
0

0

0

Part Number 800-1116-01
Revision: D or 7 January 1984

For: Sun System Release 1.1

Programmer's Reference Manual

for

Sun Windows

the Sun Window System

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View
California 94043
(415) 960-1300

Credits and Acknowledgements

A preliminary implementation or the Sun Window System was written at Sun Microsystems,
Inc. in December 1982 and January 1983. It incorporated a number or low-level operations and
data, including raster operations and Fonts, provided by Tom Duff or L ucasfilm, Ltd.

Trademarks

Sun Workstation, Sun Windows, SunCore and the combination or Sun with a numeric suffix
are trademarks or Sun Microsystems, Inc.

Sun Microsytems and Sun Workstation are registered trademarks or
Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks or Bell Laboratories.

Copyright© 1982, 1983, 1984 by Sun Microsystems.
Thia publication is protected by Federal Copyright Law, with all rights reserved. No part or
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any Form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission From Sun
Microsystems.

- ii -

0

0

0

0

Rev

A
B
C

D

0

0

Date

15 July 1983

15 September 1983

1 November 1983

7 January 1984 ,

Revision History

Comments

Preliminary draft release of this Programmer's Reference Manual.

0.9 release of this Programmer's Reference Manual.

Additions to pixrect creation, input handling, and tool facilities.

Many corrections; additions, changes, and deletions to user inter
face, option subwindow, graphic subwindow, and window
manager; changes to sunwindow library to accommodate color and
multiple screens and to the pixrect library to support color pix
rects.

- iii -

I
0'

0

·C)i
. I

I

0

0

0

Changes in the 1.1 Release of SunWindows

This notice describes changes, deletions, and additions to Sun Windows from release 1.0 to
rcleane 1.1. The main differences in 1.1 center around adding support for multiple screens and
color displays.

Sun Windows includes sources for window application ·programs in / uar/ auntool/ •, the suntool
library /uar/lib/libauntool.a, the sunwindow library /uar/lib/1,'b,unwindow.a, and the pixrect
library /uar/lib/Ubpizreet.a. For aunfoo/1(1) user information, refer to the Uaer', Manual for the
Sun Workstation. For more detailed Sun Windows programming information, refer to the refer
ence section of the Programmer•, Reference Manual for Sun Window,.

Upgrading from 1.0 to 1.1 SunWlndowa

1.0 programs must be recompiled to run in 1.1.

User Interlaee Dlft'erencm - Changes to /usr/suntool/

Additions to the User Interface

Additions to the user interface are:

1untool1
Now takes an extensive argument list to control the environment of the window system.
This includes indicating color, which screen, inversion, and so on. See OPTIONS in 1un
tool1 (1) in the U,er •, Manual for the Sun Work,tation for details.

1phere1demo
Now produces multiple colored spheres. A -g command line argument produces varying
sha4es of gray spheres. These grays may not appear gray until the cursor is positioned in
the,window in which the spheres are being drawn.

jump demo .
Now produces colored vectors, A -c command line argument causes the vectors to sparkle
via colormap rotation,

System Fonts
More fonts are available for use as the DEFAULT...FONT. See /u1r/1untool/fizedwidthfont1/ •

Revision D of 7 January 1984 Changes-1

Relea.,e 1.1 Sun Windows Reference Manual

and ,untool,(l) in the U,er', Manual for the Sun Work,tation.
Exiting suntools

Typing ·o followed by a ·q to the Root Window exits ,untool,.

New Programs

adjacent,creen,(l)
Tells the window system the physical relation of screens.

lock,creen(l)
Puts a "lock" on and hides the current window context so logging out is no longer neces
sary.

per/mon(l)
A graphic performance monitor.

Suntool Library

The changes to the suntool library involve several changes to the option subwindow interface,
making the graphics subwindow more robust, and simplifying window management utilities.

Option Subwlndow Changes

Three routines now take different arguments, return different values, and/or behave differently
than they used to. These are:
optaw_tezt

Takes a filth argument, the address of a notify procedure, exactly as for the other item
creation routines. The notify procedure is called whenever the value of the text item is
changed, except by a call to opt1w_1et11alue. It will be called with handles for the option
subwindow and the item which changed. Opt1w_get11alue should be used to actually retrieve
the new value. This parameter to optaw_tezt may be NULL to indicate "no notification."

opt1w_get11alue
Behaves differently for text items; its second (destination) argument should now be a
pointer to a struct 1tring_6uf, as defined in option,io.h. This protects against the case where
the value of the item is longer than the client's buffer. In such a case, the buffer is filled,
and the max count is returned; no terminating NULL is written in the client's buffer. A sub.
sequent call to opt1w_get11alue for that item will return the next fragment, until the whole
value ha., been reported. A terminating NULL is written in the buffer when there is room for
it, and a subsequent call to opt1w_get11alue will start anew at the beginning of value.

opt,w_,etplace
Has had its arguments changed to be parallel with opt,w_getplace. It third argument is now
a pointer to a struct item_place, instead of the struct rect pointer it used to take; the struct
contains a rect, and four boolean bit flags indicating that a value is to be fixed for that
item.

Change:t2 Revision D of 7 January 1984

0

C)

0

SunWindows Reference Manual Release 1.1

0 Opt,ion Subwindow Deletions

0

0

The atruct opt_item is no longer defined in a public header file. Routines which used to return a
pointer to such a struct (all of the item-creation routines, for instance) now return an opaque
pointer (caddr_t). Routines which took a pointer to such a struct as an argument now accept
the opaque pointer. Inquiry and manipulation functions are provided to support access to the
item, without commitment to their internal representation.

Option Subwlndow Additions

Two new structs are defined, one for optaw_getplace and optaw_,etplace, one for opt,w_getvalue
on text items:
atruct item_place

Encode~ the information about an item's size and location which the client may see and
modify. A pointer to such a struct is passed to optaw_getplace (which fills it in) and
oplaw_,etp/ace, which uses it to establish an item's location, size, and willingness to change.

,truct atring_buf .
Provides a counted buffer for text items' values to be stored into. Limit should be the size
of t}ie buffer on a call to optaw_getvalue.

The following new routines are also provided:

opt,w_getcaret(oaw)
Returns an item handle for the item which currently has the caret in oaw, or NULL if there
is no text item in osw.

optaw_,etcoret(o,w, ip)
Maies the optionsw text item referred to by ip be the one which has the caret in the indi
cated optionsw.

optaw_getfont(o,w)
Returns a pointer to t)J.e struct pizfont which is currently being used by the optionsw.

optaw..l{etp/ace(o,w, ip, pl~ce)
Stores into the item_place struct pointed to by place a description of the size, position, and
fixedness of the item indicated.

opt,w_ne:rtitem{o,w, ip)
Given an item in an optionsw, returns a handle for the next item in sequence.

opt1w_removeitem1{01w, ip, count, reformat)
Removes at most count items from o,w, making them inaccessible to the user, but not des
troying them.

optaw_re1toreitem1{01w, ip, count, reformat)
Restores at most count items in o,w, starting at the item indicated by ip; returns the
n1lJltber restored.

Graphic Sunwlndow Changea

Graphic sunwindow changes to the interface are:

Revision D of 7 January 1984 Changes-3

Release 1.1 SunWindows Reference Manual

g/zaw_aetinputmaak
Should be called instead of win_aetinputmaal:. This call takes additional arguments as well.

Graphic Sunwindow Deletions

The graphics sunwindow procedure g/zaw_cleanup was removed from the interface because it is
now obsolete due to the new implementation of the graphic subwindows. Graphics subwindows
now use blanket windows instead of the old window takeover mechanism. You can instead call
g/z,w_done, or do nothing at all, from SIGINT and SIGHUP handling routines.

Graphic Sunwlndow Additions

Graphic sunwindow additions to the interface are:
g/zaw_catchaigwinc/a

Catches and handles SIGWINCH.

g/zaw_catchaigtatp
Catches and handles SIGTSTP.

gfz,w_catchaigcont
Catches and handles SIGCONT.

g/zaw_notuaingmouae
May be called it your program doesn't use the mouse; this is optional.

g/zaw_inputinterrupta
A substitute utility for tty process control while using the window input mechanism.

Window Management Deletions

Window management interface deletions include:

W mgr _changele11elonl11
Removed in favor of the similar procedure wmgr _changele11el.

Wmgr_changeatate
Was removed in favor of the similar procedures wmgr_open and wmgr_cloae.

Wmgr_aetupmenua
Removed in favor of wmgr_aetupmenu. The interface no longer supports wmgr_rootmenu
(moved into client code, see the auntool,.c source), thus, the change of plurality.

Window Management Additions

Window management additions to the interface are:

wmr__open, wmgr_clou, wmgr_mo11e, wmgr_atretch, wmgr_top, wmgr_bottom,
'wmgr_refreahwindow Are the highest level window management routines and
correspond exactly·to tool menu operations.

Changes-4 Revision D of 7 January 1984

0

0

0

0

0

0

Sua 'vVindows Reference Manual Release 1.1

wmgr _changerect
Provides finer control of moving and stretching user interaction.

wmgr_confirm
A standard confirmation utility.

wmgr _handleto olmenuitem
Switch to call top level window management routines based on wmgr_toolmenu menu
item chosen.

wmgr_,etrectalloc and wmgr_getrectalloc
Global storage of next default window position.

Sunwindow Library

The changes to the suntool library center around keeping up with the pixrect library
changes by providing a pixwin operation to match each pixrect operation and cleaning up
the interface to screen ~tructures.

Changes to the Interface

The screen struct WB(I. completely overhauled to accommodate color and multiple screens.
However, the ,c,_rectwas left untouched and is the field that high level clients most often
use. Therefore, no source changes should probably be required by most programs.
Win_acrcennew

Now has a different calling sequence. It now takes a struct screen pointer and returns a
window file descriptor. It used to take a window file descriptor and and struct screen
pointer.

W1°n_,creenpo1itiom
Was renamed win.;.:1et,creenpo,ition1.

Deletion• from the Interface

With the advent or blanket windows, using win_,etowner to temporarily change ownership
of windows is no longer recommended.

Addition, to the Interface

The pixwin additions ·that correspond to the equivalent pixrect additions are:
pw_region

Pixwin region operation.
pw_ttezt

Pixwin transparent text operation.

pw,.~atchrop e
J'ixwin batchrop operation.

Revision D of 7 January 1984 Changes-5

Release 1.1

pw_atencil
Pixwin stencil operation.

pw_putattributea and pw_getattributea
Pixwin attributes control.

pw_JJutcolormap and pw_getcolormap
Pixwin colormap control.

The pixwin additions that extend pixrect functionality are:

pw_,etcmaname and pto_getcm,name
Pixwin colormap segment name access.

pw_prepare,urface
Pixwin surface preparation (colormap segment related).

pw_c11clecolormap
Pix win colormap utility.

The pixwin font utilities that share the system font are:

pw_p/1111open and pwJ/1111cloae
Sharing of the default system font is provided.

The screen-related additions are:

win_getacreenpo,ition,
Retrieve neighbors of the window's screen.

win_aetkbtl and win_,etm,
Change keyboard and mouse devices used by the screen.

win_init,creen/romar{III
Standard command line to screen specification ·parser.

Sun Windows Reference Manual

These are the additions related to the new blanket window mechanism:

win_,·n,ertblanket
Insert window into display tree and treat as a "blanket" window (one that always cov
ers its parent).

wt'n_remoueblanl:et
Remove blanket window from display tree.

win_i,blanket
Check 'is a window a blanket window!'

Pixrect Library

Pixrects features a slightly modified interface to support color pixrects. Also, the font for
mat and memory pixrect format has changed.

Deletlon11 from the Interface

The create operation ·is removed from the pixrect operations vector. Pr_open, mem_create
and pr_region define the available pixrect creation alternatives.

Changes-6 Revision D of 7 January 1984

0

0

0

0

0

0

Sun'vVindows Reference Manual Release 1.1

Ch11ngeo to the Interface

A new frame buffer naming convention now exists:

/deu//b
The default frame buffer for a machine. This replaces / dev/ conaole which has other
tty-related functions, and / dev/ bwO which no longer exists.

Frame Buffer Naming Convention
The general naming convention for a frame buffer follows the form / dev/ CTU in which:
C is either "bw" (for monochrome displays) or "cg" (for color displays).
Tis the type of the display, such as "one" or "two" for Sun-1 or Sun-2 respectively.

U is the unit number starting from O, indicating which specific frame buffer.

Some examples of frame buffer names are: / dev/ bwoneO, / dev/ bwtwoO and / dev/ cgoneO.
The font format used in p/_open has been changed. The old format was in VAX byte order.
The new format is in Motorola 68000 byte order (reversed from the VAX). You can tell if a
font is i!l the new format by using the fi/e(l) program on the font file in question. The font
file should be listed as "vfont definition". The program vawap(l) converts a font file from
the old format to the new.
The structure format of mpr_data (the memoey pixrect internal data format) has changed
slightly. The Bint mdJrimary field has been split into short md_primary and short
md_Jlaga, The overall length of mpr _data remains the same.

Addition• to the Interface

pr_,tencil
Provides spatial masking of the destination pixrect for control of the areas of the desti
nation pixrect to be painted by the source pixrect.

prJutcolormap and pr_getcolormap
Provides a unified colormap and reversevideo · interface for both color and monochrome
pixrects. ·

pr JIUlattributea and pr Jct attributes
Provides access to a bitplane mask which specifies the modifiable bits in destination
pixrect pixels.

p/_ttest
Uses character bitmap as a stencil through which the specified color is squirted, hence
background showli 'through around the characters.

Revisio~ D of 7 January 1984 Changes-7

0

o:

0

0

0

0

Table of Contents

Chapter 1 Overview .. 1-1

Chapter Ill Pixel Data and Operations .. 111-1

Chapter 3 Overlapped Windows: Imaging Facilities.. 3-1

Chapter 4 Window Manipulation.. (-1

Chapter 6 Input to Application Programs... 6-1

Chapter 8 Suntool: Tools and Subwindows .. 8-1

Chapter '1 Suntool: Subwindow Packages .. '1-1

Chapter 8 Suntool: User Interface Utilities ... 8-1

Appendix A Rects and Rectlists .. A-1

Appendix B Sample Tools ... B-1

Appendix C Sample Graphics Programs .. C-1

Appendix D Programming Notes .. :................... D-1

-v-

0

0

0

0

0

0

Table of Contents

Preface.. xv

Chapter 1 Overview .. 1-1
1.1. What is Sun Windows? .. 1-1
1.2. Hardware and Software Support .. 1-1
1.3. Layers of Implementation ... 1-2

1.3.1. Pixrect Layer ... 1-2
1.3.2. Sunwindow Layer.. 1-3
1.3.3. Suntool Layer .. 1-3

Chapter 2 Pixel Data and Operations.. 2-1
2.1. Pixrects .. 2-1

2.1.1. Pixels: Coordinates and Interpretation .. 2-2
2.1.2. Geometry Structs .. 2-2
2.1.3. The Pixrect Struct .. 2-3

2.2. Operations on Pixrects .. .
2.2.1. The Pixrectops Struct
2.2.2. Conventions for Naming Arguments to Pixrect Operations
2.2.3. Creation and Destruction of Pixrects .. .

2.2.3.1. Open: Create a Primary Display Pixrect
2.2.3.2. Region: Create a Secondary Pixrect .. .
2.2.3.3. Close / Destroy: Release a Pixrect's Resources

2.2.4, Single-Pixel Operations
2.2.4.1. Get: Retrieve the Value of a Single Pixel
2.2.4.2. Put: Store a Value into a Single Pixel .. .

2.2.5. Constructing an Op Argument .. .
2.2.5.1. Specifying a RasterOp Function .. .
2.2.5.2. Ops with a Constant Source Value .. .
2.2.5.3. Controlling Clipping in the RasterOp .. .
2.2.5.4. Examples of Complete Op Argument Specification

2.2.6. Multi-Pixel Operations .. .
2.2.6.1. Rop: RasterOp Source to Destination .. .
2.2.6.2. Stencil: RasterOps through a Mask
2.2.6.3. Replrop: Replicating the Source Pixrect
2.2.6.4. Batch RasterOp: Multiple Source to the Same

Destination

-vii-

2-3
2-4
2-4
2-5
2-5
2-5
2-6
2-6
2-6
2-7
2-7
2-7
2-8
2-8
2-9
2-9
2-9

2-10
2-10

2-11

2.2.6.5. Vector: Draw a Straight Line .. 2-12
2.2.7. Colormap Access .. 2-12

2.2.7.1. Get Colormap ... 2-12
0

2.2.7.2. Put Colormap ... 2-13
2.2.7.3. Provision for Inverted Video Pixrects .. 2-14

2.2.8. Attributes for Bitplane Control .. 2-14
2.2.8.1. Get Attributes .. 2-14
2.2.8.2. Put Attributes .. 2-15

2.3. Text Facilities for Pixrects .. 2-15
2.3.1. Pixfonts and Pixchars .. 2-16
2.3.2. Operations on Pixfonts .. 2-16
2.3.3. Pixrect Text Display ... 2-17

2.4. Memory Pixrects .. 2-18
2.4.1. The Mpr_data Struct .. 2-18
2.4.2. Pixel Layout in Memory Pixrects ... 2-19
2.4.3. Creating Memory Pixrects ... 2-19

2.4.3.1. Mem_create .. 2-19
2.4.3.2. Static Memory Pixrects .. 2-19

Chapter 3 Overlapped Windows: Imaging Facilities.. 3-1
3.1. Window Issues: Controlled Display Generation... 3-1

3.1.1. Clipping and Locking ... 3-1
3.1.2. Damage Repair and Fixups .. 3-2
3.1.3. Retained Windows .. 3-2
3.1.4. Colormap Sharing ... 3-2 0
3.1.5. Process Structure... 3-3
3.1.6. Imaging with Windows .. 3-3
3.1.7. Libraries and Header Files... 3-3

3.2. Data Structures ... 3-3
3.2.1. Rects ... 3-4
3.2.2. Pixwins ·.. 3-4
3.2.3. Pixwin_clipdata Struct .. 3-5
3.2.4. Pixwin_clipops Struct ... 3-7

3.3. Pixwin Creation and Destruction... 3-7
3.3.1. Region Creation ... 3-8

3.4. Locking and Clipping .. 3-8
3.4.1. Locking .. 3-8
3.4.2. Clipping ... 3-10

3.5. Accessing a Pixwin's Pixels ... 3-11
3.5.1. Write Routines .. 3-11
3.5.2. Read and Copy Routines ... 3-13
3.5.3. Bitplane Control .. 3-13

3.6. Damage ... 3-14
3.6.1. Handling a SIGWINCH Signal ... 3-14

3.7. Colormap Manipulation ... 3-15

0
- viii -

0

0

0

3.7.1. Initialization ... 3-16
3.7.2. Background and Foreground .. 3-16
3.7.3. A New Colormap Segment .. 3-16
3.7.4. Colormap Access .. 3-17
3.7.5. Surface Preparation ... 3-18

Chapter 4 Window Manipulation.. 4-1
4.1. Window Data.. 4-1
4.2. Window Creation, Destruction, and Reference.. 4-1

4.2.1. A New Window .. 4-2
4.2.2. An Existing Window ... 4-2
4.2.3. References to Windows .. 4-2

4.3. Window Geometry .. 4-3
4.4. The Window Hierarchy .. 4-4

4.4.1. Setting Window Links.. 4-4
4.4.2. Activating the Window .. 4-5
4.4.3. Modifying Window Relationships .. 4-5

4.5. User Data .. 4-6
4.6. Minimal-Repaint Support ... 4-6
4.7. Multiple Screens.. 4-7
4.8. Cursor and Mouse Manipulations .. 4-10

4.8.1. Curson:: ... 4-10
4.8.2. Mouse Position .. 4-11

4.9. Providing for Naive Programs ... 4-11
4.9.1. Which Window to Use ... 4-11
4.9.2. The Blanket Window .. 4-12

4.10. Window Ownership .. 4-12
4.11. Error Handling .. 4-13

Chapter 6 Input to ·Application Programs... 6-1
5.1. The Virtual Input Device .. 5-2

5,1,1. Uniform Input Events... 5-2
6.1.2, Event Codes.. 5-3

6.1.2.1. A$CII Events... 5-3
5.1.2.2. Function Events .. 5-3
6.1.2.3. Pseudo Events .. 5-4

6.1.3. Event Flags ... 5-4
6.1.4, Shift Codes .. 5-5

6.2. Reading Input Events ... 5-5
6.3. Input Serialization and Distribution ... 5-6

6.3.1. Input Masks.. 5-6
6.3.2. Seizing All Inputs .. 5-9

5.4. Event Codes Defined ,... 5-9

Chapter II Suntool:·Tools and Subwindows .. 6-1

- ix -

6.1. Tools Design
6.1.1. Non-Pre-emptive Operation
6.1.2. Division of Labor .. .

6.2.. Tool Creation , .. .
6.2.1. Passing Parameters to the Tool .. .
6.2.2. Forking the Tool
6.2.3. Creating the Tool Window
6.2.4. The Tool Struct .. .
6.2.5. Subwindow Creation .. .
6.2.6. Subwindow Layout
6.2. 7. Subwindow Initialization
6.2.8. Tool Installation .. .
6.2.9. Tool Destruction

6.3. Tool Processing .. .
6.3.1. Toolio Structure .. .
6.3.2. File Descriptor and Timeout Notifications
6.3.3. Window Change Notifications .. .
6.3.4. Child Process Maintenance
6.3.5. Changing the Tool's Image
6.3.6. Terminating Tool Processing .. .
6.3.7. Replacing Toolio Operations

Chapter 7 Suntool:-Subwindow Packages
7.1. Minimum Standard Subwindow Interface
7.2. Empty Subwindow
7.3. Graphics Subwindow .. .

7.3.1. In a Tool Window .. .
7 .3.2. Overlaying an Existing Window

7 .4. Message Subwindow .. .
7.5. Option Subwindow

7.5.1. Option Subwindow Standard Procedures .. .
7 .5.2. Option Items

7.5.2.1. Boolean Items
7.5.2.l!. Command Items
7.5.2.3. Enumerated Items
7.5.2.4. Label Items .. .

6-2
6-2
6-2
6-2
6-3
6-4
6-4
6-5
6-6
6-7
6-8
6-8
6-8
6-9
6-9

6-10
6-10
6-11
6-11
6-11
6-11

'1-1
7-1
7-3
7-3
7-4
7-5
7-7
7-8
7-9

7-10
7-11
7-11
7-12
7-12

7.5.2.5. Text Items .. 7-12
7.5.3. Item Layout and Relocation - SIGWINCH Handling 7-13
7 .5.4. Client Notification Procedures .. 7-15
7.5.5. Explicit Client Reading and Writing of Item Values 7-15
7.5.6. Miscellany .. 7-16

7.6. Terminal Emulator Subwindow .. 7-17
7.6.1. TTY-Based Programs in TTY Subwindows ... 7-19

Chapter 8 Suntool: User Interlace Utilities ... 8-1

-x-

0

0

0

0

0

0

8.1. Full Screen Access ... 8-1
8.2. Icon Display Facility .. 8-2
8.3. Pop-up Menus .. 8-3

8.3.1. Prompt Facility .. 8-5
8.4. Selection Management .. 8-5
8.5. Window Management .. 8-7

8.5.1. Window Manipulation.. 8-7
8.5.2. Tool Invocation ... 8-9
8.5.3. Utilities .. 8-10

Appendix A Rects and Rectlists .. A-1
A.1; Rects ... A-1

A.1.1. Macros on Rects .. A-1
A.1.2. Procedures and External Data for Rects ... A-2

A.2. Rectlists .. A-3
A.2.1. Macros and Constants Defined on Rectlists .. A-4
A.2.2. Procedures and External Data for Rectlists .. A-4

Appendix B Sample Tools ... B-1
8.1. gfxtool.c Code ... B-1
8.2. panetool.c Code .. B-3
8.3. optiontool.c Code .. 8-6
8.4. icontool.c Code ... B-10

Appendix C Sample Graphics Programs .. C-1
C.l. bouncedemo.c Code... C-1
C.2. framedemo.c Code .. C-3

Appendix D Programming Notes .. D-1
D.l. What Is Supported!... D-1
D.2. Program By Example... D-1
D.3. Header Files Needed· ,.. D-1
D.4. Lint Libraries .. D-2
D.5. Library Loading Order .. D-2
D.6. Shared Text ... D-2
D.7. Error Message Decoding.. D-3
D.S. Debugging Hints .. D-3
D .0. Sufficient User Memory ... D-4
D.10. Coexisting with UNIX.. D-4

D.10.1. Tool Initialization and Process Groups .. D-5
D.10.1.1. Signals from the Control Terminal .. D-5
D.10.1.2. Job bontrol and the C-Shell .. D-5

- xi -

0

0

0

0
List of Tables

Table 2-1 Argument Name Conventions.. 2-4
Table 2·2 Useful Combinations of RasterOps .. 2-8
Table 3-1 Clipping State .. 3-6
Table 7-1 Option Image Types .. 7-9
Table A-1 Rectlist Predicates ... A-5
Table D-1 Header Files Required ... D-1
Table D-2 ,unwindow Variables for Disabling Locking... D-3

0

0
- xiii -

0

0

0

0

0

0

Preface

The Programmer', Reference Manual for Sun Window, provides primarily reference material on
SunWindows, the Sun window system. It is intended for programmers of applications using
window system facilities.

Manual Contents

The contents of the manual are:
Chapter 1 - Overview - Describes basic hardware and software support and the layers of
implementation of Sun Windows, the pi:irect layer, the ,unwindow layer, and the ,untoo1 layer.

Chapter 2 - Pizel Data and Operation, - Describes pixel data and operations in the lowest
level output facilities of SunWindows, pixrects, pixrectops, memory pixrects, and text facilities
for pixrects.
Chapter 3 - Overlapped Window,: Imaging Facilitiea - Explains image generation on windows
which may overlap other windows.
Chapter 4 - Window Manipulation - Describes the aunwindow layer facilites for creating, posi
tioning, and controlling windows.
Chapter 6 - Input to Application Program, - Discusses how user input is made available to
application programs.
Chapter O - Suntool: Tool, and Subwindowa - Discusses how to write a tool, and covers crea
tion and''.destruction of a tool and its subwindows, the strategy for dividing work among
subwindows, and the use of routines provided to accomplish that work.

Chapter 7 - Suntool: Subwindow Package, - Discusses aubwindow, as building blocks in the
construction of a tool, covers the currently existing subwindows, and suggests the approach for
creating new kinds of subwindows.
Chapter 8 - Suntool: Uaer Interface Utilite, Covers user interface utilities, the independent
packages for use with the auntool, environment, includes the actual window manipulation rou
tines used by tool window,, the icon facility, the ,election manager, the fullacreen access
mechanism, and menu, and prompt,.
Appendix A - Rect, and Rectli,t, - Describes the geometric structures used with the aunwin
dow layer and provides a full description of the operations on these structures.

Appendix B - Sample Tool, - Provides an annotated collection of some simple tools to be
used both as illustrations and as templates for client programmers; includes a graphics tool, a
window pane tool, an option tool, and an icon tool.
Appendix C - Sample Graphic, Program, - Provides an annotated selection of several graph
ics programs for writing your own graphics programs; includes code for a bouncing ball

-xv-

demonstration and for a "movie camera" program that displays files as frames from a movie.

Note: The reference section of the Programmer'• Reference Manual for Sun Window, is neither a
user guide nor an explanation of the internals of the window system. It presents the material in
a bottom-up fashion with primitive concepts and facilities described first. It is not intended to
be read linearly front-to-back; glance at the table of contents and the chapters on tools to get a
general idea of how to use the rest of the material.
The Uaer', Manual for the Sun Workatation provides user information under auntool,(l) for
Sun Windows and under the appropriate entry for the particular application programs. The
Beginner'• Guide to the Sun Work,tation provides a brief tutorial on general use of the mouse
and the SunWindows pop-up menus.

A Note About Special Terms

Several terms in this manual have meanings distinct from their common definitions or introduce
concepts that are specific to programming in the SunWindows environment. We discuss the
most important here.

The word client indicates a program that uses window system facilities. This is in contrast to
u,er, which refers to a human.

0

Terms referring to display hardware, such as framebuffer, pize~ and raaterop, are used in well
established senses; novices who are confused should consult one of the standard texts, such as
Fundamental, of Interactive Computer Graphic, by J.D. Foley and A. Van Dam, Addison- 0
Wesley, 1983.

The position of the mouse is indicated by a curaor on the screen; this is any small image that
moves about the screen in response to mouse motions. The term "cursor" is used elsewhere to
indicate the location at which type-in will be inserted, or other editor functions performed. The
two concepts are not often distinguished. To keep them distinct, we use the term caret to refer
to the type-in location.

A menu is a list of related choice items displayed on the screen in response to a user mouse
action. The user chooses one menu item by pointing at it with the cursor. Such menus are
called tranaient or pop-up; they are displayed only while a mouse button is depressed, and are
typically used for invoking parameterless operations.
A rect is a structure that defines a rectangle.

A rectliat is a structure that defines a list of rects.

Up- down encoded ke11board, are devices from which it is possible to receive two distinct signals
when a key is pressed and then released.

An icon is a small form of a window that typically displays an identifying image rather than a
portion of the window contents; it is frequently used for dormant application programs. For
example, the default icon for a closed Shell Tool is a conch shell, representing the UNIX "C
Shell".

Note: The code examples show the proper case of letters for the names of macros, procedures,
arguments, flags, and so on. The first letter in a sentence is capitalized as a courtesy to English,
although the word may not then be technically correct.

- xvi -

0 Chapter 1

Overview

1.1. What is Sun Windows?

SunWindows is the Sun window system. It is a tool boz and parta kit, not a closed, finished, end
product. Its design emphasizes extensibility, accessibility at multiple layers, and provision of
appropriate parts and development tools. Specific applications are provided here both as exam·
pies and because they are valuable for further development. The system is designed to be
expanded by clients.

The system is explicitly layered with interfaces at several levels for client programs. There is
open access to lower levels, and also convenient and powerful facilities for common requirements
at higher levels. For instance, it is always possible for a client to write directly to the screen,
although in most circumstances it is preferable to employ higher-level routines.

0 1.2. Hardware and Software Support

0

The Sun Microsystems Workstation provides hardware and software support for the construc
tion of high-quality user interfaces. Hardware features include:

• provision of a processor for each user, a prerequisite for powerful, responsive, cost-effective
systems;

• a bit-mapped display which allows arbitrary fonts and graphics to be used freely to make
applications programs easier to learn and use;

• hardware support of fast and convenient manipulation of image data;

• a mouse pointing device for selecting operations from menus or for pointing at text, graph
ics and icons; and

• an up-down encoded keyboard that supports sophisticated function-key interfaces at once
simpler and more e1Iicie11t than most command languages.

Sun software is similarly structured to support high-quality interactions. The software features
are:

•
l

a uniform interface to varied pixel-oriented devices that allows convenient incorporation of
new devices into the system, and clean access to all these devices by application programs;

• an extended device independence for input such as function keys and locators, to user
interface features;

• a window management facility that keeps track of multiple overlapping windows, allowing
their creation and rearrangement at will. The facility arbitrates screen access, detects des
tructive interactions such as overlapping, and initiates repairs. It also serializes and distri
butes user inputs to the multiple windows, allowing full type-ahead and mouse-ahead; and

Revision D of 7 January 1984 1-1

Overview SunWindows Reference Manual

• built on all these facilities, an executive and application environment that provides a system
for running existing UNIX programs and new applications, taking advantage of icons, menus, 0
prompts, mouse-driven selections, interprocess data exchange, a forms-oriented interface
and useful cursor manipulations.

1.3. Layers of Implementation

There are three broad layer, of Sun Windows. These layers may be identified by the libraries
that contain their implementations. The organization of the reference part of this manual
reflects the three layers as described below.

1. The pizrecl level provides a device-independent interface to pixel operations.

2. The aunwindow1 level implements a manager for overlapping windows, including imaging
control, creation and manipulation of windows, and distribution of user inputs.

3. The aunloo/ level implements a multi-window executive and application environment. In its
user interface, it includes a number of relatively independent packages, supporting, for
instance, menua and adectiona.

1.3.1. Pixrect Layer

Chapter 2 describes the pizrecl layer of the system. This level generalizes RasterOp display
functions to arbitrary rectangles of pixels. Peculiarities of specific pixel-oriented devices, such
as dimension,, addres,ing schemes, and pixel size and interpretation, are encapsulated in
device-specific interfaces, which all present the same uniform interface to clients.

The concept of a pixrect is quite general; it is convenient for referring to a whole display, as well
as to the image of a single character in a font. It may also be used to describe the image which
tracks the mou,e.

There is a balance between functionality and efficiency. All pixrects clip operations that extend
beyond their boundaries. Since this may require substantial overhead, clients which can guaran
tee to stay within bounds may disable this feature. Where hardware support exists, it is taken
advantage of without sacrificing generality: All pixrect, support the same set of operations on
their contents.

These operations include general raster operations on rectangular areas, vectors, batch opera
tions to handle common applications like text, and compact manipulation of constant or
·regularly-patterned data. A stencil operation provide, ,patial, two-dimension masking of the
source pixrect with a mask pixrect to control the areas of the destination pixrect to be written.

Color pixrect,, as well as monochrome pixrects, are well supported. There are uniform opera
tions for accessing a pixrect's colormap. A colormap maps a pixel value to a screen color. The
pixel planes affected by other operation, can be controlled as well. Monochrome pixrects sup
port the same interface as color pixrects. Programs intended primarily for color pixrects usually
produce reasonable images on monochrome pixrect,, and vice versa.

1 Note that the term 'sunwindow' refers to the layer or level of implementation while the word
1SunWindows1 is the name of the Sun window system.

1-2 Revision D of 7 January 1984

0

0

0

0

SunWindows Reference Manual Overview

1.3.2. Sunwindow Layer

Chapters 3 through 5 introduce windows and operations on them. A window is a rectangular
display area, along with the process or processes responsible for its contents. This layer of the
system maintains a database of windows which may overlap in both time and space. These win
dows may be nested, providing for distinct aubwindowa within an application's screen space.

Windows existing concurrently may all access a display; the window system provides locking
primitives to guarantee that these accesses do not conflict.
Arbitration between windows is also provided in the allocation of display space. Where one

· window limits the space available to another, it is necessary to provide clipping, so neither inter
feres with the other's image. One such conflict handled by the aunwindow layer arises when
windows share the same coordinates on the display: one overlap• the other.
When one window impacts another window's image without any action on the second window's
part, SunWindows informs the affected window of the damage it has suffered, and the areas
that ought to be repaired. Windows may either recompute their contents for redisplay, or they
may elect to have a full backup of their image in main memory, and merely copy the backup to
the display when required.
On color displays, colormap entries are a scarce resource. When shared among multiple applica
tions, they become even more scarce. Arbitration between windows is provided in the allocation
of colormap entries. Provisions are made to share portions of the colormap.
Windows may be created, destroyed, moved, stretched or shrunk, set at different levels in the
overlapping structure, and otherwise manipulated. The aunwindow level of the system provides
facilities for performing all these operations. It also allows definition of the image which tracks
the mouse while it is in the window, and inquiry and control over the mouse position.

Separate collections of windows may reside on separate screens. The user interacts with these
multiple screens with his single keyboard and mouse.
User inputs are unified intb · a single stream at this level, so that. actions with the mouse and
keyboard can be coordinated. This unified stream is then distributed to different windows,
according to user or programmatic indications. Windows may be selective about which input
events they will process, and rejected events will be offered to other windows for processing.
This enables terminal-based programs to run within windows which will handle mouse interac
tions for them.

1.3.3. Suntool Layer

Chapters 6 through I! of the reference part of this manual describe the auntool level of the sys
tem. While the first two layers provide client interfaces, the auntool level provides the user
interface.
We refer to an application program that is a client of this level of the window system as a tool.
This term covers the one or more programs and processes which do the actual application pro
cessing. It also refers to the collection of windows through which the tool interacts with the
user. This collection often includes a special icon, which is a small form the tool may take to be
unobtrusive on the screen but still identifiable. Simple examples of tools may include a calcula
tor, a bitmap editor, and a terminal emulator. Sun provides a few ready-built tools, several of
which are illustrated in Appendix B. Customers are expected to develop their own tools to suit
their specific needs.

Revision D of 7 January 1984 1-3

Overview SunWindows Reference Manual

Sun Windows provides some common components or tools:

• an executive framework that supplies the usual "main loop" or a program and coordinates
the activities of the various subwindows;

• a standard tool window that frames the active windows of the tool, identifying it with a
name stripe at the top and borders around the subwindows. Each tool window has a facil
ity for manipulating itself in the overlapped window environment. This includes adjusting
its size and position, including layering, and moving the boundaries between subwindows;

• several commonly used ,ubwindow types that can be instantiated in the tool;

• a standard scheme for laying out those subwindows; and

• a facility that provides a default icon for the tool.

The 1untoo/1 program initializes the window environment. It provides for:

• automatic startup of a specified collection of tools;

• dynamic invocation or standard tools;
• management or the default window called the root window, which underlies all the tools;

and

• the user interlace for leaving the window system.
Users who wish some other form or environment management can replace the ,untoola program,
while retaining the tools and supporting utilities.

The facilities provided in the ,unlool library are relatively independent; they can be used with
window contexts other than aunlool,. The icon facility mentioned above is in this category, as
are the window manipulation facilities of aunlool,. There is also a package for presenting menu,
to the user and interpreting the response.

1-4 Revision D or 7 January 1984

0

0

0

0

0

0

Chapter 2

Pixel Data and Operations

This section discusses pixel data and operations in the lowest-level output facilities of Sun Win
dows. These facilities will frequently be accessed indirectly, through higher-level abstractions
described in chapters 3 through 8. However, some client implementors will deal at this level, for
instance to include new display devices in the window system. The header file
/u,r/inclurle/pizrect/pizrect_ha.h includes the header files that you need to work at this level of
the window system. It will also suffice to include /uar/include/auntool/auntool_ha.h or
/ fJ,r/ include/ aunwindow/ ,unwindow_h,.h.

2,1, Pixrects

The fundamental object of pixel manipulation in the window system is the pizrect. A pixrect
encapsulates a rectangular array of pixels along with the operations which are defined on that
data. Pixrects are designed along the model of object, in an object-oriented programming sys
tem. They combine both data and operations, presenting their clients with a simple interface: a
well-defined set of operations produces desired results, and details of representation and imple
mentation are hidden inside the objeci.
The pixrect presents only its dimensions, a pointer to its operations, and a pointer to private
data which those operations may use in performing their tasks. Further, the set of operations is
the same acroas all pixrects~ though of course their implementations must differ. This object
oriented style allows similar things which differ in small details to be gathered into a unified
framework; it allows clients· to use the same approach to all of them, and allows implementors
to add new members or improve old ones without disturbing clients.

The pixrect facility satisfies two broad objectives:
• To provide a uniform inter/ace to a variety of device, for independence from device charac

teristics where they are irrelevant. Such characteristics include the actual device (pixrects
may exist in memory and on priniers as well as on displays), the dimensions and addressing
schemes of the device, and the definition of the pixels, that is, how many bits in each, how
they are aligned, and how interpreted. Color and monochrome devices use the same interface.
Programs int~ded primarily for color pixrects usually produce reasonable images on mono-
chrome pixrecis, and vice versa. .

• To provide a proper balai.ce of functionality and efficiency for a full range of pixel operations
with performance close to that achieved by direct access to the hardware. Pixrect operations
include generalized rasterops, vectors, text and other batch operations, compact manipulation
of uniform and regularly-patterned data, as well as single-pixel reads and writes. All provide
for clipping to the boun~. ot the rectangle if desired; this facility may be bypassed by clients
which can perform it more efficiently themselves. A stencil function provides spatial masking
of the source pixrect with a stencil pixrect to control the areas of the destination pixrect to
be written. Where specialized hardware exists and can be used for a particular operation, it
is, but not at the expense of violating the device-independent interface.

Revision~ of 7 January 1984 2-1

Pixel Data and Operations SunWindows Reference Manual

2.1.1. Pixels: Coordinates and Interpretation

Pixels in a pixrect are addressed in two dimensions with the origin in the upper left comer, and 0
z and II increasing to the right and down. The coordinates of a pixel in a pixrect are integers
from O to the pixrect's width or height minus 1.

A pixrect is characterized by a dep.th, the number of bits required to hold one pixel. A large
class of displays uses a single bit to select black or white (or green or orange, depending on the
display technology). On these monochrome displays and in memory pixrects one bit deep, a 1
indicates /oregrountl and a O background. No further interpretation is applied to memory. The
default interpretation on Sun displays is a white background and a black foreground.

Other displays use several bits to identify a color or gray level. Typically, though not neces
sarily, the pixel value is used as an index into a colormap, where colors may be defined with
higher precision than in the pixel. A common arrangement is to use an 8-bit pixel to choose one
of 256 colors, each of which is defined in 24 bits, 8 each of red, green and blue. Pixrect depths
less than or equal to 16 are supported.

2.1.2. (}eornetry Structs

As a preliminary to the discussion of pixrects, it is convenient to define a few structs which col
lect useful geometric information.

The struct that defines a position in coordinates (z, 11) is:

atruct pr_pos {
Int x, y;

};

Leaving a pixrect undefined for the moment, this struct defines a point within a specified pix
rect:

atruct pr_prpos {
•truct pixrect •pr;
•truct pr_pos pos;

};

It contains a pointer to the pixrect and a position within it.
The following struct defines the width and height of an area:

•truct pr_size t
lat x, y;

};

The following struct defines a sub-area within a pixrect:

atruct pr_subregion {
•truct pixrect •pr;
atruct pr_pos pos;
struct pr_size size;

};

It contains a pointer to the pixrect, an origin for the area, and its width and height.

2-2 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Pixel Data and Operations

2.1.3. The Pixrect Struct

A particular pixrect is described by a pizrect struct. This combines the definition of a rectangu
lar array of pixels and the means of accessing operations for manipulating those pixels:

etruct pixrect {

};

struct pixrectops •pr_ops;
etruct
int
caddr_t

pr_size pr_size;
pr_depth;
pr_data;

The width and height of the rectangle are given in pr_at"ze, and the number of bits in each pixel
in pr_depth. For programmers more comfortable referring to "width" and "height," there are
also two convenient macros:

*define pr_width (pr_size.x)
*define pr_lieight (pr_size.y)

All other information about the pixrect (in particular, the location and values of pixels), is data
private to it. Pixels are manipulated only by the set of pizrecl operation, described below.
These operations will generally use information accessed through pr_data to accomplish their
tasks.
(This restriction is relaxed somewhat in the case of pixrects whose pixels are stored in memory;
this provides an escape to mechanisms outside the pixrect facility for constructing and convert
ing pixrects of differing types. Memory pixrects are described in Memory Pi:irecta.)

2.2. Operations on Pixrects

Procedures are provided to perform the following operations on pixrects:

• create and destroy them (open, region and deatroy)

• read and write the values of single pixels (get and put)

• use RasterOp functions to affect multiple pixels in a single operation:
write from a source to' a destination pixrect (rop)
write from a source to a destination under control of a mask (atencil)
replicate a constant source pattern throughout a detiiination (replrop)
write a batch or sources to different locations in a single destination (batchrop)
draw a straight line of a single source value (vector)

• read and write a colormap (getcolormap, putcolormap)

• select particular bit-planes for manipulation on a color pixrect (getattributea, putattributea)

Some of these operations are the same for all pixrec!ts, and are implemented by a single pro
cedure. These device-independent procedures are called directly by pixrect clients. Other
operations must be implemented differently for each device on which a pixrect may exist. Each
pixrect includes a pointer (in its pr_opa) to a pizrectopa structure, that holds the addresses of
the particular device-dependent procedures appropriate to that pixrect. This allows clients to
access those procedures in a device-independent fashion, by calling through the procedure
pointer, rather than naming the procedure directly. To facilitate this indirection, the pixrect
facility provides a set or macros which look like simple procedure calls to generic operations, and
expand to invocations or the corresponding procedure in the pixrectops structure.

Revision Q of 7 January 1984 2-3

Pixel Data and Operations Sun Windows Reference Manual

The description or each operation will specify whether it is a true procedure or a macro, since
some of the arguments to macros are expanded multiple times, and could cause errors if the o
arguments contain expressions with side effects. (In fact, two sets of parallel macros are pro-
vided, which differ only in whether their arguments use the geometry structs defined above.
Each is described with the operation.)

2.2.1. The Pixrectops Struct

The pixrectops struct is a collection or pointers to the device-dependent procedures for a partic
ular device:

atruct pixrectops {
int (•proJOp)();
int (•proJtencil)();
int (•pro_batchrop)();
int (•pro_nop)();
Int (•pro_destroy)();
int (•pro_get)();
int (•pro_put)();
int (•pro_vector)();
•truct pixrect •(•pro_,1egion)();
int (•pro_putcolormap)();
Int (•pro_getcolormap)();
Int (•pro_putattributes)();
int (•pro_getattributes)();

};

All other operations are implemented by device-independent procedures.

2.2.2. Conventions for Naming Arguments to Pixrect Operations

In general, the following conventions are used in naming the arguments to pixrect operations:

Table 2-1: Argument Name Conventions

Argument

d

' :rand 11
wand h

Meaning

destination
source
left and top origins
width and height

2.2.3. Creation and Destruction of Pixrects

0

Pixrects are created by the procedures pr_open and mem_create, by the procedures accessed by
the macro pr_region, and at compile-time by the macro mpr_,tatic. Pixrects are destroyed by
the procedures accessed by the macro pr_deatroy. Mem_create and mpr_atatic are discussed
under Memory Pi:rrect, below; the rest of these are described here. Q
2-4 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Pixel Data and Operations

2.2.3.1. Open: Create a Primary Display Pixrect

'I'he properties of a non-memory pixrect are described by a UNIX device. Thus, when creating
the first pixrect for a device you need to open it by a call to:

struct pixrect •pr_open(devicename)
chri.11' •devicename;

The default c!evice name for your display is / dev/fb (fb stands for framebu!fer). Any other dev
ice name may be used provided that it is a display device, the kernel is configured for it, and it
has pixrect support, such as, / dev/ bwoneO, / dev/ bwtwoO, / dev/ cgoneO.
Pr_open doc9 not work for creating a pixrect whose pixels are stored in memory; that function
is served by the procedure mem_create, discussed under Memor11 Pizrecta below.

Pr_opcn returns a pointer io a pixrect struct which covers the entire surface of the named dev
ice. If it cannot, it returns NULL, and displays an error on .standard error.

2.2.3.2. Region: Create a Secondary Pixrect

Given an existing pixrect, it is possible to create another pixrect which refers to some or all of
the same pixels on the same device. This is called a aecondar11 pizrect, and is created by a call
to the procedures invoked by the macros pr_region and pr,_region:

#define etruct pixrect •pr_region(pr, x, y, w, h)
atruet pixrect •pr;
Int x, y, w, h;

#define 11truct pixrect •prs_region(subreg)
1tl'uct pr_subregion subreg;

The existing pixrect is addressed by pr; it may be a pixrect created by pr _open, mom_creato or
mpr _atatac (a primar11 pixrect); or it may be another secondary pixrect created by a previous call
to a region operation. The rectangle to be included in the new pixrect is described by z, 11, w
and h in the existing pixrect; (z, 11) in the existing pixrect will map to (0, 0) in the new one.
Pra_region does the same thing, but has all its argument values collected into the single struct
,ubreg. Each region procedure returns a pointer to the new pixrect. If it fails, it returns NULL,

and displays an error on standard error.
If an existing ,secondary pixrect is provided in the call to the region operation, the result is
another secondary pixrect referring to the underlying primary pixrect; there is no further con
nection between the two secondary pixrects. Generally, the distinction between primary and
secondary pixrects is not important; however, no secondary pixrect should ever be used after its
primary pixrect is destroyec!,

2.2.3,3, Close/ Destroy: Release a Pixrect's Resources

The following macros invoke device-dependent procedures to destroy a pixrect, freeing resources
that belong to it: ·

Revision D of 7 January 1984 2-5

Pixel Data and Operations SunWindows Referenee Manual

#define pr_close(pr)
atruct pixrect •pr;

#define pr_destroy(pr)
atruct pixrect •pr;

#define prs_destroy(~r)
atruct pixrect •pr;

The procedure returns O if successful, -1 if it fails. It may be applied to either primary or
secondary pixrects. If a primary pixrect is destroyed before secondary pixrects which refer to
its pixels, those secondary pixrects are invalidated; attempting any operation but dcatroy on
them is an error. The three macros are identical; they are all defined for reasons of history and
stylistic cpnsistency.

2.2.4. Single-Pixel Operations

The next two operations are used to manipulate the value of a single pixel.

2.2.4.1. Get: Retrieve the Value of a Single Pixel

The following macros invoke device-dependent procedures to retrieve the value of a single pixel:

0

#define pr_get(pr, x, y)

0 atruct pixrect •pr;
Int x, y;

#define prs_get(srcprpos)
atruct pr_prpos srcprpos;

Pr indicates the pixrect in which the pixel is to be found; :z and I/ are the coordinates of the
pixel. For pra_gct, the same arguments are provided in the single struct arcprpoa. The value of
the pixel is returned as a 32-bit unsigned integer; if the procedure fails, it returns -1.

2.2.4.2, Put: Store a Value into a Single Pixel

The following macros invoke device-dependent procedures to store a value in a single pixel:

#define pr_put(pr, x, y, value)
atruct pixrect •pr;
Int x, y, value;

#define prs_put(dstprpos, value)
atruct pr_prpos dstprpos;
int value;,

Pr indicates the pixrect in which the pixel is to be found; :,: and I/ are the coordinates of the
pixel. For pr,_put, the same arguments are provided in the single struct datprpoa. Value is
truncated on the left if necessary, and stored in the indicated pixel. If the procedure fails, it Q
returns -1.

2-6 Revision D of 7 January 1984

0

0

0

S1m\Vindows Reference Manual Pixel Data and Operations

2.2.5. Constructing an Op Argument

The multi-pixel operations described in the next section all use a uniform mechanism !or speci
fying the operation which is to produce destination pixel values. This operation is given in the
op argument and includes several components.
Generally, op identifies a RasterOp. This is a logical !unction or two or three inputs; it com
pute3 the value o! eaeh pixel in the destination as a !unction or the previous value o! that desti
nation pixel, or a corresponding source pixel, and possibly a corresponding pixel in a mask.

Two other facilities are also specified in the op argument:

• a single, constant, source value may be specified as a color in op, and
o the clipping which is normally performed by every pixrect operation may be turned off by set

ting the PDU>ONTCLJP flag in the op.

We describe these three components of the op argument in order.

2.2.5,1. Specifying a RasterOp Function

Four bits or the op are used to specify one of the 16 distinct logical functions which combine
monochrome source and destination pixels to give a monochrome result. This encoding is gen
eralized to pixels of arbitrary depth by specifying that the function is applied to corresponding
bits of the pixels in parallel. This emphasizes that the pixrects must be of the same depth.
Some functions are much more common than others; the most useful are identified in the table
Uae/ul Combination, of RaaterOp,.
A convenient and intelligible form or encoding the function into four bits is supported by the
following definitioDl!:

#define PIX_SRC Oxl8
#define PIX_DST Oxi4
#define PIX_NOT(op) (OxlE & ("op))

PDl.SRO and PDU>ST are defined constants, and Prx:...NOT is a macro. Together, they allow a
desired !unction to be specified by performing the corresponding logical operations on the
appropriate constants. (The explicit definition of Prx:...NOT is required to avoid inverting non
function bits of op).
A particular application of these logical operations allows definition of ,et and clear operations.
The definition of the ,et operation that follows is always true, and hence sets the result:

#define PIX_SET (PIX_SRC I PIX_NOT(PIX_SRC))

The definition of the clear operation is always false, and hence clears the result:

#define PIX_CLR (PIX_SRC & PIX_NOT(PIX_SRC))

Other common RasterOp functions are defined in the following table:

Revision D of 7 January 1984 2-7

Pixel Data and Operations SunWindows Reference Manual

Table 2-2: Useful Combinations of RasterOps

Op with Value

PIX_SRC

PIX_DST

PIX_SRC I PIX_DST

PIX~SRC & PIX_DST

PIX_NOT(PIX_SRC) & PIX_DST

PIX_NOT(PIX_DST)

PIX_SRC A PIX_DST

Result

write (same as source argument)

n1rop (same as destination argument)

paint (OR of source and destination)

mask (AND of source and destination)

erase (AND destination with negation of source)

invert area (negate the existing values)

inverting paint (XOR of source and destination)

2,2,5.2. Ops with a Constant Source Value

In certain cases, it is desirable to specify an infinite supply of pixels, all with the same value.
This is done by using NULL for the source pixrect, and encoding a color in bits 5 - 31 of the op
argument. The following macro supports this encoding:

*define PIX_COLOR(color)((color)< <5)

If no color is specified in an op, 0 appears by default; it remains necessary for the source pixrect
specification to be NULL before this value is actually used.
Note that the color is not part of the /unction component of an op argument; it should never be
part of an argument to PDU'IOT.

2,2,6.3. Controlling Clipping in the RaaterOp

Pixrect operations normally clip to the bounds of the operand pixrects. Sometimes this can be
done more efficiently by the client at a higher level. Ir the client can guarantee that only pixels
which ought to be visible will be written, it may instruct the pixrect operation to bypass clip
ping checks, thus speeding their operation. This is done by setting the following flag in the op
argument:

#define PIX_DONTCLIP OxJ

The result of a pixrect operation is undefined if PIXJ)ONTCLIP is set and the operation goes out
of bounds.
Note that the PIXJ)ONTCLIP flag is not part of the /unction component of an op argument; it
should never be part of an argument to PDU'IOT.

2-8 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Pixel Data and Operations

2.2.5.4. Examples of Complete Op Argument Specification

A very simple op argument will specify that source pixels be written to a destination, clipping as
they go:

op - PIX_SRC;
A more complicated example will be used to affect a rectangle (known to be valid) with a con·
stant red color defined elsewhere. (The function is syntactically correct; it's not clear how useful
it ia to XOR a constant source with the negation of the OR of the oource and destination):

op - (PIX_SRC • PIX..;.NOT(PIX_SRC I PIX_DST)) I PIX_COLOR(red) I PIX_DONTCLIP

2.2,6. Multi-Pixel Operations

The following operations all apply to multiple pixels at one time: rop, atoncil, rep/rop, batchrop,
and vector. With the exception of vector, they refer to rectangular areas of pixels. They all use
a common mechanism, the op argument described in the previous section, to specify how pixels
are to be set in the deetination.

2,2,6,1, Rop: RasterOp Source to Destination

Device-dependent procedures· invoked by the following· macros perform the indicated raster
operation from a source to a destination pixrect:

#define pr.,1op(dpr, dx, dy, dw, dh, op, spr, sx, sy)
atruct pixre'<t •dpr, •spr;
Int dx, dy, dw, dh, op, sx, sy;

#define pn.,10p(dstregion, op, srcprpos)
1truct pr_subregion dstregion;
Int op;
atruct pr_prpos srcprpos;

Dpr addresses the destination pixrect, whose pixels will be affected; (dz, dy) is the origin (the
upper-left pixel) of the affected rectangle; dw and dh are the width and height of that rectangle.
Spr specifies the source pixrect, and (oz, •11) an origin within it. Spr may be NULL, to indicate a
constant source specified in the op argument, as described above; in this case az and •11 are
ignored. Op specifies the operation which is performed; Its construction is described in preced
ing sections.
For pr,_rop, the dpr, dz, du, dw and dh arguments are all collected in a pr_oubregion struct,
defined above under Geometr11 Struct,.
Raster operations are clipped to the source dimensions, if those are smaller than the destination
size given. Rop procedures return -1 if they fail, 0 if they succeed.
Source and Jestination pixrects generally mus be the same depth. The only exception allows
depth-1 pixrects to be sources to a destination of any depth. In this case, source pixels = 0 are
interpreted as O and source pixels = 1 are written as the maxim um value which can be stored
in a destination pixel.

Revision q of 7 January 1984. 2-9

Pixel Data and Operations SunWindows Reference Manual

2.2.6.2. Stencil: RasterOps through a Mask

Device-dependent procedures invoked by the following macros perform the indicated raster
operation from a source to a destination pixrect only in areas specified by a third (stencil) pix
rect:

*define pr_stencil(dpr ,dx ,dy ,dw ,dh,op,stpr,stx ,sty ,spr ,sx,sy)
atruct pixrect •dpr, •stpr, •spr;
int dx ,dy ,dw ,dh,op ,stx ,sty ,sx ,sy;

*define prs_stencil(dstregion, op, stenprpos, srcprpos)
atruct pr_subregion dstregion;
Int op;
•truct pr..J>rpos stenprpos, srcprpos;

Stencil is identical to rop except that the source pixrect is written through a stencil pixrect
which functions as a spatial write-enable mask. The stencil pixrect must have depth equal to 1.
The indicated raster operation is applied only to destination pixels where the stencil pixrect is
non-zero. Other destination pixels remain unchanged. The rectangle from (az,111) in the source
pixrect ,pr is aligned with the rectangle from (atz,,ty) in the stencil pixrect atpr, and written to
the rectangle at (dz, dy) with width dw and height d/a in the destination pixrect dpr. The source
pixrect ,pr may be NULL, in which case the color specified in op is painted through the stencil.
Clipping restricts painting to the intersection of the destination, stencil and source rectangles.

2.2.6.3. Replrop: Replicating the Source Pixrect

Often the source for a raster operation consists of a pattern that is used repeatedly, or repli
cated to cover an area. If a single value is to be written to all pixels in the destination, the best
way is to specify that value in the color component of a rop operation. But when the pattern is
larger than a single pixel, a mechanism is needed for specifying the basic pattern, and how it is
to be laid down repeatedly on the destination. The pr_rcp/rop procedure replicates a source
pattern repeatedly to cover a destination area:

prJeplrop(dpr, dx, dy, dw, db, op, spr, sx, sy)
atruct pixrect •dpr, •spr;
Int dx, dy, dw, dh, op, sx, sy;

#define prsJeplrop(dsubreg, dp, sprpos)
•truct pr_subregion dsubreg;
atruct pr..J)rpos sprpos;

Dpr indicates the destination pixrect. The area affected is described by the rectangle defined by
dz, dy, dw, d/a. Spr indicates the source pixrect, and the origin within it is given by ,z, ay. The
corresponding pra_rcplrop macro generates a call to pr_rcplrop, expanding its d,ubrcg into the
five destination arguments, and aprpoa into the three source arguments. Op specifies the opera
tion to be performed, as described above under Conatructing Op Argument,.

0

0

The effect of replrop is the same as though an infinite pixrect were constructed using copies of
the source pixrect laid immediately adjacent to each other in both dimensions, and then a rop
was performed from that source to the destination. For instance, a standard gray pattern may
be painted across a portion of the screen by constructing a pixrect that contains exactly one tile o
of the pattern, and by using it as the source pixrect. ·

2-10 Revision D of 7 January 1984

0

0

0

Sun'Windows Reference Manual Pixel Data and Operations

The alignment of the pattern on the destination is controlled by the source origin given by az,
•II· If these values are 0, then the pattern will have its origin aligned with ttle position in the
destination given by tl:r, tly. The most common other alignment is used to preserve a global
alignment with the destination, for instance, to repair a portion of a gray. In this case, the
source pixel which should be aligned with the destination position is the one which has the same
coordinates as that destination pixel, modulo the size of the source pixrect. Replrop will per
form this modulus operation for its clients, so it suffices in this case to simply copy the destina
tion position (d:r, tly) into the source position (a:r, •11).

2.2.6.4. Batch RasterOp: Multiple Source to the Same Destination

Applications such as displaying text perform the same operation from a number of source pix
rects to a single destination pixrect in a Cashion that is amenable to global optimization.
Device-dependent procedures invoked by the following macros perform raster operations on a
sequence of sources to successive locations in a common destination pixrect:

•truct batchitem {
•truct pixrect • bi_pr;
•truct pr_pos bi_pos;

};

*define pr_batchrop(dpr, dx, dy, op, items, n)
•truct pixrect •dpr;
Int dx, dy, op, n;
,truct batchitem items();

*define prs_batchrop(dstpos, op, items, n)
1truct pr_prpos dstpos;
Int op, n;
atruct batchitem items ();

The sequence of sources used by a batclirop procedure is an array of batcliitem structures. Each
item specifies a source pixrect and an advance in z and II· The whole of each source pixrect is
used, unless it needs to be clipped to fit the destination pixrect: the elements of bi_poa are used
to update the destination position, not as an origin in the source pixrect.
Batclirop procedures take a destination, specified by tip,, dz and tly, or by tlatpoa in the case of
pr,_batchrop; an operation specified in op, as described in Canatructing Op Argument• above,
and an array ·of 6atchitem, addressed by the argument item,, and whose length is given in the
argument 11.

The destination position is initialized to the position given by dz and tlg. Then, for each batclii
tem, the offsets given in 6i_poa are added to the previous destination position, and the operation
specified by op is performed on the source pixrect and the corresponding rectangle whose origin
is at the current destination position. Note that the destination position is updated for each
item in the batch, and these adjustments are cumulative.
The most common application of batclirop procedures is in painting text; additional facilities to
support tbis application are described below under Tezt Facilitiea for Pizrecta. Note that the
definition of 6atchrop procedures supports variable-pitch and rotated fonts, and non-roman writ
ing systems, as well as simpler text.

Revision q of 7 January 1984 2-11

Pixel Data and Operations SunWindows Reference Manual

2.2.8.5. Vector: Draw a Straight Line

Device-dependent procedures invoked by the following macros draw a vector or unit width
between two points in the indicated pixrect:

#define pr_vector(pr, xO, yO, xl, yl, op, value)
atruct pixrect •pr;
Int xO, yO, xl, yl, op, value;

#define prs_vector(pr, posO, posl, op, value)
atruct pixrect •pr;
atruct pr_pos posO, posl;
Int op, value;

Vector procedures draw a vector in the pixrect indicated by pr, with endpoints at (:zO, 110) and
(d, 111), or at po,o and pod in the case or pra_vector. Portions or the vector lying outside the
pixrect are clipped as long as PIXJ)ONTCLIP is O in the op argument. The op argument is con
structed as described above under Con,tructing Op Argument,; and value specifies the resulting
value or pixels in the vector. Ir the color in op is non-zero, it takes precedence over the value
argument.

2.2.7. Colormap Access

A colormap is a table which translates a pixel value into 8-bit intensities in red, green, and blue.
For a pixrect or depth n, the corresponding colormap will have 2n entries. The two most com-

0

mon cases are depth-I (monochrome with two entries) and depth-8 (with 256 entries). Memory ,I"_
pixrects do not have colormaps. y

2.2. 7 .1. Get Colormap

The following macros invob device-dependent procedures to read all or part of a colormap into
arrays in memory:

*define pr_getcolormap(pr, index, count, red, green, blue)
atruct pixrect •pr;
Int index, count;
unilsned char red [), green(), blue();

#define prs_getcolormap(pr, index, count, red, green, blue)
atruct pixrect •pr;
Int index, count;
unsigned char red (], green(J, blue();

These two macros have identical definitions; both are defined to allow consistent use or one set
or names for all operations.
Pr identifies a pixrect whose colormap is to be read; the count entries starting at ,'ntle:z are read
into the three arrays.

For monochrome pixrects the same value is written to corresponding elements of the red, green
and blue arrays. These array elements will have their bits either all cleared, indicating black, or
all set, indicating white. By default, the 0th (background) element is white, and the 1st ((/ore- o
ground) el~Jllent is black.

2-12 Revision D of 7 January 1984

0

0

0

SunWindpws Reference Manual Pixel Data and Operations

2.2.7.2. Put Colormap

The following macros invoke device-dependent procedures to store from memory into all or part
of a colormap:

#define pr_putcolormap(pr, index, count, red, green, blue)
atruct pixrect •pr;
int index, count;
unsigned char red (), green(), blue();

#define prs_putcolormap(pr, index, count, red, green, blue)
11truct pixrect •pr;
int index, count;
unsigned char red (), green(), blue();

These two macros have identical definitions; both are defined to allow consistent use or one set
or names for all operations.
The count elements starting at inde:i (zero origin) in the colormap for the pixrect identified by
pr are loaded from corresponding elements of the three arrays.
For monochrome pixrects, the only value considered is red (OJ. If this value is O, then the pix
rect will be set to a dark background and light foreground. If the value is non-zero, the fore
ground will be dark, e.g. black-on-white. Monochrome pixrects are dark-on-light by default.

Note: Fulj functionality of the colormap is not supported for depth-1 pixrects. Colormap
changes tp depth-1 pixrects apply only to subsequent operations whereas a colormap change to
a color device instantly changes all affected pixels on the display pixrect.

2.2.7.3. Provision for Inverted Video Pixrects

Video inversion is accomplished by manipulation of the colormap of a pixrect. The colormap of
a depth-1 pixrect has two elements. The following procedures provide video inversion control:

pr_blackonwhite(pr, min, max)
etruct pixrect •pr;
int min, max;

pr;!_whiteonblack(pr, :oi1n, max)
11truct pixrect •pr;
Int min, max;

prJeversevideo(pr, min, max)
etruct pixrect •pr;
Int min, max;

In each procedure, pr identifies the pixrect to be affected; min is the lowest index in the color
map, specifying the background color, and ma:i is the highest index, specifying the foreground
color. These will most often be O and 1 for monochrome pixrects; the more general definitions
allow colorma~sharing schemes, such as the one described below in Colormap Sharing, in the
chapter Overlapped Window,: Imaging Facilitie,.

"Black-on,-ivhite" means that zero (background) pixels will be painted at full intensity, which is
usually w~jte. Pr_blackonwhite sets all bits in the entry for colormap location min and clears all

Revision q of 7 January Ul84 2-13

Pixel Data and Operations SunWindows Reference Manual

bits in colormap location maz. O·

"White-on-black" means that zero (background) pixels will be painted at minimum intensity,
which is usually black. Pr_whiteonb/ack clears all bits in colormap location min and sets all bits
in the entry for colormap location maz.
Reversevideo exchanges the min and maz color intensities.

These procedures are ignored for memory pixr.ects.

2.2.8. Attributes for Bitplane Control

In a color pixrect, it is often useful to define bitplanes which may be manipulated indepen
dently; operations on one plane leave the other planes of an image unaffected. This is normally
done by assigning a plane to a constant bit position in each pixel. Thus, the value of the ith bit
in all the pixels defines the ith bitplane in the image. It is sometimes beneficial to restrict pix
rect operations to affect a subset of a pixrect's bitplanes. This is done with a bitplane mask. A
bitplane mask value is stored in the pixrect 's private data and may be accessed by the attribute
operations.

2.2.s.1. Get Attributes

Device-dependent procedures invoked by the following macros retrieve the mask which controls
which planes in a pixrect are'. affected by other pixrect operations:

#define pr_getattributes(pr, planes)
etruct pixrect •pr; o·
lnt •planes;

#define prs_getattributes(pr, planes)
atruct pixrect •pr;
int •planes;

Pr identifies the pixrect; its current bitplanes mask is stored into the word addressed by plane,.
If plane, is NULL, no operation is performed.

The two macros are identically defined; both are provided to allow consistent use of the same
style of names.

2.2.8.2. Put Attributes

Device-dependent procedures invoked by the following macro manipulate a mask which controls
which planes in a pixrect are affected by other pixrect operations:

#define pr..1>utattributes(pr, planes)
11truct pixrect •pr;
int •planes;

#define prs..1>utattributes(pr, planes)
11truct pixrect •pr;
int •planes;

2-14 Revision D of 7 January 1984

0

0

0

Sun'Windows Reference Manual Pixel Data and Operations

Pr identifies the pixrect to be affected; its mask is set so that only the planes identified by 1-bits
in the value of plane, will be read or written by subsequent pixrect operations. If plane• is
NULL, no operation is performed.
The two macros are identically defined; both are provided to allow consistent use of the same
style of names.
Plane, may be used to enforce that no pixel values outside of a pixrects colormap section are
written. In other words, the plane, argument is a bitplane write-enable mask. Only those bits
of the pixel corresponding to a 1 in the same bit position of •plane, will be affected by pixrect
operations. For example, if •plane, = 1 in a destination pixrect, subsequent operations will
only modify bit O of the destination pixels.
Note: If ltlJY plane, are masked off by a call to pr_putattribute,, no further read or write access
to those planes is possible until a subsequent call to pr..J)utattribute, unmasks them.

2.3. Text Facilities· for Pixrects

Displaying text is an important task in many applications, so pixrect-level facilities are provided
to address it directly. These facilities fall into two main categories: a standard format for
describing fonts and character images, with routines for processing them; and a set of routines
which take a string of text and a font, and handle various parts of painting that string in a pix
rect.

2.3.1. Pixfonts and Pixchars

The following two structs are used to describe fonts and character images for pixrect-level text
facilities:

atruct pixchar {
1truct pixrect •pc.J)r;
1truct pr.J>os pc.Jiome;
1truct pr.J)Os pc_adv;

};

1truct pixfont {
1truct pr_size pf_defaultsize;
1truct pixchar pf_char[256};

};

A pi:e/ont contains an array of pi:eclaara, indexed by the character code; it also contains the size
(in pixels) of its characters when they are all the same. (If the size of a font's characters varies
in one dimension, that value in p/_tle/aultaize will not have anything useful in it; however, the
other may still be useful. Thus, for non-rotated variable-pitch fonts, p/_tle/aultaize.y will still
indicate the unleaded interline spacing for that font.)
Note: The definition of a piz/ont is expected to change.
The pizclaar defines the format of a single character in a font. The actual image of the charac
ter is stored in a pixrect (a separate pixrect for each character) addressed by pc_pr. Characters
that do not have a displayable image will have NULL in their entry in pc_pr. Pc_home is the
origin of that image (its upper left corner) relative to the character origin. Characters are nor
mally placed relative to a baaeline, which is the lowest point on characters without descenders.

Revision D of 7 January 1984 2-15

Pixel Data and Operations SunWindows Reference Manual

The leftmost point on a character is normally its origin, but kerning or mandatory letter spac-
ing may move the origin right or left of that point. Pc_ad11 is the amount the destination posi- Ci
tion is changed by this character; that is, the amounts in pc_ad11 added to the current origin will
give the origin for the next character. While normal text only advances horizontally, rotated
fonts may have a vertical advance. Both are provided for in the font.

2.3.2. Operations on Pixfonts

Before a process may use a font, it must ensure that font has been loaded into virtual memory;
this is done with pf_open:

atruct pixfont •pf_open(name)
char •name;

This procedure opens the file with the given name. The file should be a font file as described in
vfont(5): The file is converted to pixfont format, allocating memory for its associated structs and
reading in the data for it from disk. A NULL is returned if the font cannot be opened.

The procedure:

atruct pixfont •pf_default()

performs the same function for the system default font, normally a fixed-pitch, 16-point sans
serif font with upper-case letters 12 pixels high. If the environment parameter DEFAULTJ'ONT
is set, its value will be taken as the name of the font file to be opened by pf_default.

Note: pf_open and pf_default load a new copy of the font every time they are called, even if the
font has already been loaded. To conserve memory, clients may use pwJ/•111open, described in
011erlapped Window,: Imaging Facilitie,, or take care only to open a font once in a process.

When a process is finished with a font, it should call pf_c/o,e to free the memory associated with
it:

pf_close(pf)
atruct pixfont •pf;

Pf should be the font handle returned by a previous call to p/_open or pf_default.

2.3.3. Pixrect Text Display

Characters are written into a pixrect with the p/_tezt procedure:

pf_text(where, op, font, text)
atruct pr_prpos where;
Int op;
atruct pixfont •font;
char •text;

Where is the destination for the start of the text (nominal left edge, baseline; see Pizfonta); op is
the raster operation to be used in writing the text, as described in Conatructing Op Argument,;
font is a pointer to the font in which the text is to be displayed; and tezt is the actual null
terminated string to be displayed.

The following procedure paints "transparentff text: it doesn't disturbing destination pixels in
blank areas of the character's image:

2-16 Revision D of 7 January 1984

0

0

0

0

0

SunVJindowu Reference Manual Pixel Data and Operations

p1_ttext(where, op, font, text)
i;truct pr.,J>rpos where;
Int op;
struct pixfont •font;
cha.r •text;

'fie 2.rrur.:icnts to this procedure are the same as for p/_tezt. The characters' bitmaps are used
,:a a Gtencil, and the color specified in op is squirted through the stencil.
(For moncchrome pixrects, the same effect can be achieved by using PIX...SRC I PIXJ)ST as the
function in the op; this procedure is required _for color pixrects.)
Auxi!ir,ry procedures used with p/_tezt include:

ctruct pr_size pf_textbatch(where,lengthp, font, text)
etruet batchitem whereO;
illl t • length p;
struct pixfont •font;
cher •text;

struct pr_size pf_textwidth(len, font, text)
int len;
atruct pixfont· •font;
cha.r •text;

Pf_te:itbatch is used internally by pf_tezt; it constructs an array of batchitems and records its
length, as required by batchrop (see Batch Raater Op). Where should be the address of an array
to be filled in, and lengthp should point to a maximum length for that array. Tezt addresses the
nul!-tcn::iinated string to be put in the batch, and font the pixfont to be used to display it. On
its return, •lcngthp will have been modified to be the number of batchitems actually used for
teitt.
P/_teztwidth returns a pr_,i:e which contains the total dimension of the string of the first /en
characters in text, when formatted in the indicated font.

2.4. Memory Pixrects

Pixrects which store their pixels in memory, rather than displaying them on some display, have
several special properties. Like all otller pixrects, their dimensions are visible in the pr _,ize and
pr_depth elements of their pixrect struct, and the device-dependent operations appropriate to
manipulating them are available through their pr_ap,. Beyond this, however, the format of the
data which describes the particular pixrect is also public: pr_dota will hold the address of a
mpr _dala struct, described below. There is also a public procedure, mem_create, which dynami
cally allocates a new memory pixrect, and a macro, mpr_,tatic, which can be used to generate
an initialized memory pixrect in the code of a client program. Thus, a client may construct and
manipulate memory pixrects usin& non-pixrect operations.

2.4.1. The Mpr_data Struct

The pr_data element of a memory pixrect points to an mpr_data struct, which contains the
information needed to deal with a memory pixrect:

Revision D of 7 January 1084 2-17

Pixel Data and Operations

struct mpr_data {
int md_linebytes;
short •md_image;
struct pr..J>Os md_olfset;
short md_primary;
short md_fiags;

};
#define MP _DISPLAY
#define MP _REVERSEVIDEO

SunWindows Rererence Manual

Li'nebgte, is the number or bytes stored in a row or the primary pixrect. This is the difference
in the addresses between two pixels at the same •coordinate, one row apart. Beeause a secon
dary pixrect may not include the rutl width of its primary pixrect, this quantity cannot be com
puted from the width of the pixrect - see Region. The actual pixels of a memory pixrect are
stored someplace else in memory, usually an array, which md_image points to; the format of
that area is described in the next section. The creator of the memory pixrect must ensure that
md_image contains an even address. Md_offaet is the z-11 position of the first pixel of this pix
rect in the array of pixels addressed by md_image. Md_primar11 is 1 if the pixrect is primary
and had its image allocated dynamically (e.g. by mem_create). In this case, md_image will point
to an area not referenced by any other primary pixrect. This flag is interrogated by the deatrou
routine: if it is 1 when that routine is called, the pixrect's image memory will be freed.
(Md.flag, & MP ..DISPLAY) is non-zero if this memory pixrect is in fact a display device. Other
wise, it is O. (Md.flag, & MP .,JtEVERSEVIDEO) is 1 if reveraewdeo is enabled for the display dev
ice. Md.flag, is present to support memory-mapped display devices like the Sun-2 black-and
w hite video device.

2,4,2, Pixel Layout in Memory Pixrects

In memory, the upper-left corner pixel is stored at the lowest address. This address should be
even. That first pixel is followed by the remaining pixels in the top row, leftrto-right. Pixels
are stored in successive bits without padding or alignment. For pixels more than 1 bit deep, it is
possible for a pixel to cross a byte boundary. However, rows are rounded up to 16-bit boun
daries. After any padding for the top row, pixels for the row below are stored, and so on
through the whole rectangle.·

2,4,3, Creating Memory Pixrects

2.4.3.1. Mem_create

A new primary pixrect is created by a call on the procedure mem_create:

struct pixrect •mem_create(w, h, depth)
int w, h, depth;

W, h, and depth specify the width and height in pixels, and depth in bits, of the new pixrect.
Sufficient memory to hold those pixels is allocated and cleared to O, new mpr_data and pizrect

0

0

structs are allocated and initialized, and a pointer to the pixrect is returned. If this can not be o
done, the return value is NULL.

2-18 Revision D of 7 January 1984

0

0

Sun Windows Reference Manual Pixel Data and Operations

2.4.3.2. Static Memory Pixrects

A memory pixrect may be created at compile time by using the mpr_atatic macro:

*define mpr_static(name, w, h, d, image)
char •name;
lat w, h, d;
•hort •image;

where name is a token to identify the generated data objects; w, h, and d are the width and
height in pixels, and depth in bits of the pixrect; and image is the address of an even-byte
aligned data object that contains the pixel values in the format described above.

The macro generates two structs:

•truct mpr_data nome_data ;
•truct pixrect name ;

The mpr_data is initialized to point to all of the image data passed in; the pixrect then refers to
mem_op, and to name_data.
Nole: Contrary to its name, this macro generates structs whose storage class is eztern.

Revision D of 7 January 1984 2-19

0

0

0

Chapter 3

Overlapped Windows: Imaging Facilities

This chapter and the following two deal with the aunwindow layer of the window system, which
provides facilities for managing windows with overlap and concurrency. This chapter is
specifically concerned with generating images in such an environment. Chapter 4 deals with
control of the windows, manipulating their size, location, and other structural characteristics.
Chapter 5 describes the facilities for serializing multiple input streams and distributing them
appropriately to multiple windows. The term "sunwindow layer" comes from the name of the
library that contains its implementation.
At this level of the system, a window is treated as a device: it is named by an entry in the / dev
directory; it is accessed by the open(2) system call; and the usual handle on the window is the
file deacriptor (or /cf) returned from that call.
For this chapter, however, a window may be considered as simply a rectangular area with con
tents maintained by some process. Multiple windows, maintained by independent processes,
may coexist on the same screen; Sun Windows allows them to overlap, sharing the same (z, 11)
coordinates, and proceeding-concurrently, while maintaining their separate identities.
Window system facilities may also be used to construct a non-overlapped environment; the win
dow system facilities required are much the same as for constructing on overlapping environ
ment.

3.1. Window Issues: Controlled Display Generation

Multiple windows on a display introduce two new issues, which may be broadly characterized
as: 1) preventing the window from painting where or when it shouldn't, and 2) ensuring that it
does paint whenever and wherever it should. The first includes clipping and locking; the latter
covers damage repair and fizup,.

3.1.1. Clipping and Locking

Clipping constraitts a window to draw only within the boundaries of its portion of the screen.
This area is subject to changes beyond the control of a window's process - another window
may be opened on top of the first, covering part of its contents, or a window may be shrunk to
make room for another alongside it. Thus, it is convenient for the window system to maintain
up-to-date information on which portions of the screen belong to which windows, and for the
windows to consult that information whenever they are about to draw on the screen.

Locking prevents window processes from interfering with each other in several ways:

Revision D of 7 January 1984 3-1

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

• Raster hardware may require several operations to complete a change to the display; one
process' use of the hardware should be protected from interference by others during this o
critical interval.

• Changes to the arrangement of windows must be prevented while a process is painting, lest
an area be removed Crom a window as it is being painted.

• A software cursor that the window process does not control (the kernel is usually responsi
ble for the cursor) may have to be removed so that it does not interfere with the window's
image.

Clipping and locking are described in more detail in Locking and Clipping.

3.1.2. Damage Repair and Fixups

A window whose image does not appear entirely as it should on the screen is said to be dam
aged. A common cause of damage is being first overlaid, and then uncovered, by another win
dow. When a window is damaged, a portion or the window's image must be repaired. Note
that the requirement for repairing damage may arise at any time; it is completely outside the
window's control.

When a process performs some operation which includes reading a portion of its window, for
instance copying a part of ·the image from one region to another to implement scrolling, it may
find the source pixels obscured. This necessitates a jizup, in which that portion of the image is
regenerated, similar to repairing damage. Unlike damage generation, the need to do some fixup
is provoked only in response to an action of the window's process, e.g., scrolling.

3.1.3. Retained Windows

Either form of regeneration may be done by recomputing the image; this approach is reasonable
for applications like text where there is some underlying representation from which the display
can be recomputed easily. For images which require considerable computation, SunWindows
provides a retained window, whose image is maintained in memory as well as on the display.
Such a window may have its image recopied to the display as needed to repair damage. The
mechanism for making a window retained is described in Pizwin,.

3.1.4. Colormap Sharing

On color displays, colormap entries are a constrained resource. When shared among multiple
applications, colormap usage requires arbitration. For example, consider the following applica
tions running on the same display at the same time in different windows:

• Application program X needs 64 colors for rendering VLSI images.

• Application program Y needs 32 shades of gray for rendering black and white photographs.

• Application program Z needs 256 colors (assume this ls the entire colormap) for rendering full
color photographs.

Colormap usage control is handled as follows:

• To determine how X and Y figure out what portion of the colormap they should use so they
don't access each others' entries, SunWindows provides a resource manager that allocates a

0

colormap aegment to each window from the ahared colormap. To reduce duplicate colormap C
segments, they are named and can be shared among cooperating processes. I

3-2 Revision D of 7 January 1984

0

0

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

• To hide concerns about knowing the correct offset to the start of a colormap segment from
routines that access the image, Sun Window initializes the image of a window with the color
map segment offset. This effectively hides the offset from the application.

• To accommodate Z if its large colormap segment request cannot be granted, Z's colormap is
loaded into the hardware, replacing the shared colormap, whenever input is directed towards
Z's window. Z's request is not denied even though it is not allocated its own segment in the
shared colorrnap.

• To control the blanking that occurs when colormap swapping causes all but Z's image to
disappear. Given an unfortunate choice of colors, SunWindow ensures that the background
(colormap segment entry 0) and foreground (colormap segment entry size-1) for all segments
in shared colormap are the same. This colormap content restriction has the affect of eliminat
ing blanking.

3.1.5, Process Structure

In Sun Windows, access to the screen is performed in each user process, instead of in a single,
central, fully· debugged screen management process. This increases the possibility of an
incorrect user process damaging the display area of other application processes. Several com
pensating factors justify this approach:

• Clients may access this open system at whichever level is most convenient. Clients who
require the ultimate efficiency of direct screen access need not sacrifice the window manage
ment functions of the window system.

• Leaving processing in user processes promotes efficiency in both implementation and execu
tion: making and testing extensions and modifications is much easier in user code than in the
kernel.

3.1.6. Imaging with Windows

A detailed discussion of imaging with windows follows. We begin with a description of the basic
data structures that are used in this level of Sunwindows. These are a primitive geometric facil
ity, the rect, for describing rectangles, and the basic structure, the pizwin, that describes a win
dow on the screen with its associated state and operation vectors.

Following is a brief discussfon of the simple process of creating and destroying pizwin,. This is
followed by a detailed description of the approach to locking and clipping, which leads naturally
into a discussion of library routines that access a pizwin ', pixels. Detecting and repairing dam
age is treated next.

3.1.7, Libraries and Header Files

The procedures described in this chapter are provided in the aunwindow library
(/uar/lib/lib,unwindow.a). The header file /uar/include/aunwindow/window_h,.h contains all the
include, that are required by a program using the facilities described in this chapter.

Revision D of 7 January 1984 3-3

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.2. Data Structures

Here are some data structures used in the implementation of pixwins. Be sure you understand
recta before proceding. Descriptions of the data structure internals are also provided for addi
tional information.

3.2.1. Rects

Throughout Sunwindows, images are dealt with in rectangular chunks; where complex shapes
are required, they are built up out of groups of rectangles. The basic description or a rectangle
is the rect struct, defined in the header file /uar/includefaunwindow/rect.h. The same file con
tains definitions or several useful macros and procedures for dealing with rect,.

Where a window is partially obscured, its visible portion generally cannot be described by a sim
ple rectangle; instead a list of non-overlapping rectangular fragments which together cover the
visible area is used. This rectliat is declared, along with its associated macros and procedures in
the file / uar/ include/ aunwindow/ rectliat.h.

At this point we only discuss the reef struct and its most useful macros; a full description of
both rect, and rectliat, is in Appendix A.

#define coo~d short .
struct rect {

coord
coord
short
short

};

r_left;
r_top;
r_width,
r_height;

In the context or a window, the rectangle lies in a coordinate system whose origin is in the
upper left-hand corner, and whose dimensions are given in pixels. Two macros determine an
edge not given explicitly in the rect. These macros are:

#define rect_right(rp)
#define rect_bottom.(rp)

struct rect •rp;

These macros return the coordinate of the last pixel within the rectangle on the right or bot
tom, respectively.

3.2.2. Pixwins

Pixwina are the basic imaging elements or the overlapped window system. The window layer of
the system uses pixwins to represent pixrects on a window surface. The pixwin thus describes
the window image and a set of routines to operate on the window.

0

0

A client of the window system has a rectangular window in which it displays information for the
user. Because of overlapping, however, it is not always possible to display information in all
parts of a client's window. Parts of an image may have to be displayed at some point long after
they were generated, as a portion of the window is uncovered. The clipping and repainting
necessary to preserve the identity of the rectangular image across interference with other objects
on the screen is handled by manipulations on pixwins. Q

3-4 Revision D of 7 January 1984

0

0

Si::n'Windows Reference Manual Overlapped Windows: Imaging Facilities

The pixwin struct is defined in / uar/ include/ aunwindow/ pixwin.h:

etll'uct pixwin {

};

struct pixrectops •pw _ops;
caddr_t pw _opshandle;
int
int
struct
mtruct
struct
struct
struct
chflr

pw_opsx;
pw_opsy;
rectlist pw _fixup;
pixrect •pw_pixrect;
pixrect •pw _prretained;
pixwin_clipops •pw _clipops;
pixwin_clipdata •pw_clipdata;
pw _cmsname[20];

The pizwin refers to a portion of some device, typically a display; the device is identified by
pw_pizrect.

Ir the image displayed in the pizwin required a large effort to compute, it will be worth saving a
backup copy of the whole image, making the window a retained window. This is done by creat
ing an appropriate memory pizrect as described in Memory Pizrecta, and storing a pointer to it
in pw_prretained.

Portions of the image which could not be accessed by an operation which attempted to read
pixels from the pizwin are indicated by pwfaup.

Pw_opa is a pointer to a vector of operations in screen access macros to call either the p1'zwin
software level or as an optimization, the pizrecl software directly. The structure pizrectopa was
discussed in Pizrectopa. The pw_opahandle is the data handle passed to the operations of
pw_opa. Pw_op,z and pw_opay are additional offset information that screen access macros use.
These three fields are dynamically altered based on locking and clipping status.
Pw_clipdata is a collection of information of special interest to locking and clipping. Pw_clipopa
points to a vector of operations which are used in locking and clipping. The declarations of
these last two structs are discussed more fully in Pizwin_clipdata Struct, Pizwin_clipopa Struct,
and subsequent sections.
Pw_cmaname the identifier of the colormap segment that this pixwin is currently using. This
value should only be accessed via pw_,etcm,name and pw_getcmaname procedures described
below.

Revision q of 7 January 1984 3-5

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.2.3. Pixwin_clipdata Struct

struct pixwin_clipdata {
int pwcd_windowfd;
short pwcd_state;
struct rectlist pwcd_clipping;
int pwcd_clipid;
int pwcd_damagedid;
int pwcd_lockcount;
struct pixrect •pwcd_prmulti;
struct pixrect •pwcd_pr.,ingle;
struct pixwin_prlist •pwcd_J>rl;
struct rectlist pwcd_clippingsorted[RECTS_SORTS);
atruct rect •pwcd_regionrect;

}t

#define PWCD_NULL 0
#define PWCD_MULTIRECTS 1
#define PWCD_SINGLERECT 2
#define PWCD_USERDEFINE 3

atruct pixwin_prlist {
struct pixwin_prlist •prl_next;
struct pixrect •prl..J>ixrect;

};'
Int prl_,x, prl_y;

Pwcd_windowfd is a file descriptor for the window being accessed. Within the owning process, it
is the atandard handle on a window. A description of the interplay between windows and
pizwina continues in Pizwin Creation and Deatruction. The portions of the window's area aeces
.,ible through the pizwin are described by the pwcd_ct."pping rectliat. Pwcd_regionrect, if not
NULL, points to a reel that is inter.,ected with pwcd_cUpping to further restrict the portions of
the window's area accessible through the pizwin. Pwcd_clip1°d and pwcd_damagedid identify the
most recent rectliata retrieved for a window. Pwcd_lockcount is a reference count used for
nested locking, as described in Locking below. Copies of this pwcd_clipping, sorted in directions
convenient for copy operations, are stored in_ pwcd_clippingaorted.

3-6 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

Pwcd •• atato can be one of the following:

Table 3-1: Clipping State

State Meaning

PWCD_NULL no part of window visible

PWCD_MULTIRECTS must clip to multiple rectangles

PWCD_SINGLERECT need clip to only one rectangle

PWCD_tJSERDEFINE the client program will be
responsible for setting up the
clipping

Pwcd_prmulti is the pizrect for drawing when there are multiple rectangles involved in the clip
ping. Pwcd_prainglo is the pizrect for clipping when there is only one rectangle visible.

Pwcd_prl is a list of pizrecti that may be used for clipping when there are multiple rectangles
involved. For vector drawing, these clippers muat be used maintain stepping integrity across
abutting rectangle boundaries. The prl_z and prl.JJ fields in the pizwin_pr/i,t structure are
offsets from the window origin for the associated prl_pi:iroct.

3.2.4, Pixwin_clipops Struct

struct pixwin_clipops {
Int (•pwcoJock)(),
Int (•pwco_unlock)(),
Int (•pwcoJeset)(),
Int (•pwco_getclipping)();

};

The pw_clipopa struct is a vector of pointers to system-provided procedures that implement
correct screen access. These are accessed through macros described in Locking and Clipping.

3.3. Pixwin Creation and Destruction

To create a pizwin, the window to which it will refer must already exist. This task is accom
plished with procedures like win_gotnowwindow and win_,etroct, described in Window Manipula
tion, or, at a higher level, tool_creato and tool_croatoaubwindow, described in Suntool: Tool, and
Subwindowa. The pizwin is then created for that window by a call to pw_open:

struct pixwin •pw_open(fd)
int fd; ·

Pw_opon takes a file descriptor for the window on which the pizwin is to write. A pointer to a
pizwin struct is returned. At this point the pizwin describes the ex posed area of the window. If
the client wants a retained pizwin, pw_prretained should be set to point to an appropriately
sized memory pizrect after pw_opon returns.

Revision D of 7 January 1984 3-7

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

When a client is finished with a window, it should be released by a call to:

pw _close(pw)
struct pix win •pw;

Pw_cloae frees any dynamic storage associated with the pizwin, including its pw_prretained pix
rect if any. Ir the pizwin has a lock on the screen, it is released.

3.3.1. Region Creation

One can use pixwins to clip rectangular regions within a window's own rectangular area. The
region operation creates a new pixwin that refers to an area within an existing one:

struct pixwin •pwJegion(pw, x, y, w, h)
struct pixwin •pw;
int x, y, w, h;

The pixwin which is to serve as the source is addressed by pw; z, II, wand /i describe the rectan
gle to be included in the new pixwin. The upper left pixel in the returned pixwin is at coordi
nates (0,0); this pixel has coordinates (:r, 11) in the source pixwin.

3.4. Locking and Clipping

Before a window process reads from or writes to the screen, it must satisfy several conditions:

• It should obtain exclusive use of the display hardware,

• The position of windows on the screen should be frozen,

• The window's description of what portions of its window are visible should be up-t<>'-date,
and

• The window should confine its activities to those visible areas.

The first three of these requirements is met by lockinV, the last amounts to clipping the image
the window will write to the bounds of its ezpoaed area. All are handled implicitly by the access
routines described in Acceaaing a Pi:rwin'a Pi:rela. Some clients will use those routines, but for
efficiency's sake, lock explicitly around a body of screen access operations.

3.4.1, Locking

The pw_lock macro:

pw_lock(pw, r)
struct pixwin •pw;
atruct rect •r;

uses the lock routine pointed to by the window's pw_clipopa to acquire a lock for the user pro
cess that made this call. Pw addresses the pizwin to be used for the ouput; r is the rectangle in
the window's coordinate system that bounds the area to be affected. Pw_lock blocks if the lock
is unavailable, for example, if another process currently has the display locked.

Lock operations for a ~ingle pizwin may he nested; inner lock operations merely increment a
count of locks outstanding, pwcd_lockcount in the window's pw_clipdata struct. Their affected
rectangles must lie within the original lock's.

3-8 Revision D of 7 January 1984

0

0

0

0

0

0

SunV{indows Reference Manual Overlapped Windows: Imaging Facilities

A similar macro is:

pw _unlock(pw)
struct pixwin •pw;

which decrements the lock count. If this brings it to 0, the lock is actually released.

Since locks may be nested, it is possible for a client procedure to find itself especially in error
handling with a lock which may require an indefinite number of unlocks. To handle this situa
tion cleanly, another routine is provided. The following macro sets pw's lock count to O and
release its lock:

pw Jeset(pw)
1tl!'uct pixwin •pw;

Like pw_loclc and pw_unloclc, pw_loclc calls a routine addressed in the pizwin's pizwin_clipopa
struct, in this case the one addressed by pwco_reaet.

Acquisition of a lock has the following effects:
• If the cursor is in conflict with the affected rectangle, it is removed from the screen. While

the screen is locked, the cursor will not be moved in such a way as to disrupt any screen
accessing.

• Access to the display is restricted to the process acquiring the lock.

• Modification of the database that describes the positions of all the windows on the screen is
prevented.

• The id of the most recent clipping information for the window is retrieved, and compared
with that stored in pwcd_clipid in the window's pw_clipdata. If they differ, the routine
addressed by pwco_getclipping is invoked, to make all the fields in pw_clipdata accurately
describe the area which may be written into.

• Once the correct clipping is in hand, the pwcd_atate variable's value determines how to set
pw_opa, pw_opahandle, pw_opaz and pw_opay. This setting is done in anticipation of further
screen access operations being done before a subsequent unlock. These values can often be
set to bypass the pizwin software by going directly to the pizrecl level.

Locking is both moderately expensive as it involves two system calls, and capable of impacting
other processes. Clients with a recognizable group of screen updates to do can gain noticeably
by surrounding the group with lock - unlock brackets; then the locking overhead will only be
incurred once. An example of such a group might be a line of text, or a series of vectors which
have all been computed.
While it has the screen locked, a !)rocess should not:

• do any significant computation unrelated to displaying its image;
• invoke any system calls, including other 1/0, which might cause it to block; or

• invoke any pixwin calls except pw_unlock and those described in Acceaaing a Pizwin'• Piz
ela. In any case, the lock should not be held longer than about a quarter of a second, even
following all these guidelines.

As a deadlock resolution approach, when a display lock is held for more than 10 seconds, the
lock is broken. However, the offending process is not notified by signal; the idea is that a pro
cess shouldn't be aborted for this infraction. A message is displayed on the console.

Revision D of 7 January 1984 3-9

Overlapped Windows: Imaging Facilities Sun Windows Reference Manual

3.4.2. Clipping

Output to a window is clipped to the window's pwcd_clipping rcctliat; this is a series of rectan- 0
gles which, taken together, cover the valid area that this window may write to. There are two
routines which set the pizwin's clipping:

pw _ex posed(pw)
struct pixwin •pw;

pw _damaged(pw)
struct pixwin •pw;

Pw_damagcd is discussed in Damage. Pw_czpoacd is the normal routine for discovering what
portion of a window is visible. It retrieves the rcctliat describing that area into the pizwin's
pwcd_clipping, and stores the id identifying it in pwctl_clipid. It also stores its own address in
the pizwin's pwco_gctclipping, so that subsequent lock operations will get the correct area
description.
Clipping, even more than locking, should normally be left to the library output routines. For
the intrepid, the strategy these routines follow is briefly sketched here; the rcctliat data struc
tures and procedures in Appendix A are required reading.

Some procedure will set the pizwin's pwcd_clipping so that it contains a rcctliat describing the
region which may be painted. This is done by a lock operation which makes a call through
•pwco_gctclipping, or an explicit call to one of pw_opcn, pw_doncdamagcd, pw_czpoacd or
pw_damagcd. This rcctliat is essentially a list of rectangular fragments which together cover the
area of interest. As an image is generated, portions of it which lie outside the rectangle list
must be masked off, and the remainder written to the window through a pizrcct.

The clirping aid pwcd_prmulti is set up to be a pizrect which clips for the entire rectangular
area o the window. Any clipping using this pizrcct must utilize the information in
pwcd_c ipping to do the actual clipping to multiple rectangles.
Pwcd_prl is set up to parallel each of the rectangles in pwcd_clipping. Thus, if one draws to
each of the pizrcct, in this data structure, the image will be correctly clipped. Pwcd_,tatc is set
by examining the makeup of the pwcd_clipping. If pwcd_,tatc is PWCD_SINGLERECT, a piz
rect is set up in pwcd_pr,inglc also. When this case exists, after pw_lock an~ before pw_unlock,
most screen accesses will directly access the pizrect level of software. Thus, in this common
case, screen access is as fasfln the window system as it is on the raw pizrcct software outside of
the window system. Also, pwcdJrainglc is set up with a zero height and width pizrect when
pwcd_,tatc is PWCD_NULL.

As an escape, 11one of the pizrect setup described above takes place when pwcd_atatc is
PWCD_USERDEF!NE. This means that clipping is the responsibility of higher level software.
A client may write to the display with an operation which specifies no clipping (op I
PIX_DONTCLIP). This means that it is doing the clipping at a higher level. Note that clip
ping data is only valid during the time the client may write to the screen, that is when the
window's owner process holds a lock on the screen. If the clipping is done wrong, it is possible
to damage another window's image.

3-10 Revision D of 7 January 1984

0

0

0

0

0

Sun Windows Reference Manual Overlapped Windows: Imaging Facilities

3.5. Accessing a Pixwin's Pixels

Pirocedures described in this section provide all the normal facilities for output to a window and
should be used unless there are special circumstances. Each contains a call to the standard lock
procedure, described in Locking. Each takes care of clipping to the rect/iat in pw_clipping. Since
the routines are used both for painting new material in a window and for repairing damage,
they make no assumption about what clipping information should be gotten. Thus, there
slwuld be some previous call to either pw_open, pw_donedamaged, pw_ezpoaed or pw_damaged, to
initiali£e pwo_getclipping correctly.
The procedures described in this section will maintain the memory pizrect for a retained pixwin.
That is, they check the window's pw_prretained, and if it is not null, perform their operation on
that data in memory, as well as on the screen.

3.5.1. Write Routines

pw_write(pw, xd, yd, width, height, op, pr, xs, ys)
atruct pixwin •pw;
int op, xd, yd, width, height, xs, ys;
atruct pixrect •pr;

pw_writebackground(pw, xd, yd, width, height, op)

Pixels ar~ written to the pixwin pw in the rectangle defined by zd, yd, width, and height, using
rasterop function op (as defined in Conatructing Op Argument• for Rop and Batchrop Pizrec
topa). They are taken from the rectangle with its origin at za, 11• in the source pixrect pointed
to by pr. Pw_writebackground simply supplies a null pr which indicates that an infinite source
of pixels, all of which are set to zero, is used. The following draws a pixel of value at (z, 11) in
the addressed pizwin:

pw...J)ut(pw, x, y, v1,1,lue)
atruct pixwin •pw;
int x, y, value;

The next draws a vector of pixel value from (xO, yO) to (xl, yl) in the addressed pizwin using
rasterop op:

pw_vector(pw, xO, yO, xl, yl, op, value)
atruct pixwin •pw;
int op, xO, yO, xl, yl, value;

pw_replrop(pw, xd, yd, width, height, op, pr, xs, ys)
atruct pix win •pw;
int op, xd, yd, width, height;
atruct pixrect •pr;
int xs, ys;

This procedure uses the indicated raster op function to replicate a pattern (found in the source
pizrect) into a destination in a pixwin. For a full discussion of the semantics of this procedure,
refer to the description of the equivalent procedure pr_replrop in Pizel Data arid Operation•.

Revision D of 7 January 1984 3-11

Overlapped Windows: Imaging Facilities

The following two routines:

pw_text(pw, x, y, op, font, s)
struct pix win •pw;
int
atruct
char

x, y, op;
pixfont •font;
•s;

pw_char(pw, x, y, op, font, c)
atruct pixwin •pw;
int
struct
char

x, y, op;
pixfont •font;
c;

SunWindows Reference Manual

write a string of characters and a single character respectively, to a pi:iwin, using rasterop op as
above. Pw_te:it and pw_char are distinguished by their own coordinate system: the destination
is given as the left edge and baa.line of the first character. The left edge does not take into
account any kerning (character position adjustment depending on its neighbors), so it is possible
for a character to have some pixels to the left of the x-coordinate. The baseline is the y
coordinate of the lowest pixel of characters without descenders, 'L' or 'o' for example, so pixels
will frequently occur both above and below the baseline in a string. Font may be NULL in
which case the a11atem font is used.
The system font is the same as the font returned from p/_de/au/t. In addition, the system font
is reference counted and shared between software packages. To get the system font call
pw_p/a11aopen:

struct pixfont •pw _J>fsysopen()

When you are done with the system font call pw_p/a11acloae:

pw ..J>fsysclose()

Note: A font to be used in pw_te:it is required to have the same pc_home.11 and character height
for all characters in the font.

The following routine:

pw_ttext(pw, x, y, op, font, s)
atruct pix win •pw;
int
atruct
char

x, y, op;
pixfont •font;
•s; .

is just like pw_te:it except that it writes tranaparent text. Transparent text writes the shape of
the letters without disturbing the background behind it. This is most useful with color pixwins.
Monochrome pixwins can use pw_te:it and a PIX_SRCjPIX_DST op, which is faster.

Applications such as displaying text perform the same operation on a number of pixrects in a
fashion that is amenable to global optimization. The batchrop procedure is provided for these
situations:

pw _batchrop(pw, dx, dy, op, items, n)
struct pixwin •pw;
int dx, dy, op, n;
struct batchitem items(];

3-12 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

Pu.'_batchrop is exactly analogous to pr_batchrop described in Pixel Data and Operation,. Refer
there for a detailed explanation of pw_batchrop.

Stencil ops are like raster ops except that the source pixrect is written through a stencil pixrect
which functions as a spatial write enable mask. The indicated raster operation is applied only
to destination pixels where the stencil pixrect is non-zero. Other destination pixels remain
un~hrn1ged.

111w_stencil(dpw, dx, dy, dw, dh, op, stpr, stx, sty, spr, sx, sy)
I struct pixwin •dpw;

11truct pixrect •stpr, •spr;
int dx ,dy ,dw ,dh,op,stx ,sty ,sx ,sy;

Pw_atcncil is exactly analogous to pr_atencil described in Pixel Data and Operation,. Refer
there for a detailed explanation of pw_atencil.

3.6.2, Read and Copy Routines

The following routines use the window as a source of pixels. They may find themselves
thwarted by trying to read from a portion of the pixwin which is hidden, and therefore has no
pixels. When this happens, pwfaup in the pizwin structure will be filled in by the system with
the description of the source areas which could not be accessed. The client must then regen
erate this part of the image into the destination. Retained pizwins will always return rl_null in
pwfaup because the image is refreshed from pw_prretained. The following returns the value of
the pixel at (z, 11) in the addressed pixwin:

pw_get(pw, x, y)
struct pix1~in •pw;
int x, Y,1;

Pixels are read from the pizwin into a pixrect by:

pw_read(pr, xd, yd, width, height, op, pw, xs, ys)
struct pix win •pw;
int op, xd, yd, width, height, xs, ys;
struct pixrect •pr;

Pixeb are read from the rectangle defined by za, ya, width, height, in the pixwin pointed to by
pw, using rasterop function op. The pixels are stored in the rectangle with its origin at xd, yd in
the pizrect pointed to by pr.

Copy is used when both source and destination are pizwin,:

pw_copy(dpw, xd, yd, width, height, op, spw, xs, ys)
11truct pix win •dpw, •spw;
Int op, x~, yd, width, height, xs, ys;

Note: Currently dpw and apw must be the same pixwin.

3.6.3. Bitplane Control

For pixwins on color display devices, one must be able to restrict access to certain bitplanes.

Revision D of 7 January 1984 3-13

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

pw ...J>Utattributes(pw, planes)
struct pixwin •pw;
int •planes;

Plane, is a bit plane access enable mask. Only those bits of the pixel corresponding to a 1 in the
same bit position or •plane, will be affected by pixwin operations. Pw_putattributea sets the
access enable mask of pw. Ir the plane, argument is NULL, that attribute value will not be writ
ten.
Note: Use pw_putattributea with care; it changes the internal state of the pixwin until
pw_putattribute, is next called. Don't forget to restore the internal state once through accessing
in this special mode.

pw _getattributes(pw, planes)
struct pixwin •pw;
int •planes;

retrieves the value of the access enable mask into ,;,lane,.

3.6. Damage

When a portion or a client's window becomes visible after having been hidden, it is damaged.
This may arise from several causes. For instance, .an overlaying window may have been
removed, or the client's window may have been stretched to give it more area. The client is

0

notified that such a region exists by the signal SIGWINCH; this simply indicates that something

0 about the window has changed in a fashion that probably requires repainting. It is possible that
the window has shrunk, and no repainting or the image is required at all, but this is a degen-
erate case. It is then the client's responsibility to repair the damage by painting the appropriate
pixels into that area. The following section describes how to do that.

3.6.1. Handling a SIGwfucrt Signal

There are several stages to handling a SIGWINCH. First, in almost all cases, the procedure that
catches the signal should not immediately try to repair the damage indicated by the signal.
Since the signal is a software interrupt, it may easily arrive at an inconvenient time, halfway
through a window's repaint for some normal cause, for instance. Consequently, the appropriate
action in the signal handler is usually to set a flag which will be tested elsewhere. Conveniently,
a SIGWINCH is like any other signal; it will break a process out of a ,elect system call, so it is
possible to awaken a client that was blocked, and with a little investigation, discover the cause
of the SIGWINCH. See the ,elect(2) system call and refer to the tool_aelect mechanism in Tool
Proceuing for an example of this approach.

Once a process has discovered that a SIGWINCH has occurred and arrived at a state where it's
safe to do something about it, it must determine exactly what has changed, and respond
appropriately. There are two general possibilities: the window may have changed size, and/or
a portion of it may have been uncovered.

Win__getaize (described in Window Manipulation) can be used to inquire the current dimensions
of a window. The previous size must have been remembered, for instance from when the win
dow was created or last adjusted, These two sizes are compared to see if the size has changed.
Upon noticing that its size has changed, a window containing other windows may wish to 0

3-14 Revision D or 7 January 1984

0

0

0

SunVVindows Reference Manual Overlapped Windows: Imaging Facilities

rearrange the enclosed windows, for example, by expanding one or more windows to fill a newly
opened space.
Whether a size change occurred or not, the actual images on the screen must be fixed up. It is
possible to simply repaint the whole window at this point - that will certainly repair any dam
aged areas - but this is often a bad idea because it typically does much more work than neces
Sf'.1:y.

Therefore, the window should retrieve the description of the damaged area, repair that damage,
and inform the system that it has done so: The pw_damagcd procedure:

pw _damaged(pw)
struct pixwin •pw;

is a procedure much like pw_czpoaed. It fills in pwcd_clipping with a rcctliat describing the area
or interest, stores the id of that rcctliat in the pizwin's opadata and in pwcd_damagedid as well.
It also stores its own address in pwco_getclipping, so that a subsequent lock will check the
correct rcctliat. All the clippers are set up too. Colormap segment offset initialization is done,
as described in Surface Preparation.
Now is the time for the client to repaint its window - or at least those portions covered by the
damaged rectliat; if the regeneration is relatively expensive, that is if the window is large, or its
contents complicated, it may be worth restricting the amount of repainting before the clipping
that the rectliat will enforce. This means stepping through the rectangles of the rectliat, deter
mining for each what data contributed to its portion of the image, and reconstructing only that
portion. See Appendix A for details about rectliata.
For retained pixwins, the following call can be used to copy the image from the backup pixrect
to the window:

pw _repairretained(pw)
atruct pixwhi. •pw;

When the image is repaired, the client should inform the window system with a call to:

pw _donedamaged(pw)
struct pixwin •pw;

Pw_donedamaged allows the system to discard the rectliat describing this damage. It is possible
that more damage will have accumulated by this time, and even that some areas will be
repainted ,more than once, but that will be rare.
After calling pw_donedamaged, the pizwin describes the entire visible area of the window.

A process which owns more than one window can receive a SIGWINCH for any of them, with no
indication of which window generated it. The only solution is to fix up all windows. For
tunately, that should not be overly expensive, areas are completely and exactly specified by the
returned value for pw_damaged.

' 3.7. Colormap Manipulation

Pixwins wovide an interface to a basic colormap sharing mechanism. Portions of the colormap,
colormap aegmenta, are named and can be shared among cooperating processes. Use of a color
map segment, as opposed to the entire colormap, is essentially invisible to clients. Routines
that, access a pixwin's pixels do not distinguish between windows which use colormap segments
and those which use the entire colormap.

Revision D of 7 January 1984 3-15

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3. 7 .1. Initialization

Pw_open and pw_region both create and return a pixwin. If a colormap segment is already
defined for the window of the pixwin, this is the colormap segment used in the new pixwin.
However, if the window has no colormap segment defined for it, a monochrome colormap seg
ment is setup for the pixwin by default. The default segment is defined in
/ uar/ include/ ,unwindow/ cm,_mono.h.

3.7.2. Background and Foreground

Every colormap segment has two distinguished values, its background and foreground. The
background color is defined as the value at the first position of a colormap segment. The fore
ground color is defined as the value at the last position of a colormap segment (the colormap
segment's size minus 1).

The foreground is important in terms of color/monochrome compatibility. Any source color,
other than O, that is written on a monochrome pixrect is translated to the foreground color.
Pw_open and pw_region set the background and foreground of the returned pixwin to be those
of the overall screen (see win_,creenget). In addition, if the screen is defined as being inverted,
the background and foreground are reversed. For reasons involving image blanking, invisible
cursors, merged boundaries, color/monochrome compatibility, relative colormap segment place
ment, and so on, this pre-emption is vital to the overall integrity of color displays doing color
map sharing. Monochrome displays have many of these problems, although they are less severe
than on color displays.
Here are handy utilities to set two specific colormap segment entries:

pw_reversevideo(pw, min, max)
struct pixwin •pw;
int min, max;

pw_blackonwhite(pw, min, max)
struct pixwin •pw;
Int min, max;

pw_whiteonblack(pw, min, max)
struct pixwin •pw;
Int min, max;

Min and maz are the first and last entries in the colormap, respectively. If min is the back
ground and maz is the foreground and pw is a color pixwin, these calls do nothing.

3.7.3. A New Colormap Segment

For a different colormap segment for a pixwin, a new name must be created. If the colormap
segment's usage is to be static in nature, by all means try to use a shared colormap segment
definition. The colorntap segment definitions that could be shared with other windows are in
/uar/include/aunwindow/cma_•.h. These are cma.h, cm,_rgb.h, cma_grau,.h, cma_mono.h, and
cm,_rainbow.h. Even if no other program shares your colormap segment, at least multiple
instances of your program could share it. Remember that colormap entries are scarce.

3-16 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Overlapped Windows: Imaging Facilities

If this new colormap segment should not be shared by another window then the name should be
unique. A common way to generate a unique name is to append your process id to a more
meaningful string that describes the usage of the colormap segment.

pw _setcmsname(pw, cmsname)
struct pix win •pw;
char cmsname[20];

Cmaname is the name that pw will call its window's colormap segment. Just setting the name
has the effect of resetting the colormap segment to a NULL entry. Usually, the very next call
after pw_aetcmaname should be pw_putcolormap as described in the next section.

Colormap segments are associated with windows, not pixwins. Each window can have only one
colormap oegment. Pixwins provide an interface for managing that one colormap segment.
Since more than one pixwin may exist per window, care should be taken to avoid changing the
colormap segment definition out from underneath another pixwin on the same window.

pw _getcmsname(pw, cmsname)
atruct pix win •pw;
char cmsname[20];

The colormap segment name of pw is copied into cmaname.

3,7,4. Colormap Access

pw_putcolormap(pw, index, count, red, green, blue)
struct pix win •pw;
Int index, count;
unsigned char red [], green[], blue[];

The count elements of the pixwin's colormap segment starting at indez (zero relative) are loaded
with the first count values in the three arrays. A colormap has three components each indexed
by a given pixel value to produce an RGB color. Monochrome pixwins assume red equals green
equals blue. Pixrects of depth 8 have colormaps with 256 (2 to the eighth) entries. Background
and foreground values are forced to the values defined by the screen.

pw_getcolormap(pw, index, count, red, green, blue)
•truct pixwin •1>w;
Int index, count;
unsigned char red [], green[J, blue(J;

finds out the state of the colormap segment. The arguments are analogous to those of
pw_putcolormap.

The utility:

pw_cyclecolormap(pw, cycles, index, count)
atruct pixwin •pw;
int cycles, index, count;

is handy for taking a portion of pw's colormap segment, starting at indez for count entries, and
rotating those entries among themselves for cycle,. A cycle is defined as the count shifts it takes
one entry to move through every position once.

Revision D of 7 January 1984 3-17

Overlapped Windows: Imaging Facilities SunWindows Reference Manual

3.7.5. Surface Preparation

In order for a client to ignore the offset of his colormap segment the image of the pixwin must
be initialized to the value of the offset. This ,ur/ace preparation is done automatically by
pixwins under the following circumstances:

• The routine pw_damaged does surface preparation on the area of the pixwin that is dam
aged.

• The routine pw_putcolormap does surface preparation over the entire exposed portion of a
pixwin if a new colormap segment is being loaded for the first time.

For monochrome displays, nothing is done during surface preparation. For color displays, when
the surface is prepared, the low order bits (colormap segment size minus 1) are not modified.
This mean that surface preparation does not clear the image. Initialization of the image (often
clearing) is still the responsibility of client code.

There is a case in which surface preparation must be done explicitly by client code. When win
dow boundaries are knowingly violated (see win_grabio), as in the case of pop-up menus, the fol
lowing procedure must be called to prepare each rectangle on the screen that is to be written
upon:

pw __preparesurface(pw, rect)
atruct pixwin •pw;
atruct rect •r;

Rect is relative to pw's coordinate system. Most commonly, a saved copy of the area to be writ
ten is made so that it can be restored later.

3-18 Revision D of 7 January 1984

0

0

0

0

0

0

Chapter 4

Window Manipulation

This chapter describes the aunwindow facilities for creating, positioning, and controlling win
dows. It cor.tinues the discussion begun in 011erlapped Windowa: Imaging Facilitiea, on the
aunwint!ow level that allows displaying images on windows which may be overlapped.
The structure that underlies the operations described in this chapter is maintained within the
window system, and is accessible to the client only through system calls and their procedural
envelopes, it will not be described here. The window is presented to the client as a dellice; it is
represented, like other devices, by a file deacriptor returned by open. It is manipulated by other
I/0 calls, such as ,elect, read, ioctl, and cloae. Write to a window is not defined, since all the
facilities of the previous chapter on 011erlapped Wt"ndowa: Imaging Facilitiea are required to
display output on a window.
The header file /uar/include/aunwindow/window_h,.h ineludes the header files needed to work at
this level of the window system.

4.1. Window Data .

The information about a window maintained by the window system includes:
• two rectangles which refer to alternative aizea and poaitiona for the window on the screen;

• a series of links that describe the window's position in a hierarchical database, which deter
mines its 011erlapping refationships to other windows;

• clipping information used in the processing described in 011erlapped Window,: Imaging Facil
itiea;

• the image used to track the mouse when it is in the window;
• the id of the process which should receive SIGWINCH signals for the window (this is the

owner process);
• a mask that indicates -.hat user input actions the window should be notified of;
• another window, which-is given any input events that this window does not use; and

• 32 bits of data private to the window client.

4.2. Window Creation, Destruction, and Reference

As mentioned above, windows are de11icea. As such, they are special files in the / de11 directory
with names of the form "fdt:11/winn", where n is a decimal number. A window is created by
opening one of these devices, and the window name is simply the filename of the opened device.

Revision D of 7 January 1984 4-1

Window Manipulation Sun Windows Reference Manual

4.2.1. A New Window

The first process to open a window becomes its owner. A process can obtain a window it is
guaranteed to own by calling:

int win_getnewwindow()

This finds the first unopened window, opens it, and returns a file descriptor which refers to it.
If none can be found, it returns -1. A file descriptor, often called the windowfd, is the usual
handle for a window within the process that opened it.
When a process is finished with a window, it may close it. This is the standard clo,e(3) system
call with the window's file descriptor as argument. As with other file descriptors, a window left
open when its owning process terminates will be closed automatically by the operating system.

Another procedure is most appropriately described at this point, although in fact clients will
have little use for it. To find the next available window, win_getnewwindow uses:

Int win_nextfree(ftl)
Int fd;

where fd is a file descriptor it got by opening / dev/winO. The return value is a window number,
as described in Reference, to Window, below; a return value of WIN_NULLLINK indicates
there is no available unopened window.

4.2.2. An Existing Window

It is possible for more than one process to have a window open at the same time; Providing for
Naive Program, presents one plausible ocenario for using thio capability. The window will
remain open until all processes which opened it have closed it. The coordination required when
several processes have the same window open is described in Providing for Naive Program,.

4.2.3. References to Windows

Within the process which created a window, the usual handle on that window is the file descrip
tor returned by open and win_getnewwindow. Outside that process, the file descriptor is not
valid; one of two other forms must be used. One form is the window name (e.g., /dev/winl2);
the other form is the window number, which corresponds to the numeric component of the win•
dow name. Both of these references are valid across process boundaries. The window number will
appear in several contexts below.

Procedures are supplied for switching the various window identifiers back and forth.
Win_numberlonome stores the filename for the window whose number is winnumber into the
buffer addressed by name:

win_numbertoname(winnumber, name)
Int winnumber;
char •name;

Nome should be WIN_NAMESIZE long as should all the name buffers in this section.

Win_nomelonumber returns the window number of the window whose name is passed in name:

Int win_liametonumber(name)
char •name;

4-2 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Window Manipulation

Given a window file dese~iptor, winJdtoname stores the corresponding device name into the
buffer sclru-eS!',ed by name:

win_fdtoname(windowfd, name)
int windowfd;
char •name;

The following returns the window number for the window whose file descriptor is windowfd:

int win_fdtonumber(windowfd)
· int windowfd;

4.3. Window Geometry

Once a window has been opened, its size and position may be set. The same routines used for
this purpose are also helpful for adjusting the screen positions of a window at other times, when
user-interface actions indicate that it is to be moved or stretched, for instance. The basic pro
cedures are:

win__getrect(windowfd, rect)
int windowfd;
atruct rect •rect;

wln__getsize(windowfd, rect)
Int windowfd;
1truct rect •rect;

short win__getheight(windowfd)
Int windowfd;

short win__getwidth(windowfd)
Int windowfd;

Win_getrect stores the rectangle of the window whose file descriptor is the first argument into
the rect addressed by the second argument; the origin is relative to that window'• parent. Set
ting Window Link, explains what is meant by a window's "parent."

Win_get,i:e is similar, but the rectangle is self-relative - that is, the origin is (0,0).
Win_getheighl and win_getwidth return the single requested dimension for the indicated window.
Win_aetrect copies the rect.argument's data into the rect of the indicated window:

win_setrect(windowfd, rect)
Int w indowfd;
1truct rect •rect;

This changes its size and/ or position on the screen. The coordinates are in the coordinate sys
tem of the window's parent.

Revision q of 7 January 1984 4-3

Window Manipulation SunWindows Reference Manual

win_getsavedrect(windowfd, rect)
int windowfd;
atruct rect •rect;

win_setsavedrect(windowfd, rect)
int windowfd;
atruct rect •rect;

A window may have an alternate size and location; this facility is useful for icon•, for example
(see Full Screen Acceu). The alternate rectangle may be read with win_get.a11edrect, and writ
ten with wi"n_,et,a11edrect. As with win_getrect and win_aetrect, the coordinates are relative to
the window's parent.

4.4. The Window Hierarchy

Position in the window database determines the nesting relationships of windows, and therefore
their overlapping and obscuring relationships. Once a window has been opened and its size set,
the next step in creating a window is to define its relationship to the other windows in the sy~
tem. This is done by setting links to its neighbors, and inserting it into the window database.

4.4.1. Setting Window Links

0

The window database is a strict hierarchy. Every window (except the root) has a parent; it also
has O or more ,i6ling• and children. In the terminology of a family tree, age corresponds to
depth in the layering of windows on the screen: parents underlie their offspring, and older win- o
dows underlie younger siblings which intersect them on the display. Parents also enclose their
children, which means that any portion of a child's image that is not within its parent's rectan-
gle is clipped. Depth determines overlapping behavior: the uppermod image for any point on
the screen is the one that gets displayed. Every window hu links to its parent, its older and
younger siblings, and to its oldest and youngest children.
Windows may exist outside the structure which is being displayed on a screen; they are in this
state as they are being set up, for instance.
The links from a window to its neighbors are identified by /ink ,elector,; the value of a link is a
window number. An appropriate analogy is to consider the /ink ,elector as an array index, and
the associated window number as the value of the indexed element. To accommodate different
viewpoints on the structuri: there are two sets of equivalent selectors defined for the links:

WL_PARENT == WL_ENCLOSING
WL_OLDERSIB -= WL_COVERED
WL_YOUNGERSIB == WL_COVERING
WL_OLDESTCHILD == WL_BOTTOMCHILD
WL_YOUNGESTCH!LD -- WL_TOPCHILD

A link which has no corresponding window, a child link of a "!ear• window, for instance, has
the value WIN_NULLLINK.

When a window is first created, all its links are null. Bef.ore it can be used for anything, at least
the parent link must be set. If the window is to be attached to any siblings, those links should
be set in the window as well. The individual links of a window may be inspected and changed
by the following procedures.

4-4 Revision D of 7 January 1984

0

0

0

0

SuaWindows Reference Manual Window Manipulation

Wirl_getlink return& a window number.

int win_getlink(windowfd, link_selector)
int windowfd, link_selector;

This number is the value of the selected link for the window associated with windowfd.

win_setlink(windowfd, link_selector, value)
int windowfd, link_selector, value;

Vlin_,etlink sets the selected link in the indicated window to be value, which should be another
window number. The actual window number to be supplied may come Crom one of several
sou~ces: if the window is one of a related group, all created in the same process, file descriptors
will be available for the other windows. Their window num hers may be derived from the file
descriptors via winJdtonumber. The window number for the parent of a new window or group
of windows is not immediately obvious, however. The solution is a convention that the
VVINDOW_PARENT environment parameter will be set to the filename or the parent. See
Pa,aing Parameter, to a Tool for an example or this environment parameter's usage.

4.4.2, Activating the Window

Once a window's links have all been defined, the window is in&erted into the tree or windows
and attached to its neighbors by a call to

win_insert(windowfd)
int windowfd;

This call causes the window to be inserted into the tree, and all its neighbors to be modified to
point to it. This is the point at which the window becomes available for display on the screen.

Every window should be inaerted after its rectangle(s) and link structure have been set, but the
insertion need not be immediate: if a subtree of windows is being defined, it is appropriate to
create the window at the root or this subtree, create and insert all or its descendants, and then,
when the subtree is fully defined, insert its root window. This activates the whole subtree in a
single action, which typically will result in a cleaner display interaction.
Once a window has been inserted in the window database, it is available for input and output.
At this point, it is appropriate to call pw_open and access the screen.

4.4.3. Modifying WiJdow Relationships

Windows may be rearranged in the tree. This will change their overlapping relationships. For
instance, to bring a window to the top or the heap, it should be moved to the "youngest" posi
tion among its siblings. And to guarantee that it is at the top or the display heap, each or its
ancestors must likewise be the youngest child of it, parent.
To accomplish such a modification, the window should first be removed:

win_remove(windowfd)
int windowfd;

After the window has been removed from the tree, it is safe to modify its links, and then rein
sert it.

Revision D of 7 January 1984 4-5

Window Manipulation SunWindows Reference Manual

A process doing multiple window tree modifications should lock the window tree before it
begins. This prevents any other process from performing a conflicting modification. This is ,o·
done with a call to:

win_lockdata(windowfd)
int windowfd;

After all the modifications have been made and the windows reinserted, the lock is released with
a call to:

win_unlockdata(windowfd)
int windowfd;

Most routines described in this chapter, including the four above, will block temporarily, if
another process either has the database locked, or is writing to the screen, and the window
adjustment has the possibility of conflicting with the window that is being written.

As a method of deadlock resolution, SIGXCPU is sent to a process that spends more that 10
seconds of real time inside a window data lock, and the lock is broken.

4.5. User Data

Each window has 32 bits of uninterpreted client data associated with it. This is not touched by
the basic window system; typically the client uses it to store flags. Higher levels of the system
may implement minimal inter-window status-sharing through this facility. This data is manipu
lated with the following procedures:

win_getuserflags(windowfd)

0 Int windowfd; ' .

win_setuserflags(windowfd, flags)
int windowfd;
int flags;

win_setuserflag(windowfd, flag, value)
int windowfd;
int flag;
int value;

Win_gotuaorftaga returns the user data. Win_,etuaerflaga stores its flag, argument into the win
dow struct. Wi'n_aotu,orflag uses flag as a mask to select one or more flags in the data word,
and sets the selected flags on or off as value is TRUE or FALSE.

4.6. Minimal-Repaint Support

This section has strong connections to the preceding chapter and to Appendix A on R ect, and
Rectliat,. Readers should refer to both from here.

Moving windows about on the screen may involve repainting large portions of their image in
new places. Often, the existing image can be copied to the new location, saving the cost of
regenerating it. Two procedures are provided to support this function:

win_computeclipping(windowfd)
int windowfd;

4-6 Revision D of 7 January 1984

0

0

~:un\lVindows Reference Manual Window Manipulation

caIDJes the window system to recompute the ezpoaed and damaged rectlists for the windows on
the u:reen while withholding the SIGWINCH that will tell each owner to repair damage.

Win_partialrepair:

win_partialrepair(windowfd, r)
int windowfd;
struct rect •r;

tells the window system to remove the rectangle r from the damaged area for the window
identified by windowfd. This operation is a no-op if windowfd has damage accumulated from a
previous window database change, but has not told the window system that it has repaired that
damage.

Any window manager can use these facilities according to the following strategy:

• The old exposed areas for the affected windows are retrieved and cached. (pw_ezpoaeJ)

• The window database is locked and manipulated to accomplish the rearrangement.
(win_lockdata, win_remove, win_aetlink, win_aetrect, win_inaert ...)

• The new area is computed, retrieved, and intersected with the old. (win_computeclipping,
pw_ezpoaed, rl_interaection)

• Pixels in the intersection are copied, and those areas are removed from the subject window's
damaged area. (pw_lock, pr_copy, win_partia/repafr) ·

• The window database is unlocked, and any windows still damaged get the signals informing
them of the reduced damage which must be repaired.

0 4.7. Multiple Screens

0

Multiple di"plays may be simultaneously attached to a workstation, and clients may want win
dows on all of them. Therefore, the window datab1111e is a forest, with one tree of windows for
each display. Thus, there is no overlapping of window trees that belong to different screens.
For displays that share the same mouse device, the physical arrangement of the displays can be
p1111sed to the window system, and the mouse cun,or will pass from one screen to the next as
though they were continuous.

Revision D of 7 January 1984 4-7

Window Manipulation

struct singlecolor {
u_char red, green, blue;

};

struct screen
char
char
char
char
struct
struct
int
struct

};

{
scr_rootname[SCR_NAMESIZE];
scr_kbdname[SCR_NAMESIZE];
scr_msname[SCR_NAMESIZE];
scr_fbname(SCR_NAMESIZE);
singlecolor scr_foreground;
singlcolor scr_background;
scr_flags;
rect scr_rect;

#define SCR_NAMESIZE 20
#define SCR_SWITCHBKGRDFRGRD Oxl

SunWindows Reference Manual

The ,creen structure describes a client's notion of the display screen. There are also fields indi
cating the input devices a .. ociated with the screen. Scr_rootname is the device name of the
window 1Vhich is at the base of the window display tree for the screen; the default is
"/ dev/ win(!', Scr _kbdname is the device name of the keyboard associated with the screen; the
default is "/dev/kbd''. Ser_m,name is the device name of the mouse associated with the screen;
the default is "/ dev/ mou,e". Ser Jbname is the device name of the frame buffer on which the
screen is displayed; the default is "/dev/fb". Ser_kbdname, ,er_maname and ,erJbname can

0

have the string "NONE" if no device of the corresponding type is to be associated with the 0
screen. SerJoreground is three RGB color values that define the foreground color used on the
frame buffer; the default is {colormap size-1, colormap size-1, colormap size-1}.
Scr_background is three RGB color values that define the background color used on the frame
buffer; the default is {O, O, O}. The default values of the background and foreground yield a
black on white image. Ser _flag, contains boolean flags; the default is 0.
SCR_8WITCHBKGRDFRGRD is a flag that directs any client of the background and fore-
ground data to switch their positions, thus providing a video reversed image (usually yielding a
white on black image). Scr _rect is the size and position of the screen on the frame buffer; the
default is the entire frame buffer surface.

Win_,creennewi

int win_ocreennew(screen)
struct screen •screen;

opens and returns a window file descriptor for a root window. This new root window resides on
the new screen which was defined by the specifications of #,creen. Any zeroed field in #,creen
tells win_acreennew to use the default value for that field (see above for defaults). Also, see the
description of win_init,creen/romargv below. If -1 is returned, an error message is displayed to
indicate that there was some problem creating the screen.

There can be as many screens as there are frame buffers on your machine and dtop devices
configured into your kernel. The kernel calls screen instances de,ktopa or dtop,.

Win_,crewgot;

4-8 Revision D of 7 January 1984

C

0

0

0

SunWindows Reference Manual Window Manipulation

win_screenget(windowfd, screen)
llllt windowfd;
atruct screen •screen;

fills in the addressed struct acrccn with information for the screen with which the window indi
cated by windowfd is associated.
Win_,crccndeatrov.

w in_screendestroy(windowf d)
Int· windowfd;

causes each window owner process (except the invoking process) on the screen associated with
windowfd to be sent a SIGTERM signal.

Win_,ctacrccnpoaitiona informs the window system of the logical layout of multiple screens:

win_setscreen positions(windowf d, neigh hors)
int windowfd, neighbors(SCR_POSITIONSJ;

#define SCR_NORTH 0
#define SCR_EAST 1
#define SCR_SOUTH 2
#define SCR_WEST 3

#define SCR_POSITIONS 4

This enable, the cursor to cross to the appropriate screen. Window/d's window is the root for
its screen; the four slots in neighbor, should be filled in with the window numbers of the root
windows for the screens in the corresponding positions .. No diagonal neighbors are defined, since
they are not strictly neighbors.

Win__gctacrcenpoaitiona fills in neighbor, with window/d's screen's neighbors:

win_getscreenpositions(windowfd, neighbors)
Int windowfd, neighbors (SCR_POSITIONSJ;

Wi'n_, ctkbd:

Int win_setkbd(windowfd, screen)
Int windowfd;
atruct screen •screen;

is used to change the keyboard associated with window/d's screen. Only the data relative to the
keyboard is used (i.e., ,crccn-> ,cr_kbdnomc).

Win_,ctm,:

Int win_setms(windowfd, screen)
Int windowfd;
atruct screen· •screen;

is used to change the mouse associated with window/d's screen. Only the data relative to the
mouse is used (i.e., 1crccn->1cr_m,nomc).

Win_init,crccn/romorgv.

Int win_initscreenfromargv(screen, argv)
atruct screen •screen;
char • •argv;

Revision D of 7 January 1984 4-9

Window Manipulation SunWindows Reference Manual

can be used to do a standard command line parse of argu into •acreen. •Screen is first zeroed. 0
The syntax is:

(-d display device) [-m mouse device) (-k l:ey6oartl device) (-1) [-t red green 61ue) (-b red green 6/ue)

See auntoola(l) for semantics and details.

4.8. Cursor and Mouse Manipulations

This section describes the interface to the mouse and the cursor that follows the mouse. Both
of which are maintained by the window system internals.

4.8.1. Cursors

The cursor is the image which tracks the mouse on the screen:

struct cursor {
short cur_xhot, cur_yhot;
int cur_function;
11truct pixrect •cur_shape;

};

#define CUR_MAXIMAGEWORDS16

Cur_,hape points to a memory pixrect which holds the actual image for the cursor. The win
dow system supports a cur_,hape.pr_data->md_ima11e up to CUR_MAXIMAGEWORDS words.

The "hot spot" defined by (cur_zhot, cur_ghot) associates the cursor image, which has height
and width, with the mouse position, which is a single point on the screen. The hot spot gives
the mouse position an offset from the upper-left corner of the cursor image.
Most cursors have a hot spot whose position is dictated by the image shape, the tip of an arrow,
the center of ·a bullseye, the center of a cross-hair. Cursors can also be used as a status feed
back mechanism, an hourglass to indicate that some processing is occurring for instance. This
type of cursor should have the hot spot located in the middle of its image so the user has a
definite spot for pointing and does not have to guess where the hot spot is.
The function indicated by curJunction is a rasterop (as described in Conllructin11 Op Argu
ment, for Rop and Batchrop Pizrcctopa), which will be used to paint the cursor.
PIX_SRC I PIX_DST is generally effective on light backgrounds, for example in text, but invisi
ble over solid black. ·p1x_SRC • PIX_DST is a reasonable compromise over many different
backgrounds, although it does poorly over a gray pattern.

win_getcurso~1Vindowfd, cursor)
int windowfd;
struct cursor •cursor;

stores a copy of the cursor that is currently being used on the screen into the buffer addressed
by cur,or.

Win_,etcuraor:

win_setcursor{windowfd, cursor)
int windowfd;
struct cursor •cursor;

4-10 Revision D of 7 January 1984

0

0

0

0

0

SunWindows Reference Manual Window Manipulation

sets the cursor and function that will be uoed whenever the mouse position is within the indi
cated window.
If a window process does not want a cursor displayed, the appropriate mechanism is to set the
cursor to one whose dimensions are both 0.

4.8.2. Mouse Position

Determining the mouse's current position is treated under Input to Application Programa. We
note here that the standard procedure for a process to track the mouse is to arrange to receive
an input event every time the mouse moves; and in fact, the mouse pooition is passed with every
user input a window receives.
The mouse position can be reset under program control; that is, the cursor can be moved on the
screen, and· the position that is given for the mouse in input events can be reset without the
mouse on the table top being physically moved:

win_setmouseposition(windowfd, x, y)
Int windowfd, x, y;

puts the mouse position at (z, y) in the coordinate system of the window indicated by windowfd.
The result is a jump from the previous position to the new one without touching any points
between. Input events occasioned by the move, window entry and exit and cursor changes, will
be generated. This facility should be used with restraint, as users are likely to lose a cursor that
moves independently of their control.
Occasionally it is necessary to discover which window underlies the cursor, usually because a
window is handling input for all its children. The procedure used for this purpose is:

int win_fi.ndintersect(win_dowfd, x, y)
int windowfd, x, y;

where windowfd i• the calling window's file descriptor, and (z, y) define a screen position in that
window'• coordinate space. The returned value is a window number. X and y may lie outside
the bounds of the window.

4.9. Providing for Naive Programs

There is a large class of applications that are relatively unsophisticated about the window sys
tem, but want to run in windows anyway. For example, a simple-minded graphics program
may want a window in which to run, but doesn't want to know about all the details of creating
and positioning it. This section describes a way of allowing for these applications.

4.9.1. Which Window to Use

SunWindows defines an important environment parameter, WINDOW_GFX. By convention,
WINDOW_GFX is set to a string that is the device name of a window in which graphics pro
grams should be run. This window is already opened and installed in the window tree. Rou
tines exist to read and write ·this parameter:

Revision D of 7 January 1984 4-11

Window Manipulation SunWindows Reference Manual

int we_getgfxwindow(name)
char •name

we_setgtxwindow(name)
char •name

We_getofzwindow returns a non-zero value it it cannot find a value.

4.9.2. The Blanket Window

A good way to take over an existing window is to create a new window that becomes attached
to and covers the existing window. Such a covering window is called a blanket window. The
covered window will be called the parent window in this subsection because of its window tree
relationship with a blanket window. Note: It's a bad idea to take over an existing window using
win_aetowner.
Using the parent window name from the environment parameter WINDOW_GFX (described
above), open(2) the parent window. Get a new window to be used as the blanket window using
win_getnewwindow. Now call:

int win_insertblanket(blankettd, parenttd)
Int blanketfd, parenttd;

A non-zero return value indicates success. As the parent window changes size and position the
blanket window will automatically cover the parent.
To remove the blanket window from on top of the parent window call:

winJemoveblanket(blankettd)
int blanketfd;

It the process that created the blanket window dies before win_removeblanket can be called, the
blanket window will automatically be removed and destroyed upon automatic closure of the
window device. This automatic closure happens because the only open file descriptor on it will
be in the creating process.
A non-zero return value from win_iablanket indicates that 6/anket/d is indeed a blanket window.

int win_isblanket(blanketfd)
int blanketfd;

4.10. Window Ownership

Note: Do not use the two routines in this section for temporari/11 taking over another window.
These routines are included for backwards compatibility reasons.
SJGWINCH signals are directed to the process that owna the window, the owner normally being
the process that created the window. The following procedures may read from and write to the
window:

4-12 Revision D of 7 January 1984

0

0

0

0

0

0

Sm:s\Yindows Reference Manual Window Manipulation

illlt win_getowner(windowfd)
int windowfd;

win_setowner(windowfd, pid)
int windowfd, pid;

Win _ _getowner returns the process id of the indicated window owner. If the owner doesn't exist,
:cw io returned. Win_aetowner makes the process identified by pid the owner of the window
indicated by windowfd. Win_aetowner causes a SIGWINCH to be sent to the new owner.

4,11, Error Handling

Except as explidtly noted, the procedures described in this section do not return error codes.
The standard error reporting mechanism inside the aunwindow library is to call a procedure that
displays a meosage, typically identifying the ioctl call that detected the error. After the message
display, the calling process resumes execution.

This default error handling routine may be replaced by calling:

int (•win_errorhandler(win_error))()
Int (•w in_error)();

The win_errorhondler procedure takes the address of one procedure, the new error handler, as
an argument and returns the address of another procedure, the old error handler, as a result.
Any error handler procedure ohould be a function that returm an int.

win_error(errnum, winopnum)
int errnum, winopnum;

Erm.um will be -1 indicating that the actual error number is found in the global errno. Winop
num is the ioctl number that defines the window operation that generated the error. See Error
Me,aage Decoding in Programming Note, in the appendix.

Revioion D of 7 January 1984 4-13

0

0

0

0

0

0

Chapter 5

Input to Application Programs

This chapter continues the description of the aunwindow level of the Sun window system. Here
we discuss how user input is made available to application programs. Unless otherwise noted,
the structures and procedures discussed in this section are found in the header file
/ uar/ include/ aunwindow/ win_input.h.
The window system provides facilities which meet two distinct needs regarding input to an
application program:
• A uniform interface to multiple input devices allows programs to deal with varying key

boards and positioning devices, ignoring complexities due to facilities which the programs
do not use.

• Several different keyboards are available with Sun systems; they differ in the number and
arrangement of keys. At a minimum, some clients will require ASCII characters, one per
keystroke. More sophisticated clients will assign special values to non-standard keys (such
as "META" characters in the range Ox80 and above). Some clients will assign functions to
particular keys on the keyboard, and will distinguish key-down from key-up events.

o The standard positioning device on a Sun is the mouse, which reports a location and the
state of three buttons. Alternatively, some clients may use a tablet and stylus, or in place
of the stylus, a "puck" with as many as 10 buttons on it.

• In some client systems, the time between input events is significant; for example, when
smoothing a user's stylus trace, or assigning special meaning to multiple clicks of a button
within a short period.

The window system allows clients with only the simplest requirements to ignore all the compli
cations, while providing more sophisticated clients the facilities they require. The mechanism
for accomplishing this is called the virtual input device. This mechanism with its input events is
described in Virtual Input Device.
• The second major section of this chapter describes how user inputs are collected from multi

ple sources, serialized, and distributed among multiple consumers. Multiple clients are able
to accept inputs concurrently, and a slow consumer does not affect other clients' ability to
receive their inputs. Type-ahead and mouse-ahead are fully supported.
• Client programs operate under the illusion that they have the user's full attention, leav

ing the window system to handle the multiplexing. Therefore, a client sees precisely
those input events that the user has directed to that application.

• Conversely, the client may require inputs from multiple devices, where the exact
sequences across all those devices is significant. The order of mouse and function key
events is likely to be significant, for instance. This is provided for via a single unified
input stream, ratlier than requiring polling of multiple streams, which would be

Revision D of 7 January 1984 5-1

Input to Application Programs SunWindows Reference Manual

unacceptable in a multi-processed environment.
• The distribution of input events takes into account the window's indication of what 0

events it is prepared to handle; other events are redirected, allowing a division of labor
among the various components of a system.

5.1. The Virtual Input Device

This section describes the virtual device which generates user input, and how the input is
presented to the client process. The device appears as an extended keyboard, different from
existing keyboards, but incorporating the common features of most of them. It also incor
porates a locator which indicates a screen position, and a clock which reports a time in seconds
and microseconds.

5.1.1. Uniform Input Events

Each user action generates an input event, which is reported in a uniform format regardle8S of
the event. An event is reported in the following struct:

struct inputevent {
•hort ie_code;
short ie_flags;
•hort ieJhiftmBBk;
•hort ieJocx;
short ie_locy;
atruct timeval ie_time;

};

Ie_code identifies the source of the event, as a switch position on a Virtual Input Device. The
exact definition of the codes is given in Event Code,. In general, the input events fall into one of
three clBBses: events that generate a single ASCII character; events related to locator motion and
window geometry; and events identified with invocation of a special function, usually involving
the depression or release of a single special button on the mouse or keyboard. These clBBses are
known as ASCII, pseudo, and function events, respectively.
The information provided by the code in ie_code is interpreted according to event flags in
ie..ftao,. (See Event Flao, below.)
The remaining elements of the struct provide general status information which may be useful on
any event:

ie_1hi/tma1/c is used to report the state of certain shift-keys that is, to modify the meaning of
other events.

ie_locz and

ie_loc11

ie_time

5-2

provide the position of the locator in the window's coordinate system at the time
the event occurred.

provides a timestamp for the event, in the format of a system timeval, as defined
in / uar/include/ 1111/ time.h.

Revision D of 7 January 1984

0

0

0

0

0

Sun Windows Reference Manual Input to Application Programs

o.1.2, Event Codes

Event codes can take on any value in the range from O to 65535 inclusive. Of the codes defined
in the header file, 256 are assigned to the ASCil event class and the other 128 are partitioned
between the pseudo and function event classes. The following constants define the number of
codes and the·first and last code in the latter two classes:

#defi11e VKEY_CODES
#define VKEY _FIRST
#define VKEY _LAST

5.1.2.1. ASCil Events

128
32512
VKEY _FIRST+ VKEY _CODES-1

The event codes in the range O to 511 inclusive are assigned to the ASCil event class. This class
is further sub-divided:

#define ASCII_FIRST 0
#define ASCII_LAST 127

In pe.rticular, striking a key which has an obvious ASCil meaning causes the Virtual Input Device
to enqueue for the client an event whose code is the 7-bit ASCil character corresponding to that
key. Such a key with an obvious ASCil meaning is one in the main typing array labelled with a
oingle letter of the alphabet. This is independent of the physical keyboard actually used. A
slight complication occurs because of the presence of both upper- and lower-case characters in
ASCil: if the user "shifts" the physical keyboard by depressing the CAPS-LOCK, SHIFT-LOCK,
or SHIFT key the ie_code contains the shifted ASCil character corresponding to the struck key.

For physical keystations that are mapped to cursor control keys, the current implementation
transmits a series of events with codes that correspond to the ANSI X3.64 7-bit ASCil encoding
for the cursor control function. For physical keystations that are mapped to function keys, the
current implementation transmits a series of events with codes that correspond to an ANSI X3.64
user-definable escape sequence. For further details, see kbd(5).

#define META_FIRST 128
#define META_LAST 255

Event codes from 128 to 255 inclusive are generated when the client has META translation
ena,bled and the user strikes a key that would generate a 7-bit ASCil code while the META key
is also depressed. In this case, the event code is the 7-bit ASCil code added to META_FJRST.

5.1.2.2. Function Events

Event codes in the function class correspond to button strikes that do not result in generation
of an event code in the ASCil class.
In the function class are the event codes associated with locator buttons:

#define BUT(i)

A physical locator often has up to 10 buttons connected to it. Alternatively, even though the
physical locator does not have any buttons physically available on it, it may have buttons on
another device assigned to it. A light pen is an example of such a locator. In either case, each of
the n buttons (where O < n <= 10) associated with the Virtual Input Device's locator are

Revision D of 7 January 1984 5-3

Input to Application Programs SunWindows Reference Manual

assigned an event code; the ith button is assigned the code BUT{i). Thus a 3-button mouse

0 reports x and y and buttons 1 - 3.
In the function class are the event codes associated with keyboard function keys that don't gen
erate single ASCil charaters:

#define KEY _LEFT(i)
#define KEY _RIGHT(i)
#define KEY_TOP(i)
#define KEY _BOTTO ML EFT
#define KEY _BOTTOMRIGHT

The function keys in the Virtual Input Device define an idealized standard layout that groups
keys by location: 16 left, 16 right, 16 top and 2 bottom. While the actual position on the key
board may be different, it is convenient to provide some grouping for the large number of func
tion keys. The mapping to physical keys on various keyboards is defined in
/uar/includef ,undev/kbd.h and discussed in kbd(5).

5.1.2.3. Pseudo Events

#define VKEY _FIR STPSEUDO
#define VKEY _LASTPSEUDO

Event codes in the pseudo class are events that involve locator movement instead of physical
button striking. The physical locator constantly provides an (x, y) coordinate position in pixels;
this position is transformed by the Virtual Input Device to the coordinate system of the window 0
receiving an event. In order to watch actual locator movement (or lack thereof), the client' must
be enabled for the events with codes.

#define LOC_MOVE
#define LOC_MOVEWHILEBUTDOWN
#define LOC_STILL

A LOC_MOVE is reported only when the locator actually moves. Since fast motions may yield
non-adjacent locations in consecutive events, the locator tracking mechanism reports the current
position at a set sampling rate currently 40 times per second.

LOC_MOVEWHILEBUTDOWN is like LOC_MOVE but happens only when a button on the
locator is down.

A single LOC_STILL event is reported when the locator has been still for a moment, currently
1 /5 of a second.

Clients can be notified when the locator has entered or exited a window via the event codes:

#define LOC_WINENTER
#define LOC_WINEXIT

5.1.3. Event Flags

Only one event flag is currently defined:

#define IE_NEGEVENT

indicates the event was "negative." Positive events include depression of any button or key,

5-4 Revision D of 7 January 1984

0

0

0

0

SunWindows Reference Manual Input to Application Programs

including buttons on the locator, motion of the locator device while it is available to this client,
and entry of the cursor into a window. The only currently defined negative event is the release
or a depressed button. Stopping of the locator and locator exit from the window are positive
events, distinct from locator motion and window entry. This asymmetry allows a client to be
informed of these events without the performance penalty associated with receiving all negative
events and then discarding all but these two.

Two macros are defined to inquire about the state of this flag:

#define win_inputnegevent(ie)
#define win_input posevent(ie)

atruct inputevent •ie;

These are TRUE or FALSE if the IE_NEGEVENT bit is 1 or O respectively in the input event
pointed to by ie.

5.1.4. Shift Codes

le_ahiJtmaak contains a set of bit flags which indicate an interesting state when an input event
occurs. The most obvious example is the state of the. Shift or Control keys when some other
key is pressed. Eventually, clients will be able to declare any Virtual Input switch as an
"interesting" shift switch. For now, only the following bits are reported:

#define CAPSMASK
#define SHIFTMASK
#define CTRLMASK
#define UPMASK

OxOOOl
OxOOOE
Ox0030
Ox0080

These are defined in /uar/include/aundev/kbd.h, and described in kbd(5).

5.2. Reading Input Events

A library routine exists for reading the next input event for a window:

Int input_readevent(fd, ie)
Int fd; , ·.
atruct inputevent •ie;

This fills in the indicated struct, and returns O if all went well. In case of error, it sets the glo
bal variable errno, and returns -1; the client should check for this case,
A window can be set to do blocking or non-blocking reads via a standard Jent/ system call, as
described in Jctn/(2) and Jcnt/(5). A window is defaulted to blocking reads. The blocking status
of a window can be determined by the Jent/ system call.
The recommended normal ·style for handling input uses blocking 1/0 and the ,elect(2) system
call to await both input events and signals such as SIGWINCH. This allows a signal handler to
merely set a flag, and leave substantial processing to be performed synchronously when the
aelect returns. The tool_aelect mechanism described in chapter 7 illustrates this approach.
Using blocking 1/0 and read(2) without a prior ,elect forces the client to process SIGWINCHes
entirely in the asynchronous interrupt handler. This necessitates extra care to avoid race condi
tions and other asynchronous errors.

Revision D of 7 January 1984 5-5

Input to Application Programs SunWindows Reference Manual

Non-blocking 1/0 may be useful in a few circumstances. For example, when tracking the mouse·O,,.
with an image which requires significant computation, it may be desirable to ignore all but the 1

last in a queued sequence or motion events. This is done by reading the events, but not process-
ing them until a non-motion event is found, or until all events are read. Then the most recent
mouse location is displayed, but not all the points covered since the last display. When all
events have been read and the window is doing non-blocking 1/0, input_readevent returns -1
and the global variable errno is set to EWOULDBLOCK.

5.3. Input Serialization and Distribution

With the exception of some of the pseudo event codes, the Virtual Input Device described in
preceding sections is not logically tied to the Sun window system; the scheme could be used by
any system desiring that form of unification. This section is more specific to the window sys
tem, since it discusses how events are selected and distributed among the various windows
which might use them.

Each user input event is formatted into an inputevent, which is then assigned to some recipient.
There are three ways a process gets to receive an input event:

• Most commonly, it reads the window which lies under the cursor, and that window has an
input maak which matches the event. Input masks are described in Input Maaka. Ir several
windows are layered under the cursor, the event is tested first against the input mask or the
topmost window.

• Ir the event does not match the input mask or one window, other windows will be given a
chance at it, as described below.

• Much less frequently, a window will be made the recipient or all input events; this is dis- ·O
cussed under win_grabio, in section 5 .3.2 below.

Each window designates another window to be offered events which the first will not accept. By
default this is the window's parent; another backstop may be designated in a call to
win_aetinputmaak, described in the next section. Ir an event is offered unsuccessfully to the root
window, it is discarded. Windows which are not in the chain or designated recipients never
have a chance to accept the event.

Ir a recipient is found, the locator coordinates are adjusted to the coordinate system or the reci
pient, and the event is appended to the recipient's input stream. Thus, every window sees a
single stream or input events, in the order in which the events happened (and time-stamped, so
that the intervals between events can also be computed), and including only the events that
window has declared to be or interest.

5.3.1. Input Masks

The input masks facilitate two things:

• Events can be accepted or rejected by classes; for instance, a process may want only ASCII
characters.

• The times when events ·are accepted can be controlled, minimizing the processing required
to accept and ignore uninteresting events. For instance, a process may track the mouse
only when it is inside one of its windows, or when one of the mouse buttons is down.

Clients specify which input events they are prepared to process by setting the input mask for
each window being read. 0

5-6 Revision D of 7 January 1984

0

0

SunWindows Reference Manual Input to Application Programs

struct inputmask {
mhort im_flags;
char im_inputcode(IM_CODEARRA YSIZE];
short im_shifts;
short im_shiftcodes(IM_SHIFTARRAYSIZE];

};

#define IM_CODEARRAYSIZE (VKEY _CODE/((sizeof char)•BITSPERBYTE))
#define IM_SHIFTARRA YSIZE ((11izeof 11hort)•BITSPERBYTE)

Im...flaga specifies the handling of related groups of input events:

#define IM_UNENCODED

indicates that no translation of physical device events should be performed. The Virtual Input
Device should not intervene between the window and the user input. In this case, the most
significant byte of ie_code in an input event is the id number of the device that generated the
event, and the least significant byte contains the physical keystation num her of the keystation
that the user struck. The current device ids are those assigned to the supported keyboards and
the id assigned to the mouse

#define MOUSE_DEVID 127

For unencoded mouse input, the least significant byte of' the event code is identical to the least
significant byte of the corresponding encoded input event. Note that unencoded pseudo events
are associated with the physical locator; that is, a button-push on a tablet puck will generate a
different code from a correaponding button-push on a mouse.

#define IM....,ASCII

indicates that the Virtual Input Device translation should occur.

#define IM....,ANSI ·-

indicates that the process wants keystrokes to be interpreted as ANSI characters and escape
sequences: normal ASCII characters are represented by their ASCII code in ie_code, described in
Uniform Input El!enta. Function keys with a standard interpretation, such as the cursor control
keys, are repreaented by a sequence of input event•, whose ie_codes are ASCII characters starting
with ESC. See kbd(6) for further details.

#define IMJ'OSASCII

indicates that the client only wants to be notified of positive events for ASCII class events, even
though IM_NEGEVENT is enabled.
Note: The current implementation automatically enables both IM_ANSI and IM_POSASCII
when IM_ASCII is specified.
Requesting a particular function event in addition turns off any ANSI escape-coding for that
function event.

#qefine IM_META

indicates that META-translation should occur. This means ASCII events that occur while the
META key is depressed are reported with codes in the META range. Note that IM_META does
not make sense unless IM_ASCII is enabled.

Revision D of 7 January 1984 5-7

Input to Application Programs SunWindows Reference Manual

#define IM_NEGEVENT

indicates that the client wants to be notified of negative events as well as positive ones. See
Event Flag, for a discussion or positive and negative events.

Im_inputcode is an array or bit flags indexed by biased event codes. A 1 in the ith position or
the bit array indicates that the event with code VKEY _FIRST+ i should be reported. This
filter applies in both IM_UNENCODED and IM....ASCII modes.

There are two routines which are or interest here.

win_setinputmask(windowfd, acceptmask, flushmask, designee)
int windowfd;
1truct inputmask •acceptmask, •flushmask;
int designee;

sets the input mask for the window identified by windowfd. Acceptma,.k addresses the new
mask - events it passes will be reported to this window after the call to win_,ett"nputma,.k.

Flu,hma,k specifies a set of events which should be flushed from this window's input queue.
These are events which were accepted by the previous mask, and have already been generated,
but not read, by this window. This is a dangerous facility; type-ahead and mouse-ahead will
often be lost if it is used. The most obvious application is for confirmations, but these can be
better implemented by requiring the confirmation within a short time-out.

Note: If flu,hma,.k is non-NULL, the current implementation flushes all events from the queue,
not just those specified in flu1hma1.k.

De,ignee is the window number, which specifies the next potential recipient for events rejected
by this windo~. If it is set to WIN_NULLLINK (defined in
/uar/include/aunwindow/win_atruct.h), it is interpreted as designating the window's parent.

Note: Changing masks in response to some input should be done with caution. There will be a
lapse of time between the event which persuades the client it wants a new mask and the time
the system interprets the resulting call to win_aetinputma,.k. Events which occur in this interval
will be passed or discarded according to the old input mask. Thus, it is probably not appropri
ate to wait for a button down before requesting the corresponding button-up; the button-up
may arrive and be discarded before the mask is changed. It's less dangerous to wait until a but
ton goes down to start tracking the mouse, since the client will be caught up as soon as the first
motion event arrives. But even here, it's better to ask for the LOC_MOVEWHILEBUTDOWN
event, and never change the mask.

The input mMk for a window is read with

win_getinputmask(windowfd, im, designee)
int windowfdJ
1truct inputmask •im;
Int •designee;

The input mask for the window identified by windowfd is copied into the buffer addressed by
im. The number of the window that is the next possible recipient of input is copied into the int
addressed by designee.

We return to win_input.h for these routines useful for manipulating input masks. The first
three are macros:

5-8 Revision D of 7 January 1984

0

0

C

0

0

0

S,m\Niudows Reference Manual Input to Application Programs

#define win_setinputcodebit(im,code)
struct inputmask •im;
char code;

sets the bit indexed by code in the input mask addressed by im to 1.

#define win_unsetinputcodebit(im,code)
11truct inputmask •im;
char code;

resets the bit to zero. The routine:

,ffdefine win_getinputcodebit(im, code)
etruct inputmask •im;
char code;

returns non-zero if the bit indexed by code in the input mask addressed by im is set.

input_imnull(mask)
struct inputmask •mask;

is a procedure which initializes an input mask to all zeros. It is critical to initialize the input
mask explicitly when the mask is defined as a local procedure variable.

5.3.2, Seizing All Inputs

Normally, input events are directed to the window which underlies the cursor at the time the
event occurs. Two procedures modify that behavior. A window may temporarily seize all
inputs by calling:

win__grabio(windowfd)
int windowfd;

The caller's input mask still applies, but it receives input events from the whole screen; no win
dow other than the one identified by windowfd will be offered an input event or allowed to write
on the screen after this call.

wlnJeleaseio(window.fd)
Int windowfd;

undoes the effect of a win_grabio, restoring the previous state.

5.4. Event Codes Defined

In the following table are collected together all of the special event code names discussed above.
These names define values which appear in the ie_code field of an inpule11enl. As the system
evolves, the particular value bound to a name is likely to change, thus event codes should be
compared to the symbolic names below, not to the current values of those names.

Revision D of 7 January 1984 5-9

Input to Application Programs

#define ASCII_FIRST
#define ASCII_LAST
#define META_FIRST
#define META_LAST

#define VKEY _CODES
#define VKEY_FIRST

#define VKEY _FIRSTPSEUDO
#define LOC_MOVE
#define LOC_STILL
#define LOC_WINENTER
#define LOC_WINEXIT
#define LOC_MOVEWHILEBUTDOWN
#define VKEY_LASTPSEUDO

#define VKEY_FIRSTFUNC

#define BUT_FIRST
#define BUT(i)
#define BUT_LAST

#define KEY _LEFTFIRST
#define KEY _LEFT(i)
#define KEY _LEFTLAST

#define KEY _RIGHTFIRST
#define KEY _RIGHT(i)
#define KEY _RIGHTLAST

#define KEY _TOPFIRST
#define KEY _TOP(i)
#define KEY _TOPLAST

#define KEY _BOTTOMLEFT
#define KEY _BOTTOMRIGHT

#define VKEY_LASTFUNC

#define VKEY _LAST

(0)
(127)
(128)
(255)

(128)
(32512)

SunWindows Reference Manual

(VKEY _FIRST)
(VKEY _FIRSTPSEUDO+ 0)
(VKEY_FIRSTPSEUDO+ 1)
(VKEY _FIRSTPSEUDO+ 2)
(VKEY _FIRSTPSEUDO+ 3)
(VKEY _FIRSTPSEUDO+ 4)
(VKEY _FIRSTPSEUDO+ 15)

(VKEY_LASTSHIFT+ 1)

(VKEY _FIRSTFUNC)
((BUT_FIRST)+ (i)-1)
(BUT_FIRST+ 9)

((BUT_LAST)+ 1)
((KEY_LEFTFIRST)+ (i)-1)
((KEY_LEFTFIRST)+ 15)

((KEY_LEFTLAST)+ 1)
((KEY_RIGHTFIRST)+ (i)-1)
((KEY_RIGHTFIRST)+ 15)

((KEY_RIGHTLAST)+ 1)
((KEY_TOPFIRST)+ (i)-1)
((KEY_TOPFIRST)+ 15)

((KEY_TOPLAST)+ 1)
((KEY_BOTTOMLEFT)+ 1)

(VKEY_FIRSTFUNC+ 101)

VKEY _FIRST+ VKEY _CODES-1

There are 3 synonyms for the common case of a 3-button mouse:

5-10

#define MS_LEFT
#define MS_MIDDLE
#define MS_RIGHT

BUT(l)
BUT(2)
BUT(3)

Revision D of 7 January 1984

0

0

0

0

0

0

Chapter 6

Suntool: Tools and Subwindows

This chapter introduces the third and highest level of SunWindows, auntoola. It discusses how
to write a tool: it covers creation and destruction of a tool and its subwindows, the strategy for
dividing work among them, and the use or routines provided to accomplish that work.

At the auntool, level, the lower-level facilities are actually used to build user interfaces. This
chapter also describes a model for building applications, a number of components that imple
ment commonly-needed portions of such applications, an executive and operating environment
that supports that model, and some general-purpose utilities that can be used in this and simi
lar environments.
We refer to an application program that is a client of this Sun Windows level as a tool. Tool cov
ers the one or more processes that do the actual application work. This term also refers to the
collection of typically several windows through which the tool interacts with the user. Simple
tools might include a calculator, a bitmap editor, and a terminal emulator. Sun Microsystems
provides a few ready-built tools, several of which are illustrated in Appendix B. Others may be
developed to to suit particular needs.
Common SunWindows tool components and their functions include:

• An executive framework that supplies the usual "main loop" of a program, and which coor
dinates the activities of tle various subwindows;

• A standard tool w,'ndow that frames the aubwindowa of the tool, identifying it with a name
stripe at the top and borders around the subwindows. Each tool window can adjust its size
and position, including layering, and subwindow boundary movement.

• Several standard subwindows that can be instantiated in the tool;

• A standard scheme for laying out those subwindows; and

• A facility that provides a default icon, which is a small form the tool takes to be unob-
trusive but still identifiable.

The auntoo/a program initializes and oversees the window environment. It provides for:

• automatic startup of a specified collection of tools;

• dynamic invocation of standard tools;
• management of the window, callecl the root window, which underlies all tools and paints a

simple solid color;

• the user interface for leaving the window system.
Users desiring another interface to these functions can replace the auntoola program, while
retaining specific tools.

Revision D of 7 January 1984 6-1

Suntool: Tools and Subwindows SunWindows Reference Manual

The procedures that support the facilities described in this chapter and the following two are in

0 the auntool library, /uar/lib/libauntool.a). These procedures and their data structures are
declared in a number of distinct header files, all of which can be included in
/ uar/ include/ auntool/ tool_ha.h.

6.1. Tools Design

A typical tool is built as a tool window, and contained within that, a set or aubwindowa, which
incorporate most or the user interface to the tool's facilities. Each subwindow is a "window" in
the sense described in Window Manipulation; the subwindows form a tree rooted at the tool win
dow, and the various tool windows are all children or the root window associated with the
screen.

6.1.1. Non-Pre-emptive Operation

In general, tools should be designed to function in a non-pre-emptille style: they should wait
without consuming resources until given something to do, perform the task expeditiously, and
promptly return control to the user. If some task requires extensive processing, a separate pro
cess should be forked to run it without blocking the user interface.
This non-pre-emptive style implies that the tool is built as a set of independent procedures,
which are invoked as appropriate by a standardized control structure. The basic advice to
client programs is, "Wait right there; we'll let you know as soon as we have something for you
to do." From a programming point of view, the main function that the tool mechanism provides
is the provision or the control structure to implement this non-pre-emptive programming style. o
The tool window and its subwindows all have the same interface to this control mechanism.

6.1.2. Division of Labor

The tool window performs a few functions directly. These are the user interface functions,
which are common to all tools.
Subwindows are the workhorses of the auntool environment, but most or the work they do is
specific to their own tasks, and of little interest here. It is important to understand that a
subwindow corresponds to a data type: there will be many instantiations or particular subwin
dows, quite possibly several in a single tool.

Various types of subwindows are developed as separate packages that can be assembled at a
high level. In addition to programmer convenience, this approach promotes a consistent user
interface across application_s.
The remainder or this chapter divides a tool's existence into two large areas: creation and des
truction, and tool-specific aspects of processing.

6.2. Tool Creation

All of the following processing must be done as a tool is started:

• Parameters for this invocation of the tool must be passed to it. Every tool must be given
the name or it~ parent window; other parameters that may be given to the tool include a
position for it on the screen, whether it should be open or iconic, specification of data files, 0

6-2 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Suntool: Tools and Subwindows

such as fonts, to be used in this invocation, and initializations to be performed.

• Thu tool should be given its own process and process group. In contrast to the usual pro
cedure in which a program is invoked under the shell, the parent process should generally
be allowed to proceed before the child exits.

• The tool window should be created with space allocated for it and its various options
defined; similarly, its subwindows should be created and positioned in the tool window.

• The UNIX signal system should be initialized to pass appropriate signals to the tool.

o The tool's window should be installed into the display structure.

• Finally, the tool may start its normal processing.

6.2.1. Passing Parameters to the Tool

There are at least three ways parameters may be passed to a tool that is starting up:

• Command-line arguments.
• Relatively stable options may be stored in a file like a user profile.
• Environment parameters may be used for well-established values. They have the valuable

property that they can communicate information across several layers of processes, not all
of which have to be involved.

The first two parameters passing mechanisms need no special attention here, since they are used
just as in non-window UNIX programs. However, SunWindows itself uses a few environment
variables for tool startup. WINDOW _PARENT is set to a string that is the device name of a
window's parent; for a tool, this will usually be the name of the root window of the window sys
tem. WINDOW_INITIALDATA is set to the coordinates of two rectangles plus one flag. The
rectangles are the regions for the window while open and closed, and the flag is a boolean that is
non-zero if the tool should start out iconic.

we_setparentwindow(windevname)
char •windevname;

sets WINDOW_PARENT to windevnamo.

int we_getparentwindow(windevname)
char •windevname;

gets the value of WINDOW_PARENT into windevnamo.
least WIN_NAMESIZE characters long,
/ uar/ include/ aunwindow/ win_atruct.h. A non-zero
WINDOW_PARENT parameter couldn't be found.

The length of this string should be at
a constant found 111

return value means that the

The process that is starting the tool should set WINDOW _INITIALDATA before it forks
(wmgrJorktool does this; see Suntool,: U,or lntor/aco Utilitie,). After the fork, the newborn tool
may interrogate these variables. The routines to do this are in the library
/ u,r/ lib/ lib,unwindow.a.

we_setinitdata(rnormal, riconic, iflag)
struct rect •rnormal, •riconic;
int iftag; ·

sets the environment variable in the parent process, and

Revision D of 7 January 1984 6-3

Suntool: Tools and Subwindows SunWindows Reference Manual

we_getinitdata(rnormal, riconic, iflag)
struct rect •rnormal, •riconic;
int •iflag;

reads those values in the child process. A non-zero return value means that the
WINDOW_INITIALDATA parameter couldn't be found.
A procedure is provided for unsetting WINDOW_INITIALDATA for tools that are going to pro
vide windows· for other processes to run in. This procedure prevents a wayward child process
from being confused by the an incorrectly set variable:

we_clearinitdata()

6.2.2. Forking the Tool

A tool will normally have its own process. The creation of that process does not differ
significantly from the normal paradigm for process creation. If it is to be started by a menu
command or some other procedural interface, it is appropriate for the creating process to do the
fork and return from the procedure call. When the child process dies, the parent process should
catch the SIGCHLD signal and clean up. See the w11il(2) system call. SIGCHLD indicates to a
parent process that a child process has changed state.

6.2.3. Creating the Tool Window

The pair of procedures tool_create and tool_crcateaubwindow carry out the main work of creat
ing a tool with its subwindows. These take a series of parameters that define the object to be
created, and return a pointer to an object that encapsulates the information about the tool or
its subwindow. That pointer is then passed to a number of other routines that manipulate the
object; the client is usually not concerned with the exact definition of the structure.
These create routines include a large part of the processing described in the earlier parts of this
manual, so that client programmers need not necessarily concem themselves much with the
details or pizrecta and pi:iwina.
A tool is created by a call to:

11truct tool •tool_create(name, flags, normalrect, icon)
char •name;
short flags;
11truct rect •normalrect;
11truct icon •icon;

#define TOOL_NAMESTRIPE OxOl
#define TOOL_BOUNDARYMGR Ox02

name is the name of the tool. This is what will be displayed in the tool's name stripe if
TOOL_NAMESTRIPE is set in the flag's argument. It also appears on the default
icon.

flaga has the flags TOOL_NAMESTRIPE and/or TOOL_BOUNDARYMGR set as
those properties are desired. (TOOL_BOUNDARYMGR enables boundaries that
the user can move between subwindows.)

6-4 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Suntool: Tools and Subwindows

Normalrect describes the initial position and size of the tool in its normal open state in the
coordinate system of the tool's parent, which is typically the window for the
screen.

icon is a pointer to an icon struct, if the client wants a special icon.
Normalrect and the icon may be defaulted by passing NULL for their arguments. The default
icon is described, along with considerations for making custom icons, in Suntool: Uaer Interface
Utilitie,; the choice is strictly a matter of convenience vs. ambition. A tool's starting position
should almost always be left NULL; i~ could be the result of WE_GETINITDATA that is going
into normalrect.
Creating the· tool does not cause it to appear on the screen; a separate step is used for that pur
pose after the full tool structure is constructed, as described in Tool Inatallation. Most tool pro
grammers can skim the following information to Subwindow Initialization and ignore the details
of the tool and tool,w data structures.

6.2.4. The Tool Struct

The tool struct is defined in /uar/include/auntool/tool.la. It is:

•truct tool
•hort
Int
char
•truct
•truct
•truct
etruct
etruct

}

{
tl_flags;
tl_windowfd;
•tl_name;
icon •tUcon;
toolio tl_io;
toolsw •tl_sw;
pixwin •tl..J)ixwin;
rect tl_rectcache;

Tl.flag, holds state information. Currently, there are 6 defined flags:

#define TOOL_NAMESTRIPE OxOl
#define TOOL_BOUNDARYMGR Ox02
#define TOOLJCONIC Ox04
#define TOOL_81GCHLD Ox08
#define TOOL_81GWINCHPENDING OxlO
#define TOOL_.PONE Ox20

Their actions are as follows:

TOOL_NAMESTRIPE
indicates that the tool is to be displayed with a black stripe holding its name at the
top of its window.

TOOL_BOUNDARYMGR
enables the option that allows the user to move inter-subwindow boundaries.

TOOLJCONIC
indicates the current state or the tool: 1 = small (iconic); 0 = normal (open).

TOOL_SIGCHLD and

TOOL_SIGWINCHPENDING
mean that the tool has received the indicated signal and has not yet performed the
processing to deal with it.

Revision I) of 7 January 1984 6-5

Suntool: Tools and Subwindows SunWindows Reference Manual

TOOL_DONE
indicates the tool should exit the tool_aelect notification loop.

The last three flags are used during tool_aelect processing described below and should be con
sidered private to the too! implementation.
Tl_windowfd holds the file descriptor for a tool's window. This is used for both input and

output. It also identifies the window for manipulations on the window data
base, such as modifying its position or shape. Windowfds' uses are discussed in
chapters 3 through 5.

Tl_name addresses the string that can be displayed in the tool's namestripe and default
icon.

Tl_rectcache holds a rectangle that indicates the size of the tool's window. Because the rec
tangle is in the tool's coordinate system, the origin will always be (0, 0). This

Tl_icon

Tl_pizw/11

Tl_aw

size information is cached so that the tool can tell when its size has changed by
comparing the cached rect with the current rect.

holds a pointer to the icon struct for this tool.
addresses the window's pixwin, which is the structure through which the tool
accesses the display.
points to the first and oldest of the tool's subwindows. The following section
discusses these structs.

The tool uses tl_io to control notification ot input and window change events to itself. Toolio
Structure details this structure type. During tool creation, the fields of this structure are set up
with values to do default tool processing.

6.2.6, Subwindow Creation

After the tool is created, its subwindows are added to it.

atruct toolsw •tool_createsubwindow(tool, name, width, height)
atruct tool •tool;
char •name;
abort width, height;

#define TOOL_SWEXTENDTOEDGE -1

makes a new subwindow, adds lt to the list of subwindows for the indicated tool, and returns a
pointer to the new toolaw struct. The width and height parameters are hints to the layout
mechaniom indicating what size the windows should be if there is enough room to accommodate
them. There are no guarantees about maintaining subwindow size because changing window
sizes can ruin any scheme. TOOL_SWEXTENDTOEDGE may be passed for width and/or
height; it allows the subwindow to stretch witl\ its parent in either or both directions. Subwin
dow Layout details the subwindow layout. The name is currently unused; it may eventually
support the capability to refer to subwindows by name.

The remaining subwindow initialization requires reference to the data structure:

6-6 Revision D of 7 January 1984

0

.~ u

0

0

0

0

SunV\lindows Reference Manual Suntool: Tools and Subwindows

struct toolsw {
struct toolsw •ts_next;
int ts_windowfd;
char •ts_name;
short ts_width;
short ts_height;
11truct toolio ts_io;
int (•ts_destroy)();
caddr_t ts_data;

};

The subwindows of a tool are chained on a list with ta_ned in one subwindow pointing to the
next in line, until the list is terminated with a null pointer.
Like the tool window, each subwindow must have an associated open window device;
tool_createaubwindow stores the file descriptor in t,_windowfd.

T,_name, t,_width and t,_height are exactly a:, in the call to tool_createaubwindow.

The tool uses t,_io to control notification of input and window change events to the subwindow.
Upon subwindow creation, the t,_io structure ha:, null values in it that need to be set. This is
normally done by the create routine for a standard subwindow type. Toolio Structure details
this structure.
T,_de,tro11 gets called when the tool is being destroyed by tool_deatroy so that the subwindow
may terminate cleanly.
T,_data provides 32 bits of uninterpreted data private to the subwindow implementation. Typi
cally, it will be a pointer to information for this instance of the subwindow. That is, all subwin
dows of the same type will share common interrupt handlers and layout characteristics. Win
dow contents and other information specific to one particular window will all be accessed
through this pointer. This is discussed at more length in Requirement, for Subwindo111, in
Chapter 7.

.:,.:.

6.2.6, Subwindow Layout

By default, subwindows are laid out in their tool's area in a simple left-to-right, top-to-bottom
fashion, in the order they are created. A subwindow is placed a:, high a:, it can be, and in that
space, as far to the left a:, it can be.
Subwindows that should be arranged in a more controlled fashion may be rearranged after they
have all been created, using the rectangle manipulation facilities described in Window Geometry.
Three functions return numbers useful to tools doing their own subwindow layout explicitly:

short toolJtripeheight(tool)
atruct tool •tool;

returns the height in pixels of the tool's name stripe.

short tool_borderwidth(tool)
struct tool •tool;

returns the width in pixels of the tool's outside border.

Revision D of 7 January 1984 6-7

Suntool: Tools and Subwindows SunWindows Reference Manual

short tool_subwindowspacing(tool)
struct tool •tool;

returns the number of pixels that should be left as a margin between subwindows of a tool,
currently the same as the outside border of the tool.

6.2. 7. Subwindow Initialization

By the time tool_createaubwindow has returned, the subwindow is already inserted in the tree
growing out of the tool window; however, the subwindow will not perform any interesting func
tion until ta_io and ta_data have been initialized. Normally, tool_create,ubwindow is not directly
called. Instead, the tool subwindow creation procedure for a subwindow type is called. The
subwindow specific routine will call tool_createaubwindow and then initialize ta_io and ta_data.

6.2.8. Tool Installation

Once the tool is created and its subwindows have been created and installed, the software inter
rupt system should be turned on via a call to aignal as described in Window Change
Notification,. At least SIGWINCH should be caught; if there are inferior processes in any of the
subwindows, SIGCHLD should be added with any others as appropriate. Finally, t,he tool is
installed into the display window tree by a call to:

tool_install(tool)
atruct tool •tool;

At this point, the tool is operating; in fact, it will probably shortly receive a SIGWINCH asyn
chronously to paint its window(s) for the first time.

6.2.9. Tool Destruction

Explicitly destroying a tool as it reaches the end of its processing allows the system to reclaim
resources and remove the windows gracefully. The procedure to invoke this cleanup is:

tool_destroy(tool)
atruct tool •tool;

Tool_deatroy will destroy every subwindow of the indicated tool as part of its processing, so the
subwindows need not be destroyed explicitly. Each subwindow's ta_deatroy procedure gets
called, so they can clean up gracefully. The pointer passed to tool_deatroy must never be
dereferenced after that call, since it is no longer valid.
A single subwindow can be destroyed by an explicit call to:

tool_destroysubwindow(tool, subwindow)
struct tool *tool;
struct toolsw •subwindow;

A tool may use this procedure to change its subwhtcfowo, while continuing to run.

6-8 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Suntool: Tools and Subwindows

0 6.3. Tool Processing

0

0

The main loop of a normal tool is encapsulated inside a call to:

tool_select(tool, waitprocessesdie)
etruct tool •tool;
int waitprocessesdie;

This procedure is the notification distributer used for event-driven program control flow. When
some input event, timeout or signal interrupt is detected inside to ol_aelect, a call to a
notification handler is made, passing in the toolio structures of the tool and its subwindows.
When the handler returns, tool_aelect awaits another event. The waitproceueadie argument is
discussed below in Child Proceu Management.

6.3.1. Toolio Structure

The toolio data structure in each too/aw structure holds what is needed for a subwindow to wait
for something to happen in the tool_aolect call. The loo/ structure uses the toolio data structure
within itself to wait for input too. It is defined in /uar/ include/ auntool/too/,1,.

11truct toolio {
Int tio_inputmask,
Int tio_outputmask,
Int tio_exceptmask;
struct timeval •tio_timer;
Int (•tio_handlesigwinch) ();
Int (•tio_selected) ();

};
Tio_inputmoalc, Uo_outputmaalc, tio_ezceptmaak and tio_timer fields are analogous to the last
four arguments to the ae/ect system call. Tio_inputmaa/c has the bit "l < </" set for each file
descriptor / on which a window wants to wait for input. Similarly, tio_outputmaak and
tio_ezceptmaak indicate an interest in / being ready for writing and having an exceptional condi
tion pending, respectively. There are currently no "exceptional conditions" implemented; this
field provides compatibility with the a elect system call.

Ir tio_timer is a non•zero pointer, it specifies a maximum interval to wait for one of the file
descriptors in the masks to require attention. If tio_timer is a zero pointer, an infinite timeout
is assumed. To effect a poll, the tio_timer argument should be non_zero, pointing to a timoval
structure with all zero fields.
Toolio also contains pointers to the procedures that are called when the tool has received some
notification. Tio_handleaigwinch addresses the procedure that responds to the SIGWINCH sig
nal. This procedure handles repaint requests and window size changes. The general form for
such a procedure is:

sigwinch_handler(data)
caddr_t data;

Such procedures take a single argument data whose type is context-dependent. For a tool this
data is a pointer to the tool structure. For a subwindow this data is the ta_data value in the
too/aw structure.

Tio_aelectod addresses the procedure w-hich responds to notifications from the aelect system call.
The procedure's calling sequence is:

Revision D of 7 January 1984 6-9

Suntool: Tools and Subwiiidows SunWindows Rererence Manual

io_handler(data, ibits, obits, ebits, timer)
caddr_t data;
int •ibits,
int •obits,
int •ebits,
struct timeval **timer;

In such procedures, the dMa argument is like that or the SIGWINCH handlers described above.
The three integer pointers indicate which file descriptors are ready for reads (iibita), writes
(iobita), or exception-handling (•ebita). If timer is NULL, this window was not waiting on any
timeout. If •timer points to a valid struct timeual then this window is waiting for a timeout. If
both the (itimer)->tu_aec and (itimer)->tu_uaec are zero, the timeout has just happened for
this window and should be serviced. The data in the file descriptor masks is not defined ir a
timeout has occurred.

Ber ore returning from a procedure of this type, the masks and timer must be reset by storing
through the pointers passed in the arguments; the values should be consistent with the discus
sion or the masks and timer pointer above. You may not want to reset the timer if you are
using it as a countdown timer, and it still has time remaining on it.

6.3.2. File Descriptor and Timeout Notifications

Tool_aelect generates three composite masks rrom each of the three toolio structures in the tool.
The input mask is special in that if all the masks in a particular toolio structure are zero, an

0

entry in the composite input mask is made for the associated window anyway. Tool_aelect also
determines the shortest timeout that any of the windows is waiting on. The composite masks o
and shortest timeout are passed to the aelect system call.

When the aelect system call returns normally, window• that have a match between their masks
and the mask of ready file descriptors that have timed out, are notified via their tio_aelected
procedure. The tio_aelecte·d procedures are called with the complete ready masks, not just the
intersection of its own masks and the ready masks. However, a tio_aelected procedure is called
with its own window's timer value.

Each window that has been selected as a result or the ,elect system call is notified. The order of
notification is not defined. Problems will arise if there are multiple non-cooperating windows
waiting on the same device.

It should be noted that timers in this implementation are only approximate. When the ,elect
system call returns and a timeout hasn't occurred, the ,elect is assumed to have been instan
taneous. Alao, the time taken up with handling notifications is not deducted from the timers.

6.3.3. Window Change Notifications

Clients of the tool interrace must catch the SIGWINCH signal. A signal catcher can be set up
via the aigna/(9} library call. That catcher is then responsible ror notifying the tool package
that the signal has arrived. This is done by calling:

tool_sigwinch(tool)
struct tool •tool;

This procedure simply sets the TOOL_SIGWINCHPENDING flag in tool. The receipt of any 0
signal h35 the side effect of causing the ae/ect system call in tool_aelect to return abnormally. _

6-10 Revision D of 7 January 1984

0

0

0

Sun'Windows Reference Manual Suntool: Tools and Subwindows

The TOOL_SIGWINCHPENDING flag is noticed and the tool's tio_handleaigwinch procedure is
called. The default tio_handleaigwinch procedure does some processing, which may include
changing the subwindow layout, and eventually calls all its subwindows' tio_handleaigwinch pro
cedures.

6.3.4. Child Process .Maintenance

Tool_aelect also gathers up dead children processes or the tool. The waitproceaaeadie argument
to tool_aelect is provided for tools which have separate processes behind some or their subwin
dows. Such tools must explicitly catch SIGCHLD, the signal that indicates to a parent process
that a child process has changed state. Then the signal handler, parallel to a SIGWINCH
catcher and tool_aigwinch, should call:

tool_sigchld(tool)
struct tool •tool;

This call causes tool_aelect to try to gather up a dead child process via a wait9 system call (see
wail(2)). When as many child processes have been gathered up as indicated by the waitpro
ceaaeadie argument to tool_aelect, tool_ae/ect returns.

6.3.5. Changing the Tool's Image

During processing, a call to:

tool_display(tool)
struct tool •tool;

redisplays the entire tool. This is useful if some change has been made to the image or the tool
itoelf, for instance if its name or ito icon'• image have been changed. Normal repaints in
response to size changes or damage should not use this procedure. They will be taken care or
by SIGWINCH events and their handlers.

6.3.6. Terminating.Tool Processing

During the time that tool_aelect is acting as the main loop or the program, a call to:

tool_done(tool)
struct tool •tool;

causes the flag TOOL_DONE to be set in tool. Tool_aelect notices this flag, and then returns
gracefully.

6.3,7, Replacing Toolio Operations

Since the toolio structure contains procedure pointers in variables, it is possible to customize the
behavior or a window by replacing the default values.

Icons that respond to user inputs or that update their image in response to timer or other
events, may be implemented by replacing the tool's tool_aelected procedure. A different subwin
dow layout scheme may be implemented in a replacement procedure for tio_handleaigwinch.
Note that these modifications do not require changes to existing libraries; the address of the

Revision Dor 7 January 1984 6-11

Suntool: Tools and Subwindows SunWindows Reference Manual

substitute routine is simply stored in the appropriate slot at run-time. However, the substitute
routine must either do all of the processing handled by the original library routine, or the sub- o
stitute routine should do its special processing and then call the original library routine.

0

0
6-12 Revision D of 7 January 1984

0

0

0

Chapter 7

Suntool: Subwindow Packages

This chapter describes aubwindaw package,, the building blocks for constructing a tao/. It
presents a guide for building new subwindow packages of general utility and describes the avail
able standard subwindow packages for use with auntaala. Refer to Suntaal: Toala and Subwin
dow3 for a description of the overall structure of tools and the general notion of a subwindow.

Subwindows, as presented here, are designed to be independent of the particular framework in
which they are used. That is, a subwindow is a merger of window handling and application
processing which should be valid in frameworks other than the tao/ structure and auntool
environment described in the preceding chapter. The design avoids any dependence on those
constructs. Thus, a subwindow package can be used in another user interface system written on
top of the aunwindaw basic window system. However, subwindow packages all provide a utility
for creating a subwindow in the tao/ context.

7 .1. Minimum Standard Subwindow Interface

This section describes the minimum programming interface one should define when writing a
new subwindow package. A subwindow implementation should provide all the facilities
described here. This section presents the arguments to the following standard procedures. Each
subwindow package need only document any additional arguments passed to its create/ init pro
cedures. There is a set of naming conventions that provides additional consistency between
subwindow package interfaces.
For the purpose of example, we use /aa as the prefix. Other prefixes used in existing subwin
dow packages include tt11, g/z and mag.

Each subwindow package has a structure definition that contains all the data required by a sin
gle instance of the subwindow.

1truct foosubwindow {
int fsw_windowfd;
1truct pixwin •fsw _pixwin;

};

The structure definition typically has a pizwin for screen access and a window handle for
identification as part of this data. The information that the subwindow's procedures need
should be stored in this data structure; this may entail redundantly storing some data that is in
the associated containing data structure, such as the tao/aw struct. Having an object per
subwindow allows multiple instantiations of a subwindow package in a single-user process. The
following ~truct creates new instances of a foo subwindow:

' . .

Revision D of 7 January 1984 7-1

Suntool: Subwindow Packages SunWindows Reference Manual

struct foosubwindow •foosw_init(windowfd, ...)
int windowfd;

Windowfd is to be a foo subwindow. The " ... " indicates that many subwindow packages will
require additional set-up arguments. This routine typically opens a pi":iwin, sets its input mask
as described in Input to Application Programa, and dynamically allocates and fills the
subwindow's data object. If the returned value is NULL then the operation failed.

foosw_done(foosw)
struct foosubwindow •foosw;

destroys subwindow instance data. Once this procedure is called, the fooaw pointer should no
longer be referenced.

f oosw _handlesigwinch(foosw)
struct foosubwindow •foosw;

This procedure handles repaint requests and must also detect and deal with changes in the win
dow size. It is called as an eventual result of some other procedure catching a SIGWINCH.

foosw_selected(foosw, ibits, obits, ebits, timer)
struct foosubwindow •foosw;
int •ibits,
int •obits,
int •ebits,
struct timeval **timer;

handles event notifications. Subwindow packages that don't accept input may not have a pro-

0

cedure of this type. The semantics of this procedure are fully described in the preceding o
chapter in the section entitled Tooli"o Structure.

struct toolsw •foosw·_createtoolsubwindow(tool, name, width, height, ...)
struct tool •tool;
char
short

•name;
width, height;

creates a struct too/aw that is a foo subwindow. Fooaw_createtoolaubwindow is only applicable
in the tool context. It is often the only call that an application program need make to set up a
subwindow of a given type .. Taal is the handle on the tool that has already been created. Name
is the name that you want associated with the subwindow. Width and height are the dimensions
of the subwindow as wanted by the taal_createaubwindaw call. The " ... " indicates that many
,ubwindow packages will require additional arguments. The,e additional arguments should
parallel those in faaaw_init. If the returned value is NULL then the operation failed.
Fooaw_createtaalaubwindaw takes the window file de,criptor it gets from taol_createaubwindaw,
pas,es it to /aaaw_init, and stores the resulting pointer in the tool subwindow'• ta_data slot.
The addresses of fooaw_handleaigwinch and Joaaw_aelected are stored in the appropriate slots of
the toalio structure for the tool subwindow, and the address of faoaw_tlane i, stored in the tool
subwindow's ta_deatray procedure slot.

Of course, most subwindow packages define functions that perform application-specific process
ing; the ones described here are merely the permissible minimum.

7-2 Revision D of 7 January 1984

0

SunWindows Reference Manual Suntool: Subwindow Packages

O 7 .2. Empty Subwindow

0

0

The empty subwindow package simply serves as a place holder. It does nothing but paint itself
gray. It expects the window it is tending to be taken over by another process as described in
Graphic, Subwindow. When the other process is done with the empty subwindow package, the
caretaker process resumes control.
A private data definition that contains instance-specific data defined in
/ uar/ include/ suntool/ emptyaw.h is:

struct emptysubwindow {
int em_windowfd;
atruct pixwin •em_pixwin;

};

Em_windowfd is the file descriptor of the window that is tended by the empty subwindow.
Em_pizwin is the structure for accessing the screen.

atruct toolsw •esw_createtoolsubwindow(tool, name, width, height)
atruct tool •tool;
char •name;
short width, height;

sets up an empty subwindow in a tool window. If the returned value is NULL then the opera
tion failed. Since eaw_createtoolaubwindow takes care of setting up the empty subwindow, the
reader may not be interested in the remainder of this section.

struct emptysubwindow •esw_init(windowfd)
Int windowfd;

creates a new instance of an empty subwindow. Windowfd is the window to be tended. If the
returned value is NULL then the operation failed.

esw _handlesigw inch(esw)
atruct emptysubwindow •esw;

handles SIOWINCH signals. If the process invoking this procedure is the current owner of
eaw-> em_windowfd, gray is painted in the window. If it is not the current owner, it checks to
see if the current owner is still alive. If the current owner is dead, this process takes over the
windows again and paints gray in the window.

esw _done(esw)
stl'udt emptysuhwindow •esw;

destroys the subwindow 's instance data.
Processes that take over windows should follow guidelines discussed in Overlapped Windowa:
Imaging Facilitiea concerning the use of the win_getowner and win_aetowner procedures. Prefer
ably, the graphics subwindow interface described below ohould be used for this activity.

7 .3. Graphics Subwindow

The graphics subwindow package is for programs that need a single window in which to draw.
Using this subwindow package insulates programmers of this type of program from much of the
complexity of the window system.

Revision D of 7 January 1984 7-3

Suntool: Subwindow Packages SunWindows Reference Manual

Users of this interface have the additional benefit of being able invoke their programs from out
side the window system. Thus, you can write one program and have it run both inside and out
side the window system. This situation is actually an illusion. What really happens when run
ning outside the window system is that the window system is actually started up and that a sin
gle window is created in which the graphics subwindow package runs.
The graphics subwindow can also manage a retained window for the programmer. The pro
grammer need not worry about the fact that he is in an overlapping window situation. A
backup copy of the bits on the screen is maintained from which to service any repaint requests.

The graphics subwindow can be used in tool building like any of the other subwindow packages
described in this chapter. However, the graphics subwindow also provides the ability for a pro
gram to run on top of an existing window by w,ing the blanket window mechanism.

The data definition for the instance-specific data defined in /uar/include/auntool/gfzaw.h is:

struct gfxsubwindow {
int gfx_windowfd;
int gfx_llags;
int gfx_reps;
struct pixwin •gfx_pixwin;
struct rect gfx_rect;
caddr_t gfx_takeoverdata;

};

#define GFX_RESTART OxOl
#define GFX_DAMAGED Ox02

0

Gfz_windowfd is the file descriptor of the window that is being accessed. Gfz_rep, are the
number of repetitions that continuow,ly running (non-blocking) cyclic programs are to execute. Q
Gfz_pizwin is the structure for accessing the screen. Gfz_rect is a cached copy of the window's
current self relative dimensions. Gfz_takeoverdata is data private to the graphics subwindow
package.

Gfz__ftag, contains bits that the client program interprets. The GFX_DAMAGED bit is set by
the graphics subwindow package whenever a SIGWINCH has been received. In addition, the
GFX_RESTART bit is set if the size of the window has changed or the window is not retained.
The client program must examine these flags at the times described below.

GFX_DAMAGED means that gfzaw_hanJ/eaigwinch should be called. This flag should be exam
ined and acted upon before looking at GFX_RESTART. GFX_RESTART is often interpreted
by a graphics program to mean that the image should be scaled to a new window size and that
the image should be redrawn. Many continuow, programs, graphics demos for instance, redraw
from the beginning of a cycle. Other event-driven programs, graphics editors and status win
dows, for example, redraw from their underlying data descriptions. The GFX_RESTART bit
needs to be reset to O by the client program before actually doing any redrawing.

7 .3.1. In a Tool Window

A graphics subwindow in a tool context is only applicable for event-driven programs that use
the tool_aelect mechanism. Any subwindow in a tool must use this notification mechanism so
that all the windows are abie to cooperate in the same process.

7-4 Revision D of 7 January 1984

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

atruct toolsw •gfxsw_createtoolsubwindow(tool, name, width, height, argv)
atruct tool •tool;
char •name;
abort width, height;
char .. argv;

sets up a graphics subwindow in a tool window. If argv is not zero, this array of character
pointers is processed like a command line in a standard way to determine whether the window
should be made retained "-r" and/or what value should be placed in gfz_rcp, "-n ####". If
the returned value is NULL then the operation failed. It is the responsibility of the client to set
up tool,111-> 1,_io.lio_aelected if the client is to process input through the graphics subwindow.
It is also the responsibility of the client to replace lool1w->t1_io.lio_handle1igwinch with the
client's own routine to notify the client when something about his window changes. The client
tio_handle,iowinch will call gfz,w_interprete,igwinch described below.

gfxsw _getretained(gfxsw);
1truct gfxsubwindow •gfxsw;

can be ca.lied to make a graphics subwindow retained if you choose not to do the standard com
mand line parsing provided by gfz,w_crealelool,ubwindow. It should be called immediately after
the graphics subwindow is created. Destroying ofz,w-> ofz_prretained has the effect of making
the window no longer retained.
The procedure:

gfxsw jnterpretesigwinch(gfxsw)
1truct gfxsubwindow •gfxsw;

is called from the client tio_handle1i11winch to give the graphics subwindow package a chance to
set the bits in o/ziw-> ofz_flag,. The code in the client tio_handle,igwinch then checks the Bags
and responds appropriately, perhaps by calling the ofz1w_handle,i11winch procedure that handles
SIGWINOH signals:

gfxsw _handlesigwincli(gfxsw)
1truct gfxsubwindow •gfxsw;

If the window is retained and the window has not changed size, this routine fixes up any part of
the image that has been damaged. If the window is retained and the window has changed size,
this routine frees the old retained pixrect and allocates one of the new size. If the window is
not retained, the damaged list associated with the window is thrown away. The
GFX_DAMAGED llag is reset to zero in this routine.

The procedure:

gfxsw _done(gfxsw)
atruct gfxsubwindow •gfxsw;

destroys the subwindow 's instance data.

7 .3.2. Overlaying an Existing Window

The graphics subwindow provides the ability for a program to overlay an existing window. The
empty subwindow described above is designed to be overlayed.
The following procedure creates a new instance of a graphics subwindow in something other
than the tool context:

Revision D of 7 January 1984 7-5

Suntool: Subwindow Packages SunWindows Reference Manual

struct g{xsubwindow •g{xsw_init(windowtd, argv)
int windowfd;
char **argv;

Windowfd should be zero; the assumption is that there is some indication in the environment as
to which window should be overlayed. See we_!Jetgf:zwindow in Window Manipulation for more
information. Argv is like argv in gf:zaw_createtoolaubwindow. In addition, arguments similar to
the ones recognized by win_initacreenfromargtJ are parsed. Thus, the program can be directed
to run on a particular screen. If the returned value is NULL then the operation failed.

When a screen is created from scratch, window system keyboard and mouse processing are not
turned on. Gfzaw_aetinputmaak should be called instead of win_aetinputmaak when defining win
dow input (see below) in order to enable window system keyboard and mouse processing. This
mechanism is used to allow programs that listen to the standard input to still run when started
Crom outside the window system.

Gf:z_takoverdata in the returned g/zaubwindow data structure is not zero in this case. The struc
ture of the data that this pointer refers to is private to the implementation of the graphics
subwindow.

When a graphics subwindow has overlayed another window, various signal catching routines are
set up if the corresponding signals have no currently defined handler routines.

The gfzaw_catclw"gwinch procedure is set up as the signal catcher of S!GWINCH:

gfxsw _catchsigwinch()

It, in turn, calls gf:zaw_interpreteaigwinch.

The g/zaw_catchaigtatp procedure is set up as the signal catcher of S!GTSTP:

gfxsw _catchsigtstp()

The graphics subwindow is removed from the display tree. The pixwin of the graphics subwin
dow is reset. S!GSTOP is sent to the the graphics subwindow 's own process.

The g/zaw_catchaigcont procedure is set up as the signal catcher of SIGCONT:

gfxsw _catchsigcont()

The graphic• oubwindow is inserted back · into the display tree (presumably after
gf:zaw_catchaigtatp removed it).

Continuous programs that. never use a select mechanism should examine g/:zaw-> gf:z_jlaga in
their main loop. Other programs that would like to use a select mechanism to wait for
input/timeout should call:

gfxsw _select(gfxsw, selected, ibits, obits, ebits, timer)
struct gfxsubwindow •gfxsw;
int (••elected)(), ibits, obits, ebits;
struct timeval •timer;

as a substitute for the tool_aelect. Selected is the routine that is called when some input or
timeout is noticed. Its calling sequence is exactly like fooaw_aelected described at the beginning
of this chapter. The only difference in the semantics of this routine and fooaw_aelected is that
the g/:zaw-> g/:z_jlaga should be examined and acted upon in a elected. Selected may be called
with no input pending so that you are able to see the flags when they change.

lbita, obit,, ebita and timer, as well as g/:zaw and ,elected, can be thought of as initializing an
internal toolio structure, which is then fed to the tool_aelect mechanism.

7-6 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

A substitute for the tool_done is:

gfxsw _selectdone(gfxsw)
struct gfxsubwindow •gfxsw;

Gf:zaw_aelectdone is called from within the ,elected procedure passed to gfzaw_aelect.

Programs that are not using the mouse can call:

gfxsw __notusingmouse(gfx)
struct gfxsubwindow •gfxsw;

In certain c.ases, when the graphics subwindow is the only window on the display for instance,
some efficiency measures can be taken. In particular, pixwin locking overhead can be reduced.

gfxsw _setinputmask(gfx, im_set, im_flush, nextwindownumber, usems, usekbd)
struct gfxsubwindow •gfxsw;
int nextwindownumber;
atruct inputmask •im_set, •im_flush;
int usems, usekbd;

The calling sequence is essentially that of win_aetinputmaak. Uaem, being non-zero means that
mouse input is wanted and so the mouse is turned on for the screen (if currently off). Uaekbd
being non-zero means that keyboard input is wanted and so the keyboard is turned on for the
screen (if currently off). See gf:zaw_init (above) for a rationale for using Gf:zaw_,etinputma,k
instead of win_aetinputmaak.

gfxsw _inputinterrupts(gfx, ie)
struct gfxsubwindow •gfxsw;
atruct inputevent •ie;

This utility looks at •ie. If •ie is a character that (on a tty) normally does process control (inter
rupts the process, dumps ·core, stops the process, terminates the process), it does the similar
action. This routine is meant to be a primitive substitute for tty process control while using the
window input mechanism.

7 .4. Message Subwlndow

The message subwindow package displays simple ASCil strings.
A private data definition that contains instance-specific data defined m
/ uar/ include/ auntool/m•g•w.h is:

struct msgsubwindow {
int msg_windowfd;
char •msg_string;
struct pixfont •msg_font;
struct rect msuectcache;
atruct pixwin •msg..J>ixwin;

};
Mag_windowfd is the file descriptor of the window that is the message subwindow. M,g_atring is
the string being displayed using magJont. Only printable characters and blanks are properly
dealt with, not carriage returns, line feeds or tabs. The implementation uses mag_rectcache to
help determine if the size of the subwindow has changed. Mag_pi:zwin is the structure that
accesses the screen.

Revision D of 7 January 1984 7-7

Suntool: Subwindow Packages SunWindows Reference Manual

struct toolsw •msgsw_createtoolsubwindow(tool, name, width, height, string, font)

0 struct tool •tool;
char •name;
short width, height;
char •string;
struct pixiont •font;

is the call that sets up a message subwindow in a tool window. String is the string being
displayed using font. If the returned value is NULL then the operation failed. Since
magaw_createtoolaubwindow takes care of the set-up of the message subwindow, the reader may
not be interested in the remainder of this section, except for magaw_aetatring.

The following struct creates a new instance of a message subwindow:

struct messagesubwindow •msgsw_init(windowfd, string, font)
int windowfd;
char •string;
atruct pixfont •font;

Windowfd identifies the window to be used. String is the string being displayed using font. If
the returned value is NULL then the operation failed.

msgsw _setstring(msgsw, string)
struct messagesubwindow •msgsw;
char •string;

changes the existing magaw-> mag_atring to atring and redisplays the window.

msgsw _display(msgsw)
etruct messagesubwindow •msgsw;

redisplays the window.

msgsw _handlesigwinch(msgsw)
struct messagesubwindow •msgsw;

is called to handle SIG WINCH signals. It repairs the damage to the window if the window hasn't
changed size. If the window has changed size, the string is reformatted into the new size.

msgsw _done(msgsw)
etruct messagesubwindow •msgsw;

destroys the subwindow's instance data.

7 .5. Option Subwindow

An option subwindow (optionaw) presents a mouse-and-display-oriented user interface for setting
parameters and invoking commands in an application program. It is the window system analog
to entering command-line arguments and typing mnemonic commands to an application.

An option subwindow contains a number of items of various types, each of which corresponds to
one parameter. Existing item types include labels, booleans, enumerated choices, text parame
ters, and command buttons. Note: New item types and extensions to these existing types are
contemplated.

The program optiontool is provided as a simple example of the features discussed here. Familiar
ity with tµe behavior of the program, and with its source file /uar/auntool/arc/optiontool.c, are

7-8 Revision D of 7 January 1984

0

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

helpful in reading this section. See the source code for the icontool in appendix B for a good
example.
The declarations for the optionaw package are found in the header file
/uar/include/auntool/optionaw.h. The file /uar/include/auntool/tool_ha.h can be included to
provide the support header files for optionaw.h. Optionaw.h includes declarations of all the pub
lic procedures, as well as the following structures and their associated defined constants. The
first provides a counted buffer for a text item's value to be stored into:

etruct strinLbuf {
ujnt limit;
char •data;

};

Data should point to an array of chars to be used as the buffer, and limit should be set to the
size of that buffer. Use of this structure is described with optaw_Jletvalue in E:tplicit Client
Reading and Writing or Item Value, below.
The second is used to identify the type as well as the value of a reference:

•truct typed_pair {
ujnt type;
caddr_t value;

};

*define IM_GRAPHIC 2
*define IM_TEXT 3
*define IM_TEXTVEC 4

Two indicates what kind of object value points to. The current choices are indicated in the fol
lowing table:

Table 7-1: Option Image Types

Type

IM_GRAPHIC

IM_TEXT

IM_TEXTVEC

Value Should Be

(struct pixrect•)

(char•)

(char u)

In the TEXTVEC case, value points to the first element of an array of string pointers; the last
element of the array should be a NULL pointer. These are currently used only in enumerated
items described in Enumerated Item,.

7 .5.1, Option Subwindow Standard Procedures

This section describes the roll.tines needed to conform to subwindow package norms. These rou
tines follow the general procedures provided in Minimum Stanrlarrl Subwinrlow Interface.

Revision D of 7 January 1984 7-9

Suntool: Subwindow Packages SunWindows Re(erence Manual

struct toolsw •optsw_createtoolsubwindow(tool, name, width, height)
struct tool •tool;
char •name;
short width, height;

creates an option subwindow within a tool. The handle toolaw-> t,_data is used (or the opt,w
argument in calls to other procedures or the option,w package to identi(y the affected window
and its private data. Ir the returned value is NULL then the operation (ailed. The remainder
or this section is of interest only to clients outside the tool system.
In contexts other than a tool, optaw_init must be called explicitly. Similarly, provisions must be
made ror using the rest or the routines in this section.

caddr_t optsw _init(Cd)
int rd1

Opt,w_init takes an /d that identifies the window to be used (or the optionsw, and returns an
opaque pointer, which identifies the created optionsw in ruture calls to the package. Ir the
returned value is NULL then the operation railed.

optsw _handlesigwinch(optsw)
caddr_t optsw;

is called to handle SIGWINCH signals. It repairs the damage to the window, and ir the window
has changed size, reformats the options as described below.

optsw_selected(optsw, ibits, obits, ebits, timer)
caddr_t optsw;
int •ibits, •obits, •ebits;
struct timevalue • •timer;

is called to handle user inputs.
The cleanup routine ror an optionaw is:

optsw _done(optsw)
caddr_t optsw;

It frees all storage allocated (or the subwindow and its items. Of course, the client should not
attempt to use any pointer associated with the optionsw or its items after a call to this routine.

7 .5.2. Option Items

Once an option,w is created, it may be populated with option items. Each item is created by a
call to the create routine for the desired type; this creates the item, adds it to the items for the
o pti o na w, and returns an item handle (an opaque pointer which identifies it).
In some general aspects, all items in the option,w exhibit the same behavior. The left or middle
mouse button indicates an item to be manipulated; the right button is left to the menu func
tion. Pressing one of the first two buttons gets the option,w's attention, and releasing it actually
completes a user-input event to which some item may respond. While the button is held down,
the cursor may be slid around over the window, and each item it passes over will indicate its
readiness to respond, typically by a reverse video display. Any such indication may be canceled
simply by moving the cursor off the item before letting up on the button.

Each item is identified on the screen by a label, which may be either text or a picture provided
by the client. This label is passed to the item creation routine in a typed_JJair struct. In the

7-10 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

graphic case (type == IM_GRAPHIC), the pixrect passed pointer is used without further con
oicleration by the optionsw implementation - the client may even change the image after the
item is created. For text labels (type == IM_TEXT), several defaults provide a uniform style
with minimal client effort. Text labels are displayed in a bold-face version of the current font.
(The current font for the option subwindow starts as the window's default font, and may be
reset for each item, as described under optaw_aetfont in Mia eel/any below.) The text of the label
is modified to indicate the type of the item visually:

Boolean items are surrounded by square brackets: a(text)"

Commands are surrounded by parentheses: "(text)"
Enumerated items have a colon appended to their label, and braces surrounding the
set of their values: "text: { choicel choice2 choice3 } "

Text items have a colon appended to their label: "text: <value>"

Label items have their exact text presented in the bold face: "text".

The text of the label is copied by the optionsw implementation; it may not be modified by the
client after the item is created ..
Clients which find these defaults too restrictive arc Cree to generate their own labels (by using
p/_tezt into a memory pixrect, for example) and pass them in as type IM_GRAPlilC.

7.5.2,1, Boolean Items

The following procedure creates an item which maintains a boolean (TRUE or FALSE) value:

caddr_t optsw_bool(optsw, label, init, notify)
caddr_t optsw;·
atruct typed_pair • label;
Int init;
Int (•notifyX);

-·.
Its lobe/ contains a pointer to a typedJJair as described above. The label is displayed in reverse
video whenever the item is TRUE. The value of the item is initially set to init, and is toggled
whenever the user selects the item. (It may also be set by a call to optaw_aetvalue, as described
below.) Whenever user action changes the value of the item, the procedure notify is called with
the new value, as described in Client Notification Procedure,. This argument may be NULL to
indicate that no notification is desired.

7.5.2.2. Commandltems

The following procedure creates an item that invokes the client procedure notify when selected
by the user:

caddr_t optsw_comiiiand(optsw, label, notify)
caddr_t optsw;
atruct typed_pair • label;
int (•notifyX);

The created item has no value. All three arguments are the same as their couterparts in
optaw_bool.

Revision D of 7 January 11)84 7-11

Suntool: Subwindow Packages SunWindows Reference Manual

7 .5.2.3. Enumerated Items

The following procedure creates an item in which exactly one or a set or choices is in effect at
any time:

caddr_t optsw_enum(optsw, label, choices, flags, init, notify)
caddr_t optsw;
struct typed_pair • label;
struct typed_pair •choices;
int flags;
int init;
int (•notify)();

The value is interpreted as a 0-based index into the choices for the selection. Optaw, label, and
notify are as above. Cho1'cea is a vector of images to be displayed for the choices; for now its
type must be ITEM_VEC. This means that the data pointer for choice, addresses an array of
string pointers, one for each possible choice plus a NULL indicating the end of the array. /nit is
the initial value of the item; it should be at most the size of the choice, array minus 2 (to avoid
the null pointer which terminates the array). Flag, will eventually indicate layout options, but
for now should be 0.

7 .5.2.4. Label Items

The following procedure creates an item which does nothing but paint itself. This item type
may be used to include labeling information in the option subwindow.

0

caddr_t optsw_label(optsw, label) 0
caddr_t optsw;
etruct typed_pair • label;

Opt,w and label are as above.

7 .5.2.5. Text Items

The following procedures create an item which holds a text value:

caddr_t optsw_text(optsw, label, default_value, flags, notify)
caddr_t optsw;
etruct typed_pair • label;
char •default_value;
int flags;
int (•notify)();

#define OPT_TEXTMASKED

Optaw, label, and notify are as above. Default_value is the initial value of the item. Flag,
specify attributes of the created item; currently, only the maaked attribute is supported. Ir
OPT_TEXTMASKED in flags is set, each character of the text item will be displayed as an asterisk.
This feature is useful for text parameters which should not be displayed, such as passwords.
The true value or the item is returned by optaw_getvalue described below. Notify is like the· pro
cedures of the other item-creation routines. It is called whenever the value of the text item is
changed, except by a call to optaw_aetvalue. Its arguments are handles for the optionsw and the 0
7-12 Revision D of 7 January 1984

0

0

0

Sun\'Vi.ndows Reference Manual Suntool: Subwindow Packages

item. Optaw..11etvalue should be used to actually retrieve the new value. This parameter to
•·ptaw_te:r.t may be NULL to indicate 'no notification.'
There may be multiple text items in an option subwindow. At any time, one of them "has the
caret." Any keystrokes directed to the option subwindow will be directed to this item. The
item that has the caret is indicated by a box around its label. Initially, this is the first text
item created in the option subwindow. The user may set the caret in another item by clicking
either the left or middle mouse button while the cursor is pointing at the new item's label.

The caret may also be determined and reset programmatically by calls to the following pro
cedures:

caddr_t optsw _getcaret(optsw)
caddr_t optsw;

returns an item handle for the item that currently has the caret.

caddr_t optsw _setcaret(optsw, ip)
caddr_t optsw;
caddr_t ip;

sets the caret on the item indicated by ip, and returns ip if successful. Otherwise, it returns
NULL. Ip should be a handle on a text item.

Only displayable characters will be accepted in the item (ASCII codes 040-0176 inclusive). The
user's eraiie (character delete) and kill (line delete) characters are available for editing existing
text. The first will delete the last character of the text; the latter will delete the whole string.
Other characters will be discarded.
Text items will expand to fit the remainder of their option subwindow's width. This may be
more polymorphism than clients desire. See the discussion under Item Layout and Relocation
below.
Note: This release of text items includes the following restrictions:

• Values of text parameters are restricted to a single line of text, less than 1000 characters long.
Characters which extend beyond the item's right edge will not be displayed, although they
are entered and edited the· same as visible characters.

• Text items may be edited only at their ends. The available operations are: add a character to
the end, delete a character from the end, and delete the whole value.

While significant extension to the functionality of text items is planned, the actual interface
(the external procedure definitions and data structures) are designed to accommodate those
extensions without change.

7 .5.3. Item Layout and Relocation - SIGWINCH Handling

As each item is created, its width and height are determined and stored in the item's private
data. No left and top positions are assigned at this time. Later, whenever a signal is received
which indicates that the size of the subwindow has changed (in particular, when the tool is first
displayed, and the size grows from O to the initial window), a layout procedure determines posi
tions for all the items in the window.

The default layout procedure starts in the upper-left corner of the subwindow and places items
in successive positions to the right, and then in successive rows down the window. Item posi
tions are not normally fixed; items may be repositioned if the window is later laid out again
with a different size.

Revision D of 7 January 1984 7-13

Suntool; Subwindow Packr.ges Sun Windows Reference Manual

If an item is encountered with either of its top or left edges fixed, that specification is accepted
without further consideration - it is possible to lay one item down on top of a previously posi- o
tioned item, or to position it out of sight to the right or below the subwindow boundary.

Positioning of subsequent items after an item with a fixed position may be affected in three
ways:
1. The top of the row in which the item appears may move down, but not up, for the rest of

the items in the row.

2. Subsequent items in the same row will not be positioned to the left of the item's right edge.

3. Items in subsequent rows will not be positioned above the bottom of the fixed item.
Ir an item is encountered which does not have fixed width (currently, only a text item), an
attempt will be made to expand the item to fill the remaining width in the option subwindow.
This is done through a rather simple-minded negotiation between the general layout procedure
and the flexible item. If both the position and width of the item are flexible, the result of this
negotiation may not be very satisfactory to observers. In most cases, the position, the width, or
both should be fixed.
At any time between an item's creation and its destruction, the client may inquire or modify its
current size and position. This is done via the following two procedures:

optsw_getplace(optsw, ip, place)
caddr_t optsw;
caddr_t ip;
etruct item_place •place;

optsw_setplace(optsw, ip, place, reformat)
caddr_t optsw;
caddr_t ip;
etruct item_place •place;
Int reformat;

Optaw is the handle returned by opt,w_init. Ip is the pointer to an opt_item struct returned by
the item'• create routine. Place is a pointer to a atruct item_place described below.
The optaw_aetplace arguments are parallel to those of optaw_getp/ace. Place is a pointer to a
struct item_place, which contains a rect and four boolean flags indicating that a value is to be
fixed for that item. The reformat argument indicates that the window is to be laid out and
displayed anew, taking the changed item into account. This should generally be done any time
after the window has been opened, since the item is already displayed, but it may be postponed
if a series of adjustments are to be made; in that case, it is appropriate to reformat only after
the last item's place is set.

The following struct is also described in optionaw.h:

struct item_place {

};

7-14

struct rect rect;
struct {

}

X: lj
y : 1;
w: 1;
h: 1;
fixed;

Revision D of 7 January 1984

0

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

Rcct indicates the current size and position of the item, and the four bit-fields fized.z, fized.y,
fizr.d.w, and fixed.hare TRUE if the corresponding dimension may not be adjusted by the layout
procedure.
For convenience in laying out string items, two functions convert character columns and lines to
the appropriate pixel coordinates:

int optsw_coltox(optsw, col)
cadd?_t optsw;
int col;

int optsw _Iinetoy(optsw, line)
caddr_t optsw;
int line;

The dimensions used in calculating these coordinates are the width or the character 'a' in the
optionsw 's default Cont and the nominal height of that Cont, that is, the distance between base
lines or successive unleaded lines or text. Both columns and rows start at 0.

7 .5.4. Client Notification Procedures

Most item types provide a mechanism for notifying clients that the value of an item has been
changed by the user. The same general mechanism is used to specify the procedure to be
invoked in response to selection of a command button.
In eaeh case, a pointer to a procedure is passed to the item-creation routine and stored with the
item. This procedure pointer may be zero, in which case there is no client notification. When
appropriate, this notification procedure is invoked by optionaw code with arguments to identify
the affected subwindow and item, and the new value assigned to the item. The general Corm for
these procedures is:

notify(optsw, item, value)
caddr_t optsw;
caddr_t item;
Int value;

{ ... processing to respond to item's new value.}

Procedures to be invoked in response to a command button-push have the same form, except
there is no value parameter. Notification of changes to text items also omit the value parameter.

Note that the notification procedure is provided by the client and invoked by the optiomw pack
age.

7.5.5. Explicit Client Reading and Writing of Item Values

Clients may read the current value of an item by calling the procedure:

int optsw _getvalue(ip, dest)
caddr_t ip; ·
caddr_t dest;

Ip is the item handle which identifies the item whose value is sought; deat is the address of the
destination in which the value is to be stored. For items with a numeric value, deat should actu
ally be a pointer to an int; the value will be stored in the indicated int, and returned as the

Revision D or 7 January 1984 7-15

Suntool: Subwindow Packages SunWindows Reference Manual

value or the function. Items which have no value (commands, labels) store and return -1.

For text items, deat should be a pointer to a struct atring_buf, whose limit is the length or the
associated data array. Optaw_getvalue will store characters from the value or the indicated item
into (•deat-> data), and return the number or characters stored. Ir there is room, a terminating
NULL character will be written, and a later call to optaw_gelvalue will store characters starting
at the beginning or the item's value. Otherwise, the data buffer will be filled and the returned
count will be equal to deat->limit; the next call to optaw_getvalue for this item will resume stor
ing characters with the first character not reported in the previous call. Multiple calls to
optaw_getvalue may thus be used to retrieve a long value through a short buffer. Eventually,
there will be room to store a null character, and the whole value will have been reported; the
next call to optaw_getvalue for this item will restart at the beginning or the value.

Clients may set the value of an item by calling:

optsw_setvalue(optsw, ip, value)
caddr_t optsw;
caddr_t ip;
caddr_t value;

Optaw is the opaque handle on the option subwindow; it enables repainting or the modified item.
Ip indicates the item to be modified, Value should be an appropriate value for the item, which is
then cast to caddr_t. That is, booleans and enumerateds should provide an Int (or unsigned);
text items should provide a (char •). For example, if optaw_aetvalue is being used to change a
boolean item, value could be:

(caddr_t) FALSE

7 .6.6. Miscellany

Clients may inquire and set the font that is being used for displaying item labels and values.
Fonts for these objects are determined at the time the object is created; different items may use
different fonts. Thus, the client may create an object, change the font, create more objects
which will use the new font, and then change the font back (or to a third value) for succeeding
items.

atruct pixfont •optsw _get font(optsw)
caddr_t optsw;

returns the current font for the indicated optaw.

optsw _setfont(optsw, font)
caddr_t optsw;
atruct pixfont •font;

sets the optaw's font to be font.

Given an item in an optionsw, the routine:

optsw _next item(optsw, ip)
caddr_t optsw;
caddr_t ip;

returns a handle for the next item in sequence. Ir ip is NULL, the first item in the window will
be returned; if ip refers to the last item in the optionsw, NULL is returned.

7-16 Revision Dor 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Suntoo): Subwindow Packages

The routine:

optsw Jemoveitems(optsw, ip, count, reformat)
caddr_t optsw;
caddr_t ip;
lnt count;
lnt reformat:

removes at most count items from opt,w, making them inaccessible to the user, but not destroy
ing them. They may be restored later by a call to opt,w_relforeitcm,. The subwindow is
redisplayed without them if reformat is TRUE. The number of items so removed is returned;
this may be less than count if the items in the subwindow are exhausted before count has been
removed.
Starting at the item indicated by ip, the routine:

optsw Jestoreitems(optsw, ip, count, reformat)
caddr_t optsw;
caddr_t ip;
lnt count;
Int reformat:

restores at most count items in a,w and returns the number restored. This may be left than
count if all extant for the optionsw are exhausted, or an item which is not currently removed is
encountered, flnt. The subwindow is redisplayed with the restored items if reformat is TRUE.

For assistance in implementing applications which use option subwindows, two routines are pro
vided which print a formatted display of the optionsw and/or its items, to a stream or the
client '1 choice:

optsw_dumpsw(1tream, optaw, verbose)
FILE •stream;
caddr_t optaw;
bool verbose;

optaw_dumpitem(llle, ip)
FILE •Ille;
caddr_t •ip;

For each procedure, the client says where to write the dump with the llream argument, and
identifies the object to be dumped with the optaw or ip argument. IC 11erbo1e is true,
opt1w_dump110 will dump all the items of the optionsw.

7 .6. Terminal Emulator Subwindow

Thia is the subwindow package that provides a Sun Terminal emulator.
The private data definition that contains instance-specific data defined in
/ u,r/ includ,f ,untool/ tt111w.h is:

atruct ttysubwindow {
/ • Private data•/

};

Note: Only one TTY subwindow per process.

Revision D or 7 January 1984 7-17

Suntool: Subwindow Packages SunWindows Reference Manual

atruct toolsw •ttysw_createtoolsubwindow(tool, name, width, height)
1truct tool •tool;
char •name;
short width, height;

is the call that sets up a terminal emulator subwindow in a tool window.
Tt111w_createtoo/1ubwindow takes care of setting up the terminal emulator subwindow except for
the forking of the program. If the returned value is NULL then the operation failed. Thus,
clients of this routine may want to ignore the remainder of this section except for the discussion
of tt111wJork and perhaps tt111w_becomecon10/e.

atruct ttysubwindow •ttysw _init(windowfd)
int windowfd;

creates a new instance of a tty subwindow. Window/dis the window that is to be used. If the
returned value is NULL then the operation failed.

ttysw _becomeconsole(ttysw)
1truct ttysubwindow •ttysw;

sets up the terminal emulator to receive any output directed to the console. This should be
called after calling tty,w_init.

ttysw _saveparms(ttyfd)
Int ttyfd;

0

should be called by the screen initialization program, e.g., ,unloo/,(1). This saves the charac
teristics of the terminal tlu/d in an environment variable. Terminal emulation processes forked
from the screen initialization process will get their characteristics from this environment vari- O
able; terminal emulation processes started directly from shells get their characteristics from the
standard error tty. Tt111w_,a11eparm1 is needed because a screen initialization program is often
started from the console, whose characteristics can change due to console redirection.

ttysw _handlesigwinch(ttysw)
struct ttysubwindow •ttysw;

is called to handle SIGWINCH signals. On a size change, the terminal emulator's display space is
reformatted. Also, its process group is notified via SIGWINCH that the size available to it is
different. Refer to TTY-Baaed Program, in TTY Subwindow,. If there is display damage to be
fixed up, the terminal emulator redisplays the image by using character information from its
screen description.

ttysw _selected(ttysw, ibits, obits, ebits, timer)
1truct ttysubwindow •ttysw;
Int •ibits, •obits, •ebits;
1truct timeval ••timer;

reads input and writes output for the terminal emulator. •Ibit,, •obit, and •timer are modified
by tt111w_1elected. See the general discussion of tio_,oloctod type procedures in Minimum Stan
dard Subwindow Inter/ace.

int ttysw _fork(ttysw, argv, inputmask, outputmask, exceptmask)
struct ttysubwindow •ttysw;
char **argv;
int •inputmask, •outputmask, •exceptmask;

7-18 Revision D of 7 January 1984

0

0

0

0

SunWindows Reference Manual Suntool: Subwindow Packages

forks the program indicated by •argv. The identifier of the forked process is returned. If the
returned value is -1 then the operation failed and the global variable errno contains the error
code. There m-e the following possibilities:
• If •arg,, is NULL, the user SHELL environment value is used. If this environment parameter is

not available, /bin/ah is used.

• If •arg11 is "-<: ", this flag and arg11/1/ are passed to a shell as arguments. The shell then runs
argv/1]. The argument list for this case becomes ahell/-c/argv/1//0.

• If •orgv is not NULL, the program named by argv/0/ is run with the arguments given in the
rest of argt•. The argument list should be NULL terminated.

The arguments •inputma,k, •ouputma,k, •ezceptma,k are dereferenced by ttyawJork and set to
the values that the terminal eumlator subwindow manager wants to wait on in a subsequent
select call.

ttysw _done(ttysw)
struct ttysubwindow •ttysw;

destroys the subwindow 's instance data.

7.6.1. TTY-Based Programs in TTY Subwindows

TTY-based programs, such as c,h, ah, and tJi, which use the termcap to determine the size of
their screen, need not know about windows to run reasonably under the terminal emulator.
The termcap library will return the current number of lines and columns of the terminal emula
tor. However, if the user changes his window's size while one of these programs is running, the
terminal emulator and the program may disagree about what the terminal size is.

In the case of a size change, the terminal emulator sends a SIGWINCH signal to its process group.
If a child process doesn't catch the signal, no harm is done because the default action for
SIGWINCH is that the signal be ignored. A child process can catch the signal, and then requery
the termcap library for the correct terminal size. Unfortunately, no TTY-based programs do
this now.
The terminal emulator and ·the lermcap library communicate size information through ioctl sys
tem calls on the pseudo-tty shared by both. The terminal emulator makes a TIOCSSIZE ioctl
call to set the size of the pseudo-tty. The termcap library or some other TTY-based program
makes a TIOCGSIZE ioctl call to get the size of the pseudo-tty. These constants and the data
that they pass in the ioctl call are further defined in / uar/ include/ aya/ ioctl.Ii.

int we__getmywindow(windowname)
char •window name;

can be called by programs running under a window system pseudo-tty to find out the terminal
emulator's window name. This information is passed from the terminal emulator process to a
child process through the environment variable WINDOW_ME, which is set to be the
subwindow's device name, for example /dev/win5. We_getmywindow reads WINDOW_ME's
value into windowname. A return value of O indicates success. Windowname should point to at
least WIN_NAMESIZE characters. This information could be the handle needed for a program
to perform some sort of special window management function not provided by the default win
dow manager.

Revision D of 7 January 1984 7-19

0

0

01

0

0

0

Chapter 8

Suntool: User Interface Utilities

This chapter describes the programming interface to a variety of separate packages that imple
ment the user interface of the ,untool layer. Because these utilities are not tied to the notions
of tool and ,ubwindow as described in a previous chapter, they can be used as is, in another user
interface system written on top of the aunwindow basic window system. For convenience, these
utilities are associated directly with the ,untool software layer.

8.1. Full Screen Access

To provide certain kinds of feedback to the user, it may be necessary to violate window boun
daries. Pop-up menus, prompts and window management are examples of the kind of opera
tions that do this. The /ull,creen interface provides a. mechanism for gaining access to the
entire screen in a safe way. The package provides a convenient interface to underlying ,unwin
dow primitives. The following structure is defined in / u,r/ include/ 1untool/fu/11creen.h:

11truct fullscreen {
Int fs_windowfd;
•truct rect fs_screenrect;
•truct pixwin •fs.,J>ixwin;
•truct cursor fs_cachedcursor;
•truct inputinask fs_cachedim;
Int fs_cachedinputnext;

};
F,_window/d is the window that created the /ul/,creen object. F,_,creenrect describes the entire
screen's dimensions. FaJizwin is used to access the screen via the pixwin interface. The coor
dinate space of fullscreen access is the same as /a_window/d's. Thus, pixwin accesses are not
necessarily done in the screen's coordinate space. Also, f,_,creenrect is in the window's coordi
nate space, If, for example, the screen is 1024 pixels wide and 800 pixels high, f,_window/d has
its left edge at 300 and its top edge at 200, that is, both relative to the screen's upper left-hand
comer, then f,_,creenrect is {-300, -200, 1024, 800}.
The original cursor, f,_cachedcur,or, Input mask, f,_cachedim, and the window number of the
input redirection window, f,_cachedinputnezt, are cached and later restored when the fullscreen
access object is destroyed.

struct fullscreen •fullscreen_init(windowfd)
int windowfd;

gains full screen access for window/d and caches the window state that is likely to be changed
during the lifetime of the fullscreen object. Window/d is set to do blocking 1/0. A pointer to
this object is returned although a global pointer named ,unwindow will keep multiple processes
from gaining fullscreen access at the same time.
During the time that the full screen is being accessed, no other processes can access the screen,
and all user input is directed to /•-> f,_window/d. Because of this, use fullscreen access

Revision D of 7 January 1984 8-1

Suntool: User Interlace Utilities

infrequently and for only short periods or time.

Fullacreen_deatro11 restores fa's cached data:

fullscreen_destroy(Cs)
struct fullscreen •fs;

SunWindows Reference Manual

It releases the right to access the full screen and destroys the fullscreen data object.
Fa-> fa_windowftfs input blocking status is returned to its original state.

8.2. Icon Display Facility

This section describes an icon display facility. The icon structure is simply a stylized descrip
tion or a useful class of images. Icons normally serve more to identify an object than display its
contents. A typical use of an icon is to identify a currently unused but available tool. Another
use might be a graphical depiction or an object, a document, database element, or resource for
instance, that a user might want to point at with his mouse. The icon structure is declared in
the file /uar/include/auntool/icon.h:

struct icon {
short

};

short
struct
struct
etruct
etruct
char
etruct
int

ic_width;
ic_height;
pixrect •ic_background;
rect ic_gfxrect;
pixrect •ic_mpr;
rect ic_textrect;
•ic_text;
pixfont •ic_font;
ic_flags;

#define ICON_BKGRDPAT Ox02
#define ICON_BKGRDGRY Ox04
#define ICON_BKGRDCLR Ox08
#define ICON_BKGRDSET OxlO

Ic_width and ic_height describe the full size or the icon. Ic_background is an optional pattern
with which to prepare the image background. /c__g/zrect and ic_teztrect describe two subareas
of the icon (icon coordinate system relative), which may overlap. lc_mpr addresses a memory
pixrect as described in Memor11 Pizrecta. Ic_mpr has the graphic portion of the icon, ic_tezt
points to a string, and icJont a font in which to display it. The bits or ic_Jlaga are defined
above and indicate different ways to prepare the background or the image before adding ic_mpr
and the text:
ICON_BKGRDPAT

use ic_background

ICON_BKGRDGRY
use a standard gray pattern used by the background window (this back
ground is the memory pixrect tool_bkgrd defined in
/ uar / ,·nclude/ auntool/ tool.Ii).

ICON_BKGRDCLR
clear (white out) the image

8-2 Revision D or 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Suntool: User Interface Utilities

ICONJ3KGRDSET
set (solid black) the image.

The function:

icon_display(icon, pixwin, x, y)
struct icon •icon;
abuct pixwin •pixwin;
int x, y;

displays icon offset (z, 11) from the origin of pizwin. The background is prepared according to
icon-> ic...flaga. The graphic portion of the icon is displayed next, followed by the text; thus, if
they overlap, the text will come out on top.
There are no strict restrictions on the size of an icon. However, the facility becomes relatively
pointless if the icon is too large. Non-uniform icons have esthetic and placement defects.
Therefore, a set or standard dimensions should be provided for any particular class of icons.
Here are the standards used by clients of tools defined in /uar/include/auntoo//tool.h:

#define TOOL_ICONWIDTH 64
#define TOOL_ICOHEIGHT 64
#define TOOL_ICONMARGIN 2

#define TOOL_ICONIMAGEWIDTH
#define TOOL_ICONIMAGEHEIGHT
#define TOOL_ICONIMAGELEFT
#define TOOL_ICONIMAGETOP

#define TOOL_ICONTEXTWIDTH
#define TOOL_ICONTEXTHEIGHT
#define TOOL_ICONTEXTLEFT
#define TOOL_ICONTEXTTOP

These constants put the icon in a 64-pixel square, including a two-pixel margin all around. The
graphics and text regions are defined relative to the size of the icon and its margin; the graphics
area covers the whole icon inside the margin, and the text overlies the bottom 3 / 4 of that
region. The TOOL_ICONIMAGE• and TOOLJCONTEXT• constants hold defaults for gen
erating reasonable images when ic_gfzrect and ic_teztrect respectively are initialized to them.

8,3, Pop-up Menus

A pop-up menu is a collection of items that a user can choose among by pointing the cursor at
the desired item. It is quickly displayed in response to a button push, remains visible as long
as the user holds the button down, and disappears as soon as the button is released.
Several menus can be presented at once. They appear to the user as a stack of images with the
header of each menu visibfo, along with the items of the top menu in a vertical list. The user
can bring other menus to the top by the same mechanism as choosing an item in the top menu.

A single menu is descrlbed by the following structure defined in /uar/include/auntoo//menu.h:

Revision D of 7 January 1984 8-3

Suntool: User Interface Utilities SunWindows Reference Manual

struct menu {
int m_imagetype;
caddr_t m_imagedata;
int m_itemcount;
struct menuitem •m_items;
struct menu •m_next;
caddr_t m_data;

};

#define MENU_IMAGESTRING OxO

M_imagetype describes the data type of m_imagedata. M_imagedata is a pointer to the data
displayed in the header of the menu. MENU_IMAGESTRING is the only currently defined
image data type and is a character pointer. M_nezt addresses the next menu in a stack; it is
NULL if this menu is the last or only one in the stack. M_data is private data utilized by the
menu package while displaying menus. M_item, is an array of menuilem, whose length is
m_itemcount.

struct

};

int
caddr_t
caddr_t

menuitem {
mi_imagetype;
mi_imagedata;
mi_data;

A menu,'tem consists of a display token/data pair. Mi_imagelype describes the data type of

0

mi_imagedata. Mi_imagedata is a pointer to the data displayed in this item.

0 MENU_IMAGESTRING is the only defined image data type and is a character pointer.
Mi_data is private to the creator of the item. Typically, it is an identifier that differentiates this
item from others.

A client of the menu package constructs a stack of menus or several, for different situations by
allocating menu structures and menuitem arrays and initializing all the fields in them. This
involves hooking up all the data structures by setting the various pointers. An example of a
menu set is found in Sample Tool, in the panetool program. Button-down on the right mouse
button is the standard invocation. Then when a user action initiates menu processing, the
client calls:

struct menuitem •menu_display(menuptr, event, iowindowfd)
struct menu .. menuptr;
struct inputevent •event;
int iowindowfd;

Menuptr is the address of a menu pointer that points to the first or "top" menu structure in a
menu stack. If the user causes the stack order to be rearranged, this indirection allows the
menu package to leave the riew top of the stack in "menuplr upon returning from menu_di,play.
The menu package shuffles the stack's m_nezt values to rearrange the stack order. This enables
the menu stack to be redisplayed in the order it was left in the last invocation.

Event is the inputevent which provoked the menu. The location information, event-> ie_locz,
event->ie_locy, ln the event controls where the menus will be displayed. Event->ie_code is the
event that is treated as the "menu button;" that is, the menu is displayed until this button goes
Up. The right mouse button is the usual menu button. The left mouse button is always used
as the accelerator to bring rear menus forward. If it wasn't an explicit user action that pro- o
voked the call to menu_diaplay, these three event fields must be loaded with the desired values

8-4 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Suntool: User Interface Utilities

beforehand.
/~windowfd is the file descriptor for the window that is displaying the menu. It is also the win
dow that is read for user input. The event location values are relative to this window.
Menu_di,play currently uses the mechanism described in Full Screen Acce11. Menu_diaplay tem
porarily modifies iowindowfd's input mask to allow mouse motion and buttons to be placed on
this window's input queue. All the menus in the stack are displayed, and there can only be one
stack on the screen at a time. The font used for strings is that returned from pw_pfayaopen.

Menu_diaplay returns the. menuitem, which was under the cursor when the user released the
mouse button, or NULL if the cursor was not over an item.

8.3.1. Prompt Facility

A prompt facility is sometimes used with menus to tell the user to proceed from his current
state. Prompting can also be done without menus. The definitions for the prompt facility are
found in /u,r/include/auntool/menu.h:

11truct prompt {
11truct rect prt_rect;
atruct pixfont •prtJont;
char •prt_text;

};

#define PROMPT_FLEXIBLE -1

Prt_rect is the rectangle in which the text addressed by prt_te:it will be displayed using prtJont.
Only printable characters and blanks are properly dealt with. Carriage returns, line feeds or
tabs are not. If any of prt_rect's fields are PROMPT_FLEXIBLE, that dimension is automati
cally chosen by the prompt mechanism to accommodate all the characters in prt_ted.

menu_prompt(prompt, event, iowindowfd)
•truct prompt •prompt,
atruct inputevent •event;
Int iowindowfd;

Menu_prompt displays the indicated prompt (prompt->prt_rect is iowindowfd relative), and
then waits for any input event other than mouse motion. It then removes the prompt, and
returns the event which ended the prompt's existence in event. lowindowfd is the window from
which input is taken while .. the prompt is up. The /ull,creen access method is used during
prompt display.

8.4. Selection Management

This section describes an interface to a ,election manager that is used to coordinate access to a
single data entity called the current ,election. The current selection is globally accessible by any
process, thus providing an inter-tool data exchange mechanism.

A commoia style of operati<>.n/operand command specification is a non-modal one in which the
operand is specified first. In the window system, the operand is called the ,election since it usu
ally requires that the user select something with the pointing device. A selection is highlighted
in some way and persists until an operation removes it programmatically or the user performs
some action that causes the selection to be removed.

Revision D of 7 January 1984 8-5

Suntool: User Interface Utilities SunWindows Reference Manual

The header file / uar / include/ auntool/ aelection.h contains the definition necessary for using selec- -~
tions. The object that describes a selection is: W

struct selection {
int sel_type,
int sel_items,
int sel_itembytes,
int sel_pubflags;
caddr_t sel_privdata;

};

#define SEL TYPE_NULL 0
#define SEL TYPE_CHAR 1

Sel_type indicates the type of the selection. Currently, SELTYPE_NULL (no selection) and
SELTYPE_CHAR (ASCII characters) are the only selection types defined. Sel_itema is the
number or items in the selection data. Sel_itemblflea is the number of bytes each item occupies
in the selection data. Sel_pubflaga is used to contain publicly understood flags that further
describe the selection. Sel_privdata is used to contain 32 bits worth or privately understood
data that is only understood between implementations of a particular selection type.

The selection structure is not to be confused with actual selection data itself, the characters in a
SELTYPE_CHAR selection, for instance.

selection_set(sel, ~el_write, sel_clear, windowfd)
struct selection •sel
int (•sel_write)();
int (•sel_clear)();
int windowfd;

sel_ write(sel, file)
atruct selection •sel;
FILE •file;

sel_clear(sel, windowfd)
atruct selection •sel;
int windowfd;

Selection_,et is used to change the current selection. Se/ describes the selection. Sel_write is a
procedure that is called to store information into the selection. Currently, only aelection_aet
calls ael_write, but in the future ael_write might be called at any time. The ael_write procedure
takes as arguments ,el, the selection description handed to aelection_,et, and file, a standard
1/0 FILE pointer. The standard 1/0 library is used to write the selection data to file. Win
dowfd is the window that is making the selection.

Sel_clear is a procedure that the selection manager would call when it wanted the selection
currently being set to be de highlighted. This could happen when another selection had been
made. Thia clear feature i, not currently implemented. When implemented thi, call could come
at any h'me after returning from aelection_aet.

selection_clear(windowfd)
int windowfd;

0

is called when windowfd wants to clear the current selection. Ideally, there is only one selection o,
on the screen at a time so that the user doesn't become confused about which operand will be

8-6 Revision D of 7 January 1984

0

0

0

SunWindows Reference Manual Suntool: User Interface Utilities

affected by his next command.
Since the acl_clear feature is not currently implemented, it is the selection maker's decision as to
when to dehilight his selection feedback. The only existing use of the selection mechanism waits
for the user to move his cursor out of the window that made the selection before dehilighting it.

selection_get(sel_read, windowfd)
Int (•sel_read)();
Int windowfd;

sel_read(sel, file)
struct selection •sel;
FILE •file;

Selection_get is used to find out the current selection. Sel_read is a procedure that aelection_get
calls to enable the client to retrieve the selection. Windowfd is the window that wants to find
out about the selection.

The ael_rcad procedure takes as arguments ael, the selection description of the current selection,
and file, a standard 1/0 FILE pointer. The standard io library is used to read the selection
data from file. Sel_read should check the type of the selection and make sure that it is a type
with which it can deal.

8.5. Window Management

The procedures in this section implement common functions for managing windows.

8.6.1. Window Manipulation

These routines provide the standard window management user interface presented by tool win
dows:

Revision D of 7 January 1984 8-7

Suntool: User Interface Utilities SunWindows Reference Manual

wmgr_open(toolfd, rootfd)
int toolfd, rootfd;

wmgr_close(toolfd, rootfd)
int toolfd, rootfd;

wmgr_move(toolfd)
int toolfd;

wmgr_stretch(toolfd)
int toolfd;

wmgr_top(toolfd, rootfd)
int toolfd, rootfd;

wmgr_bottom(toolfd, rootfd)
int toolfd, rootfd;

wmgr_refreshwindow(windowfd)
int windowfd;

In each of the above routines, tool/d is a file descriptor for a tool window and root/d is a file
descriptor for the root window. Wmgr_open opens a tool window from its iconic state to normal
size. If the window is already open, wmgr_open does nothing. Wmgr_cloae closes a tool window

0

from its normal size to its iconic size. If the window is already closed, wmgr _clo,e does nothing.

0 Wmgr_move prompts the user to move the tool window or cancel the operation. If confirmed,
the rest of the move interaction, including dragging the window and moving the bits on the
screen, is done. Wmgr _,tretch is like wmgr _move, but it stretches the window instead of moving
it. Wmgr _top places the too! window on the top on the window stack. Wmgr_bottom places the
tool window on the bottom on the window stack. Wmgr_re/re,hwindow causes window/d and all
its descendant windows to repaint.
The routine wmgr _changerect:

wmgr_changerect(feedbackfd, windowfd, event, move, noprompt)
int feedbackfd, windowfd;
struct inputevent •event;
boo! move, noprompt;

implements wmgr_move and wmgr_ltretch, including the user interaction sequence. Window/dis
moved (1) or stretched (0) depending on the value of move. To accomplish the user interaction,
the input event is read from the /eedback/d window (usually the same as wt"ndow/d). The
prompt is turned off if noprompt is 1.

int wmgr_confirm(windowfd, text)
int windowfd;
char •text;

Wmgr_confirm implements a layer over the prompt package for a standard confirmation user
interface. Tezt is put up in a prompt box. If the user confirms with a left mouse button press,
then -1 is returned. Otherwise, 0 is returned.

8-8 Revision D of 7 January 1984

0

0

0

0

Sl".nVvindows Reference Manual Suntool: User Interface Utilities

Note: The up button event is not consumed.
The window management package provides menu handling code that ties all the routines in this
subsection into the wmgr_toolmenu. This provides a convenient way of getting access to the
same menu that is presented by a tool window. If you don't like the menu provided (you want
to add/subtract/change menu items), define and use a new one. The routines in this section
should be all you need to put together a functionally similar window manipulation interface.

11truct menu •wmgr_toolmenu;

wmgr_setupmenu(toolfd)
int toolfd;

wmgr_handletoolmenuitem(menu, mi, toolfd, rootfd)
atruct menu •menu;
atruct menuitem •mi;
int toolfd, rootfd;

To use the default tool menu, call wmgr_aetupmenu just before you put up wmgr_toolmenu.
Wmgr_aetupmenu arranges the menu items depending on the tool state (iconic vs. normal).
Passing the menu item returned from menu_diapla11 to wmgr_handletoo/menuitem causes the
appropriate menu action to be done. AB an example, refer to the Pane Tool code provided in
panetool.c in appendix B.

8.6.2. Tool Invocation

The routines in this section provide tool invocation and default position control.

#define WMGR_8ETP0S -1

wmgr_figuretoolrect(rootfd, rect)
int rootfd;
etruct rect •rect;

wmgr_figureiconrect(rootfd, rect)
int rootfd;
etruct rect •rect;

These routines allow windows to be assigned initial positions that don't pile up on top of one
another. The root/d window maintains a "next slot" position for both normal tool windows and
icon windows (see . 111111gr _aetrecta//oc below). These procedures assign the next slot to the rect if
rect->r_/e/t or rect->r_top is equal to WMGR_SETPOS. A new slot is chosen and is then
available for the next window with an undefined position.

These procedures also assign a default width and height if WMGR_SETPOS is given, again for
both normal (tool) and iconic rects. Wmgr _Jiguretoolrect currently assigns tool window slots
that march from ti.ear the top middle ot the screen towards the bottom left of the screen. It
assigns a window size correct for an SO-column by 34-row terminal emulator window.
Wmgr_figureiconrecl currently assigns icon slots that march from the left bottom towards the
right of the screen. It assigns icon sizes that are 64 by 64 pixels.

Revision D of 7 January 1984 8-9

Suntool: User Interface Utilities SunWindows Reference Manual

wmgr_forktool(programname, otherargs, rectnormal, recticon, iconic)
char •programname, •otherargs;
struct rect •rectnormal, •recticon;
int iconic;

is used to fork a new tool that has its normal rectangle set to rectnormal and its icon rectangle
set to recticon. If iconic is not zero, the tool is created iconic. Programname is the name of the
file that is to be run and otherarg, is the command line that you want to pass to the tool. A
path search is done to locate the file. Arguments that have embedded white space should be
enclosed by double quotes.

8.5.3. Utilities

The utilities described here are some of the low level routines that are used to implement the
higher level routines. They may be used to put together a window management user interface
different from that provided by tools. If a series of calls is to be made to procedures that mani
pulate the window tree, the whole sequence should be bracketed by win_lockdata and
win_unlockdata, as described in The Window Hierarchy.

wmgr_completechangen;ct(windowfd, rectnew, rec:toriginal, parentprleft, parentprtop)
int windowfd;
struct rect •rectnew, •rectoriginal;
int parentprleft, parentprtop;

does the work involved with changing the position or size of a window's rect. This involves sav-

0

ing as many bits as possible by copying them on the screen so they don't have to be recom
puted. Wmgr _completechangerect would be called after some programmatic or user action deter- Q
mined the new window position and size in pixels. Window/d is the window being changed.
Rectnew is the window's new rectangle. Rectoriginal is the window's original rectangle.
Parentprlc/t and parentprtop are the upper-left screen coordinates of the parent of window/d.

wmgr_winandchildrenexposed(pixwin, rl)
struct pixwin •pjxwin;
11truct rectlist •rl;

computes the visible portion of pizwin->pw_clipdata.pwcd_window/d and its descendants and
stores it in rl. This is done by any window management routine that is going to try to preserve
bits across window changes. For example, wmgr_completechangerect calls
wmgr_winandchildrcnczpoaed before and after changing the window size/position. The intersec
tion of the two rectlists from the two calls are those bits that could possibly be saved.

wmgr_changelevel(windowfd, parentfd, top)
int windowfd, parentfd;
bool top;

moves a window to the top or bottom of the heap of windows that are descendants of its
parent. Windowfd identifies the window to be moved; parentfd is the file descriptor of that
window's parent, and top· controls whether the window goes to the top (TRUE) or bottom
(FALSE). Unlike wmgr_top and wmgr_bottom, no optimization is performed to reduce the
amount of repainting. Wmgr_changelevel is used in conjunction with other window rearrange
ments, which make repainting unlikely. For example, wmgr_cloae puts the window at the bot
tom of the window stack after changing its state.

8-10 Revision D of 7 January 1984

0

0

0

0

SunWindows Reference Manual Suntool: User Interlace Utilities

#define WMGR_ICONIC WUF_WMGRl

wmgr_iswindowopen(windowfd)
int windowfd;

The user data of window/d reflects the state of the window via the WMGR_ICONIC flag.
WUF _WMGRl is defined in /uar/include/aunwindow/win_ioct/.h and WMGR_ICONIC is
defined in /uar/include/auntool/wmgr.h. Wmgr_iawindowopen tests the WMGR_ICONIC flag
(see above) and returns TRUE or FALSE as the window is open or closed.

The root/d window maintains a "next slot" position for both normal tool windows and icon win
dows in its unused iconic rect data. Wmgr_aetrectalloc stores the next slot data and
wmgr _getrectalloc retrieves it:

wmgr_setrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
ahort tool_left, tool_top, icon_left, icon_top;

wmgr_getrectalloc(rootfd, tool_left, tool_top, icon_left, icon_top)
int rootfd;
abort •tool_left, •tool_top, •icon_left, •icon_top;

If you do a wmgr _aetrectalloc, make sure that all the values you are not changing were retrieved
with wmgr_getrectalloc. In other words, both procedures affect all the values.

Revision D of 7 January 1984 8-11

0

0

0

0

0

0

Appendix A

Rects and Rectlists

Thi• appendix describe• the geometric structure• used with the aunwindow layer and a full
description of the operations on these structures. Throughout aunwindow, images are dealt with
in rectangular chunks. Where complex shapes are required, they are built up out of groups of
rectangles. A rect is a structure that defines a rectangle. A rect/iat is a structure that defines a
list of rects.

The header files rect.h and rectliat.h are found in /uar/inc/ude/aunwindow/. The library that
provides the implementation of the functions of these data types are part of
/ uar/ lib/ libaunwindow.a.

Although these structures are presented in terms of aunwindow usage with pixel units, they are
really separate and can be thought of as a rectangle algebra package. Any application that
needs such a facility should consider using rects and rectlists.

A.1. Rects

The rect is the basic description_ of a rectangle, and there are macros and procedures to perform
common manipulations on a rect.

#define coord short

siruct rect {
coord
coord
short
short

};

rJeft;
r_top;
r_width;
r_height;

The rectangle lies in a coordinate system whose origin is in the upper left-hand corner and
whose dimensions are given in pixels.

A.1.1. Macros on Rects

The same header file defines some interesting macros on rectangles. To determine an edge not
given explicitly in the rect:

Revision D of 7 January 1984 A-1

Rects and Rectlists

#define rect_right(rp)
#define rect_bottom(rp)
struct rect •rp;

SunWindows Reference Manual

returns the coordinate of the last pixel within the rectangle on the right or bottom, respectively.

Useful predicates returning TRUE or FALSE are:

#define boot unsigned
#define TRUE 1
#define FALSE 0

rect_isn ull(r)
rect_includespoint(r,x,y)
rect_equal(rl, r2)
rect_includesrect(rl, r2)
rect_intersectsrect(rl, r2)

struct rect •r, •rl, •r2;
coord x, y;

r's width or height is 0
(x,y) lies in r
r1 and r.e coincide exactly
every point in r .e lies in r 1
at least one point lies in both r 1 and r.e

Macros which manipulate dimensions of rectangles are:

rect_construct(r, x, y, w, h)
etruct rect •r;
int x, y, w, h;

This fills in r with the indicated origin and dimensions.

rect_marginadjust(r, m)
struct rect •r;
int m·

'
adds a margin of m pixels on each side of r; that is, r becomes 2• m larger in each dimension.

rect_passtoparent(x, y, r)
rect_passtochild(x, y, r)

coord x, y;
atruct rect •r;

sets the origin of the indicated rect to transform it to the coordinate system of a parent or child
rectangle, so that its points are now located relative to the parent or child's origin. X and I/ are
the origin of the parent or child rectangle within ii• parent; these values are added to, or
respectively subtracted from, the origin of the rectangle pointed to by r, thus transforming the
rectangle to the new coordinate system.

A.1.2. Procedures and External Data for Rects

A null rectangle, that is one whose origin and dimensions are all 0, is defined for convenience:

extern struct rect rect_null;

The following procedures are also defined in rect.h:

atruct rect rect_bounding(rl, r2)

0

0

struct rect •rl, •r2;

0 This returns the minimal rect that encloses the union of r 1 and r.e. The returned value is a -

A-2 Revision D of 7 January 1984

0

·o

0

SunWindows Reference Manual

struct, not a pointer.

rect_intersection(rl, r2, rd)
etruct rect •rl, •r2, •rd;

computes the intersection or r1 and re, and stores that rect into rd.

boo! rect_clipvector(r, xO, yO, xl, yl)
etruct rect •r;
coord •xO, •yO, •xl, •yl;

Rects and Rectlists

modifies the vector endpoints so they lie entirely within the rect, and returns FALSE if that
excludes the whole vector, otherwise it returns TRUE.
Note: This procedure should not be used to clip a vector to multiple abutting rectangles. It
may not cross the boundaries smoothly.

boo! rect_order(rl, r2, sortorder)
etruct rect •rl, •r2;
Int sortorder;

returns TRUE if r 1 precedes or equals re in the indicated ordering:

#define RECTS_TOPTOBOTTOM 0
#define RECTS_BOTTOMTOTOP 1
#define RECTS_LEFTTORIGHT 2
#define RECTSJUGHTTOLEFT 3

Two related defined constants are:

#define RECTS_UNSORTED 4

indicating a "don't-care" order, and

#define RECTS_SORTS 4

giving the number of sort orders available, for use in allocating arrays and so on.

A,2, Rectlists

A rectliat is a structure that defines a list of rects. A number of rectangles may be collected into
a list that defines an interesting portion of a larger rectangle. An equivalent way of looking at
it is that a hi.rge rectangle may be fragmented into a number or smaller rectangles, which
together comprise all the larger rectangle's interesting portions. A typical application of such a
list is to define the portions of one rectangle remaining visible when it is partially obscured by
others.

Revision D of 7 January 1984 A-3

Rects and Rectlists SunWindows Reference Manual

atruct rectlist {
coord rl_x, rl_y;
struct rectnode •rl_head;
struct rectnode •rl_tail,
struct rect rl_bound;

};

atruct rectnode {
atruct rectnode •rn_next;
atruct rect rnJect;

};

Each node in the rectlist contains a rectangle which covers one part of the visible whole, along
with a pointer to the next node. Rl_bound is the minimal bounding rectangle of the union of all
the rectangles in the node list. All rectangles in the rectlist are described in the same coordinate
system, which may be translated efficiently by modifying rl_z and rl_g.
The routines that manipulate rectlists do their own memory management on rectnodes, creating
and freeing them as necessary to adjust the area described by the rectlist.

A.2.1. Macros and Constants Defined on Rectlists

Macros to perform common coordinate transformations are provided:

rlJectoffset(rl, rs, rd)
atruct rectlist •rl;
atruct rect •rs, •rd;

copies r, into rd, and then adjusts rd's origin by adding the offsets from rl.

rl_coordoffset(rl, x, y)
atruct rectlist •rl;
coord x, y;

offsets z and fl by the offsets in rl. For instance, it converts a point in one of the rects in the
rectnode list of a rectlist to the coordinate system of the rectlist 's parent.

Parallel to the macros on rect's, we have:

rl_passtoparent(x, y, rl)
rl_passtochild(x, y, rl)

coord x, y;
atruct rectlist •rl;

which add or subtract the given coordinates from the rectlist's rl_z and rl_JJ to convert the rl
into its parent's or child's coordinate system. ·

A.2.2. Procedures and External Data for Rectlists

An empty rectlist is defined, which should be used to initialize any rectlist before it is operated
on:

extern struct rectlist rl_null;

A-4 Revision D of 7 January 1984

0

0

0

0

0

0

SunWindows Reference Manual Rects and Rectlists

Procedures are provided for useful predicates and manipulations. The following declarations
apply uniformly in the descriptions below:

11truct
atruct
coord

rectlist •rl, •rll, •rl2, •rid;
rect •r;
x, y;

Predicates return TRUE or FALSE. Refer to the following table for specifics.

Table A-1: Rectlist Predicates

Macro Returns TRUE if

Contains only null rects rl_empty(rl)

rl_equal(rll, rl2) The two rectlists describe the same space identically -
same fragments in the same order

rl_includespoint(rl,x,y)

rl_equalrect(r, rl)

rl_boundintersectsrect(r, rl)

(:r, 11) lies within some rect of rl

rl has exactly one rect, which is the same as r

Some point lies both in r and in rfs bounding rect

Manipulation procedures operate through •ide-eflects, rather than returning a value. Note that
it is legitimate to use a rectlist as both a source and de,tination in one of these procedures. The
source node list will be freed and reallocated appropriately for the result.

Revision q of 7 January 1984 A-5

Rects and Rectlists SunWindows Reference Manual

Refer to the following table for specifics.

Procedure

rl_intersection(rll, rl2, rid)

rl_union(rll, rl2, rid)

rl_difference(rll, rl2, rid)

rl_coalesce(rl)

rl_sort(rl, rid, sort)
int sort;

rl_rectintersection(r, rl, rid)

rl_rectunion(r, rl, rid)

rl_rectdifference(r, rl, rid)

rl_initwithrect(r, rl)

rl_copy(rl, rid)

rl_free(rl)

rl_normalize(rl)

A-6

Effect

Stores into rid a rectlist which covers the intersection
of rll and r/2.

Stores into rid a rectlist which covers the union of rll
and rle.

Stores into rid a rectlist which covers the area of rll
not covered by rle

An attempt is made to shorten rl by coalescing some of
its fragments. An rl whose bounding rect is completely
covered by the union of its node rects will be collapsed
to a single node; other simple reductions will be found;
but the general solution to the problem is not attempt
ed.

rl is copied into rid, with the node rects arranged in
,ort order.

rid is filled with a rectlist that covers the intersection
of rand rl.

rid is filled with a rectlist that covers the union of r
and rl.

0

rid is filled with a rectlist that covers the portion of rl F'.,
w~~~~~ U
Fills in rl so that it covers the rect r

Fills in rid with a copy of rl.

Frees the storage allocated to rL

Resets rfs offsets (rl_z, rl_g) to be O after adjusting the
origins of all rects in rl accordingly.

Revision D of 7 January 1984

0

0

0

0

Appendix B

Sample Tools

This apPl'ndix contains sample tool code for writing your own tools. Code is provided for the
graphics window (gf:itool.c), which produces a shell subwindow and an empty subwindow in
which graphics programs can run, the pane tool (panetool.c), which produces multiple subwin
dows, the option tool (optiontool.c), which tests the option subwindow library, and the icon tool
(icontoo/.c), which is a bitmap editor for painting icons and cursors. The source files for these
and other tools are found in / u,r/ auntool/ arc/ •tool.c.

B,1, gfxtool.c Code

Code for gfztool.c follows.
fifnder lint
static char oeeoidO - 'O(f)gfxtool.e 1.5 83/10/18 Sun Micro';
fondit
/•
• Sun Micro8)'1tem•, Inc.
•I

I•
• Overview: Graphics Window: A shell subwindow and an empty
• subwindow in which graphic, progr&m11 can run.
•I

fineludo <oyo/typeo.h>
fineludo <oignal.b>
fineludo 'pixreet/pixreet.h'
fineludo 'pixroet/pix(ont.h'
finclude "pixroct/pr_util.h"
fincludo "pixrect/memvar.h"
fineludo "ounwindow/roet.h"
finelude "ounwindow /reetU.t.h"
finelude • ounwindow /pixwin.h"
fineludo "ounwindow/win_otruet.h"
finclude "ounwindow/win_environ.h"
finclude "suntool/icon.b"
finelude •suntool/tool.b"
finelude 'suntool/emptysw.b"
finclude 'ountool/ttysw.b"

st•tic short icjmage(256)-{
finclude • gfxtool.icon•
};
mpr_otatic(gfxie_mpr, 64, 64, I, ic_image);

Revision D or 7 January 1984 B-1

Sample Tools

static struct icon icon - {64, 64, (struct pixrect •)0, O, 0, 64, 64,
&gfxic_mpr, O, O, O, 0, (char •)O, (struct pixfont •)O,
ICON.JlKGRDGRY};

static int sigwinchcatcher{), sigchldca.tcher();

static struct tool •tool;

gfxtool_main(argc, argv)

{

int argc;
char .. argv;

char •toolname - "Graphics Tool 1.0" i
struct tooli,w •ttysw, •emptysw;
char name(WIN..NAMESIZE);

/•
• Create tool window

Sun Window• Reference Manual

•/
tool - tool_create(toolname, TOOL_NAMESTRIPEJTOOL_JlOUNDARYMGR,

}

static

B-2

(struct rect •)O, &icon);

/•
• Create rubwindows
•/

ttysw - ttyl!lw_createtoolsubwindow(tool, "ttysw",
TOOL_SWEXTENDTOEDGE, 200);

emptysw - eew_createtoolsubwindow(tool, "emptysw",
TOOL_SWEXTENDTOEDGE, TOOL_8WEXTENDTOEDGE);

I•
• Setup gtx window environment value.

•/
win_Cdtoname(emptyow• > to_ windowed, name);
we_oetgfxwindow(name);
/•
• Install tool in tree of windows
•I

signal(SIGWINCH, sigwinchcatcher);
oignal(SIGC!Il,D, oigchldcatcher);
tooUnotall(tool);
/•
• St&rt tty process

•I
if (ttyowJork(ttyow->ts_data, + + argv, &ttysw->to_io.tiojnputmaok,

&ttyaw->ta_io.tio_outputmu:k, &ttyaw->ts_io.tio_exceptmask) -- -1) {
perror(" gfxtool");
exit(!);

}
/•
• Handle input
•I

tooLselect(tool, I /• means wait for child process to die•/);

I•
• Cleanup
•/

tool_destroy(tool);
exit(O);

Revision D or 7 January 1984

0

0

0

0

0

0

Sun,Vindows Reference Manual

sigchld,atcher()
{

tooW,igchld(tool);
}

static
sigwinchcatcher()
{

tool_sigwinch(tool);
}

B.2. panetool.c Code

Code for the panetool.c follows.
fifndef lint
st•tic char scc,id0 - "C(f)panetool.c 1.8 83/10/18 Sun Micro•;
fendit

!•
• Sun Microsyeteme, Inc.
•!

!•
• Overview: Pane Tool: Sample program to illuotrate multiple
• 11ubwindow11.
•!

finclude <ey•/type,.h>
finclude <eys/time.h>
finclude <signal.h>
finclude • pixrect/pixrect.h"
finclude "pixrect/pixfont.h"
finclude "sunwindow/rect.h'
finclude "sunwindow/rectli,,t.h"
finclude "sunwindow/pixwin.h"
#include "sunwindow/winjnput.h"
#include "sun window /win_atruct.h"
#include "suntool/icon.h"
finclude "suntool/tool.h"
#include "suntool/mog,,w.h"
#include "suntool/menu.h"

static int sigwinchcatcher();

static struet tool •tool;

static char charbuf[4];

Sample Tools

struct menuitem m3jtems0 - { MENUJMAGESTRING, "Menu Item", O};
struct menu m3_menubody .. {

MENUJMAGESTRING, "M3", sizeor(m3jtems) / sizeor(struct menuitem), m3jtems, 0, 0 };

struct menuitem m2jtems0 - { MENUJMAGESTRING, "Menu Item•, O};
struct menu m2_menubody - {

MENUJMAGESTRING, "M2", sizeor(m2_items) / sizeor(struct menuitem),
m2jtems, &m3_menubody, O};

etruct menuitem mljtem•O - { MENUJMAGESTRING, "Menu Item", O};
struct menu ml_menubody - {

Revision D 9r 7 January 1984 B-3

Sa.mp le Tools Sun Windows Reference Manual

MENUJMAGESTRING, "Ml", sizeof(ml_iteme) / sizeof(struct menuitem),
mtjtems, &m2_menubody, O}; 0

struct menu •sta.cklmenutop :a &ml_menubody; _

struct menuitem m4_items0 = { MENUJMAGESTRING, "Menu Item", O};
struct menu m4_menubody {

MENUJMAGESTRING, "M4", sizeof(m4_items) / sizeoC(struct menuitem),
m4jtems, 0, 0 };

struct menuitem m5jtems0 - { MENUJMAGESTRING, "Menu Item", O};
struct menu m5_mcnubody - {

MENUJMAGESTRING, "MS", eizeof(m5_items) / sizeof(struct menuitem),
m5jtems, &m4_menubody, O};

otruct menuitem m6jtems0 - { MENUJMAGESTRING, "Menu Item", O};
struct menu m6_menubody - {

MENUJMAGESTRING, "M6', si1eof(m6_items) / si1eof(struct menuitem),
m6jtemo, &m5_menubody, O};

struct menu •stack2mcnutop - &:m6_menubody;
int menu toggle;

main(argc, argv)

{

int argc;
char **argv;

char •toolnamc - "Pane Tool 1.0 (A sample tool)";
struct toolsw •pa.neNW', •paneNE, •paneSW, •paneSE;
extern struct pix font •pf__eysj

/•
• Create tool window
•/

tool - tooLcreate(toolname, TOOL...)'IAMESTRIPEITOOLJIOUNDARYMGR,
(otruct rect •) O, (struct icon •) OJ;

/•
• Create meg eubwindowa

•/
paneNW - msgaw_createtoolsubwindow(tool, "paneNW",

100, 100, "Raw keyboard input", pC_oyo);
paneNE - msgaw_createtoolsubwindow(tool, "paneNE",

TOOL_$WEXTENDTOED0E, 100, .
"Key input here redirected to NW subwindow", pf_eys);

paneSW - msgsw_createtoolirubwindow(tool, "paneSW",
100, TOOL_SWEXTENDTOEDGE, "Display alternating menu otacka" ,pC_oyo);

paneSE - msgsw_createtool11ubwindow(tool1 "paneSE",
TOOL_$WEXTENDTOED0E, TOOL_$WEXTENDTOED0E,

B-4

"Tey moving oubwindow boundarioo", pC_oyo);
!• '
• Raw input and flushing
•l

{
struct inputmask im;
int paneNW _selected();

inputjmnull(&im);
im.im_fbgs I- IM_UNENCODED;
win_setinputmask(paneNW->ts_windowCd, &im, &im, WIN...)'IULLLINK);
paneNW->tsjo.tio_selected =- pa.neNW _selected;
}
/•
• Input redirection

Revision D oC 1 Januaey 1984

0

0

0

0

0

Sun Windows Reterence Manual

}

•/
{
struct inputma.sk im;

win_getinputmask(paneNE->ts_windowfd, &im, O);
win_setinputmask(paneNE->ts_windowfd, &im, (struct inputmask •) O,

win_fdtonumber(paneNW- > te_windowfd));
}
/•
• Multi menu stacks

•/
{
struct inputma.sk im;
int paneSW __eelected();

inputjmnull(&im);
win_eetinputcodebit(&im, MENUJIUT);
win_eetinputmaek(paneSW->ts_windowfd, &im, &im, WIN_NULLLINK);
paneSW->ts_io.tio__eelected - paneSW __eelected;
}
/•
• Install tool in tree ot windows

•/
signal(SIGWINOH, oigwinchc1tcher);
tooUnotall(tool);

/•
• Handle input

•/
tool__eelect(tool, O);
/•
• Cleanup
•/

tool_deotroy(tool);
exit(O);

paneNW__eelected(msgow, ibits, obits, ebito, timer)
etruct mspubwindow •megaw;

{

}

int •ibits, •obite, •ebita;
struct timeval utimer;

struct inputevent event;
int error;

error - inputJeadevent(mog,,w->mog_windowrd, &event);
Ir (error < 0) {

perror('panetool');
return;

}
cbarbuflOJ - 'c';
cbarbuf[IJ - ':';
cbarbuf[2) - (char) event.ie_code&OX7f;
charbufl3) - ' ';
m•gow...eetstring(meg,,w, cbarbuf);
•ibite - •obit.a: + •chits + O;

paneSW _selected(msgsw1 ibits, obits, ebits, timer)
struct msgsubwindow •msgsw;

Revision D or 7 January 1984

Sample Tools

B-5

Sample Tools

{

}

int •ibits1 •obits, •ebits;
struct timeval ••timer;

struct inputevent event;
int error;
extern struct menuitem •menu_displ&y();

error z::z input_readevent(msgsw->msg_windowrd, &event);
if (error < 0) {

perror(" panetool");
return;

}
(void) menu_di,,play((menutoggle)! &stacklmenutop: &stack2menutop,

&event, msgsw->msg_windowtd);
menutoggle - 1menutog:gle;
•ibite - •obita + •ebits + O;

etatic
eigwinchcatcher()
{

toolJigwinch(tool);
}

B.3. optiontool.c Code

Code for the optiontool.c follows.
fitndef lint
etatic char ,cc,id0 - "«l(f)optiontool.c 1.10 84/01/17 Sun Micro";
fendir

• Sun Microsyetems Inc.

• optiontool: test optionsw library

•!

i'include <•tdio.h>
i'includ• <•untool/tool_h,.h>
i'includ• <ountool/option,w.h>

sta.tic struct tool •toolj
static char •name - "Option Tool 1.1";
static struct toolew •tsw;
static ca.ddr_t OL!IWj

static struct pixwin opt_pixwin;

static caddr_t items {32);
static struct pixfont •font;
static struct rect r;

static unsigned

J3.6

dump_glyph(16) = {
Ox00002000, Ox00007000, OxOOOOD800, Ox00018COO,
Ox00030600, Ox00060C1F, Ox300C1819, OxOC183019,

Sun Window• Reterence Manual

0

0

0
Revi8ion D of 7 January 1984

0

0

0

Sun Windows Reference Manual

Ox0330701F, OxOOEOC87F, Ox0031847F, Ox029B026l,
Ox07EF6FED, OxlFE49012, Ox7FF89012, OxFFF8600C

};
static mprJtatic(dump..J>r, 32, 16, 1, dump_glyph);

static struct typed_pair title - { IM_TEXT, "Option Sub window Demo" };
static struct typed..J)air confirmJabel - { IM_TEXT, "Quittable" };
static struct typed....pair quit_label - { IM_TEXT, "Quit" };
static struct typed_pair verbose_label - { IM_TEXT, "Verbose" };
static struct typcd....pair dumpJabel - { IM_GRAPlllC, (caddr_t)&dump..J>r};
static struct typcd..J>air x_label - { IM_TEXT, "Flag X" };
static struct typed_J>air y_label - { IM_TEXT, "Flag Y" };
static struct typed....pair zJabel - { IM_TEXT, "Flag z• };
static struct typed....pair tl_label - { IM_TEXT, "Type here• };
static struet typcd_pair t2_label - { IM_TEXT, "Secret" };
otatic struct typed..J)air t3_label - { IM_TEXT, "lino I"};
static struct typed....pair t4Jabel - { IM_TEXT, "line 2"};
otatic struct typcd..J>air txtcmd_label - { IM_TEXT, "Report Text• };

static struct typed_pair enum_lab;l - { IM_TEXT, "Choose" };
eta.tic char Qchoice_valuesO - { "Zero", "One", "Many", 0 };
static struct typed_pair enum_choices - { IM_TEXTVEO, (ca.ddr_t)choice_values };

static int n,
confirmed - FALSE,
remove_which,
choooer(),
conftrmer(),
dumper(),
quitter(),
reporter(),
oigwinched(),
verboee,
verboaor(),
texter();

FILE •eysout - etderr;

int removedJtemlJj

main()
{

/•
struct item_place Pi

• Create tool window

•I
tool - tooLcreate(namo, TOOL_NAMESTRIPE, NULL, NULL);

/•
• Create eubwindow and fill it out
•/

tew - optaw_createtoolsubwindow(tool, "optsw",
TOOL_SWEXTENDTOEDGE, TOOL_SWEXTENDTOEDGE);

oew - tsw->ts_da.ta;
n-0;
items(n+ + J - optswJabel(osw, &title);
items(n+ + J - optsw_bool(oow, &conflrm_label, FALSE, conftrmer);
items[n+ + J - optsw_command(osw, &quitJabel, quitter)i
items[n+ +) - optsw_bool(osw, &verbose_la.bel, FALSE, verboser);

Revision D ~, 7 January 1984

Sample Tools

B-7

Sample Tools

items[n+ +) - optsw_command(osw, &dump_label, dumper);
itemsfn+ +) - optsw_enum(osw, &enumJabel, &enum_choices, O, 0, chooser);
iternsln+ +) - optsw_boo;(osw, &x_la.bel, TRUE, reporter);
ite1l\s[n+ +) - optsw_bool(osw, &y_Jabel, FALSE, reporter);
items[n+ +) - optsw_bool(osw, &z_Jabel, TRUE, reporter);

Sun Windows Reference Manual

items[n+ +) - optsw_text(osw, &tl_Jabel, "A text parameter", 0, NULL);
items[n+ +) - optsw_text(osw, &t2Jabel, "Shhhhb •.• ", OPT_TEXTMASKED, NULL);
remove_which .- n;

/•

items(n+ +) - optsw_text(osw, &t3Jabel, "", 0, NULL);
items(n+ +) - optsw_text(osw, &t4_Jabel, "", O, NULL);
items(n+ +] - optsw_command(osw, &txtcmd_la.bel, texter);

rect_construct(&p.rect, 1281 12, ·1, ·1); /• pixel po:sitioning •/
p.flxed.x - TRUE; p.flxed.y - TRUE;
optsw_setplace(osw, items(O), &p, FALSE);

p.rect.r_leCt - optsw_coltox(oew, O); /• character positioning•/
p.rect.r_top - ·1;
p.flxed.y - FALSE;
optew_setplace(osw, items[!), &p, FALSE);

removedjtems - optsw_removeitems{osw, items{remove_whichJ, 2, FALSE);

• Install tool in tree of windows
•/

I•

signal(SIGWINCH, sigwinched);
win_inoert(tool-> tLwindow!d);

• main loop

tooLselect(tool, O);

/•
• Cleanup
•/

}

tool_destroy(tool);
exit(O);

static
sigwinched()
{

toolJigwinch(tool);
}

static
conflrmer(sw, ip, value)
caddr_t ew;
caddr_t ip;
int value;
{

B-8

int result;

confirmed == value;
if (verbose) {

printf("Confirmation set to %d\n", confirmed);
}

Revision D or 7 January 1984

0

0

0

0

0

0

Sun Windows Reference Manual

}

static
reporter(sw, ip, value)
caddr_t ow;
caddr_t ip;
int valuej
{

int result;

int count;
count - (int)optaw_getvalue(itemo(6J, &re.ult) +

(int)optow_getva.lue(itemo(7J, &result) +
(int)optow _getv al ue (item, (SJ, &reoul t);

it (count -- 3) {
count - 2;

}
optaw_setvalue(sw, iteme(SJ, count);

}

l!ltatic
chooser(sw, ip, value)
caddr_t sw;
caddr_t ip;
int value;
{

int reeult;

ir (verbooe) {
printf(" Choice ,et to %d\n", va.lue);

}
}

eta.tic
dumper{,w, ip)
caddr_t
caddr_t
{

ow•
' ip;

int resulti

if (verbooe) {
optow_dump,w(etdout, ew, TRUE);

}
}

static
quitter(ew,ip)
caddr_t n;
caddr_t ip;
{

int rerult;

if (verbose) {
printr(" Quit invoked\n");

}
if (lconftrmed) {

if (verbose) {
printf("but not confirmed.\n");

}

Revision D or 7 January 1984

Sample Tools

B-9

Sample Toola

return;
}
tool_done(tool);

}

•tatic char buCl[1024J;
static char bul'2[1024[;
static struct string_buf etrl - { 1024, bufl };
static struct string_buf otr2 - { 1024, bul'2 };

static
texter(sw, ip)
caddr_t s\9;
caddr_t ip;
{

}

static

int result;

if (verbo,e) {

}

result - optow_getvalue(items[9J, &strl);
result - optow_getvalue(items[lO], &str2);
switch (optsw_getvalue(items[oJ, &result)) {

}

cue 0: printf('Mum'a the word.\n');

Cal!le 2:
cue 1:

break;
printf('Firot field: %0\n', buCI);
printf(' Second field: %0\n', bul'2);

if (removed_itemo 1- 0) {
optswJestoreiteme{osw, iteme(remove_which),

removedjtemo, mUE);
removed_item11 - Oi

} elee {

}

removed_item11 - optaw_removeiteme(oew, iteme(remove_which],
2, fflUE);

verboeer(sw, ip, val)
caddr_t sw, val;
caddr_t ip;
{

verbose - (int) val;
}

B.4. icontool.c Code

Code for the icontool.c follows.
illilnder lint
static char sccsid0 - '@(#)icontool.c 1.6 84/01/18 Sun Micro';
#endir
/•
• Sun Microsystems Inc .
•
•
•
•/

B-10

icontool: bitmap editor for icons & cursors

Sun Windows Reference Manual

0

CJ

0
Revision D of 7 January lfl84

0

0

0

SunW,ndows Reference Manual

,!!include <suntool/tool_hs.h>
tlin.clnde <sys/stat.h>
,jf.irduc.r: <stdio.h>
finclude <errno.h>
,!!include "patches.h"
,\\include <511ntool/msgsw.h>
finclude <suntool/optionsw.h>

ext~rn char •,rys_errlistO;
extern int ermo;

,l!deflne ICONIC
,l!deftne ICON_SIZE 8
,!ldeftne CURSOR
fdeflne CURS0R_5IZE

1

0
(!CO N_5IZE • 4)

,l!deflnc
,!ldefine
,!ldefine
,l!deftne
#define
#define
,l!deflne
fdeflne BIG

MSGJIEIGHT 24
PROOF _SIDE Q6
PROOF .)dARGIN 16
OPTIONSJ!EIGHTPROOF _SIDE
CANVAS...PISPLAY(CURSOR_SIZE • 16)
CANVAS.)dARGIN 16
CANVAS_SIDE (CANVAS...PISPLAY + 2 • CANVAS.)dARGIN)

2048

st.tic ujnt icon_array(128J;
mpr_et.a.tic(icon_pr, 64, 841 1, ieon_array);
etatic ujnt new_cureor_array(SJ;
mpr_sta.tic(new_cureor_pr, 16, 16, 1, new_cursor_array);
eta.tic struct cunor new_cunor - {

};

o, 0,
PIX_SRC • PIXJ)ST,
&:new_cursor_pr

eta.tic u_int main_cursor_array(SJ - {
Ox COOOEOOO, OxFOOOF800,
OxFCOOFOOO, OxQ0001800,
Ox 18000COO, OxOC000600,
Ox06000300, Ox03000100

}; .
mpr_static(main_eursor_pr, 18, 16, 1, main_cursor_arra.y);
static struct cursor m&in_cursor - {

};

!•

0, o,
PIX_SRC I PIXJ)ST,
&.main_cursor_pr

general tool area

fillclude "icontool.icon"
mpr_static(my _icon_pr, 64, 64, 1, icon_data);
static struct icon my _icon - {

};

TOOLJCONWIDTH, TOOLJCONHEIGHT, NULL,
{O, O, TOOLJCONWIDTH, TOOLJCONHEIGHT}.
&my_icon_pr, {O, 0, O, O}, NULL, NULL, 0

Revision D of 7 January 1984

Sample Tools

B-11

Sample Tools

static char
static struct rect
static struct tool

static

/•

tool_na.melJ - "Icon Tool 1.0";
tool_rect;

•tool;

sigwinched();

error message area.

static struct toolsw •ml!ILJWj

struct mspubwindow •msw;

/• painting area

static etruct tooli,w •canvas_sw;
static struct pixwin •canvas_pixwin;
eta.tic struct pixrect •eanvas_pr;
static struct pixrect •ftll_pr;
static int (•canvas_reader)();
static canvasJighandler();
static canvu_selected();
static canvae_basereader();
static canvas_traeker();
static set_canvae:_traeker();
static reset_canvas_reader();
static canvas_feedbaek();
static waitJeg&IJnouse();

/• result-di,,play area

static struct toolew •proor_sw;
static struct pixwin •proof_pixwin;
static struct pixrect •proot_pr;
static proofJighandler();

/• comma.nds and optiona area

static struct toolew •options_ew;
caddr_t osw;

•/

•/

•/

•/

/• labels for items in the order they occur; enum values appear below •/

caddr_t modejtem;
struct typed_pair modeJabel - {IM..TEXT, "Draw a" };
void mode_proc();

caddr_t
struct typed_pair

labeLitem;
nameJabel -

{IM_TEXT, "Left paint•, Middle eraseo " };

caddr-'t quitjtem;
struct typed_psir quit_lsbel - {IM..TEXT, "Quit' };
void quit_proc();

caddr_t load_item;
struct typed_pair load_label = {IM..TEXT, "Load" };

B-12

Sun Windows Reference Manual

0

0

0
Revi,,ion D of 7 January 1984

0

0

0

Sun Windows Reterence Manual

void load_proc();

caddr_t store_item;
struct typed_pair storeJabel - {IM_TEXT, "Store" };
void store_proc();

caddr_t fna.mejtem;
struct typed_pair llle_label - {IM_TEXT, "File" };

c&ddr_t fill_item;
struct typed_pair 61Uabel - {IM_TEXT, "Fill" };
void fill.proc();

caddr_t ftll_va.J.uejtem;
struct typed_pair fill_valueJabel - {n.LTEXT, "with" };
void fill_value_proc();

caddr_t invertjtem;
struct typed_pair invertJabel - {n.LTEXT, "Invert" };
void invert_proc();

caddr_t ftll_opjtem;
struct typed_pair fill_opJ•bel - {IM_TEXT, "Load / Fill ohould" };
void fill_op_proc();

caddr_t p&int_opjtem;
struct typed_pair paint_opJabel - {IM_TEXT, "Cursor op" };
void paint_op_proc();
int paint_op_removed - FALSE;

caddr_t bkgmd_voluejtem;
struct typed_pair bkgmd_valueJabel - {n.LTEXT, "Proo! background" };
void bkgrnd_proc();

Valuea for enume above

fdefine OP _OR 0
fdeflne OP .){OR 1

*define OP ..REPLACE o
#define OP _MERGE 1

fdetlne GR_WlUTE 0
fdetlne GR_GRAY25 1
fdeflne GR_ROOT_GRAY
fdetlne GR_GRAY50 3
fdetlne GR_GRAY'15 4
fdetlne GR...BLAOK 5

void
mode_proc(optaw, ip, val)
ca.ddr_t optsw;
caddr_t ip;
ujnt val;
{

set_state(val);
}

fdeflne IO_MODEOOUNT2

Revision D pf 7 January 1084

/• paint ope •/

/• load/ till ops •/

/• gray codes •/

2

Sample Tools

B-13

Sample Tools

char •mode_values~C_MODECOUNT+ I) = {"Cursor", "Icon" };
struct typed_pa.ir mode_choices - {IM_TEXTVEO, (caddr_t)mode_values };

,!'define IC_GRAYCOUNT6
char •gray_values~C_GRAYCOUNT+ I) = {

"White", "25%", "Root Gray" 1 "50%"i "75%", "Black" };
struct typed__pair gray_choices = {IM_TEXTVEC, (caddr_t)gray_values };

,!'define ICJ'OPCOUNT 2
char •fill_op_values~C_}'OPCOUNT+ I) - { "Replace", "Merge" };
struct typed__pair fill_op_choices - {IM_TEXTVEC, (caddr_t)fill_op_values };

fdefine IC_POPCOUNT 2
char •paint_op_values~C_POPCOUNT+ 1) - {"OR", "XOR" };
struct typed__pair paint_op_choices - {IM_TEXTVEC, (caddr_t)paint_op_values };

/• general globals

int errno;

static u_int cur....x, cur_y,
cur_op,
cell_count,
cell_.size,
sta.te - .. J; /• ,o first set__sl,&te really does •/

char file_ddaultU - "test.icon";
char file...name(l024);

struct pixtont •Cont;
FILE •eyeout - etderr;

main(arge, argv)
int arge;
cha.r ua.rgv;

•!

{
tool.;. tool_create(tool...name, TOOLJIAMESTRIPE, NULL, &my_icon);

B-14

Cont - pf_def&ult();
meg_ew - megsw_createtoolsubwindow(tool, "", -1, MSGJIEIGHT, "", Cont);
mow - (otruct m,g,ubwindow •)mog_,w·>tl!_data;

proof...ow - tool_createsubwindow(tool, "", PROOF _SIDE, PROOF _SIDE);
init__prooC();

options...ow - optow_createtoolsubwindow(tool, "", ·I, OPTIONSJIEIGHT);
init_optiono();

ca.nva.e_ew - tool_crca.tesubwindow(tool, "", -1, CANVAS_5IDE);
init_canvas();

fix_toolJect();
set_state(CURSOR);
fill_value__proc(NULL, NULL, GR_ROOT_GRAY);
bkgrnd__proc(NULL, NULL, GRJWOT_GRAY);
signal(SIGWINCH, sigwinched);
tool_install(tool);

Sun Windows Ref ere nee Manual

0

0

0
Revision D of 7 January 1984

0

0

0

Sun Windows Reference Manual

}

toouelect(tool, O);

tool_destroy(tool);
exit(O);

fix_tool_rect()
{

}

if (wmgr_iswindowopen(tool->tl_windowfd)) {
win-1etrect(tool-> tl_window!d, &tool_rect);

} else {
win-1etsavedrect(tool- > tl_window!d, &tool_rect);

}
tool_rect.r_width - 2•tool_borderwidth(tool) +

max(PROOF _SIDE+ optsw_coltox(osw, 64) +
tool_subwindowspa.cing(tool),
CANVAS_SIDE);

tool_rect.r.J,eight - MSGJIEIGHT
+ CANVAS_SIDE + PROOF _8IDE
+ toolJtripeheight(tool)
+ tool_borderwidth(tool)
+ 2•tool_11ubwindowspacing(tool);

if (rect_bottom(&tool_rect) >- 800) {
tool_rect.r_top ·- rect_bottom(&toolJect) • 799;

}
if (wmgr_iowindowopen(tool->tl_windowrd)) {

win_11otrect(tool- >tl_windowf d, &tool_rect);
} else {

win_11etsavedrect(tool· >tl_ windowfd, &toolJect);
}

set_ptate(which)
{

if (state -- which) {
return;

}
if ((•tate - which) -- CURSOR) {

canvu_pr - &new_cureor_pfj
cell_pizo - CURSOR_SIZE;
if (paint_opJemoved) {

optswJe11toreiteme(ol!lw1 paint_opjtem, 1, TRUE);
paint_opJemoved - FALSE;

}
} else {

canvu_pr - &icon_pr;
celuize - ICON_SIZE;
if (!paint_opJemoved) {

optswJemoveitems(osw, paint_opjtem, 1, TRUE);
paint_opJemoved - TRUE;

}

}
optsw_setvalue(osw, !Ilodejtem, which);
set_curzor(); ,
cell_oount - CANV AS.J)ISPLAY / cel1_11ize;
paint_proof();
paint.,.canvas();

Revision D of 7 January 1984

Sample Tools

B-15

Sample Tools

}

set_cursor()
{

}

iC (state == ICONIC) {
win_setcursor(proof _sw- > ts_windowf d, &ma.in_cursor);

} else {
win_setcursor(proofJw- > ts_windowf d, &mew _cursor);

}

static
sigwinched()
{

tool_sigwinch(tool);
}

nullproc()
{

return;
}

int (•saved_h&ndler)();
int saved_mask;
int clear__message();

bitch(Cormat, argl, arg2, arg3, arg4, arg5, arg6, arg7, arg8)
char •format, •argl, •arg2, •arg3, •arg4, •arg5, •arg6, •arg7, •arg8;
{

}

char buC(256);

sprintf(buf,format, argl, arg2, arg3, arg4, a.rg5, arg6, arg7, arg8)i
msg,w _setstring(mow, bur);
saved_maek - tool•>tljo.tio_inputmask;
tool->tljo.tiojnputmask - (I<< tool->t!_windowCd) +

(I<< canvas_sw->ts_windowCd) +
(1 << options_sw->ts_windowCd);

ir (too~>tljo.tio_selected r- clear__message) {
saved_handler - tool .. >tl_io.tio_selected;

}
tool->tlJo.tio_selected - clear_message;

clear_message(datum, ibits, obits, ebits, timer)
caddr_t datum;
ujnt •ibits, •obits, •ebits;
1:1truct timeval ••timer;
{

}

/•

msgsw _setstring(msw, "");
tool->tljo,tio_selected - saved_ha.ndler;
tool~ >tl_io.tio_inputmask .. saved_mask;

• Proor Section .,
init__J>roor()

B-16

Sun Windows Reference Manual

0

0

0
Revision D oC 1 January 1984

0

0

0

SunWindowa Reference Manual

{

}

strurt inputmask mask;

inpuUmnull(&m .. k);
win..,.tinputm .. k(proor_sw->t•_windowrd, &mask, NULL, WIN_NULLLINK);
pl'OQf;JIW·>tsjo.tio_liandlesigwinch - proof_oighandler;
procipw-> ts_destro;y - nullproc;
pl'OQf,-Pixwin - pw _open(prooCJw· > to_ window!d);

etatic
proof_sighandler(ow_dataJ
caddr_t . nr_data;
{

}

pw_4amaged(proof_pixwinJ;
pain~roof();
pw_donedamaged(proof_pixwinJ;
proor,..w->ts_width - win__getwidth(proofJw->to_windowfd);
proo!,..w->ts_lieight - win__getheight(proofJw· > ts_window!dJ;

rint_proo~

}

int x, Yi

for ~ - O; ;y < proo!;Jlw- > ts_lieight; y + - 64J {
for (x - O; x < proofJw->ts_width; x + - 64) {

pw_write(proof_pixwin, x, y, 64, 641

PIJLSR C, proof_pr, 0, OJ;

}
}
if (1t~\e -- ICONIC) {

paint_proofjcon();
}

paint_proofjcon()
{

}

pw_write(proof_pixwin, PROOF .),{ARGIN, PROOF .),{ARGIN, 64, 64,
PDl.SRO, &icon_pr, 0, OJ;

/•
• Option• aubwindow section
•/

init_optionll{)
{

win_eetcursor(optionsJw->ts_windowfd, &main_cursor);

01w - optioneJw->ta_data;

modejtem - optsw_enum(osw, &modeJabel, &:mode_choices,
O, CURSOR, mode_procJ;

start_newJine(modejtemJ;

labeUtem - optsw_label(osw, &name_labelJ;

quit_item - optsw_command(osw, &quitJabel, quit_proc);

Revision D of 7 January 1984

Sa.mple Tools

B-17

Sample Tools

}

loadjtem - optsw_command(osw, &load_label, load_proc);
start_newJine(loadjtem);

storejtem - optsw_command(osw, &storeJabel, store_proc);

fnamejtem ~ optsw_text(osw, &file_label, file_default, 0, NULL);

filljtem - optsw_command(osw, &filUabel, fill...J)roc);
start_newJine(filljtem);

fill_value_item - optsw_enum(osw, &fill_valueJabel,
&gray _choices,
0, 2, fill_value_Jlroc);

invert_item - opt.sw_command(osw, &invertJabel, invert_proc);

fill_opjtem - optow_enum(osw, &fill_op_label,
&fill_op_choicee,
0, 0, NULL);

start_newJine(fill_opjtem);

paint_opjtem - optl!W_enum(osw, &paint_op_label,
&paint_op_choices,
0, l, paint_op_proc);

bkgrnd_value_item - optsw_enum(osw, &bkgrnd_valueJabel,
&gray _choices,
O, 2, bkgmd...Jlroc);

start_newJine(bkgrnd_value_item);

otartJ>ew_line(item) /• opeciaI-c .. e routine for legibility •/
caddr_t item;
{

}

struct item_place Pi

rect_cone:truct(&p.rect, O, -1, -1, -1);
p.flxed.x - TRUE;
p.fixed.y - p.fixed.w - p.fixed.h - FALSE;
optsw_setpla.ce(osw, item, &p, O);

/• handlers !or the various option items, in their creation order •/

void
quit_proc(optsw, ip)
ca.ddr_t optswj
ca.ddr_t ip;
{

}

void

B-18

msgsw _setstring(msw,
"Please confirm with the left mouse button, or cancel with right or middle.");
if (cursor_confirm(canvas_sw->ts_windowfd)) {

tool_done(tool);
} else {

bitch(" Quit cancelled.");
}

SunWindows Reference Manual

0

0

0
Revision D or 7 January 1984

0

0

0

SunWindowo Reference Manual

load.J>roc(opt.ow, ip)
caddr_t optow;
caddr_t ip;
{

int c;
u_int count, data.[256} 1 •dp, result;
u_int op, mode, chunks;

fdeftne SHORT_CHUNKS2
fdeftne LONG_CHUNKS I

etruct strinLbuf fileJ1ame_buf;
FU.E •fd;

ftle_name_buf.limit - 1024;
ftle_name_buf.data. - Ole_name;
reault - optew_getvalue(fname_item, &ftle_name_buf);
if (reoult < O) {

}

bitch("Trouble: icontool couldn't read the filename");
oleep(IO);
exit(·!);

rd - fopen(ftle_name, "•");
if (fd -- NULL) {

bitch("Sorry, couldn't open %o", ftle_name);
return;

}
while ((c- getc(fd)) t- '{') { /• matching } •/

}

if {c--EOF) {
bitch(" Sorey, I need an array of ohort.o or unoignedo");
return;

}

dp - data;
count -o;
do { remit - focanf(fd, " Ox%X, •, dp+ +);

count++;
} while (reoult -- I);
fclooe(fd);

owltch (--count) {
cue 8: mode - CURSOR;

chunks - LONG_CHUNKS;
break;

cue 10: mode - CURSOR;
chunko - SHORT_CHUNKS;
break;

cua 128: mode - ICONIC;
chunks - LONG_CHUNKS;
break;

cue '250: mode - ICONIC;
chunko - SHORT_CHUNKS;
break;

default: bitcb{"Sorey, I don't understand that array.•);
retum;

}
op - optew,.lletvalue(ftll_op_item, &result);
if {mode -- CURSOR) {

dp - new_cursor_array;
} eloo {

dp - icon_array;

Revleion D gf 7 January 1984

Sample Tools

B-19

Sample Tools

}

static

}
if (chunks -- LONG_CHUNKS) {

if (op -- OP JtEPLACE) {
replaceJongs(dp, data, count);

} else {
mergeJongs(dp, data, count);

}
} else {

if (op -- OP JtEPLACE) {
replace_shorts(dp, data, count);

} else {
merge_ehorte(dp, data, count);

}
}
state - ·1;
oet_otate(mode);

replace_longs(target, l!lource, count)
int •target, •source, count;
{

while (count-- > 0) {
target[countl - source[countl;

}
}

static
merge_longs(target, source, count)
int •target, •source, count;
{

while (count-- > 0) {
target[countl I- oource[countl;

}
}

Sta.tic
replace_shorte(target, eource, count)
int •target, •source, count;
{

}

static

while (count-- > 0) {

}

target[count/2] - oource[countl;
target[count/2] I- (oource[count-11 < < 16);
count -- l;

merge_shorts(target, source, count)
int •target, •source, count;
{

}

void

B-20

while (count-- > 0) {

}

target[count/2] I- source[countl;
target[count/2] I- (source[count-1] < < 16);
count -- 1;

Sun Window• Reference Manual

0

0

0
Revision D of 7 January 1984

0

0

0

Sun Windows Reference Manua.l

store_proc(optsw, ip)
caddr_t optsw;
ct.ddr_t ip;
{

}

void

int
u_int
char

i, limit, result, size;
•data;

struct string_buf
FILE

•tokenj
file_name_buf;

•Id;
struct stat otat_buf;

fileJ>ame_buC.limit - 1024;
file_name_buf.data - file_name;
if (state -- CURSOR) {

size ca 16;
data - new_cursor_array;
token - 11 cursor";

} else {

}

Bise - 64;
data - icon_array;
token - "icon";

result - optsw_getvalue(fname_item, &fll'e_name_buf)j
if (stat(ftle_name, &stot_buf) -- ·I) {

if (errno I- ENOENT) {

}

bitch(" Sorey, %•", syo_errlist(errno));
return;

} else { /• stat succeeded; file exists •/
bitch("%s existe; pleaee confirm overwrite/', ftle_n&me);
if (lcureor_conftrm(canvao_sw->te_window!d)) {

return;
}

}
Id - !opon(ftleJ>am•, "w");
if (Id -- NULL) {

}

bitch("Sorry, can't write to %e", ftle_name);
return;

!printr(rd, "\nstatic unoigned%e_data(%d) - {\n",
token, ei1e • ei1e / 32);

limit - Bise • size / 128;
for (i-0; i<limit;) {

}

fprintf(fd, "Ox%-0SX, Ox%-OSX, Ox%-0SX, Ox%-08X',
data(O), data(!), data(2), data(3));

data+- 4;
ii(++ i < limit) {

fpute(" ,\n", Cd);
}

fputs("\n};\n", Id);
fclose(fd);

flll_proc(optirw, ip, va.1)
{

Revision D ~r 7 January 1084

Sample Tools

B-21

Sample Toois Sun Window• Reference Manual

}

void

int op, x, y 1 result;

switch (optsw_getvalue(filLopjtem, &result)) {
case OP _REPLACE: op - PIX..SRC; break;
case OP _MERGE: op - PIX..SRC I PIXJ)ST; break;
default: bitch("Trouble: fill doesn't know what to do.");

}
for (y - O; y < cell_count; y + - 64) {

for (x - O; x < cell_count; x + - 64) {
pr_rop(canvas_pr, x, y, cell_count, cell_count1

op, 611..pr, O, O);
}

}
paint_canvas();
if (•tats -- ICONIC) {

paint_proofjcon();
} el .. {

set_cursor();
}

fill_value_proc(optsw, ip, val)
{

switch (val) {
case GR_WlilTE: flll_pr - &wbite_patch;

break;
case GR_GRAY25: 611..pr - &gray25_patch;

brea.k;
case GR_ROOT_GRAY: fill_pr - &root_gray_patcb;

break;
case GR_GRAY50: fill_pr - &gray50_patch;

brea.k;
case GR_GRAY75: flll_pr - &gray75_patch;

break;
case GR...BLACK: ftll_pr - &black_patcb;

breakj
default: flll_pr - &root_gray _patch;

}
}

void
invert_proc()
{

}

void

prJop(canva.e_pr, O, 01 cell_count, cell_count,
PIX,_NOT(PIXJ)ST), O, O, O);

paint_canvas();
if (state -- ICONIC) {

paint_proofjcon();
} else {

set_cursor();
}

pa.int_op_proc(optsw, ip, val)
caddr_t optsw;
ca.ddr_t ip;
ujnt val;

B-22 Revision D of 7 Janua,y 1084

0

0

0

0

0

0

Sun Windows Reference Manual

{

}

void

u_int op;

ir (val -- OP .){OR) {
new_cursor.curJunction - PIX...SRC • PIXJ)ST;

} else {
new_cursor.curJunction - PIX...SRC f PIXJ)ST;

}
set_cursor();

bkgmd_proc(optsw, ip, val)
{

switch (val) {
case GR_W!IlTE: proof_pr - &;white_patch;

break;
case GR_GRAY25: proof_pr - &gray25_patch;

break;
c .. e GR~OOT_GRAY: proof_pr - &root_gray_patch;

break;
case GR_GRAY50: proof_pr - &gray50_patch;

break;
case GR_GRAY75: · proof_pr - &gray75_patch;

break;
case GRJILACK: proof_pr - &black_patch;

break;
default: proof_pr - &root_gray _patch;

}
paint_proof();

}

• Canvas Section

•/
init_canvas()
{

}

static

struct inputmuk muk;

canvas_reader - canvu_basereader;
canvas_pixwin - pw_open(canvasJw->ts_windowfd);
ca.nvas_ew->te_io.tioJelected - canvas_eelected;
canvas_sw- >to_io.tioJ,andleoigwineh - eanvas_sighandler;
eanvas_ow- > to_deotroy - nullproe;

input_imnull(&mask);
win_ .. tinputeodebit(&mask, MSJ,EFT);
win_setinputeodebit(&mask, MS_MIDDLE);
win_setinputeodebit(&mask, LOC.}dOVEW!IlLEBUTDOWN);
win_oetinputeodebit(&mask, LOC_8Tll,L);
win_oetinputeodebit(&mask, LOC_WINEXIT);
mask.im..Jlags f- IM...NEGEVENT;
win_setinputmask(eanvas_sw->ts~windowtd, &mask, NULL, WIN_NULLLINK);
win_eetcursor(canv&BJW-> ts_ windowf d, &main_eursor);
cur_x - cur_y - -1; ·

Revision D of 7 January 1084

Sample Tools

B-23

Sample Tools

canvas_selected(nullsw, ibits, obits, ebits, timer)
ca.ddr_t •nullsw;
int •ibits, •obits, •ebits;
struct timeval •timer;
{

}

struct inputevent ie;

if (inputJeadevent(canvas_sw->ts_windowtd, &ie) -- -1) {
penor("icontool input failed"};
abort();

}
(•canvasJeader){ &ie);
•ibite - •obits - •ebits - O;

static
ca.nvas_buereader(ie)
struct inputevent •ie;
{

}

if (win_inputnegevent(ie)) {
return;

}
•witch (ie->ie_code) {

}

c&8e MS_I,EFT: cur_op - I;
break;

c&8e MS_MIDDLE: cur_op - O;
break;

default: return; /• ignore all other input •/

set_canvas_tracker();
canv .. Jeedback(ie);

static
canvas_tracker(ie)
struct inputevent •ie;
{

B-24

if (win_inputnegevent(ie)) {
switch (ie- > ie_code) {

}

}

c .. e MS_I,EFT: /• mouse button up
case MS_MIDDLE:

re11et_canvu_reader();
if (otate -- IOONIO) {

paint_proor_icon();
}

return;

switch (ie->ie_code) {
C&8e LOO_WINEXIT: reset_canvasJeader();

if (state -- IOONIO) {
paint...J>rooUcon();

}
return;

case MS_LEFT: /• two buttons down!
case MS_MIDDLE: cur_op - -1;

case LOO_STILL:

ca.nva.s_reader - wait_legal_mouse;
return;

Sun Windows Reference Manual

0

0

•I

•/

0
Revision D or 7 January 1984

0

0

0

Sun Windows Reference Manual

}

case LOC..),{OVEWIIlLEBUTDOWN:
canvasJeedback(ie);
return;

} /• ignore all other input •/

static
waitJegal_mouse(ie)
etruct inp1,1tevent •ie;
{

}

if (ie->ie_code -- LOC_WINEXIT) {
reeet_eanvaeJea.der();
return;

}
if (winjnputnegevent(ie)) {

switch (ie->ie_code) {
case MS.J,EFT: cur_op - O;

break;
case MSJd)DDLE: cur_op - l;

default:
}

set_canvas_tracker();
canvasJeedback(ie);
}

break;
return;

static
set_canvae_tracker()
{

}

cur_x - eur_y - -1;
canvas_reader - canvu_tra.ckerj

static
reset_canvas_reader()
{

}

canvu_reader - canvu_baaereader;
cur_op - -1;

eta.tic
canvasJecdback(ie)
struct inputevent •le;
{

register int new..)(, new_y, color;

if (ie->ie_code -- LOO_$TILL && state -- ICONIC) {
paint_prootjcon();
returnj

}
if (ie->ieJocx < CANVASJ,fARGIN II ie->ieJocy < CANVASJ,fARGIN) {

return;
}
new_x - (ie->ieJocx • CANVASJ,1ARGIN) / cell.J,iae;
new_y - (ie->ieJocy • CANVASJ,1ARGIN) / cell..11iae;
if (new_x >- celLcount II new_y >- cell_count) {

return;
}

Revision D or 7 January 1984

Sample Tools

B-25

Sample Tools

}
static

color - pr_get(canvas_pr, new_x, newJ);
iC (new_x -- cur_x && new_y -- cur_y && cur_op -- color)

return;
cur_x - new_x;
cur_y ...,. new_y;
paint_cell(new_x, newJ, cur_op);
pr_put(eanvas_pr, new_x, new_y, cur_op);
ir(state -- CURSOR) {

set_cursor();
}

canv .. _sighandler()
{

}

pw_damaged(canvas_pixwin);
paint_eanvas();
pw_donedamaged(canvas_pixwin);

paint_canvu()
{

}

register int x, Yi
struct rect r;

pw_writebackground(canvu_pixwin, 0, O, BIG, BIG, PIX....CLR);
r.r_left - CANVAS.MARGIN;
r.r_width - cell_count • cell_size;
r.r_height - cell_size;
pw_vector(canvas_pixwin, CANVAS_MARGIN, CANVAS...MARGIN,

rectJight(&r), CANVAS_.MARGIN,
PIX....SET, I);

pw_vector(canvu_pixwin, CANVAS...MARGIN, CANVASJ.{ARGIN,
CANVAS.MARGIN, rectJight(&r),
PIX....SET, !);

for (y - O; y < cell_count; y+ +) {

}

r.r_top - CANV AS_.MARGIN + cell_sile • y;
pwJock(canvu_pixwin, &r);
for (x - O; x < ce!Lcount; x+ +) {

if (pr_get(canvM_pr, x,y)) {
paint_c•ll(x, y, !);

} } '

pw_unlock(canvJ_pixwin);

r.r_top - CANVAS_.MARGIN;
r.r_width + -1;
r.r_heig:ht. - cell_count • cell_size + 1;
pwJock(canvas_pixwin1 &r);
pw_vector(canvM_pixwin, rectJight(&r), CANVAS...MARGIN,

rect_right(&r), rect_bottom(&r),
PIX....SET, I);

pw_vector(canvas_pixwin, CANVAS...MARGIN, rect_bottom(&r),
rectJight(&r), rect_bottom(&r),
PIX,_SET, !);

pw_unlock(canvas_pixwin);

paint_cell(x, y, color)
int x, y, color;
{

B-26

Sun Windows Reference Manual

0

0

0
Revision D of 7 January 1984

0

0

_O

Sun Windows Reference Manual

}

register int dx, dy, dim;

dx - CANV AS.)dARGIN + cell_size•x + I;
dy - CANVAS.)dARGIN + cellJize•y + I;
dim - ceU..,.i .. - I;
pw_write(canvas_pixwin, dx, dy, dim, dim, PIX_SRC,

{color! &graySO_paich: &whiie_paich), I, I);

Revision D of 7 January 1984

Sample Tools

B-27

0

0

01

0

0

0

Appendix C

Sample Graphics Programs

Use these sample programs as templates for your own graphics programs. Included is code for a
bouncing ball demonstration (bouncedemo.c) and for a "movie camera" program (framedemo.c,
which displays files sequentially like movie frames for producing a rotating globe for example.
The source files for these and other graphics demos are found on / u,r/ auntool/ arc/ •demo.c.

C.1. bouncedemo.c Code

Code for the bouncedemo.c follows.
*ifndef lint
statie char sccsid0 - "C(f)bouncedemo.c 1.5 83/08/28 Sun Micro•;
fendir

/•
• Sun Microeystemo, Inc.
•/

I•
• Overview: Bouncing baU demo in window
•/

#include <eys/types.h>
#include "pixreet/pixreet.h"
finclude "ounwindow/reet.h"
finclude • ounwindow /rectlist.h"
finelude •ounwindow/pixwin.h"
flnclude •ountool/gfxaw.h'

main(argc, argv)

{

int arg~;
char ~•argv;

short x, y, vx, vy, 1, ylutcount, ylutj
short Xmax, Ymax, size;
struct rec:t reet;
struet gfxsubwindow •gfx - gfxsw_init(O, argv);

Restart:
win_getsize(gfx- > gfx_ windowfd, &reel);
Xmax - reelJight(&reet);
Ymax - reet_bottom(&reet);
if (Xmax < Ymax)

Revision D of 7 January 1984 C-1

Sample Graphics Programs

size - Xmax/211+ 1;
else

size - Ymax/29+ 1;
x-rect.r_left;
y-rect.r_top;
vx-4;
vy-0;
yla.st-0;
yla.stcount-0;
pw_writebackground(glx->gfx.,J>ii<win, O, 0, rect.r_width, rect.rj,eight,

PIX..SRC);
while (gfx- > gfx__reps) {

if (gfx->gfx_ftags&GFXJ)AMAGED)
gfxsw_liandlesigwinch(gfx);

ir (glx->gfx.Jlags&GFX,JiESTART) {
gfx->gfx.Jlags &- "GFX,JiESTART;
goto Reeta.rt;

}
ir (y--yl..iJ {

ii (ylaetcount+ + > 6)
goto Reset;

} ei.e {
ylaet - Yi
ylu:tcount - O;

}
pw_writebackground(grx->glx.,J>ii<win, x, y, l!i1e, l!i1e,

PIX__NOT(PDU>ST));
x-x+vx;
ir(x >(Xmax-si1e)) {

/•
• Bounce off the rigM edge
•/

x-=2•(Xmax-size)-x;
vx- -vx;

} 01"0 ii (x <rect.rJeft) {
/•
• bounce off the left edge

•/

}
vy-vy+ 1;
y-y+vy;
ii (y>-(Ymax-l!i1e)) {

/•

}

• bounce off the bottom edge
•I

y-Ymax-eize;
if (vy<sizo)

vy-1-vy;
else

vy-.vy / size - vy;
if (vy==O)

goto Reset;

ror (z=O; •<=1000; z+ +);
continue;

Reset:
ir (--grx->gfx__repo <- 0)

C-2

Sun Windows Reference Manual

0

0

0
Revision D or 7 January 1984

0

Sun Windows Reference Manual

}

break;
x-rect.rJeft;
y-reet.r_top;
vx-4;
vy-o;
ylast-0;
ylastcount==O;

}
glxsw_done(gfx);

C.2. fra.medemo.c Code

Code for the framedomo.c follows.
#ifndef lint
static char sccsidD - "O(f)framedemo.c 1.10 84/01/11 SMI";
fendif

!•
• Sun Microsystems, Inc.
•/

!•
• Overview: Frame dieplayer in windows. Reads in all the
• files of form "frame.xxx" in working directory &
• displays them like a movie.
• See constants below for limits. 0 •/

0

finclude < otdio.h >
finclude < oye/typeo.b >
#include <oy•/ftle.b>
finclude <oys/time.b>
finclude "pixrect/pixrect.h"
finclude 'pixrect/pr_util.b"
finclude 'pixrect/bwlvar.h"
#include • pixrect/memvar.h"
#include • eunwindow /reet.h"
#include • eunwindow /rectlist.h"
finclude "eunwindow /pixwin.h'
#include •eunwindow/win_input.h"
finclude • eunwindow /win_otruet.h"
finelude • euntool/gfxow.h"

#define
fdeflne
#define
#define
#define

MAXFRAMES 1000
FRAMEWIDTH • 258
FRAMEHEIGHT 258
USECJNC 50000
SECJNO I

static struct pixrect •mpr!MAXFRAMES);
static struct timeval timeout - {SECJNC,USECJNC}, timeleft;
static char sl) - • frame.xxx";
static etruct gfxsubwindow •gf'x;
static int frames, framenum, xima.ge, yimage;
static struct rect rect;

Revision D of 7 January 1984

Sample Graphics Programs

C-3

Sample Graphics Programs

main(argc, argv)
int argc;
char **argv;

{

}

int fd, framedemo_selecud();
struct inputmask iini

for (frames - O; frames < MAXFRAMES; frames+ +) {
sprintf(&s[6], "%d", frames+ !);
Cd - open(•, OJWONL Y, O);
if (Cd -- -1) {

break;
}
mpr[frames) - mem_create(FRAMEWIDTH, FRAMEHEIGHT, I);
read(fd, mpr_d(mpr[frames))->mdjmage,

FRAMEWIDTH•FRAMEHEIGHT/8);
close(fd);
}

i! (frames -- OJ {
printr('Couldn't find an:r 'frame.xx' flies in working director;r\n');
return;

}
/•
• Initialise gfxsw ("take over" kind)
•I

gfx - g!xsw_init(O, argv);
/•
• Set up input muk
•/

inputjmnull(&im);
im.im_flags I- IM....ASCil;
gfxsw_eetinputmuk(gfx, &im, &im, WIN...NULLLINK, 1, OJ;
I•
• Main loop

•/
framedemo_nextframe(l);
timelett - timeout;
gfxsw_eelect(gfx, framedemo_selecud, O, O, O, &timeleft);

/•
• Cleanup
•/

g!xsw _done(gfx);

tramedemo_seleeted(gtx 1 ibits, obits, ebits, timer)
struct gtxsubwindow •g(xj

{

C-4

int •ibits, •obits, •ebits;
struet timeval ••timer;

it ((•timer && ((•timer)->tv_sec -- 0) && ((•timer)->tv_usec -- 0)) II

}

(g!x·>g!x..flags & GFX.,JtESTART)) {
/•
• Our timer expired or restart is true so show next frame

•/
it (gtx- > gtx_r.ps)

framedemo_next!rame(O);
else

gtxsw_selectdone(gtx);

ir (•ibits & (I<< g!x->gtx_windowrd)) {

Sun Windows Reference Manual

0

0

0
Revision D or 7 January 1984

0

0

0

Sun Windows Reference Manual

struet input.event event;

/•
• Read input from window
•I

ir (inputJeadevent(gfx->gfx_windowfd, &event)) {
perror(" tra.medemo");
return;

}
switch (event.ie_code) {
cue 'r: /• faster usec timeout •/

if (timeout.tv_usec >- USECJNC)
timeout.tv_uaec -- USECJNC;

else {

}
break;

ir (timeout.tv_sec >= SECJNC) {
timeout.tv_sec ·- SEOJNC;
timeout.tv_usec - 1000000-USECJNC;

}

cue 'a': /• slower usec timeout •/
if (timeout.tv_usec < 1000000-USECJNC)

timeout.tv_uaec + - USECJNC;
else {

}
. break;

timeout.tv_usec - O;
timeout.tv_sec + - 1;

cue 'F': /• taster aec timeout•/
if (timeout.tv_aec >- SECJNC)

timeout.tv_eec -- SECJNC;
break;

case 'S': /• elower ••c timeout•/
timeout.tv_sec + - SECJNC;
break;

cue 'I': /• Help •/

Sample Graphics Programs

printf("'s' slower usec timeout\n'r faster usec timeout\n'S' slower sec timeout\n'F' faster sec timeout\n");
I• ..

}

• Don't reeet timeout

•I
return;

default:
gfxewjnputintorrupto(gfx, &event);

}
}
•lblt1 - •obito - •obite - O;
timeleft - timeout;
•timer - &timeleft;

framedemoJ1ex tframe(ftrsttime)

{
int ftrsttime;

int restarting - gfx->gfx__ftags&GFX,,,RESTART;

if (ftrsttime II restarting) {
gfx->gfx__ftags &- "GFX,,,RESTART;
wi~et1i1o(gfx- > gfx_windowf d, &rect);
ximage - rect.r_width/2-FRAMEWIDTH/2;

Revision D of 1 Januaey 1984 C-5

Sample Graphics Programs
Sun Windows Rererence Manual

}

C-6

}

yimage = rect.r_!ieight/2-FRAMEHEIGHT/2;
pw_writebackground(gfx->gfx..J)ixwin, O, O,

rect.r_width, reet.r_lieight, PIX_CLR);

ii (lr&menum >- frames) {
tramenum - O;
gfx->glx_;ep•·;

}
pw_write(gfx- >glx..J)ixwin, ximage, yimage, FRAMEWIDTH, FRAMEHEIGHT,

PIX..SRC, mpr(lramenumJ, 0, OJ;
ir (!restarting)

Cr&menum+ + ;

Revision D of 7 January 1984

0

0

0

0

0

0

Appendix D

Programming Notes

Here are useful hints for programmers who use any of the p1'zrect, aunwindow or auntool
libraries.

D.1. What Is Supported?

In each release, there may be some difference between the documentation and the actual pro
duct implementation. The documentation describes the supported implementation. In general,
the documentation indicates where features are only partially implemented, and in which direc
tions future extensions may be expected. Any necessary modifications to Sun Windows are
accompanied by a description of the nature of the changes and appropriate responses to them.

D.2. Program By Example

We recommend that you try to program by example whenever possible. Take an existing pro
gram similar to what you need and modify it. Appendix B contains some sample tools and
Appendix C contains some sample graphics programs. The source for these and other sample
tools and graphics programs are available on /u,r/auntaol/arc/•.c.

'

D.3. Header Files Needed

If you have problems finding the necessary header files for compiling your program, using the
examples may help as many of the header files are already included. Moreover, there are certain
header files that include most of the header files necessary for working at a certain level. The
following table shows these header files:

Revision Et or 7 January 1984 0-1

Programming Notes SunWindows Reference Manual

Table D-1: Header Files Required

Use

/ u,r / include/ ,untool/ tool_ha.h

/uar/ include/ ,untool/ g/z_h,.h

/ u,r/ include/ 1unwindo111/ windo111_h1.h

/ u,r I include/ oi:irectl oizrect hi.Ii

When Workinor at the Level of

suntool tool-building facilities; includes headers
needed to work at the more primitive layers as well

the suntool (standalone or "take over") graphics
subwindow facilities; includes headers needed to
work at the more primitive layers as well

sunwindow basic window facilities layer; includes
headers needed to work at the pixrect layer as well

»ixrect dis»lav nrimitives !aver

Include only one of the above header files plus whatever extra header files you need. In particu
lar, you'll need to add the header file for each subwindow type that you use, the menu header
file if you use menus, the selection header file if you are going to use selections, and so on. How
ever, you'll probably only have to add a single header file for each additional increment of high
level functionality.

D.4. Lint Libraries

Sun Windows provides lint librariu to help you run lint over your program source. Lint catches
argument mismatches and provides better type-checking than the C compiler. L/ib-lpizrect,
llib-hun111indo111, and llib-1,untool are the source files to make the actual binary /int(l) libraries:
1/ib-lpizrect.ln, llib-/1unwindo111.ln, and Uib-1,untool.ln. These files are found on / tur/ lib/ lint/.

D.6. Library Loading Order

When loading programs, remember to load higher level libraries first, that is, -huntoo/ -l,unwin
do111 -lpizrect.

D.6. Shared Text

The tools released with ,untool, rely on text sharing to reduce the memory working set. This is
accomplished by placing the entire collection of tools in a single object file. This has the effect
of letting each separate process share the same object code in memory. With many windows
active at once this can achieve significant memory savings.

There are trade-offs using this approach. The main one is that the maximum number of per
process and non-sharable initial data pages tends to be larger. However, the paged virtual
memory tends to reduce the effect of this by only having the working set paged in.
The upshot of this is that you may want to either add the tools that you create to the released
shared object file or to bundle a few tools together into their own object file.

D-2 Revision D of 7 January 1984

0

0

0

0

0

0

Sun Viindows Reference Manual Programming Notes

D.7. Error Message Decoding

The default error reporting scheme described at the end of Window Manipulation displays a long
hex number which is the ioctl number associated with the error. You can turn this number into
a more meaningful operation name by:

• turning the two least significant digits into a decimal number;

• searching /u,r/include/1unwindow/win_ioctl.h for occurrences of this number; and

• noting the ioctl operation associated with this number.

This can provides a quick hint as to what is being complained about without resorting to a
debugger.

D.S. Debugging Hints

When debugging non-terminal oriented programs in the window •Y•tem, there are some things
that you should know to make things easier.

As discussed in the section entitled Overlapped Window,: Imaging Facilitie, • Damage, a process
receives a SIGWINCH whenever one of its windows changes state. 111 particular, as soon as a tool
issues a tool_in,tall, the kernel sends it a SIGWINCH. When ru1111i11g as the child of a debugger,
the SIGWINCH is sent to the parent debugger in•tead of to the tool. By default, db simply pro
pagates the SI GWIN CH to the tool, while adb traps, leaving the tool suspended until the user con·
tinues from adb. This behavior is not peculiar to SIGWINCH: adb traps all signals by default,
while dbz has an initial list of signals (including SIGWINCH) that are passed on to the child pro
cess. You can instruct adb to pass SIGWINCH 011 to the child process by typing lc:i followed by
RETURN. 'le' is the hex number for 28, which is SIGWINCH's number. Re-enable signal breaking
by typing lc:t followed by RETURN. You can instruct dbz to trap 011 a signal by using the catch
command.
For further details, see the entries for the individual debuggers in the Uaer '1 Manual for the Sun
Workstation. 111 addition, ptrace(2) describes the fine points of how kernel signal delivery is
modified while a program is being debugged.

The two debuggers differ also in their abilities to interrupt programs built using tool windows.
Dbz knows how to do interrupt these programs, but adb doesn't. See Signal, from the Control
Terminal below for an explanation.
Another situation specific to the window system is that various forms of locking are done that
can get in the way of smooth debugging while working at low levels of the system. There are
variables in the ,unwindow library that disable the actual locking. These variables can be
turned on from a debugger:

Revision D of 7 January 1984 D-3

Programming Notes SunWindows Reference Manual

Table D-2: ,unwindow Variables for Disabling Locking

Variable

int pizwindebug

int win_lockdatadebug

int win_J11"abiodebug

int /u/1,creendebug

Action

When not zero this causes the immediate release of the
display lock after locking so that the debugger is not con
tinually getting hung by being blocked on writes to screen.
Display garbage can result because of this action.

When not zero, the data lock is never actually locked,
preventing the debugger from being continually hung due
to block writes to the screen. Unpredictable things may
result because of this action that can't properly be
described in this context.

When not zero will not actually acquire exclusive 1/0 ac
cess rights so that the debugger wouldn't get hung by be
ing blocked on writes to the screen and not be able to re
ceive input. The debugged process will only be able to do
normal display locking and be able to get input only in the
normal way.

Like win_grabiodebug but applies to the fullscreen access
nackal!'e.

Change these variables only during debugging. You can set them anytime after main has been
called.

D.9. Sufficient User Memory

To use the auntoo/ environment comfortably requires adequate user memory for SunWindows
and the Sun UNIX operating system. To achieve the best performance, reconfigure your own
kernel, deleting unused device drivers. The procedure is documented in the Sgatem Manager•,
Manual /or the Sun Workatation. For a workstation on the network with a single disk drive,
you will be able to reclaim significant usable memory.

For the recommended amount of memory, see the Sun Workatation Configuration Guide.

D.10. Coexisting with UNIX

This section discusses how a SunWindows tool interacts with traditional UNIX features in the
areas of process groups, signal handling, job control and terminal emulation. If you are not
familiar with these concepts, read the appropriate portions (Proce,a Group,, Signal,) of the Sua
tem Interface OvertJiew and the ,igna/(3) and ttu(4) entries in the Sg,tem Interface Manual /or
the Sun Workatation.

This discussion explicitly notes those places where the shells and debuggers interact differently
with a tool.

D-4 Revision D of 7 January 1984

0

0

0

0

0

0

Sun Windows Reference Manual Programming Notes

D.lllli.1. Tool Initialization and Process Groups

System calla C1ade by the library code in a tool affect the signals that will be sent to the tool. A
tool acts like any program when first started: it inherits the process group and control terminal
group from its parent process. However, when a tool calls tool_creote, tool_create changes the
tool's process group to its own process number. The following sections describe the effects of
this change.

D.10,1,1, Signals from the Control Terminal

When the C-Shell (see cah(l)) starts a program, it changes the process group of the child to the
child's process number. In addition, if that program is started in the foreground, the C-Shell
also modifies the process group of the control terminal to match the child's new process group.
Thus, if the tool was started from the C-Shell, the process group modification done by
tool_create has no effect.

The Bourne Shell (see ah(l)) and the standard debuggers do not modify their child's process and
control terminal groups. Furthermore, both the Bourne Shell and adb(l) are ill-prepared for the
child to perform such modification. They do not propagate signals such as SIGINT to the child
because they assume that the child is in the same control terminal group as they are. The
bottom-line is that when a tool is executed by such a parent, typing interrupt characters at the
parent process does not affect the child, and vice versa. For example, if the user types an inter
rupt character at qdb while it is debugging a tool, the tool is not interrupted. Although dbz(l)
does not modify itii child's process group, it is prepared for the child to do so.

D.10.1.2. Job Control and the C-Shell

The terminal driver and C-Shell job control interact differently with tools. First, let us examine
what happens to programs using the graphics subwindow library package. When the user types
an interrupt character on the control terminal, a signal is sent to the executing program. Often
the signal is a SIGTSTP. The gfuw library code sees this signal and tidies up by releasing any
SunWindows locks that it might have and by removing the graphics from the screen before it
actually suspends the program. If the program is later continued, the graphics are restored to
the screen.

However, when the user types the C-Shell's atop command to interrupt the executing program,
the C-Shell sends a SIGSTOP to the program and the gfuw library code has no chance to clean
up. This causes problems when the code has acquired any of the Sun Windows locks, as there is
no opportunity to release them. Depending on the lock timeouts, the kernel will eventually
break the locks, but until tlien, the entire screen is unavailable to other programs and the user.
To avoid this problem, the U:ser sends the C-Shell kill command with the -TSTP option instead
of using atop.
The situation for tools parallels that of the gfuw code. Thus a tool that wants to interact nicely
with job control must receive the signals related to job control (SIGINT, SIGQUIT, and SIGTSTP)
and release any locks it has acquired. If the tool is later continued, the tool must receive a
SIGCONT so that it can reacquire the locks before resuming the window operations it was exe
cuting. The tool will still be susceptible to the same problems as the gfzaw code when it is sent a
SIGSTOP.

A final note: the user often relies on job control without realizing it; the expectation is that typ
ing interr~pt characters will halt a program. Of course, even programs that do not use

Revision q of 7 January 1984 D-5

Programming Notes SunWindows Reference Manual

Sun Windows facilities, such as a program that opens the terminal in "raw" mode, have to pro
vide a way to terminate the program. A program using the g/:uUJ package that reads any input
can provide limited job control by calling g/:uUJ_inputinterrupt,. 0

0

0
D-0 Revision D of 7 January 1984

0

0

0

adb, D-5
ASCII_FIRST, 5-3
ASCII_LAST, 5-3
background, 2· 2
batcWtem, 2-11
bitplane, 2-14
bitplane mask, 2-14
blanket window, 4-12, 7-4
boot, A-2
Bourne Shell, D-5
BUT_•, 5-9
BUT(i), 5-3
clipvector, A-3
coord, A-1
csh, D-li
C-Shell, D-5
CUR....MAXIMAGEWORDS, 4-10
cursor, 4-10
dbx, D-5
dumpitem, 7-17
dumpsw, 7-17
emptysubwindow, 7-3
esw _createtoolsubwindow, 7-3
esw_done, 7-3
esw _handlesigwinch, 7-3
esw _init, 7-3
EWOULDBLOCK, 5-6
FALSE, A-2
font, 3-12
foosubwindow, 7-1
foosw_createtoolsubwindow, 7-2
foosw_done, 7-2
foosw_handlesigwinch, 7-2
fooswjnit, 7-2
foosw_selected, 7-2
foreground, 2-13
fullscreen, 8-1
fullscreen.,.destroy, 8-2
fullscreen,J.nit, 8-1

Index

-i-

GFX_DAMAGED, 7-4
GFX_RESTART, 7-4
gfxsw _catchsigcont, 7-6
gfxow_catchsigtstp, 7-6
gfxsw_catchsigwinch, 7-6
gfxsw _createtoolsubwindow, 7-5
gfxsw _done, 7-5
gfxsw __getretained, 7-5
gfxsw _handlesigwinch, 7-5
gfxsw _init, 7-6
gfxsw_inputinterrupts, 7-7
gfxsw _interpretesigwinch, 7-5
gfxsw_notusingmouse, 7-7
gfxsw_select, 7-6
gfxsw_selectdone, 7-7
gfxsw_setinputmask, 7-7
graphics subwindow, D-5
icon, 8-2
ICON_BKGRDCLR, 8-2
ICON_BKGRDGRY, 8-2
ICON_BKGRDPAT, 8-2
ICON_BKGRDSET, 8-2
icon_display, 8-3
IE_NEGEVENT, 5-4
IM_ANSI, 5-7
IM_ASCII, 5-7
IM_CODEARRA YSIZE, 5-7
IM_META, 5-7
IM_NEGEVENT,5-8
IM_POSASCII, 5-7
IM_SHIFTARRAYSIZE, 5-7
IM_TEXT, 7-9
IM_TEXTVEC, 7-9
IM_UNENCODED, 5-7
IM_UNKNOWN, 7-9
inputevent, 5-5
input_imnull, 5-9
inputmask, 5-6
input_readevent, 5-5

item_place, 7-15
job control, D-4
KEY_•, 5-9
LOC_•, 5-9
LOC_MOVE, 5-4
LOC_STILL, 5-4
LOC_WINENTER, 5-4
LOC_WINEXIT, 5-4
md_flags, 2-18
mem_create, 2-19
memory pixrects, 2-18
menu, 8-3
menu_display, 8-4
MENU_IMAGESTRING, 8-4
menuitem, 8-4
menu_prompt, 8-5
META_FIRST, 5-3
METAJ,AST, 5-3
MOUSE_DEVID, 5-7
mpr_data, 2-18
mpr_static, 2-19
msgsubwindow, 7-7
msgsw _createtoolsubwindow, 7-8
msgsw_display, 7-8
msgsw_done, 7-8
msgsw _handlesigwinch, 7-8
msgsw_init, 7-8
msgsw _setstring, 7-8
MS_LEFT, 5-10
MS_MIDDLE, 5-10
MS_RIGHT, 5-10
optjtem, 7-15
optsw _setvalue, 7-16
optsw_bool, 7-11
optsw_coltox, 7-15
optsw_command, 7-11
optsw _createtoolsunwindow, 7-10
optsw_done, 7-10
optsw_enum, 7-12
optsw _getcaret, 7-13
optsw_getfont, 7-16
optsw_getplace; 7-15
optsw__getvalue, 7-15
optsw _handlesigwinch, 7-10
optsw _init, 7-14
optsw_linetoy, 7-15
optsw_selected, 7-10

optsw_setcaret, 7-13
optsw_setfont, 7-16
optsw_setplace, 7-15
pf_default, 2-16
pf_open, 2-16
pf_text, 2-17
pf_textbatch, 2-17
pf_textwidth, 2-18
pf_ttext, 2-17
pixchar, 2-16
PIX_CLR, 2-8
PIX_COLOR, 2-8
PIX_DONTCLIP, 2-9
PIX_DST, 2-7
pixfont, 2-16
PIX_NOT, 2-7
pixrect struct, 2-3

· pixrectops, 2-4

- ii -

PIX_SET, 2-8
PIX_SRC, 2-7
pixwin, 3-4
pixwin_clipdata, 3-5
pixwin_clipops, 3-7
pixwin_prlist, '3-6
pr_batchrop, 2-11
pr_blackonw hite, 2-14
pr_destroy, 2-6
pr_get, 2-6
pr__getattributes, 2-15
pr_getcolormap, 2-13
pr_height, 2-3
primary pixrect, 2-5
prompt, 8-5
PROMPT_FLEXIBLE, 8-5
pr_open, 2-5
pr_pos, 2-2
pr_prpos, 2-2
pr_put, 2-7
pr_putattributes, 2-15
pr_putcolormap, 2-13
pr_region, 2-5
pr_reversevideo, 2-14
pr_rop, 2-9
prs_batchrop, 2-11
prs_destroy, 2-6
prs_get, 2-6
prs_getattributes, 2-15

0

0

0

0

0

0

prs_getcolormap, 2-13
pr_size, 2-2
prs..J)ut, 2-7
prs..J)utattributes, 2-16
prs..J)utcolormap, 2-13
prsJegion, 2-5
prsJop, 2-9
prs_stencil, 2-10
pr_stencil! 2-10
pr_subregion, 2-3
prs_vector, 2-12
pr_vcx:tor; 2-12
pr_whiteonblack, 2-14
pr_width, 2-3
pw_batchrop, 3-12
pw_blackonwhite, 3-16
PWCD_MULTIRijCTS, 3-7
PWCD_NULL, 3-1
PWCD_SINGLERECT, 3-7
PWCD_USERDEFINE, 3-7
pw_char, 3-12
pw _close, 3-8
pw_copy, 3-13
pw_cyclecolormap, 3-17
pw_damar;ed, 3-15
pw_donedamaged, 3-15
pw_exposed, 3-10
pw_getattributes, 3-14
pw_getcmsname, 3-17
pw_getcolormap, 3-17
pw Jock, :},8
pw_open, 11-7
pw ..J)fsysqlose, 3-1~
pw ..J)fsysopen, 3-12
pw ..Jlreparesurface, 3-18
pw..J)ut, 3-11
pw..J)utattributes, 3-13
pw_Jlutcolormap, 3-17
pwJead, 3-13
pwJegion, 3-16
pw _repairretained, 3-15
pwJeplrop, 3-11
pwJeset, 3-9
pwJeversevideo, 3-16
pw_setcmsname, 3-17
pw_stencil, 3-13
pw_text, 3-12

"

- iii -

pw_ttext, 3-12
pw _unlock, 3-9
pw _vector, 3-11
pw _ w hiteon black, 3-16
pw _ write, 3-11
pw_writebackground, 3-11
rect, A-1
rect_bottom, A-2
rect_bounding, A-2
rect_construct, A-2
rect_equal, A-2
rect_includespoint, A-2
rect_includesrect, A-2
rect_intersection, A-3
rect_intersectsrect, A-2
rect_isnull, A-2
rectlist, A-3
rect_marginadjust, A-2
rectnode, A-4
rect_null, A-2
rect_order, A-3
rect_J)asstochild, A-2
rect_Jlasstoparent, A-2
rect_right, A-2
RECTS_BOTTOMTOTOP, A-3
RECTS_LEFTTORIGHT, A-3
RECTS_RIGHTTOLEFT, A-3
RECTS_SORTS, A-3
RECTS_TOPTOBOTTOM, A-3
RECTS_UNSORTED, A-3
retained pixwin, 3-15
rl_boundintersectsrect, A-5
rl_coalesce, A-6
rl_coordoffset, A-4
rl_copy, A-6
rl_difference, A-6
rl_empty, A-5
rl_equal, A-5
rl_equalrect, A-5
rl_free, A-6
rl_includespoint, A-5
rl_initwithrect, A-6
rl_intersection, A-6
rl_normalize, A-6
rl_null, A-5
rl..J)asstochild, A-4
rl__J>asstoparent, A-4

rl_rectdift'erence, A-6
rl-1ectintersection, A-6
rl_rectoffset, A-4
rl_rectunion, A-6
rl_sort, A-6
rl_union, A-6
SIGWINCH, D-3, 3-14
UNIX, D-4
SCR_EAST, 4-9
screen, 4-7
SCR_NAMESIZE, 4-8
SCR_NORTH, 4-9
SCR.J>OSITIONS, 4-9
SCR_80UTH, 4-9
SCR_SWITCHBKGRDFRGRD, 4-8
SCR_WEST, 4-9
secondary pixrect, 2-5
sel_clear, 8-6
selection, 8-5
selection_clear, 8-6
selection_get, 8-7
selection_set, 8-6
sel_read, 8-7
SELTYPE_CHAR, 8-6
SELTYPE_NULL, 8-6
sel_write, 8-6
SHIFT_•, 5-9
SIGCHLD, 6-4
signal, D-4
signal handling, D-4
SIGXCPU, 4-6
stencil function, 2-2
system font, 3-12
termcap, 7-19
terminal emulation, D-4
TIOCGSIZE, 7-19
TIOCSSIZE, 7-19
tio_handlesigwinch, 6-9
tio_selected, 6-9
tool, 6-5
tool_borderwidth, 6-7
TOOL_BOUNDARYMGR,6-5
tool_create, D-5, 6-4 ·
tool_createsubwindow, 6-4
tool_destroy, 6-8
tool_destroysubwindow, 6-8
tool_display, 6-11

TOOL_DONE, 6-6
TOOLJCON•, 8-3
TOOL_ICONIC, 6-5
tool_install, D-3, 6-8
toolio, 6-9
TOOL_NAMESTRIPE, 6-5
tool_select, 6-9, 7-4
TOOL_SIGCHLD, 6-5
tool_sigwinch, 6-10
TOOL_SIGWINCHPENDING, 6-5
tool_stripeheight, 6-7
toolsw, 6-6
TOOL_SWEXTENDTOEDGE, 6-6
tool_wubwindowspacing, 6-8
tty, D-4
ttysubwindow, 7-17
ttysw _becomeconsole, 7-18
ttysw _createtoolsubwindow, 7-18
ttysw_done, 7-19
ttyswJork, 7-19
ttysw_handlesigwinch, 7-18
ttyswjnit, 7-18
ttysw_saveparms, 7-18
ttysw_selected, 7-18
typed__pair, 7-9
vi, 7-19
VKEY_•, 5-9
VKEY _CODES, 5-3
VKEY_FIRST, 5-3
VKEY _FIRSTPSEUDO, 5-4
VKEY_LAST, 5-3
VKEY _LASTPSEUDO, 5-4
we_clearinitdata, 6-4
we_getfxwindow, 4-12
we_getinitdata, 6-4
we_getparentwindow, 6-3
we_setg(xwindow, 4-12
we_setinitdata, 6-3
we_setparentwindow, 6-3
win_computeclipping, 4-7
WINDOW_GFX, 4-11
WINDOW_INITIALDATA, 6-3
WINDOW_ME, 7-19
WINDOW _PARENT, 6-3
win_error, 4-13
win_errorhandler, 4-13
win_fdtoname, 4-3

- iv -

0

0

0

0

0

0

win_fdtonumber, 4-3
win_findintersect, 4-11
win_gctcursor, 4-10
win_getheight, 4-3
win_getinputcodebit, 5-9
win_getinputmask, 5-8
win_getlink, 4-5
win_getnewwindow, 4-2
win_getowner, 4-13
win_gets~vedrect, 4-4
win_getscreenpositions, 4-9
win_getsife, 4-3
win_getaprftags, 4-6
win_getw ,dth, 4-3
win_grab 1>, 5-9
winjnits1freenfromargv, 4-9
win_inpu~posevent, 5-5
winjnse11, 4-5
win_insertblanket, 4-12
win_isblanket, 4·12
winJockdata, 4-6
WIN_NAMESIZE, 4-2
win_nametonumber, 4-3
win_nextfree, 4-2
WIN_NULLLINK, 4-2
win_numbertoname, 4-2
win_partialrepair, 4.7
win.,.1eleaseio, 5-9
win.,.1emove, 4.5
winJemoveblanket, 4-12
w in.J1Creendestroy, 4-9
win_screenget, 4-9
win_screennew, 4-8
win_setcursor, 4-11
win_setinputcodebit, 5-9
win_setinputmask, 5-8
win_µtkbd, 4-~
win __ setlink, 4.5
win_setmouseposition, 4-11
win_setms, 4.9
win_setowner, 4-13
win_setrect, 4-3
win_setsavedrect, 4·4
win_setscreenpositions, 4-9
win_setuserftag, 4-6
win_setuserftags, 4-6
win_unlockdata, 4-6

-v-

win_unsetinputcodebit, 5-9
WL_BOTTOMCHILD, 4-4
WL_COVERED, 4-4
WL_COVERING, 4-4
WL_ENCLOSJNG, 4-4
WL_OLDERSIB, 4-4
WL_OLDESTCHILD, 4-4
WL_PARENT, 4-4
WL_TOPCHILD, 4.4
WL_YOUNGERSIB, 4-4
WL_YOUNGESTCHILD, 4-4
wmgr_bottom, 8-8
wmgr_changelevel, 8-10
wmgr_changerect, 8-8
wmgr_close, 8-8
wmgr_completechangerect, 8-10
wmgr_confirm, 8-8
wmgr_figureiconrect, 8-9
wmgr_figuretoolrect, 8-9
wmgr_forktool, 8-10
wmgr_getrectalloc, 8-11
wmgr_handletoolmenuitem, 8-9
WMGR_ICONIC, 8-11
wmgr_iswindowopen, 8-11
wmgr_move, 8-8
wmgr_open, 8-8
wmgr_refreshwindow, 8-8
WMGR_SETPOS, 8-9
wmgr_setrectalloc, 8-11
wmgr_setupmenu, 8-9
wmgr_stretch, 8-8
wmgr_toolmenu, 8-9
wmgr_top, 8-8
wmgr_winandchildrenexposed, 8-10
WUF _WMGRl, 8-11

0

0

01

0

0

0

0

0

0

