111_shifts;
short i111_shiftcodes[IM_SHIFTARRAYSIZE];

};

#define IM_CODEARRAYSIZE (VKEY_CODE/((sizeof char)*BITSPERBYTE))
#define IM_SHIFTARRAYSIZE ((sizeof short)*BITSPERBYTE)

im_flags specifies the handling of related groups of input events:

#define IM_ASCII

indicates that the Virtual Input Device translation should occur.

#define IM..,ANSI

indicates that the process wants keystrokes to be interpreted as ANSI characters and escape
sequences: normal ASCII characters are represented by their ASCII code in ie_code, described
in Uniform Input Eventa. Function keys with a standard interpretation, such as the cursor con
trol keys, are represented by a sequence of input events, whose ie_codes are ASCII characters
starting with <ESC>. See kbd(5) for further details.

#define IM_POSASCII

indicates that the client only wants to be notified of positive events for ASCII class events, even
though n.LNEGEVENT is enabled.

Note: The current implementation automatically enables both ™-ANSI and IMJ'OSASCII when
ThLASCII is specified.

Requesting a particular function event in addition turns off any ANSI escape-coding for that
function event.

#define IM_META

Q indicates that META-translation should occur. This means ASCII events that occur while the

Revision G of 15 April 1985 5-7

Input to Application Programs Sun Windows Reference Manual

META key is depressed are reported with codes in the META range. Note that IM....META does not
make sense unless IM...ASCII is enabled.

#define IM_NEGEVENT

indicates that the client wants to be notified of negative events as well as positive ones. See
Event Flag• for a discussion of positive and negative events.

#define IM....UNENCODED

indicates that no translation of physical device events should be performed. The Virtual Input
Device should not intervene between the window and the user input. In this case, the most
significant byte of ie_code in an input event is the id number of the device that generated the
event, and the least significant byte contains the physical keystation number of the keystation
that the user struck. The current device ids are those assigned to the supported keyboards and
the id assigned to the mouse

#define MOUSE_DEVID 127

For unencoded mouse input, the least significant byte of the event code is identical to the least
significant byte of the corresponding encoded input event. Note that unencoded pseudo events
are associated with the physical locator; that is, a button-push on a tablet puck will generate a
different code from a corresponding button-push on a mouse.

im_inputcode is an array of bit flags indexed by biased event codes. A 1 in the ith position of
the bit array indicates that the event with code VKEYJ'IRST+i should be reported. This filter
applies in both ThLUNENCODED and IM...ASCII modes.

There are two routines which are of interest here.

win_setinputmask(windowfd, acceptmask, flushmask, designee)
int windowfd;
struct
int

inputmask *acceptmask, *flushmask;
designee;

sets the input mask for the window identified by windowfd. acceptmask addresses the new
mask - events it passes will be reported to this window after the call to win_setinputmask.

flushmask specifies a set of events which should be flushed from this window's input queue.
These are events which were accepted by the previous mask, and have already been generated,
but not read, by this window. This is a dangerous facility; type-ahead and mouse-ahead will
often be lost if it is used. The most obvious application is for confirmations, but these can be
better implemented by requiring the confirmation within a short time-out.

Note: If flushmask is non-NULL, the current implementation flushes all events from the queue,
not just those specified in fl ushmask.

designee is the window number, which specifies the next potential recipient for events rejected
by this window. If it is set to WINJWLLLINK (defined in <sunwindow/win_struct.h>), it is
interpreted as designating the window's parent.

Note: Changing masks in response to some input should be done with caution. There will be a
lapse of time between the event which persuades the client it wants a new mask and the time
the system interprets the resulting call to win_setinputmask. Events which occur in this
interval will be passed or discarded according to the old input mask. Thus, it is probably not
appropriate to wait for a button down before requesting the corresponding button-up; the

0

0

button-up may arrive and be discarded before the mask is changed. It's less dangerous to wait o
until a button goes down to start tracking the mouse, since the client will be caught up as soon '

5-8 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Input to Application Programs

as the first motion event arrives. But even here, it's better to ask for the
LOC..MOVEWIIlLEBUTDOWN event, and never change the mask.

The input mask for a window is read with

win_getinputmask(windowfd, im, designee)
int windowfd;
struct
int

inputmask *im;
*designee;

The input mask for the window identified by windowfd is copied into the buffer addressed by
im. The number of the window that is the next possible recipient of input is copied into the
integer addressed by designee.

We return to win_input. h for these routines useful for manipulating input masks. The first
three are macros:

#define win_setinputcodebit(im, code)
struct inputmask *im;
char code;

sets the bit indexed by code in the input mask addressed by im to 1.

#define win_unsetinputcodebit(im,code)
struct inputmask *im;
char code;

resets the bit to zero. The routine:

#define win_getinputcodebit(im, code)
struct inputmask *im;
char code;

returns non-zero if the bit indexed by code in the input mask addressed by im is set.

input_imnull(mask)
struct inputmask *mask;

is a procedure which initializes an input mask to all zeros. It is critical to initialize the input
mask explicitly when the mask is defined as a local procedure variable.

5.3.2. Seizing All Inputs

Normally, input events are directed to the window which underlies the cursor at the time the
event occurs. Two procedures modify that behavior. A window may temporarily seize all inputs
by calling:

win_grabio(windowfd}
int windowfd;

The caller's input mask still applies, but it receives input events from the whole screen; no win
dow other than the one identified by windowfd will be offered an foput event or allowed to
write on the screen after this call.

win_releaseio(windowfd}
int windowfd;

undoes the effect of a win_grabio, restoring the previous state.

Revision G of 15 April 1985 5-9

Input to Application Programs Sun Windows Reference Manual

5.4. Event Codes Defined

In the following table are collected together all of the special event code names discussed above.
These names define values which appear in the ie_code field of an inputevent. As the sys
tem evolves, the particular value bound to a name is likely to change, thus event codes should be
compared to the symbolic names below, not to the current values of those names.·

#define ASCII_FIRST (0)
#define ASCII_LAST (127)
#define MET""-..FIRST (128)
#define MET""-..LAST (255)

#define VKEY_CODES (128)
#define VKEY_FIRST (32512)

#define VKEY_FIRSTPSEUDO (VKEY_FIRST)
#define LOC_MOVE (VKEY_FIRSTPSEUDO+O)
#define LOC_STILL (VKEY_FIRSTPSEUDO+l)
#define LOC_WINENTER (VKEY_FIRSTPSEUD0+2)
#define LOC_WINEXIT (VKEY_FIRSTPSEUD0+3)
#define LOC_MOVEWIIILEBUTDOWN (VKEY_FIRSTPSEUD0+4)
#define VKEY_LASTPSEUDO (VKEY_FIRSTPSEUD0+15)

#define VKEY_FIRSTFUNC (VKEY_LASTSHIFT+l)

#define BUT_FIRST (VKEY_FIRSTFUNC)
#define BUT (i) ((BUT_FIRST) + (i)-1)
#define BUT_LAST (BUT_FIRST+9)

#define KEY_LEFTFIRST ((BUT_LAST) +1)
#define KEY_LEFT (i) ((KEY_LEFTFIRST) + (i)-1)
#define KEY_LEFTLAST ((KEY_LEFTFIRST)+15)

#define KEY_RIGHTFIRST ((KEY_LEFTLAST)+l)
#define KEY_RIGHT(i) ((KEY_RIGHTFIRST)+(i)-1)
#define KEY_RIGHTLAST ((KEY_l1.IGHTFIRST)+15)

#define KEY_TOPFIRST ((KEY_RIGHTLAST)+l)
#define KEY_TOP(i) ((KEY_TOPFIRST)+(i)-1)
#define KEY_TOPLAST ((KEY_TOPFIRST)+15)

#define KEY_BOTTOMLEFT ((KEY_TOPLAST)+l)
#define KEY_BOTTOMRIGHT ((KEY_BOTTOMLEFT)+l)

#define VKEY_LASTFUNC (VKEY_FIRSTFUNC+lOl)

#define VKEY_LAST VKEY_FIRST+VKEY_CODES-1

There are 3 synonyms for the common case of a 3-button mouse:

5-10

#define MS_LEFT
#define MS_MIDDLE
#define MS_RIGHT

BUT(l)
BUT(2)
BUT(3)

Revision G of 15 April 1985

0

0

0

0

0

0

Chapter 6

Suntool: Tools and Subwindows

This chapter introduces the third and highest level of Sun Windows, auntoola. It discusses how to
write a tool: it covers creation and destruction of a tool and its subwindows, the strategy for
dividing work among them, and the use of routines provided to accomplish that work.

At the atJntoola level, the lower-level facilities are actually used to build user interfaces. This
chapter also describes a model for building applications, a number of components that implement
commonly-needed portions of such applications, and an executive and operating environment
that supports that model.

We refer to an application program that is a client of this Sun Windows level as a tool. Tool cov
ers the one or more processes that do the actual application work. This term also refers to the
collection of typically several windows through which the tool interacts with the user. Simple
tools might include a calculator, a bitmap editor, and a terminal emulator. Sun Microsystems
provides a few ready-built tools, several of which are illustrated in Appendix B. Others may be
developed to suit particular needs.

Common Sun Windows tool components and their functions include:

• A standard tool window that frames the atJbwindowa of the tool, identifying it with a name
stripe at the top and borders around the subwindows. Each tool window can adjust its size
and position, including layering, and subwindow boundary movement.

• An executive framework that supplies the usual "main loop" of a program, and which coor-
dinates the activities of the various subwindows.

• Several standard subwindows that can be instantiated in the tool.

• A standard scheme for laying out those subwindows.

• A facility that provides a default icon, which is a small form the tool takes to be unobtrusive
but still identifiable.

The suntools program initializes and oversees the window environment. It provides:

• Automatic startup of a specified collection of tools.

• Dynamic invocation of standard tools through a menu interface.

• Management of the window, called the root window, which underlies all tools and paints a
simple pattern.

• The user interface for leaving the window system.

Users desiring another interface to these functions can replace the suntools program, while
retaining specific tools.

The procedures that support the facilities described in this chapter and the following two are in
the atJntool library, /usr /lib/libsuntool. a. These procedures and their data structures
are declared m a number of distinct header files, which are included m

Revision G of 15 April 1985 6-1

Suntool: Tools and Subwindows Sun Windows Reference Manual

<suntool/tool_hs.h>.

6.1. Tools Design

A typical tool is built as a tool window, and contained within that, a set of aubwindowa, which
incorporate most of the user interface to the tool's facilities. Each subwindow is a "window" in
the sense described in Window Manipulation; the subwindows form a subtree rooted at the tool
window, and the various tool windows are all children of the root window associated with the
screen.

6.1.1. Non-Pre-emptive Operation

In general, tools should be designed to function in a non-pre-emptive style: they should wait
without consuming resources until given something to do, perform the task expeditiously, and
promptly return control to the user. If some task requires extensive processing, a separate pro
cess should be forked to run it without blocking the user interface.

This non-pre-emptive style implies that the tool is built as a set of independent procedures,
which are invoked as appropriate by a standardized control structure. The basic advice to client
programs is, "Wait right there; we'll let you know as soon as we have something for you to do."
From a programming point of view, the main function that the tool mechanism provides is the
provision of the control structure to implement this non-pre-emptive programming style. The
tool window and its subwindows all have the same interface to this control mechanism.

6.1.2. Division of Labor

The tool window performs a few functions directly. These are the user interface functions,
which are common to all tools.

Subwindows are the workhorses of the auntool environment, but most of the work they do is
specific to their own tasks, and of little interest here. It is important to understand that a
subwindow corresponds to a data type: there will be many instantiations of particular subwin
dows, quite possibly several in a single tool.

Various types of subwindows are developed as separate packages that can be assembled at a high
level. In addition to programmer convenience, this approach promotes a consistent user inter
face across applications.

The remainder of this chapter divides a tool's existence into two large areas: creation and des
truction, and tool-specific aspects of processing.

6.2. Tool Creation

All of the following processing must be performed as a tool is started:

• Parameters for this invocation of the tool are passed to it. Some of the parameters are
application specific and some parameters are generic to all tools.

0

0

• The tool window is created with space allocated for it and its various options defined; simi- o
larly, its subwindows are created and positioned in the tool window.

6-2 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

• The UNIX signal system is initialized to catch appropriate signals, e.g., SIGWINCH, that will be
sent to the tool's process.

• The tool's window is installed into the display structure.

• Finally, the tool starts its normal processing.

6.2.1. Tool Attributes

The programming interface to the tool window is based on attribute manipulation. An attribute
is an identifier/value pair. The identifier is an integer constant. The value is a long word (32
bit) quantity that may be a single numeric quantity or a pointer to other data. Attributes can
be gathered together into an attribute liat. An attribute list can contain other attribute lists as
well.

The tool window has a collection of attributes that can be set to affect the behavior of the tool
window. The following table lists each tool attribute, followed by the type of value that may be
assigned to it, and a short description of the attribute's meaning. The procedures used to mani
pulate these attributes are discussed throughout this chapter. Tool attribute identifiers are
defined in <suntool/tool.h>.

Revision G of 15 April 1985 6-3

Suntool: Tools and Subwindows Sun Windows Reference Manual

6-4

Table 6-1: Summary of Tool Attributes

Summary of Tool Attributes

Name Value type

WIN_COLUMNS [unsigned int]

WIN_LINES [unsigned int]

WIN_WIDTH [unsigned int]

WINJlE I GIIT [unsigned int]

WIN_LEFT [int]

WIN_TOP [int]

WIN_ICONIC [O or 1]

WIN_REPAINT_LOCK [O or 1]

Description
This attribute is the width, in
columns of characters, of the internal
area or a tool that is available to
subwindows. A tool is 80 columns by
default.

This attribute is the height, in rows
or characters, or the internal area or
a tool that is available to subwin
dows. A tool is 34 rows by default.

This attribute is the width, in pixels,
or a normal sized tool.

This attribute is the height, in pixels,
or a normal sized tool.

This attribute is the z position or the
upper lert hand corner, in pixels, or
the tool.

This attribute is the !/ position or the
upper lert hand corner, in pixels, or
the tool.

This attribute is the state of the tool:
0 means normal state (opened) and 1
means iconic state (closed). A tool is
open by default.

This attribute indicates the state or a
tool's repaint lock: 0 means repaint
as usual and 1 means don't repaint
as usual. Turning off the repaint
lock or explicitly calling
tool_display forces a repaint.
One might turn on the repaint lock
ir one was doing a batch of things to
the tool and only wanted the tool's
image to repaint once at the end or
the changes. This attribute is O by
default.

Revision G or 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

Summary of Tool Attributes

Name Value type
WIN_LAYOUT_LOCK [O or 1]

WIN_NAME_STRIPE [O or 1]

WIN_BOUNDARY__MGR [O or 1]

WIN_LABEL [char *]

WIN_ICON [struct icon *]

WIN_ICON_LEFT [int]

WIN_ICON_TOP [int]

WIN_ICON_LABEL [char *]

Revision G of 15 April 1985

Description
This attribute indicates the state of a
tool's subwindow layout lock, 0
means use the tool's tiling algorithm
to lay out the position and size of
subwindows, and 1 means don't do
any layout. Turning on the layout
lock makes subwindow layout the
programmer's complete responsibility
(see tool_layoutsubwindows).
This attribute is O by default.

This attribute indicates whether the
tool has a name stripe at the top of
the tool: 1 means yes and O means
no. This attribute is 1 by default.

This attribute indicates whether the
user is allowed to try to interactively
move the boundary between subwin
dows of the tool with the mouse. A
1 value means yes and a O value
means no. This attribute is O by
default.

This attribute indicates the string
used in the name stripe of the tool.
This attribute is NULL by default.

This attribute is the icon used by the
tool. Its default value is NULL which
means that a default iconic image is
displayed.

This attribute is the x position, in
pixels, of the upper left hand corner
of an iconic tool.

This attribute is the y position of the
upper left hand corner, in pixels, of
an iconic tool.

This attribute indicates the string
used as the text in the icon. This
attribute is NULL by default. Note:
The current implementation of thia
attribute doea not aupport aetting it
unleu a WIN_ICON haa been done
already.

6-5

Suntool: Tools and Subwindows Sun Windows Reference Manual

Summary of Tool Attributes

Name
WIN_ICON_IMAGE

WIN_ICON_FONT

WIN....ATTR_LIST

WIN_DEFAULT_CMS

6-6

Value type
[struct pixrect *]

[struct pixfont *]

[char **]

[O or l]

Description
This attribute is the memory pixrect
used for the graphic portion of the
icon. It's default value is NULL which
means that a default iconic image is
displayed. Note: The current imple
mentation of thia attribute doe• not
aupport aetting it unleaa a WINJCON

haa been done already.

This attribute is the font handle used
to display text in the icon. Its
default value is NULL, which means
that the system default font is
displayed. Note: The current imple·
mentation of thia attribute doe• not
aupport aetting it unleaa a WIN_!CON

ha• been done already.

This is a pseudo-attribute that is a
list of other attributes. A O attribute
identifier terminates the list. Query
ing for this attribute is an error.

This attribute indicates the state of
the default colormap aegment. The
default colormap segment is that to
which newly created pixwins are ini
tialized. Normally, the default color
map segment is named "mono
chrome" with its two colors defined
by the values set during screen crea
tion. If the value of
WIN..DEFAULT_CMS is 1 then the
colormap segment currently being
used by the tool window is set to be
the default colormap segment for the
tool's process. This attribute is O by
default. WIN..DEFAULT_CMS is USU·

ally set to 1 from the command line
so that the tool window colors, set
with WIN..FOREGROUND and
WIN..BACKGROUND, are used for all
the subwindows as well. Note: The
current implementation of thia attri•
bute doe• not aupport reaetting it
back to O once aet to 1.

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Rererence Manual Suntool: Tools and Subwindows

Name
WIN_FOREGROUND

WIN_BACKGROUND

Revision G or 15 April 1985

Summary of Tool Attributes

Value type
[struct singlecolor *]

Description
This attribute indicates the fore
ground color or the tool window.
This attribute's default value is the
foreground color set during screen
creation.

[struct singlecolor *] This attribute indicates the back
ground color or the tool window.
This attribute's default value is the
background color set during screen
creation.

6-7

Suntool: Tools and Subwindows Sun Windows Reference Manual

6.2.1.1. The Tool Struct

The tool structure is considered private to the implementation of the tool. Its data should be
accessed indirectly via attribute calls. However, in previous versions of the system, programmers
were instructed to write code that directly accesses this structure, and not all tool data is
directly accessible via the attributes mechanism. Therefore, this section describes the fields of
the structure.

Note: Mixing access of the tool structure by direct access (via tool structure field
reference) and indirect access (via attributes) will often yield incorrect results. The
attribute interface dynamically allocates storage for the fields of the tool struct
while the old interface saved whatever the programmer handed it.

The tool struct is defined in <suntool/tool .h>. It is:

struct tool
short
int
char
struct
struct
struct
struct
struct

};

{
tl_flags;
tl_windowfd;
*tl_name;
icon *tl_icon;
toolio tl_io;
toolsw •tl_sw;
pixwin *tl_pixwin;
rect tl_rectcache;

t l_ flags holds state information. Currently, there are 6 defined flags:

#define TOOL_NAMESTRIPE OxOl
#define TOOL_BOUNDARYMGR Ox02
#define TOOL_ICONIC Ox04
#define TOOL_SIGCHLD Ox08
#define TOOL_SIGWINCHPENDING OxlO
#define TOOL_DONE Ox20

Their meanings are as follows:

TOOL_NAMESTRIPE
indicates that the tool is to be displayed with a black stripe holding its name at the
top of its window.

TOOL...BOUNDARYMGR
enables the option that allows the user to move inter-subwindow boundaries.

TOOLJCONIC
indicates the current state of the tool: l = small (iconic); 0 = normal (open). Note
that client programs should never set or clear the TOOLJCONIC flag.

TOOL..SJGCHLD and TOOL_SIGWINCHPENDING
mean that the tool has received the indicated signal and has not yet performed the
processing to deal with it.

TOOL..DONE
indicates the tool should exit the tool_select notification loop.

6-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

The la.st three flags are used during tool_select processing described below and should be
considered private to the tool implementation.

tl_windowfd holds the file descriptor for a tool's window. This is used for both input and
output. It also identifies the window for manipulations on the window database,
such a.s modifying its position or shape. Possible uses of windowfd are dis
cussed in chapters 3 through 5.

tl_name addresses the string that can be displayed in the tool's namestripe and default
icon.

tl_rectcache holds a rectangle that indicates the size of the tool's window. Because the rec
tangle is in the tool's coordinate system, the origin will always be (0, 0). This
size information is cached so that the tool can tell when its size has changed by
comparing the cached rect with the current rect.

t l_icon holds a pointer to the icon struct for this tool.

tl_pixwin

tl_sw

addresses the window's pixwin, which is the structure through which the tool
accesses the display.

points to the first and oldest of the tool's subwindows. The following section
discusses these structs.

The tool uses tl_io to control notification of input and window change events to itself. Toolio
Structure details this structure type. During tool creation, the fields of this structure are set up
with values to do default tool processing.

6.2.2. Tool Initialization Parameters

Tool manager specific parameters are passed through the environment and via the command
line. Most programmers can ignore the environment parameters, which are described below in
Environment Parametera. However, most programmers do need to deal with command line argu
ments.

6.2.2.1. Command Line Paraing

The following table lists the command line arguments that the user should be able to pass to a
tool on the command line. All tools should be able to accept these arguments and thus they are
called generic tool arguments.

Revision G of 15 April 1985 6-9

Suntool: Tools and Subwindows Sun Windows Reference Manual

Table 6-2: Generic tool arguments

FLAG (LONG FLAG) ARGS ATTRIBUTE
-Ww (-width) column WIN_COLUMNS
-Wh (-height) line WIN..LINES
-Ws (-size) xy WIN_WIDTH WINJIEIGHT
-Wp (-position) xy WIN..LEFT WIN_TOP
-WP (-icon_position) xy WINJCON_LEFT WIN_ICON_TOP
-WI (-label) "string" WIN..LABEL
-Wi (-iconic) WINJCONIC
-Wn (-no_name_stripe) WIN_NAME_STRIPE
-Wt (-font) filename
-Wf (-foreground_color) red green blue WIN_FOREGROUND
-Wb (-background_color) red green blue WINJ3ACKGROUND
-Wg (-set_default_color) WINJ)EFAULT_CMS
-WI (-icon_image) filename WIN_ICONJMAGE
-WL (-icon_label) "string .. WIN.JCON.J,ABLE
-WT (-icon_font) filename WIN_ICON_FONT
-WII (-helo)

So that tool builders can parse the command line for generic tool arguments in a uniform way,
some utilities are provided.

int tool_parse_all(argc_ptr, argv, tool_args_ptr, tool_name)
int *argc_ptr;
char
char
char

**argv;
***tool_args_ptr;
*tool_name;

tool_parse_all scans the entire length of argv for generic tool arguments and builds up an
attributes list in *tool_args_ptr. It is important to initialize *tool_args_ptr to NULL
before making this call. As flags and their arguments are successfully parsed argv is modified
to no longer contain the matched arguments and *argc_ptr is decremented. *argc_ptr is
the count of elements in argv. tool_name is passed in so that meaningful error messages
can be sent to stderr if an error is detected in the command line. tool_parse_all
returns -1 to indicate such an error and Oto signify success. When an error is detected, it is a
good idea to call too l_usage.

tool_usage(tool_name)
char *tool_name;

tool_usage sends an message to stderr listing the command line format of generic tool
arguments. tool_name is used in formatting the message.

Some programs have reason to not give over control of their command lines to
tool_parse_all. For these programs, tool_parse_one is provided.

6-10

int tool_parse_one(argc, argv, tool_args_ptr, tool_name)
int
char
char
char

argc;
**argv;
***tool_args_ptr;
*tool_name;

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

tool_parse_one scans the first string in argv for a generic tool argument flag. If it finds
one, the attributes list in *tool_args_ptr has another attribute added to it. It is important
to initialize *tool_args_ptr to NULL before calling this routine for the first time. Unlike
tool_parse_all, tool_parse_one doesn't modify argv or argc. A positive number
return value indicates how many arguments from the front of argv were used. It is then the
callers responsibility to modify argv and argc. Error reporting 1s as with
too l_parse_a 11.

Some programs want the convenience of tool_parse_all but would like to explicitly deter
mine if a particular attribute has been specified by the user from the command line.
Tool_find_attribute is a utility to help do this.

int tool_find_attribute(tool_args, id, value_ptr)
char **tool_args;
int id;
char **value_ptr;

tool_find_attribute looks for the attribute identifier id in tool_args. If the attribute
is not found then the return value is 0. If the attribute is found then the return value is l and
*value_ptr is set to the value of the attribute. The storage for *value_ptr must later be
released via a call to tool_ free_attr ibute (described below).

The storage used for the attribute list built up by the calls to tool_parse_al l and
tool_parse_one should eventually be freed via a call to tool_free_attribute_list.

int tool_free_attribute_list(tool_args)
char **tool_args;

tool_free_attribute_list releases the storage used by tool_args after releasing all the
storage for its component attributes. This call is most often made just after calling
tool_make.

6.2.3. Creating the Tool Window

The pair of procedures tool_make and tool_createsubwindow perform the main work of
creating a tool with its subwindows. These take a series of parameters that define the object to
be created, and return a pointer to an object that encapsulates the information about the tool or
a subwindow. That pointer is then passed to a number of other routines that manipulate the
object; the client is usually not concerned with the exact definition of the structure.

tool_make and tool_createsubwindow include a large part of the processing described in
the earlier parts of this manual. Thus, client programmers need not necessarily concern them
selves much with the details of pizwina and window devices.

A tool is created by a call to:

/* VARARGS */
struct tool •tool_make(id, value, id, value, ... 0)

int id;
caddr_t value;

tool_make takes a variable number of attribute identifier/value pairs, terminated by the spe
cial attribute identifier 0. These attributes control the behavior of the tool. A list of valid attri
butes is available in the section Tool Attributea. id's are the attribute identifiers. value's
are the attribute values of the preceding id. A tool handle is returned. If the tool handle is

Revision G of 15 April 1985 6-11

Suntool: Tools and Subwindows Sun Windows Reference Manual

NULL then the call failed. tool_make changes the process group of the current process to the
current process id.

All value arguments passed into tool_make are copied. Thus, all subsequent accesses of tool
attribute values must use tool_get_attribute (see Changing the Tool,' Attribute,). For
example, if you use WINJCON to set the tool's icon, changing the icon structure after you passed
it into too l_make will not change the tool's icon.

There are parameters passed in the environment (see Environment Parameter,) that
too l_make examines during its execution. Attribute arguments to too l_make that duplicate
environment parameters override the environment parameters. In addition, an attribute
specified early in the calling sequence is overridden by a later instance of the same attribute.
Thus, the order of attributes in the call to tool_make is significant. Here is how attributes
should be ordered in the call to too l_make:

• Attributes that set the default setting for the tool should come first, e.g., WINJ.ABEL and
WINJCON.

• Attributes that the user has specified from the command line should come next, i.e., specify
WIN...ATTRJ,IST and its value.

• Attributes that you, as the programmer, are absolutely not going to allow the user to over
ride should come last, e.g., WIN_WIDTH and WINJIEIGHT if you insist that the tool be started
a fixed size.

Here is a sample call to tool_make that illustrates the ordering of attributes as described
above:

tool= tool_make(
WIN_LABEL,
WIN_ICON,
WIN_ATTR_LIST,
WIN_WIDTH,
WIN_HEIGHT,
0) ;

"Tool 2 .O",
&icon,
tool_args,
200,
100,

Remember to call tool_free_attribute_list after calling tool_make.

Creating the tool does not cause it to appear on the screen; a separate step is used for that pur
pose as described in Tool lmtallation,

6.2.4- Subwindow Creation

After the tool is created, its subwindows are added to it. This section describes the basic tool
subwindow creation procedure. Often, however, you are not providing your own subwindow
implementation. Instead, an existing subwindow package is providing the implementation, e.g., a
message subwindow or a panel subwindow. Their create procedures, e.g.,
msgsw_createtoolsubwindow or panel_create, handle tool subwindow creation for you.
If you are not providing your own subwindow implementation then you can skip down to Tool
lnatallation.

6-12 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

struct toolsw •tool_createsubwindow(tool, name, width, height)
struct tool •tool;
char
short

*name;
width, height;

#define TOOL_SWEXTENDTOEDGE -1

makes a new subwindow, adds it to the list of subwindows for the indicated tool, and returns a
pointer to the new too lsw struct. The width and height parameters are hints to the lay
out mechanism indicating what size the windows should be if there is enough room to accommo
date them. There are no guarantees about maintaining subwindow size because changing window
sizes can ruin any scheme. TOOL_SWEXTENDTOEDGE may be passed for width and/or
height; it allows the subwindow to stretch with its parentin either or both directions. Subwin
dow Layout details the subwindow layout algorithm. The name is currently unused; it may
eventually support the capability to refer to subwindows by name.

The remaining subwindow initialization requires reference to the data structure:

struct toolsw {

};

struct
int
char
short
short
struct
int
caddr_t

toolsw *ts_next;
ts_windowfd;
*ts_name;
ts_width;
ts_height;
too llo ts_io;
(•ts_destroy) () ;
ts_data;

The subwindows of a tool are chained on a list with ts_next in one subwindow pointing to the
next in line, until the list is terminated with a null pointer.

Like the tool window, each subwindow must have an associated open window device;
too l_createsubwindow stores the file descriptor in ts_window fd.

ts_name, ts_width and ts_height are exactly as Ill the call to
tool_createsubwindow.

The tool uses ts_io to control notification of input and window change events to the subwin
dow. Upon subwindow creation, the ts_io structure has null values in it that need to be set.
This is normally done by the create routine for a standard subwindow type. Toolio Structure
details this structure.

ts_destroy gets called when the tool is being destroyed by tool_destroy so that the
subwindow may terminate cleanly.

ts_data provides 32 bits of uninterpreted data private to the subwindow implementation. Typi
cally, it will be a pointer to information for this instance of the subwindow. That is, all subwin
dows of the same type will share common interrupt handlers and layout characteristics. Window
contents and other information specific to one particular window will an be accessed through this
pointer. This is discussed at more length in Minimum Standard Subwindow Interface in Chapter
7.

Revision G of 15 April 1985 6-13

Suntool: Tools and Subwindows Sun Windows Reference Manual

6.2.5. Subwindow Layout

By default, subwindows are laid out in their tool's area in a simple left-to-right, top-to-bottom
fashion, in the order they are created. A subwindow is placed as high as it can be, and in that
space, as far to the left as it can be. The ts_vidth and ts_height fields in the toolsv
structure control the width and height of the subwindow.

The default subwindow layout mechanism breaks down for complicated subwindow layouts. This
is how you replace the default subwindow layout mechanism with your own. Include a function
named tool_layoutsubvindovs in your program. Your version of this function will be
loaded instead of the function of the same name that the 1untool library contains.
tool_layoutsubvindovs just takes a tool handle and has no return value. It will be called
by the tool manager whenever the following occurs:

• The tool's size has changed. This includes the first time that the tool goes to display itself.

• The subwindow boundary manager has .changed one of the values of ts_vidth or
ts_height in a toolsv structure.

• The WIN..LAYOUT..LOCK attribute has been set to 0.

You can then use win_setrect in your implementation of tool_layoutsubvindows to
layout the subwindows yourself. Note that just setting WIN..LAYOUT..LOCK to 1 and laying out
your subwindows at create time is inadequate because you don't know when to change the
subwindow layout.

Three functions return numbers useful for doing subwindow layout:

short tool_stripeheight(tool)
struct tool *tool;

returns the height in pixels of the tool's name stripe. Note that the tool argument cannnot be
NULL.

short tool_borderwidth(tool)
struct tool *tool;

returns the width in pixels of the tool's outside border. If the caller supplies a null tool argu
ment, the function returns the default border width.

short tool_subwindowspacing(tool)
struct tool *tool;

returns the number of pixels that should be left as a margin between subwindows of a tool.

6. 2. 6. Subwindow Initialization

By the time tool_createsubvindow has returned, the subwindow is already inserted in the
subtree growing out of the tool window; however, the subwindow will not perform any interest
ing function until ts_io and ts_data have been initialized. Normally,
too l_createsubvindov is not directly called. Instead, the tool subwindow creation pro
cedure for a subwindow type is called. The subwindow specific routine will call
tool_createsubwindow and then initialize ts_io and ts_data.

6-14 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

6. 2. 7. Tool Installation

Once the tool is created and its subwindows have been created, the software interrupt system
should be turned on via a call to signal as described in Window Change Notification•. At
least SIGWINCH should be caught; if there are inferior processes in any of the subwindows,
SIGCHLD should be added with any others as appropriate. Finally, the tool is installed into the
display window tree by a call to:

tool_install(tool)
struct tool *tool;

At this point, the tool is operating; in fact, it will probably shortly receive a SIGWINCH asynchro
nously to paint its window(s) for the first time.

6. 2.8. Tool Destruction

Explicitly destroying a tool as it reaches the end of its processing allows the system to reclaim
resources and remove the windows gracefully. The procedure to invoke this cleanup is:

tool_destroy(tool)
struct tool •tool;

tool_destroy will destroy every subwindow of the indicated tool as part of its processing, so
the subwindows need not be destroyed explicitly. Each subwindow's ts_destroy procedure
gets called, so they can clean up gracefully. The pointer passed to tool_destroy must never
be dereferenced after that call, since it is no longer valid.

A single subwindow can be destroyed by an explicit call to:

tool_destroysubwindow(tool, subwindow)
struct
struct

tool *tool;
toolsw *subwindow;

6.2.9. Programmatic Tool Creation

This section contains considerations if you are programmatically spawning processes that contain
tools.

6.2.9.1. Forking the Tool

A tool has its own process. The creation of that process does not differ significantly from the
normal paradigm for process creation. If it is to be started by a menu command or some other
procedural interface, it is appropriate for the creating process to do the fork and return from the
procedure call. When the child process dies, the parent process should catch the SIGCfilD signal
and clean up. See the wai t3(2) system call. SIGCHLD indicates to a parent process that a child
process has changed state.

Revision G of 15 April 1985 6-15

Suntool: Tools and Subwindows Sun Windows Reference Manual

6.2.9.2. Environment Parametera

Environment parameters are used to pass well-established values to a tool that is starting up.
They have the valuable property that they can communicate information across several layers of
processes, not all of which have to be involved.

Every tool must be given the name of its parent window. A tool's parent window is the window
in the display tree under which the tool window should be displayed. The environment parame
ter WINDOWYARENT is set to a string that is the device name of the parent window. For a tool,
this will usually be the name of the root window of the window system.

we_setparentwindow(windevname)
char *windevname;

sets WINDOWYARENT to windevname.

int we_getparentwindow(windevname)
char *windevname;

gets the value of WINDOWYARENT into windevname. The length of this string should be at
least WIN_NAMESIZE characters long, a constant found in <sunwindow/win_struct .h>. A
non-zero return value means that the WINDOWYARENT parameter couldn't be found.

The environment parameter DEFAULT..FONT contains the font file name that will be used as the
tool's default (see pf_default).

Another parameter, WINDOWJNITIALDATA, describes the screen placement of a tool, and
whether it should be open or iconic. WINDOW JNITIALDATA contains the coordinates of two rec
tangles, as well as one flag. The rectangles describe the placement and size of the open and
closed window, and the flag is a boolean that is non-zero if the tool should start out iconic.

The process that is starting the tool may set WINDOWJNITIALDATA before it forks
(wmgr _forktool does this; see Suntools: Uaer Interface Utilitiea). After the fork, tool_make
interrogates these variables. The routines to do this are m the library
/usr/lib/libsunwindow.a.

we_setinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int if lag;

sets the environment variable in the parent process, and

we_getinitdata(rnormal, riconic, iflag)
struct rect *rnormal, *riconic;
int *iflag;

reads those values in the child process. A non-zero return value means that the
WINDOWJNITIALDATA parameter couldn't be found.

A procedure is provided for unsetting WINDOWJNITIALDATA for tools that are going to provide
windows for other processes to run in. This procedure prevents a wayward child process from
being confused by the incorrectly set environment variable:

we_clearinitdata()

f>.16 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual

6.3. Tool Processing

The main loop of a normal tool is encapsulated inside a call to:

tool_select(tool, waitprocessesdie)
struct tool *tool;
int waitprocessesdie;

Suntool: Tools and Subwindows

This procedure is the notification distributer used for event-driven program control flow. When
some input event, timeout or signal interrupt is detected inside tool_select, a call to a
notification handler is made, paasing in enough information to identify what happened, and to
which window. When the handler returns, tool_select awaits another event. The
wai tprocessesdie argument is discussed below in Child Proceaa Management.

6.3.1. Toolio Structure

The toolio data structure in each toolsw structure holds what is needed for a subwindow to
wait for something to happen in the tool_select call. The tool structure uses the
toolio data structure within itself to wait for input too. It is defined in <suntool/tool .h>.

struct toolio {
int tio_inputmask,

};

int
int
struct
int
int

tio_outputmask,
tio_exceptmask;
timeval *tio_timer;
(*tio..Jiandlesigwinch) ();
(*tio_selected) () ;

tio_inputmask, tio_outputmask, tio_exceptmask and tio_timer fields are analo
gous to the last four arguments to the select system call. tio_inputmask has the bit
"l<</" set for each file descriptor/ on which a window wants to wait for input. Similarly,
tio_outputmask and tio_exceptmask indicate an interest in / being ready for writing and
having an exceptional condition pending, respectively. There are currently no "exceptional con
ditions" implemented; this field provides compatibility with the select system call.

If tio_timer is a non-zero pointer, it specifies a maximum interval to wait for one of the file
descriptors in the masks to require attention. If tio_timer is a zero pointer, an infinite
timeout is assumed. To effect a poll, the tio_timer argument should be non....zero, pointing to
a timeval structure with all zero fields.

toolio also contains pointers to the procedures that are called when the tool has received some
notification. tio_handlesigwinch addresses the procedure that responds to the SIGWINCH
signal. This procedure handles repaint requests and window size changes. The general form for
such a procedure is:

sigwinch...llandler(data)
caddr_t data;

Such procedures take a single argument data whose type is context-dependent. For a tool this
data is a pointer to the tool structure. For a subwindow this data is the ts_data value in
the toolsw structure.

tio_selected addresses the procedure which responds to notifications from the select sys
tem call. The procedure's calling sequence is:

Revision G of 15 April 1985 6-17

Suntool: Tools and Subwindows

io_handler(data, ibits, obits, ebits, timer)
caddr_t data;
int *ibits,
int
int
struct

*obits,
*ebits,
timeval **timer;

Sun Windows Reference Manual

In such procedures, the data argument is like that of the SIGWINCH handlers described above.
The three integer pointers indicate which file descriptors are ready for reads (• ibi ts), writes
(•obits), or exception-handling (*ebits). If timer is NULL, this window was not waiting on
any timeout. If *timer points to a valid struct timeval then this window is waiting for a
timeout. If both the (*timer) ->tv_sec and (*timer) ->tv_usec are zero, the timeout
has just happened for this window and should be serviced. The data in the file descriptor masks
is not defined if a timeout has occurred.

Before returning from a procedure of this type, the masks and timer must be reset by storing
through the pointers passed in the arguments; the values should be consistent with the discussion
of the masks and timer pointer above. You may not want to reset the timer if you are using it
as a countdown timer, and it still has time remaining on it.

6.3.2. File Descriptor and Timeout Notifications

tool_select generates three composite masks by merging the corresponding masks from all of
the toolio structures in the tool. The input mask is special in that if all the masks in a partic
ular toolio structure are zero, an entry in the composite input mask is made for the associ
ated window anyway. tool_select also determines the shortest timeout that any of the win
dows is waiting on. The composite masks and shortest timeout are passed to the select sys
tem call.

When the select system call returns normally, windows that have a match between their
masks and the mask of ready file descriptors that have timed out are notified via their
tio_selected procedure. Each tio_selected procedure is called with the complete ready
masks, not just the intersection of its own masks and the ready masks. However, a
tio_selected procedure is called with its own window's timer value.

Each window that has been selected as a result of the select system call is notified. The order
of notification is not defined. Problems will arise if there are multiple non-cooperating windows
waiting on the same device.

It should be noted that timers in this implementation are only approximate. When the select
system call returns and a timeout hasn't occurred, the select is assumed to have been instan
taneous. Also, the time taken up with handling notifications is not deducted from the timers.

6.3.3. Window Change Notifications

Clients of the tool interface must catch the SIGWINCH signal. A signal catcher can be set up via
the signa 1(3) library call. That catcher is then responsible for notifying the tool package that
the signal has arrived. This is done by calling:

tool_sigwinch(tool)
struct tool *tool;

This procedure simply sets the TOOL_SIGWINCHPENDING flag in tool. The receipt of any signal

6--18 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

has the side effect of causing the select system call in tool_select to return abnormally.
The TOOL_SIGWINCHPENDING flag is noticed and the tool's tio_handlesigwinch procedure is
called. The default tio_handlesigwinch procedure does some processing, which may
include changing the subwindow layout, and eventually calls all its subwindows'
tio_handlesigwinch procedures.

6.3.,4. Child Process Maintenance

tool_select also gathers up dead children processes of the tool. The waitprocessesdie
argument to tool_select is provided for tools which have separate processes behind some of
their subwindows. Such tools must explicitly catch SIGCHLD, the signal that indicates to a parent
process that a child process has changed state. Then the signal handler, parallel to a SIGWINCH
catcher and tool_sigwinch, should call:

tool_sigchld(tool)
struct tool •tool;

This call causes tool_select to try to gather up a dead child process via a wait3 system
call (see wait(2)). When as many child processes have been gathered up as indicated by the
waitprocessesdie argument to tool_select, tool_select returns.

6.3.5. Changing the Tool's Attributes

Tool attributes may be changed even after a tool has been created. tool_set_attributes
specifies changes to tool attributes.

/* VARARGS */
int tool_set_attributes(tool, id, value, id, value, ... 0)

struct
int
caddr_t

tool •tool;
id;
value;

tool_set_attributes takes a variable number of attribute identifier/value pairs, terminated
by the special attribute identifier 0. A list of valid attributes is available in the section Tool
Attributea. id's are the attribute identifiers. value's are the attribute values of the preced
ing id. This routine returns O if all the arguments are OK, -1 otherwise. All feedback is taken
care of, e.g., when setting the label, the name stripe is redisplayed. Repainting is only done once
at the end of the tool_set_attributes call.

All arguments passed into tool_set_attributes are copied. Thus, all accesses of attribute
values must use tool_get_attribute.

caddr_t tool_get_attribute(tool, id)
struct tool •tool;
int id;

tool_get_attribute allows the programmer to determine the value of the attribute
identified by id at any time in the life of the tool. The return value of the function is the value
of the attribute. If id is not understood then -1 is returned. The returned value is either a 32
bit non-dynamically allocated quantity or a pointer to dynamically allocated storage. The type
of the return value depends on the attribute and will usually need to be cast into that type. For
pointer values, tool_free_attribute must be called to release the storage allocated during

Revision G of 15 April 1985 6-19

Suntool: Tools and Subwindows Sun Windows Reference Manual

this call.

tool_free_attribute(id, value)
int id;
caddr_t value;

tool_free_attribute releases the storage allocated during tool_get_attribute or
tool_find_attribute calls. If id's value is defined as a non-dynamically allocated quan
tity, then value is not freed and this call does nothing.

6.3.6. Terminating Tool Processing

During the time that tool_select is acting as the main loop of the program, a call to:

tool_done(tool)
struct tool •tool;

causes the flag TOOL..DONE to be set in tool. tool_select notices this flag, and then
returns gracefully.

6.3. 7. Replacing Toolio Operations

Since the tool io structure contains procedure pointers in variables, it is possible to customize
the behavior of a window by replacing the default values.

0

Icons that respond to user inputs or that update their image in response to timer or other events,
may be implemented by replacing the tool's tio_selected procedure. A different subwindow 0,
layout scheme may be implemented in a replacement procedure for tio_handlesigwinch.
Note that these modifications do not require changes to existing libraries; the address of the sub-
stitute routine is simply stored in the appropriate slot at run-time. However, the substitute rou-
tine must either do all of the processing handled by the original library routine, or the substitute
routine should do its special processing and then call the original library routine.

0
6-20 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Suntool: Tools and Subwindows

6.3.8. Boilerplate Tool Code

Here is the boilerplate code for a simple tool. It illustrates the order in which things should be
done in a tool. All of the window related calls have been discussed in this chapter.

#include <stdio.h>
#include <suntool/tool_hs.h>
static struct tool *tool;

main(argc, argv)

{

int argc;
char **argv;

char
char
static

argv++;
argc--;

••tool_attrs = NULL;
•tool_name = argv[OJ;
int sigwinchcatcher();

/•Pickup command line arguments to modify tool behavior•/
if (tool_parse_all(&argc, argv, &tool_attrs, tool_name) == -1) {

tool_usage(tool_name);

}

static

exit (1);
}
/• Get application specific args */
while (argc > 0 && ••argv -- '-') {

}

/• Parse switches*/
argv++;
argc--;

/* Create tool window•/
tool= tool_make(

WIN_LABEL, tool_name,
WIN...J\TTR_LIST, tool_attrs,
0) ;

if (tool== (struct tool •)NULL)
exit(l);

tool_free_attribute_list(tool_attrs);
/• ... Create tool subwindows ... •/
/• Install tool in tree of windows•/
(void) signal(SIGWINCH, sigwinchcatcher);
tool_install(tool);
/* Run notifier•/
tool_select(tool, O);
/*Cleanup•/
tool_destroy(tool);
exit (0);

sigwinchcatcher() { tool_sigwinch(tool); }

Revision G of 15 April 1985 6-21

Suntool: Tools and Subwindows Sun Windows Reference Manual

6.3.0. Old Style Tool Creation

tool_make is the recommended call to use when creating a tool window. tool_create is an
out-dated call that used to do this for you. While tool_create still works, it is not recom
mended. Here is tool_create documentation.

A tool is created by a call to:

name

flags

struct tool •tool_create(name, flags, normalrect, icon)
*name;
flags;

char
short
struct
struct

rect •normalrect;
icon *icon;

#define TOOL_NAMESTRIPE
#define TOOL_BOUNDARYMGR

OxOl
Ox02

is the name of the tool. This is what will be displayed in the tool's name stripe if
TOOL..NAMESTRIPE is set in the flag's argument. It also appears on the default icon.

has the flags TOOL..NAMESTRIPE and/or TOOL...BOUNDARYMGR set as those proper
ties are desired. (TOOL...BOUNDARYMGR enables boundaries that the user can move
between subwindows.)

normalrect

icon

describes the initial position and size of the tool in its normal open state in the
coordinate system of the tool's parent, which is typically the window for the
screen.

is a pointer to an icon struct, if the client wants a special icon.

normalrect and the icon may be defaulted by passing NULL for their arguments. The
default icon is described, along with considerations for making custom icons, in Suntool: Uaer
Interface Utilitie.; the choice is strictly a matter of convenience vs. ambition. A tool's starting
position should almost always be left NULL; it could be the result of WE_GETINITDATA that is
going into norma 1 rect.

Note, tool_display is an outdated tool operation that has been taken over by
too l_set_attr ibutes. During processing, a call to:

tool_display(tool)
struct tool •tool;

redisplays the entire tool. This is useful if some change has been made to the image of the tool
itself, for instance if its name or its icon's image have been changed. Normal repaints in
response to size changes or damage should not use this procedure. They will be taken care of by
SJGWINCH events and their handlers.

6-22 Revision G of 15 April 1985

0

0

0

0

0

0

Chapter 7

Suntool: Subwindow Packages

This chapter describes aubwindow packages, the building blocks for constructing a tool. It
presents a guide for building new subwindow packages of general utility and describes the avail
able standard subwindow packages for use with auntoola. Refer to Suntool: Tool, and Subwin
dowa for a description of the overall structure of tools and the general notion of a subwindow.

Subwindows, as presented here, are designed to be independent of the particular framework in
which they are used. That is, a subwindow is a merger of window handling and application pro
cessing which should be valid in frameworks other than the tool structure and auntool environ
ment described in the preceding chapter. The design avoids any dependence on those con
structs. Thus, a subwindow package can be used in another user interface system written on top
of the sunwindow basic window system. However, subwindow packages all provide a utility for
creating a subwindow in the tool context.

7 .1. Minimum Standard Subwindow Interface

This section describes the minimum programming interface one should define when writing a
new subwindow package. A subwindow implementation should provide all the facilities described
here. This section presents the arguments to the following standard procedures. Each subwin
dow package need only document any additional arguments passed to its create/ init procedures.
There is a set of naming conventions that provides additional consistency between subwindow
package interfaces.

For the purpose of example, we use proto as the prefix. Other prefixes used in existing
subwindow packages include tty, gfx and msg.

Each subwindow package has a structure definition that contains all the data required by a single
instance of the subwindow.

struct protosubwindow {
int fsw_windowfd;
struct pixwin *fsw_pixwin;

};

The structure definition typically has a pizwin for screen access and a window handle for
identification as part of this data. The information that the subwindow's procedures need should
be stored in this data structure; this may entail redundantly storing some data that is in the
associated containing data structure, such as the toolsw struct. Having an object per subwin
dow allows multiple instantiations of a subwindow package in a single-user process. The follow
ing function creates new instances of a proto-subwindow:

struct protosubwindow *protosw_init(windowfd, ...)
int windowfd;

Revision G of 15 April 1985 7-1

Suntool: Subwindow Packages Sun Windows Reference Manual

windowfd is to be a proto-subwindow. The" ... " indicates that many subwindow packages will
require additional set-up arguments. This routine typically opens a pixwin, sets its input mask as
described in Input to Application Program,, and dynamically allocates and fills the subwindow's
data object. If the returned value is NULL then the operation failed.

protosw_done(protosw)
struct protosubwindow ~protosw;

destroys subwindow instance data. Once this procedure is called, the protosw pointer should
no longer be referenced.

protosw_handlesigwinch(protosw)
struct protosubwindow *protosw;

This procedure handles repaint requests and must also detect and deal with changes in the win
dow size. It is called as an eventual result of some other procedure catching a SIGWINCH.

protosw_selected(protosw, ibits, obits, ebits, timer)
struct
int
int
int
struct

protosubwlndow *protosw;
*ibits,
*obits,
*ebits,
timeval **timer;

handles event notifications. Subwindow packages that don't accept input may not have a pro
cedure of this type. The semantics of this procedure are fulty described in the preceding chapter
in the section entitled Toolio Structure.

struct toolsw *protosw_createtoolsubwindow(tool, name, width, height, ...)
struct tool •tool;
char
short

*name;
width, height;

creates a struct toolsw that is a proto-subwindow. protosw_createtoolsubwindow is
only applicable in the tool context. It is often the only call that an application program need
make to set up a subwindow of a given type. tool is the handle on the tool that has already
been created. name is the name that you want associated with the subwindow. width and
height are the dimensions of the subwindow as wanted by the tool_createsubwindow call.
The " ... " indicates that many subwindow packages will require additional arguments. These
additional arguments should parallel those in protosw_init. If the returned value is NULL
then the operation failed.

protosw_createtoolsubwindow takes the window file descriptor it gets from
tool_createsubwindow, passes it to protosw_init, and stores the resulting pointer in the
tool subwindow's ts_data slot. The addresses of protosw_handlesigwinch and
protosw_selected are stored in the appropriate slots of the toolio structure for the tool
subwindow, and the address of protosw_done is stored in the tool subwindow's ts_destroy
procedure slot.

Of course, most subwindow packages define functions that perform application-specific process
ing; the ones described here are merely the permissible minimum.

7-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

7.2. Empty Subwindow

The empty subwindow package simply serves as a place holder. It does nothing but paint itself
gray. It expects the window it is tending to be taken over by another process as described in
Graphica Subwindow. When the other process is done with the empty subwindow package, the
caretaker process resumes control.

A private data definition that
<suntool/emptysw .h> is:

struct
int

emptysubwindow {
ein....windowfd;

contains

struct plxwin *em._pixwin;
};

instance-specific data defined Ill

em_windowfd is the file descriptor of the window that 1s tended by the empty subwindow.
em_pixwin is the structure for accessing the screen.

struct toolsw *esw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char
short

*name;
width, height;

sets up an empty subwindow in a tool window. If the returned value is NULL then the operation
failed. Since esw_createtoolsubwindow takes care of setting up the empty subwindow, the
reader may not be interested in the remainder of this section.

struct
int

emptysubwindow *esw_init(windowfd)
windowfd;

creates a new instance of an empty subwindow. windowfd is the window to be tended. If the
returned value is NULL then the operation failed.

esw_handlesigwinch(esw)
struct emptysubwindow *esw;

handles SIGWINCH signals. If the process invoking this procedure is the current owner of
esw->em_windowfd, gray is painted in the window. If it is not the current owner, it checks to
see if the current owner is still alive. If the current owner is dead, this process takes over the
windows again and paints gray in the window.

esw_done(esw)
struct emptysubwindow *esw;

destroys the subwindow's instance data.

Processes that take over windows should follow guidelines discussed in Overlapped Windowa:
Imaging Facilitiea concerning the use of the win_getowner and win_setowner procedures.
Preferably, the graphics subwindow interface described below should be used for this activity.

7 .3. Graphics Subwindow

The graphics subwindow package is for programs that need a single window in which to draw.
Using this subwindow package insulates programmers of this type of program from much of the
complexity of the window system.

Revision G of 15 April 1985 7-3

Suntool: Subwindow Packages Sun Windows Reference Manual

Users of this interface have the additional benefit of being able to invoke their programs from
outside the window system. Thus, you can write one program and have it run both inside and
outside the window system. This situation is actually an illusion. What really happens when
running outside the window system is that the window system is actually started up and that a
single window is created in which the graphics subwindow package runs.

The graphics subwindow can also manage a retained window for the programmer. The program
mer need not worry about the fact that he is in an overlapping window situation. A backup
copy of the bits on the screen is maintained from which to service any repaint requests.

Appendix C contains programs based on graphics subwindows.

The graphics subwindow can be used in tool building like any of the other subwindow packages
described in this chapter. However, the graphics subwindow also provides the ability for a pro
gram to run on top of an existing window by using the blanket window mechanism.

The data definition for the instance-specific data defined in <suntool/gfxsw .h> is:

struct
int
int
int

gfxsubwindow {
gfx_windowfd;
gfx_flags;

};

struct
struct
caddr_t

gfx_reps;
pixwin •gfx_pixwin;
rect gfx_rect;
gfx_takeoverdata;

#define GFX_RESTART OxOl
#define GFlC_DAMAGED Ox02

gfx_windowfd is the file descriptor of the window that is being accessed. gfx_reps are the
number of repetitions that continuously running (non-blocking) cyclic programs are to execute.
gfx_pixwin is the structure for accessing the screen. gfx_rect is a cached copy of the
window's current self relative dimensions. gfx_takeoverdata is data private to the graphics
subwindow package.

gfx_flags contains bits that the client program interprets. The GFX..OAMAGED bit is set by
the graphics subwindow package whenever a SIGWINCH has been received. In addition, the
GFx...RESTART bit is set if the size of the window has changed or the window is not retained.
The client program must examine these flags at the times described below.

GFX..OAMAGED means that gfxsw_handlesigvinch should be called. This flag should be
examined and acted upon before looking at GFx..RESTART. GFx...RESTART is often interpreted by
a graphics program to mean that the image should be scaled to a new window size and that the
image should be redrawn. Many continuous programs, graphics demos for instance, redraw from
the beginning of a cycle. Other event-driven programs, graphics editors and status windows, for
example, redraw from their underlying data descriptions. The GFx...RESTART bit needs to be
reset to O by the client program before actually doing any redrawing.

7.3.1. In a Tool Window

0

0

A graphics subwindow in a tool context is only applicable for event-driven programs that use the
tool_select mechanism. Any subwindow in a tool must use this notification mechanism so
that all the windows are able to cooperate in the same process. o
7-4 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

struct toolsw *gfxsw_createtoolsubwindow(tool, name, width, height, argv)
struct tool •tool;
char
short
char

*name;
width, height;
**argv;

sets up a graphics subwindow in a tool window. If argv is not zero, this array of character
pointers is processed like a command line in a standard way to determine whether the window
should be made retained "-r" and/or what value should be placed in gfx_reps "-n ####".
If the returned value is NULL then the operation failed. It is the responsibility of the client to set
up toolsw->ts_io. tio_selected if the client is to process input through the graphics
subwindow.

It is also the responsibility of the client to replace toolsw->ts_io. tio_handlesigwinch
with the client's own routine to notify the client when something about his window changes.
The client tio_handlesigwinch will call gfxsw_interpretesigwinch described below.

gfxsw_getretained(gfxsw);
struct gfxsubwindow *gfxsw;

can be called to make a graphics subwindow retained if you choose not to do the standard come
mand line parsing provided by gfxsw_createtoolsubwindow. It should be called immedi
ately after the graphics subwindow is created. Destroying gfxsw->gfx_prretained has the
effect of making the window no longer retained.

The procedure:

gfxsw_interpretesigwinch(gfxsw)
struct gfxsubwindow *gfxsw;

1s called from the client tio_handlesigwinch to give the graphics subwindow package a
chance to set the bits m gfxsw->gfx_flags. The code in the client
tio_handlesigwinch then checks the flags and responds appropriately, perhaps by calling
the gfxsw_handlesigwinch procedure that handles SJGWINCH signals:

gfxsw_handlesigwinch(gfxsw)
struct gfxsubwindow *gfxsw;

If the window is retained and the window has not changed size, this routine fixes up any part of
the image that has been damaged. If the window is retained and the window has changed size,
this routine frees the old retained pixrect and allocates one of the new size. If the window is not
retained, the damaged list associated with the window is thrown away. The GFx...DAMAGED flag
is reset to zero in this routine.

The procedure:

gfxsw_done(gfxsw)
struct gfxsubwindow *gfxsw;

destroys the subwindow's instance data.

7.9.2. Overlaying an Existing Window

The graphics subwindow provides the ability for a program to overlay an existing window. The
empty subwindow described above is designed to be overlaid.

Revision G of 15 April 1985 7-5

Suntool: Subwindow Packages Sun Windows Reference Manual

The following procedure creates a new instance of a graphics subwindow in something other than
the tool context:

struct gfxsubwindow *gfxsw_init(windowfd, argv)
int windowfd;
char **argv;

windowfd should be zero; the assumption is that there is some indication in the environment as
to which window should be overlayed. See we_getgfxwindow in Window Manipulation for
more information. argv is like argv in gfxsw_createtoolsubwindow. In addition,
arguments similar to the ones recognized by win_ini tscreenfromargv are parsed. Thus,
the program can be directed to run on a particular screen. If the returned value is NULL then
the operation failed.

Wnen a screen is created from scratch, window system keyboard and mouse processing are not
turned on. gfxsw_setinputmask should be called instead of win_setinputmask when
defining window input (see below) in order to enable window system keyboard and mouse pro
cessing. This mechanism is used to allow programs that listen to the standard input to still run
when started from outside the window system.

gfx_takeoverdata in the returned gfxsubwindow data structure is not zero in this case.
The structure of the data that this pointer refers to is private to the implementation of the
graphics subwindow.

When a graphics subwindow has overlayed another window, various signal catching routines are
set up if the corresponding signals have no currently defined handler routines.

The gfxsw_catchsigwinch procedure is set up as the signal catcher of SIGWINCH:

gfxsw_catchsigwinch()

It, in turn, calls gfxsw_interpretesigwinch.

The gfxsw_catchsigtstp procedure is set up as the signal catcher of SIGTSTP:

gfxsw_catchsigtstp()

The graphics subwindow is removed from the display tree. The pixwin of the graphics subwin
dow is reset. SIGSTOP is sent to the the graphics subwindow's own process.

The gfxsw_catchsigcont procedure is set up as the signal catcher of SIGCONT:

gfxsw_catchsigcont()

The graphics subwindow is inserted back into the display tree (presumably after
gfxsw_catchsigtstp removed it).

Continuous programs that never use a select mechanism should examine gfxsw->gfx_flags
in their main loop. Other programs that would like to use a select mechanism to wait for
input/timeout should call:

gfxsw_select(gfxsw, selected, ibits, obits, ebits, timer)
struct gfxsubwindow *gfxsw;
int (*selected)(), ibits, obits, ebits;
struct timeval *timer;

as a substitute for the tool_select. selected is the routine that is called when some
input or timeout is noticed. Its calling sequence is exactly like protosw_selected described
at the beginning of this chapter. The only difference in the semantics of this routine and
protosw_selected is that the gfxsw->gfx_flags should be examined and acted upon in
selected. selected may be called with no input pending so that you are able to see the

7-6 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

flags when they change.

ibits, obits, ebits and timer, as well as gfxsw and selected, can be thought of as
initializing an internal toolio structure, which is then fed to the tool_select mechanism.

A substitute for the tool_done procedure is:

gfxsw_selectdone(gfxsw)
struct gfxsubwindow *gfxsw;

gfxsw_selectdone 1s called from within the selected procedure passed to
gfxsw_select.

Programs that are not using the mouse can call:

gfxsw_notusingmouse(gfx)
struct gfxsubwindow *gfx;

In certain cases, when the graphics subwindow is the only window on the display for instance,
some efficiency measures can be taken. In particular, pixwin locking overhead can be reduced.

gfxsw_setinputmask(gfx, im._set, im._flush, nextwindownumber, usems, usekbd)
struct gfxsubwindow *gfx;
int nextwindownumber;
struct inputmask *im_set, *im_flush;
int usems, usekbd;

The calling sequence is essentially that of win_setinputmask. usems being non-zero means
that mouse input is wanted and so the mouse is turned on for the screen (if currently off) ..
usekbd being non-zero means that keyboard input is wanted and so the keyboard is turned on
for the screen (if currently off). See g fxsw_ini t (above) for a rationale for using
gfxsw_setinputmask instead of win_setinputmask.

gfxsw_inputinterrupts(gfx, le)
struct gfxsubwindow *gfx;
struct inputevent *ie;

This utility looks at *ie. If *ie is a character that (on a tty) normally does process control
(interrupts the process, dumps core, stops the process, terminates the process), it does the similar
action. This routine is meant to be a primitive substitute for tty process control while using the
window input mechanism.

Remember to call gfxsw_done to "give back" the window that was taken over.

7 .4. Message Subwindow

The message subwindow is an extremely simple facility. If you are not concerned about the size
of the client's object code, or if the client already employs a panel subwindow, you should con
sider using the panel subwindow with a single message item instead o! the message subwindow.
This is because the panel subwindow provides superior functionality and a cleaner interface than
does the message subwindow. Please see the chapter entitled The Panel Subwindow Package for
further information on panels.

The message subwindow package displays simple ASCII strings.

A private data definition that contains instance-specific data defined in <suntool/msgsw .h>
1s:

Revision G of 15 April 1985 7-7

Suntool: Subwindow Packages

struct
int

msgsubwindow {

};

char*
struct
struct
struct

msg_windowfd;
msg_string;
pixfont •msg_font;
rect msg_rectcache;
pixwin •msg_pixwin;

Sun Windows Reference Manual

msg_windowfd is the file descriptor of the window that is the message subwindow.
msg_string is the string being displayed using msg_font. Only printable characters and
blanks are properly dealt with, not carriage returns, line feeds or tabs. The implementation uses
msg_rectcache to help determine if the size of the subwindow has changed. msg_pixwin is
the structure that accesses the screen.

struct toolsw •msgsw_createtoolsubwindow(tool, name, width, height,
string, font)

struct
char
short
char
struct

tool •tool;
*name;
width, height;
•string;
pixfont *font;

is the call that sets up a message subwindow m a tool window. string is the string being
displayed using font. If the returned value is NULL then the operation failed. Since
msgsw_createtoolsubwindow takes care of the set-up of the message subwindow, the reader
may not be interested in the remainder of this section, except for msgsw_setstring.

The following function creates a new instance of a message subwindow:

struct
int

msgsubwindow •msgsw_init(windowfd, string, font)
windowfd;

char
struct

•string;
pixfont *font;

windowfd identifies the window to be used. string is the string being displayed using font.
If the returned value is NULL then the operation failed.

msgsw_setstring(msgsw, string)
struct
char

msgsubwindow *msgsw;
•string;

changes the existing msgsw->msg_string to string and redisplays the window.

msgsw_display(msgsw)
struct msgsubwindow *msgsw;

redisplays the window.

msgsw_handlesigwinch(msgsw)
struct msgsubwindow *msgsw;

is called to handle SIGWINCH signals. It repairs the damage to the window if the window hasn't
changed size. If the window has changed size, the string is reformatted into the new size.

msgsw_done(msgsw)
struct msgsubwindow •msgsw;

destroy's the subwindow's instance data.

7-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

7 .5. Terminal Emulator Subwindow

The terminal emulator subwindow mimics a standard Sun terminal. It accepts most of the same
ANSI escape sequences as the Sun terminal (see cons (4s) in the Syatem Interface Manua~.
However, certain control sequences cause the terminal emulator subwindow to behave differently
from the normal Sun terminal. The table following lists these control sequences and their effects.

Definitions for the use of the terminal emulator subwindow are in <suntoo 1/ttysw. h>.
Note: Only one tty subwindow per process is allowed.

Table 7-1: Differences between Sun terminal and Sun Windows tty emulator

Control aenuence St1nonai, Behavior in Sun Window, ttt, emulator

CTRL-G /Ox07) Bell Flashes window.

ESCfn Black on white No effect.

Esera White on black No effect.

Escror Enable vertical wrao mode3 No effect.

ESCrs Reset No effect.

"ESC" indicates the ASCII escape character (OxlB).

struct toolsw •ttysw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char
short

*name;
width, height;

is the call that sets up a terminal emulator subwindow in a tool window.
ttysw_createtoolsubwindow takes care of setting up the terminal emulator subwindow
except for the forking of the program. Thus, clients of this routine may want to ignore the
remainder of this section except for the discussion of ttysw_fork and perhaps
ttysw_becomeconsole. ttysw_createtoolsubwindow returns NULL on failure.

caddr_t ttysw_init(windowfd)
int windowfd;

creates a new instance of a tty subwindow. windowfd 1s the window that 1s to be used.
ttysw_init returns NULL on failure.

ttysw_becomeconsole(ttysw)
caddr_t ttysw;

sets up the terminal emulator to receive any output directed to the console. This should be
called after calling ttysw_init.

ttysw_saveparms(ttyfd)
int ttyfd;

should be called by the screen
characteristics of the terminal

initialization program, e.g., suntools(l). This
ttyfd in an environment variable. Terminal

saves the
emulation

.S Note tha.t the zero in this escape sequence may be replaced by an integer, in order to set up jump
scrolling. Positive integer arguments do supply the desired effect.

Revision G of 15 April 1985 7-9

Suntool: Subwindow Packages Sun Windows Reference Manual

processes forked from the screen initialization process will get their characteristics from this
environment variable; terminal emulation processes started directly from shells get their charac
teristics from the standard error tty. ttysw_saveparms is needed because a screen initializa
tion program is often started from the console, whose characteristics can change due to console
redirection.

ttysw_handlesigwinch(ttysw)
caddr_t ttysw;

is called to handle SIGWINCH signals. On a size change, the terminal emulator's display space is
reformatted. Also, its process group is notified via SIGWINCH that the size available to it is
different. Refer to TTY-Baaed Program• in TTY Subwindow•. If there is display damage to be
fixed up, the terminal emulator redisplays the image by using character information from its
screen description.

ttysw_selected(ttysw, ibits, obits, ebits, timer)
caddr_t ttysw;
int *ibits, *obits, *ebits;
struct timeval ••timer;

reads input and writes output for the terminal emulator. *ibits, *obits and *timer are
modified by ttysw_selected. See the general discussion of tio_selected type procedures
in Minimum Standard Subwindow Interface.

int ttysw_fork(ttysw, argv, inputmask, outputmask, exceptmask)
caddr_t ttysw;

**argv; char
int *inputmask, *outputmask, *exceptmask;

forks the program indicated by *argv. The identifier of the forked process is returned. If the
returned value is -1 then the operation failed and the global variable errno contains the error
code. There are the following possibilities:

• If *argv is NULL, the user SHELL environment value is used. If this environment parameter is
not available, /bin/ •his used.

• If *argv is "-c", this flag and argv [1] are passed to a shell as arguments. The shell then
runs argv [1]. The argument list for this case becomes ,hell -c argv [1] 0.

• If * argv is not NULL, the program named by argv [OJ is run with the arguments given m
the rest of argv. The argument list should be NULL terminated.

The arguments *inputmask, *ouputmask, *exceptmask are dereferenced by
ttysw_fork and set to the values that the terminal eumlator subwindow manager wants to
wait on in a subsequent select(2} call.

ttysw_done(ttysw)
caddr_t ttysw;

destroys the subwindow's instance data.

7-10 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

7.5.1. The Tool Specific TTY Subwindow Type

The tool terminal emulator subwindow, called the tty tool $Ubwindow, extends the basic terminal
emulator subwindow. A tty tool subwindow is a super class of a straight terminal emulator
subwindow. This means that a tty tool subwindow can do what a straight terminal emulator
subwindow can, and more. In particular, a tty subwindow knows about tool windows and allows
terminal-emulator-based programs to set/get data about the tool window. Also, the user can
send window management commands to change the tool window via the keyboard.

The only public access to a tty tool subwindow is
ttytlsw_createtoolsubwindow and ttytlsw_done.
subwindow as a straight terminal emulator subwindow.

its create/destroy procedures,
Other than this, think of the

The following table shows the escape sequences that can be sent to a tty tool subwindow. Do not
send these escape sequences to a straight terminal emulator subwindow, because they will be
ignored.

Revision G of 15 April 1985 7-11

Suntool: Subwindow Packages Sun Windows Reference Manual

Table 7-2: Escape sequences for tty tool subwindow

Escave uauence4 Descrintion 01
\E r1t Opens a tool.

\Er2t Closes a tool.

\Er3t Moves the tool with interactive feedback.

\E[3;TOP;LEFTt Moves the tool so that its top left corner
is at TOP; LEFT. TOP and LEFT are in
Pixels.

\Er4t Stretches a tool with interactive feedback.

\E[4;WIDTH;HTt Stretches a tool to WIDTH and HT.
WIDTH and HT are in nixels.

\Erst Exooses a hidden tool.

\E r6t Hides a tool.

\E r7t Refreshes the tool window.

\E[B;ROWS;COLSt Stretches the tool so that its width and
hei~ht are ROWS and COLS. resnectivelv.

\E[llt Reports if the tool is open or iconic by
sending \E [lt (open) or \E [2t (close)
sequence.

\E[13t Reports the tool's position by sending the
\E r3; TOP; LEFT sequence.

\E [14t Reports the tool's size in pixels by sending
the \E r4;WIDTH;HEIGHT seauence. 0

\E[lBt Reports the tool's size in characters by
sending an \E[B;ROWS;COLSt
seauence.

\E[20t Reports an icon label by sending an
\E rL seauence / see below).

\E[21t Reports the tool's namestripe by sending
an \El 1 seauence /see below).

\Ell<text>\E\ Sets the tool's namestrine to <text>.

\E] I< file>\E\ Sets the icon to the icon contained In

<file>.

\ElL<label>\E\ Sets the icon label to <label>.

\E[>OPT; .h Turns OPT on. The only currently
defined OPT value is 1 (PAGEMODE). For
examnle. \E r>lh.

\Er>OPT; . k Turns OPT off .

\E[>OPT; . 1 Reports the current OPT settings by
sending an \E [>OPTl or \E[>OPTh
sequence for each defined ontion.

• Note that "\E" is the termcap specification tor <ESC>. 0
7-12 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

struct toolsw *ttytlsw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char *name;
short width, height;

ttytlsw_createtoolsubwindow
ttysw_createtoolsubwindow.

void ttytlsw_done(ttysw)

has

struct ttysubwindow *ttysw;

the

ttytlsw_done destroys the subwindow's instance data.

7.5.2. TTY-Based Programs in TTY Subwindows

same calling sequence as

TTY-based programs that use termcap to determine the size of their screen (such as more and
v,) need not know about windows to run under the terminal emulator. The termcap library rou
tine tgetent will return the current number of lines and columns of the terminal emulator
subwindow (see termcap (3x)). However, if the window size changes while one of these pro
grams is running, the terminal emulator and the client program may disagree about what the
terminal size is.

In the case of a size change, the terminal emulator sends a SIGWINCH signal to its process group.
If a child process doesn't catch the signal, no harm is done because the default action for
SIGWINCH is that the signal be ignored. A child process can catch the signal, and then perform
an ioctl call to get the correct terminal size. Please refer to the header file
<sys/ioctl .h> for a complete list of ioctl requests.

The terminal emulator and the termcap library communicate size information through ioctl
system calls on the pseudo-tty shared by both. The terminal emulator makes a TIOCSSIZE

ioctl call to set the size of the pseudo-tty. The termcap library or some other TTY-based pro
gram makes a TJOCGSIZE ioctl call to get the size of the pseudo-tty.

TTY-based programs running in a TTY subwindow should alway, use the ioctl TJOCGSIZE

operation to determine the current size of the window, even if they use tgetent, because the
window size could have changed before tgetent returns.

int we_getmywindow(windowname)
char *windowname;

can be called by programs running under a window system pseudo-tty to find out the terminal
emulator's window name. This information is passed from the terminal emulator process to a
child process through the environment variable WINDOW.ME, which is set to be the subwindow's
device name, for example /dev/winS. we_getmywindow reads the value of WINDOW.ME
into windowname. A return value of O indicates success. windowname should point to at
least WIN_.NAMESIZE characters. This information could be the handle needed for a program to
perform some sort of special window management function not provided by the default window
manager.

Revision G of 15 April 1985 7-13

Suntool: Subwindow Packages Sun Windows Reference Manual

7.5.3. Driving a TTY Subwindow

It is possible to drive the terminal emulator directly. There are procedures which take both
input and output.

int ttysw_output(ttysw, addr, len)
caddr_t ttysw;
char
int

*addr;
len;

ttysw_output runs the character sequence in addr that is len characters long through the
terminal emulator of ttysw. The number of characters accepted is returned.

int ttysw_input(ttysw, addr, len)
caddr_t ttysw;
char
int

*addr;
len;

ttysw_input appends the character sequence in addr that is len characters long onto the
input queue of the terminal emulator of ttysw. The number of characters accepted is
returned.

7.5.4. Extending a TTY Subwindow

Client programs may extend the tty subwindow's interpretation of ANSI escape sequences.

The ttysubwindow structure in the header file <suntool/ttysw_impl .h> contains a
pointer to a function, ttysw_escapeop, that handles ANSI X3.64 escape sequences coming in
to a tty subwindow. X3.64 escape codes start with \E [# and terminate with an alphabetic
character.

You can extend escape code interpretation by replacing the pointer to the ttysw_escapeop
function with a pointer to a function you provide, according to the following instructions.

The procedure you provide to handle X3.64 escape sequences must have the following calling
sequence:

int ttysw_esc_extend(ttysw, c, ac, av)
struct ttysubwlndow *ttysw;
char
int
int

c·
'

ac;
*av;

The procedure itself may have any name you wish. ttysw is the terminal emulator handle.
c is the character that terminates the escape sequence. av is a pointer to an array of integers
which are the arguments to the escape sequence. ac is the number of integer parameters to
the escape sequence.

A return value of TTY.DONE means that the routine handled the sequence. A return value of
TTY_OK means that the routine didn't handle the sequence.

If you provide your own routine, please note the following:

7-14

In order to replace ttysw_escapeop with your routine, declare a variable (for example,
saveptr) and assign ttysw_escapeop to it. Then assign a pointer that addresses your
new routine to ttysw_escapeop.

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: Subwindow Packages

If your routine cannot process the input escape sequence, it should call ttysw_escapeop
to handle the sequence in question. This can be done using the pointer previously stored in
the variable saveptr. ttysw_escapeop will return a value that can be delivered in
turn to the caller of the new routine.

You can extend the interpretation of ANSI string escape codes in an analogous manner by
replacing a pointer to ttysw_stringop. ANSI string escape codes begin as follows:

\EP - ANSI Device Control String.

\El - ANSI Operating System Command.

\E. - ANSI Privacy Message.

\E_ - ANSI Application Program Command.

ANSI string escape codes terminate with \E\.

The procedure you provide to handle string escape codes must have the following calling
sequence:

int ttysw_esc_str_extend(ttysw, strtype, c)
struct ttysubwlndow •ttysw;
char strtype;
char c;

The procedure itself may have any name you wish. ttysw is the terminal emulator handle.
c is the next character in the string. strtype is the string type character (one of P,] , •
or _).

Unlike ttysw_esc_extend, the terminal emulator will call ttysw_esc_str _extend for
each character in the escape string. A NULL c argument indicates the end of the escape string.

A return value of TTY...DONE means that the routine handled the character. A return value of
TTY_OK means that the routine didn't handle the character.

As with ttysw_esc_extend, your routine should store a pointer to ttysw_stringop. If
your routine cannot process the input character or string type, it should call ttysw_stringop
to handle the character in question. Then your routine can deliver the value returned by
ttysw_stringop to the caller. See above for specific instructions.

Revision G of 15 April 1985 7-15

0

0

o•

0

0

0

Chapter 8

The Panel Subwindow Package

8.1. Introduction

This chapter discusses the panel subwindow package, which supersedes the option subwindow
package. We strongly urge you to use this new package instead of the option subwindow pack
age in all your programs. The option subwindow is included in this release (see Appendix F), but
will not be included in future releases of Sunwindows. For an example of how to convert a pro
gram from the option subwindow package to the panel package, see Appendix G.

This chapter assumes you are familiar with such concepts as tool,, aubwindows, menu,, pixrecta,
and so on. If you need background information about these and other basics read the Sunwin
dowa Tutorial.

A note on how to use this chapter: The first three sections provide a non-technical introduction
to panels and what they are good for. Sections 8.4 through 8.6 introduce the basic concepts and
routines needed to create simple panels. Section 8.7 gives a detailed description of the structure
and behavior of the different types of panel items; it will prove useful as you begin to create
more elaborate panels. As you continue to use panels, you will probably want to refer often to
Section 8.14, which provides a comprehensive summary of the many "attributes" at your disposal
to manipulate panels.

Programs using panels must include the header file <suntool/panel .h>.

8.2. Definition and Uses of Panels

The word panel refers to a subwindow containing itema through which the user interacts with a
program. Several different types of items are available, including buttons, messages, text,
choices, and analog sliders. Panels are quite flexible; you can use them to model a variety of
things, such as

• a form, consisting mainly of text items

• a single button representing a command

• a single switch representing the current mode of a program

• a row of pull-down menus

• a complex control panel containing items and menus of many types

• a message window containing status or error messages

See the following figure for a picture of icontool, a tool that makes extensive use of panels.

Revision G of 15 April 1985 8-1

The Panel Subwindow Package Sun Windows Reference Manual

Figure 8-1: icontool - a tool that uses panels

Icon Tool
1111 paint 1111 clear 1111 undo

Text: Pick point to insert text.

Fi le: 6

" " [load J [store) [quit I " " " " " " " " " " " .. " " " " " " Size: • Icon Cursor
" " " " " " " " " " " " " m m •D llll!l " " " Grid:
= " " " " m " " .. " " " " m " " " " " I clear I I fi 11 J [invert) " " " " " " " " .. " II " " " " " " " " " " .. m " " " " " " " " "

• Fi 11: 58% grey

• Fi 11: 58\\\ grey

~ ~ ·=· abc Fi 11 =~ rcles

Load: Fi 11: Proof:
src src src

D ~ m Ill Ill Ill
"" t'HHUa •

IUIIHIIUI 11.•m. "" .m•-m.
11111

.... •• II "" •=: ••• "" "" "" "" "" "" ••• mr• '"' "" "" "111 111" "" "" ""
ci rel es

Note that nearly all of the windows in icontool are panels; the exceptions are the large
subwindow at bottom left, and the small subwindow at bottom right.

8-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

The characteristics of both panels and items are specified by means of attributea, which are usu
ally set when you create the panel or item. You may also retrieve and modify attributes after
creation time.

8.3. Panel Item Types and Their Uses

There are currently six basic types of items: messages, buttons, choices, toggles, text and sliders.
Items are made up of one or more displayable components. One component shared by all item
types is the label. An item label is either a string or a graphic image (i.e., a pointer to a pixrect).

Button, choice, toggle, and text items also have a menu component. Thus the user may interact
with most items in either of two ways: by selecting the item directly (with the left mouse button)
or by selecting from the item's menu (with the right mouse button). Item menus are described
more fully in Deacription of Each Item Type.

Each item type is introduced briefly below.

Message Items

The only visible component of a Message item is a label, which may be an image or a string
in a specified font. Message items are useful for annotations of all kinds, e.g.,

• titles

• comments

• descriptions

• pictures

• static messages

• dynamic messages, such as error messages.

Message items are selectable, and you may specify a notify procedure to be called when the
item is selected.

Button Items

Button items allow the user of a program to initiate commands. Buttons, like Message items,
have a label, are selectable, and have a notify procedure. Button items differ from Message
items in that they have visible feedback for tentative and actual selection (see Section 8.8.2
below).

Choice Items

Choice items allow the user to select one choice from a list. The displayed form of choice
items can vary radically, depending on their attribute settings. Some of the ways choice
items can be presented are:

• a (horizontal or vertical) list of choices, with all choices visible and the current choice
indicated by a mark (such as a checkmark).

• a (horizontal or vertical) list of choices, with all choices visible and the current choice in
reverse-video.

• a "cycled item", or list of choices with only the current choice visible. Selecting the item
causes the next choice in the list to be selected and displayed.

Revision G of 15 April 1985 8-3

The Panel Subwindow Package Sun Windows Reference Manual

• a binary switch, modelled after a light switch, with an arrow or other shape pointing to
one of two strings or images representing the two states.

• a knob, which has a pointer of some sort which turns to indicate one of several choices.

• a pull down menu, with only the label visible until the menu button is pressed.

Behind the flexibility of presentation lies a uniform structure consisting of a label, a list of
choices, and, optionally, a corresponding lists of "on-marks" and "off-marks" which indicate
which choice is currently selected.

Toggle Items

In appearance and structure, toggle items are identical to choice items. The difference lies
in the behavior of the two types of items when selected. In a choice item exactly one ele
ment of the list is selected, or current, at a time. A toggle item, on the other hand, is best
understood as a list of elements which behave as toggles: each choice may be either on or
off, independently of the other choices. Selecting a choice causes it to change state. There
is no concept of a single current choice; at any given time all, some, or none of the choices
may be selected.

Text Items

Text items are basically type-in fields with optional labels and menus. Notification behavior
for text items is more flexible than for the other item types. The notification level can be set
so that the notify procedure will be called on each character typed in, only on specified char
acters, or not at all. This allows a client such as a forms-entry program to process input on
a per character, per field, or per screen basis.

Slider Items

Slider items allow the graphical representation and selection of a value within a range. They
are appropriate for situations where it is desired to make fine adjustments over a continuous
range of values. A familiar model would be a horizontal volume control lever on a stereo
panel.

8.4. A Sample Panel

Here is an example of a simple control panel for an imaginary tool which lets you list a directory:

Directory Listing Tool

Directory: List Quit

8-4 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

Below is the routine which creates this panel:

#include <suntool/panel.h>

int llst_proc(), qult_proc();

make_control_panel()
{

struct toolsw
Panel
Panel_ltem

panel_subwindow
panel

headlng_ltem =

•panel_subwlndow;
panel;
headlng_ltem, dlrectory_ltem,
llst_ltem, qult_ltem;

= panel_create(tool, O);
= (Panel)panel_subwlndow->ts_data;

panel_create_ltem(panel, PANEL_MESSAGE,
PANEL_ITEM_X, PANEL_CU(20),
PANEL_ITEM_Y, PANEL_CU(l),
PANEL_LABEL_STRING, "Directory Listing Tool",
0) ;

dlrectory_ltem = panel_create_ltem(panel, PANEL_TEXT,
PANEL_ITEM_X, PANEL_CU(S),
PANEL_ITEM_Y, PANEL_CU(3),
PANEL_LABEL_STRING, "Directory:",
PANEL_VALUE_DISPLAY_LENGTH, 20,
0) ;

llst_ltem = panel_create_ltem(panel, PANEL_BUTTON,
PANEL_LABEL_STRING,
PANEL_NOTIFY_FROC,
0) ;

qult_ltem = panel_create_ltem(panel, PANEL_BUTTON,
PANEL_LABEL_STRING,
PANEL_NOTIFY_PROC,
0) ;

"List",
llst_proc,

"Quit",
qult_proc,

panel_flt_helght(panel,O); /* adjust panel height to flt the items*/
}

list_proc(panel, list_item)
Panel panel;
Panel_ltem llst_ltem;
{

body of procedure ...
}
qult_proc(panel, qult_ltem)
Panel panel;
Panel_ltem qult_ltem;
{

body of procedure ...
}

Revision G of 15 April 1985 8-5

The Panel Subwindow Package Sun Windows Reference Manual

The items are positioned in the panel with the PANELJTEM...X and PANELJTEM_y arguments.
PANEL_CU is a macro meaning "interpret this number in character units"; so the heading, for
example, appears on row 1, column 20. (The first row is row zero, the first column is column
zero.) Items which are not explicitly positioned are placed immediately after the lowest, right
most item; so 1 ist_i tem and qui t_i tem appear just after the 20-character-long type-in area
for directory_item.

When the cursor is positioned within a panel, the left mouse button is used to select items. So,
to list the directory typed into the Directory: field, the user would position the mouse over the
word Liat and click the left button.

list_proc () and qui t_proc () are the routines, specified by the client, which will be called
by the panel package when the user selects the corresponding item. It is up to these routines to
take the appropriate action - in this case list the directory or quit.

8.5. Attributes and Attribute-Lists

There is a large set of attributes applying to panels and to the various item types. For a given
call to create or modify a panel or item, only a subset of all the attributes will be of interest. So
that only the relevant attributes need be mentioned, the panel routines make use of variable
length attribute lists. An attribute list consists of attribute/value pairs, separated by commas,
and ending with a 0. For example, an item at pixel location (5,10), with a label of "Load File "
would be described with the attribute list:

PANEL_ITEM_X, 5,
PANEL_ITEM_Y, 10,
PANEL_LABEL_STRING,
0

"Load File: "

The order in which different attributes are mentioned is irrelevant. If the same attribute appears
more than once in an attribute list, the last value mentioned is the one which takes effect.

Attributes take values of a particular type; thus they may be referred to as airing-valued,
integer-valued, etc. Values for each attribute also have a particular cardinality, that is, the
values are single, a null-terminated list, or, in some cases, a pair. Some examples of attributes of
different types are given in the table below.

Tvoe
integer

boolean

string

list or strings

image
list or images
ptr to function

Table 8-1: Some Sample Panel Attributes

Attribute/Value
PANEL_VALUE, 5
PANEL_SHOW_ITEM, FALSE
PANEL_LABEL_S'l'RING, .. Name: "

PANEL_CHOICE_STRINGS, "A", "B". "C", 0

PANEL_LABEL_IMAGE, &pixrectl
PANEL_CHOICE_IMAGES, &pixrectl, &p1xrect3, 0
PANEL__NOTIFY_PROC, !

Exolanation
item's value is 5
item is not displayed

item's label is "Na.me: "

item has 3 choices

item's label is pixrectl

item has 2 choices

"r()'' called when item
selected

A basic rule to bear in mind when using the panel package is that in setting the value of an
item's attribute, the effect will be the same whether the operation is done at creation time or

8-6 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

afterwards. In other words, any attribute which you can specify in the panel_create () call
can also be specified in later calls to panel_set (). Thus items exhibit dynamic behavior: they
can be created in one position and moved later, their labels, fonts, or their entire appearance on
the screen may be changed, etc.

A special attribute, PANEL_CLIENTJ)ATA, is provided for the client to use as desired. Some
example uses:

• To associate a unique identifier with each item. This is convenient in the case where you
have many items, or where you are creating and destroying items dynamically. If you need
to pick one item out of all the items, you can store an identifier (or a class) with it via
PANEL_CLIENTJ)ATA, and then query the item directly to find out its identifier or class.

• To associate a pointer to a private structure with an item. One application of this would be
to link several items together into a list which is completely under client control.

Throughout this chapter, specific attributes will be mentioned as they arise in the course of the
discussion. All of the attributes, along with their types, cardinalities, default values and applica
tions, are summarized in the tables at the end of this chapter.

The discussion which follows will make frequent reference to six data types defined by the panel
package; these are listed in the following table.

Table 8-2: Frequently Used Panel Data Types

Panel
Panel item

Panel_item_type

A pointer to the structure which describes a panel5•

A pointer to the structure which describes a panel
item.
The type of an item, specified when the item 1s
created.

Panel attribute A constant which specifies a particular attribute.
Panel_attribute_value Type used for retrieving attribute values.
Panel_setting Type returned by panel_text_notify (); type of

repaint ar~ument to panel .Paint{\.

8.6. Creating Panels

Create the subwindow for a panel with the routine:

struct toolsw *panel_create(tool~ attributes)
struct tool ii tool;
< attribute-list> attributes;

S From the point of view or client programs, Panel and Panel_! tem are opaque data types, meaning
that clients of the panel package cannot "see through" them to the actual data. structure. Values of type
Pa.nel and Panel_! tem a.re simply used as handles by which the corresponding object is referenced. One
of these opaque handles is returned when you create a panel or item. Later, when you wish to refer to a
particular panel or item, you pass its handle to the a.ppropria.te panel package routine. (The data types
Panel and Panel_item are actually typedef'ed to char *.)

Panel and Panel_! tem are actually 32-bit pointers, so they may be passed as parameters without
efficiency penalty.

Revision G of 15 April 1985 8-7

The Panel Subwindow Package Sun Windows Reference Manual

In order to manipulate a panel and create items within it, you must have the panel's handle,
which is a variable of type Panel. To obtain a Panel, first create the panel subwindow, then o·
use the ts_data field of that subwindow, as follows:

struct toolsw
Panel

*panel_subwindow;
panel;

panel_subwindow = panel_create(tool, O);
panel = (Panel)panel_subwindow->ts_data;

A panel, once created, is not linked into the display tree until the call to tool_install () is
made. The usual usage is to first create the panel, then create the items within the panel, and
finally install the tool.

The above call to panel_create () is the simplest case, in which no attributes are given. In
particular, since the height and width of the panel are not set, the panel will extend to the bot
tom and right edges of the tool. You can control the dimensions of the panel in either of the two
ways described below.

Often you want the panel to be just high enough to encompass all of the items within it. To
enable you to achieve this without having to compute the desired dimension, the panel package
provides the following mechanism. After creating all of the items, and before creating any other
aubwindowa in the tool, set the height of the panel to the constant PANEL...FITJTEMS, e.g.:

panel_set(panel, PANEL__HEIGHT, PANEL_FIT_ITEMS, O);

This causes the panel package to compute the lowest point occupied by any of the panel's items
and set the panel height to that point plus a bottom margin, which defaults to four pixels. If you
want a different bottom margin, simply include the adjustment by adding or subtracting to
PANELJ'ITJTEMS. So

panel_set(panel, PANEL_HEIGHT, PANEL_FIT_ITEMS + 16, O);

produces a bottom margin of 20 pixels, while

panel_set(panel, PANEL__HEIGHT, PANEL_FIT_ITEMS - 4, 0);

will leave no bottom margin.

The above discussion applies to setting the width of the panel as well. Thus, the call

panel_set(panel,
PANELJIEIGHT,
PANEL_WIDTH,
0) ;

PANEL_FIT_ITEMS + 6,
PANEL_FIT_ITEMS,

will yield a panel with a bottom margin of 10 and a right margin of 4.

To ease the syntax for the simple case, two macros are provided:

panel_fit_height(panel);
panel_fit_width(panel);

These macros extend the panel 4 pixels below the lowest item, and extend the panel 4 pixels to
the right of the rightmost item, respectively.

If the default 4 pixel margin is not what you want, you can use pane l_set () to get the exact
margin you want. For example,

8-8 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

panel_set(panel, PANELJ{EIGHT, PANEL_FIT_ITEMS + 6, 0)

will yield a bottom margin of 10 pixels.

Note that the automatic sizing described above must be done after creating all the panel's items,
and before creating any other subwindows below or to the right of the panel.

The panel's height and width can also be set explicitly at creation time, as in

panel_subwindow = panel_create(tool,
PANELJ{EIGHT,
PANEL_WIOTH,
0);

PANEL_CU(lO),
PANEL_CU(20),

panel = (Panel)panel_subwindow->ts_data;

which creates a panel 10 high by 20 characters wide.

After creating a panel, you can retrieve its attributes by calling panel_get (), and modify cer
tain of its attributes (e.g., change its caret from blinking to non-blinking) by calling
panel_set ().

The attributes applicable to the panel as a whole, as opposed to the individual items within the
panel, are summarized in the Panel Attributea table (Section 8.14).

8. 7. Creating and Positioning Items

8. 7.1. Creating Items

Use the routine below to create panel items:

Panel_item panel_create_item(panel, item.....type, attributes)
Panel panel;
Panel_item...type item...type;
<attribute-list> attributes;

Values for item_type must be one of PANEL....MESSAGE, PANEL....BUTTON, PANEL_CHOICE,
PANEL_TOGGLE, PANEL_TEXT, or PANEL_SLIDER.

Many attributes, such as those relating to item positioning, apply across all of the item types;
these are called generic attributes. A comprehensive summary of these generic attributes is
given in the table Generic Item Attributea in Section 8.14.

To give just a single illustration, the following call creates a message which is initially "hidden"
(not displayed on the screen):

delete_msg_item = panel_create_item(panel, PANEL__MESSAGE,
PANEL_LABEL_STRING, "Warning: you are about to delete all files!",
PANEL_SHOW_ITEM, FALSE,
0) ;

The above message could be displayed later with the call:

panel_set(delete_msg_item, PANEL_SHOW_ITEM, TRUE, O);

Revision G of 15 April 1985 8-9

The Panel Subwindow Package Sun Windows Reference Manual

8. 7.2. Positioning Items Within a Panel

Explicit Item Positioning

The position of items within the panel may be specified explicitly by means of the attributes
PANELJTEM...X and PANELJTEM..Y. PANELJTEM...X sets the left edge of the item's rectangle (the
rectangle which encloses the item's label and value). PANELJTEM..Y sets the top edge of the
item's rectangle.

All coordinate specification attributes interpret their values in pixel units. For simple panels and
forms which do not make heavy use of images and have only one text font, it is usually more
convenient to specify positions in character units - columns and rows rather than x's and y's.
To this end a macro PANEL_CU() (for Character Unita) is provided, which interprets its argument
as columns for X attributes or as rows for Y attributes, and converts the value to the
corresponding number of pixels, based on the panel's font, as specified by PANEL....FONT.
PANEL_CU() takes as its argument any expression yielding an integer. The use of PANEL_CU() as
an operand in an expression is restricted to adding a pixel offset (e.g., PANEL_CU+ (5) + 2) as
described below. Examples of legal and illegal usage are given in the table below:

Table 8-3: Example uses of the PANEL_CU() macro

Attribute/Value
PANEL_ITEM_X, 5
PANEL_ITEM_Y, 10
PANEL_ITEM_X, PANEL_CU(S)
PANEL_ITEM_X, PANEL_CU(-5)
PANEL_ITEM_X, PANEL_CU(5+2)
PANEL_ITEM_X, PANEL_CU(5)+2
PANEL_ITEM_X, PANEL_CU(S)-1
PANEL_ITEM_Y, PANEL_CU(lO)
PANEL_ITEM_Y, PANEL_CU(-10)
PANEL_ITEM_X, PANEL_CU(10+2)
PANEL_ITEM_Y, PANEL_CU(10)+2
PANEL_ITEM_Y, PANEL_CU(l0)-1
PANEL_ITEM_X, PANEL_CU(10)+PANEL_CU(2)
PANEL ITEM X, 2*PANEL CU/10)

Default Item Positioning

Interpretation
5 pixels from left
10 pixels from top
column 5
column -5
column 7
two pixels to-the right of column 5
one pixel to the left of column 5
row 10
row -10
row 12
two pixels down from row 10
one pixel up from row 10
illegal
i/lena/

If you create an item without specifying its position, it is placed just to the right of the item on
the "lowest row" of the panel, where lowest row is defined as the maximum y-coordinate
(PANELJTEM..Y) of all the items. So in the absence of specific instructions, items will be placed
within the panel in reading order as they are created: beginning four pixels in from the left and

0

0

four pixels down from the top, items are located from left to right, top to bottom. If an item will o,
not fit on a row, and more of the item would be visible on the next line, it will be placed on the

8-10 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

next row. The number of pixels left blank between items on a line may be specified by
PANELJTEM...X..GAP, which has a default value of 10. The number of pixels left blank between
rows of items may be specified by PANELJTEM..Y._GAP, which has a default value of 5.

8. 7.3. Laying Out Components Within an Item

You may also specify the layout of the various components within an item, by means of the attri
butes PANELJ,ABEL_)C, PA."IBLJ,ABEL_Y, PANEL_VALUE_X, PANEL_VALUE_Y, etc. If the components
are not explicitly positioned, then the value is placed either eight pixels to the right of the label
(if PANELJ,AYOUT has the value PANELJIORIZONTAL) or four pixels below the label (if
PANELJ,AYOUT has the value PANEL_VERTICAL). The default layout 1s horizontal
(PANELJ,AYOUT is PANELJIORIZONTAL).

8.8. Description of Each Item Type

This section describes each item type in more detail, covering the display options, selection feed
back, notification behavior, value, and menu behavior.

Before getting into the different item types, it is worth mentioning that some attributes which
apply to items may be set for all items in the panel by setting them when the panel is created.
Such attributes include whether items have menus, whether item labels appear in bold, whether
items are laid out vertically or horizontally, and whether items are automatically repainted when
their attributes are modified (see the table Panel Attribute• in Section 8.14 for a complete list).
For example, the call

panel_sw = panel_create(panel,
PANEL_SHOW_MENU,
PANEL_LABEL_BOLD,
PANEL_LAYOUT,
PANEL_FAINT,
0) ;

FALSE,
TRUE,
PANEL_VERTICAL,
PANEL_NONE,

overrides the defaults for all the attributes mentioned: any items subsequently created in that
panel will not have menus, will have their labels printed in bold, will have their components laid
out vertically, and will not be repainted automatically when their attributes are modified.

Note that the panel-wide item attributes mentioned above are only used to supply default values
for items which are subsequently created - e.g., you cannot change all the item labels from the
default bold font by first creating the items and then setting PANELJ,ABEL...IlOLD to FALSE for the
panel.

A note on the usage of item menus. The panel package is designed to encourage the use of
graphic images to convey information, and to allow you to present your interface in a form
appropriate to your application. This will result in applications with different styles of panels.
The menus are intended to balance this diversity with uniformity. Menus for all item types have
a single, standard form and the user selects from them in the same way. In addition, the menus
have a type aymbol in their headings, indicating the item type. You can specify an item's menu
type symbol via the attribute PANEL_TYPEJMAGE. The default type symbols for each item type
are given below:

• buttons - exclamation point

Revision G of 15 April 1985 8-11

The Panel Subwindow Package Sun Windows Reference Manual

• choices - single check mark

• toggles with one choice - on/off switch

• toggles with more than one choice - double check mark

• text - pencil

For example, any choice item, regardless of the form it takes on the screen, will have a menu
with the current choice checked. So the user, when faced with a new panel containing strange
items whose interpretation is not clear, need only look at the menus to see a familiar interface.

Whether an item has a menu or not is controlled by the attribute PANELJ,HOW..MENU, which
defaults to FALSE for all item types except choice and toggle items. You can enable or disable
menus for all items in a panel by setting this attribute appropriately when you create the panel.

Now we discuss each of the item types in detail.

8.8.1. Messages

Message items are selectable, but there is no selection feedback. Messages also have no value
visible on the panel, and no associated menu. A simple example is

message_to_mom = panel_create_item(panel, PANEL....MESSAGE,
PANEL_LABEL_STRING, "Hi Mom!", 0);

You may change the label for a message item (as for any type of item) via the
PANELJ,ABEL_STRING or PANELJ,ABELJMAGE attribute, as in the call

panel_set(message_to_mom, PANEL_LABEL_STRING, "Bye Mom!", O);

8.8.2. Buttons

Button items have a label and a menu, but no value.

Button Selection Behavior

When the left mouse button is pressed over a button item, the item's rectangle is inverted.
When the mouse button is released over a button item, the item's rectangle is painted with a
grey background, indicating that the item has been selected and the command is being executed.
The grey background is cleared upon return from the notify procedure.

Button Notification Behavior

The procedure specified via the attribute PANEL....NOTIFY..PROC will be called when the item is
selected. The notify procedure should declare both the the item and the event as arguments:

8-12 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

sample_notify...J)roc(item, event)
Panel_item item;
struct inputevent *event;

Note that if you need the panel in the notify procedure, you must get it from the item via the
attribute PANEL_FARENT_FANEL using panel_get. For example,

Panel panel;
panel= (Panel) panel_get(item, PANEL_FARENT_FANEL);

Button Menu Behavior

The menu for a button item has for its type symbol an exclamation point, which is meant to con
vey the idea of a command. The title of a button menu defaults to the item's label. Selection of
a button through its menu is equivalent to selection by clicking directly on the label.

Button item menus do not appear by default; to obtain one for a particular item, set the attri
bute PANEL_SHOW...MENU for the item to TRUE.

Button Image Creation Utility

A routine is provided to create a standardized, button-like image from a string:

struct pixrect *panel_button_image(panel, string, width, font)
Panel panel;
char *string;
int width;
struct pixfont *font;

where width indicates the width of the button, in character units. The value returned is a
pointer to a pixrect showing the string with a border drawn around it. The border is wide
enough to contain the number of characters indicated by vidth.

If vidth is greater than the length of string, the string will be centered in the wider border;
otherwise the border will be just wide enough to contain the entire string (i.e., the string will not
be clipped). The font is given by font - if NULL, the font for panel is used.

For example, the call

panel_create_item(panel, PANEL_BUTTON,
PANEL_LABEL_IMAGE,
panel_button_image(panel, "Quit", 6, small_font),
0);

creates an item whose label is the string "Quit", Ill font small_font, centered Ill a border
whose total width is six characters.

Revision G of 15 April 1985 8-13

The Panel Subwindow Package Sun Windows Reference Manual

8.8.3. Choices

This section covers the general structure and behavior of choice items. For a complete list of
the attributes applicable to choice items, see the table Choice Item Attribute• in Section 8.14
below.

Choice items are the most flexible - and complex - item types. Besides the label, they are
composed of:

• a list of either image or string choices (specified via the attributes
PANEL_CHOICE..IMAGES or PANEL_CHOICE_STRINGS).

• a list of mark-image• -- images to be displayed when the corresponding choice is
selected (PANEL..MARK..IMAGES). The default mark is a checkmark in a box.

• a list of nomark-image• - images to be displayed when the corresponding choice is not
selected (PANEL..NOMARK..IMAGES). The default nomark image is an empty box.

A single choice item may have up to 32 choices.

8-14 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

Displaying Choice Items

The attribute PANELJ)ISPLAYJ,EVEL determines which of an item's choices are actually
displayed on the screen. The display level may be set to:

• PANEL..ALL, all choices are shown

• .PANEL_CURRENT, only the current choice is shown

• PANEL...NONE, no choices are shown. Since the only way of selecting a choice is through
the menu, this becomes a label with an associated pop up menu.

If the display level is PANEL_CURRENT or PANEL..ALL, the choices are placed by default horizon
tally after the label. You can lay them out vertically below the label by setting PANEL..l,AYOUT
to PANEL_VERTICAL. If you want to place the choices or marks more precisely - in order to
model a switch or some other special form - you can do so by setting the appropriate attribute,
such as PANEL_CHOICE...XS, PANEL_CHOICE_YS, PANEL_MARK.....x:S, PANEL..MARK_YS, etc.

A few words about using the various lists in choice items. The list you give for
PANEL_CHOICE_STRINGS (or PANEL_CHOICEJMAGES) determines the item's choices. The parallel
lists PANEL_CHOICE_FONTS, PANEL..MARKJMAGES, PANEL...NOMARK_IMAGES, PANEL...MARK.....x:S,
PANEL..MARK_YS, PANEL_CHOICE...XS, and PANEL_CHOICE_YS, are interpreted with respect to the
list of choices. For example, the first font given for PANEL_CHOICEYONTS will be used to print
the first string given for PANEL_CHOICE_STRINGS, the second font will be used for the second
string, and so on. Here's an example with several parallel lists:

size_item = panel_create_item(osw,
PANEL_LABEL_lC,
PANEL_LABEL_Y,
PANEL_LABEL_STRING,
PANEL_FEEDBACK,
PANEL_CHOICE_STRINGS,
PANEL_MARK_IMAGES,
PANEL_NOMARK_IMAGES,
PANEL_CHOICE_lCS,
PANEL_CHOICE_YS,
PANEL_MARK_XS,
PANEL_MARK_YS,
PANEL_NOTIFY_PROC,
0);

PANEL_CHOICE,
10,
4,
"Size:",
PANEL_MARKED,
"Smal 1 11

, "Medium", "Large", 0,
&arrow_plxrect, 0,
0,
20, 80, 140, 0,
5, 0,
10, 70, 130, 0,
5, 0,
size_proc,

The above example illustrates the use of abbreviated lists. The item has three choices, "Small",
"Medium" and "Large". Several of the parallel lists, however, have fewer than three elements -
PANEL..MARK_IMAGES, PANEL_CHOICE_YS and PANEL..MARK_YS all have only one element. When
any of the parallel lists are abbreviated in this way, the last element given will be used for the
remainder of the choices. So, in the case of the attribute PANEL_CHOICE_YS above, "5,0" serves
as an abbreviation for "5,5,5,0". All the choices and mark-images will appear at y coordinate 5,
and all the choices will have the image arrov_pixrect as their mark-image.

Note: you cannot specify that a choice or mark-image appear at z = 0 or y = 0 by using the
attributes PANEL_CHOICE...XS, PANEL_CHOICE_YS, PANEL...MARK.....x:S or PANEL...MARK_YS. Since
these attributes take null-terminated lists as values, the zero would be interpreted as the termi
nator for the list. You may achieve the desired effect by setting the positions individually, with
the attributes PANEL_CHOICE...X, PANEL_CHOICE_Y, PANEL..MARK...x, or PANEL...MARILY, which

Revision G of 15 April 1985 8-15

The Panel Subwindow Package Sun Windows Reference Manual

take as values the number of the choice or mark, followed by the desired position (note: the first
choice is number 0).

Choice Selection Behavior

Feedback for choice items comes in two flavors - inverted, in which the current choice is shown
in reverse video, and marked, in which the current choice is indicated by the presence of a dis
tinguishing mark, such as a check-mark or arrow. The type of feedback is specified by setting
PANELJ'EEDBACK to either PANELJNVERTED or PANEL_MA.RKED. You may also disable feedback
entirely, by setting PANELJ'EEDBACK to PANEL_NONE.

The default feedback is marked, unless the display level (see "Displaying Choice Items" above) is
current, in which case the feedback is none.

There are three ways to make a selection from a choice item:

• by clicking on the desired choice directly, making it the new current choice;

• by clicking on the label, which causes the new current choice to be set to the one after
the old current choice (or before if the shift key is pressed while selecting);

• through the associated menu.

Choice Notification Behavior

The procedure specified via the attribute PANEL_NOTIFY...PROC will be called when the item is
selected. The notify procedure should declare the panel, the item and the value as formal
parameters:

sample_notify_proc(item, value, event)
Panel_item item;
int value;
struct inputevent •event;

Choice Value

The value passed to the notify procedure is the ordinal number corresponding to the current
choice (the choice which the user has just selected). The first choice has ordinal number zero.

Choice Menu Behavior

Choice item menus may be used to represent menus of two types:

8-16

• a menu of commands to be executed, which gives no indication of which command was
the last one executed (a aimple menu).

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

• a menu of choices showing the currently selected choice (a checklist).

Choice and Toggle items are the only item types for which a menu appears by default. To dis
able the menu for a particular item, set the attribute PANEL-8HOW....MENU for that item to
FALSE. Set PANEL_SHOW....MENU...MARK to FALSE to obtain a simple menu, or TRUE to get a
checklist.

Note that the number of menu choices, if set by MENU_CHOICE-8TRINGS or
MENU_CHOICEJMAGES, must be equal to the numher of choices for the item.

8.8.f . Toggles

Toggle items are identical in structure to choice items - they have a label and parallel lists of
up to 32 choices, on-marks and off-marks. They differ from choice items in certain aspects of
their display options, their selection behavior and the interpretation of their value. These
differences are highlighted below.

Displaying Toggle Items

Toggle items may have a PANEL..DISPLAYJ,EVEL of either PANEL_ALL - all choices visible, or
PANEL_NONE - no choices visible. Since there is no notion of the current choice for a toggle
item, a display level of PANEL_CURRENT is not allowed.

Toggle Selection Behavior

Toggle items, like choice items, may have either inverted or marked feedback (see Choice Selec
tion Behavior above). Specify the feedback you want by setting PANEL..FEEDBACK to either
PANELJNVERTED or PANEL...MARKED (PANEL_NONE is not allowed).

Toggle items may be selected by clicking on the desired choice or through the menu. Selecting a
choice causes that choice to toggle on or off, (change state); other choices are not affected.

If there is only one choice, it may be toggled by selecting the label; if there is more than one
choice, selecting the label has no effect.

Toggle Notification Behavior

The parameters for the notify procedure are the same as for choice items except that the value
passed is a bit mask (see the discussion under Toggle Value, below) instead of an integer:

sample_notify_proc(item, value, event)
Panel_item item;
unsigned int
struct inputevent

Revision G of 15 April 1985

value;
*event;

8-17

The Panel Subwindow Package Sun Windows Reference Manual

Toggle Value

The value passed to the notify procedure is a bit mask representing the state of the choices - if
a bit is one, then the corresponding choice was on, if a bit is zero, then the corresponding choice
was off. (The least significant bit is bit zero, which maps to choice zero.)

Take as an example an item called "format_item" and the following bit mask definitions:

#define LONG_CHOICE
#define SORTED_CHOICE
#define SHOW_ALL_CHOICE

OxOOOOOOOl
Ox00000002
Ox00000004

The value might be used in the notify procedure as follows:

format_notify_proc(panel, format_item, value)

{

Panel panel;
Panel_item format_item;
unsigned int value;

if (value & LONG_CHOICE) {
<perform some action>

} else if (value & SORTED_CHOICE) {
<perform some action>

} else if (value & SHOW_ALL_CHOICE) {
<perform some action>

}
}

The value might also be retrieved outside of the notify procedure, as in:

unsigned int value;
value= panel_get_value(format_item);
if (value & LONG_CHOICE) {

}

Toggle Menu Behavior

The menu for a toggle item has one of two type symbols preceding its title. If the item has more
than one choice, a double check-mark is shown, indicating that more than one choice may be
selected at once. If the item has only one choice, then a two-state toggle is shown, indicating
that the single choice may be either on or off.

The menu has as many lines as choices, and each line toggles when selected. In other words, the
mark indicating "on" (PANEL....MENU....MARIUMAGE) is alternated with the mark signifying "off"
(PANEL....MENU__NOMARIUMAGE) each time the user selects a given line.

To disable the menu, set PANEL_SHOW....MENU to FALSE.

8-18 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

8.8.5. Text

Displaying Text Items

The value component of a text item (the string which the user enters and edits) is drawn on the
screen just after the label. The interpretation of "after" depends on the setting of
PANELJ,AYOUT for the item: if PANELJ,AYOUT is PANELJIORIZONTAL the value is placed to the
right of the label, if PANELJ,AYOUT is PANEL_VERTICAL the value comes below the label.

Text Selection Behavior

A panel may have several text items, exactly one of which is current at any given time. The
current text item is the one to which keyboard input is directed, and is indicated by a caret at
the end of the item's value. (If PANELJILINK_CARET is TRUE, the caret will blink as long as the
cursor is in the panel.) Selection of a text item (i.e. pressing and releasing the left mouse button
anywhere within the item's rectangle) causes that item to become current. A text item also
becomes current if it is restored - i.e. if PANEL_SHOWJTEM is set to TRUE.

You can find out which text item has the caret, or give the caret to a specified text item, by
means of the panel attribute PANEL_CARETJTEM. The call

Panel_item name_item;
panel_set(panel, PANEL_CARET_ITEM, name_item, O);

moves the caret to name_item, while

caret_item = (Panel_item)panel_get(panel, PANEL_CARET_ITEM, O);

sets the variable caret_item to the current item.

Text Notification Behavior

If a procedure is specified via the attribute PANEL...NOTIFY..PROC, it will be called at the
appropriate time, as determined by the setting of PANEL...NOTIFYJ,EVEL, discussed below. Text
notify procedures receive, in addition to the usual panel and item handles, the event containing
the input code:

sample_notify__:proc(item, event)
Panel_item item;
struct inputevent *event;

The input character is referenced by event->ie_code.

If you do not specify your own notify procedure, a default procedure will be called:

Revision G of 15 April 1985 8-19

The Panel Subwindow Package Sun Windows Reference Manual

Panel_setting panel_text_notify(item, event);
Panel_item
struct inputevent

item;
•event;

This procedure causes the caret to move to the next text item on carriage-return or tab, the pre
vious text item on <SHIFT>-carriage-return or <SHIFT>-tab, printable characters to be
inserted, and all other characters to be discarded.

You can tailor the notification behavior of each text item to support a variety of interface styles.
On one extreme, you may want to process each character as the user types it in. For a different
application you may not care about the values as they are typed in, and only want to look at
them in response to some other button (e.g., only look at a filename field when the user presses
the "Load" button).

The notification behavior of a text item is controlled by the attribute PANEL~OTIFYJ,EVEL.
The following table describes its possible settings:

Table 8-4: Notification behavior

Notification Level Causes Notifv Proc to be Called 1----'-"====-=-='------
P AN EL_ NO NE
PANEL_NON_PRINTABLE
PANEL_SPECIFIED

PANEL ALL

never
on each non-printable input character
if the input char is found in the string
given for the attribute PANEL~OTIFY_STRING.
on each innut character

For example, suppose you want to be notified only when the user types <ESC> or <CTRL>-C
into an item. Create the item as follows:

name_item = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Enter Name Here:",
PANEL_NOTIFY_LEVEL, PANEL_SPECIFIED,
PANEL_NOTIFY_STRING, "\033\03",
PANEL_NOTIFY_FROC, name_proc,
0) ;

PANEL_NOTIFYJ,EVEL defaults to PANEL_SPECIFJED, and PANEL~OTIFY_STRING defaults to
'\n\r\t" (i.e., notification on line-feed, carriage-return and tab).

If the user types a character which does not cause the item's notify procedure to be called, then
the character, if printable, is appended to the item's value. Non-printable characters which do
not cause notification are ignored, except for the user's editing characters, which are applied to
the text item's value.

For input characters which cause notification, the value returned by the notify procedure deter
mines what happens to the text item's value and what appears on the screen after the character
is input. The following table shows the options for value returned by the notify procedure.

8-20 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

Table 8-5: Possible return values from notify procedures

Value Returned
PANEL_INSERT
PANEL_NEXT
PANEL_PREVIOUS
PANEL NONE

Action Caused
character is inserted into item's value
caret moves to next text item
caret moves to previous text item
i~nore the innut character

If the notify procedure returns PANELJNSERT, the character is appended to the value. If the
character which is inserted is non-printable, nothing is shown on the screen. The editing charac
ters (erase, erase_word, and erase-line) cause their intended actions to be performed and are not
appended to the value, regardless of what the notify procedure returns.

Text Value

The value of a text item may be set (at creation time or later) with the attribute PANEL_VALUE,

as m:

panel_create_item(panel, PANEL_TEXT, PANEL_VALUE,
"Edward G. Robinson", O);

To retrieve the value of the text item name_item and store 1t mto buffer (assuming that
name_item has been created with a PANEL_VALUE_STOREDJ,ENGTH of
NAMEJTEM...MAX..LENGTH, so the buffer will not overflow):

Panel_item name_item;
char buffer[NAME_ITEM_MAX_LENGTH];
strcpy(buffer, (char •)panel_get_value(name_item));

To set the value of name_i tem:

panel_set_value(name_item, "Millard E'illmore");

Text Menu Behavior

A menu may be associated with a text item by setting PANEL_SHOW...MENU to TRUE. The menu
for a text item has a type symbol of a (very stubby!) pencil, suggesting that the item is a type-in
field. The default title is the item's label.

The primary use of text item menus is to make any item-specific "accelerators", or characters
which cause special behavior, visible to the user. An example of the use of accelerators may be
found in the code below, which was taken from the cursor /icon editor "Icon tool". The text item
fname_item holds the name of the file being edited. In addition to typing printable characters,
which are appended to the value of the item, the user can type <ESC> for filename completion,
<CTRL>-L to load an image from the file, or <CTRL>-S to store an image to the file. The
item is created with the call

Revision G of 15 April 1985 8-21

The Panel Subwindow Package

#define ESC 27
#define CTRL_L 12
#define CTRL_S 19

Sun Windows Reference Manual

fname_item = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL..)(, 10,
PANEL_LABEL_Y,
PANEL_VALUE_DISPLAY_LENGTH,
PANEL_LABEL_FONT,
PANEL_LABEL_STRING,
PANEL_NOTIFY_LEVEL,
PANEL_VALUE_FONT,
PANEL_NOTIFY_FROC,
PANEL_MENU_TITLE_STRING,
PANEL_MENU_CHOICE_STRINGS,

PANEL_MENU_CHOICE_VALUES,
0) ;

6,
18,
bold_font,
"File:",
PANEL....ALL,
bold_font,
fname_proc,
"Current File",
"ESC - Filename completion",
"CTRL L - Load image from file",
"CTRL S - Store image to file",
0,

ESC, CTRL_L, CTRL_S, 0,

The last three attributes specify the menu. PANEL_MENU_TITLE..STRING specifies the menu's title.
PANEL_MENU_CHOICE_STRINGS is a null-terminated array of strings to appear as the selectable
lines of the menu. The value that the menu returns for each of its lines is specified with the
attribute PANEL_MENU_CHOICE_VALUES. So if the menu line "CTRL-L - Load image from file" is
selected, the menu will return the value CTRLJ,. The value returned by the menu is passed
directly to the text item, just as if it had been typed at the keyboard. In other words, the text
item makes no distinction between menu-generated values and keyboard-generated characters.

Type-in Behavior

The user's erase, erase-word and kill characters function normally when typing into text items.

The number of characters of the text item's value which are displayable on the screen is set via
the attribute PANEL_VALUE...DISPLAYJ,ENGTH. When characters are entered beyond this length,
the value string is scrolled one character to the left, so that the most recently entered character
is always visible. As the string scrolls to the left, the leftmost characters move out of the visible
display area. The presence of these temporarily hidden characters is indicated by a small left
pointing triangle. The string is scrolled back to the right as excess characters are deleted, until
the actual length becomes equal to the displayable length, and the entire string is visible.

The maximum number of characters which can be typed into a text item (independently of how
many are displayable) is set via the attribute PANEL_VALUE_STORED..LENGTH. Attempting to
enter a character beyond this limit causes the field to overflow, and the character is lost. The
value string is blinked to indicate to the user that the text item is not accepting any more char
acters.

PANEL_VALUE...DISPLAY..LENGTH and PANEL_VALUE_STOREDJ,ENGTH both default to 80. (Note
that while the positioning attributes are measured in pixels, these two are measured in charac
ters.)

8-22 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

0 Caret Manipulation

0

0

If a panel contains any text items, then there is a single caret which is associated with one of the
text items at any point in time. The caret may be set to a particular text item by calling
pane l_set. The caret may also be rotated through the text items with the two routines:

panel_advance_caret(panel)
Panel panel;

panel_backup_caret(panel)
Panel panel;

Advancing past the last text item places the caret at the first text item; backing up past the first
text item places the caret at the last text item.

8.8. 6. Sliders

Displaying a Slider

A slider has four displayable components: the label, the current value, the slider bar, and the
minimum and maximum allowable integral values (the range). When PANEL_SHOW_VALUE is
TRUE, the current value is shown in brackets after the label (e.g. "[45]"). The font used to display
the value is PANEL_VALUE...FONT.

The slider bar width in pixels is set with PANEL_SLIDER_WIDTH. If you want to specify the width
in characters, use the "character units" macro PANEL_CU (Section 8.3). The minimum and max
imum allowable values are set with PANEL_MIN_VALUE and PANEL...MAX..VALUE. The width of the
slider bar corresponding to the current value is filled with grey. The slider bar is always
displayed, unless the item is hidden (i.e., PANEL_SHOWJTEM is FALSE). When
PANEL_SHOWJiANGE is TRUE, the minimum value of the slider (PANEL_MIN_VALUE) is shown to
the left of the slider bar a.nd the maximum va.lue (PANEL...MAX..VALUE) is shown to the right of
the slider bar.

Selection Behavior

Only the slider bar of a slider may be selected. When the left mouse button is pressed within
the slider bar or the mouse is dragged into the slider bar with the left mouse button pressed, the
grey shaded area of the bar will advance or retreat to the position of the cursor. If the mouse is
dragged left or right within the slider bar, the grey area will be updated appropriately. If the
cursor is dragged outside of the slider bar, the original value of the slider (i.e., the value before
the left button was pressed) will be restored.

Revision G of 15 April 1985 8-23

The Panel Subwindow Package

Slider Notification Behavior

The notify procedure for a slider has the form:

sample_notify_proc(item, value, event)
Panel_item item;
unsigned int
struct inputevent

value;
•event;

Sun Windows Reference Manual

where item is the item, value is the new value, and event is a pointer to the event that caused
the notification.

The notification behavior of a slider is controlled by PANEL_NOTIFYJ,EVEL. When
PANEL_NOTIFYJ,EVEL is set to PANEL...DONE, the notify procedure will be called only when the
select button is released within the slider bar. When PANEL_NOTIFYJ,EVEL is set to PANEL__ALL,
the notify procedure will be called whenever the value of the slider is changed. This includes:

• when the select button is first pressed within or dragged into the slider bar,

• each time the mouse is dragged within the slider bar,

when the mouse is dragged outside the slider bar,

• when the select button is released.

Slider Value

The value of a slider is an integer in the range PANEL_MIN_VALUE to PANEL..MAX...VALUE. You
can retrieve or set a slider's value with the attribute PANEL_VALUE.

Slider Menu

A slider has no associated menu.

Slider Examples

Below is an example illustrating a slider which might be used to control the brightness of a
screen:

8-24 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

Panel
Panel_item

panel;
bright_slider;

bright_slider = panel_create_item(panel, PANEL_SLIDER,
PANEL_LABEL_STRING, "Brightness: "
PANEL_VALUE, 75,
PANEL_MIN_VALUE, 0,
PANEL_MAX_VALUE, 100,
PANEL_SLIDER_WIDTii,
PANEL_SHOW__RANGE,
PANEL_SHOW_VALUE,
0) ;

400,
TRUE,
TRUE,

8.9. Modifying and Retrieving Attributes of Panels or Items

This section describes how to modify or retrieve the current values of attributes of panels or
individual panel items which have already been created.

Several examples are given here; for a complete list of the attributes applying to panels and
items, see Section 8.14.

Modifying Attributes

A single routine is used to set attributes of both panels and items:

panel_set(panel_object, attributes)
<Panel_item or Panel> panel_ob ject;
< attribute_list> attributes;

For example, to move a panel's caret to the text item name_item:

Panel_item name_item;
panel_set(panel, PANEL_CJ\RET_ITEM, name_item, O);

To set the location of the item error _message_item to pixel coordinates (10, 50):

Panel_item error_message_item;
panel_set(error_message_item, PANEL_ITEM_lC, 10,

PANEL_ITEM_Y, 50,
O);

A macro is provided to ease the syntax for the common operation of setting an item's value:

#define panel_set_value (item, value) panel_set (item, PANEL_VALUE, (value) , 0)

For example, to set the value of the choice item display_format_item to the third (count-
ing from zero) choice:

Panel_item display_format_item;
panel_set_value(display_format_item,2);

Revision G of 15 April 1985 8-25

The Panel Subwindow Package Sun Windows Reference Manual

Note: The values for string-valued attributes are dynamically allocated when they are set (at
creation time or later). If a previous value was present, it is freed after the new string is allo
cated. This is in contrast to the storage-allocation policy for retrieving attributes, described in
the next section.

Retrieving Attributes

A single routine is used to retrieve attributes of both panels and items:

Panel_attribute_value panel_get(panel_object, attribute[, optional_arg])
<Panel_item or Panel> panel_object;
Panel_attribute attribute;
Panel_attribute optional_arg;

Panel_get () is used to retrieve attributes of all types, so the value returned must be coerced
into the type appropriate to the attribute being retrieved. For example, to find out whether the
caret in a panel is blinking or non-blinking:

int caret_is_blinking;
caret_is_blinking = (int)panel_get(panel, PANEL_BLINK_CARET);

To find out whether an item is currently being displayed on the screen:

int item....is_displayed;
item_is_displayed = (int)panel_get(item, PANEL_SHOW_ITEM);

The argument optional_arg is used for only a few item attributes. For example, to get the
image for a choice item's third (counting from zero) choice:

struct pixrect *third_choice_image;
third_choice_image = (struct pixrect *)panel_get(panel, PANEL_CHOICE_IMAGE, 2

A macro is provided to ease the syntax for the common operation of retrieving an item's value:

#define panel_get_value(item) panel_get(item, PANEL_VALUE)

For example, to retrieve the current value of the text item comment_item:

Panel_item comment_item;
char
comments =

*comments;
(char *)panel_get_value(comment_item);

Note: panel_get () and panel_get_value () do not dynamically allocate storage for the
values they return. If the value returned is a pointer, it points directly into the panel's private
data. In the example above, the string pointed to by commenta may change - transparently to
the program - as the user types into the panel. It is the programmer's responsibility to copy
the information pointed to, if this kind of behavior is to be avoided.

The policy for setting attributes is different: the values for string-valued attributes are dynami
cally allocated (see the previous section).

8-26 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

8.10. Painting Panels and Individual Items

To repaint either an individual item or an entire panel, use the routine:

panel_paint(panel_object,
<Panel_item or Panel>
Panel_setting

paint_behavior)
panel_object;

paint_behavior;

paint_behavior should be either PANEL_CLEAR, which causes the rectangle occupied by the
panel or item to be cleared prior to repainting, or PANEL_NO_CLEAR, which causes repainting to
be done without any prior clearing.

It is not necessary to call pane l_paint () explicitly to control the repainting of items. The
"repaint behavior" of an item is controlled by the special attribute PANELYAINT. PANELYAINT
has three possible values: PANEL_CLEAR, PANEL_NO_CLEAR, and PANEL_NONE. A value of
PANEL_CLEAR means that the item will be automatically cleared and repainted after each call to
panel_set (). A value of PANEL_NO_CLEAR means that the item will be automatically
repainted (without any prior clearing) after each paneLaet() call. A value of PANEL_NONE means
that no automatic repainting will be done.

The default value for PANELYAINT is PANEL_CLEAR. Thus, in the default case, you do not need
to call panel_paint () after calling panel_set (). You can set the repaint behavior for an
item when the item is created, or for all items in the panel when the panel is created. The
item's repaint behavior may not be reset after the item is created. However, you may tem
porarily override an item's repaint behavior on any call to pane l_set () by giving a different
setting for PANELYAINT. The following examples show two possible repaint policies:

Example 1:

iteml = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING,
PANEL_VALUE_DISPLAY_LENGTH,
PANEL_FAINT,
0) ;

(install tool, etc .. .)

"Enter Name:",
10.
PANEL_NONE,

panel_set(iteml, PANEL_ITEM_X, 10, PANEL_ITEM_Y, 50, 0);
panel_set(iteml, PANEL_LABEL_IMACE, &pixrectl, O);
panel_set(iteml, PANEL_VALUE_DISPLAY_LENGTH, 30, O);
panel_paint(iteml, PANEL_CLEAR);

Revision G of 15 April 1985 8-27

The Panel Subwindow Package Sun Windows Reference Manual

Example 2:

item2 = panel_create_item(panel, PANEL_TEXT,
PANEL_LABEL_STRING, "Enter Name: 11

,

PANEL_VALUE_DISPLAY_LENGTH, 10,
0) ;

{install tool, etc .. .)

panel_set(item2,
PANEL_ITEM_X, 10,
PANEL_ITEM_Y, 50,
PANEL_FAINT, PANEL_NONE,
0) ;

panel_set(item2,
PANEL_LABEL_IMAGE, &pixrectl,
PANEL_PAINT, PANEL_NONE,
0) ;

panel_set(item2,
PANEL_VALUE_DISPLAY_LENGTH, 30,
0) ;

The above two examples each produce the same effect. In the first example, the item's repaint
behavior is set to PANEL_NONE at creation time, so it is not repainted automatically after the
panel_set () calls, and no repainting occurs until the call to panel_paint (). In the second
example, the item's repaint behavior is the default, PANEL_CLEAR. This is overridden in the first

0

two panel_set () calls, so no repainting occurs. However, it is not overridden in the third call O·

to pane l_set () , so repainting occurs before that call returns.

As mentioned above, the repaint behavior for all items in a panel can be set when the panel is
created, e.g.:

panel_create(tool, PANEL_FAINT, PANEL_NONE, O);

All items created in the above panel will have a repaint behavior of PANEL_NONE.

8.11. Destroying Panels and Individual Items

A panel or individual item is destroyed (and its associated dynamic storage freed) with the rou
tine:

panel_free(panel_object);
<Panel_item or Panel> panel_object;

8.12. Creating Reusable Attribute Lists

It may be desirable to create an attribute list which can then be passed to different routines.
This can be done in either of two ways, either by creating the list explicitly, or by using the rou
tine panel_make_list ().

To create an attribute list explicitly, a program must define a static array of strings, which is ini- O·

tialized (or later filled in with) the desired attribute/value pairs. Note that non-string values

8-28 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

must be coerced to type char *:

static char *attributes[]= {
PANEL_LABEL_STRING,
PANEL_VALUE,
PANEL_NOTIFY_FROC,
0 }

To make an attribute list dynamically, use:

char **panel_make_list(attributes)
<attribute_list> attributes;

"Name: ",
"Goofy ",
(char *)name_itelll....proc,

panel_make_list () allocates storage for the list it returns. It is up to the programmer to
free this storage when no longer needed.

Panel_make_list can be used to support default attributes, e.g.:

int
Panel_item
struct pixfont
char

defaults =

name_item =

text_proc(), name_proc();
name_item, address_item;
*big_font, small_font;
*defaults;

panel_make_list(PANEL_TEXT,
PANEL_SHOW_ITEM,
PANEL_LABEL_FONT,
PANEL_VALUE_FONT,

FALSE,
big_font,
small_font,

PANEL_NOTIFY_PROC, text_proc,
0) ;

panel_create_item(PANEL_TEXT
PANEL__ATTRIBUTE_LIST, defaults,
PANEL_NOTIFY_l?ROC, name_proc,
0) ;

address_item = panel_create_item(
PANEL__ATTRIBUTE_LIST,
PANEL_SHOW_ITEM,
PANEL_VALUE_FONT,

defaults,
TRUE,
big_font,

0) ;

The special attribute PANEL.-ATTRIBUTE..LIST takes as its value an attribute list. In the above
example, first an attribute_list called defaults is created. Then, by mentioning defaults
first in the attribute lists for subsequent item creation calls, each item takes on those default
attributes. Subsequent references to an attribute override the setting in defaults since the
last value mentioned for an attribute is the one which takes effect.

Revision G of 15 April 1985 8-29

The Panel Subwindow Package Sun Windows Reference Manual

8.13. Summary of Panel Functions

All functions, data types and attributes needed by programs using panels are found in the header
file <suntool/panel .h>.

Data types:

Pane 1 a pointer to the structure which describes a panel.
Pane l_i tem a pointer to the structure which describes a panel

item.
Panel_item_type the type of an item, specified when the item 1s

created.
Panel_attribute a constant which specifies a particular attribute.
Panel_attribute_value type used for retrieving attribute values.
Panel_setting type returned by panel_text_notify {); type

of repaint argument to panel_paint {).

Functions:

struct toolsw •panel_create(tool, attributes);
struct tool *tool;
< attribute-list> attributes;

Panel_item panel_create_item(panel, item_.type, attributes);
Panel panel;
Panel_item_.typei item_.type;
<attribute-list> attributes;

panel_free(panel_object);
<Panel_item or Panel> panel_object;

Panel_attribute_value panel_get(panel_object, attribute[, optional_arg])
<Panel_item or Panel> panel_object;
Panel_attribute attribute;
Panel_attribute optional_arg;

panel_set(panel_object, attributes)
<Panel_item or Panel> panel_object;
<attribute_list> attributes;

panel_set_value(item, value)
Panel_item
Panel_attribute_value

item;
value;

panel_set_value {) is a macro, defined as:

#define panel_set_value(item, value) panel_set(item,
PANEL_VALUE, value, 0)

Panel_attribute_value panel_get_value(item)
Panel_item item;

8-30 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual The Panel Subwindow Package

panel_get_value () is a macro, defined as:

#define panel_get_value(item) panel_get(item, PANEL_VALUE)

panel_paint(panel_object,
<Panel_item or Panel>
Panel_setting

paint_behavior)

panel_advance_caret(panel)
Panel panel;

panel_backup_caret(panel)
Panel panel;

panel_object;
paint_behavior;

struct pixrect •panel_button_image(panel, string, width, font)
panel_handle panel;
char *string;
int width;
struct pixfont *font;

char ••panel_make_list(attributes)
< attribute_list> attributes;

Revision G of 15 April 1985 8-31

The Panel Subwindow Package Sun Windows Reference Manual

8.14. Tables of Attributes

All of the panel package attributes are summarized in the tables below.

Panel Attribute• covers those attributes which apply to the panel as a whole.

Generic Item Attribute• cover those attributes that apply to panel items of all types.

Choice and Toggle Item Attribute•, Tezt Item Attributea, and Slider Item Attribute• cover attri
butes that apply to those specific types of items.

All the tables below use the following naming conventions in the interests of brevity:

• The prefix PANEL has been omitted from the attribute names.

• Under the Characteriatica heading, the notation ••• after the name of an object means that a
list of those objects, terminated by a zero, may appear in the actual code. For example, the
PANEL_CHOICEJMAGES attribute has an argument type of struct pixrect * ... ,
meaning that this attribute accepts a list of pointers to pixrect.

• The notation get () returna refers to the pane l_get () function.

Table 8-6: Panel Attributes

Panel Attributes

Name:PANEL_ Deacription Characteriatica

NAME Subwindow name Argument Type: char •
get () returns: NULL
Default Value: ""

WIDTH Subwindow width Argument Type: int
get() returns: NULL
Default Value: -1

HEIGHT Subwindow height Argument Type: int
get () returns: NULL
Default Value: -1

FONT Panel default font Argument Type: struct pixfont
get () returns: struct pixfont
Default Value: pw_pfsysopen ()

CARET_ITEM Item with the caret Argument Type: PANEL_ITEM
get () returns: PANEL_ITEM
Default Value: first text item

8-32 Revision G of 15 April 1985

0

0

•
•

0

Sun Windows Reference Manual The Panel Subwindow Package

0 Panel Attributes

Name:PANEL_ De,cription Characteri,tic,

ITEM_JLGAP Number of z-pixels between items Argument Type: int
get() returns: int
Default Value: 10

ITEM_Y_GAP Number or y-pixels between items Argument Type: int
get() returns: int
Default Value: 5

BLINK_CARET Static or blinking caret Argument Type: int (TRUE/FALSE)
get () returns: int
Default Value: TRUE

TIMER_SECS Number of timer seconds Argument Type: int
get() returns: int
Default Value: 0

TIMER_USECS Number or timer microseconds Argument Type: int
get () returns: int
Default Value: 500000

0
TIMER_PROC Function to call when timer expires Argument Type: int (•) ()

get () returns: int (•) ()
Default Value: NULL

FIRST_ITEM First item in the panel Argument Type: N/A (Get only)
get () return,: PANEL_ITEM
Default Value: first panel item

SHOW_MENU Show or don't show the panel menu. Argument Type: int (TRUE/FALSE)
Sets the default for subsequent items get() returns: int
created in panel. Default Value: TRUE for choice items,

FALSE for all other items

LABEL_BOLD Dold or regular label string. Sets the Argument Type: int (TRUE/FALSE)
default for subsequent items created in get () returns: int
panel. Default Value: FALSE

LAYOUT Layout of value relative to label. Sets Argument Type: int (PANEL_HORIZONTJ\
the default for subsequent items created orPANEL_VERTICAL)
in panel. get () returns: NULL

Default Value: PANEL_HORIZONTJ\L

0
Revision G of 15 April 1985 8-33

The Panel Subwindow Package Sun Windows Reference Manual

Table 8-7: Generic Item Attributes

0
Generic Item Attributes

Name:PANEL_ Description Characteristics

ITEM_X Lert edge or item rectangle. Ir Argument Type: int
unspecified a.nd label or value positions get () returns: int
are fixed, then set to minimum of Default Value: after lowest,
PANEL_LABEL_X and

rightmost item
PANEL_VALUE_X

ITEM_Y Top edge or item rectangle. Ir Argument Type: int
unspecified and label or value posit.ions get () returns: int
a.re fixed, then set to minimum or Default Value: previous item's
PANEL_LABEL_Y and
PANEL_VALUE_Y

PANEL_ITEM_Y

LABEL_X Left edge or label. Ir unspecified and Argument Type: int
value position is fixed, then set to left or get () returns: int
PANEL_VALUE_X for horizontal layout, Default Value: PANEL_ITEM...X
or at PANEL_VALUE_X Cor vertical lay-
out

LABEL_Y Top edge or label. It unspecified and Argument Type: int
value position is fixed, then set to get () returns: int
PANEL_VALUE_Y for horizontal layout, Default Value: PANEL_ITEM_Y
or above PANEL_VALUE_Y for vertical
layout 0

VALUE_X Left edge or value rectangle. Ir Argument Type: int
unspecified and label position is fixed, get () returns: int
then set to right or PANEL_LABEL_X Default Value: after the label
for horizontal layout, or a.t
PANEL_LABEL_X Car vertical layout

VALUE_Y Top edge or value rectangle. Ir Argument Type: int
unspecified and label position is fixed, get() returns: int
then set to PANEL_LABEL_Y ror hor- Default Value: PANEL_LABEL_Y
izontal layout, or below
PANEL_LABEL_Y for vertical layout

LABEL_STRING String for the label Argument Type: char •
get() returns: char •
Default Value: ••

LABEL_IMAGE Graphic Image for the label Argument Type: struct pixrect •
get () returns: struct pixrect •
Default Value: NULL

LABEL_FONT Font for PANEL_LABEL_STRING Argument Type: struct pixfont •
get () returns: struct pixfont •
Default Value: PANEL_FONT

0
8-34 Revision G of 15 April 1985

Sun Windows Reference Manual The Panel Subwindow Package

Generic Item Attributes

0 Name:PANEL_ Description Characteri,tic,

LABEL_BOLD Bold or regular label string Argument Type: int (TRUE/FALSE)
get() returns: int
Default Value: TRUE

PAINT Item's painting behavior ror Argument Type: Panel_setting
panol_set () calls (PANEL_NONE,

PANEL_CLEAR,
PANEL_NO_CLEAR)

get () returns: Panel_setting
Default value: PANEL_CLEAR

NOTIFY_PROC Function to ca.II when item is selected Argument Type: int (*) ()
get () returns: int (*) ()
Default Value: NULL

SHOW_MENU Show or don't show the menu Argument Type: int (TRUE/FALSE)
get () returns: int
Default Value: TRUE for choice items,

FALSE for all other items

MENU_TITLE_STRING String for the menu title Argument Type: char •

0 get() returns: NULL
Default Value: PANEL_LABEL_STRING

MENU_TITLE_IMAGE Graphic Image Cor the menu title Argument Type: struct pixrect •
get() returns: NULL
Default Value: PANEL_LABEL_IMAGE

MENU_TITLE_FONT Font ror Argument Type: struct pixfont •
PANEL_MENU_TITLE_STRING get() returns: struct pixfont

Default Value: PANEL_FONT

MENU_CHOICE_STRINGS String for each menu choice. Default is Argument Type: char • ...
PANEL_CHOICE_STRINGS ror choice get() returns: NULL
items, or NULL for other items. Default Value: item dependent

MENU_CHOICE_IMAGES Graphic image for each menu choice. Argument Type: struct pixrect • ..
Default is PANEL_CHOICE_IMACES !or get() returns: NULL
choice items, PANEL_LABEL_IMAGE Default Value: item dependent
ror button items, or NULL (or other
items.

MENU_CHOICE_FONTS Font for each menu choice string. Argument Type: struct pixfont •
get () returns: NULL
Default Value: PANEL_FONT

0
Revision G of 15 April 1985 8-35

The Panel Subwindow Package Sun Windows Reference Manual

Generic Item Attributes

Name:PANEL_ Deacription Characteristica 0
SHOW_ITEM Show or don't show the item Argument Type: int (TRUE/FALSE)

get() returns: int
Default Value: TRUE

LAYOUT Layout or value relative to label Argument Type: int (PANl!L__liORIZONTA:
orPANl!L_VERTICAL)

get () returns: NULL
Default Value: PANl!L__liORIZONTAL

ITEM..)lECT Enclosing rectangle (or the item Argument Type: N/A (Get only)
get () returns: struct rect *
Default Value: N/A

NEXT_ITEM Next item in the panel Argument Type: N/A (Get only)
get () returns: Panel_item
Default Value: N/A

CLIENT_DATA Uninterpreted data for clients use Argument Type: caddr _t
get() returns: caddr_t
Default Value: NULL

PARENT_PANEL The panel in which an item is contained Argument Type: N/A (get only)
get () returns: Panel
Default Value: N/A

0

0
8-36 Revision G of 15 April 1985

Sun Windows Reference Manual The Panel Subwindow Package

Table 8-8: Choice and Toggle Item Attributes

0
Choice and Toaale Item Attributes

Name:PANEL_ De,cription Characteri.tica

CHOICE_STRINGS String for each choice, maximum of 32 Argument Type: char • ...
values get() returns: NULL

Default Value: "", 0

CHOICE_FONTS Fonts to use tor each choice string Argument Type: struct pixfont • . '
get() returns: NULL
Default Value: PANEL_FONT,0

CHOICE_IMAGES Graphic image tor eaeh choice, max- Argument Type: struct plxrect • ..
imum of 32 values get () returns: NULL

Default Value: NULL,0

CHOICE_STRING String for a particula.r choice. Argu- Argument Type: int, char *
ment is the choice number, followed by get() returns: char •
the choice string. Default Value: N/A

CHOICE_IMAGE Graphic image for a particular choice. Argument Type: int,struct pixrect

0
Argument is the choice number, fol- get() returns: struct pixrect •
lowed by the choice image. Default Value: N/A

CHOICES_BOLD Bold or regular choice strings Argument Type: int (TRUE/FALSE)

get() returns: NULL
Default Value: FALSE

VALUE Ir item is a choice, value is ordinal Argument Type: int or unsigned
number of current choice (first choice is get() returns: int or unsigned
choice zero). Ir item is a toggle, value is Default Value: 0
a bitmask indicating currently selected
choices (for example, bit 5 is 1 if 5th
choice is selected).

LAYOUT Layout of the choices. IC Argument Type: int (PANEL_!iORIZONTJ\
P ANELJiOR I ZONTAL, choices are laid orPANEL_VERTICAL)
out left to right after the label. IC get() returns: NULL
PANEL_VERTICAL, choices are laid out

Default Value: PANELJiORIZONTAL top to bottom under the label.

DISPLAY_LEVEL How many choices to display. Argument Type: int (PANEL_NONE,
PANEL_NONE displays no choices, PANEL_CURRENT,
PANEL_CURRENT displays the selected PANEL_ALL)
choice (N/A for toggles), PANEL....ALL

get () returns: int displays all the choices.
Default Value: PANEL_ALL

0
Revision G of 15 April 1985 8-37

The Panel Subwindow Package Sun Windows Reference Manual

Choice and Tov .. le Item Attributes

1---N_a_m_e_:P_ANE __ L __________ D_e_s_c_ri_·p_tt_·o_n ___________ c_h_a_r_ac_t_e_ri_·a_tt_·c_a _____ o
FEEDBACK

MARK_IMAGES

NOMARK_IMAGES

MENU_J!ARK_IMAGE

MENU_NOMARK_IMAGE

SHOW_MENU_MARK

CHOICE_OFFSET

CHOICE_XS

CHOICE_YS

8-38

Feedback to give when a choice is Argument Type: int (PANEL_NONE,
selected. PANEL_NONE gives no reed- PANEL_MARKED,
back, PANEL_MARKED paints the on· PANEL INVERT)
mark for the choices, -
PANEL_INVERTED inverts the choice. get O returns: int
Ir PANEL_DISPLAYJ.EVEL is Default Value: depends on
PANEL_CURRENT, the default feedback PANEL_DISPLAY_LEVEL
is PANEL_NONE, otherwise
PANELJ!ARKED.

Graphic image to mark each choice with
when selected.

Graphic image to mark each choice with
when not selected.

Graphic image to mark each menu
choice with when selected.

Argument Type: struct pixrect • ..
get () returns: NULL

Default Value: Check in a box

Argument Type: struct pixrect •
get () returns: NULL

Default Value: empty box

Argument Type: struct pixrect •
get() returns: struct pixrect •
Default Value: Check mark

Graphic image to mark each
choice with when not selected.

menu Argument Type: struct pixrect •
get() returns: struct pixrect •
Default Value: NULL

Show or don't show the menu mark for Argument Type: int (TRUE/FALSE)
each selected menu choice. get () returns: int

Default Value: TRUE

Offset (in pixels) to place between Argument Type: int
choices. get() returns: int

Default Value: NULL

Left edge of each choice. Argument Type: int ...
get() returns: NULL

Default Value: determined by
PANEL_LAYOUT

Top edge or each choice. Argument Type: int ...
get() returns: NULL

Default Value: determined by
PANEL_LAYOUT

Revision G of 15 April 1985

0

-

Sun\Vindows Reference Manual The Panel Subwindow Package

0
Choice and To~~Ie Item Attributes

Name:PANEL_ Deacription Characteri.tica

MARK_XS Left edge of each choice mark. Argument Type: int ...
get () returns: NULL
Default Value: determined by

PANEL_LAYOUT

MARK_YS Top edge ot each choice mark. Argument Type: int ...
get () returns: NULL
Default Value: determined by

PANEL_LAYOUT

CHO!CE_X Left edge of specifed choice. Argument Argument Type: int, int
is choice number followed by desired left get() returns: int
edge. Default Value: determined by

PANEL_LAYOUT

CHOICE_Y Top edge of specifed choice. Argument Argument Type: int, int
is choice number followed by desired top get () returns: int
edge. Default Value: determined by

PANEL_LAYOUT

MARK_X Left edge or specifed choice mark. Argument Type: int, int

0
Argument is choice mark number fol· get() returns: int
lowed by desired left edge. Default Value: determined by

PANEL_LAYOUT

MARK_Y Top edge or specifed choice mark. Argument Type: int, int
Argument is choice mark number fol· get() returns: int
lowed by desired top edge. Default Value: determined by

PANEL_LAYOUT

0
Revision G of 15 April 1985 8-39

The Panel Subwindow Package Sun Windows Reference Manual

Table 8-9: Text Item Attributes

0
Text Item Attributes

Name:PANEL_ Description Oharacteriatica

VALUE Initial or new string va.lue Cor the item Argument Type: char •
get() returns: char •
Default Value: ""

VALUE_FONT Font to use tor the value string Argument Type: struct pixfont •
get () returns: struct pixfont •
Default Value: PANEL_LABEL_FONT

NOTIFY_LEVEL When to call the notify function. Argument Type: int (PANEL_NONE,
PANEL_NONE nev-er notifies, PANEL_SPECIFIED,
PANEL_SPECIFIED notifies when • PANEL_NON_FRINTABLE,
charact,er specified in

PANEL...ALL) PANEL_NOTIFY_STRING is typed,
PANEL_NON_PRINTABLE notifies when get() returns: int

• non-printable character is typed, Default Value: PANEL_SPECIFIED
PANEL...,ALL notifies on each typed char-
acter

NOTIFY_STRING String or characters which trigger Argument Type: char •
notification when typed. Applicable only get() returns: char •
when PANEL_NOTIFY_LEVEL is Default Value: "\n\r\t"
PANEL_SPECIFIED. 0

VALUE_STORED_LENGTH Maximum number or characters to store Argument Type: int
in the value string. When the user get() returns: int
a.tt~mpts to enter more than Default Value: 80
PANEL_VALUE_STDRED_LENGTH char-
acters, the type-in string is blinked.

VALUE_DISPLAY_LENGTH Maximum number or characters to Argument Type: int
display in the panel. When the user get() returns: int
enters more than Default Value: 80
PANEL_VALUE_DISPLAY_LENGTH
characters, the type-in string is scrolled
and clipped at the lert.

-
MASK_CI!AR Character used to ma.sk type-in charac- Argument Type: char

ters. Use the space character (' ') ror no get() returns: char
character echo (caret does not advance). Default Value: '*'
Use the null character ('\O') to disable
masking.

0
8-40 Revision G or 15 April 1985

Sun Windows Reference Manual The Panel Subwindow Package

Table 8-10: Slider Item Attributes

Q
Slider Item Attributes

Name:PANEL_ Deacription Characteristics

VALUE Initial or new value tor the item. The Argument Type: int
value is in the range get() returns: int
PANEL_MIN_VALUE to
PANEL_MAX_ VALUE.

Default Value: PANEL_MIN_VALUE

SHOW_VALUE Show or don't show the integer value of Argument Type: int (TRUE/FALSE)
the slider. get () returns: int

Default Value: TRUE

SHOWJIANGE Show or don't show the minimum and Argument Type: int (TRUE/FALSE)
maximum slider values. get() returns: int

Default Value: TRUE

VALUE_FONT Font to use when displaying the value Argument Type: struct pixfont •
(PANEL_SHOW_VALUE, TRUE). get () returns: NULL

Default Value: PANEL_LABEL_FONT

MAX_VALUE Maximum value of the slider. Argument Type: int

0
get() returns: int
Default Value: 100

MIN_vALUE Minimum value of the slider. Argument Type: int
get() returns: int
Default Value: 0

SLIDER_WIDTH Width of the slider bar in pixels. Argument Type: int
get() returns: int
Default Value: 100

NOTIFYJ.EVEL When to call the notify function. Argument Type: int {PANEL_DONE,
PANEL_OONE notifies when the select PANEL...ALL)
button is released, PANEL...ALL notifies get() returns: int
continuously as the select button is Default Value: PANEL_DONE
dragged.

0
Revision G of 15 April 1985 8-41

0

Qi

0

0

0

0

Chapter 9

Suntool: User Interface Utilities

This chapter describes the programming interface to a variety of separate packages that imple
ment the user interface of the auntool layer. Because these utilities are not tied to the notions of
tool and subwindow as described in previous chapters, they can be used as is, in another user
interface system written on top of the sunwindow basic window system. For convenience, these
utilities are associated directly with the auntool software layer.

9.1. Full Screen Access

To provide certain kinds of feedback to the user, it may be necessary to violate window boun
daries. Pop-up menus, prompts and window management are examples of the kind of operations
that do this. The fullureen interface provides a mechanism for gaining access to the entire
screen in a safe way. The package provides a convenient interface to underlying aunwindow
primitives. The following structure is defined in <suntool/fullscreen .h>:

struct
int

fullscreen {
fs_windowfd;

};

struct
struct
struct
struct
int

rect fs_screenrect;
pixwin *fs_pixwin;
cursor fs_cachedcursor;
inputmask fs_cachedim;
fs_cachedinputnext;

fs_windowfd is the window that created the fullscreen object. fs_screenrect
describes the entire screen's dimensions. fs_pixwin is used to access the screen via the
pixwin interface. The coordinate space of fullscreen access is the s~me as fs_windowfd's.
Thus, pixwin accesses are not necessarily done in the screen's coordinate space. Also,
fs_screenrect is in the window's coordinate space. If, for example, the screen is 1024 pixels
wide and 800 pixels high, fs_windowfd has its left edge at 300 and its top edge at 200, that is,
both relative to the screen's upper left-hand corner, then fs_screenrect is {-300, -200, 1024,
800}.

The original cursor, fs_cachedcursor, input mask, fs_cachedim, and the window number
of the input redirection window, fs_cachedinputnext, are cached and later restored when
the fullscreen access object is destroyed.

struct
int

fullscreen *fullscreen_init(windowfd)
windowfd;

gains full screen access for windowfd and caches the window state that is likely to be changed
during the lifetime of the fullscreen object. windowfd is set to do blocking 1/0. A pointer to
this object is returned.

Revision G of 15 April 1985 9-1

Suntool: User Interface Utilities Sun Windows Reference Manual

During the time that the full screen is being accessed, no other processes can access the screen,
and all user input is directed to fs-> fs_windovfd. Because of this, use fullscreen access
infrequently and for only short periods of time.

ful lscreen_destroy restores fs's cached data:

fullscreen_destroy(fs)
struct fullscreen *fs;

It releases the right to access the full screen and destroys the fullscreen data object.
fs-> fs_vindovfd's input blocking status is returned to its original state.

9.2. Icons

9.2.1. Icon Display Facility

This section describes an icon display facility. The icon structure is simply a stylized description
of a useful class of images. Icons normally serve more to identify an object than display its con
tents. A typical use of an icon is to identify a currently unused but available tool. Another use
might be a graphical depiction of an object, a document, database element, or resource for
instance, that a user might want to point at with his mouse. The icon structure is declared in
the file <suntool/icon .h>:

struct icon
short
short
struct
struct
struct
struct
char
struct
int

};

{
ic_width;
ic__lleight;
pixrect *lc_background;
rect ic_gfxrect;
pixrect *ic_mpr;
rect ic_textrect;
*ic_text;
plxfont *lc_font;
ic_flags;

#define
#define
#define
#define

ICON_BKGRDPAT
ICON_BKGRDGRY
ICON_BKGRDCLR
ICON_BKGRDSET

Ox02
Ox04
Ox08
OxlO

ic_width and ic._height describe the full size of the icon. ic_background is an optional
pattern with which to prepare the image background. ic_gfxrect and ic_textrect
describe two subareas of the icon (icon coordinate system relative), which may overlap.
ic_mpr addresses a memory pixrect as described in Memory Pizrecta. ic_mpr has the
graphic portion of the icon, ic_text points to a string, and ic_font a font in which to
display it. The bits of ic_ flags are defined above and indicate different ways to prepare the
background of the image before adding ic_mpr and the text:

ICONJlKGRDPAT use ic_background

ICONJlKGRDGRY use a standard gray pattern used by the background window (this back-
ground is the memory pixrect tool_bkgrd defined in
<suntool/tool .h>).

9-2 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Suntool: User Interface Utilities

ICON.JJKGRDCLR clear (white out) the image

0 ICON.JJKGRDSET set (solid black) the image.

0

0

The function:

icon_display(icon, pixwin, x, y)
struct icon *icon;
struct pixwin *pixwin;
int X, y;

displays icon offset (x, y) from the origin of pixwin. The background is prepared according
to icon->ic_flags. The graphic portion of the icon is displayed next, followed by the text;
thus, if they overlap, the text will come out on top.

There are no strict restrictions on the size of an icon. However, the facility becomes relatively
pointless if the icon is too large. Non-uniform icons have esthetic and placement defects. There
fore, a set of standard dimensions should be provided for any particular class of icons. The stan
dards used by clients of tools are defined in <suntool/tool .h>. The names of the relevant
constants defined there are:

TOOL_ICONWIDTH
TOOL_ICONHEIGHT
TOOL_ICONMARGIN
TOOL_ICONIMAGEWIDTH
TOOL_ICONIMAGEHEIGHT
TOOL_ICONIMAGELEFT
TOOL_ICONIMAGETOP
TOOL_ICONTEXTWIDTH
TOOL_ICONTEXTHEIGHT
TOOL_ICONTEXTLEFT
TOOL_ICONTEXTTOP

Please consult the header file for the current values of these constants.

The icon constants define the icon to be in an area of specified size, including a margin all
around. The graphics and text regions are defined relative to the size of the icon and its margin;
the graphics area covers the whole icon inside the margin, and the text covers the bottom 3/4 of
that region. The TOOLJCONIMAGE group of constants and the TOOLJCONTEXT group of con
stants hold defaults for generating reasonable images when ic_gfxrect and ic_textrect
respectively are initialized to them.

9.2.2. Making a Static Icon

After creating an icon with the icontool, you can store a description of the image. This descrip
tion is an ASCII file with two parts. The first part is a comment describing the image. The
second part is a list of hexadecimal constants defining the actual pixel values of the image. Note
that this file format enables a piece of code to incorporate an icon image at compile time. The
code simply does a #include of the file containing the image description wherever it initializes
the image array passed to mpr _static. The pixrect generated by mpr _static is then used
in the initialization of the icon image structure. An example of such code can be found in the
source for the icontool.

A sample icon image description is the file <images/template. icon>, which is a template
for all the image files in the cursor/icon library. Its contents follow:

Revision G of 15 April 1985 9-3

Suntool: User Interface Utilities Sun Windows Reference Manual

/* Format_version=l, Width=l6, Height=l6, Depth=l, Valid_b/its_per_item=l6 O··

• This file is the template for all images in the cursor icon library.
• The first line contains the information needed to properly interpret the
• actual bits, which are expected to be used directly by software that
• wants to do compile-time binding to an image via a #include.
• The actual bits must be specified in hex.
• The default interpretation of the bits below is specified by the
• behavior of mpr_static.
• Note that Valid_bits_per_item uses the least-significant bits.
* See also: icon_load.h.
• Description: A cursor that spells "TEMPLATE" using two lines, with a solid
• bar at the bottom.
• Background: White
*/

OxED2F, Ox49E9, Ox4D2F, Ox4928, Ox4D28, OxOOOO, OxOOOO, Ox8676,
Ox8924, Ox8F26, Ox8924, OxE926, OxOOOO, OxOOOO, OxFFFF, OxFFFF

The first line of the comment is composed of header parameters. They contain information used
to properly interpret the actual bits of the image. The format_ version exists to permit
further development of the file format in a compatible manner, and should always be 1. The
width, height, and depth parameters are used in constructing the pixrect to hold the image,
and should be the width, height and depth of the image. valid_bits_per _item specifies
how many of the bits of each hexadecimal constant making up the image are valid, and uses the
least significant bits. This sample file describes a cursor sized image on a white background; the
image spells out the word TEMPLATE using two lines, and has a solid bar at the bottom of
the image.

Default values for header parameters are:

Depth 1
Height 64
Width 64
Valid_bits_per_item 16

As an aid in making your own icon, use the following macro:

DEFINE_ICON_FROM__IMA.GE(name, image)

This macro makes an icon that is ICON...DEFAULT_WIDTH bits wide by ICON...DEFAULTJIEJGHT bits
high.

The DEFINEJCON..FROMJMAGE macro generates several static structures. The first argument to
the macro is the name that will be given to the icon struct. The other argument is an array
which contains (ICON_DEFAULT_HEIGHT*ICON_DEFAULT_WIDTH/16) shorts that are the
bit pattern of the icon image. Typically this array will be declared as follows

static short icon_image[] = {
#include "file_generated_by_icontool"
};

Note that this macro does not provide access to all of the facilities that can be specified in an
icon struct, but it is sufficient for most cases.

9-4 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Suntool: User Interface Utilities

9.2.3. Dynamic Icon Loading

The routines used for run-time loading of icon images are declared m
<suntool/icon_load.h>, along with the associated data structures and constants:

#define IL_ERRORMSG_SIZE 256

typedef struct icon_header_object {
int depth,

height,
format_version,
valid_bits_per_item,
width;

long last_parB11Lpos;
} icon_header_object;
typedef icon_header_object *icon_header_handle;

extern int
extern int
extern struct pixrect
extern int
extern FILE

icon_load () ;
icon_init_from_pr();

*icon_load_mpr();
icon_read_pr () ;

*icon_open_header();

These routines all share the following convention about errors: if an error condition arises and
the routine takes an error _msg parameter, the routine places an appropriate error message
into the character array pointed to by error _msg, which must be at least IL...ERRORMSG_8IZE
characters long.

int
icon_load(icon, from....file, error_msg);

struct icon
char

*icon;
*from....file, *error_msg;

icon_load allocates a pixrect for the icon image, loads it from the named file, then copies the
file and the dimensions from the pixrect to initialize the icon. Information which is specified in
the current pixrect (e.g., the font in which to display text associated with the icon) is set to
default values. from_file names a file in the format described above; its contents are used to
load the pixrect. error _msg should point to a buffer for an error message, as described above.
If icon_load successfully initializes the icon it returns 0, otherwise it returns a non-zero value.

int
icon_init_from....pr(icon, pr)

struct icon *icon;
struct plxrect *pr;

icon_init_from_pr initializes the icon struct from the specified pr. The routine cannot
ascertain certain information from a pixrect (e.g., the font for any icon text). As a consequence
of this, certain fields in the icon struct are simply set to a default value by
icon_init_from_pr. The return value of this routine is meaningless.

struct pixrect *
icon_load_mpr(from....file, error_msg)

char *from....file, •error_msg;

Revision G of 15 April 1985 9-5

Suntool: User Interface Utilities Sun Windows Reference Manual

icon_load_mpr loads the icon image named by from_file into a dynamically allocated
memory pixrect. Ir icon_load_mpr cannot access the file or the file is not in a valid format it
returns NULL.

FILE•
icon_open_header(from....file, error_msg, info)

char *from_file, •error_msg;
icon_header_handle info;

icon_open_header allows a client to preserve extra descriptive material when rewriting an
icon image file. It is also the front-end routine used by icon_load_mpr, and thus
icon_load. Ir icon_open_header cannot access the file or the file is not in a valid format
it returns NULL.

icon_open_header fills in info from the file's header parameters, except in the case of
info->last_param_pos. The routine fills it in with the position immediately after the last
header parameter that was read.

The FILE • returned by icon_open_header is left positioned at the end of the header.
Thus ftell (icon_open_header ()) indicates where the actual bits of the image should
begin and the characters in the range

[info->last_param....pos ... ftell(icon_open_header()]

encompass all of the extra descriptive material contained in the icon image file's header.

9.3. Pop-up Menus

A pop-up menu is a collection of items that a user can choose among by pointing the cursor at
the desired item. It is quickly displayed in response to a button push, remains visible as long as
the user holds the button down, and disappears as soon as the button is released.

Several menus can be presented at once. They appear to the user as a stack of images with the
header or each menu visible, along with the items of the top menu in a vertical list. The user
can bring other menus to the top by the same mechanism as choosing an item in the top menu.

A single menu is described by the following structure defined in <suntool/menu.h>:

struct menu {
int m....imagetype;

};

caddr_t
int
struct
struct
caddr_t

m_imagedata;
m....itemcount;
menuitem *m_items;
menu *m_next;
m....data;

#define
#define

MENU_IMAGESTRING
MENU_GRAPHIC

OxO
Oxl

m_imagetype describes the data type of m_imagedata. m_imagedata is a pointer to the
data displayed in the header of the menu. MENUJMAGESTRING and MENU_GRAPHIC are the only
currently defined data types. MENUJMAGESTRING indicates that m_imagedata is a char *.
MENU_GRAPHIC indicates that m_imagedata is a struct pixrect *. To use pixrects in the menu
header, set the m_imagetype field to MENU_GRAPIIlC, and the m_imagedata field to the
desired pixrect.

9-6 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Suntool: User Interface Utilities

m_next addresses the next menu in a stack; it is NULL if this menu is the last or only one in the
stack.

m_data is private data utilized by the menu package while displaying menus. When you first
create the menu you have to set the m_data field in the menu struct to zero. To do this, either
explicitly set m_data to NULL or use calloc () instead of malloc () to allocate the storage
for the menu structure.

m_items is an array of menuitems whose length is m_itemcount.

struct
int

menuitem {

caddr_t
caddr_t

};

mi_imagetype;
mi_imagedata;
mi_data;

A menuitem consists of a display token/data pair. mi_imagetype describes the data type of
mi_imagedata. mi_imagedata is a pointer to the data displayed in this item.
MENUJMAGESTRJNG and MENU_GRAPHIC are the only currently defined data types.
MENUJMAGESTRING indicates that mi_imagedata is a char *. MENU_GRAPHIC indicates that
mi_imagedata is a struct pixrect *. To use pixrects in a menu item, set the mi_imagetype
field to MENU_GRAPHIC, and the mi_imagedata field to the desired pixrect. mi_data is
private to the creator of the item. Typically, it is an identifier that differentiates this item from
others.

A client of the menu package constructs a stack of menus or several, ior different situations by
allocating menu structures and menuitem arrays and initializing all the fields in them. This
involves hooking up all the data structures by setting the various pointers. Button-down on the
right mouse button is the standard invocation. Then when a user action initiates menu process
ing, the client calls:

struct menuitem *menu_display(menuptr, event, iowindowfd)
struct menu * *menuptr;
struct inputevent *event;
int iowindowfd;

menuptr is the address of a menu pointer that points to the first or "top" menu structure in a
menu stack. If the user causes the stack order to be rearranged, this indirection allows the menu
package to leave the new top of the stack in *menuptr upon returning from menu_display.
The menu package shuffles the stack's m_next values to rearrange the stack order. This
enables the menu stack to be redisplayed in the order it was left in the last invocation.

event is the input event which provoked the menu. The location information in the event
(event->ie_locx, event->ie_locy) controls where the menus will be displayed.
event-> ie_code is the event that is treated as the "menu button;" that is, the menu is
displayed until this button goes up. The right mouse button is the usual menu button. The left
mouse button is always used as the accelerator to bring rear menus forward. If it wasn't an
explicit user action that provoked the call to menu_display, these three event fields must
be loaded with the desired values beforehand.

iowindowfd is the file descriptor for the window that is displaying the menu. It is also the win
dow that is read for user input. The event location values are relative to this window.

menu_display currently uses the mechanism described m Full Screen Acee••·
menu_display temporarily modifies iowindowfd's input mask to allow mouse motion and
buttons to be placed on this window's input queue. All the menus in the stack are displayed,

Revision G of 15 April 1985 9-7

Suntool: User Interface Utilities Sun Windows Reference Manual

and there can only be one stack on the screen at a time. The font used for strings is that
returned from pw_p fsysopen.

menu_disp lay returns the menui tem, which was under the cursor when the user released the
mouse button, or NULL if the cursor was not over an item.

9.4. Prompt Facility

A prompt facility is sometimes used with menus to tell the user to proceed from his current
state. Prompting can also be done without menus. The definitions for the prompt facility are
found in <suntool/menu .h>:

struct prompt {
struct rect prt_rect;

pixfont *prt_font;
*prt_text;

};

struct
char

#define PROMPT_FLEXIBLE -1

prt_rect is the rectangle in which the text addressed by prt_text will be displayed using
prt_font. Only printable characters and blanks are properly dealt with. Carriage returns,
line feeds or tabs are not. If any of prt_rect's fields are PROMPT.FLEXIBLE, that dimension is
automatically chosen by the prompt mechanism to accommodate all the characters m
prt_text.

menu_prompt(prompt, event, iowindowfd)
struct prompt *prompt,
struct
int

inputevent *event;
iowindowfd;

menu_prompt displays the indicated prompt (prompt->prt_rect is iowindowfd relative),
and then waits for any input event other than mouse motion. It then removes the prompt, and
returns the event which ended the prompt's existence in event. iowindovfd is the window
from which input is taken while the prompt is up. The fu/lacreen access method is used during
prompt display.

9.5. Selection Management

This section describes an interface to a selection manager that is used to coordinate access to a
single data entity called the current .election. The current selection is globally accessible by any
process, thus providing an inter-tool data exchange mechanism.

In the window system, a common style of command specification is one in which the operand is
specified first. The operand is called a selection since it usually requires that the user select
something with the pointing device. A selection is highlighted in some way and persists until an
operation removes it programmatically or the user performs some action that causes the selec
tion to be removed.

The header file <suntool/selection.h> contains the definitions necessary for using selec
tions. The object that describes a selection is:

9-8 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual

struct selection {

};

int sel_type,
int sel_items,
int
int
caddr_t

sel_itembytes,
sel_pubflags;
sel_privdata;

#define SELTYPE_NULL 0
#define SELTYPE_CHAR 1

Suntool: User Interface Utilities

sel_type indicates the type of the selection. Currently, SELTYPE..NULL (no selection) and
SELTYPE_CHAR (ASCII characters) are the only selection types defined. sel_items is the
number of items in the selection data. se l_i tembytes is the number of bytes each item
occupies in the selection data. sel_pubflags is used to contain publicly understood flags
that further describe the selection. sel_privdata is used to contain 32 bits worth of data
that is only interpreted by processes that understand a particular selection type (i.e. the Selec
tion Manager does not look at sel_privdata).

The selection structure contains information about the current selection. The actual data
representing the current selection (e.g. the characters in a string if the selection is a string) is
application dependent. Both the information in the selection structure and the selection data are
stored in a single file on the system (call it the selection file). The Selection Manager is simply a
package to help an application read or write the current selection file.

The Selection Manager writes the information from the selection struct to the selection file when
selection_set () is called. The application is responsible for writing the selection data to the
selection file when sel_write () is called.

selection_set(sel, sel_write, sel_clear, windowfd)
struct selection *sel
int (*sel_write) ();
int (*sel_clear) ();
int windowfd;

sel_write(sel, file)
struct selection *sel;
FILE • file;

sel_clear (sel, windowfd)
struct selection *sel;
int windowfd;

selection_set is used to change the current selection. sel describes the selection.
sel_write is a procedure (which must be provided by the client) that is called by
selection_set () to store information into the selection. Currently, only selection_set
calls sel_write, but in the future sel_write might be called at any time. The
sel_write procedure takes as arguments sel, the selection description handed to
se lection_set, and fl le, a standard FILE pointer. The standard 1/0 library is used to
write the selection data to file. windowfd is the window that is making the selection.

sel_clear is a procedure (which must be provided by the client) that the selection manager
would call when it wanted the selection currently being set to be dehighlighted. This could hap
pen when another selection had been made. Thia clear feature ia not currently implemented.
When implemented thia call could come at any time after returning from selection_set.

Revision G of 15 April 1985 9-9

Suntool: User Interface Utilities Sun Windows Reference Manual

selection_clear(windowfd)
int windowfd;

is called when windowfd wants to clear the current selection. Ideally, there is only one selec
tion on the screen at a time so that the user doesn't become confused about which operand will
be affected by his next command.

Since the sel_clear feature is not currently implemented, it is the selection maker's (i.e. the
client's) decision as to when to dehilight his selection feedback. The only existing use of the
selection mechanism waits for the user to move his cursor out of the window that made the
selection before dehilighting it.

selection_get(sel_read, windowfd)
int (*sel_read) ();
int

sel_read (sel,
struct
FILE

windowfd;

file)
selection •sel;
• file;

selection_get is used to find out the current selection. sel_read is a procedure (which
must be provided by the client) that selection_get calls to enable the client to retrieve the
selection. windowfd is the window that wants to find out about the selection.

When an application calls se lection_get () , the Selection Manager will read the selection
information from the selection file into a selection struct. The Selection Manager will then call
the specified sel_read () function to allow the application to read the selection data from the

0

selection file. The Selection Manager handles the overhead of insuring that the selection file is 0
open and actually reading in the selection information. The application is responsible for reading '
in the selection type specific selection data.

The sel_read procedure takes as arguments sel, the selection description of the current
selection, and file, a standard FILE pointer. The standard io library is used to read the selec
tion data from file. sel_read should check the type of the selection and make sure that it
is a type with which it can deal. For example, if an application only understands a selection con
sisting of characters, the se l_read () function for the application should check the
se l_ type field of the selection struct it is passed to insure that the selection it is about to read
is actually a string of characters (as opposed to, say, a string of bits representing a graphic
image).

9.6. Window Management

The procedures in this section implement common functions for managing windows.

0.6.1. Window Manipulation

These routines provide the standard window management user interface presented by tool win
dows:

9-10 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Suntool: User Interface Utilities

wmgr_open(toolfd, rootfd)
int toolfd, rootfd;

wmgr_close(toolfd, rootfd)
int toolfd, rootfd;

wmgr_move(toolfd)
int toolfd;

wmgr_stretch(toolfd)
int toolfd;

wmgr_top(toolfd, rootfd)
int toolfd, rootfd;

wmgr_bottom(toolfd, rootfd)
int toolfd, rootfd;

wmgr_refreshwindow(windowfd)
int windowfd;

In each of the above routines, toolfd is a file descriptor for a tool window and rootfd is a
file descriptor for the root window. wmgr _open opens a tool window from its iconic state to
normal size. If the window is already open, wmgr _open does nothing. wmgr _close closes a
tool window from its normal size to its iconic size. If the window is already closed,
wmgr _close does nothing. wmgr _move prompts the user to move the tool window or cancel
the operation. If confirmed, the rest of the move interaction, including dragging the window and
moving the bits on the screen, is done. wmgr _stretch is like wmgr _move, but it stretches
the window instead of moving it. wmgr _ top places the tool window on the top of the window
stack. wmgr _bottom places the tool window on the bottom of the window stack.
wmgr _refreshwindow causes windowfd and all its descendant windows to repaint.

The routine wmgr _changerect:

wmgr_changerect(feedbackfd, windowfd, event, move, noprornpt)
int feedbackfd, windowfd;
struct
bool

inputevent •event;
move, noprompt;

implements vmgr _move and wmgr _stretch, including the user interaction sequence. win
dovfd is moved (1) or stretched (0) depending on the value of move. To accomplish the user
interaction, the input event is read from the feedbackfd window (usually the same as win·
dowfd). The prompt is turned off if noprompt is 1.

int wmgr_confirm(windowfd, text)
int windowfd;
char *text;

wmgr _confirm implements a layer over the prompt package for a standard confirmation user
interface. text is put up in a prompt box. If the user confirms with a left mouse button press,
then -1 is returned. Otherwise, 0 is returned.

Note: The up button event is not consumed.

Revision G of 15 April 1985 9-11

Suntool: User Interface Utilities Sun Windows Reference Manual

The window management package provides menu handling code that ties all the routines in this
subsection into the wmgr _toolmenu. This provides a convenient way of getting access to the
same menu that is presented by a tool window. If you don't like the menu provided (you want
to add/subtract/change menu items), define and use a new one. The routines in this section
should be all you need to put together a functionally similar window manipulation interface.

struct menu *wmgr_toolmenu;

wmgr_setupmenu(toolfd)
int toolfd;

wmgr_handletoolmenuitem(menu, mi, toolfd, rootfd)
struct
struct
int

menu *menu;
menuitem *mi;
toolfd, rootfd;

To use the default tool menu, call wmgr _setupmenu just before you put up wmgr _toolmenu.
vmgr _setupmenu arranges the menu items depending on the tool state (iconic vs. normal).
Passing the menu item returned from menu_display to wmgr _handletoolmenuitem
causes the appropriate menu action to be done.

9.6.2. Tool Invocation

The routines in this section provide tool invocation and default position control.

#define WMGR_SETPOS -1

wmgr_figuretoolrect(rootfd, rect)
int rootfd;
struct rect *rect;

wmgr_figureiconrect(rootfd, rect)
int rootfd;
struct rect •rect;

These routines allow windows to be assigned initial positions that don't pile up on top of one
another. The root fd window maintains a "next slot" position for both normal tool windows
and icon windows (see vmgr _setrectalloc below). These procedures assign the next slot to
the rect if rect->r _left or rect->r _top is equal to WMGR_SETPOS. A new slot is chosen
and is then available for the next window with an undefined position.

These procedures also assign a default width and height if WMGR_SETPOS is given, again for both
normal (tool) and iconic rects. vmgr _figuretoolrect currently assigns tool window slots
that march from near the top middle of the screen towards the bottom left of the screen. It
assigns a window size correct for an 80-column by 34-row terminal emulator window.
wmgr _figureiconrect currently assigns icon slots that march from the left bottom towards
the right of the screen. It assigns icon sizes that are 64 by 64 pixels.

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic)
char *programname, *otherargs;
struct rect •rectnormal, *recticon;
int iconic;

1s used to fork a new tool that has its normal rectangle set to rectnormal and its icon

9-12 Revision G of 15 April 1985

0

0

0

0

0

0

Sun vVindows Reference Manual Suntool: User Interface Utilities

rectangle set to recticon. If iconic is not zero, the tool is created iconic. programname
is the name of the file that is to be run and otherargs is the command line that you want to
pass to the tool. A path search is done to locate the file. Arguments that have embedded white
space should be enclosed by double quotes.

9.6.3. Utilities

The utilities described here are some of the low level routines that are used to implement the
higher level routines. They may be used to put together a window management user interface
different from that provided by tools. If a series of calls is to be made to procedures that mani
pulate the window tree, the whole sequence should be bracketed by win_lockdata and
win_unlockdata, as described in The Window Hierarchy.

wmgr_completechangerect(windowfd~ rectnew, rectoriginal,
parentprleft, parentprtop)

int windowfd;
struct
int

rect *rectnew, *rectoriginal;
parentprleft, parentprtop;

does the work involved with changing the position or size of a window's rect. This involves sav
ing a.s many bits as possible by copying them on the screen so they don't have to be recomputed.
wmgr _completechangerect would be called after some programmatic or user action deter
mined the new window position and size in pixels. windowfd is the window being changed.
rectnew is the window's new rectangle. rectoriginal is the window's original rectangle.
parentprleft and parentprtop are the upper-left screen coordinates of the parent of win

dowfd.

wmgr_winandchildrenexposed(pixwin, rl)
struct pixwin *pixwin;
struct rectlist *rl;

computes the visible portion of pixwin->pw_clipdata .pwcd_windowfd and its descen
dants and stores it in r 1. This is done by any window management routine that is going to try
to preserve bits across window changes. For example, wmgr _completechangerect calls
wmgr _winandchildrenexposed before and after changing the window size/position. The
intersection of the two rectlists from the two calls are those bits that could possibly be saved.

wmgr_changelevel(windowfd, parentfd, top)
int windowfd, parentfd;
bool top;

moves a window to the top or bottom of the heap of windows that are descendants of its parent.
windowfd identifies the window to be moved; parentfd is the file descriptor of that window's
parent, and top controls whether the window goes to the top (TRUE) or bottom (FALSE). Unlike
wmgr _top and wmgr _bottom, no optimization is performed to reduce the amount of repaint
ing. wmgr _changelevel is used in conjunction with other window rearrangements, which
make repainting unlikely. For example, wmgr _close puts the window at the bottom of the
window stack after changing its state.

Revision G of 15 April 1985 9-13

Suntool: User Interface Utilities Sun Windows Reference Manual

#define WMGR_ICONIC WUF_WMGRl

wmgr_iswindowopen(windowfd)
int windowfd;

The user data of windowfd reflects the state of the window via the WMGRJCONIC flag.
WUF_WMGRI is defined in <sunwindow/win_ioctl .h> and WMGRJCONIC is defined in
<suntool/wmgr.h>. wmgr_iswindowopen tests the WMGRJCONIC flag (see above) and
returns TRUE or FALSE as the window is open or closed.

Note that client programs should never set or clear the WMGRJCONIC flag.

The root fd window maintains a "next slot" position for both normal tool windows and icon
windows in its unused iconic rect data. wmgr _setrectal lac stores the next slot data and
wmgr _getrecta l loc retrieves it:

wmgr_setrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
short tool_left, tool_top, icon_left, icon_top;

wmgr_getrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
short •tool_left, •tool_top, *icon_left, *icon_top;

If you do a wmgr _setrecta l loc, make sure that all the values you are not changing were
retrieved with wmgr _getrectalloc. In other words, both procedures affect all the values.

9-14 Revision G of 15 April 1985

0

0

0

0

0

0

Appendix A

Rects and Rectlists

This appendix describes the geometric structures used with the aunwindow layer and a full
description of the operations on these structures. Throughout aunwindow, images are dealt with
in rectangular chunks. Where complex shapes are required, they are built up out of groups of
rectangles. A reel is a structure that defines a rectangle. A rectliat is a structure that defines a
list of rects.

The header files <sunwindow/rect .h> and <sunwindow/rectlist .h> contain the
definitions of these structures. The library that provides the implementation of the functions of
these data types is part of /usr /lib/libsunwindow. a.

Although these structures are presented in terms of aunwindow usage with pixel units, they are
really separate and can be thought of as a rectangle algebra package. Any application that
needs such a facility should consider using rects and rectlists.

A.I. Rects

The rect is the basic description of a rectangle, and there are macros and procedures to perform
common manipulations on a rect.

#define coord short

struct rect {
coord r_left;
coord r_top;
short r_width;
short r_height;

};

The rectangle lies in a coordinate system whose origin is in the upper left-hand corner and whose
dimensions are given in pixels.

A.1.1. Macros on Rects

The same header file defines some interesting macros on rectangles. To determine an edge not
given explicitly in the rect:

#define rect_right(rp)
#define rect_bottom(rp)
struct rect *rp;

returns the coordinate of the last pixel within the rectangle on the right or bottom, respectively.

Revision G of 15 April 1985 A-1

Rects and Rectlists

Useful predicates returning TRUE or FALSE are:

#define bool
#define TRUE
#de fine FALSE

unsigned
1
0

Sun Windows Reference Manual

rect_isnull (r)
rect_includespoint(r,x,y)
rect_equal(rl, r2)
rect_includesrect(rl, r2)
rect_intersectsrect(rl, r2)

/* r's width or height is O */
/* (x,y) lies in r */
/* rl and r2 coincide exactly*/
/* every point in re lies in rl */
/* at least one point lies in both*/
/*rl and re */

struct rect •r. *rl, *r2;
coord X, y;

Macros which manipulate dimensions of rectangles are:

rect_construct(r, x, y, w, h)
struct rect •r;
int X, y, W, h;

This fills in r with the indicated origin and dimensions.

rect_marginadjust(r, m)
struct rect •r;
int m;

adds a margin of m pixels on each side of r; that is, r becomes 2*m larger in each dimension.

rect_passtoparent(x, y, r)
rect_passtochild(x, y, r)

coord x, y;
struct rect •r;

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child
rectangle, so that its points are now located relative to the parent or child's origin. x and y
are the origin of the parent or child rectangle within ita parent; these values are added to, or
respectively subtracted from, the origin of the rectangle pointed to by r, thus transforming the
rectangle to the new coordinate system.

A.1.2. Procedures and External Data for Rects

A null rectangle, that is one whose origin and dimensions are all 0, is defined for convenience:

extern struct rect rect_null;

The following procedures are also defined in rect. h:

struct rect rect_bounding(rl, r2)
struct rect *rl, *r2;

This returns the minimal rect that encloses the union of rl and r2. The returned value 1s a
struct, not a pointer .

. rect_intersection(rl, r2, rd)
struct rect *rl, *r2, *rd;

computes the intersection of rl and r2, and ·stores that rect into rd.

A-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual

bool rect_clipvector(r, xO, yO, xl, yl)
struct rect *r;
coord •xo, *yO, *xl, *yl;

Rects and Rectlists

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that
excludes the whole vector, otherwise it returns TRUE.

Note: This procedure should not be used to clip a vector to multiple abutting rectangles. It
may not cross the boundaries smoothly.

bool rect_order(rl, r2, sortorder)
struct rect *rl, *r2;
int sortorder;

returns TRUE if rl precedes or equals r2 in the indicated ordering:

#define RECTS_TOPTOBOTTOM 0
#define RECTS_BOTTOMTOTOP 1
#define RECTS_LEFTTORIGHT 2
#define RECTS_RIGHTTOLEFT 3

Two related defined constants are:

#define RECTS_UNSORTED 4

indicating a "don't-care" order, and

#define RECTS_SORTS 4

giving the number of sort orders available, for use in allocating arrays and so on.

A.2. Rectlists

A rectli.t is a structure that defines a list of rects. A number of rectangles may be collected into
a list that defines an interesting portion of a larger rectangle. An equivalent way of looking at it
is that a large rectangle may be fragmented into a number of smaller rectangles, which together
comprise all the larger rectangle's interesting portions. A typical application of such a list is to
define the portions of one rectangle remaining visible when it is partially obscured by others.

struct rectlist {
coord rl_x, rl_y;

};

struct rectnode *rl_head;
struct rectnode *rl_tail,
struct rect rl_bound;

struct rectnode {

};

struct rectnode *rn_next;
struct rect rn_rect;

Each node in the rectlist contains a rectangle which covers one part of the visible whole, along
with a pointer to the next node. rl_bound is the minimal bounding rectangle of the union of
all the rectangles in the node list. All rectangles in the rectlist are described in the same coordi
nate system, which may be translated efficiently by modifying rl_x and rl_y.

Revision G of 15 April 1985 A-3

Rects and Rectlists Sun Windows Reference Manual

The routines that manipulate rectlists do their own memory management on rectnodes, creating
and freeing them as necessary to adjust the area described by the rectlist.

A.2.1. Macros and Constants Defined on Rectlists

Macros to perform common coordinate transformations are provided:

rl_rectoffset(rl, rs, rd)
struct rectlist *rl;
struct rect *rs, *rd;

copies rs into rd, and then adjusts rd's origin by adding the offsets from r l.

rl_coordoffset(rl, x, y)
struct rectlist *rl;
coord x, y;

offsets x and y by the offsets in rl. For instance, it converts a point in one of the rects in the
rectnode list of a rectlist to the coordinate system of the rectlist's parent.

Parallel to the macros on rect's, we have:

rl_passtoparent(x, y, rl)
rl_passtochild(x, y, rl)

coord x,. y;
struct rectlist *rl;

which add or subtract the given coordinates from the rectlist's r l_x and r l_y to convert the
rl into its parent's or child's coordinate system.

A.2.2. Procedures and External Data for Rectlists

An empty rectlist is defined, which should be used to initialize any rectlist before it is operated
on:

extern struct rectlist rl_null;

Procedures are provided for useful predicates and manipulations. The following declarations
apply uniformly in the descriptions below:

struct rectlist *rl, *rll, *rl2, *rld;
struct rect *r;
coord x, y;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

A-4 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Rects and Rectlists

Table A-1: Rectlist Predicates

Macro

rl_empty(rl)

rl_equal(rll, rl2)

rl_includespoint(rl,x,y)

rl_equalrect(r, rl)

rl_boundintersectsrect(r, rl)

Returns TRUE if

Contains only null rects

The two rectlists describe the same space identically -
same fragments in the same order

(x,y) lies within some rect of rl

r 1 has exactly one rect, which is the same as r

Some point lies both in r and in r l's bounding rect

Manipulation procedures operate through side-effects, rather than returning a value. Note that
it is legitimate to use a rectlist as both a source and destination in one of these procedures. The
source node Ii.st will be freed and reallocated appropriately for the result. Refer to the following
table for specifics.

Revision G of 15 April 1985 A-5

Rec ts and Rectlists Sun Windows Reference Manual

Table A-2: Rectlist procedures Q
Procedure Ell'ect

rl_intersection(rll, rl2, rld)

rl_union(rll, rl2, rld)

rl_difference{rll, rl2, rld)

rl_coalesce(rl)

rl_sort(rl, rld, sort)
int sort;

rl_rectintersection(r, rl, rld)

rl_rectunion(r, rl, rld)

rl_rectdifference(r, rl, rld)

rl_initvithrect(r, rl)

rl_copy{rl, rld)

rl_free (rl)

rl_normalize(rl)

A-6

Stores into rld a rectlist which covers the intersection
of rll and rl2.

Stores into r ld a rectlist which covers the union of
rll and rl2.

Stores into rld a rectlist which covers the area of
rll not covered by rl2

An attempt is made to shorten r 1 by coalescing some
of its fragments. An rl whose bounding rect is
completely covered by the union of its node rects will
be collapsed to a single node; other simple reductions
will be found; but the general solution to the problem
is not attempted.

rl is copied into rld, with the node rects arranged in
sort order.

r ld is filled with a rectlist that covers the intersection
of rand rl.

rld is filled with a rectlist that covers the union of r
and rl.

r ld is filled with a rectlist that covers the portion of
rl which is not in r.

Fills in r 1 so that it covers the rect r

Fills in r ld with a copy of r 1.

Frees the storage allocated to r 1.

Resets r l's offsets (r l_x, r l_y) to be O after adjusting
the origins of all rects in rl accordingly.

Revision G of 15 April 1985

0

0

0

0

0

Appendix B

Sample Tool

This appendix contains the source code for a sample tool program that you can use as a model
when you write your own tools. The sample program is the graphics window (gfztool.c), which
produces a shell subwindow and an empty subwindow in which graphics programs can run.

For more examples, please see the Programmer 'a Tutorial to Sun Windowa and the source files in
the directory /usr/src/sun/suntool.

B.1. gfxtool.c Code

Code for gfztool.c follows.

#itndet lint
static char sccsid[[= "@(#)gtxtool.c 1.1 84/12/21 Copyr 1984 Sun Micro";
#endit

I*
• Copyright (c) 1984 by Sun Microsystems, Inc.
·1

I*
• gfxtool - run a process in a tty subwindow with a separate graphic area

*/

#include <stdio.h>
#include <signal.h>
#include <suntool/tool.hs.h>
#include <suntool/ttysw.h>
#include <suntool/ttytlsw.h>
#include <suntool/emptysw .h>

extern char •getenv();

static int sigwinchcatcher(), sigchldcatcher(), sigtermcatcher();

static struct tool *tool;
static struct toolsw *tsw;

static short icjmage[258] - {
#include <images/gfxtool.icon>
};
mpr_static(gtxic_mpr, 64, 64, 1, i<::_image);

static struct icon icon {64, 64, (struct pixrect *)NULL, O, O, 64, 64,
>xic_mpr, O, O, O, O, NULL, (struct pi.xfont *)NULL,
ICONJlKGRDCLR};

gtxtool.main(argc, argv)

Revision G or 15 April 1985 B-1

Sample Tool

{

B-2

int argc;
char **argv;

char **tooLattrs = NULL;
int become_console = O;
char •tooLname = argv[O], •tmp_str;
static char *Ia.beLdefault = "Graphics Tool 2.0";
static char *labeLconsole = " (CONSOLE): ";
static char label[150J;
static char icon_label[30];
static char *sh_argv[2J = { (char *)NULL, (char *)NULL };
struct toolsw *emptysw;
char nameJWIN_.NAMESIZEJ;

argv++;
argc--;

r
* Pick up command line arguments to modity tool behavior
·1

ir (tooLparse_all(&argc, argv, &tooLattrs, tooLname) == -1) {
tooLusage(tooLname);

}
r

exit(!);

• Get ttysw related args

·1
while (argc > 0 && ••argv == '·') {

switch (argv[OJl!J) {

}

case 'C':
become_console = 1;
break;

case '!':
tooLusa.ge(tooLname);
tprintf(stderr, "To make the console use -CO);
exit(!);

default:

}
a.rgv++;
argc--;

ir (argc == O) {

}
r

a.rgv = sh_argv;
iC ((argvJOJ = getenv("SHELL ")) == NULL)

argvJOJ = "/bin/sh";

• Set default icon label
·1

iC (tooUind_attribute(tooLattrs, WINJ,ABEL, &tmp..otr)) {
/* Using tool label supplied on command line • /
strncat(icoa_label, tmp..otr, sizeoC(icoa_label));
tooUree_attribute(WINJ,ABEL, tmp..otr);

} else iC (become_console)
strncat(icoa_label, "CONSOLE", sizeoC(icoa_label));

else

r
/* Use program name that is run under ttysw • /
strncat(icoa_label, argvJOJ, sizeoC(icoitJabel));

• Buildup tool label

SunWindows Reference Manual

0

0

0
Revision G oC 15 April IQ85

0

0

0

SunWindows Reference Manual

}

·1
strcat(label, labeLdefault);
if (become_console)

strcat(label, labeLconsole);
else

strca.t(la.bel, ": ");
strncat(label, •argv, sizeoC(label)-

strlen(labeLdefault)-strlen(labeLconsole)-1);
I*
• Create tool window

·1
tool = tool_make(

WIN..1,ABEL, label,
WIN_NAME_STRIPE, I,
WIN...BOUNDARY...MGR, I,
WINJCON, &icon,
WINJCON..1,ABEL, icon_!abel,
WIN..ATTR..l,IST, tooLattrs,
O);

if (tool == (struct tool *)NULL)
exit(!);

tooUree_a.ttribute_list(tooLattrs);

I*
• Create tty tool subwindow
·1

tsw = ttytlsw_createtoolsubwindow(tool, "ttysw", TOOL__8WEXTENDTOEDGE,
200);

if (tsw == (struct toolsw *)NULL)
exit(!);

/* Create empty subwindow for graphics • /
emptysw = esw_createtoolsubwindow(tool, "emptysw·-,

TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);
if (emptysw == (struct toolsw *)NULL)

exit(!);
/* Install tool in tree or windows * I
(void) signal(SIGWINCH, sigwinchcatcher);
(void) signal(SIGCHLD, sigchldcatcher);
(void) signal(SIGTERM, sigtermcatcher);
tooUnstall(tool);
/* Sta.rt tty process • /

winJdtona.me(emptysw->ts_ windowf d, name);
we_setgtxwindow(name)i
if (become_console}

ttysw _becomeconsole(tsw->ts_data.);
if (ttyswJork(tsw->ts_da.ta, a.rgv, &tsw->ts_io.tio_inputmask,

&tsw->tsjo.tio_outputmask, &tsw->tsjo.tio_exceptmask) == -1) {
perror(tooLna.me};
exit(!);

}
/* Handle input * I
tooLselect(tool, !);
/* Cleanup * I
tooLdestroy(tool);
exit(O);

static
sigchldcatcher()
{

tooLsigchld(tool);

Revision G or 15 April 1985

Sample Tool

B-3

Sample Tool

}

static
sigwinchcatcher()
{

tooLsigwinch(tool);
}

static
sigtermcatcher()
{

}

B-4

/* Special case: Do ttysw related cleanup (e.g., /etc/utmp) • /
ttysw_done(tsw->ts_data);
exit(O);

SunWindows ReCerence Manual

0

0

0
Revision G of 15 April 1985

0

0

0

Appendix C

Sample Graphics Programs

Use these sample programs as templates for your own graphics programs. The programs are: a
bouncing ball demonstration (bouncedemo.c) and a "movie camera" program (framedemo.c),
which displays files sequentially like movie frames, for example, for producing a rotating globe.

For more sample programs, please see the Programmer'• Tutorial to Sun Window•.

C.1. bouncedemo.c Source

Code for the bouncedemo.c follows.

#ifnder lint
static char sccsidlJ = "@(#)bouncedemo.c 1.1 84/12/21 SM!";
#endir

r
• Sun Microsystems, Inc.
•;
r • Overview: Bouncing ball demo in window .,
#include <sys/types.h>
#include <pixrect/pixrect.h>
#include <sunwindow /rect.h>
#include <sunwindow /rectlist.h>
#include <sunwindow /pixwin.h>
#include <suntool/gfxsw.h>

main(argc, argv)
int argc;
char **argv;

{
s~ort x, y, vx, vy, z, ylastcount, ylast;
short Xmax, Ymax, size;
struct rect rect;
struct gtxsubwindow •grx gtxsw_init(O, a.rgv);

if (gfx == (struct gCxsubwindow *)O)
exit(!);

Restart:
win...getsize(gtx- >gfx_ windowf d, &rect);
Xmax = rectJight(&rect);
Ymax = rect_bottom(&rect);
ir (Xmax < Ymax)

size = Xmax/29+1;
else

Revision G or 15 April 1985 C-1

Sample Gr.ap_hics Programs

Rese~:

siz.e-= Ymax/29+1;
x=rect.r_,.ert;
y=rect.r..,.top;
vx=4;
vy=O;
ylast=O;
yla.st C()UD t=;:();
pw _ writeba<;:kground(grx->g(x_pixwin,. O, _O,. rec_t.r_~idth, rect.r~eigh t,

PIX..SRC); .
while. (gfx->gfxJeps) {

it (gfx->gfx.Jlags&GFX.DMtAGED)
gfxsw..handlesigwinch(gfx);

if. (gfx. >gfx.Jlags&GFx..RESTART) {
gfx->gfx.Jlags.&==.."GFx..RESTAAI:;
goto Rest~rt; -

}
if (y==ylast) {-

. if (ylastco~nt++ > 5)
· go_to_ Reset; ·

} else {

}

ylast =y;
yla.st«;o_unt = O;

pw_!'rjt~ba_ckgroui;id_{gfx->grx_pixwini: X; y,- size, _size-,
PIX.:NOT(PIXJ)ST)); •

x.=x+vx;
if (x>(Xmax.size)) · {

/•
• Bounce off the right edge
·t

x=2*(Xmax-size)-x;
vx=--vx;-

} else if (x<rect.r_!eft) {

}

r
• bounce off the:-le!t:edge
·t

X= -Xj

vx= -vx;

vy=vy+l;
y=y+vy;
if (y>=(Ymax-size)) {

r

}

• boun_ce off the bottom edge .,
y=:Ymax-size;
if (vy<size)

vy_=l-vy;
else

vy=.vy / size - vy;
if (vy==O)

goto Reset;

for (z=O; •<=1000; z++);
conti_nue;

if (--.gfx->gfxJeps <= 0)
bre_a~;

x_~r~_ct;.r.Jeft;.
y=;rect,r_top;

Sun Windows Reference Manual

0

0

0
Revision .G of 15 April 1985

0

0

0

SunWindows Reterence Manual

}

}

vx=4;
vy=O;
ylast=O;
ylastcount=O;

gtxsw_done(g(x);

C.2. framedemo.c Source

Code for framedemo.c follows.

#itndet lint
static char sccsidll = "@(#)tramedemo.c 1.1 84/12/21 SMI";
#endit

I*
* Sun Microsystems, Inc.
*/

I*
•
•
•
•

Overview: Frame displayer in windows. Reads in aU the
files of form "frame.xxx" -in working directory &
displays them like a movie .
See constants below for limits.

*/

#include <stdio.h>
#include <sys/types.h>
#include <sys/file.h>
#include <sys/time.h>
#include <pixrect/pixrect.h>
#include <pixrect/pr_util.h>
#include <pixrect/bwlvar.h>
#include <pixrect/memvar.h>
#include <sun window /rect.h>
#include <sunwindow /rectlist.h>
#include <sunwindow /pixwin.h>
#include <sun window /win_input.h>
#include <sun window /win_struct.h>
#include <suntool/gfxsw.h>

#define MAXFRAMES 1000
#define FRAMEWIDTH 256
#define FRAMEHEIGHT 256
#define USECJNC 50000
#define SECJNC I

static struct pixrect *mpr[MAXFRAMESJ;
static struct timeval timeout - {SECJNC,USECJNC}, timeleft;
static chars!] .. "frame.xxx";
static struct gfxsubwindow *gfx;
static int frames, fra.menum, ximage, yimagej
static struct rect rect;

main(argc, argv)
int arge;
char ••argv;

{

Revision G of 15 April 1985

SamPle Gral}hics Pro·grams

C-3

Sample Graphics Programs

}

int fd, framedemo..selected();
struct inputmask im;

for (frames = O; frames < MAXFRAMES; frames++) {
sprintf(&s[6J, "%d", frames + !);
fd = open(,, O..RDONL Y, OJ;
if(fd ==-!) {

break;
}
mpr[framesJ = mem_create(FRAMEWIDTH, FRAMEHEIGHT, I);
read(fd, mpr_d(mpr[framesl)->mdjmage,

FRAMEWIDTH*FRAMEHEIGHT /8);
close(fd);
}

if (frames == OJ {

}
I*

printr("Couldn't find any 'frame.xx' files in working directoryO);
return;

• Initialize gfxsw
*/

gfx = gfxsw_init(O, argv);
if (gfx == (struct gfxsubwindow *)O)

exit(!);

I*
* Set up input mask
·1

inpuUmnu!l(&im);
im.im_flags I= ™-ASCII;
gfxsw..setinputmask(gfx, &im, &im, WIN..NULLLINK, O, !);

I*
• Ma.in loop

*/
framedemo_nextframe(l);
timelert = timeout;
gCxsw_select(gfx, framedemo_selected, O, O, O, &timeleft);

I*
• Cleanup
·1

gfxsw_done(gfx);

framedemo_selected(gfx, ibits, obits, ebits, timer)
struct gfxsubwindow *gCxj

{

C-4

int *ibits, *obits, *ebits;
struct timeval **timer;

if ((*timer && ((*timer)->tv..sec == 0) && ((*timer)->tv_usec == OJ) l

}

(gfx->gfx_flags & GFX...RESTART)) {

I*
• Our timer expired or restart is true so show next frame
·1

if (gfx->gfx_reps)
framedemo_nextframe(O);

else
gfxsw..selectdone(gfx);

if (*ibits & (I << gfx->gfx_windowfd)) {
struct inputevent event;

SunWindows Reference Manual

0

0

0
Revision G of 15 April 1985

0

0

0

SunWindows Reterence Manual

r
* Read input from window
·1

if (inputJeadevent(gfx->gfx_windowfd, &event)) {
perror("framedemo");
return;

}
switch (event.ie_code) {
case 'r: /* faster usec timeout • /

if (timeout.tv_usec >= USECJNC)
timeout.tv_usec _.,.. USECJNC;

else {

}
break;

if (timeout.tv_sec >= SECJNC) {
timeout.tv_sec -= SECJNC;
timeout.tv_usec = 1000000.USECJNC;

}

case 's': /* slower usec timeout * /
if (timeout.tv_usec < 1000000.USECJNC)

timeout.tv_usec += USEC...INC;
else {

}
break;

timeout.tv_usec = Oj
timeout.tv_sec += 1;

case 'F': r faster sec timeout • I
if (timeout.tv_sec >= SECJNC)

timeout.tv_sec -= SECJNC;
break;

case 'S': /* slower sec timeout • /
timeout.tv_sec += SECJNC;
break;

Sample Graphics Programs

case '!': /* Help • /
printf("'s' slower usec timeoutor faster usec timeoutOS' slower sec timeoutOF' faster sec timeoutO);

}

r
• Don't reset timeout
·1

return;
default:

gfxswjnputinterrupts(gfx, &event);
}

}
*ibits = *obits = *ebits = O;
timeleft = timeout;
*timer = &timelett;

rramedemo_nextrrame(firsttime)

{
int first time;

int restarting - gfx->gfXJlags&GFx..RESTART;

if (firsttime : restarting) {
gfx->gfx_.flags &- -GFX...RESTART;
win....getsize(gtx->gtx_windowtd, &rect);
ximage = rect.r_width/2-FRAMEWIDTH/2;
yimage = rect.r_lieight/2-FRAMEHEIGHT /2;
pw_writeba.ckground(gtx->gtx_pixwin, 0, O,

rect.r_width, rect.rJieight, PDLCLR);

Revision G of 15 April 1985 C-5

Sample Graphics Programs SunWindows Reference Manual

}

C-6

}
if (framenum >= frames) {

rramenum = O;
gfx->gfxJeps--;

}
pw_write(gfx->gfx_pixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT,

PIX..SRC, mpr[framenum[, O, OJ;
ir (!restarting)

rramenum++;

Revision G of 15 April 1985

0

0

0

0

0

0

Appendix D

Programming Notes

Here are useful hints for programmers who use any of the pizrecl, a,mwindow or auntool libraries.

D.1. What Is Supported?

In each release, there may be some difference between the documentation and the actual product
implementation. The documentation describes the supported implementation. In general, the
documentation indicates where features are only partially implemented, and in which directions
future extensions may be expected. Any necessary modifications to Sun Windows are accom
panied by a description of the nature of the changes and appropriate responses to them.

D.2. Program By Example

We recommend that you try to program by example whenever possible. Take an existing pro
gram similar to what you need and modify it. Appendix B contains the source for a sample tool,
and Appendix C contains some sample graphics programs. There are many other examples
shown in the Programmer'• Tutorial to Sun Window•.

D.3. Header Files Needed

If you have problems finding the necessary header files for compiling your program, using the
examples may help as many of the header files are already included. Moreover, there are certain
header files that include most of the header files necessary for working at a certain level. The
following table shows these header files.

Include only one of these header files plus whatever extra header files you need. In particular,
you'll need to add the header file for each subwindow type that you use, the menu header file if
you use menus, the selection header file if you are going to use selections, and so on. However,
you'll probably only have to add a single header file for each additional increment of high-level
functionality.

Revision G of 15 April 1985 D-1

Programming Notes Sun Windows Reference Manual

Table D-1: Header Files Required

Use

<suntool/tool_hs.h>

<suntool/gfx_hs.h>

<sunwindow/window_hs.h>

<pixrect/oixrect hs.h>

D.4. Lint Libraries

When Workin.,. at the Level of

suntool tool-building facilities; includes headers
needed to work at the more primitive layers as well

the suntool (standalone or "take over") graphics
subwindow facilities; includes headers needed to
work at the more primitive layers as well

sunwindow basic window facilities layer; includes
headers needed to work at the pixrect layer as well

nixrect disnlav nrimitives !aver

SunWindows provides lint librariea to help you run lint over your program source. lint
catches argument mismatches and provides better type-checking than the C compiler. Llib
lpixrect, lib-lsunwindow, and l lib-lsuntool are the source files to make the actual
binary lint (1) libraries:. l lib-lpixrect. ln, llib-lsunwindow. ln, and llib
lsuntool. ln. These files are found on /usr/lib/lint/.

D.5. Library Loading Order

When loading programs, remember to load higher level libraries first, that ts, - lsuntoo 1
-lsunwindow -lpixrect.

D.6. Shared Text

The tools released with suntools rely on text sharing to reduce the memory working set. This
is accomplished by placing the entire collection of tools in a single object file. This has the effect
of letting each separate process share the same object code in memory. With many windows
active at once this can achieve significant memory savings.

There are trade-offs to using this approach. The main one is that the maximum number of per
process and non-sharable initial data pages tends to be larger. However, the paged virtual
memory tends to reduce the effect of this by only having the working set paged in.

The upshot of this is that you may want to either add the tools that you create to the released
shared object file or to bundle a few tools together into their own object file. To add tools to the
released shared object file, please see /usr /src/sun/suntool/toolmerge. c.

D-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Programming Notes

D.7. Error Message Decoding

The default error reporting scheme described at the end of Window Manipulation displays a long
hex number which is the ioctl number associated with the error. You can turn this number
into a more meaningful operation name by:

• turning the two least significant digits into a decimal number;

• searching /usr/include/sunwindow/win_ioctl .h for occurrences of this number; and

• noting the ioctl operation associated with this number.

This can provides a quick hint as to what is being complained about without resorting to a
debugger.

D.S. Debugging Hints

When debugging non-terminal oriented programs in the window system, there are some things
that you should know to make things easier.

As discussed in the section entitled Overlapped Windowa: Imaging Facilitiea - Damage, a process
receives a SIGWINCH whenever one of its windows changes state. In particular, as soon as a tool
issues a tool_install, the kernel sends it a SIGWINCH. When running as the child of a
debugger, the SIGWINCH is sent to the parent debugger instead of to the tool. By default, dbx
simply propagates the SIGWINCH to the tool, while adb traps, leaving the tool suspended until
the user continues from adb. This behavior is not peculiar to SIGWINCH: adb traps all signals
by default, while dbx has an initial list of signals (including SIGWINCH) that are passed on to the
child process. You can instruct adb to pass SIGWINCH on to the child process by typing lc:i folc
lowed by RETURN. 'le' is the hex number for 28, which is SIGWINCH's number. Re-enable signal
breaking by typing lc:t followed by RETURN. You can instruct dbx to trap on a signal by using
the catch command.

For further details, see the entries for the individual debuggers in the User's Manual for the Sun
Workdation. In addition, pt race (2) describes the fine points of how kernel signal delivery is
modified while a program is being debugged.

The two de buggers differ also in their abilities to interrupt programs built using tool windows.
dbx knows how to interrupt these programs, but adb doesn't. See Signals from the Control
Terminal below for an explanation.

Another situation specific to the window system is that various forms of locking are done that
can get in the way of smooth debugging while working at low levels of the system. There are
variables in the sunwindow library that disable the actual locking. These variables can be turned
on from a de bugger:

Revision G of 15 April 1985 D-3

Programming Notes SunWindows Reference Manual

Table D-2: aunwindow Variables for Disabling Locking

Variable

int pixwindebug

int win_lockdatadebug

int win_grabiodebug

int fullscreendebug

Action

When not zero this causes the immediate release of the
display lock after locking so that the debugger is not
continually getting hung by being blocked on writes to
screen. Display garbage can result because of this action.

When not zero, the data lock is never actually locked,
preventing the debugger from being continually hung due
to block writes to the screen. Unpredictable things may
result because of this action that can't properly be
described in this context.

When not zero will not actually acquire exclusive 1/0
access rights so that the debugger wouldn't get hung by
being blocked on writes to the screen and not be able to
receive input. The debugged process will only be able to
do normal display locking and be able to get input only in
the normal way.

Like win_grabiodebug but applies to the fullscreen
access nacka.,e.

Change these variables only during debugging. You can set them anytime after main has been
called.

D.9. Sufficient User Memory

To use the suntool environment comfortably requires adequate user memory for Sun Windows
and the Sun UNIX operating system. To achieve the best performance, reconfigure your own ker
nel, deleting unused device drivers. The procedure is documented in the manual Inatal/ing UNIX
on the Sun Workatation. For a workstation on the network with a single disk drive, you will be
able to reclaim significant usable memory.

For the recommended amount of memory, see the manual Inatal/ing UNIX on the Sun Workata
tion.

D-4 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Programming Notes

D.10. Coexisting with UNIX

This section discusses how a Sun Windows tool interacts with traditional UNIX features in the
areas of process groups, signal handling, job control and terminal emulation. If you are not fami
liar with these concepts, read the appropriate portions (Proceaa Groupa, Signala) of the Syatem
Interface Overview and the signal (3) and tty(4) entries in the Syatem Interface Manual for
the Sun Workatation.

This discussion explicitly notes those places where the shells and debuggers interact differently
with a tool.

D.10.1. Tool Initialization and Process Groups

System calls made by the library code in a tool affect the signals that will be sent to the tool. A
tool acts like any program when first started: it inherits the process group and control terminal
group from its parent process. However, when a tool calls tool_create or tool_make, the
procedure called changes the tool's process group to its own process number. The following sec
tions describe the effects of this change.

D.10.1.1. Signal, from the Control Terminal

When the C-Shell (see csh(l)) starts a program, it changes the process group of the child to the
child's process number. In addition, if that program is started in the foreground, the C-Shell also
modifies the process group of the control terminal to match the child's new process group. Thus,
if the tool was started from the C-Shell, the process group modification done by tool_create
has no effect.

The Bourne Shell (see sh(l)) and the standard debuggers do not modify their child's process
and control terminal groups. Furthermore, both the Bourne Shell and adb (1) are ill-prepared
for the child to perform such modification. They do not propagate signals such as SIG!NT to the
child because they assume that the child is in the same control terminal group as they are. The
bottom-line is that when a tool is executed by such a parent, typing interrupt characters at the
parent process does not affect the child, and vice versa. For example, if the user types an inter
rupt character at adb while it is de bugging a tool, the tool is not interrupted. Although
dbx(l) does not modify its child's process group, it is prepared for the child to do so.

D.10.1.2. Job Control and the C-Shell

The terminal driver and C-Shell job control interact differently with tools. First, let us examine
what happens to programs using the graphics subwindow library package. When the user types
an interrupt character on the control terminal, a signal is sent to the executing program. When
the signal is a S!GTSTP, the g fxsw library code sees this signal and re leases any Sun Windows
locks that it might have and removes the graphics from the screen before it actually suspends
the program. If the program is later continued, the graphics are restored to the screen.

However, when the user types the C-Shell's stop command to interrupt the executing program,
the C-Shell sends a SIGSTOP to the program and the gfxsw library code has no chance to clean
up. This causes problems when the code has acquired any of the Sun Windows locks, as there is
no opportunity to release them. Depending on the lock timeouts, the kernel will eventually break

Revision G of 15 April 1985 D-5

Programming Notes Sun Windows Reference Manual

the locks, but until then, the entire screen is unavailable to other programs and the user. To
avoid this problem, the user should send the C-Shell ki 11 command with the -TSTP option O·
instead of using stop.

The situation for tools parallels that of the gfxsw code. Thus a tool that wants to interact
nicely with job control must receive the signals related to job control (SIGINT, SIGQUIT, and
SIGTSTP) and release any locks it has acquired. If the tool is later continued, the tool must
receive a SIGCONT so that it can reacquire the locks before resuming the window operations it
was executing. The tool will still be susceptible to the same problems as the gfxsw code when it
is sent a SIGSTOP.

A final note: the user often relies on job control without realizing it; the expectation is that typ
ing interrupt characters will halt a program. Of course, even programs that do not use Sun Win
dows facilities, such as a program that opens the terminal in "raw" mode, have to provide a way
to terminate the program. A program using the gfxsw package that reads any input can pro
vide limited job control by calling gfxsw_inputinterrupts.

D-6 Revision G of 15 April 1985

0

0

0

0

0

Appendix E

Writing a Pixrect Driver

Sun has defined a common programming interface to pixel addressable devices that enables, in
particular, device independent access to all Sun frame buffers. This interface is called the piz
rect interface. Existing Sun supported software systems access the frame buffer through the pix
rect interface. Sun encourages customers with other types of frame buffers (or other types of
pixel addressable devices) to provide a pixrect interface to these devices.

This appendix describes how to write a pixrect driver. It is assumed that you have already read
the chapter on Pixel Data and Operationa in this manual; it describes the programming interface
to the basic operations that must be provided in order to generate a complete pixrect implemen
tation. It is also assumed that you have read or will refer to the Device Driver Tutorial for the
Sun Work•tation UNIX Sy•tem for the section on writing the kernel device driver portion of the
pixrect implementation.

This appendix contains auxiliary material of interest only to pixrect driver implementers, not
programmers accessing the pixrect interface. This document explains how to plug a new pixrect
driver into the software architecture so that it may be used in a device independent manner.
Also, utilities and conventions that may be of use to the pixrect driver implementor are dis
cussed.

This appendix walks through some of the C language source code for the pixrect driver for the
Sun 1 color frame buffer. There is no signifigance to the fact that we are using the Sun 1 color
frame buffer as an example. Another pixrect driver would have been just as good.

The actual source code that is presented here is boiler-plate, i.e., almost every pixrect driver will
be the same. You should be able to make your own driver just from the documentation alone.
However, a complete source example for an existing pixrect driver would probably expedite the
development of your own driver. The complete device specific source files for the Sun 1 color
frame buffer pixrect driver is available as a source code purchase option (available without a
UNIX source license).

This document is germane to release 1.1 of the software for the Sun Workstation. In future
releases, any changes that a pixrect driver implementation might need to respond to will be com
pletely documented.

E.1. Glossary

Here are some terms that are used in this document:

• pixel - Picture element (single dot). May be any number of bits deep.

• pixrect driver - That device specific collection of code that implements a pixel addressable
device access method that conforms to the pixrect interface. This includes the device
specific code that resides in the UNIX kernel. A pixrect driver is sometimes referred to as a
pixrect implementation.

Revision G of 15 April 1985 E-1

Writing a Pixrect Driver Sun Windows Reference Manual

• pixrect library - That collection of code (device independent and device specific) available
to user programs.

• pixrect kernel device driver - The code in the UNIX kernel associated with a particular
pixrect driver.

E.2. What You'll Need

These are the tools and pieces that you'll need before assembling your pixrect driver:

• You need the correct documentation: Writing a Pizrect Driver, Programmer'a Reference
Manual for Sun Windowa, and Device Driver Tutorial for the Sun Workatation UNIX Syatem.

• You need to know how to drive the hardware of your pixel addressable device. The absolute
minimum requirements a pixel addressable device must meet is the ability to read and write
single pixel values. [One could imagine a device that doesn't even meet the minimum
requirements being used as a pixel addressable device. We will not discuss any of the ways
that such a device might fake the minumum requirements].

• You must have a UNIX kernel building environment. No extra source is required.

• You must have the released pixrect library file and its accompanying header files. No extra
source is required.

• For any pixrect based programs that you'll want to run on your pixel addressable device,
you'll need the object and library files from which they are built so that you can load your
pixrect driver with these files.

E.3. Implementation Strategy

This is one possible step-by-step approach to implementing a pixrect driver:

• Write and debug pixrect creation and destruction. This involves the pixrect kernel device
driver that lets you open(2) and mmap(2) the physical device from a user process. The
private cgl_make routine must be written. The cgl_region and cgl_destroy pix
rect operation must be written.

• Write and debug the basic pixel rectangle function. The cgl_putattributes and
cgl_putcolormap pixrect operations must be written in addition to the cgl_rop rou
tine.

• Write and debug batchrop routines. The cgl_batchrop pixrect operation must be writ
ten.

• Write and debug vector drawer. The cgl_vector pixrect operation must be written.

• Write and debug remaining pixrect operations: cgl_stencil, cgl_get, cgl_put,
cgl_getattributes and cgl_getcolormap.

• Build kernel with minimal basic pixel rectangle function for use by the cursor tracking
mechanism in the Sun Windows kernel device driver. Also include the colormap access rou
tines for use by the colormap segmentation mechanism in the Sun Windows kernel device
driver.

E-2 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

• Load and test SunWindows programs with new pixrect driver. Experience has shown that
when you are able to run released Sun Window programs that your pixrect driver is in pretty
good shape.

E.4. Files Generated

Here is the list of source files generated that implement the example pixrect driver:

• cglreg. h - A header file describing the structure of the raster device. It contains macros
used to address the raw device.

• cgl var. h - A header file describing the private data of the pixrect. It contains external
references to pixrect operation of this driver.

• /sys/sundev /cgone. c - The pixrect kernel device driver code.

• cgl. c - The pixrect creation and destruction routines.

• cgl_region. c - The region creation routine.

• pr _make fun. c - Replaces an existing module and contains the vector of pixrect make
operations.

• cgl_batch. c - The batchrop routine.

• cgl_colormap. c - The colormap access and attribute setting routines.

• cgl_getput. c - The single pixel access routines.

• cgl_rop. c - The basic pixel rectangle manipulation routine.

• cgl_stencil. c - The stencil routine.

• cgl_ vec. c - The vector drawer.

E .. 4,1. Memory Mapped Devices

Some devices are memory mapped, e.g., the Sun 2 monochrome video frame buffer. With such
devices, their pixels are manipulated directly as main memory; there are no device specific regis
ters through which the pixels are accessed. Memory mapped devices are able to rely on the
memory pixrect driver for most of its operations. The only files that the Sun 2 monochrome
video frame buffer supplies are:

• bw2var. h - A header file describing the private data of the pixrect. It contains external
references to pixrect operation of this driver.

• /sys/sundev fbwtwo. c - The pixrect kernel device driver code.

• bw2 . c - The pixrect creation and destruction routines.

The operations vector for the Sun 2 monochrome pixrect driver is:

struct pixrectops bwl_ops = {

};

mem....rop. mem....stencil. ment...batchrop,
o. bwl_destroy. mem.....get, mem.....put, mem.....vector,
mem_reg1on, me--.putcolormap, mem.....getcolormap,
mem.....putattributes, mem.....getattributes

Revision G of 15 April 1985 E-3

Writing a Pixrect Driver Sun Windows Reference Manual

E.5. Pixrect Private Data

Each pixrect device must have a private data object that contains instance specific data about
the state of the driver. It is not acceptible to have global data shared among all the pixrects
objects. The device specific portion of the pixrect data must contain certain information:

• An offset from the upper left-hand corner of the pixel device. This offset, plus the width and
height of the pixrect from the public portion, is used to determine the clipping rectangle
used during pixrect operations.

• A flag for distinguishing between primary and secondary pixrects. Primary pixrects are the
owners of dynamically allocated resources shared between primary and secondary pixrects.

• A file descriptor to the pixrect kernel device. Usually, the file descriptor is used while map
ping pages into the user process address space so that the device may be addressed. One
could imagine a pixrect driver that had some of its pixrect operations implemented inside the
kernel. The file descriptor would then be the key to communicating with that portion of the
package via read(2), write(2) and ioctl (2) system calls.

Here is other possible data maintained in the pixrect's private data:

• For many devices, a virtual address pointer is part of the private data so that the device can
be accessed from user code.

• For color devices, there is a mask to enable access to specific bit planes.

• For monochrome devices, there is a video invert flag. This replaces the colormap of color
devices.

E.6. Creation and Destruction

This section covers the code for pixrect object creation and destruction. Code for the Sun 1
color frame buffer pixrect driver is presented as an example.

There are three public pathways to creating a pixrect:

• pr _open creates a primary pixrect.

• pr _region creates a secondary pixrect which specifies a subregion in an existing pixrect.

There are two public pathways to destroying a pixrect:

• pr _destroy destroys a primary or secondary pixrect. Clients of the pixrect interface are
responsible for destroying all extant secondary pixrects before destroying the primary pixrect
from which they were derived.

• pr _close simply calls pr _destroy.

E.6.1. Creating a Primary Pixrect

In this section, the private cgl_make pixrect operation is described. This is the flow of control
for pr _open:

0

0

• Higher levels of software call pr _open, which takes a device file name (e.g.,
/dev/cgoneO). 0

E-4 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

•

•

•
•

pr _open open(2)s the device and finds out its type and size via an FBIOGTYPE ioctl (2)
call (see <sun/fbio.h>).

pr _open uses the type of pixel addressable device to index into the pr _make fun array of
procedures (more on this later) and calls the referenced pixrect make function, cgl_make.

cgl_make returns the primary pixrect (it workings are discussed below) .

pr _open closes its handle on the device and the pixrect is returned .

Here is a partial listing of cgl.c that contains code that is germane to the cgl_make procedure.
As it is for other code presented in this document, it is here so you can refer back to it as you
read the subsequent explanation. Some lines are numbered for reference and normal C com
ments have been removed in favor of the accompanying text.

#include <sys/types.h>
#include <stdio.h>
#include <plxrect/pixrect.h>
ilnclude <p1xrect/pr_ut11.h>
tlnclude <plxrect/cglreg.h>
#include <plxrect/cglvar.h>

static struct pr_devdata *cgldevdata; /* cgl.l*/

struct pixrectops cgl_ops = { /* cgl , 2 * /
cgl_rop, cgl_stenc11, cgl_batchrop. 0, cgl_destroy. cgl_get,
cgl_put, cgl_vector, cgl_reglon. cgl__putcolorma.p, cgl_getcolormap,
cgl__putattributes, cgl_getattributes,

};

struct plxrect *
cgl_make(fd, size, depth)

int fd;
struct pr_size size;
int depth;

{
struct pixrect *pr;
register struct cglpr *cgpr;
struct pr_devdata *dd;

/* cgl.3*/
/* cgl.4*/

/* cgl.5*/
/* cgl.6*/

if (depth I= CGl_DEPTH I I size.x I= CGl_WIDTH I I size.y I= CGlJIEIGHT) {/* cgl.~
fprintf(stderr, "cgl_xn.ake sizes wrong X:D %D XD\n".

}

depth, size.x, size.y);
return (O);

}
if (!(pr= pr_makefromfd(fd, size, depth, &cgldevdata, &dd,

sizeof(struct cglfb), sizeo!(struct cglpr), 0)))
return (0);

pr->pr_ops = &cgl_ops;
cgpr = (struct cglpr *)pr->pr_data;
cgpr->cgpr_!d = dd->fd;
cgpr->cgpr_va = (struct cglfb *)dd->va;
cgpr->cgpr_planea = 255;
cgpr->cgpr_offset.x = cgpr->cgpr_offset.y = O;
cgl_setreg(cgpr->cgpr_va, CG_STATUS, CG_VIDEOENABLE);
return (pr);

/* cgl.8*/

/* cgl.9*/
/*cgl.10*/
/*cgl.11*/
/*cgl.ll*/
/*cgl.13*/
/*cgl.14*/
/*cgl.15*/
/*cgl.16*/

Line cgl.7 does some consistency checking to make sure that the dimensions of the pixel address
able device and the client's idea about the dimensions of the device match.

Revision G of 15 April 1985 E-5

Writing a Pixrect Driver Sun Windows Reference Manual

struct *pixrect
pr_makefromfd(fd, size, depth, devdata, curdd,

mmapbytes, privdatabytes, mmapoffsetbytes)
struct pr_size size;
struct pr_devdata **devdata, **curdd;
int fd, depth, mmapbytes, privdatabytes, mmapoffsetbytes;
int mmapbytes, privdatabytes, mmapoffsetbytes);

Line cgl.8 calls the pixrect library routine pr _makefromfd to do most of the work:

• Allocates a struct pixrect object using the calloc library call. The pixrect is filled
in with size and depth parameters.

• Allocates an object of the size privdatabytes using the calloc library call and placing
a pointer to it in the pr _data field of the allocated pixrect.

• dup(2)s the passed in file descriptor fd so that when the caller closes the file descriptor the
device wouldn't close.

• valloc(2)s the amount of space mmapbytes.

• mmap(2)s the space returned from valloc to the device.

• If an error is detected during any of the above calls, an error is written to stderr. A NULL
pixrect handle is returned in this case.

• Returns the allocated pixrect.

This brings us to the issue 0£ minimizing resources used by the pixrect driver. pr _open, and
thus cgl_make, can be (and are) called many times thus creating a situation in which there are
many primary pixrects open at a time. A pixrect should maintain an open file descriptor and
(usually) a non-trivial amount of virtual address space mapped into the user process's address
space. Both the number of open file descriptors (default 20 and max 30), the virtual address
space (max 16 megabytes) and the disk swap space needed to support the virtual memory
(configurable) are finite resources. However, multiple open pixrects can share all these resources.

The pixrect library supports a resource sharing mechanism, part of which is implemented in
pr _makefromfd. The devdata parameter passed to pr _makefromfd is the head of a
linked list of pr _devdata structures of which there is one per pixrect driver. It is sufficant to
say that through the data maintained on this list, sharing of the scarce resources described above
can be accomplished.

The curdd parameter passed to pr _makefromfd is set to be the pr _devdata structure
that applies to the device indentified by fd.

Lines cgl.9 through cgl.14 are concerned with initializing the pixrect's private data with
dynamic information described in dd (curdd in the previous paragraph) and static information
about the pixel addressable device.

Line cgl.15 is where the video signal for the device is enabled. By convention, very raster device
should make sure that it is enabled.

E-6 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

E.6.2. Creating a Secondary Pixrect

In this section, the cgl_region pixrect operation is described. Here is all of cgl_region. c.

struct pixrect *
cgl_region (src)

{

}

struct pr_subregion src;

register struct p1xrect *pr;
register struct cglpr *scgpr = cgl_d(src.pr), *cgpr;
int zero= O;

pr_clip(&src, &zero); /* cgl_region.1*/
if ((pr= (struct pixrect *)calloc(l, sizeof (struct pixrect))) == 0)/* cgl_regl

return (O);
if ((cgpr = (struct cglpr *)calloc(l, sizeof (struct cglpr))) == 0) {/* cgl_regl

free (pr) ;
return (O);

}
pr->pr_ops = &cgl_ops;
pr->pr_size = src.size;
pr->pr_depth = CGl_DEPTII;
pr->pr_data = (caddr_t)cgpr;
cgpr->cgpr_fd = -1;
cgpr->cgpr_va = scgpr->cgpr_va;
cgpr->cgpr_planes = scgpr->cgpr_planes;
cgpr->cgpr_offset.x = scgpr->cgpr_offset.x + src.pos.x;
cgpr->cgpr_offset.y = scgpr->cgpr_offset.y + src.pos.y;
return (pr);

/* cgl_region.4*/
/* cgl_region.5*/
/* cgl_region.6*/
/* cgl_region.7*/
/* cgl_region.8*/
/* cgl_region.9*/
/*cgl_region.10*/
/*cgl_region.11*/
/*cgl_region.12*/

cgl_region is less complex then cgl_make. The first thing done 1s to clip the requested
subregion to fall within the source pixrect (line cgLregion.1).

pr_clip(dstp, srcp)
struct pr_subregion *dstp;
struct pr_prpos *srcp;

pr _clip adjusts the position and size or dstp, the destination pixrect subregion, to fall within
dstp->pr. If *scrp, the source pixrect position, is not zero then the position or the source is
clipped to fall within dstp.

Next, objects are allocated for the pixrect and the pixel addressable device's private data (line
cgl_region.2 and cgLregion.3). Then, similarly to the later part of cgl_make, the two new
data objects are initialized (lines cgLregion.4 through cgl_region.12). One thing to note is that
the cgl driver uses a -1 in the file desriptor field of the pixrect's private data to indicate that
this pixrect is secondary (line cgLregion.8).

E.6.9. Destroying a Pixrect

In this section, the cgl_destroy pixrect operation 1s described. It works on secondary and
primary pixrects. Here is more or cgl.c.

Revision G or 15 April 1985 E-7

Writing a Pixrect Driver Sun Windows Reference Manual

cgl_destroy(pr)

{

}

struct pixrect *pr;

register struct cglpr *cgpr;

if (pr == 0)
return (O);

1! (cgpr = cgl_d(pr)) {
1! (cgpr->cgpr_!d I= -1) {

pr_unmakefromfd(cgpr->cgpr_fd, &cgldevdata);
}
free (cgpr) ;

}
free (pr) ;
return (O);

/*cgl.30*/
/*cgl.31*/
/*cgl.32*/

/*cgl.33*/

/*cgl.34*/

Note that dynamic memory is freed (lines cgl.33 and cgl.34). Also, note that only a primary
pixrect (as indicated by a file descriptor that is not -1) invokes a call to pr _unmakefromfd
(line cgl.32).

pr_unmakefromfd(fd, devdata)
struct
int

pr_devdata **devdata;
fd;

This pixrect library routine is the counterpart of pr _makefromfd. If the device identified by
the file descriptor fd has no more pixrects associated with it (as determined from devdata)
then the resources associated with it are released. Note: Actually this is misleading. In the
current release (2.0), munmap(2) and vfree(3) are not implemented. Thus the virtual memory
allocated by pr _makefromfd cannot safely be released. As a result, pr _unmakefromfd
never releases virtual memory. The virtual memory will be reused in pr _make fromfd on sub
sequent calls.

E.6.f The pr_make/un Operations Vector

As mentioned above, pr _open calls cgl_make through the pr _make fun procedure vector.
This is what pr _make fun looks like (it is the sole contents of prJnakefun.c):

E-8

#include <p1xrect/p1xrect_hs.h>
#include <sun/fbio.h>
iinclude <sys/ioctl.h>

struct p1xrect *(*(pr_makefun[FBTYPE__LASTPLUSONE])) () = {
(struct p1xrect *(*) ())bwl__make,
(struct p1xrect • (*) ()) cgl_make,
(struct pixrect *(*) ())bw2__make,
(struct p1xrect *(*) ())cgl__make,
0/*(struct p1xrect *(*) ())bw3__make*/,
0/*(struct pixrect *(*) ())cg3__make*/,
0/*(struct pixrect *(*) ())bw4__make*/,
0/*(struct p1xrect *(*) ())cg4__make*/,
0/*(struct pixrect *(*) ())FBTYPE__NOTSUNl__make*/, /*pr__makefun.l*/
0/*(struct p1xrect *(*) ())FBTYPE__NOTSUN2__make*/,
0/*(struct pixrect *(*) ())FBTYPE__NOTSUN3__make*/,

/* uncomment the above as the functions become available*/
};

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

When adding some new pixrect driver, you need to assign it some unused constant from
<sun/fbio .h>, e.g., FBTYPE_.NOTSUNI. This then becomes the device identifier for your new
pixrect driver. You need to generate a new version of the source file pr_makefun.c with the
above data structure except that the array entry pr _make fun[FBTYPE_.NOTSUNI] would con
tain the pixrect make procedure for your FBTYPEJWTSUNI pixrect driver (line pr_makefun.1).
The old pr _make fun. o in the pixrect library could be replaced with your new
pr_makefun.o using ar(l).

E.7. Pixrect Kernel Device Driver

A pixrect kernel device driver supports the pixel addressable device as a fullblown UNIX device.
It also supports use of this device by the Sun Windows driver so that the cursor can be tracked
and the colormap loaded within the kernel. The document Device Driver Tutorial for the Sun
Workstation UNIX System contains the details of device driver construction. It also contains an
overview.

The code in this section comes from cgone. c. In the kernel, suffixes that end with a number
(like cgl) confuse the conventions surrounding device driver names. A number suffix refers to
the minor device number of a device. Therefore, in our example, cgl becomes cgone where
the naming has something to do with the pixrect kernel device driver.

E. 7.1. Configurable Device Support

Raster devices typically hang off a high speed bus (e.g., Multibus) or are plugged into a high
speed communications port. At kernel building time the UNIX auto-configuration mechanism is
told what devices to expect and where they should be found. At boot time the auto
configuration mechanism checks to see if each of the devices it expects are present.

This section deals with the auto-configuration aspects of the driver. This driver is written in the
conventional style that supports multiple units of the same device type. It is recommended that
you follow this style even if you aren't anticipating multiple pixel addressable devices of your
type on a single UNIX system.

Revision G of 15 April 1985 E-9

Writing a Pixrect Driver Sun Windows Reference Manual

#include "cgone.h"
41nclude "w1n.h 11

#include " .. /machine/pte.h"
:fl:1nclude " .. fh/param.h"
#include " .. /h/systm.h"
#include " .. /h/dir .h"
tlnclude " .. /h/user.h"
t1nclude " .. fh/proc.h"
finclude " .. fh/buf.h"
#include " .. /h/conf. h"
#include ". ,/h/file.h"
#include " .. fh/uio.h"
#include " .. fh/ioctl .h 11

#include"· ./sun/mmu.h"
tlnclude " .. /sun/fbio.h"
#include " .. /sundev/mbvar.h"
#include " .. /plxrect/pixrect. h"
#include ", ./plxrect/pr _util .h"
#include 11 •• /pixrect/cglreg.h"
#include " .. /plxrect/cglvar.h"

fdefine CG1SIZE (sizeof (struct cglfb))

int cgoneprobe(), cgoneintr();
struct mb_devlce *cgonelnfo[NCGONEJ;
u_long cgonestd[] = { OxeBOOO, OxecOOO,
struct mb_drlver cgonedrlver = {

0 };

cgoneprobe, 0, 0, 0, 0, cgoneintr, cgonestd 1 0 1 CG1SIZE,
"cgone", cgoneinfo. 0, 0, 0,

};

cgoneprobe(reg, unit)
caddr_t reg;
int unit;

{

}

/*
* if (found device at address reg) return (CG1SIZE);
* else return (O);
*/

cgoneintr ()
{

return(fbintr(NCGONE, cgoneinfo, cgoneintclear));
}

cgoneintclear(cglfb)
struct cgl!b *cglfb;

{
cgl_intclear(cglfb);

}

/* cgone. 2*/
/* cgone.3*/
/* cgone.4*/

/* cgone.5*/

/* cgone.6*/

/* cgone.7*/

/* cgone.B*/

This is how the driver is plugged into the auto-configuration mechanism. /etc/config reads
a line in the configuration file for a Sun 1 color frame buffer:

device cgoneO at mbO csr Oxe8000 priority 3

An external reference to cgonedriver (line cgone.4) is made in a table maintained by the
auto-configuration mechanism. At boot time, if the auto-configuration mechanism can resolve
the reference to cgonedriver then the contents of this structure are used to configure in the

E-10 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

device:

• cgoneprobe - The name of the probe procedure (line cgone.5).

• cgoneintr - The name of the interrupt procedure (line cgone.6).

• cgonestd - A list of standard physical addresses at which the device may be located (line
cgone.3).

• CGISIZE - The size in bytes of the address space of the device.

• "cgone" - The prefix of the device. Used in status and error messages.

• cgonein fo - The array of devices pointers of the driver's type (line cgone.2).

• The other field's defaults suffice for most pixel addressable devices.

cgoneprobe is called to let the driver decide if the virtual address at reg is indeed a device
that this driver recognizes as one of its own. The unit argument is the minor device number
of this device. Writing a good probe routine can be difficult. The trick is to use some idiosyn
crasy of the device that differentiates it from others. The real driver for the Sun 1 color frame
buffer determines that it is addressing a Sun 1 color frame buffer by setting it up to invert the
data written to it and reading back the result. The details of this code are not germane to this
discussion and is not included. Zero is returned if the probe fails and CGISIZE is returned if the
probe succeeds.

cgoneintr is called when an interrupt is generated at the beginning of the vertical retrace.
There are a variety of things that one might want to syncronize with a such an interrupt, e.g.,
load the colormap or move the cursor. Currently, the utility fbintr simply disables the inter
rupt from happening again (line cgone.6).

int
fbintr(numdevs, mb_devs, intclear)

int numdevs;
struct mb_device **mb_devs;
int (• intclear) () ;

numdevs is the maximum number of devices of these type configured. mb_devs is the array
of devices descriptions. intclear is called back to actually turn off the interrupt for a partic
ular device. intclear must have the same calling sequence as cgoneintclear (line
cgone.7), i.e., it take the virtual address of the device to disable interrupts. cgl_intclear
(line cgone.8) is a macro that actually disables the interrupts of cglfb.

E.7.2. Open

When an open system call is made at the user level cgoneopen is called.

cgoneopen(dev, flag)

{

}

dav_t dev;

return(fbopen(dev, flag, NCGONE, cgonelnfo)):

cgoneopen uses the utility fbopen.

Revision G of 15 April 1985 E-11

Writing a Pixrect Driver

int
fbopen(dev, flag, numdevs, mb_devs)

dev_t dev;
int flag, numdevs;
struct mb_device **mb_devs;

Sun Windows Reference Manual

fbopen checks to see if dev is available for openning. If not the error ENXIO is returned. If
flag doesn't ask for write position (FWRITE) then the error EINVAL is returned. Normally, zero
is returned on a successful open.

E.7.3. Mmap

The memory map routine in a device driver is responsible for returning a single physical page
number of a portion of a device.

/* ARGSUSED * /
cgonemmap(dev, o!!, prot)

dev_t dev;
off_t off;
int prot;

{

}
return(fbmmap(dev, o!f, prot, NCGONE, cgonein!o, CG1SIZE));

cgonemmap used the utility fbmmap.

int
fbmmap(dev,

dev_t
off_t

off, prot, numdevs, mb_devs, size)
dev;
off;

int prot, numdevs, size;
struct mb_device **mb_devs;

The parameters to fbmmap are similar to fbopen. However, off is the offset in bytes from
the beginning of the device. prot is passed through but currently not used.

E. 7 .. ,S. Ioctl

A pixrect kernel device driver must respond to two input/output control requests:

• FBIOGTYPE - Describe the characteristics of the pixel addressable device.

• FBIOGPIXRECT - Hand out a pixrect that may be used in the kernel. This ioctl call is made
from within the kernel. This is only required of frame buffers.

E-12 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

#if NWIN > 0
#define CGl_OPS &cgl_ops
struct plxrectops cgl_ops = {

cgl_rop,
cgl_putcolormap,

};
#else
fdefine CGl_OPS (struct pixrectops *)O
41end1f

struct cglpr cgoneprdatadefault =
{ 0, 0, 255, 0, 0 };

struct plxrect cgonepixrectdefault =

/* cgone.9*/

/*cgone .10• /

{ CGl_OPS, { CGl_WIDTII, CGl_JlEIGHT }, CGlJ)EPTII, /* filled in later*/ 0 };

struct
struct

pixrect cgonepixrect [NCGONE] ;
cglpr cgoneprdata [NCCONE] ;

/*cgone.11*/

/*ARGSUSED*/
cgoneioctl(dev, cmd, data, flag)

dev_t dev;

{

}

caddr_t data;

register int unit= minor(dev);

switch (cmd) {
case FBIOGTYPE: {

register struct fbtype *fb = (struct fbtype *)data;

fb->fb_type = FBTYPE_SUNlCOLOR;
fb->fb_height = CGl_JlEIGHT;
fb->fb_width = CGl_WIDTII;
fb->fb_depth = B;
fb->fb_cmsiza = 256;
fb->fb_size = CGl_JlEIGHT*CCl_WIDTII;
break;
}

case FBIOCPIXRECT: {
register struct fbpixrect *fbpr = (struct tbpixrect *)data;
register struct cglfb *cglfb =

(struct cglfb *)cgoneinfo[(unit)]->md_addr;

fbpr->tbpr_pixrect = &cgonepixrect[unit]; /*cgone.lJ*/
cgonepixrect(unit] = cgonepixrectdefault; /*cgone.13*/
fbpr->fbpr_pixrect->pr_data = (caddr_t) &cgoneprdata[unit];/*cgone.14*/
cgoneprdata[unit] = cgoneprdatadefault; /*cgone.15*/
cgoneprdata[unit].cgpr_va = cglfb; /*cgone.16*/

cgl_setreg(cglfb, CG_FUNCREG, CG_VIDEOENABLE);
cgl_intclear(cglfb);
break;
}

default:
return (ENOTTY) ;

}
return (O);

/*cgone.17*/
/*cgona.18*/

Revision G of 15 April 1985 E-13

Writing a Pixrect Driver Sun Windows Reference Manual

The Sun Windows driver isn't configured into the system when NWIN = 0 (line cgone.9). When
there is no SunWindows driver, don't reference the pixrect operations cgl_rop and
cgl_putcolormap. The kernel version of cgl_rop (line cgone.10) only needs to be able to
read and write memory pixrects for cursor management. Thus, you can

#ifndef KERNEL
code not associated with reading and writing memory pixrect•
#endif KERNEL

to reduce the size of the code.

Memory for pixrect public (struct pixrect) and private (struct cglpr) objects is provided by
arrays of each (line cgone.11) NCGONE long. A device n in these correspond to device n in
cgoneinfo.

Lines cgone.12 through cgone.16 initialize a pixrect for a particular device. This ioctl call should
enable video for a frame buffer (line cgone.17) and disable interrupts as well (line cgone.18).

E. 7.5. Close

When the device is no longer being referenced, cgoneclose is called. All that is done is that
the pixrect data structures of the device are zeroed.

cgoneclose(dev~ flag)

{

}

dev_t dev;

register int unit= minor(dev);

if ((caddr_t)&cgoneprdata[unit] == cgonepixrect[unit].pr_data) {
bzero((caddr_t)&cgoneprdata[unit], sizeof (struct cglpr));
bzero((caddr_t)&cgonep1xrect[un1t], sizeof (struct pixrect));

}

llendif

E. 7.6. Plugging Your Driver into UNIX

You need to add the device driver procedures to cdevsv in /sys/sun/conf .c after assign
ing a new major device number to your driver:

E-14 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

#include "cgone.h"
#if NCGONE > 0
int cgoneopen(), cgonemmap(), cgoneioctl();
int cgoneclose();
#else
#define
#define
idefine
#define
#endif

{

cgoneopen nodev
cgonemmap nodev
cgoneloctl nodev
cgoneclose nodev

cgoneopen, cgoneclose. nodev, nodev, /*14*/
cgoneioctl, nodev, nodev, 0,
seltrue, cgonemmap,

},

Also, you need to add the new files associated with your driver to /sys/conf/files.sun:

pixrect/cgl_colormap.c
pixrect/cgl_rop.c
sundev/cgone.c

E.8. Access Utilities

optional cgone win device-driver
optional cgone win device-driver
optional cgone device-driver

This section describes utilities used by pixrect drivers. The pixrect header files memvar .h,
pixrect. h and pr _util. h contain useful macros that you should familiarize yourself with;
they are not documented here.

pr _clip modifies src->pos, dst->pos and dst->size so that all references are to valid
bits.

pr_clip(dstp, srcp)
struct pr_subregion *dst;
struct pr_prpos •src;

src->pr may be NULL.

Two operations on operations, reversesrc and reversedst, are provided for adjusting the
operation code to take into account video reversing of monochrome pixrects of either the source
or the destination.

char
char

pr_reversedst[l6];
pr_reversesrc[l6];

These are implemented by table lookup in which the index into the tables is (op>>l) &OxF
where op is the operation passed into pixrect public procedures. This process can be iterated,
e.g., pr _reversedst [pr _reversesrc [op)].

E.9. Rop

These are the major cases to be considered with the pvo_rop operation:

Revision G of 15 April 1985 E-15

Writing a Pixrect Driver Sun Windows Reference Manual

• Case 1 -- we are the source for the pixel rectangle operation, but not the destination. This is
a pixel rectangle operation from the frame buffer to another kind of pixrect. If the destina- 0
tion is not memory, then we will go indirect by allocating a memory temporary, and then
asking the destination to operate from there into itself.

• Case 2 -- writing to your frame buffer. This consists of 4 different cases depending on where
the data is coming from: from nothing, from memory, from some other pixrect, and from
the frame buffer itself. When the source is some other pixrect, other than memory, ask the
other pixrect to read itself into temporary memory to make the problem easier.

E.10. Batchrop

A simple batchrop implementation could iterate on the batch items and call rop for each. Even
in a more sophisticated implementation, while iterating on the batch items, you might also
choose to bail out by calling rop when the source is skewed, or if clipping causes you to chop off
in left-x direction.

E.11. Vector

There are some notable special cases that you should consider when drawing vectors:

• Handle length 1 or 2 vectors by just drawing endpoints.

• If vector is horizontal, use fast algorithm.

• If vector is vertical, use fast algorithm.

E.11.1. Importance of Proper Clipping

The hard part in vector drawing is clipping, which is done against the rectangle of the destina
tion quickly and with proper interpolation so that the jaggies in the vectors are independent of
clipping.

E.12. Colormap

Each color raster device has its own way of setting and getting the colormap.

E.12.1. Monochrome

For monochrome raster devices, when pr _putcolormap is called, the convention is that if
red [OJ is zero then the display is light on dark, otherwise dark on light. For monochrome ras
ter devices, when pr _getcolormap is called, the convention is that if the display is light on
dark then zero is stored in red [OJ, green [OJ and blue [OJ and -1 is stored in other posi
tions in the color map. Otherwise, if the display is dark on light, then zero and -1 are reversed.

E-16 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual Writing a Pixrect Driver

E.13. Attributes

pwo_getattributes and pwo_putattributes operations get/set a bitplane mask in color
pixrects.

E.13.1. Monochrome

Monochrome devices ignore pr _putattribute calls that are setting the bitplane mask.
Monochrome devices always return 1 when pr _getattribute asking for the bitplane mask.

E.14. Pixel

pwo_get and pwo_put operations get/set a single pixel.

E.15. Stencil

In its most efficient implementation, stencil code parallels rop code, all the while considering the
2 dimensional stencil. One way to implement stencil is to use rops. We pay a small efficiency
penalty for this. You may not consider writing the special purpose code worthwhile for the bit
map stencils since they probably won't get used nearly as much as rop. Here's the basic idea
(Temp is a temporary memory pixrect):

Temp = Dest
Temp = Dest op Source
Temp = Temp & Stencil
Dest = Dest & "Stencil
Dest = Dest 1 Temp

i.e., Dest= (Dest & "Stencil) I ((Dest op Source) & Stencil)

Revision G of 15 April 1985 E-17

Qi

0

0

0

0

0

Appendix F

Option Subwindow

NOTE: The option subwindow package is included in this release, but will not be included in
future releases of Sun Windows. We recommend that client programs instead use the panel
subwindow package (see the chapter Panel Subwindow Package). Appendix G, following,
describes how to convert existing programs from the option subwindow package to the panel
subwindow package.

An option subwindow (optiomw) presents a mouse-and-display-oriented user interface for setting
parameters and invoking commands in an application program. It is the window system analog
to entering command-line arguments and typing mnemonic commands to an application.

An option subwindow contains a number of items of various types, each of which corresponds to
one parameter. Existing item types include labels, booleans, enumerated choices, text parame
ters, and command buttons.

The program optiontoo 1 is provided as a simple example of the features discussed here.

The declarations for the optionaw package are found in the header file
<suntool/optionsw .h>. The file <suntool/tool_hs .h> can be included to provide the
support header files for optionsw .h. optionsw .h includes declarations of all the public
procedures, as well as the following structures and their associated defined constants. The first
provides a counted buffer for a text item's value to be stored into:

struct string_buf {
u_int limit;
char *data;

};

data should point to an array of chars to be used as the buffer, and 1 imi t should be set to the
size of that buffer. Use of this structure is described with optsw_getvalue in Ezplicit Client
Reading and Writing or Item Valuea below.

The second is used to identify the type as well as the value of a reference:

struct typed_pair {
u_int type;
caddr_t value;

};

#define IM_GRAPHIC 2

#define IM_TEXT 3
#define IM_TEXTVEC 4

type indicates what kind of object value points to. The current choices are indicated in the
following table.

Revision G of 15 April 1985 F-1

Option Subwindow Sun Windows Reference Manual

Table F-1: Option Image Types

Type Value Should Be

IM_GRAPHIC (struct pixrect*)

IM_TEXT (char *)

IM_TEXTVEC (char**)

In the TEXTVEC case, value points to the first element of an array of string pointers; the last
element of the array should be a NULL pointer. These are currently used only in enumerated
items described in Enumerated ltema.

F .1. Option Subwindow Standard Procedures

This section describes the routines needed to conform to subwindow package norms. These rou
tines follow the general procedures provided in Minimum Standard Subwindow Interface.

struct toolsw *optsw_createtoolsubwindow(tool, name, width, height)
struct tool *tool;
char
short

*name;
width, height;

creates an option subwindow within a tool. The handle toolsw->ts_data is used for the

0

optsw argument in calls to other procedures of the optiomw package to identify the affected o,
window and its private data. If the returned value is NULL then the operation failed. The
remainder of this section is of interest only to clients outside the tool system.

In contexts other than a tool, optsw_init must be called explicitly. Similarly, provisions must
be made for using the rest of the routines in this section.

caddr_t optsw_init(fd)
int fd;

optsw_init takes an fd that identifies the window to be used for the optionsw, and returns
an opaque pointer, which identifies the created optionsw in future calls to the package. If the
returned value is NULL then the operation failed.

optsw_handlesigwinch(optsw)
caddr_t optsw;

is called to handle SIGWINCH signals. It repairs the damage to the window, and if the window
has changed size, reformats the options as described below.

optsw_selected(optsw, ibits, obits, ebits, timer)
caddr_t optsw;
int *ibits, *obits, *ebits;
struct timevalue **timer;

is called to handle user inputs.

The cleanup routine for an optionaw is:

optsw_done(optsw)
caddr_t optsw;

F-2 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Option Subwindow

It frees all storage allocated for the subwindow and its items. Of course, the client should not
attempt to use any pointer associated with the optionsw or its items after a call to this routine.

F .2. Option Items

Once an optionaw is created, it may be populated with option items. Each item is created by a
call to the create routine for the desired type; this creates the item, adds it to the items for the
optionaw, and returns an item handle (an opaque pointer which identifies it).

In some general aspects, all items in the optionaw exhibit the same behavior. The left or middle
mouse button indicates an item to be manipulated; the right button is left to the menu function.
Pressing one of the first two buttons gets the optionaurs attention, and releasing it actually com
pletes a user-input event to which some item may respond. While the button is held down, the
cursor may be slid around over the window, and each item it passes over will indicate its readi
ness to respond, typically by a reverse video display. Any such indication may be canceled sim
ply by moving the cursor off the item before letting up on the button.

Each item is identified on the screen by a label, which may be either text or a picture provided
by the client. This label is passed to the item creation routine in a typed_pair struct. In the
graphic case (type == IM_GRAPHIC), the pixrect passed pointer is used without further con
sideration by the optionsw implementation - the client may even change the image after the
item is created. For text labels (type == IM_TEXT), several defaults provide a uniform style
with minimal client effort. Text labels are displayed in a bold-face version of the current font.
(The current font for the option subwindow starts as the window's default font, and may be reset
for each item, as described under optsw_setfont in Miacellany below.) The text of the label
is modified to indicate the type of the item visually:

Boolea.n items are surrounded by square brackets: "[text]"

Commands are surrounded by parentheses: "(text)"

Enumerated items have a colon appended to their label, and braces surrounding the
set of their values: "text: { choice! choice2 choice3 }"

Text items have a colon appended to their label: "text: <value>"

Label items have their exact text presented in the bold face: "text".

The text of the label is copied by the optionsw implementation; it may not be modified by the
client after the item is created.

Clients which find these defaults too restrictive are free to generate their own labels (by using
pf_ text into a memory pixrect, for example) and pass them in as type IM_GRAPHIC.

F.2.1. Boolean Items

The following procedure creates an item which maintains a boolean (TRUE or FALSE) value:

caddr_t optsw_bool(optsw, label, init, notify)
caddr_t optsw;
struct typed_pair •label;
int init;
int (*notify) () ;

Its label contains a pointer to a typed_pair as described above. The label is displayed in

Revision G of 15 April 1985 F-3

Option Subwindow Sun Windows Reference Manual

reverse video whenever the item is TRUE. The value of the item is initially set to init, and is
toggled whenever the user selects the item. (It may also be set by a call to optsv_setvalue,
as described below.) Whenever user action changes the value of the item, the procedure
notify is called with the new value, as described in Client Notification Procedure•. This argu
ment may be NULL to indicate that no notification is desired.

F.2.2. Command Items

The following procedure creates an item that invokes the client procedure notify when
selected by the user:

caddr_t optsw_command(optsw, label, notify)
caddr_t optsw;
struct typed_pair *label;
int (*notify) () ;

The created item has no value. All three arguments are the same as their couterparts m
optsw_bool.

F.2.3. Enumerated Items

The following procedure creates an item in which exactly one of a set of choices is in effect at
any time:

caddr_t optsw_enum(optswi label, choices, flags, init, notify)
caddr_t optsw;
struct typed_pair *label;
struct typed_pair *choices;
int flags;
int init;
int (•notify) () ;

The value is interpreted as a 0-based index into the choices for the selection. optsv, label,
and notify are as above. choices is a vector of images to be displayed for the choices; for
now its type must be TEXT_VEC. This means that the data pointer for choices addresses an
array of string pointers, one for each possible choice plus a NULL indicating the end of the array.
ini t is the initial value of the item; it should be at most the size of the choices array minus
2 (to avoid the null pointer which terminates the array). flags should be 0.

F.2.4- Label Items

The following procedure creates an item which does nothing but paint itself. This item type may
be used to include labeling information in the option subwindow.

caddr_t optsw_label(optsv, label)
caddr_t
struct

optsw;
typed_pair *label;

optsv and label are as above.

F-4 Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Option Subwindow

F.2.5. Text Items

The following procedures create an item which holds a text value:

caddr_t optsw_text(optsw, label, default_value, flags, notify)
caddr_t
struct
char-
int flags;

optsw;
typed_pair *label;
*default_value;

int (•notify) () ;

#define OPT_TEXTMASKED

optsw, label, and notify are as above. defaul t_value is the initial value of the item.
flags specify attributes of the created item; currently, only the masked attribute is sup
ported. If OPT_TEXTMASKED in flags is set, each character of the t-ext item will be displayed as
an asterisk. This feature is useful for text parameters which should not be displayed, such as
passwords. The true value of the item is returned by optsw_getvalue described below.
notify is like the procedures of the other item-creation routines. It is called whenever the
value of the text item is changed, except by a call to optsw_setvalue. Its arguments are
handles for the optionsw and the item. optsw_getvalue should be used to actually retrieve
the new value. This parameter to optsw_text may be NULL to indicate 'no notification.'

There may be multiple text items in an option subwindow. At any time, one of them "has the
caret." Any keystrokes directed to the option subwindow will be directed to this item. The
item that has the caret is indicated by a box around its label. Initially, this is the first text item
created in the option subwindow. The user may set the caret in another item by clicking either
the left or middle mouse button while the cursor is pointing at the new item's label.

The caret may also be determined and reset programmatically by calls to the following pro
cedures:

caddr_t optsw_getcaret(optsw)
caddr_t optsw;

returns an item handle for the item that currently has the caret.

caddr_t optsw_setcaret(optsw, ip)
caddr_t optsw;
caddr _t ip;

sets the caret on the item indicated by ip, and returns ip if successful. Otherwise, it returns
NULL. ip should be a handle on a text item.

Only displayable characters will be accepted in the item (ASCII codes 040-0176 inclusive). The
user's erase (character delete) and kill (line delete) characters are available for editing existing
text. The first will delete the last character of the text; the latter will delete the whole string.
Other characters will be discarded.

Text items will expand to fit the remainder of their option subwindow's width. This may be
more polymorphism than clients desire. See the discussion under Item Layout and Relocation
below.

Note: This release of text items includes the following restrictions:

• Values of text parameters are restricted to a single line of text, less than 1000 characters long.
Characters which extend beyond the item's right edge will not be displayed, although they are

Revision G of 15 April 1985 F-5

Option Subwindow Sun Windows Reference Manual

entered and edited the same as visible characters.

• Text items may be edited only at their ends. The available operations are: add a character to 0
the end, delete a character from the end, and delete the whole value.

While significant extension to the functionality of text items is planned, the actual interface {the
external procedure definitions and data structures) are designed to accommodate those exten
sions without change.

F .3. Item Layout and Relocation - SIG WINCH Handling

As each item is created, its width and height are determined and stored in the item's private
data. No left and top positions are assigned at this time. Later, whenever a signal is received
which indicates that the size of the subwindow has changed (in particular, when the tool is first
displayed, and the size grows from O to the initial window), a layout procedure determines posi
tions for all the items in the window.

The default layout procedure starts in the upper-left corner of the subwindow and places items
in successive positions to the right, and then in successive rows down the window. Item positions
are not normally fixed; items may be repositioned if the window is later laid out again with a
different size.

If an item is encountered with either of its top or left edges fixed, that specification is accepted
without further consideration - it is possible to lay one item down on top of a previously posi
tioned item, or to position it out of sight to the right or below the subwindow boundary.

Positioning of subsequent items after an item with a fixed position may be affected in three ways:

l. The top of the row in which the item appears may move down, but not up, for the rest of
the items in the row.

2. Subsequent items in the same row will not be positioned to the left of the item's right edge.

3. Items in subsequent rows will not be positioned above the bottom of the fixed item.

If an item is encountered which does not have fixed width (currently, only a text item), an
attempt will be made to expand the item to fill the remaining width in the option subwindow.
This is done through a rather simple-minded negotiation between the general layout procedure
and the flexible item. If both the position and width of the item are flexible, the result of this
negotiation may not be very satisfactory to observers. In most cases, the position, the width, or
both should be fixed.

At any time between an item's creation and its destruction, the client may inquire or modify its
current size and position. This is done via the following two procedures:

optsw_getplace(optsw, ip, place)
caddr_t optsw;
caddr _t ip;
struct item.__place 'place;

optsw_setplace(optsw, ip, place, reformat)
caddr_t optsw;
caddr _t ip;
struct it8J1LPlace *place;
int reform.at;

F-6 Revision G of 15 April 1985

0

0

0

0

0

Sun Windows Reference Manual

optsw is the handle returned by optsw_init.
returned by the item's create routine. place
described below.

Option Subwindow

ip is the pointer to an opt_item struct
is a pointer to a struct item_place

The optsw_setplace arguments are parallel to those of optsw_getplace. place is a
pointer to a struct item_place, which contains a rect and four boolean flags indicating that a
value is to be fixed for that item. The re format argument indicates that the window is to be
laid out and displayed anew, taking the changed item into account. This should generally be
done any time after the window has been opened, since the item is already displayed, but it may
be postponed if a series of adjustments are to be made; in that case, it is appropriate to reformat
only after the last item's place is set.

The following struct is also described in optionsw. h:

struct item_plaee {
struct rect rect;
struct {

X l;
y 1;
w 1;
h 1;

} fixed;
};

rect indicates the current size and pos1t1on of the item, and the four bit-fields fixed.x,
fixed.y, fixed.w, and fixed.h are TRUE if the corresponding dimension may not be
adjusted by the layout procedure.

For convenience in laying out string items, two functions convert character columns and lines to
the appropriate pixel coordinates:

int optsw_coltox(optsw, col)
caddr_t optsw;
int col;

int optsw_linetoy(optsw, line)
caddr_t optsw;
int line;

The dimensions used in calculating these coordinates are the width of the character 'a' in the
optionsw's default font and the nominal height of that font, that is, the distance between base
lines of successive unleaded lines of text. Both columns and rows start at 0.

F .4. Client Notification Procedures

Most item types provide a mechanism for notifying clients that the value of an item has been
changed by the user. The same general mechanism is used to specify the procedure to be invoked
in response to selection of a command button.

In each case, a pointer to a procedure is passed to the item-creation routine and stored with the
item. This procedure pointer may be zero, in which case there is no client notification. When
appropriate, this notification procedure is invoked by optionaw code with arguments to identify
the affected subwindow and item, and the new value assigned to the item. The general form for
these procedures is:

Revision G of 15 April 1985 F-7

Option Subwindow Sun Windows Reference Manual

notify(optsw, item, value)
caddr_t optsw;
caddr _t item;
int value;

{ ... processing to respond to item's new value.}

Procedures to be invoked in response to a command button-push have the same form, except
there is no value parameter. Notification of changes to text items also omit the value
parameter.

Note that the notification procedure is provided by the client and invoked by the optionaw pack
age.

F .5. Explicit Client Reading and Writing of Item Values

Clients may read the current value of an item by calling the procedure:

int optsw_getvalue(ip, dest)
caddr _t ip;
caddr_t dest;

ip is the item handle which identifies the item whose value is sought; dest is the address of the
destination in which the value is to be stored. For items with a numeric value, dest should
actually be a pointer to an int; the value will be stored in the indicated int, and returned as
the value of the function. Items which have no value (commands, labels) store and return -1.

0

For text items, dest should be a pointer to a struct str ing_bu f, whose 1 imi t is the length
of the associated data array. optsw_getvalue will store characters from the value of the 0
indicated item into (*dest->data), and return the number of characters stored. If there is
room, a terminating NULL character will be written, and a later call to optsw_getvalue will
store characters starting at the beginning of the item's value. Otherwise, the data buffer will be
filled and the returned count will be equal to dest->limit; the next call to
optsw_getvalue for this item will resume storing characters with the first character not
reported in the previous call. Multiple calls to optsw_getvalue may thus be used to retrieve
a long value through a short buffer. Eventually, there will be room to store a null character, and
the whole value will have been reported; the next call to optsw_getvalue for this item will
restart at the beginning of the value.

Clients may set the value of an item by calling:

optsw_setvalue(optsw, ip, value)
caddr_t optsw;
caddr_t ip;
caddr_t value;

optsw is the opaque handle on the option subwindow; it enables repainting of the modified item.
ip indicates the item to be modified, value should be an appropriate value for the item, which
is then cast to caddr _t. That is, booleans and enumerateds should provide an int (or
unsigned); text items should provide a (char •). For example, if optsw_setvalue is being
used to change a boolean item, value could be:

(caddr _t) FALSE

F-8 Revision G of 15 April 1985

0

0

0

0

Sun Windows Reference Manual Option Subwindow

F .6. Miscellany

Clients may inquire and set the font that is being used for displaying item labels and values.
Fonts for these objects are determined at the time the object is created; different items may use
different fonts. Thus, the client may create an object, change the font, create more objects
which will use the new font, and then change the font back (or to a third value) for succeeding
items.

struct pixfont •optsw_getfont(optsw)
caddr_t optsw;

returns the current font for the indicated optsw.

optsw_setfont(optsw, font)
caddr_t optsw;
struct pixfont *font;

sets the optsw's font to be font.

Given an item in an optionsw, the routine:

optsw_nextitem(optsw, ip)
caddr_t optsw;
caddr _t ip;

returns a handle for the next item in sequence. If ip is NULL, the first item in the window will
be returned; if ip refers to the last item in the optionsw, NULL is returned.

The routine:

optsw_removeitems(optsw, ip, count, reformat)
caddr_t optsw;
caddr _t ip;
int count;
int reformat:

removes at most count items from optsw, making them inaccessible to the user, but not des
troying them. They may be restored later by a call to optsw_restoreitems. The subwin
dow is redisplayed without them if reformat is TRUE. The number of items so removed is
returned; this may be less than count if the items in the subwindow are exhausted before count
has been removed.

Starting at the item indicated by ip, the routine:

optsw_restoreitems(optsw, ip, count, reformat)
caddr_t
caddr_t
int
int

optsw;
ip;
count;
reformat:

restores at most count items in osw and returns the number restored. This may be left than
count if all extant for the optionsw are exhausted, or an item which is not currently removed is
encountered, first. The subwindow is redisplayed with the restored items if reformat is TRUE.

For assistance in implementing applications which use option subwindows, two routines are pro
vided which print a formatted display of the optionsw and/or its items, to a stream of the
client's choice:

Revision G of 15 April 1985 F-9

Option Subwindow Sun Windows Reference Manual

optsw_dumpsw(stream, optsw, verbose)
E'ILE •stream;
caddr_t optsw;
bool verbose;

optsw_dumpitem(file, ip)
E'ILE •file;
caddr _t • ip;

For each procedure, the client says where to write the dump with the stream argument, and
identifies the object to be dumped with the optsw or ip argument. If verbose is true,
optsw_dumpsw will dump all the items of the optionsw.

F-10 Revision G of 15 April 1985

0

0

0

0

0

0

Appendix A

Converting from Option Subwindow to Panel
Subwindow

This appendix provides help in converting programs which were originally written using the
optionsubwindow package (which will not appear in the next release of SunWindows) to the
newer panel package. First, an outline of the steps involved in the conversion process is given.
Then a simple program is presented in two versions: the first using the optionsubwindow pack
age, the second using the panel package.

Here are the steps involved in converting from option subwindows to panels:

l. Header file to include:

Use the include file <panel .h> instead of <optionsw .h>.

2. Tool creation:

Use tool_make () instead of tool_c.reate ().

3. Optionsubwindow /panel creation:

Use panel_create () instead of optsw_createtoolsubwindow ().

4. Item creation:

Use pane l_create_i tem () for items of all types, instead of the type-specific routines
optsw_label(), optsw_bool(), optsw_text(), optsw_enum() and
optsw_command().

The arguments to the optsw item-creation routines (label, initial value, notify proc) are
replaced by a list of attributes. The typed_pair structs required in the optsw routines as
wrappers for strings and pixrect pointers are not needed in the panel package; instead you
pass the string or pixrect pointer to the pane l_create_i tem () directly, as part of the
attribute list.

5. Item placement:

To fix the location of an item, use the item placement attributes PANELJTEM_X and
PANELJTEM._y rather than optsw_setplace () with an item_place struct. If you want to
specify the location optsw_setplace (), the place struct and optsw_linetoy () and
optsw_col tox () are replaced by location attributes and the PANEL_CU() macro.

6. Notify proc parameters:

The parameters passed to the notify procs differ in the two packages. Whereas the option
subwindow handle (type caddr _t) is passed to optionsubwindow notify procs, the panel
handle (type Panel) is NOT passed to panel notify procs. Also, in the panel package the
input event is passed to the notify procs for all item types.

Below are the parameters for the notify procs of each item type in the panel package. The
types of the parameters are:

Revision G of 15 April 1985 G-1

Converting from Option Subwindow to Panel Subwindow

Panel_item
int

item;
value;

struct inputevent *event;

(item, event);
(item, event);
(item, event);

Sun Windows Reference Manual

button_notify_proc
message_notify_proc
text_notify_proc
choice_notify_proc
toggle_notify_proc
slider_notify_proc

(item, value, event);
(item, value, event);
(item, value, event);

If you need the panel in a notify proc, you have to get it from the item via the attribute
PANEL_PARENT_PANEL, as in:

Panel panel;
panel= (Panel) panel_get(item, PANEL_FARENT_FANEL);

7. Reading and writing of item values:

optsv_getvalue () and optsv_setvalue () can be replaced by
panel_get_value () and panel_set_value (). The string_buf struct used in the
optionsubwindow package for retrieving text values is no longer needed:
panel_get_value () returns a pointer to the text value directly.

8. Setting and Retrieving fonts:

The optionsubwindow routines optsv_getfont () and optsv_setfont () map onto the

0

more general panel routines panel_get () and panel_set (). For example, to set a

0 panel's font the two calls might read: '

optsv_setfont(optsw, font);

panel_set(panel, PANEL_EONT, font);

9. Rendering items visible and invisible:

In the optionsubwindow package, items are rendered invisible by calling
optsv_removeitems (), and visible by calling optsw_restoreitems (). In the panel
package, both of these states are achieved by calling panel_set (), with the appropriate
value to the PANEL_SHOW_ITEM attribute. For example, to hide an item, the two calls
might read:

optsw_removeitems(optsw, item, 1, TRUE);

panel_set(item, PANEL_SHOW_ITEM, FALSE);

The calls to make the item visible again might read:

optsw_restoreitems(optsw, item, 1, TRUE);

panel_set(panel, PANEL_SIIOW_ITEM, TRUE);

We now present a simple program first using the optionsubwindow package, and then modified to
use the panel package.

The program creates a tool consisting of a single subwindow, which represents an extremely sim- o,
pie "voter registration form". There is a heading ("Please Enter Information"), a field for the

G-2 Revision G of 15 April 1985

0

0

0

Sun Windows Reference Manual Converting from Option Subwindow to Panel Subwindow

user's name, and a "party affiliation" item allowing the user to choose between Democrat, repub
lican and Independent. Finally, there is an item labelled Quit. When the user selects this item
the function qui t_proc () is called, which retrieves the current values of the name and
party_affiliation items, and passes them to the function store(). The function store() is
not given below; it simply represents the process of storing the information acquired through the
optionsubwindow or panel.

The layout of the form is as follows:

--
Please Enter Information

Name:
Party Affiliation: Democrat Republican Independent

Quit
--

Revision G of 15 April 1985 G-3

Converting from Option Subwindow to Panel Subwindow Sun Windows Reference Manual

First, the option subwindow version of the program:

#include <suntool/tool....hs.h>
#include <suntool/optionsw.h>

G-4

static struct tool *tool;
static char *tool_name = "Voting Registration Form";
static struct toolsw *tsw;
static caddr_t osw;

static caddr_t title_item;
static caddr_t name_item;
static caddr_t party_item;
static caddr_t quit_item;

static int quit_notify_proc();

static struct typed_pair
static struct typed_pair

title_label
name_label

=
=

{IM....TEXT, "Please Enter Information"
{IM....TEXT, "Name");

static struct typed_pair party_label
static char *choice_values[]

=
=

{IM....TEXT, "Party Affiliation");
{ "Democrat",

"Republican",
"Independent" };

static struct typed_pair party_choices
static struct typed_pair quit_label

= {IM....TEXTVEC, (caddr_t)choice_values)
= {IM....TEXT,"Quit");

main()

struct item._place place;

/* create the tool and the optionsubwindow */
tool= tool_create(tool_name, TOOL_NAMESTRIPE, NULL, NULL);
tsw = optsw_createtoolsubwindow(tool,"optsw",

TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);
osw = tsw->ts_data;

/* create the items*/
title_item = optsw_label(osw, &title_label);
name_item = optsw_text(osw, &name_label, "John Q. Public", 0, NULL);
party_item = optsw_enum(osw, &party_label, & party_choices, 0, 0, NULL);
quit_item = optsw_command(osw, &quit_label, quit_proc);

/* now fix the locations of all the items*/
place.fixed.x = palce.fixed.y = TRUE;
place.rect.r_left = optsw_coltox(osw, 10);
place.rect.r_top = optsw_llnetoy(osw, l);
optsw_setplace(osw, title_item, &place, FALSE);

place.rect.r_left = optsw_coltox(osw, 1);
place.rect.r_top = optsw_linetoy(osw, 3);
optsw_setplace(osw, name_item, &place, FALSE);

place.rect.r_left
place.rect.r_top

= optsw_coltox(osw, 30);
= optsw_linetoy(osw, 3);

Revision G of 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Converting from Option Subwindow to Panel Subwindow

}

optsw_setplace(osw, party_item, &place, FALSE);

place.rect.r_left = optsw_coltox(osw, 1);
place.rect.r_top = optsw_linetoy(osw, 4);
optsw_setplace(osw, qu1t_1tem, &place, FALSE);

signal(SIGWINCH, s1gw1nched);
tool_install(tool);
tool_select(tool, O);
tool_destroy(tool);
exit(O);

static
sigwinched ()
{

tool_s1gw1nch(tool);
}

static
quit_notify_proc()
{

}

int party_value;
char[MAX_NAME_LENGTH] buffer;
struct str1ng_buf name_buf;

name_buf.limit = MAX_NAME_LENCTH;
name_buf.data = buffer;

optsw_getvalue(party_item, &party_value);
optsw_getvalue(name_item, &name_buf);
store(party_value, name_buf.data);

Revision G of 15 April 1985 G-5

Converting from Option Subwindow to Panel Subwindow Sun Windows Reference Manual

The Panel Package version or the Voter Form program follows.

#include <suntool/tool_hs.h>

G-6

#include <suntool/panel.h>

static struct tool *tool;
static char *name= "Voting Registration Form";
static struct toolsw *panel_sw;
static Panel Panel;

static caddr_t title_item;
static caddr_t name_item;
static caddr_t party_item;
static caddr_t quit_item;

static int quit_notify_proc();

#define MAX_NAMl!_LENGTH 20

main()

/• create the tool and the panel*/
tool = tool_make(WIN_NAMl!_STRIPE, TRUE,

tool_name,

panel_sw
panel

WIN_LABEL,
0);

= panel_create(tool, O);
= (Panel) panel_sw->ts_data;

/• create the items•/
title_item = panel_create_item(panel, PANEL_MESSAGE,

PANEL_ITEM....X, PANEL_CU(lO),
PANEL_ITEM_Y, PANEL_CU(l),
PANEL_LABEL_STRING, "Please Enter Information",
0);

name_item = panel_create_item(panel, PANEL_TEXT,
PANEL_ITEM....X, PANEL_CU(l),
PANEL_ITEM_Y, PANEL_CU(3),
PANEL_LABEL_STRING, "Name:•,
PANEL_VALUE_STORED_LENGTH, MAX_NAMl!_LENGTH,
PANEL_VALUE, "John Q. Public",
0);

party_item = panel_create_item(panel, PANEL_CHOICE,
PANEL_ITEM....X, PANEL_CU(30),
PANEL_ITEM_Y, PANEL_CU(3),
PANEL_LABEL_STRING, "Party Affiliation:",
PANEL_CHOICE_STRINGS, "Democrat•,

O);

"Republican",
"Independent",
0,

quit_item = panel_create_item(panel, PANEL_BUTTON,

Revision G or 15 April 1985

0

0

0

0

0

0

Sun Windows Reference Manual Converting from Option Subwindow to Panel Subwindow

}

PANEL_ITEM...)C,
PANEL_ITEJ\LY,
PANEL_LABEL_STRING,
PANEL_NOTIFY...PROC,
0);

signal(SIGWINCH, sigwinched);
tool_install(tool);
tool_select(tool, O);
tool_destroy(tool);
exit(O);

static
sigwinched ()
{

tool_sigwinch(tool);
}

static
quit_notify_proc(panel, item)
Panel panel;
Panel_item item;
{

int party_value;
char[MAX_NAME_LENGTH] name_buf;

PANEL_CU(l),
PANEL_CU(4),

"Quit".
quit_notify_proc,

party_value = (int) panel_get_value(party_item);
strcpy(name_buf, (char•) panel_get_value(name_item));
store(party_value, name_buf);

}

Revision G of 15 April 1985 G-7

0

0

O·

0

0

0

Special Characters
SIGWINCH, D-3
UNIX, D-5

A
adb, D-5
ANSI escape codes, 7-14
ASCILFIRST, 5-3
ASCIU,AST, 5-3
attribute, 8-6, 8-3
attribute list, 8-28
attribute value types, 8-6
attributes

tool, 6-3

B
background, 2-2, 2-17
bitplane, 2-19
bitplane mask, 2-19
blanket window, 4-12, 7-4
boo!, A-2
Bourne Shell, D-5
BUT(i), 5-3
BUT_*, 5-10
button image constructor, 8-13
button item, 8-3, 8-12

C
C-Shell, D-5
caret

in a panel, 8-22
caret item, 8-19
character units, 8-10, 8-6
choice item, 8-3, 8-14
choice item layout, 8-15
clipvector, A-3
close window, 9-11
colormap, 3-17
colormap sharing, 3-17
coord, A-1
creating panel items, 8-9
csh, D-5
CUR__MAXIMAGEWORDS, 4-10
cursor, 4-10
cursor creation, 4-11
curved shapes, 2-13

Index

-i-

D
dbx, D-5
debugging, D-3
default colormap segment, 3-18, 6-6
DEFINE_CURSOR, 4-11
DEFINE_CURSOR_FROMJMAGE, 4-11
DEFINEJCON__FROMJMAGE, 9-4
display access, 3-4
display locking, 3-8
dumpitem, F-10
dumpsw, F-10

E
emptysubwindow, 7-3
environment

tool usage, 6-12, 6-16
window usage, 4-12

esw_createtoolsubwindow, 7-3
esw_done, 7-3
esw_handlesigwinch, 7-3
esw__init, 7-3
EWOULDBLOCK, 5-6
examples

tool, 6-21
expose window, 9-11

F
FALSE, A-2
FASYNC, 5-6
fbintr, E-11
FBIONREAD, 5-6
fbmmap, E-12
fbopen, E-12
fcntl, 5-6
file descriptor, 4-2
FIOASYNC, 5-6
FIONBIO, 5-5
FNDELAY,5-5
font, 2-12, 2-20, 2-20, 2-21, 2-22, 2-22, 2-23, 3-12,

7-8, 9-2, 9-8, F-3, F-9
foreground, 2-2, 2-17
frame buffer access, 3-4
fullscreen, 9-1
fu!lscreen_destroy, 9-2
fullscreen__init, 9-1

G
generic attributes, 8-9
GFXJ)AMAGED, 7-4
GF}LRESTART, 7-4
gfxsw_catchsigcont, 7-6
gfxsw_catchsigtstp, 7-6
gfxsw_catchsigwinch, 7-6
gfxsw_createtoolsubwindow, 7-5
gfxsw_done, 7-5, 7-7
gfxsw_get.retained, 7-5
gfxsw_handlesigwinch, 7-5
gfxsw_init, 7-6
gfxsw_inputinterrupts, 7-7
gfxswjnterpretesigwinch, 7-5
gfxsw_notusingmouse, 7-7
gfxsw__select, 7-6
gfxsw__selectdone, 7-7
gfxsw_setinputmask, 7-7
graphics subwindow, D-5

H
hide window, 9-11

I
icon, 9-2

dynamic loading, 9-3, 9-5
text file format, 9-3

icon, template, 9-3
ICON....BKGRDCLR, 9-2
ICON....BKGRDGRY, 9-2
ICON....BKGRDPAT, 9-2
!CON....BKGRDSET, 9-2
icon_display, 9-3
icon_header_handle, 9-5
icon_header_object, 9-5
icon__initJrom_pr, 9-5
icon__!oad, 9-5
icon__!oad_mpr, 9-5
icon_open_header, 9-6
!E__NEGEVENT,5-5
IM_ANSI, 5-7
IM_ASCII, 5-7
IM_CODEARRAYSIZE, 5-7
JM__META, 5-7
JM_NEGEVENT, 5-8
!M_POSASCII, 5-7
!M_SHIFTARRAYSIZE, 5-7
IM_TEXT, F-1
JM_TEXTVEC, F-1
JM_UNENCODED, 5-8
IM_UNKNOWN, F-1
input

ansi, 5-7
ANSI X3.64, 5-3
ascii, 5-3, 5-7

input, continued
asyncronous, 5-6
blocking, 5-5
bytes pending, 5-6
codes, 5-3, 5-iO
event structure, 5-2
flow of control, 5-5
function keys, 5-3
masks, 5-7
meta, 5-3, 5-7
mouse motion, 5-4
negative events, 5-5, 5-8
non-blocking, 5-5
positive events, 5-5
pseudo events, 5-4
reading, 5-5
redirection, 5-8
seizing all, 5-9
shift codes, 5-5
SIGIO, 5-6
syncronous, 5-6
unencoded, 5-8
virtual device, 5-2
window entry, 5-4
window exit, 5-4

input__imnull, 5-9
input_readevent, 5-5
inputevent, 5-2, 5-5
inputmask, 5-7
item attribute, 8-11
item component layout, 8-11
item creation, 8-9
item label, 8-3
item menu, 8-3, 8-11
item positioning

default., 8-10
explicit, 8-10

item_place, F-7

J
job control, D-5

K
KEY_*, 5-10
keyboard, 4-9

L
label

component of panel items, 8-3
. LOC_*, 5-10

LOC__MOVE,5-4
LOC_STILL, 5-4
LOC_WINENTER, 5-4
LOC_WJNEXIT, 5-4
locking, 3-8

- ii -

0

0

0

0
M optsw...init, F-7

md_flags, 2-24 optswJinetoy, F-7
mem_create, 2-25 optsw..selected, F-2
mem_point, 2-25 optsw..setcaret, F-5
memory pixrects, 2-3, 2-24, 2-25 optsw..setfont, F-9
menu, 8-3, 8-11, 9-6 optsw..setplace, F-7

for button items, 8-13 optsw..setvalue, F-8
for choice items, 8-16 optsw_text, F-5, F-5
for text items, 8-21
for toggle items, 8-18 p

menu type symbol, 8-11 panel, 8-1, 8-7, 8-8, 8-30
menu_display, 9-7 caret, 8-19, 8-22
MENUJMAGESTRING, 9-6 creating, 8-7
menu_prompt, 9-8 destroying, 8-28
menuitem, 9-7 modifying attributes, 8-25
message item, 8-3, 8-12 painting, 8-26
META..FffiST, 5-3 retrieving attributes, 8-26
METAJ,AST, 5-3 panel attribute, 8-6

mouse, 4-9 panel font, 8-10

MOUSE..DEVID, 5-8 panel item, 8-1

move window, 9-11 destroying, 8-28

mpr _data, 2-24 painting, 8-26

mpr_static, 2-26 retrieving attributes, 8-26

MS.LEFT, 5-10 panel item label, 8-3

MS_MIDDLE, 5-10 panel item menu, 8-3, 8-11

MS..RIGHT, 5-10 panel item types, 8-3

0
msgsubwindow, 7-8 panel subwindow package, 8-1

msgsw_createtoolsubwindow, 7-8 panel_advance_caret(), 8-23, 8-31

msgsw_display, 7-8 PANEL..ALL, 8-15, 8-17, 8-20, 8-24

msgsw_handlesigwinch, 7-8 Panel_attribute, 8-7, 8-30

msgsw_init, 7-8 PANEL..ATTRIBUTE.LIST, 8-29

msgsw..setstring, 7-8 PaneLattribute_value, 8-7, 8-30
panel_backup_caret(), 8-23, 8-31

N PANEL..DLINK_CARET, 8-26

notify procedure PANEL..DUTTON, 8-9

for button items, 8-12 panel_button...image, 8-13

for choice items, 8-16 paneLbutton...image(), 8-31
for slider items, 8-24 PANEL_CARET_ITEM, 8-19
for text items, 8-19 P ANEL_CHOICE, 8-9
for toggle items, 8-17 PANEL_CHOICEJMAGES, 8-14

0
PANEL_CHOICE_STRINGS, 8-14
PANEL_CHOICE..XS, 8-15

open window, 9-11 PANEL_CHOICE_YS,, 8-15
opt...item, F-8 PANEL_CLIENT..DATA, 8-7
optsw_bool, F-3 panel_create(), 8-5, 8-7, 8-30
optsw_coltox, F-7 panel_create...item(), 8-5, 8-9, 8-30
optsw_command, F-4 PANEL_CU, 8-10, 8-6
optsw_createtoolsunwindow, F-2 PANEL_CURRENT, 8-15
optsw_done, F-3 PANEL..DISPLAY.LEVEL, 8-15, 8-17
optsw_enum, F-4 PANEL..DONE, 8-24
optsw_getcaret, F-5 PANEL..FEEDBACK, 8-16
optsw_getfont, F-9 panel_fit_height(), 8-8

0
optsw_getplace, F-7 PANEL..FITJTEMS, 8-8
optsw_getvalue, F-8 panel_fit_width(), 8-8
optsw_handlesigwinch, F-2 PANEL..FONT, 8-10

-iii -

paneLfree(), 8-30
paneL.get(), 8-26, 8-30
panel_get_value(), 8-26, 8-30
PANELJ10RIZONTAL, 8-11, 8-19
PANELJNSERT, 8-20
PANELJNVERTED, 8-16
PaneUtem, 8-7, 8-30
PaneUtem_type, 8-7, 8-30
PANELJTEM_X, 8-10
PANEL_ITEM_)LGAP, 8-11
PANEL_ITEM_Y, 8-10
PANELJTEM_Y_GAP, 8-11
PANELJ,ABEL_x, 8-11
PANELJ,ABEL_Y, 8-11
PANELJ,AYOUT, 8-11, 8-15, 8-19
paneLmake_list(), 8-29, 8-31
PANEL_MARKJMAGES, 8-14
PANEL_MARK_XS, 8-15
PANEL_MARK_YS,8-15
PANEL_MARKED, 8-16
PANEL_MAX_VALUE, 8-23, 8-24
PANEL_MENU_CHOICE_5TRINGS, 8-22
PANEL_MENU_CHOICE_VALUES, 8-22
PANEL_MENU_MARK_IMAGE, 8-18
PANEL_MENU__NOMARKJMAGE, 8-18
PANEL_MENU_TITLE_STRlNG, 8-22
PANEL_MESSAGE, 8-9
PANEL_MIN_VALUE, 8-23, 8-24
PANEL__NEXT, 8-20
PANEL__NOMARKJMAGES, 8-14
PANEL__NONYRINT ABLE, 8-20
PANEL__NONE, 8-15, 8-16, 8-17, 8-20, 8-20
PANEL__NOTIFYJ.,EVEL, 8-19, 8-20, 8-24
PANEL_NOTIFYYROC, 8-12, 8-16, 8-19
PANEL_NOTIFY_STRING, 8-20
PANELJ'AINT, 8-27
paneLpaint(), 8-27, 8-31
PANELYREVIOUS, 8-20
paneLset(), 8-25, 8-30
paneL..set_value(), 8-25, 8-30
PaneLsetting, 8-7, 8-30
PANEL_SHOW_MENU, 8-12
PANlcL_SHOW_MENU_MARK, 8-17
PANEL_SHOW..RANGE, 8-23
PANEL_SHOW_VALUE, 8-23
P ANEL_SLIDER, 8-9
PANEL_5LIDER_WIDTH, 8-23
PANEL_5PECIF1ED, 8-20
P ANEL_TEXT, 8-9
paneLtext_notify(), 8-19
PANEL_TOGGLE, 8-9
PANEL_TYPE_IMAGE, 8-11
PANEL_VALUE, 8-24
PANEL_ V ALUEJ)ISPLAY J.ENGTH, 8-22

PANEL_ V ALUE_STOREDJ,ENGTH, 8-22
PANEL_VALUE_x, 8-11
PANEL_VALUE_Y, 8-11
PANEL_VERTICAL, 8-11, 8-15, 8-19
performance

display locking, 3-9
pf_default, 2-22
pf_defaultsize, 2-21
pLopen, 2-22
pf_text, 2-22
pLtextbatch, 2-23
pLtextbound, 2-23
pf_textwidth, 2-23
pLttext, 2-23
Pl){_CLR, 2-8
Pl){_COLOR, 2-8
PIXJ)ONTCLIP, 2-9
PIXJ)ST, 2-7
PIX__NOT, 2-7
Pl){_OPCOLOR, 2-8
Pl){_SET, 2-8
Pl){_SRC, 2-7
pixchar, 2-21
pixfont, 2-21
pixrect struct, 2-3
pixrectops, 2-3, 2-4
pixwin, 3-4, 3-17

-iv -

accessing hidden pixels, 3-14
background, 3-18
batch rasterop, 3-13
bitplane control, 3-15
clipping, 3-8, 3-10
closing, 3-8
colormap, 3-2, 3-20
coiormap name, 3-19
colormap rotation, 3-20
creation, 3-7
damage, 3-2, 3-16
damage report, 3-17
default colormap segment, 6-6
destruction, 3-8
fixups, 3-2
foreground, 3-18
internals, 3-6, 3-6, 3-7, 3-7
inversion, 3-18
locking, 3-2, 3-9
openning, 3-7
pattern replication, 3-12
performance, 3-9
pixel access, 3-12
rasterop, 3-11
regions, 3-8
repairing damage, 3-15
retained, 3-2, 3-17
signals, 3-16
SIGWINCH, 3-16
surface preparation, 3-21

0

0

0

0

0

0

pixwin, continued
system font, 3-13
text, 3-12
transparent text, 3-13
vectors, 3-12
warning, 3-15
write enable rasterop, 3-13

pixwin_clipdata, 3-6
pixwin_clipops, 3-7
pixwin_prlist, 3-6
positioning panel items, 8-10
pr_batchrop, 2-12
pr_blackonwhite, 2-18
pr_chain, 2-14
pr_clip, E-15
pr_destroy, 2-6
pr_dump, 2-27
prJall, 2-14
pr_get, 2-6
pr_getattributes, 2-19
pr_getcolormap, 2-17
pr_height, 2-3
prJoad, 2-28
pr_makefromfd, E-6
pr _open, 2-5
pr_polygon, 2-16
pr_pos, 2-2, 2-12
pr_prpos, 2-2
pr_put, 2-7
pr_putattributes, 2-19
pr_putcolormap, 2-18
pr Jegion, 2-5
pr Jeversedst, E-15
pr Jeversesrc, E-15
prJeversevideo, 2-18
prJop, 2-10
pr_size, 2-2
pr_stencil, 2-10
pr_subregion, 2-2
pr_trap, 2-14
pr_traprop, 2-13
pr _unmakefromfd, E-8
pr_vector, 2-12
pr_whiteonblack, 2-18
pr_width, 2-3
primary pixrect, 2-5
prompt, 9-8
PROMPTJ'LEXIBLE, 9-8
protosubwindow, 7-1
protosw_createtoolsubwindow, 7-2
protosw_done, 7-2
protosw_handlesigwinch, 7-2
protosw_jnit, 7-2
protosw_selected, 7-2
prs_batchrop, 2-12

-v-

prs_destroy, 2-6
prs_get, 2-6
prs_getattributes, 2-19
prs_getcolormap, 2-17
prs_put, 2-7
prs_putattributes, 2-19
prs_putcolormap, 2-18
prsJegion, 2-5
prSJOp, 2-10
prs_stencil, 2-10
prs_vector, 2-12
pw_batchrop, 3-13
pw_blackonwhite, 3-18
pw_char, 3-12
pw_close, 3-8
pw_copy, 3-15
pw_cyclecolormap, 3-20
pw_damaged, 3-16
pw_donedamaged, 3-17
pw_exposed, 3-10
pw_get, 3-14
pw_getattributes, 3-15
pw_getcmsname, 3-19
pw_getcolormap, 3-20
pw_getdefaultcms, 3-18
pwJock, 3-9
pw_open, 3-7, 3-18
pw_pfsysclose, 3-13
pw_pfsysopen, 2-22, 3-13, 9-8
pw_preparesurface, 3-21
pw_put, 3-12
pw_putattributes, 3-15
pw_putcolormap, 3-20
pwJead, 3-14
pwJegion, 3-8, 3-18
pwJepairretained, 3-17
pwJeplrop, 3-12
pwJeset, 3-9
pwJeversevideo, 3-18
pwJop, 3-12
pw_setcmsname, 3-19
pw_setdefaultcms, 3-18
pw_stencil, 3-13
pw_text, 3-12
pw_ttext, 3-13
pw_unlock, 3-9
pw_vector, 3-12
pw_whiteonblack, 3-18
pw_write, 3-11
pw_writebackground, 3-11
PWCD_MUL TIRECTS, 3-7
PWCDJWLL, 3-7
PWCD_8INGLERECT, 3-7
PWCD_USERDEFINE, 3-7

R
rasterfile, 2-29
rect, 3-4, A-1
rect_bottom, A-1
rect_bounding, A-2
rect_construct, A-2
rect_equal, A-2
rectjncludespoint, A-2
rectjncludesrect, A-2
rectjntersection, A-2
rectjntersectsrect, A-2
rectjsnull, A-2
rect_marginadjust, A-2
rect_null, A-2
rect_order, A-3
rect_passtochild, A-2
rect_passtoparent, A-2
rect_right, A-1
rectlist, A-3
rectnode, A-4
RECTS.JlOTTOMTOTOP, A-3
RECTSJ,EFTTORIGHT, A-3
RECTSJUGHTTOLEFT, A-3
RECTS_SORTS, A-3
RECTS_TOPTOBOTTOM, A-3
RECTS_UNSORTED, A-3
refresh window, 9-11
retained pixwin

repair, 3-17
rl_boundintersectsrect, A-5
rl_coalesce, A-6
rl_coordoffset, A-4
rLcopy, A-6
rl_difference, A-6
rLempty, A-5
rl_equal, A-5
rLequalrect, A-5
rlJree, A-6
rUncludespoint, A-5
rUnitwithrect, A-6
rUntersection, A-6
rl_normalize, A-6
rl_null, A-4
rLpasstochild, A-4
rl_passtoparent, A-4
rl_rectdifference, A-6
rLrectintersection, A-6
rLrectoffset, A-4
rLrectunion, A-6
rl...Jlort, A-6
rLunion, A-6

s
SCR__EAST, 4-9
SCR__NAMESIZE, 4-8
SCR__NORTH,4-9
SCR_.POSITIONS, 4-9
SCR_SOUTH, 4-9
SCR_SWITCHBKGRDFRGRD, 4-8
SCR_WEST, 4-9
screen, 4-7

adjacent, 4-9
creating, 4-8
destruction, 4-9
keyboard, 4-9
mouse, 4-9
multiple, 4-9
positions, 4-9
querying, 4-9
std arg parsing, 4-9

screen access, 3-4
secondary pixrect, 2-5
sel_clear, 9-9
seLread, 9-10
seLwrite, 9-9
select, 5-6
selection, 9-8

- vi -

of button items, 8-12
or choice items, 8-16
or slider items, 8-23
or text items, 8-19
of toggle items, 8-17

selection_clear, 9-10
selection_get, 9-10
selection...)let, 9-9
SEL TYPE_CHAR, 9-9
SEL TYPE__NULL, 9-9
SHIFT_*, 5-10
SIGCHLD, 6-15
SIGIO, 5-6
signal, D-5
signal handling, D-5
SIGWINCH, 3-16, 5-6
SIGXCPU, 4-6
singlecolor, 4-8
slider item, 8-4, 8-23
stencil function, 2-1
stretch window, 9-11
subwindow

destruction, 6-15
input/output, 6-17
selected, 6-17
sigwinch, 6-17
timeouts, 6-17

system font, 3-12

0

0

0

0

0

0

T
termcap, 7-13
terminal emulation, 7-14, D-5
text item, 8-4, 8-19
tgetent, 7-13
tio_handlesigwinch, 6-17, 6-19, 6-20, 7-5, 7-5
tio..,selected, 6-17, 6-18
tio...xxx, 6-17
TIOCGSIZE, 7-13
TIOCSSIZE, 7-13
toggle item, 8-4, 8-17
tool

attribute list, 6-6, 6-11
attributes, 6-3, 6-10, 6-11, 6-19
command line args, 6-9, 6-10
command line parsing, 6-10, 6-11
creation, 6-11
destruction, 6-15, 6-20
environment usage, 6-12, 6-16
example, 6-21
iconic, 4-6
in display tree, 6-15
input/output, 6-14, 6-17
name stripe, 6-9
notifier, 6-17
parent, 6-16
selected, 6-14, 6-17
signals, 6-18, 6-19
sigwinch, 6-14, 6-17
startup parameters, 6-16
struct, 6-8
subwindow layout, 6-14
su bwindows, 6-13
timeouts, 6-17
WIN...ATTRJ,IST, 6-6
WINJ3ACKGROUND, 6-7
WINJ30UNDARY..MGR,6-5
WIN_COLUMNS, 6-4
WIN...DEFAULT_CMS, 6-6
WIN_FOREGROUND, 6-7
WINJIEIGHT, 6-4
WINJCON, 6-5
WINJCON_FONT, 6-6
WIN_ICONJMAGE, 6-5
WINJCONJ,ABEL, 6-5
WINJCONJ,EFT, 6-5
WINJCON_TOP, 6-5
WINJCONIC, 6-4
WINJ,ABEL, 6-5
WINJ,AYOUTJ,OCK, 6-5
WINJ,EFT, 6-4
WINJ,INES, 6-4
WIN...NAME_STRIPE, 6-5
WIN...REPAINTJ,OCK, 6-4
WIN_TOP, 6-4
WIN_ WIDTH, 6-4

tool_borderwidth, 6-14
TOOLJ30UNDARYMGR, 6-8

tooLcreate, 6-22, D-5
tooLcreatesubwindow, 6-11, 6-13, 6-13, 6-14, 7-2
tool_destroy, 6-15
tool_destroysubwindow, 6-15
tooLdisplay, 6-22
TOOL..DONE, 6-8, 6-20
tooLfind_attribute, 6-11
toolJree_attributeJist, 6-11
tooLget_attribute, 6-19, 6-20
TOOLJCON constants, 9-3
TOOLJCONIC, 6-8
tooUnstall, 6-15, D-3
tooUayoutsu bwindows, 6-14
tool_make, 6-11, 6-11, D-5
TOOL...NAMESTRIPE, 6-8
tool_parse_all, 6-10
tool_parse_one, 6-11
tool..,select, 5-6, 6-8, 6-17, 7-4
tool..,set_attributes, 6-19
TOOL_SIGCHLD, 6-8, 6-19
tool..,sigwinch, 6-18
TOOL_SIGWINCl!PENDING, 6-8
tool..,stripeheight, 6-14
tool..,su bwindowspacing, 6-14
TOOL_SWEXTENDTOEDGE, 6-13
tooLusage, 6-10
toolio, 6-17
toolsw, 6-13
trapezon, 2-13
tsJo, 6-13, 6-14, 6-14
tty, D-5
TTY-based programs, 7-13
ttysw_becomeconsole, 7-9
ttysw_createtoolsubwindow, 7-9, 7-13
ttysw_done, 7-10
ttysw_esc_extend, 7-14
ttysw_esc..,str_extend, 7-15
ttyswJork, 7-10
ttysw_handlesigwinch, 7-10
ttyswJnit, 7-9
ttyswJnput, 7-14
ttysw_output, 7-14
ttysw..,saveparms, 7-9
ttysw..,selected, 7-10
ttytlsw_createtoolsu bwindow, 7-13
type symbol (for panel item menus), 8-11
typed_pair, F-1

V
VKEY_*, 5-10
VKEY_CODES, 5-3
VKEY_FIRST, 5-3
VKEY_FIRSTPSEUDO, 5-4
VKEYJ,AST, 5-3

- vii -

VKEYJ.,ASTPSEUDO, 5-4 WJN_NAMESIZE, 4-2
win_nametonumber, 4-3 0 w win_nextCree, 4-2

we_clearinitdata, 6-16 WJN_NULLLINK, 4-2
we_getfxwindow, 4-12 win_numbertoname, 4-2
we_getinitdata, 6-16 win_partialrepair, 4-7
we_getparentwindow, 6-16 win_releaseio, 5-9
we...setgfxwindow, 4-12 win_remove, 4-6
we_setinitdata, 6-16 win_removeblanket, 4-13
we...setparentwindow, 6-16 WIN...REPAINTJ.,OCK, 6-4
WIN.J\ TTRJ.,JST, 6-6 win...screendestroy, 4-9
WIN....BACKGROUND, 6-7 win...screenget, 4-9
WIN....BOUNDARY_MGR, 6-5 win_screennew, 4-8
WJN_COLUMNS, 6-4 win_setcursor, 4-11
win_computeclipping, 4-7 win...setinputcodebit, 5-9
WIN...DEFAULT_CMS, 6-6 win...setinputmask, 5-8
win_error, 4-14 win...setkbd, 4-9
win_errorhandler, 4-14 win...setlink, 4-5
winJdtoname, 4-3 win...setmouseposition, 4-12
winJdtonumber, 4-3 win...setms, 4-9
win_findintersect, 4-12 win_setowner, 4-13
WINJ'OREGROUND, 6-7 win...setrect, 4-3
win_getcursor, 4-10 win...setsavedrect, 4-4
win_getheight, 4-3 win_setscreenpositions, 4-9
win_getinputcodebit, 5-9 win...setuserflag, 4-6
win_getinputmask, 5-9 win...setuserftags, 4-6
win_getlink, 4-5 WJN_TOP, 6-4

0 win_getnewwindow, 4-2 win_unlockdata, 4-6
win_getowner, 4-13 win_unsetinputcodebit, 5-9
win_getsavedrect, 4-4 WJN_WIDTH, 6-4
win_getscreenpositions, 4-9 window
win_getsize, 4-3 as screen, 4-7
win_getuserflags, 4-6 blanket, 4-6, 4-12

win_getwidth, 4-3 cursor, 4-10

win_grabio, 5-6, 5-9 data, 4-1

WJNJIEJGHT, 6-4 device, 4-1

WJNJCON, 6-5
display tree, 4-4

WJNJCONJ'ONT, 6-6
environment usage, 4-12
errors, 4-14

WINJCONJMAGE, 6-5 identifier conversion, 4-2
WINJCONJ.,ABEL, 6-5 locate window, 4-12
WJNJCONJ.,EFT, 6-5 minimal repaint, 4-7, 4-7
WINJCON_TOP, 6-5 mouse position, 4-12
WJNJCONJC, 6-4 name, 4-2
win_initscreenfromargv, 4-9 new, 4-2
win...inputposevent, 5-5, 5-5 null, 4-2

win_insert, 4-5 owner, 4-2, 4-13

win...insertblanket, 4-13 position, 4-3

win...isblanket, 4-13 saved rect, 4-4

WJNJ.,ABEL, 6-5
size, 4-3

WJNJ.,AYOUTJ.,OCK, 6-5, 6-14
unreferenced, 4-2
user flags, 4-6

WJNJ.,EFT, 6-4 window display tree
WJNJ.,INES, 6-4 batched updates, 4-6
win_lockdata, 4-6 deadlock resolution, 4-6 0 WJN_NAME-8TRIPE, 6-5 insertion, 4-5

- viii -

0

0

0

window display tree, continued
links, 4-4
removal, 4-6

WINDOW_GFX, 4-12
WINDOWJNITIALDATA, 6-16
WINDOW__ME, 7-13
WINDOWYARENT, 6-16
windowfd, 4-2
WL..BOTTOMCHILD, 4-4
WL_COVERED, 4-4
WL_COVERING, 4-4
WL..ENCLOSING, 4-4
WL_OLDERSIB, 4-4
WL_OLDESTCHILD, 4-4
WLYARENT, 4-4
WL_TOPCHILD, 4-4
WI,_YOUNGERSIB, 4-4
WL_YOUNGESTCHILD, 4-4
wmgr _bottom, 9-11
wmgr_changelevel, 9-13
wmgr_changerect, 9-11
wmgr_close, 9-11
wmgr_completechangerect, 9-13
wmgr_confirm, 9-11
wmgr _figureiconrect, 9-12
wmgr_figuretoolrect, 9-12
wmgr_forktool, 9-12
wmgr _getrectalloc, 9-14
wmgr_handletoolmenuitem, 9-12
WMGRJCONIC, 9-14
wmgr_iswindowopen, 9-14
wmgr_move, 9-11
wmgr_open, 9-11
wmgr_refreshwindow, 9-11
WMGR_SETPOS, 9-12
wmgr ..setrectalloc, 9-14
wmgr..setupmenu, 9-12
wmgr..stretch, 9-11
wmgr_toolmenu, 9-12
wmgr_top, 9-11
wmgr_winandchildrenexposed, 9-13
WUF_WMGRl, 9-14

X
X3.64, 7-14

-ix-

0

01

O'

