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Networking Implementation Notes 

The Sun Workstation runs a version of the UNIXt operating system which has strong support 
for network communications. This document describes the internals of the networking support 
subsystem. See the Sgatem Interface Overviev, in the Sun Sgatem Interface Manual for a 
description of the user interface to the networking facilities. 

1. Introduction 

This report describes the internal structure of the networking facilities of the Sun Workstation 
version of the UNIX operating system. These facilities are derived from the networking facili
ties added at U.C. Berkeley in the Berkeley 4.2 release of the system. The system facilities pro
vide a uniform user interface to networking and a structure which may be used by system 
implementors to add new networking facilities. The internal structure is not visible to the user, 
rather it is intended to aid implementors of communication protocols and network services by 
providing a framework which promotes code sharing and minimizes implementation effort. 

The reader is expected to be familiar with the C programming language and system interface, as 
described in the Sgatem Interface 011erviev, at the beginning of the Sun Sgatem Interface 
Manual. Basic understanding of network communication concepts is assumed; where required 
any additional ideas are introduced. 

The remainder of this document provides a description of the system internals, avoiding, when 
possible, those portions which are utilized only by the interprocess communication facilities. 

f UNIX is a trademark or Bell Laboratories. 
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2. Overview 

If we consider the International Standards Organization's (ISO) Open System lnterconneetion 
(OSI) model of network communication [IS081) [Zimmermann80), the networking facilities 
described here correspond to a portion of the session layer (layer 3) and all of the transport and 
network layers (layers 2 and 1, respeetively). 

The network layer provides possibly imperleet data transport services with minimal addressing 
structure. Addressing at this level is normally host to host, with implicit or explicit routing 
optionally supported by the communicating agents. 

At the transport layer the notions of reliable transfer, data sequencing, Bow control, and service 
addressing are normally included. Reliability is usually managed by explicit acknowledgement 
of data delivered. Failure to acknowledge a transfer results in retransmiMion of the data. 
Sequencing may be handled by tagging each message handed to the network layer by a •cgucnce 
number and maintaining state at the endpoints of communication to utilize reeeived sequence 
numbers in reordering data which arrives out of order. 

The session layer facilities may provide forms of addressing which are mapped into formats 
required by the transport layer, service authentication and client authentication, etc. Various 
systems also provide services such as data encryption and address and protocol translation. 
The following sections begin by describing some of the common data structures and utility rou
tines, then examine the internal layering. The contents of each layer and its interface are con
sidered. Certain of the interfaces are protocol implementation specific. For these cases exam
ples have been drawn from the Internet {Cerf78) protocol family. Later sections cover routing 
issues, the design of the raw socket interface and other miscellaneous topics. 
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3. Goals 

0 The networking system was designed with the goal or supporting multiple protocol /amilie, and 
addressing styles. This required information to be "hidden" in common data structures which 
could be manipulated by all the pieces of the system, but which required interpretation only by 
the protocols which "controlled" it. The system described here attempts to minimize the use or 
shared data structures to those kept by a suite or protocols (a protocol family), and those used 
for rendezvous between "synchronous" and "asynchronous" portions of the system (e.g. queues 
of data packets are filled at interrupt time and emptied based on user requests). 

0 

0 

A major goal or the system was to provide a framework within which new protocols and 
hardware could be easily be supported. To this end, a great deal or effort has been extended to 
create utility routines which hide many of the more complex and/or hardware dependent chores 
of networking. Later sections describe the utility routines and the underlying data structures 
they manipulate. 
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4. Internal Address Representation 

Common to all portions of the system are two data structures. These structures are used to 
represent addresses and various data objects. Addresses, internally are described by the 
aockaddr structure, 

struct sockaddr { 
shortsa_family;/• data format identifier•/ 
char sa_data[l4); /• address •/ 

}; 

All addresses belong to one or more addru, /amiliu which define their format and interpreta
tion. The aaJamil11 field indicates which address family the address belongs to, the IIJ_dala field 
contains the actual data value. The size of the data field, 14 bytes, was selected based on a 
study of current address formats 
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5. Memory Management 

A single mechanism is used ror data storage: memory buffers, or mbufs. An mbur is a structure 
or the rorm: 

struct m bur { 

}; 

struct mbw •m_next; 
u_long m_off; 
short m_len; 
short m_type; 
u_char m_dat(MLEN); 
struct mbw •m_act; 

/• next buffer in chain •/ 
/ • offset or data • / 

/• amount or data in this mbur •/ 
/• mbur type (accounting)•/ 

/ • data storage • / 
/• link in higher-level mbur list • / 

The m_nezt field is used to chain mbws together on linked lists, w bile the m_act field allows 
lists or mburs to be accumulated. By convention, the mbws common to a single object (ror 
example, a packet) are chained together with the m_nezt field, while groups or objects are linked 
via the m_act field (possibly when in a queue). 
Each m buf has a small data area for storing inrormation, m_dat. The m_len field indicates the 
amount or data, while the m_off field is an offset to the beginning or the data from the base of 
the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbw to a 
pointer to the data stored in the mbur, has the rorm 

#define mtod(x,t) ((t)((int)(x) + (x)->m_off)) 

( note the t parameter, a C type cast, is used to cast the resultant pointer for proper assign
ment ). 

In addition to storing data directly in the mbur's data area, data or page size may be also be 
stored in a separate area of memory. The mbw utility routines maintain a pool of pages for 
this purpose and manipulate a private page map for such pages. The virtual addresses of these 
data pages precede those of mbufs, so when pages of data are separated from an mbuf, the 
mbur data offset is a negative value. An array of reference counts on pages is also maintained 
so that copies of pages may be made without core to core copying ( copies are created simply by 
duplicating the relevant page table entries in the data page map and incrementing the associ
ated reference counts for the pages). Separate data pages are currently used only when copying 
data from a user process into the kernel, and when bringing data in at the hardware level. 
Routines which manipulate mbufs are not normally aware if data is stored directly in the mbuf 
data array, or if it is kept in separate pages. 

The following utility routines are available for manipulating mbuf chains: 

m = m_copy(mO, off, len); 
The m_cop11 routine create a copy of all, or part, of a list of the mbufs in mO. Len bytes of 
data, starting off bytes from the front of the chain, are copied. Where possible, reference 
counts on pages are used instead of core to core copies. The original mbur chain must have 
at least off+ len bytes or data. Ir /en is specified as M_COPY ALL, all the data present, 
offset as berore, is copied. 

m_cat(m, n); 
The mbw chain, n, is appended to the end of m. Where possible, compaction is performed. 

m_adj( m, diff); 
The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are 
shaved off the front of the mbuf chain. If diff is negative, the alteration is performed from 
back to rront. No space is reclaimed in this operation, alterations are accomplished by 
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changing the m_len and m_off fields of mbufs. 

m = m_pullup(mO, size); 
After a successful call to m...JluUup, the mbuf at the head of the returned list, m, is 
guaranteed to have at least aize bytes of data in contiguous memory ( allowing access via a 
pointer, obtained using the mtod macro). Ir the original data was less than aize bytes long, 
len was greater than the size of an mbuf data area (112 bytes), or required resources were 
unavailable, m is O and the original mbuf chain is deallocated. 

This routine is particularly useful when verifying packet header lengths on reception. For 
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid 
packet header are present at the head of the list of mbufs representing the packet, the 
remaining 8 bytes may be "pulled up" with a single mJuUup call. If the call fails the 
invalid packet will have been discarded. 

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the mbuf 
associated with a data area by masking ofl' the low bits of the virtual address. This allows 
modules to store data structures in mbufs and pass them around without concern for locating 
the original mbuf when it comes time to free the structure. The tltom macro is used to convert 
a pointer into an mbufs data area to a pointer to the mbuf, 

#define dtom(x) ((struct mbuf •)((int)x & -(MSIZE-1))) 

Mbufs are used for dynamically allocated data structures such as sockets, as well as memory 
allocated for packets, Statistics are maintained on mbuf usage and can be viewed by uaers 
using the netatal(l) program. 
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6. Internal Layering 

The internal structure of the network system is divided into three layers. These layers 
correspond to the services provided by the socket abstraction, those provided by the communi
cation protocols, and those provided by the hardware interfaces. The communication protocols 
are normally layered into two or more individual cooperating layers, though they are collectively 
viewed in the system as one layer providing services supportive of the appropriate socket 
abstraction. 

The following sections describe the properties of each layer in the system and the interfaces each 
must conform to. 

6.1. Socket Layer 

The socket lay.er deals with the interprocess communications facilities provided by the system. 
A socket is a bidirectional endpoint of communication which is "typed" by the semantics of 
communication it supports. The system calls described in the S111tem Interface Overview are 
used to manipulate sockets. 

A socket consists of the following data structure: 

struct socket { 
short so_type; /• generic type • / 
short so_options; /• from socket call • / 
short so_linger; /• time to linger while closing • / 
short so_state; /• internal state flags • / 
caddr_t so_pcb; /• protocol control block • / 
struct protosw •so_proto; /• protocol handle •/ 
struct socket •so_head; /• back pointer to accept socket •/ 
struct socket •so_qO; /• queue of partial connections •/ 
short so_qOlen; /• partials on so_qO •/ 
struct socket •so_q; /• queue of incoming connections •/ 
short so_qlen; /• number of connections on so_q • / 
short so_qlimit; /• max number queued connections •/ 
struct sockbuf so_snd; /• send queue •/ 
struct sockbuf SOJCV; /• receive queue • / 
short so_timeo; / • connection timeout • / 
u_short so_error; / • error affecting connection • / 
short so_oobmark; /• chars to ooh mark •/ 
short so_pgrp; /• pgrp for signals • / 

}; 

Each socket contains two data queues, ,a_rc11 and ,o_antl, and a pointer to routines which pro
vide supporting services. The type of the socket, ,o_twe is defined at socket creation time and 
used in selecting those services which are appropriate to support it. The supporting protocol is 
selected at socket creation time and recorded in the socket data structure for later use. Proto
cols are defined by a table of procedures, the proto,w structure, which will be described in detail 
later. A pointer to a protocol specific data structure, the "protocol control block" is also 
present in the socket structure. Protocols control this data structure and it normally includes a 
back pointer to the parent socket structure(s) to allow easy lookup when returning information 
to a user (for example, placing an error number in the ao_error field). The other entries in the 
socket structure are used in queueing connection requests, validating user requests, storing 
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socket characteristics ( e.g. options supplied at the time a socket is created), and maintaining a 
socket's state. 
Processes "rendezvous at a socket" in many instances. For instance, when a process wishes to 
extract data from a socket's receive queue and it is empty, or lacks sufficient data to satisfy the 
request, the process blocks, supplying the address of the receive queue as an "wait channel' to 
be used in notification. When data arrives for the process and is placed in the socket's queue, 
the blocked process is identified by the fact it is waiting "on the queue". 

6.1.1. Socket State 

A socket's state is defined from the following: 

#define SS_NOFDREF OxOOl 
#define SS_ISCONNECTED Ox002 
#define SSJSCONNECTING Ox004 
#define SS_ISDISCONNECTING 
#define SS_CANTSENDMORE Ox010 
#define SS_CANTRCVMORE Ox020 
#define SS_CONNA WAITING Ox040 
#define SS_RCVATMARK Ox080 

#define SS_PRIV 
#define SS_NBIO 
#define SS_ASYNC 

OxlOO 
Ox200 
Ox400 

/ • no file table ref any more • / 
/ • socket connected to a peer • / 
/ • in process of connecting to peer • / 
Ox008/ • in process of disconnecting •/ 
/• can't send more data to peer•/ 
/ • can't receive more data from peer • / 
/• connections awaiting acceptance •/ 
/• at mark on input•/ 

/ • privileged • / 
/• non-blocking ops•/ 
/• async i/o notify •/ 

0 

The state of a socket is manipulated both by the protocols and the user (through system calls). 0 
When a socket is created the state is defined based on the type of input/output the user wishes 
to perform. "Non-blocking" 1/0 implies a process should never be blocked to await resources. 
Instead, any call which would block returns prematurely with the error EWOULDBLOCK (the 
service request may be partially fulfilled, e.g. a request for more data than is present). 

If a process requested "asynchronous" notification of events related to the socket the SIGIO sig
nal is posted to the process. An event is a change in the socket's state, examples of such occu
rances are: space becoming available in the send queue, new data available in the receive queue, 
connection establishment or disestablishment, f'tc. 

A socket may be marked "priviledged" if it was created by the super-user. Only priviledged 
sockets may send broadcast packets, or bind addresses in priviledged portions of an address 
space. 

6.1.2. Socket Data Queues 

A socket's data queue contains a pointer to the data stored in the queue and other entries 
related to the management of the data. The following structure defines a data queue: 
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struct sockbuf { 

}; 

short sb_cc; /• actual chan, in buffer •/ 
short sb_hiwat; /• max actual char count • / 
short sb_mbcnt; /• chan, of mbufs used • / 
short sb_mbmax; /• max chani of mbufs to use•/ 
short sb_lowat; /• low water mark•/ 
short sb_timeo; / • timeout • / 
struct mbuf •sb_mb; /• the mbuf chain •/ 
struct proc •sb_sel; / • process selecting rean/write • / 
short sb_flags; /• flags, see below •/ 

Data is stored in a queue as a chain of mbufs. The actual count of characteni as well as high 
and low water marks are used by the protocols in controlling the flow of data. The socket rou
tines cooperate in implementing the flow control policy by blocking a process when it requests 
to send data and the high water mark has been reached, or when it requests to receive data and 
less than the low water mark is present (assuming non-blocking 1/0 has not been specified). 
When a socket is created, the supporting protocol "reserves" space for the send and receive 
queues of the socket. The actual storage associated with a socket queue may fluctuate during a 
socket's lifetime, but is assumed this reservation will always allow a protocol to acquire enough 
memory to satisfy the high water marks. 

The timeout and select values are manipulated by the socket routines in implementing various 
portions of the interprocess communications facilities and will not be described here. 
A socket queue has a number of flags used in synchronizing access to the data and in acquiring 
resources; 

#define 
#define 
#define 
#define 
#define 

SB_LOCK OxOl /• lock on data queue (so_rcv only)•/ 
SB_WANTOx02 /• someone is waiting to lock•/ 
SB_WAIT Ox04 /• someone is waiting for data/space•/ 
SB_SEL Ox08 /• buffer is selected • / 
SB_COLL OxlO /• collision selecting •/ 

The last two flags are manipulated by the system in implementing the select mechanism. 

6.1.3. Socket Connection Queueing 

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are considered 
distinct. One side is termed active, and generates connection requests. The other side is called 
ptuaive and accepts connection requests. 
From the passive side, a socket is created with the option SO_ACCEPTCONN specified, creat
ing two queues of sockets: ,o_qO for connections in progress and ,o_q for connections alreany 
mane and awaiting user acceptance. As a protocol is preparing incoming connections, it creates 
a socket structure queued on ,o_qO by calling the routine ,onewconn(). When the connection is 
established, the socket structure is then transfered to ,o_q, making it available for an accept. 
Ir an SO_.ACCEPTCONN socket is closed with sockets on either ,o_qO or ,o_q, these sockets 
are dropped. 
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6.2. Protocol Layer(s) 

Protocols are described by a set of entry points and certain socket visible characteristics, some 
of which are used in deciding which socket type(s) they may support. 

An entry in the "protocol switch" table exists for each protocol module configured into the sys
tem. It has the following form: 

struct protosw { 
short pr_type; /• socket type used for•/ 
short pr_family; /• protocol family •/ 
short pr_protocol; /• protocol number • / 
short pr_ftags; /• socket visible attributes •/ 

/ • protocol-protocol hooks • / 
int (•pr_inputX); /• input to protocol (from below)•/ 
int (•pr_outputX); /• output to protocol (from above)•/ 
int (•pr_ctlinput)(); /• control input (from below)•/ 
int (•pr_ctloutputX); /• control output (from above)•/ 

/• user-protocol hook •/ 
int (•pr_usrreq)(); /• user request •/ 

/ • utility hooks • / 
int ( •pr_init X); / • initialization routine • / 
int (•pr_fasttimo)(); /• fast timeout (200ms) •/ 
int (•pr_slowtimo)();/• slow timeout (liOOms) •/ 
int (•pr_drainX); /• ftush any excess space possible •/ 

}; 

A protocol is called through the pr_init entry before any other. Thereafter it is called every 200 
milliseconds through the p,Ja,ttimo entry and every 600 milliseconds through the p,_,loU>timo 
for timer based actio11B. The system will call the pr_tlrain entry if it is low on space and this 
should throw away any non-critical data. 

Protocols pass data between themselves as chains of mbufs using the pr_input and pr_output 
routines. Pr_input passes data up (towards the user) and p,_output passes it down (towards the 
network); control information passes up and down on p,_ctlinput and pr_ctloutput. The proto
col is responsible for the space occupied by any the arguments to these entries and must dispose 
of it. 
The pr _u,erreq routine interfaces protocols to the socket code and is described below. 

The pr _flag, field is co11Btructed from the following values: 

#define PR_ATOMIC OxOl /• exchange atomic messages only•/ 
#define PR_ADDROx02 /• addresses given with messages•/ 
#define PR_CONNREQUIRED Ox04 /• connection required by protocol•/ 
#define PR_WANTRCVD Ox08 /• want PRU_RCVD calls•/ 
#define PR_RIGHTS OxlO /• passes capabilities •/ 

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket 
routines will never attempt to send data hefore a connection has been established. If the 
PR_WANTRCVD ftag is set, the socket routines will notfiy the protocol when the user has 
removed data from the socket's receive queue. This allows the protocol to implement ack
nowledgement on user receipt, and also update windowing information based on the amount of 
space available in the receive queue. The PR_ADDR field indicates any data placed in the 
socket's receive queue will be preceded by the address of the sender. The PR..ATOMIC flag 
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specifies each u,er request to send data must be performed in a single protocol send request; it is 
the protocol's responsibility to maintain record boundaries on data to be sent. The 
PR_RIGHTS flag indicates the protocol supports the passing or capabilities; this is currently 
used only the protocols in the UNIX protocol ramily. 
When a socket is created, the socket routines scan the protocol table looking ror an appropriate 
protocol to support the type or socket being created. The pr _type field contains one or the pos
sible socket types (e.g. SOCK_STREAM), while the prJami/11 field indicates which protocol 
family the protocol belongs to. The pr_protocol field contains the protocol number or the proto
col, normally a well known value. 

8.3. Network-Interface Layer 

Each network-in terrace configured into a system defines a path through which packets may be 
sent and received. Normally a hardware device is associated with this interface, though there is 
no requirement for this (for example, all systems have a sort ware "loopback" interface used ror 
debugging and performance analysis). In addition to manipulating the hardware device, an 
interface module is responsible ror encapsulation and deencapsulation or any low level header 
information required to deliver a message to it's destination. The selection or which interface to 
use in delivering packets is a routing decision carried out at a higher level than the network
interface layer. Each interface normally identifies itselr at boot time to the routing module so 
that it may be selected for packet delivery. 

An interface is defined by the following structure, 

struct ifnet { 

}; 

char •if_name; /• name, e.g. "en" or "lo"•/ 
short if_unit; /• sub-unit for lower level driver • / 
short if_mtu; /• maximum transmission unit•/ 
int iC.net; / • network number of interface • / 
short if_Jlags; /• up/down, broadcast, etc. •/ 
short if_timer; /• time 'til if_watchdog called •/ 
int if_host[2); /• local net host number•/ 
struct sockaddr if_addr; / • address or interface • / 
union { 

struct 
struct 

} if_ifu; 

sockaddr ifu_broadaddr; 
sockaddr ifu_dstaddr; 

struct if queue if_snd; /• output queue • / 
int (•ir_init)(); /• init routine •/ 
int ( •if_output )(); / • output routine • / 
int ( •iLioctl)(); / • ioctl routine • / 
int (•if_reset)(); /• bus reset routine •/ 
int (•if_watchdog)();/• timer routine•/ 
int irjpackets; /• packets received on interface • / 
int ifjerrors; /• input errors on interface •/ 
int if_opackets; / • packets sent on interface • / 
int if_oerrors; /• output errors on interrace • / 
int if_collisions; / • collisions on csma interfaces • / 
struct ifnet •if_next; 
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Each interf'ace has a send queue and routines used for initialization, i/_init, and output, 
i/_output. I( the interf'ace resides OD a system bus, the routine i/_ruet Will be called after a bus oi 
reset has been perf'ormed. An interf'ace may also specify a timer routine, if_111atcfldog, which 
should be called every i/_timer seconds (if non-zero). 

The state of an interf'ace and certain characteristics are stored in the i/..ffe,.,. field. The follow
ing values are possible: 

#define 
#define 
#define 
#define 
#define 
#define 
#define 

!FF _UP Oxl /• interf'ace is up •/ 
IFF _BROADCAST Ox2 /• broadcast address valid • / 
IFF _DEBUG Ox4 /• tum on debugging•/ 
IFF _ROUTE Ox8 /• routing entry installed •/ 
IFF _POINTOPOINT OxlO /• interface is point-to-point link •/ 
IFF _NOTRAILERS Ox20 /• avoid use of trailers • / 
IFF _RUNNING .Ox40 /• resources allocated•/ 

If the interface is connected to a network which supports transmission of 6ro11dc,ut packets, the 
IFF _BROADCAST flag will be set and the i/_broadaddr field will contain the address to be used 
in sending or accepting a broadcast packet. If the interface is associated with a point to point 
hardware link (for example, a DEC DMR-11), the IFF..J>OINTOPOINT flag will be set and 
if_dataddr will contain the address of the host on the other side of the connection. These 
addresses and the local address of the interface, if_addr, are used in filtering incoming packets. 
The interf'ace sets !FF _RUNNING after it has allocated system resources and posted an initial 
read on the device it manages. This state bit is used to avoid multiple allocation requests when 
an interface's address is changed. The IFF _NOTRAILERS flag indicates the interface should 
refrain (I'Qm using a trailer encapsulation on outgoing packets.• 

The information stored in an i/net structure for point to point communication devices is not 
currently used by the system internally. Rather, it is used by the user level routing process in 
determining host network connections and in initially devising routes (refer to chapter 10 for 
more information). 

Various statistics are also stored in the interface structure. These may be viewed by users using 
the net,tal(l) program. 

The interf'ace address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS ioctls. 
SIOCSIFADDR is used to initially define each interface's address; SIOGSIFFLAGS can be used 
to mark an interf'ace down and perform site-specific configuration. 

• Tr,n1er protocols are normally disabled on the Sun Workstation. 
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7. Socket/Protocol Interface 

The interface between the socket routines and the communication protocols is through the 
pr_u,rreq routine defined in the protocol switch table. The following requests to a protocol 
module are possible: 

#define PRU_ATTACH O /• attach protocol •/ 
#define PRU_DETACH 1 /• detach protocol •/ 
#define PRU_BIND 2 /• bind socket to address •/ 
#define PRU_LISTEN 3 /• listen for connection •/ 
#define PRU_CONNECT 4 /• establish connection to peer•/ 
#define PRU_ACCEPT 5 /• accept connection from peer•/ 
#define PRU_DISCONNECT 6 /• disconnect from peer•/ 
#define PRU_SHUTDOWN 7 /• won't send any more data•/ 
#define PRU_RCVD 8 /• have taken data; more room now•/ 
#define PRU_SEND 9 /• send this data•/ 
#define PRU_ABORT 10 /• abort (fast DISCONNECT, DETATCH) •/ 
#define PRU_CONTROL 11 /• control operations on protocol•/ 
#define PRU_SENSE 12 /• return status into m •/ 
#define PRU_RCVOOB 13 /• retrieve out of band data•/ 
#define PR U_SENDOOB 14 /• send out of band data • / 
#define PRU_SOCKADDR 15 /• fetch socket's address•/ 
#define PRU_PEERADDR 16 /• fetch peer's address •/ 
#define PRU_CONNECT2 17 /• connect two sockets•/ 
/ • begin for protocols internal use • / 
#define PRU_FASTTIMO 18 
#define PRU_SLOWTIMO 19 
#define PRU_PROTORCV 20 
#define PRU_PROTOSEND 21 

/ • 200ms timeout • / 
/• 500ms timeout •/ 
/ • receive from below • / 
/ • send to below • / 

A call on the user request routine is of the form, 

error= (•protoswO.pr_usrreq)(up, req, m, addr, rights); 
int error; struct socket •up; int req; struct mbuf •m, •rights; caddr_t addr; 

The mbuf chain, m, and the address are optional parameters. The right• parameter is an 
optional pointer to an mbuf chain containing user specified capabilities (see the ,entlmag and 
recvm,11 system calls). The protocol is responsible for disposal of both mbuf chains. A non-zero 
return value gives a UNIX error number which should be passed to higher level software. The 
following paragraphs describe each of the requests possible. 

PRU_ATTACH 
When a protocol is bound to a socket (with the ,ocket system call) the protocol module is 
called with this request. It is the responsibility of the protocol module to allocate any 
resources necessary. The "attach" request will always precede any of the other requests, 
and should not occur more than once. 

PRU_DETACH 
This is the antithesis of the attach request, and is used at the time a socket is deleted. The 
protocol module may deallocate any resources assigned to the socket. 

PRU_BIND 
When a socket is initially created it has no address bound to it. This request indicates an 
address should be bound to an existing socket. The protocol module must verify the 
requested address is valid and available for use. 
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PRU_LISTEN 
The "listen" request indicates the user wishes to listen for incoming connection requests on 
the associated socket. The protocol module should perform any state changes needed to 
carry out this request (if possible). A "listen" request always precedes a request to accept a 
connection. 

PRU_CONNECT 
The "connect" request indicates the user wants to a establish an association. The a,l,lr 
parameter supplied describes the peer to be connected to. The effect of a connect request 
may vary depending on the protocol. Vll'tual circuit protocols, such as TCP (Postel80b), 
use this request to initiate establishment of a TCP connection. Datagram protocols, such as 
UDP (Postel79), simply record the peer's address in a private data structure and use it to 
tag all outgoing packets. There are no restrictions on how many times a connect request 
may be used after an attach. If a protocol supports the notion of multi-cuting, it is possi
ble to use multiple connects to establish a multi-cast group. Alternatively, an association 
may be broken by a PRU_DISCONNECT request, and a new association created with a 
subsequent connect request; all without destroying and creating a new socket. 

PRU_ACCEPT 
Following a successful PRUJ,ISTEN request and the arrival or one or more connections, 
this request is made to indicate the user has accepted the first connection OD the queue of 
pending connections. The protocol module should fill in the supplied address buffer with 
the address of the connected party. 

PRU_DISCONNECT 
Eliminate an association created with a PRU_CONNECT request. 

PRU_SHUTDOWN 
This call is used to indicate no more data will be sent and/or received (the arlrlr parameter 
indicates the direction of the shutdown, as encoded in the ao,Aut,loum system call). The 
protocol may, at its discretion, deallocate any data structures related to the shutdown. 

PRU_RCVD 
This request is made only if the protocol entry in the protocol switch table includes the 
PR_WANTRCVD flag. When a user removes data from the receive queue this request will 
be sent to the protocol module. It may be used to trigger acknowledgements, refresh win
dowing information, initiate data transfer, etc. 

PRU_SEND 
Each user request to send data is translated into one or more PRU_SEND requests (a proto
col may indicate a single user send request must be translated into a single PRU_SEND 
request by specifying the PR....ATOMIC flag in its protocol description). The data to be 
sent is presented to the protocol as a list of mbufs and an address is, optionally, supplied in 
the arldr parameter. The protocol is responsible for preserving the data in the socket's send 
queue if it is not able to send it immediately, or if it may need it at some later time (e.g. for 
retra115mission). 

PRU_ABORT 
This request indicates an abnormal termination or service. The protocol should delete any 
existing association(s). 

PRU_CONTROL 

14 

The "control" request is generated when a user performs a UNIX ioctl system call OD a 
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific 
operations to be provided outside the scope of the common socket interface. The edrlr 
parameter contains a pointer to a static kernel data area where relevant information may be 
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obtained or returned. The m parameter contains the actual ioctl request code (note the 
non-standard calling convention). 

PRU_SENSE 
The "sense" request is generated when the user makes an /a tat system call on a socket; it 
requests status or the associated socket. There currently is no common rormat ror the status 
returned. Inrormation which might be returned includes per-connection statistics, protocol 
state, resources currently in use by the connection, the optimal transrer size ror the connec
tion (based on windowing information and maximum packet size). The add, parameter con
tains a pointer to a static kernel data area where the status buffer should be placed. 

PRU_RCVOOB 
Any "out-or-band" data presently available is to be returned. An mbuC is passed in to the 
protocol module and the protocol should either place data in the mbuC or attach new mburs 
to the one supplied if there is insufficient space in the single mbuC. 

PRU_SENDOOB 
Like PRU_SEND, but ror out-or-band data. 

PRU_SOCKADDR 
The local address of the socket is returned, ir any is currently bound to the it. The address 
format (protocol specific) is returned in the odd, parameter. 

PRU_PEERADDR 
The address or the peer to which the socket is connected is returned. The socket must be 
in a SS_ISCONNECTED state for this request to be made to the protocol. The address for
mat (protocol specific) is returned in the odd, parameter. 

PRU_CONNECT2 
The protocol module is oupplied two oockets and requested to establish a connection 
between the two without binding any addresses, ir possible. This call is used in implement
ing the ,ockdpair(2) system call. 

The rollowing requests are used internally by the protocol modules and are never generated by 
the socket routines. In certain instances, they are handed to the pr _turreq routine solely ror 
convenience in tracing a protocol's operation (e.g. PRU_SLOWTIMO). 
PRU_FASTTIMO 

A "fast timeout" has occured. This request is made when a timeout occurs in the protocol's 
prJallimo routine. The add, parameter indicates which timer expired. 

PRU_SLOWTIMO 
A "slow timeout" has occured. This request is made when a timeout occurs in the 
protocol's p,_,lowtimo routine. The odd, parameter indicates which timer expired. 

PRU_PROTORCV 
This request is used in the protocol-protocol interlace, not by the routines. It requests 
reception of data destined ror the protocol and not the user. No protocols currently use this 
racility. 

PRU_PROTOSEND 
This request allows a protocol to send data destined ror another protocol module, not a 
user. The details of how data is marked "addressed to protocol" instead or "addressed to 
user" are lert to the protocol modules. No protocols currently use this racility. 
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8. Protocol/Protocol Interface 

The interface between protocol modules is through the pr_u,rreq, pr_input, pr_output, Q• 

pr_ctlinput, and pr_ctloutput routines. The calling conventions for all but the pr_urreq routine 
are expected to be ,pecifi.c to the protocol modules and are not guaranteed to be consistent 
aero"" protocol families. We will examine the conventions u,ed for some of the Internet pro~ 
cols in this section as an example. 

8.1. pr_output 

The Internet protocol UDP uses the convention, 

error = udp_output(inp, m); 
int error; struct inpcb •inp; struct mbuf •m; 

where the inp, "internet protocol control 61ock", passed between modules conveys per connec• 
tion state information, and the mbuf chain contains the data to be sent. UDP performs con
sistency checks, appends its header, calculates a checksum, etc. before passing the packet on to 
the IP module: 

error= ip_output(m, opt, ro, allowbroadcast); 
int error; struct mbuf •m, •opt; struct route •ro; int allowbroadcast; 

The call to IP's output routine is more complicated than that for UDP, as befits the additional 
work the IP module must do. The m parameter is the data to be sent, and the opt parameter is 
an optional list of IP options which should be placed in the IP packet header. The ro parameter 
is is used in making routing decisions ( and passing them back to the caller). The final parame- O· 

ter, allowbroatlcaat is a flag indicating if the user is allowed to transmit a broadcast packet. 
This may be inconsequential if the underlying hardware does not support the notion of broad-
casting. 

All output routines return O on success and a UNIX error number if a failure occured which 
could be immediately detected (no huller space available, no route to destination, etc.). 

8.2. pr _input 

Both UDP and TCP use the following calling convention, 

(void) ( •protoswa.pr_input)(m); 
struct mbuf •m; 

Each m bur list passed is a single packet to be processed by the protocol module. 

The IP input routine is a software interrupt level routine, and so is not called with any parame
ters. It instead communicates with network interfaces through a queue, ipintrq, which is identi
cal in structure to the queues used by the network interfaces for storing packets awaiting 
transmission. 

8.3. pr_ctlinput 

This routine is used to convey "control" information to· a protocol module (i.e. information 
which might be passed to the user, but is not data). This routine, and the p,_etloutput routine, o 
have not been extensively developed, and thus suffer from a "clumsiness" that can only be 
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improved as more demands are placed on it. 

The common calling convention for this routine is, 

(void) ( •protoswO.pr_ctlinput)(req, info); 
int req; caddr_t info; 

The req parameter is one of the following, 

#define PRC_IFDOWN 0 
#define PRC_ROUTEDEAD 1 
#define PRC_QUENCH 4 
#define PRC_HOSTDEAD 6 
#define PRC_HOSTUNREACH 7 
#define PRC_UNREACH_NET 8 
#define PRC_UNREACH_HOST 9 
#define PRC_UNREACH_PROTOCOL 
#define PRC_UNREACH_PORT 11 
#define PRC_MSGSIZE 12 
#define PRC_REDIRECT_NET 13 
#define PRC_REDIRECT_HOST 14 
#define PRC_TIMXCEED_INTRANS 
#define PRC_TIMXCEED_REASS 18 
#define PRC_PARAMPROB 19 

Networking Implementation Notes 

/ • interface transition • / 
/ • select new route if possible • / 
/• some said to slow down•/ 
/• normally from IMP •/ 
/•ditto•/ 
/• no route to network •/ 
/ • no route to host • / 
10/• dst says bad protocol •/ 
/• bad port * •/ 
/ • message size forced drop • / 
/ • net routing redirect • / 
/ • host routing redirect • / 
17 / • packet lifetime expired in transit • / 
/ • lifetime expired on reass q • / 
/ • header incorrect • / 

while the info parameter is a "catchall" value which is request dependent. Many of the requests 
have obviously been derived from ICMP (the Internet Control Message Protocol), and from 
error messages defined in the 1822 host/IMP convention (BBN78). Mapping tables exist to con• 
vert control requests to UNIX error codes which are delivered to a user. 

8.4. pr_ctloutput 

This routine is not currently used by any protocol modules. 
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9, Protocol/Network-Interface Interface 

The lowest layer in the set of protocols which comprise a protocol family must interface itself to 0 
one or more network interfaces in order to transmit and receive packets. It is assumed that any 
routing decisions have been made before handing a packet to a network interface, in fact this is 
absolutely necessary in order to locate any interface at all (unless, of course, one uses a single 
"hardwired" interface). There are two cues to be concerned with, transmission of a packet, 
and receipt of a packet; each will be considered separately. 

9.1. Packet Transmission 

Assuming a protocol has a handle on an interface, ifp, a ( struct if net • ), it transmits a fully for
matted packet with the following call, 

error= ( •ifp->if_outputXifp, m, dst) 
int error; struct ifnet •ifp; struct mbuf •m; struct aockaddr •dst; 

The output routine for the network interface transmits the packet m to the ht address, or 
returns an error indication (a UNIX error number). In reality transmission may not be immedi
ate, or successful; normally the output routine simply queues the packet on its send queue and 
primes an interrupt driven routine to actually transmit the packet. For unreliable mediums, 
such as the Ethernet, "successful" transmission simply means the packet has been placed on the 
cable without a collision. On the other hand, an 1822 interface guarantees proper delivery or an 
error indication for each message transmitted. The model employed in the networking system 
attaches no promises of delivery to the packets handed to a network interface, and thus 
corresponds more closely to the Ethernet. Errors returned by the output routine are normally Q, 

trivial in nature (no buffer space, address format not handled, etc.). 

9.2. Packet Reception 

Each protocol family must have one or more "lowest level" protocols. These protocols deal with 
internetwork addressing and are responsible for the delivery of incoming packets to the proper 
protocol processing modules. In the PUP model (Boggs78) these protocols are termed Level 1 
protocols, in the ISO model, network layer protocols. In our system each such protocol module 
has an input packet queue assigned to it. Incoming packets received by a network interface are 
queued up for the protocol module and a software interrupt is posted to initiate processing. 

Three macros are available for queueing and dequeueing packets, 
IF _ENQUEUE(ifq, m) 

This places the packet m at the tail of the queue i/q. 

IF _DEQUEUE(ifq, m) 
This places a pointer to the packet at the head of queue ifq in m. A zero value will be 
returned in m if the queue is empty. 

IF _PREPEND(ifq, m) 
This places the packet m at the head of the queue ifq. 

Each queue has a maximum length associated with it as a simple form of congestion control. 
The macro IF _QFULL(ifq) returns 1 if the queue is filled, in which case the macro 
IF _DROP(ifq) should be used to bump a count of the number of packets dropped and the 
offending packet dropped. For example, the following code fragment is commonly found in a 0• 

network interface's input routine, 
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if (IF _QFULL(inq)) { 
IF _DROP(inq); 
m_rreem(m); 

} else 
IF _ENQUEUE(inq, m); 
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10. Gateways and Routing Issues 

The system has been designed with the expectation that it will be used in an internetwork 
environment. The "canonical" environment was envisioned to be a collection of local area net
works connected at one or more points through hosts with multiple network interfaces (one on 
each local area network), and possibly a connection to a long haul network (for example, the 
ARP ANET). In such an environment, issues of gatewaying and packet routing become very 
important. Certain of these issues, such as congestion control, have been handled in a simplistic 
manner or specifically not addressed. Instead, where possible, the network system attempts to 
provide simple mechanisms upon which more involved policies.may be implemented. As some of 
these problems become better understood, the solutions developed will be incorporated into the 
system. 
This section will describe the facilities provided for packet routing. The simplistic mechanisms 
provided for congestion control are described in chapter 12. 

10.1. Routing Tables 

The network system maintains a set of routing tables for selecting a network interface to use in 
delivering a packet to its destination. These tables are of the form: 

struct rtentry { 
u_long rt_hash; / • hash key for lookups • / 
struct sockaddr rt_dst; / • destination net or host • / 
struct sockaddr rt_gateway; /• forwarding agent •/ 
short rt_f!ags; /• see below • / 
short rt_refcnt; /•no.of references to structure•/ 
u_long rt_use; /• packets sent using route •/ 
struct ifnet •rt_ifp; /• interface to give packet to•/ 

}; 

The routing information is organized in two separate tables, one for routes to a host and one for 
routes to a network. The distinction between hosts and networks is necessary so that a single 
mechanism may be used for both broadcast and multi-drop type networks, and also for net
works built from point-to-point links (e.g DECnet (DEC80)). 

Each table is organized as a hashed set of linked lists. Two 32-bit hash values are calculated by 
routines defined for each address family; one based on the destination being a host, and one 
assuming the target is the network portion of the address. Each hash value is used to locate a 
hash chain to search (by taking the value modulo the hash table size) and the entire 32-bit 
value is then used as a key in scanning the list of routes. Lookups are applied first to the rout
ing table for hosts, then to the routing table for networks: Ir both lookups fail, a final lookup is 
made for a "wildcard" route (by convention, network 0). By doing this, routes to a specific host 
on a network may be present as well as routes to the network. This also allows a "fall back" 
network route to be defined to an "smart" gateway which may then perform more intelligent 
routing. 

Each routing table entry contains a destination (who's at the other end of the route), a gateway 
to send the packet to, and various flags which indicate the route's status and type (host or net
work). A count of the number of packets sent using the route is kept for use in deciding 
between multiple routes to the same destination (see below), and a count of "held references" to 
the dynamically allocated structure is maintained to insure memory reclamation occurs only 
when the route is not in use. Finally a pointer to the a network interface is kept; packets sent 
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using the route should be handed to this interface. 
Routes are typed in two ways: either as host or network, and as "direct" or "indirect". The 
host/network distinction determines how to compare the rt_d,t field during lookup. Ir the route 
is to a network, only a packet's destination network is compared to the rt_d,t entry stored in 
the table. Ir the route is to a host, the addresses must match bit for bit. 
The distinction between "direct" and "indirect" routes indicates whether the destination is 
directly connected to the source. This is needed when performing local network encapsulation. 
Ir a packet is destined for a peer at a host or network which is not directly connected to the 
source, the internetwork packet header will indicate the address of the eventual destination, 
while the local network header will indicate the address of the intervening gateway. Should the 
destination be directly connected, these addresses are likely to be identical, or a mapping 
between the two exists. The RTF _GATEWAY flag indicates the route is to an "indirect" gate
way agent and the local network header should be filled in from the rt_gatewag field instead of 
rt_d,t, or from the internetwork destination address. 
It is assumed multiple routes to the same destination will not be present unless they are deemed 
equal in cost (the current routing policy process never installs multiple routes to the same desti
nation). However, should multiple routes to the same destination exist, a request for a route 
will return the "least used" route based on the total number of packets sent along this route. 
This can result in a "ping-pong" effect (alternate packets taking alternate routes), unless prot~ 
cols "hold onto" routes until they no longer find them useful; either because the destination has 
changed, or because the route is lossy. 
Routing redirect control messages are used to dynamically modify existing routing table entries 
as well as dynamically create new routing table entries. On hosts where exhaustive routing 
information is too expensive to maintain (e.g. work stations), the combination of wildcard rout
ing entries and routing redirect messages can be used to provide a simple routing management 
scheme without the use of a higher level policy process. Statistics are kept by the routing table 
routines on the use of routing redirect messages and their affect on the routing tables. These 
statistics may be viewed using net,tal(l). 
Status information other than routing redirect control messages may be used in the future, but 
at present they are ignored. Likewise, more intelligent "metrics" may be used to describe 
routes in the future, possibly based on bandwidth and monetary costs. 

10.2. Routing Table Interface 

A protocol accesses the routing tables through three routines, one to allocate a route, one to free 
a route, and one to process a routing redirect control message. The routine rtaUoc performs 
route allocation; it is called with a pointer to the following structure, 

struct route { 
struct 
struct 

}; 

rtentry •ro_rt; 
sockaddr ro_dst; 

The route returned is assumed "held" by the caller until disposed or with an rt/ree call. Prot~ 
cols which implement virtual circuits, such as TCP, hold onto routes for the duration or the 
circuit's lifetime, while connection-less protocols, such as UDP, currently allocate and free routes 
on each transmission. 
The routine rtredirect is called to process a routing redirect control message. It is called with a 
destination address and the new gateway to that destination. Ir a non-wildcard route exists to 
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the destination, the gateway entry in the route is modified to point at the new gateway sup-
plied. Otherwise, a new routing table entry is inserted reflecting the information supplied. 

0 Routes to interfaces and routes to gateways which are not directly accesible from the host are 
ignored. 

10.3. User-Level Routing Policies 

Routing policies implemented in user processes manipulate the kemel routing tables through 
two ioctl calls. The commands SIOCADDRT and SIOCDELRT add and delete routing entries, 
respectively; the tables are read through the /dev/kmem device. The decision to place policy 
decisions in a user process implies routing table updates may lag a bit behind the identification 
of new routes, or the failure of existing routes, but this period of instability is normally very 
small with proper implementation of the routing process. Advisory information, such as ICMP 
error messages and IMP diagnostic messages, may be read from raw aockets ( described in the 
next section). 
One routing policy process has already been implemented. The system standard "routing dae
mon" uses a variant of the Xerox NS Routing Information Protocol (Xerox82) to maintain up to 
date routing tables in our local environment. Interaction with other existing routing protocols, 
such as the Intemet GGP (Gateway-Gateway Protocol), may be accomplished using a similar 
process. 
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11. Raw Sockets 

A raw socket is a mechanism which allows usen direct access to a lower level protocol. Raw 
sockets are intended for knowledgeable processes which wish to take advantage or some protocol 
feature not directly accessible through the normal interface, or for the development or new pro
tocols built atop existing lower level protocols. For example, a new version or TCP might be 
developed at the user level by utilizing a raw IP socket for delivery or packets. The raw IP 
socket interface attempts to provide an identical interface to the one a protocol would have if it 
were resident in the kernel. 

The raw socket support is built around a generic raw socket interface, and (possibly) augmented 
by protocol-specific processing routines. This section will describe the core or the raw socket 
interface. 

11.1. Control Blocks 

Every raw socket has a protocol control block or the following form, 

struct rawcb { 
struct 

}; 

struct 
struct 
struct 
struct 
caddr_t 
short 

rawcb •rcb_next; 
rawcb •rcb_prev; 
socket •re b.J!ocket; 
sockaddr rcbJaddr; 
sockaddr rcbJaddr; 
rcb_pcb; 
rcb_flags; 

/• doubly linked list •/ 

/ • back pointer to socket • / 
/ • destination address • / 
/• socket's address •/ 
/ • protocol specific st ull' • / 

All the control blocks are kept on a doubly linked list for performing lookups during packet 
dispatch. Associations may be recorded in the control block and used by the output routine in 
preparing packets for transmission. The addresses are also used to filter packets on input; this 
will be described in more detail shortly. Ir any protocol specific information is required, it may 
be attached to the control block using the rcb_pcb field. 

A raw socket interface is datagram oriented. That is, each send or receive on the socket 
requires a destination address. This address may be supplied by the user or stored in the con
trol block and automatically installed in the outgoing packet by the output routine. Since it is 
not possible to determine whether an address is present or not in the control block, two flags, 
RAW _LADDR and RAW _F ADDR, indicate if a local and foreign address are present. Another 
flag, RAW_DONTROUTE, indicates if routing should be performed on outgoing packets. Ir it 
is, a route is expected to be allocated for each "new" destination address. That is, the first time 
a packet is transmitted a route is determined, and thereafter each time the destination address 
stored in rc6_roule differs from rcbJaddr, or rc6_roule.ro_rl is zero, the old route is discarded 
and a new one allocated. 

11.2. Input Processing 

Input packets are "assigned" to raw sockets based on a simple pattern matching scheme. Each 
network interface or protocol gives packets to the raw input routine with the call: 
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raw_input(m, proto, src, dst) 
struct mbuf •m; struct sockproto •proto, struct sockaddr •src, •dst; 

The data packet then has a generic header prepended to it of the form 

struct raw _header { 
struct sockproto raw _proto; 
struct sockaddr raw _dst; 
struct sockaddr raw _src; 

}; 

and it is placed in a packet queue for the "raw input protocol" module. Packets taken from 
this queue are copied into any raw sockets that match the header according to the following 
rules, 
1) The protocol family of the socket and header agree. 

2) If the protocol number in the socket is non-zero, then it agrees with that found in the 
packet header. 

3) If a local address is defined for the socket, the address format of the local address is the 
same as the destination address's and the two addresses agree bit for bit. 

4) The rules of 3) are applied to the socket's foreign address and the packet's source address. 

A basic assumption is that addresses present in the control blpck and packet header (as con
structed by the network interface and any raw input protocol module) are in a.canonical form 
which may be "block compared". 

11.3. Output Processing 

On output the raw pr_uarreqroutine passes the packet and raw control block to the raw prot~ 
col output routine for any processing required before it is delivered to the appr()priate .network 
interface. The output routine is normally the only code required to implement a raw socket 
interface. 
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12. Buffering and Congestion Control 

One of the major factors in the performance of a protocol is the buffering policy used. Lack of 
a proper buffering policy can force packets to be dropped, cause falsified windowing information 
to be emitted by protocols, fragment host memory, degrade the overall host performance, etc. 
Due to problems such as these, most systems allocate a fixed pool of memory to the networking 
system and impose a policy optimized for 'normal' network operation. 
The networking system developed for UNIX is little different in this respect. At boot time a 
fixed amount of memory is allocated by the networking system. At later times more system 
memory may be requested as the need arises, but at no time is memory ever returned to the 
system. It is possible to garbage collect memory from the network, but difficult. In order to 
perform this garbage collection properly, some portion of the network will have to be 'turned 
off' as data structures are updated. The interval over which this occurs must kept small com
pared to the average inter-packet arrival time, or too much traffic may be lost, impacting other 
hosts on the network, as well as increasing load on the interconnecting mediums. In our 
environment we have not experienced a need for such compaction, and thus have left the prob
lem unresolved. 
The mbuf structure was introduced in chapter 5. In this section a brief description will be given 
of the allocation mechanisms, and policies used by the protocols in performing connection level 
buffering. 

12.1. Memory Management 

The basic memory allocation routines place no restrictions on the amount of space which may 
be allocated. Any request made is filled until the system memory allocator starts refusing to 
allocate additional memory. When the current quota of memory is insufficient to satisfy an 
mbuf allocation request, the allocator requests enough new pages from the system to satisfy the 
current request only. All memory owned by the network is described by a private page table 
used in remapping pages to be logically contiguous as the need arises. In addition, an array of 
reference counts parallels the page table and is used when multiple copies of a page are present. 

Mbufs are 128 byte structures, 16 fitting in a 2048 byte page of memory. When data is placed 
in m bufs, if possible, it is copied or remapped into logically contiguous pages of memory from 
the network page pool. Data smaller than the size of a page is copied into one or more 112 byte 
mbuf data areas. 

12.2. Protocol Buffering Policies 

Protocols reserve fixed amounts of buffering for send and receive queues at socket creation time. 
These amounts define the high and low water marks used by the socket routines in deciding 
when to block and unblock a process. The reservation of space does not currently result in any 
action by the memory management routines, though it is clear if one imposed an upper bound 
on the total amount of physical memory allocated to the network, reserving memory would 
become important. 
Protocols which provide connection level flow control do this based on the amount of space in 
the associated socket queues. That is, send windows are calculated based on the amount of free 
space in the socket's receive queue, while receive windows are adjusted based on the amount of 
data awaiting transmission in the send queue. Care has been taken to avoid the 'silly window 
syndrome' described in (Clark82) at both the sending and receiving ends. 
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12.3. Queue Limiting 

Incoming packets from the network are always received unless memory allocation fails. How
ever, each Level 1 protocol input queue has an upper bound on the queue's length, and any 
packets exceeding that bound are discarded. It is possible for a host to be overwhelmed by 
excessive network traffic (for instance a host acting as a gateway from a high bandwidth net
work to a low bandwidth network). As a 'defensive' mechanism the queue limits may be 
adjusted to throttle network traffic load on a host. Consider a host willing to devote some per
centage of its machine to handling network traffic. If the cost of handling an incoming packet 
can be calculated so that an acceptable 'packet handling rate' can be determined, then input 
queue lengths may be dynamically adjusted based on a host's network load and the number of 
packets awaiting processing. Obviously, discarding packets is not a satisfactory solution to a 
problem such as this (simply dropping packets is likely to increase the load on a network); the 
queue lengths were incorporated mainly as a safeguard mechanism. 

12.4. Packet Forwarding 

When packets can not be forwarded because of memory limitations, the system generates a 
'source quench' message. In addition, any other problems encountered during packet forwarding 
are also reflected back to the sender in the form of ICMP packets. This helps hosts avoid 
unneeded retransmissions. 
Broadcast packets are never forwarded due to possible dire consequences. In an early stage of 
network development, broadcast packets were forwarded and a 'routing loop' resulted in net
work saturation and every host on the network crashing. 
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13. Out of Band Data 

Out of band data is a facility peculiar to the stream socket abstraction defined. Little agree
ment appears to exist as to what its semantics should be. TCP defines the notion of "urgent 
data" as in-line, while the NBS protocols (Burruss81) and numerous others provide a fully 
independent logical transmission channel along which out of band data is to be sent. In addi
tion, the amount of the data which may be sent as an out of band message varies from protocol 
to protocol; everything from 1 bit, to 16 bytes or more. 

A stream socket's notion of out of band data has been defined as the lowest reasonable common 
denominator ( at least reasonable in our minds); clearly this is subject to debate. Out or band 
data is expected to be transmitted out or the normal sequencing and flow control constraints or 
the data stream. A minimum or 1 byte or out or band data and one outstanding out or band 
message are expected to be supported by the protocol supporting a stream socket. It is a proto
cols prerogative to support larger sized messages, or more than one outstanding out or band 
message at a time. 

Out of band data is maintained by the protocol and usually not stored in the socket's send 
queue. The PRU_SENDOOB and PRU_RCVOOB requests to the pr_u,rreq routine are used in 
sending and receiving data. 
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Appendix A. Acknowledgements and References 

The intemal structure of the system is pattemed after the Xerox PUP architecture (Boggs79), 0 
w bile in certain places the Intemet protocol family has had a great deal of influence in the 
design. The use of software interrupts for process invocation is based on similar facilities found 
in the VMS operating system. Many of the ideas related to protocol modularity, memory 
management, and network interfaces are based on Rob Gurwitz's TCP/IP implementation for 
the 4.lBSD version of UNIX on the VAX (Gurwitz81). 
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Writing Device Drivers for the Sun Workstation 

This document is a guide to adding software drivers for new devices to the kernel. 
One of the UNIXt Operating System's major services to application software is a device
independent view of the hardware that stores and retrieves data and communicates with the 
outside world. The interface between UNIX application software and a given piece of raw 
hardware is provided by a tlellice driver for that piece of hardware. A device driver provides an 
interface between the UNIX operating system's device-independent scheme of things and the spe
cial characteristics of a particular piece of hardware. 

1, Introduction 

The kernel supplied with the Sun system is a configurable kernel, meaning that it is possible 
( within limits) to make changes to the kernel and to add new device driver modules. A detailed 
explanation of how to configure and build a kernel is in Builtling UNIX Syatem, with Config in 
the Sy,tem Manager•, Manual. 

This document is aimed at the Sun user who has some expertise in writing UNIX device drivers, 
and who wishes to connect a new Multibus device to the Sun system. The UNIX system that 
runs on the Sun Workstation supports several different types of devices, and the scope of this 
document is limited to writing device drivers for the kinds of devices not already supplied by 
Sun. If you have no previous experience writing UNIX device drivers, you should expect to seek 
some advice from the Sun technical support organization or an outside consultant experienced 
in writing UNIX drivers. We can cla11ify devices and their drivers into seven major categories: 

1. Co-proce11ors. 

2. Disks and tapes. 
3. Network interface drivers such as Ethernet or X.25. 

4. Serial communications multiplexors. 
5. General DMA devices such as driver boards for raster-oriented printers or plotters. 

6. Programmed 1/0 devices. 

7. Frame buffers. 
This manual only addresses devices and drivers in categories 5, 6, and 7. There is a wide range 
of devices which Sun does not support for which you might want to write a device driver. This 
document is primarily concerned with creating device drivers for devices such as parallel inter
faces, analog to digital (A/D) converters, digital to analog (D/A) converters, interfaces to special 
outboard processors, frame buffers, memory-mapped graphics boards, and so on. Such devices 
can be cast into the modet of unatructuretl or character 1/0 devices in the UNIX 1/0 system 

f UNIX is a trademark or Bell Labotatories. ,. 
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scheme, as opposed to block 1/0 devices that support a UNIX file system. Character 1/0 dev• 
ices may support read and write operations, and may provide an ioctl interface for controlling o 
the devices. Such devices may also provide for being mapped into the user's virual address 
space by supporting the mmap system call. 
This document doe, not address devices and drivers in categories 1 thru 4. In particular, the 
considerations in writing device drivers for disks, tapes, serial communication devices, and local 
network interface drivers are quite involved - we do not discuss the construction of such 
drivers in this document. Most Sun customers should find that the extensive use of standards 
in the Sun product line should allow them to use hardware interfaces already provided by Sun 
to drive such peripherals. 
To add a new hardware de:vjce-controller and its device driver to the system you must: 
1. Get the device controller hardware into a state where you know it works as advertised - it 

is eztreme/11 difficult to debug your device driver software (step 4 below) if the hardware is 
not known to be working, 

2. Write the device driver Itself, 
3. Add it to the system configurator's data base, describe a system containing the driver, and 

compile this system containing the new device driver, 

4. Debug the driver. 
Chapter 2 is a general overview of the hardware and software environment provided by the Sun 
Workstation. 
Chapter 3 is a description of the 1/0 system and device drivers. Chapter 3 provides a model of 
a very simple device driver and describes the issues involved in programming device drivers on 
the Sun system. 
Chapter 4 is a description of how to add a new device driver to the kernel. 
Finally, samples of actual drivers are included with this document so that the reader can see 
how the actual code is used, · The drivers we have included as samples are: 
c11one A simple memory-mapped driver for the black and white framebulfer. 

1k11 A simple programmed 1/0 driver for the SKY floating-point board. 
vp A DMA device driver for the Versatec printer /plotter. 
Hint: Spend as much time as you need in the Sun Workstation PROM monitor poking, prod
ding and cajoling your device until you are t1'oroughly familiar with its behavior. This will save 
you a lot of grief later. There is a discussion a little later on the kinds or things you can do 
with the PROM monitor. 

2 Revision C of 7 January 1984 

0 

0 



0 

0 

0 

Sun System Internals Manual Device Drivers for the Sun Workstation 

2, General Hardware and Software Topics 

2,1, Device Names and Device Numbers-The /dev Directory 

All devices and special files are defined externally in the / de11 directory. Devices are character
ized by a major device number, a minor device number, and a class (block or character). When 
a file of any type is opened, the device driver to call is obtained from the entry in the / de11 
directory. Entries in the / de11 directory are created via the mkn o d( 8) ( make a node) adminis
tration command. Here is a fragment of what the / de11 directory looks like from an Is -1 
command: 

Table 1: A sample listing of the /dev Directory 

T per• ' OIDII• moj• min 

II mi,- i er or or dote 
,ion, * * 

name 
p :, 

e e 

C nr--w--w- 1 henry o, 0 Feb 21 09:45 console 
C nr-r--r-- 1 root 3, 1 Dec 28 16:18 kmem 
C nr------- 1 root 3, 4 Jan 13 23:07 mbio 
C nr------- 1 root 3, 3 Jan 13 23:07 mbmem 
C nr-r--r~~ 1 root 3, 0 Dec 28 16:18 mem 
C nr-nr-nr- 1 root 13, 0 Dec 28 16:18 mouse 
C nr-rw-rw- 1 root 3, 2 Feb 22 16:40 null 
C rw------- 1 root 9, 0 Dec 28 16:19 rxyOa 
C rw------- 1 root 9, 1 Dec 28 16:19 rxyOb 

• 
• 
• 

C rw------- 1 root 9, 6 Feb 25 1984 rxyOg 
C rw------- 1 root 9, 7 Dec 28 16:19 rxyOh 
b rw------- 1 root 3, 0 Feb 25 1984 xyOa 
b rw------- 1 root 3, 1 Jan 17 20:12 xyOb 

• 
• 
• 

b rw------- 1 root 3, 6 Dec 28 16:19 xyOg 
b nr------- 1 root 3, 7 Dec 28 16:19 xyOh 

The connection between the specific device name in the / de11 directory is made through two C 
structures named bde111u, (block device switch table) and cde11a111 (character device switch table) 
in the file called conf.c. When you add a new device driver you must add entries to the 
corresponding structure. Since we are discussing only character-oriented devices in this manual, 
you can ignore the bd,111111 structure and concentrate on the cde11aw structure. 
Application programs make calls upon the operating system to perform services such as opening 

. a file, closing a file, reading data from a file, writing data to a file, and other operations that are 
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done in terms of the file interface. The operating system code turns these requests into specific 
requests on the device driver involved with that particular file. The glue between the specific 
file operation involved and the device driver entry-point ia through the btlev•w and cdev,w Q 
tables. 
Entries in bdet111D or cdet111D contain an array of entry points into the device drivers. The posi
tion in the structure corresponds to the major device number assigned to the device. The minor 
device number is passed to the device driver as an argument. The minor number has no 
significance other than that attributed to it by the driver. Usually, the driver uses the minor 
number to access one of several identical physical devices. 
The cdev•w table specifies the interface routines present for character devices. Each character 
device may provide seven functions: open, clou, read, w,ite, ioctl, •elect, and mmap. If a call 
on the routine should be ignored, (for example open on non-exclusive devices that require no 
setup) the cdev,w entry can be given as nuUdev; if it should be considered an error, (for example 
write on read-only devices) nodet1 is used. For terminals, the cdcv•w structure also contains a 
pointer to the array of ltlf structures associated with the driver. 
Here is what the declaration of the character device switch looks like. Each entry (row) is the 
only link between the main unix code and the driver. The initialization of the device switches is 
in the file conf.c. , 

atruct cdets,t, 
{ 
Int ( •d_open)(); 
Int ( •d_close )(); 
Int ( •d_read)(); 
int ( •d_write)(); 
Int ( •d_ioctl)(); 
Int (•d_stop)(); 
Int ( •dJeset)(); 
atruct tty •d_ttys; 
int ( •d_select )(); 
Int ( •d_mmap )(); 
}; 

. /• routine to caU to open the device •/ 
/• routine to caU to cloae the device • / 
/• routine to caU to read from the device • / 

. /• routine to caU to w,ite to the device •/ 
/• apeeial inter/ace routine • / 
/• routine to caU to open the device •/ 
/• routine to caU to open the device • / 
/• ttu ,tructure •/ 
/• routine to caU to •elect the device •/ 

. /• routine to caU to mmap the device • / 

Only the console driver uses the ttu structure. All other devices set this field to zero. 
And here is a typical line from the con/.c fi'.e which fills in the requisite pointers in the cdev•w 
structure: 
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• 
• 
All the other ctle111w entrie, between O antl 19 appear firat 

{ 
cgoneopen, cgoneclose, nodev, 
cgoneioctl, nodev, nodev, 
seltrue, cgonemmap, 

' }, 

nodev, 
o, 

Then all the other ctle111w entrie, from 15 upward, 

• 
. . 
• 

In the Sun system, a number of devices in ctle111w are preassigned. The table below shows the 
assignments to date. Those major device numbers shown as 'For Local Use' are available for 
usel'-written device driven. 
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Table 2: Character Device Number Assignments 

Character-Device Number Assignments 

Major Device Device Device 
Number A 66revi ali on Deieriplion 

0 en Sun Console . 
1 oct Central Data Octal Board 
2 sy Indirect TTY 
3 Not available 
4 ip Raw lnterphase Disk Device 
6 tm Raw Tapemaster Tape Device 
6 vp Ikon Versatec Parallel Controller 
7 Not available 
8 ar Archive Tape Controller 
9 xy Raw Xylogics Disk Device 

10 mti Systech MTI 
11 unused no device 
12 ZS Sun-2 UARTS 
13 ms Mouse 
14 cg Color Graphics Board 
15 win Window Pseudo Device 
16 ii INGRES lock device 
17 sd SCSI disk 
18 st SCSI tape 
19 nd Raw Network Disk Device 
20 pts Pseudo TTY 
21 ptc Pseudo TTY 
22 bw Monochrome Video board 
23 rope RasterOp Chip 
24 sky no device 
25 pi Parallel input device 
26 bwone Sun•l Monochrome frame buffer 
27 bwtwo Sun-2 Monochrome frame buffer 
28 vpc Parallel driver for Versatec printer 
29 kbd Sun keyboard driver 
30-?? For Local Use 

' 2.2. The Sun Hardware and the Multibus 

The Sun system hardware Is built around the IEEE-P796 Multibus. This section di8Cusses 
several issues relevant to the Multibus and devices that can be obtained for it. 
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2,2,1. Multibus Memory Address Space and 1/0 Address Space 

Although Sun uses Motorola MC68000 family processors for its products, the systems are actu
ally built around the IEEE-P7g6 Multibus. The MC68000 processors do what is known as 
'memory-mapped' input-output in that you just store data somewhere or fetch data from some
where to transfer data to or from a peripheral device or memory - there is no distinction 
between the memory and peripherals. The Multibus, on the other hand, was originally designed 
for processors that have one kind of instruction for storing data in memory or fetching data 
from memory (instructions such as MOY), and a different kind of instruction (such as IN and 
OUT) for transferring data to or from peripheral devices. Thus the Multibus has the notion of 
two separate address spaces: 
Multibu, memor111pace 

is simply used for memory or devices that look like memory, in that you talk to such dev
ices simply by writing data to memory locations or reading from memory locations. The 
Sun color controller board is a good example of a device that is addressed as memory in the 
Multibus memory address space. Devices that look like memory are called 'memory 
mapped' devices. 

Multibu, I/ 0 atltlreu ,pace. __ 
is another 'space' that is typically used for device control registers. Devices using the 1/0 
address space are said to be '1/0 mapped' devices. 

This concept of two different address spaces derives from the Intel 8080 family of processors. 
The MC68000 family doesn't have this separation of memory and 1/0, but treats the entire 
universe as one address spac11. The Sun memory management hardware can map any portion of 
the system's address space to the Multibus memory space or the Multibus 1/0 address space. 
Ultimately, the different kinda of address-space end up just waggling different control lines on 
the Multibu,. 
Be aware though, that the memory space of the Multibus is designed for a 20-bit r or a 24-bit 
addre11ing scheme (Sun usei 20-bit addresses), whereas the 1/0 space of the Multibus is only an 
8-bit or a 16-bit addressing scheme (Sun uses 16-bit addresses), and some older Multibus boards 
only accept 8-bit 1/0 ~dre11e1. 

2,2,2, Byte Ordering Iuues 

The Sun processor is a Motorola MC68000 processor, built on an IEEE-P796 Multibus board. 
IEEE-P7116 and Motorola do not agree on the addressing of bytes in a word. IEEE-P796 and 
Motorola both agree that there are 16 bits in a word and that is about all they agree on. The 
disagreement about which end of the word contains byte O leads us into two separate problems, 
with two separate fixes you must apply: 
1, You are moving a single ·61/fe across the interface between the MC68000 and the P796 Bus. 

Because of the disagreement about which end of the word the byte actually appears in, you 
have to toggle the least'signiflcant bit of the 611te address. 

2, You 11re moving a whole HI-bit word across the interface between the MC68000 and the 
P7116 Bus. This word actually contains a byte structure destined for the device on the other 
side of the bus. The device will interpret the byte-order different from what you thought, 
and so in this case you must physically swap the bytes in the word before you ship the 
word rcross the bus int,rface. 

Here are a few pictures describing the problem in detail: 
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Motorola Byte Ordering 

bit 1& bit 0 

ByteO Byte! 

IEEE-P'l98 Byte Ordering 

bit 1& bit 0 

Byte 1 ByteO 

That is, Motorola places byte O in bits 8 thru 16 of the word, whereas IEEE-P796 places byte 1 
in those bits. The only place where this causes trouble is when you are moving a single 6,te 
across the interface between the MC68000 and the Multibus. If you did everything with the 
68000, or everything on the Multibus, there would never be any conflict, since things would be 
consistent. However, as soon as you cross the boundary between them, the byte order is 
reversed. What this means in practice is that you have to toggle the least significant bit of the 
address of any 6,te destined for the Multibus. 

0 

To clarify this, consider an interface for a hypothetical Multibus board containing only two 8-
bit 1/0 registers, namely a control and status register (car) and a data register (we actually use 
this design later OD in our example of 8 simple device driver). In this board, we place the com• o· 
mand and status register at Multibus byte location 000, and the data register at Multibus byte 
location 601. The Multibus picture of that device looks like this: 

Hypothetical Board Reglatera 

bit 1& 

Location 801 

DATA 

bit 0 

Location 800 

CSR 

But the 68000 processor views that device as looking like this: 

Hyp~hetlcal Board Reglatera 

bit 16 bit 0 

Location 800 Location 801 

CSR DATA 

so that if you were to read location 600 from the point of view of the 68000 processor, you'd 
really end up reading the DATA register off the Multibus instead. So, when we define the ,ktlev- o 
ice data structure for that board, we define it like this: · 
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atruct skdevice { 
char sk_data; 
eh ar sk_csr; 

}; 

/• 01: Data Regiater •/ 
/• 00: command(w) and ,tahu{r) •/ 

This rule (flipping the least significant bit of the address) holds good for all bgte transfers which 
croas the line between the MC68000 and the Multibus. 
Take special care when a Multibus device structure contains mixed bytes and words. Many of 
the Multibus device controllers on the market are geared up for the 8-bit 8080 and Z80 style 
chips, and don't understand 16-bit data transfers. Because of this, such controllers are quite 
happy to place what is really a word quantity (such as a 16-bit address which must be two-byte 
aligned in the MC68000) starting on an odd byte boundary. Some of the device drivers use 16-
bit or 20.bit addresses (many don't know about 24-bit addresses), and it often happens that you 
have to chop an address into bytes by shifting and masking, and assign the halves or thirds of 
the address one at a time, because the device controller wants to place word-aligned quantities 
on odd byte boundaries. Note also that many Multibus hoards are geared up for the 8086 fam
ily with its segmented adress scheme. An 8086 (20.bit) address really consists of a 4-bit segment 
number and a 16-bit address. You usually have to deal with the 4-bit part and the 16-bit part 
separately. For a good example of what we're talking about here, look at the code for vp.c, 
(attached as an appendix to this document). 

2.2.3, Thins• to Watch tor in Multibus Boards 

Although there are a myriad .of vendors offering Multibus products, be aware that the Multibus 
is a 'standard' that evolved from a bus for 8-bit systems to a bus for 16-bit systems. Read ven
dors' product literature core/ul/11 (especially the fine print) when selecting a Multibus board. 
The memory addreH apace,.of the Multibus is ,uppo,etl to be 20 bits wide or 24 bits wide and 
the 1/0 addresa epace of the Multibus is 1uppoud to be 16 bits wide. In practice, some older 
boards are limited to 111 bit, of address apace and only 8 bits of 1/0 space. In particular, watch 
for the following things: 
• For a memory-mapped board, ensure that the board can actually handle a full twenty bits of 

addressing. Older Multibus boards often can only handle sixteen address lines. The Sun 
system asaumea there is a 20-bit Multibus memory space out there. If the Multibus board 
you're talking at can only handle 16-bit addresses, it will ignore the upper four address lines, 
and this mean, that such a board 'wraps around' every 64K, which means that in our sys
tem, the addresses that such.a board responds to would be replicated sixteen times through 
the one-Megabyte addresil space on the Multibus. 

• A memory-mapped Multibus board that uses 24-bit addressing (thereby using the P2 bus on 
the backplane) musi us~ a P2 bus that is physically isolated from the P2 bus that any Sun 
boards u,e. See the Sun Configuration Guide for information on configuring boards in the 
backplane. 

• For an 1/0-mapped hoard (one that uses I/0 registers), make sure that the hoard can han
dle 16-bit 1/0 addressing, Some older boards can't cope and only use eight-bit 1/0 address
ing. In our system, the address spaces of such boards would find themselves replicated every 
256 bytes in the 1/0 address space. Trying to fit such a board into the Sun System would 
severely curtail the number of 1/0 addresses available in the system. 

• Watch out for boards coittaining PROM code that expects to find a CPU busmaster with an 
. Intel 8080, 8085, or 8086 on it. Such boards are of course useless in the Sun System. 
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• Take special care to determine how the board generates interrupts. A board should put up 
an interrupt when the device it is controlling is ready for more data anti the board is ready 
for more data - we have experienced designs where the interrupt indicated that the board O· 

was ready, or the device was ready, but not both at once. A board should ideally come up 
in its power up state with interrupts disabled and only start interrupting when told to. 
There should also be a way to determine that a board has actually generated an interrupt. 
Finally, an interrupting board should shut off its interrupt when it is told to. 

2.3. DMA Devices 
Many deyice controller boards are capable of what is known as Direct Memory Access or DMA. 
This means that the processor tells the device controller the address in memory where a data 
transfer is to take place, plus the length of the data transfer, and then tells the device controller 
to start the transfer. The data transfer then takes place without further intervention on the 
part of the processor. When the transfer is complete, the device controller interrupts to say 
that the transfer is finished. 

2.3.1. Sun Multibus DVMA 

Direct Virtual Memory Access (DVMA) is a mechanism provided by the Sun memory manage
ment unit that allows DMA from devices on the Multibus to Sun processor memory, or from 
Multibus master devices directly to Multibus slaves without going through processor memory. 
DVMA uses the first 256K bytes of the Multibus address memory address space to map 
addresses between Sun processor memory and the Multibus memory address space. 
On the Sun-2, the memory management unit is always listening to the Multibus for memory 
references. When a request to read or write Multibus memory between addresses O and 256K 
comes up, the DVMA hardware takes the address, adds OxFOOOOO to it,1 and goes through the 
kernel memory map to find the location in processor memory that will be used. Thus if you 
wish to do DMA over the Multibus, you must make the appropriate entries in the kernel 
memory map. As you might expect, there are functions to help with this chore. 

2,4, Allocation of Multibus Memory and 1/0 in the Sun System 

Here are some simple rules for the way that Multibus memory resources are doled out in the 
Sun system. 
No devices may be assigned addresses below 256K in Multibus memory space; the CPU uses 
these addresses for DVMA .. 
Devices that interface to the Sun system do so either through 1/0 registers in Multibus aildress 
space, or through the Multibus memory space. In some cases, a device may have both 1/0 
registers and memory on the Multibus. The Sun system makes the assumption that any 
address lower than 64K is a Multibus 1/0 address. This is a reasonable assumption given that 
user-installed Multibus memory cannot appear in this region of the address space anyway. This 
assumption is carried through into the autoconfiguration routines in that addresses less than 
64K are automatically mapped to the Multibus 1/0 address space. 

1 The system places the Multibii, memory address space at locatian OxFOOOOO in the virtual ad
dress space. 
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To configure such a device, 
1. the probe function for the device driver must return the amount or Multibus memory space 

that the device uses, 
2. Multibus 1/0 address space is at 'mbio' and may be addressed as such, 
3. the autoconfiguration utility (config) can not deal with 1/0 address space at the oame time 

as memory address space for the same device. 
The table on the next page shows a map or how Multibus memory is laid out in the Sun sys
tem. 
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Table 3: Sun-2 Multibus Memory Map 

Address Device 0 
OxOOOOO DVMA Space 

. (256 Kbytes) . 
Ox3f800 DVMA Space 

Ox40000 Sun Ethernet Memory (*1) . 
. ( 256 Kbytes) 

Ox7f800 Sun Ethernet Memory (*1) 

Ox80000 SCSI (*1) 
. 
. (16 Kbytes) 

Ox83800 SCSI (*1) 

Ox84000 SCSI (*2) 

. (16 Kbytes) 

. 
Ox87800 SCSI (#2) C 
Ox88000 Sun Ethernet Control Info (*l) 

. 

. (16 Kbytes) 

Ox8b800 Sun Ethernet Control Info (#1) 

Ox8c000 Sun Ethenet Control Info (#2) 
·, 

. (16 Kbytes) 

Ox8f800 Sun Ethernet Control Info ( *2) 

Ox90000 ••• FREE ••• 

• (64 Kbytes . 
Ox9f800 ••• FREE ••• 

0 
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Address Device 

0 OxaOOOO Sun Ethernet Memory (#2) 
. 
• ( 64 Kbytes) 

Oxaf800 Sun Ethernet Memory (#2) 

OxbOOOO •** FREE ••• . 
• (64 Kbytes) 
. 

Oxbf800 u• FREE u• 
OxcOOOO Sun Model 100 or Model 150 Frame Burrer 

• (128 Kbytea) 
. 

Oxdr800 Sun Model 100 or Model 150 Frame Buffer 

OxeOOOO 3COM Ethernet (*l) 
Oxe0800 3COM Ethernet (#1) 
OxelOOO 3COM Ethernet (*l) 
Oxel800 3COM Ethernet (*1) 

0 
Oxe2000 3COM Ethernet ( #2) 
Oxe2800 3COM Ethernet ( *2) 
Oxe3000 3COM Ethernet (*2) 
Oxe3800 3COM Ethernet (*2) 

Oxe4000 ••• FREE ••• 
........ . 

• (16 Kbytes, 
. 

Oxe7c00 ••• FREE ••• 
Oxe8000 Sun Color 

. 
• ( 64 Kbytes) . 

Oxf'7800 Sun Color 

OxfBOOO ••• FREE ••• 
. • (16 Kbytes) 

. 
Oxff800 ' ••• FREE *** 

0 
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2.6. Multibus Resource Management 

The following data structures in fact reflect the layout of. information in the configuration file Q 
which we describe in a later part of this paper. Controllen and devices can be thought of as 
being attached to the Multibus Certain kinds of devices (disks and tapes) are then thought of as 
being slaves to their controllen. This layout gives rise to three data structures whose descrip-
tions exist in the header file /u,r/includ.e/1und.e11/m611ar.A. 
Multi6u, The flrst data structure is the Multibus header data structure. The fact that it is 

called 'Multibus' is a complete red herring - it is simply a hook to hang all the 
other data structures on. The Multibus data structure contains a list of controll
en using this resource. 

Controller Contains a list of structures t'hat describe controllen. There is sometimes consid
erable confusion as to exactly what is a controller and what is a device. Essen
tially a controUer is a piece of hardware that can control more than one device, 
but on/11 one data tram/er can 6e acti11e at a time. Each device controller on the 
Multibus has a structure associated with it. The structure is called m6_ctlr and 
can be found in /u1r/includ.e/1unl.c11/m6t1Gr.A. 

Device Contains a list of devices. Each device driver has a data structure describing how 
the Multibus resource-management. routines view the driver. The per-driver data 
structure is called m6_dri11er and can be found in /u,r/inc/ud.e/,un,/.e11/m611ar.h. 
The device data structures are either hooked directly onto the Multibus header 
structure, or they are hooked to controller structures in which case the devices are 
said to be 1/111111 to their controllen. The device structure, m6_d.river, is the 
really important data structure that you need to be concerned with when writing 
a driver. Here is the layout of the m6_d.ri11cr structure: 

struct mb_driver { 0 
int (•mdr..J)robe)(); /• see if a driver is really there •/ 
int (•mdr_slave)(); /• see if a slave is there •/ 
int (•mdr_attach)(); /• setup driver for a slave •/ 
int (•mdr_go)(); /• routine to start transfer •/ 
int (•mdr_done)(); /• routine to finish transfer •/ 
int (•mdrjntr)(); /• interrupt routine•/ 
uJong •mdrjoaddr; /• device car addresses•/ 
uJong •mdr_maddr; /• device memory address•/ 
int mdr_size; /• amount of memory space needed•/ 
char •mdr_dname; /• name of a device•/ 
struct mb_device ••mdr_dinfo; /• backpointen to mbdinit structs •/ 
char •mdr_cname; /• name of a controller•/ 
struct . mb_ctlr .. mdr_cinfo; /• backpointen to ml>cinit structs •/ 
short mdr.Jlags; /• want exclusive use of Multibus • / 
struct · mb_driver •mdr_link; /• interrupt routine linked list •/ 

}; 

Here is a brief discussion or the fields in the m6_d.ri11er structure and what parts of it you need 
to fill in when declaring m6_d.rillcr: 
mdrJro6e 

14 

is a pointer to a probe function within your driver. Pro6e determines if the device for 
which this driver is written is really there in the system. Fill in this field only if your driver 
has a pro6e routine (it generally will). 
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mdr_,lave 
is a pointer to a ,lave function within your driver. Fill in this field for controllel'!I that have 
more than one device. The ,lave function always returns a 1. 

mdr _attacA 
is a pointer to an attacA function within your driver. The attacA function does preliminary 
setup work for a slave device. Typical applications include reading the label from a disk. 
Fill in this field only if there is an attacA routine in your driver. In general, the drivel'!! we 
are considering in this paper don't have attacA routines, and so you fill in a zero ( 0) in this 
field. 

mdr_go 
mdr_done 

are pointel'!I to go and done functions within your driver. These fields are usually zero for 
the types of drivers we talk about in this paper. They are normally for disk drivel'!! who 
can't afford to wait for mb,etup. 

mdr _intr 
is a pointer to an interrupt routine (function) within your driver. Fill in this field if your 
driver actuall hu an interrupt routine (in general it should). If your driver doesn't have an 
interrupt routine, fill in a zero (0) in this field. 

mdr_iooddr 
points to an array of uiielgned long's declared within your driver. The array contains the 
address(es) of the device in Multibus 1/0 space. The last entry in the array should be a 
zero. If your device actually exists in Multibus 1/0 space, you must fill in this field with 
the name of the array in your driver, otherwise piece a zero (0) here. The system uses the 
array of addresses u parameters to the driver's probe function at system startup time. 

~:. 

mdr_maddr • 
points to an array of unalgned long's declared within your driver. The array contains the 
address( es) of the device in Multibus Memory space, The last entry in the array should be 
a zero. If your device actually exists in Multibus Memory space, you must fill in this field 
with the name of the array in your driver, otherwise place a zero (0) here. The system uses 
the array of addresses u parameters to the driver's probe function at system startup time. 

mdr_,i,i · . 
1 

, 

is the size in bytes of the amoull.t 1>f memory that a memory-mapped device requires. This 
field mu,t be filled in if mdr_maJJ, is WJed for a memory-mapped device. 

mdr_dname .. ,. 
is the name of the device for which this driver is written. This field takes the form of a reg
ular null-terminated C string. 

mdr_din/o 
an array of pointen to mb_device structures. Auto configuration fills in the pointers, then 
the driver can acceu m6_de11ice structures if it wants to. 

mdr_cname 
is the name of the controller for which this driver is written. This field takes the form of a 
regular null-terminated<, string. Fill in this field if you actually have a controller. 

md,_cinfo 
an array of pointers t<, · ·;nb_controlle, structures. Auto configuration fills in the pointel'!I, 
then the driver can acc~ss mb_controller structures if it wants to. 

mdr..ftag, 
consists of some flags, ii; /ollows: 
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MDR..:XCLU 
needs exclusive use of bus 

MDR.J)MA 
device does Multibus DMA 

MDR_BWAB 
Multibus bulfer must be swabbed 

MDR_OBIO 
device in on-board 1/0 space 

Sun System lnternala Manual 

These flags must be OR 'ed together if you wish to place any of that information there. 
Place a zero (0) in this field if none of the flags apply to this driver. 

md,_link 
Thia field is used by the autoconfiguration routines and is not for the driver's use. 

2,6, Getting the Board Working and in a Known State 

This section discusses getting the hardware device controller operational and in a known state, 

Before you even think about writing any code you should cheek out the Multibus board by pel'
forming various teats. 
First, make sure that the board is properly set up as defined in the vendor's manual. Things 
you have to select in general are: 
• 1/0 register addresses for those boards that use 1/0 ports on the Multibus, 
• Memory base addre1111 for those boards that use memory space on the Multibus, 

• Interrupt level selection. 
Then, take your system down and power it olJ. Plug your Multibus board into the card cage 
and attempt to bring the system back up. If you cannot boot the system, then there is a prob
lem such as the board not really working or the board responding at an address used by other 
boards in the system. You must resolve this problem before proceeding further. 
Next take your system down again and see if the device responds. from the monitor, try some 
or the following things: 
• Try reading rrollt:the board statue register(s) if there are any. 

• Try writing to t~J board. control or data .register(s) if there are any. Then try reading the 
data back to see I it got written properly (assuming that the board can read back what you 
wrote). . · · 

• Try sending data\ilj the actual device itself through the board if this is poaaible. 

• Switc~ the actual device amine and online and watch the status bits go on and off (if this is 
possitil). 

For example, if you have a line printer, try to print a line with a few characters. Be aware that 
bit and byte ordering issues are critical in The section just below on U,ing tlae Sun CPU PR OM 
Monitor has some hints on reading and writing device registers. Be aware that bit and byte 
ordering issues are critical in this process; the main reason for doing this step is to discover 
what the board really does. When you have developed confidence in how the board works you 
can proceed to write a driver for it. 
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2,8,1. Using the Sun CPU PROM Monitor 

To do some of the poking around as described in the previous paragraphs, you can use the CPU 
PROM monitor whose commands are described in detail in the S11atem Internal, Manual. The 
PROM monitor has commands for looking at memory locations. So if you have located your 
new Multibus board at a specific place in the address space, you could use the monitor to look 
at that place to see if there's anything there. For example, if you think your board has an 1/0 
control register at l~ation Ox.ioo, you could use the monitor's 'open a byte location' command 
to look at that place ID memory: 

> 0 eb4hi>o 
and so on. If you get a bus error timeout, the board isn't there and you have to go back to the 
manual to see if you've set the address jumpers correctly. 
Here are a couple of notes about using the monitol:' to look at devices. When you use the 
Monitor's 'o' command to open a location, the Monitor reatl, the contents of that location and 
displays them before askh1g you what you want to put there (if anything). Now some devices 
(the Intel 8251A and the Signetics 2651 immediately spring to mind) use the oame location 
(register) to address two separate intemal mode registers, and the chip has internal state-logic 
that sequences around them ·in 1·2·1·2 ... order. So suppose you want to put something in mode 
register 1 of the 8251! You open that location, the Monitor displays the contents, and you then 
write the byte. Beins cautious, you then open that location again and bingo! the data you 
wrote isn't there - it's in the second register because the action of reading that location 
sequenced you on to the second register. To do this thing right you have to use the Monitor's 
'write without looking' facilit1 and then read the locations back later to check. 
Another chip that has internal sequencing logic of this type is the NEC PD7201 PCC. This 
chip has a a bunch of inteirial data registers. You load data-register O with the number of the 
data register into w hi~h the next byte of data will go, then you send the byte of data and it 
goes into that specific dati register, and then you are back to data-register O again, all done 
with internal seqi!encing logic. ' 
Another chip ot Ji 

1
sim:llar ilk is the AMD 9613 timer. This chip has a data pointer register for 

pointing at the da~a-regiater into which a data byte will go. When you send a byte to the data 
register, the pointer gets incremented. The design of the chip is such that you con 't read the 
pointer regi,ter to find out what'• in it! 
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3. Device Drivers 

This section discusses the major issues in creating a device driver for the system. 0 
A first step in writing a device driver is deciding what sort of interface the device should pro-
vide to the system. The way in which reatl and wite operations should occur, the kinds of con-
trol operations provided via ioctl, and whether the device can be mapped into the user's 
address space using the mmap system call, should be decided early in the process of designing 
the driver. 
Device driven have access to the memory management and interrupt handling facilities of the 
UNIX system. The device driver is called each time the usei- program issues an open, clo,e, 
read, wite, mmap, or ioctl system call. The device driver can arrange for 1/0 to happen syn
chronously, or it can allocate buffers 90 that output can proceed while the user proceu runs, or 
gather input while the user proces1 is not waiting. 

3.1. Uaer Addreu Space veraua Kernel Addreu Space 

A device driver is a part of the kernel. The kernel uses a completely different virtual address 
space from the virtual address space that a user proceu uses. When a device driver function is 
invoked through a system call, the driver must often map data from the user virtual address 
space to the kernel's virtual addreu space ( most oftyen in the case of some DMA devices). 
Functions and macros are provdied to allow thi1 'dual' mapping of data. Normally the kernel 
can only accesa data that is addreHable in its own address space. 

3.2. Uaer Context and Interrupt Context 

A device driver has a top half and a bottom half. The top half is the part of the driver that runs 
only in the context of a user proceu making requests on the driver. The top half of a driver 
can start tasks which can cause long delays during which the system would want to switch to 
another process and continue doing useful work. When -this happens the driver uses the ,lccp 
primitive to wait for a particular event to occur. Thus if a user program issues a reo,l on (say) 
an A/D converter, the process would normally ,lecp until some input arrived. The driver could 
also use the iowait call for transfers that have already started. 

The bottom hal/ llt a device driver is the part that runs at interrupt level. Thus in an A/D con
verter driver, the converter might interrupt when a sample was available. The bottom half of 
the driver could then store the data in a buffer and wakeup any user process sleeping in the top 
half 90 that that process could retrieve the data. If there was no user process sleeping in the 
top half, the wakeup would _do nothing, but the next process to read the A/D driver would find 
the data already there and would not have to ,leep. 

3.3. Oevice Interrupts 

0 

Each hardware device interrupts (that is, the device ,houltl interrupt) at some priority level, 
trapping from wherever the system is currently executing, into the bottom half of the device 
driver at that priority level. This means that the top half of the device driver can be inter
rupted at any time by the bottom half of the driver. The top half and the bottom half share 
data structures which they wish to keep consistent. An example of such a data structure might 
be a pointer to a current buffer and a character counter. The top half of the driver must 0 
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protect itself so that data structures can be updated as atomic actions, that is, the bottom half 
must not be allowed to interrupt during the time that the top half is updating some shared data 
structure. The way this protection is done is to bracket the critical sections of code (that 
updates or examines shared data structures) with a subroutine call that raises the processor 
priority to a level where the bottom half cannot interrupt. Such a piece of code looks like: 

s - splx( liardware...J1riorit1,1); 
critical aection of code which cannot be interrupted 

(void)splx(s); 

Note here that we raised the processor priority level and then restored the processor priority 
level after the protected sec.tion of code. (Determining the correct Aardware_prioritu will be dis
cussed later.) One section of code that almost always needs to be protected is the section where 
the top half checks to see if there is any data ready for it to read, or whether it can write data 
or start the device. Since the device can interrupt at any time, the section of code that checks 
for input in this fashion is wrong: 

lf (no input ready) . 
sleep (awaitini. input, software_priority) 

because the device might ·"ell interrupt wlute the If condition is being teated, or while the 
preamble code for the 1/scp lunction is being executed. 
The above aection of code mµst be rewritten to look like this: 

s - splx( Aardl//arc...J1rioril1,1)1 
whlle (no input ready) 

sleep (awaiting input, software_priority) 
(void)splx(s); 

If tlie top half executes the_ ,/eep system call, the bottom half will be allowed to interrupt, 
because the hardware priority level is reset to O as soon as the ,/eep context switches away 
from this process. 

3,4, Interrupt Leve.Ia 

In many cases it is possible to set the interrupt level a device will interrupt at by setting 
switches on the board. If so, you must decide what level this device is going to interrupt at. At 
first it may seem that your device is very high priority, but you must consider the consequences 
of locldns out other devices.: 
• If you lock out the clock (level 5) time will not be accurate, and the UNIX scheduler will be 

suspended. · · 
• If you lock out the on• boatd UAR TS (level 6) characters may be lost. 
• If you lock out the Ethernet (level 3), packets may be lost and retransmissions needed. 

• If you lock out the disks (level 2), disk rotations may be missed. 
• Level 1 is used for software interrupts and cannot be used for real devices. 

In general, it is beat to use level 2 to avoid the consequences of locking out other important sys
tem activities. 
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3.5. Some Common Service Functions 

The kernel provides clusters or common service functions which device drivers can take advan- Q 
tage or. The common service functions fall into these major catagories: 

Timeout Facilitie, 
are available when a device driver needs to know about real-time intervals. 

Sleep and Wakeup Facilitie, 
suspend and resume execution of a proceaa. 

Rai,ing and Lowering Interrupt Prioritie, . 
Lock out devices by raising proceaaor priority leve to stop the devices interrupting during 
critical operations (such u accessing shared data structures). 

Multi6u1 Re,ource Management 
includes the routines m6,etup and m6ref,e for scheduling the Multibus resources. 

Buffer Hnder Management 
Manages the in-memory disk buffer cache. We aren't dealing with disk drivers here so this 
needn't concem us. 

There is also a kemel-specillc version of the print/ routine. The kernel print/is 

3.5.1. Timeout Mechanisms 

Ir a device needs to know about real-time intervals, timeout(/unc, arg, interval) is useful. 
Timeout arranges that after interval cloc~-ticks (fiftieths of a second) , the /unc is called with 
arg u argument, in the style ( "func)(arg). Timeouts are used, for example, to provide real-time 
delays after function charactera like new-line and tab in typewriter output, and to terminate an Q· 

attempt to read a device if there is no response within a specified number of seconds (that is, 
there wu a loat interrupt) .. Aleo, the specified /unc is called at clock-interrupt time, so it should 
conform to the requirements of interrupt routines in general (you can't call aleep from within 
/unc for instance). 

3.5.2. Sleep and Wakeup Mechanism 

The other major help available to device ha.idlers i1 the sleep-wakeup mechanism. The call 
,leep(event, 10/tware_priorit11) causes the process to wait (allowing other proceaaes to run) until 
the event occurs; at that time, the process is marked ready-to-run and the call retums when 
there is no proceaa with higher 1oftwarc_priorit11. 
The call wakeup(event) indicates that the event has happened, that is, cauns processes sleeping 
on the event to be awakened. The event is an arbitrary quantity agreed upon by the sleeper 
and the waker-up. By convention, it is the address of some data area used by the driv.er (for a 
specific device if there is more than one minor device), which guarantees that events are unique. 
Proceaaes sleeping on an event should not assume that the event has really-happened when they 
are awakened; they should i:heck that the conditions which caused t&.em to •leep no longer hold. 
Software priorities can range from O to 127; a higher numerical value inclicates a less-favored 
scheduling situation. A distinction is made between proc:esses sleeping at priority less than the 
parameter PZERO and thoae at numerically larger priorities. The former cannot be interrupted 
by signals. Thus it is a bad idea to sleep with priority less than PZERO on an event which 
might never occur. On the other hand, calls to aleep with larger priority may never return if 
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the process is terminated: by some signal in the meantime. In general, sleeps at less than 
PZERO should only be waiting for fast events like disk and tape i/o completion. Waiting for 
human activities like typing characters should be done at priorities greater than PZERO. 
Incidentally, it is a gross error to call ,leep in a routine called at interrupt time, since the pro
cess which is running is almost certainly not the process which should go to sleep. Likewise, 
none of the variables in the user area 'u,' should be touched, let alone changed, by an interrupt 
routine. 

3.5.3. Raising and Lowering interrupt Priorities 

At certain places in a device driver it is necessary to r11ise the hardware interrupt priority so 
that a section of critical code cannot be interrupted, for example, while adding or removing 
entries from a queue, or modifying a data structure common to both halves of a driver. 

The ,plz function changes the interrupt priority to a specified level, and returns a value which is 
what the level wu before it changed. 

For configuration reasons, the routine: 

pritospl(mc->mcjntpri) 

must be used to convert from the Multibus hardware interrupt level to the CPU hardware 
priority level. Here ia how .you normally use the prito,pl and ,plz functions in a hypothetical 
,trateg11 routine: 

hypo_strategy(bp) 

{ 

} 

resister atruct }uf •bp; 

register atruct .mb_ctlr •me - hypoinfo(minor(bp->b_dev)); 
Int s; 

s - splx(pritospl(mc->mcjntpri)); 
while (bp->b_llags & BJ3USY) 

sleep((cadclr_t)bp, PRIBIO); 
. . ' 
Afre i, ,arlle critical coJe aection 

' ' I 
splx(s); /• Sdpriorit11 to what it wa, previou,111 •/ 
• , I 

3,5,4, Multibus Resource Management Routines 

The routine m6,etup is called when the device driver wants to start up a transfer to the device 
using Multibus resource management. 

At some later time, when the transfer is complete, the device driver calls the mbrclae routine to 
inform the Multibus resource manager that the transfer is complete and the resources are no 
longer required. 
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3.6. Kernel printf Function 

The kernel provides a prin/ (unction analogous to the print/ function supplied with the stan• o-

dard 1/0 package (or user ·programs. The kemel print/ writes directly to the console however. 
When using the kernel print/, you should not use any floating-point conversions. The kernel 
print/ (unction can be used to debug a driver. 

3.6.1, Macros to Manipulate Device Numbers 

A device number (in this system) is a 16-bit number divided- into two parts called the major 
device number and the minor device number. There are macros provided for the purpose of iso
lating the major and minor numbers Crom the whole device number. The macro 

major(dev) 

returns the major portion of the device number dev, and the macro 

minor(dev) 

retums the minor portion of the device number. Finally, given a major and a minor number s 
and II, the macro 

makedev(x,y) 

creates a device number from the two portions. 

3.7. Overall Layout of a Device Driver 

Here is a summary of the kit or parts that comprises a typical device driver. In any given 0 
driver, some routines may be missing. In a complex driver, all of these routines may well be 
present. A typical device driver consists or a num her of major sections, containing the routines 
described below. 
Auto Configuration 

called by the kemel at system startup time to determine if the devices actually exist. This 
section contains the probe routine. 

Opening and Clo,ing the Dellic~ 
The open routine is called (or each. instance of an open or create request against that file. 
The clo,e routine is called when a clo,e request is made against that file (or the last time. 

Reading and Writing from or lo the Device 
The read and write routines are called to get data Crom the device, or to send data to the 
device. The read and write routines may use the tllf interlaces for devices such as terminals, 
or they might use a ,1rafeg11 routine to handle devices that trans(er data in chunks. Stra
teg11 is most o(ten used (or DMA (Direct Memory Access) transfers, where the actual data 
buffer must be mapped "in (or the duration of the transfer. 

Start Routine 
The ,tart routine is called to actually initiate the 1/0 operation. Start is needed in drivers 
that queue requests; it is called Crom the reoti, write or ,trotew routine to start the queue 
and is also called Crom the interrupt routine to start the next element on the queue. 

Mmap Routine 
The mmap routine is present in cases where it is required to map the device into user 
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memory - a frame buffer for instance. 

Interrupt Routine 
The interrupt routine of a device driver is called to service interrupts, possibly from the 
device for which this driver exists. However, there can be more than one device sharing the 
same interrupt level, and it is then also the task of the interrupt routine to determine if the 
interrupt is actually destined for this driver, or for some other driver. 

Ioctl Routine 
The ioctl routine is called when the user process does an ioctl system call. A typical use is 
to change the baud-rate for a serial interface. 

3.8. A Very Buie Skeleton Device Driver 

At this stage, we quit discussing the 1/0 system and start writing a very simple device driver. 
This model will be one of the simplest drivers we can produce. There is a complete version of 
this driver in the attachments to this manual - the parts are presented piecemeal here with 
some discuuion on their functions. 
What we do here is to invent an interface boarJ called a Skeleton controller. The Skeleton 
board is a very simple 1/0 mapped board, that is, it uses 1/0 ports in the Multibus 1/0 address 
space. The Skeleton board has a single-byte command/status register, and a single-byte data 
register. You can only write data to the outside world from the Skeleton board. This board is 
not a slow teletype style interface - you can provide vast blocks of data and the board sends it 
all out very fast. The Skeleton board interrupts when it is ready for a data transfer. The 
board comea up in the power on state with interrupts disabled and everything else in a 'normal' 
state. 
The status register of the Skeletoil interface is located at Ox600 in Multibus 1/0 space, and the 
data register at Ox601. The status register is both a read and a write register. The bit assign
ments are as sho'lfn i11- the tables below. 

BIT 

R•d 

BIT 

Wrllt 

,, 
8 

111,r-
n,pl 

8 

.•. 7 5 

7 6 5 

Here is a brief deacription of,what the bits mean: 

When reading from the stat~ register 

4 

Device 

Ready 

4 

3 
Interface 
Ready 

3 

Reset. 

bit 8 is a 1 when the board is interrupting, 0 otherwise. 

2 

2 

I 
Interrupt 

Enabled 

1 
Euble 

Interrupt 

· bit 4 is a 1 when the device that the boatd controls is ready for data transfers. 

bit 3 is a 1 when the Skeleton board itoelf is ready for data transfers. 
bit l is a l whe11 interrupts are enabled, 0 when interrupts are disabled. 

When writing to the stat us register 
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bit 3 resets the Skeleton board to its startup state - interrupts are disabled and the 
board should indicate that it is ready for data transfers. 

bit 1 enables interrupts by writing a 1 to this bit, disables interrupts by writing a 0. 

The header file for this interface is in ,kreg,la. By convention, we put the register and control 
information for a given device (say :i:11) in a file called Zll'eg.la. The actual C code for the z11 
driver would by convention be placed in a file called :i:11,c. The header file for the Skeleton 
board looks like this: 

!• 
• R egi,ter, for Skeleton Multibu, I/ 0 Interface 
•/ 

•truct skJeg { 
char sk_data; 
char sk_csr; 

/• 01: Data Regi,ter •/ 
/• 00: command{w) and ,tatu,(r) •/ 

}; 

/• ,k_c,r bit, (read)•/ 
#define SK_INTR Ox80 /• 1 if device,·, interrupting •/ 
#define SK_DEVREADY Ox08 /• Device i, Read11 • / 
#define SK_INTREADY Ox04 /• Interface i, Read11 •/ 
#define SKJNTENAB OxOl / • Interrupt, are enabled • / 

/• ak_c,r bit, (write/•/ 
#define SK_RESET 
#define SK_ENABLE 

Ox04 / • re,et the device and interface • / 
OxOl /• Enable interrupt, • / 

The complete device driver for the Skeleton board consists of the following parts: 

,kprobe 
is the autoconfiguration routine called at system startup time to determine if the ,k board 
is actually in the system. 

,kopen and ,kclo,e 
routines for opening the device for each time the file corresponding to that device is opened, 
and for closing down after the last file has been closed. 

,kwrite . 
routine which is called to· send data to the device. 

,k,tratew 
routine which is called from the write routine via pla111i'o to initiate transfers of data. 

,k,tart 
routine which is called for every byte to be transferred. 

,kintr 
the interrupt routine which services interrupts and arranges to transfer the next byte of 
data to the device. 

The subsections to follow describe these routines in more detail. 
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Q 3.9. General Declarations in Driver 

0 

In addition to including a bunch of system header files, there are some data structures which 
the driver must define. 

*include "sk.h" 

*define SKPRI 

/• header file generated 611 confio (define, NSK)•/ 

(PZER0-1)/• 10/fware ,leep priorit11 /or ,le•/ 

*define SKUNIT(dev) (minor(dev)) 

atruct buf rskbuf(NSK); 

lat skprobe(), skintr(); 

ujong skaddrs0 - { Ox600, O}; 

atruct mb_device •skdinto(NSK); 
atruct mb_driver skdriver - { skprobe, O, 0, O, O, skintr, 

skaddrs, O, 0, O, O, "sk", skdinto, 0, 
}; 

atruct sk_device { 
1truct buf •sk_bp; /• current bu/•/ 
lat sk_count; /• number of blfle• to ,end•/ 
char •sk_cp; /• ned 611te to ,end•/ 
char sb_busy; /• true i/ device i, bu,11 •/ 

} skdevice(NSK); 

Here's a brief discussion on the declarations in the above example. 
,Ir.la Ille is generated by the confio program (discussed later). It contains the definition of 

NSK, the number of sk devices configured into the system. 
SKPRI declaratlol,l declares the software priority level at which this device driver will sleep. 

SKUNIT macro is I common way of obtaining the minor device number in a driver. Study 
just about any device driver and you will find a declaration like this - it is a styl
i1ed way of referring to the minor device number. One reason for this is that some
times a:n·ver will encode the bits of the minor device number to mean things other 
than j !the device number, so using the SKUNIT convention is an easy way to make 
sure tha II things change, the code will not be affected. 

r,/c6v/ arrsy is necessary so that there will be 6u/ structures to pass to the phyaio routine. 
Ph111io will fill in certain fields before calling our atrateg11 routine with the 6u/ struc
ture as the argument. 

• Then there is a definition of the system dependent entry points into the device driver. In this 
driver, the only entry points we use are akprobe .(probes the Multibus during system 
configuration time) and ,kintr (interrupt routine). 

1/caddr, is the list of addresses that this device appears on in the Multibus address space. 
The address of this array appears in the akdriver strucure defined below. 
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,kdinfo is the dewee structure for this driver. The system autoconflguration routines fill in 
the apporpriate fields in this structure at startup time. 

,kdriver is a definition of the driver structure for this driver. An explanation of the ll.elds in 
this structure and when they should be filled in appears earlier in this chapter. 

,k_dcwee is a dellnition of a structure that holds state information for each unit. Thia is infor
mation specific to this driver that needs to be remembered between subroutine calls. 

3.10. Autoconflguration Procedures 

Part of a device driver's work is handling the automatic determination of the aystem 
configuration. When the Sun UNIX system boots up, it determines the peripheral conllguration 
details by probing the Multibus memory space and Multibus 1/0 space of the machine. 
Note that the autoconllguration routines make some assumptions about where things are in the 
system: 

• Any address less than 64K is a11umed to be Multibus 1/0 address apace. 

• Addresses less than 256K_are assumed to be for DVMA purposes. 
• The autoconflguration rouiines search the addresses specified in the configuration Ille as well 

as the addresses specified in the driver. 

3.11, Probe Routine 

There should be a probe function in every driver. Probe is called at system initialization time 
with an address to be probe4, Probe has two functions: 

1, To determine if the device that this driver is written for exists at the specified address, and: 
2. To make the kernel aware of how .fDuch of the system 'a resources to reserve for that device. 
Under normal cireumstail.cee, addressing non-existent memory or 1/0 apace on the Multibus 
generates a bus error in the· CPU. The kemel provides some functions to probe the addre11 
apace, recover from possible bus erro11, and return an indication as to whether the attempt to 
address a specific location generated a bus error. 

Determining whether a device actually exists or .1ot is assisted by the functions peek, pceke, 
poke, and police. These functions provide for acce11ing po11ibly non-existent addre11es on the 
bus without generating bus errors that would terminate the proce11 trying to access those 
addresses. Peck and poke read and write, respectively, 16-bit words (ahort'a in the Sun system). 
Peelle and pokee read and write 8-bit characters. in general, you will use the character routines 
for probing single-byte 1/0 registers. See the section Summor11 of Function, tor details on these 
routines. 

Havin~ determined whether.the device eic:lata in the system, the probe function returns either: 
• the size (in bytes) of the.device structure if it does exist. The kernel uses the value returned 

from probe to reserve memory resources for that device. For 1/0 mapped devices, probe 
retums the amount of Multibus 1/0 space that the device registers consume. For memory
mapped devices, probe ret.lll'ns the amount of memory that the device consumes. 

• a value of O (zero) if the device does not exist. 
Now we can write akprob~ 
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skprobe(reg, unit) 
caddr_t reg; 
Int unit; 

{ 

} 

reglater •truct 1k.)'eg •skJeg; 
reglater Int c; 

skJeg - (•truct sk.)'eg •)reg; 
c - peekc((cbar •)&skJeg->sk_car); 
ll(c -- -1) 

return (O); 

return (siHOf (•truct skJeg)); 

Device Drivers for the Sun Workstation 

The reg arsument i1 tbe purported addreu of tbe device. The unit argument is usually ignored. 

If tbe probe routine determines that the device actually exists and it returns the amount of 
reaources that the deevice uses, the system startup routines set the md_alfoe fi.eld in the device 
structure to non-zero. The md_alive field is then used subsequently by other driver functions to 
check that the device wu probed succeufully at 1tartup time. 

3.12, Open and CIQae Routines 
' 

During the proces1ing of an. open or creaf call for a special fi.le, the system always calls the 
device's open routine to allow for any special processing required (rewinding a tape, turning on 
the data-terminal-ready lead of a modem, ete.). However, the clo,e routine is called only when 
the last proc- cloaea a file; that is, when the i-node table entry is being deallocated. Thus it is 
not feuible for a device driver to maintain, or depend. _on, a count of its users, although it is 
quite poa1ible to implemenfan exclusive-use device which cannot be reopened until it has been 
closed. 
The Open routine for the ek driver is simple. Slcopen is called with two arguments, namely, the 
device which must be opened, and a flag indicating whether the device should be opened for 
reading, writing, or both. The firat task is to check whether the device number to be opened 
actually exi1t1 - 1/copen returns an error indication if not. The second check is whether the 
open 11 for writing. Since •Ji..i1 a 'write only' device, it is an error to open it for reading only. If 
all the checks aucc9*d, 1/coptn enables interrupts from the device, and then returns a zero (0) as 
an Indication of 1ulleeu. Here i1 the code for the ,/copen routine: 
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skopen( dev, flags) 
dev_t dev; 
lnt flags; 

{ 
regl1ter atruc1' mb_device •md; 
reglater atruc1' sk_1eg •skJeg; 

II (SKUNIT(dev) >- NSK II 

Sun System Internals Manual 

(md - skdinfo(SKUNIT(dev))) -- 0 II md->md_alive -- 0) 
return (ENXIO); 

} 

II (flags & FREAD) 
return (ENODEV); 

/• enable interrupts • / 
skJeg - (atruct sk_1eg •)md->md_addr; 
sk_reg->sk_car - SK_ENABLE; 

return (O); 

The lint II statement checks if the device actually exists. Note the uae of the SKUNIT macro to 
obtain the minor device number - we discwsaed this earlier on. 
The clo,c routine for the 1k driver is very simple - all it does is disable interrupts:· 

/•ARGSUSED•/ 
skcloae(dev, flags) 

{ 

} 

dev_t dev; 
int flapJ 

regl1ter atruct mb_device •md; 
register atruct sk_1eg •skJeg; 
md - akdinfo(SKUNIT(dev)); 

/• disable interrupts •/ 
akJeg - (atruci akJeg •)md->md_addr; 
akJeg->ak_car 1- "SK_ENABLE; 

Slcclo,e could in fact be more complicated than this. Some of the actions that could take place 
in a c/o,e routine might be to deallocate any resources that were allocated for this device driver, 
and possibly to ale,p on completion of 1/0 transfers for that device. 

' 

3.13. lf.ead and Write lloutines 

When a read or write talces place, the user's arguments and the file table entry are used to set 
up the variables io11ec.io11_baae, io11ec.io11_len, and uio.uio_offaet which respectively contain the 
(user) address of the 1/0 target area, the byte-count for the trall!lfer, and the current location in 
the file. If the file referred to is a character-type special file, the appropriate read or write rou
tine is called - this read or write routine is responsible for transferring data and updating the 
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0 count and current location appropriately as discussed below. 

0 

0 

The write routine for the skeleton driver is very simple. Write simply calls the atrategy routine 
through the pli111io system routine. Pli111io ensures that the user's memory space is available to 
the driver for the duration of the data transfer. Phy,io also takes care of updating the count 
and current location as appropriate. The write routine looks like this: 

skwrite( dev, uio) 
dev_t dev; 

{ 

} 

atruct uio •uio; ,ee below /or ,ome note, on thi, 

If (SKUNIT(dev) >- NSK) 
return (ENXIO); 

return (physio(skstrategy, &rskbuf(SKUNIT(dev)], dev, B_WRITE, 
skminphys, uio )); 

The 1kminph111 routine is called by phy,io to determine the largest reasonable blocksize to 
transfer at once. Ir the user has requested more bytes than this, phyaio will call akatrate1111 
repeatedly, requesting no more than this blocksize each time. The case where this is important 
is when DVMA transfen, are. done. (DVMA is covered in more detail below.) The reasoning is 
that only a finite amount of address space is available for DMVA transfers and it is not reason
able for any device to tie up too much of it. A disk or a tape might reasonably ask for as much 
as 64 Kbytes; slow devices like printers should only ask for one to four Kbytes since they will tie 
up the resource for a relatively long time. 

Here is the 1kminph111 routine. 

skminphys(bp) 

{ 

} 

1truct bur • bJ>;. 

If (bp->b_bcount > MAX_SK_I3SIZE) 
bp->b-~ount - MAX_8K_BSIZE; 

Note that if you don't suppy you own minphy, routine, you can simply place a zero (0) as the 
argument to the ,trotew rputine at that place, and the system supplied minphy routine gets 
used instead. 

3,13,1, Some Notes About the UIO Structure 

When the system is reading and writing data from or to a device, the uio structure is used 
extensively. The uio structure is a general structure to allow for what is called gather-write 
and scatter-read. That is, when writing to a device, the blocks of data to be written don't have 
to contiguous in the user's memory but can be in physically discontiguous areas. Similarly, 
when reading from a device into memory, the data comes off the device in a continuous stream 
but can go into physically discontiguous reas of the user's memory. Each discontiguous area of 
memory is described by a structure called an iovec (I/ 0 vector). Each iovec contains a pointer 
to the data area tii be transferred, and a count of the number of bytes in that area. The uio 
structure describes the complete data transfer. Uio contains a pointer to an array of these 
iovec structures. Thus when you want to write a number of physically discontiguous blocks of 
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memory to a device, you can set up an array of iovec structures, and place a pointer to the 
start of the array in the uio structure. In the trivial case, there is generally just one block of 
data to be transferred, and so the uio structure is fairly simple. 

3.14. Skeleton Strategy Routine 

The ,tratew routine is called by ph111io after the user buffer has been .locked into memory. The 
1trate1111 routine must check that the device is ready and initiate the data transfer. Stratew will 
then wait for the the completion of the data transfer, which will be signaled by the interrupt 
routine. · 

skstrategy(bp) 

{ 

} 

regl1ter etruct buf • hp; 

register etruct mb_device •md; 
register etruct skJeg •skJeg; 
register struct sk_device •sk; 
Int s; 

md - skdinfo(SKUNIT(bp-->b_dev)J 
skJeg - (struct sk_reg •)md->md_addr; 
sk - &sk_device[SKUNIT(dev)); 
s - splx(pritospl(md->mdjntpri)); 
while (sk· >sk_busy) 

1 
sleep((caddr_t) sk, SKPRI); 

sk->sk_busy - l; 
slt->sk_bp = hp; 
sk->sk_cp -'bp->b_un.b_addr; 
slt->sk_count - bp-->b_bcount; 
sltstart(sk, (1truct skJeg •)md->md_addr,); 
slt->sk_busy - O; 
walte!W((caddr_t) sk); 
splx(s)! 

3.15. Skeleton Start Routine - Initiate Data Transfers 

The ,tart routine is responsible for getting the actual data bytes out to the device itself. Start 
is called once bf 1trateg11 to get the very first byte out to the interface. After that, it is 
assumed that the device will interrupt every time it is ready for a new data byte, and so ,tart is 
thereafter called from the interrupt routine. Here is the ,tart routine: 

30 Revision C of 7 January 1984 

0 

0 

0 



0 

0 

0 

Sun Syatem Internals Manual Device Drivers for the Sun Workstation 

sbtart(sk, skJeg) 

{ 

} 

•truct sk_device •sk; 
•truct skJeg •skJeg; 

skJeg->sk_data - •sk->sk_cp+ +; 
sk->sk_count--; 
skJeg->sk_csr - SK_ENABLE; 

Thia routine will work, but there is a lot or overhead in taking an interrupt from the device on 
every character. Since we know that the device can take characters very quickly. it would be 
more emcient to try to give characters quickly. What we will do is to check after each character 
and give another one if the device is ready. Here is the new, more efficient •utartroutine. 

sbtart(sk, skJeg) 
•truet s1'_device •sk; 

{ 

} 

1truat skJel !skJeg; 

do { 
skJeg->sk_data - •sk->sk_cp+ +; 
sk->sk_count--; 

} while (ak->sk_count 8&8& skJeg->sk_csr 8& SK_DEVREADY); 
It (ak->ak_co'!llt) /• more claorocter• tu flO •/ 

1kJeg->1k_c1r - SK_ENABLE; 
aln { 

skJeg->sk_csr - b; /• 4iiable interrupt••/ 
iodone(sk->sk_bp ); 

} 

We give characten to the device as long as there are more characters and the device is ready to 
receive them. If we run out of characters, we disable interrupts to keep the device from bother
ing us and call iodon1 to mark the huller as done. 
It may be that '~he device is not <1.tti\e quick enough to take a character and raise the 
SK_DEVREADY ~it in the time we can decrement and test the counter. Ir so, it would be very 
worthwhile to bus)' wait for a short time. The reasoning is that while busy waiting ia a waste, 
se"icing an interrupt cost. lots more CPU time, and if busy waiting works fairly often it is a 
big win, There is a macro DELAY which takes an integer argument which is approximately the 
number of microseconds to delay, so we could add 

DEL~Y(10); .. 

just before the while. Clearly this is an area where experimentation with the real device is 
called for. 

3.16. Interrupt Routines 

Each device should have appropriate interrupt-time routines. When an interrupt occurs, it is 
turned into a C-compatible ~!Ill on the devices's interrupt routine. After the interrupt has been 
processed, a return from the.interrupt handler returns from the interrupt itself. 
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The address or the interrupt routine (or a particular device driver is contained in the per-driver 
(that is, mb_driver) data structure (or that device driver. The address or the interrupt routine 
is filled in statically at the time the data structure is declared and initialized. 
Since there may be many devices sharing a common interrupt level, it is the specific driver's 
responsibility to determine if the interrupt is intended for it or not. Ir the interrupt i, for this 
driver, t~ci driver must service the interrupt and return a non-zero value to indicate that the 
interrupt has been serviced. If the interrupt is nol (or this device driver, the interrupt routine 
must return a zero value. 
It is expected that the device actually indicates when it is interrupting. Ir there are any more 
bytes to transfer, the interrupt routine calla the ,tarl routine to transfer the next byte. Ir there 
are no more bytes to transfer, the interrupt routine disables the interrupt (so that the device 
won't keep interrupting when there is nothing to do), and finishes up by calling iodone. 

skintr() 
{ 

reglater 1truct mb_device •md; 
••later 1truet sk_reg •sk_reg; 
re1later 1truet sk_device •sk; 
Int serviced; 

serviced - O; 
for (i - O; i < NSK; i+ + ) { 

md - &skdinfo[i); 
sk_reg - (1truet sk_reg •)md->md_addr; 
lf(1k_reg->sk_csr &; SKJNTR) {. 

serviced .. 1; 
sk - &sk_device(i); 
lf(sk->sk_count -- 0) { 

sk_reg-> ak_csr = O; / • di,oble interrupt, • / 

} ela• 
iodone( sk-> sk_bp ); 

abtart(ak, slcJeg); 
} 

} 
return (serviced); 

} 

3.17. Ioctl Routine· 

The ioctl routine is used to perform any tub that can't be done by the regular open, clo,e, 
read, or write routines. Typical applications are: 'what is the status of this device', or 'tell me 
the partitions on disk xyl'. This device does not need any special functions so we don't have 
an ioctl routine. 
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0 3.18. Devices That Do DMA 

0 

0 

Devices that are capable or doing DMA are treated a little difl'erently than the skeleton device 
we have heen working with so Car. Let WI assume that we have a new version of the skeleton 
board; call it the Skeleton II. It can do DMA transfers and we want to use this feature since it 
is much more efficient. First we mwit describe OMA on the Sun-2. 

3.19. Multibus DVMA 

On the Sun-2, the processor board is always listening to the Multibwi for memory references. 
When a request to read or write Multibus memory between addresses O and 256K comes up, the 
DVMA hardware takes the address, adds OxFOOOOO to it, and goes through the kernel memory 
map to find the location in processor memory that will be used. Thwi if you wish to do DMA 
over the Multibus, you must make the appropriate entries in the kernel memory map. As you 
might expect, there are subroutines to help with this chore. Mb,etup sets up the map and 
mbre/,e releases the map. 

3.20. Changes to the Driver 

The changes to the driver are surprisingly simple. First we mwit extend the ,k_reg structure 
which defines the device registers. We assume that the Skeleton II supports the following struc
ture. 

1truct sk..1eg { 
char sk_data; /• 01: Data Regi,ter •/ 
char sk_csr; /• 00: command{111) and alatua{r) •/ 
abort sk_count; /• 6ufe• to 6e lran,/erred •/ 
caddr_t sk_addr; /• DMA addreu •/ 

}; 

Next we assume another bit in the csr. 

*define SK_DMA Ox10 /• Do DMA tranafer •/ 

And we must add another element In the ,k_dellice structure for wie by m,etup and mbdone. 

In I sk_m binfo; 

Now we change the ,k,tratew routine to use the DMA feature. 

Rcvielon O of 7 January 1984 33 



Device Drivers for the Sun Workstation 

skstrategy(bp) 

{ 

} 

regiater atruct buf •bp; 

reglater atruct mb_device •md; 
register atruct sk,Jeg •skJeg; 
reglater atruct struct sk_device •sk; 
Int a; 

md - skdinfo(SKUNIT(bp->b_dev)) 
skJeg - (atruct sk,Jeg •)md->md_addr; 
sk - &sk_device(SKUNIT(dev)); 
s - splx(pritospl(md->mdjntpri)); 
while (sk->sk_busy) 

sleep((caddr_t) sk, SKPRI); 
sk->sk_busy - 1; 
sk->sk_bp - bp; 
/• thi, i, Ille port tliat i, cl,angetl •/ 
sk->sk_mbinfo - mbsetup(md->md_hd, bp, O); 
skJeg->sk_count - bp->b_count; 
skJeg->sk_addr - MBI....ADDR(sc->scJDbinfo); 
skJeg->sk_csr - SK_ENABLE I SK..PMA; 
/• entl of claon1e1 • / 
iowait(bp ); 
sk->sk_busy - O; 
wakeup((caddr_t) sk); 
splx(s); 

Sun System Internals Manual 

The need for the ,k,tarl routine is completely gone and thus we will delete it. All the i/o now is 
started by ,katralef/11 and continues until ,kinlr is called. Thus we can delete the ,k_cp and 
,c_counl variables from the ,k_tlevice structure. 

Skintr is also simplified. There is no longer any need to check the count since all the data goes 
out through DMA. Therefore iotlone will always be called. Also, we need to free up the Mul
tibus resources, so we will c!l! the m6re/,e routine. Here is the new ,kinlr routine: 
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skintr() 
( 

resister ,tru~ mb_device •md; 
resister ,truet akJeg •sk..,.,g; 
resister ,truet ak_device •ak; 
Int aerviced; 

serviced - O; 

} 

for (i - O; i < NSK; i+ + ) { 
md - &:akdinfofi); 

} 

akJeg - (,truet akJeg •)md->md_addr; 
If (sk..,.,g->sk_csr &: SKJNTR) { 

· · serviced - 1; 

} 

sk - &:sk_devicefiJ; 
/ • tlii, i, the part th at i, changed • I 
akftg->sk_car - O; /• diaablc interrupt, •/ 
mbrelae(md->md...)id, &:ak->sk_mbinfo); 
iodone(ak->sk_bp); 
/• end o/ change,•! 

return (aerviced); 

3 .21. El'l'Ol'8 

We have been pretty cuual about errors up till now. Most devices have at least an error bit in 
the car, and usually more detailed error information is available. Also, we should check whether 
the DMA count i1 exhausted. 
Detection and treatment of. errors varies greatly trom device to device and is not very generalis
able, 10 it wouldn't add much to this tutorial to show some elaborate error checking. Nonethe
le11, error checkins i1 important because if you don't check for errors and they do happen your 
uaen will be very unhappy. 
You 1hould read the ProdU:et Specification manual for your device very carefully to determine 
what error indications can be given and what you should do when they do come up. At the 
very leut, check for erron and if ypu can't figure out what to do about them, printr a message 
to the coiiaole ju1( to let the world know that everything is not perfectly OK. 

{ 

3,22, Memd#y Mapped bevicea 
-

Devices such as frame buffers are frequently acce88ed by mapping the buffer into the user 
address apv,ce and allowing the user to update them at will. The user accomplishes this through 
a mmaJ:(2) system call. This call is translated by the kernel into a call to the driver's mmop 
routine. The calt has three parameters, dc11, off and prot. Dev is or course the device major and 
minor number, oJ!ia the o~et into the frame buffer from the user's mmop system call, and prot 
11 a flag indicating whether write protection applies to the page(s). The constants 
PROT.)lEAD, PROT_WRITE and PROT_EXEC are defined in the header file mmon.h. Each 
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constant is a bit turned on to indicate that the appropriate access is allowed. 

Here is the mmap routine from the Sun Color Graphics driver. 

cgmmap(dev, ofl', prot) 
dev_t dev; 

{ 

} 

oll_t oil; 
Int prot; 

register caddr_t addr; 
register Int page, uc; 

addr - cginfo(minor(dev)J->md_addr; 
II (oil >- CGSIZE) 

return (,1); 
page - getkpgmap(addr + oft') & PG_PFNUM; 
return (page); 

The PG_PFNUM constant gets rid of extraneous bits that getkpgmap returns and just leaves the 
page number, which is what we have to return. 
The routine first gets the address of the frame bufl'er from the Multibus device structure. 
Remember that this is generated by config based on the user's input as to where devices are 
configured. Next the ollset is checked to be sure the user isn't mapping beyond the end of the 
frame huller. Next comes a call to getkpgmop to do the actual mapping. The page number 
returned by getkpgmop is then returned by cgmop. In this case, prof is not checked since the 
driver permits open to succeed only if the user is opening for both read and write, thus all 
access are permitted. 
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4, Configuring the System to Add Skeleton Driver 

Now we've written the Skeleton driver, we'll go through the steps required to add it to the sys
tem. A detailed description of how to configure and build a kernel is in the document Building 
UNIX Sg,tem, Wit/a Config in the Sgatem Manager'• Manual. Here we just cover what is needed 
to add a new driver. 
New device drivers require entries in /1g1/1un/conf.c and in /1g1/con//file1.1un. They are 
included by mentioning the device name in the configuration file. 
The examples to follow assume that you are adding a driver for the Skeleton board (sk) to the 
system. The new system will be called SKELETON. Here is a representative section from 
,un/ con/. c: 

#include • sk.h" 
#if NSK> 0 
inf skopent), skclose(), skread(), skwrite(), skmmap(); 
#else 
#define 
#define 
#define 
#define 
#define 
#endif 

{ 
skopen, 
nodev, 
seltrue, 

}, 

slopen 
skclose 
skread 
skwrite 
skmap 

nodev 
nodev 
nodev 

·nodev 
nodev 

skclose, skread, skwrite, 
nodev, nodev, O, 

i skmmap, 
• l 

/• 30 •/ 

If NSK is greater than O, this will add the driver routines into the cdc111w table so the kernel 
knows where they are. (NSK is set by the config program based on the kernel configuration file 
di11eussed below.) The entres added are, in order, the open, cloae, read, write, ioctl, ,top and 
re,et routines, a tt11 structure address and finally the ,elect and mmap routines. We do not have 
an ioctl routine so this entrr calls node11 which is a speci!II routine that always returns an error. 
Since we are not a tty we do not have a ,top routine which would be used for flow control, nor 
do we have a ttg structure. The re,et routine is not used so all devices use node11 for this one. 
The ,elect routine Ii called when a user.process does a ,etect(2) system call; it returns true if the 
device Cian be immediately selected. Since our sk device is write only and fast, it is always 
selectable so we use the default ,ellrue routine which always returns true. 

Here is the line you must add to file,.,un: 

aUDdev /ak.c optional sk device-driver 

Thia says that the file 1unde11/ 1k.c contains the source code for the optional ,Ir device and that it 
is a device driver. 
Now, you can go through the process of building the system just as described in the chapter on 
configuration: Choose a name for your configuration of the system - in our case it will be 
called SKELETON. Then create the configuration file and directory: 

gaia# cp GENERIC SKELETON 
gaia# mkdir .. /SKELETON 
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Edit SKELETON to reflect your system - you must add a description of the device to the SKELE

TON file: 

device skO at mbO csr Ox600 priority 3 

This entry says we have an sk device (the first device is always number 0) on the Multibus, the 
control/status register (device register) is at Multibus address Ox600 (this is passed to out probe 
routine at boot time), and that this deivce will interrupt at level 3. 

Then you can run / u,r / etc/ con/io to make the configuration files for the new device driver: 

gaia# /usr/etc/conflg SKELETON 

/uar/etc/confio uses SKELETON, file,, and file1.1un as input, and generates a number of files in 
the •• /SKELETON directory. 
Now you can change directory to the new configuration directory, • • /SKELETON in this case, 
and make the new system: 

gaia# cd .. /SKELETON 
gaia# make depend 
gaia# make 

The make depend command creates the dependency tree for any new C source files you might 
have created during the process of adding new drivers or whatever to the system. 

Now you must add a new device entry to the / detJ directory. The connections between the 
UNIX operating system kemel and the device driver is established through the entries in the 
/ detJ directory. Using the example above as our model, we want to install the device for the 
Skeleton driver. 

Making new device entries is done via a shell script called MAKEDEV in the / detJ directory. It is 
worth while looking inside MAKEDEV to find out the kinds of things that go on in there. The 
lines of shell script below reflect what you would add to MAKEDEV for the new Skeleton device. 
First, there are lines of commentary at the start of the MAKEDEV file: 

' 
#1 /bin/sli * MAKEDEV 4.3 83/03/31 * Graphics * sk• Skeleton Board 

Then there is the actual shell 'code' which makes the device entries: 

skeletonjskjskO) 
/etc/mknod skO c 30 0 ; chmod 666 skO 

" 
This makes the special inode /dev /skO as a character special device with major device number 
30 and minor device number 0, and then sets the mode of the file so that anyone can read or 
write the device. 

Having added the new device entry, you can illStall the new system and try it out. 
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gaia# ep vmunlx /vmunlx+ 
gaia# /etc/bait. 

Tli• 1111tem gou tlirougli t/ie /ialt ,equence, tlien 
tli• monitor di1pla111 it, prompt, at w/iicli point 11ou 
can 6oot tAe 1111tem in ,in,te-uur ,tate 

> b vmunlx+ -a 
Tlie 1111tem 6oot1 up in 1in,te u,er dote and 
llien 11ou can 1,11 llaing1 oul 

gaia# 

II the eyatem appean to work, eave the old kemel under a ditrerent name and install the new 
one in /vmunix: 

gaia# ed / 
gaia# mv vmunlx ovmunlx 
gaia# mv vmunlx+ vmunlx 
gaia# 

Make eure that the new veraion of the kernel is actually called 11111unis - because programs 
auch III p1 1111d nef1lal uee that exact name to look for things, and if the running version of the 
ker111l ie called 1omethi111 other thu 11111unis the reeulte from such programs will be wrong. 
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5. Summary of Functions 

5.1. Standard Error Numbers 

The system has a collection of standard error numben that a driver can retum to its callen. 
These numben are described in detail in intro(2), the introductory pages of the S111tem Inter• 
/ace Manual. A complete listing of the error numben appean in <•IP/errno.A>. 

5.2. Device Driver Routines 

5.2.1. Autoconflguration Routines 

5.2.1.1. Probe - Determine if Hardware ia There 

probe(reg) 
caddr_t reg; 

Probe determines whether the device at address reg actually exists and is the correct device for 
thi1 driver. If the device exi1ts and is correct, pro6e returns 

return (sizeof (1truct i;levice)); 

If the device does not exist, or is the wrong device for this driver, pro6e returns O (zero). 

5.2.2. Open and Close Routines 

5.2.2.1. Open - Open a Device for Data Transfers 

open( dev, llags) 
dev_t dev; 
Int flap; 

Open checks that the minor device number passed in the dev argument is in range. The integer 
argument flag, contains bits telling whether the open is for reading, writing, or both. The con. 
stant1 FREAD and FWRITE are available to be and'ed with flag,. Open returns: 

return (~NXIO); 

( meaning a non-existent d~vice) if the minor device number is out of range. Then open 
attempts to initialize the device, and if there are any erron, open retums: 

return (EIO); 
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Q to mean an I/0 error. If the open is successful, 11pen returns O (zero). 

0 

0 

5,2,2,2, Cloae - Close a Device 

close(dev) 
dev_t dev; 
bat llap; 

0/o,c doee whatever it has to do to indicate that data transfers cannot be made on this device 
until it has been reopened. Flag, is the same as for open. 

' 
5,2,3, Read, Write, and Strategy Routinea 

5,2,3,1, Read - Read Data from Device 

read(dev, ulo) 
dev_t dev; 
,t,uot ulo •ulo; 

R,atl is the ligh-level routine called to perform data transfers from the device. Read must 
check that the minor deviet number passed to it ia in range. If the minor device number is out 
of rup, rc,tl returna, 

,atura (ENXIO); .-
, 

meaning that the device is non-existent. Subsequent actions of read differ depending on 
whether the device i1 a cha.-aeter-at-a-time device such as a teletype, or is a block transfer dev
ice. 

For the block-transfer deviee1, read simply calls on the dratew function via pli11,io: 

,aturn (p~yaio(strategy, &rbuf(minor(dev)J, dev, B,JtEAD, minphys, uio)); 

5,2,8,2, Write - Write Data to Device 

write( dev, uio) 
dev_t dev; 
,truot ulo •uio; 

Wril• Is the ligh-level routine called to perform data transfers to the device. Write must check 
that the minor device num))er passed to it is in range .. If the minor device number is out of 
r1111p, wril• returns: 

If (VPUNIT(dev) >- NVP) 
return (ENXIO); 

Subsequent actions of wrife-.differ depending on whether the device is a character-at-a-time dev
ice auoh , a teletype, or is • block transfer device. 
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For the block-transfer devices, write simply calls on the 1trate1111 function via pligaio: 

return (physio(strategy, &rbuf[minor(dev)J, dev, B_WRITE, minphys, uio)); 

5.2.3.3. Strategy Routine 

strategy(bp) 
reaiater •truct bur • bp; 

Strateg11 is the high level routine responsible for getting the data to the actual device. For DMA 
devices, ,tratew calla on mbgo to schedule the Multibus resources. ltratew does not return any 
value. 

5.2.3.4. Minphys - Determine Maximum Block Size 

Int block - ,ome 'rea,onable' block ,ize /or tran,Jer, 
mud be a multiple o/ 1 oe,1 b,,te, 

unsigned minphys(bp) 
register atruct bur •bp; 

Minph111 determines a 'reasonable' block size for transfers, ao as to avoid tying up too many 
resources. Minpli111 is passed as an argument to pli111io. In the absence of a minpli111 functions 
supplied by the device driver itself, a system eupplied version of minpli111 is used instead. Min
ph111 shoulld perform the calculation: 

if (bp-> b_bcount > block) 
bp-> b_bcount - block; 

5.2.4. Ioctl - Special Interface Function 

ioctl( dev, cmd, data, ftag) 
dev_t dev; 
Int cmd; 
caddr_t data; 
int ftag; 

Ioctl differs for every device and covers the functiona that aren't done by read and write. Ioctl 
doea whatever it haa to do, then returns O (zero) if there were no errors, and returns: 

return (ENOTTY); 

in the caae that the command requested did !lot apply to this device. Note that ENOTTY gives 
rise to the error message 'Not a typewriter', which may be misleading. 
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Q 5.2.5. Low Level Routines 

0 

0 

Routines in this area are low level and can potentially be called from the interrupt side or the 
driver. Sleep calla may never be made from the routines described here. 

5.2.6.1. Intr - Handle Interrupts 

intr() 

lntr i, responsible for fielding interrupts from the device. In situations where more than one 
device share the same interrupt level, int, must determine if the interrupt was actually detsined 
for this driver or not. lntr returns O (zero) to indicate that the interrupt was not serviced by 
this driver, and non-zero to indicate that the interrupt was serviced. It is a gross error for intr 
to say that it serviced an interrupt when it really did not. 

6.3. Common Service Routines 

6.3.1. Sleep - Sleep on an Event 

sleep(addreaa, priority) 
caddr_t addre11; 
Int priority; 

Sleep ia called to put a proceaa to sleep. The addre11 argument is typically the address or a 
location in memory; Prio,~t'/1 is the software priority the process will have after it is woken up. 
The process which has been put to sleep can be woken up again by issuing a wakeup call with 
the aame addr,11. Sl,ep should ne11cr be called from the low level side or a driver. 

6.3.2. Wakeup - Wake Up a Process Sleeping on an Event 

wakeup(address) 
caddr_t addreaa; 

Wakeup is called when a process waiting on an event must be awakened. Addreu is typically 
the address of a location in memory. Wakeup is typically called from the low level side of a 
driver when (for instance) all data has been transferred to or from the user's buffer and the pro
cess waiting for the transfer to complete must be awakened. 

6.3.3. Mbsetup - Set Up to Use Multibus Resources 
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mbsetup(md...lid, bp, flag) 
atruct mb...lid •mb...lid; 
atruct bur • bp; 
int flag; 

Mbaelup is called to set up the memory map for a Multibus DVMA transfer. flag is 
MB_CANTWAIT if the caller desires not to wait for map resources if none are available. Nor
mally this will be r.ero which means the driver will wait. Mb,elup returns an integer which must 
be saved for the call to mbrel,e. 

5.3.4. Mbrelse - Free Multibus Resources 

mbrelse(md...lid, mbinfop) 
atruct mb...lid •mb...lid; 
int •mbinfop; 

Mbrel,e releases the Multibus DVMA resources allocated by mb,elup. Note that the second 
parameter is a pointer to the integer returned by mb,etup. 

5.3.5. Physio - Lock in User's Buffer Area 

physio(strat, bur, dev, flag, minphys, uio) 
void ( •strat) (); 
1truct bur •buf; 
dev_t dcv; 
Int flag; 
void (•minphys) (); 
atruct uio •uio; 

5.3.6. lowait -Wait for 1/0 to Complete 

iowait(bp) 
etruct bur • bp; 

/await waits on the bufl'er header addressed by bp for the DONE flag to be set. /await actually 
does a ,leep on the bufl'er header. 

5.3.7. lodone - Indicate 1/0 Complete 

iodone(bp) 
struct buf • bp; 

/odone is called to indicate that 1/0 associated with the bufl'er header bp is complete. /odane 
sets the DONE flag in the bufl'er header, then does a wakeup call with the bufl'er pointer as argu
ment. 
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5.3.8. Pritospl - Convert Priority Level 

pritospl(value) 
Int value; 

Prito,pl converts the hardware priority level given by 11alue, which is a Multibus priority level, 
to a CPU hardware priority level used by ,plz. Prito,pl is used to parameterize the setting of 
priority level,. 

5.3.9, spin{) - Set Specific Priority Level 

The ,pin() functions arc available for setting the priority level to n, where n ranges from Oto 7. 
These routines should probably never be used in any device driver. 

5,3,10. splx - Reset Priority Level 

eplx(s) 
Int 1; 

Spl:r called with an argument , set, the priority level to , . Splz is typically used to restore the 
priority level to a previously remembered level. 

5.3.11, uiomove _--move data to or from the uio structure 

uiomove(cp, n, rw, uio) 
restate, caddr_t cp; 
rqlater Int n; 
enum uioJW rw; 
reallter 1truct •uio; 

Device driven use uiomo11e to move a specified number of bytes between an area defined by a 
uio 1tructure (normally paased to the driver when it is called) and an area in the kernel's 
address space (where it can be used by the driver). Uiomo11e moves n bytes from or to the iovec 
pointed to by the. uio structure out of or into the area specified by cp. The read/write flags 
(which specify the ·direction of the data transfer) are defined in < uio.h >. Uiomo11e replaces the 
older i:opgin and cop11oul routines which are no longer supported. Uiomove can also be used to 
copy kernel uio stlructures - it checks uio-> uio_,eg/log. 

5,3,12, ureadc and uwritec 
structure 

ureadc(c, uio) 
Int c; 
rqlater etruct •uio; 

Revision C of 7 January 1984 

transfer bytes to or from a uio 

45 



Device Drivers for the Sun Workstation Sun System Internals Manual 

Uread~ transfers a character represented by c in the definition into the iovec pointed at by the 
uio structure (normally passed to the driver when it is called). Ureadc is normally used when 

0 'reading' a character in from a device. 

char 
uwritec(uio) 

regiater atruct •uio; 

Uwrilec Ureadc returns the next character in the iovec pointed at by the uio structure (nor
mally passed to the driver when it is called). Uwrilec is normally used when 'writing' a charac
ter out to a device. 

Note that 'read' and 'write' are slightly confusing in the above contexts, since ureadc actually 
obtains a character from so mew here and places the character into the iovec pointed to by the 
uio structure, whereas uwrilec obtains a character from the iovec and 'writes' the character 
somewhere. · 

Ureadc and uwrilec replace the routines cpa11 and paue, which are no longer supported. 

5.3.13, peek, peekc - Check Whether · an Address Exists and 
Read 

peek( address) 
1hort •address; 

pee kc( address) 
char •address; 

peek and peekc are called with an address from which you want to read. Both peek and peekc 
return -1 if the addressed location doesn't exist, otherwise they return the value which was 
fetched from that location. 

5.3.14. poke, pokec - Check Whether an Address Exists and 
Write 

poke( address, value) 
1hort •address; 
1hort value; 

pokec( address, value) 
char •address; 
char value; 

poke and pokec are called with an addreu you want to store into, and value is the value you 
want to store there. Both poke and pokec return 1 if the addressed location doesn't exist, and O 
if the addressed location does exist. 
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5,3,15. geteblk - Allocate Dynamic Buffer 

1truct buf •geteblk(size) 
Int •1i11; 

11ete6llr allocates a buffer dynamically. The ,iie of the block is limited to a maximum of 8K 
bytes, and muet be a multiple of 612 bytes. 

5,3,16. brelae - Free Dynamic Buffer 

brclse(bp) 
atruct buf bp; 

6rel,e frees a buffer previously allocated by 11lfe6/k. 

5,3,17, awab - Swap Bytea 
,. 

n,ab(from, to, nbytee) 
caddr_t from; 
caddr_t to; 
Ins 11byte1; 

11Ds6 ewaps bytes within words. 116lfle1 is the number of bytes to swap, and is rounded up to a 
multiple of two. The from and to areas can overlap each other since the bytes are swapped one 
at• time. 
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App2ndix A, Sample Drivers 

The C code listings suppiled here are sample drivers for devices that the Sun system supports. 0 
There are three drivers listed here: 

CGONE 
is a device driver for the Sun-1 color graphics board. It is one of the simplest drivers 
around, being memory mapped. 

SKY 
is a programmed 1/0 driver for the SKY floating-point board. 

VP is a fairly good example of a DMA device driver. 
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l(#)cgreg.h 1.2 83/08/18 SKI 

I• 
• Copyright Cc) 1983 by sun Microsystems, Inc. 
•I 

I• 
• Register definitions for Sun Color Board 
•I 

#define CGSIZE (18•1024) I• 18K of address space •I 

# define GR_bd_sel CGXBase 

# define GR x select 
# define GR=,.:select 
# define GR..7_fudge 
# define GR_update 
# define GR_x_rhaddr 

Ox0800 
oxoooo 
Ox0200 
Oz2000 
OX1b80 

# define GR_x_rladdr Ox1b00 

# define GR_7_rhaddr Ox1bc0 
# define GR..7_rladdr Ox1b40 

# define GR HtO 
# define GR:seti 

OxOOOO 
Ox0400 

# define GR_red_cmap OxiOOO 
# define GR_grn_cmap OxiiOO 
# define GR_blu_cmap ox1200 

# define GR sr select Oxi800 
# define GR-er-select Oxi900 
# define GR:fr:select ox1aoo 

I• Select Color Board •I 

I• Access a column in the frame buffer •I 
I• Access a row in the frame buffer •I 
I• Bit 9 not used at all•/ 
I• Update frame buffer if this bit set •I 
I• Location to read X address bits A9-A8. 

Data put into Di-DO. •I 
I• Location to read X address bits A7-AO. 

Data put into D7-DO. •I 
I• Location to read Y address bits A9-A8. •I 
I• Location to read Y address bits A7-AO. •I 

I• Address Register pair o. •I 
/• Address Register pair 1. •I 

I• Address to select Red Color Map •I 
I• Addr for Green Color Map•/ 
I• Addr for Blue Color Map•/ 

/• Addr to select status register•/ 
/• Addr to select mast (color) register•/ 
I• Addr to select function register•/ 

I• Tbe following are pointers to the mast(color), status, and function regs. •I 

# define GR creg 
# define GR-mask 
# define GR:sreg 
# define GR_freg 

Cu char •)(GR bd sel + GR er select) 
Cu-char e)(GR-bd-sel + GR-er-select) 
Cu-char e)(GR-bd-sel + GR-sr-select) 
cu:char e)(GR=bd:sel + GR:fr:select) 

I• Tbese assignments are for bits in the Status Register •I 
# define GRWO_cplane OxOO I• Select CMap Plane number zero for R/W •I 
# define GRWi_cplane OxOi I• Select CMap Plane number one for R/W •I 
# define GRW2_cplane Oz02 I• Select CMap Plane number two for R/W •I 
# define GRW3_cplane Oz03 I• Select CMap Plane number three for R/W •I 

# define GRVO_cplane Ox04 
# define GRVi_cplane Ox06 
# deUn.e GRV2_cplane Ox08 
# define GRV3_cplane Ox07 

/• Select CMap Plana number zero for video •I 
/• Select CMap Plane number one for video •I 
I• Select CMap Plana number two for video •I 
I• Select CMap Plana number three for video •I 
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# define GR inten 

# define GR_paint 
# define GR_disp_on 

OxlO 

Ox20 
Ox40 

# define GR_vretrace OxBO 

/• Enable Interrupt to start at start 
of next vertical retrace. Must clear bit to 
clear interrupts. •I 

I• Enable Writing five pixels in parallel•/ 
I• Enable Video Display•/ 

/• Unused on vrite. On read, true if monitor in 
vertical retrace.•/ 

/• This define returns true if the board is in nrtical retrace •I 
# define GR retrace C•GR_sreg a GR_vretrace) 

I• The following are 
# define GR_copy 

function register encodings •I 

# define GR_copy_invert 
# define GR vr crag 
# define GR=vr=mask 
# define GRinv_wr_creg 
# define GRinv_wr_mask 
# define GR_r&m_invert 
# define GR_cr_and_dr 
# define GR clear 
# define GR=cr_xor_fb 

oxcc I• Copy data reg to Frame buffer •I 
Ox33 I• Copy inverted data reg to FB •I 
OxFO I• Copy color reg to Frame buffer •I 
OxFO I• Copy mask to Frame buffer•/ 
OxOF I• Copy inverted Crag to FB •/ 
OxOF I• Copy inverted Mask to FB •I 
Ox66 I• 'Invert' color in Frame buffer•/ 
OxCO I• Bitwise and of color and data regs •I 
OxOO I• Clear frame buffer •I 
Ox6A I• Xor frame buffer data and Creg •I 

0 
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#Undef lint 
Btatic char •ccBid[] = •e(#)cgone.c 1.8 84/08/08 Copyr 1988 sun Micro•; 
#tndU 

I• 
• Copyright (c) 1988 by Sun Micro•ystems, Inc. 
•I 

#include •cgone.h" 
#include •win.h" 
#if NCGONE > 0 

I• 
• Sun One Color Graphic• Board(s) Driver 
•I 

#include • .• /machine/pte.h" 

#include •,./h/paraa.h" 
#include •,./h/•y•tm.h• 
#include • .. /h/dir.h" 
#include • .. /h/user.h" 
#include • .. /h/proc.h• 
#include • .. /h/but.h• 
#include • •• /h/cont.h" 
#include •,./h/tile.h" 
#include • .. /h/uio.h" 
#include • .. /h/ioctl.h" 

#include • .. /snn/uu.h•· -
#include •,./Bun/fbio.h" 

#include • •. /•undev/mhvar.h" 
#include • .. /pizrect/pizrect.h" 
#include • •. /pizrect/pr_ut11.h" 
#include • •. /pizrect/cgireg.h" 
#include • -~/pizrect/cg1 var. h • 

#if NWifi,· > d . 
#define ;CG1_DPS &cg1_opi, 
Btrnct pizrectop• cg1_op• = { 

); 
#elH 

cg1_rop, 
c11_putcolormap. 

#define CG1_0PS (Btruct pizrectops •>o 
#tndU 

#define CG1SIZE (sizeot (Btrnct cg1fb)) 
str11ot cg1pr cgoneprdatadetault = 

{ 0, 0, 26&, 0, 0 }; 
Btrnct pizrect cgonepizrectdetault = 

{ CG1_0PS, { CG1_WIDTH, CGl_HEIGHT }, CGl_DEPTH, I• filled in later•/ O }; 
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* Driver information for auto-configuration 
•I 

int 
struct 
struct 
struct 
u_long 
struct 

cgoneprobe(), cgoneintr(); 
pixrect cgonepixrect[NCGONE]; 
cg1pr cgoneprdata[NCGONE]; 

stuff. 

mb_dev1ce •cgone1nfo[NCGONE]; 
cgonestd[] = { Oxe8000, OxecOOO, 0 }; 
mb driver cgonedriver = { 
cgoneprobe, o, o, o, o, cgoneintr, cgonestd, o. CG1SIZE, 
•cgon,•, cgoneinfo, O, o, O, 

}; 

I• 
* Only allov opens for vriting or reading and vriting 
• because reading is nonsensical. 
•I 

cgoneopen(dev, flag) 
dev_t dev; 

{ 

} 

I• 

return(fbopen(dev, flag, NCGONE, cgoneinfo)); 

• When close driver destroy pixrect. 
•I 

cgon1clos1(dev, flag) 
dev_t dev; 

{ 

} 

register int unit= minor(dev); 

if C(caddr_t)tcgoneprdata[unit] == cgonepixrect[unit].pr_data) { 
bzero((caddr_t)tcgoneprdata[unit], sizeof (struct cgipr)); 
bz1ro((caddr_t)tcgon1p1xrect[un1t], s1z1of (struct pixr,ct)); 

> 

/•ARGSUSED*/ 
cgoneioctl(dev, cmd, data, 

dev_t dev; 
flag) 

{ 
caddr_t data; 

register int unit= minor(dev); 

svitch (cmd) { 

case FBIOGTYPE: { 
register struct fbtype •fb = (struct fbtype •)data; 

fb->fb_type = FBTYPE_SUN1COLOR; 
fb->fb_height = 480; 
fb->fb vidth = 640; 
fb->fb-depth = 8; 
fb->fb cmsize = 266; 
fb->fb::::sue = 612•640; 
break; 
} 
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> 

CUI FBIOGPIXRECT: { 
r1glst1r struct fbpi:icrect •fbpr = (struct fbpi:icrect •)data; 
register struct cg1fb •cg1fb = 

default: 

> 

(struct cg1fb •)cgoneinfo[(unit)]->md_addr; 

I• 
• •Allocate• and initialize pi:icrect data witb default. 
•I 

fbpr->fbpr_p1:icr,ct = acgonepi:icrect[unit]; 
cgonepi:icrect[unit] = cgonepi:icrectdefault; 
fbpr->fbpr_pi:icrect->pr_data = (caddr_t) acgoneprdata[unit]; 
cgon,prdata[unit] = cgon1prdatad1fault; 
I• 

• FiJtUp pi:icrect data. 
•I 

cgoneprdata[unit].cgpr_va = cgifb; 
I• 

• Enable video 
•I 

cg1_setreg(cg1fb, CG_FUNCREG, CG_VIDEOENABLE); 
I• 

• Clear interrupt 
•I 

cgl intclear(cglfb); 
brt&lr; 
> 

return (!NOTTY) ; 

return (O); 

/I 
• w, need to bandl• vertical retrace interrupts bere. 
• Tb• color map(a) can onl7 be loaded during vertical 
• retrace; v, abould put in ioctls for tbis to srnobronize 
• vitb tb, interrupts. 
• FDR HOW,••• comments in tbe cod,. 
•I 

cgon,1ntclear(cg1fb) 

{ 

> 

struct cgifb •cglfb; 

I• 
• TIit Sun 1 color frame buffer doesn't indicate tbat an 
• interrupt is pending on itself so we don't know if the interrupt 
• 18 for our device. So, just turn off interrupts on tbe cgoue board. 
• TbiB routine can be called from any level. 
•I 

cg1_1ntcl,ar(cg1fb); 
I• 
• We return o so that if the interrupt is for some other device 
• then tbat device will bave a chance at it. 
•I 

r,turn(O); 
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int 
cgondntr() 
{ 

return(fbintr(NCGONE, cgoneinfo, cgoneintclear)); 
> 
/•ARGSUSED•/ 
cgonemmap(dev, off, prot) 

dev t dev; 

{ 

> 

off=t off; 
int prot; 

return(fbmmap(dn, off, prot, NCGONE, cgontinfo. CG1SIZE)); 

#include • .. /sundev/cgreg.h• 
I• 
• Note: using old cgreg.h to ptet and pote for now. 
•I 

I• 
• Wt determine that the thing we're addressing is a color 
• board by setting it up to invert the bits we write and then writing 
• and reading bact DATA1, mating sure to deal vith FIFOs going and coming. 
•I 

#define DATAi Ox6C 
#define DATA2 Ox33 
cgoneprobe(reg, unit) 

{ 

caddr_t reg; 
int unit; 

register caddr_t CGXBase; 
register u_char •xaddr, •yaddr; 

CGXBase = reg; 
if (potec((caddr_t)GR_freg, GR_cop7_invert)) 

return CO); 
if (potec((caddr_t)GR_mast. 0)) 

return (O); 
xaddr = (u_char •)(CGXBase + GR_x_select + GR_update + GR_setO); 
7addr = Cu_char •)CCGXBase + GR_y_select + GR_setO); 
if (potec((caddr_t)7addr, 0)) 

return (O); 
if (potec((caddr_t)xaddr, DATAi)) 

return (0); 
peetc((caddr_t)xaddr); 
potec((caddr_t)xaddr, DATA2); 
if Cpeetc(Ccaddr t)xaddr) == c·oATAi a OxFF)) < 

I• -
• The Sun 1 color frame buffer doesn't indicate that an 
* interrupt is pending on itself. 
* Also, the interrupt level 1s user program cbangable. 
• Thus, the kernel never tnovs vhat level to expect an 
• interrupt on this device and doesn't tnov is an interrupt 
• is pending. 
• So, ve add the cgone1ntr routine to a 11st of interrupt 

0 

0 

0 



0 

0 

0 

Mar 8 14:38 1984 cgone.c Page 6 

> 
#endif 

> 

• handlers that are called if no one handles an interrupt. 
• Add default intr screens out multiple calls vith the same 
• interrupt procedure. 
•I 

add default intr(cgoneintr); 
return (CG1SIZE); 

return (O); 
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0 
I• O(#)slcyreg.h 1.1 83/09/211 SMI •I 

I• 
• Cop7right. Cc) 1983 b7 Sun Kicros7st.ems, Inc. 
•I . 

I• 
• Sk7 FFP 
•I 

st.ruct. skyreg { 
u_short. sk7_command; 
u_short. sk7_st.at.us; 
union { 

short. sk,u_dword[2]; 
long BkJU_dlong; 

> sk,u; 
#d1U111 sk7_dat.a Sk7U.Sk7U_dlong 
#d1Un1 sk7_d1reg sk,u.sk,u_dword[O] 

long sk7_ucod1; 
}; 

I• commands •I 
#d1U111 SKY_SAVE Oic1040 
#dlfilll SKY RESTOR Oic1041 
#dlfilll SKY=NOP Oic10113 
#d1U111 SKY_STARTO Oic1000 
#dlfilll SKY_START1 Oic1001 

0 I• st.at.us bit.a •I 
#def1111 SKY IHALT OicOOOO 
#d1U111 SKY=INTRPT Oic0003 
#def1111 SKY INTEND Oic0010 
#dlfilll SKY=RUNENB Ox0040 
#dlfilll SKY_SNGRUN oxoo110 
#d1U111 SKY RESET Oic0080 
#dlfilll SKY=IOOIR Ox2000 
#d1U111 SKY IDLE Ox4000 
#d1U111 SKY=IDRDY oxsooo 

0 
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#ifndtf lint 
etatic char ecceid[] = "O(#)sky.c 1.3 83/10/27 Copyr 1983 Sun Micro•; 
#endif 

I• 
• Copyright (c) 1988 by Sun Kicroeyeteme, Inc. 
•I 

I• 
• Sky FFP 
•I 

#includ, • .• /h/paraa.h" 
#includ~ • .. /h/buf.h" 
#include • •• /b/file.h" 
#include • •. /h/dir.h" 
#include • •. /h/ueer.h" 
#include • •. /eun/pte.h" 
#include • .. /eundeY/mbYar.h" 
#include • .. /eundeY/Bkyreg.h" 

I• 
• DriYer information for auto-configuration etuff. 
•I 

int 
etruct 
u_long 
etruct 

}; 

ekyprobe(), skyintr(); 
mb_d1Yice •ekyinfo[1]; I• XXX only eupporte 
ekyetd[] = { Ox2000, O }; 
mb_driYer ekydriYtr = < 
ekyprobe, O, O, 0, 0, ekyintr, skyetd, O, 
eizeof (Btruct Bkyreg), 
•ety•, styinfo, o, o, o 

struot skyreg ••k7addr; 
static int skyinit; 

skyprobe(reg, unit) 

< 
caddr_t reg; 
int unit; 

1 board •I 

register struct skyreg ••tybaee = (struct skyreg •)reg; 
register into; 

> 

if (Cc= peek((short •)skybaee)) == -1) 
return (O); 

if (poke((short •)&skybaee->sky_status, SKY_IHALT)) 
return (0); 

sky&ddr = (struct skyreg •>reg; 
return (sizeof (struct skyreg)); 

/•ARGSUSED•/ 
skyopen(deY, flag) 

dev t deY; 
int-flag; 

< 
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} 

1f (skyaddr == O) 
return (ENXIO); 

1f (sky1n1t == 2) 
u.u_skyctx.usc_used = 1; 

else if (flag a FNDELAY) 
skyinit = 1; 

else 
return (ENXIO); 

return (O); 

/•ARGSUSED•/ 
skyclose(dev, flag) 

dev t dev; 
int-nag; 

{ 

} 

if (skyinit == 1) 
skyinit = 2; 

u.u skyctx.usc used= O; 
return (0) ; -

/•ARGSUSED*/ 
skymmap(dev, off, prot) 

dev t dev; 
off-t off; 
int-prot; 

< 
if (off) 

return (-1); 
return Cgetkpgmap(skyaddr) a PG_PFNUM); 

} 

skyintr() 
{ 

if (skyaddr aa (skyaddr->sky_statusaSKY_INTRPT)) < 
skyaddr->sky status a= -csKY INTENBISKY INTRPT); 
return (1); - - -

} 
return (O); 

} 

skysave O 
{ 

register short 1; 
register struct skyreg •s = skyaddr; 
register u_short stat) 

for (1 = O; 1 < 100; 1++) { 
stat= s->sky status; 
if (stat a SKY IDLE) { 

u.u_skyctx.usc_cmd = SKY_NOP; 
goto sky_save; 

0 
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> 
if (stat a SKY IORDY) 

goto sky_1or1ady; 
> 
printf("skJO: hung\n•); 
skyinit = O; 
u.u_skyctz.usc_used = O; 
return; 

I• 
• I/0 is ready, is it a read or write? 
•I 

sky_ioready: 
s->sky_atatus = SKY_SNGRUN; I• set single step mode •I 
if (stat a SKY IODIR) 

1 = a->sky_dlreg; 
elH 

s->sky_d1reg = 1; 

I• 
• Check again since data ma7 haYe b11n a long word. 
•I 

stat= s->sk7_status; 
if (stat a SKY IORDY) 

if (stat a SKY IODIR) 
i = s->sky_d1reg; 

dBi 
s->sk7_d1reg = 1; 

I• 
• Read and aaY• the command register. 
• Decrement b7 1 since command register 
• is actually FFP program counter and we 
• want to back it up. 
•I 

u.u_ak7ctz.uac_cmd = s->sk7_command - 1; 

I• 
• Reinitialize the FFP. 
•I 

a->ak7_atatua = SKY_RESET; 
1->1ky_command = SKY_STARTO; 
1->1ky_command = 8KY_STARTO; 
1->1k7_command = SKY_STARTl; 
1->sk7_1tatus = SKY_RUNENB; 

I• . 
• Finall7, actually do the context save function. 
• (Ullrolled loop for efficiency.) 
•I 

sk7_aay1: 
s->sk7_command = SKY_NOP; I• set FFP ln a clean mode •I 
s->sk7_command = SKY_SAVE; 
u.u_skyctz.usc_rega[O] = a->sky_data; 
u.u_akyctz.usc_rega[l) = s->sk7_data; 
u.u_skyctz.uac_rega[2) = a->sk7_data; 
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} 

u.u_skyctx.usc_regs[3] = s->sky_data; 
u.u_skyctx.usc_regs[4] = s->sky_data; 
u.u_skyctx.usc_regs[6] = s->sky_data; 
u.u_skyctx.usc_regs[6] = s->sky_data; 
u.u_skyctx.usc_regs[7] = s->sky_data; 

skyrestore() 
{ 

} 

register struct skyreg •s = skyaddr; 

if (skyinit != 2) { 
u.u_skyctx.usc_used = O; 
re~urn; 

} 

s->sky_command = SKY_NOP; 

I• 

I• set FFP in a clean mode •I 

• Do the context restore function. 
•I 

s->sky_command = SKY_RESTOR; 
s->sky_data = u.u_skyctx.usc_regs[O]; 
s->sky_data = u.u_skyctx.usc_regs[1]; 
s->sky_data = u.u_skyctx.usc_regs[2]; 
s->sky_data = u.u_skyctx.usc_regs[3]; 
s->sky_data = u.u_skyctx.usc_regs[4]; 
s->sky_data = u.u_skyctx.usc_regs[6]; 
s->sky_data = u.u_skyctx.usc_regs[D]; 
s->sky_data = u.u_skyctx.usc_regs[7]; 
s->aky_command = u.u_skyctx.usc_cmd; 

I 

Of 
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l(#)vpreg.h 1.3 83/08/18 SKI 

I• 
• Copyright Cc) 1983 by Sun Microsystems, Inc. 
•I 

I• 
• Registers for Ikon 10071-6 Multibus/Versatec interface 
• Only lov byte of each vord is used. (18 vords total) 
• Warning - read bits are not identical to vritten bits. 
•I 

struct vpdevice { 
I• oo: mode(v) and status(r) •I 
I• 02: special command bits (v) •I 
I• 04: PIO output data (v) •I 
I• 08: hi vord of Multibus DKA address Cv) •/ 
I• OB: adO of 8269 interrupt controller •I 
I• OA: &di of 8269 interrupt controller •I 

u_short vp_status; 
u_short vp_cmd; 
u_short vp_pioout; 
u short vp hiaddr; 
u:short vp:icadO; 
u_ahort vp_icadi; 
I• The rest of the 
u_short vp_addr; 
u_ahort vp_vo; 
u_short vp_dmacsr; 
u_short vp_dmareq; 
u short vp smb; 
u:ahort vp:mode; 
u_short vp_clrff; 
u_short vp_clear; 
u_short vp_clrmask; 

fields are for the 8237 DKA controller •I 
I• oc: DKA vord address •I 

u_ahort vp_allmask; 
>; 
I• vp_status bits (read) •I 
#define VP IS8237 0:180 
#define VP-REDY Oz40 
#define VP-DRDY Os20 
#define VP:IRDY Os10 
#define VP PRINT Os08 
#define VP-NOSPP OX04 
#define VP-ONLINE · Os02 
#define VP-NOPAPER OsOi 
,. vp_status bit• (vritten) ., 
#define VP PLOT: Oz02 
#define VP:spp - Oz01 

I• Tp_cmd bits •I 
#define VP R!SEf 
#define VP=CLEA!t 
#define VP FF 
#define VP-EOT 
#define VP:TERM 

#define VP_DKAMODE 

""oz10 
Os08 
Oz04 
Os02 
Os01 

.. Oz47 

#define VP ICPOLL OsOC 
#define VP=ICEOI Oz20 

I• OE: DMA vord count •I 
I• 10: command and status •I 
/• 12: request •I 
/• 14: single mask bit •I 
I• 10: dma mode •I 
I• 18: clear first/last flip-flop•/ 
I• 1A: DMA master clear •I 
I• 1C: clear mask register •I 
I• 1E: all mask bits•/ 

/• 1 if 8237 (sanity checker) •I 
I• printer ready •I 
I• printer and interface ready •I 
I• interface ready •I 
/• print mode •I 
I• not in SPP mode •I 
I• printer online •I 
I• printer out of paper •I 

I• enter plot mode •I 
I• enter SPP mode •I 

I• reset the plotter and interface•/ 
I• clear the plotter •I 
I• form feed to plotter •I 
I• EOT to plotter*/ 
I• line terminate to plotter •I 

I• magic for vp_mode •I 
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#ifndef 11nt 
static char sccsid[] = •e(#)vp.c 1.9 83/09/06 Copyr 1983 Sun Micro•; 
#end1f 

I* 
• Copyright (c) 1983 by Sun Microsystems, Inc. 
•I 

#1nclude •vp.h" 
#1f NVP > 0 
I• 
• Versatec matrix printer/plotter 
• dma interface driver for Ikon 10071-6 Multibus/Versatec interface 
•I 

#includ• • .. /h/param.h" 
#include • .. /h/dir.h" 
#include • .. /h/user.h" 
#include • .. /h/buf.h" 
#include • .. /h/systm.h" 
#include • .. /h/kernel.h' 
#include • .. /h/map.h" 
#include • .. /h/ioctl.h" 
#include • .. /h/vcmd.h" 
#1nclude • •. /h/uio.h" 

#include • .. /sun/psl.h' 
#include • .. /sun/mmu.h' 
#include • .. /sundev/vpreg.h' 
#include • .. /sundev/mbvar.h" 

#define VPPRI (PZER0-1) 

struct vp_softc { 
int sc_state; 
struct buf •sc_bp; 
int sc mbinfo; 

> vp_softc[NVP]; -

#define VPSC BUSY 
I• sc_state bits -
#define VPSC MODE 
#define VPSC-SPP 
#define VPSC-PLOT 
#define VPSC-PRINT 
#define VPSC-CMNDS 
#difine VPsc:oPEN 

#define VPUNIT(dev) 

0400000 
passed in VGETSTATE and VSETSTATE ioctls •I 

0000700 
0000400 
0000200 

.0000100 
0000076 
0000001 

(minor (dev)) 

struct buf rvpbuf[NVP]; 

int vpprobe (), vpintr(); · 

u_long vpaddrs[] = { Ox400, Ox420, o}; 

struct mb_device •vpdinfo[NVP]; 



Sep e 17:59 1983 vp.c Page 2 

struct mb driver vpdriver = { 
vpprobe. o. o, o. o. vpintr. 
vpaddrs. 0, 0, 
•vp•, vpdinfo# 0, 0, 0, 

}; 

vpprobe(reg) 

{ 

> 

caddr_t reg; 

reg1ster struct vpdevice •vpaddr = (struct vpdevice •)reg; 
reg1ster int ic; 

ic = peek((short •)avpaddr->vp_status); 
if (ic == -1 II (ic a VP IS8237) == 0) 

return (O); -
if (poke((short •)avpaddr->vp_cmd, VP_RESET)) 

return (O); 
I• initial1ze 8269 so ve don't get constant interrupts•/ 
vpaddr->vp_icadO = Oic12; I• ICW1, edge-trigger •I 
DELAY(1); 
vpaddr->vp_icad1 = OicFF; I• ICW2 - don't care (non-zero) •I 
DEL-,.Y(1); 
vpaddr->vp_icad1 = OicFE; I• IRO - interrupt on DRDY edge •I 
I• reset 8237 •I 
vpaddr->vp_clear = 1; 

return (sizeof (struct vpdevice)); 

vpopen (dev) 

{ 
dev_t dev; 

reg1ster struct vp softc •sc; 
reg1ster struct mb:dev1ce •md; 
reg1ster int s; 
stat1c int vpvatch = O; 

if (VPUNIT(dev) >= NVP II 
((sc = avp_softc[minor(dev)])->sc_stateaVPSC_OPEN) II 
(md = vpdinfo[VPUNIT(dev)]) == 0 II md->md alive== 0) 

return (ENXIO); -
if (lvpvatch) { 

vpvatch = 1; 
vptimo(); 

> 
sc->sc state= VPSC OPENIVPSC PRINT I VPC_CLRCOKIVPC_RESET; 
vhile (sc->sc state-a VPSC CKNDS) { 

> 

s = splic(pritospl(md->md_1ntpri)); 
if (vpvait(dev)) { 

vpc1011• (dev) ; 
return (EIO); 

> 
vpcmd (dev) ; 
splic (s); 

return (O); 

0 
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} 

vpclose(dev) 

< 

} 

dev_t dev; 

register struct vp_softc •sc = avp_softc[VPUNIT(dev)]; 

sc->sc_state = O; 

vpstrategy(bp) 

< 

} 

register struct buf •bp; 

register struct vp_softc •sc = avp_softc[VPUNIT(bp->b_dev)]; 
register struct mb_device lad= vpd1nfo[VPUNIT(bp->b_dev)]; 
register struct vpdev1c• •vpaddr = (struct vpdev1ce •)md->md addr; 
int s; -
1nt mb1nfo, pa, vc; 

1f (((int)bp->b_un.b_addr a 1) 11 bp->b_bcount < 2) { 
bp->b_flags I= B_ERROR; 
iod~ne(bp); 
return; 

} 
• = splx(pr1tospl(md->md_intpri)); 
while (sc->sc_bp I= NULL) /• single thread •I 

sleep((caddr_t)sc, VPPRI); 
sc->sc_bp = bp; 
vpvait(bp->b_dev); 
sc->sc_mbinfo = mbsetup(md->md_hd, bp, O); 
vpaddr->vp_clear = 1; 
pa= MBI_ADDR(sc->sc_mbinfo); 
vpaddr->vp_h1addr =(pa>> 18) a OxF; 
pa= (pa>> 1) a Ox?FFF; 
vc = (bp->b_bcount >> 1) - 1; 
bp->b_resid = o: 
vpaddr->vp_addr = pa a OxFF; 
vpaddr->vp_addr =pa>> 8; 
vpaddr->vp_vc = vc a OxFF; 
vpaddr->vp_vc = vc >> 8; 
vpaddr->vp_mode = VP_DKAHODE; 
vpaddr->vp_qlrmask = 1; 
sc->sc state I= VPSC BUSY; 
splx(s); -

/•ARGSUSED•/ 
vpvr1te(dev, uio) 

dev t dev; 
strict u1o •uio; 

{ 

if (VPUNIT(dev) >= NVP) 
return (ENXID); 

return (physio(vpstrategy, &rvpbuf[VPUNIT(dev)], dev, B_WRITE, 
minphys, u1o)); 
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} 

vpwai t (dev) 

{ 

} 

dev_t dev; 

register struct vpdevice •vpaddr = 
(struct vpdevice •)vpdinfo[VPUNIT(dev)J->md_addr; 

register struct vp_softc •sc = &vp_softc[VPUNIT(dev)J; 

for (; ;) { 

} 

if ((sc->sc state & VPSC BUSY)== 0 && 
vpaddr->vp_status & VP_DRDY) 

break; 
sleep((caddr_t)sc, VPPRI); 

return (O); 

struct pair { 
char soft; 
char hard; 

I• software bite/ 
I• hardware bit •I 

} vpbits[J = { 

}; 

VPC RESET, 
VPC-CLRCOM, 
VPC-EOTCOM, 
VPC=FFCOM, 
VPC_TERMCOM, 
0, 

VP RESET, 
VP=CLEAR, 
VP EDT, 
VP=FF, 
VP_TERM, 
0, 

vpcmd(dev) 
dev_t; 

{ 

} 

register struct vp_softc esc = &vp_softc[VPUNIT(dev)); 
register struct vpdevice •vpaddr = 

(struct vpaevice e)vpdinfo[VPUNIT(dev)J->md addr; 
register struct pair •bit; -

for (bit= f~bits; bit->soft I= O; bit++) { 
if (sc->sc state & bit->soft) { 

vpaddr->vp_cmd = bit->hard; 
sc->sc state&= -bit->soft; 

} 
} 

DELAY(100); /e time for DROY to drop e/ 
re'turn; 

/eARGSUSEDe/ 
vpioctl(dev, cmd, data, flag) 

dev_t dev; 
int cmd; 
caddr_t data; 
int flag; 

{ 
register int m; 
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r,g1st,r struct mb_dev1ce ._d = vpdinfo[VPUNIT(dev)]; 
regist,r struct vp_softc •sc = avp_softc[VPUNIT(dev)]; 
r,gist,r struct vpd,vic, •vpaddr = (struct vpdevice •)md->md_addr; 
int s; 

switch (cmd) { 

cu, VGETSTATE: 
•(int •)data= sc->sc state; 
br,ak; -

cu, VSETSTATE: 

dlfault: 

> 

• = •Cint •)data; 
sc->sc stat,= 

(sc->sc state a -ypsc_MODE) 
bnak; -

r,turn (ENOTTY) ; 

• = splz(pritospl(md->md_intpri)); 
(void) vpwait(d,v); 

(ma(VPSC_MODEIVPSC_CMNDS)); 

1f (1c->1c stat,aVPSC SPP) 
vpaddr->vp_stitus = VP_SPPIVP_PLOT; 

dH if (sc->sc stateaVPSC PLOT) 
vpaddr->vp_,tatus; VP_PLOT; 

dH 
vpaddr->vp_status = o; 

whU• (sc->sc state a VPSC CMNDS) { 
(void) vpwait(d,v); 
vpcmd(d,v); 

> 
splz(s); 
ntun (0); 

> 
/•ARGSUSED•/ 
vpintr() 
{ 

r,gist,r int d,v; 
r,gist,r struct mb_d,vic, ._d; 
r,gist,r struct vpdevice •vpaddr; 
r,gi1t1r 1truct vp_softc •sc; 
r,111t,r int found= O; 

for (d•v = O; d,v < NVP; dev++) { 
1f ((md = vpdinfo[d,v]) == NULL) 

continue; 
vpaddr = (struct vpdevice •)md->md_addr; 
vpaddr->vp~icadO = VP_ICPOLL; 
DELAY(l); 
if (vpaddr->vp_icadO a OxBO) { 

found= 1; 
DELAY(l): 
vpaddr->vp_icadO = VP_ICEOI; 

> 
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sc = avp_softc[dev]; 
if ((sc->sc state&VPSC BUSY) aa (vpaddr->vp status a VP DRDY)) { 

sc->sc state a; -ypsc BUSY; - -
1f (sc=>sc_state a VPSC_SPP) { 0 

sc->sc state a= -ypsc SPP; 

} 

vpt1mo() 
{ 

} 
#end1f 

sc->sc=state I= VPSC=PLOT; 
vpaddr->vp_status = VP_PLOT; 

} 

} 
iodone(sc->sc_bp); 
sc->sc_bp = NULL; 
11brels1(11d->11d_hd, 

} 
wakeup((caddr_t)sc); 

return (found); 

int s; 

asc->sc_mbinfo); 

r,gister struct mb_device •md = vpdinfo[O]; 

s = splx(pr1tospl(ma->md_1ntpr1)); 
vpintr(); 
splx(s); 
t1111out(vpti110, (caddr_t)O, hz); 

0 

0 
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Using ADB to Debug the UNIX Kernel 

This document describes the Ulle of extensions made to the UNIXt debugger adb for the purpose 
or debugging the UNIX kernel. It discusses the changes made to allow standard ad6 commands 
to runction properly with the kernel and introduces the basics necessary ror Wiers to write ad6 
command scripts which may be Wied to augment the standard ad6 command set. The examina
tion techniques described here may be applied to running systems, as well as the post-mortem 
dumps automatically created by the ,a11ecore(8) program after a system crash. The reader is 
expected to have at least a passing familiarity with the debugger command language. 

1. Introduction 

Modifications have been made to the standard UNIX debugger ad6 to simpliry examination or 
post-mortem dumps automatically generated rollowing a system crash. These changes may also 
be used when examining UNIX in its normal operation. This document serves as an introduc
tion to the use or these facilities, and should not be construed as a description or liow lo debug 
the kernel. 

1,1, Invocation 

When examining the UNIX kernel a new option, -k, should be used: 

adb -k /vmunix /dev/mem 

This flag causes ad6 to partially simulate the Sun-2 virtual memory hardware when accessing 
the core file. In addition the internal state maintained by the debugger is initialized rrom data 
structures maintained by the UNIX kernel explicitly ror debuggingt. A post-mortem dump may 
be examined in a similar rashion, 

adb -k vmunix.? vmcore.? 

where the appropriate version or the saved operating system image and core dump are supplied 
in place or "?". 

t UNIX ia a trademark of Bell Laboratorieo. 
i It the -k flag ia not used when invoking atlb the user must explicitly calculate virtual addre,.eo. 
With the -k option ,,u, interprele page tables to automatically perform virtual to physical addreso 
tramlation. 
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1.2, Establishing Context 

During initialization adb attempts to establish the context of the "currently active process" by 
examining the value of the kernel variable panic_reg,. This structure contains the register 
values at the time of the call to the panic routine. Once the stack pointer has been located, the 
command 

Se 
will generate a stack trace. An alternate method may be used when a trace of a particular pro
cess is required: see section 2.3. 

2 Revision C of 7 January 1984 
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2. ADB Command Scripts 

2.1. Extending the Formatting Facilities 

Once the process context has been established, the complete otll, command set is available for 
interpreting data structures. In addition, a number of otlb scripts have been created to simplify 
the structured printing of commonly referenced kernel data structures. The scripts normally 
reside in the directory /u,r/lib/otlb, and are invoked with the "S<" operator. A later table lists 
the "standard" scripts. 
As an example, consider the following listing which contains a dump of a faulty process'• state 
( our typing is shown emboldened). 

% adb -k vmunix.3 vmcore.3 
sbr 50030 sir 5le 
physmem 3c0 
Sc 
_panic[l0fec](5234d) + 3c 
_ialloc (16ea8]( d44a2,2,dff) + c8 
_maknode(ld476](dff) + 44 
_copen(lc480](602,·l) + 4e 
_creat() + 16 
_syscall(2ea0a]() + 15e 
level5() + 6c 
623.d/• 
_nldisp+ 17 5: ialloc: dup alloc 
uS<u 
u· - . 

_u: pc 
4be0 

_u+4: d2 d3 d4 d5 
13b0 0 0 0 

_u+ 14: d6 d7 
0 2604 

_u+ le: a2 a3 a4 a5 
0 c7800 5a958 d7160 

_u+ 2c: a6 a7 
3e62 3e48 

_u+34: sr 
27000000 

_u+38: pObr pOlr plbr pllr 
105000 40000022 fd7f4 lffe 

_u+48: szpt sswap 
l 0 

_u+ 50: procp arO comm 
d7160 3fb2 dtime·a·a·a·a·a 

_u+ 158: argO argl arg2 
1001c •l ffffa4 

_u+ 178: uap cp,ave error 
2958 2eb46 1 0 
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_u+ lb2: rvl rv2 eosys 
0 14cac 0 0 _u+ lbc: uid gid 
49 10 

_u+ lcO: groups 
10 ·1 -1 -1 
-1 -1 -1 -1 

_u+ leO: ruid rgid 
49 10 

_u+ le4: tsize dsize ssize 
7 lb 2 

_u+344: odsize ossize outime 
0 0 0 

_u+ 350: signal 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
sigmask 
0 0 0 0 
0 0 0 0 

0 0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

_u+ 450: onstack oldmask code 
0 80002 0 

_u+45c: sigstack onsigstack 
0 0 

_u+ 464: ofile 
d66b4 d66b4 d66b4 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 
0 0 0 0 

pofile 
0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 
0 0 0 0 

_u+ 4c8: cdir rdir ttyp ttyd cmask 
d44a2 0 5c6c0 0 12 

ru & cru 0 
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_u+4d8: utime stime 

0 0 0 0 35b60 
_u+4e8: maxrss ixrss idrss isrss 

g 35 43 
_u+4f8: minfit majfit nswap 

0 5 0 
_u+504: inbloek oubloek msgsnd msgrcv 

3 7 0 0 
_u+ 514: nsignals nvcsw nivcsw 

0 12 4 
_u+520: utime stime 

0 0 0 0 
_u+530: maxrss ixns idrss isrss 

0 0 0 
_u+ 540: minfit majfit nswap 

0 0 0 
_u+ 54c: inblock oublock msgsnd msgrcv 

0 0 0 0 
_u+ 55c: nsignals nvcsw nivcsw 

0 0 0 
Od'1 UIOS < proc 
d7160: link rlink addr 

500e0 0 1057f4 
d716c: upri pri cpu stat time nice sip 

066 024 020 03 01 024 0 

0 d7173: cursig sig 
0 0 

d7178: mask ignore catch 
0 0 0 

d7184: flag uid pgrp pid ppid 
8001 31 2f 2f 23 

d7100: xstat ru poip szpt tsize 
0 0 0 1 7 

d719e: dsize ssize rssize maxrss 
lb 2 5 fffff 

d71ae: swrss swaddr wchan textp 
0 0 0 d8418 

d71be: pObr xlink ticks 
105000 0 15 

d7lc8: %cpu ndx idhash pptr 
0 6 2 d70d4 

d7ld4: real itimer 
0 0 0 0 

d7le4: quota ctx 
0 5f236 

Od8418S<ten 
d8418: daddr 

284 0 0 0 

0 
0 0 0 0 
0 0 0 0 
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ptdaddr 
184 7 

size caddr 
d7160 

iptr 
d47e0 

rssize swrss countccount nag slptim poip 
4 0 01 01 042 0 0 

The cause of the crash was a "panic" (see the stack trace) due to the a duplicate inode alloca
tion detected by the ialloc routine The majority of the dump was done to illustrate the use of 
the command scripts used to format kernel data structures. The "u" script, invoked by the 
command "u$<u", is a lengthy series of commands which pretty-prints the user vector. Like
wise, "proc" and "text" are scripts used to format the obvious data structures. Let's quickly 
examine the "text" script (the script has been broken into a number of lines for convenience 
here; in actuality it is a single line of text) . 

. /"daddr"n12Xn\ 
" ptdaddr" 16t" size" 16t • caddr" 16t • iptr" n 4Xn \ 
• rssize" 8t" swrss" 8t • count" 8t" ccount" 8t" flag" 8t" slptim" 8t" poip" n2x4bx 

The first line produces the list of disk block addresses associated with a swapped out text seg
ment. The "n" format forces a new-line character, with 12 hexadecimal integers printed 
immediately after. Likewise, the remaining two lines of the command format the remainder or 
the text structure. The expression "16t" causes atlb to tab to the next column which is a mul
tiple of 16. 

The majority of the scripts provided are of this nature. When possible, the formatting scripts 
print a data structure with a single format to allow subsequent reuse when interrogating arrays 
of structures. That is, the previous script could have been written 

./" daddr" nl 2Xn 
+ /" ptdaddr" 16t"size" 16t"caddr" 16t"iptr"n4Xn 
+ /"rssize" 8t" swrss" 8t" count" 8t" ccount" 8t" 8ag"8t"slptim" 8t"poip" n2x4bx 

but then reuse of the format would have invoked only the last line or the format. 

2.2. Traversing Data Structures 

The atlb command language can be used to traverse complex data structures. One such data 
structure, a linked list, occurs quite often in the kernel. By using atlb variables and the normal 
expression operators it is a simple matter to construct a script which chains down the list print
ing each element along the way. 

For instance, the queue of processes awaiting timer events, the callout queue, is printed with the 
following two scripts: 

6 Revision C of 7 January 11184 
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callout: 

calltodo/"time" 16t"arg" 16t"func" 
•(.+ Otl2)S<callout.next 

callout.next: 

./D2p 
•+ >I 
,#<IS< 
<IS <callout.next 

Using ADB on the UNIX Kernel 

The first line of the script callout starts the traversal at the global symbol calltotlo and prints a 
set of headings. It then skips the empty portion of the structure used as the head of the queue. 
The second line then invokes the script callout.next moving "." to the top of the queue("•+" 
performs the indirection through the link entry of the structure at the head of the queue). 
callout.next prints values for each column, then performs a conditional test on the link to the 
next entry. This test is performed as follows, 
•+ >I Place the value of the "link" in the 11tl6 variable "<I". 
,#<IS< If the value stored in "<I" is non-zero, then the current input stream (i.e. the script 

callout.next) is terminated. Otherwise, the expression "#<I" will be zero, and the 
"S<" will be ignored. That is, the combination of the logical negation operator"#", 
atlb variable "<I", and "S<" operator creates a statement of the form, 

if (!link) exit; 

The remaining line of callout.next simply reapplies the script on the next element in the linked 
list. 
A sample callout dump is shown below. 

% adb-k /vmunix /dev/mem 
sbr 50030 sir Sle 
physmem 3c0 
S<callout 
_calltodo: 
_calltodo: time 
d9fc4: 
d9f94: 
d9fd4: 
d9fa4: 
d9fe4: 
d9fh4: 
d9ff4: 
da044: 
da004: 
da024: 
da034: 

arg 
5 
1 
1 
3 
0 
15 
12 
736 
206 
649 
176929 

Revision C of 7 January 1984 

func 
0 
0 
0 
0 
0 
0 
0 
d7300 
d6fbc 
d74lc 
d7304 

Joundrobin 
jf_slowtimo 
_schedcpu 
.J>ffasttimo 
_schedpaging 
_pfslowtimo 
_arptimer 
Jealitexpire 
..1ealitexpire 
Jealitexpire 
Jealitexpire 
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2.3. Supplying Parameters 

If one is clever, a command script may use the address and count portions of an a,/6 command 
as parameters. An example of this is the aetproc script used to switch to the context of a pro
cess with a known process-id; 

OtOOS<setproc 

The body of setproc is 

.>4 
•nproc>l 
•proc>f 
S <setproc.nxt 

while setproc.nxt i~ 

( •( <f+ Ot42)&0xfi'ff)=" pid "D 
,#((( •( <f+ Ot42)&0xfi'ff))-<4)S<setproc.done 
<1-1 >I 
<f+ Otl40>f 
,#<1$< 
S <setproc.nxt 

The process-id, supplied as the parameter, is stored in the variable "<4", the number of 
processes is placed in "<I", and the base of the array of process structures in "<r'. 
aetproc.nxt then performs a linear search through the array until it matches the process-id 
requested, or until it runs out of process structures to check. The script aetproc.done simply 
establishes the context of the process, then exits. 

2.4. Standard Scripts 

The following table summarizes the command scripts currently available in the directory 
/ uar / lib/ adb. 

Standard Command Scripts 
Name Use Description 

buf atldr$<bul format block 1/0 buffer 
callout S<callout print timer queue 
clist addrS < clist format character 1/0 linked list 
dino atldr$<dino format directory inode 
dir atltlr$<dir format directory entry 

file adtlrS<lile format open file structure 
lilsya add,$< lilsy• format in-core super block structure 
lindproc pia'S<lindproc find process by process id 
ifnet atldrS<ifnet format network interface structure 
inode atltlrS<inode format in-core inode structure 

inpcb otldrS<inpcb format internet protocol control block 
iovec addr$<iovec format a list of iov structures 
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Standard Command Scripts 
Name Use Description 

ipre ... •ddrS<ipr- format an ip reassembly queue 
mad edd,S<mad show "active" list or mburs 
mbatat S<mbatat show mbul statistics 

mbuf eddrS<mbuf show "next" list ol mburs 
mbufa addrS<mbufa show a number of mbul's 
mount 1ddrS<mount format mount structure 
pcb oddrS<pcb format process context block 
proc oddrS<proc format process table entry 

protosw •ddrS< protosw format protocol table entry 
rawcb addrS<rawcb format a raw protocol control block 
rtent17 1dd,S<rtent17 format a routing table entry 
ruaage add,S<rusage format resource usage block 
setproc pidS<setproc switch process context to pid 

socket add,S<aocket format socket structure 
stat addrS<stat format stat structure 
tcpcb addrS<tcpcb format TCP control block 
tcplp addrS<tcplp format a TCP /IP packet header 
tcpr- eddrS<tcpreau show a TCP reassembly queue 

text addrS<text format text structure 
traceall S <traceall show stack trace for all processes 
tt7 addrS<tt7 format tty structure 
u addrS<u format user vector, including pcb 
uio addrS<uio format uio structure 
vtimea eddrS<vtimes format vtimes structure 

3. Generating ADB Scripts with Adbgen 

The adbger,(_8) program allows the scripts presented earlier to be written in a way that does not 
depend on the structure member offsets of the items being referenced. For example, the "text" 
script given above depended on the fact that all the members to be printed were located con
tiguously in memory. Using adbgen, we could write the script as follows (again it is really on 
one line, but broken apart here for ease ol display): 
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#include "sys/types.h" 
#include "sys/text.h" 

text 
.f" daddr" n { x_daddr,12X}n \ 
"ptdaddr" 16t" size" l 6t" caddr" 16t" iptr" n \ 
{ x_ptdaddr,X} { x_size,X} { x_caddr ,X} { xjptr,X}n\ 

Sun System Internals Manual 

"rssize" 8t" swrss" 8t" count"8t"ccount" 8t"fiag"8t"slptim"8t"poip"n\ 
{ x_rssize,x} { x_swrss,x} {x_count,b} {x_ccount,b} {x_fiag,b} {x_slptime,b} {x..J>oip,x} {END} 

The script starts with the names of the relevant header files, while the braces delimit structure 
member names and their formats. This script is then processed through ad6gen(8) to get the 
adb script presented in the previous ,eetion. See 11dbgen(8) for a complete description of how to 
write odbgen scripts. The real value of writing scripts this way becomes apparent only with 
longer and more complicated scripts (for example, the "u" script). Once the scripts are written 
this way they can be rerun if a structure definition changes without any human effort put into 
offset calculations. 

4. Summary 

The extensions made to odb provide basic support for debugging the UNIX kernel by eliminating 
the need for a user to carry out virtual to physical address translation. A collection of scripts 
have been written to nicely format the major kernel data structures and aid in switching 
between process context.. This hM been carried out with only minimal change. to the 
debugger. 

More work is also required on the user interface to adb. It appears the inscrutable odb com· 
mand language has limited widespread use of much of the power of odb. One possibility is to 
provide a more comprehensible "adb frontend", just as 61(1) is used to frontend dl(I). Another 
possibility is to upgrade db:,(1) to understand the kernel. 
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A Fast File System for UNIX 

This document describes a reimplementation of the UNIX file system. The reimplementation 
provides substantially higher throughput rates by using more Bexible allocation policies, that 
allow better locality of reference and that can be adapted to a wide range of peripheral and pro
cessor characteristics. The new file system clusters data that is sequentially accessed and pro
vides two block sizes to allow fast access for large files while not wasting large amounts of space 
for small files. File access rates of up to ten times faster than the traditional UNIX file system 
are experienced. Long needed enhancements to the user interface are discussed. These include 
a mechanism to lock files, extensions of the name space across file systems, the ability to use 
arbitrary length file names, and provisions for efficient administrative control of resource usage. 

1, Introduction 

This paper describes the changes between the original 512 byte UNIX file system to the file sys
tem implemented with the 0.9 release of the Sun UNIX system. It presents the motivations for 
the changes, the methods used to affect these changes, the rationale behind the design decisions, 
and a description of the new implementation. This discussion is followed by a summary of the 
results that have been obtained, directions for future work, and the additions and changes that 
have been made to the user visible facilities. The paper concludes with a history of the software 
engineering of the project. 
The original UNIX system that runs on the PDP-11 t has simple and elegant file system facili
ties. File system input/output is buffered by the kernel; there are no alignment constraints on 
data transfers and all operations are made to appear synchronous. All transfers to the disk are 
in 512 byte blocks, which can be placed arbitrarily within the data area of the file system. No 
constraints other than available disk space are placed on file growth (Ritchie7 4), (Thompson79). 
When used together with other UNIX enhancements, the original 512 byte UNIX file system is 
incapable of providing the data throughput rates that many applications require. For example, 
applications that need to do a small amount of processing on a large quantities of data such as 
VLSI design and image processing, need to have a high throughput from the file system. High 
throughput rates are also needed by programs with large address spaces that are constructed by 
mapping files from the file system into virtual memory. Paging data in and out of the file sys
tem is likely to occur frequently. This requires a file system providing higher bandwidth than 
the original 512 byte UNIX one which provides only about two percent of the maximum disk 
bandwidth or about 20 kilobytes per second per arm (White80), (Smith8lb). 
Modifications have been made to the UNIX file system to improve its performance. Since the 
UNIX file system interface is well understood and not inherently slow, this development retained 
the abstraction and simply changed the underlying implementation to increase its throughput. 

0 t DEC, PDP, VAX, MASSBUS, and UNIBUS are trademarks of Digital Equipment Corporation. 
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Consequently users of the system have not been faced with massive software conversion. 
Problem• with file system performance have been dealt with extensively in the literature; see 
(Smith8la] for a survey. The UNIX operating system drew many or its ideas from Multics, a 
large, high performance operating system (Feiertag71]. Other work includes Hydra (Almes78), 
Spice [Thompson80J, and a file system for a lisp environment (Symbolics8la). 

A major goal of this project ha., been to build a file system that is extensible into a networked 
environment (Holler73]. Other work on network file systems describe centralized file servers 
(Accetta80), distributed file servers (Dion80), (Luniewski77), (Porcar82), and protocols to reduce 
the amount or information that must be transferred across a network (Symbolics8lb), 
(SturgisSOJ. 

2. Old File System 

In the old file system developed at Bell Laboratories each disk drive contains one or more file 
systems. t A file system is described by its super-block, which contains the ha.sic parameters or 
the file system. These include the number or data blocks in the file system, a count of the max
imum number of files, and a pointer to a list or free blocks. All the free blocks in the system 
are chained together in a linked list. Within the file system are files. Certain files are di&
tinguished as directories and contain pointers to files that may themselves be directories. Every 
file ha., a descriptor associated with it called an inode. The inode contains information describ
ing ownership or the file, time stamps marking last modification and access times for the file, 
and an array or indices that point to the data blocks for the file. For the purposes or this sec
tion, we assume that the first 8 blocks of the file are directly referenced by values stored in the 
inode structure itself•. The inode structure may also contain references to indirect blocks con
taining farther data block indices. In a file system with a 512 byte block size, a singly indirect 
block contains 128 further block addresses, a doubly indirect block contains 128 addresses of 
further single indirect blocks, and a triply indirect block contains 128 addresses of further dou
bly indirect blocks. 

A traditional 150 megabyte UNIX file system consists of 4 megabytes of inodes followed by 146 
megabytes or data. This organization segregates the inode information from the data; thus 
accessing a file normally incurs a long seek from its inode to its data. Files in a single directory 
are not typically allocated slots in consecutive locations in the 4 megabytes of inodes, causing 
many non-consecutive blocks to be accessed when executing operations on all the files in a direc
tory. 

The allocation or data blocks to files is also suboptimum. The traditional file system never 
transfers more than 512 bytes per disk transaction and often finds that the next sequential data 
block is not on the same cylinder, forcing seeks between 512 byte transfers. The combination of 
the small block size, limited read-ahead in the system, and many seeks severely limits file system 
throughput. 

The first work at Berkeley on the UNIX file system attempted to improve both reliability and 
throughput. The reliability was improved by changing the file system so that all modifications 
of critical information were staged so that they could either be completed or repaired cleanly by 
a program after a era.sh (Kowalski78J. The file system performance was improved by a factor of 
more than two by changing the basic block size from 512 to 1024 bytes. The increa.se was 
because of two factors; each disk transfer accessed twice as much data, and most files could be 

f A file system always resides on a single drive. 
• The actual number ma.y vary from system to system, but is usually in the r&nge S..13. 
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described without need to access through any indirect blocks since the direct blocks contained 
twice as much data. The file system with these changes will henceforth be referred to as the old 
fil• •v•t•m. 
This performance improvement gave a strong indication that increasing the block size was a 
good method for improving throughput. Although the throughput had doubled, the old file sys
tem was still using only about four percent of the disk bandwidth. The main problem was that 
although the free list was initially ordered for optimal access, it quickly became scrambled as 
files were created and removed. Eventually the free list became entirely random causing files to 
have their blocks allocated randomly over the disk. This forced the disk to seek before every 
block access. Although old file systems provided transfer rates of up to 175 kilobytes per second 
when they were first created, this rate deteriorated to 30 kilobytes per second after a few weeks 
of moderate use because of randomization of their free block list. There was no way of restoring 
the performance an old file system except to dump, rebuild, and restore the file system. 
Another possibility would be to have a process that periodically reorganized the data on the 
disk to restore locality as suggested by (Maruyama76]. 

3. New file system organization 

As in the old file system organization each disk drive contains one or more file systems. A file 
system is described by its super-block, that is Ioc.ated at the beginning of its disk partition. 
Because the super-block contains critical data it is replicated to protect against catastrophic 
loss. This is done at the time that the file system is created; since the super-block data does not 
change, the copies need not be referenced unless a head crash or other hard disk error causes the 
default super-block to be unusable. 

To ensure that it is possible to create files as large as 2f32 bytes with only two levels or indirec
tion, the minimum size or a file system block is 4096 bytes. The size of file system blocks can be 
any power or two greater than or equal to 4096. The block size of the file system is maintained 
in the super-block so it is possible for file systems with different block sizes to be accessible 
simultaneously on the same system. The block size must he decided at the time that the file 
system is created; it cannot be subsequently changed without rebuilding the file system. 

The new file system organization partitions the disk into one or more areas called c,linder 
group,. A cylinder group is comprised of one or more consecutive cylinders on a disk. Associ
ated with each cylinder group is some bookkeeping information that includes a redundant copy 
of the super-block, space for inodes, a bit map describing available blocks in the cylinder group, 
and summary information describing the usage of data blocks within the cylinder group. For 
each cylinder group a static number of inodes is allocated at file system creation time. The 
current policy is to allocate one inode for each 2048 bytes of disk space, expecting this to be far 
more than will ever be needed. 
All the cylinder group bookkeeping information could be placed at the beginning of each 
cylinder group. However if this approach were used, all the redundant information would be on 
the top platter. Thus a single hardware failure that destroyed the top platter could cause the 
loss of all copies of the redundant super-blocks. Thus the cylinder group bookkeeping informa
tion begins at a floating offset from the beginning of the cylinder group. The offset for each suc
cessive cylinder group is calculated to be about one track further from the beginning of the 
cylinder group. In this way the redundant information spirals down into the pack so that any 
single track, cylinder, or platter can be lost without losing all copies of the super-blocks. Except 
for the first cylinder group, the space between the beginning of the cylinder group and the 
beginning of the cylinder group information is used for data blocks. t 
t While it •ppean that the ftrst cylinder group could be laid out with its super-block at the 
"known" location, this would not work for We systems with blocka sins of 16K or grea.ter, because 
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3.1. Optimizing storage utilization 

Data is laid out so that larger blocks can be transferred in a single disk transfer, greatly increas
ing file system throughput. As an example, consider a file in the new file system composed of 
4006 byte data blocks. In the old file system this file would be composed of 1024 byte blocks. 
By increasing the block size, disk accesses in the new file system may transfer up to four times 
as much information per disk transaction. In large files, several 4096 byte blocks may be allo
cated from the same cylinder so that even larger data transfers are possible before initiating a 
seek. 
The main problem with bigger blocks is that most UNIX file systems are composed of many 
small files. A uniformly large block size wastes space. Table 1 shows the effect of file system 
block size on the amount of wasted space in the file system. The machine measured to obtain 
these figures is one of our time sharing systems that has roughly 1.2 Gigabyte of on-line storage. 
The measurements are based on the active user file systems containing about 920 megabytes of 
formated space. 

Table 1: Wasted Space as a function of Block Size 

Space used % waste Organization 

775.2 Mb 0.0 Data only, no separation between files 
807.8 Mb 4.2 Data only, each file starts on 512 byte boundary 
828.7 Mb 6.9 512 byte block UNIX file system 
866.5 Mb 11.8 1024 byte block UNIX file system 
948.5 Mb 22.4 2048 byte block UNIX file system 

1128.3 Mb 45.6 4096 byte block UNIX file system 

The space wasted is measured as the percentage of space on the disk not containing user data. 
As the block size on the disk increases, the waste rises quickly, to an intolerable 45.6% waste 
with 4096 byte file system blocks. 

To be able to use large blocks without undue waste, small files must be stored in a more 
efficient way. The new file system accomplishes this goal by allowing the division of a single file 
system block into one or more fragment,. The file system fragment size is specified at the time 
that the file system is created; each file system block can be optionally broken into 2, 4, or 8 
fragments, each of which is addressable. The lower bound on the size of these fragments is con
strained by the disk sector size, typically 512 bytes. The block map associated with each 
cylinder group records the space availability at the fragment level; to determine block availabil
ity, aligned fragments are examined. Figure 1 shows a piece of a map from a 4096/1024 file sys
tem. 

of the requirement that the cylinder group information must begin at a block· boundary. 
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Bits in map 
Fragment numbers 
Block numbers 

xxxx 
0-3 
0 

xxoo 
4-7 
1 

ooxx 
8-11 

2 

0000 
12-15 

3 

Figure 1: Example layout of blocks and fragments in a 4096/1024 file system 

Each bit in the map records the status of a fragment; an "X" shows that the fragment is in use, 
while a "0" shows that the fragment is available for allocation. In this example, fragments 0-5, 
10, and 11 are in use, while fragments 6--9, and 12-15 are free. Fragments of adjoining blocks 
cannot be used as a block, even if they are large enough. In this example, fragments 6--9 cannot 
be coalesced into a block; only fragments 12-15 are available for allocation as a block. 
On a file system with a block size of 4096 bytes and a fragment size of 1024 bytes, a file is 
represented by zero or more 4000 byte blocks of data, and possibly a single fragmented block. 
If a file system block must be fragmented to obtain space for a small amount of data, the 
remainder of the block is made available for allocation to other files. As an example consider an 
11000 byte file stored on a 4000/1024 byte file system. This Ii.le would uses two full size blocks 
and a 3072 byte fragment. If no 3072 byte fragments are available at the time the file is 
created, a full size block is split yielding the necessary 3072 byte fragment and an unused 1024 
byte fragment. This remaining fragment can be allocated to another Ii.le as needed. 

The granularity of allocation is the tllf'ite system call. Each time data is written to a file, the 
system checks to see if the size of the file has increased•. If the file needs to hold the new data, 
one of three conditions exists: 
1) There is enough space left in an already allocated block to hold the new data. The new 

data is written into the available space in the block. 
2) Nothing has been allocated. If the new data contains more than 4000 bytes, a 4006 byte 

block is allocated and the first 4006 bytes of new data is written there. This process is 
repeated until less than 4096 bytes of new data remain. If the remaining new data to be 
written will fit in three or fewer 1024 byte pieces, an unallocated fragment is located, other
wise a 4096 byte block is located. The new data is written into the located piece. 

3) A fragment has been allocated. If the number of bytes in the new data plus the number of 
bytes already in the fragment exceeds 4096 bytes, a 4000 byte block is allocated. The con
tents of the fragment is copied to the beginning of the block and the remainder of the block 
is filled with the new data. The process then continues as in (2) above. If the number of 
bytes in the new data plus the number of bytes already in the fragment will fit in three or 
fewer 1024 byte pieces, an unallocated fragment is located, otherwise a 4096 byte block is 
located. The contents of the previous fragment appended with the new data is written into 
the allocated piece. 

The problem with allowing only a single fragment on a 4096/1024 byte file system is that data 
may be potentially copied up to three times as its requirements grow from a 1024 byte fragment 
to a 2048 byte fragment, then a 3072 byte fragment, and finally a 4096 byte block. The frag
ment reallocation can be avoided if the user program writes a full block at a time, except for a 
partial block at the end of the file. Because file systems with different block sizes may coexist 
on the same system, the file system interface been extended to provide the ability to determine 

• A program may be overwriting data in the middle of an existing file in which case epa.ce will al
read7 be allocated. 
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the o::>timal size for a read or write. For files the optimal size is the block size of the file system 
on which the file is being accessed. For other objects, such as pipes and sockets, the optimal O· 

size is the underlying buffer size. This feature is Ulled by the Standard Input/Output Library, a 
package used by most user programs. This feature is also used by certain system utilities such 
as archivers and loaders that do their own input and output management and need the highest 
possible file system bandwidth. 

The space overhead in the 4096/1024 byte new file system organization is empirically observed 
to be about the same as in the 1024 byte old file system organization. A file system with 4096 
byte blocks and 512 byte fragments has about the same amount of space overhead as the 512 
byte block UNIX file system. The new file system is more space efficient than the 512 byte or 
1024 byte file systems in that it uses the same amount of space for small files while requiring 
less indexing information for large files. This savings is offset by the need to use more space for 
keeping track of available free blocks. The net result is about the same disk utilization when 
the new file systems fragment size equals the old file systems block size. 

In order for the layout policies to be effective, the disk cannot be kept completely full. Each file 
system maintains a parameter that gives the minimum acceptable percentage of file system 
blocks that can be free. If the the number of free blocks drops below this level only the system 
administrator can continue to allocate blocks. The value of this parameter can be changed at 
any time, even when the file system is mounted and active. The transfer rates to be given in 
section 4 were measured on file systems kept less than 00% full. If the reserve of free blocks is 
set to zero, the file system throughput rate tends to be cut in half, becaU1Je of the inability of 
the file system to localize the blocks in a file. If the performance is impaired becaU1Je of 
overfilling, it may be restored by removing enough files to obtain 10% free space. Access speed 
for files created during periods of little free space can be restored by recreating them once 
enough space is available. The amount of free space maintained must be added to the percen• o 
tage of waste when comparing the organizations given in Table 1. ThUll, a site running the old · 
1024 byte UNIX file system wastes 11.8% of the space and one could expect to fit the same 
amount of data into a 4096/512 byte new file system with 5% free space, since a 512 byte old 
file system wasted 6.9% of the space. 

3.2. File system parameterization 

Except for the initial creation of the free list, the old file system ignores the parameters of the 
underlying hardware. It has no information about either the physical characteristics of the mass 
storage device, or the hardware that interacts with it. A goal of the new file system is to 
parameterize the processor capabilities and mass storage characteristics so that blocks can be 
allocated in an optimum configuration dependent way. Parameters Ulled include the speed of 
the processor, the hardware support for mass storage transfers, and the characteristics of the 
mass storage devices. Disk technology is constantly improving and a given installation can have 
several different disk technologies running on a single processor. Each file system is parameter
ized so that it can adapt to the characteristics of the disk on which it is placed. 

For mass storage devices such as disks, the new file system tries to allocate new blocks on the 
same cylinder as the previous block in the same file. Optimally, these new blocks will also be 
well positioned rotationally. The distance between "rotationally optimal" blocks varies greatly; 
it can be a consecutive block or a rotationally delayed block depending on system characteris
tics. On a processor with a channel that does not require any processor intervention between 
mass storage transfer requests, two consecutive disk blocks often can be accessed without 
suffering lost time becaU1Je of an intervening disk revolution. For processors without such chan- O 
nels, the main processor must field an interrupt and prepare for a new disk transfer. The 
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expected time to se"ice this interrupt and schedule a new disk transfer depends on the speed of 
the main processor. 
The physical characteristics of each disk include the number of blocks per track and the rate at 
which the disk spins. The allocation policy routines use this information to calculate the 
number of milliseconds required to skip over a block. The characteristics of the processor 
include the expected time to schedule an interrupt. Given the previous block allocated to a file, 
the allocation routines calculate the number of blocks to skip over so that the next block in a 
file will be coming into position under the disk head in the expected amount of time that it 
takes to start a new disk transfer operation. For programs that sequentially access large 
amounts of data, this strategy minimizes the amount of time spent waiting for the disk to posi• 
tion itself. 
To ease the calculation of finding rotationally optimal blocks, the cylinder group summary infor
mation includes a count of the availability of blocks at different rotational positions. Eight 
rotational positions are distinguished, so the resolution of the summary information is 2 mil• 
liseconds for a typical 3600 revolution per minute drive. 

The parameter that defines the minimum number of milliseconds between the completion of a 
data transfer and the initiation of another data transfer on the same cylinder can be changed at 
any time, even when the file system is mounted and active. If a file system is parameterized to 
lay out blocks with rotational separation of 2 milliseconds, and the disk pack is then moved to a 
system that has a processor requiring 4 milliseconds to schedule a disk operation, the 
throughput will drop precipitously because of lost disk revolutions on nearly every block. If the 
eventual target machine is known, the file system can be parameterized for it even though it is 
initially created on a different processor. Even if the move is not known in advance, the rota
tional layout delay can be reconfigured after the disk is moved so that all further allocation is 
done based on the characteristics of the new host. 

3.3. Layout policies 

The file system policies are divided into two distinct parts. At the top level are global policies 
that use file system wide summary information to make decisions regarding the placement of 
new inodes and data blocks. These routines are responsible for deciding the placement of new 
directories and files. They also calculate rotationally optimal block layouts, and decide when to 
force a long seek to a new cylinder group because there are insufficient blocks left in the current 
cylinder group to do reasonable layouts. Below the global policy routines are the local allocation 
routines that use a locally optimal scheme to lay out data blocks. 
Two methods for improving file system performance are to increase the locality of reference to 
minimize seek latency as described by (Trivedi80), and to improve the layout of data to make 
larger transfers possible as described by (Nevalainen77). The global layout policies try to 
improve performance by clustering related information. They cannot attempt to localize all 
data references, but must also try to spread unrelated data among different cylinder groups. If 
too much localization is attempted, the local cylinder group may run out of space forcing the 
data to be scattered to non-local cylinder groups. Taken to an extreme, total localization can 
result in a single huge cluster of data resembling the old file system. The global policies try to 
balance the two conflicting goals of localizing data that is concurrently accessed while spreading 
out unrelated data. 
One allocatable resource is inodes. Inodes are used to describe both files and directories. Files 
in a directory are frequently accessed together. For example the "list directory" command often 
accesses the inode for each file in a directory. The layout policy tries to place all the files in a 
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direc~ory in the same cylinder group. To ensure that files are allocated throughout the disk, a 
different policy is used for directory allocation. A new directory is placed in the cylinder group o 
that has a greater than average number of free inodes, and the fewest number of directories in 
it already. The intent of this policy is to allow the file clustering policy to succeed most of the 
time. The allocation of inodes within a cylinder group is done using a next free strategy. 
Although this allocates the inodes randomly within a cylinder group, all the inodes for each 
cylinder group can be read with 4 to 8 disk transfers. This puts a small and constant upper 
bound on the number of disk transfers required to access all the inodes for all the files in a 
directory as compared to the old file system where typically, one disk transfer is needed to get 
the inode for each file in a directory. 

The other major resource is the data blocks. Since data blocks for a file are typically accessed 
together, the policy routines try to place all the data blocks for a file in the same cylinder 
group, preferably rotationally optimally on the same cylinder. The problem with allocating all 
the data blocks in the same cylinder group is that large files will quickly use up available space 
in the cylinder group, forcing a spill over to other areas. Using up all the space in a cylinder 
group has the added drawback that future allocations for any file in the cylinder group will also 
spill to other areas. Ideally none of the cylinder groups should ever become completely full. 
The solution devised is to redirect block allocation to a newly chosen cylinder group when a file 
exceeds 32 kilobytes, and at every megabyte thereafter. The newly chosen cylinder group is 
selected from those cylinder groups that have a greater than average number of free blocks left. 
Although big files tend to be spread out over the disk, a megabyte of data is typically accessible 
before a long seek must be performed, and the cost of one long seek per megabyte is small. 

The global policy routines call local allocation routines with requests for specific blocks. The 
local allocation routines will always allocate the requested block ii it is free. If the requested 
block is not available, the allocator allocates a free block of the requested size that is rotation- o 
ally closest to the requested block. If the global layout policies had complete information, they 
could always request unused blocks and the allocation routines would be reduced to simple 
bookkeeping. However, maintaining complete information is costly; thus the implementation of 
the global layout policy uses heuristic guesses based on partial information. 

If a requested block is not available the local allocator uses a four level allocation strategy: 

1) Use the available block rotationally closest to the requested block on the same cylinder. 

2) If there are no blocks available on the same cylinder, use a block within the same cylinder 
group. 

3) Ir the cylinder group is entirely full, quadratically rehash among the cylinder groups looking 
for a free block. 

4) Finally if the rehash fails, apply an exhaustive search. 

The use of quadratic rehash is prompted by studies of symbol table strategies used in program
ming languages. File systems that are parameterized to maintain at least 10% free space almost 
never use this strategy; file systems that are run without maintaining any free space typically 
have so few free blocks that almost any allocation is random. Consequently the most important 
characteristic of the strategy used when the file system is low on space is that it be fast. 

4. Performance 

Ultimately, the proof of the effectiveness of the algorithms described in the previous section is 
the long term performance of the new file system. 
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Our empiric studies have shown that the inode layout policy has been effective. When running 
the "list directory" command on a large directory that itself contains many directories, the 
number of disk accesses for inodes is cut by a factor of two. The improvements are even more 
dramatic for large directories containing only files, disk accesses for inodes being cut by a factor 
of eight. This is most encouraging for programs such as spooling daemons that access many 
small files, since these programs tend to flood the disk request queue on the old file system. 

Table 2 summarizes the measured throughput of the new file system. Several comments need to 
be made about the conditions under which these tests were run. The test programs measure the 
rate that user programs can transfer data to or from a file without performing any processing 
on it. These programs must write enough data to ensure that buffering in the operating system 
does not affect the results. They should also be run at lea11t three times in succession; the first 
to get the system into a known state and the second two to ensure that the experiment has sta
bilized and is repeatable. The methodology and test results are discussed in detail in (Kri
dle83)t. The systems were running multi-user but were otherwise quiescent. There wa11 no con
tention for either the cpu or the disk arm. The only difference between the UNIBUS and 
MASSBUS tests wa11 the controller. All tests used an Ampex Capricorn 330 Megabyte Winches
ter disk. As Table 2 shows, all file system test runs were on a VAX 11/750. All file systems 
had been in production use for at least a month before being measured. 

Table 2: Reading Rates of the Old and New UNIX File Systems 

Type of Processor and Read 
File System Bus Measured Speed Bandwidth %CPU 

old 1024 750/UNIBUS 29 Kbytes/sec 29/1100 3% 11% 
new 4096/1024 750/UNIBUS 221 Kbytes/sec 221/1100 20% 43% 
new 8192/1024 750/UNIBUS 233 Kbytes/sec 233/1100 21% 29% 
new 4096/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 73% 
new 8192/1024 750/MASSBUS 468 Kbytes/sec 468/1200 39% 54% 

Table 3: Writing rates of the old and new UNIX file systems 

Type of Processor and Write 
File System Bus Measured Speed Bandwidth %CPU 

old 1024 750/UNIBUS 48 Kbytes/sec 48/1100 4% 29% 
new 4096/1024 750/UNIBUS 142 Kbytes/sec 142/1100 13% 43% 
new 8192/1024 750/UNIBUS 215 Kbytes/sec 215/1100 19% 46% 
new 4096/1024 750/MASSBUS 323 Kbytes/sec 323/1200 27% 94% 
new 8192/1024 750/MASSBUS 466 Kbytes/sec 466/1200 39% 95% 

U ike the old file system, the transfer rates for the new file system do not appear to change 
ov r time. The throughput rate is tied much more strongly to the amount of free space that is 

t A command that is 1imilar to the reading toot that we uud is, "cp 61e /dev/null", where 
"61e" is eight Megah;ytea long. 
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maintained. The measurements in Table 2 were based on a file system run with 10% free space. 
Synthetic work loads suggest the performance deteriorates to about half the throughput rates 
given in Table 2 when no free space is maintained. 

The percentage of bandwidth given in Table 2 is a measure of the elective utilization of the 
disk by the file system. An upper bound on the transfer rate from the disk is measured by 
doing 65536• byte reads from contiguous tracks on the disk. The bandwidth is calculated by 
comparing the data rates the file system is able to achieve as a percentage of this rate. Using 
this metric, the old file system is only able to use about 3-4% of the disk bandwidth, while the 
new file system uses up to 39% of the bandwidth. 

In the new file system, the reading rate is always at least as fast as the writing rate. This is to 
be expected since the kernel must do more work when allocating blocks than when simply read
ing them. Note that the write rates are about the same as the read rates in the 8102 byte block 
file system; the write rates are slower than the read rates in the 4006 byte block file system. 
The slower write rates occur because the kernel has to do twice as many disk allocations per 
second, and the processor is unable to keep up with the disk transfer rate. 

In contrast the old file system is about 50% faster at writing files than reading them. This is 
because the write system call is asynchronous and the kernel can generate disk transfer requests 
much faster than they can be serviced, hence disk transfers build up in the disk buler cache. 
Because the disk buffer cache is sorted by minimum seek order, the average seek between the 
scheduled disk writes is much less than they would be if the data blocks are written out in the 
order in which they are generated. However when the file is read, the reatl system call is pro
cessed synchronously so the disk blocks must be retrieved from the disk in the order in which 
they are allocated. This forces the disk scheduler to do long seeks resulting in a lower 
throughput rate. 

The performance of the new file system is currently limited by a memory to memory copy 
operation because it transfers data from the disk into bulers in the kernel address space and 
then spends 40% of the processor cycles copying these butrers to user address space. If the 
bulers in both address spaces are properly aligned, this transfer can be alected without copying 
by using the VAX virtual memory management hardware. This is especially desirable when 
large amounts of data are to be transferred. We did not implement this because it would 
change the semantics of the file system in two major ways; user programs would be required to 
allocate buffers on page boundaries, and data would disappear from butrers after being written. 

Greater disk throughput could be achieved by rewriting the disk drivers to chain together ker
nel buffers. This would allow files to be allocated to contiguous disk blocks that could be read 
in a single disk transaction. Most disks contain either 32 or 48 512 byte sectors per track. The 
inability to use contiguous disk blocks electively limits the performance on these disks to less 
than fifty percent of the available bandwidth. Since each track has a multiple of sixteen sectors 
it holds exactly two or three 8192 byte file system blocks, or four or six 4006 byte file system 
blocks. If the the next block for a file cannot be laid out contiguously, then the minimum spac
ing to the next allocatable block on any platter is between a sixth and a half a revolution. The 
implication of this is that the best possible layout without contiguous blocks uses only half of 
the bandwidth of any given track. If each track contains an odd number of sectors, then it is 
possible to resolve the rotational delay to any number of sectors by finding a block that begins 
at the desired rotational position on another track. The reason that block chaining has not 
been implemented is because it would require rewriting all the disk drivers in the system, and 

• This number, 65536, is the maximal 1/0 ei1e supported by the VAX hardware; it is a remnant of 
the system's PDP-11 ancestry. 
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the current throughput rates are already limited by the speed of the available processors. 
Currently only one block is allocated to a file at a time. A technique used by the DEMOS file 
system when it finds that a file is growing rapidly, is to preallocate several blocks at once, 
releasing them when the file is closed if they remain unused. By batching up the allocation the 
system can reduce the overhead of allocating at each write, and it can cut down on the number 
or disk writes needed to keep the block pointers on the disk synchronized with the block alloc1r 
tion [Powell79J. 

6. File system functional enhancements 

The speed enhancements to the UNIX file system did not require any changes to the semantics 
or data structures viewed by the users. However several changes have been generally desired for 
some time but have not been introduced because they would require users to dump and restore 
all their file systems. Since the new file system already requires that all existing file systems be 
dumped and restored, these functional enhancements have been introduced at this time. 

6.1. Long file names 

File names can now be of nearly arbitrary length. The only user programs affected by this 
change are those that access directories. To maintain portability among UNIX systems that are 
not running the new file system, a set of directory access routines have been introduced that 
provide a uniform interface to directories on both old and new systems. 

Directories are allocated in units of 512 bytes. This size is chosen so that each allocation can be 
transferred to disk in a single atomic operation. Each allocation unit contains variable-length 
directory entries. Each entry is wholly contained in a single allocation unit. The lint three 
fields of a directory entry are fixed and contain an inode number, the length of the entry, and 
the length of the name contained in the entry. Following this fixed size information is the null 
terminated name, padded to a 4 byte boundary. The maximum length of a name in a directory 
is currently 255 characters. 
Free space in a directory is held by entries that have a record length that exceeds the space 
required by the directory entry itself. All the bytes in a directory unit are claimed by the direc
tory entries. This normally results in the last entry in a directory being large. When entries are 
deleted from a directory, the space is returned to the previous entry in the same directory unit 
by increasing its length. Ir the first entry or a directory unit is free, then its inode number is set 
to zero to show that it is unallocated. 

6.2. File locking 

The old file system had no provision for locking files. Processes that needed to synchronize the 
updates or a file had to create a separate "lock" file to synchronize their updates. A process 
would try to create a "lock" file. If the creation succeeded, then it could proceed with its 
update; if the creation failed, then it would wait, and try again. This mechanism had three 
drawbacks. Processes consumed CPU time, by looping over attempts to create locks. Locks 
were left lying around following system crashes and had to be cleaned up by hand. Finally, 
processes running as system administrator are always permitted to create files, so they had to 
use a different mechanism. While it is possible to get around all these problems, the solutions 
are not straight-forward, so a mechanism for locking files has been added. 
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The .oost general schemes allow processes to concurrently update a file. Several of these tech-
niques are discussed in (Peterson83). A simpler technique is to simply serialize access with locks. o 
To attain reasonable efficiency, certain applications require the ability to lock pieces of a file. 
Locking down to the byte level has been implemented in the Onyx tile system by (Bass81). 
However, for the applications that currently run on the system, a mechanism that locks at the 
granularity of a tile is sufficient. 
Locking schemes fall into two classes, those using hard locks and those using advisory locks. 
The primary difference between advisory locks and hard locks is the decision of when to over
ride them. A hard lock is always enforced whenever a program tries to access a file; an advisory 
lock is only applied when it is requested by a program. Thus advisory locks are only effective 
when all programs accessing a file use the locking scheme. With hard locks there must be some 
override policy implemented in the kemel, with advisory locks the policy is implemented by the 
user programs. In the UNIX system, programs with system administrator privilege can override 
any protection scheme. Because many of the programs that need to use locks run as system 
administrators, we chose to implement advisory locks rather than create a protection scheme 
that was contrary to the UNIX philosophy or could not be used by system administration pro
grams. 
The file locking facilities allow cooperating programs to apply advisory ,hared or e:iclu,iw locks 
on tiles. Only one process has an exclusive lock on a file while multiple shared locks may be 
present. Both shared and exclusive locks cannot be present on a file at the same time. If any 
lock is requested when another process holds an exclusive lock, or an exclusive lock is requested 
when another process holds any lock, the open will block until the lock can be gained. Because 
shared and exclusive locks are advisory only, even if a process has obtained a lock on a file, 
another process can override the lock by opening the same tile without a lock. 

Locks can be applied or removed on open files, so that locks can be manipulated without need- 0 
ing to close and reopen the file. This is useful, for example, when a process wishes to open a file 
with a shared lock to read some information, to determine whether an update is required. It 
can then get an exclusive lock so that it can do a read, modify, and write to update the tile in a 
consistent manner. 
A request for a lock will cause the process to block if the lock can not be immediately obtained. 
In certain instances this is unsatisfactory. For example, a process that wants only to check if a 
lock is present would require a separate mechanism to find out this information. Consequently, 
a process may specify that its locking request should retum with an error if a lock can not be 
immediately obtained. Being able to poll for a lock is useful to "daemon" processes that wish to 
service a spooling area. Ir the first instance of the daemon locks the directory where spooling 
takes place, later daemon processes can easily check to see if an active daemon exists. Since the 
lock is removed when the process exits or the system crashes, there is no problem with uninten
tional locks files that must be cleared by band. 

Almost no deadlock detection is attempted. The only deadlock detection made by the system is 
that the file descriptor to w hicb a lock is applied does not currently have a lock of the same 
type (i.e. the second of two successive calls to apply a lock of the same type will fail). Thus a 
process can deadlock itself by requesting locks on two separate file descriptors for the same 
object. 
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5.3. Symbolic links 

The 512 byte UNIX file system allows multiple directory entries in the same file system to refer
ence a single file. The link concept is fundamental; files do not live in directories, but exist 
separately and are referenced by links. When all the links are removed, the file is deallocated. 
This style of links does not allow references across physical file systems, nor does it support 
inter-machine linkage. To avoid these limitations 1um6olic link, have been added similar to the 
scheme used by Multics (Feiertag71). 
A symbolic link is implemented as a file that contains a pathname. When the system 
encounters a symbolic link while interpreting a component of a pathname, the contents of the 
symbolic link is prepended to the rest of the pathname, and this name is interpreted to yield the 
resulting pathname. If the symbolic link contains an absolute pathname, the absolute path
name is used, otherwise the contents of the symbolic link is evaluated relative to the location of 
the link in the file hierarchy. 
Normally programs do not want to be aware that there is a symbolic link in a pathname that 
they are using. However certain system utilities must be able to detect and manipulate sym
bolic links. Three new system calls provide the ability to detect, read, and write symbolic links, 
and seven system utilities were modified to use these calls. 

In future Berkeley software distributions it will be possible to mount file systems from other 
machines within a local file system. When this occurs, it will be possible to create symbolic 
links that span machines. 

5.4. Rename 

Programs that create new versions of data files typically create the new version as a temporary 
file and then rename the temporary file with the original name of the data file. In the old UNIX 
file systems the renaming required three calls to the system. If the program were interrupted or 
the system crashed between these calls, the data file could be left with only its temporary name. 
To eliminate this possibility a single system call has been added that performs the rename in an 
atomic fashion to guarantee the existence of the original name. 
In addition, the rename facility allows directories to be moved around in the directory tree 
hierarchy. The rename system call performs special validation checks to ensure that the direc
tory tree structure is not corrupted by the creation of loops or inaccessible directories. Such 
corruption would occur if a parent directory were moved into one of its descendants. The vali
dation check requires tracing the ancestry of the target directory to ensure that it does not 
include the directory being moved. 

5.5. Quotas 

The UNIX system has traditionally attempted to share all available resources to the greatest 
extent possible. Thus any single user can allocate all the available space in the file system. In 
certain environments this is unacceptable. Consequently, a quota mechanism has been added 
for restricting the amount of file system resources that a user can obtain. The quota mechanism 
sets limits on both the number of files and the number of disk blocks that a user may allocate. 
A separate quota can be set for each user on each file system. Each resource is given both a 
hard and a soft limit. When a program exceeds a soft limit, a warning is printed on the users 
terminal; the offending program is not terminated unless it exceeds its hard limit. The idea is 
that users should stay below their soft limit between login sessions, but they may use more 
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spac,, while they are actively working. To encourage this behavior, users are warned when log-
ging in if they are over any of their soft limits. Ir they fail to correct the problem for too many Q, 

login sessions, they are eventually reprimanded by having their soft limit enforced as their hard 
limit. 

6. Software engineering 

The preliminary design was done by Bill Joy in late 1980; he presented the design at The 
USENIX Conference held in San Francisco in January 1981. The implementation of his design 
was done by Kirk McKusick in the summer of 1981. Most of the new system calls were imple
mented by Sam Leffler. The code for enforcing quotas was implemented by Robert Elz at the 
University of Melbourne. 
To understand how the project was done it is necessary to understand the interfaces that the 
UNIX system provides to the hardware mass storage systems. At the lowest level is a rato di,k. 
This interface provides access to the disk as a linear array of sectors. Normally this interface is 
only used by programs that need to do disk to disk copies or that wish to dump file systems. 
However, user programs with proper access rights can also access this interface. A disk is usu
ally formated with a file system that is interpreted by the UNIX system to provide a directory 
hierarchy and files. The UNIX system interprets and multiplexes requests from user programs 
to create, read, write, and delete files by allocating and freeing inodes and data blocks. The 
interpretation of the data on the disk could be done by the user programs themselves. The rea
son that it is done by the UNIX system is to synchronize the user requests, so that two 
processes do not attempt to allocate or modify the same resource simultaneously. It also allows 
access to be restricted at the file level rather than at the disk level and allows the common file 
system routines to be shared between processes. 0 
The implementation of the new file system amounted to using a different scheme for formating 
and interpreting the disk. Since the synchronization and disk access routines themselves were 
not being changed, the changes to the file system could be developed by moving the file system 
interpretation routines out of the kemel and into a user program. Thus, the first step was to 
extract the file system code for the old file system from the UNIX kernel and change its requests 
to the disk driver to accesses to a raw disk. This produced a library of routines that mapped 
what would normally be system calls into read or write operations on the raw disk. This library 
was then debugged by linking it into the system utilities that copy, remove, archive, and restore 
files. 
A new cross file system utility was written that copied files from the simulated file system to the 
one implemented by the kernel. This was accomplished by calling the simulation library to do a 
read, and then writing the resultant data by using the conventional write system call. A similar 
utility copied data from the kernel to the simulated file system by doing a conventional read 
system call and then writing the resultant data using the simulated file system library. 
The second step was to rewrite the file system simulation library to interpret the new file sys
tem. By linking the new simulation library into the cross file system copying utility, it was pos
sible to easily copy files from the old file system into the new one and from the new one to the 
old one. Having the file system interpretation implemented in user code had several major 
benefits. These included being able to use the standard system tools such as the debuggers to 
set breakpoints and single step through the code. When bugs were discovered, the offending 
problem could be fixed and tested without the need to reboot the machine. There was never a 
period where it was necessary to maintain two conc:J.Tent file systems in the kernel. Finally it 

0 was not necessary to dedicate a machine entirely to file system development, except for a brief 
period while the new file system was boot strapped. 
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The final step was to merge the new file system back into the UNIX kernel. This was done in 
less than two weeks, since the only bugs remaining were those that involved interfacing to the 
synchronization routines that could not be tested in the simulated system. Again the simulation 
system proved useful since it enabled files to be easily copied between old and new file systems 
regardless of which file system was running in the kernel. This greatly reduced the number of 
times that the system bad to be rebooted. 
The total design and debug time took about one man year. Most of the work was done on the 
file system utilities, and changing all the user programs to use the new facilities. The code 
changes in the kernel were minor, involving the addition of only about 800 lines of code. 
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The CPU PROM Monitor Commands 

The central processor board (CPU) of the Sun Workstation has a set of ROM's containing a 
program generally known as the 'monitor'. The monitor controls the operation of the system 
before the UNIX kernel takes control. This document describes the PROM monitor commands. 
For information on the startup and boot functions of the monitor, including messages displayed, 
see the appendix to the Sgltem Manager'• s,,.tem lmt.Uation •n' Maintenance Gui,e: TAe Sun 
Workltation Monitor. 

1. Command Syntax 

The command format understood by the monitor is quite simple. It is: 

< ver6> <•pace>•[<•rgummt>)< return> 

<verb> 

<•p•ce>• 
< argument> 

is always one alphabetic character; case does not matter. 

means that any number of spaces is skipped here. 

is normally a hexadecimal number or a single letter; again, case does not matter. 
Square brackets '[ )' indicate that the argument portion is optional. 

< return> means that you should pre811 the carriage-return key. 
When typing commands, <6acklpace> and <'dete> (also called <ru6out>, generated by the 
key labelled <6ackta6> on the non-VTlOO Sun keyboard) erase one character; control-U erases 
the entire line. 

2. Syntax for Memory and Register Acceu 

Several of the commands open a memory location, map register, or processor register, so that 
you can examine and/or modify the contents of the specified location. These commands include 
a, d, e, I, m, o, p, and r. 
Each of these commands takes the form of a command letter, possibly followed by a hexade
cimal memory address or register number, followed by a sequence of zero or more 'action 
specifier' arguments. The various options are illustrated below, using the e command as an 
example. You type the boldface parts, with a RETURN at the end of each command. 

If no action specifier arguments are present, the addreee or register name is displayed along with 
its current contents. You may then type a new hexadecimal value, or simply <return> to go 
on the next address or register. Typing any non-hex character and RE11JRN will get you back 
to command level. For registers, 'next' means within the sequence DO-D7, AO-A6, SS, US, SF, 
DF, VB, SC, UC, SR, PC. For example, the following command sets consecutive locations 
Oxl234 and Oxl236 to the values Ox5678 and OxOOOO respectively: 
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> e1234 
001234: 007F! 5878 
001236: 51A4! 0 
001238: C022! q 
> 

Sun System Internals Manual 

A non-hex character (such as question mark) on the command line means read-only: 

> elOOO? 
001000: 007F 

> 
Multiple nonhex characters read multiple locations: 

> elOOO ??? 
001000: 007F 
001002: 0064 
001004: 1234 
> 

A hex number on the command line does store-only: 

> elOOO 4587 
001000 -> 4567 
> 

Multiple hex writes multiple locations: 

> elOOO 12 3 
001000 -> 0001 
001002 -> 0002 
001004 -> 0003 
> 

Nonhex followed by hex reads, then stores. 

> elOOO? 348 
001000: 007F - > 0346 
> 

Finally, reads and writes can be interspersed: 

> elOOO ? 1 ? ? 3 4 
001000: 007F -> 0001 
001002: 0064 
001004: 1234 -> 0003 
001006 -> 0004 
> 

Spaces are optional except between two consecutive numbers. When actions are specified on the 
command line after the address, no further input is taken from the keyboard for that command; 
after executing the specified actions, a new command is prompted for. Note that these com• 
mands provide the ability to write to a location (such as an 1/0 register) without reading from 
it; and provide the ability to query a location without having to interact. 
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3. Command Descriptions 

A (n)(action,) 

B (l)(arp) 

Open A-register n (O<nS7, default zero in the address space defined by the 
'S' command). A7 is the System Stack Pointer; to see the User Stack Pointer, 
use the r command. For further explanation, see the section, 'Syntax for 
Memory and Register Access' above. 
Boot. Resets appropriate parts of the .1ystem, then bootatraps the aystem. 
This allows bootstrap loading of programs from various devices such as disk, 
tape, or Ethernet. Typing 'b!' lists all possible boot devices. Simply typing 
'b' gives you a default boot, which is configuration dependent. For an expla
nation of the booting options, 1ee the 1ectioD1 on 'Booting,' in the appendix 
to the S,atem /rutallation anti Maintenance Guitle in the Sun S,atem 
Manager', Manual. 

If the first character of the argument is a 'I', the aystem reset is not done, and 
the bootstrapped program is not automatically executed. To execute it, use 
the 'C' command described below. 

C (atltlr) Continue a program. The addresa atltlr, if given, is the address at which exe
cution will begin; default is the current PC. The registen will be restored to 
the values shown by the A, D, and R commands. 

D (n)(actioru) Open D-register n (OS nS7, default zero). For a detailed explanation, see the 
section, 'Syntax for Memory and Register Access' above. 

E (adtlrJ(action,) Open the word at memory addresa atltlr (default zero in the address space 
defined by the 'S' command); odd addresses are rounded down. For a 
detailed explanation, see the section, 'Syntax for Memory and Register 
Access' above. 

G (atltlr)(param) Start the program by executing a subroutine call to the address atltlr if given, 
or else to the current PC. The values of the address and data registers are 
undefined; the status register will contain Ox2700. One parameter is passed to 
the subroutine on the stack; it is the address of the remainder of the com
mand line following the last digit of atltlr ( and possible blanks). 

K (number) If number is O (or not given), this does a 'Reset Instruction': it resets the sys
tem without affecting main memory or maps. If number is 1, this does a 
'Medium Reset', which re-initializes most of the system without clearing 
memory. If number is 2, a hard reset is done and memory is cleared. This is 
equivalent to a power-on reset and causes the PROM-based diagnostics to be 
run, which can take ten seconds or so. 

L (•tltlr)(action,) Open the longword at memory address addr (default zero in the address space 
defined by the 'S' command); odd addresses are rounded down. For a 
detailed explanation, see the section, 'Syntax for Memory and Register 
Access' above. 

M (•tltlr) [actioru) 
OpeDI the Segment Map entry which maps virtual address addr (default zero) 
in the current context. The choice of supervisor or user context is determined 
by the 'S' command setting (0-3 .,. user; 4-7 ""' supervisor). See the section, 
'Syntax for Memory and Register Access' above. 

0 ( atltlr )( action, J OpeDI the byte location specified ( default zero in the address space defined by 
the 'S' command). See the section, 'Syntax for Memory and Register Access' 
above. The byte versus word distinction can be a problem on the Multibus, 
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since some Multibus boards follow the 8088 convention for byte ordering 
within words, which is the reverse of the 68000 convention. O 

P (oddr) (action,) Opens the Page Map entry which maps virtual address odb (default cero) in 
the current context. The choice of supenisor or user context is determined 
by the 'S' command setting (0-3 - user; 4-7 - supervisor). With each page 
map entry, the relevant segment map entry is displayed in brackets. See the 
section, 'Syntax for Memory and Register Access' above. 

R (action,) Opens the miscellaneous registers (in order): SS (Supenisor Stack Pointer), 
US (User Stack Pointer), SF (Source Function Code), DF (Destination Fune• 
tion Code), VB (Vector Base), SC (System Context), UC (User Context), SR 
(Status Register), and PC (Program Counter). Alterations made to these 
registel'!I ( except SC and VC) do not take effect until the next 'C' command. 
For further explanation, see the section, 'Syntax for Memory and Register 
Access' above. 

S (number) Sets or queries the address space to be used by subsequent memory access 
commands. number is the function code to be used, ranging from I to 7. 
Useful values are 1 (user data), 2 (user program), 3 (memory maps), 6 (super
visor data), 6 (supervisor program). If no 11um6er is supplied, the current set
ting is printed. 

U (arg) The U command manipulates the on-board UARTs (serial ports) and switches 
the current input or output device. The argument may have the following 
values ('{ab}' means that either 'a' or 'b' is specified): 

{ab) Select UART a (orb) as input and output device 
{ab}io Select UART a (orb) as input and output device o, 

{ab}i Select UART a (orb) for input only 

4 

{ab}o Select UART a (orb) for output only 
k Select keyboard for input 
ki Select keyboard for input 
s Select screen for output 
so Select screen for out put 
ks, sk Select keyboard for input and screen for output 
{ab}# Set speed of UART a (orb) to f (such as 1200, 9600, ... ) 
u addr Set virtual UART address 

If no argument is specified, the U command reports the current values of the 
settings. If no UART is specified when changing speeds, the 'current' input 
device is changed. 
At power-up, the following default settings are used: The default console 
input device is the Sun keyboard or, if the keyboard is unavailable, UART a. 
The default console output device is the Sun screen or, if the graphics board 
is unavailable, UART a. All serial ports are set to 9600 baud. 
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