
0

0

0

Part Number 800-1113-01
Revision: D of 7th January 1984

For: Sun System Release 1.1

Programming Tools

for the

Sun Workstation

Sun Microsystems, Inc.,
2550 Garcia Avenue

Mountain View
California 94043
{415) 960-1300

Credits and Acknowledgements

The chapters of this manual were originally derived from the work of many people at Bell
Laboratories, University of California at Berkeley, and other noble institutions. Their names
and the titles of the original works appear here.

Shell Programming
was derived from the papers An Introduction to the UNIX Shell, by S. R. Bourne, Bell
·Laboratories, Murray Hill, New Jersey, and An Introduction to the C Shell, by William Joy,
University of California at Berkeley.

UNIX Programming
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lint, a C Program Checker
by S. C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Make - A Program for Maintaining Computer Program,
by S. I. Feldman, Bell Laboratories, Murray Hill, New Jersey.

DC - An Interactive Deak Calculator
by Robert Morris and Lorinda Cherry, Bell Laboratories, Murray Hill, New Jersey.

BO - An Arbitrar11 Preci,ion De,k-Calculator Language
by Lorinda Cherry and Robert Morris, Bell Laboratories, Murray Hill, New Jersey.

The M-1 Macro Proce,aor
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Les - A Lesical Anal11zer Generator
by M. E. Lesk and E. Schmidt, Bell Laboratories, Murray Hill, New Jersey.

Yacc - Yet Another Compiler-Compiler
by Stephen C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Source Code Control S11atem U,er 11 Guide
by L. E. Bonanni and C. A. Salemi, Bell Laboratories, Piscataway, New Jersey.

Source Code Control S111tem
by Eric Allman, Formerly of Project Ingres, University of California at Berkeley.

AHembler Reference Manual for the Sun Work,tation
started lire as an edited version or the MICAL Manual ror the Intel 8080, written by Mike
Patrick; transformed by James L. Gula and Thomas J. Teixeira, March lll80; revised by
Henry McGilton at Unisoft Systems or Berkeley Corporation during March 1982; rewritten
by Henry McGilton and Richard Tuck, or Sun Microsystems, during October and November
1982.

- ii -

0

0

0

0

0

0

PROGRAMMING TOOLS

Contents

This is a· list of the major sections in this manual. There is a detailed table-of-contents at the
start of each paper.

• Programming the Shells

• UNIX Programming
• Lint, a C Program Checker
• Make - A Program for Maintaining Computer Programs
• Source Code Control System
• DC - An Interactive Desk Calculator
• BC - An Arbitrary Precision Desk-Calculator Language

• The M4 Macro Processor
• Lex - A Lexical Analyzer Generator
• Yacc - Yet Another Compiler-Compiler
• Assembler Reference Manual for the Sun Workstation

0

01

I'

()

1:

. I
!,

'

!

0
Table of Contents

Programming the Shells ... 1

Part I - Programming the C Shell .. 2

1, Invocation and the Argv Variable.. 2

2, Variable Substitution ... 2

3. Expressions 4

•• Sample Shell Script ... 4

&. Other Control Structures .. 'I

0 8. Supplying Input to Commands ··-·····················-················ 'I

'I. Catching Interrupts with 'onintr' ... 8

8. Other C-Shell Features ... 9
8.1. Loops at the Terminal and Variables as Vectors ... 9
8.2. Command Substitution .. 10

9. Special Characters ... 10

Part II - Programming the Bourne Shell .. 12

10, Control Flow - for ... 12

11, Control Flow - case .. 13

12, Here Documents ... 14

13, Shell Variables .. 15

14, The 'test' Command ... 17

0
-i-

15, Control Flow - while.. 17

18. Control Flow - if .. 18

17, Command Grouping.. 20

18. Debugging Shell Procedures .. 20

19. The 'man' Command .. 21

20, Keyword Parameters ... 22

21, Parameter Transmission ... 22

22, Parameter Substitution ... 22

23. Command Substitution ... 23

24, Evaluation and Quoting .. 24

25, Error Handling .. 28

28. Fault Handling.. 27

27, Command Execution... 29

28, Calling the Shell ... 30

29. Grammar .. 31

30, Metacharacters and Reserved Words.. 31

- ii -

0

0

0

0

0

0

Trademarks

Multibus is a trademark of Intel Corporation.

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright © 1983 by Sun Microsystems.
This publication is protected by Federal Copyright Law, with all rights reserved. No pm of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems,

- iii -

-- - --------------

0
Revision History

Revlalon Date Comments

A 16th July 1983 First release of this Manual.

B 15th August 1983 Second Release of this manual entailed a complete reorganiza-
tion and some rewriting of the individual articles.

C 1st November 1983 Third Release of this manual entailed minor corrections and
updates.

D 7th January 1984 Added chapter on Shell Programming. Added chapter on
ADB. Many minor corrections and updates.

0

- iv -

0

0

0

Programming the Shells

You can put programs in files called Shell ,cript,, and then call up the Shells to read and exe­
cute the commands from these files.
Understand that Shell scripts do not serve the same function as the make program. Make pro­
gram is very useful for maintaining a group of related files or performing sets of operations on
related files. For instance, a large program consisting of one or more files can have its depen·
dencies described in a makefile, which contains definitions of the commands used to create these
different files when changes occur. Definitions for printing listings, cleaning up the directory in
which the files reside, and installing the resultant programs are eaaily, and most appropriately
placed in this makefile. Using a makefile is superior to maintaining a group of Shell procedures
to update these files. Similarly when working on a document, you can create a makefile, which
defines how different versions of the document are to be created and which options of nroff or
troff are appropriate.

When you have a file full of Shell commands and you simply type the name of that file as a
command, the system looks at the very first line of that file to decide which Shell should run
the script:

• If the first line does nol start with a # (hash sign), the system uses the Bourne Shell to run
the script.

• If the first line starts with a # (hash sign) and is not followed by a ! (exclamation mark), the
system uses the C-Shell to run the script.

• Finally, if the first line of the Shell script starts with a #I combination and is followed
immediately by a name, the system looks for a program of that name to run the Shell script.

Revision D of 7 January 1984 l

Programming the C Shell Programming Tools

Part I - Programming the C Shell

This section details C-Shell features 118eful for writing Shell scripts.

1, Invocation and the Argv Variable

A cal, command script may be interpreted by saying:

tutorial% cah 1cript •..
tutorial%

where acript is the name of the file containing a group of c,A commands and ' ... ' is replaced by a
sequence or arguments. The Shell places these arguments in the variable arp and then begins
to read commands from the script. These parameters are available through the same mechan­
isms used to refer to any other Shell variables.
If you make the file acript executable by changing its permissions with the chmotl command:

0

tutorial% chmod 755 1cript Q
tutorial%

and place a Shell comment at the beginning of the Shell script, that is, begin the file with a '#'
character, /bin/cal, will then automatically be called to execute acript when you type:

tutorial% 11cript
tutorial%

If the file does not begin with a '# ', then the standard Shell / bin/ ,A executes it. Thus, you can
convert your older Shell scripts to 118e cal, at your convenience.

2. Variable Substitution

After each input line is broken into words and history substitutions are applied, the input line is
parsed into distinct commands. Before each command is executed, the variable ,ubatitution
mechanism is applied on these words. Keyed by the character 'S', this substitution replaces the
names of variables with their values. Thus, if you place:

echo Sargv

in a command script, the current value of the variable 11rp is echoed to the output of the Shell
script. It is an error for arp to be unset at this point.

A number of notations are available for accessing components and variable attributes. The
notation:

S!name

2 Revision D of 7 January 1984

0

0

0

Programming Tools Programming the C Shell

expands to 'l' if name is ,et or to 'O' if name is not ,et. This is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other forms of
reference to undefined variables cause errors.

The notation

$#name

expands to the number of elements in the variable name: Thus

tutorial% set argv=(a b e)
tutorial% echo $Targv
1
tutorial% echo S#argv
3
tutorial% unset argv
tutorial% echo S?argv
0
tutorial% echo Sargv
Undefined variable: argv.
tutorial%

It is also possible to access the components of a variable that has several values. To get the
first component or arp or in the example above 'a', use:

Sargv(l]

Similarly to get 'c', use:

$argv[$#argv)

and to get 'ab', use:

Sargv[I-2)

Other notations useful in Shell scripts are:

Sn
where n is an integer as a shorthand for

Sargv[n)

the nth parameter and

S•
which is a shorthand for

. Sargv

To expand to the process number of the current Shell, use the form: ..
Since this process number is unique in the system, it can be used in generation of unique tem­
porary file names. The form

S<
is quite special and is replaced by the next line of input read from the Shell's standard input
(not the script it is reading). Use this for writing Shell scripts that are interactive, reading com­
mands from the terminal, or even writing a Shell script that acts as a filter, reading lines from

Revision D of 7 January 1984 3

Programming the C Shell Programming Tools

its input file. Thus to write out the prompt 'yes or no?' without a newline and then read the
answer into the variable 'a', use:

echo 'yes or no?\c'
set a=(S<)

In this case '$#a' would be 'O' if either a blank line or end-of-file ('D) was typed.
Note one minor difference between 'Sn' and 'Sargv(n)'. The form 'Sargv(n)' yields an error if n
is not in the range '1-S#argv', while 'Sn' never yields an out of range subscript error. This is
for compatibility with the way older Shells handled parameters.
Another important point is that it is never an error to give a subrange of the form 'n-'; if there ,
are less than n components of the given variable then no words are substituted. A range of the
form 'm-n' likewise returns an empty vector without giving an error when m exceeds the
num her of elements of the given variable, provided the subscript n is in range.

3. Expressions

To construct interesting Shell scripts, it must be possible to evaluate expressions in the Shell
based on the values of variables. In fact, all the arithmetic operations of the C language are
available in the Shell with the same precedence that they have in C. In particular, the opera­
tions '==' and '!=' compare strings, and the operators '&&' and 'I I' implement the boolean
and/or operations. The special operators '== ·• and •1·• are similar to ·--• and 'I-' except
that the string on the right side can have pattern-matching characters (like •, ? or U), and the
test is whether the string on the left matches the pattern on the right.

The Shell also allows file enquiries of the form:

-? filename

where '?' is replaced by a number of single characters. For instance, the expression primitive:

-e filename

tells whether the file filename exists. Other primitives test for read, write and execute access to
the file, whether it is a directory, or has non-zero length.
It is possible to test whether a command terminates normally, by a primitive of the form '{
command } '. This primitive returns true, that is 'l ', if the command exits normally with exit
status 0, or 'O' if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required, it can be executed
and the variable '$status' examined in the next command. Since every command sets '$status',
it is very transient. It can be saved if it is inconvenient to use it only in the single immediately
following command.
For a full list of expression components available, see the user's manual seetion on the C-Shell.

4. Sample Shell Script

A sample Shell script that uses the Shell expression mechanism and some of its control structure
follows:

4 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools

tutorial% cat copyc

Copyc copies those C programs in the specified list
to the directory - /backup if they differ from the files
already in - /backup

set noglob
foreach i ($argv)

end

if (Si 1- •.c) continue # not a .c file 80 do nothing

if(! -r -/backup/Si:t) then

endif

echo Si:t not in backup ... not cp\ 'ed
continue

cmp --s $i -/backup/Si:t # to set $status

if ($status != 0) then
echo new backup of Si
cp Si -/backup/Si:t

endif

Programming the C Shell

This script uses the /oreac/a command, which causes the Shell to execute the commands between
the /oreac/a and the matching end for each of the values given between '(' and ')' with the
named variable, in this case 'i' set to successive values in the list. Within this loop you may use
the command break to stop executing the loop and continue to prematurely terminate one itera­
tion and begin the next. After the /oreac/a loop, the iteration variable (i in this case) has the
value at the last iteration.
We set the variable nag/ob here to prevent filename expansion of the members of ar1111. This is a
good idea, in general, if the arguments to a Shell script are filenames that have already been
expanded or if the arguments may contain filename expansion metacharacters. It is al!IO possi­
ble to quote each use of a '$' variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form:

if (expression) then
command

endif
The placement of the keywords here is not flexible due to the current implementation of the
Shell.t

tThe Shell does not accept the following two formats:

if (expression)
then

command

endit

Revision D of 7 January 1984

f Won't work!

5

Programming the C Shell

The Shell does have another form of the i/ statement of the form:

if (expression) command

which can be written

if (expression) \
command

Programming Tools

Here you escape the newline for the sake of appearance. The command must not involve 'I',
'&' or ';' and must not be another control command. The second form requires the final '\' to
immediately precede the end-of-line.

The more general i/ statements above also admit a sequence of el,e-i/ pairs followed by a single
elae and an em/i/, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

Use the ':' modifier in Shell scripts, for instance in the modifier ':r' to extract a root of a
filename or ':e' to extract the eztenaion. Thus if the variable i has the value /mnt//oo.6ar, then:

tutorial% echo Si Si:r Si:e
/mnt/foo.bar /mnt/foo bar
tutorial%

shows how the ':r' modifier strips off the trailing '.bar', and the ':e' modifier leaves only the
'bar'. Other modifiers take off the last component of a pathname leaving the head ':h' or all but
the last component of a pathname leaving the tail ':t'. See the c•h pages in the user's manual
for a full description of these modifiers.
It is also possible to use the command 1u61titution mechanism to perform modifications on
strings to then re-enter the Shell's environment. Since calling this mechanism creates a new
process each time, it is much more expensive to use than the ':' modification mechanism.#

Finally, note that the character '#' lexically introduces a Shell comment in Shell scripts, but
not from the terminal. The Shell discards all subsequent characters on the input line after a
'#'. Quote this character using'" or '\' to place it in an argument word.

and

it (expression) then command endit f Won't work
#Note that the current implementation or the Shell limits the number or ':' modi&en, on a '$' sub,
stitution to I. Thus:

tutorial% echo $i $i:h:t
/a/b/c /a/b:t
tutorial%

does not do what one mght expect.

6 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Programming the C Shell

5. Other Control Structures

The Shell also haB control st.ruct111'eS w/aile and ,witc/a similar to those or C. These take the
forms:

and

while (expression)
commands

end

•witch (word)

c- strl:
commands
breakaw

c-stm:
commands
breakaw

default:
commands
break•w

end•w

See the user's manual pages on c,A for details. C programmers should note that 6reww exits
from a ,wite/a, while 6rea/c exits a w/aile or /oreac/a loop. Do not make the common mistake in
c,/a scripts or using 6red: instead or 6reww in switches.

Finally, c,/a allows a goto statement, with labels looking like they do in C, that is:

loop:
commands
goto loop

6. Supplying Input to Commands

Commands run from Shell scripts receive by default the standard input or the Shell that is run­
ning the script. This is different from previous Shells running under UNIX. It allows Shell scripts
to participate fully in pipelines, but mandates extra notation for commands which are to take
inline data.
Thus use a metanotation for supplying inline data to commands in Shell scripts. A!J an exam­
ple, consider this script which runs the editor to delete leading blanks from the lines in each
argument file:

Revision Dor 7 January 1984 7

Programming the C Shell

tutorial% cat deblaak
deblank - remove leading blaab
foreach i (Sargv)
ed- Si<< 'EOF'
1,Ss/t[)•//
w
q
'EOF'
end
tutorial%

Programming Tools

The notation '< < 'EOF" means that the standard input for the el command is to come from
the text in the Shell script file up to the next line consisting of exactly ''EOF". The fact that
the 'EOF' is enclosed in '" characters, that is quoted, prevents the Shell from performing vari­
able substitution on the intervening lines. In general, the Shell uses '< <' to terminate the text
to be given to the command. If any part of the word following the '< <' is quoted, these sub­
stitutions are not performed. In this case, since you used the form '1,$' in your editor script,
you needed to insure that this '$' was not variable substituted. You can also insure this by
preceding the '$' here with a '\', for instance:

l,\Ss/t[)•//

but quoting the 'EOF' terminator is a more reliable way of achieving the same thing.

7, Catching Interrupts with 'onintr'

0

It your Shell script creates temporary files, you may wish to catch the Shell script interruptions Q
so you can clean up these files. You can then use onintr as follows:

onintr label

where label is a label in your program. It the Shell receives an interrupt, it does a 'goto label,
and you can remove the temporary files and then do an ezit command (which is built in to the
Shell) to exit from the Shell script. If you wish to exit with a non-zero status, do the following:

exit(l)

that is, to exit with status 'l'.

Briefly, there are other Shell features that are useful for writing Shell procedures. You can use
the 11erbo1e and echo options and the related -v and -x command line options to help trace the
actions of the Shell. The -n option causes the Shell only to read commands and not to execute
them.

Also note that c1/, only executes Shell scripts that begin with the character '#', that is, Shell
scripts that begin with a comment (assuming that another Shell was not specified via the I
mechanism). Similarly, the /bin/,/, on your system may well defer to e,l to interpret Shell
scripts which begin with '# '. This allows Shell scripts for both Shells to live in harmony.
There is also another quotation mechanism using ••' that allows only some of the expansion
mechanisms to occur on the quoted string and makes this string into a single word as '" does.

8 Revision D of 7 January 1984

0

0

0

0

Programming Tools Programming the C Shell

8. Other C-Shell Features

This section describes other less commonly used C-Shell features.

8.1. Loops at the Terminal and Variables as Vectors

The /oreac1a control structure aids in performing a number of similar commands. For instance,
there were at one point three Shells in use on the Cory UNIX system at Cory Hall, / bin/ ,I,,
/bin/ml,, and /bin/cal,. To count the number of persons using each Shell, you can say:

tutorial% grep -c cshS /et.c/p.-wd
27
tutorial% grep -c nshS /et.c/p.-wd
128
tutorial% grep -c -v ahS /et.c/p.-wd
430
tutorial%

Since these commands are very similar, you can use /oreacl, to do this more easily.

tutorial% foreach l ('ahS' 'cshS' '-v ahS 1
! grep -c Si /etc/passwd
! end
27
128
430
tutorial%

Note here that the Shell prompts for input with'! 'when reading the body of the loop.

Variables that contain lists or filenames or other words are very useful with loops. You can, for
example, do:

tutorial% .et. a-('ls ')
tutorial% echo Sa
esh.n csh.rm
tutorial% la
csh.n
csh.rm
tutorial% echo S#a
2
tutorial%

The ,et command here gave the variable • a list or all the filenames in the current directory as
value. You can then iterate over these names to perform any chosen function.

The Shell converts the output of a command within ''' characters to a list or words. You can
also place the '" quoted string within '"' characters to take each (non-empty) line as a com­
ponent or the variable, preventing the lines from being split into words at blanks and tabs. Use
a modifier ':x' later to expand each component of the variable into another variable, splitting it
into separate words at embedded blanks and tabs.

Revision D of 7 January 1984

Programming the C Shell Programming 'l'ools

8.2. Command Substitution

A command enclosed in ••• characters is replaced, just before filenames are expanded, by the 0
output from that command. Thus, to save the current directory in the variable ,u,I, say: ·

set pwd='pwd'

Or to run the e:r editor, say:

ex 'grep -I TRACE •.c'

This uses those files whose names end in '.c', which have the string 'TRACE' in them as argu­
ments.•
In particular circumstances, yon may need to know the exact nature and order of different sub­
stitutions that the Shell performs and the exact meaning of certain combinations of quotations.
Moreover, the Shell has a number of command line option lags used mostly in writing UNIX pro­
grams and debugging Shell scripts. See the user's manual section on c,A and ,A for details.

9. Special Characters

The following table lists the special c,A and UNIX system characters. A number of these charac­
ters also have special meaning in expressions. See the c,A manual section for a complete list.

Syntactic Metacharacters

' I
()
&

separates commands to be executed sequentially
separates commands in a pipeline
brackets expressions and variable values
follows commands to be executed without waiting for completion

Filename Metacharacters

I
!
•
I I
{ }

separates components of a file's pathname
expansion character matching any single character
expansion character matching any sequence of characters
expansion sequence matching any single character from a set
used at the beginning of a filename to indicate home directories
used to specify groups of arguments with common parts

Quotation Metacharacters

\ prevents meta-meaning of following single character
' prevents meta-meaning of a group of characters
• like ', but allows variable and command expansion

Input/output Metacharacters

< indicat.es redirected input
> indicates redirected output

Expansion/substitution Metacharacters

•Command expansion also occurs in input redirected with '< <' and within '" quotations. Refer
to the user's manual for full detsila.

10 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

s
I

t
•

indicates variable substitution
indicates history substitution
precedes substitution modifiers
used in special forms of history substitution
indicates command substitution

Other Metacharactera

begins scratch file names; indicates Shell comments
prefixes option (flag) arguments to commands

% prefixes job name specifications

Revision D of 7 January 1984

Programming the C Shell

11

Programming the Bourne Shell Programming Tools

Part Il - Programming the Bourne Shell

10. Control Flow - for

A frequent use of Shell procedures is to loop through the arguments (Sl, S2, ...) executing com­
mands once for each argument. An example of such a procedure is tel that searches the file
/ uar/lib/ telno, that contains lines of the form

...
fred mh0123
bert mh0789 ...

The text of tel is

for i
do grep Si /usr/lib/telnos; done

The command

tutorial$ tel fred

displays those lines in / u,r/ lib/ telno, that contain the string /red. To display those lines con­
taining /red followed by those for bert, type:

tutorial$ tel fred bert

The for loop notation is recognized by the Shell and has the general form

for name in w1 we ...
do command-li,t
done

A command-lilt is a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol­
lowing a newline or semicolon. Name is a Shell variable that is set to the words w1 v,B ••• in
turn each time the command-li,t following do is executed. If in w1 v,I ... is omitted, then the
loop is executed once for each positional parameter; that is, in S * is assumed.

Another example of the use of the for loop is the create command whose text is

for i do > Si; done

The command:

12 Revision D of 7 January 1984

0

C)

0

0

0

Programming Tools Programming the Bourne Shell

tutorial$ create alpha beta

ensures that two empty files alpls11 and 6et11 exist and are empty. Use the notation > file on its
own to create or clear the contents of a file. Notice also that a semicolon (or newline) is
required before done.

11. Control Flow - case

The case notation provides a multiple way branch. For example:
•.

case S# in
1) cat >>SI ;;
2) cat >>S2 <SI ;;
*) echo 'usage: append (from) to• ;;

esac

is an append command. When called with one argument as

tutorialS append flle

S# is the string 1 and the standard input is copied onto the end of file using the cat command.
To append the contents of fild onto fileB, say:

tutorial$ append fllel flle2
tutorialS

If the number or arguments supplied to append is other than 1 or 2, a message is displayed indi­
cating proper usage.
The general form or the case command is:

cue word in
pattern) command-li,t ;; ...

esac

The Shell attempts to match word with each pattern, in the order in which the patterns appear.
If a match is found the associated command-lid is executed, and execution of the cue is com­
plete. Since • is the pattern that matches any string, you can use it for the default case.
A word of caution: no check is made to ensure that only one pattern matches the case argu­
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second • will never be executed.

case S# in
*) ••• ;;
*) ••• ;;

esac

Another example or the use or the cue construction is to distinguish between different forms or
an argument. The following example is a fragment of a cc command:

Revision D of 7 January 1984 13

Programming the Bourne Shell

for i
do case Si in

-(ocs)) ••• ;;
-*) echo 'unknown flag Si' ;;
*.c) /lib/co Si , •• ;;
*)echo 'unexpected argument Si';;
esac

done

Programming Tools

To allow the same commands to be a.,sociated with more than one pattern the cue command
provides for alternative patterns separated by a '('. For example:

case Si in
-x 1-y)

esac

is equivalent to

case Si in
-(xy)) '' •

esac

The usual quoting conventions apply so that

case Si in
\!) •••

will match the character?.

12. Here Documents

The Shell procedure tel in 'Control Flow - for' uses the file /uar/li6/telno, to supply the data
for grep. An alternative is to include this data within the Shell procedure a., a Aere document,
as in,

for i
do grep Si <<! ...

fred mh0123
bert mh0789
...

done

In this example the Shell takes the lines between <<I and I as the standard input for grep.
The string I is arbitrary, the document being terminated by a line that consists of the string fol­
lowing<<.

Parameters are substituted in the document before it is made available to grep a., illustrated by
the following procedure called edg.

14 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Programming the Bourne Shell

ed $3 <<%
g/Sl/s/ /$2/g
w
%

The call

tutorial% edg atringl atring2 ftle

is then equivalent to the command

ed file<<%
g/stringl/s/ /string2/g
w
%

and changes all occurrences or ,tring1 in file to ,tringe. You can prevent substitution using '\'
to quote the special character S as in

ed Sa<<+
1,\Ss/$1/$2/g
w
+

(This version or edg is equivalent to the first except that etl displays a f ir there are no
occurrences or the string SL) Quoting the terminating string prevents substitution entirely
within a here document, for example:

grep Si<<\# ...
*

The document is presented without modification to grep. Ir parameter substitution is not
required in a here document, this latter rorm is more efficient.

13. Shell Variables

The Shell provides string-valued variables. Variable names begin with a letter and consist or
letters, digits and underscores. You may give variables values by writing, ror example:

user=fred box=mOOO acct=mhOOOO

which assigns values to the variables user, box and acct. To set a variable to the null string,
you can say:

null-

The value or a variable is substituted by preceding its name with $; (or example:

tutorial$ echo Snaer
(red

echos /retl.

Use variables interactively to provide abbreviations (or (requently used strings. For example:

Revision D or 7 January 1984 15

Programming the Bourne Shell Programming Tools

b=/Wlr/fred/bin
mv pgm Sb

moves the file pgm from the current directory to the directory /uar/fred/bln. A more general
notation is available for parameter (or variable) substitution, as in:

echo S{user}

which is equivalent to

echo Suser

and is Wied when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >S{tmp}a

directs the output of pa to the file /tmp/p,o, whereas:

ps a >Stmpa

caW1es the value of the variable tmpa to be substituted.
Except for S? the following are set initially by the Shell. S? is set after executing each com•
mand.

S?

S#

ss

The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit statWI if they complete successfully, otherwise a
non-zero exit statWI is returned. Testing the value of return codes is dealt with
later under if and while commands.

The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

The process number of this Shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to generate unique tem­
porary filenames. For example:

ps a > /tmp/psSS

rm /tmp/psSS

S ! The process number of the last process run in the background (in decimal).

S- The current Shell flags, such as -x and -v.
Some variables have a special meaning to the Shell; avoid them in general use.

$MAIL When used interactively the Shell looks at the file specified by this variable before
it issues a prompt. If the specified file has been modified since it was last looked
at, the Shell prints the message gou have mail before prompting for the next com­
mand. This variable is typically set in the file .profile, in the user's login directory.
For example:

MAil,=/usr/mail/fred

SHOME The default argument for the ctl command. The current directory is used to
resolve filename references that do not begin with a / , and is changed using the ctl

0

0

command. For example: Q

16 Revision D of 7 January 1984

0

0

0

Programming Tools Programming the Bourne Shell

tutorial$ cd /uar/fred/bln
makes the current directory /u,r/fred/6in.

. tutorial$ C&i WD

displays on the screen the file wn in this directory. The command cd with no argument is
equivalent to:

cd $HOME

This variable is also typically set in the your login profile.
SPATH A list of directories that contain commands (the ,earcla path). Each time the Shell

executes a command, a list of directories is searched for an executable file. If
SPATH is not set, then the current directory, /6in, and /uar/6in are searched by
default. Otherwise SPATH consists of directory names separated by:. For exam­
ple,

P ATH=:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first :), /u,r//red/6in, /bin
and /u,r/6in are to be searched in that order. In this way individual users can have their
own 'private' commands that are accessible independently of the current directory. If the
command name contains a /, then this directory search is not used; a single attempt is
made to execute the command.
SPS1 The primary Shell prompt string, by default, '$ '.

$PS21
$IFS

The Shell prompt when further input is needed, by default, '> '.
The set of characters used by blank interpretation.

14. The 'test' Command

Although not part of the Shell, Shell programs use the te,t command. For example:

test -f file

returns zero exit status if file exists and non-zero exit status otherwise. In general te,t evaluates
a predicate and returns the result as its exit status. Some of the more frequently used teat
arguments are given here. See tut (1) for a complete specification.

test s true if the argument , is not the null string
test -f file true if file exists
test -r file true if file is readable
test -w file true if file is writable
test ~ file true if file is a directory

15. Control Flow - while

The actions of the for loop and the case branch are determined by data available to the Shell.
A while or uniil loop and an if ihen else branch are also provided whose actions are deter­
mined by the exit status returned by commands. A while loop has the general form

Revision D of 7 January 1984 17

Programming the Bourne Shell

while command-li,t1
do command-liat,
done

Programming Tools

The value tested by the while command is the exit status of the last simple command following
while. Each time round the loop commontl-li,t1 is executed; if a zero exit status is returned
then commond-liat, is executed; otherwise, the loop terminates. For example,

while test S 1
do ...

shift
done

is equivalent to

fori
do ...
done

ahift is a Shell command that renames the positional parameters S2, S3, ... as Sl, S2, .•• and
loses $1.
Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For example,

until test -f file
do sleep 300; done
command,

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. Q
(Presumably another process will eventually create the file.)

16. Control Flow - it

Also available is a general conditional branch of the form,

if command-lid
then command-liat
elae command-li,t
ft

that tests the value returned by the last simple command following if.
The if command may be used in conjunction with the tut command to test for the existence of
a file as in

if test -f file
then procca, file
else do ,omething el,e
fi

An example of the use of if, case and for constructions is given in 'The 'man' Command' sec­
tion.

18 Revision D of 7 January 1984

0

0

0

Programming Tools

A multiple test ii command of the form

if •••
then •••
else if, ..

fi

then
else

...
if ••• ...
fi

fi

may be written using an extension of the If notation as,

if •••
then ...
elif ...
then ...
elif
fi

Programming the Bourne Shell

The following example is the touch command, which changes the 'last modified' time for a list of
files. The command may be used in conjunction with make (1) to force recompilation of a list of
files.

11.ag=
for i
do case Si in

-c) 11.ag=N ;;
*)if test -f Si

then In Si junkH; rm junkSS
elif test Sll.ag
then echo file \ 1i\' does not exist
else >Si
Ii

esac
done

The -c 11.ag is used in this command to force subsequent files to be created if they do not
already exist. Otherwise, if the file does not exist, an error message is displayed. The Shell
variable flag is set to some non-null string if the -c argument is encountered. The commands

In ••• ;rm •..

make a link to the file and then remove it, causing the last modified date to be updated.

The sequence

if commandl
then command2
Ii o may be written

Revision D of 7 January 1984 19

Programming the Bourne Shell

commandl && command2

Conversely,

command} 11 command2

Programming Tools

executes commande only if command1 fails. In each case the value returned is that of the last
simple command executed.

17. Command Grouping

Commands may be grouped in two ways,

{ command-liat ; }

and

(command-lilt)

In the first command-liat is simply executed. The second form executes command-lid as a
separate process. For example,

(cd x; rm junk)

executes rm junk in the directory x without changing the current directory of the invoking
Shell.

The commands

cd x; rm junk

have the same effect but leave the invoking Shell in the directory %.

18. Debugging Shell Procedures

The Shell provides two tracing mechanisms to help when debugging Shell procedures. The first
is invoked within the procedure as

set -v

(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc •••

where proc is the name of the Shell procedure. This flag may be used in conjunction with the
-n flag which prevents execution of subsequent commands. (Note that saying ,et -n at a termi­
nal will render the terminal useless until an end-of-file is typed.)
The command

set -x

will produce an execution trace. Following parameter substitution, each command is displayed
as it is executed. (Try these at the workstation to see what effect they have.) Both flags may be
turned off by saying

20 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Programming the Bourne Shell

set -

and the current setting or the Shell flags is available as S-.

19. The 'man' Command

The man command displays sections of the user's manual. It is called, for example, as

man sh
man -t ed
man 2 fork

In the first the manual section for ,A is printed. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for etl. The last prints the fork
manual page from section 2.

cd /usr/man

: 'colon is the comment command'
: 'default is nroff (SN), section 1 (Ss)'
N=ns=l

for i
do case Si in

(1-9)*) s=Si ;;

-t) N=t ;;

-n) N=n ;;

-*) echo unknown flag \ 1i\' ;;
*) if test -f manSs/Si.Ss

then S{N}roff manO/S{N}aa manSs/Si.Ss
else : 1ook through all manual sections'

round=no

fi
esac

done

for j in 1 2 3 4 5 6 7 8 0
do if test -r manlj/$i.$j

then man $j Si
round=yes

Ii
done
case $found in

no) echo 1i: manual page not found'
esac

Figure 1: A version of the man command

Revision D or 7 January 1084 21

Programming the Bourne Shell Programming Tools

20. Keyword Parameters

Shell variables may be given values by assignment or when a Shell procedure is invoked. An /~
argument to a Shell procedure of the form name=value that precedes the command name -_;
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking Shell is not affected. For example,

user=fred command

will execute command with user set to /red. The -It Bag causes arguments of the form
name=value to be interpreted in this way anywhere in the argument list. Such namu are
sometimes called keyword parameters. If any arguments remain, they are available as positional
parameters Sl, $2, ••••

You can also use the ad command to set positional parameters from within a procedure. For
example,

set - *
will set S1 to the first filename in the current directory, S2 to the next, and so on. Note that
the first argument, -, ensures correct treatment when the first filename begins with a - .

21. Parameter Transmission

When a Shell procedure is called both positional and keyword parameters may be supplied with
the call. Keyword parameters are also made available implicitly to a Shell procedure by specify•
ing in advance that such parameters are to be exported. For example,

ex port user box

marks the variables user and box for export. When a Shell procedure is called, copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the calling Shell. It is generally true
of a Shell procedure that it may not modify the state of its caller without explicit request on the
part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonl11. The form of this
command is the same as that of the ezport command,

readonly name •••

Subsequent attempts to set readonly variables are illegal.

22. Parameter Substitution

If a Shell parameter is not set, then the null string is substituted for it. For example, if the
variable d is not set

tutorial$ echo Sd

or

tutorial$ echo S{d}

will echo nothing. A default string may be given as in

22 Revision D of 7 January 1984

()

0

0

0

0

Programming Tools Programming the Bourne Shell

tutorial$ echo S{d-.}

which will echo the value o(the variable d i(it is set and '.' otherwise. The default string is
evaluated using the usual quoting conventions so that

tutorial$ echo S{d-'• 1
will echo • if the variable d is not set. Similarly

tutorial$ echo ${ d-Sl}

will echo the value of d it it is set and the value (ii any) ol SI otherwise. A variable may be
assigned a default value using the notation

echo S{d=.}

which substitutes the same string as

echo S{d-.}

and it d were not previously set then it will be set to the string '.'. (The notation${ ••• = •• ,}
is not available for positional parameters.)

If there is no sensible default then the notation

echo S{d!message}

will echo the value ol the variable d i(it has one; otherwise the Shell prints me,aage and execu­
tion of the Shell procedure is abandoned. If mea,age is absent, then a standard message is
printed. A Shell procedure that requires some parameters to be set might start as follows.

: S{ user!} ${ acct!} ${bin!} ...
Colon (:) is a command that is built in to the Shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the Shell will aban­
don execution of the procedure.

23. Command Substitution

In a similar way, you can substitute the standard output from a command to parameters. The
command pwd displays on its standard output the name o(the current directory. For example,
if the current directory is / uar //red/bin then the command

d='pwd'

is equivalent to

d=/usr/fred/bin

The entire string between grave accents (' •• .') is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a ' must be escaped using a \. For example,

Is. 'echo • Sl •'

is equivalent to

Revision D of 7 January 1984 23

Programming the Bourne Shell Programming Tools

ls $1

Command substitution occlll'S in all contexts where parameter substitution occlll'S (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism use of string processing commands within Shell procedures. An example of such a
command is ba,ename, which removes a specified sutr1X from a string. For example,

basename main.c .c

displays the string main. The following fragment from a cc command illustrates its use:

case $A in ...
*.c) B='basename SA .c'

esac

that sets B to the part of SA with the sutr1X .c stripped.

Here are some composite examples.

• for i in 'la -t'; do ...
The variable i is set to the names of files in time order, most recent first.

• act 'date'; echo $8 $2 S3, Sf
will print, such as, 1977 Nov 1, tS:59:59

24. Evaluation and Quoting

The Shell is a macro processor that provides parameter substitution, command substitution and
filename generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in the 'Grammar' section.
Before a command is executed, the following substitutions occur.

24

• Parameter substitution, such as Sneer

• Command substitution, such as 'pwd'

Only one evaluation occurs so that if, for example, the value of the variable X is the
string $11 then

echo SX

will echo S11.
• Blank interpretation

Following the above substitutions, the resulting characters are broken into non-blank
words (blank interpretation). For this purpose 'blanks' are the characters of the string
$IFS. By default, this string consists of blank, tab and newline. The null string is not
regarded as a word unless it is quoted. For example,

echo "

will pass on the null string as the first argument to echo, whereas

echo $null

Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Programming the Bourne Shell

will call echo with no arguments ir the variable null is not set or set to the null string.

• Filename generation

Each word is then scanned for the file pattern characters *, T and [•••], and an alpha­
betical list of file names is generated to replace the word. Each such filename is a
separate argument.

The evaluations just described also occur in the list or words associated with a for loop. Only
substitution occurs in the word used for a cue branch.

As well as the quoting mechanisms described earlier using \ and • ••• ', a third quoting mechan­
ism is provided using double quotes. Within double quotes, parameter and command substitu­
tion occur, but filename generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

s
ff

\

parameter substitution
command substitution
ends the quoted string
quotes the special characters S ' • \

For example,

echo "Sx"

will pass the value of the variable x as a single argument to echo. Similarly,

echo "S*"
will pass the positional parameters as a single argument and is equivalent to

echo "SI S2 •• ."

The notation S@ is the same as S• except when it is quoted.

echo"$@"

will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "SI" "$2" •••

The following table gives, for each quoting mechanism, the Shell metacharacters that are
evaluated.

metacharacter

\ • • ff

n n n n n t
y n n t D D

ff y y n y t n

t terminator
y interpreted
n not interpreted

Figure 2: Quoting Mechanisms

Revision D of 7 January 1984 25

Programming the Bourne Shell Programming Tools

In cases where more than one evaluation of a string is required, use the built-in command evaL

0 For example, if the variable X has the value Sv, and if 7 has the value pqr, then

eval echo SX

will echo the string pqr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the Shell. The input is read and the resulting command(s) executed. For example,

wg='eval wholgrep'
$wg fred

is equivalent to

who I grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as I ,
following 1ub11titution.

25. Error Handling

The treatment of errors detected by the Shell depends on the type of error and on whether the
Shell is being used interactively. An interactive Shell is one whose input and output are con­
nected to a terminal (as determined by gttv (2)). A Shell invoked with the -1 flag is also interac­
tive.

Execution of a command (see also 'Command Execution') may fail for any of the following rea­
sons.

• Input-output redirection may fail, for example, if a file does not exist or cannot be created.
• The command itself does not exist or cannot be executed.

• The command terminates abnormally, for example, with a 'bus error' or 'memory fault.' See
Figure 3 for a complete list of UNIX signals.

• The command terminates normally but returns a non-zero exit status.

In all of these cases the Shell goes on to execute the next command. Except for the last case,
the Shell displays an error message. All remaining errors cause the Shell to exit from a com­
mand procedure. An interactive Shell will return to read another command from the terminal.
Such errors include the following:

• Syntax errors such as, if ••• then ••• done

• A signal such as interrupt. The Shell waits for the current command, if any, to finish exe­
cution and then either exits or returns to the terminal.

• Failure of any of the built-in commands such as ed.

The Shell flag -e terminates the Shell if any error is detected.

26 Revision D of 7 January 1984

0

0

0

Prug,amming Tools Programming the Bourne Shell

l hangup
2 interrupt
3• quit
4• illegal instruction
5• trace trap
6• IOT instruction
7• EMT instruction
8• floating point exception
9 kill (cannot be caught or ignored)
10• bus error
11• segmentation violation
12• bad argument to oystem call
13 write on a pipe with no one to read it
14 alarm clock
15 software termination (Crom kill (1))

Figure 3: UNIX Signals

Those signals marked with an asterisk produce a core dump if not caught. However, the Shell
itself ignores quit which is the only external oignal that can cause a dump. The signals in this
list of potential interest to Shell programs are l, 2, 3, 14 and 15.

0 26. Fault Handling

0

Shell procedures normally terminate when an interrupt is received Crom the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam·
pie,

trap 'rm /tmp/psSS; exit' 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com­
mands

rm /tmp/psU; exit

Exit is another built-in command that terminates execution of a Shell procedure. The exit is
required; otherwise, after the trap has been taken, the Shell will resume executing the procedure
at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig­
nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the oignal is received. Lastly, they can be left to cause termination of
the process without it having to take any further action. If a signal is being ignored, on entry
to the Shell procedure, for example, by invoking it in the background (see 'Command Execu­
tion'), then trap commands (and the oignal) are ignored.

The use of trap is illustrated by this modified version of the touc/a command (Figure 5). The
cleanup action is to remove the file junkSS.

Revision D of 7 January 1984 27

Programming the Bourne Shell

flag=
trap 'rm -r junkSS; exit' 1 2 3 15
ror i
do case Si in

-c) flag=N ;;
*)ir test -r Si

then In Si junkSS; rm junkSS
elir test $flag
then echo file \ 1i\' does not exist
else >Si
fi

esac
done

Figme 4: The touch Command

Programming Tools

The trap command appears before the creation of the temporary file; otherwise it would be pos­
sible for the process to die without removing the file.

Since there is no signal O in UNIX, the Shell uses it to indicate the commands to be executed on
exit from the Shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nolaup command:

trap "l 2 3 15

which causes both the procedure and the invoked commands to ignore. the /aengup, intcrrupt,and
kill signals.

Traps may be reset by saying:

trap 2 3

which resets the traps for signals 2 and 3 to their default values. A list or the current values or
traps may be obtained by writing:

trap

The procedure acan (Figure 6) is an example of the use of trap where there is no exit in the trap
command. Scan takes each directory in the current directory, prompts with its name, and then
executes commands typed at the terminal until an end of file or an interrupt is received. Inter­
rupts are ignored while executing the requested commands but cause termination when ,can is
waiting for input.

28 Revision D or 7 January 1984

0

o•
I

()

0

0

0

Programming Tools Programming the Bourne Shell

d-'pwd'
for i in*
do if test -<I Sd/Si

then cd Sd/Si
while echo • Si:"

trap exit 2
read X

do trap : 2; eval Sx; done
Ii

done

Figure 5: The scan Command

read z is a built-in command that reads one line from the standard input and places the result
in the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt
is received.

27. Command Execution

To run a command (other than a built-in), the Shell lint creates a new process using the system
call fork. The execution environment for the command includes input, output and the states or
signals, and is established in the child process before the command is executed. The built-in
command ezec is used in the rare cases when no fork is required and simply replaces the Shell
with a new command. For example, a simple version of the nolaup command looks like:

trap " 1 2 3 15
exec$*

The trap turns off the signals specified so that they are ignored by subsequently created com­
mands and exec replaces the Shell by the command specified.
Most forms or input output redirection have already been described. In the following, word is
only subject to parameter and command substitution. No filename generation or blank
interpretation takes place so that, for example,

will write its output into a file whose name is •. c. Input output specifications are evaluated left
to right as they appear in the command.
> word The standard output (file descriptor 1) is sent to the file word which is created if it

does not already exist.

> > word The standard output is sent to file word. If the file exists, then output is

< word

<< word

appended (by seeking to the end); otherwise the file is created.

The standard input (file descriptor 0) is taken from the file word.

The standard input is taken from the lines or Shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. Ir word is not quoted, then parameter and command sub­
stitution occur, and \ is used to quote the characters \ S ' and the first character
of word. In the latter case \newline is ignored (c.f. quoted strings).

Revision D of 7 January 1984 29

Programming the Bourne Shell Programming Tools

The file deKriptor digit is duplicated using the system call ,up (2) and the result is >& digit

<& digit

<&­
>&-

used as the standard output. 0
The standard input is duplicated from file descriptor ligit.
The standard input is closed.

The standard output is closed.
Any of the above may be preceded by a digit in which case the file deKriptor created is that
specified by the digit instead of the default O or 1. For example,

, , , 2>file

runs a command with message output (file descriptor 2) directed to file •

... 2>&1

runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the elect is usually to merge the two
streams.)

The environment for a command run in the background such as

list *·c I lpr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file / dev /null. This prevents two processes (the Shell and the command), which are running in
parallel, from trying to read the same input. Chaos would ensue if this were not the case. For
example,

tutorial$ ed Ille&.

would allow both the editor and the Shell to read from the same input at the same time.
The other modification to the environment of a background command is to turn of the QUIT
and INTERRUPT signals so that the command ignores them. This allows these signals to be
used at the terminal without causing background commands to terminate. For this reason the
UNIX convention for a signal is that if it is set to 1 (ignored), then it is never changed even for
a short time. Note that the Shell command trap has no elect for an ignored signal.

28. Calling the Shell

The Shell interprets the following flags when it is called. If the first character of argument zero
is a minus, then commands are read from the file .profile.
-c ,Iring

Ir the -c flag is present then commands are read from drinr,.

-• Ir the -11 flag is present or if no arguments remain, commands are read from the standard
input. Shell output is written to file descriptor 2.

-i Ir the -i flag is present or if the Shell input and output are attached to a terminal (as told
by 11tt11), then this Shell is interactive. In this case TERMINATE is ignored (so that kill O
does not kill an interactive Shell), and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases, the Shell ignores QUIT.

30 Revision D of 7 January 1984

C)

0

Programming Tools Programming the Bourne Shell

29. Grammar

0 Commands are parsed initially according to the following grammar.

0

0
Revision D of 7 January 1984 31

Programming the Bourne Shell

32

item: wor,l
input-output
name = value

,imple-comman,l: item
,imple-comman,l item

comman,l: 1imple-comman,l
(comman4-li,t)
{ comman4-li,t }
for name do comman,l-li,t done
for name in wor,l ••• do comman4-li,t done
while comman,l-li,t do comman4-li,t done
until comman4-li,t do comman,l-li,t done
case wor,l in ca,e-part ••• eaac
if comman4-li,t then comman,l-li,t die-part I

pipeline: comman,l
pipeline I comman,l

an4or: pipeline
an4or && pipeline
an,lor I I pipeline

comman4-li,t: an,lor
comman4-li,t ;
comman4-li,t &
comman4-liat ; an,lor
comman4-li,t & an4or

input-output: > file
< file
>> wor,l
<< wor,l

file: wortl
& ,ligit
&-

ca,e-part: pattern) comman4-li,t ;;

pattern: wor,l
pattern I wor,l

elae-part: elif comman4-li,t then comman4-li,t elie-part
else comman4-li,t
empt11

empt11:

wor,l: a sequence or non-blank characters

Programming Tools

0

0

0
Revision Dor 7 January 1984

0

0

0

Programming Tools Programming the Bourne Shell

name: a sequence ol letters, digits or underscores starting with a letter

0123461789 digit:

30. Metacharacters and Reserved Words

a) syntactic

I pipe symbol

8&8& 'andl' symbol

II 'orf' symbol

• command separator ,
;; case delimiter

8& background commands

() command grouping

< input redirection

<< input from a here document

> output creation

>> output append

b) patterns
• match any character(s) including none

! match any single character

[•••] match any of the enclosed characters

c) substitution

${ ... } substitute Shell variable
• •

d) quoting

\
• • ...

substitute command output

quote the next character
quote the enclosed characters except lor '

quote the enclosed characters except lor S ' \ •

e) reserved words

Revision D or 7 January 1984 33

Programming the Bourne Shell

34

il then else elif tl
case in esac
for while until do done
{ }

Programming Tools

0

0

0
Revision D of 7 January 1984

0
Table of Contents

UNIX Programming ... 1

1. Basics... 1
1.1. Program Arguments... 1

2. The 'Standard Input' and 'Standard Output' .. 2

3. THE STANDARD 1/0 LIBRARY.. 3
3.1. File Access .. 3
3.2. Error Handling - Stderr and Exit ... 6
3.3. Miscellaneous 1/0 Functions... 6

4. LOW-LEVEL 1/0 ... 8
4.1. File Descriptors ... 7

0
4.2. Read and Write.. 7
4.3. Open, Creat, Close, Unlink .. 9
4.4. Random Access - Seek and Lseek .. 10
4.5. Error Processing.. 11

6. PROCESSES .. 11
5.1. The 'System' Function ... 12
5.2. Low-Level Process Creation - Exec! and Execv ... 12
5.3. Control of Processes - Fork and Wait ... 13
5.4. Pipes... 14

8. SIGNALS - INTERRUPTS AND ALL THAT.. 18

7. References ... 20

A. The Standard 1/0 Library.. 21
A.I. General Usage ... 21
A.2. Calls .. 21

0
-i-

0

0

0,

0

0

0

UNIX Programming

This chapter is an introduction to programming on the UNIXt system. The emphasis is on how
to write programs that interface to the operating system, either directly or through the stan­
dard 1/0 library. The topics discussed include

• handling command arguments
• rudimentary 1/0; the standard input and output

• the standard 1/0 library; file system access

• low-level 1/0: open, read, write, close, seek

• processes: exec, fork, pipes

• signals - interrupts, etc.
There is also an appendix which describes the standard 1/0 library in detail.
This chapter describes how to write programs that interface with the UNIX operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they run, or that attempt to catch interrupts and other signals during exe­
cution.
The document collects material which is scattered throughout several sections of The Sun Refer­
ence Manuals (Uaer', Manual, S111tem Interface Manual, and S111tem Manager', Manual)(l).
There is no attempt to be complete; only generally useful material is dealt with. It is assumed
that you will be programming in C, 90 you must be able to read the language roughly up to the
level of The C Programming Language (2). Some of the material in sections 2 through 4 is based
on topics covered more carefully there. You should also be familiar with UNIX itself at least to
the level of UNIX for Beginner, (3).

1. Basics

1.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made avail­
able to the function main as an argument count argc and an array argv of pointers to charac­
ter strings that contain the arguments. By convention, argv[O] is the command name itself, 90

argc is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal - This is essentially the echo command.

t UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 1

UNIX Programming

main(argc, argv)
int argc;
char •argv[);
{

inti;

for (i = l; i < argc; i+ +)
printf("%so/oc", argvfi), (i<argc-1) ? ' ' : '\n');

}

Programming Tools

argv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \ 0, so they can be treated as strings. The program starts by printing
argv(l] and loops until it has printed them all.
The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2. The 'Standard Input' and 'Standard Output'

The simplest input mechanism is to read the 'standard input,' which is generally the user's ter­
minal. The function getchar returns the next input character each time it is called. A file may
be substituted for the terminal by using the < convention: if prog uses getchar, then the
command line

tutorial% prog < Ille

causes prog to read Ille instead of the terminal. prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the pipe
mechanism:

tutorial% otherprog I prog

provides the standard input for prog from the standard output of otherprog.
getchar returns the value EOF when it encounters the end of file (or an error) on whatever
you are reading. The value of EOF is normally defined to be -1, but it is unwise to take any
advantage of that knowledge. As will become clear shortly, this value is automatically defined
for you when you compile a program, and need not be of any concem.
Similarly, putchar(c) puts the character c on the 'standard ontput,' which is also by default
the terminal. The output can be captured on a file by using >: if prog uses putchar,

tutorial% prog > outllle

writes the standard output on outllle instead of the terminal. outllle is created if it doesn't
exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

tutorial% prog I otherprog

puts the standard output of prog into the standard input of otherprog.
The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output will
appear in the order of the calls.
Similarly, the function acanf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. acanf uses the same mechanism as

2 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools UNIX Programming

getchar, so calla to them may also be intermixed.
Many programs read only one input and write one output; for such programs 1/0 with
getchar, putchar, acanf, and prlntf may be entirely adequate, and it is almost always enough
to get started. This is particularly true if the UNIX pipe facility is used to connect the output
or one program to the input or the next. For example, the following program strips out all ascii
control characters from its input (except for newline and tab).

#include <stdio.h>

main()
{

int c;

/ • ccstrip: strip non-graphic characters • /

while ((c = getchar()) I- EOF)
if ((c >== ' ' && c < 0177) 11 c '\t' 11 c '\n')

putchar(c);
exit(O);

}

The line

#include <stdio.h>

should appear at the beginning or each source file. It causes the C compiler to read a file
(/ uar/ include/ atdio.li) of standard routines and symbols that includes the definition or EOF.
If it is necessary to treat multiple files, you can use cat to collect the files for you:

tutorial% cat Biel ftle2 ... I ccatrlp > output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller or the
program will see a normal termination status (conventionally 0) from the program when it com·
pletes. Section 6 disculllles status returns in more detail.

3. THE STANDARD 1/0 LIBRARY

The 'Standard 1/0 Library' is a collection of routines intended to provide efficient and portable
1/0 services for most C programs. The standard 1/0 library is available on each system that
supports C, so programs that confine their system interactions to its facilities can be tran­
sported from one system to another essentially without change.
In this section, we will discuss the basics of the standard 1/0 library. The appendix contains a
more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

tutorial% we x.c y.c

Revision D or 7 January 1984 3

UNIX Programming Programming Tools

prints the number of lines, words and characten in x.c and 7.c and the totals.
The question is how to arrange for the named files to be read - that is, how to connect the file 0
system names to the 1/0 statements which actually read the data.
The rules are simple. Before it can be read or written a &.le has to be opened by the standard
library function fopen. fopen takes an external name (like x.c or 7.c), does some housekee~
ing and negotiation with the operating system, and returns an internal name which must be
used in subsequent reads or writes of the file.
This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the .
buffer, whether the file is being read or written, and the like. Usen don't need to know the
details, because part of the standard 1/0 definitions obtained by including atdlo.la is a structure
definition called Fll,E. The only declaration needed for a file pointer is exemplified by

FILE •fp, •fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE. FILE (is a
type name, like int, not a structure tag.

The actual call to fopen in a program is

fp - fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argument
is the mode, also as a character string, which indicates how you intend to use the file. The only
allowable modes are read "r"), (write "w"), (or append "a"). (
If a file that you open for writing or appending does not exist, it is created (if possible). Open-
ing an existing file for writing causes the old contents to be discarded. Trying to read a file o
that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don't have permission). Ir there is any error, fopen will return the null
pointer value NULL (which is defined as zero in atdio,h).
The next thing needed is a way to read or write the file once it is open. There are several possi­
bilities, of which getc and putc are the simplest. getc returns the next character from a file; it
needs the file pointer to tell it what file. Thus

C = getc(fp)

places in c the next character from the file referred to by Ip; it returns EOF when it reaches
end of file. putc is the inverse of getc:

putc(c, fp)

puts the character c on the file fp and returris c. getc and putc return EOF on error.
When a program is started, three files are opened automatically, and file pointers are provided
for them. These files are the standard input, the standard output, and the standard error out­
put; the corresponding file pointers are called atdln, atdout, and atderr. Normally these are
all connected to the terminal, but may be redirected to files or pipes as described in Section 2.2.
atdin, atdout and atderr are pre-defined in the 1/0 library as the standard input, output and
error files; they may be used anywhere an object of type Fll,E • can be. They are constants,
however, not variables, so don't try to assign to them.
With some of the preliminaries out of the way, we can now write 111c. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they
are processed in order. If there are no arguments, the standard input is processed. This way Q

4 Revision D of 7 January 1984

0

0

0

Programming Tools UNIX Programming

the program can be used stand-alone or as part of a larger process.

#include <stdio.h>

main(argc, argv) /• we: count lines, words, chars •/
int argc;
char •argv();
{

}

int c, i, inword;
FILE •fp, •fopen();
long linect, wordct, charct;
long tlinect 0, twordct ... 0, tcharct ... O;

i = l;
fp ""' stdin;
do {

if (argc > 1 && (fp==fopen(argv[i), "r")) -- NULL) {
fprind(stderr, "we: can't open %s\n", argv(i));
continue;

}
linect - wordct ""' charct - inword - O;
while ((c - getc(fp)) I- EOF) {

}

charct++;
if (c == '\n')

linect+ +;
if (c -== ' ' 11 c =- '\t' 11 c -=- '\n')

inword ... O;
else if (inword =- 0) {

inword -1;
wordct++;

}

printf(" %71d %71d %71d", linect, wordct, charct);
printf(argc > 1 ! • %s\n" : "\n", argv(i));
fclose(fp);
tlinect + - linect;
twordct + - wordct;
tcharct + = charct;

} while(++ i < argc);
if (argc > 2)

printf(" %71d %71d %71d total\n", tlinect, twordct, tcharct);
exit(O);

The function fprintf is identical to printf, save that the mst argument is a file pointer that
specifies the file to be written.

The function fclON is the invene of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, freeing the file pointer for another file.
Since there is a limit on the number of files that a program may have open simultaneously, it's
a good idea to free things when they are no longer needed. There is also another reason to call
fcloae on an output file - it Bushes the buffer in which putc is collecting output. (fclose is

Revision D of 7 January 1984 5

UNIX Programming Programming Tools

called automatically for each open file when a program terminates normally.)

3.2. Error Handling - Stderr and Exit

atderr is assigned to a program in the same way that atdln and atdout are. Output written
on atderr appears on the user's terminal even if the standard output is redirected. t11c writes its
diagnostics on atderr instead of iltdout so that if one of the files can't be accessed for some
reason, the message finds its way to the user's terminal instead of disappearing down a pipeline
or into an output file.
The program actually signals errors in another way, using the function exit to terminate pro­
gram execution. The argument of exit is available to whatever process called it (see Section 6),
so the success or failure of the program can be tested by another program that uses this one as
a sub-process. By convention, a return value of O signals that all is well; non-zero values signal
abnormal situations.
exit itself calls fclose for each open output file, to flush out any buffered output, then calls a
routine named _exit. The function _exit causes immediate termination without any buffer
flushing; it may be called directly if desired.

3.3. Miscellaneous 1/0 Functions

The standard 1/0 library provides several other 1/0 functions besides those we have illustrated
above.
Normally output with putc, etc., is buffered (except to •tderr); to force it out immediately, use
ll'lush(fp).
fscanf is identical to scant, except that its first argument is a file pointer (as with fprlntl)
that specifies the file from which the input comes; it returns EOF at end of file.

The functions ucanl and aprlntf are identical to l•canf and fprlntf, except that the first
argument names a character string instead of a file pointer. The conversion is done from the
string for ucanf and into it for aprintl.
fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into buf; at.
most sise-1 characters are copied; it returns NULL at end of file. fputa(bul, Ip) writes the
string in buf onto file fp.
The function ungetc(c, fp) 'pushes back' the character c onto the input stream Ip; a subse­
quent call to getc, fscanf, etc., will encounter c. Only one character of pushback per file is per­
mitted.

4. LOW-LEVEL 1/0

This section describes the bottom level of 1/0 on the UNIX system. The lowest level of 1/0 in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite simple, this isn't as bad as it sounds.

6 Revision D of 7 January 1984

0

0

0

Programming Tools UNIX Programming

4.1. File Descriptors

0 In the UNIX operating system, all input and output is done by reading or writing files, because
all peripheral devices, even the user's terminal, are files in the file system. This means that a
single, homogeneous interface handles all communication between a program and peripheral
devices.

0

0

In the most general case, before reading or writing a file, it is neceMary to inform the system or
your intent to do so, a process called 'opening' the file. If you are going to write on a file, it
may also be necessary to create it. The system checks your right to do so (Does the file exist?
Do you have permission to access it!), and if all is well, returns a small positive integer called a
file de•criplor. Whenever 1/0 is to be done on the file, the file descriptor is used instead or the
name to identify the file. (This is roughly analogous to the use or READ(5, ...) and WRITE(6, ...) in
Fortran.) All information about an open file is maintained by the system; the user program
refers to the file only by the file descriptor.
The file pointers discussed in section 3 are similar in spirit to file descriptors, but file descriptors
are more fundamental. A file pointer is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.
Since input and output involving the user's terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the 'shell') runs a program, it opens
three fileu, with file descriptors O, 1, and 2, called the standard input, the standard output, and
the standard error output. All or these are normally connected to the terminal, so if a program
reads file descriptor O and writes file descriptors 1 and 2, it can do terminal 1/0 without worry•
ing about opening the files.
If 1/0 is redirected to and from &Jes with < and >, as in

tutorial% prog < Inflle > outflle

the shell changes the default assignments for file descriptors O and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor­
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file O for
input and 1 and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first argu­
ment is a file descriptor. The second argument is a buffer in your program where the data is to
come from or go to. The third argument is the number of bytes to be transferred. The calls
are

nJead = read(rd, buf, n);

n_written = write(rd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only np to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of &le, and -1 indicates an error of some sort. For writing, the returned value is the

Revision D of 7 January 1984 7

UNIX Programming Programming Tools

number or bytes actually written; it is generally an error if this isn't equal to the number sup-
posed to be written. 0
The number or bytes to be read or written is quite arbitrary. The two moat common values are
1, which means one character at a time ('unbuffered'), and 512, which corresponds to a physical
bloc:ksize on many peripheral devices. This latter size will be moat efficient, but even character
at a time I/0 is not inordinately expensive.
Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

#define BUFSIZE 512 /• beat sise for PDP-11 UNIX •/

main() /• copy input to output •/
{

}

char buf[BUFSIZE);
int n;

while ((n - read(O, buf, BUFSIZE)) > 0)
write(l, buf, n);

exit(O);

Ir the file size is not a multiple or BUFSIZE, some read will return a smaller number of bytes
to he written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like ·O
getchar, putchar, etc:. For example, here is a version of getchar which does unbuffered
input.

#define CMASK 0377 /• for making thar's > 0 •/

getchar() /• unbuffered single character input •/
{

char c;

return((read(O, &c, 1) > 0)? c & CMASK : EOF);
}

c mud be declared char, because rea.d accepts a character pointer. The character being
returned must be masked with 03'1'1 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 03'1'1 is appropriate for the PDP -11 but not necessarily for
other machines.)
The second version of getchar does input in big chunks, and hands out the characters one at a
time.

8 Revision Dor 7 January 1984

0

0

0

Programming Tools

#define
#define

CMASK 0377 /• for making char's > 0 •/
BUFSIZE 512

getchar() /• bull'ered version •/
{

}

static char buf(BUFSIZE);
static char • bufp ,.. buf;
static int n = O;

if (n == 0) { /• bufl'er is empty•/
n = read(O, buf, BUFSIZE);
bufp =- buf;

}
return((-n >- 0)? •bufp+ + .t CMASK : EOF);

4.3. Open, Creat, Close, Unlink

UNIX Programming

Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat (sic).

open is rather like the fopen discussed in the previous section, except that instead of return.
ing a 6.le pointer, it returns a 6.le descriptor, which is just an Int.

int fd;

fd - open(name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is difl'erent, however: rwmode is O for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid 6.le
descriptor.
It is an error to try to open a file that does not exist. The entry point creat is provided to
create new 6.les, or to re-write old ones.

fd.., creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, creat will truncate it to zero length; it is not an error to creat a file that
already exists.
If the file is brand new, creat creates it with the protection motle specified by the pmode argu•
ment. In the UNIX file system, there are nine bits of protection information associated with a
file, controlling read, write and execute permission for the owner of the file, for the owner's
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner, and
read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility cp, a program which copies one file
to another. (The main simplification is that our vel'!lion copies only one file, and does not per­
mit the second argument to be a directory.)

Revision D of 7 January 1984 9

UNIX Programming Programming Tools

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644 /• RW for owner, R for group, others•/

main(argc, argv) /• cp: copy n to 12 •/
int argc;
char •argv();
{

}

int n, 12, n;
char buf(BUFSIZE);

if(argc I= 3)
error("Usage: cp from to", NULL);

if ((n == open(argv(l), 0)) -- -1)
error(" cp: can't open %s", argv(l));

if ((12 == creat(argv(2), PMODE)) -- ·l)
error(" cp: can't create %s", argv(2));

while ((n - read(fl, buf, BUFSIZE)) > 0)
if (write(l2, buf, n) I- n)

error(" cp: write error", NULL);
exit(O);

error(sl, s2) /• print error message and die •/
char •sl, •s2;
{

}

printr(sl, s2);
printr(" \n");
exit(l);

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must
be prepared to re-use file descriptors. The routine eloae breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termina­
tion of a program via exit or return from the main program closes all open files.
The function unlink(filename) removes the file filename from the file system.

4.4. Random Access - Seek and Laeek

File 1/0 is normally sequential: each r-d or write takes place at a position in the file right
after the previous one. When necessary, however, a file can be read or written in any arbitrary
order. The system call !seek provides a way to move around in a file without actually reading
or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position otl'aet, which is
taken relative to the location specified by orlgla. Subsequent reading or writing will begin at

10 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools UNIX Programming

that position. ofl'set is a long; Id and orlgla are lat '•· origin can be 0, l, or 2 to specify that
ofl'aet is to be measured from the beginning, from the current position, or from the end of the
file respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ('rewind'),

lseek(fd, OL, O);

Notice the OL argument; it could also be written as {long) 0.
With laeek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi­
trary place in a file.

get(fd, pos, buf', n) /• read n bytes from position pos • /
int fd, n;
long pos;
char •buf';
{

}

lseek(fd, pos, O); /• get to pos •/
return(read(fd, buf, n));

In pre-version 7 UNIX the basic entry point to the 1/0 system was called seek. •eek was identi­
cal to lseek, except that its ofl'aet argument was an Int rather than a long. Accordingly,
since PDP -11 integers have only 16 bits, the ofl'.et specified for •eek was limited to 65,535; for
this reason, origin values of 3, 4, 5 caused seek to multiply the given offset by 512 (the number
of bytes in one physical block) and then interpret origin as if it were O, l, or 2 respectively.
ThWI to get to an arbitrary place in a large file required two seeks, first one which selected the
block, then one which has origin equal to I and moved to the desired byte within the block.

4.5. Error Processing

The routines discUllsed in this section, and in fact all the routines which are direct entries into
the system can incur errors. Usually they indicate an error by returning a value of -1. Some­
times it is nice to know what sort of error occurred; for this purpose all these routines, when
appropriate, leave an error number in the external cell errno. The meanings of the various
error numbers are listed in intro(2) in the Sun Su,tem Inter/ace Manual so your program can,
for example, determine if an attempt to open a file failed because it did not exist or because the
user lacked permission to read it. Perhaps more commonly, you may want to print out the rea­
son for failure. The routine perror will print a message associated with the value of errno;
more generally, 171_errno is an array of character strings which can be indexed by errno and
printed by your program.

5. PROCESSES

It is often easier to Ulle a program written by someone else than to invent one's own. This sec­
tion describes how to execute a program from within another.

Revision D of 7 January 1984 11

UNIX Programming Programming Tools

5.1. The 'System' Function

The easiest way to execute a program from another is to use the standard library routine •Y• 0
tem. •yatem takes one argument, a command string exactly as typed at the terminal (except
for the newline at the end) and executes it. For instance, to time-stamp the output of a pro-
gram,

ma.in() {
system(" date"); / • rest of processing • /

}

If the command string has to be built from pieces, the in-memory formatting capabilities of
1printf may be useful.
Remember than getc and putc normally buffer their input; terminal 1/0 will not be properly
synchronized unless this buffering is defeated. For output, use ffluh; for input, see aetbuf in
the appendix.

5.2. Low-Level Process Creation - Execl and Execv

If you 're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library's system routine is based on.
The most basic operation is to execute another program uitlioul returning, by using the routine
exec! . To print the date as the last action of a running program, use

execl(" /bin/ date", •date", NULL);

The first argument to execl i• the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is, the
last component of the file name), but this is seldom used except as a place-holder. If the com-
mand takes arguments, they are strung out after this; the end of the list is marked by a NULL
argument.
The execl call overlays the existing program with the new one, runs that, then exito. There is
no return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can't be found or is not executable. If you don't know
where date is located, say

execl(" /bin/ date", •date", NULL);
execl(" /usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance how many arguments
there are going to be. The call is

execv(filename, argp);

0

where argp is an array of pointers to the arguments; the last pointer in the array must be -o·
NULL so execv can tell where the list ends. As with execl, filename is the file in which the

12 Revision D of 7 January 1984

0

0

0

Programming Tools UNIX Programming

program is found, and argp(O] is the name of the program. (This arrangement is identical to
the argY array for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, •, T, and [] in the argu­
ment list. If you want these, use exed to invoke the shell sh, which then does all the work.
Construct a string commandllne that contains the complete command as it would have been
typed at the terminal, then say

exec!(" /bin/sh", "sh", "-c•, commanclline, NULL);

The shell is 858umed to be at a fixed place, /bin/sh. Its argument •C says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con­
structing the right information in commandllne.

5.3. Control of Processes- Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply over­
lay the new program on the old one, to save the old one requires that it first be split into two
copies; one of these can be overlaid, while the other waits for the new, overlaying program to
finish. The splitting is done by a routine called fork:

proc_id ..,. fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of procJd, the 'process id.' In one of these processes (the 'child'), proc_id
is zero. In the other (the 'parent'), proc_id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program is

if (fork() == 0)
exec!(" /bin/sh", •sh", •-c•, cmd, NULL);

And in fact, except for hanclling errors, this is sufficient. The fork makes two copies of the pro­
gram. In the child, the value returned by fork is zero, so it calls execl which does the com•
mand and then dies. In the parent, fork returna non-zero so it skips the execl. (If there is any
error, fork returns -1).
More often, the parent wants to wait for the child to terminate before continuing itself. This
can be done with the function wait:

int status;

if (fork() == 0)
exec!(...);

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns
the process id of the terminated child, if you want to check it against the value returned by
fork .) Finally, this fragment doesn't deal with any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library's sys­
tem routine, which we'll show in a moment.

Revision D of 7 January 1984 13

UNIX Programming Programming Tools

The atatue returned by wak encodes in its low-order eight bits the system's idea or the child's
termination status; it is O for normal termination and non-zero to indicate various kinds of o­
problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to
return meaningful status.
When a program is called by the shell, the three file descriptors 0, I, and 2 are set up pointing
at the right files, and all other possible file descriptors are available for use. When this program
calls another one, correct etiquette suggests making sure the same conditions hold. Neither
fork nor the exec calls affects open files in any way. If the parent is buffering output that
must come out before output from the child, the parent must flush its buffers before the execl.
Conversely, if a caller buffers an input stream, the called program will lose any information that
has been read by the caller.

6.4. Pipes

A pipe is an 1/0 channel intended for use between two cooperating processes: one process
writes into the pipe, w bile the other reads. The system looks after buffering the data and syn­
chronizing the two processes. Most pipes are created by the shell, as in

tutorial% la I pr

which connects the standard output of la to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.
The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this: 0

int fd(2];

stat = pipe(fd);
if (stat== -1)

/• there was an error ... •/

fd is an array of two file descriptors, where fd(O) is the read side of the pipe and fd(l] is for
writing. These may be used in read, write and close calls just like any other file descriptors.
If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe
is closed, a subsequent read will encounter end of file.
To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode), which creates a process cmd (just as e71tem does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen("pr", WRITE);

creates a process that executes the pr command; sub!!equent write calls using the file descriptor
fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe s;ystem call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the
pipe, then calls the shell (via execl) to run the desired process. The parent likewise closes the
end of the pipe it does not use. These closes are necessary to make end-of-file tests work pro~ 0· ·

erly. For example, if a child that intends to read fails to close the write end of the pipe, it will

14 Revision D of7 January 1984

0

0

0

Programming Tools UNIX Programming

never see the end of the pipe file, just becawie there is one writer potentially active.

#include <stdio.h>

#define
#define
#define
static int

READ 0
WRITE 1
tst(a, b) (mode -- READ ! (b) : (a))
popen..J)id;

popen(cmd, mode)
char •cmd;
int mode;
{

}

int p(2);

if (pipe(p) < 0)
return(NULL);

if ((popen..J)id = fork()) -== O) {
close(tst(p(WRITE), p(READJ));
close(tst(O, I));

}

dup(tst(p(READ), p(WRITEJ));
close(tst(p(READ), p(WRITEJ));
execl(" /bin/sh", •sh", • -c", cmd, O);
_exit(l); /• disaster has occurred if we get here • /

if (popen..J)id =- · l)
return(NULL);

close(tst(p(READ), p(WRITE)));
return(tst(p(WRITE), p(READ)));

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first cloae closes the write side of the
pipe, leaving the read side open. The lines

close(tst(O, l)); dup(tst(p(READ), p(WRITEJ));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor O; thus the read side of the pipe becomes the standard
input. • Finally, the old read side of the pipe is closed.
A similar sequence of operations takes place when the child process is supposed to write from
the parent instead of reading. You may find it a useful exercise to step through that case.
The job is not quite done, for we still need a function peloae to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First, the return value from pcloae indicates
whether the process succeeded. Equally important when a process creates several children is

• Yes, this UI a bit tricky, but it1
11 • standard idiom.

Revision D of 7 January 1984 15

UNIX Programming Programming Tools

that only a bounded number of unwaited-for children can exist, even if some of them have ter­
minated; performing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(fd)
int rd;

/ • close pipe fd • /

{

}

register r, (•hstatX), (•istatX), (•qstatX);
int status;
extern int popen_pid;

close(fd);
istat - signal(SIGINT, SIGJGN);
q,tat == signal(SIGQUIT, SIGJGN);
hstat = signal(SIGHUP, SIGJGN);
while ((r - wait(&status)) I- popen_pid && r I- 0 1);
if (r -- -1)

status ... -1;
signal(SIGINT, istat);
signal(SIGQUIT, qstat);
signal(SIGHUP, hstat);
return(status);

0

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is
the topic of the next section. 0
The routine as written has the limitation that only one pipe may be open at once, because of
the single shared variable popen_pid; it really should be an array indexed by file descriptor. A
popen function, with slightly different arguments and return value is available as part of the
standard 1/0 library discussed below. As currently written, it shares the same limitation.

8. SIGNALS - INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there's nothing very useful that can be done from
within C about program faults, which arise mainly from illegal memory references or from exe­
cution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which is
sent when the DEL character is typed; quit, generated by the FS character; /ian(ltJp, caused by
hanging up the phone; and terminate, generated by the /ciU command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter­
minal; unless other arrangements have been made, the signal terminates the process. In the quit
case, a core image file is written for debugging purposes.
The routine which alters the default action is called algnal. It has two arguments: the first
specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The '
include file signal.h gives names for the various arguments, and should always be included Q 1

1

when signals are used. Thus

16 Revision D of 7 January 1984

0

0

0

Programming Tools

#include <signal.h>

signal(SlGINT, SIGJGN);

causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

UNIX Programming

restores the default action of process termination. In all caees, elgnal returns the previous value
of the signal. The second argument to elgnal may instead be the name of a function (which
has to be declared explicitly if the compiler hasn't seen it already). In this case, the named rou­
tine will be called when the signal occurs. Most commonly this facility is med to allow the pro­
gram to clean up unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>

main()
{

}

int onintr();

if (signal(SIGINT, SIG_IGN) I- SIGJGN)
signal(SIGINT, onintr);

/• Process ... •/

exit(O);

onintr()
{

}

unlink(tem pfile);
exit(l);

Why the test and the double call to elgnal! Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by &), the shell turns off interrupts for it so it won't be stopped by inter­
rupts intended for foreground processes. If this program began by announcing that all inter­
rupts were to be sent to the onlntr routine regardless, that would undo the shell's effort to pro­
tect it when run in the background.
The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that eig­
nal returns the previous state of a particular signal. If signals were already being ignored, the
process should continue to ignore them; otherwise, they should be caught.
A more sophisticated program may wish to intercept an interrupt and interpret it as a request
to stop what it is doing and return to its own command-processing loop. Think of a text editor:
interrupting a long printout should not cause it to terminate and lose the work already done.
The outline of the code for this case is probably best written like this:

Revision D of 7 January 1984 17

UNIX Programming

#include <signal.h>
#include <setjmp.h>
jmp_buf sjbuf;

main()
{

int (• istat)(), onintr();

Programming Tools

istat = signal(SIGINT, SIGJGN); /• save original status•/
setjmp(sjbuf); /• save current ataelt position • /
ir (istat !- SIG_IGN)

signal(SIGINT, onintr);

/ • main processing loop • /
}

onintr()
{

printr(" \nlnterrupt\n");
longjmp(sjbul); /• return to saved state •/

}

The include file aetjmp.h declares the type Jmp_buf an object in which the state can be saved.
aJbuf is such an object; it is an array of some sort. The aetJmp routine then saves the state of
things. When an interrupt occurs, a call is forced to the onlntr routine, which can print a mes-

0

sage, set flags, or whatever. longjmp takes u argument an object stored into by aetJmp, and o
restores control to the location after the call to aetJmp, so control (and the stack level) will pop
back to the place in the main routine where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs. This is necessary;
most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or longjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi­
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns.
Ir it were really true, as we said above, that 'execution resumes at the exact point it wu inter­
rupted,' the program would continue reading the terminal until the user typed another line.
This behavior might well be confusing, since the user might not know that the program is read­
ing; he presumably would prefer to have the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read when execution resumes after the signal,
returning an error code which indicates what happened.

Thus programs which catch and resume execution after signals should be prepared for 'errors'
which are caused by interrupted system calla. (The ones to watch out for are reads from a ter­
minal, wait, and pauae). A program whose onlntr program just sets lntflag, resets the inter­
rupt signal, and returns, should usually include code like the following when it reads the stan­
dard input:

18 Revision D of 7 January 1984

0

0

0

0

Programming Tools

if (getchar() -- EOF)
if (intflag)

/• EOF caused by interrupt•/ else
/• true end-of-file • /

UNIX Programming

A final subtlety to keep in mind becomes important when signal-catching is combined with exe­
cution of other programs. Suppose a program catches interrupts, and also .includes a method
(like 'I' in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() == 0)
exec!(...);

signal(SIGINT, SIG_IGN); /• ignore interrupts •/
wait(&status); /• until the child is done•/
signal(SIGINT, onintr); /• restore interrupts•/

Why is this! Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard 1/0 library function s7atem:

#include <signal.h>

system(s) /• run command strings •/
char •s;
{

}

int status, pid, w;
register int (•istatX), (•q,tat)();

if ((pid = fork()) -==- 0) {

}

exec!(" /bin/sh", "sh", "-c", s, O);
_exit(l27);

istat = signal(SIGINT, SIGJGN);
<ptat = signal(SIGQUIT, SIG_IGN);
while ((w ... wait(&status)) I=- pid && w I= -1)

' if(w == -1)
status= -1;

signal(SIGINT, istat);
signal(SIGQUIT, cptat);
return(status);

As an aside on declarations, the function •lsnal obviously has a rather strange second argu­
ment. It is in fact a pointer to a function delivering an integer, and this is also the type of the
signal routine itself. The two values SIGJGN and SIGJ)FL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they

Revision D of 7 January 1984 19

UNIX Programming Programming Tools

are defined for the PDP-11; the definitions should be sufficiently ugl7 and nonportable to
encourage use of the include file.

#define SIG..DFL (int(•)())0
#define SIGJGN (int(•)())1

7. References

(1) Sun MicrOllystems Reference Manuals: U,er '• Manual, S11atem /nter/ar:e Manual, and S11•·
tem Manager'• Manual.

(2) B. W. Kernighan and D. M. Ritchie, TAt: C Programming Language, Prentice-Hall, Inc.,
1978.

(3) B. W. Kernighan, UNIX for Beginner, - Ser:on, Edition, Bell Laboratories, 1978.
Reprinted in the Sun Tutorial /or Beginner, Manual.

20 Revision D of 7 January 1984

0

0

C)

0

0

0

Programming Tools UNIX Programming

Appendix A. The Standard 1/0 Library

The standard 1/0 library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita­
tion in using it no matter .how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use
man the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-11 running a version of UNIX

A.1. General Usage

Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no spe­
cial library argument is needed for loading. All names in the include file intended only for inter­
nal use begin with an underscore _ to reduce the possibility of collision with a user name. The
names intended to be visible outside the package are
•tdln The name of the standard input file

•tdout

stderr

EOF
NULL

Fil,E

BUFSIZ

The name of the standard output file

The name of the standard error file

is actually -1, and is the value returned by the read routines on end-of-file or error.

is a notation for the null pointer, returned by pointer-valued functions to indicate an
error
expands to •trud _lob and is a useful shorthand when declaring pointers to
streams.

is a number (viz. 512) of the size suitable for an 1/0 buft'er supplied by the user. See
•etbuf, below.

gete, getehar, pute, putehar, feof, terror, rileno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoint. set on them.

The routines in this package oft'er the convenience of automatic buft'er allocation and output
Bushing where appropriate. The names •tdln, •tdout, and •tderr are in eft'ect constant. and
may not be assigned to.

A.2. Calls

Fn.E •fopen(fllename, type) char •filename, •type;

opens the file and, if needed, allocates a buft'er for it. filename is a character string specify.
ing the name. type is a character string (not a single character). It may be •r•, •w•, or
• a" to indicate intent to read, write, or append. The value returned is a file pointer. If it is

Revision D of 7 January 1984 21

Y ace Compiler Generator Programming Tools

9.3. Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to 0
delete blanks normally, but not within quoted strings. Or names might be entered into a sym•
bol table in declarations, but not in expressions.
One way of handling this situation is to create a global llag that is examined by the lexical
analyzer, and set by actions. For example, suppose a program consists of O or more declara­
tions, followed by O or more statements. Consider:

%{

%}
int dflag;

other declarations ...

%%

prog decls stats

decls : /*empty*/
{ dflag = l; }

decls declaration

stats : /*empty*/
{ dflag = O; }

stats statement

... other rules ...

The flag dflag is now O when reading statements, and 1 when reading declarations, escept for the
jir,t token in the firat ,tatement. Thi, token mu,t be seen by the parser before it can tell that
the declaration section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of 'backdoor' approach can be elaborated to a noxious degree. Nevertheless, it
represents a way or doing some things that are difficult, if not impossible, to do otherwise.

9.4. Reserved Words

Some programming languages permit the user to use words like 'ir, which are normally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework of
Y ace; it is difficult to pass information to the lexical analyzer telling it 'this instance of 'ir is a
keyword, and that instance is a variable'. The user can make a stab at it, using the mechanism
described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reaerved ; that is, be forbidden for use as variable names. There are powerful

C)

stylistic reasons for preferring this, anyway. ~ .._,

22 Revision Dor 7 January 1984

0

0

0.

Programming Tools UNIX Programming

occurred.

fputs(s, loptr) char •11 FILE •loptr;
writes the null-terminated string (character array) 1 on the stream loptr. No newline is
appended. No value is returned.

ungetc(c, loptr) FILE •ioptr;
The argument character c is pushed back on the input stream named by loptr. Only one
character may be pushed back.

prlntf(format, al, ...) char •format1
fprintr(loptr, format, al, ...) FILE •loptr; char •format;
1printf(11, format, al, •••)char •11, •format;

printf writes on the standard output. fprintf writes on the named output stream.
1printf puts characters in the character array (string) named by 1. The specifications are
as described in printf (3) in the Sun S111tem Interface Manual.

scanf(format, al, ...) char •format;
fscanf(loptr, format, al, ...) FILE •ioptr; char •format;
111canf(11, format, al, ...) char •11, •format;

scanf reads from the standard input. f1canf reads from the named input stream.
ascanf reads from the character string supplied as 1. 1canf reads characters, interprets
them according to a format, and stores the results in its arguments. Each routine
expects as arguments a control string format, and a set of arguments, each of tDAicA
muat be a pointer, indicating where the converted input should be stored.

•canf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character
does not match what was called for in the control string.

fread(ptr, alzeof(•ptr), nltema, loptr) FILE •loptr1

reads nitema or data beginning at ptr from file ioptr. No advance notification that binary
1/0 is being done is required; when, for portability reasons, it becomes required, it will be
done by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(•ptr), nltem1, ioptr) FILE •loptr;
Like fread, but in the other direction.

rewind(ioptr) Fll.E •ioptr;

rewinds the stream named by loptr. It is not very useful except on input, since a rewound
output file is still open only for output.

1y1tem(11tring) char •1tring;
The ,tring is executed by the shell as if typed at the terminal.

getw(ioptr) FILE •loptr;

returns the next word from the input stream named by loptr. EOF is returned on end-of­
file or error, but since this a perfectly good integer feof and ferror should be used. A
'word' is 16 bits on the PDP-11.

putw(w, loptr) Fll.E •ioptr;
writes the integer w on the named output stream.

aetbuf(ioptr, but) FILE •loptr1 char •buf;

Revision D of 7 January 1984 23

UNIX Programming Programming Tools

aetbut may be used after a stream has been open
NULL, the stream will be unbuffered. Otherwise
be a character array of sufficient size:

but before 1/0 has started. If but is
e buffer supplied will be used. It must

char buf(BUFSIZ);

llleno(ioptr) FILE •ioptrJ

returns the integer file descriptor associated with th &le.

faeek(ioptr, ofl'set, ptrname) FILE •loptrJ lon1 olli J

The location of the next byte in the stream Dam by loptr is adjusted. oll'M is a long
integer. Ir ptrname is 0, the offset is measured f m the beginning of the file; if ptrname
is 1, the offset is measured from the current read or write pointer; if ptrname is 2, the
offset is measured from the end of the file. The ro tine accounts properly for any buffering.
(When this routine is used on non UNIX systems, e offset must be a value returned from
ftell and the ptrname must be 0).

long ftell(ioptr) FILE •loptrJ

The byte offset, measured from the beginning of t &le, associated with the named stream
is returned. Any buffering is properly accounted . (On non UNIX systems the value of
this call is useful only for handing to t-k, so as to position the file to the same place it
was when ftell was called.)

getpw(uid, bur) char •bufJ

The password file is searched for the given integer
it is copied into the character array but, and O is
ing to the user ID then 1 is returned.

char •malloc(num);

ID. If an appropriate line is found,
turned. If no line is found correspond-

allocates num bytes. The pointer returned is sufli iently well aligned to be usable for any
purpose. NULL is returned if no space is available ·

char •calloc(num, alse)J

allocates space for num items each of size alse. T e space is guaranteed to be set to O and
the pointer is sufficiently well aligned to be usable r any purpose. NULL is returned if no
space is available .

cfree(ptr) char • ptr;

Space is returned to the pool used by calloc. D" rder can be expected if the pointer was
not obtained from calloc.

The following are macros whose definitions may be obt "ned by including <ctype.h>.
lsalpha(c) returns non-zero if the argument is alpha

lsupper(c) returns non-zero if the argument is upper-c

lslower(c) returns non-zero if the argument is lower-c

isdigit(c) returns non-zero if the argument is a digit.

alphabetic.

alphabetic.

lsspacc(c) returns non-zero if the argument is a spacin character: tab, newline, carriage return,
vertical tab, form feed, space.

lspunct(c) returns non-zero if the argument is any p , ctuation character, that is, not a space,
letter, digit or control character.

lsalnum(c) returns non-zero if the argument is a lette or a digit.

24 Revision D of 7 January Hl84

0

0

C)

0

0

0

Programming Tools UNIX Programming

lsprint(c) returns non-zero if the argument is printable - a letter, digit, or punctuation char­
acter.

lscntrl(c) returns non-zero if the argument ia a control character.
lsascii(c) returns non-zero if the argument ia an ascii character, that ia, less than octal 0200.

toupper(c) returns the upper-case character corresponding to the lower-case letter c.

tolower(c) returns the lower-case character corresponding to the upper-case letter c.

Revision D of 7 January I 984 25

0

0

0

0
Table of Contents

LINT - A C PROGRAM CHECKER .. 1

1. Using Lint ... 1

2. A Word About Philosophy ... 2

3. Unused Variables and Functions .. 2

,. Set/Used Information .. 3

5. Flow of Control ... 3

8. Function Values .. 3

0 7. Type Checking ... 4

8. Type Casts ... 5

9. Nonportable Character Use ... 6

10. Assignments of longs to ints ... 5

11. Strange Constructions .. 8

12. Ancient History .. O

13. Pointer Alignment .. 7

14. Multiple Uses and Side Effects .. 7

16. Implementation .. 8

18. Portability ... 8

17. Shutting Lint Up... 9

0
-i-

18. Library Declaration Files ... 10

19. Bugs, etc... 11 0
20. References. .. 12

A. Current Lint Options ... 13

0

0
- ii -

0
LINT - A C PROGRAM CHECKER

Lint is a command which examines C source programs, detecting a number of bugs and obscuri­
ties. It enforces the type rules of C more strictly than the C compilers. It may also be used to
enforce a number of portability restrictions involved in moving programs between different
machines and/or operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal.

Lint accepts multiple input files and library specifications, and checks them for consistency.

The separation of function between lint and the C compilers has both historical and practical
rationale. The compilers turn C programs into executable files rapidly and efficiently. This is
possible in part because the compilers do not do sophisticated type checking, especially between
separately compiled programs. Lint takes a more global, leisurely view of the program, looking
much more carefully at the compatibilities.

This document discusses the use of lint , gives an overview of the implementation, and gives
some hints on the writing of machine independent C code.

0 1. Using Lint

0

Suppose there are two ct source files, jiJel.c and jiJef!.c, which are ordinarily compiled and
loaded together. Then the command:

tutorial% lint filel.c file2.c

produces messages describing inconsistencies and inefficiencies in the programs. The program
enforces the typing rules of C more strictly than the C compilers (for both historical and practi­
cal reasons) enforce them. The command:

tutorial% lint -p filel,c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta­
bility of the programs to other operating systems and machines. Replacing the -p by -h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying -hp gets the whole works.

The next several sections describe the major messages; the document closes with sections dis­
cussing the implementation and giving suggestions for writing portable C. An appendix gives a
summary of the lint options.

Revision D of 7 January 1984 1

Lint C Program Checker Programming Tools

2. A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether a 0
given function in a program ever gets called may depend on the input data. Deciding whether
ezit is ever called is equivalent to solving the famous 'halting problem,' known to be recursively
undecidable.
Thus, most of the lint algorithms are a compromise. Ir a function is never mentioned, it can
never be called. Ir a function is mentioned, lint assumes it can be called; this is not necessarily
so, but in practice is quite reasonable.
Lint tries to give information with a high degree of relevance. Messages of the form 'zzz might
be a bug' are easy to generate, but are acceptable only in proportion to the fraction of real bugs
they uncover. Ir this fraction of real bugs is too small, the messages lose their credibility and
serve merely to clutter up the output, obscuring the more important messages.
Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces.

3. Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused; it is not uncommon for external variables, or even entire functions, to
become unnecessary, and yet not be removed from the source. These 'errors of commission'
rarely cause working programs to fail, but they are a source of inefficiency, and make programs
harder to understand and change. Moreover, information about such unused variables and
functions can occasionally serve to discover bugs; if a function does a necessary job, and is never
called, something is wrong!
Lint complains about variables and functions which are defined but not otherwise mentioned.
An exception is variables which are declared through explicit extern statements but are never
referenced; thus the statement:

extem fl.oat sin();

will evoke no comment if ain is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they can
be discovered by adding the -x flag to the lint invocation.
Certain styles of programming require many functions to be written with similar interfaces; fre­
quently, some of the arguments may be unused in many of the calls. The -v option is available
to suppress the printing of complaints about unused arguments. When -v is in effect, no mes­
sages are produced about unused arguments except for those arguments which are unused and
also declared as register arguments; this can be considered an active (and preventable) waste of
the register resources of the machine.
There is one case where information about unused, or undefined, variables is more distracting
than helpful. This is when lint is applied to some, but not all, files out of a collection which are
to be loaded together. In this case, many of the functions and variables defined may not be
used, and, conversely, many functions and variables defined elsewhere may be used. The -u
flag may be used to suppress the spurious messages which might otherwise appear.

2 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Lint C Program Checker

4. Set/Used Information

Lint attempts to detect cases where a variable is Wied before it is set. This is very difficult to
do well; many algorithms take a good deal or time and space, and still produce messages about
perfectly valid programs. Lint detects local variables (automatic and register storage classes)
whose first use appears physically earlier in the input file than the first assignment to the vari­
able. It assumes that taking the address of a variable constitutes a 'W1e,' since the actual use
may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very sim­
ple and quick to implement, since the true O.ow or control need not be discovered. It does mean
that lint can complain about some programs which are legal, but these programs would prob­
ably be considered bad on stylistic grounds (for example, might contain at least two goto's).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/Wied information also permits recognition or those local variables which are set and
never used; these form a frequent source or inefficiencies, and may also be symptomatic of bugs.

5. Flow of Control

Lint attempts to detect unreachable portions o(the programs which it processes. It will com­
plain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect­
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the O.ow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to ezit may ca11Se unreach­
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form or unreachable statement is not W1ually complained about by lint; a break statement
that cannot be reached causes no message. Programs generated by yacc,2 and especially lez,3
may have literally hundreds o(unreachable break statements. The -0 O.ag in the C compiler
will often eliminate the resulting object code inefficiency. Thus, these unreached statements are
of little importance, there is typically nothing the Wier can do about them, and the resulting
messages would clutter up the lint output. If these messages are desired, lint can be invoked
with the -b option.

6. Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function 'values' which have never been returned. Lint addresses this problem in a number or
ways.

Locally, within a function definition, the appearance of both:

return(ezpr);

and:

Revision D of 7 January 1984 3

Lint C Program Checker

return ;

statements is cause for alarm; lint will give the message

function name contains return(e) and return

Programming Tools

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end or the function. This can be seen with a simple example:

f(a) {
if(a)

return (3);
g ();

}
Notice that, if a tests false, / will call g and then return with no denned return value; this will
trigger a complaint from lint . Ir g, like ezit, never returns, the message will still be produced
when in fact nothing is wrong.
In practice, some potentially serious bugs have been discovered by this feature; it also accounts
for a substantial fraction of the 'noise' messages produced by lint .
On a global scale, lint detects cases where a function returns a value, but this value is some­
times, or always, unused. When the value is always unused, it may constitute an inefficiency in
the function de6.nition. When the value is sometimes unused, it may represent bad style (for
example, not testing for error conditions).

0

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple or
occasions in 'working' programs; the desired function value just happened to have been com- 0
puted in the function return register!

7. Type Checking

Lint enforces the type checking rules or C more strictly than the compilers do. The additional
checking is in four major areas: across certain binary operators and implied assignments, at the
structure selection operators, between the de6.nition and uses or functions, and in the use of
enumerations.
There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional (! :), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree exactly, except that arrays of z's
can, of course, be intermixed with pointers to z's.
The type checking rules also require that, in structure references, the left operand of the -> be
a pointer to structure, the left operand of the • be a structure, and the right operand of these
operators be a member of the structure implied by the left operand. Similar checking is done
for references to unions.
Strict rules apply to function argument and return value matching. The types float and dou­
ble may be freely matched, as may the types char, ehort, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts.

4 Revision D of 7 January 1984

0

0

0

0

Programming Tools Lint C Program Checker

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are =, initialization,
==, !=, and function arguments and return values.

8. Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable pro­
grams. Consider the assignment:

p = 1;

where pis a character pointer. Lint will quite rightly complain. Now, consider the assignment

p = (char *)l ;

in which a cast has been used to convert the integer to a character pointer. The programmer
obviously had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other hand, if this code is
moved to another machine, such code should be looked at carefully. The -c flag controls the
printing of comments about casts. When -c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

9. Nonportable Character Use

On the PD P-11, characters are signed quantities, with a range from -128 to 127. On most of
the other C implementations, characters take on only positive values. Thus, lint will flag cer­
tain comparisons and assignments as being illegal or nonportable. For example, the fragment:

char c;

if((c = getchar()) < 0) ..•

works on the PDP·ll, but will fail on machines where characters always take on positive values.
The real solution is to declare c an integer, since gelchar is actually returning integer values. In
any case, lint will say 'nonportable character comparison'.

A similar issue arises with bitfields; when assignments of constant values are made to bitfields,
the field may be too small to hold the value. This is especially true because on some machines
bitfields are considered as signed quantities. While it may seem unintuitive to consider that a
two bit field declared of type int cannot hold the value 3, the problem disappears if the bitfield
is declared to have type unsigned ,

10. Assignments of longs to ints

Bugs may arise from the assignment of long to an int, which loses accuracy. This may happen
in programs which have been incompletely converted to use typedefs . When a typedef vari­
able is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the -a flag.

Revision D of 7 January 1984 5

Lint C Program Checker Programming Tools

11. Strange Constructions

Several perfectly legal, but somewhat strange, constructions are Bagged by lint; the messages
hopefully encourage better code quality, clearer style, and may even point out bugs. The -h
flag is used to enable these checks. For example, in the statement:

•p+ + ;
the • does nothing; this provokes the message 'null effect' from lint . The program fragment:

unsigned x ; if(x < 0) •..

is clearly somewhat strange; the test will never succeed. Similarly, the test:

if(x>O) ...

is equivalent to:

if(X != 0)

which may not be the intended action. Lint will say 'degenerate unsigned comparison' in these
cases. If one says:

if(1 != 0) ...

lint will report 'constant in conditional context', since the comparison of 1 with O gives a con­
stant result.
Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and fol'­
matting, making such bugs extremely hard to find. For example, the statements:

if(x&077 == 0) ...

or

x<<2 + 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and /int encourages this by an appropriate message.

Finally, when the -h flag is in force /int complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by
many (including the author) to be bad style, usually unnecessary, and frequently a bug.

12. Ancient History

There are several forms of older syntax which are being officially discouraged. These fall into
two classes, assignment operators and initialization.
The older forms of assignment operators (for example,, =+ , =-, ...) could cause ambiguous
expressions, such as:

a =-1;

which could be taken as either:

a=- 1;

or:

6 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Lint C Program Checker

a = -1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, -=, etc.) have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned opera­
tors.

A similar issue arises with initialization. The older language allowed:

int X 1 ;

to initialize z to I. This also caused syntactic difficulties. For example:

int X (-1) ;

looks somewhat like the beginning of a function declaration:

int X (y) { ..•

and the compiler must read a fair ways past z in order to sure what the declaration really is.
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int X. = -1;

This is free of any possible syntactic ambiguity.

13. Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others, due
entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun­
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message 'possible
pointer alignment problem' results from this situation whenever either the -p or -h Bags are in
effect.

14. Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines (like the PDP-11) in which the stack runs back­
wards, function arguments will probably be best evaluated from right-to-left; on machines with
a stack running forward, left-to-right seems most attractive. Function calls embedded as argu­
ments of other functions may or may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side effects, such as the assignment operators and
the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C
language leaves the order of evaluation of complicated expressions up to the local compiler, and,
in fact, the various C compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is changed by a side effect, and
also used elsewhere in the same expression, the result is explicitly undefined.

Revision D of 7 January 1984 7

Lint C Program Checker Programming Tools

Lint checks for the important special case where a simple scalar variable ia affected. For exam­
ple, the statement:

a(iJ = b(i+ + I ;
will draw the complaint:

warning: i evaluation order undefined

15. Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable C
Compiler4, 5 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers.
This compiler does lexical and syntax analysis on the input text, constructs and maintains sym­
bol tables, and builds trees for expressions. Instead of writing an intermediate file which is
passed to a code generator, as the other compilers do, lint produces an intermediate file which
consists of lines of ASCII text. Each line contains an external variable name, an encoding of the
context in which it was seen (use, definition, declaration, etc.), a type specifier, and a source file
name and line number. The information about variables local to a function or file is collected
by accessing the symbol table, and examining the expression trees.

0

Comments about local problems are produced as detected. The information about external
names is collected onto an intermediate file. After all the source files and library descriptions
have been collected, the intermediate file is sorted to bring all information collected about a
given external name together. The second, rather small, program then reads the lines from the
intermediate file and compares all of the definitions, declarations, and uses for consistency.
The driver controls this process, and is also responsible for making the options available to both 0
passes of /int .

16. Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operat­
ing system. This means that the implementation of C tends to follow local conventions rather
than adhere strictly to UNIXt system conventions. Despite these differences, many C programs
have been successfully moved to GCOS and the various IBM installations with little effort. This
section describes some of the differences between the implementations, and discusses the lint
features which encourage portability.
Uninitialized external variables are treated differently in different implementations of C. Sup­
pose two files both contain a declaration without initialization, such as:

int a;

outside of any function. The UNIX loader will resolve these declarations, and cause only a single
word of storage to be set aside for a. Under the GCOS and IBM implementations, this is not
feasible (for various stupid reasons!) so each such declaration causes a word of storage to be set
aside and called a. When loading or library editing takes place, this causes fatal conflicts which
prevent the proper operation of the program. Ir lint is invoked with the -p flag, it will detect
such multiple definitions.

t UNIX is a. trademark of Bell Laboratories.

8 Revision D or 7 January 1984

0

0

0

0

Programming Tools Lint C Program Checker

A related difficulty comes from the amount of information retained about external names during
the loading process. On the UNIX system, externally known names have seven significant char­
acters, with the upper/lower case distinction kept. On the IBM systems, there are eight
significant characters, but the case distinction is lost. On GCOS, there are only six characters,
of a single case. This leads to situations where programs run on the UNIX system, but
encounter loader problems on the IBM or GCOS systems. Lint -p causes all external symbols
to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system
are eight bit ASCll, while they are eight bit EBCDIC on the IBM, and nine bit ASCll on GCOS.
Moreover, character strings go from high to low bit positions ('left to right') on GCOS and IBM,
and low to high ('right to left') on the PDP-11. This means that code attempting to construct
strings out of character constants, or attempting to use characters as indices into arrays, must
be looked at with great suspicion. Lint is of little help here, except to flag multi-character char­
acter constants.

Of course, the word sizes are different! This causes less trouble than might be expected, at least
:when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The
main problems are likely to arise in shifting or masking. C now supports a bit-field facility,
which can be used to write much of this code in a reasonably portable way. Frequently, porta­
bility of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing:

X &= 0177700 ;

to clear the low order six bits of :r. This suffices on the PDP-11, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing:

x&=-077;

which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-11, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware
which has infiltrated itself into the C language. If there were a good way to discover the pro­
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in fact is.
The issues involved here are rarely subtle or mysterious, at least to the implementor of the pro­
gram, although they can involve some work to straighten out. The most serious bar to the por­
tability of UNIX system utilities has been the inability to mimic essential UNIX system functions
on the other systems. The inability to seek to a random character position in a text file, or to
establish a pipe between processes, has involved far more rewriting and debugging than any of
the differences in C compilers. On the other hand, lint has been very helpful in moving the
UNIX operating system and associated utility programs to other machines.

17. Shutting Lint Up

There are occasions when the programmer is smarter than lint • There may be valid reasons for
'illegal' type casts, functions with a variable number of arguments, etc. Moreover, as specified
above, the flow of control information produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs. Thus, some way of communicating
with lint , typically to shut it up, is desirable.

Revision D of 7 January 1984 9

Lint C Program Checker Programming Tools

The form which this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has both 0
philosophical and practical problems. New preprocessor syntax suffers from similar problems.
What was finally done was to cause a number of words to be recognized by lint when they were
em bedded in comments. This required minimal preprocessor changes; the preprocessor just had
to agree to pass comments through to its output, instead of deleting them as had been previ-
ously done. Thus, lint directives are invisible to the compilers, and the effect on systems with
the older preprocessors is merely that the lint directives don't work.
The first directive is concerned with flow of control information; if a particular place in the pro­
gram cannot be reached, but this is not apparent to lint , this can be asserted by the directive

/• NOTREACHED •/

at the appropriate spot in the program. Similarly, if it is desired to tum off strict type checking
for the next expression, the directive

/• NOSTRICT •/

can be used; the situation reverts to the previous default after the next expression. The -v flag
can be turned on for one function by the directive:

/• ARGSUSED •/

Complaints about variable number of arguments in calls to a function can be turned off by the
directive: '

/• VARARGS •/

preceding the function definition. In some cases, it is desirable to check the first several argu-
ments, and leave the later arguments unchecked. This can be done by following the VARARGS o
keyword immediately with a digit giving the number of arguments which should be checked;
thus,

/• VARARGS2 •/

will cause the first two arguments to be checked, the others unchecked. Finally, the directive:

/• LINTLIBRARY •/

at the head of a file identifies this file as a library declaration file; this topic is worth a section
by itself.

18. Library Declaration Files

Lint accepts certain library directives, such as:

-ly

and tests the source files for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library directives. These files all begin
with the directive:

/• LINTLIBRARY •/

which is followed by a series or dummy function definitions. The critical parts of these
definitions are the declaration or the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and o
ARGSUSED directives can be used to specify features of the library functions. .

10 Revision D or 7 January 1984

0

0

0

Programming Tools Lint C Program Checker

Lint library files are processed almost exactly like ordinary source files. The only difference is
that functioDll which are defined on a library file, but are not used on a source file, draw no
complaints. Lint does not simulate a full library search algorithm, and complaiDll if the source
files contain a redefinition of a library routine (this is a feature!).
By default, /int checks the programs it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the
-p flag is in effect, another file is checked containing descriptions of the standard 1/0 library
routines which are expected to be portable across various machines. The -n flag can be used to
suppress all library checking.

19. Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters or
programming style, and partially because users usually don't notice bugs which cause /int to
miss errors which it should have caught. (By contrast, ir /int incorrectly complaiDll about some­
thing that is correct, the programmer reports that immediately!)

A num her of areas remain to be further developed. The checking of structures and arrays is
rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking or the use or the typedef
is clearly desirable, but what checking is appropriate, and how to carry it out, is still to be
determined.
Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a
special version of the preprocessor to be coDlltructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.
The central problem with /int is the packaging of the information which it collects. There are
many options which serve only to tum off, or slightly modify, certain features. There are pres­
sures to add even more of these options.
In conclusion, it appears that the general notion of having two programs is a good one. The
compiler concentrates on quickly and accurately turning the program text into bits which can
be run; /int concentrates on issues or portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that /int will cover its flanks. Finally, the programmer can concen­
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness or the program, and then later retrofit, with the aid or /int , the desirable properties
or universality and portability.

Revision D of 7 January 1984 11

Lint C Program Checker Programming Tools

20. Reference£.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J.
(1978).

2. S. C. Johnson, 'Yacc: Yet Another Compiler-Compiler,' Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey (July 1975).

3. M. E. Lesk, 'Lex - A Lexical Analyzer Generator,' Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, 'UNIX Time-Sharing System: Portability or C Programs
and the UNIX System,' Bell Sya. Tech. J, 57(6) pp. 2021-2048 (1978).

5. S. C. Johnson, 'A Portable Compiler: Theory and Practice,' Proc. 5th ACM Symp. on
Principle, of Programming Language,, (January 1978).

12 Revision Dor 7 January 1984

0

0

0

0

0

0

Prog.-amming Tools

Appendix A. Current Lint Options

The command currently has the form

tutorial% lint (-options) Blea •.• librar7-descrlptoN •••

The options are

h Perform heuristic checks

p Perform portability checks

v Don't report unused arguments

u Don't report unused or undefined externals
b Report unreachable break statements.

x Report unused external declarations

a Report assignments of long to int or shorter.
c Complain about questionable casts

n No library checking is done

a Same as h (for historical reasons)

Revision D of 7 January 1984

Lint C Program Checker

13

0

0

0

0
Table of Contents

MAKE - A PROGRAM FOR MAINTAINING COMPUTER
PROGRAMS.. I

1. Basic Features .. 2

2. Description Files and Substitutions .. 4

3. Command Usage ... 6

4. Implicit Rules ... 8

6. Example... 7

8. Suggestions and Warnings .. 8

0 7. Acknowledgments .. 9

8. References ... 9

9. Appendix. Suffixes and Transformation Rules... 10

0
-i-

0

0

o·
I

0

0

0

MAKE - A PROGRAM FOR MAINTAINING
COMPUTER PROGRAMS

In a programming project, it is easy to lose track or which files need to be reprocessed or recom­
piled after a change is made in some part or the source. Make provides a simple mechanism for
maintaining up-to-date versions of programs that result from many operations on a number or
files. It is possible to tell Make the sequence or commands that create certain files, and the list
or files that require other files to be current before the operations can be done. Whenever a
change is made in any part of the program, Make will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation or Make is to find the name or a needed target in the description, ensure
that all or the files on which it depends exist and are up to date, and then create the target if it
has not been modified since its generators were. The description file really defines the graph or
dependencies; Make does a depth-first search or this graph to determine what work is really
necessary.

Make also provides a simple macro substitution facility and the ability to encapsulate commands
in a single file for convenient administration.

It is common practice to divide large programs into smaller, more manageable pieces. The
pieces may require quite different treatments: some may need to be run through a macro proces­
sor, some may need to be processed by a sophisticated program generator (for example, Yacc(l)
or Lex(2]). The outputs or these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on which
others, which files have been modified recently, and the exact sequence or operations needed to
make or exercise a new version of the program. After a long editing session, one may easily lose
track of which files have been changed and which object modules are still valid, since a change
to a declaration can obsolete a dozen other files. Forgetting to compile a routine that has been
changed or that uses changed declarations will result in a program that will not work, and a
bug that can be very hard to track down. On the other hand, recompiling everything in sight
just to be safe is very wasteful.

The program described in this report mechanizes many of the activities or program development
and maintenance. If the information on inter-file dependences and command sequences is stored
in a file, the simple command:

tutorial% make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last 'make'. In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even one or the

Revision D of 7 January 1984 1

Make Programming Tools

needed operations, so the typical cycle of program development operations becomes

think - edit - make - test ...

Make is most useful for medium-sized programming projects; it does not solve the problems of
maintaining multiple source versions or of describing huge programs.

1. Basic Features

The basic operation or make is to update a target &le by ensuring that all of the &Jes on which it
depends exist and are up to date, then creating the target if it has not been modi&ed since its
dependents were. Make does a depth-first search of the graph of dependences. The operation of
the command depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named pug is made by compiling
and loading three C-language files z.c, y.c, and z.c with the IS library. B,- convention, the out­
put of the C compilations will be found in files named z.o, y.o, and z.o. Assume that the files
z.c and y.c share some declarations in a file named def,, but that z.c does not. That is, s.c and
11.c have the line

#include • ders•

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x .o y .o z.o -IS -o prog

x.o y.o : defs

If this information were stored in a file named makefile, the command:

tutorial% make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files z.c, 11.c, z.c, or def,.

Make operates using three sources of information: a user-supplied description file (as above), file
names and 'last-modified' times from the file system, and built-in rules to bridge some of the
gaps. In our example, the first line says that prog depends on three '.o' files. Once these object
files are current, the second line describes how to load them to create prog. The third line says
that z.o and y.o depend on the file def,. From the &le system, make discovers that there are
three '.c' files corresponding to the needed '.o' files, and uses built-in information on how to gen­
erate an object from a source file (that i,, issue a 'cc -c' command).
The following long-winded description file is equivalent to the one above, but takes no advan­
tage of make 's innate knowledge:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o: x,c defs
cc -c x.c y.o: y.c defs
cc -c y.c z.o: z.c
cc -c z.c

If none of the source or object files had changed since the last time prog was made, all of the
files would be current, and the command:

2 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Make

tutorial% make

would just announce this ract and stop. Ir, however, the de/• file had been edited, z.c and 11.c
(but not z.c) would be recompiled, and then prog would be created rrom the new '.o' files. Ir
only the file 1J.C had changed, only it would be recompiled, but it would still be necessary to
reload prog

Ir no target name is given on the make command line, the first target mentioned in the descrip­
tion is created; otherwise the specified targets are made. The command:

tutorial% make x.o

would recompile z.o ir z.c or def, had changed.

Ir the file exists arter the commands are executed, its time or last modification is used in further
decisions; otherwise the current time is used. It is orten quite userul to include rules with
mnemonic names and commands that do not actually produce a file with that name. These
entries can take advantage or make ', ability to generate files and substitute macros. Thus, an
entry 'save' might be included to copy a certain set or files, or an entry 'cleanup' might be used
to throw away unneeded intermediate files. In other cases one may maintain a zer~length file
purely to keep track or the time at which certain actions were perrormed. This technique is use­
rut for maintaining remote archives and listings.

Make has a simple macro mechanism ror substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs.
A macro is invoked by preceding the name by a dollar sign; macro names longer than one char­
acter must be parenthesized. The name or the macro is either the single character arter the dol­
lar sign or a name inside parentheses. The rollowing are valid macro invocations:

$(CFLAGS) $2 S(xy) SZ S(Z)

The last two invocations are identical. U is a dollar sign. All or these macros are assigned
values during input, as shown below. Four special macros change values during the execution
or the command: $•, $@, S?, and S<. They will be discussed later. The rollowing fragment
shows the use:

OBJECTS = x.o y.o z.o
LIBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) S(LIBES) -o prog

The command:

tutorial% make

loads the three object files with the IS library. The command:

tutorial% make "LIBES= -II -IS"

loads them with both the Lex ('-II') and the Standard ('-IS') libraries, since macro definitions on
the command line override definitions in the description. (It is necessary to quote arguments
with embedded blanks in UNIXt commands.)

The following sections detail the rorm or description files and the command line, and discuss
options and built-in rules in more detail.

t UNIX ii, a trademark of Bell Laboratories.

Revision D or 7 January 1984 3

Make Programming Tools

2. Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency informa- 0
tion, and executable commands. There is also a comment convention: all characters after a
sharp (#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are
totally ignored. If a non-comment line is too long, it can be continued using a backslash. If the
last character of a line is a backslash, the backslash, newline, and following blanks and tabs are
replaced by a single blank.
A macro definition is a line containing an equal sign not preceded by a colon or a tab. The
name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the ·equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

2 = xyz
abe = -II -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below).
Other lines give information about target files. The general form of an entry is:

targetl (target2 ...] :[:) (dependent! ...) (; commands) (# .•.)
[(tab) commands) [# ...)

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters '*' and '!' are expanded.) A command is any string
of characters not including a sharp (except in quotes) or newline. Commands may appear either
after a semicolon on a dependency line or on lines beginning with a tab immediately following a
dependency line.
A dependency line may have either a single or a double colon. A target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double
colon) type.
1. For the usual single-colon case, at most one of these dependency lines may have a command

sequence associated with it. If the target is out of date with any of the dependents on any
of the lines, and a command sequence is specified (even a null one following a semicolon or
tab), it is executed; otherwise a default creation rule may be invoked.

2. In the double-colon case, a command sequence may be associated with each dependency line;
if the target is out of date with any of the files on a particular line, the associated com­
mands are executed. A built-in rule may also be executed. This detailed form is of particu­
lar value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command
line is printed and then passed to a separate invocation of the Shell after substituting for mac-
ros. (The printing is suppressed in silent mode or if the command line begins with an O sign).
Make normally stops if any command signals an error by returning a non-zero error code.
(Errors are ignored if the '-i' flags has been specified on the make command line, if the fake tar-

0

get name '.IGNORE' appears in the description file, or if the command string in the description
file begins with a hyphen. Some UNIX commands return meaningless status). Because each
command line is passed to a separate invocation of the Shell, care must be taken with certain
commands (for example, cd and Shell control commands) that have meaning only within a single 0
4 Revision D of 7 January 1984

0

0

0

Programming Tools Make

Shell process; the results are forgotten before the next line is executed.

Before issuing any command, certain macros are set. S@ is set to the name of the file to be
'made'. $! is set to the string of names that were found to be younger than the target. Ir the
command was generated by an implicit rule (see below), S < is the name of the related file that
caused the action, and $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the com­
mands associated with the name '.DEF AULT' are used. If there is no such name, make prints a
message and stops.

3. Command Usage

The make command takes four kinds of arguments: macro definitions, flags, description file
names, and target file names.

tutorial% make [flags J [macro definition•) [targets J
The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and
the assignments made. Command-line macros override corresponding definitions found in the
description files.

Next, the flag arguments are examined. The permissible flags are

-i

-9

-r

-n

-t

-q

-p
-d

Ignore enor codes returned by invoked commands. This mode is entered if the fake target
name '.IGNORE' appears in the description file.

Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name '.SILENT' appears in the description file.

Do not use the built-in rules.
No execute mode. Print commands, but do not execute them. Even lines beginning with
an '@' sign are printed.

Touch the target files (causing them to be up to date) rather than issue the usual com­
mands.

Question. The make command returns a zero or non-zero status code depending on whether
the target file is or is not up to date.

Print out the complete set of macro definitions and target descriptions

Debug mode. Print out detailed information on files and times examined.

-f Description file name. The next argument is assumed to be the name of a description file.
A file name of'-' denotes the standard input. If there are no '-f' arguments, the file named
makefile or Makefile in the cunent directory is read. The contents of the description files
ovenide the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left to right order. If there are no such arguments, the first name in the description files
that does not begin with a period is 'made'.

Revision D of 7 January 1984 5

Make Programming Tools

4. Implicit Rules

The Make program uses a table of interesting suffixes and a set of transformation rules to sup- 0
ply default dependency information and implied commands. The Appendix describes these
tables and means of overriding them. The default suffix list is:

Suffix Type or File

.o Object file

.c C source file

.e Ell source file

.r Ratfor source file

.f Fortran source file

•• Assembler source file
•II Y acc-C source grammar

•II' Yacc-Ratfor source grammar
.11e Y ace-Ell source grammar
.l Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate Ii.le exists or is
named in the description.

~~
.c .r .e ./ ., ·II .yr .11e .l .ti

/\ I I
·11 .l ·11' .11e

If the Ii.le z.o were needed and there were an z.c in the description or directory, it would be com­
piled. If there were also an z.l, that grammar would be run through Lex before compiling the
result. However, if there were no z.c but there were an z.l, make would discard the intermediate
C-language file and use the direct link in the graph above.
It is possible to change the names of some of the compilers used in the default, or the flag argu­
ments with which they are invoked by knowing the macro names used. The compiler names are
the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command:

tutorial% make CC=newcc

uses the 'newcc' command instead of the usual C compiler. The macros CFLAGS, RFLAGS,
EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with
optional flags. Thus:

tutorial% make "CFLAGS=-0"

uses the optimizing C compiler. causes the optimizing C compiler to be used.

6 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Make

5. Example

As an example of the use of Make, we will present the description file used to maintain the Make
command itself. The code for Make is spread over a number or C source files and a Yacc gram­
mar. The description file contains:

Description file for the Make command

FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c \
gram.y lex.c gcos.c

OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS =-0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) S(LIBES)-o make
size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm •.o gram.c
-du

install:
@size make /usr/bin/make
cp make /usr/bin/make ; rm make

print: $(FILES) # print recently changed files

test:

pr S! I SP
touch print

make -dp I grep -v TIME > hap
/usr/bin/make -dp I grep -v TIME >2zap
diff lzap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c

arch:

$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a S(FILES)

Make usually prints out each command before issuing it. The following output results from typ­
ing the simple command:

tutorial% make

in a directory containing only the source and description file:

Revision D of 7 January 1984 7

Make

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c liles.c
cc -c dosys.c
yacc gram.y
mv y.tab.c gram.c
cc -c gram.c

Programming Tools

cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS -o make
13188+ 3348+ 3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the 'size make' command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the ,ize command in the description file suppressed the printing of
the command, so only the sizes are written.
The last few entries in the description file are useful maintenance sequences. The 'print' entry
prints only the files that have been changed since the last 'make print' command. A zero-length
file print is maintained to keep track of the time of the printing; the $! macro in the command
line then picks up only the names of the files changed since print was touched. The printed
output can be sent to a different printer or to a file by changing the definition of the P macro:

tutorial% make print "P = opr -sp"

or:

tutorial% make print "P= cat >•ap"

6. Suggestions and Warnings

The most common difficulties arise from make 's specific meaning of dependency. If file z. c has a
'#include "defs"' line, then the object file z.o depends on def,; the source file :i.c does not. (If
def, is changed, it is not necessary to do anything to the file :i.c, while it is necessary to recreate
:i.o).

To discover what make would do, the '-n' option is very useful. The command:

tutorial% make -n

orders make to print out the commands it would issue without actually taking the time to exe­
cute them. If a change to a file is absolutely certain to be benign (for example, adding a new
definition to an include file), the '-t' (touch) option can save a lot of time: instead of issuing a
large number of superfluous recompilations, make updates the modification times on the affected
file. Thus, the command:

tutorial% make -ta

('touch silently') causes the relevant files to appear up to date. Obvious care is necessary, since
this mode of operation subverts the intention of make and destroys all memory of the previous
relationships.

0

0

The debugging flag ('-<I') causes make to print out a very detailed description of what it is o. _

doing, including the file times. The output is verbose, and recommended only as a last resort.

8 Revision D of 7 January 1984

0

0

0

Programming Tools Make

7. Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance con­
trol. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs dur­
ing development of make.

8. References

1. S. C. Johnson, 'Yacc - Yet Another Compiler-Compiler', Bell Laboratories Computing Sci­
ence Technical Report #32, July 1978.

2. M. E. Lesk, 'Lex - A Lexical Analyzer Generator', Computing Science Technical Report
#39, October 1975.

Revision D of 7 January 1984 9

Make Programming Tools

9. Appendix. Suft'"JXes and Transformation Rules

Make itself does not know what file name suffixes are interesting or how to transform a file with 0
one suffix into a file with another suffix. This information is stored in an internal table that has
the form of a description file. If the '-r' flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name '.SUFFIXES'; Make looks for a
file with any of the suffixes on the list. If such a file exists, and if there is a transformation rule
for that combination, Make acts as described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to transform a '.r' file to a '.o' file is
thus '.r.o'. If the rule is present and no explicit command sequence has been given in the user's··
description files, the command sequence for the rule • .r.o' is used. If a command is generated by
using one of these suffixing rules, the macro S* is given the value of the stem (everything but
the suffix) of the name of the file to be made, and the macro S< is the name of the dependent
that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to be
appended, the user can just add an entry for '.SUFFIXES' in his own description file; the
dependents will be added to the usual list. A '.SUFFIXES' line without any dependents deletes
the current list. (It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

10 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

.SUFFIXES : .o .c .e .r .f .y .yr .ye .I .s
YACC=yacc
YACCR yacc -r
YACCE=yacc --e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as-
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o:

$(CC) S(CFLAGS) ~ S<
.e.o .r .o .f.o :

.s.o :

.y.o:

.y.c:

S(EC) S(RFLAGS) S(EFLAGS) S(FFLAGS) ~ S<

$(AS) -o $@ S<

$(YACC) $(YFLAGS) S<
S(CC) S(CFLAGS) ~ y.tab.c
rm y.tab.c
mv y.tab.o S@

$(YACC) $(YFLAGS) S<
mv y.tab.c $@

Revision D of 7 January 1984

Make

11

0

0

0

0

0

0

Table of Contents

SOURCE CODE CONTROL SYSTEM .. 1

Part I - The SCCS High-Level User Interface... 2

l. Learning the Lingo 2
1.1. S-file ... 3
1.2. Deltas 3
1.3; SID's (version numbers) ... 3
1.4. Id keywords ... 3

2. Creating secs Database Files with 'secs create'.. 4

3. Retrieving Files for Compilation with 'secs get' ... 4

4. Changing Files (Creating Deltas)
4.1. Retrieving a File for Editing with 'secs edit'
4.2. Merging Changes Back Into the s-file with 'secs delta'
4.3. When to Make Deltas
4.4. Finding Out What's Going On with 'secs info' .. .
4.5. ID keywords

4.5.1. Finding Out What Versions AN Being Run with 'secs
what' .. .

4.5.2. Where to Put Id Keywords .. .
4.6. Keeping SID 's Consistent Across Files .. .
4.7. Creating New Releases

4
5
5
5
5
6

6
7
7
7

6, Restoring Old Versions ... 7
5.1. Reverting to Old Versions .. 8
5.2. Selectively Deleting Old Deltas.. 8

6. Auditing Changes... 8
6.1. Displaying Deita Comments with 'secs prt' ... 9
6.2. Finding Why Lines Were Inserted... 9
6.3. Discovering What Changes You Have Made with 'secs dill's' 9

7. Shorthand Notations .. 9

-i-

7.1. Making a Delta and Getting a File with 'secs delget' 10
7 .2. Replacing a Delta with the 'secs fix' .. 10
7.3. Backing OIi' From an Edit with 'secs unedit' .. 10
7.4. Working From Other Directories with thed Flag .. 10

0
8. Using SCCS on a Project ... 10

9. Saving Yourself.. 11
9.1. Recovering a Munged Edit File... 11
9.2. Restoring the s-file .. 11

10. Managing SCCS Files with 'secs admin' ... 11

11. Maintaining Different Versions (Branches).. 12
11.1. Creating a Branch... 12
11.2. Getting From a Branch ... 12
11.3. Merging a Branch Back into the Main Trunk ... 13
11.4. A More Detailed Example.. 13
11.5. A Warning... 13

12. Using secs with Make.. 13
12.1. Maintaining Single Programs ... 14
12.2. Maintaining A Library ... 15
12.3. Maintaining A Large Program .. 16

13. Commands... 17
0

14. Id Keywords ... 18

Part II - The SCCS Low•Level Command Interface... 19

15. SCCS For Beginners .. 19
15.1. Terminology.. 20
15.2. Creating an SCCS File with 'admin' ... 20
15.3. Retrieving a File with 'get' ... 21
15.4. Recording Changes with 'delta' .. 21
15.5. More about the 'get' Command ... 22
15.6. Getting Explanations of Errors with 'help' ... 23

16. SCCS File Numbering Conventions .. 23

17, SCCS Command Conventions .. 26
17.1. Command Line Syntax.. 26
17.2. Flags.. 27
17 .3. Real/Effective User... 27

0
- ii -

0
17 .4. Back-up Files Created During Processing .. 27
17 .5. Diagnostics ... 27

18. SCCS Commands .. 28
18.1. get - Retrieve a File.. 28

18.1.1. ID Keywords... 29
18.1.2. Retrieving Different Versions... 29
18.1.3. Retrieving to Make Changes ... 31
18.1.4. Concurrent Edits of Different S!Ds .. 32
18.1.5. Concurrent Edits of the Same SID .. 35
18.1.6. Options That Affect Output .. 35

18.2. delta - Make a Delta .. 36
18.3. admin - Administer SCCS Files .. 38

18.3.1. Creating SCCS Files ... 38
18.3.2. Inserting Commentary for the Initial Delta :.................. 38
18.3.3. Initializing and Modifiying SCCS File Parameters 39

18.4. prs - Print SCCS File .. 40
18.5. help - Ask for Help .. 41
18.6. rmdel - Remove a Delta ... 41
18.7. cdc - Change Delta Commentary... 42
18.8. what - Identify SCCS Files .. 42
18.9. sccsdiff - Compare Two Versions of an SCCS File 43
18.10. comb - Combine Deltas .. 43

0 18.11. val - Validate Characteristics of an SCCS File 43

19. SCCS Files .. ••
19.1. Protection... 44
19.2. Layout of an SCCS File.. 45
19.3. Auditing .. 45

0
- Ill -

0

!

ol
i

0

0

0

0

SOURCE CODE CONTROL SYSTEM

The Source Code Control System (SCCS) is a system for controlling changes to text files (typi­
cally, the source code and documentation of software systems).

You can think of SCCS as a custodian of files: SCCS provides facilities for storing, updating, and
retrieving any version of a file of text; for controlling updating privileges to that file; for identi­
fying the version of a retrieved file; and for recording who made each change, when and where it
was made, and why. This is important in environments where programs and documentation
undergo frequent changes (due to maintenance and/or enhancement work), because regenerating
an unrevised version of a program or document is often desirable. Obviously, this could be done
by keeping copies (on paper or other media), but this quickly becomes unmanageable and waste­
ful as the number of programs and documents increases. secs provides an attractive solution to
stockpiling multiple versions of the same text, because it stores only the original file and subse­
quent sets of change, on disk.

There are two major divisions of SCCS and these two divisions are reflected in the layout of this
document:

• The ace, command itself is a high-level 'user friendly' front end that provides an interface to
a collection of tools for manipulating SCCS files. In general, users can get by using the facili­
ties provided by the ace, command, and so ace, is described in Part I of this document. The
individual SCCS tools are not too easy to use, but they do provide extremely close control over
the SCCS database files.

• The SCCS commands are a collection of programs for manipulating the secs database files.
Although the 1cc, front end command normally abstracts the most common operations you
might want to do, there may be times when it is necessary to use the raw facilities of the
SCCS commands themselves - these commands are described in Part II of this document and
gives a deeper description of how to use SCCS. Of particular interest are the numbering of
branches, the I-file, which gives a description of what deltas were used on a get, and certain
other secs commands.

The secs manual pages are a good last resort. These should be read by software managers and
by people who want to know everything about everything.

Both the SCCS Uaer 'a Guide and the SCCS manual pages were written in the days before the
ace, command existed, so most of the examples are slightly different from those in this docu­
ment.

Revision D of 7 January 1984 1

SCCS High-Level User Interface Programming Tools

Part I - The SCCS High-Level User Interface

This first part of this document is a quick introduction to using secs via the ,cc, command.
The presentation is geared towards people who want to know how to get the job done done
rather than how the secs works; for this reason some or the examples are not well explained.
For details of what the magic options do, see the section entitled: Further Information.

Throughout this introduction, we assume that you are using the C-Shell on a machine called
'tutorial', and so the hostname is shown followed by the% sign prompt in the examples. What
you type is shown in bold faced text like thla, and the system's responses are shown in ordi­
nary typeface, like this:

tutorial% ices get prog.c
1.1
87 lines

0

secs is a source management system. Such a system maintains a record of versions of a system;
a record is kept with each set of changes of what the changes are, why they were made, who
made them, and when they were made. Old versions can be recovered, and different versions 0
can be maintained simultaneously. In projects with more than one person, ensures that two
people are not editing the same file at the same time.
All versions of your program, plus the log and other information, is kept in a &le called the ,.
file. There are three major operations that can be performed on the •·file:
1. Get a file. This operation retrieves a version of the file from the •-file. By default, the

latest version is retrieved. This file is intended for compilation, printing, or whatever; it is
specifically NOT intended to be edited or changed in any way; any changes made to a &le
retrieved in this way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file from the ,. file, but
this file is intended to be edited and then incorporated back into the •-file. Only one per­
son may be editing a file at one time.

3. Merge a file back into the ,-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

1. Learning the Lingo

There are a number or terms that are worth learning before we go any farther.

2 Revision D or 7 January 1984

0

0

0

0

Prot7amming Tools SCCS High-Level User Interface

1.1. S-file

The a-file is a single file that holds all the different versions of your file. The ,-file contains
only the differences between versions, rather than the entire text of the new version. This saves
disk space and allows selective changes to be removed later. Also included in the ,-file is some
header information for each version, including the comments given by the person who created
the version explaining why the changes were made.

1.2. Deltas

Each set or changes to the a-file - which is approximately, but not exactly, equivalent to aver­
sion of the file - is called a delta. Although technically a delta only includes the change, made,
in practice it is usual for each delta to be made with respect to all the deltas that have occurred
before1• However, it is possible to get a version of the file that has selected deltas removed out
of the middle of the list of changes - equivalent to removing your changes later.

1.3. SID's (version numbers)

A SID - SCCS Id - is a number that represents a delta. This is normally a two-part number
consisting of a 'release' number and a 'level' number. Normally the release number stays the
same, however, it is possible to move into a new release if some major change is being made.

Since all past deltas are normally applied, the SID or the final delta applied can be used to
represent a version num her of the file as a whole.

1.4. Id keywords

When you get a version of a file with intent to compile and install it that is, something other
than edit it), some special keywords that are part of the text of the file are expanded inline by
SCCS. These Id Keyword, can be used to include the current version number or other informa­
tion into the file. All id keywords are or the form %z%, where z is an upper case letter. For
example, %1% is the SID of the latest delta applied, %W% includes the module name, SID, and a
mark that makes it findable by a program, and %G% is the date of the latest delta applied.
There are many others, most or which are of dubious usefulness.

When you get a file for editing, the id keywords are not expanded; this is so that after you put
them back in to the •-file, they will be expanded automatically on each new version. But
notice: if you were to get them expanded accidently, your file would appear to be the same ver­
sion forever more, which would of course defeat the purpose. Also, if you should install a ver­
sion of the program without expanding the id keywords, it will be impossible to tell what ver­
sion it is (since all it will have is '%W%' or whatever).

1 This matches normal usage, where the previous changes are not saved at all, so all changes are
automatically based on all other changes that have happened through history.

Revision D of 7 January 1984 3

SCCS High-Level User Interface

2. Creating secs Database Files with 'secs create'

To put a bunch of source files into secs format, you do the following things:

• Make the SCCS subdirectory if it isn't there already:

tutorial% mkdir secs
tutorial%

Note that SCCS i• upper-cue

Programming Tools

• Then you use the acc, create command to actually create the SCCS database files for all the
source files you have. Suppose that you want to have all your .c and .Ii files under SCCS

control:

tutorial% scca create •.(ch)
lot, of mea,age, from SCCS here

tutorial%

For each file you have, the 1cc, create command does the following things for you:

Create, a file called ,.file in the SCCS subdirectory,
Rename, each file by placing a comma in front of the name, so that you end up with files of

the form ,Jile.
Get, a read-only copy of each file by using the ,cc• get command, as described later on.

When you are convinced that secs has correctly created the ,-files, you should remove the files
whose names start with commas.
Ir you want to have id keywords in the files, it is best to put them in before you create the •·
files. Ir you do not, create will print 'No Id Keywords (cm7)', which is a warning message only.

3. Retrieving Files for Compilation with 'secs get'

To get a copy of the latest version of a file, run

tutorial% secs get prog.c

SCCS will respond:

1.1
87 lines

meaning that version 1.1 was retrieved2 and that it has 87 lines. The file prog.c is created in
the current directory - it is created read-only to remind you that you are not supposed to
change it.
This copy of the file should not be changed, since SCCS is unable to merge the changes back into
the •·file. Ir you do make changes, they will be lost the next time someone does a get.

4. Changing Files (Creating Deltas)

2 Actually, the SID or the final delta applied was 1.1.

4 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

4.1. Retrieving a File for Editing with 'secs edit'

To edit a source file, you must first get it, requesting permission to edit it3• The response will
be the same as with get except that it also says that a new delta is being created:

tutorial% secs edit prog.c
New delta 1.2

You then edit it, using a standard text editor:

tutorial% vi prog.c

4.2. Merging Changes Back Into the s-file with 'secs delta'

When the desired changes are made, you can put your changes into the SCCS file using the tlelta
command:

tutorial% secs delta prog.c

Delta prompts you for 'comments!' before merging the changes in. At this prompt you should
type a one-line description of what the changes mean (more lines can be entered by ending each
line except the last with a backslash. Delta will then type:

1.2
5 inserted
3 deleted
84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84 lines
unchanged4• The prog.c file will be removed; it can be retrieved using get.

4.3. When to Make Deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you tend to
get a lot of deltas with comments like 'fixed compilation problem in previous delta' or
'fixed botch in 1.3'. However, it is very important to delta everything before installing a module
for general use. A good technique is to edit the files you need, make all necessary changes and
tests, compiling and editing as often as necessary without making deltas. When you are
satisfied that you have a working version, delta everything being edited, re-get them, and
recompile everything.

4.4. Finding Out What's Going On with 'secs info'

To find out what files are being edited, type:

a The edit command is equivalent ro using the -<0 ftag to g<~ a.:
tutorial% secs get -e prog.c

Keep this in mind when reading other documentation •.
• Change• ro a line are counted ao a line deleted and a line in .. rted.

Revision D of 7 January 1984 5

SCCS High-Level User Interface Programming Tools

tutorial% aces info

to display a list of all the files being edited and other information - such as the name of the 0
user who did the edit. Also, the command:

tutorial% aces check

is nearly equivalent to the info command, except that it is silent if nothing is being edited, and
returns non-zero exit status if anything is being edited. It can thus be used in an 'install' entry
in a makefile to abort the install if anything has not been properly deltaed.

If you know that everything being edited should be deltaed, you can use:

tutorial% secs delta 'aces tell'

The tell command is similar to info except that only the names of files being edited are output,
one per line.
All of these commands take a -b flag to ignore 'branches' (alternate versions, described later)
and the -u flag to only give files being edited by you. The -u flag takes an optional u,er argu­
ment, giving only files being edited by that user. For example:

tutorial% secs info -ujohn

gives a listing of files being edited by john.

4.5. ID keywords

Id keywords can be inserted into your file that will be expanded automatically by get. For
example, a line such as:

static char Sccsld() = "%W%\t%G%";

will be replaced with something like:

static char Sccsld() = "@(#)prog.c 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string '@(#)' is a special string which signals the beginning of an SCCS Id keyword.

4.5.1. Finding Out What Versions Are Being Run with 'secs what'

To find out what version of a program is being run, use:

tutorial% secs what prog.c /usr/bin/prog

which will print all strings it finds that begin with '@(#)'. This works on all types of files,
including binaries and libraries. For example, the above command will output something like:

prog.c:
prog.c 1.2 08/29/80

/usr/bin/prog:
prog.c 1.1 02/05/79

From this I can see that the source that I have in prog.c will not compile into the same version
as the binary in /usr/bin/prog.

6 Revision D of 7 January 1984

0

0

Programming Tools SCCS High-Level User Interface

4.5.2. Where to Put Id Keywords

0 ID keywords can be inserted anywhere, including in comments, but Id Keywords that are com­
piled into the object module are especially useful, since it lets you find out what version of the
object is being run, as well as the source. However, there is a cost: data space is used up to
store the keywords, and on small address space machines this may be prohibitive.

0

0

When you put id keywords into header files, it is important that you assign them to different
variables. For example, you might use:

static char AccessSid(J = "%W%

in the file accea,.h and:

%G%";

static char OpsysSid() = "%W%%G%";

in the file opaya.h. Otherwise, you will get compilation errors because 'Sccsld' is redefined. The
problem with this is that if the header file is included by many modules that are loaded
together, the version number of that header file is included in the object module many times;
you may find it more to your taste to put id keywords in header files in comments.

4.6. Keeping SID's Consistent Across Files

With some care, it is possible to keep the SID's consistent in multi-file systems. The trick here is
to always edit all files at once. The changes can then be made to whatever files are necessary
and then all files (even those not changed) are redeltaed. This can be done fairly easily by just
specifying the name of the directory that the SCCS files are in:

tutorial% sccs edit SCCS

which will edit all files in that directory. To make the delta, use:

tutorial% 11ccs delta SCCS

You will be prompted for comments only once.

4.7. Creating New Releases

When you want to create a new release of a program, you can specify the release number you
want to create on the edit command. For example:

tutorial% sccs edit -r2 prog.c

will put the next delta in release two (that is, it will be numbered 2.1). Future deltas will
automatically be in release two. To change the release number of an entire system, use:

tutorial% sccs edit -r2 SCCS

5. Restoring Old Versions

Revision D of 7 January 1984 7

SCCS High-Level User Interlace Programming Tools

5.1. Reverting to Old Versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this introduced
a bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you
wanted to go back to the old version. You could revert to delta 1.2 by choosing the SID in a
get:

tutorial% secs get -rl,2 prog.c

This will produce a version -0f prog.c that is delta 1.2 that can be reinstalled so that work can
proceed.
In some cases you don't know what the SID of the delta you want is. However, you can revert
to the version of the program that was running as of a certain date by using the -c (cutoff) flag.
For example,

tutorial% secs get -c800722120000 prog.c

will retrieve whatever version was current as of July 22, Hl80 at 12:00 noon. Trailing com•
ponents can be stripped off (defaulting to their highest legal value), and punctuation can be
inserted in the obvious places; for example, the above line could be equivalently stated:

tutorial% secs get -c"S0/07 /22 12:00:00" prog.c

5.2. Selectively Deleting Old Deltas

0

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should

0 be removed. You could do thi, by ezclutling delta 1.3:

tutorial% sccs edit -xl,3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude- the
changes made in delta 1.3. You can exclude a range of deltas using a dash. For example, if you
want to get rid of 1.3 and 1.4 you can use:

tutorial% secs edit -xl.3-1,4 prog.c

which will exclude all deltas from 1.3 to 1.4. Alternatively,

tutorial% secs edit -xl,3-1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using -x (or -i - see below) there will be conflicts between versions; for
example, it may be necessary to both include and delete a particular line. If this happens, SCCS
always prints out a message telling the range of lines affected; these lines should then be exam­
ined very carefully to see if the version SOOS got is ok.

Since each delta (in the sense of 'a set of changes') can be excluded at will, it is most useful to
put each semantically-distinct change into its own delta.

6. Auditing Changes

8 Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS High-Level User Interface

6.1. Displaying Delta Comments with 'secs prt'

When you created a delta, you presumably gave a reason for the delta to the 'comments?'
prompt. To print out these comments later, use:

tutorial% secs prt prog.c

This will produce a report for each delta of the SID, time and date of creation, user who created
the delta, number of lines inserted, deleted, and unchanged, and the comments associated with
the delta. For example, the output of the above command might be:

D 1.2 80/08/29 12:35:31 bill 2 1 00005/00003/00084
removed "·q" option
D 1.179/02/05 00:19:31 eric 1 0 00087 /00000/00000
date and time created 80/06/10 00:19:31 by eric

6.2. Finding Why Lines Were Inserted

To find out why you inserted lines, you can get a copy of the file with each line preceded by the
SID that created it:

tutorial% secs get -m prog.c

You can then find out what this delta did by printing the comments using prt.

To find out what lines are associated with a particular delta, 1.3 for instance, use:

tutorial% secs get -m -p prog.c I grep ·· 1.3'

The -p flag causes SCCS to output the generated source to the standard output rather than to a
file.

6.3. Discovering What Changes You Have Made with 'secs diffs'

When you are editing a file, you can find out what changes you have made using:

tutorial% aces dill's prog.c

Most of the "dill'' flags can be used. To pass the -c flag, use -C.

To compare two versions that are in deltas, use:

tutorial% secs sccsdift'-rl.3 -rl.8 prog.c

to see the differences between delta 1.3 and delta 1.6.

7. Shorthand Notations

There are several sequences of commands that are used frequently. Sec, tries to make it easy to
do these.

Revision D of 7 January 1984 9

SCCS High-Level User Interface Programming Tools

7 .1. Making a Delta and Getting a File with 'secs delget'

A rrequent requirement is to make a delta of some file and then get that file. This is done by
using:

tutorial% secs delget prog.c

which is entirely equivalent to using:

tutorial% secs delta prog.c
tutorial% secs get prog.c

except that ir an error occurs while making a delta of an11 of the files, none of them will be got­
ten. The de/edit command is equivalent to tie/get except that the edit command is used instead
or the get command.

7 .2. Replacing a Delta with the 'secs fix'

Frequently, there are small bugs in deltas, for instance, compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:

tutorial% sccs fix -rl . .f prog.c

This gets a copy or delta 1.4 of prog.c for you to edit and then deletes delta 1.4 from the secs
file. When you do a delta or prog.c, it will be delta 1.4 again. The -r flag must be specified,
and the delta that is specified must be a leaf delta, that is, no other deltas may have been made
subsequent to the creation or that delta.

7 .3. Backing Off From an Edit with 'secs unedit'

Ir you found you edited a file that you did not want to edit, you can back out by using:

tutorial% sccs unedit prog.c

7 .4. Working From Other Directories with the -d Flag

Ir you are working on a project where the SCCS code is in a directory somewhere, you may be
able to simplify things by using a shell alias. For example, the alias:

alias syssccs secs -d/usr/src

will allow you to issue commands such as:

syssccs edit cmd/w ho.c

which will look for the file '/usr/src/cmd/SCCS/who.c'. The file 'who.c' is always created in
your current directory regardless or the value of the -d flag.

8. Using SCCS on a Project

0

0

Working on a project with several people has its own set or special problems. The main prob-
lem occurs when two people modiry a file at the same time. SCCS prevents this by locking an•- 0
file while it is being edited.

10 Revision D or 7 January 1984

0

0

0

Programming Tools SCCS High-Level User Interface

As a result, files should not be reserved for editing unless they are actually being edited at the
time, since this will prevent other people on the project Crom making necessary changes. For
example, a good scenario for working might be:

tutorial% secs edit a.c g.c t.c
tutorial% vi a.c g.c t.c
do testing of the (experimental) version
tutorial% secs delget a.c g.c t.c
tutorial% secs info
should respond "Nothing being edited"
tutorial% make install

As a general rule, all source files should be deltaed before installing the program for general use.
This will ensure that it is possible to restore any version in use at any time.

9. Saving Yourself

9.1. Recovering a Munged Edit File

Sometimes you may find that you have destroyed or trashed a file that you were trying to edit5•

Unfortunately, you can't just remove it and re-edit it; secs keeps track or the fact that someone
is trying to edit it, so it won't let you do it again. Neither can you just get it using get, since
that would expand the Id keywords. Instead, you can say:

tutorial% secs get -k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.

Alternatively, you can unedit and edit the file.

9.2. Restoring the s-file

In particularly bad circumstances, the secs file itself may get munged. The most common way
this happens is that it gets edited. Since SCCS keeps a checksum, you will get errors every time
you read the file. To fix this checksum, use:

tutorial% secs admin -• prog.c

10. Managing SCCS Files with 'secs admin'

There are a number or parameters that can be set using the admin command. The most
interesting or these are flags. Flags can be added by using the -f option. For example:

tutorial% secs admin -fdl prog.c

sets the 'd' flag to the value 'l '. This flag can be deleted by using:

6 Or given up and decided to start over.

Revision D of 7 January 1984 11

SCCS High-Level User Interface

tutorial% aces admin -dd prog.c

The most useful flags are:
b Allow branches to be made using the -b flag to edit.

dS/D

Programming Tools

Default SID to be used on a get or edit. If this is just a release number it constrains the ver­
sion to a particular release only.
Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee that a
version of the file does not get merged into the •-file that has the Id Keywords inserted as
constants instead of internal forms.

y The 'type' of the module. Actually, the value of this flag is unused by secs except that it
replaces the %Y% keyword.

The -tfile flag can be used to store descriptive text from file. This descriptive text might be the
documentation or a design and implementation document. Using the -$ flag ensures that if the
SCCS file is sent, the documentation will be sent also. Ir file is omitted, the descriptive text is
deleted. To see the descriptive text, use 'prt -t'.
The admin command can be used safely any number of times on files. A file need not be gotten
for admin to work.

11. Maintaining Different Versions (Branches)

0

Sometimes it is convenient to maintain an experimental version of a program for an extended
period while normal maintenance continues on the version in production. This can be done
using a 'branch'. Normally deltas continue in a straight line, each depending on the delta o­
before. Creating a branch 'forks off' a version of the program.

The ability to create branches must be enabled in advance using:

tutorial% secs admin -fb prog.c

The -fb flag can be specified when the SCCS file is first created.

11.1. Creating a Branch

To create a branch, use:

tutorial% secs edit -b prog.c

This will create a branch with (for example) SID 1.5.1.1. The deltas for this version will be num­
bered 1.5.1.n.

11.2. Getting From a Branch

Deltas in a branch are normally not included when you do a get. To get these versions, you will
have to say:

tutorial% secs get -rl.5.1 prog.c

12 Revision D of 7 January 1984

0

0

Programming Tools SCCS High-Level User Interface

11.3. Merging a Branch Back into the Main Trunk

At some point you will have finished the experiment, and if it was successful you will want to
incorporate it into the release version. But in the meantime someone may have created a delta
1.6 that you don't want to lose. The commands:

tutorial% secs edit -il.6.1.1-1.6.1 prog.c
tutorial% secs delta prog.c

will merge all of your changes into the release system. If some of the changes conflict, get will
print an error. The generated result should be carefully examined before the delta is made.

11.4. A More Detailed Example

The following technique might be used to maintain a different version of a program. First,
create a directory to contain the new version:

tutorial% mkdir .. /newx71
tutorial% cd .. /newx71

Edit a copy of the program on a branch:

tutorial% eccs -d .. /xy• edit -b prog.c

When using the old version, be sure to use the -b flag to info, check, tell, and clean to avoid
confusion. For example, use:

tutorial% secs info -b

0 when in the 'xyz' directory.

If you want to save a copy of the program (still on the branch) back in the •-file, you can use:

tutorial% secs -d .. /xys deledit prog.c

which will do a delta on the branch and reedit it for you.

When the experiment is complete, merge it back into the •-file using delta:

tutorial% secs -d .. /xys delta prog.c

At this point you must decide whether this version should be merged back into the trunk, that
iB, the default version, which may have undergone changes. If so, it can be merged using the -i
flag to edit as described above.

11.5. A Warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are
assigned rather haphazardly, and the structure gets complex fast.

12. Using SCCS with Make

SCCS and make can be made to work together with a little care. A few sample makefiles for
common applications are shown. o There are a few basic entries that every makefile ought to have. These are:

Revision D of 7 January 1984 13

SCCS High-Level User Interface Programming Tools

a.out
(or whatever the makefile generates.) This entry regenerates a program. If the makefile 0
regenerates many things, this should be called 'all' and should in turn have dependencies on
everything the makefile can generate.

install
Moves the objects to the final resting place, doing any special climo,ls or ranlib's as
appropriate.

sources
Creates all the source files from SCCS files.

clean
Removes all cruft from the directory.

print
Prints the contents of the directory.

The examples shown below are only partial examples, and may omit some of these entries when
they are deemed to be obvious.
The clean entry should not remove files that can be regenerated from the secs files. It is
sufficiently important to have the source files around at all times that the only time they should
be removed is when the directory is being mothballed. To do this, the command:

tutorial% aces clean

can be used. This will remove all files for which an ,-file exists, but which is not being edited.

12.1. Maintaining Single Programs

Frequently there are directories with several largely unrelated programs (such as simple com­
mands). These can be put into a single makefile:

LDFLAGS= -i -s
prog: prog.o

$(CC) $(LDFLAGS)-o prog prog.o
prog.o: prog.c prog.h
example: example.o

$(CC) $(LDFLAGS) -o example example.o
example.o: example.c
.DEFAULT:

SCCS get$<

The trick here is that the .DEFAULT rule is called every time something is needed that does
not exist, and no other rule exists to make it. The explicit dependency of the .o file on the .c
file is important. Another way of doing the same thing is:

14 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

SRCS= prog.c prog.h example.c
LDFLAGS= -i -s
prog: prog.o

$(CC) S(LDFLAGS)-o prog prog.o
prog.o: prog.h
example: example.o

$(CC) $(LDFLAGS) -o example example.o
sources: $(SRCS)
$(SRCS):

SCCS get$@

SCCS High-Level User Interface

There are a couple of advantages to this approach: (1) the explicit dependencies of the .o on
the .c files are not needed, (2) there is an entry called "sources" so if you want to get all the
sources you can just say 'make sources' and (3) the makefile is less likely to do confusing things
since it won't try to get things that do not exist.

12.2. Maintaining A Library

Libraries that are largely static are best updated using explicit commands, since make doesn't
know about updating them properly. However, libraries that are in the process of being
developed can be handled quite adequately. The problem is that the .o files have to be kept out
of the library as well as in the library.

configuration information
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib
programs
GET= sccs get
REL=
AR= -ar
RANLIB=ranlib
lib.a: $(0BJS)

$(AR) rvu lib.a $(0BJS)
$(RANLIB) lib.a

install: lib.a
SCCS check
cp lib.a $(TARG)/lib.a
$(RANLIB) S(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) S@
print: sources

pr •.h •.[cs]
clean:

rm -f •.o
rm -J core a.out $(LIB)

The '$(REL)' in the get can be used to get old versions easily; for example:

Revision D of 7 January 1984 15

SCCS High-Level User Interface Programming Tools

make b.o REL=-rl.3

The inata/1 entry includes the line 'secs check' before anything else. This guarantees that all the
a-files are up to date (that is, nothing is being edited), and will abort the make if this condition
is not met.

12.3. Maintaining A Large Program

OBJS=
SRCS=
GET=
REL=

a.o b.o c.o d.o
a.c b.c y.c d.s x.h y.h z.h
secs get

a.out: $(0BJS)
$(CC) $(LDFLAGS) $(0BJS) S(LIBS)

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) S@

The print and clean entries are identical to the previous case. This makefile requires copies of
the source and object files to be kept during development. It is probably also wise to include
lines of the form:

a.o: x.h y.h
b.o: z.h
C.O: X .h y .h z.h
z.h: x.h

so that modules will be recompiled if header files change.
Since make does not do transitive closure on dependencies, you may find in some makefiles lines
like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

The touch command brings the modification date of z.h in line with the modification date of
x.h. When you have a makefile such as above, the touch command can be removed completely;
the equivalent effect will be achieved by doing an automatic get on z.h.

16 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools SCCS High-Level User Interface

Quick Reference

13. Commands

The following commands should all be preceded with 'secs'. This list is not exhaustive; for more
options see Further Information.

get Gets files for compilation (not for editing). Id keywords are expanded.
-rS/D

-p

-k
-i/i,t

-xliat

-m
---<: date

edit

Version to get.

Send to standard output rather than to the actual file.

Don't expand id keywords.

List or deltas to include.

List or deltas to exclude.

Precede each line with SID or creating delta.

Don't apply any deltas created after date.

Gets files for editing. Id keywords are not expanded.
mand.

Should be matched with a delta com-

-rS/D Same as get. Ir SID specifies a release that does not yet exist, the highest num­
bered delta is retrieved and the new delta is numbered with SID.

-b
-ili.t

-xliat

delta

unedit

prt

info

check

tell

clean
what

admin

Create a branch.

Same as get.

Same as get.

Merge a file gotten using edit back into the a-file. Collect comments about why this
delta was made.

Remove a file that has been edited previously without merging the changes into the
a-file.

Produce a report of changes.

-t Print the descriptive text.

---il Print (nearly) everything.

Give a list of all files being edited.
-b Ignore branches.

-u[uaer) Ignore files not being edited by uaer.

Same as info, except that nothing is printed if nothing is being edited and exit
status is returned.

Same as info, except that one line is produced per file being edited containing only
the file name.

Remove all files that can be regenerated from the a-file.

Find and print id keywords.

Create or set parameters on a-files.

Revision D or 7 January 1984 17

SCCS High-Level User Interface Programming Tools

fix
delget
deledit

-ifile

-z
-fftao
--0.Jlao

Create, using file as the initial contents.
Rebuild the checksum in case the file has been trashed.

Turn on the flag.

Turn off (delete) the flag.
-tfile Replace the descriptive text in the ,-file with the contents of file. If file

is omitted, the text is deleted. Useful for storing documentation or
'design & implementation' documents to ensure they get distributed with
the •-file.

Useful flags are:
b Allow branches to be made using the -b flag to etlit.

ds!D Default SID to be used on a oet or etlit.
Cause 'No Id Keywords' error message to be a fatal error rather than a
warning.

t The module 'type'; the value of this flag replaces the %Y% keyword.

Remove a delta and reedit it.

Do a tlelta followed by a get.

Do a delta followed by an etlit.

14. Id Keywords

%Z%

%M%
%I%

%W%
%G%

%R%
%Y%

18

Expands to'@(#)' for the wlaat command to find.
The current module name, for example, 'prog.c'.

The highest SID applied.

A shorthand for '%Z%%M% <tab> %1%'.
The date of the delta corresponding to the '%1%' keyword.
The current release number, that is, the first component of the '%1%' keyword.

Replaced by the value of the t flag (set by admin).

Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

Part II - The SCCS Low-Level Command Inter­
face

Part I of this document described the ,cc, front-end command for using the facilities of SCCS. In
general, you can do most things using the 1cc, command, and so you should in theory never
have to look at this part of the document. There may be times however, when it is necessary to
use the raw facilities of the SCCS commands themselves, and so this part of the document is a
reference guide for SCCS. The following topics are covered in this document:

• How to get started with SCCS.

• The scheme used to identify versions of text kept in an SCCS file.

• Basic information needed for day-to-day use of SCCS commands, including a discussion of the
more useful arguments.

• Protection and auditing of SCCS files, including the differences between the use of SCCS by
individual users on one hand, and group, of users on the other.

This document is a user's guide to SCCS. This document contains the following sections:

• SCCS for Beginner,: How to make an SCCS file, update it, and retrieve a version of it.

• SCCS File Numbering Convention,: How versions of SCCS files are numbered and named.

• secs Command Convention,: Conventions and rules generally applicable to all secs com•
mands.

• secs Command,: Explanation of all SCCS commands, with discussions of the more useful
arguments.

• SCCS File,: Protection, format, and auditing of SCCS files, including a discussion of the
differences between using SCCS as an individual and using it as a member of a group or pro­
ject. The role of a 'project SCCS administrator' is introduced.

15. SCCS For Beginners

We assume here that you know how to log onto a UNIXt system, create files, and use a text edi­
tor like ez or vi. If you need more information on these subjects, see the U,er •, Manual for the
Sun UNIX S11atem.

In this section, we present some basic concepts of SCCS. Examples are fragments of terminal ses­
sions, with what you type shown in boldface text like this, and what the terminal displays
shown in ordinary Roman text, like the ordinary text of this paragraph. After familiarizing
yourself with basics, use the manual pages for detailed SCCS command descriptions.

6 t UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 19

SCCS Low-Level Commands Programming Tools

Note that all the secs commands described here live in the /u,r/1cc1 directory, so you must
either state that directory explicitly when using SCCS commands, or include that pathname in

0 your .login file. All the examples shown in this guide usume that you have /uar/1cc1 in your
path and so you just have to type the required secs command name.

15.1. Terminology

Each secs file is composed of one or more sets of changes applied to the null (empty) version of
the file; each set of changes usually depends on all previous sets. Each set of changes is called a
'delta' and is assigned a name called the Secs /Dentification string (SID).
The SID is composed of at most four components; for now let's focus on only the first two: the
'release' and 'level' numbers. Each set of changes to a file is named 'reletue.leuef; hence, the
first delta is called '1.1 ', the second '1.2', the third '1.3', and so on. The release number can
also be changed, allowing, for example, deltas '2.1', '3.19', etc. A change in the releue number
usually indicates a major change to the file.
Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines
the version of the SCCS file obtained by applying the changes that constitute deltas 1.1, 1.2, etc.,
up to and including delta 1.5 itself, in that order, to the null (empty) version of the file.

15.2. Creating an SCCS File with 'admin'

Consider, for example, a file called 'lang' containing a list of programming languages:

tutorial% cat lang
C

pl/i
fortran
cobol
algol
tutorial%

We wish to give secs custody of 'lang' by using atlmin (which atlmini,ters SCCS files) to create
an secs file and initialize delta 1.1. To do so, we use atlmin a., shown, and atlmin responds with
a message:

tutorial% admin -ilang a.lang
No id keywords (cm7)
tutorial%

All secs files muat have names that begin with 's.', hence, 's.lang'. The -i option, together with
its value 'lang', indicates that atlmin is to create a new secs file and initialize it with the con­
tents of the file 'lang'. This initial version is a set of changes applied to the null SCCS file; it is
delta 1.1.
The message is a warning message (which may also be issued by other SCCS commands) that
you can ignore for the present. In the following examples, this warning message is not shown,
although it may actually be issued by the various commands ..
Remove the file 'lang' now - it can be easily reconstructed with the get command, described
below.

20 Revision D of 7 January 1984

0

0

0

0

0

Progx-amming Tools SCCS Low-Level Commands

15.3. Retrieving a File with 'get'

Get creates (retrieves) the latest version of an SCCS file and gives you some information about it.
For example, here is how to retrieve the file we created above:

tutorial% get a.lang
1.1
5 lines
tutorial%

Get tells you it has retrieved version 1.1 of the file, which contains 5 lines of text. The retrieved
text is placed in a file whose name is formed by deleting the 's.' prefix from the name of the
secs file; hence, the file 'tang' is created.

The above get command simply creates the read-only file 'lang' and keeps no information what­
soever regarding its creation. If you wish to subsequently change an SCCS file with the tleltt1
command (see below), however, you must create a file which can be written as well as read.
You do this by using get with the -e (edit) option:

tutorial% get -e a.lang
1.1
new delta 1.2
5 lines
tutorial%

When you use the -e option, get creates a file 'lang' for both reading and writing (so that it
may be edited) and places certain information about the SCCS file in another new file, called the
p-file, that the tie/ta command reads later. Get prints the same messages as before, and in addi­
tion displays the SID of the version to be created using delta.

You can now change 'lang' by adding (say) anobol and ratfor to the list using your favorite
editor. Then take a look at the new file:

tutorial% cat lang
C

pl/i
fortran
cobol
algol
snobol
ratfor
tutorial%

15.4. Recording Changes with 'delta'

To record the changes that were applied to 'lang' within the SCCS file, use the delta command.
Delta asks for comments describing the change, and you respond with a description of why the
changes were made:

tutorial% delta a.lang
comments! added snobol and ratfor

More meaaagea from delta - aee below
tutorial%

Revision D of 7 January 1984 21

SCCS Low-Level Commands Programming Tools

Delta then reads the p-file and determines what changes were made to the file 'lang'. Delta does
this by doing its own get to retrieve the original version, and then applying ,liff(l) to the origi- o
nal version and the edited version. When the changes to 'lang' have been stored in 'sJang', the
dialogue with delta looks like:

tutorial% delta a.tang
comments! added anobol and ratfor
1.2
2 inserted
0 deleted
5 unchanged
tutorial%

The number '1.2' is the name of the delta just created, and the next three lines are a summary
of the changes made to 's.Iang'.

15.5. More about the 'get' Command

As we have seen:

tutorial% get e.lang

retrieves the latest version (now 1.2) of the file 's.lang' by starting with the original version of
the file and successively applying deltas (the changes) in order, until all deltas have been
applied. For our example, the following commands are all equivalent:

tutorial% get 11.lang

tutorial% get -rl a.lang

tutorial% get -rl.2 a.tang

The numbers following the -r option are SIDs. Note that omitting the level number of the SID
(as in the second example above) is equivalent to specifying the higheat level number that exists
within the specified release. Thus, the second get retrieves the latest version in release 1, namely
1.2. The third get specifically retrieves a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indi­
cated by changing the releaae number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the SID), we must indicate to SCCS that we wish to change the release
number. This is done with a get -r command to indicate that a new release will be made:

tutorial% get -e -r2 11.Iang
1.2
new delta 2.1
7 lines
tutorial%

Release 2 does not exist, as indicated by the 'new delta' message, so get retrieves the latest ver­
sion before release 2. Get also changes the release number of the delta we wish to create to 2,
and thus names the new version 2.1, rather than 1.3. This information is conveyed to ,leltt, via
the p-file.

0

Now suppose you edit the file and remove cobol from the list of languages, so that the new file

0 looks like this:

22 Revision D of 7 January 1984

0

0

0

Programming Tools SCCS Low-Level Commands

tutorial% cat Jang
C

pl/i
fortran
algol
snobol
ratfor
tutorial%

and then use delta, you will see from delta'• output, that version 2.1 is indeed created:

tutorial% delta 11.lang
comments! deleted cobol Crom list or languagee
2.1
0 inserted
1 deleted
6 unchanged
tutorial%

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner.

15.6. Getting Explanations of Errors with 'help'

Help displays explanations of SCCS commands and diagnostic messages. As an example, let's
type a command line incorrectly and generate an error message:

tutorial% get abc
ERROR [abcJ: not an SCCS file (col)
tutorial%

The string 'col' is a code for the diagnostic message. Use it as an argument to help to get a
fuller explanation of the error:

tutorial% help col
col:
"not an SCCS file"
A file that you think is an SCCS file
does not begin with the characters"•·".
tutorial%

Thus, help is useful whenever there is any doubt about the meaning of an SCCS message. Fuller
explanations of almost all SCCS messages may be found in this manner.

16. SCCS File Numbering Conventions

You can think of the deltas applied to an SCCS file as the nodes of a tree; the root is the initial
version of the file. The root delta (node) is normally named '1.1' and successor deltas (nodes)
are named '1.2', '1.3', etc. We have already discussed these two components of the names of
the deltas, the 'release' and 'level' numbers; and you have seen that normal naming of successor
deltas proceeds by incrementing the level number, which is performed automatically by SCCS
whenever a delta is made. In addition, you have seen how to change the release number when

Revision D of 7 January 1984 23

SCCS Low-Level Commands Programming Tools

making a delta, to indicate that a major change to the file is being made. The new release
number applies to all successor deltas, unless it is specifically changed again. Thus, the evolu­
tion or a particular file may be represented as in Figure 1.

I.I

Release I

1.3 1.4 • •

Release .2

Figure 1: Evolution or an SCCS File

We can call this structure the 'trunk' or the SCCS tree. It represents the normal sequential
development or an secs file, in which changes that are part ~or any given delta are dependent
upon all the preceding deltas.

0

However, there are situations when a branch on the tree is needed: when changes applied as
part or a given delta are not dependent upon all previous deltas. As an example, consider a pro-
gram which is in production use at version 1.3, and for which development work on release 2 is Q
already in progress. Thus, release 2 may already have some deltas, precisely as shown in Fig-
ure 1. Assume that a production user reports a problem in version 1.3 which cannot wait until
release 2 to be repaired. The changes necessary to repair the trouble will be applied as a delta
to version 1.3 (the version in production use). This creates a new version that will then be
released to the user, but will not affect the changes being applied ror release 2 (that is, deltas
1.4, 2.1, 2.2, etc.).

The new delta is a node on a 'branch' or the tree, and its name consists or four components:
the release and level numbers, as with trunk deltas, plus the 'branch' and 'sequence' numbers.
Its SID thus appears as: releaae.le11el.branch.aequence. The branch number is assigned to each
branch that is a descendant or a particular trunk delta; the first such branch is 1, the next one
2, and so on._ The aequence number is assigned, in order, to each delta on a particular branch.
Thus, 1.3.1.2 identifies the second delta or the first branch that derives from delta 1.3. This is
shown in Figure 2.

24 Revision D or 7 January 1984

0

0

0

0

Programming Tools

Release I
• •

SCCS Low-Level Commands

Release 2

2.2

Branch

Figure 2: Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated.

Two observations are of importance with regard to naming deltas. First, the names of trunk
deltas contain exactly two components, and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those of
the ancestral trunk delta, and the branch component is assigned in the order of creation of the
branch, independently of its location relative to the trunk delta. Thus, a branch delta may
always be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta's name, it is not possible to determine the entire path leading
from the trunk delta to the branch delta. For example, if delta 1.3 has one branch emanating
from it, all deltas on that branch will be named 1,3,1,n. If a delta on this branch then has
another branch emanating from it, all deltas on the new branch will be named 1.3.2.n (see Fig­
ure 3). The only information that may be derived from the name of delta 1.3.2.2 is that it is
the chronologically second delta on the chronologicall11 second branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all of the
deltas between it and its trunk ancestor (1.3).

Revision D of 7 January 1984 25

SCCS Low-Level Commands Programming Tools

Release 2

Release I

2.2

I.I
Branch

Branch 2

1.3.2.2

Figure 3: Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCS tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

17. SCCS Command Conventions

0

This section discusses the conventions and rules that apply to SCCS commands. These rules and 0
conventions are generally applicable to all SCCS commands, except as indicated below.

17.1. Command Line Syntax

SCCS commands accept option, and file argument,.

Option, begin with a minus sign(-), followed by a lower-case alphabetic character, and, in some
cases, followed by a value. Options modify actions of commands on which they are specified.

File argumenta (which may be names of files and/or directories) specify the file(s) that the given
secs command is to process; naming a directory is equivalent to naming all the SCCS files within
the directory. Non- SCCS files and unreadable6 files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name '-' (a lone
minus sign) is specified as an argument to a command, the command reads the standard input
for lines and takes each line as the name of an· SCCS file to be processed. The standard input is
read until end-of-file. This feature is often used in pipelines with, for example, the find(l) or
I, (1) commands. Again, names of non- SCCS files and of unreadable files are silently ignored.

Options specified for a given command apply to all file arguments or that command. Options
are processed before any file arguments; therefore the placement or options is arbitrary, that is,
options may be interspersed with file arguments. File arguments, however, are processed left to
right.

e Because or permission modes - eee cAmod(t).

26 Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS Low-Level Commands

Somewhat different argument conventions apply to the help, what, 1cc,diJ!, and 11al commands.

17,2, Flags

Certain actions of various SCCS commands are modified by flag, embedded in the text of SCCS
liles. Some of these flags are discussed below. For a complete description of all such flags, see
admin(l).

17.3. Real/Effective User

The distinction between the real uaer (see pa11wd(l)) and the e/fectille u,er of a UNlX system is
of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same, that is, the user who is logged
into a UNIX system.

17,4. Back-up Files Created During Processing

All secs commands that modify an SCCS lile do so by writing a temporary copy, called the z.
file, to ensure that the secs lile will not he damaged if processing terminates abnormally. The
name of the z-file is formed by replacing the 's.' of the secs lile name with 'x.'. When process­
ing is complete, the old SCCS lile is removed and the :,;-file is renamed to be the SCCS file. The
:,;-file is created in the directory containing the SCCS lile, is given the same mode (see chmod(l))
as the SCCS lile, and is owned by the effective user.

To prevent simultaneous updates to an SCCS file, commands that modify secs liles create a
lock-file, called the. z-file, whose name is formed by replacing the 's.' of the SCCS lile name with
'z.'. The z·file contains the proceaa number of the command that creates it, and its existence is
an indication to other commands that that SCCS lile is being updated. Thus, other commands
that modify SCCS files will not process an SCCS lile if the corresponding z-file exists. The z-file is
cre.ated with mode 444 (read-only) in the directory containing the SCCS file, and is owned by the
effective user. The z-file exists only for the duration of the execution of the command that
creates it. In general, users can ignore :,;-file, and z-filea; they may be useful in the event of sys­
tem crashes or similar situations.

17 .5. Diagnostics

SCCS commands direct their diagnostic responses to the standard error file. SCCS diagnostics
generally look like this:

ERROR (name-of-lile-being·processed]: message text (code)

The code in parentheses may be used as an argument to help to obtain a further explanation of
the diagnostic message.

If the SCCS command detects a fatal error during the processing of a file it terminates processing
of that file and proceeds with the next file in the series, if more than one file has been named.

Revision D of 7 January 1984 27

SCCS Low-Level Commands Programming Tools

18. SCCS Commands

This section describes the major features of all the SCCS commands. For detailed descriptions of
the commands and of all their arguments, see the individual SCCS manual pages. The discussion
below covers only the more common arguments of the various SCCS commands.
The get and delta commands are presented first because they are the most frequently used. The
other commands follow in approximate order of importance.
The following is a summary of all the SCCS commands and their major functions:

get Retrieves versions of SCCS files.
delta Applies changes (deltas) to the text of secs files; that ia, delta creates new ver­

sions.

admin
pr•
help

rmdel

cdc
what

11ccsditr

comb
val

Creates secs files and applies changes to parameters of secs files.

Prints portions of an secs file in user-specified format.

Explains secs commands and diagnostic messages.
Removes a delta from an secs file; useful for removing deltas that were created
by mistake.
Changes the commentary associated with a delta.
Searches UNIX file(s) for all occurrences of a special pattern and prints what fol­
lows it. What is useful in finding identifying information inserted by get.

Shows the differences between any two versions of an SCCS file.

Combines two or more consecutive deltas of an SCCS lite into a single delta.

Validates an SCCS lite.

18.1. get - Retrieve a File

Get creates a text file containing a particular version of an SCCS file. The particular version is
retrieved by beginning with the initial version, and then applying deltas, in order, until the
desired version is obtained. The created file is called the g-file; its name is formed by removing
the 's.' from the SCCS file name. The g-file is created in the current directory and is owned by
the real user. The permissions (mode) assigned to the g-file depend on the options used with
get, as discussed below.
Get is normally used to retrieve the latest version of a file on the trunk of the SCCS file tree:

tutorial% get s.abc
1.3
67 lines
No id keywords (cm7)
tutorial%

The messages tell you that:
I. Version 1.3 of file 's.abc' was retrieved (1.3 is the latest trunk delta).

2. This version has 67 lines of text.
3. No ID keywords were substituted in the life - see below for a discussion of ID key­

words.

0

0

The generated g-file (file 'abc') is given mode 444 (read-only), since this particular way of invok- o
ing get is intended to produce g-file, only for inspection, compilation, or whatever, but nol for

28 Revision D of 7 January 1984

0

0

0

Programming Tools SCCS Low-Level Commands

editing - that is, not for making deltas.

Ir you use get with several file arguments '(or directory-name arguments), similar information is
given for each file processed, but the secs file name precedes it:

tutorial% get s.abc a.def
s.abc:
1.3
67 lines
No id keywords (cm7)

s.der:
1,7
85 lines
No id keywords (cm7)
tutorial%

18.1.1. ID Keywords

When you generate a g-file to be used (or compilation, it is useful and informative to record the
date and time of creation, the version retrieved, the module's name, etc., within the g-file, so
that this information appears in a load module when one is eventually created. secs provides a
convenient mechanism for doing this automatically. Identification (ID) ket/Ulorda appearing any­
where in the generated file are replaced by appropriate values according to the definitions of
these ID keywords.

The format or an ID keyword is an upper-case letter enclosed by percent signs (%). For exam­
ple, %1% is defined as the ID keyword that is replaced by the SID of the retrieved version of a
file. Similarly, %H% is defined as the JD keyword for the current date (in the form
'mm/dd/yy'), and %M% is defined as the name of the g-file.

Thus, using get on an SCCS file that contains the C declaration:

char identification () = "%M% %1% %H%";

gives (for example) the following:

char identification [) = "modulename 2.3 03/17/83";

Ir there are no ID keywords in the text, get might display:

No id keywords (cm7)
tutorial%

This message is normally treated as a warning by get. However, i(an i flag is present in the
secs file, it is treated as an error - see the section entitled delta - Make a Delta for further
information).

For a complete list or the approximately twenty ID keywords provided, see get(l).

18.1.2, Retrieving Different Versions

You can retrieve versions other than the default version of an SCCS file by using various options.
Normally, the default version is the most recent delta or the highest-numbered release on the
trunk of the SCCS file tree. However, i(the SCCS file being processed has a d (default SID) flag,

Revision D of 7 January 1984 29

SCCS Low-Level Commands Programming Tools

the SID specified as the value of this flag is used as a default. The default SID is interpreted in
exactly the same way as the value supplied with the -r option ol get.

The -r option specifies an SID to be retrieved, in which case the d (default SID) flag (ii any) is
ignored. For example, to retrieve version 1.3 of file 's,abc', type:

tutorial% get -rl,3 1.abc
1.3
64 lines
tutorial%

A branch delta may be retrieved in the same way:

tutorial% get -rl,5,2,3 1.abc
1.5.2.3
234 lines
tutorial%

When a two- or four-component SID is specified as a value for the -r option (as above) and the
particular version does not exist in the secs file, an error message results.

If you omit the level number of the SID, get retrieves the trunk delta with the highest level
num her within the given release, if the given release exists:

tutorial% get -r3 1.abc
3.7
213 lines
tutorial%

Get retrieved delta 3. 7, the highest level trunk delta in release 3. Ir the given release does not

0

exist, get goes to the next-highest existing release, and retrieves the trunk delta with the highest Q,

level number. For example, if release 9 does not exist in file 's,abc', and release 7 is actually the
highest-numbered release below 9, then get would generate:

tutorial% get -r9 8,abc
7.6
420 lines
tutorial%

indicating that trunk delta 7.6 is the latest version of file 's.abc' below release 9.

Similarly, if you omit the sequence number or a SID, as in:

tutorial% get -r4,3.2 e,abc
4.3.2.8
89 lines
tutorial%

get retrieves the branch delta with the highest sequence number on the given branch, if it exists.
If the given branch does not exist, an error message results.

The -t option retrieves the latest ('top') version in a particular releau (that is, when no -r
option is supplied, or when its value is simply a release number). The latest version is defined
as that delta which was produced most recently, independent of its location on the secs file
tree. Thus, if the most recent delta in release 3 is trunk delta 3.5, doing a get -t on release 3
produces:

30 Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS Low-Level Commands

tutorial% get -r3 -t 1,abc
3.5
59 lines
tutorial%

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same com­
mand produces:

tutorial% get -r3 -t e.abc
3,2,1,5
46 lines
tutorial%

18.1.3. Retrieving to Make Changes

Specifying the -e option to the get command indicates the intent to make a delta !IOmetime
later, and, as such, its use is restricted. If the -e option is present, get checks the following
things:

1. The u,er li,t, the list of login names and/ or group ID, of users allowed to make deltas,
to determine if the login name or group ID of the user executing get is on that list. Note
that a null (empty) user list behaves as if it contained all possible login names.

2. That the relea,e (R) of the version being retrieved satisfies the relation:

floor < R < ceiling

to determine if the release being accessed is a protected release. The floor and ceiling
are specified as flag, in the SCCS file.

3. That the releaae (R) is not locked against editing. The lock is specified as a flag in the
SCCS file.

4. Whether or not multiple concurrent edit, are allowed for the SCCS file as specified by the
j flag in the SCCS file. Multiple concurrent edits are described in the section entitled
Concurrent Edit, of the Same SID.

Get terminates processing of the corresponding SCCS file if any of the first three conditions fail.

Ir the above checks succeed, get with the -e option creates a g-file in the current directory with
mode 644 (readable by everyone, writable only by the owner) owned by the real user.

Get terminates with an error if a Wf'itable g-file already exists - this is to prevent inadvertent
destruction of a g-file that already exists and is being edited for the purpose of making a delta.

ID keywords appearing in the g-file are not substituted by get when the -e option is specified,
because the generated g-file is to be subsequently used to create another delta, and replacement
of ID keywords would permanently change them within the SCCS file. In view of this, get does
not check for the presence of ID keywords within the g-file, "° that the message: 'No id key•
words (cm7)' is never displayed when get is invoked with the -e option.

In addition, a get with the -e option creates (or updates) a p-file, for passing information to the
delta command. Let's look at an example of get -e:

Revision D of 7 January 1984 31

SCCS Low-Level Commands

tutorial% get -e •.abc
1.3
new delta 1.4
67 lines
tutorial%

Programming Tools

The message indicates that get has retrieved version 1.3, which has 67 lines; the version delta
will create is version 1.4.
If the -r and/ or -t options are used together with the -e option, the version retrieved for edit­
ing is as specified by the -r and/or -t options.
The options -i and -x may be used to specify a list of deltas to be included and e:rclutletl,
respectively, by get. See get(l) for the syntax of such a list. 'Including a delta' forces the
changes that constitute the particular delta to be included in the retrieved version - this is use­
ful for applying the same changes to more than one version of the SCCS file. 'Excluding a delta'
forces it not to be applied. This is useful for undoing the effects of a previous delta in the ver­
sion of the secs file to be created.

Whenever deltas are included or excluded, get checks for possible interference between such del·
tas and those deltas that are normally used in retrieving the particular version of the SCCS file.
Two deltas can interfere, for example, when each one changes the same line of the retrieved r,­
file. Any interference is indicated by a warning that displays the range of lines within the
retrieved g-file in which the problem may exist. The user is expected to examine the g-file to
determine whether a problem actually exists, and to take whatever corrective measures are
deemed necessary.
~ The -i anti -x option• ahoultl be wed wit/a eztreme care.

0

The -It option to get can be used to regenerate a r,-fiJe that may have been accidentally removed Q
or ruined after executing get with the -e option, or to simply generate a r,-file in which the
replacement of ID keywords has been suppressed. Thus, a r,-fiJe generated by the -It option is
identical to one produced by get executed with the -e option. However, no processing related to
the p-file takes place.

18.1.4. Concurrent Edits of Different sms

The ability to retrieve different versions of an secs file allows a number of deltas to be 'in pro­
gress' at any given time. In general, several people may simultaneously edit the same SCCS file
provided they are editing different veraiona of that file. This is the situation we discuss in the
following section. However, there is a provision for multiple concurrent edits, so that more than
one person can edit the aame veraion - see the section entitled Concurrent Edit, of the Same
SID.

The p-file - created via a get -e command - is named by replacing the 's.' in the secs file
name with 'p.'. The p-file is created in the directory containing the secs file, is given mode 644
(readable by everyone, writable only by the owner), and is owned by the effective user. The p­
file contains the following information for each delta that is still 'in progress •:7

• The SID of the retrieved version.

7 Other information ma.y be preBent, but is not of c:oneem here. See gd(l) for further discui,­
sion.

32 Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS Low-Level Commands

• The SID that will be given to the new delta when it is created.

• The login name of the real user executing get.
The first execution of get -e create, the p-file for the corresponding SCCS file. Subsequent exe­
cutions only update the p-file by inserting a line containing the above information. Before
inserting this line, however, get performs two checks. First, it searches the entries in the p-file
for an SID which matches that of the requested version, to make sure that the requested version
has not already been retrieved. Secondly, get determines whether or not multiple concurrent
edits are allowed. If the requested version has been retrieved and multiple concurrent edits are
not allowed, an error message results. Otherwise, the user is informed that other deltas are in
progress, and processing continues.
It is important to note that the various executions of get should be carried out from different
directories. Otherwise, only the first use of get will succeed; since subsequent gets would
attempt to over-write a writable g-file, they produce an SCCS error condition. In practice, this
problem does not arise: normally such multiple executions are performed by different users8

from different working directories.
Table I shows, for the most useful cases, what version of an secs file is retrieved by get, as well
as the SID of the version to be eventually created by delta, as a function of the SID specified to
get.

8 See the section entitled Protectio• for a discussion of how different users can use SCCS com­
mands on the same files.

Revision D or 7 January 1984 33

SCCS Low-Level Commands Programming Tools

Table 1 - Determination of New SID

34

SID
Case SID -b Option Other SID of Delta

Specified* Usedt Conditiona Retrieved to be Created

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

•

t

I ..

oonet DO R defaults to mR mR.mL mR.(mL+l)

oonet yes R defaults to mR mR.mL mR.mL.(mB+ 1).1

R DO R>mR mR.mL R.1§

R DO R=mR mR.mL mR.(mL+l)

R yes R>mR mR.mL mR.mL.(mB+ 1).1

R yes R=mR mR.mL mR.mL.(mB+ 1).1

R
R < mR and hR.mL•• hR.mL.(mB+ 1).1 - R does not exist

Trunk successor
R - in release > R R.mL R.mL.(mB + 1).1

and R exists

R.L DO No trunk successor R.L R.(L+ 1)

R.L yes No trunk succe880r R.L R.L.(mB+ 1).1

R.L
Trunk successor R.L R.L.(mB+ 1).1 - in release ~ R

R.L.B DO No branch successor R.L.B.mS R.L.B.(mS + 1)

R.L.B yes No branch successor R.L.B.mS R.L.(mB+ 1).1

R.L.B.S DO No branch successor R.L.B.S R.L.B.(S + 1)

R.L.B.S yes No branch successor R.L.B.S R.L.(mB+ 1).1

R.L.B.S - Branch successor R.L.B.S R.L.(mB+ 1).1

'R' 'L' •a• and 'S' are t.he 'rdeue' 'level' 'brands' u.d 'sequence' component, of ihe SID ftSpediTely; 'm' mean,
•m~im~m•.' Thus, for eumple, 'R.~L' m~ns 'ihe ~ima.m level number withia releue R'; 'R.L.(m8+

1

l).t' mea.ns
'the first e:equcnce number on the flee branch (th&\ ie, maximum branch number plu11 1) of level L withiD releue R'.
Note tha.t. if the SID 11pecified is of the form 'R.L', 'R.L.B', or 'R.L.B.S', ea.ch of the ,peci&ed componentB "''"' exbl.

The -b option is elective only if the b Bag (eee •'•i•(l)) ia prei,ent ia the I.le. In tbi, iable, n entry of'-' mean,
1irrelevant'.

Thie case a.pplies if the d (defauli SID) flag is ttt>f prel!leni in ihe &le. If ihe d lag i• preseni in ihe &le, then ihe SID
obt&ined from the d flag is interpreted u if it bd beeu speci&ed ou ihe command line. Thus, one of ihe other cuea in
thi:i ta.hie applies.

This case is used to force ihe aution of the fir.I delta in a aee rclea.ee.

'hR' is the highest uiafiflf relea.ee ihai is lower th&n. the specified, •ottes:itleat, releue .

Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

18.1.5. Concurrent Edits of the Same SID

Normally, gets for editing (•e option specified) cannot operate concurrently on the same SID.
Usually de11B must be used before another get -e on the same SID. However, multiple con­
current edits (two or more ,ucceuive get -e commands based on the same retrieved SID) are
allowed if the j flag is set in the SCCS file. Thus:

tutorial% get -e a.abc
1.1
new delta 1.2
5 lines
tutorial%

may be immediately followed by:

tutorial% get -e a.abc
1.1
new delta 1.1.1.1
5 lines
tutorial%

without an intervening use of delta. In this case, a delta command corresponding to the first gel
produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the delta command
corresponding to the second gel produces delta 1.1.1.1.

18.1.6. Options That Affect Output

When the -p option is specified, get writes the retrieved text to the standard output, rather
than to a g-file. In addition, all output normally directed to the standard output (such as the
SID of the version retrieved and the number of lines retrieved) is directed instead to the diagnos­
tic output. This may be used, for example, to create g-file, with arbitrary names:

tutorial% get -p a.abc > arbitrary-filename

The -• option suppresses all output that is norma/111 directed to the standard output. Thus, the
SID of the retrieved version, the number of lines retrieved, and so on, do not appear on the stan­
dard output. -• does not affect messages directed to the diagnostic output. -• is often used in
conjunction with the -p option to 'pipe' the output of get, as in:

tutorial% get -p -a e.abc I nroff

A get -g verifies the existence or a particular SID in an secs but does not actually retrieve the
text. This may be useful in a number or ways. For example,

tutorial% get -g -r4.3 •.abc

displays the specified SID if it exists in the SCCS file, and generates an error message if it doesn't.
-g can also be used to regenerate a p-file that may have been accidentally destroyed:

tutorial% get -e -g a.abc

Get used with the -1 option creates an /-file, which is named by replacing the 's.' of the SCCS file
name with 'I.'. This file is created in the current directory, with mode 444 (read-only), and is
owned by the real user. It contains a table (format described in gel(l)) showing which deltas
were used in constructing a particular version or the SCCS file. For example:

tutorial% get -r2.3 -1 e.abc

generates an /-file showing which deltas were applied to retrieve version 2.3 of the SCCS file.
Specifying a 11a1ue or 'p' with the -1 option, as in:

Revision D of 7 January 1984 35

SCCS Low-Level Commands Programming Tools

tutorial% get -Ip -r2.3 s.abc

sends the generated output to the standard output rather than to the I-file. Note that the -g Q
option may be used with the -I option to suppress the actual text-retrieval.
The -m option identifies the origin of each change applied to an SCCS file. -m tags each line of
the generated g-file with the SID of the delta it came from. The SID precedes the line, and is
separated from the text by a tab character.
When the -n option is specified, each line of the generated g-file is preceded by the value of the
%M% ID keyword and a tab character. The -n option is most often used in a pipeline with
grep(l). For example, to find all lines that match a given pattern in the latest version of each
secs file in a directory:

tutorial% get -p -n -11 directory I grep pattern

If both the -m and -n options are specified, each line of the generated g-file is preceded by the
value of the %M% ID keyword and a tab (the effect of the -n option), followed by the line in
the format produced by the -m option.
Since using the -m option, the -n option, or both, modifies the contents of the g-file, such a g­
file must not be used for creating a delta. Therefore, neither the -m nor the -n options may be
used with the -e option.
See get(l) for a full description of additional get options.

18.2. delta - Make a Delta

Delta incorporates changes made to a g-file into the corresponding SCCS file. This process is
known as 'making a delta', which is essentially a new version of the file.
Delta does a series of checks before creating the delta:
1. Searches the p-file for an entry containing the user's login name, because the user who

retrieved the g-file must be the one who creates the delta. Delta displays an error message if
the entry is not round. Note that if the login name of the user appears in more than one
entry (that is, the same user did a get -e more than once on the same SCCS file), the -r
option must be used with delta to specify an SID that uniquely identifies the p-file entryO.

2. Performs the same permission checks as get -e.
If these checks succeed, delta compares the g-file (via diD(l)) with its own, temporary copy of
the g-file as it was before editing, to determine what has been changed. This temporary copy of
the g-file is called the d-file (its name is formed by replacing the 's.' of the SCCS file name with
'd.'); delta retrieves it by doing its own get at the SID specified in the p-file entry. If you would
like to see the results of delta's diff, use the -p option to display it on standard output.
In practice, the most common use of delta is:

tutorial% delta 11.abc

If your standard output is a terminal, delta replies: 'comments?'. You may now type a response
- usually a description or why the delta is being made - of up to 512 characters, terminating
with a newline character. Newline characters not intended to terminate the response should be
preceded by '\ '.
If the SCCS file has av flag, delta asks for 'MRs?' before prompting for 'comments?' (again, this
prompt is printed only if the standard output is a terminal). Enter MR lO numbers, separated

• The SID specified may be either the SID retrieved by get, or the SID dell• is to create.
10 In a tightly controlled environment, one would expect deltas to be created only as a result or

some trouble report, change request, trouble ticket, etc. (collectively called here Modification Re­
quests, or MRs) and would think it desirable or necessary to record such MR number(•) within each

36 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools SCCS Low-Level Commands

by blanks and/or tabs, and terminate your response with a newline character.
If you want to enter commentary (comments and/or MR numbers) directly on the command
line, use the -7 and/or -m options, respectively. For example:

tutorial% delta -7" descriptive comment" -m" mrnuml mrnum2" •·•be

inserts the 'descriptive comment' and the MR numbers 'mrnuml' and 'mmum2' without
prompting or reading from standard input. -m can only be used if the SCCS file has a v flag.
These options are useful when delta is executed from within a SheU procedure (see •h(l)).
The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
options, is recorded as part of the entry for the delta being created, and applies to all SCCS files
processed by the same invocation of delta. Thus if delta is used with more than one file argu­
ment, and the first file named has a v flag, all files named must have this flag. Similarly, if the
first file named does not have this flag, then none of the files named may have it. Only files
conforming to these rules are processed.
After the prompts for commentary, and before any other output, tlelta displays:

No id keywords (cm7)

if it finds no ID keywords in the edited a-file while making a delta. If there were any ID key­
words in the SCCS file, this might mean one of two things. The keywords may have been
replaced by their values (if a get without the -e option was used to retrieve the g-file). Or, the
keywords may have been accidentally deleted or changed while editing the a-file. Of course, the
file may never have had any ID keywords. In any case, it is left up to you to decide whether any
action is necessary, but the delta is made (unless there is an i flag in the SCCS file, which makes
this a fatal error and kills the delta).
When processing is complete, tlelta displays a message containing the SID of the created delta
(obtained from the p-file entry), and the counts of lines inserted, deleted, and left unchanged.
Thus, a typical message might be:

1.4
14 inserted
7 deleted
345 unchanged

The reported counts may not agree with your sense of changes made; there are a number of
ways to describe a set of such changes, especially if lines are moved around in the a-file, and
delta may describe the set differently than you. However, the total number of lines of the new
delta (the number inserted plus the number left unchanged) should agree with the number of
lines in the edited a-file.
After yrocessing of an secs file is complete, the corresponding p-file entry is removed from the
p-file 1 • If there is only one entry in the p-file, the p-file itself is removed.
In addition, tlelta removes the edited a-file, unless the -n option is specified. Thus:

tutorial% delta -n e.abc

keeps the g-file upon completion of processing.
The -11 (silent) option suppresses all output that is normally directed to the standard output,
except the initial prompts for commentary. If you use -ti with -7 (and, possibly, -m), tlelta
neither reads standard input nor writes to standard output.

delta.
11 All updates to the p·f4• are made to a temporary copy, the f-fl•, whose Ul!e is •imilar to the

ul!e or the :,-f4e d08cribed in earlier.

Revision D of 7 January 1984 37

SCCS Low-Level Commands Programming Tools

18.3. admin - Administer SCCS Files

A dmin admini,ter s secs files, that is, creates new SCCS files and changes parameters of existing 0
ones. When an secs file is created, its parameters are either initialized by use of options or
assigned default values if no options are supplied. The same options are used to change the
parameters of existing files.
The two options used when detecting and correcting 'corrupted' SCCS files are discussed in the
section entitled Auditing.
Newly-created secs files are given mode 444 (read-only) and are owned by the effective user.
Only a user with write permission in the directory containing the SCCS file may use the admin ·.
command upon that file.

18.3.1. Creating SCCS Files

tutorial% admin -iflnt a.abc

creates the initial delta of the SCCS file 's.abc'. This delta contains the text from the file ('first')
specified as the value of the -i option. If you use -1 without a value, admin reads its text from
standard input. Thus, the command:

tutorial% admin -i •. abc < first

produces the same result as our first example. If the text of the initial delta does not contain ID
keywords, admin displays the warning message:

tutorial% admin -ifint a.abc
No id keywords (cm7)

0
, ...

tutorial%

If you use the same admin command to set the i flag in the text (not to be confused with the -1
option for admin), the message is treated as a fatal error and the SCCS file is not created. Only
one secs file may be created at a time using the -1 option.
When an secs file is created, the releaae number assigned to its first delta is normally '1 ', and
its level number is always 'l '. Thus, the first delta of an SCCS file is normally 'l.l '. If you wish
to specify a release number for the first delta, use the -r option:

tutorial% admin -iflnt -r3 a.abc

to name the first delta '3.1' rather than '1.1 '. The -r option can only be used with the -1
option, because -r is only meaningful in creating the first delta.

18.3.2. Inserting Commentary tor the Initial Delta

You can use the -y and -m options with admin, just as with delta, to insert initial descriptive
commentary and/or MR numbers when an SCCS file is created. If you don't use -y to com­
ment, admin automatically inserts a comment line of the form:

date and time created YY/MM/DD llll:MM:SS by logname

If you want to supply MR numbers (-m option), the v flag must also be set (using the -r
option described below). The v flag simply determines whether or not MR numbers must be
supplied when using any SCCS command that modifies a delta commentary in the SCCS file (see
accafile(5)). Thus:

tutorial% admin -iflnt -mmrnuml -fv a.abc

38 Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS Low-Level Commands

Note that the -1 and -m options are only effective ir a new socs file is being created.

18.3.3. Initializing and Modifiying SCCS File Parameters

The portion or the socs file reserved Cor de,criptille te:it - see the section entitled De,criptiv?
Tezt - may be initialized or changed through the use or the -t option. The descriptive text is
intended as a summary or the contents and purpose or the SCCS file; actually its contents and
length are up to you.
When an SCCS file is being created and the -t option is supplied, it must be Collowed by the
name or a file Crom which the descriptive text should be taken. For example, the command:

tutorial% admin -i&rst -tdesc s.abc

specifies that the descriptive text is to be taken Crom file 'desc'.
When processing an ezi,ting secs file, the -t option specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

tutorial% admin -tdese s,abe

specifies that the descriptive text or the SCCS file is to be replaced by the contents of 'desc'.
Omitting the file name aCter the -t option remol/U the descriptive text from the SCCS file:

tutorial% admin -t s,abc

The flag, - see the section entitled Deacriptive Tezt - of an secs file may be initialized and
changed with the -f (nag) option, or may be deleted with the -d (delete) option. The llags of
an SCCS file direct certain actions of the various commands. See admin(l) Cor a description of
all the flags. For example, the i llag specifies that the warning message stating there are no ID
keywords contained in the SCCS file should be treated as an error, and the d (default SID) llag
specifies the default version of the SCCS file to be retrieved by the get command. The -f option
sets a flag and, possibly, sets its value. For example:

tutorial% admin -ifirst -fl -fmmodname a.abe

sets the i flag and the m (module name) llag. The value 'modname' specified for the m llag is
the value that the get command uses to replace the %M% ID keyword. (In the absence of the m
flag, the name of the g-file is used as the replacement Cor the %M% ID keyword). Note that
several -f options may be supplied on a single admin command, and that -f options may be
supplied whether the command is creating a new SCCS file or processing an existing one.
The -d option deletes a llag from an SCCS file, and may only be specified when processing an
existing file. As an example, the command:

tutorial% admin -dm s.abe

removes the m llag from the SCCS file. Several -d options may be supplied on a single admin
command, and may be interspersed with -f options.
secs files contain a list (uaer li,t) of login names and/or group IDs or users who are allowed to
create deltas. This list is normally empty, implying that anyone may create deltas. To add
login names and/or group IDs to the list, use the admin command with the -a option. For
example:

tutorial% admln -awendy -aallson -a1Z34 s.abc

adds the login names 'wendy' and 'alison' and the group ID '1234' to the list. The -a option
may be used whether admin is creating a new SCCS file or processing an existing one, and may
appear several times. The -e option is used in an analogous manner iC one wishes to remove
('erase') login names or group IDs Crom the list.

Revision D or 7 January 1984 39

SCCS Low-Level Commands Programming Tools

18.4. prs - Print SCCS File

Pr, displays all or parts of an SCCS file on the standard output. The format of this display, 0
called the output data apecijication, is set via the -d option.
The data specification is a string consisting of SCCS file dais ke11fDord,t2 interspersed with
(optional) text. Data keywords are replaced by appropriate values according to their
definitions. For example: :I: is defined as the data keyword that is replaced by the SID of a
specified delta. Similarly, :F: is defined as the data keyword for the name of the file currently
being processed, and :C: is defined as the comment line associated with a specified delta. All
parts of an secs file have an associated data keyword. For a complete list of the data key­
words, see pr,(l).
There is no limit to the number of times a data keyword may appear in a data specification; pr,
will respond with as many substitutions as you call for:

tutorial% pr• -d" :I: this is the top delta for :F: :I:" a.abc
2.1 this is the top delta for s.abc 2.1
tutorial%

If you want pr, to print from a single delta, use the -r option to specify the SID of that delta:

tutorial% pra -d" :F: :I: comment line is: :C:" -rl.4 a.abc
s.abc: 1.4 comment line is: THIS IS A COMMENT
tutorial%

If the -r option is not specified, the value of the SID defaults to the most recently created delta.
If you want information from a range of deltas, use the -e or -1 option. -e substitutes data
keywords for the SID designated via the -r option and all deltas created earlier:

tutorial% pra -d:I: -rl.4 -e 11.abc
1.4 ·o·
1.3
1.2.1.1
1.2
1.1
tutorial%

-1 substitutes data keywords for the SID designated via the -r option and all deltas created
later:

tutorial% pre -d:I: -rl.4 -1 11.abc
3,3
3.2
3.1
2.2.1.1
2.2
2.1
1.4
tutorial%

Pr, substitutes data keywords for all deltas of the SCCS file if you use both the -e and -1
options.

12 Not to be confused with gel ID iegword,.

40 Revision D of 7 January Hl84

0

0

0

0

Programming Tools SCCS Low-Level Commands

18.5. help - Ask for Help

Help displays explanations of SCCS commands, and of messages these commands may print.
Help takes zero or more arguments, which are are simply the names of SCCS commands or the
code numbers that appear in parentheses after secs messages. Help has no concept of option,
or file argument,. If no argument is given, help prompts for one. When help cannot find any
information on an argument, it displays an error message. Each argument is processed indepen­
dently; an error resulting from one argument does not terminate processing of the others.
If an argument is a command, help 'explains' it by giving you its synopsis. For example, the
following asks (or help on the 'ge5' error message and information about the rmdel command:

tutorial% help ge5 rmdel
ge5:
"nonexistent sid"
The specified sid does not exist in the
given file.
Check for typos.

rmdel:
rmdel -rSID name ••.

tutorial%

18.6. rmdel- Remove a Delta

Rmdel remove, a delta from an SCCS file - it should be reserved for cases in which incorrect,
global changes were made to a delta.
The delta to be removed must be a 'leaf' delta; that is, it must be the latest (most recently
created) delta on its branch or on the trunk of the SCCS file tree. In Figure 3, only deltas
1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are removed, deltas 1.3.2.1 and 2.1 can be
removed, and so on.
To remove a delta, the effective user must have write permission in the directory containing the
SCCS file. In addition, the real user must either have created the delta being removed, or be the
owner or the secs file and its directory.
You must specify the complete SID of the delta to be removed, preceded by -r. The SID must
have two components (or a trunk delta, and four components (or a branch delta. Thus:

tutorial% rmdel -r2.3 s.abc

removes (trunk) delta '2.3' of the SCCS file.
Before removing the delta, rmdel checks the following things:

1. the releaae number (R) of the given SID satisfies the relation:

floor < R < ceiling

2. the SID specified is not that or a version for which a get for editing has been executed
and whose associated delta has not yet been made.

3. the login name or group ID of the user either appears in the file's uaer liat or the u,er
lid is empty.

4. the release specified cannot be locked against editing (that is, if the l flag is set (see
admin(l)), the release specified mu,t not be contained in the list).

If these conditions are satisfied, the delta is removed. Otherwise, processing is terminated.

Revision D of 7 January 1984 41

SCCS Low-Level Commands Programming Tools

After the specified delta has been removed, its type indicator in the tlelta table of the SCCS file is
changed from 'D' (delta) to 'R' (removed).

18.7. cdc - Change Delta Commentary

Cdc change, the commentary supplied to a delta when it was created. Cdc has the same com­
mand syntax and restrictions as rmdel, but the delta to be processed does not have to be a leaf
delta. For example:

tutorial% cdc -r3.4 a.abc

specifies that the commentary of delta '3.4' of the SCCS file is to be changed.
Cdc behaves like delta when it solicits new commentary. The old commentary associated with
the specified delta is kept, but it is preceded by a comment line indicating that it has been
changed (that is, superseded), and the new commentary is entered ahead of this comment line.
The 'inserted' comment line records the login name of the user executing cdc and the time of its
execution.
You can also use cdc to delete selected MR numbers associated with the specified delta by
preceding them with 'I'. For example, to insert 'mrnum3' and delete 'mmuml' for delta 1.4:

tutorial% cdc -rl.4 a.abc
MRs! mrnum3 !mrnuml
comments! deleted wrong MR number and inserted correct MR number

18.8. what - Identify SCCS Files

0

What finds SCCS identifying information within ang specified UNIX file. W1aat does not use any o
options, nor does it treat directory names and a name of '-' (a lone minus sign) in any special .
way, as do other SCCS commands.
What searches the given file(s) for all occurrences of the string'@(#)', which is the replacement
for the %Z% ID keyword (see get(I)). What then displays whatever follows that string until the
first double quote("), greater than (>), backslash(\), newline, or (non-printing) NUL charac­
ter.
As an example, let's begin with the secs file 's.prog.c' (a C program), which contains the follow­
ing line:

char id[) "%Z%%M%:%1%";

We then do the following get:

tutorial% get -r3.4 a.prog.c

and finally compile the resulting g·file to produce 'prog.o' and 'a.out'.
Using what as follows then displays:

42

tutorial% what prog.c prog.o a.out
prog.c:

prog.c:3.4
prog.o:

prog.c:3.4
a.out:

prog.c:3.4
tutorial%

Revision D of 7 January 1984

0

0

0

0

Programming Tools SCCS Low-Level Commands

The string what searches for need not be inserted via an JD keyword of get - it may be inserted
in any convenient manner.

18.9. sccsdiff - Compare Two Versions of an SCCS File

Sccsdiff compares two specified versions of one or more SCCS files, and displays the differences in
diff-like format. The versions to be compared are specified with -r, as in get, and mud be
specified as the first two arguments to acc,diff in the order in which they were created, that is,
the older version is specified first. The -p option may be used after these two arguments to
pipe the output of accadiff through pr (1). SCCS files to be processed are named last. Scc,diJ!
does not accept directory names or a name of '-' (a lone minus sign). An example:

tutorial% sccsdill' -r3.4 -r5.8 1.abc

18.10. comb - Combine Deltas

Comb generates a Shell procedure (see ,h(l)) which tries to reconstruct new SCCS files leaner
than their original counterparts. The generated Shell procedure is written on the standard out­
put.
The rebuilding discards unwanted deltas and combines others. Comb is intended for those SCCS
files with deltas so old that they are no longer useful; it should on/11 be used a small number of
times in the life of an SCCS file.
Used without options, comb preserves only leaf deltas and the minimum number of ancestor del·
tas necessary to preserve the 'shape' of the SCCS file tree; 'middle' deltas on the trunk and on all
branches of the tree are eliminated. In Figure 3, deltas 1.2, 1.3.2.1, 1.4, and 2.1 would be elim•
inated.
Some options to comb are:
The -p option specifies the oldest delta that is to be preserved in the reconstruction. All older
deltas are discarded.
The -c option specifies a li,t of deltas to be preserved. All other deltas are discarded. See
get(l) for the syntax of such a list.
When used with the -s option, comb generates a Shell procedure, which, when run, produces
only a report summarizing the percentage space (if any) to be saved by reconstructing each
named secs file. It is a good idea to run comb with the -s option (in addition to any other
desired options) be/ore attempting any actual reconstructions.
Note that the Shell procedure which comb generates is not guaranteed to save any space - in
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that the
shape of the SCCS file tree may be altered by the reconstruction process.

18.11. val -Validate Characteristics of an SCCS File

Vol determines if a file is an SCCS file meeting the characteristics specified by an optional list of
options. Any characteristics not met are considered errors.
Vol checks for the existence of a particular delta when the SID for that delta is ezplicit/11
specified via the -r option. The string following the -y or -m option is used to check the value
set by the i or m flag respectively (see admin(l) for a description of the flags).
Vol treats the special argument '-'(alone minus sign) differently from other SCCS commands.
When the - argument is specified, val reads the argument list from the standard input instead
of from the command line. The standard input is read until end-of-file. Thus val can be used

Revision D of 7 January 1984 43

SCCS Low-Level Commands

once with different values for the option and file arguments. For example:

tutorial% val -
-ye -mabc •.abc
-mxy• -ypll •.xy•
"D
tutorial%

Programming Tools

This sequence first checks if file 's.abc' has a value 'c' for its twe 11.ag and value 'abc' for the
module name 11.ag. Once processing of the first file is completed, val processes the remaining
files, in this case 's.xyz', to determine if they meet the characteristics specified by the options
associated with them.
Val returns an 8-bit code which is a disjunction of the possible enors detected - that is, each
bit set indicates the occurrence of a specific enor (see val(l) for a description of the possible
enors and their codes). In addition, an appropriate diagnostic is printed unless suppressed by
the -• (silent) option. A return code of 'O' indicates all named files met the characteristics
specified.

19. SCCS Files

This section discusses several topics that must be considered before extensive use is made of
secs. These topics deal with the protection mechanisms relied upon by secs, the format of secs
files, and the recommended procedures for auditing SCCS files.

19.1. Protection

0

SCCS relies on the capabilities of the UNIX operating system for most of the protection mechan- o·
isms required to prevent unauthorized changes to SCCS files (that is, changes made by non- SCCS
commands). The only protection features provided directly by SCCS are the relea,e lock 11.ag, the
relea,e floor and ceiling flags, and the u,er lial.
New SCCS files created by at/min are given mode 444 (read only). It is best not to change this
mode, as it prevents any direct modification of the files by non- SCCS commands. Further,
directories containing SCCS files should be given mode 755, so that only the otoner of the direc­
tory can modify its contents.
secs files should be kept in directories that contain only SCCS files and any temporary files
created by secs commands. This simplifies protection and auditing of SCCS files. The contents
of directories should correspond to convenient logical groupings, for example, sub-systems of a
large project.
secs files must have only one link (name). Commands that modify SCCS files do so by creating
a temporary copy of the file (called the z-file, and, upon completion of processing, remove the
old file and rename the z-file. If the old file has more than one link, removing it and renaming
the z-file would break the link. Rather than process such files, SCCS commands produce an
error message. All SCCS files mud have names that begin with 's.'.
When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing SCCS files. Therefore, SCCS may be used directly without any
preliminary preparation.
However, in those situations in which several users with unique user IDs are assigned responsibil-
ity for one SCCS file (for example, in large software development projects), one user
(equivalently, one user ID) must be chosen as the 'owner' of the SCCS files and as the one who
will 'administer' them (for example, by using at/min). This user is termed the .SM SCCS
adminiatrator for that project. Because other users of SCCS do not have the same privileges and o
permissions as the SCCS administrator, they are not able to execute directly those commands

44 Revision D of 7 January 1984

0

0

0

Programming Tools SCCS Low-Level Commands

that require write permission in the directory containing the SCCS files. Therefore, a project­
dependent program is required to provide an interface to the get, delta, and, if desired, rmdel
and cdc commands.
The interface program must be owned by the SCCS administrator, and must have the
,et uaer ID on ezecution bit on (see chmod(l)), so that the effective user ID is the administrator's
user ID. This program's function is to invoke the desired SCCS command and to cause it to
inherit the privileges of the interface program for the duration of that command's execution. In
this manner, the owner of an SCCS file can modify it at will. Other users whose login names or
group IDs are in the u,er liat for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and are thus able to
modify the SCCS files only through the use of delta and, possibly, rmdel and cdc. The project­
dependent interface program, as its name implies, must be custom-built for each project.

19.2. Layout or an SCCS File

SCCS files are composed of lines of ASCH text arranged in six parts, as follows:
Checksum A line containing the 'logical' sum of all the characters of the file (not

including this checksum itself).
Delta Table

User Names

Information about each delta, such as its type, SID, date and time of
creation, and commentary included.
List of login names and/or group IDs of users who are allowed to modify
the file by adding or removing deltas.

Flags Indicators that control certain actions of various SCCS commands.
Descriptive Text

Body

Text provided by the user; usually a summary of the contents and pur­
pose of the file.
Actual text that is being administered by SCCS, intermixed with internal
secs control lines.

Detailed information about the contents of the various sections of the file may be found in
1cc1file(6). In the following, the checkaum is the only portion of the file discussed.
Because SCCS files are ASCll files, they may be processed by various UNIX commands: editors
such as vi(l), text processing programs such as grep(l), awk(l), and cat(l), and so on. This is
quite useful when an SCCS file must be modified manually (for example, when the time and date
of a delta was recorded incorrectly because the system clock was set incorrectly), or when one
wants to simply 'look' at the file.
=t Eztreme care ,hould be ezerci,ed when modifying SCCS file, with non- SCCS command,.

19.3. Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, all or part of
an SCCS file is destroyed. SCCS commands (like most UNIX commands) display an error message
when a file does not exist. In addition, SCCS commands use the checkaum stored in the secs file
to determine whether a file has been corrupted since it was last accessed (has lost data, or has
been changed). The only SCCS command which will process a corrupted SCCS file is admin with
the -h or -• options. This is discussed below.
SCCS files should be audited (checked) for possible corruptions on a regular basis. The simplest
and fastest way to audit such files is to use a.dmin with the -h option on them:

Revision D of 7 January 1984 45

SCCS Low-Level Commands Programming Tools·

tutorial% admin -h e.fllel e.flle2 ...

tutori:% admin -h directoryl director:r2 . . . 0
If the new checksum of any file is not equal to the checksum in the first line of that file, the
message:

corrupted file (co6)

is produced for that file. This process continues until all files have been examined. When exa­
mining directories (as in the second example above), the process just described does not detect
mi11ing files. A simple way to detect whether any files are missing from a directory is to period­
ically list the contents of the directory (using 1,(1)), and compare the current listing with the
previous one. Any file which appears on the previous list but not the current one has been
removed by some means.
When a file has been corrupted, the method of restoration depends upon the extent of the corr­
uption. If damage is extensive, the best solution is to restore the file from a backup copy.
When damage is minor, repairing the file with your favorite text editor may be possible. If you
do repair the file with the system's text processing capabilities, you must use admin(l) with the
-• option to recompute the checksum to bring it into agreement with the actual contents of the
file:

tutorial% admin -• s.flle
After this command is executed on a file, any corruption which may have existed in that file
will no longer be detectable.

46 Revision D of 7 January Hl84

0

0

0

0

0

A Debugging Tools document
is currently in preparation.

0

o!
I

0

I
I

0

0

0

Table of Contents

DC - An Interactive Desk Calculator ... 1

1. Synoptic Description .. 1
1.1. number ... 1
1.2. Binary Operators - + • % • ... 2
1.3. s - Pop the Stack Into A Named Register ... 2

2. I - Push Contents of a Named Register Onto the Stack
2.1. d - Duplicate the Top of Stack
2.2. p - Display the Value on the Top of Stack .. .
2.3. f - Display All Register and Stack Values .. .
2.4. x - Execute the Top of Stack
2.5. [... J - Put Character String on Top of Stack .. , .. .
2.6. q - Quit From DC
2.7. Comparison Operators - <x >x =x l<x l>x !=x
2.8. v - Compute Square Root of Top of Stack .. .
2.9. ! - Execute a System Command
2.10. c - Clear the Stack
2.11. i - Use Top of Stack Value as Input Number Radix
2.12. o - Use Top of Stack Value as Output Number Radix
2.13. k - Use Top of Stack Value as a Scale Factor
2.14. z - Push Value of Stack Level Onto Stack .. .
2.15. ! - Execute a Line of Input from Input Source

ll
2
2
2
2
2
3
3
3
3
3
3
3
3
4
4

3. Detailed Description ... 4
3.1. Internal Representation of Numbers .. 4
3.2. The Allocator .. 4
3.3. Internal Arithmetic .. .
3.4. Addition and Subtraction .. .
3.5. Multiplication
3.6. Division
3.7. Remainder
3.8. Square Root .. .
3.9. Exponentiation
3.10. Input Conversion and Base
3.11. Output Commands .. .

-i-

5
5
6
6
6
6
7
7
7

3.12. Output Format and Base .. . 7
3.13. Internal Registers
3.14. Stack Commands .. .
3.15. Subroutine Definitions and Calls .. .

7

0 8
8

3.16. Internal Registers Programming DC .. . 8
3.17. Push-Down Registers and Arrays 8
3.18. Miscellaneous Commands .. . 8

4, Design Choices .. . I

5. References , I

0

0
- ii -

0

0

0

DC - An Interactive Desk Calculator

DC is an interactive desk calculator program implemented on the UNJXt time-sharing system to
do arbitrary-precision integer arithmetic. It has provision for manipulating scaled fixed-point
num hers and for input and output in bases other than decimal.

The size of num hers that can be manipulated is limited only by available memory storage. On
typical implementations of UNIX, the size of numbers that can be handled varies from several
hundred digits on the smallest systems to several thousand on the largest.

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system
in the form of an interactive desk calculator. DC works like a stacking calculator using reverse
Polish notation. Ordinarily DC operates on decimal integers, but one may specify an input
base, output base, and a number of fractional digits to be maintained.

A language called BC [1) has been developed which accepts programs written in the familiar
style of higher-level programming languages and compiles output which is interpreted by DC.
Some of the commands described below were designed for the compiler interface and are not
easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking
the top num her or two off the stack, performing the desired operation, and pushing the result
on the stack. If an argument is given, input is taken from that file until its end, then from the
standard input.

1. Synoptic Description

Here we describe the DC commands that are intended for use by people. The additional com­
mands that are intended to be invoked by compiled output are described in the detailed descrip­
tion.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recognized:

1.1. number

The value of the num her is pushed onto the main stack. A num her is an unbroken string of the
digits 0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to input a negative number. Numbers may
contain decimal points.

t UNIX is a trademark of Bell Laboratorieo.

Revision D of 7 January 1984 1

DC Desk Calculator Programming Tools

1.2. Binary Operators - + - • % •
The top two values on the stack are added(+), subtracted(-), multiplied(•), divided (/), 0·

remaindered(%), or exponentiated ("). The two entries are popped off the stack; the result is
pushed on the stack in their place. The result of a division is an integer truncated toward zero.
See the detailed description below for the treatment of numbers with decimal points. An
exponent must not have any digits after the decimal point.

1.3. s - Pop the Stack Into A Named Register

The u command pops the value from the top of the main stack and stores that value into a
register named z, where z may be any character. If the • is capitalized, z is treated as a stack
and the value is pushed onto it. Any character, even blank or new-line, is a valid register name.

2. 1 - Push Contents of a Named Register Onto the Stack

The lz command pushes the value in register z onto the stack. The register z is not altered. If
the I is capitalized, register z is treated as a stack and its top value is popped onto the main
stack.

All registers start with empty value which is treated as a zero by the I command and is treated
as an error by the L command.

2.1. d - Duplicate the Top of Stack

The top value on the stack is duplicated.

2.2. p - Display the Value on the Top of Stack

The top value on the stack is printed. The top value remains unchanged.

2.3. f- Display All Register and Stack Values

All values on the stack and in registers are printed.

2.4. x - Execute the Top of Stack

treats the top element of the stack as a character string, removes it from the stack, and exe­
cutes it as a string of DC commands.

2.5. (...] - Put Character String on Top of Stack

puts the bracketed character string onto the top of the stack.

2 Revision D of 7 January 1984

0

0

0

Programming Tools DC Desk Calculator

2.6. q - Quit From DC

exits the program. If executing a string, the recursion level is popped by two. If q is capital­
ized, the top value on the stack is popped and the string execution level is popped by that
value.

2.7. Comparison Operators- <x >x =x !<x !>x !=x

The top two elements of the stack are popped and compared. Register z is executed if they
obey the stated relation. Exclamation point is negation.

2.8. v - Compute Square Root of Top of Stack

replaces the top element on the stack by its square root. The square root of an integer is tl'Un•
cated to an integer. For the treatment of numbers with decimal points, see the detailed descrip­
tion below.

2.9. ! - Execute a System Command

interprets the rest of the line as a UNIX command. Control returns to DC when the UNIX com­
mand terminates.

0 2.10. c - Clear the Stack

0

All values on the stack are popped; the stack becomes empty.

2.11. i - Use Top of Stack Value as Input Number Radix

The top value on the stack is popped and used as the number radix for further input. If i is
capitalized, the value of the input base is pushed onto the stack. No mechanism has been pro­
vided for the input of arbitrary numbers in bases less than 1 or greater than 16.

2.12. o - Use Top of Stack Value as Output Number Radix

The top value on the stack is popped and used as the number radix for further output. If o is
capitalized, the value of the output base is pushed onto the stack .

. 2.13. k - Use Top of Stack Value as a Scale Factor

The top of the stack is popped, and that value is used as a scale factor that influences the
number of decimal places that are maintained during multiplication, division, and exponentia­
tion. The scale factor must be greater than or equal to zero and less than 100. If k is capital­
ized, the value of the scale factor is pushed onto the stack.

Revision D of 7 January 1984 3

DC Desk Calculator

2.14. z - Push Value of Stack Level Onto Stack

The value of the stack level is pushed onto the stack.

2.15. ? - Execute a Line of Input from Input Source

Programming Tools

A line of input is taken from the input source (usually the console) and executed.

3. Detailed Description

3.1. Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form
of a string of digits to the base 100 stored one digit per byte (centennial digits). The string is
stored with the low-order digit at the beginning of the string. For example, the representation
of 157 is 57,1. After any arithmetic operation on a number, care is taken that all digits are in
the range 0-99 and that the number has no leading zeros. The number zero is represented by
the empty string.

Negative numbers are represented in the lOO's complement notation, which is analogous to
two's complement notation for binary numbers. The high order digit of a negative number is
always -1 and all other digits are in the range 0-99. The digit preceding the high order -1 digit
is never a 99. The representation of -157 is 43,98,-1. We shall call this the canonical form of a
number. The advantage of this kind of representation of negative numbers is ease of addition.
When addition is performed digit by digit, the result is formally correct. The result need only
be modified, if necessary, to put it into canonical form.

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition
can be carried out and the handling of carries done later when that is convenient, as it some­
times is.

An additional byte is stored with each num her beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,9
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

3.2. The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and writ­
ing of numbers internally is done through the allocator. Associated with each string in the allo­
cator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca­
tor and DC is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. All headers except the one
pointing to this string are on a list of free headers. Requests for strings are made by size. The
size of the string actually supplied is the next higher power of 2. When a request for a string is
made, the allocator first checks the free list to see if there is a string of the desired size. If none
is found, the allocator finds the next larger free string and splits it repeatedly until it has a

4 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools DC Desk Calculator

string of the right size. Left-over strings are put on the free list. Ir there are no larger strings,
the allocator tries to coalesce smaller free strings into larger ones. Since all strings are the result
of splitting large strings, each string has a neighbor that is next to it in memory and, if free, can
be combined with it to make a string twice as long. This is an implementation or the 'buddy
system' of allocation described in (2).

Failing to find a string of the proper length after coalescing, the allocator asks the system for
more space. The amount of space on the system is the only limitation on the size and number
of strings in DC. Ir at any time in the process or trying to allocate a string, the allocator runs
out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing,
and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the charac­
ters of a string are read or written in succession by a series or read or write calls. The write
pointer is interpreted as the end of the information-containing portion of a string and a call to
read beyond that point returns an end-of-string indication. An attempt to write beyond the
end of a string causes the allocator to allocate a larger space and then copy the old string into
the larger block.

3.3. Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the opera­
tion are popped from the main stack and their scale factors stripped off. Zeros are added or
digits removed as necessary to get a properly scaled result from the internal arithmetic routine.
For example, if the scale of the operands is different and decimal alignment is required, as it is
for addition, zeros are appended to the operand with the smaller scale. After performing the
required arithmetic operation, the proper scale factor is appended to the end or the number
before it is pushed on the stack.

A register called scale. plays a part in the results or most arithmetic operations. acale is the
bound on the number of decimal places retained in arithmetic computations. acale may be set
to the number on the top of the stack truncated to an integer with the k command. K may be
used to push the value or scale on the stack. acale must be greater than or equal to O and less
than 100. The descriptions or the individual arithmetic operations will include the exact effect
of scale on the computations.

3.4. Addition and Subtraction

The scales or the two numbers are compared and trailing zeros are supplied to the number with
the lower scale to give both numbers the same scale. The number with the smaller scale is mul­
tiplied by 10 if the difference of the scales is odd. The scale or the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addi­
tion.

Finally, the addition is performed digit by digit from the low order end of the number. The
carries are propagated in the usual way. The resulting number is brought into canonical form,
which may require stripping of leading zeros, or for negative numbers replacing the high-order
configuration 99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be
brought into that range, propagating any carries or borrows that result.

Revision D of 7 January 1984 5

DC Desk Calculator Programming Tools

3.5. Multiplication

The scales are removed from the two operands and saved. The operands are both made posi- Q
tive. Then multiplication is performed in a digit by digit manner that exactly mimics the hand
method of multiplying. The first number is multiplied by each digit of the second number,
beginning with its low order digit. The intermediate products are accumulated into a partial
sum which becomes the final product. The product is put into the canonical form and its sign is
computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. Ir that scale is
larger than the internal register scale and also larger than both of the scales of the two
operands, then the scale of the result is set equal to the largest of these three last quantities.

3.6. Division

The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity
scale. The signs are removed and saved.
Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Other­
wise the top digit of the divisor is divided into the top two digits of the dividend. The result is
used as the first (high-order) digit of the quotient. It may turn out be one unit too low, but if it
is, the next trial quotient will be larger than 99 and this will be adjusted at the end of the pro­
cess. The trial digit is multiplied by the divisor and the result subtracted from the dividend
and the process is repeated to get additional quotient digits until the remaining dividend is
smaller than the divisor. At the end, the digits of the quotient are put into the canonical form,
with propagation of carry as needed. The sign is set from the sign of the operands.

3.7. Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun­
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder is
set to the maximum of the scale of the dividend and the scale of the quotient plus the scale of
the divisor.

3.8. Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton's method with successive approximations by the
rule

Zt1+1 =

The initial guess is found by taking the integer square root or the top two digits.

6 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools DC Desk Calculator

3.9. Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1.
If the exponent is negative, then it is made positive and the base is divided into one. The scale
of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the
result is obtained as a product of those powers of the base that correspond to the positions of
the one-bits in the binary representation of the exponent. Enough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

3.10. Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale stored with
a number is simply the number of fractional digits input. Negative numbers are indicated by
preceding the number with a_. The hexadecimal digits A-F correspond to the numbers 10-16
regardless of input base. The i command can be used to change the base or the input numbers.
This command pops the stack, truncates the resulting number to an integer, and uses it as the
input base for all further input. The input base is initialized to 10 but may, for example be
changed to 8 or 16 to do octal or hexadecimal to decimal conversions. The command I will
push the value of the input base on the stack.

3.11. Output Commands

The command p causes the top of the stack to be printed. It does not remove the top of the
stack. All of the stack and internal registers can be output by typing the command r. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on
the stack.

3.12. Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they
have no effect on arithmetic computations. Large numbers are output with 70 characters per
line; a \ indicates a continued line. All choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 16 can be used for decimal-octal or decimal-hexadecimal
conversions.

3.13. Internal Registers

N um hers or strings may be stored in internal registers or loaded on the stack from registers
with the commands • and I. The command sz pops the top of the stack and stores the result in
register x. z can be any character. lz puts the contents of register x on the top of the stack.
The I command has no effect on the contents of register z. The s command, however, is des­
tructive.

Revision D of 7 January 1984 7

DC Desk Calculator Programming Tools

3.14. Stack Commands

The command c clears the stack. The command d pushes a duplicate of the number on the top 0
of the stack on the stack. The command • pushes the stack size on the stack. The command
X replaces the number on the top of the stack with its scale factor. The command Z replaces
the top of the stack with its length.

3.15. Subroutine Definitions and Calls

Enclosing a string in O pushes the ascii string on the stack. The q command quits or in execut­
ing a string, pops the recursion levels by two.

3.16. Internal Registers - Programming DC

The load and store commands together with O to store strings, x to execute and the testing
commands '<', '>', '=', '!<', '!>', '!=' can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com­
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

pipl+ si lilO>a]sa
Osi lax

3.17. Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as
having individual stacks for each register. These registers are operated on by the commands S
and L. Sz pushes the top value of the main stack onto the stack for the register z. Lz pops the
stack for register z and puts the result on the main stack. The commands • and I also work on
registers but not as push-down stacks. I doesn't effect the top of the register stack, and • des­
troys what was there before.

The commands to work on arrays are : and ;. :z pops the stack and uses this value as an index
into the array z. The next element on the stack is stored at this index in z. An index must be
greater than or equal to O and less than 2048. ;z is the command to load the main stack from
the array :i. The value on the top of the stack is the index into the array :, of the value to be
loaded.

3.18. Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. One other compiler command is Q. This com­

mand uses the top of the stack as the number of levels of recursion to skip.

8 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools DC Desk Calculator

4. Design Choices

The real reason for the use of a dynamic storage allocator was that a general purpose program
could be (and in fact has been) used for a variety of other tasks. The allocator has some value
for input and for compiling (that is, the bracket [•..) commands) where it cannot be known in
advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space,
debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a consider­
able degree of logical separation of the final program into modules with very little communica­
tion between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results. The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith­
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no
case should any significant digits be thrown away if, on appearances, the user actually wanted
them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give
him the result 5.017 without requiring him to unnecessarily specify his rather obvious require­
ments for precision.

On the other hand, multiplication and exponentiation produce results with many more digits
than their operands and it seemed reasonable to give as a minimum the number of decimal
places in the operands but not to give more than that number of digits unless the user asked for
them by specifying a value for scale. Square root can be handled in just the same way as mul­
tiplication. The operation of division gives arbitrarily many decimal places and there is simply
no way to guess how many places the user wants. In this case only, the user must specify a
scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quo­
tient and remainder. This is easy to implement; no digits are thrown away.

5. References

L. L. Cherry, R. Morris, BC - An Arbitrar11 Preciaion Deak-Calculator Language.

K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-625 (Oct. 1965).

Revision D .of 7 January 1984 9

o:
i

0

0:

0
Table of Contents

BC - ARBITRARY PRECISION DESK-CALCULATOR 1

1. Simple Computations with Integers.. 2

2. Bases.. 2

3. Scaling... 3

4. Functions .. 4

5. Subscripted Variables .. 5

6. Control Statements ... 5

0 'I. Some Details .. 'I

8. Three Important Things.. 8

9. Acknowledgement .. 8

10. References .. 8

11. Notation.. 10
11.1. Tokens.. 10
11.2. Comments .. 10
11.3. Identifiers .. 10
11.4. Keywords.. 10
11.5. Constants ... 10

12. Expressions ... 10
12.1. Primitive expressions... 11
12.2. Function Calls ... 11
12.3. Constants ... 12
12.4. Parentheses.. 12
12.5. Unary operators.. 12
12.6. Binary Operators ... 12

0
-1-

12.7. Additive operaton 13
12.8. assignment operaton .. .
12.9. Relations .. .

13

0 14

13. Storage classes .. . 14

14. Statements .. . 14
14.1. Expression statements 14
14.2. Compound statements 14
14.3. Quoted string statements : .. . 14
14.4. If statements .. . 15
14.5. While statements .. . 15
14.6. For statements 15
14.7. Break statements .. . 15
14.8. Auto statements .. . 15
14.9. Define statements 15
14.10. Return statements 16
14.11. Quit .. . 16

0

0
- ii -

0

0

0

BC -. ARBITRARY PRECISION DESK­
CALCULATOR

BC is a language and a compiler for doing arbitrary precision arithmetic on the PDP-11 under
the UNIXt time-sharing system. The output of the compiler is interpreted and executed by a
collection of routines which can input, output, and do arithmetic on indefinitely large integers
and on scaled fixed-point numbers.
These routines are themselves based on a dynamic storage allocator. Overflow does not occur
until all available core storage is exhausted.
The language has a complete control structure as well as immediate-mode operation. Functions
can be defined and saved for later execution.
Two five hundred-digit num hers can be multiplied to give a thousand digit result in about ten
seconds.
A small collection of library functions is also available, including sin, cos, arctan, log, exponen·
tial, and Bessel functions of integer order.

Some of the uses of this compiler are

to do computation with large integers,
to do computation accurate to many decimal places,

conversion of numbers from one base to another base.
BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time­
sharing system (1). The compiler was written to make conveniently available a collection of rou­
tines (called DC (5)) which are capable of doing arithmetic on integers of arbitrary size. The
compiler is by no means intended to provide a complete programming language. It is a minimal
language facility.
There is a scaling provision that permits the use of decimal point notation. Provision is made
for input and output in bases other than decimal. Numbers can be converted from decimal to
octal by simply setting the output base to equal 8.
The actual limit on the number of digits that can be handled depends on the amount of storage
available on the machine. Manipulation of numbers with many hundreds of digits is possible
even on the smallest versions of UNIX.
The syntax of BC has been deliberately selected to agree substantially with the C language (2).
Those who are familiar with C will find few surprises in this language.

f UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 l

BC Desk Calculator Programming Tools

1. Simple Computations with Integers

The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if 0
you type in the line:

142857 + 285714

the program responds immediately with the line

428571

The operators-, •, /, %, and • can also be used; they indicate subtraction, multiplication, divi­
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated
(the 'unary' minus sign). The expression

7+-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in
Fortran, with • having the greatest binding power, then • and% and /, and finally+ and-.
Contents of parentheses are evaluated before material outside the parentheses. Exponentiations
are performed from right to left and the other operators from left to right. The two expressions

a·b·c and a·(b'c)

are equivalent, as are the two expressions

a•b•c and (a•b)•c

BC shares with Fortran and C the undesirable convention that

a/b•c is equivalent to (a/b)•c

Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement

X =x + 3

has the effect of increasing by three the value of the contents of the register named x. When, as
in this case, the outermost operator is an =, the assignment is performed but the result is not
printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer (but see scaling
below). The lines

X = sqrt(l91) X

produce the printed result

13

2. Bases

There are special internal quantities, called 'ibase' and 'obase'. The contents of 'ibase', initially
set to 10, determines the base used for interpreting numbers read in. For example, the lines:

2 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools BC Desk Calculator

ibase = 8
11

will produce the output line

g

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who
deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter what
base is in effect) and are interpreted as digits having values 10--15 respectively. The statement:

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents or 'obase', initially set to 10, are used as the base for output numbers. The lines

obase = 16 1000

will produce the output line

3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit­
ted, and they are sometimes useful. For example, large numbers can be output in groups of five
digits by setting 'obase' to 100000. Strange (that is, 1, 0, or negative) output bases are handled
appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large
numbers (that is,, more than 100 digits) with other bases is rather slow. Non-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that 'ibase' and 'obase' have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion,
respectively.

3. Scaling

A third special internal quantity called 'scale' is used to determine the scale of calculated quan­
tities. Numbers may have up to 99 decimal digits after the decimal point. This fractional part
is retained in further computations. We refer to the number of digits after the decimal point of
a num her as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result
has a scale determined by the following rules. For addition and subtraction, the scale of the
result is the larger of the scales of the two operands. In this case, there is never any truncation
of the result. For multiplications, the scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the scales of the operands and, subject
to those two restrictions, the scale of the result is set equal to the contents of the internal quan­
tity 'scale'. The scale of a quotient is the contents or the internal quantity 'scale'. The scale of

Revision D of 7 January 1984 3

BC Desk Calculator Programming Tools

a remainder is the sum of the scales of the quotient and the divisor. The result of an exponen•
tiation is scaled as if the implied multiplications were performed. An exponent must be an
integer. The scale of a square root is set to the maximum of the scale of the argument and the o
contents of 'scale'.
All of the internal operations are actually carried out in terms of integers, with digits being dis­
carded when necessary. In every case where digits are discarded, truncation and not rounding is
performed.
The contents of 'scale' must be no greater than 99 and no less than O. It is initially set to O. In
case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities 'scale', 'ibase', and 'obase' can be used in expressions just like other
variables. The line:

scale = scale + 1

increases the value of 'scale' by one, and the line

scale

causes the current value of 'scale' to be printed.
The value of 'scale' retains its meaning as a number of decimal digits to be retained in internal
computation even when 'ibase' or 'obase' are not equal to 10. The internal computations (which
are still conducted in decimal, regardless of the bases) are performed to the specified number of
decimal digits, never hexadecimal or octal or any other kind of digits.

4. Functions

The name of a function is a single lower-case letter. Function names are permitted to collide
with simple variable names. Twenty-six different defined functions are permitted in addition to
the twenty-six variable names. The line:

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in
parentheses.
Variables used in the function can be declared as automatic by a statement of the form

auto x,y,z

There can be only one 'auto' statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they
are given a value on entry to the function. An example of a function definition is

4 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

define a(x,y){
auto z
z =x•y
return(z) }

BC Desk Calculator

The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of
arguments is used.

Functions with no arguments are defined and called using parentheses with nothing between
them: b().

If the function a above has been defined, then the line

a(7,3.14)

would cause the result 21.98 to be printed and the line

X = a(a(3,4),5)

would cause the value of x to become 60.

5. Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a sub­
scripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047.
Subscripted variables may be freely used in expressions, in function calls, and in return state­
ments.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(a[])
define f(a[])
auto a[)

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

6. Control Statements

The 'if, the 'while', and the 'for' statements may be used to alter the flow within programs or
to cause iteration. The range of each of them is a statement or a compound statement consist­
ing of a collection of statements enclosed in braces. They are written in the following way

Revision D of 7 January 1984 5

BC Desk Calculator

or

if(relation) statement
while(relation) statement
for(expressionl; relation; expression2) statement

if(relation) {statements}
w hile(relation) {statements}
for(expressionl; relation; expression2) {statements}

Programming Tools

A relation in one of the control statements is an expression of the form:

x>y

where two expressions are related by one of the six relational operators <, >, < =, > =,
==, or !=. The relation == stands for 'equal to' and != stands for 'not equal to'. The
meaning of the remaining relational operators is clear.
BEWARE of using= instead of== in a relational. Unfortunately, both of them are legal, so
you will not get a diagnostic message, but = really will not do a comparison.

The 'if' statement causes execution of its range if and only if the relation is true. Then control
passes to the next statement in sequence.
The 'while' statement causes execution of its range repeatedly as long as the relation is true.
The relation is tested before · each execution of its range and if the relation is false, control
passes to the next statement beyond the range of the w bile.

The 'for' statement begins by executing 'expression!'. Then the relation is tested and, if true,
the statements in the range of the 'for' are executed. Then 'expression2' is executed. The rela­
tion is tested, and so on. The typical use of the 'for' statement is for a controlled iteration, as
in the statement:

for(i=l; i<=lO; i=i+ 1) i

which will print the integers from 1 to 10. Here are some examples of the use of the control
statements.

define f(n){
auto i, x
x=l
for(i=l; i<=n; i=i+ 1) x-x•i
return(x)
}

The line:

f(a)

will print a factorial if a is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b(n,m){
auto x, j
x=l
for(j=l; j<=m; j j+ 1) x=x•(n-j+ 1)/j
return(x)
}

The following function computes values of the exponential function by summing the appropriate

6 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools

series without regard for possible truncation errors:

scale= 20
define e(x){

}

auto a, b, c, d, n
a=l
b=l
C = 1
d=O
n=l
while(l==l){

}

a= a•x
b=b•n
C = C + a/b
n=n+ 1
if(c==d) return(c)
d=c

7. Some Details

BC Desk Calculator

There are some language features that every user should know about even if he will not use
them.

Normally statements are typed one to a line. It is also permissible to type several statements on
a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere
that an expression can. For example, the line

(x y+ 17)

not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

X = a(i=i+ 1)

causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language.
Consult the appendix or the C manuals (2) for their exact workings.

Revision D of 7 January 1984 7

BC Desk Calculator Programming Tools

x=y=z is the same as x=(y=z)
X =+ y X =x+y
X =-y X =x-y
X =* y X =X*Y
X =/y X =x/y
x=%y x=x%y
x=

. y X =x"y
x++ (x=x+ 1)-1
x- (x=x-1)+ 1
++x X =x+l
--x X =X-1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct
but unexpected may happen.
WARNING! In some of these constructions, spaces are significant. There is a real difference
between x=-y and x= -y. The first replaces x by x-y and the second by -y.

8. Three Important Things

I. To exit a BC program, type 'quit'.
2. There is a comment convention identical to that of C and of PL/I. Comments begin with

'/•' and end with'•/'.
3. There is a library of math functions which may be obtained by typing at command level:

be -I

This command will load a set of library functions which, at the time of writing, consists of
sine (named 's'), cosine ('c'), arctangent ('a'), natural logarithm ('I'), exponential ('e') and
Bessel functions of integer order ('j(n,x)'). Doubtless more functions will be added in time.
The library sets the scale to 20. You can reset it to something else if you like. The design
of these mathematical library routines is discussed elsewhere (3).

Ir you type

be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

9. Acknowledgement

The compiler is written in YACC (4); its original version was written by S. C. Johnson.

10. References

(1) K. Thompson and D. M. Ritchie, UNIX Programmer'• Manual, Bell Laboratories, 1978.

(2) B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.

(3) R. Morris, A Librar11 of Reference Slantlartl Mathematical Subroulinu, Bell Laboratories
internal memorandum, 1975.

8 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools
BC Desk Calculator

(4) S. C. Johnson, YACC - Yet Another Compiler-Compiler. Bell Laboratories Computing Sci­
ence Technical Report #32, 1978.

(5) R. Morris and L. L. Cherry, DC - An Interactive Deak Calculator.

Revision D of 7 January 1984
9

BC Desk Calculator Programming Tools

11. Notation

In the following pages syntactic categories are in italic,; literals are in bold; material in brackets 0
[J is optional.

11.1. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs or comments. Newline characters or semicolons separate statements.

11.2. Comments

Comments are introduced by the characters / • and terminated by • /.

11.3. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from O to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named X, an array named X and a function named x, all of whicho
are separate and distinct.

11.4. Keywords

The following are reserved keywords:
iba.se ii
obase break
scale define
sqrt auto
length return
while quit
for

11.5. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A-F are also recognized as digits with values 10--15, respectively.

12. Expressions

The value of an expression is printed unless the main operator is an assignment. Precedence is
the same as the order of presentation here, with highest appearing first. Left or right associa-Q
tivity, where applicable, is discussed with each operator.

10 Revision D of 7 January 1984

--------------------------------- --

0

0

0

Programming Tools BC Desk Calculator

12.1. Primitive expressions

Named ezpreaaiona are places where values are stored. Simply stated, named expressions are
legal on the left side of an assignment. The value of a named expression is the value stored in
the place named.

Simple identifiera are named expressions. They have an initial value of zero.

Array element, are named expressions. They have an initial value of zero.

The internal registers scale, ibase and obase are all named expressions. acale is the number
of digits after the decimal point to be retained in arithmetic operations. acale has an initial
value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

12.2. Function Calls

function-name ((ezpreaaion [, ezpreaaion ...]))

A function call consists of a function name followed by parentheses containing a comma.­
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu­
ments are passed by value. AB a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

sqrt

sqrt (ezpre .. ion)

The result is the square root of the expression. The result is truncated in the least significant
decimal place. The scale of the result is the scale of the expression or the value of acale, which­
ever is larger.

length

length (ezpre .. ion)

The result is the total number of significant decimal digits in the expression. The scale of the
result is zero.

scale

scale (ezpreaaion)

The result is the scale of the expression. The scale of the result is zero.

Revision D of 7 January 1984 11

BC Desk Calculator Programming Tools

12.3. Constants

Constants are primitive expressions.

12.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.

12.5. Unary operators

The unary operators bind right to left.

- ezpreuion

The result is the negative or the expression.

+ + named-exprea,ion

The named expression is incremented by one. The result is the value or the named expression
after incrementing.

-- named-exprea,ion

The named expression is decremented by one. The result is the value o(the named expression
after decrementing.

named-expreuion + +
The named expression is incremented by one. The result is the value of the named expression
before incrementing.

named-expreuion-

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

12.6. Binary Operators

Exponentiation operator

The exponentiation operator binds right to left.

ezpreuion ezprea11on

The result is the first expression raised to the power of the second expression. The second
expression must be an integer. Ir a is the scale or the left expression and 6 is the absolute value
or the right expression, then the scale of the result is:

min (aX b, max (scale, a))

Multiplicative operators

12 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools BC Desk Calculator .

The operators •, /, % bind left to right.

ezpre .. ion • ezpre .. ion

The result is the product of the two expressions. If o and b are the scales of the two expres­
sions, the scale of the result is:

min (a+ b, max (scale, o, b))

ezpre .. ion / ezpre .. ion

The result is the quotient of the two expressions. The scale of the result is the value of ecale.

ezpre .. ion % ezpre .. ion

The % operator produces the remainder of the division of the two expressions. More precisely,
a%b is a-a/b•b.

The scale of the result is the sum of the scale of the divisor and the value of ecale

12.7. Additive operators

The additive operators bind left to right.

ezpre .. ion + ezpreuion

The result is the sum of the two expressions. The scale of the result is the maximun of the
scales of the expressions.

ezpreaaion - ezpreaaion

The result is the difference of the two expressions. The scale of the result is the maximum of
the scales of the expressions.

12.8. assignment operators

The assignment operators bind right to left.

named-ezpre .. ion = ezpreuion

This expression results in assigning the value of the expression on the right to the named
expression on the left.

named-ezpre .. ion =+ ezpre .. ion
nomed-ezprea,ion =- ezpreuion
named-ezpre .. ion =• ezpreaaion
named-ezprea,ion = / ezpreuion
named-ezpreuion =% ezpreuion
named-ezpreuion =· ezpreaaion

The result of the above expressions is equivalent to "named expression = named expression OP
expression", where OP is the operator after the= sign.

Revision D of 7 January 1984 13

BC Desk Calculator Programming Tools

12.9. Relations

Unlike all other operators, the relational operators are only valid as the object or an if, while, Q
or inside a for statement.

expreaaion < expreaaion
expreaaion > expreaaion
expreaaion < = expreaaion
expreaaion > = expreaaion
expreaaion == expreaaion
ezpreuion != ezpreuion

13. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers that are
to be local to a function need be declared with the auto command. The arguments to a func­
tion are local to the function. All other identifiers are assumed to be global and available to all
functions. All identifiers, global and local, have initial values or zero. Identifiers declared as
auto are allocated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls. auto arrays are specified by the array
name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On
entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
names refers only to the new values.

14. Statements

Statements must be separated by semicolon or newline. Except where altered by control state­
ments, execution is sequential.

14.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression is printed, followed by a newline character.

14.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding
them with { }.

14.3. Quoted s~ring statements

"any string"

This statement prints the string inside the quotes.

14 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools BC Desk Calculator

14.4. If statements

if(relation) ,tatement

The substatement is executed if the relation is true.

14.5. While statements

while (relation) ,tatement

The statement is executed while the relation is true. The test occurs before each execution or
the statement.

14.6. For statements

for (ezpre11ion; relation; ezpreuion) ,tatement

The for statement is the same as
firat-ezpreaaion
while (relation) {

atatement
la1t-ezpre11ion

}
All three expressions must be present.

14.7. Break statements

break
break causes termination of a for or while statement.

14.8. Auto statements

auto identifier (,identifier)
The auto statement causes the values of the identifiers to be pushed down. The identifiers can
be ordinary identifiers or array identifiers. Array identifiers are specified by following the array
name by empty square brackets. The auto statement must be the first statement in a function
definition.

14.9. Define statements

define((parameter (,parameter ...))) {
,tatement,}

The define statement defines a function. The parameters may be ordinary identifiers or array
names. Array names must be followed by empty square brackets.

Revision D or 7 January 1984 15

BC Desk Calculator Programming Tools

14.10. Return statements

return

return(ezpreaoion)
The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(O). The result of the
function is the result of the expression in parentheses.

14.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is
first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

16 Revision D of 7 January 1984

0

0

0

.,

0
Table of Contents

M4 - A MACRO PROCESSOR .. 1

1, Usage... 2

2, Defining Macros ... 2

3. Quoting.. 3

,. Arguments .. 4

6. Arithmetic Built-ins .. 6

8. File Manipulation ... 8

0 7. System Command .. 8

8. Conditionals ... ,.. 7

9. String Manipulation ... 7

10. Printing... 8

11, Summary of Built-ins.. 8

12, Acknowledgements ... 9

13, References .. 9

0
-i-

0

0

0

0

0

M4 - A MACRO PROCESSOR

M4 is a macro processor available on UNIXt Its primary use has been as a front end for Ratfor
for those cases where parameterless macros are not adequately powerful. It has also been used
for languages as disparate as C and Cobol. M4 is particularly suited for functional languages
like Fortran, PL/I and C since macros are specified in a functional notation.

M4 provides features seldom found even in much larger macro processors, including

• arguments

• condition testing

• arithmetic capabilities

• string and substring functions

• file manipulation

This paper is a user's manual for M4.
A macro processor is a useful way to enhance a programming language, to make it more palat­
able or more readable, or to tailor it to a particular application. The #define statement in C
and the analogous define in Ratfor are examples of the basic facility provided by any macro
processor - replacement of text by other text.
The M4 macro processor is an extension of a macro processor called M3 which was written by
D. M. Ritchie for the AP-3 minicomputer; M3 was in turn based on a macro processor imple­
mented for [1]. Readers unfamiliar with the basic ideas of macro processing may wish to read
some of the discussion there.
M4 is a suitable front end for Ratfor and C, and has also been used successfully with Cobol.
Besides the straightforward replacement of one string of text by another, it provides macros
with arguments, conditional macro expansion, arithmetic, file manipulation, and some special­
ized string processing functions.
The basic operation of M4 is to copy its input to its output. As the input is read, however,
each alphanumeric "token" (that is, string of letters and digits) is checked. If it is the name of
a macro, then the name of the macro is replaced by its defining text, and the resulting string is
pushed back onto the input to be rescanned. Macros may be called with arguments, in which
case the arguments are collected and substituted into the right places in the defining text before
it is rescanned. ·
M4 provides a collection of about twenty built-in macros which perform various useful opera­
tions; in addition, the user can define new macros. Built-ins and user-defined macros work
exactly the same way, except that some of the built-in macros have side effects on the state of
the process.

0 t UNIX is a trademark or Bell Laboratories.

Revision D of 7 January 1984 1

M4 Macro Processor

1. Usage

On UNIX, use

m4 (files]

Programming Tools

Each argument file is processed in order; if there are no arguments, or if an argument is '-', the
standard input is read at that point. The processed text is written on the standard output,
which may be captured for subsequent processing with

m4 (files] >outputfile

2. Defining Macros

The primary built-in function of M4 is define, which is used to define new macros. The input

define(name, stuff)

causes the string name to be defined as atufl'. All subsequent occurrences of name will be
replaced by stuff'. name must be alphanumeric and must begin with a letter (the underscore_
counts as a letter). stuff' is any text that contains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,

define(N, 100)

if(i > N)

defines N to be 100, and uses this "symbolic constant" in a later if statement.

The left parenthesis must immediately follow the word define, to signal that define has argu­
ments. If a macro or built-in name is not followed immediately by '(', it is assumed to have no
arguments. This is the situation for N above; it is actually a macro with no arguments, and
thus when it is used there need be no (...) following it.

You should also notice that a macro name is only recognized as such if it appears surrounded by
non-alphanumerics. For example, in

define(N, 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though it contains a lot
of N's.
Things may be defined in terms of other things. For example,

define(N, 100)
define(M, N)

defines both M and N to be 100.

What happens if N is redefined! Or, to say it another way, is M defined as Nor as 100! In M4,
the latter is true - M is 100, so even if N subsequently changes, M does not.

0

0

This behavior arises because M4 expands macro names into their defining text as soon as it pos­
sibly can. Here, that means that when the string N is seen as the arguments of define are
being collected, it is immediately replaced by 100; it's just as if you had said 0

2 Revision D of 7 January 1984

0

0

0

Programming Tools M4 Macro Processor

define(M, 100)

in the first place.

Ir this isn't what you really want, there are two ways out of it. The first, which is specific to
this situation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now M is defined to be the string N, so when you ask for M later, you'll always get the value
of Nat that time (because the M will be replaced by N which will be replaced by 100).

3. Quoting

The more general solution is to delay the expansion of the arguments of define by quoting
them. Any text surrounded by the single quotes ' and ' is not expanded immediately, but has
the quotes stripped off. If you say

define(N, 100)
define(M, 'N')

the quotes around the N are stripped off as the argument is being collected, but they have
served their purpose, and M is defined as the string N, not 100. The general rule is that M4
always strips off one level of single quotes whenever it evaluates something. This is true even
outside of macros. Ir you want the word define to appear in the output, you have to quote it
in the input, as in

'define' = l;

As another instance of the same thing, which is a bit more surprising, consider redefining N:

define(N, 100)

define(N, 200)

Perhaps regrettably, the Nin the second definition is evaluated as soon as it's seen; that is, it is
replaced by 100, so it's as if you had written

define(lOO, 200)

This statement is ignored by M4, since you can only define things that look like names, but it
obviously doesn't have the effect you wanted. To really redefine N, you must delay the evalua­
tion by quoting:

define(N, 100)

define('N', 200)

In M4, it is often wise to quote the first argument of a macro.

Ir ' and ' are not convenient for some reason, the quote characters can be changed with the
built-in changequote:

changequote([,])

makes the new quote characters the left and right brackets. You can restore the original char­
acters with just

Revision D of 7 January 1984 3

M4 Macro Processor Programming Tools

changequote

There are two additional built-ins related to define. undeflne removes the definition of some 0
macro or built-in:

undefine('N')

removes the definition of N. (Why are the quotes absolutely necessary?) Built-ins can be
removed with undefine, as in

undefine('define')

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined. In particular,
M4 has pre-defined the names unix and gco• on the corresponding systems, so you can tell
which one you 're using:

ifdef('unix', 'define(wordsize,16)')
ifder('gcos', 'define(wordsize,36)')

makes a definition appropriate for the particular machine. Don't forget the quotes!

if def actually permits three arguments; if the name is undefined, the value of ifdef is then the
third argument, as in

ifder('unix ', on UNIX, not on UNIX)

4. Arguments

So far we have discussed the simplest form of macro processing - replacing one string by
another (fixed) string. User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth argument when the macro is actually
used. Thus, the macro bump, defined as

define(bump, SI = SI + l)

generates code to increment its argument by I:

bump(x)

18

X =x + l

A macro can have as many arguments as you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is SO, although that is less commonly used.) Argu­
ments that are not supplied are replaced by null strings, so we can define a macro cat which
simply concatenates its arguments, like this:

define(cat, $1$2$3$4$5$6$7$8$9)

Thus

cat(x, y, z)

is equivalent to

4 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools M4 Macro Processor

xyz

$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collection are discarded.
All other white space is retained. Thus

define(a, b c)

defines a to be b c.

Arguments are separated by commas, but parentheses are counted properly, so a comma "pr~
tected" by parentheses does not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

5. Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on integers (only). The simplest is incr,
which increments its numeric argument by 1. Thus to handle the common programming situa­
tion where you want a variable to be defined as "one more than N", write

define(N, 100)
define(Nl, 'incr(N)')

Then Nl is defined as one more than the current value of N.
The more general mechanism for arithmetic is a built-in called eval, which is capable of arbi­
trary arithmetic on integers. It provides the operators (in decreasing order of precedence)

unary+ and-
•• or • (exponentiation)
• / % (modulus)
+ -
== !=
!
&or &&
I or II

< <= > >=
(not)
(logical and)
(logical or)

Parentheses may be used to group operations where needed. All the operands of an expression
given to eval must ultimately be numeric. The numeric value of a true relation (like 1 >O) is 1,
and false is 0. The precision in eval is 32 bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M to be 2**N+l. Then

define(N, 3)
define(M, 'eval(2••N+ 1)')

As a matter of principle, it is advisable to quote the defining text for a macro unless it is very
simple indeed (say just a number); it usually gives the result you want, and is a good habit to
get into.

Revision D of 7 January 1984 5

M4 Macro Processor Programming Tools

6. File Manipulation

You can include a new file in the input at any time by the built-in (unction Include:

include(filename)

inserts the contents of filename in place of the include command. The contents of the file is
often a set of definitions. The value of include (that is, its replacement text) is the contents o(
the file; this can be captured in definitions, etc.

It is a fatal error if the file named in include cannot be accessed. To get some control over this
situation, the alternate form alnclude can be used; alnclude ("silent include") says nothing and
continues if it can't access the file.

It is also possible to divert the output of M4 to temporary files during processing, and output
the collected material upon command. M4 maintains nine of these diversions, numbered 1
through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n. Diverting to this
file is stopped by another divert command; in particular, divert or divert(O) resumes the nor­
mal output process.

Diverted text is normally output all at once at the end of processing, with the diversions output
in numeric order. It is possible, however, to bring back diversions at any time, that is, to
append them to the current diversion.

undivert

0

brings back all diversions in numeric order, and undivert with arguments brings back the
selected diversions in the order given. The act of undiverting discards the diverted stuff, as does Q
diverting into a diversion whose number is not between O and 9 inclusive.
The value of undivert is not the diverted stuff. Furthermore, the diverted material is not res­
canned for macros.

The built-in divnum returns the number o(the currently active diversion. This is zero during
normal processing.

7, System Command

You can run any program in the local operating system with the 11y11cmd built-in. For exam•
pie,

syscmd(date)

on UNIX runs the date command. Normally syscmd would be used to create a file for a subse­
quent include.

To facilitate making unique file names, the built-in maketemp is provided, with specifications
identical to the system function mktemp: a string of XXXXX in the argument is replaced by the
process id of the current process.

6 Revision D of 7 January 1984

0

0

0

0

Programming Tools M4 Macro Processor

8. Conditionals

There is a built-in called ilelse which enables you to perform arbitrary conditional testing. In
the simplest form,

ifelse{a, b, c, d)

compares the two strings a and b. If these are identical, lfelse returns the string c; otherwise it
returns d. Thus we might define a macro called compare which compares two strings and
returns "yes" or "no" if they are the same or different.

define(compare, 'ifelse(Sl, $2, yes, no)')

Note the quotes, which prevent too-early evaluation of ifelse.
If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a limited form of multi•
way decision capability. In the input

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as e, the result
is f. Otherwise the result is g. If the final argument is omitted, the result is null, so

ifelse(a, b, c)

is c if a matches b, and null otherwise.

9. String Manipulation

The built-in Jen returns the length of the string that makes up its argument. Thus

len(abcdef)

is 6, and Jen((a,b)) is 6.

The built-in 11ub11tr can be used to produce substrings of strings. aub11tr(11, i, n) returns the
substring of II that starts at the ith position (origin zero), and is n characters long. If n is omit­
ted, the rest of the string is returned, so

substr('now is the time', 1)

is

ow is the time

If i or n are out of range, various sensible things happen.

index(sl, 112) returns the index (position) in 111 where the string 112 occurs, or -1 if it doesn't
occur. As with substr, the origin for strings is 0.

The built-in translit performs character transliteration.

translit(s, f, t)

modifies II by replacing any character found in f by the conesponding character of t. That is,

translit(s, aeiou, 12345)

replaces the vowels by the conesponding digits. If t is shorter than f, characters which don't
have an entry in t are deleted; as a limiting case, if t is not present at all, characters from f are
deleted from 11. So

Revision D of 7 January 1984 7

M4 Macro Processor

translit(s, aeiou)

deletes vowels from •·

Programming Tools

There is also a built-in called dnl which deletes all characters that follow it up to and including
the next newline; it is useful mainly for throwing away empty lines that otherwise tend to
clutter up M4 output. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert(-1)
define(...)

divert

10. Printing

The built-in errprint writes its arguments out on the standard error file. Thus you can say

errprint('fatal error')

0

dumpdef is a debugging aid which dumps the current definitions of defined terms. If there are o
no arguments, you get everything; otherwise you get the ones you name as arguments. Don't
forget to quote the names!

11. Summary of Built-ins

Ea.ch entry is preceded by the page number where it is described.

0
8 Revision D of 7 January 1984

0

0

0

Programming Tools

3 changequote(L, R)
1 define(name, replacement)
4 divert(number)
4 divnum
s dnl
s dumpdef('name', 'name', ...)

errprint(s, s, ...)
eval(numeric expression)

s
4
3
s
4
3
s
5
4
4
5
4
5
3
4

if def('name', this if true, this if false)
ifelse(a, b, c, d)
include(file)
incr(number)
index(sl, s2)
len(string)
maketemp(... XXXXX ...)
sinclude(file)
substr(string, position, number)
syscmd(s)
translit(str, from, to)
undefine('name ')
undivert(number,number, ...)

12. Acknowledgements

M4 Macro Processor

We are indebted to Rick Becker, John Chambers, Doug Mcilroy, and especially Jim Weythman,
whose pioneering use of M4 has led to several valuable improvements. We are also deeply grate­
ful to Weythman for several substantial contributions to the code.

13. References

[l] B. W. Kernighan and P. J. Plauger, Software Tool,, Addison-Wesley, Inc., 1976.

Revision D of 7 January 1984 9

0

0

0

0

0

0

Table of Contents

LEX-A LEXICAL ANALYZER GENERATOR... 1

1.

2.

3.

,.
6.

8.

7.

8.

9.

10.

11.

12.

Lex Source. .. 3

Lex Regular Expressions. .. 4

Lex Actions. 7

Ambiguous Source Rules... 10

Lex Source Definitions. ... 11

Usage... 12

Lex and Yacc... 13

Examples ,.. 13

Left Context Sensitivity. ... 18

Character Set. 18

Summary of Source Format. .. 18

Caveats and Bugs. .. 20

13. Acknowledgments. .. 20

14. References. .. 20

-i-

0

0

0

0

0

0

LEX - A LEXICAL ANALYZER GENERATOR

Lex helps write programs whose control flow is directed by instances of regular expressions in
the input stream. It is well suited for editor-script type transformations and for segmenting
input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and parti­
tioning the input into strings which match the given expressions. M each such string is recog­
nized the corresponding program fragment is executed. The recognition of the expressions is
performed by a deterministic finite automaton generated by Lex. The program fragments writ­
ten by the user are executed in the order in which the corresponding regular expressions occur
in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the
longest match possible at each input point. If necessary, substantial lookahead is performed on
the input, but the input stream will be backed up to the end of the current partition, so that
the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be translated automati­
cally to portable Fortran. Lex is designed to simplify interfacing with Y ace, described in the
next chapter.

Lex is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem oriented specification for character string matching, and produces
a program in a general purpose language which recognizes regular expressions. The regular
expressions are specified by the user in the source specifications given to Lex. The Lex written
code recognizes these expressions in an input stream and partitions the input stream into strings
matching the expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the program frag­
ments. As each expression appears in the input to the program written by Lex, the correspond­
ing fragment is executed.

The user supplies the additional code beyond expression matching needed to complete his tasks,
possibly including code written by other generators. The program that recognizes the ex pres­
sions is generated in the general purpose programming language em ployed for the user's pro­
gram fragments. Thus, a high level expression language is provided to write the string expres­
sions to be matched while the user's freedom to write actions is unimpaired. This avoids forcing
the user who wishes to use a string manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature
which can be added to different programming languages, called 'host languages.' Just as general
purpose languages can produce code to run on different computer hardware, Lex can write code
in different host languages. The host language is used for the output code generated by Lex
and also for the program fragments added by the user. Compatible run-time libraries for the

Revision D of 7 January 1984 1

Lex Lexical Analyzer Generator Programming Tools

different host languages are also provided. This makes Lex adaptable to different environments
and different users. Each application may be directed to the combination of hardware and host
language appropriate to the task, the user's background, and the properties of local implementa- 0
tions.
Lex turns the user's expressions and actions (called ,ource in this memo) into the host general­
purpose language; the generated program is named wles. The rules program will recognize
expressions in a stream (called input in this memo) and perform the specified actions for each
expression as it is detected. See Figure 1.

Source - Lex - yylex

Input - yylex - Output

Figure 1: An overview of Lex

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends
of lines.

%%
[\t)+ $

is all that is required. The program contains a %% delimiter to mark the beginning of the
rules, and one rule. This rule contains a regular expression which matches one or more
instances of the characters blank or tab (written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The brackets indicate the character class o
made of blank and tab; the + indicates 'one or more specified, so the program generated by
Lex (yylex) will ignore these characters. Everything else will be copied. To change any remain-
ing string of blanks or tabs to a single blank, add another rule:

%%
[\t)+ s
[\t]+ ' printf(" ");

The finite automaton generated for this source will scan for both rules at once, observing at the
termination of the string of blanks or tabs whether or not there is a newline character, and exe­
cuting the desired rule action. The first rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a
lexical level. Lex can also be used with a parser generator to perform the lexical analysis phase;
it is particularly easy to interface Lex and Y ace [3). Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class of context free grammars, but require
a lower level analyzer to recognize input tokens. Thus, a combination of Lex and Y ace is often
appropriate. When used as a preprocessor for a later parser generator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow of
control in such a cast (which might be the first half of a compiler, for example) is shown in Fig­
ure 2. Additional programs, written by other generators or by hand, can be added easily to pro­
grams written by Lex.

2 Revision D of 7 January 1984

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

lexical grammar
rules rules

Dk] l
Yacc

l !
Input_. yylex - n:1.1arse _. Parsed input

Figure 2: Lex with Y ace

Yacc users will realize that the name w!ez is what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex simpli6.es interfacing.

Lex generates a deterministic 6.nite automaton from the regular expressions in the source (4).
The automaton is interpreted, rather than compiled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input. The number of Lex rules or the com­
plexity of the rules is not important in determining speed, unless rules which include forward
context require a significant amount of rescanning. What does increase with the number and
complexity of rules is the size or the finite automaton, and therefore the size of the program
generated by Lex.

In the program written by Lex, the user's fragments (representing the actiom to be performed
as each regular expression is found) are gathered as cases of a switch. The automaton inter­
preter directs the control flow. Opportunity is provided for the user to insert either declarations
or additional statements in the routine containing the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be interpreted on the basis of one character lookahead.
For example, if there are two rules, one looking for ab and another for abcde/g , and the input
stream is abcdefla , Lex will recognize ab and leave the input pointer just before " ed . .. • Such
backup is more costly than the processing or simpler languages.

1. Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}
%%
{ user subroutines}

where the definitions and the user subroutines are often omitted. The second % % is optional,
but the first is required to mark the beginning of the rules. The absolute minimum Lex pro­
gram is thus

%%
(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.
In the outline· of Lex programs shown above, the rule, represent the user's control decisions;
they are a table, in which the left column contains regular ezpreHion, (see section 3) and the

Revision D of 7 January 1984 3

Lex Lexical Analyzer Generator Programming Tools

right column contains action,, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message 'found keyword INT'
whenever it appears. In this example the host procedural language is C and the C library func•
tion print/ is used to print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a line, it should be enclosed in braces. As
a slightly more useful example, suppose it is desired to change a number of words from British
to American spelling. Lex rules such as

colour printf(" color");
mechanise printf(" mechanize");
petrol printf(" gas");

would be a start. These rules are not quite 'enough, since the word petroleum would become
gaaeum ; a way of dealing with this will be described later.

2, Lex Regular Expressions.

The definitions of regular expressions are very similar to those in QED (5). A regular expression
specifies a set of strings to be matched. It contains text characters (which match the
corresponding characters in the strings being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a57D.

Operator,. The operator characters are

"\[).-!.*+ l()S/{}%<>
and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"+ + •

matches the string syz+ + when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyz++ •

is the same as the one above. Thus by quoting every non-alphanumeric character being used as
a text character, the user can avoid remembering the list above of current operator characters,
and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with \ as in

0

0

xyz\+ \+

which is another, less readable, equivalent of the above expressions. Another use of the quoting 0
4 Revision D of 7 January 1984

0

0

0

Programming Tools Lex Lexical Analyzer Generator

mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs
end a rule. Any blank character not contained within (] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \tis tab, and \b is backspace. To enter
\ itself, use \ \. Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list above is always
a text character.

Character claue,. Classes of characters can be specified using the operator pair []. The con­
struction [abc/ matches a single character, which may be a , b , or c . Within square brackets,
most operator meanings are ignored. Only three characters are special: these are \ - and •.
The - character indicates ranges. For example,

(a-z0--9< > J
indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using - between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation
dependent and will get a warning message. For example, (0--z) in ASCII is many more charac­
ters than it is in EBCDIC. Ir it is desired to include the character - in a character class, it
should be first or last, thus:

[-+0-9)

matches all the digits and the two signs.

In character classes, the • operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character
set. Thus

['abc)

matches all characters except a, b, or c, including all special or control characters; or

['a-zA-Z)

is any character which is not a letter. The \ character provides the usual escapes within charac­
ter class brae kets.

Arbitrary character. To match almost any character, the operator character

is the class of all characters except newline. Escaping into octal is possible although non­
portable:

(\40--\176)

matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176
(tilde).
Optional espreaaiona. The operator f indicates an optional element of an expression. Thus

ab!c

matches either oc or abc .
Repeated espreuion,. Repetitions of classes are indicated by the operators • and +

••
is any number of consecutive • characters, including zero; while

Revision D of 7 January 1984 5

Lex Lexical Analyzer Generator

a+

is one or more instances of •· For example,

(a-z]+

is all strings of lower case letters. And

(A-Za-z](A-Za-z0-9)*

Programming Tools

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expres­
sion for recognizing identifiers in computer languages.

Alternation anti Grouping. The operator I indicates alternation:

(ablcd)

matches either ab or ed. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

ablcd

would have sufficed. Parentheses can be used for more complex expressions:

(ab I cd+)!(er)•

matches such strings as a6e/e/, e/e/e/, ede/, or t:ddd ; but not abc , abctl , or abcde/ •

Conte:it aen,itivity. Lex will recognize a small amount of surrounding context. The two sim-
plest operators for this are • and S . It the first character of an expression is • , the expression
will only be matched at the beginning of a line (after a newline character, or at the beginning of

01
I

the input stream). This can never conflict with the other meaning of • , complementation of
character classes, since that only applies within the [] operators. It the very last character is S , 0
the expression will only be matched at the end of a line (when immediately followed by new- .
line). The latter operator is a special case of the / operator character, which indicates trailing
context. The expression

ab/cd

matches the string a6 , but only if followed by ctl. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by ,tart eontlition, as explained in section 10. It a rule is only
to be executed when the Lex automaton interpreter is in start condition z, the rule should be
prefixed by

<x>
using the angle bracket operator characters. If we considered 'being at the beginning of a line'
to be start condition ONE, then the • operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetition, anti Definition,. The operators {} specify either repetitions (if they enclose
numbers) or definition expansion (if they enclose a name). For example

6 Revision D of 7 January 1984

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

{digit}

looks for a predefined string named ,;g,'I and inserts it at that point in the expression. The
definitions are given in the first part of the Lex input, before the rules. In contrast,

a{l,5}

looks for 1 to 5 occurrences of • .
Finally, initial % is special, being the separator for Lex source segments.

3. Lex Actions.

When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without produc­
ing any output, must provide rules to match everything. When Lex is being used with Y ace,
this is the normal situation. One may consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a
character combination which is omitted from the rules and which appears as input is likely to
be printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null state­
ment, ; as an action causes this result. A frequent rule is

[\t\n)

which causes the three spacing characters (blank, tab, and newline) to be ignored.

Another easy way to avoid writing actions is the action character I, which indicates that the
action for this rule is the action for the next rule. The previous example could also have been
written

" "
"\t"
"\n"

with the same result, although in different style. The quotes around \n and \tare not required.

In more complex actions, the user will often want to know the actual text that matched some
expression like [a-zj+ . Lex leaves this text in an external character array named wtest.
Thus, to print the name found, a rule like

[a-z)+ printf(" %s", yytext);

will print the string in wtest. The C function print/ accepts a format argument and data to be
printed; in this case, the format is 'print string' (% indicating data conversion, and , indicating
string type), and the data are the characters in ,utest.
So this just places the matched string on the output. This action is so common that it may be

written as ECHO:

(a-z)+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default action! Such rules
are often required to avoid matching oome other rule which is not desired. For example, if there
is a rule which matches rea, it will normally match the instances of reatl contained in bread or

Revision D of 7 January 1984 7

Lex Lexical Analyzer Generator Programming Tools

readjuat ; to avoid this, a rule of the form /a-z]+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also pro- o
vides a count 111fleng of the number or characters matched. To count both the number of words
and the num her of characters in words in the input, the user might write

(a-zA-Z]+ {words++; chars+= yyleng;}

which accumulates in char, the number or characters in the words recognized. The last charac•
ter in the string matched can be accessed by

yytext(yyleng-1]

Occasionally, a Lex action may decide that a rule has not recognized the correct span of charac­
ters. Two routines are provided to aid with this situation. First, 11ymore{} can be called to
indicate that the next input expression recognized is to be tacked on to the end or this input.
Normally, the next input string would overwrite the current entry in wtezt. Second, w/eu {n)
may be called to indicate that not all the characters matched by the currently successful expres­
sion are wanted right now. The argument n indicates the number or characters in W,ezt to be
retained. Further characters previously matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a different form.

Ezamp/e: Consider a language which defines a string as a set of characters between quotation
(") marks, and provides that to include a " in a string it must be preceded by a \. The regular
expression which matches that is somewhat confusing, so that it might be preferable to write

\"['"]* {
if (yytext(yyleng-1] == 1

\ \')

yymore();
else

... normal user processing
}

which will, when faced with a string such as • &be\" der first match the five characters "a6c\;
then the call to yymort:{} will cause the next part of the string, "de/, to be tacked on the end.
Note that the final quote terminating the string should be picked up in the code labeled 'normal
processing'.

The function 1111/ea,{) might be used to reprocess text in various circumstances. Consider the C
problem of distinguishing the ambiguity of '- a'. Suppose it is desired to treat this as '=- a'
but print a message. A rule might be

=-(a-zA-Z] {
printf(" Operator (=-) ambiguous\n");
yyless(yyleng-1);
... action for =- ...
}

which prints a message, returns the letter after the operator to the input stream, and treats the
operator as '=-'. Alternatively it might be desired to treat this as '=- -a'. To do this, just
return the minus sign as well as the letter to the input:

8 Revision D or 7 January 1984

0

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

=-[a-zA-Z) {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...
}

will perform the other interpretation. Note that the expressions for the two cases might more
easily be written

=-/[A-Za-z)

in the first case and

=/-[A-Za-z)

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of '=-3', however, makes

=-/(" \t\n)

a still better rule.

In addition to these routines, Lex also permits access to the 1/0 routines it uses. They are:

1) input() which returns the next input character;

2) output(c) which writes the character con the output; and

3) unput{c) pushes the character c back onto the input stream to be read later by input().
By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and inter­
nal characters, and must all be retained or modified consistently. They may be redefined, to
cause input or output to be transmitted to or from strange places, including other programs or
internal memory; but the character set used must be consistent in all routines; a value of zero
returned by input must mean end of file; and the relationship between unput and input must be
retained or the Lex lookahead will not work. Lex does not look ahead at all if it does not have
to, but every rule ending in + • f or S or containing / implies lookahead. Lookahead is also
necessary to match an expression that is a prefix of another expression. See below for a discus­
sion of the character set used by Lex. The standard Lex library imposes a 100 character limit
on backup.
Another Lex library routine that the user will sometimes want to redefine is yywrap() which is
called whenever Lex reaches an end-of-file. If r,ywrap returns a 1, Lex continues with the nor­
mal wrap up on end of input. Sometimes, however, it is convenient to arrange for more input to
arrive from a new source. In this case, the user should provide a yywrap which arranges for new
input and returns 0. This instructs Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end of a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access to
this condition is through yywrap. In fact, unless a private version of input() is supplied a file
containing nulls cannot be handled, since a value of O returned by input is taken to be end-of­
file.

Revision D of 7 January 1984 9

Lex Lexical Analyzer Generator Programming Tools

4. Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more than one expression can match the O·

current input, Lex chooses as follows:

1) The longest match is preferred.
2) Among rules which matched the same number of characters, the rule given first is preferred.

Thus, suppose the rules

integer
(a-z)+

keyword action ... ;
identifier action ... ;

to be given in that order. If the input is integer, , it is taken as an identifier, because /a-11/+
matches 8 characters while integer matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (for
example, int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like . •
dangerous. For example,

, ..
might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

1 first' quoted string here, 1 second' here

the above expression will match
1 first' quoted string here, 1 second'

which is probably not what was wanted. A better rule is of the form

I ('' \n]*'

which, on the above input, will stop after I Jiu/ . The consequences of errors like this are miti­
gated by the fact that the . operator will not match newline. Thus expressions like .• stop on
the current line. Don't try to defeat this with expressions like /.\n/+ or equivalents; the Lex
generated program will try to read the entire input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches
of each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both ,Ae and Ae in an input text. Some
Lex rules to do this might be

she s+ +;
he h++;
\n I

where the last two rules ignore everything besides Ae and ,le. Remember that . does not
include newline. Since ahe includes le, Lex will normally not recognize the instances of Ae
included in ,Ae, since once it has passed a ,le those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means 'go do the
next alternative.' It causes whatever rule was second choice after the current rule to be exe­
cuted. The position of the input pointer is adjusted accordingly. Suppose the user really wants
to count the included instances of le:

10 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

she {s+ +; REJECT;}
he {h+ + ; REJECT;}
\n I

Lex Lexical Analyzer Generator

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other expression will then be counted. In
this example, of course, the user could note that ,/ae includes Ae but not vice versa, and omit
the REJECT action on /ae; in other cases, however, it would not be possible a priori to tell
which input characters were in both classes.

Consider the two rules

a(bc)+
a(cd]+

{ ... ;REJECT;}
{ ... ; REJECT;}

If the input is al> , only the first rule matches, and on a, only the second matches. The input
string accb matches the first rule for four characters and then the second rule for three charac­
ters. In contrast, the input ace, agrees with the second rule for four characters and then the
first rule for three.
In general, REJECT is useful whenever the purpose or Lex is not to partition the input stream
but to detect all examples or some items in the input, and the instances or these items may
overlap or include each other. Suppose a digram table or the input is desired; normally the
digrams overlap, that is the word t6e is considered to contain both 16 and Ae • Assuming a
two-dimensional array named digram to be incremented, the appropriate source is

%%
(a-zl[a-z) {digram[yytext(O])[yytext(IJ]+ +; REJECT;}
\n

where the REJECT is necessary to pick up a letter pair beginning at every character, rather
than at every other character.

5. Lex Source Definitions.

Remember the format or the Lex source:

{definitions}
%%
{rules}
%%
{ user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions sec­
tion or in the rules section.
Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is
copied into the generated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action which begins with a blank or tab is
copied into the Lex generated program. Such source input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the first %%, it
appears in an appropriate place for declarations in the function written by Lex which con­
tains the actions. This material must look like program fragments, and should precede the

Revision D of 7 January 1984 11

Lex Lexical Analyzer Generator Programming Tools

first Lex rule.
As a side effect of the above, lines which begin with a blank or tab, and which contain a O· ··

comment, are passed through to the generated program. This can be used to include com-
ments in either the Lex source or the generated code. The comments should follow the host
language convention.

2) Anything included between lines containing only %{ and %} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

3) Anything after the third %% delimiter, regardless of formats, etc., is copied out after the
Lex output.

Definitions intended for Lex are given before the first %% delimiter. Any line in this section
not contained between %{ and %}, and begining in column 1, is assumed to define Lex substi­
tution strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name. The name and
translation must be separated by at least one blank or tab, and the name must begin with a
letter. The translation can then be called out by the {name} syntax in a rule. Using {D} for
the digits and {E} for an exponent field, for example, might abbreviate rules to recognize
numbers:

D
E
%%

(0--9)
[DEde)[-+)?{D}+

{D }+ printf(" integer");
{D}+ "."{D}*({E})?
{D}*"."{D}+({E})? I
{D}+ {E} printf("real");

Note the first two rules for real numbers; both require a decimal point and contain an optional
exponent field, but the first requires at least one digit before the decimal point and the second
requires at least one digit after the decimal point. To correctly handle the problem posed by a
Fortran expression such as 85.EQ.l, which does not contain a real number, a context-sensitive
rule such as

(0-9)+ /"." EQ printf(" integer");

could be used in addition to the normal rule for integers.
The definitions section may also contain other commands, including the selection of a host
language, a character set table, a list of start conditions, or adjustments to the default size of
arrays within Lex itself for larger source programs. These possibilities are discussed below
under 'Summary of Source Format,' section 12.

6. Usage.

There are two steps i.i compiling a Lex source program. First, the Lex source must be turned
into a generated program in the host general purpose language. Then this program must be
compiled and loaded, usually with a library of Lex subroutines. The generated program is on a
file named lez.1111.c • The 1/0 library is defined in terms of the C standard library (6).

12 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

The library is accessed by the loader flag -II . So an appropriate set of commands is

lex source
cc lex .yy .c -11

The resulting program is placed on the usual file 1.out for later execution. To use Lex with
Yacc see below. Although the default Lex 1/0 routines use the C standard library, the Lex
automata themselves do not do so; if private versions of input, output and unput are given, the
library can be avoided.

7. Lex and Yacc.

If you want to use Lex with Yacc, note that what Lex writes is a program named rn,lez(J, the
name required by Yacc for its analyzer. Normally, the default main program on the Lex library
calls this routine, but if Yacc is loaded, and its main program is used, Yacc will call wles{).
In this case each Lex rule should end with

retum(token);

where the appropriate token value is returned.

An easy way to get access to Y ace's names for tokens is to compile the Lex output file as part
of the Y ace output file by placing the line

include "lex.yy.c"

in the last section of Y ace input. Supposing the grammar to be named 'good' and the lexical
rules to be named 'better' the UNIX command sequence can just be:

yacc good
lex better
cc y .tab.c -ly -11

The Y ace library (-ly) should be loaded before the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex and Yacc programs can be done in either
order.

8. Examples.

As a trivial problem, consider copying an input file while adding 3 to every positive number
divisible by 7. Here is a suitable Lex source program

%%
int k;

[0-9)+ {
k = atoi(yytext);
if (k%7 == 0)

printf("%d", k+ 3);
else

printf("o/od" ,k);
}

to do just that. The rule [0-9)+ recognizes strings of digits; 1toi converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether le is divisible

Revision D of 7 January 1984 13

Lex Lexical Analyzer Generator Programming Tools

by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program
will alter such input items as J9.69 or X1. Furthermore, it increments the absolute value of all Q·,

negative num hers divisible by 7. To avoid this, just add a few more rules after the active one,
as here:

%%
int k;

-![0-9)+ {
k = atoi(yytext);
print{(" %d", k%7 == 0 ! k+ 3 : k);
}

-![0-9.)+ ECHO;
[A·Za-z)!A-Za-z0-9)+ ECHO;

Numerical strings containing a '.' or preceded by a letter will be picked up by one of the last
two rules, and not changed. The i/-elae has been replaced by a C conditional expression to save
space; the form aYb:c means 'if a then 6 else c

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of letters.

int lengs[lOO);
%%
[a-z]+ lengs[yyleng)+ + ;

\n
%%

I

Is. 0
yywrap()
{
int i;
printf("Length No. words\n");
for(i=O; i<lOO; i+ +)

if (lengs(i] > 0)
printf("%5d%10d\n" ,i,lengs(il);

return(l);
}

This program accumulates the histogram, while producing no output. At the end of the input
it prints the table. The final statement rt:turn{l); indicates that Lex is to perform wrapup. If
wwrap returns zero (false) it implies that further input is available and the program is to con­
tinue reading and processing. To provide a wwrap that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert dou­
ble precision Fortran to single precision Fortran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by defining a set of classes including both cases of
each letter:

14 Revision D of 7 January 1984

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

a
b
C

[aA)
(bB)
(cc)

z (zZ)

An additional class recognizes white space:

w I \tJ•
The first rule changes 'double precision' to 'real', or 'DOUBLE PRECISION' to 'REAL'.

{ d} {o} { u} {b} {I} {e}{W} {p}{r}{e }{c }{i}{s}{ i}{o }{n} {
printf(yytext(O)==' d'? "real" : "REAL");
}

Care is taken throughout this program to preserve the case (upper or lower) of the original pro­
gram. The conditional operator is used to select the proper form of the keyword. The next rule
copies continuation card indications to avoid confusing them with constants:

•• "(' 0) ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as 'beginning of line,
then live blanks, then anything but blank or zero.' Note the two different meanings of •
There follow some rules to change double precision constants to ordinary floating constants.

(0-9)+ {W}{d}{W}(+ -)!{W}(0-9)+ I
(0-9)+ {W}" ."{W}{d}{W}[+-)?{W}[0-9)+ I
• .• {W}(0-9)+ {W}{ d}{W}(+ -)?{W}[0-9)+ {

/• convert constants • /
for(p=yytext; •p != O; p+ +)

{
if (*p == Id' II •p == I D1)

•p=+ I e' - I di ;
ECHO;
}

After the Boating point constant is recognized, it is scanned by the /or loop to find the letter ,
or D . The program than adds 1 ,! -' I , which converts it to the next letter of the alphabet.
The modified constant, now single-precision, is written out again. There follow a series of
names which must be respelled to remove their initial '- By using the array wte:rt the same
action suffices for all the names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d}{c}{o}{s} I
{d}{s}{q}{r}{t} I
{d}{a}{t}{a}{n}

{d}{f}{l}{o}{a}{t} printf("%s" ,yytext+ l);

Another list of names must have initial d changed to initial o:

Revision D of 7 January 1984 15

Lex Lexical Analyzer Generator

{d}{l}{o}{g} I
{d}{l}{o}{g}lO I
{d}{m}{i}{n}l I
{d}{m}{a}{x}l {

yytext[O] =+ 1 a1
-

1 d';
ECHO;
}

And one routine must have initial d changed to initial r:

{d} l{m}{a}{c }{h}
ECHO;
}

{yytext[O) =+ 'r' - 1 d';

Programming Tools

To avoid such names as d1in11 being detected as instances of d,in, some final rules pick up
longer words as identifiers and copy some surviving characters:

[A-Za-z][A-Za-z0-9)* I
[o-9J+ I
\n I

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran
or with the use of keywords as identifiers.

9. Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor statements and
analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The • operator, for example, is a prior
context operator, recognizing immediately preceding left context just as S recognizes immedi·
ately following right context. Adjacent left context could be extended, to produce a facility
similar to that for adjacent right context, but it is unlikely to be as useful, since often the
relevant left context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of flags,
when only a few rules change from one environment to another, the use of ,tort condition, on
rules, and the possibility of making multiple lexical analyzers all run together. In each case,
there are rules which recognize the need to change the environment in which the following input
text is analyzed, and set some parameter to reflect the change. This may be a flag explicitly
tested by the user's action code; such a flag is the simplest way of dealing with the problem,
since Lex is not involved at all. It may be more convenient, however, to have Lex remember
the flags as initial conditions on the rules. Any rule may be associated with a start condition.
It will only be recognized when Lex is in that start condition. The current start condition may
be changed at any time. Finally, if the sets of rules for the different environments are very dis­
similar, clarity may be best achieved by writing several distinct lexical analyzers, and switching
from one to another as desired.

Consider the following problem: copy the input to the output, changing the word mar,ie to firat
on every line which began with the letter 11, changing mar,ie to aecond on every line which
began with the letter b, and changing magic to third on every line which began with the Jetter
e. All other words and all other lines are left unchanged.

16 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
%%
·a {flag= 1 a1 ; ECHO;}
'b {flag= 1 b'; ECHO;}
'c {flag= 1c1;ECHO;}
\n {flag = O ; ECHO;}
magic {

switch (flag)
{
case I a' : printf(" first"); break;
case I b': printf(" second"); break;
case I c1 : printf(" third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
Lex in the definitions section with a line reading

%Start name} name2 ...

where the conditions may be named in any order. The word Start may be abbreviated to a or
S. The conditions may be referenced at the head of a rule with the < > brackets:

<name} >expression

is a rule which is only recognized when Lex is in the start condition namd. To enter a start
condition, execute the action statement

BEGIN namel;

which changes the start condition to namd. To resume the normal state,

BEGIN O;

resets the initial condition of the Lex automaton interpreter. A rule may be active in several
start conditions:

<namel,name2,name3>

is a legal prefix. Any rule not beginning with the < > prefix operator is always active.

The same example as before can be written:

%START AA BB CC
%%
'a {ECHO; BEGIN AA;}
'b {ECHO; BEGIN BB;}
·c {ECHO; BEGIN CC;}
\n {ECHO; BEGIN O;}
<AA>magic printf(" first");
<BB>magic printf("second");
<CC> magic printf(" third");

where the logic is exactly the same as in the previous method of handling the problem, but Lex

Revision D of 7 January 1984 17

Lex Lexical Analyzer Generator Programming Tools

does the work rather than the user's code.

10. Character Set.

The programs generated by Lex handle character 1/0 only through the routines input, output,
and unput. Thus the character representation provided in these routines is accepted by Lex and
employed to return values in rn,test. For internal use a character is represented as a small
integer which, if the standard library is used, has a value equal to the integer value of the bit
pattern representing the character on the host computer. Normally, the letter • is represented
as the same form as the character constant ' i . If this interpretation is changed, by providing
1/0 routines which translate the characters, Lex must be told about it, by giving a translation
table. This table must be in the definitions section, and must be bracketed by lines containing
only '%T'. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next example

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Figure 3: Sample character table.

maps the lower and upper case letters together into the integers 1 through 26, newline into 27,
+ and - into 28 and 29, and the digits into 30 through 39. Note the escape for newline. If a
table is supplied, every character that is to appear either in the rules or in any valid input must
be included in the table. No character may be assigned the number 0, and no character may be
assigned a bigger number than the size of the hardware character set.

11. Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{ user subroutines}

The definitions section contains a combination of

18 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Lex Lexical Analyzer Generator

1) Definitions, in the form 'name space translation'.

2) Included code, in the form 'space code'.

3) Included code, in the form

%{
code
%}

4) Start conditions, given in the form

%S namel name2 ...

5) Character set tables, in the form

%T
number space character-string

%T

6) Changes to internal array sizes, in the form

%s nnn

where nnn is a decimal integer representing an array size and s selects the parameter as fol­
lows:

Letter Parameter
p positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form 'expression action' where the action may be continued
on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x the character "x •
"x"
\x
(xy)
(x-z)
['x)

·x
<y>x
xS
x?
x•
x+
x!y
(x)
x/y
{xx}

an • x •, even if x is an operator.
an • x" , even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, ... instances of x.
1,2,3, ... instances of x.
anxoray.
anx.
an x but only if followed by y.
the translation of xx from the definitions section.

Revision D of 7 January 1984 19

Lex Lexical Analyzer Generator Programming Tools

x{m,n} m through n occurrences of x

12. Caveats and Bugs.

There are pathological expressions which produce exponential growth of the tables when con•
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input stream. This is the only
restriction on the user's ability to manipulate the not-yet-processed input.

13. Acknowledgments.

As should be obvious from the above, the outside of Lex is patterned on Y ace and the inside on
Aho's string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really origi­
nators of much of Lex, as well as debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed, written, and debugged by Eric Schmidt.

14. References.

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J.
(1978).

2. B. W. Kernighan, Ratfor: A PreproceHor for a Rational Fortran, Software - Practice and
Experience, 5, pp. 395-496 (1975).

3. S. C. Johnson, Yace: Yet Another Compiler Compiler, Computing Science Technical
Report No. 32, 1975,

4. A. V. Aho and M. J. Corasick, Efficient String Matching: An Aitl to Bibliographic Search,
Comm. ACM 18, 333-340 (1975).

5. B. W. Kernighan, D. M. Ritchie and K. L. Thompson, QED Tezt Editor, Computing Sci­
ence Technical Report No. 5, 1972,

6. D. M. Ritchie, private communication. See also M. E. Lesk, The Portable C Librarr, Com­
puting Science Technical Report No. 31,

20 Revision D of 7 January 1984

0

0

0

0
Table of Contents

YACC - YET ANOTHER COMPILER-COMPILER ... 1

1. Basic Specifications ... 3

2. Actions.. 5

3. Lexical Analysis .. 7

,. How the Parser Works .. 8

5. Ambiguity and Conflicts.. 12

8. Precedence .. 18

0 7. Error Handling ... 18

8. The Yacc Environment... 19

9. Hints for Preparing Specifications .. 20
9.1. Input Style ... 20
9.2. Left Recursion ... 21
9.3. Lexical Tie-ins ... 22
9.4. Reserved Words .. 22

10. Advanced Topics ... 23
10.1. Simulating Error and Accept in Actions ... 23
10.2. Accessing Values in Enclosing Rules. .. 23
10.3. Support for Arbitrary Value Types.. 23

11. Acknowledgements ... 25
11.1. References ... ,........ 25

A. A Simple Example .. 28

B. Yacc Input Syntax.. 29

0

-i-

C. An Advanced Example .. 31

D. Old Features Supported but not Encouraged ... 38 0

0

0
- ii -

0

0

0

YACC -YET ANOTHER COMPILER­
COMPILER

Computer program input generally has some structure; in fact, every computer program that
does input can be thought of as defining an 'input language' which it accepts. An input
language may be as complex as a programming language, or as simple as a sequence of numbers.
Unfortunately, usual input facilities are limited, difficult to use, and often are lax about check­
ing their inputs for validity.

Y ace provides a general tool for describing the input to a computer program. The Y ace user
specifies the structures of his input, together with code to be invoked as each such structure is
recognized. Y ace turns such a specification into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of the flow of control in the user's
application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next basic
input item. Thus, the user can specify his input in terms of individual input characters, or in
terms of higher level constructs such as names and numbers. The user-supplied routine may
also handle idiomatic features such as comment and continuation conventions, which typically
defy easy grammatical specification.

Y ace is written in portable C. The class of specifications accepted is a very general one:
LALR(l) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been used for less
conventional languages, including a phototypesetter language, several desk calculator languages,
a document retrieval system, and a Fortran debugging system.

Y ace provides a general tool for imposing structure on the input to a computer program. The
Y ace user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do the
basic input. Y ace then generates a function to control the input process. This function, called
a paraer, calls the user-supplied low-level input routine (the lezical analyzer) to pick up the
basic items (called token,) from the input stream. The_se tokens are organized according to the
input structure rules, called grammar rulea; when one of these rules has been recognized, then
user code supplied for this rule, an action, is invoked; actions have the ability to return values
and make use of the values of other actions.

Y ace is written in a portable dialect of Cl and the actions, and output subroutine, are in C as
well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date : month_name day ',' year ;

Here, date, month_name, tla11, and 11ear represent structures of interest in the input process;

Revision D of 7 January 1984 1

Y ace Compiler Generator Programming Tools

presumably, month_name, day, and year are defined elsewhere. The comma ',' is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine
reads the input stream, recognizing the lower level structures, and communicates these tokens to
the parser. For historical reasons, a structure recognized by the lexical analyzer is called a" ter­
minal aymbor, while the structure recognized by the parser is called a "nonterminal ,ymbor.
To avoid confusion, terminal symbols wiHusually be referred to as token,.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

month_name 'J' .. a' 'n' ,
month_name : 'F' 'e' 'b' ;

month_name : 'D' 'e' 'c' ;

might be used in the above example. The lexical analyzer would only need to recognize indivi­
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yacc's ability to deal with
it. Usually, the lexical analyzer would recognize the month names, and return an indication
that a month_name was seen; in this case, month_name would be a token.

Literal characters such as ',' must also be passed through the lexical analyzer, and are also con­
sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date : month '/' day '/' year ;

allowing

7 / 4 / 1776

as a synonym for

July 4, 1776

In most cases, this new rule could be 'slipped in' to a working system with minimal effort, and
little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading
and computing with bad input data substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the input specifications, permits the reentry
of bad data, or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fails to produce a parser when given a set of specifications. For example,
the specifications may be self contradictory, or they may require a more powerful recognition
mechanism than that available to Yacc. The former cases represent design errors; the latter

0

0

cases can often be corrected by making the lexical analyzer more powerful, or by rewriting some 0
of the grammar rules. While Y ace cannot handle all possible specifications, its power compares

2 Revision D of 7 January 1984

0

0

0

Programming Tools Y ace Compiler Generator

favorably with similar systems; moreover, the constructions which are difficult for Y ace to han­
dle are also frequently difficult for human beings to handle. Some users have reported that the
discipline of formulating valid Y ace specifications for their input revealed errors of conception or
design early in the program development.

The theory underlying Yacc has been described elsewhere.2, 3, 4 Yacc has been extensively used
in numerous practical applications, including lint,0 the Portable C Compiler,& and a system for
typesetting mathematics. 7

The next several sections describe the basic process of preparing a Y ace specification; Section 1
describes the preparation of grammar rules, Section 2 the preparation of the user supplied
actions associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4
describes the operation of the parser. Section 5 discusses various reasons why Y ace may be
unable to produce a parser from a specification, and what to do about it. Section 6 describes a
simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe­
cial features of the parsers Y ace produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced topics,
and Section 11 gives acknowledgements. Appendix A has a brief example, and Appendix B
gives a summary of the Y ace input syntax. Appendix C gives an example using some of the
more advanced features of Yacc, and, finally, Appendix D describes mechanisms and syntax no
longer actively supported, but provided for historical continuity with older versions of Yacc.

1. Basic Specifications

Names refer to either tokens or nonterminal symbols. Y ace requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexi­
cal analyzer as part of the specification file; it may be useful to include other programs as well.
Thus, every specification file consists of three sections: the declar.ation,, (grammar) rulu, and
program,. The sections are separated by double percent '%%' marks. (The percent '%' is gen­
erally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal Y ace specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi­
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed
in/• ... •/, as in C and PL/I.
The rules section is made up of one or more grammar rules. A grammar rule has the form:

A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and

Revisio~ D of 7 January 1984 3

Yacc Compiler Generator Programming Tools

literals. The colon and the semicolon are Y ace punctuation.

Names may be of arbitrary length, and may be made up of letters, dot '.', underscore '-'• and

0 non-initial digits. Upper and lower case letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes '~. As in C, the backslash '\' is an
escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
'\" single quote '~
'\ \' backslash '\'
'\t' tab
'\ b' backspace
'\f' form feed
'\xxx ' 'xxx' in octal

For a number of technical reasons, the NUL character ('\O' or 0) should never be used in gram­
mar rules.

Ir there are several grammar rules with the same left hand side, the vertical bar 'I' can be used
to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be
dropped before a vertical bar. Thus the grammar rules

A BCD
A E F
A G

can be given to Y ace as

A B C D
E F
G

It is not necessary that all grammar rules with the same left side appear together in the gram­
mar rules section, although it makes the input much more readable, and easier to change.

Ir a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty : ;

Names representing tokens must be declared; this is most simply done by writing

%token namel name2 , ..

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the • atart agmbor, has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most
general structure described by the grammar rules. By default, the start symbol is taken to be
the left hand side of the first grammar rule in the rules section. It is possible, and in fact desir­
able, to declare the start symbol explicitly in the declarations section using the %start keyword:

%start symbol

4 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Yacc Compiler Generator

The end of the input to the parser is signaled by a special token, called the endmarl:er. If the
tokens up to, but not including, the endmarker form a structure which matches the start sym­
bol, the parser function returns to its caller after the endmarker is seen; it accept, the input. If
the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious 1/0 status, such as
'end-of-file' or 'end-of-record'.

2. Actions

With each grammar rule, the user may associate actions to be performed each time the rule is
recognized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if
desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by one or more statements,
enclosed in curly braces '{'and'}'. For example,

A

and

XXX:

1' B 1'
{ hello(1, "abc"); }

yyy zzz
{ printf(" a message\n");

flag= 25; }

are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol 'dollar sign' '$' is used as a signal to Y ace in this context.

To return a value, the action normally sets the pseudo-variable '$$' to some value. For exam­
ple, an action that does nothing but return the value 1 is

{ $S = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use
the pseudo-variables Sl, $2, ... , which refer to the values returned by the components of the
right side of a rule, reading from left to right. Thus, if the rule is

A BC D ;

for example, then $2 has the value returned by C, and S3 the value returned by D.

As a more concrete example, consider the rule

expr : 1' expr 1' ;
The value returned by this rule is usually the value of the e:zpr in parentheses. This can be
indicated by

expr : 1' expr 1' { SS=S2;}

By default, the value of a rule is the value of the first element in it (Sl). Thus, grammar rules
of the form

Revision D of 7 January 1984 5

Y ace Compiler Generator Programming Tools

A B

frequently need not have an explicit action. 0
In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable
to get control before a rule is fully parsed. Y ace permits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. In tum, it may access the values returned by
the symbols to its left. Thus, in the rule

A B
{ ss = l; }

C
{ x = S2; y = S3; }

the effect is to set z to 1, and !I to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new non­
terminal symbol name, and a new rule matching this name to the empty string. The interior
action is the action triggered off by recognizing this added rule. Y ace actually treats the above
example as if it had been written:

SACT /" empty • /
{ SS = l; }

A B $ACT C
{ x = $2; y = S3; }

In many applications, output is not done directly by the actions; rather, a data structure, such
as a parse tree, is constructed in memory, and transformations are applied to it before output is
generated. Parse trees are particularly easy to construct, given routines to build and maintain
the tree structure desired. For example, suppose there is a C function node, written so that the
call

node(L, nl, n2)

creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr : expr '+ ' expr
{ $$ = node('+ ', Sl, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks '%{' and '%} '. These declarations and
definitions have global scope, so they are known to the action statements and the lexical
analyzer. For example,

%{ int variable = O; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in 'yy'; the user should avoid such names.

6 Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Yacc Compiler Generator

In these examples, all the values are integers: a discussion of values of other types will be found
in Section 10.

3. Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called w/ez.
The function returns an integer, the "token number" , representing the kind of token read. If
there is a value associated with that token, it should be assigned to the external variable gylval.
The parser and the lexical analyzer must agree on these token numbers in order for communica­
tion between them to take place. The numbers may be chosen by Yacc, or chosen by the user.
In either case, the '# define' mechanism of C is used to allow the lexical analyzer to return
these numbers symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the Y ace specification file. The relevant portion of the Jex·
ical analyzer might look like:

yylex(){
extern int yylval;
int c;

C = getchar();

switch(c) {

case 'O':
case '1 ':

case '9 ':
yylval = c- 'O ';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical value of
the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT will be defined as the token number associated with the
token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser;
for example, the use of token names if or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled. The token name error is reserved for error handling, and
should not be used naively (see Section 7).

AB mentioned above, the token numbers may be chosen by Yacc or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is
the numerical value of the character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name
or literal in the declaration, aection can be immediately followed by a nonnegative integer. This

Revision D of 7 January 1984 7

Y ace Compiler Generator Programming Tools

integer is taken to be the token number of the name or literal. Names and literals not defined
by this mechanism retain their default definition. It is important that all token numbers be dis­
tinct.

For historical reasons, the endmarker must have token number O or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lez program developed by Mike
Lesk.8 These lexical analyzers are designed to work in close harmony with Yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex
can be easily used to produce quite complicated lexical analyzers, but there remain some
languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4. How the Parser Works

Y ace turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself, how­
ever, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Y ace consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The
current atate is always the one on the top of the· stack. The states of the finite state machine
are given small integer labels; initially, the machine is in state 0, the stack contains only state 0,
and no lookahead token has been read.

The machine has only four actions available to it, called ahift, reduce, accept, and error. A
move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls 111flez to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped
off of the stack, and in the lookahead token being processed or left alone.

The ahift action is the most common action the parser takes. Whenever a shift action is taken,
there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropri­
ate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessMY to consult the lookahead token to decide whether to reduce, but usu­
ally it is not; in fact, the default action (represented by a '. ') is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer n um hers, leading to some confusion. The action

8 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Yacc Compiler Generator

• reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to atate 34.

Suppose the rule being reduced is

A :x y z

The reduce action depends on the left hand symbol (A in this case), and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from the
stack (In general, the number of states popped equals the number of symbols on the right side
of the rule). In effect, these states were the ones put on the stack while recognizing :i, II, and z,
and no longer serve any useful purpose. After popping these states, a state is uncovered which
was the state the parser was in before beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform w bat is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There are significant differences
between the processing of the left hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the lookahead token is cleared by a shift, and is
not affected by a goto. In any case,'the uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action 'turns back the clock' in the parse, popping the states off the stack
to go back to the state where the right hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty,
no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When
a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In
addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter­
nal variable 1111/val is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable llll"al is copied onto
the value stack. The pseudo-variables Sl, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accept action indicates that
the entire input has been seen and that it matches the specification. This action appears only
when the lookahead token is the endmarker, and indicates that the parser bas successfully done
its job. The error action, on the other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens it has seen, together with the
lookahead token, cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing: the error recovery
(as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

Revision D of 7 January 1984

Y ace Compiler Generator Programming Tools

%token DING DONG DELL
%%
rhyme sound place

;
sound DING DONG

;
place : DELL

When Y ace is invoked with the -v option, a file called If.output is produced, with a human•
readable description of the parser. The If.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

IO Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools

state 0
Saccept : Jhyme Send

DING shift 3
. error

rhyme goto 1
sound goto 2

state l
$accept : rhyme_Send

Send accept
. error

state 2
rhyme

DELL
. error

place

state 3
sound

DONG
. error

state 4
rhyme

: sound_place

shift S

goto 4

: DING_DONG

shift 6

sound place_ (1)

reduce 1

state S
place : DELL_ (3)

reduce 3

state 6
sound DING DONG_ (2)

. reduce 2

Yacc Compiler Generator

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and w bat
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Revision D of 7 January 1984 11

Y ace Compiler Generator Programming Tools

Initially, the current state is state 0. The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING, is read, becoming the looka- o
head token. The action in state O on DING is is 'shift 3', so state 3 is pushed onto the stack,
and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
'shift 6', so state 6 is pushed onto the stack, and the lookahead is cleared. The stack now con-
tains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by rule
2.

sound : DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state O, looking for a goto on aouml,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is 'shift 5', so state 5 is pushed
onto the stack, which now has O, 2, and 5 on it, and the lookahead token is cleared. In state 5,
the only action is to reduce by rule 3. This has one symbol on the right hand side, so one state,
5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped off, uncovering state 0
again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state I, the
input is read; the endmarker is obtained, indicated by 'Send' in the y.output file. The action in
state I when the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as "DING DONG DONG", "DING DONG", "DING DONG DELL DELL", etc. A few 0
minutes spend with this and other simple examples will probably be repaid when problems arise
in more complicated contexts.

5. Ambiguity and Conflicts

A set of grammar rules is ambiguoua if there is some input string that can be structured in two
or more different ways. For example, the grammar rule

expr expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram­
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr - expr - expr

the rule allows this input to be structured as either

(expr - expr) - expr

or as

expr - (expr - expr)

(The first is called left aaaociation, the second right a11ociation).

12 Revision D of 7 January 1984

0

0

0

0

Programming Tools Yacc Compiler Generator

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to con­
sider the problem that confronts the parser when it is given an input such as

expr - expr - expr

When the parser has read the second expr, the input that it has seen:

expr - expr

matches the right side of the grammar rule above. The parser could reduce the input by apply­
ing this rule; after applying the rule; the input is reduced to ezpr (the left side of the rule). The
parser would then read the final part of the input:

- expr

and again reduce. The effect of this is to take the left associative interPretation.

Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr - expr - expr

It could then apply the rule to the rightmost three symbols, reducing them to ezpr and leaving

expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interPretation.
Thus, having read

expr - expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a "ahi/t / reduce conflict". It may also happen that the parser has a choice
of two legal reductions; this is called a "reduce / reduce conflict" . Note that there are never any
'Shirt/shift' conflicts.
When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice
to make in a given situation is called a "diaambiguating rule".

Yacc invokes two disambiguating rules by default:

1. In a shift/reduce conflict, the default is to do the shift.
2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the

input sequence).
Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2
gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.
Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Y ace can construct. The use of actions within
rules can also cause conflicts, if the action must be done before the parser can be sure which
rule is being recognized. In these cases, the application of disambiguating rules is inappropriate,
and leads to an incorrect parser. For this reason, Y ace always reports the number of
shirt/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.
In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it
is also possible to rewrite the grammar rules so that the same inputs are read but there are no

Revision D of 7 January 1984 13

Yacc Compiler Generator Programming Tools

conflicts. For this reason, most previous parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces

0 slower parsers; thus, Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an 'if-then-else' construction:

stat IF 1 ' cond 1' stat
IF 1 ' cond 1' stat ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and ,tat is a nonterminal symbol describing statements. The first rule will
be called the ,imple-i/ rule, and the second the i/-e/,e rule.

These two rules form an ambiguous construction, since input of the form

IF (Cl) IF (C2) Sl ELSE S2

can be structured according to these rules in two ways:

or

IF (Cl) {
IF (C2) Sl
}

ELSE S2

IF (Cl) {
IF (C2) Sl
ELSE S2
}

The second interpretation is the one given in most programming languages having this con­
struct. Each ELSE is associated with the last preceding 'un-ELSE'd' IF. In this example, con­
sider the situation where the parser has seen

IF (Cl) IF (C2) Sl

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (Cl) stat

and then read the remaining input,

ELSE S2

and reduce

IF (Cl) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shirted, Se read, and then the right hand portion of

IF (C 1) IF (C2) S 1 ELSE S2

can be reduced by the i!-else rule to get

IF (Cl) stat

0

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired. 0

14 Revision Dor 7 January 1984

0

0

0

Programming Tools Y ace Compiler Generator

Once again the parser can do two valid things - there is a shift/reduce conflict. The application
of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired group­
ing.

This shift/reduce conflict arises only when there is a particular current input symhol, ELSE,
and particular inputs already seen, such as

IF (Cl) IF (C2) Sl

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state
or the parser.

The conflict messages of Y ace are best understood by examining the verbose (-v) option output
file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 4S, reduce 18) on ELSE

state 23

stat IF (cond) stat_ (18)
stat IF (cond) stat_ELSE stat

ELSE shift 4S
reduce 18

The first line describes the conflict, giving the state and the input symhol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symhol is ELSE, it is possible to shift into state 4S. State 4S will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by '.', is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symhol is not ELSE, the parser reduces by grammar rule
18:

stat : IF 1' cond 1' stat

Once again, notice that the numbers following 'shift' commands refer to other states, while the
numbers following 'reduce' commands refer to grammar rule numbers. In the ,.output file, the
rule numbers are printed after those rules which can be reduced. In most one states, there will
be at most reduce action possible in the state, and this will be the default command. The user
who encounters unexpected shift/reduce conflicts will probably want to look at the verbose out­
put to decide whether the default actions are appropriate. In really tough cases, the user might
need to know more ahout the behavior and construction of the parser than can be covered here.
In this case, one of the theoretical references2, 3, 4 might be consulted; the services of a local
guru might also be appropriate.

Revision D of 7 January 1984 15

Y ace Compiler Generator Programming Tools

6. Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used construc­
tions for arithmetic expressions can be naturally described by the notion of precedence levels for
operators, together with information about left or right associativity. It turns out that ambigu­
ous grammars with appropriate disambiguating rules can be used to create parsers that are fas­
ter and easier to write than parsers constructed from unambiguous grammars. The basic notion
is to write grammar rules of the form

expr : expr OP expr

and

expr ·: UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con­
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a Y ace keyword: %left, %right, or %nonassoc, followed
by a list of tokens. All of the tokens on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of increasing precedence or binding strength.
Thus,

%left '+ ' '-'
%left '*' '/'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

%right '-'
%left '+ ' '-'
%left '* ' '/'

%%

expr expr ' = expr
expr '+ ' expr
expr ' ' expr
expr .• ' expr
expr '/' expr
NAME

16 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools

might be used to structure the input

a = b == c•d - e - rg
as follows:

a= (b = (((c•d)-e) - (rg)))

Yacc Compiler Generator

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but
different precedences. An example is unary and binary '- '; unary minus may be given the same
strength as multiplication, or even higher, while binary minus has a lower strength than multi­
plication. The keyword, %prec, changes the precedence level associated with a particular gram­
mar rule. %prec appears immediately after the body of the grammar rule, before the action or
closing semicolon, and is followed by a token name or literal. It causes. the precedence of the
grammar rule to become that of the following token name or literal. For example, to make
unary minus have the same precedence as multiplication the rules might resemble:

.%left '+ ' '-'
%left '"' '/'

%%

expr expr '+ ' expr
expr ' ' expr
expr ... expr
expr '/' expr
'-' expr %prec
NAME

.• '

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise
to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc­
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two disam­
biguating rules given at the beginning of the section are used, and the conflicts are reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre­
cedences may disguise errors in the input grammar; it is a good idea to be sparing with

Revision D of 7 January 1984 17

Y ace Compiler Generator Programming Tools

precedences, and use them in an essentially 'cookbook' fashion, until some experience has been
gained. The I/· output file is very useful in deciding whether the parser is actually doing what 0
was intended.

7. Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or
alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to con­
tinue scanning the input to find further syntax errors. This leads to the problem of getting the
parser 'restarted' after an error. A general class of algorithms to do this involves discarding a
number of tokens from the input string, and attempting to adjust the parser so that input can
continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably gen•
eral, feature. The token name 'error' is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state where the token 'error' is legal. It then
behaves as if the token 'error' were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error. If no spe­
cial error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quietly
deleted.

As an example, a rule of the form

stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state­
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, etc.

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

stat : error '; 1

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next '; '. All tokens after the error and before the next ';' cannot be shifted, and
are discarded. When the ';' is seen, this rule will be reduced, and any 'cleanup' action associ­
ated with it performed.

Another form of error rnle arises in interactive applications, where it may be desirable to permit
a line to be reentered after an error. A possible error rule might be

18 Revision D of 7 January 1984

0

0

0

0

Programming Tools Y ace Compiler Generator

input: error '\n' { printf("Reenter last line:"); } input
{ H=S4;}

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen•
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can be
used to force the parser to believe that an error has been fully recovered from. The statement

yyerrok;

in an action resets the parser to its normal mode. The last example is better written

input: error '\n'
{ yyerrok;

printf("Reenter last line: "); }
input

{ $$ = $4; }

As mentioned above, the token seen immediately after the 'error' symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille­
gal token must be discarded, and the error state reset. This could be done by a rule like

stat : error
{ resynch();

yyerrok;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of
the parser from many errors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

8. The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called 11.tab.c
on most systems (due to local file system conventions, the names may differ from installation to
installation). The function produced by Y ace is called 1/1/Parae ; it is an integer valued function.
When it is called, it in turn repeatedly calls wlez, the lexical analyzer supplied by the user (see
Section 3) to obtain input tokens. Eventually, either an error is detected, in which case (if no
error recovery is possible) wparae returns the value 1, or the lexical analyzer returns the end-0 marker token and the parser accepts. In this case, wparae returns the value 0.

Revision D of 7 January 1984 19

Y ace Compiler Generator Programming Tools

The user must provide a certain amount of environment for this parser in order to obtain a
working program. For example, as with every C program, a program called main must be o
defined, that eventually calls 111/POrae. In addition, a routine called 1111error prints a message
when a syntax error is detected.
These two routines must be supplied in one form or another by the user. To ease the initial
effort of using Y ace, a library has been provided with default versions of main and 1111error. The
name of this library is system dependent; on many systems the library is accessed by a -l;y
argument to the loader. To show the triviality of these default programs, the source is given
below:

main(){
return(yyparse());
}

and

include <stdio.h>

yyerror(s) char •s; {
fprintf(stderr, "%s\n", s);
}

The argument to yyerror is a string containing an error message, usually the string 'syntax
error'. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable 1111char contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is o
useful only in small projects, or in the earliest stages of larger ones.
The external integer variable wdebug is normally set to 0. If it is set to a nonzero value, the
parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ­
ment, it may be possible to set this variable by using a debugging system.

9. Hints for Preparing Specifications

This section contains miscellaneous hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

9.1. Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file.
The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of 'knowing who to blame when things go wrong.'

b. Put grammar rules and actions on separate lines. This allows either to be changed without
a_n automatic need to change the other.

c. Put all rules with the same left hand side together. Put the left hand side in only once, and
let all following rules begin with a vertical bar.

20 Revision D of 7 January 1984

0

0

0

0

Programming Tools Yacc Compiler Generator

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.
The example in Appendix A is written following this style, as are the examples in the text of
this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

9.2. Left Recursion

The algorithm used by the Y ace parser encourages so called 'left recursive' grammar rules: rules
of the form

name: name rest_ofJule ;

These rules frequently arise when writing specifications of sequences and lists:

list item
list ',' item

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.
It is worth considering whether a sequence with zero elements has any meaning, and if so, con­
sider writing the sequence specification with an empty rule:

seq /*empty*/
seq item

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Revision D of 7 January 1984 21

UNIX Programming Programming Tools

NULL the attempt to open failed.

FILE •freopen(fllename, t7pe, loptr) cbar •filename, •t7pe; FILE •loptr; Q
The stream named by ioptr is closed, if necessary, and then reopened as if by fopen. If .
the attempt to open fails, NULL is returned, otherwise loptr, which will now refer to the
new file. Often the reopened stream is atdla or atdout.

Int getc(ioptr) FILE •ioptr;
returns the next character from the stream named by loptr, which is a pointer to a file
such as returned by fopen, or the name atdin. The integer EOF is returned on end-of-file
or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE •loptr;
acts like getc but is a genuine function, not a macro, 80 it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE •ioptr;
putc writes the character c on the output stream named by loptr, which is a value
returned from fopen or perhaps atdout or atderr. The character is returned as value, but
EOF is returned on error.

fputc(c, ioptr) FILE •ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE •loptr;
The file corresponding to loptr is closed after any buffers are emptied. A bulfer allocated
by the 1/0 system is freed. fclose is automatic on normal termination of the program.

mush(ioptr) FILE •ioptr;
Any buffered information on the (output) stream named by loptr is written out. Output
files are normally buffered if and only if they are not directed to the terminal; however,
stderr always starts olf unbuffered and remains 80 unless aetbuf is used, or unless it is reo­
pened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls muah for each output file. To terminate without Bush­
ing, use _exit.

feof(ioptr) FILE •ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE •ioptr;
returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to getc(atdin).

putchar(c);
is identical to putc(c, atdout).

char •fgets(a, n, ioptr) char ••1 FILE •loptr;

0

reads up to n-1 characters from the stream loptr into the character pointer a. The read
terminates with a newline character. The newline character is placed in the bulfer followed Q
by a null character. fgeta returns the first argument, or NULL if error or end-of-file

22 Revision D of 7 January 1984

0

0

0

Programming Tools Y ace Compiler Generator

10. Advanced Topics

This section discusses a number or advanced features or Yacc.

10.1. Simulating Error and Accept in Actions

The parsing actions or error and accept can be simulated in an action by use or macros YY AC­
CEPT and YYERROR. YY ACCEPT causes 11worae to return the value O; YYERROR causes
the parser to behave as if the current input symbol had been a syntax error; werror is called,
and error recovery takes place. These mechanisms can be used to simulate parsers with multi­
ple endmarkers or context-sensitive syntax checking.

10.2. Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left or the current rule. The mechan­
ism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this
case the digit may be O or negative. Consider

sent adj noun verb adj noun

adj

noun:

{ look at the ,entence • . . }

THE {
YOUNG {

SS = THE; }
SS =YOUNG; }

DOG
{

CRONE
{

SS = DOG; }

if(SO == YOUNG){
printf("what!\n");
}

SS = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
not YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal or trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

10.3. Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Y ace can also
support values of other types, including structures. In addition, Y ace keeps track of the types,
and inserts appropriate union member names so that the resulting parser will be strictly type

Revision D or 7 January 1984 23

Y ace Compiler Generator Programming Tools

checked. The Yacc value stack (see Section 4) is declared to be a union of the various types of
values desired. The user declares the union, and associates union member names to each token
and nonterminal symbol having a value. When the value is referenced through a SS or Sn con- Q
struction, Y ace will automatically insert the appropriate union name, so that no unwanted
conversions will take place. In addition, type checking commands such as Lint5 will be far
more silent.
There are three mechanisms used to provide for this typing. First, there is a way of defining
the union; this must be done by the user since other programs, notably the lexical analyzer,
must know about the union member names. Second, there is a way of associating a union
member name with tokens and nonterminals. Finally, there is a mechanism for describing the
type of those few values where Y ace can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Y ace value stack, and the external variables w/val and wval, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of%{ and%}. o
Once YYSTYPE is defined, the union member names must be associated with the various ter-
minal and nonterminal names. The construction

<name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+ ' '-'
will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no a priori type. Similarly, reference to left
context values (such as $0 - see the previous subsection) leaves Yacc with no easy way of
knowing the type. In this case, a type can be imposed on the reference by inserting a union
mem her name, between < and >, immediately after the first S. An example of this usage is

rule aaa { S<intval>S = 3; } bbb
{ fun(S<intval>2, S<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

24 Revision D of 7 January 1984

0

0

0

0

Programming Tools Yacc Compiler Generator

A sample specification is given in Appendix C. The facilities in this subsection are not triggered
until they are used: in particular, the use of %type will turn on these mechanisms. When they
are used, there is a fairly strict level of checking. For example, use or Sn or SS to refer to some­
thing with no defined type is diagnosed. If these facilities are not triggered, the Y ace value
stack is used to hold int' , , as was true historically.

11. Acknowledgements

Yacc owes much to a most stimulating collection of users, w,ho have goaded me beyond my
inclination, and frequently beyond my ability, in their endless search for 'one more feature'.
Their irritating unwillingness to learn how to do things my way has usually led to my doing
things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. I.
Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version or Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. 0. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

11.1. References

1.

2.
3.

4.

5.

6.

7.

B.W. Kernighan and D.M. Ritchie, The C Programming Language, Prentice-Hall, Englewood
Cliffs, New Jersey (1978). ·

A.V. Aho and S.C. Johnson, 'LR Parsing,' Comp. Sur11e111 {(2) pp. 99-124 (June 1974).
A.V. Aho, S.C. Johnson, and J.D. Ullman, 'Deterministic Parsing of Ambiguous Grammars,'
Comm. Aaaoc. Comp. Mach. 1S(8) pp. 441-452 (August 1975).
A.V. Aho and J.D. Ullman, Principle, of Compiler Duign, Addison-Wesley, Reading, Mass.
(1977).
S.C. Johnson, 'Lint, a C Program Checker,' Comp. Sci. Tech. Rep. No. 65 (December
1977). This paper is reprinted in this manual.

S.C. Johnson, 'A Portable Compiler: Theory and Practice,' Proc. 5th A CM Sump. on Prin·
ciplea of Programming Lan(IUagea, (January 1978).

B.W. Kernighan and L.L. Cherry, 'A System for Typesetting Mathematics,' Comm. Auoc.
Comp. Mach. 18 pp. 151-157 (March 1975). This paper is reprinted in the Sun Editing anti
Tezt Proceaaing Manual.

8. M.E. Lesk, 'Lex - A Lexical Analyzer Generator,' Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975). This paper is reprinted in this
manual.

Revision D of 7 January 1984 25

Yacc Compiler Generator Programming Tools

Appendix A. A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calcula- 0
tor has 26 registers, labeled 'a' through 'z', and accepts arithmetic expressions made up of the
operators + , -, •, /, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; otherwise it is. As in C,
an integer that begins with O (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.
As an example of a Y ace specification, the desk calculator does a reasonable job of showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applica­
tions, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs[26];
int base;

%}

%start list

%token DIGIT LETTER

%left 1'
%left '&'
%left '+ ' ' '
%left ·•' '/' '%'
%left UMINUS /* supplies precedence for unary minus * /

%% /* beginning of rules section * /

list /* empty * /
list stat '\n'
list error '\n'

{ yyerrok; }

stat expr

expr

26

printf("%d\n", Sl); } {
LETTER

{
'-' expr

regs[Sl] = $3; }

'(' expr ')'

Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Yacc Compiler Generator

{ ss = S2; }
expr '+' expr

{ ss = Sl + S3; }
expr ' ' expr

{ ss = Sl - S3; }
expr '*' expr

{ ss = Sl • S3; }
expr '/' expr

{ .. = Sl I S3; }
expr '%' expr

{ ss - Sl % S3; }
expr '&' expr

{ .. = Sl & Sa; }
expr 1' expr

{ .. = S1 I S3; }
'-' expr %prec UMINUS

{ .. = - S2; }
LETTER

{ ss = regs(Sl); }
number

number DIGIT
{ SS = St; ba!!e - (Sl==O) ! 8 10; }

number DIGIT
{ ss = base• St + S2; }

%% r start of programs • /

yylex() { /* lexical analysis routine • /
/• returns LETTER for a lower case letter, yylval = 0 through 25 • /
/* return DIGIT for a digit, yylval = 0 through 9 •/
/* all other characters are returned immediately • /

int c;

while((c=getchar()) == ' ') {/* skip blanks • / }

/* c is now nonblank • /

if(islower(c)) {
yylval = c - 'a';
return (LETTER);
}

if(isdigit(C)) {

yylval = c - 'O';
return(DIGIT);
}

return(c);

Revision D of 7 January 1984 27

Y ace Compiler Generator Programming Tools

}

0

0

0
28 Revision D of 7 January 1984

0

0

0

Programming Tools Yacc Compiler Generator

Appendix B. Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context
dependencies, etc., are not considered. Ironically, the Yacc input specification language is most
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a
rule, immediately following an action. If this identifier is followed by a colon, it is the start of
the next rule; otherwise it is a continuation of the current rule, which just happens to have an
action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.) is a
colon. IC so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

r grammar for the input to Yacc •/

r basic entities • ,
%token IDENTIFIER /* includes identifiers and literals • /
%token C_IDENTIFIER /" identifier (but not literal) followed by colon •/
%token NUMBER /* (0-9)+ • /

/• reserved words: %type => TYPE, %left => LEFT, etc. •/

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK r the %% mark • /
%token LCURL /" the %{ mark • /
%token RCURL /" the %} mark •/

r ascii character literals stand for themselves • ,

%start spec

%%

spec

tail

defs

def

defs MARK rules tail

MARK { /n thia action, eat up the reat of the file }
/* empty: the second MARK is optional • /

r empty .,
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

Revision D of 7 January 1984

'

29

Yacc Compiler Generator Programming Tools

rword

tag

nlist

nmno

rules

rule

rbody

act

prec

30

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/• empty: union tag is optional • /
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist ',' nmno

IDENTIFIER /• NOTE: literal illegal with %type • /
IDENTIFIER NUMBER /• NOTE: illegal with %type •/

/* rules section • /

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
'I' rbody prec

/• empty •/
rbody IDENTIFIER
rbody act

'{ ' { Copy action, tranalate SS, etc. } '}'

/* empty •/
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

Revision D of 7 January 11)84

0

0

0

0

0

0

Programming Tools Yacc Compiler Generator

Appendix C. An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating point con­
stants, the arithmetic operations +, -, •, /, unary-, and = (assignment), and has 26 floating
point variables, 'a' through 'z'. Moreover, it also understands interval,, written

(X 'y)
where z is less than or equal to II· There are 26 interval valued variables 'A' through 'Z' that
may also be used. The usage is similar to that in Appendix A; assignments return no value, and
print n;,thing, while expressions print the (floating or interval) value.
This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double '•.
This structure is given a type name, INTERVAL, by using t11pede/. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari­
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In effect, the error recovery
mechanism of Y ace is used to throw away the rest of the offending line.
In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (for example, scalar or interval) of intermedi­
ate expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Y ace: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

2.5 + (3.5 - 4.)

and

2.5 + (3.5 , 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the ',' is read; by this time, 2.5 is finished, and the parser cannot go
back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.
This way of handling multiple types is very instructive, but not very general. If there were
many kinds of expression types, instead of just two, the number of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive,
it is better practice in a more normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Revision D of 7 January 1984 31

Yacc Compiler Generator Programming Tools

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C library routine ato/ is used to do the actual conversion from a character 0
string to a double precision value. If the lexical analyzer detects an error, it responds by return-
ing a token that is illegal in the grammar, provoking a syntax error in the parser, and thence
error recovery.

0

0
32 Revision D of 7 January 1984

0

0

0

Programming Tools

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hi;
} INTERVAL;

INTERVAL vmul(), vdiv();

double atof();

dou hie dreg(26 J;
INTERVAL vreg(26);

%}

%start lines

%union {
int ival;
double dval;
INTERVAL vval;
}

Y ace Compiler Generator

%token <ival> DREG VREG /* indices into dreg, vreg arrays * /

%token <dval> CONST

%type <dval> dexp

%type <vval> vexp

/* floating point constant * /

/* expression * /

/* interval expression * /

/* precedence information about the operators * /

%left'+ ' '-'
%left'*' '/'
%left UMINUS

%%

/* precedence for unary minus * /

lines /* empty * /
lines line

dexp '\n'
{ printf("%15.81\n", $1); }

line

vexp '\n'

Revision D of 7 January 1984 33

Y ace Compiler Generator Programming Tools

dexp:
I

I

vexp:

34

{ printr("(%15.8r , %15.8r)\n", Sl.lo, Sl.hi); }
DREG ' ' dexp '\n'

{ dreg($1) = $3; }
VREG ' ' vexp '\n'

{ vreg[Sl J = $3; }
error '\n'

{ yyerrok; }

CONST
DREG

{ $$ = dreg[Sl); }
dexp '+ ' dexp

{ S$ = Sl + $3; }
dexp '-' dexp

{ $S = $1 - $3; }
dexp '*' dexp

{ SS = $1 * $3; }
dexp '/' dexp

{ $$ = $1 / $3; }
'-' dexp %prec UMJNUS

{ $$ = - $2; }
'(' dexp 1'

{ $S = $2; }

dexp
{ $$.hi = $$.lo - $1; }

'(' dexp ',' dexp 1'
{
SS.lo = $2;
SS.hi = $4;
if($$.lo > $$.hi){

}
VREG

printr("interval out or order\n");
YYERROR;
}

{ $$ = vreg[$1); }
vexp '+ ' vexp

{ $$.hi = St.hi + S3.hi;
$$.lo = $1.lo + $3.lo; }

dexp '+ ' vexp
{ SS.hi = Sl + $3.hi;

SS .lo = $1 + $3.lo; }
vexp '-' vexp

{ U.hi = St.hi - $3.lo;
SS.lo = $1.lo - $3.hi; }

dexp '-' vexp
{ $$.hi = $1 - $3.lo;

Revision Dor 7 January 1984

0

0

0

0

0

0

Programming Tools

%%

SUo = Sl - $3.hi; }
vexp '*' vexp

{ SS = vmul(Sl.lo, $1.hi, S3); }
dexp '*' vexp

{ SS = vmul(Sl, $1, S3); }
vexp '/' vexp

{ if(dcheck($3)) YYERROR;
SS = vdiv(Sl.lo, Si.hi, S3); }

dexp '/' vexp
{ if(dcheck($3)) YYERROR;

'-' vexp
{

'(' vexp
{

SS = vdiv(Sl, Sl, $3); }
%prec UMINUS
SS.hi = -$2.lo; SS.lo - -$2.hi;

1'
$S = $2; }

Yacc Compiler Generator

}

define BSZ 50 /• buffer size ror floating point numbers • /

r lexical analysis • /

yylex(){
register c;

while((c=getchar()) == ' '){ /• skip over blanks • / }

if(isupper(c)){
yylval.ival = c - 'A';
return(VREG);
}

if(islower(c)){
yylval.ival = c - 'a';
return(DREG);
}

if(isdigit(c) 11 c== '.'){ r gobble up digits, points, exponents • /

char buf(BSZ+ 1), •cp = buf;
int dot = 0, exp = O;

ror(; (cp-buf)<BSZ ; + + cp,c=getchar()){

•cp = c;
ir(isdigit(c)) continue;
ir(c=='.'){

if(dot+ + 11 exp > return(• •); r will cause syntax error • /
continue;

Revision D or 7 January 1984 35

Y ace Compiler Generator Programming Tools

}

if(C == 'e'){ 0
if(exp++) return('e'); r will cause syntax error • ,
continue;
}

r end of number • ,
break;
}

•cp = '\O';
if((cp-buf) >= BSZ) printf("constant too long: truncated\n");
else ungetc(c, stdin); r push back last char read • ,
yylval.dval = atof(buf);
return(CONST);
}

return(c);
}

INTERVAL hilo(a, b, c, d) double a, b, c, d; { r returns the smallest interval containing a, b, c, and d • ,
/* used by •, / routines • /
INTERVAL v;

if(a>b) { v.hi
else { v.hi = b;

if(c>d) {

= a; v.lo = b; }
v.lo = a; }

if(c>v.hi) v.hi = c;
if(d<v.lo) v.lo = d;
}

else {
if(d>v.hi) v.hi = d;
if(c<v.lo) v.lo = c;
}

return(v);
}

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return(hilo(a•v.hi, a*v.lo, b•v.hi, b•v.lo));
}

dcheck(v) INTERVAL v; {

36

if(v.hi >= 0. && v.lo <= 0.){
printf("divisor interval contains O.\n");
return(1),
}

return(0);
}

Revision D of 7 January 1984

0

0

0

0

0

Programming Tools

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.Io, b/v.hi, b/v.Io));
}

Revision D of 7 January 1984

Yacc Compiler Generator

37

Y ace Compiler Generator Programming Tools

Appendix D. Old Features Supported but not Encouraged

This Appendix mentions synonyms and featnres which are supported for historical continuity, 0
but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes '" '.

2. Literals may be more than one character long. If all the characters are alphabetic, numeric,
or _, the type number of the literal is defined, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Y ace, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash '\' may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.
6. C code between %{ and %} used to be permitted at the head of the rules section, as well as

in the declaration section. 0

0
38 Revision D of 7 January 1984

0

0

0

Table of Contents

ASSEMBLER REFERENCE MANUAL .. 1

1. Overview and Layout of This Chapter... 1

2. How to Use the Assembler .. 2

3. Notation ... 2

4. Further Reading ... 3

5. Elements of Assembly Language
5.1. Character Set Which the Assembler Recognizes .. .
5.2. Identifiers
5.3. Numeric Labels
5.4. Local Labels
5.5. Scope or Labels ,
5.6. Constants

3
4
4
5
5
5
6

5.7. Numeric Constants ... 6
5.8. String Constants ... 7
5.9. Assembly Location Counter .. 7

6. Expressions .. 8
6.1. Operators .. 8
6.2. Terms .. 9
6.3. Expressions .. 9
6.4. Absolute, Relocatable, and External Expressions .. 9

7. Layout or an Assembler Language Source Program ... 10
7.1. Label Field... 11
7.2. Operation Code Field.. 11

7 .. 2.1. Operation Code Size Qualifiers ... 12
7 .3. Operand Field 12

7.3.1. Register Operands .. 13
7.3.2. Operand Expressions... 13

7.4. Comment Field.. 13
7 .5. Direct Assignment Statements ... 14

-i-

8. Instructions and Addressing Modes 16
8.1. Instruction Mnemonics .. .
8.2. Extended Branch Instruction Mnemonics .. .

15 0 15
8.3. Addressing Modes 16
8.4. Addressing Categories .. . 18

9. Assem bier Directives 19
9.1. .ascii - Generate Sequence of Character Data .. . 20
9.2. .asciz - Generate Zero Terminated Sequence of Character Data 21
9.3 .. byte, .word, .long - Generate Data : 21
9.4 .. text, .data, .bss - Switch Location Counter 22
9.5. .skip - Advance the Location Counter 23
9.6 . .lcomm - Reserve Space in .bss Area .. . 23
9.7 .. glob! - Designate an External Identifier 24
9.8 .. comm - Define the Name and Size of a Common Area 24
9.9. .even - Force Location Counter to Even Byte Boundary 24

10. Error Codes .. . 26

A. List of AS Opcodes 28

B. MC68010 Extensions 38

0

0
- II -

0

0

0

ASSEMBLER REFERENCE MANUAL

This paper is the Programmer's Reference Manual for a, - the assembler for the UNIXt system
running on the Sun Workstation. A, converts source programs written in A11embler Language
into a form that the linker utility, ld(l) will turn into a program that is runnable on the UNIX
operating system.
A, provides the assembly language programmer with a minimal set of facilities to write pr~
grams in assem bier language. Since the majority of programming is done in high level
languages, a, doesn't provide any elaborate macro facilities or conditional assembly features. It
is assumed that the volume or assembly code produced is so small that these facilities aren't
required.
This chapter describes the syntax and usage of the a, assembler for the Motorola MC68000
microprocessor. The basic format of a, is loosely based on the Digital Equipment Corp Macr~
11 assembler described in DEC's publication DEC-11-0MACA-A-D but also contains elements of
the UNIX PDP-11 a,(l) assembler. The instruction mnemonics and effective address format are
derived from a Motorola publication on the MC68000: the MACSS MC68000 De,ign
Specification Jn,truction Set Proce11or dated June 30, 1979.
This is a reference manual as opposed to a treatise on writing in assem bier language. It is
assumed that the reader is familiar with the concepts of machine architecture, the reasons for
an assembler, the ideas of instruction mnemonics, operands, and effective address modes, and
assembler directives. It is also assumed that the reader is familiar with the MC68000 processor,
its instruction set, its addressing modes, and especially the irregularities in them.

1, Overview and Layout of This Chapter

In this introduction, below, there is a short summary or how to use ao, and its command line
options. The rest of the chapter is organized into sections containing the following material in
this order:
• Basic elements of an assembler language program.
• Description of the lexical elements (tokens) that make up an a, program.

• Rules for expressions.
• Layout of an assembly language program - the rules for constructing statements, and the

elements of each statement.

t UNIX is a trademark or Bell Laboratori ...

Revision D of 7 January 1984 1

Assembler Manual Programming Tools

• Discussion on the specifics of the MC68000 machine instructions, instruction mnemonics,
addressing modes, and addressing categories.

• Assembler directive, (pseudo-ops) that a, supports. Assembler directives do not generate 0
machine instructions, but instead they direct the assemblers actions, and do jobs such as
reserving space, or generating initialized data.

• Error messages.
• Summary of the MC68000 machine instructions (opcodes), their layout, and the condition

codes that are affected.
• New features of the MC68010 processor which provides virtual memory support.

2. How to Use the Assembler

This discussion assumes that the reader is using a, on the UNIX operating system.

The assembler source code of the program should be in a file with a ., suffix. Suppose that
your program is in a file called part,.,. To run the assembler, type the command:

% as parts.a

A, runs silently (if there are no errors), and generates a file called a. out.

A, also accepts several command line options. These are:

·o Place the output in the file specified by the name following the -o.

-R Make initialized data segments read only (actually the assembler places them at the end of O·

the .text area).

-L Keep local (compiler generated) symbols that start with the letter L. This is a debugging
feature. If the -L option is omitted, the assembler discards those symbols and does not
include them in the symbol table .

• J Make all jumps to external symbols (jsr and jmp) PC relative rather than long absolute.
This is intended for use when the programmer knows that the program is short. If there
are any externals which are too far away, the loader will complain when the program is
linked.

-d2 This is intended for small stand-alone programs. The assembler makes all program refer­
ences PC relative and all data references short absolute. Note that the -J option does half
this job anyway.

Readers should also consult the UNIX Programmer's Manual page for the man entry on a,.

3. Notation

The notation used in this chapter is a somewhat modified Backus-Naur Form (BNF). A string
of characters on its own stands for itself, for example:

WIDGET

is an occurrence of the literal string "WIDGET", and:

2 Revision D of 7 January 1984

0

0

0

0

Programming Tools Assembler Manual

1983

is an occurrence of the literal constant 1983. An element enclosed in < and > signs is a non­
terminal symbol, and must eventually be defined in terms of some other entities. For example,

< identifier>

stands for the syntactic construct called "identifier", which is eventually defined in terms of
basic objects. A gyntactic object followed by an ellipsis:

<thing> ...

denotes one or more occurrences of <thing>. Syntactic objects which occur one after the
other, as in:

first thing second thing

simply means an occurrence of fir,t thing followed by 1econd thing. Syntactic elements
separated by a vertical bar sign (I), as in:

<letter> I <digit>

means an occurrence of <letter> or < digit> but not both. Brackets and braces define the
order of interpretation. Brackets also indicate that the syntax described by the subexpression
they enclose is optional. That is:

I <thing> J

denotes zero or one occurrences of <thing>, while:

{ <thing one> I <thing two>} <thing three>

denotes a <thing one> or a <thing two>, followed by a <thing three>.

4. Further Reading

Motorola MC68000 16-bit Microprocessor User's Manual.

5. Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language program. The
next chapter discusses the rules for expressions and operand formation. Topics covered in this
chapter are:

• Character ,et which the assembler recognizes,

• Rules for identifier,,
• Syntax for numeric conatant,,

• Syntax for ,tring con1tant1,

• Rules for comment,,
• Layout of an assem bier ,ource ,tatement.

An assembler language program is ultimately constructed from characters. Characters are com­
bined to make up luical element, or token, of the language. Combinations of tokens then form
assembler language 1tatement1, and sequences of statements then form an assembler program.

Revision D of 7 January 1984 3

Assembler Manual

This section describes the basic lexical elements of u.

5.1. Character Set Which the Assembler Recognizes

A, recognizes the following character set:

• The letter, A through Z and a through •·

• The digit, 0 through 9.

Programming Tools

• The ASCII graphic character, - the printing characters other than letters and digits.

• The ASCII non-graphic,: space, tab, carriage-return, and newline (also known as line feed).

5.2. Identifiers

Identifier, are used to tag assembler statements (where they are called label,), as the location
tag for data, and as the symbolic names of constants.
An identifier in an a, program is a sequence of from 1 to 255 characters from the set:

• Upper case letters A through Z.
• Lower case letters a through s.

• Digits O through 9.
• The characters underline (_), period (.), and dollar sign ($).

The first character of an identifier must not be nnmeric. Other than that restriction, there are
a few other points to note:
• All 255 characters of an identifier are significant and are checked in comparisons with other

identifiers.
• Upper case letters and lower case letters are considered distinct, so that kit_of_paria and

KIT _OF _PARTS are two different identifiers.
• Although the period (•) and dollar sign ($) characters can be used to construct identifiers,

they are reserved for special purposes (pseudo-ops for instance) and should not appear in
user-defined identifiers.

Examplu of Identifiers

Grab_Hold Widget Pot_of_Message MAXNAME

4 Revision D of 7 January 1984

0

0

0

0

0

0

Progra!llming Toolii Assembler Manual

6.3. Numeric Labels

A numeric label consists of a digit O to 9 followed by a colon. As in the case of name labelii, a
numeric label assigns the current value of the location counter to the symbol. However, several
numeric labels with the same digit may be used within the same assembly. References of the
form

nb
refer to the first numeric label

n:
backwards from the reference;

nf
symbols refer to the first numeric label

n:
forwards from the reference.

6.4. Local Labels

Local labels are a special form of identifier which are strictly local to a control section. Local
labels provide a convenient means of generating labels for branch instructions and such. Use of
local labels reduces the possibility of multiply-defined labels in a program, and separates entry
point labels from local references, such as the top of a loop. Local labels cannot be referenced
from outside of the current assembly unit. Local labels are of the form nS where n is any
integer. Valid local labels include:

1S 27S 394$

6.6. Scope of Labels

The acope of a label is the "distance" over which it is visible to other parts of the program
which want to reference it. An ordinary label which tags a location in the program or data is
visible only within the current assembly. An identifier which is designated as an external
identifier via a .glob I directive are visible to other assembly units at link time.

Local labels have a scope, or span of reference, which extends between one ordinary label and
the next. Every time an ordinary label is encountered, all previous local labels associated with
the current location counter are discarded, and a new local label scope is created. The following
example illustrates the different scopes of the different kinds of labels:

Revision D of 7 January 1984 5

Assembler Manual Programming Tools

first: addl dO,dl creates a new local label scope

100$: addqw #7,d3 first appearance of 100$
bees lOOS branches to the label above

second: andl #Ox7fl,d4 lOOS has gone away

100$: cmpw dl,d3 this is a different 100$
beep 100$ branches to the previous instruction

third: movw d0,d7 now 100$ has gone away again
beep 100$ generates an error message

The labels firat, ,ccontl, and third all have a scope which is the entire source file containing
them. The first appearance of the local label lOOS has a scope which extends between fir,t and
aecond. The second appearance of the local label lOOS has a scope which extends between
,econd and third. After the appearance of the label third, the branch to 100$ will generate an
error message because that label is no longer defined in this scope.

5.6. Constants

0

There are two forms of constants available to a, users, namely numeric constants and ,tring
constants. All constants are considered absolute quantities when they appear in an expression
(see section 3 for a discussion on absolute and relocatable expressions). o

5.7. Numeric Constants

A, assumes that any token which starts with a digit is a numeric constant. A, accepts numeric
quantities in either decimal (base 10), hexadecimal (base 16), or octal (base 8) radices. Numeric
constants can represent quantities up to 32 bits in length.

Decimal numbers consist of between one and ten decimal digits (0 through ll). The range of
decimal numbers is between -2,147,483,648 and 2,147,483,647. Note that you can't have com­
mas in decimal numbers even though they are shown here for readability. Note also that
decimal numbers can't be written with leading zeros, because a number starting with a zero is
taken as an octal constant, as described below.

Hexadecimal constants must start with the notation Ox and can then have between one and
eight hexadecimal digits. The hexadecimal digits consist of the decimal digits O through I) and
the hexadecimal digits a through r or A through F.IAs •

digit 0. There can then be from one to 11 octal digits (0 through 7) in the number. But note
that 11 octal digits is 33 bits, so the largest octal number is 037777777777. The assembler gen­
erates an error message if the decimal digits 8 and I) appear in octal constants.

6 Revision D of 7 January lll84

0

I

I
!

•

0

Programming Tools Assembler Manual

5.8. String Constants

A string is a sequence of ASCII characters, enclosed in quote signs •.
Within string constants, the quote sign is represented by a backslash character followed by a
quote sign. The backslash character itself is represented by two backslash characters. Any
other character can be represented by a backslash character followed by one, two, or three octal
digits. The table below shows the octal representation of some of the more common non print­
ing characters.

Cliorocter
Octal

Repre,entotion

Backspace 010

Horizontal Tab 011

Newline (Line-Feed) 012

Form-Feed 014

Carriage-Return 015

0 5.9. Assembly Location Counter

The assembly location counter is the period character (.). It is colloquially known as dot.
When used in the operand field of any statement, dot represents the address of the lint byte of
the statement. Even in assembler directives, dot represents the address of the start of that
assembler directive. For example, if dot appears as the third argument in a .long directive, the
value placed at that location is the address of the lint location of the directive - dot is not
updated until the next machine instruction or assembler directive. For example:

Ralph: movl .,aO I load value of Ralph into aO

At the beginning of each assembly pass, the assembler clears the location counter. Normally,
consecutive memory locations are assigned to each byte of generated code. However, the loca­
tion where the code is stored may be changed by a direct assignment altering the location
counter:

. = < ezpreuion>

This <expression> must not contain any forward references, and must not change from one
pass to another. Storage area may also be reserved be advancing dot. For example, if the
current value of dot is 1000, the direct assignment statement:

Table: .=.+OxlOO

reserves 256 bytes (100 hexadecimal) of storage, with the address of the lint byte as the value
of Table. The next instruction is stored at address 1100. Also see the .likip assembler directive o for another means of achieving the same effect.

Revision D of 7 January Hl84 7

Assembler Manual Programming Tools

The value of dot is always relative to the start of the current control section. For instance:

. = OxlOOO

does not set dot to absolute location OxlOOO, but to location OxlOOO relative to the start of the
current control section. This practice is not recommended.

6. Expressions

Expressions are combinations of operands (numeric constants and identifiers) and operators,
forming new values. The sections below define the operators which ,u provides, then gives the
rules for combining terms into expressions.

6.1. Operators

Identifiers and numeric constants can be combined, via arithmetic operators, to form ezprea­
aiona. Aa provides unary operators and binary operators, described below.

Unary Operators
Operator Function Deacription

- unary minus. Performs a two's complement of its following argu-
ment.

- logical negation Performs a one's complement logical negation of its
following argument.

Binary operators
Operator Function Description

+ Addition Arithmetic addition of its arguments.

- Subtraction Arithmetic subtraction of its arguments.

• Multiplication Arithmetic multiplication of its arguments .

I Division Arithmetic division of its arguments. Note that
division is aa is integer division, which truncates to-
wards zero.

Each operator is assumed to work on a 32 bit number. Ir the value of a particular term occu­
pies only 8 bits or 16 bits, the short quantity is sign extended into a full 32-bit value.

8 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools AS11embler Manual

6.2. Terms

A term is a component of an expression. A term may be one of the following:

• A numeric constant, whose 32-bit value is used. The assembly location counter, known as
dot, is considered a number in this context.

• An identifier.
• An expression or term enclosed in parentheses (). Any quantity enclosed in parentheses is

evaluated before the rest of the expression. This can be used to alter the normal left-to­
right evaluation of expressions (for example, differentiating between a•b+ c and a•(b+ c)) or
to apply a unary operator to an entire expreS11ion (for example, -(a•b+ c)).

• A term preceded by a unary operator. For example, both double_plua_ungood and
- double_plus_ungood are terms.

Multiple unary operators can be used in a term. For example, --positive has the same
value as positive.

6.3. Expressions

Expression are combinations of terms joined together by binary operators. An expression is
always evaluated to a 32-bit value. ·

If the operand only requires a single byte value, (a .byte directive or an addq instruction, for
example), the low order eight bits of the expression are used.
If the operand only requires a single 16-bit word value, (a ,word directive or an movem
instruction, for example), the low order 16 bits of the expression are used.

Expressions are evaluated left to right with no operator precedence. Thus

1 + 2 • 3

evaluates to 9, not 7. Unary operators have precedence over binary operators since they are
considered part of a term, and both terms of a binary operator must be evaluated before the
binary operator can be applied.

A missing expression or term is interpreted as having a value of zero. In this case, an Invalid
ezpre11ion error is generated.
An ln11alitl Operator error means that a valid end-of-line character or binary operator was not
detected after the assem bier processed a term. In particular, this error is generated if an ex pres­
s ion contains a identifier with an illegal character, or if an incorrect comment character was
used.

6.4. Absolute, Relocatable, and External Expressions

When an expression is evaluated, its value is either absolute, relocatable, or external:

An expreS11ion is absolute if its value is fixed.

• An expression whose terms are constants is absolute.

• An identifier whose value is a constant via a direct 388ignment statement is absolute.

Revision D of 7 January 1984 9

Assembler Manual Programming Tools

• A relocatable expression minus a relocatable term is absolute, where both items belong
to the same program section.

An expression is relocatable if its value is fixed relative to a base address, but will have an offset
value when it is linked, or loaded into memory. All labels of a program defined in relocatable
sections are relocatable terms.

Expressions which contain relocatable terms must only odd or aubtract comt11nt1 to their value.
For example, assuming the identifier widget was defined in a relocatable section of the program,
then the following demonstrates the use of relocatable expressions:

widget

widget+ 5

widget•2

2-widget

widget-blivet

i, 11 ,imple relocatable term. It, value bear, 11 conatant relotion,Mp
to the 6111e addreH of the current control aection.

i, 11 ,imple relocatable ezpre11ion. Since the value of widget Ao, 11

con,tant relation,Mp to the ba,e oddre11 of the current control ,ec•
tion, adding a con1t11nt to it dou not change it, relocatable 1t11tu,.

Not relocatable. Multiplging II relocatable term 611 a con,tant invali­
date, the relocatable atatu,.

Not relocatable, ,ince the ezpreuion cannot be linked 6g adding
widget'• off,et to it.

Abaolute, ,ince the offaet, added to widget and blivet cancel each oth•
er out.

An expression is external (or global) if it contains an external identifier not defined in the
current program. With one exception, the same restrictions on expressions containing relocat­
able identifiers apply to expressions containing external identifiers. The exception is that the
expression

widget-blivet

is incorrect when both blivet is an external identifier. The reason is that you cannot subtract an
external relocatable expression. In addition, you cannot multiply or divide 11n11 relocatable
expression.

7. Layout of an Assembler Language Source Program

An a, program consists of a series of statement,. Each statement occupies exactly one line.

A line is a sequence of characters with a <newline> character at the end. Blank lines (which
have only whitespace with a <newline> character at the end) are ignored. The maximum line
length is 255 characters. Continuation lines are not supported in this assembler.

Multiple statements (s•e below) can appear on a line, separated by semicolon characters. But
note that once a comment field of a statement has been started, a semicolon appearing in the
comment is part of the comment, and not a statement separator.
The format of an a, assembly language statement is:

10 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Assembler Manual

[<label field> J < op-cotle> [< operantl field> J [I < comment> J

It is possible to have an assembler language statement which consists or only a label field. It is
also possible to have an assembler language statement which consists or only a comment. Then
as a consequence or the above two statements, it is possible to have an assembler language
statement which consists or just a label field followed by a comment field.

The fields or a statement can be separated by spaces (blanks) or tabs. There must be at least
one space or tab separating the op-code field from the operand field, but spaces are unnecessary
elsewhere because the label field is terminated by a colon and the comment field starts with a
vertical bar. Spaces can also appear on either side of operators in operand field expressions.
Spaces and tabs are significant when they appear in a character string (for instance, as the
operand or an .ASCII pseudo-op) or in a character constant. In this case, a space or tab stands
for itself.

7.1. Label Field

A label is an identifier which the programmer may use to tag the location or program and data
objects. The format or a < label fieltl> is: ·

< itlentifier>: [<identifier>:) ...

Ir present, a label alway, occurs first in a statement and mud be terminated by a colon:

sticky: I there is a label defined here.

More than one label may appear in the same source statement, each one being terminated by a
colon:

presson: grab: hold: I there are multiple labels defined here.

A maximum or 10 labels may be defined in a single source statement. The collection of label
definitions in a statement is called the label fieltl.

When a label is encountered in the program, the assembler assigns that label the value of the
current location counter. The value of a label may be either absolute or relocatable. If the
current value of the location counter is relocatable, the absolute value of the symbol is assigned
when the program is linked via the UNIX system ltl(l) command.

7 .2. Operation Code Field

The operation code field of an assembly language statement identifies the statement as either a
machine instruction or an assem bier directive.
One or more spaces (or tabs) must separate the operation code field from the following operand
field in a statement. Spaces or tabs are unnecessary between the label and operation code fields,
but they are recommended to improve readability of the program.

Revision D of 7 January 1984 11

Assembler Manual Programming Tools

A machine instruction is indicated by an instruction mnemonic. The assembly language state-
ment is intended to produce a single executable machine instruction. The operation of each o
instruction is described in the manufacturer's nser manual. Some conventions used in aa for
instruction mnemonics are described in section 4 and a complete list of the instructions is
presented in the appendix.
An assembler directive, or pseudo-op, performs some function during the assembly process. It
does not produce any executable code, but it may assign space in a program for data.

Note that a, expects that all instruction mnemonics in the op-code field should be in lower ca,e
only. Use of any upper case letters in instruction mnemonic gives rise to an error message.

The names of register operands must also be in lower case only. This behavior differs from the
case of identifiers, where upper case letters and lower case letters are considered distinct.

7 .2.1. Operation Code Size Qualifiers

Many MC68000 machine instructions can operate upon byte (8-bit), word (16-bit), or long word
(32-bit) data. The size which the programmer requires is indicated as part of the instruction
mnemonic. For instance, a movb instruction moves a byte of data, a movw instruction moves
a 16-bit word of data, and a movl instruction moves a 32-bit long word of data. In general,
the default size for data manipulation instructions is word.

Similarly, branch instructions can use a long or short offset to indicate the destination. So the
beq instruction uses a 16-bit oll'set, whereas the beq• uses a short (8-bit) offset.

Note that this implementation of a, provides an extended set of branch instructions which start
with the letter j instead of the letter b. If the programmer uses the J forms, the assembler com-

0 putes the correct oll'set size for the instruction.

7 .3. Operand Field

The operand field of an assembly language statement supplies the arguments to the machine
instruction or assembler directive.

A, makes a distinction between the < operand field> and individual < operand,> in a machine
instruction or assembler directive. Some machine instructions and a55embler directives require
two or more arguments, and each of these is referred to as an "operand".

In general, an operand field consists of zero or more operands, and in all cases, operands are
separated by commas. In other words, the format for an < operand field> is:

(<operand>[, <operand>) ...)

The format of the operand field for machine instruction statements is the same for all instruc­
tions, and is describecl in section 4. The format of the operand field for a55embler directives
depends on the directive itself, and is included in the directive's description in section Ii of this
manual.

Depending upon the machine instruction or assembler directive, the operand field consists of one
or more operand,. The kinds of objects which can form an operand are: 0

12 Revision D of 7 January 1984

0

0

0

Programming Tools Assembler Manual

• Register operands.

• Expressions.

These forms of operands are described in the subsections following.

7 .3.1. Register Operands

Register operands in a machine instruction refer to the machine registers of the MC68000 pro­
cessor. Register operands are:

• Any one of the data registers dO through d7,

• Any one of the addre11 registers aO through a7,

• Any one of the apecial registers. The special registers are:

cc The Condition Code register.

•r The Status Register.

•p The Stack Pointer.

usp The User Stack Pointer.

sfc The Source Function Code register (68010 oniy).

dfc The Destination Function Code register (68010 only).

Note that register a7 and the stack pointer are the same register. The only place where this is
important is when the supervisor must explicitly use u•p to refer to the user stack pointer.

The notation dn refers to any data register, an refers to any address register, and rn means any
register from the data or address registers.

Note that register names mual be in lower case; a, does not recognize register names in upper
case or a combination of upper case and lower case.

7 .3.2. Operand Expressions

Ezpreuion, define rules for using arithmetic and logical operator, to operate upon numeric con•
stants and identifiers to yield new values. The rules for expressions were defined in chapter 3.

7 .4. Comment Field

A, provides the means for the programmer to place comments in the source code. There are
two ways of representing comments:

A line whose first non-white,pace character is the octothorpe character (#) is considered a com·
ment. This feature is handy for passing assembler code through the C preprocessor. For exam·
pie, these lines are comments:

Revision D of 7 January 1984 13

Assembler Manual Programming Tools

This is a comment line.
And this one is also a comment line.

The other way to introduce a comment is when a comment field appears as a part of a state­
ment. The comment field is indicated by the presence of the vertical bar character (I) after the
rest of the source statement.

The comment field consists of all characters on a source line following and including the com•
ment character. The assembler ignores the rest of the comment field up to the end of the line.
Any character may appear in the comment field, with the obvious exception of the <newline>
character, which starts a new line.

An assembler source line can consist of just the comment field. For example, the two statements
below are quite acceptable to the assembler:

I This is a comment field.
I So is this.

7 .5. Direct Assignment Statements

A direct assignment statement assigm the value of an arbitrary expression to a specified
identifier. The format of a direct assignment statement is:

<identifier> = <e:zpre.,ion>

Examples of direct assignments are:

vect_size - 4
vectora = OxFFFE
vectorb = vectora-vect_size
CRLF - OxODOA

Any identifier defined by direct assignment may be redefined later in the program, in which case
its value is the result of the last such statement. This is analogous to the SET operation found
in other assemblers.

A local identifier may be defined by direct assignment, though this doesn't make much sense.

Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since this would be
tantamount to redefining the address of a place in the program. In addition, an identifier which
has been defined in a direct assignment statement cannot later be used as a label. Both situa­
tions give rise to an assem bier error message.

If the < ezpreaeion> is absolute, the identifier is also absolute, and may be treated 88 a con­
stant in subsequent expressions. If the <e:zpre.,ion> is relocatable, however, the <identifier>
is also relocatable, and it is considered to be declared the same program section 88 the expres­
sion.

If the e:zpreaaion contains an external identifier, the identifier defined by the = statement is also
considered external. For example:

14 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools

.globlX
foo=X

I X is declared u external identifier
I foo becomes an external identifier

Assembler Manual

assigns the value of X (zero if it is undefined) to foo and makes foo an external identifier.
External identifiers may be defined by direet assignment.

8. Instructions and Addressing Modes

This chapter describes the conventions used in u to specify instruction mnemonics and address­
ing modes. The information in this chapter is specific to the machine instructions and address­
ing modes of the MC68000 processor.

8.1. Instruction Mnemonics

The instruction mnemonics which u uses are based on the mnemonics as described in the
Motorola MC68000 processor manual. A, deviates from the Motorola manual in several areas.

Most of the MC68000 instructions can apply to byte, word on long operands. Instead of using a
qualifier of .b, .w, or .1 to indicate byte. word, or long as in the Motorola assembler, u places a
suffix after the normal instruction mnemonic, thereby creating a separate mnemonic to indicate
which length operand was intended.
For example, there are three mnemonics for the or instruction: orb, orw and orl, meaning OR
byte, OR word, and OR long, respectively.
Instruction mnemonics for instructions with unnsual opcodes may have additional sulf1Xes.
Thus in addition to the normal add variations, there also exist addqb, addqw and addql for
the add quick instruction.
Branch instructions come in two flavors, byte (or short) and word. uction appends the suffix ,
to the basic mnemonic to specify the short appends the sulflX , to the basic mnemonic to
specify the short version of the instruction. For example, beq refers to the word version of the
Branch if Equal instruction, while beq• refers to the short version of that instruction.

8.2. Extended Branch Instruction Mnemonics

In addition to the instructions which explicitly specify the instruction length, a, supports
extended branch instructions, whose names are generally constructed by replacing the b with j.
If the operand of the extended branch instruction is a simple address in the current segment,
and the offset to that address is sufficiently small, aa automatically generates the corresponding
short branch instruction.
If the offset is too large for a short branch, but small enough for a branch, the corresponding
branch instruction is generated. If the operand references an external address or is complex (see
next paragraph), the extended branch instruction is implemented either by a jmp or jsr (for
jra or jbar), or by a conditional branch (with the sense of the conditional inverted) around a

Revision D of 7 January 1984 15

Assembler Manual Programming Tools

jmp for the extended conditional branches.
In this context, a complex address is either an address which specifies other than normal mode
addressing, or relocatable expressions containing more t.han one relocatable symbol. For
instance, if a, b and c are sym bots in the current segment, the expression a+ l>-c is relocatable,
but not simple.
Consult appendix A for a complete list of the instruction op-codes.

8.3. Addressing Modes

The following table describes the addressing modes that a recognizes. The notations used in
this table have these meanings:

an. · refers to an address register,

d n refers to a data register,

ri refers to either a data or an address register,

d refers to a displacement, which is a constant expression in a,
:izz refers to a constant expression.

Certain instructions, particularly move accept a variety of special registers including:

sp the stack pointer which is equivalent to a7,

sr

cc

the status register,

the condition codes of the status register,

usp the user mode stack pointer,

pc the program counter.

16

•

Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools Assembler Manual

Addressing Modea
Mode Notation Ezample

Register an,dn,sp,pe,cc,sr,usp movw a3,d2
Register Deferred an@ movw a3@,d2

Postincrement an@+ movw a30+ ,d2
Predecrement an@- movw a3@.,d2

Displacement an@(d) movw a3@(24),d2
Word Index anO(d, Ri:W) movw a3@(16, d2:W),d3
Long Index anO(d, R i:L) movw a3@(16, d2:L),d3

Absolute Short s:W movw 14:W,d2
Absolute Long su;L movw 14:L,d2

PC Displacement pc@(d) movw pc@(20),d3
PC Word Index pc@(d, Ri:W) movw pc@(l4, d2:W),d3
PC Long Index pc@(d, R i:L) movw pc@(l4, d2:L),d3

Normal loo movw foo,d3

Immediate #xxx movw #27+ 3,d3

Normal mode assembles as PC relative if the assembler can determine that this is appropriate,
otherwise it assembles as absolute long
The notation for these addressing modes derived from the Motorola notation with the exception
of the colon instead of period in index mode.
The Motorola manual presents different mnemonics (and in fact different forms of the actual
machine instructions) for instructions that use the literal effective address as data instead of
using the contents of the effective address. For instance, the Motorola manual uses the
mnemonic adda for add addre11. aa does not make these distinctions because it can determine
the type of the operand from the form of the operand. Thus an instruction of the form:

avenue: .word 0 ...
add! #avenue,aO

assembles to the add addre•• instruction because aa can see that avenue is an address.

right_now: = 40000

adda #right_now,aO

assembles to an add immediate instruction because aa can see that right_now is a constant.
Because of this determination of operand forms, some of the mnemonics listed in the Motorola
manual are missing mnemonics from the set of mnemonics that aa recognizes.
The MC68000 is restrictive in that certain classes of instructions only accept limited subsets of
the address modes above. For example, the add addrea, instruction does not accept a data
register as a destination.
aa tries to check all these restrictions and generates the illegal operand error code for instruc­
tions that do not satisfy the address mode restrictions.
The next section below describes how the address modes are grouped into address categories.

Revision D of 7 January 1984 17

Assembler Manual Programming Tools

8.4. Addressing Categories

The MC68000 groups the effective address modes into categories derived from the manner in 0
which they are used to address operands. Note the distinction between address modu and
address categoriu. There are 14 addressing mode., and they fall into one or more of four
addressing categorie,. The addressing categories are defined here, followed by a table which
summarizes the grouping or the addressing modes into the categories.
Data means that the effective address mode is need to refer to data operands such a., a d

register or immediate data.
Memory means that the effective address mode can refer to memory operands. Examples ·

include all the a-register indirect address modes and all the absolute address modes.

Alterable means that the effective address mode refers to operands which are writeable (alter­
able). This category takes in every addressing mode except the PC-relative address­
ing modes and the immediate address mode.

Control means that the effective address mode refers to memory operands without any expli-
cit size specification.

Some addressing categories can be combined. So the Motorola MC68000 manual mentions
things like Data Alterable Addre11ing Mode to mean that the particular instruction can use the
data addressing mode, or the alterable addressing mode, or either of thoee modes.

18 Revision Dor 7 January 1984

0

0

0

0

0

Programming Tools Assembler Manual

Table 1: Addressing Categories

Addressing Categories
Addressing Aas em bl er Data Memory Control Alterable

Mode Syntaz

Register Direct an, dn, sp, pc,
cc, sr, usp X X

A Register Indirect an@ X X X X

A Register Indirect an@+ X X
X

with Post Increment

A Register Indirect an@-
X X

X
with Pre Decrement

A Register Indirect an@(d) X X X X
with Displacement

A Register Indirect an@(d,ri: W) X X X
X

with Word Index

A Register Indirect an@(d,ri:L) X
with Long Index

X X
X

Absolute Short xxx:W X X X X

Absolute Long xxx:L X X X X

PC Relative pc@(d) X X X

PC Relative with Word Index pc@(d,ri: W) X X X

PC Relative with Long Index pc@(d,ri:L) X X X

Immediate Data #nnn X X

9. Assembler Directives

Assembler directives are also known as p,eudo operation, or paeudo-op,. Pseudo-ops are used to
direct the actions of the assembler, and to achieve effects such as generating data. The follow­
ing pseudo-ops are availa hie in a,:

Revision D of 7 January 1984 19

Assembler Manual Programming Tools

Assembler Directives
Pseudo

Operation
Description

. ascii Generates a sequence of ASCII characters .

. asciz Generates a sequence of ASCII characters, terminated by a zero byte .

. byte Generates a sequence of bytes in data storage .

. word Generates a sequence of words in data storage .

.long Generates a sequence of long words in data storage .

. text Specifies that generated code be placed in the fezt control section until further notice .

.data Specifies that generated code be placed in the tlata control section until further no-
tice.

.datal Specifies that generated code be placed in the tlata1 control section until further no-
tice.

.data2 Specifies that generated code be placed in the tlataS control section until further no-
tice.

. bss Specifies that space will be reserved in the 611 control section until further notice .

. glob! Declares an identifier as global (external) .

. comm Declares the name and size of a common area .

.!comm reserves a specified amount of space in the bu area •

. skip advances the location counter by a specified amount .

. even forces location counter to next word (even byte) boundary .

.stabz Builds special symbol table entries. These directives are here for the benefit of com-
pilers which generate information for the symbolic debug utility.

These assembler directives are discussed in detail in the sections following.

9.1. .ascii - Generate Sequence of Character Data

The .ascii directive translates character strings into their ASCII equivalents for use in the source
program. The format of the .ascii directive is:

[<label>:) ,ascii • <claaracfer 1frin11>"

< claaracfer 1trin11>
contains any character or escape sequence which can appear in a character string.
Obviously, a newline must not appear within the character string. A newline can be
represented by the escape sequence \012.

-
..)

0
20 Revision D of 7 January 1984

0

0

0

Programming Tools Assembler Manual

The examples following illustrate the use or the ,ucii statement:

Octal Code Generated: Statement:

150 145 154 154 157 040 .ascii "hello there"
164 150 145 162 145

127 141 162 156 151 156 .ascii "Warning-\007\007 \012"
147 055 007 007 040 012

141 142 143 144 145 146 .ascii "abcdefg"
147

9.2. ,asciz - Generate Zero Terminated Sequence of Character
Data

The .uciz directive is equivalent to the ,asciz directive with a zero byte automatically inserted
as the final character of the string. This feature is indented for generating strings which C pro­
grams can use.
The examples following illustrate the use of the .uciz statement:

Octal Code Generated: Statement:

110 145 154 154 157 040
127 157 162 144 041 000

124 150 105 040 107 162
145 141 164 040 120 122
117 115 160 153 151 156
040 163 164 162 151 153
145 163 040 141 147 141
151 156 041 000

.asciz "Hello World!"

.asciz "The Great PROMpkin strikes again!"

9.3 .• byte, .word, .long - Generate Data

The .byte, ,word and ,long directives reserve bytes, words, and long words, and initializes
them with specified values.
The format of the various forms of data generation statements is:

[<label>:) ,byte [<e:rpre,aion> J [, <ezpre,aion>) .. .

[<label>:) ,word [<e:rpreuion>)[, <e:rprea,ion>) .. .

(<label>: J ,long [< ezpru,ion> J [, < ezpre,aion>) .. .

Revision D or 7 January 1984 21

Assembler Manual Programming Tools

The .byte directive reserves one byte (8 bits) for each expression in the operand field, and ini­
tializes the byte to the low-order 8 bits or the corresponding expression.
The .word directive reserves one word (16 bits) for each expression in the operand field, and 0
initializes the word to the low-order 16 bits or the corresponding expression.
The .long directive reserves one long word (32 bits) for each expression in the operand field,
and initializes the long word to the low-order 32 bits or the corresponding expression.
Multiple expressions can appear in the operand field or the .byte, .word, or .long directives.
Multiple expressions must be separated by commas.

9.4 . . text, .data, .bss- Switch Location Counter

These statements change the "control section" where assembled code will be loaded.
A, (and the UNIX system linker) views programs as divided into three distinct sections or
address spaces:
tezt is the address space where the executable machine instructions are placed.

data is the address space where initialized data is placed. The assembler actually knows
about three data areas, namely, data, data1, and data!!. The second and third data
areas are mainly for the benefit or the C compiler and are or minimal interest to the
assembly language programmer.

bu

If the -R option is coded on the a, command line, it means that the initialized data
should be considered read only. It is actually placed at the end of the tezt area.

is the address space where the uninitialized data areas are placed. Also see the
.!comm directive described below.

For historical reasons, the different areas are frequently referred to as "control sections" (csects
for short).
These sections are equivalent as far as a, is concerned with the exception that no instructions or
data are generated for the 611 section - only its size is computed and its symbol values are out­
put.
During the first pass of the assembly, a, maintains a separate location counter for each section.
Consider the following code fragments:

code:

grab:

more:

hold:

.text
movw

.data

.long

.text
addw

.data

.byte

place the next instruction in the tezt section
dl,d2

I now generate some data in the data section
27

I now revert to the tut section
d2,dl

I and now back to the data section
4

During the first pass, a, creates the intermediate output in two separate chunb: one for the tezt
section and one for the data section.

22 Revision Dor 7 January 1984

0

0

0

0

0

Programming Tools Assembler Manual

In the tezf section, code immediately precedes more; in the data section, l,rab immediately pre­
cedes hold. At the end of the first pass, u rearranges all the addresses so that the sections are
sent to the output file in the order: tezf, data and ba,.
The resulting output file is an executable image file with all addresses correctly resolved, with
the exception of undefined .globl', and .comm',.
For more information on the format ol the assembler's output file, consult the UNIX Program­
mers manual for the entry on a.out(5).

9.5. ,skip - Advance the Location Counter

The ,skip directive reserves storage area by advancing the current location counter a specified
amount. The format of the ,•kip directive is:

.skip <size>

where <size> is the number ol bytes by which the location counter should be advanced. The
,•kip directive is equivalent to performing direct assignment on the location counter. For
instance, a ,akip directive like this:

.skip 1000

is equivalent to the direct assignment statement:

.-.+1000

9.6 . . lcomm - Reserve Space in .bsa Area

The ,lcomm directive is a lazy way to get a specific amount of space reserved in the . b11 area.
The format of the ,lcomm directive is:

.lcomm <name>,<size>

where <name> is the name of the area to reserve, and <1ize> is the number of bytes to
reserve. The ,lcomm directive specifically reserves the space in the . bH area, regardless of
which location counter is currently in effect.
A ,lcomm directive like this:

.lcomm lower_forty,1200

is equivalent to these directives:

.bss I switch to .6,, area
lower_forty: .skip size
revert to pre,,iou, control ,ection

Revision D of 7 January 11184 23

Assembler Manual Programming Tools

9.7. .globl - Designate an External Identifier

A program may be assembled in separate modules, and then linked together to form a single
executable unit. See the ld(l) command in the UNIX Programmer's Manual.

External identifiers are defined in each of these separate modules. An identifier which is declared
(given a value) in one module may be referenced in another module by declaring the identifiers
as external in both modules.
There are two forms or external identifiers, namely, those defined with the .globl and those
defined with the .comm directive. The .comm directive is described in the next section.

External symbols are declared with the .glob I assembler directive. The format is:

.globl < aumbol> [, <•umbol> J •..

For example, the following statements declare the array TABLE and the routine SRCH as
external symbols:

.glob! TABLE,SRCH
TABLE: .word
SRCH: movw

etc ...

0,0,0,0,0
TABLE,dO

External symbols are only declared to the assembler. They must be defined (that is, given a
value) in some other statement by one of the methods mentioned above. They need not be
defined in the current program; in this case they are Bagged as "undefined" in the symbol table.
Ir they are undefined, they are considered to have a value of zero in expressions.

9.8. .comm - Define the Name and Size of a Common Area

The .comm directive declares the name and size of common areas, for compatibility with FOR·
TRAN and other languages which use common. The format of the .comm statement is:

.comm <name>, <con,tanl ezp,e11ion>

where name is the name of the common area, and con,tant ezpru,ion is the size or the common
area.The .comm directive implicitly declares the identifier name as an external identifier.
a, does not allocate storage for common symbols; this task is left to the linker. The linker com­
putes the maximum declared size of each common symbol (which may appear in several load
modules), allocates storage for it in the final ba, section, and resolves linkages. If, however,
< name> appears as a global symbol (label) in any module or the program, all references to
< name> are linked to it, and no additional spaces is allocated in the .6,, area.

9.9. .even - Force Location Counter to Even Byte Boundary

0

0

The .even directive advances the location counter to the next even byte boundary, if its
current value is odd. This directive is necessary because word and long data values must lie on

0 even byte boundaries, and also because machine instructions must start on even byte

24 Revision D of 7 January 1984

0

0

0

Programming Tools Assembler Manual

boundaries.

10. Error Codes

Usage Errors

Unknotllfl option ':r' ionored
A, does not recognize the option :,. Valid options are:

-o Place the output in the file specified by the name following the •o.

-R Make initialized data segments read only.

-L Keep local (compiler generated) symbols that start with the letter L.
-J Make all jumps to external symbols (jsr and jmp) PC relative rather than long abso-

lute.

-d2 Make all program references PC relative and all data references short absolute.

Cannot open ,ource file
The assembler cannot open a specified source file. Check the spelling, ensure that the path­
name supplied is correct, or check that you have read permission on that file.

Too manl(file name, given
The assembler can't cope with the number of files given. Break the job into smaller stages.

Cannot open output file
The specified output file cannot be created. Check that the permissions allow opening this
file.

Assembler Error Messages

If a, detects any errors during the assembly process, it prints out a message of the form:

as: error (<line_no>): <error_code>

Error messages is sent to the Standard Error file. Here is a list of a, error codes, and their pos­
sible causes.

Invalid Character
An unexpected character was encountered in the program text.

Multipll(defined •lffflbol

• An identifier appears twice as a label.
• An attempt to redefine a label using an = (direct assignment) statement.

• An attempt to use, as a label, an identifier which was previously defined in an = (direct
assignment) statement.

Revision D of 7 January 1984 25

Assembler Manual Programming Tools

Symbol atorage ezceeded
No more room is left in the assembler's symbol table. Cut the program into smaller por-
tions; assemble portions or the program separately, then bind them together using the Q
linker.

Out of 1tring1 ,pace
No more room is left in the assembler's internal string table. Cut the program into smaller
portions; assemble portions of the program separately, then bind them together using the
linker.

Stab atorage ezceede,l
No more room is left in the assembler's symbol table for debug information. Cut the pro­
gram into smaller portions; assemble portions or the program separately, then bind them
together using the linker.

lnvali,l Con,tant
An invalid digit was encountered in a number. For example, using a decimal digit 8 or 9 in
an octal number. Also happens when an out-of-range constant operand is found in an
instruction - for example:

addq #200,dO
asll #12,dO

lnvali,l Term
The expression evaluator could not find a valid term: symbol, constant or (<ezpreuion>J.

0 An invalid prefix to a number or a bad aymbol name in an operand generates this message.

lnvalitl Operator
Check the operand field for a bad operator. The operators that u recognizes are plus (+),
minus (-), negate or one's complement (-), multiply (•), and divide (/).

Non-relocatable ezpreuion

• If an expression contains a relocatable symbol (a label, for instance), the only operations
that can be applied to it are the addition of absolute expressions or the subtraction of
another relocatable symbol (which produces an absolute result).

• This message also appears when a reference is made to a local label which is undefined.

lnvalitl operand
The operand used is not consistent with the instruction used - for example:

addqb #1,aS

is an invalid combination of instruction and operand. Check the instruction set descriptions
for valid combinations of instructions and operands.

lnvali,l 1ymbol
If an operand that should be a symbol is not - for example:

26 Revision D of 7 January 1984

0

0

0

0

Programming Tools Assembler Manual

.glob! 3

because the constant 3 is not a symbol.

Invalid 111,i/lflmenl
An attempt was made to redefine a label with an - statement.

Too man11 labd,
More than 10 labels appeared on a single. statement.

Invalid op-code
The assembler did not recognize an instruction mnemonic. Probably a misspelling.

Invalid airing
An invalid string was encountered in an .aacll or .aacls directive.

• Make sure the string is enclosed in double quotes.

• Remember that you must use the sequence \" to represent a double quote inside the
string.

Wrong number a/operand,
Check the appendix containing the operation codes list for the correct number of operands
for the current instruction.

Line too long
A statement was found which has more than 255 characters before the newline.

Invalid regiater ezpreuion
A register name was found where one should not appear - for example:

add #dO,_there

OJJ,et too large
The instruction is a relative addressing instruction and the displacement between this
instruction and the label specified is too large for the address field of the instruction.

Odd addreu
The previous instruction or pseudo-op required an odd number of bytes and this instruction
requires word alignment. This error can only follow an .ucii, an .ucis, or a .byte
pseudo-operation.

• Use a .even directive to ensure that the location counter is forced to a 16-bit boundary.

Undefined L·•ltfflbol
This is a warning message. A symbol beginning with the letter "L" was used but not
defined. It is treated as an external symbol. Compiler generated labels usually start with
the letter "L" and should be defined in this assembly. The absence of such a definition usu­
ally indicates a compiler code generation error.

Revision D of 7 January 1984 27

Assembler Manual Programming Tools

Appendix A. List of AS Opcodes

This appendix is a list of the instruction mnemonics, grouped into logical categories.

Each operation code describes the following things:

• The mnemonics for the instruction,

• The generic name for the instruction,

• The assem bier syntax and the variations on the instruction,

• The condition codes that this instruction affects.

0

The syntax for a, machine instructions differs somewhat from the instruction layouts and '
categories shown in the Motorola MC68000 manual. For example, a, provides a single set of
mnemonics for add (add binary), adda (add address), and addi (add immediate). In general, a,
,elect, the appropriate inatruction from the form of the operand,.

Here is a brief explanation of the notations used below.

• An instruction of the form add:r, when describing the assembler syntax, means that the
instruction is coded as addb or addw or addl, etcetera.

• An operand field of an means any A register.
• An operand field of dn means any D register.

• An operand field of rn means any A or D register.

• An operand field of e11 means an effective address designated by one of the permissible
addressing modes for the MC68000. Consult the Motorola MC68000 manual for details of
the allowed addressing modes for each instruction.

• An operand field of # dattJ means an immediate operand.

• Other special registers such as cc (condition code register) and l!1' (status register) are 0
specifically called out where appropriate.

• The condition code register has these flags, with the following meanings.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise.
V Set if there was an arithmetic overflow. Cleared otherwise.

C Set if a carry is generated (for addition) or a borrow is generated (for a subtraction) out
of the most significant bit of the operand. Cleared otherwise.

X This condition code is transparent to data movement instructions. When it is affected it
is set the same as the C (carry) condition.

• The notations under condition code, in the tables below have these meanings:

28

• set according to the result of the instruction.
this instruction does not affect this condition code.

0 this instruction clears this condition code.

1 this instruction sets this condition code.

U this condition code is undefined after the instruction.

? this condition code is set according to the status register pulled off the stack, or accord­
ing to the immediate operand.

Revision D of 7 January 1984

0

Programming Tools Assembler Manual

0 JJouo,e uperana Instructions
Mnemonic, Operation A11cm6ler Condition

S11ntaz Code,
X N z V C

addb adda ea,dn
addw add binary adda dn,co • • • • •
addl adda ftlota,es

andb anda ca,dn
andw logical and anda dn,co • • • • •
andl anda fdata,es

cmpb cmpa ca,dn
cmpw arithmetic com pare fdota,co - • • • •
empt

cmpa

eorb eora dn,co
eorw logical exclusive or eou fdota,es • • 0 0

eorb f4ata,cc -
eorl eorw f4ota,,r

movb mova ca,co
movw move data

movl ftlota,dn - • • 0 0
movl

orb ora ca,dn

0 orw OU dn,ca
inclusive or or ftloto,es - • • 0 0

orl orb fdota,cc
orw ftlota,,r

subb suba ca,dn
subw arithmetic subtract suba dn,co • • • • •
subl suba ftloto,co

0
Revision D of 7 January I 984 29

Assembler Manual Programming Tools

Single Operand /natructions
Mnemonics Operation ABBem6ler Condition

S11ntaz Codes 0
X N z V C

clrb
clrw clear an operand clrs c• - 0 1 0 0
clrl

negb
negw negate binary negs es • • • • •
neg!

negxb
negxw negate binary with extend negxs ca • • • • •
negxl

notb
notw logical complement nots es - • • 0 0
notl

st set all ones st ca - - - - -
sf set all zeros sf ca - - - - -
shi set high shi es - - - - -
sis set lower or same sis es - - - - -
sec set carry clear sec c• - - - - -
scs set carry set 8CS es - - - - -
sne set not equal sne ea - - - - -
seq set equal seq CII - - - - - 0
SVC set no overflow SVC es - - - - -
svs set on overflow SVS CII - - - - -
spl set plus spl es - - - - -
smi set minus smi e• - - - - -
sge set greater or equal sge es - - - - -
sit set less than sit es - - - - -
sgt set greater than Sgt CII - - - - -
sle set less than or equal sle CII - - - - -
tas test operand then set tas es - • • 0 0

tstb
tstw test operand tsts es - • • 0 0
tstl .

0
30 Revision D of 7 January 1984

Programming Tools A1111embler Manual

0 lJranch instructions

Mnemonic. Operation Aaaem61er Condition
Sptaz Code,

X N z V C

bee
branch carry clear bees

bees
ea

bes
branch carry set bcss bess ea

beq branch on equal beqs H
beq.,

bge
branch greater or equal bges H

bges
.

hgt
branch greater than bgts ea

bgts

bhi
branch higher bhis

bhis
ea

hie
branch less than or equal hies

hies
ea

0
bis

branch lower or same hiss hiss ea
bit branch less than bits
bits e•
bmi branch minus bmis
bmis

,,.

bne
branch not equal bnes bnes Cl

bpi
branch positive bpls ea

bpls
.

bra branch always bras
bras

ea
bsr subroutine branch
bsrs

bsrs ea

bvc branch overflow clear
bvcs

bvcs ea

bvs branch overflow set bvss
bvss

,,.

0

Revision D of 7 January 1984 31

Assembler Manna! Programming Tools

est ecrement an
Condition Aaaem6ler

Mnemonics Operation Spntaz Code•
X N z V C

Decrement & Branch dbcc dn,laliel dbcc
on Carry Clear
Decrement & Branch dbcs dn,la6el dbcs on Carry Set
Decrement & Branch dbeq dn,lo6el dbeq on Equal
Decrement & Branch dbf dn,laliel dbf on False
Decrement & Branch dbge dn,ls6d dbge
on Greater Than or Equal
Decrement & Branch

dbgt dn,lo6d dbgt on Greater Than

dbhi
Decrement & Branch

dbhi dn,la6el
on High
Decrement & Branch dble dn,lo6el dble on Less Than or Equal
Decrement & Branch dbls dn,lo6el dbls on Low or Same
Decrement & Branch

dblt dn,lobel dblt
on Less Than
Decrement & Branch dbmi dn,lobel dbmi
on Minus
Decrement & Branch dbne dn,lo6el dbne on Not Equal

· Decrement & Branch dbpl dn,la6el dbpl
on Plus
Decrement & Branch dbra dn,la6d dbra Always (same as dbf)
Decrement & Branch dbt dn,la6el dbt on True
Decrement & Branch dbvc dn,lo6el dbvc on Overflow Clear
Decrement & Branch dbvs dn,lo6el dbvs on Overflow Set

0
32 Revision D of 7 January 1984

Programming Tools Assembler Manual

0 nstructions
Allaembler Condition Mnemonics Operation Spta:z Codes

X N z V C

jcc jump cany clear jcc e11
jcs jump on cany jcs e11
jeq jump on equal jeq ell

jge jump greater or equal jge ell

jgt jump greater than jgt es
jhi jump higher jhi e11
jle jump less than or equal jle e11
jls jump lower or same jls es
jlt jump less than jlt es
jmi jump minus jmi e11
jne jump not equal jne ell

jpl jump positive jpl ell

jra jump always jra ell

jbsr jump to subroutine jbsr e11
jvc jump no overflow jvc es
jvs jump on overflow jvs ell

0

0

Revision D of 7 January 11184 33

Assembler Manual Programming Tools

Shift Instructions
Mnemonics Operation

Aaaembler Condition
Syntaz Codes

0
X N z V C

aslb ul:r dz,dy
ashr arithmetic shift left ulz #tlato,du • • • • •
asll ulz ea

asrb UH dz,dy
asrw arithmetic shift right UH #tlata,d11 • • • • •
asrl UH ea

lslb lslz dz,d11
lslw logical shift left lslz #tlata,dy • • • 0 •
Isl! lsl:r ea

lsrb lsrz dz,d11
lsrw logical shift right lsrz #tlato,d11 • • • 0 •
lsrl lsrz ea

rolb rol:r dz,d11
rolw rotate left rob #tlato,d11 0 • • 0 •
roll rol:r ea

rorb rorz dz,d11
rorw rotate right ror:r #tlata,d11 0 • • 0 •
rorl ror:r ea

roxlb roxlz dz,d11 0
roxlw rotate left with extend roxl:r #tlata,d11 • • • 0 •
roxll roxlz ea

roxrb roxrz dz,d11
roxrw rotate right with extend roxH #tlato,d11 • • • 0 •
roxrl roxH ea

0
34 Revision D of 7 January 1984

Programming Tools A!ISembler Manual

0 Miscellaneous Vlasses
Mnemonic& Operation A11aembler Condition

S11ntaz Codu
X N z V C

add decimal
abed dr,dz abed • u • u • with extend
abed au@-,azO-

addqb
addqw add quick addqs §data,ea • • • • •
addql

addxb addxs dr,dz
addxw add extended addxz a,0-,aaO- • • • • •
addxl

bchg test a bit and change
bchg dn,ea • bchg §data,ea - - - -

heir test a bit and clear
heir dn,ea
heir §data,ea - - • - -

bset test a bit and set bset dn,ea • bset §data,ea - - - -
btst test a bit

btst dn,ea
btst §data,ea - - • - -

0 cmpmb
cmpmw compare memory cmpmz al,IO+ ,AzO+ - • • • •
cmpml

chk
check register

chk ea,dn - • u u u against bounds

divs signed divide divs ea,dn - • • • 0
divu unsigned divide divs · ea,dn - • • • 0

exg exchange registers exg rz,rr - - - - -
extw sign extend ext dn • • 0 0 ext! -
jmp jump jmp ea - - - - -
jsr jump to subroutine jsr ea - - - - -
lea load effective addre!IS lea ea,an - - - - -
link link and allocate link an,#di,p - - - - -

0

Revision D or 7 January 1984 35

Assembler Manual Programming Tools

-Miscellaneous Ulasses, continued

Mnemonics Operation Assembler Condition
Svntaz Codes

X N z V C

moveml move multiple registers
movem.r #maak,ea

ea,#ma,k - - - - -movemw movem.r

movepl
move peripheral

movep.r dn,an@(tl) - - - - -movepw movep.r dn,an@(tl)

moveq move quick moveq #tlata,dn - • • 0 0
muls signed multiply muls ea,dn 0 0 • • 0
mulu unsigned multiply mulu ea,dn 0 0 • • 0

nhed negate decimal with extend nbcd ea • u • u •
nop no operation nop - - - - -
pea push effective address pea es - - - - -
reset reset machine reset - - - - -
rte return from exception rte ? ? ? ! !
rtr return and restore codes rtr ! ! ! ! !
rts return from subroutine rts - - - - -
shed subtract decimal with extend shed du,d.r • u • u • shed a,..0-,a.rO-
stop halt machine stop #u.r ? ! ! ? !

subqb
subqw subtract quick subq.r #tlata,ea • • • • •
subql

subxb subx.r du,dz
subxw subtract extended subx.r ai,@-,az@.. • • • • •
subxl

swap swap register halves swap dn • • • • •
trap trap trap #vector - - - - -
trapv trap on overflow trapv - - - - -
unlk unlink unlk an - - - - -

B. MC68010 Extensions

The Motorola MC68010 processor has some additional instructions and some extensions to
existing instructions. These are documented here. Here is a brief summary of the new features
of the MC68010.

• When the processor takes a bus error or address error exception, it saves 29 words on top of
the system stack. The software must be cognizant of whether to pop 29 words or four
words on executing an RTE instruction.

0

~

• A Vector Base Register has been added so that the exception/trap vectors can be located
anywhere in supervisor space. The only time that the startup vectors are read from absolute
location O is on processor reset. 0

36 Revision D of 7 January 1984

0

0

0

Programming Tools Assembler Manual

• Two new 3-bit registers have been added to provide supervisor access to alternate address
spaces. The Source Function Code register (SFC) and the Destination Function Code regis­
ter (DFC) are used in conjunction with the Move to Address Space (movs) instruction to
control which address spaces is selected for the move.

• There is a new instruction - MOVC - which stands for MOVE to/from Control Register.

• A MOVE FROM CCR instruction has been added so that user programs can move the con­
dition code register to a specified destination.

• The MOVE FROM STATUS REGISTER instruction is now privileged.

• A new instruction - MOVS - which stands for MOVE to/from Address Space has been
added.

• The RTE instruction has been enhanced so that the instruction knows about different stack
layouts, and by the addition of a field which gives control over the number of words added
to the stack pointer when the RTE instruction is executed.

• The RTS instruction has been enhanced by the addition of a field specifying a number which
should be added to the stack pointer after the program counter has been pulled off the
stack. This means that a subroutine can automatically get its arguments popped off the
stack when an RTS instruction is executed.

MOVC - Move To or From Control Reglater
The MOVC instruction moves data between an address or data register and the control register.
The format of the MOVC instruction is:

MOVC
MOVC

Rn,Cr
Cr,Rn

The specified general register is copied to the specified control register, or tJice 11er111. 32 bits are
always transferred, even when the control register haa fewer than 32 bits. Unused bits always
read out as zeros.
MOVC is a privileged instruction.

MOVC does not affect any condition codes.

The layout of the MOVC instruction is:

15 14 13 12 11 10 9 8 7 6 5 4

0 1 0 0 1 1 1 0 0 1 1 1

A Register Control Register
D Number

The fields in the instruction have the following meanings:

dr fidtl Specifies the direction of the data transfer:

0 Transfer is from Cr to Rn.
1 Transfer is from Rn to Cr.

A/D Field Specifies whether Rn is an address or a data register:
0 Rn is a data register.

Revision D of 7 January 1984

3 2 1 0

1 0 1 dr

37

Assembler Manual Programming Tools

1 Rn is an address register.

Regiater Field
Specifies the number of the address or data register involved in the transfer.

Control Regiater
Specifies the number of the control register involved in the transfer. The only con­
trol register numbers defined are:

MC68010 Control Register Codes
Code Name Function

OxOOO SFC Source Function Code Register for the MOVS ea to Rn instruc-
tion.

OxOOO DFC Destination Function Code Register for the MOVS Rnto ea
instruction

OxOOO USP User Stack Pointer.

OxOOO VBR Base Register for Exception Vector Table.

Any other numbers appearing in the control register field generate an illegal instruction excep­
tion.

38 Revision D of 7 January 1984

0

0

0

0

0

0

Programming Tools AMembler Manual

Move From The Condition Code Register
This is a new instruction in the MC68010. The effect of moving the contents of the condition
code register in the MC68000 was done via the Move from Status Register instruction. In the
MC68010, the Move from Status Register instruction has been made privileged and the new
Move from Condition Code Register added so that a user program can read the condition codes.
The format of the Move from Condition Code Register instruction is:

movw cc,eo

A word composed of a high order byte of zeros, and the low order byte of the Status Register is
written to the destination location specified by ea. This is a word only sized instruction.

Move from Condition Code Register does not affect any condition codes.

The layout of the Move from Condition Code Register instruction is:

15 14 13 12 11 10 0 8 7 6 5 4 3 2 1 0

I O I 1 I O I O I O I O I 1 I O I 1 I 1 I Effective Address

The fields in the instruction have the following meanings:
Effective Atldru,

Specifies the destination location where the Condition Code Register should be
transferred. Only Data Alterable addreMing modes are allowed in this instruction.

Revision D of 7 January 1984 39

Assembler Manual Programming Tools

Move From The Staiu• Register
The effect of moving the contents of the condition code register in the MC68000 was done via o
the Move from Status Register instruction. In the MC68010, the Move from Status Register
instruction has been made privileged.
The format of the Move from Status Register instruction is:

movw sr,ea

The contents of the Status Register is written to the destination location specified b7 ea. This
is a word onl7 sized instruction.
Move from Status Register is a privileged instruction.

Move from Status Register does not affect an7 condition codes.
The layout of the Move from Status Register illlltruction is:

15 14 13 12 11 10 0 8 7 6 5 4 3 2 1 0

I O I 1 I O I O I O I O I O I O ! 1 ! 1 ! Effective Address

The fields in the instruction have the following meanings:
Effective A ddrea,

40

Specifies the destination location where the Status Register should be transferred.
Only Data Alterable addressing modes are allowed in this instruction.

Revision D of 7 January 1984

0

0

0

0

0

Programming Tools Assembler Manual

Move To/From Add- Space
Move to or from Address Space moves a byte, word, or long word operand from a data or
address register to an alternate address space, or moves a byte, word, or long word operand
from a location in an alternate address space to a specified data or address register.

The format of the Move to/from Address Space instruction is:

movsb
movsw
movsl

Rn,ec1

ea,Rn

The address space involved in the transfer is determined by the Source Function Code (SFC)
register (for a move from address space) and is determined by the Destination Function Code
(DFC) register (for a move to address space).
Move to/from Address Space is a privileged instruction.

Move to/from Address Space does not affect any condition codes.

The layout of the Move to/from Address Space instruction is:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 o I o I o 1 1 I 1 I o I Size I Effective Address

A Register dr Unused
D

Effective Address Extension, if any

The fields in the instruction have the following meanings:

Size Field Specifies the size of the operation:
00 byte operation.
01 word operation.

10 long operation.

Effective A ddru,
Specifies the source or destination location within the alternate address space. Only
Memory Alterable addressing modes are allowed in this instruction.

Regi,ter Field
Specifies the number of the address or data register involved in the transfer.

A/D Field Specifies whether Rn is an address or a data register:

0 Rn is a data register.

1 Rn is an address register.

dr field Specifies the direction of the data transfer:

0 Transfer is from effective address location within source address-space to Rn.
1 Transfer is from Rn to effective address location within destination addreM-space.

Revision D of 7 January 1984 41

Assembler Manual Programming Tools

Return From Exception

Return from Exception is used when returning to a previous context after an interrupt or a o
trap has been processed.

The Status Register and the Program Counter are pulled from the system stack, and they
overwrite the previous Status Register and Program Counter. The Vector Ofl'set word is also
pulled from the stack, and is examined to determine how much more information to restore.

The format of the Move to/from Address Space instruction is simply:

rte

The address space involved in the transfer is determined by the So~e Function Code (SFC)
register (for a move from address space) and is determined by the Destination Function Code
(DFC) register (for a move to address space).

Move to/from Address Space is a privileged instruction.

All condition codes may be affected by the contents of the Status Register/Condition Code
Register pulled off the stack.

The layout of the Move to/from Address Space instruction is:

15 14 13 12 11 10 0 8 7 6 5 4 3 2 1 0

1° I 11° 1° I 1 I 1 l 1 1°1°1 1l 1I 1 1

The Stack Format Field lies within the Vector Ofl'set Word on the stack. The Vector Offset
Word has the following layout:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Format 0 0 Vector Offset

The Stack Format Field has the following meanings:

Value Format Description

0000 Short Format Remove only four
words from the top of
the stack.

1000 Long Format Remove 20 words from
the top of the stack.

Anything The processor takes a
Else Bad Format Stack Format Error

Exception.

42 Revision Dor 7 January 1984

0

0

0

0

0

Programming Tools Assembler Manual

Return From Subroutine
Return from Subroutine is used when returning to a previous place in a program after executing
the body or a subroutine. The MC68010 has enhanced.the operation or the RTS instruction to
specify a value to add to the stack pointer after the Program Counter is pulled from the stack.
The Program Counter is pulled from the stack (either user or system), and it overwrites the pre­
vious Program Counter. ·
The format or the Return from Subroutine instructjon is:

RTS
RTS #n

The Return from Subroutine instruction does not affect any condition codes.

The layout of the Return from Subroutine instruction is:

15 14 13 12 11 10 9 8 7 Cl 5 4 3 2 1 0

0 1 0 0 1 1 1 0 0 1 1 1 0 1 0 d

16-bit displacement ill d -= 0

The fields in the instruction have the following meanings:

,I Fieltl Specifies whether the displacement field should be added to the stack pointer:

0 16-bit sign-extended displacement is added to the stack pointer.

1 No displacement is added to the stack pointer.

Revision D of 7 January 1984 43

0

0

0

0

0

0

0

0

0

0

0

0

Part Number 800-1112-01
Revision: C of 7 January 1984

For: Sun System Release 1.1

Editing and Text Processing

on the Sun Workstation

Sun Microsystems, Inc.
2550 Garcia Avenue

Mountain View
California 94043
(415) 960-1300

0

Credits and Acknowledgements

Material in this Editing and Te:zt Procu,ing on the Sun Worbtation comes from a number of
sources: An Introduction to Di1pla11 Editing with Vi, William Joy, University of California,
Berkeley, revised by Mark Horton; Vi Command aml Function Reference, Alan P. W. Hewett,
revised by Mark Horton; E:z Reference Manual, William Joy, revised by Mark Horton, Univer­
sity of California, Berkeley; Awk - A Pattern Scanning and Proceaaing Language, Alfred V.
Aho, Brian W. Kernighan, Peter J, Weinberger, Bell Laboratories, Murray Hill, New Jersey;
Edit: A Tutorial, Ricki Blau, James Joyce, University or California, Berkeley; A Tutorial Intro­
duction to the UNIX Te:zt Editor, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jer­
sey; Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jer­
sey; Sed - a Non-Interactive Te:zt Editor, Lee. E. McMahon, Bell Laboratories, Murray Hill,
New Jersey; Nroff/ Troff Uaer '• Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill,
New Jersey; A Troff Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Typing Document, on the UNIX S111tem: U,ing the -m, Macro, with Troff and Nroff, M. E. Lesk,
Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing Document, with -m,, M. E.
Lesk, Bell Laboratories, Murray Hill, New Jersey; Document Formatting on UNIX Uaing the -ma 0
Macro,, Joel Kies, University of California, Berkeley, California; Tbl - A Program to Formal
Table,, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A Syatem for Typeaetting
Mathematic,, Brian W. Kernighan, Lorinda L. Cherry, Bell Laboratories, Murray Hill, New Jer-
sey; Type,etting Mathematica - U,er '• Guide, Brian W. Kernighan, Lorinda L. Cherry, Bell
Laboratories, Murray Hill, New Jersey; Writing Tool, - The St,,le and Diction Program,, L. L.
Cherry, W. Vesterman, Bell Laboratories, Murray Hill, New Jersey; Updating Publication, Li,t,,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Some Application, of Inverted lnde:ze,
on the UNIX Syatem, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Writing Paper,
with Nroff Uaing -me, Eric P. Allman, University of California, Berkeley; and -me Reference
Manual, Eric P. Allman, University of California, Berkeley. Introducing the UNIX S11.tem,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These materials are
gratefully acknowledged.

Sun Workstation, and the combination of Sun with a numeric sufl"IX
are trademarks of Sun Microsystems, Inc.

UNIX, UNIX/32V, UNIX System m, and UNIX
System V are trademarks of Bell Laboratories.
Ethernet la a trademark of Xerox Corporation.

Copyright © 1983, 1984 by Sun Microsystems Inc.
This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

- ii -

0

0
Revision History

Revision Date Comment,

A 15 May 1983 First release of Editing and Text Processing.

B l November 1983 Updated and reorganized.

C 7 January 1984 New -ma macros; additions to document preparation intro-
duction; and minor corrections.

0

0
- Ill -

0

0

Table of Contents

0
Chapter 1 An Introduction to Text Editing .. 1-1

Chapter 2 Using vi, the Visual Display Editor... 2-1

Chapter 3 Command Reference for the ex Line Editor ... 3-1

Chapter 4 Using theed Line Editor_1

Chapter 5 Using sed, the Stream Text Editor... 5-1

Cha.pter & Pattern Scanning and Processing with aw k ,... 6-1

0

0

Qi

o!

0

0

0

Editing and Text Processing

Preface

Editing and Tezt Proceaaing on the Sun ·work,tation provides user's guides and reference infor­
mation for the text editors and document processing tools. We assume you are familiar with a
terminal keyboard and the Sun system. Ir you are not, see the Beginner'• Guide to the Sun
Workatation for information on the basics, like logging in and the Sun file system. Ir you are
not familiar with a text editor or document processor in general, read An Introduction to Tezt
Editing and An Introduction to Document Preparation in this manual for descriptions of the
basic concepts and some simple examples that you can try. Finally, we assume that you are
using a Sun Workstation, although specific terminal information is also provided.

If you choose to read one of the user's guides, sit down at your workstation and try the exer­
cises and examples. The reference sections provide additional explanations and examples on
how to use certain facilities and can be dipped into as necessary. For additional details on Sun
system commands and programs, see the U,er'• Manual for the Sun Workatation.

Use the table of contents to Part One and Part Two as roadmaps to guide you to the informa­
tion you need.
Part One of this manual provides information on the text editors and Part T"'o describes the
document formatting tools.

The contents of Part One are:
1. An Introduction to Tezt Editing - Describes the basics of text editing and provides a guide

to the available editing tools. Newcomers should start here.
2. Uaing 'vi', the Viaual Diapla11 Editor - Tutorial and reference information on the visual

display editor vi. Includes a quick reference to tape up by your workstation.

3. Command Reference for the 'ez' Line Editor - A command reference for the ez and vi edi­
tors. Also includes a quick reference.

4. Uaing the 'ed' Line Editor - Provides a user's guide to the ed tools.

5. Uaing ',ed', the Stream Tezt Editor - A user's guide to ,ed, the non-interactive variant of
ed for processing large files.

6. Pattern Scanning and Proce,.ing with 'awk' - A user's guide to the awk programming
language for data transformation and selection operations.

Part Two contains the following chapters:
l. An Introduction to Document Preparation - Describes the basics of text processing, macros

and macro packages, provides a guide to the available tools and several simple examples
after which to pattern your papers and documents. Newcomers to the Sun document for­
matters should start here.

2. Formatting Document, with the -ma Macro, - User's guide and reference information for
the -me macros for formatting papers and documents. Includes new -ms macros.

Revision C of 7 January 1984

Editing and Text Processing

3. Formatting Document, with 'nroff' anti 'troff' - Provides a user's guide and reference
material for the nroff and troff text processors.

4. Formatting Table, with 'tbl' - A user's guide and numerous examples to the table proces:,.
ing utility tbl.

5. Typeutting Mathematic, with 'eqn' - A user's guide to the eqn mathematical equation pro­
cessor.

6. Making Bibliographic Reference, with 're/er' - Explains how to use the bibliographic cita­
tion program re/er.

7. Formatting Document, with the -me Macro, - Describes the -me macro package for pro-
ducing papers and documents.

Throughout this manual we use 'logo%' as the hostname to which you type system commands.
Bold face type indicates commands that you type in as is. Italic, specifies Sun system com­
mand names, general arguments or parameters that you should replace with a specific word or
string, and important terms.

Revision C of 7 January 1984

o·

0

0

0

0

Table of Contents

Chapter 1 An Introduction to Text Editing.. 1-1
1.1. Sun System Editora .. 1-1
1.2. Text Editing Basics.. 1-2

1.2.1. Regular Expressions in Text Patterns... 1-3
1.3. What to Do If Something Goes Wrong.. 1-5

Q:

Q i
'

0

0
List of Tables

Table l·l Utilities and Their Metacharacters .. 1-3

0

0
-iii-

o:

0

0

0

0

Chapter 1

An Introduction to Text Editing

An editor is a utility program that you use to modify the contents of a file. A text editor deals
with files containing a ,tring of characters in a particular character set. A atring is a sequence
of characters, 'ABC,' 'evan' or 'm3154' for example. You usually use an editor interactively-,
that is, you can see on the workstation screen what you have and then make changes accord­
ingly.
With a text editor, you can browse through a file, make changes, and then make the changes
permanent.
There are also utilities such as awk, grep, /grep, egrep, and tr that operate on a file, but do not
change the original file. Rather they modify the data contained in it as the data goes from the
original file to the workstation screen, printer, or whatever. Moreover, these commands operate
on a global basis, that is, they change everything that conforms to a specific regular pattern.
See Pattern Scanning and Procea,ing with 'awk' in this manual for more information and the
Uaer', Manual for the Sun Work,tation for details on the other utilities.

There are two kinds of editors, line editors and ,creen editors. A line editor has a line as its
basic unit for change. A line is a string of characters terminated by a newline character, the
character that is generated when you type RETURN. You can give the editor commands to do
operations on lines, display, change, delete, move, copy a line, or insert a new line. You can
substitute character strings within a line or group of lines.
A ,creen editor displays a portion of a file on the workstation screen. You can move the cursor
around the screen to indicate where you want to make changes, and you can choose which part
of the file to display. Screen editors, such as vi, are also called di,play editors.

1.1. Sun System Editors

The Sun system has two basic editors. Ed is the basic, interactiYe line editor from which the
others have been developed. ~ they are all related, you can see similarities with Iii, ez, and aed.
Your primary interface to the Sun system is probably vi for editing both source code and text.
See U,ing the 'ed' Line Editor for details on ed.
The other basic editor is the ,tream editor ,ed, which as a lineal descendant of ed, can perform
similar operations. However, it is not interactive and you cannot move backwards in the edit
file. You specify the command or series of commands to be executed, and ,ed performs them
from the beginning to the end of the file. Because aed does not copy your file into the buffer to
create a temporary file like ed does, you can use ,ed to edit any size file. Seti is usually used for
making transient changes only. Serl recognizes basically the same regular expre,aion, as erl.
Regular expressions are described below. See Uaing ',erl', the Stream Text Erlitor for instruc­
tions on how to use ,erl.
More useful for general text editing are the screen editors ez and vi. A variant of cz, edit, has
features designed to make it less complicated to learn and use. I

1 See Edit: A T.torial, Ricki Blau and James Joyce, University of California, Berkeley.

Revision C of 7 January 1984 1-1

An Introduction to Text Editing Editing and Text Processing

Ez is also based on ed, but has many extensions and additional features. Commands are less
cryptic and hence, easier to remember. There are variants of some editor operations, which
modify the way in which those operations are performed under certain conditions. E:z is more
communicative, displaying more descriptive error messages than merely.'!' as ed does and pro­
viding instructions on how to override the error condition. There are editor option, which
modify overall ez behavior. Ez also provides the vi,ual mode, which turns ez into a screen edi­
tor. In this mode, ez is identical to vi. You can use the open mode for intraline editing.

Vi is the acreen, diaplay or viaual editor version of e:r. A portion of the file you wish to modify
is displayed on your workstation screen. Within the displayed portion of the file, you can move
the cursor around to control where changes are to be made, and then you can make changes by
replacing, adding or deleting text. You can change the portion of the file displayed on the
screen, so you have access to the whole file.
You also have access to all of the e:z line-oriented commands from vi. Many of the more useful
operations that can be performed in vi simply call upon ez functions. Additionally, some opera­
tions, such as global substitutions, are easily performed using ez from vi. Because of this con­
nection, refer to both Uaing 'vi,' the Visual Diaplay Editor and the Command Reference /or the
'ez' Line Editor. For a quick tutorial on the most useful vi commands and features, read the
chapter on vi in the Beginner'• Guide lo the Sun Work.talion.

1.2. Text Editing Basics

In editing jargon, we say you enter an editor to edit a file and quit an editor to return to the
system command level Shell.
Most editors set aside a temporary work space, called a buffer, separate from your permanent
file. Before starting to work on an existing file, the editor makes a copy of it in the buffer, leav­
ing the original untouched. When you make editing changes to the buffer copy, you must then
save or write the file to make the changes permanent. The buffer disappears at the end of the
editing session.
During an editing session there are two usual modes of operation: command mode and tezt input
mode. (This disregards, for the moment, open and viaual modes, discussed below.) In command
mode, the editor may prompt you with '!,' a colon(:), or nothing at all as in vi. In text input
mode, there is no prompt and the editor merely adds the text you type in to the buffer. You
start text input mode with a command that append,, in,erta, or change,, and terminate it either
by typing a period as the first and only character on a line for ed and ez or by typing the
ESCAPE (ESC) key for vi.
The editor keeps track of lines of text in the buffer by numbering them consecutively starting
with 1 and renumbering as lines are added or deleted. It doesn't normally display the line
numbers, although you can specify that they be displayed in vi. At any given time the editor is
positioned at one of these lines; this position is called the current line.
Some editor commands take line-number prefixes. The concept of line numbers is especially
important in ed and ez; you use them to indicate which lines to operate on. You also use line
numbers in vi, but less frequently. With ed, you can precede most commands by one or two
line-number addresses which indicate the lines to be affected. If you give one line number, the
command operates on that line only; if you give two, it operates on an inclusive range of lines.
Commands that can take line-number prefixes also assume default prefixes if none are given.
The default assumed by each command is designed to make it convenient to use in many
instances without any line-number prefix. For the most part, a command used without a prefix
operates on the current line, though there are exceptions to this rule. The print command by

1-2 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing An Introduction to Text Editing

itself, for instance, displays one line, the current line, on the workstation screen. In the address
prefix notation, '.' stands for the current line and '$' stands for the last line of the buffer. If no
such notation appears, no line-number prefix may he used. Some commands take trailing infor­
mation.
Besides command and text input modes, ez, .,; and edit provide other modes of editing called
open and vi,ual. In these modes you can move the cursor to individual words or characters in a
line. The commands you then use are very different from the standard editor commands; most
do not appear on the screen when typed.

1.2.1. Regular Expressions in Text Patterns

You can use the editors and the utilities mentioned above to deal with fixed strings of charac­
ters, but this may become tedious if you want to do something more complex. You can also
specify a pattern or template of text you want to modify; this pattern is called a regular ezpre,­
•ion. Certain characters take on special meanings when used in in these patterns. These special
characters are called metochorocter, because they represent something other than themselves.

Revision C of 7 January 1984 1-3

An Introduction to Text Editing Editing and Text Processing

Here is a table or all the special metacharacters and which utilities support those particular ·
characters.

Table 1-1: Utilities and Their Metacharacters

Supported by

Character Meaning fgrep grep egrep awk etl •etl e:r

C
any character yes yes yes yes yes yes yes
except specials

. match beginning yes yes yes yes yes yes yes
or line

$
match end yes yes yes yes yes yes yes
or line

\<
match beginning no yes no no no no yes
of word

\> match end yes no no no no yes
or word

no

• any character no yes yes yes yes yes yes

[,tring) character class no yes yes yes yes yes yes .
[• airing) negated character class no yes yes yes yes yes yes

• closure no yes yes yes yes yes yes

(pattern) grouping no no yes yes no no no

I alternation no no yes yes no no no

\(pattern\) remember pattern no no no no yes yes yes

To use one or these special characters as a simple graphic representation rather than its special
meaning, precede it by a backslash('\'). The backslash always has this special eacape meaning.
Some of the metacharacters that e,l and some of the other utilities use are also used by the Shell
for matching filenames, so you should enclose the regular expression in single quotes (').
You can combine regular expressions to specify a lot more than just a single string of text, so
you can give the editor commands that operate on either a very specific string of text or globallg
on a whole file.
See the Beginner'• Guide to the Sun Workatation for a more detailed and descriptive explanation
or regular expressions.

1.3. What to Do If Something Goes Wrong

Sometimes you may make a mistake or your system may not respond correctly. Here are some
suggestions on what to do.

0

0

1-4 R
•. ,· 0

evmon Co 7 January 1984

0

0

0

Editing and Text Proc=ing An Introduction to Text Editing

If you make a mistake in the editor that you cannot recover from easily, do not panic. As long
as you do not tDt"ite the file and quit the editor, you can retrieve the original file. Force the edi­
tor to quit (in vi, for example, you type :qi, the exclamation point overriding any warning), and
then enter the editor again to start over. When you try to quit the editor without saving
changes, the editor will warn you that you have unsaved changes, so you have to force the quit
with 'I'.
At the Sun system level, if you make a typing mistake, and see it before you press RETURN,
there are several ways to recover. The DEL key is the era,e character. Use it to back up over
and er,ue the previously typed character. Successive uses of DEL erase characters back to the
beginning of the line, but not beyond. Use ·c2 to abort or ,end an interrupt to a currently run­
ning program. You can't interrupt an editor with ·c.
Sometimes you can get into a state where your workstation or terminal acts strangely. For
example, you may not be able to move the cursor, your cursor may disappear, there is no echo­
ing of what you type, or typing RETURN may not cause a linefeed or return the cursor to the
left margin. Try the following solutions:
• First, type -Q to resume possibly suspended output. (You might have typed ·s, freezing

the screen.)
• Another possibility is that you accidentally typed a NO SCRL key (also called SET UP /NO

SCROLL on some terminals) on your keyboard. This also freezes the keyboard like typing a
·s. Try typing -Q, which toggles you back to proper operation if you did indeed type the
NO SCRL key in the first place.

• Next, try pressing the LINEFEED key, followed by typing 'reset', and pressing LINEFEED
again.

• If that doesn't help, try logging out and logging back in. If you are using a terminal, try
powering it off and on to regain normal operation.

• If you get unwanted messages or garbage on your screen, type -L to refresh the workstation
screen. (Use ·a on a terminal.)

If your system goes down, a file with almost all your latest changes is automatically saved.
After rebooting your system, or doing whatever needs to be done, you will receive mail indicat­
ing that the file has been saved. First, return to the directory where the file belongs, and then
re-enter the editor with the -r option to re,tore the file:

logo% vi -r filename

This returns you to a version of the file you were editing, minus a few of your most recent
changes.

2 We use the convention '" wlatecier' to mean control-whatever - that is, hold down the con­
trol (or CIRL) key while typing a uihateoer character. , ... C' means hold down the o:JNTROL key
while typing 'e'. The case does not matterj "C and "care equivalent,

Revision C of 7 January 1984 1-5

0

!

oi

Qi

Table of Contents

0
Chapter 2 Using vi, the Visual Display Editor... 2-1

2.1. Vi and Ex ... 2-1
2.2. Getting Started.. 2-1

2.2.1. Editing a File .. 2-2
2.2.2. The Editor's Copy - Editing in the Buffer 2-2
2.2.3. Arrow Keys 2-2
2.2.4. Special Characters: ESC, CR and ·c ... 2-3
2.2.5. Getting Out of vi - :q, :qi, :w, ZZ, :wq ... 2-3

2.3. Moving Around in the File 2-4
2.3.1. Scrolling and Paging - 'D, "U, 'E, ·y, ·F, 'B ... 2-4
2.3.2. Searching, Goto, and Previous Context - /, !, G .. 2-4
2.3.3. Moving Around on the Screen - h, j, k, 1 .. 2-5
2.3.4. Moving Within a Line - b, w, e, B, W ... 2-6
2.3.5. Viewing a File - 'view'... 2-6

2.4. Making Simple Changes 2-7
2.4.1. Inserting - i and a 2-7
2.4.2. Making Small Corrections - x, r, x, R ... 2-8
2.4.3. Deleting, Repeating, and Changing - dw, ., db, c .. 2-8
2.4.4. Operating on Lines - dd, cc, S .. 2-8
2.4.6. Undoing - u, U 2-9

2.6. Moving About: Rearranging and Duplicating Text 2-9
2.6.1. Low-level Character Motions - f, F, • 2-9

0
2.6.2. Higher Level Text Objects - (,), {, }, [[, JI .. 2-10
2.6.3. Rearranging and Duplicating Text - y, p, P .. 2-11

2.6. High-Level Commands .. 2-11
2.6.1. Writing, Quitting, Editing New Files - ZZ, :w, :q, :e, :n .. 2-11
2.6.2. Escaping to a Shell - :I, :sh, ·z .. 2-12
2.6.3. Marking and Returning - m ... 2-12
2.6.4. Adjusting the Screen 'L, z ... 2-12

2.7. Special Topics .. 2-13
2.7.1. Options, the Set Variable, and Editor Start-up Files ... 2-13
2.7.2. Recovering Lost Lines ... 2-14
2.7.3. Recovering Lost Files - the -r Option .. 2-14
2.7.4. Continuous Text Input - wrapmargin .. 2-15
2.7.6. Features for Editing Programs ... 2-15
2.7.6. Filtering Portions of the Buffer .. 2-16
2.7.7. Commands for Editing LISP .. 2-16
2.7.8. Macros .. 2-17
2.7.9. Word Abbreviations - :ab, :una .. 2-18

2.7.9.1. Abbreviations .. 2-18
2.8.0.1. Nitty-gritty Details ... 2-18

2.8.1. Line Representation in the Display ... 2-18
2.8.2. Command Counts .. 2-19
2.8.3. File Manipulation Commands... 2-20

0

Editing and Text Processing

2.8.4. More about Searching for Strings ... 2-21
2.8.5. More about Input Mode ... 2-22

2.9. Command and Function Reference.. 2-23 0
2.9.1. Notation ... 2-23
2.9.2. Commands .. 2-23
2.9.3. Entry and Exit ... 2-24
2.9.4. Cureor and Page Motion .. 2-24
2.9.5. Searches .. 2-26
2.9.6. Text Insertion ... 2-27
2.9.7. Text Deletion .. 2-27
2.9.8. Text Replacement .. 2-27
2.9.9. Moving Text .. 2-28
2.9.10. Miscellaneous Commands.. 2-29
2.9.11. Special Insert Characters ... 2-30
2.9.12. : Commands .. 2-30
2.9,13. Set Commands. 2-31
2.9.14. Character Functions... 2-35

2.10. Terminal Information ... 2-42
2.10·.1. Specifying Terminal Type ... 2-42
2,10.2. Special Arrangements for Startup ... 2-43
2.10.3. Open Mode on Hardcopy Terminals and 'Glass tty's'... 2-44
2.10.4. Editing on Slow Terminals ... 2-44
2.10.6. Upper-case Only Terminals.. 2-45

2.11. Command Summary ... 2-46

0

ii

0

0
List of Tables

Table 2-1 Editor Options ,.. 2-13
Table 2-2 File Manipulation Commands ... 2-20
Table 2-3 Extended Pattern Matching Characten ... 2-21
Table 2-4 Input Mode Correction• .. 2-22
Table 2-5 Common Character Abbreviations ... 2-23
Table 2-6 Terminal Types .. 2-42
Table 2-7 Frequently Used Commands .. 2-46

0

0
-iil-

o:

0

0

0

0

0

Chapter 2

Using vi, the Visual Display Editor

This chapter• describes vi (pronounced voe-eye) the visual, display editor. The first part of this
chapter provides the basics of using vi. The second part provides a command reference and ter­
minal set.,up information. Finally, there is a quick reference, which summarizes the vi com­
mands. ~eep this reference handy while you are learning vi. As the vi editor is the visual
display version of the ez line editor, and because the full command set of the line-oriented ez
editor is available within vi, you can use the oz commands in vi. Some editing, such as global
subotitution, is more easily done with oz. So refer to the information in the Command Refer­
onco for tho '•z' Li'no Editor as it also applies to vi.
This chapter assumes you are using vi on the Sun Workstation. If you are using vi on a termi­
nal, refer to Terminal Information for instructions on setting up your terminal.

In the examples, input that muot be typed as is will be presented in bold face. Text which you
should replace with appropriate input is given in italic,.

2.1. Vi and Ex

As noted above, vi is actually one mode of editing within the editor ez. When you are running
vi you can escape to the line-oriented editor ez by typing Q. All of the : commands which are
introduced in File Manipulation Command, are available in ez. This places the cursor on the
command line at the bottom of the screen. Likewise, most ez commands can be invoked from
vi using 1. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in vi. In this case you will get a diagnostic and be
left in the command mode of ez. You can then save your work and quit if you wish by giving a
command x after the I which ez prompts you with, or you can re-enter vi by giving ez a vi com­
mand.
There are a number of things which you can do more easily in ez than in vi. Systematic
changes in line-oriented material are particularly easy. Experienced users often mix their use of
e:r command mode and vi command mode to speed the work they are doing. Keep these things
in mind as you read on.

2.2. Getting Started

When using vi, changes which you make to the file you are editing are reflected in what you see
on your workstation screen.

1 The material in thlll cha.pter is derived from An lntroducts'on to Da"•play Editino with Vi, W.N.
Joy, M. Horton, University of California,. Berkeley and Vi Command and Function Reference,
AP.W. Hewett, M. Horton.

Revision C of 7 January 1984 2-1

Using vi, the Visual Display Editor Editing and Text Processing

During an editing session, there are two usual modes or operation: command mode and inaert
mode. In command mode you can move the cursor around in the file. There are commands to 0
move the cursor forward and backward in units of characters, words, sentences and paragraphs.
A small set of operators, like d for delete and c for change, are combined with the motion com-
mands to form operations such as delete word or change paragraph. You can do other opera-
tions which don't involve entering fresh text. To enter new text into the file, you must be in
insert mode, which you get •ith the a (append), o (open) and i (insert) commands. You get out
or insert mode by typing the ESC (escape) key (or ALT on some keyboards). The significant
characteristic or insert mode is that commands can't be used, so anything you type except ESC
is inserted into the file. If you change your mind anytime using vi, typing 2ESC cancels the com-
mand you started and reverses to command mode. Also, if you are unsure or which mode you
are in, type ESC until the screen flashes; this means that you are back in command mode.

Run vi on a copy or a file you are familiar with while you are reading this. Try the commands
as they are described.

2.2.1. Editing a File

To use vi on the file, type:

logo% vi filename

replacing filename with the name of the file copy you just created. The screen clears and the
text of your file appears.
If you do not get the display or text, you may have typed the wrong filename. Vi has created a
new file for you with the indication ' "file" (New file]'. Type :q (colon and the 'q' key) and then
type the RETURN key. This should get you back to the command level interpreter. Then try
again, this time spelling the filename correctly.
Ir vi doesn't seem to respond to the commands which you type here, try sending an interrupt to
it by typing a • C (or INTERRUPT signal) at your workstation (or by pressing the DEL or RUB
keys on your terminal). Then type the :q command again followed by a RETURN. If you are
using a terminal and something else happens, you have may given the system an incorrect ter­
minal type code. Vi may make a mess out of your screen. This happens when it sends control
codes for one kind of terminal to some other kind of terminal. Type a :q and RETURN. Figure
out what you did wrong (ask someone else if necessary) and try again.

2.2.2. The Editor's Copy - Editing in the Buffer

Vi does not directly modify the file which you are editing. Rather, vi makes a copy of this file in
a place called the buffer, and rem em hers the file's name. All changes you make while editing
only change the contents of the buffer. You do not affect the contents of the file unless and
until you write the buffer back into the original file.

2.2.3. Arrow Keye

The editor command set is independent of the workstation or terminal you are using. On most
terminals with cursor positioning keys, these keys will also work within the editor.2 If you don't
have cursor positioning keys, that is, keys with arrows on them, or even if you do, you can use
the h J k and I keys as cursor positioning keys. As you will see later, h moves back to the left

2-2 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

(like ·n which is a backspace), j moves down (in the same column), k moves up (in the same
column), and I moves to the right.

2.2.4. Special Characters: ESC, CR and ·c

Several of these special character• are very important, so be sure to find them right now. Look
on your keyboard for a key labelled ESC (or ALT on some terminal,). It is near the upper left
corner of your workstation keyboard. Try typing this key a few times. Vi flashes the screen (or
beeps) to indicate that it is in a quiescent state. You can cancel partially formed commands
with ESC. When you insert text in the file, you end the text insertion with ESC. This key is a
fairly harmless one to press, so you can just press it until the screen flashes if you don't know
what is going on.
Use RETURN (or CR for carriage return) key to terminate certain commands. It is at the right
side of the workstation keyboard, and is the same key used at the end of each Shell command.
Use the ~pecial character 'C (or DEL or RUB key), which sends an interrupt, to tell vi to stop
what it isl doing. It is a forceful way of making vi listen to you, or to return it to the quiescent
state if you don't know or don't like what is going on.
Try typing the '/' key on your keyboard. Use this key to search for a string of characters. Vi
displays the cursor at the bottom line of the screen after a '/' is displayed as a prompt. You
can get the cursor back to the current position by pressing RETURN (or ESC or DEL); try this
now. Backspacing over the'/' will also cancel the search. From now on we will simply refer to
typing ·c (or pressing the DEL or RUB key) as 'sending an interrupt.'3

Vi often echoes your commands on the last line of the screen. If the cursor is on the first posi­
tion of this last line, then vi is performing a computation, such as locating a new position in the
file after a search or running a command to reformat part of the buffer. When this is happen­
ing, you can stop vi by sending an interrupt.

2.2.5. Getting Out of vi - :q, :q!, :w, ZZ, :wq

When you want to get out of vi and end the editing session, type :q to quit. Ir you have
changed the buffer contents and type :q, vi responds with 'No write since last change (:quit!
overrides).' Ir you then want to quit vi without saving the changes, type :q!. You need to know
about 1ql in case you change the editor's copy of a file you wish only to look at. Be very careful
not to givp this command w.hen you really want to save the changes you have made.

Do not type 1ql if you d!ant to save your changes. To save or write your changes without quit­
ting vi, type 1w. Ir you are sure about some changes in the middle of an editing session, it's a
good idea to save your changes from time to time.

To write the contents of the.buffer back into the file you are editing, with any changes you have
made, and then to quit, type ZZ. And finally, to write the file even if no changes have been
made, and exit vi, type 1wq.

2 Notie for the HP2621: on this terminal the function keys must be 1/u"fted (ick) to send to the
machine, otherwise they only a.ct locally. Unshifted use leaves the cursor positioned incorrectly.

a On some systems, this interruptibility comes at a price: you cannot type ahead when the editor
is computing with the cursor on the bottom line.

Revision (/ or 7 January 1984 2-3

Using vi, the Visual Display Editor Editing and Text Processing

You can terminate all commands which read from the last display line with an ESO as well as a
RETURN.

2.3. Moving Around in the File

Vi has a number of commands for moving around in the file. You can ,croU forward and back­
ward through a file, moving part of the text on the screen. You can page forward and back­
ward through a file, by moving a whole screenfull of text. You can also display one more line at
the top or bottom of the screen.

2.3.1. Scrolling and Paging - 'D, ·u, 'E, ·y, 'F, 'B

The most useful way to move through a file is to type the control (CTRL) and D keys at the
same time, sending a control-D or •·o•. We use this two-character notation to refer to control
keys from now on. The shift key is ignored, so • D and • d are equivalent. If you are using a
terminal, you may have a key labelled,., on your keyboard. This key is represented as,., and
is used exclusively as part of the •·x• notation for control characters.4

Try typing ·n to see that this command scrolls down in the file. The command to scroll up is
·u. (Many dumb terminals can't scroll up at all, in which case type ·u to clear and refresh the
screen with a line which is farther back in the file at the top.)

If you want to see more of the file below where you are, you can type ·E to ezpo,e one more
line at the bottom of the screen, leaving the cursor where it is. The ·y (which is hopelessly
non-mnemonic, but next to ·u on the keyboard) exposes one more line at the top of the screen.

You can also use the keys ·F and ·a to move forward and backward a page, keeping a couple of
lines of continuity between screens so that it is possible to read through .a file using these rather
than ·n and ·u if you wish. ·F and "B also take preceding counts, which specify the number
of pages to move. For example, 2·F pages forward two pages.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,
typing ·F to page forward leaves you only a little context to look back at. Scrolling with ·o
on the other hand, leaves more context, and moves more smoothly. You can continue to read
the text as scrolling is taking place.

2,3,2, Searching, Goto, and Previous Context - /, ?, G

Another way to position yourself in the file is to give tJi a string to search for. Type the charac­
ter '/' followed by a string of characters terminated by RETUR. Vi positions the cursor at the
next occurrence of this string. Try typing n to then go to the nezt occurrence of this string.
The character '?' searchs backwards from where you are, and is otherwise like '/'. N is like n,
but reverses the direction of the search.

You can string several search expressions together, separated by a semicolon in visual mode, the
same as in command mode in ez. For example:

/today /;/tomorrow

4 It you don't have a crn.L or , ... , key on your termin&l, there is probably a key labelled 't'; in
any case these cha.racters are one and the same.

2-4 Revision C of 7 January Hl84

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

moves the cursor to the first 'tomorrow' after the next 'today'. This also works within one line.
These searches normally wrap around the end of the file, so you can find the string even if it is
not on a line in the direction you search, but provided it is somewhere else in the file. You can
disable this wraparound with the command :se nowrapscanCR, or more briefly :se nowsCR.
If the se"f"h string you give vi is not present in the file, vi displays 'Pattern not found' on the
last line qf the screen, and the cursor is returned to its initial position.

If you wi,h the search to match only at the beginning of a line, begin the search string with a
•·•. To llfatch only at the end of a line, end the search string with a '$'. So to search for the
word 'seaJCh' at the beginning of a line, type:

f'searchCR

and to search for the word 'last' at the end of a line, type:

/laatSCR

Actually, the string you give to search for here can be a regular e:zpre .. ion in the sense of the
editors ez and ed. If you don't wish to learn about this yet, you can disable this more general
facility by typing :se nomaglcCR; by putting this command in EXINIT in your environment, you
can have always this nomagic option in effect. See Special Topica for details on how to do this.
The command G, when preceded by a number positions the cursor at that line in the file. Thus
lG moves the cursor to the first line of the file. If you do not give G any count, it positions
you at the last line of the file.
It you are near the end of the file, and the last line is not at the bottom of the screen, vi places
only the character ,-, on each remaining line. This indicates that the last line in the file is on
the screen; that is, the ,-, lines are past the end of the file.

You can find out the state of the IIJe you are editing by typing a ·o. Vi shows you the name of
the file you are editing, the number of the current line, the number of lines in the buffer, and
the percentage, of characters already displayed from the buffer. For example:

"data.file" [Modified) line 329 of 1276 -8o/o-

Try doing this now, and remember the number of the line you are on. Give a G command to
get to the end and then another G command with the line numher to get back where you were.

You can get back to a previous position by using the command " (two apostrophes). This
returns you to the first non-white space in the previous location. You can also use "(two back
quotes) to return to the previous position. The former is more easily typed on the keyboard.
Thia is often more convenient than G because it requires no advance preparation. Try typing a
G or a search with / or ? and then a " to get back to where you were. Ir you accidentally type
D or any command which moves you far away from a context of interest, you can quickly get
back by typing " ".

2.3.3. Moving Around on the Screen - h, j, k, I

Now try just moving the cursor around on the screen. Try the arrow keys as well as h, j, k,
and I. You will probably prefer these keys to arrow keys, because they are right underneath
your fingers. These are very common keys for moving up and down lines in the file. Notice
thih if you go off the bottom or top with these keys then the screen scrolls down (and up if pos.
sible) to bring a line at a time into view.

Revision Q of 7 January 1984 2-5

Using vi, the Visual Display Editor Editing and Text Processing

Type the + key. Each time you do, notice that the cursor advances to the next line in the file,
at the first non-white position on the line. The - key is like + but goes the other way.

The RETURN key has the same effect as the+ key.

Vi also hM commands to take you to the top, middle and bottom of the screen. H takes you to
the top (homo) line on the screen. Try preceding it with a number as in 3H. This takes you to
the third line on the screen. Try M, which takes you to the middle line on the screen, and L,
which takes you to the laat line on the screen. L also takes counts, so 6L takes you to the fifth
line from the bottom.

2.3.4. Moving Within a Line - h, w, e, B, W

Now pick a word on some line on the screen, not the first word on the line. Move the cursor
using b, j, k, I or RETURN and - to be on the line where the word is. Try typing the w key.
This advances the cursor to the next word on the line. Try typing the b key to back up words
in the line. Also try the e key which advances you to the 'end of the current word rather than
to the beginning of the next word. Also try SPACE (the space bar) which moves right one char­
acter and the BACKSPACE (or "H) key which moves left one character. The key h works as "H
does and is useful if you don't have a BACKSPACE key. Also, as noted just above, I moves to the
right.
If the line had punctuation .in it, you may have noticed that the w and b keys stopped at each
group of punctuation. You can also go back and forwards words without stopping at punctua­
tion by using .W and B rather than the lower case equivalents. Think of these as bigger words.
Try these on a few lines with punctuation to see how they differ from the lower case w and b.
The word keys wrap around the end of line, rather than stopping at the end. Try moving to a
word on a line below where you are by repeatedly typing w. ·

2.3.5. Viewing a File - 'view'

If you want to use the editor to look at a file, rather than to make changes, use mow instead of
vi. This sets the roadon/11 option which prevents you from accidently overwriting the file. For
example, to look at a file called ku6/a, type:

logo% view kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.
"kubla" [Read only] 5 lines, 149 characters
logo%

To scroll through a file that is bigger than one screen, use the characters described in Scro/1,"ng
and Paga"ng. To get out of view, type :q.

2-6 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

0 2,4, Making Simple Changes

0

Simple changes involve inserting, deleting, repeating, and changing single characters, words, and
lines of text. In vi, you can also undo the previous change with ease in case you change your
mind.

2,4,1, lnaerting - i and a

There are two basic commands for inserting new text: i in,ert• text to the left of the cursor,
and a to append, text to the right of the cursor. After you type i, everything you type until
you press ESC is inserted into the file. Try this now; position yourself at some word in the file
and try inserting text before this word. (If you are on an dumb terminal it will seem, for a
minute, that some of the characters in your line have been overwritten, but they will reappear
when you type ESO.)

Now try finding a word which can, but does not, end in an 's'. Position yourself at this word
and type e (move to end of word), then a for append and ESC to terminate the textual insert.
Use this sequence of commands to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works.

1t is often the case that you want to add new lines to the file you are editing, before or after
some specific line in the file. Find a line where this makes sense and then give the command o
to create a new line after the line you are on, or the command O to create a new line before the
line you are on. After you create a new line in this way, text you type up to an ESC is inserted
on the new line.
Many related editor commands are invoked by the same letter key and differ only in that one is
given by 'a lower-case key and the other is given by an upper-case key. In these cases, the
upi,er-case key often differs .from the lower-case key in its sense of direction, with the upper-case
key working bac"ward and/or up, while the lower-case key moves forward and/or down.

Wheneve~''you a¥!! typing in text, you can give many lines of input or just a few characters. To
type in m.ore than one line of text, type a RETURN at the middle of your input. A new line will
be created for text, and you can continue to type. (If you are on a slow, dumb terminal 11i may
choose to wait to redraw the tail of the screen, and will let you type over the existing screen
lines. This avoids the lengthy delay which would occur if Iii attempted to always keep the tail
of the screen up to date. The tail of the screen will be fixed up, and the missing lines will reap­
pear, when you type ESO.)

While you are inserting new text, you can use the DEL key at the system command level to
backspace over the last character which you typed. (This may be 'H on a terminal.) Use ·u
(this may be ·x on a terminal) to erase the input you have typed on the current line. In fact,
the character 'H (backspace) always works to erase the last input character here, regardless of
what your erase character is.
·w erases a whole word and leaves you after the space after the previous word; use it to
quickly back up when inserting.
Notice that when you backspace during an insertion, the characters you backspace over are not
erased; the cursor moves backwards, and the characters remain on the display. This is often use­
ful if you are planning to type in something similar. In any case the characters disappear when
when you press ESO; if you want to get rid of them immediately, hit an ESO and then a again.

Notice also that you can't erase characters which you didn't insert, and that you can't back-0 space around the end of a line. If you need to back up to the previous line to make a

Revision q of 7 January 1984 2-7

Using vi, the Visual Display Editor Editing and Text Processing

correction, just hit ESC and move the cursor back to the previous line. After making the correc­
tion you can return to where you were and use the insert or append command again.

2.4.2. Making Small Corrections - x, r, x, R

You can make omall corrections in existing text quite easily. Find a oingle character which is
wrong or just pick any character. Use the arrow keys to find the character, or get near the
character with the word Dlotion keys and then either backspace with h (or the BACKSPACE key
or "H) or type a SPACE (uoing the space bar) until the cursor io on the character which io wrong.
If the character is not needed, type the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter, except it's

not as messy.
If the character is incorrect, you can replace it with the correct character by typing the com­
mand re, where c io replaced by the correct character. You don't need to type ESC. Finally if
the character which is incorrect should be replaced by more than one character, type II which
1ubatitute1 a string of characters, ending with ESC, for it. If there are a small number of charac­
ters which are wrong you can precede II with a count of the number of characters to be replaced.
You can use counts with x to specify the number of characters to be deleted and with r, such as
4rx to specify that a character be replaced with four x's.
Use xp to correct simple typos in which you have inverted the order of two letters. The p for
put is described later.

2.4.3. Deleting, Repeating, and Changing - dw, ., db, c

You already know almost enough to make changes at a higher level. All you need to know now
is that the d key acts as a delete operator. Try the command dw to delete a word. Try typing
'.' a few times. Notice that this repeats the effect of the dw. The '.' repeats the last command
which made a change. You can remember it by analogy with an ellipsis' •• .'.
Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This
deletes a single character, and is equivalent to the x command.

Use D to delete the rest of the line the cursor is on
Another very useful operator is c or change. Thus cw changes the text of a single word. You
follow it by the replacement text ending with an ESC. Find a word which you can change to
another, and try thio now. Notice that the end of the text to be changed is marked with the
character '$' so that you can see this as you are typing in the new material.

2.4.4. Operating on Lines - dd, cc, S

It is often the case that you want to operate on lines. Find a line which you want to delete,
and type dd, the d operator twice. This deletes the line.
If you are on a dumb terminal, vi may just erase the line on the screen, replacing it with a line
with only an a on it. This line does not correspond to any line in your file, but· only acts as a
place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be neces­
sary to close up the hole created by the deletion on a terminal without a delete line capability.

Try repeating the c operator twice; this changes a whole line, erasing its previous contents and
replacing them with text you type up to an ESC. The command S is a convenient synonym for

2-8 Revision C of 7 January 1984

0

0

0

0
Editing and Text Processing Using vi, the Visual Display Editor

cc, by analogy.with•· Think of Sas a substitute on lines, while II is a substitute on characters.

You can delete or change more than one line by preceding the dd or cc with a count, such as
5dd, which deletes 5 lines. You can also give a command like dL to delete all the lines up to
and including the laat line on the screen, or d3L to delete through the third from the bottom
line. Try some commands like this now.5 Notice that vi lets you know when you change a large
number of lines so that you can see the extent of the change. It also always tells you when a
change you make affects text which you cannot see.

2.4.5. IJ.Jndoing - u, U

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, vi provides a u command to undo
the last change which you made. Try this a few times, and give it twice in a row to notice that
an u also undoes a u.

The undo command lets you reverse only a ,ingle change. After you make a number of changes
to a line, you may decide that you would rather have the original state of the line back. The U
command restores the current line to the state before you started changing it.

You can recover text which you delete, even if undo will not bring it back; ,ee Recovering Loat
Line, on how .to recover lost text.

o 2.5. Moving About: Rearranging and Duplicating Text

0

This describes more commands for moving in a file and explaill8 how to rearrange and make
copies of text.

2,5,1, Low-level Character Motions - f, F, h

Now move the cursor to a line where there is a punctuation or a bracketing character such as a
parenthesis, a comma or a period. Try the command fz to find the next z character to the right
of the cursor in the current.line. Try then hitting a; which finds the next instance of the same
character. By using the f command and then a sequence of ;'s you can often get to a particular
place in a line much faster than with a sequence of word motioll8 or SPACEs. There is also an F
command, which is like f, but searches backward. The; also repeats F.
When you are operating on the text in a line, it is often desirable to deal with the characters up
to, but not including, the first instance of a character. Try dfz for some z now and notice that
the II character is deleted. Undo this with u and then try dtr, the t here stands for to, that is,
delete up to the next 11, but not the 11. The command T is the reverse of t.

When working with the text of a single line, a,., moves the cursor to the first non-white posi­
tion on the line, and a S moves it to the end of the line. Thus $a appends new text at the end
of the cun"ent line (as does A which is easier to type).

& One subtle point here involves. using the '/' search after a d. This normally deletes cha.racters
from the current position to the point of the match. Ir what is desired is to delete whole lines in­
cluding the two point•, give the pattern ao /pol/ +o, a line address.

Revision C of 7 January 1984 2-9

Using vi, the Visual Display Editor Editing and Text Processing

Your file may have tab ('I) characters in it. These characters are represented as a number or
spaces expanding to a tab stop, where tab stops are every eight positions.8 When the cursor is
at a tab, it sits on the last or the several spaces which represent that tab. Try moving the clll'­
sor back and forth over tabs so you understand how this works.

On rare occasions, your file may have non-printing characters in it. These characters are
displayed in the same way they are represented in this chapter, that is with a two-character
code, the first character or which is •·•. On the screen non-printing characters resemble a ,.,
character adjacent to another, but spacing or backspacing over the character reveals that the
two characters are, like the spaces representing a tab character, a single character.
The editor sometimes discards control characters, depending on the character and the setting or
the beauti/11 option, if you attempt to insert them in your file. You can get a control character
in the file by beginning an insert and then typing a ·v before the control character. The ·v
quotes the following character, causing it to be inserted directly into the file.

2.5.2. Higher Level Text Objects - (,), {, }, [[,]]

In working with a document it is often advantageous to work in terms of sentences, paragraphs,
and sections. The operations '(' and ')' move to the beginning or the previous and next sen­
tences respectively. Thus the command d) deletes the rest of the current sentence; likewise d(
deletes the previous sentence if you are at the beginning or the current sentence, or the current
sentence up to where you are if you are not at the beginning of the current sentence.
A sentence is defined as ending at a'.', 'I' or'?' which is followed by either the end or a line, or
by two spaces. Any number of closing')', ')', '"' and ''' characters may appear after the'.', '!'
or '?' before the spaces or end of line.
The operations '{' and '}' move over paragraphs and the operations '[rand 'JI' move over sec­
tions. The '[[' and ']]' operations require the operation character to be doubled because they
can move the cursor far from where it currently is. While it is easy to get back with the com­
mand '"', these commands would still be frustrating if they were easy to type accidentally.

A paragraph begins after each empty line, and also at each or a set or paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragrapha. The
default setting for this option defines the paragraph macros of the -ma macro package, that is
the '.IP', '.LP', '.PP' and '.QP' macros. You can easily change or extend this set of macros by
assigning a different string to the paragraph• option in your EXINIT. See Speeial Topica for
details. The '.bp' directive is also considered to start a paragraph. Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands take counts to operate over
groups or sentences and paragraphs.

Sections in the editor begin after each macro in the aectiona option, normally '.NH' and '.SH',
and each line with a formfeed "L in the first column. Section boundaries are always line and
paragraph boundaries also.
Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking through it using the section commands. The
section commands interpret a preceding count as a different view size in which to redraw the
screen at the new location, and this size is the base size for newly drawn screens until another
size is specified. (This is very useful if you are on a slow terminal and are looking for a

8 You c&n Bet this with a command of the form :se ta-JIC'R, where • is four to set tabstopa
every four columm, for example. Thia affect11 the screen representation within the editor.

2-10 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

particular section. You can give the first section command a small count to then see each suc­
cessive Seftion heading in a small screen area.)

2.5.3. Rearranging and Duplicating Text - y, p, P

Vi has a single unnamed buffer where the last deleted or changed away text is saved, and a set
of named buffers a-s which you can use to save copies of text and to move text around in your
file and between files.
The operator y 11anka a copy of the object which follows into the unnamed buffer. If preceded
by a buffer name, "zy, where z here is replaced by a letter a-•, it places the text in the named
buffer. The text can then be put back in the file with the commands p and P; p puts the text
after or below the cursor, while P puts the text before or above the cursor.

If the text which you yank forms a part of a line, or is an object such as a sentence which par­
tially spans more than one line, then when you put the text back, it will be placed after the cur­
sor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like an o or 0
command.
Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current line. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move ~ext within the buffer, you need to delete it in one place, and put it back in another.
You can vrecede a delete operation by the name of a buffer in which the text is to be stored as
in "a&dd deleting 5 lines into the named buffer a. You can then move the cursor to the even­
tual resting place of the lines and do a "ap or "aP to put them back. In fact, you can switch
and edit another file before you put the lines back, by giving a command of the form :e nameCR
where name is the name of the other file you want to edit. You will have to write back the con­
tents of the current editor buffer (or discard them) if you have made changes before m will let
you switch to the other file. An ordinary delete command saves the text in the unnamed buffer,
so that an ordinary put can move it elsewhere. However, the unnamed buffer is lost when you
change files, so to move text from one file to another you must use a named huller.

2.6. High-Level Commands

A description of high-level commands that do more than juggle text follows.

2.6.1, Writing, Quitting, Editing New Files - ZZ, :w, :q, :e, :n

So far you have seen how to enter m and to write out your file using either ZZ or :wCR. The
first exits from m, writing if changes were made, and the second writes and stays in 11i. We
have also described that if you have changed the editor's copy of the file but do not wish to
save your changes, either because you messed up the file or decided that the changes are not an
improvement to the file, you type :q!CR to quit from the editor without writing the changes.

You can also re-edit the same file and start over by typing :e!CR. Use the '!' command rarely
and with caution, as it is not possible to recover the changes you have made after you discard
them in this manner.

Revision O of 7 January 1984 2-11

Using vi, the Visual Display Editor Editing and Text Processing

You can also edit a different file without leaving w by giving the command :e nomeCR. Ir you
have not written out your file berore you try to do this, w tells you this, ('No write since last
change:· (:edit! overrides)') and delays editing the bther file. You can then type :wCR to save
your work, rollowed by the :e nameCR command again, or carerully give the command
:el nameCR, which edits the other file discarding the changes you have made to the current file.
To save changes automatically, include ,et autowrite in your EXINIT, and use :n instead or :e.
See Special Topic, ror details on EXINIT.

2.6.2. Escaping to a Shell - :I, :sh, 'Z

You can get to a Sheli to execute a single command by gtvmg a w command or the rorm
:lcmdCR. The system runs the single command cmd and when the command finishes, w asks
you to 'Press RETURN to continue.' When you have finished looking at the output on the screen,
type RETURN, and w redraws the screen. You can then continue editing. You can also give
another I command when it asks you for a RETURN; in this case the screen will not be redrawn.
Ir you wish to execute more than one command in the Shell, give the command :ahCR. This
gives you a new Shell, and when you finish with the Shell, ending it by typing a ·n, w clears
the screen and continues.
Use • Z to suspend w and to return to the top level Shell. The screen is redrawn when w is
resumed. This is the same as :atop.

2,6,3.)darking and Returning - m

The command " returned to the previous place arter a motion or the cursor by a command such
as /, ? or G. You can also mark lines in the file with sing!,: letter tags and return to these
marks later by naming the tag,,. Try marking the current line with the command mz, where
you should pick some letter ror z, say 'a'. Then move the cursor to a different line (any way
you like) and type 'a. The cursor will return to the place which you marked. Marks last only
until you edit another file.
When using operators such as d and rererring to marked lines, it is orten desirable to delete
whole lines rather than deleting to the exact position in the line marked by m. In this case you
can use the rorm •., rather than 'z. Used without an operator, •., will move to the first non­
white character or the marked line; similarly " moves to the first non-white character or the line
containing the previous context mark ".

2.6.4. Adjusting the Screen 'L, z

Ir the screen image is messed up because or a transmission error to your workstation, or because
some program other than w wrote output to your workstation, you can type a ·L, the ASCil
rorm-reed character, to rerresh the screen. (On a dumb terminal, ir there are @ lines in the mid­
dle or the screen as a result or line deletion, you may get rid or these lines by typing ·R to
retgpe the screen, closing up these holes. 7)

Ir you wish to place a certain line on the screen at the top middle or bottom or the screen, posi­
tion the cursor to that line, and give a • command. Follow the • command with a RETURN ir
----~·~

7 Thio incJudes Televideo 012/020 and ADM31 terminals.

2-12 Revision C or 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

you want the line to appear at the top of the window, a '.' if you want it at the center, or a '-'
if you want it at the bottom.

Ir you want to change the window size, use the z command as in z5<CR> to change the win­
dow to five lines.

2.7. Special Topics

There are several facilities that you can use to customize an editing session.

2.7.1. Options, the Set Variable, and Editor Start-up Files

11i has a set of options, some of which have been mentioned above. The most useful options are
described in the following table.

Table 2-1: Editor Options

Option Default Description
autoindent noai Supply indentation automatically
autowrite noaw Automatic write before :n, :ta, 't, I
ignorecase noic Ignore letter case in searching
lisp nolisp ({) } commands deal with S-expressions
list nolist Tabs print as 'I; end of lines marked with $
magic nomagic The characters . (and • are special in scans
number nonu Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs
redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU Macro names which start new sections
shift width sw-=8 Shift distance for <, > and input 'D and 'T
show match nosm Show matching (or { as) or } is displayed
slowopen slow Postpone display updates during inserts
term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You can
set numeric and string options by a statement or the form:

aet opt-11ai

and toggle options can be set or unset by statements of one of the forms

aet opt
set noopt

Put these statements in your EXINIT in your environment (described below), or use them while
you are running w by preceding them with a: and following them with a RETURN. For exam­
ple, to display line numbers, use:

:se DU

You can get a list of all options which you have changed:

Revision ~ of 7 January 1984 2-13

Using vi, the Visual Display Editor

:setCR
redraw term=sun wrapmargin=8

or the value of a single option with :set opl?CR:

:set noai?cr
noautoindent

Editing and Text Processing

The :set allCR command generates a list of all possible options and their values. You can
abbreviate set to se. You can also put multiple options on one line, such as, :seal aw nuCR.
When you set options with the set command, they only last while you stay in vi. It is common
to want to have certain options set whenever you use the editor. To do this, create a list of ez
commanda to be run every time you start up vi, ez, or edit. All commands which start with :
are e:r commands. A typical list includes a set command, and possibly a few map commands.
Put these commands on one line by separating them with the 'I' character. If you use cah, put a
line like this in the .login file in your home directory:

setenv EXINIT 'set ai aw teraelmap@ ddlmap ,g. x'

which sets the options autoindent, autowrite, terae, (the set command), makes @ delete a line,
(the first map), and makes# delete a character, (the second map). {See the Macro• section for
a description of the map command.)

If you nse the Bourne Sheh, put these lines in the file .profile in your home directory:

EXINIT='set ai aw terse!map@ ddlmap # x'
export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

2.7 .2. Recovering Lost Lines

You might have a serious problem if you delete a number of lines and then regret that they
were deleted. Despair not, vi saves the last nine deleted blocks of text in a set of numbered
registers 1-9. You can get the n'th previous deleted text back in your file by "n p. The " here
says that a buffer name is to follow, n is the number of the buffer you wish to try (use the
number 1 for now), and p, which put, text in the buffer after the cursor. If this doesn't bring
back the text you wanted, type u to undo this and then • (period) to repeat the p. In general
the '.' command repeats the last change you made. As a special case, when the last command
refers to a numbered text buffer, the '.' command increments the number of the buffer before
repeating the command. Thns a sequence of the form:

"lpu.u.u.

wilt, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any • com­
mand to keep jnst the recovered text. You can also use P rather than p to put the recovered
text before rather than after the cursor.

2.7.3. Recovering Lost Files - the -r Option

It something goes wrong so the system goes down, you can recover the work you were doing up
to the last few changes. You will normally receive mail when you next log in giving you the
name of the file which has been saved for you. You should then change to the directory where

2-14 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

you were when the system went down and type:

logo% vi -r name

replacing name with the name of the file which you were editing. This will recover your work to
a point near where you left off. In rare cases, some of the lines of the file may be lost. Vi will
give you the numbers of these lines and the text of the lines will be replaced by the string
'LOST'. These lines will almost always be among the last few which you changed. You can
either choose to discard the changes which you made (if they are easy to remake) or to replace
the few lost lines by hand.
You can get a listing of the files which are saved for you by typing:

logo% vl -r
Ir there is more than one instance of a particular file saved, m gives you the newest instance
each time you recover it. You can thus get an older saved copy back by first recovering the
newer copies.
The invocation '11t' -r' will not always list all saved files, but they can be recovered even if they
are not listed.

2,7,4, Continuous Text Input - wrapmargin

When you are typing in large amounts of text it is convenient to have lines broken near the
right margin automatically. To do this, use the ,et wrapmargin option:

1sewm-lOCR

This rewrites words on the next line that you type past the right margin.

If Iii breaks an input line and you wish to put it back together, you can tell it to join the lines
with J, You can give J a count or the number of lines to be joined as in 3J to join 3 lines. Vi
supplies white space, if appropriate, at the juncture of the joined lines, and leaves the cursor at
this white space. You can delete the white space with x if you don't want it.

If you want to aplit a line into two, put the cursor where you want the break, and type rCR.

2.'t.5. Features for Editing Programs

Vi has a number of commands for editing programs. To enable the autoindent facility for help­
ing you generate correctly indented programs, use the autoindent option:

:•e alCR.

Now try opening a new line with o and type some characters on the line after a few tabs. If
you now start another line, notice that m supplies white space at the beginning of the line to
line it up with the previous line. You cannot backspace over this indentation, but you can use
'D key to backtab over the supplied indentation.
Each time you type ·», you back up one position, normally to an eight-column boundary. You
can set this amount with the ahi/twidtla option, which changes this value. Try giving the com­
mand:

:se sw=4.CR

and then experimenting with autoindent again.

Revision q of 7 January 1984 2-15

Using vi, the Visual Display Editor Editing and Text Processing

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one ahi/twUth. Try < < and > > which shift one line left or
right, and <L and > L shifting the rest of the· text left and right.
If you have a complicated expression and wish to see how the parentheses match, put the cursor
at a left or right parenthesis and type %. This shows you the matching parenthesis. This
works also for br;..,es { and }, and brackets [and].

If you are editing C programs, you can use [(and]) to advance or retreat to a line starting with
a {, that is, a function declaration at a time. When you use]) with an operator, it stops after a
line which starts with }; this is sometimes useful with y]].

2.7.6. Filtering Portions of the Buffer

You can run system commands over portions of the buffer using the operator 'I'. You can use
this to sqrt, lines in the buffer, or to reformat portions of the buffer with a pretty printer. Try
typing in a list of random words, one per line and ending them with a blank line. Back up to
the beginning of the list, and then give the comm and:

l}sortCR.

This says to sort the next paragraph of material, and that the blank line ends a paragraph.
The result is sorted text in your file.

2. 7. 7. Commands for Editing LISP

If you are editing a LISP program, set the option Uap by doing:

:se llapCR.

This changes the (and) commands to move backward and forward over s-expressions. The {
and } commands are like (and) but don't stop at atoms. Use { and } to skip to the next list,
or through a comment quickly.

The autoindent option works differently for LISP, supplying indentation to align at the first
argument to the last open list. If there is no such argument, the indent is two spaces more than
the last level.

The ahowmatch option shows matching parentheses. Try setting it with:

:se smCR

and then try typing a '(' aome word, and then a ')'. Notice that the cursor briefly shows the
position of the '(' which matches the ')'. This happens only if the matching '(' is on the screen,
and the cursor stays there for at most one second.

Vi also has an operator to realign existing lines as though they had been typed in with liap and
autoindent set. This is the -= operator. Try the command =% at the beginning of a func­
tion. This realigns all the lines of the function declaration.

When you are editing LISP, the [(and]] advance and retreat to lines beginning with a (, and are
useful for dealing with entire function definitions.

2-16 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

2.7.8. Macros

Vi has ~ parameterless macro facility, which you can set up so that when you type a single
keystroke, vi will act as though you had typed some longer sequence of keys. Set this up if you
find yourself repeatedly typing the same sequence of commands or text.

Briefly, there are two kinds of macros:
1. Ones where you put the macro body in a buffer register, say z. You can then type @x to

invoke the macro. The @ may be followed by another @ to repeat the last macro.

2. You can use the map command from vi (typically in your EXINIT) with a command of the
form:

:map lh, rh,cR

mapping lh, into rh,. There are restrictions: Iha should be one keystroke (either one char­
acter or one function key) since it must be entered within one second unless notimeout (see
Option Deaeription,) is set, in which case you can type it as slowly as you wish, and vi will
wait for you to finish it before it echoes anything). The Iha can be no longer than ten char­
acters, the rh, no longer than 100. To get a space, tab or newline into Iha or rha, escape
them with a 'V. It may be necessary to double the ·v if you use the map command inside
tJi, rather than in ez. You do not need to escape spaces and tabs inside the rha.

Thus to make the q key write and exit vi, type:

:map q :wq"V'VCR CR

which means that whenever you type q, it will be as though you had typed the four characters
:wqCR. A ·v is needed because without it the CR would end the : command, rather than
becoming part of the map definition. There are two "V's because from within vi, you must
type two "V's to get one. The first CR is part of the rha, the second terminates the : command.

You can delete macros with

:unmap lh,

Ir the Iha of a macro is '#0' through '#9', this maps the particular function key instead of the
two-character '#' sequence. So that terminals without function keys can access such definitions,
the form '#x' will mean function key z on all terminals and need not be typed within one
second. You can change the character '#' by using a macro in the usual way:

:map ·v·v·1 #
to use tab, for example. This won't affect the map command, which still uses #, but just the
invocation from visual mode.·
The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a 'I' after the word map applies the mapping to input mode, rather than command
mode. So, to arrange for "T to be the same as four spaces in input mode, type:

:map "T "V)IJ'J'I'
where J' is a blank. The ·v prevents the blanks from being taken as white space between the
Iha and rh1. Type simply:

:map!

to list macros that apply during input mode and

Revision C of 7 January 1984 2-17

Using vi, the Visual Display Editor Editing and Text Processing

:map

to list macros that apply during command mode. Typing map. or map! by itself produces a
listing of macro• in the corresponding mode.

2.7.9. Word Abbreviations - :ab, :una

A feature similar to macros in input mode is word abbreviation. You can type a short word
and have it expanded into a longer word or words with :abbreviate (:ab). For example:

:ab foo find outer otter

always changes the word 'foo' into the phrase 'find outer otter'. Word abbreviation is dift'erent
from macro• in that only whole words are aft'ected. If 'foo' were typed as part of a larger word,
it would be left alone. Also, the partial word is echoed as it is typed. There is no need for an
abbreviation to be a single keystroke, as it should be with a macro. This only operates in visual
mode and uses the same syntax as the map command, except that there are no 'I' forms.
Use :unabbrevlate (:una) to turn oft' the abbreviation. To unabbreviate the above, for exam­
ple, type:

IUD& foo

2.7.9.1. Abbreviations

Vi editor has a number of short commands which abbreviate the longer commands have intro­
duced here. You can find these commands easily in the E:i ,Commantl• section in the quick
reference. They often save a bit of typing, and you can learn them when it's convenient.

2.8. Nitty-gritty Details

The following pre•ents some functional details and some e:i commands (see File Manipulation
Command•) that are particularly useful in vi.

2.8.1. Line Representation in the Display

Vi folds long logical lines onto many physical line• in the display. Commands which advance
lines adv11;11.ce logical lines and skip over all the segments of a line in one motion. The command
I moves the cursor to a specific column, and may be useful for getting near the middle of a long
line to split it in half. Try 801 on a line which is more than 80 columns long. You can make
long lines very easily by using .J to join together short lines.
Vi only puts full lines on the display; if there is not enough room on the display to fit a logical
line; vi editor leaves the physical line empty, placing only an '@' on the line as a place holder.
(When you delete lines on a dumb terminal, vi will often just clear the lines to '@' to save time
rather than rewriting the rest of the screen.) You can always maximize the information on the
screen with ·R.
If you wish, you can have the editor place line numbers before each line on the display. To
enable this, type the option:

2-18 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

:ae nuCR

To turn it off, use the no numbera option:

:se nonuCR

Using vi, the Visual Display Editor

You can Ii.ave tabs represented as ·1 and the ends of lines indicated with '$' by giving the list
option:

:se liatCR

To turn this off, use:

:se noliatCR

Finally, lines consisting of only the character ,., are displayed when the last line in the file is in
the middle of the screen. These represent physical lines which are past the logical end of file.

2.8.2, Command Counts

Most Iii commands use a preceding count to affect their behavior in some way. The following
table gives the common ways in which the counts are used:

New window size
Scroll amount
Line/column number
Repeat effect

:/?[())''
·n ·u
sGI
Most of the rest

Vi maintains a notion of the current default window size. (On terminals which run at speeds
greater than 1200 baud vi uses the full terminal screen. On terminals which are slower than
1200 baud, and most dialup lines are in this group, vi uses 8 lines as the default window size.
At 1200 baud the default is 16 lines.)

Vi uses the default window size when it clears and refills the screen after a search or other
motion moves far from the edge of the current window. The commands which take a new win­
dow size as count all often redraw the screen. If you anticipate this, but do not need as large a
window as you are currently using, you may wish to change the screen size by specifying the
new size before these commands. In any case, the number of lines used on the screen will
expand if you move off the top with a '-' or similar command or off the bottom with a com­
mand such as RETURN or ·o. The window will revert to the last specified size the next time it
is cleared and refilled, but not by a ·L which just redraws the screen as it is.

The scroll commands ·n and ·u likewise remember the amount of scroll last specified, using
hair the basic window size initially. The simple insert commands use a count to specify a repeti­
tion of the inserted text. Thus 10& ESC will insert a grid-like string of text. A few com­
mando also use a preceding count as a line or column number.
Except for the few commands which ignore any counts, such as ·R, the rest of the vi commands
use a count to indicate a simple repetition of their effect. Thus 6w advances five words on the
current line, while &RETURN advances five lines. A very useful instance of a count as a repeti­
tion is a count given to the • command, which repeats the last changing command. If you do
dw and then a., you delete first one and then three words. You can then delete two more
words wit\ 2,.

Revision C or 7 January 1984 2-19

Using vi, the Visual Display Editor Editing and Text Processing

2.8.3. File Manipulation Commands

The following table lists the file manipulation commands which you can use when you are in .,;.

Table 2-2: File Manipulation Commands

Command
:w
:wq
:x
:e name
:el
:e + n•m•
:e +n
:e #
:w name
:w! n•m•
:z,yw name
:r name
:r !cmd
:n
:nl
:n o.rg,
:ta tag

Meanln,r
Write back changes
Write and quit
Write (if necessary) and quit (same as ZZ).
Edit file name
Re-edit, discarding changes
Edit, starting at end
Edit, starting at line n
Edit alternate file
Write file n•m•
Overwrite file name
Write lines z through y to n•me
Read file n•me into buffer
Read output of cmd into buffer
Edit next file in argument list
Edit next file, discarding changes to current
Specify new argument list
Edit file containinir tair tag, at tag

A CR or ESC follows all of these commands. The most basic commands are :w and :e. End a
normal editing session on a single file with a ZZ command. ff you are editing for a long period
of time, use the :w command occasionally after major amounts of editing, and then finish with
a ZZ. When you edit more than one file, you can finish with one with a :w and start editing a
new file by giving a :e command, or set autowrite and use :n file.

If you make changes to the editor's copy of a file, but do not wish to write them back, give an I
after the command you would otherwise use to exit without changing the file. Use this care­
fully.

use the :e command with a + argument to start at the end of the file, or a +n argument to
start at line n. in actuality, n may be any editor command not containing a space, usually a
scan like +/pat or +!pat. In forming new names to the e command, use the character %
which is replaced by the current filename, or the character # which is replaced by the alternate
filename. The alternate filename is generally the last name you typed other than the current
file. Thus if you try to do a :e and get a diagnostic that you haven't written the file, you can
give a :w command and then a :e # command to redo the previous :e.

You can write part ot the buffer to a file by finding out the lines that bound the range to be
written using 'G, and giving these numbers after the: and before thew, separated by ,'s. You
can also mark these lines with m and then use an address of the form 'z,'y on the w command
here;

You can read another file into the buffer after the current line by using the :r command. You
can similarly read in the output from a command, just use !cmd instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the command line,
and then edit each one in turn using the command :n. To respecify the list of files to be edited,

2-20 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

give the 10 command a list of filenames, or a pattern to be expanded as you would have given it
on the initial vi command.

For editing large programs, use the :ta command. It utilizes a data base of function names and
their locations, which can be created by programs such as ctaga, (see the Uaer'• Manual for the
Sun Workatation) to quickly find a function whose name you give. If the :ta command will
require the editor to switch files, then you must :w or abandon any changes before switching.
You can repeat the :ta command without any arguments to look for the same tag again.

2.8.4. More about Searching for Strings

When you are searching for strings in the file with / and ?, vi normally places you at the next
or previous occurrence of the string. If you are using an operator such as d, c or y, then you
may well wish to affect lines up to the line before the line containing the pattern. You can give
a search of the form / pat/-n to refer to the n'th line before the next line containing pat, or you
can use + instead of - to refer to the lines after the one containing pat. If you don't give a line
o&et, vi will affect characters up to the match place, rather than whole lines; thus use '+ O' to
affect to the line which matches.

To have vi ignore the case of words in searches, give the ignorecaae option:

:ae lcCR

To turn this off so that vi recognizes case again, use:

:ae aolcCR

Strings given to searches may actually be regular expressions. If you do not want or need this
facility, you should put:

set nomagic

in your EXINIT. In this case, only the characters•·• and'$' are special in patterns. The charac­
ter\ is also then special, as it is most everywhere in the system, and you can use it to get at the
extended pattern matching facility. It is also necessary to use a ' \' before a '/' in a forward
scan or a '?' in a backward scan, in any case. The following table gives the extended forms
when magic is set.

Table 2-3: Extended Pattern Matching Characters

Character

s

\<
\>
[,tring) r ,tring)
[%-II]
•

Meaning
At beginning of pattern, matches beginning of line
At end of pattern, matches end of line
Matches any character
Matches the 'beginning of a word
Matches the end of a word
Matches any single character in airing
Matches any single character not in ,tring
Matches any character between :r: and y
Matches any number of the preceding: pattern

If you use aomagic mode, use the',[' and'•' primitives with a preceding\.

Revision C of 7 January 1984 2-21

Using vi, the Visual Display Editor Editing and Text Processing

2.8.5. More about Input Mode

There are a number of characters to make corrections during input mode. These are summar­
ized in the following table.

Character
.H
·w
erase
kill
\
ESC
DEL
CR
·o
o·o
t·o
·v

Table 2-4: Input Mode Corrections

Meaning
Deletes the last input character
Deletes the last input word, defined as by b
Your erase character, same as ·H
Your kill character, deletes the input on this line
Escapes a following ·H and your erase and kill
Ends an insertion
Interrupts an insertion, terminating it abnormally
Starts a new line
Backtabs over auto,·ndent
Kills all the autoindent
Same as o·o, but restores indent next line
Quotes the next non-printin2 character into the file

The most usual way of making corrections to input is to type DEL (.H on a terminal) to
correct a single character, or by typing one or more ·w•s to back over incorrect words.

Your system kill character ·u (or sometimes ·x) erases all the input you have given on the
current line. In general, you can neither erase input back around a line boundary nor can you
erase characters which you did not insert with this insertion c;ommand. To make corrections on
the previous line after a new line has been started, press ESC to end the insertion, move over
and make the correction, and then return to where you were to continue. Use A to append at
the end of the current line; this is often useful for continuing text input.

If you wish to type in your erase or kill character, say ·u, you must precede it with a\, just as
you would do at the normal system command level. A more general way of typing non-printing
characters into the Iii~ is to precede them with a ·v. The ·v echoes as a t character on which
the cursor rests. This indicates that the editor expects you to type a control character. In fact
you may type any character and it will be inserted into the file at that point.8

It you are using autoindent you can backtab over the indent which it supplies by typing a ·o.
Thi~ backs up to a ahiftwidth boundary. This only works immediately after the supplied autoin­
dei!I.
When you are using autoindent you may wish to place a label at the left margin of a line. The
way to do this easily is to type • and then ·o. The editor will move the cursor to the left mar•
gin for one line, and restore the p~evious indent on the next. You can also type a O followed
immediately by a ·o if you wish to kill all the indent and not have it come back on the next
line.

8 This is not quite true. Vi does not a.llow the NULL ("@) character to appear in files, Also the
editor uses the LF (linereed or "J) character to eep&rate tines in the file, 80 it cannot appe&r in the
middle of a line. You can insert any other character, however, if you wait for the editor to echo the
" before you type the character. In fact, the editor treats a following letter as a request for the
corresponding control character. This is the only wa.y to type "'S or "Q, since the system normally
uses them to suspend and resume output and never gives them to the editor to proces&

2-22 Revision C of 7 January 1984

0

0

0

0

0

'

.

•

0

Editing and Text Processing Using vi, the Visual Display Editor

2.9. Command and Function Reference

The following section provides abridged explanations of the vi and ex commands.

2.9.1. Notation

Notation used in this section is as follows.

[option)
[cnt)

Denotes optional parts of a command. Many vi commands have an optional count.

Means that an optional number may precede the command to multiply or iterate the
command.

{ vari"able item}
Denotes parts of the command which must appear, but can take a number of
different values.

<character [-character]>
Means that the character or one of the characters in the range described between the
two angle brackets is to be typed. For example <esc> means type the ESCAPE
key. <a-•> means type a lower-case letter. ·<character>· means type the charac­
ter as a control character, that is, with the CTRL key held down while simultane­
ously typing the specified character. Here we denote control characters with the
upper-caae character, but • <uppercase chr> and • <lowercase chr> are equivalent.
That is, 'D is equal to • d. The most common character abbreviations used in this
list are as follows:

Table 2-5: Common Character Abbreviations

Character Abbreviation Meanln ='--------===="'---------I
<esc> escape, octal 033
<er> carriage return, 'M, octal 015
<If> linefeed • J, octal 012
<nl> newline, • J, octal 012 (same as linefeed)
<bs> backspace, 'H, octal 010
<tab> tab, ·1, octal 011
<hell> bell, ·a, octal 07
<If> formfeed, 'L, octal 014
<•p> space, octal 040
 delete, octal 0177

2.9.2. Commands

Following are brief explanations of the vi commands categorized by function for easy reference .

Revision q of 7 January 1984 2-23

Using vi, the Visual Display Editor Editing and TeKt Processing

2.9.3, Entry and Exit

To enter vi on a particular file, type:

logo%vi file
The file will be read into the buffer, and the cursor is placed at the beginning of the first line.
The first pcreenfull of the file is displayed on the screen.

To get 011t of the editor, type:

ZZ (or :q or :qi)

Ir you are in some special mode, such as input mode or the middle of a multi-keystroke com­
mand, it may be necessary to type ESC first.

2.9.4, Cursor and Page Motion

Note: You can move the cursor on your screen with the arrow keys on your workstation key­
board, the control character versions or the h, j, k, and I keys. If you are using a terminal that
does not ~ave arrow keys, use the control character versions or the h, j, k, and I keys.

[cntJ <bs> or [cnt]h or [cntJ+-
Move the cursor to the left one character. Cursor stops at the left margin of
the page. [cntJ specifies the number of spaces to move.

[cntrN or [cnt]j or [cntH or [cnt]<lf>
Move down one line. Moving off the screen scrolls the window to force a new
line onto the screen. Mnemonic: Next

(cntrP or [cnt]k or (cntr
Move up one line. Moving off the top of the screen forces new text onto the
screen. Mnemonic: Previous

(cntJ<sp> or [cntJI or (cnt]-+
Move to the right one character. Cursor will not go beyond the end of the
line.

lent]- Move the cursor up the screen to the beginning of the next line. Scroll if
necessary.

(cnt]+ or (cnt]<cr>
Move the cursor down the screen to the beginning of the next line. Scroll up
if necessary.

[cnt]S

0

(cnt]I

(cnt]w

2-24

Move the cursor to the end of the line. If there is a count, move to the end of
the line cnt lines forward in the file.
Move the cursor to the beginning of the first word on the line.

Move the cursor to the left margin of the current line.
Move the cursor to the column specified by the count. The default is column
zero.
Move the cursor to the beginning of the next word. If there is a count, then
move forward that many words and position the cursor at the beginning of
the word. Mnemonic: next-word

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

[cnt)W

[cnt)h
[cnt)B

[cntJe

(cnt)E

[line number)G

Move the cursor to the beginning of the next word which follows a 'w bite
space' (<sp>,<tab>, or <nl>). Ignore other punctuation.
Move the cursor to the preceding word. Mnemonic: backup-word

Move the cursor to the preceding word that is separated from the current
word by a 'white space' (<sp>,<tab>, or <nl>).
Move the cursor to the end or the current word or the end or the cntth word
hence. Mnemonic: end-of-word

Move the cursor to the end of the current word which is delimited by 'white
space' (<sp>,<tah>, or <nl>).

Move the cursor to the line specified. 0£ particular use are the sequences 1 G
and G, which move the cursor to the beginning and the end or the file respec­
tively. Mnemonic: Go-to

Note: The next four commands CD, ·u, .F, .B) are not true motion commands, in that they
cannot be used as the object of commands such as delete or change.

(cntrD Move the cursor down in the file by cnt lines (or the last cnt if a new count
isn't given). The initial default is hair a page. The screen is simultaneously
scrolled up. Mnemonic: Down

(cntru Move the cursor up in the file by cnt lines. The screen is simultaneously
scrolled down. Mnemonic: Up

(cntrF Move the cursor to the next page. A count moves that many pages. Two
lines of the previous page are kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

[cntrB Move the cursor to the previous page. Two lines of the current page are kept
if possible. Mnemonic: Backup-a-page

(cnt)(

(cnt])

(cnt]}

(cnt]{

II

([
%

Move the cursor to the beginning of the next sentence. A sentence is defined
as ending with a'.','!', or'?' followed by two spaces or a <nl>.

Move the cursor backwards to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This command
works best inside nroff documents. It understands the nroff macros in -m•,
for which the commands '.IP', '.LP', '.PP', '.QP', as well as the nroff com­
mand '.hp' are considered to be paragraph delimiters. A blank line also del­
imits a paragraph. The nroff macros that it accepts as paragraph delimiters
are adjustable. See Paragraph• under Set Command,.

Move the cursor backwards to the beginning of a paragraph.

Move the cursor to the next 'section,' where a section is defined by the set of
nroff macros in -m•, in which '.NH' and '.SH' delimit a section. A line begin­
ning with a <ff> <nl> sequence, or a line beginning with a '{' are also con­
sidered to be section delimiters. The last option makes it useful for finding the
beginnings of C functions. The nroff macros that are used for section delim­
iters can be adjusted. See Section• under Set Command•.
Move the cursor backwards to the beginning or a section.

Move the cur•or to the matching parenthesis or brace. This is very useful in
C or lisp code. If the cursor is sitting on a () { or } , it is moved to the
matching character at the other end of the section. If the cursor is not sitting
on a brace or a parenthesis, vi searches forward until it finds one and then

Revision C of 7 January 1984 2-25

Using vi, the Visual Display Editor Editing and Text Processing

[cnt]H

[cnt]L

M

m<a-z>

'<a-z>

'<a-z>

"

..

jumps to the match mate.
If there is no count, move the cursor to the top left position on the screen. If
there is a count, then move the cursor to the beginning or the line cnt lines
from the top of the screen. Mnemonic: Home
If there is no count, move the cursor to the beginning of the last line on the
screen. If there is a count, move the cursor to the beginning of the line cnt
lines from the bottom of the screen. Mnemonic: Last

Move the cursor to the beginning of the middle line on the screen. Mnemonic:
Middle
Mark the place in the file without moving the cursor; use a character '<a-z>'
as the label for referring to this location in the file. See the next two com­
mands. Mnemonic: mark Note: the mark command is not a motion and can­
not be used as the target of commands such as delete.

Move the cursor to the beginning of the line that is marked with the label
'<a-z>'.
Move the cursor to the exact position on the line that was ·marked with the
label '<a-z> '.

Move the cursor back to the beginning of the line where it was before the last
non-re/atiue move. A non-relative move is something such as searching or
jumping to a specific line in the file, rather than moving the cursor or scrol­
ling the screen.

Move the cursor back to the exact spot on the line where it was located
before the last non-relative move.

2.9.5. Searches

The following commands search for items in a file.

[cnt]f{chr} Search forward on the line for the next or cntth occurrence of the character
chr. The cursor is placed at the character of interest. Mnemonic: find char­
acter

[cnt]F{chr}

[cnt)t{ chr}

[cnt)T { chr}

[cnt);

[cnt),

Search backwards on the line for the next or cntth occurrence of the character
chr. The cursor is placed at the character of interest.

Search forward on the line for the next or cntth occurrence of the character
chr. The cursor is placed juat preceding the character of interest. Mnemonic:
move cursor up to character

Search backwards on the line for the next or cntth occurrence of the character
chr. The cursor is placed juat preceding the character of interest.

Repeat the last f, F, tor .T command.

Repeat the last f, F, t or T command, but in the opposite search direction.
This is useful if you overshoot what you are looking for.

[cnt]/(string)/ <nl>
Search forward for the next occurrence of 'string'. Wraparound at the end of
the file does occur. The final </> is not required.

[cnt)!(string)? <nl>
Search backwards for the next occurrence of 'string'. If a count is specified,

2-26 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Proce••ing U•ing vi, the Vi•ual Display Editor

n

the count becomes the new window size. Wraparound at the beginning of the
file does occur. The final <!> is not required.
Repeat the last /(string]/ or !(string]! search. Mnemonic: next occurrence.

N Repeat the la•t /(string]/ or !(string]! search, but in the reverse direction.

:g/[string]/[editor command]<nl>
Using the : syntax, it is possible to do global se_arches like you can in the ed
editor.

2.9.6. Text Insertion
The following commands insert text. Terminate all multi-character text insertions with an ESC
character. You can always undo the la•t change by typing a u. The text insert in insertion
mode can contain newlines.
a{text}<eoc> ln•ert text immediately following the cursor position. Mnemonic: append

A{text}<esc> ln•ert text at the end of the current line. Mnemonic: Append

i{text}<esc> Insert text immediately preceding the cursor position. Mnemonic: insert

l{text}<esc> Insert text at the beginning of the current line.

o{text}<esc> Insert a new line after the line on which the cursor appears and insert text
there. Mnemonic: open new line

O{text}<esc> Insert a new line preceding the line on which the cursor appears and insert
text there.

2.9.7. Text Deletion

The following commands delete text in various ways. You can always undo changes by typing

the u command.

(cnt)x

(cnt)X

D

(cnt)d{motion}

Delete the character or characters starting at the cursor position.

Delete the character or characters starting at the character preceding the cur­
sor position.
Delete the remainder of the line starting at the cursor. Mnemonic: Delete the
rest of line

Delete one or more occurrences of the specified motion. You can use any
motion from Low Level Character Motion, and Higher Level Tezl Object• here.
You can repeat the d (such as (cnt]dd) to delete cnt lines.

2.9.8. Text Replacement

Use the following commands to simultaneously delete and insert new text. You can undo all
such actions by typing u following the command.
r<chr> Replace the character at the current cursor position with <chr>. This is a

one-character replacement. No ESC is required for termination. Mnemonic:
replace character

Revision C of 7 January 1984 2-27

Using vi, the Visual Display Editor Editing and Text Processing

R{text}<esc> Start overlaying the characters on the screen with whatever you type. It does
not stop until you type an ESC.

[cnt)s{text}<esc>
Substitute for cnt characters beginning at the current cursor position. A 'S'
appears at the position in the text where the cntth character appears so you
will know how much you are erasing. Mnemonic: substitute

[cntJS{text} <esc>
Substitute for the entire current line or lines. If you do not give a count, a '$'
appears at the end of the current line. If you give a count of more than 1, all
the lines to be replaced are deleted before the insertion begins.

[cnt)c{motion} {text} <esc>
Change the specified motion by replacing it with the insertion text. A 'S'
appears at the end of the last item that is being deleted unless the deletion
involves whole lines. Motion's can be any motion from sections Low Level
Character Motion• and Higher Level Tezt Object,. Repeat the c (such as
[cnt]cc) to change cnt lines.

2.9.9. Moving Text

You can move chunks of text around in a number of ways with vi. There are nine buffers into
which each piece of text which is deleted or yanked is put in addition to the undo buffer. The
most recent deletion or yank is in the undo buffer and also usually in buffer 1, the next most
recent in buffer 2, and so forth. Each new deletion pushes down all the older deletions. Dele­
tions older than 9 disappear. There is also a set of named. registers, a-z, into which text can
optionally be placed. If you precede any delete or replacement type command by "<a-z>,
that named buffer will contain the text deleted after the command is executed. For example,
"a3dd deletes three lines starting at the current line and puts them in buffer "a. Referring to
an upper-case letter as a buffer name (A-Z) is the same as referring to the lower-case letter,
except that text placed in such a buffer is appended to it instead of replacing it. There are two
more basic commands and some variations useful in getting and putting text into a file.

[" <a-z>)[cnt]y{motion}
Yank the specified item or cnt items and put in the undo buffer or the
specified buffer. The variety of item• that you can yank is the same as those
that you can delete with the d command or changed with the c command. In
the same way that dd means delete the current line and cc means replace the
current line, yy means yank the current line.

r <a-z>)[cnt)Y Yank the current line or the cnt lines starting from the current line. If no
buffer is specified, they will go into the undo buffer, like any delete would. It
is equivalent to yy. Mnemonic: Yank

r <a-z>)p Put undo buffer or the specified buffer down after the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line following
the line the cursor is on. If you deleted something else, like a word or sen­
tence, it is inserted immediately following the cursor. Mnemonic: put buffer

2-28

Note that text in the named buffers remains there when you start editing a
new file with the :e file<JR command. Since this is so, it is possible to copy or
delete text from one file and carry it over to another file in the buffers. How­
ever, the undo buffer and the ability to undo are lost when changing files.

Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

r <a·z>]P Put undo buffer or the specified buffer down before the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line preceding
the line the cursor is on. If you deleted something else, like a word or sen­
tence, it is inserted immediately preceding the cursor.

(cnt]>{motion} The shift operator right shifts all the text from the line on which the cursor is
located to the line where the motion is located. The text is shifted by one
ahiftwidth. (See Terminal Information.) > > means right shift the current
line or lines.

[cnt]<{motion} The shift operator left shifts all the text from the line on which the cursor is
located to the line where the item is located. The text is shifted by one
ahiftwidth. (See Terminal Information.) < < means left shift the current line
or lines. Once the line has reached the left margin, it is not affected further.

(cnt]={motion} Prettyprints the indicated area according to li,p conventions. The area
should be a 1i,p s-expression.

2.9.10. Miscellaneous Commands

A number of useful miscellaneous .,; commands follow:

ZZ Exit from vi. If any changes have been made, the file is written out. Then
you are returned to the shell.

u

u

(cnt]J

Q

Redraw the current screen. This is useful if messages from a background pro­
cess are displayed on the screen, if someone 'writes' to you while you are
using .,; or if for any reason garbage gets onto the screen.

On dumb terminals, those not having the 'delete line' function (the vtlOO for
example), vi saves redrawing the screen when you delete a line by just mark­
ing the line with an '@' at the beginning and blanking the line. If you want
to actually get rid of the lines marked with '@' and see what the page looks
like, type a ·R.

'Dot' repeats the last text modifying command. You can type a command
once and then move to another place and repeat it by just typing'.'.

Undo the last command that changed the buffer. Perhaps the most impor­
tant command in the editor. Mnemonic: undo

Undo all the text modifying commands performed on the current line since
the last time you moved onto it.

Join the current line and the following line. The <nl> is deleted and the
two lines joined, usually with a space between the end of the first line and the
beginning of what was the second line. If the first line ended with a 'period',
two spaces are inserted. A count joins the next cnt lines. Mnemonic: Join
lines
Switch to ez editing mode. In this mode .,; behaves very much like ed. The
editor in this mode operates on single lines normally and does not attempt to
keep the 'window' up to date. Once in this mode you can also switch to the
open mode of editing by entering the command /line numberfopen<nl>. It
is similar to the normal visual mode except the window is only one line long.
Mnemonic: Quit visual mode

Revision C of 7 January 1984 2-29 ·

Using vi, the Visual Display Editor Editing and Text Processing

"J An abbreviation for a tag command. The cursor should be positioned at the
beginning of a word. That word is taken as a tag name, and the tag with
that name is found as if it had been typed in a :tag command.

(cntJ!{motion}{Sun cmd} <nl>

z{cnt}<nl>

Any Sun system filter (that is, a command that reads the standard input and
outputs something to the standard output) can be sent a section of the
current file and have the output of the command replace the original text.
Useful examples are programs like cb, aort, and nroff. For instance, using ,ort
you can sort a section of the current file into a new list. Using II means take
a line or lines starting at the line the cursor is currently on and pass them to
the Sun system command. Note: To escape to the Shell for just one com-
mand, use :!{cmd}<nl> (see High Level Command.,).

Reset the current window size to cnl lines and redraw the screen.

2.9.11. Special Insert Characters

Following are some characters that have special meanings during insert mode.

"V During inserts, typing a "V quotes control characters into the file. Any char­
acter typed after the 'V is inserted into the file.

rJ'D or [OJ'D

<bs>

'D without any argument backs up one ahiftwidth. Use this to remove inden•
tation that was inserted by the autoindent feature. ''D temporarily removes
all the autoindentation, thus placing the cursor at the left margin. On the
next line, the previous indent level is restored. This is useful for putting
'labels' at the left margin. O'D removes all autoindents and keeps it that
way. Thus the cursor moves to the left margin and stays there on successive
lines until you type TAB's. As with the TAB, the 'D is effective only before
you type any other 'non-autoindent' controlling characters. Mnemonic:
Delete a shiftwidth

If the cursor is sitting on a word, ·w moves the cursor back to the beginning
of the word, erasing the word from the insert. Mnemonic: erase Word

The backspace always serves as an erase during insert modes in addition to
your normal 'erase' character. To insert a <bs> into your file, quote it with
the ·v.

2.9.12. : Commands

Typing a ':' during command mode puts the cursor at the bottom on the screen in preparation
for a command. In the ':' mode, you can give vi most ed commands. You can also exit from vi
or switch to different files from this mode. Terminate all commands of this variety by a <nl>,
<er>, or ESC.

:w(IJ (file] Write out the current text to the disk. It is written to the file you are editing
unless you supply file. If file is supplied, the write is directed to that file
instead. If that file already exists, vi does not write unless you use the 'I'

:q(!J

2-30

indicating you really want to write over the older copy of the file.
Exit from vs·. If you have modified the file you are currently looking at and
haven't written it out, vi refuses to exit unless you type the'!'.

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

:e(I) (+ (cmdJI (file)
Start editing a new file called file or start editing the current file over again.
The command :el says 'ignore the changes I've made to this file and start over
from the beginning'. Use it if you really mess up the file. The optional '+'
says instead of starting at the beginning, start at the 'end', or, if you supply
cmd, execute cmd first. Use this where cmd is n (any integer) which starts at
line number n, and /tez.t, which searches for 'text' and starts at the line
where it is found.

Switch back to where you were before your last lag command. If your last tag
command stayed within the file, • • returns to that tag. If you have no recent
tag command, it returns to the same place in the previous file that it was
showing when you switched to the current file.

:n(I) Start editing the next file in the argument list. Since you can call vi with
multiple filenames, the :n command tells it to stop work on the current file
and switch to the next file. If you have modified the current file, it has to be
written out before the :n will work or else you must use '!', which discards the
changes you made to the current file.

:n[I] file [file file ...]

:r file
:r lcmd

:lcmd

:ta[!] tag

Replace the current argument list with a new list of files and start editing the
first file in this new list.

Read in a copy of file on the line after the cursor.

Execute the cmd and take its output and put it into the file after the current
line.

Execute any oystem Shell command.

Vi looks in the file named lag• in the current directory. Taga is a file of lines
in the format:

tag filename vi-search-command

If vi finds the tag you specified in the :ta command, it stops editing the
current file if necessary. If the current file is up to date on the disk, it
•witches to the file specified and uses the search pattern specified to find the
'tagged' item of interest. Uoe this when editing multi-file C programs such as
the operating system. There is a program called ctaga which generates an
appropriate laga file for C and f77 programs so that by saying :ta
function<nl> you can switch to that function. It can also be useful when
editing multi-file documents, though the taga file has to be generated manu­
ally in this case.

2,9,13, Set Commands

Vi hB8 a number of internal variables and ,witches which you can set to achieve special affects.
These options come in three forms, those that are ,witches, which toggle from off to on and
back, those that require a numeric value, and those that require an alphanumeric string value.
Set the toggle options by a command of the form:

:set oplion<nl>

and turn off the toggle options with the command:

Revision C of 7 January 1984 2-31

Using vi, the Visual Display Editor

:set nooption<nl>

To set commands requiring a value, use a command or the form:

:set option=value<nl>

To display the value or a specific option, type:

:set option?<nl>

To display only those that you have changed, type:

:set<nl>

Editing and Text Processing

and to display the long table of all the settable parameters and their current values, type:

:set all<nl>

Most or the options have a long form and an abbreviation. Both are described in the following
list as well as the normal default value.

To use values other than the default every time you enter vi, place the appropriate ••f com­
mand in EXINIT in your environment, such as:

setenv EXINIT 'set ai aw terse sh=/bln/csh'

or

EXINIT='set ai aw tel'Se sh=/bin/csh'
export EXINIT

for cah and •h, respectively. Place these in your .login or .pr?file file in your home directory.

autoindent ai Default: noai Type: toggle
When in autoindent mode, vi helps you indent code by starting each line in
the same column as the preceding line. Tabbing to the right with <tab> or
'T moves this boundary to the right; to move it to the left, use 'D.

autoprint ap Default: ap Type: toggle
Displays the current line after each e:z text modifying command. Not of much
interest in the normal vi visual mode.

autowrite aw Default: noaw type: toggle
Does an automatic write if there are unsaved changes before certain com­
mands which change files or otherwise interact with the outside world are exe­
cuted. These commands are :!, :tag, :next, :rewind, '', and '].

beautify bf Default: nobf Type: toggle

directory dir

errorbells eh

hardtabs ht

ignorecase ic

2-32

Discards all control characters except <tab>, <nl>, and <ff>.

Default: dir= / tmp Type: string
This is the directory i~ which vi puts its temporary file.

Default: noeb Type: toggle
Error messages are preceded by a <bell>.

Default: hardtabs=8 Type: numeric
This option contains the value of hardware tabs in your terminal, or of
software tabs expanded by the Sun system.
Default: noic Type: toggle
Map all upper-case characters to lower case in regular expression matching.

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

lisp

list

magic

number nu

open

Default: nolisp Type: toggle
Autoindent for liap code. The commands () [[and Jl are modified appropri­
ately to affect a-expressions and Cunctions.

Default: nolist Type: toggle
Show the <tab> and <nl> characters visually on all displayed lines.
Default: magic Type: toggle
Enable the metacharacters for matching. These include • • < > (string]
["string] and (<chr>-<chr>].
Default: nonu Type: toggle
Display each line with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes from ez or edit. Not of
interest from m.

optimize opt Default: opt Type: toggle
Useful only when using the ez capabilities. This option prevents automatic
<cr>s from taking place, and speeds up output of indented lines, at the
expense of losing typeahead on some versions of the operating system.

paragraphs para Default: para=IPLPPPQPP hp Type: string

prompt

redraw

report

scroll

sections

shell sh

Each pair of characters in the string indicates nroff macros which are to be
treated as the beginning of a paragraph for the { and } commands. The
default string is for the -ma. To indicate one letter nroff macros, such as '.P'
or '.H', quote a space in for the second character position. For example:

:set paragraphs=PP\ bp<nl>

causes Iii to consider '.PP' and '.bp' as paragraph delimiters.
Default: prompt Type: toggle
In ez command mode the prompt character : is displayed when ez is waiting
for a command. This is not of interest from vi.
Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date by sending great
amounts of output. Useful only at high speeds.

Default: report=5 Type: numeric
Set the threshold for the number of lines modified. When more than this
number of lines is modified, removed, or yanked, m reports the number of
Hnes changed at the bottom of the screen.

Default: scroll={ 1/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the
'U and 'D commands.

Default: sections=SHNHH HU Type: string
Each two-character pair of this string specifies nroff macro names, which are
to be treated as the beginning of a section by the I] and [[commands. The
default string is for the -m• and -mm macros. To enter one-letter nroff mac­
ros, use a quoted space as the second character. See Paragraph• for a fuller
explanation.

Default: sh=from environment SHELL or /bin/sh Type: string
Specify the name of the ah to be used for 'escaped' commands.

Revision C of 7 January 1984 2-33

Using vi, the Visual Display Editor Editing and Text Processing

shiftwidth sw Default: sw=8 Type: numeric
Specify the number of spaces that a ·T or ·n will move over for indenting,
and the amount that < and > will shift by.

showmatch sm Default: nosm Type: toggle
When a) or } is typed, show the matching { or { by moving the cursor to it
for one second if it is on the current screen.

slowopen slow Default: terminal dependent Type: toggle
Prevent updating the screen some of the time to improve speed on terminals
that are slow and dumb.

tabstop ts Default: ts=8 Type: numeric
<tab>s are expanded to boundaries that are multiples of this value.

taglength ti Default: tl=O Type: numeric
If nonzero, tag names are only significant to this many characters.

term Default: (from environment TERM, else dumb) Type: string
This is the terminal and controls the visual displays. It cannot be changed
when in visual mode; you have to type a Q to change to command mode, type
a ael term command, and enter ,,; to get back into visual. Or exit from ,,;, fix
$TERM, and re-enter. The definitions that drive a particular terminal type
are in the file /etc/termcap.

terse Default: terse Type: toggle
When set, the error diagnostics are short.

warn Default: warn Type: toggle
Warns if you try to escape to the Shell. without writing out the current
changes.

window Default: window=(8 at 600 baud or less, 16 at 1200 baud, and screen size - 1
at 2400 baud or more) Type: numeric
Specify the number of lines in the window whenever ,,; must redraw an entire
screen. It is useful to make this size smaller if you are on a slow line.

w300, wl200, ·w9600
Set the window, but only within the corresponding speed ranges. They are
useful in an EXINIT to line tune window sizes. For example,

set w300=4 wl200=12

produces a 4-line window at speeds up to 600 baud, a 12-line window at 1200
baud, and a full-screen window (the default) at over 1200 baud.

wrapscan ws Default: ws Type: toggle
Searches will wrap around the end of the file when is option is set. When it is
off, the search will terminate when it reaches the end or the beginning of the
file.

wrapmargin wm Default: wm=O Type: numeric

2-34

Vi automatically inserts a <nl> when it finds a natural break point (usually
a <sp> between words) that occurs within wm spaces of the right margin.
Therefore with 'wm=O', the option is off. Setting it to 10 means that any
time you are within 10 spaces of the right margin, vi looks for a <sp> or
<tab> which it can replace with a <nl>. This is convenient if you forget
to look at the screen while you type. If you go past the margin (even in the
middle of a word), the entire word is erased and rewritten on the next line.

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

writeany wa Default: nowa Type: toggle
Vi normally makes a number of checks before it writes out a file. This
prevents you from inadvertently destroying a file. When the writeany option
is enabled, vi no longer makes these checks.

2.9.14. Character Functions

This section describes how the editor uses each character. The characters are presented in their
order in the ASCD character set: control characters come first, then most special characters, the
digits, upper and finally lower-case characters.

For each character we give the meaning it has as a command and any meaning it has during
insert mode. It may only have meaning as a command.

. A
·e

·c
.D

.E

.F

·o

. H (BS)

·1 (TAB)

·J (LF)
. K
.L

. M (CR)

Not a command character. If typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 char­
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A ·@ cannot be part of the file due to the editor
implementation .

Unused.

Backward window. A count specifies repetition. Two lines of continuity are
kept if possible.

Unused.

As a command, scrolls down a half window of text. A count gives the number
of (logical) lines to scroll, and is remembered for future ·n and ·u commands.
During an insert, backtabs over autoindenl white space at the beginning of a
line. This white space cannot be backspaced over.

Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible.

Move forward one window. A count specifies repetition. Two lines of con­
tinuity are kept if possible.

Equivalent to :fCR, displaying the current file, whether it has been modified,
the current line number and the number of lines in the file, and the percentage
of the way through the file that you are .

Same as +- (see h). During an insert, eliminates the last input character, back­
ing over it but not erasing it; it remains so you can see what you typed if you
wish to type something only slightly different.

Not a command character. When inserted it prints as some number of spaces.
When the cursor is at a tab character, it rests at the last of the spaces which
represent the tab. The tab.top option controls the spacing of tabstops.

Same as ! (see j).

Unused .

The ASCII formfeed character, which clears and redraws the screen. This is
useful after a transmission error, if characters typed by a program other than
the editor scramble the screen, or after output is stopped by an interrupt .

A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines. During an insert, a CR
causes the insert to continue onto another line.

Revision C of 7 January 1984 2-35

Using vi, the Visual Display Editor Editing and Text Processing

. N
·o
•p
.Q

.R

·s
.T

·u

·v

·w

·x
·y

·z
·[(ESC)

SPACE

2-36

Same as ! (see j) .
Unused.

Same as • (seek).

Not a command character. In input mode, • Q quotes the next character, the
same as ·v, except that some teletype drivers will eat the ·Q so that tJi never
sees it. Resumes operation suspended by ·s.
Redraws the current screen, eliminating logical lines not corresponding to phy­
sical lines (lines with only a single @ character on them). On hardcopy termi­
nals in open mode, retypes the current line.

Some teletype drivers use ·s to suspend output until ·Q is pressed. Unused.

Not a command character. During an insert with autoindent set and at the
beginning of the line, inserts ahiftwMth white space.

Scrolls the screen up, inverting ·o which scrolls down. Counts work as they
do for ·o, and the previous scroll amount is common to both. On a dumb ter­
minal, ·u will often necessitate clearing and redrawing the screen further back
in the file.

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file.

Not a command character. During an insert, backs up as b does in command
mode; the deleted characters remain on the display (see ·u).
Unused.

Exposes one more line above the current screen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to ·u which
scrolls up.)
Stops the editor, exiting to the top level Shell. Same as :stopCR.

Cancels a partially formed command, such as a a when no following character
has yet been given; terminates inputs on the last line (read by commands such
as : / and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor flashes the screen or rings the
bell. You can thus type ESC if you don't know what is happening till the editor
flashes the screen. If you don't know if you are in insert mode, you can type
ESCa, and then material to be input; the material is inserted correctly whether
or not you were in insert mode when you started,

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this word, and then a CR. Mnemonically, this command is 'go right to'.

Equivalent to :e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a 'No write since last change
diagnostic' and do not want to have to type the filename again. You have to
do a :w before • • will work in this case. If you do not wish to write the file
you should do :el #CR instead.

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal.
Same as -+ (see I).

Revision C of 7 January 11184

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

"

*

%

(

)

•
+

An operator, which processes lines from the buffer with reformatting com­
mands. Follow I with the object to be processed, and then the command name
terminated by CR. Doubling I and preceding it by a count filters the count
lines; otherwise the count is passed on to the object after the !. Thus 2!}/mlCR
reformats the next two paragraphs by running them through the program /mt.
Ir you are working on LISP, the command !%grindCR, given at the beginning or
a function, will run the text of the function through the LISP grinder. (•do we
support grind!•) (The grind command and may not be present at all installa­
tions.) To read a file or the output of a command into the buffer, use :r. To
simply execute a command, use :!.

Precedes a named buffer specification. There are named buffers 1-9 used for
saving deleted text and named buffers a-s into which you can place text.

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys. In input mode, if this is your
erase character, it will delete the last character you typed in input mode, and
must be preceded with a \ to insert it, since it normally backs over the last
input character you gave.

Moves to the end of the current line. If you :se listCR, the end of each line is
indicated by showing a $ after the end of the displayed text in the line. Given
a count, advances to the count'th following end of line; thus 2$ advances to
the end of the following line.

Moves to the parenthesis or brace { } which balances the parenthesis or brace
at the current cursor position.

A synonym for :&CR, by analogy with the ez &; command.

When followed by a '~, returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a non­
relative way. When followed by a letter a-z, returns to the line which was
marked with this letter with a m command, at the first non-white character in
the line. When used with an operator such as d, the operation takes place
over complete lines; if you use ·, the operation takes place from the exact
marked place to the current cursor position within the line.

Retreats to the beginning of a sentence, or to the beginning of a LISP s­

expression if the li,p option is set. A sentence ends at a • I or ? and is followed
by either the end of a line or by two spaces. Any number of closing) J " and '
characters may appear after the • I or ? , and before the spaces or end of line.
Sentences also begin at paragraph and section boundaries (see { and [[below).
A count advances that many sentences.

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence.

Unused .

Same as CR when used as a command.

Reverse of the la.st f F t or T command, looking the other way in the current
line. Especially. useful after typing too many ; characters. A count repeats the
search. ·

Retreats to the previous line at the first non-white character. This is the
inverse of + and RETURN. If the line moved to is not on the screen, the screen
is scrolled, or cleared and redrawn if scrolling is not possible. If a large amount

Revision C of 7 January 1984 2-37

Using vi, the Visual Display Editor Editing and Text Processing

I

0

1-9

:

I

<

...
>

?

2-38

of scrolling is required, the screen is also cleared and redrawn, with the current
line at the center.

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words or lines and then type , to
delete more words or lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words.

Reads a string from the last line on the screen, and scans forward for the next
occurrence of this string. The normal input editing sequences may be used
during the input on the bottom line; an ESC returns to command state
without ever searching. The search begins when you type CR to terminate the
pattern; th~ cursor moves to the beginning of the last line to indicate that the
search is in progress; you can then terminate the search with a ·c (orDEL or
RUB), or by backspacing when at the beginning of the bottom line, returning
the cursor to its initial position. Searches normally wrap end-around to find a
string anywhere in the buffer.
When used with an operator, the enclosed region is normally affected. By men­
tioning an offset from the line matched by the pattern, you can affect whole
lines. To do this, give a pattern with a closing / and then an offset +nor -n.

To include the character / in the search string, you must escape it with a
preceding \. A • at the beginning of the pattern forces the match to occur at
the beginning of a line only; this may speed the search. A S at the end of the
pattern forces the match to occur at the end of a line only. More extended
pattern matching is available. Unless you set nomagic in your .login file (•!•),
you will have to precede the characters • [• and - in the search pattern with a
\ to get them to work as you would naively expect.

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1-9.
Used to form numeric arguments to commands.

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with a CR, and
the command is then executed. You can return to where you were by typing
ESC or DEL if you type : accidentally.

Repeats the last single character find which used f F tor T. A count iterates
the basic scan.

An operator which shifts lines left one •h•1twidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in < <. Counts are passed through
to the basic object, thus 3< < shifts three lines.

Reindents line for LISP, as though they were typed in with li•p and autoindent
set.

An operator which shifts lines right one ahi/twidth, normally 8 spaces. Affects
lines when repeated as in > >. Counts repeat the basic object.

Scans backwards, the opposite of /. See the / description above for details on
scanning.

A macro character. If this is your kill character, you must escape it with a \
to type it in during input mode, as it normally backs over the input you have
given on the current line.

Revision C of 7 January 1984

0

Q:
I

0

0

0

0

Editing and Text Proceosing Using vi, the Visual Display Editor

A
B

C
D
E

F

G

H

I
J

K
L

M

N

0

p

Q

R

Appends at the end of line; a synonym for $a.
Backs up a word, where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect.
Changes the rest of the text on the current line; a synonym for c$.

Deletes.the rest of the text on the current line; a synonym ford$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character backwards in the current line. A count
repeats this search that many times.

Goes to the line number given as preceding argument, or to the end of the file
if you do . not give a preceding count. The screen is redrawn with the new
current line in the center if necessary.

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, the cursor is moved to the count'th line on the screen. In any case the
cursor is moved to the first non-white character on the line. If used as the tar­
get of an operator, full lines are affected.

Inserts at the beginning of a line; a synonym for -i.

Joins together lines, supplying appropriate white space: one space between
words, two spaces after a '.', and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the
default two.

Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count'th line from the bottom.
Operators affect whole lines when used with L.

Moves the cursor to the middle line on the screen, at the first non-white posi­
tion on the line.

Scans for the next match of the last pattern given to / or ?, but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the ,lowopen option works better.

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre­
ceded by a named buffer specification "s to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a-• are available for general use.

Quits from vi to es command mode. In this mode, whole lines form commands,
ending with a RETURN. You can give all the : commands; the editor supplies
the : as a prompt.

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines. The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Revision C of 7 January 1984 2-39

Using vi, the Visual Display Editor Editing and Text Processing

T

u
V
w

X

y

zz

[[

\
II

•

a

b

C

d

2-40

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A count
repeats the effect. Most useful with operators such as d.
Restores the current line to its state before you started changing it.

Unused.
Moves forward to the beginning of a word in the current line, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect.
Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.
Yanks a copy of the current line into the unnamed bufl'er, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines.
May be preceded by a buffer name to put lines in that buffer.
Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.
Backs up to the previous section boundary. A section begins at each macro in
the aectiona option, normally a '.NH' or '.SH' and also at lines which which
start with a formfeed "L. Lines beginning with { also stop m this makes it
uoeful for looking backwards, a function at a time, in C programs. If the liap
option io set, stops at each (at the beginning of a line, and is thus useful for
moving backwards at the top level LISP objects.

Unused.
Forward to a section boundary; see [(for a definition.
Moves to the first non-white position on the current line.

Unused.
When followed by a • returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-s, returns to the position which was marked with this letter with
an m command. When used with an operator such as d, the operation takes
place from the exact marked place to the current position within the line; if
you use ', the operation takes place over complete lines.
Appends arbitrary text after the current cursor position; the insert can con­
tinue onto multiple lines by using RETURN within the insert. A count causes
the inserted text to be replicated, but only if the inserted text is all on one
line. Terminate the insertion with an ESC.

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect.
An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is afl'ected, the text
which is changed is saved in the numeric named buffers. If only part of the
current line is affected, the last character to be changed away is marked with a
$. A count causes that many objects to be affected, thus both 3c) and c3)
change the following three sentences.
An operator which deletes the following object. If more than part of a line is
affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w.

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

e

t

g

b

I
j

k
I

m

n
0

p

q

r

•

t

u

V

y

Advances to the end of the next word, defined as for b and w. A count
repeats the effect.

Finds the first instance of the next character following the cursor on the
current line. A count repeats the find.

Unused.

Arrow keys h, j, k, I, and H.
Left arrow. Moves the cursor one character to the left. Like the other arrow
keys, either h, the left arrow key, or one of the synonyms ('H) has the same
effect. A count repeats the effect.

Inserts text before the cursor, otherwise like a.

Down arrow. Moves the cursor one line down in the same column. If the posi­
tion does not exist, vi comes as close as possible to the same column.
Synonyms include • J (linefeed) and "N.

Up arrow. Moves the cursor one line up. ·pis a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym.

Marks the current position of the cursor in the mark register which is specified
by the next character a-s. Return to this position or use with an operator
using ''' or '"'.

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise like 0.

Puts text after /below the cursor; otherwise like P.
Unused.

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A
count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r.

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with $ as in c.

Advances the cursor up to the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use • to delete more if this doesn't delete enough the first
time.

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an insert
which inserted text on more than one line, the lines are saved in the numeric
named buffers.

Unused.

Advances to the beginning of the next word, as defined by b.
Deletes the single character under the cursor. With a count deletes that many
characters forward from the cursor position, but only on the current line.

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "z, the text is placed in that buffer

Revision C of 7 January 1984 2-41

Using vi, the Visual Display Editor Editing and Text Processing

•

{

I
}

·c (DEL)

also. Text can be recovered by a later p or P.
Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, • the center of the screen,
and '-' at the bottom or the 9creen. A count before the • gives the number of
the line to place in the center of the screen instead of the default current line.
To change the window size, use a count after the • and before the RETURN, as
in a6<CR>.
Retreats to the beginning of the preceding paragraph. A paragraph begins at
each macro in the paragt'ap/&1 option, normally '.IP', '.LP', '.PP', '.QP' and
'.hp'. A paragraph also begins after a completely empty line, and at each sec•
tion boundary (see [[above).

Places the cursor on the character in the column specified by the count.

Advances to the beginning of the next paragraph. See { for the definition of
paragraph.

Unused.

Interrupts the editor, returning it to command accepting state.

2.10. Terminal Information

v,· works on a large number of display terminals. You can edit a terminal description file to
drive new terminals. While it is advantageous to have an intelligent terminal which can locally
insert and delete lines and characters from the display, vi functions quite well on dumb termi·
nals over slow phone lines. Vi allows for the low bandwidth in these situations and uses smaller
window sires and different display updating algorithms to make best use of the limited speed
available.

0

You can also use the vi command set on hardcopy terminals, storage tubes and 'glass tty's' 0
using a one-line editing window. '

2.10.1. Specifying Terminal Type

Before you can start vi you must tell the system what kind of terminal you are using. Here is a
(necessarily incomplete) list of terminal type codes. If your terminal does not appear here, you
should consult with one of the staff members on your system to find out the code for your ter­
minal. If your terminal does not have a code, one can be assigned and a description for the ter­
minal can be created.

2-42 Revision C of 7 January 1984

0

0

Editing and Text Processing Using vi, the Visual Display Editor

Table 2-6: Terminal Types

Code Full Name Type

2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
clOO Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit h19 Intelligent
iIOO Jnfoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by
the system for this terminal is '2621'. In this case you can use one or the following commands
to tell the system your terminal type:

0 logo% aetenv TERM 2821

Ir you are using the Bourne Shell, use:

0

STERM=2621
S export TERM

Ir you want to arrange to have your terminal type set up automatically when you log in, use the
t,et program. Ir you dial in on a mime, but often use hardwired ports, a typical line for your
.login file (if you use cah) is

aetenv TERM 'taet - -d mime'

or for your .profile file (if you use ,h):

TERM= 'taet - -d mime'

Tiet knows which terminals are hardwired to each port and needs only to be told that when
you dial in you are probably on a mime. You can use t,et to change the erase and kill charac­
ters too.

2.10.2. Special Arrangements for Startup

Vi takes the value of STERM and looks up the characteristics of that terminal in the file
/etc/termcap. If you don't know m's name for the terminal you are working on, look in
/etc/termcap. The editor adopts the convention that a null string in the environment is the
same as not being set. This applies to TERM, TERMCAP, and EXINIT.

Revision C of 7 January 1984 2-43

Using vi, the Visual Display Editor Editing and Text Processing

When .,; starts, it attempts to read the variable EXINIT from your environment. If that exists,
it takes the values in it as the default values for certain of its internal constants. See Set Value•
for further details. If EXINIT doesn't exist, you will get all the normal defaults.
Should you inadvertently hang up the phone while inside vi, or should something else go wrong,
all may not be lost. Upon returning to the system, type:

logo% vi -r file

This will normally recover the file. If there io more than one temporary file for a specific
filename, vi recovers the newest one. You can get an older version by recovering the file more
than once. The command vi -r without a filename list• the files from an on-line list that were
saved in the last system crash (but not the file just saved when the phone was hung up).

2.10.3. Open Mode on Hardcopy Terminals and 'Glass tty's'

If you are on a hardcopy terminal or a terminal which does not have a cursor which can move
off the bottom line, you can still use the command set of vi, but in a different mode. When you
give a vi command, the editor will tell you that it is using open mode. This name comes from
the open command in ez, which is used to get into the same mode.

The only difference between viaual mode and open mode is the way in which the text is
displayed. In open mode the editor uses a single-line window into the file, and moving back­
ward and forward in the file displays new lines, always below the current line. Two 111· com­
mands that work differently in open are: • and ·R. The • command does not take parameters,
but rather draws a window of context around the current line and then returns you to the
current line.
If you are on a hardcopy terminal, the ·R command retypes the current line. On such termi­
nals, vi normally uses two lines to represent the current line: The first line is a. copy of the line
as you started to edit it, and you work on the line below this line. When you delete characters,
the editor types a number of \'s to show you the characters which are deleted. It also reprints
the current line soon after such changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the full
screen mode. You can do this by entering ez and using an open command.

2.10.4, Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of output which is gen­
erated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @

when they are deleted on dumb terminals.
The use or the slow terminal insertion mode is controlled by the alowopen option. You can
force the editor to use this mode even on faster terminals by giving the command:

1ae alowCR

If your system is sluggish this helps lessen the amount of output coming to your terminal. You
can disable this option by:

1ae noelowCR.

2-44 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using vi, the Visual Display Editor

The editor can simulate an intelligent terminal on a dumb one. Try giving the command:

111e redrawCR

This simulation generates a great deal of output and is generally tolerable only on lightly loaded
systems and fast terminals. You can disable this by giving the command:

111e noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small window,
and letting the window expand as you edit. This works particularly well on intelligent termi­
nals. The editor can expand the window easily when you insert in the middle of the screen on
these terminals. If possible, try the editor on an intelligent terminal to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by giv­
ing window size as an argument to the commands which cause large screen motions:

1/T[[)]''
Thus if you are searching for a particular instance of a common string in a file, you can precede
the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can expand or contract the window size, placing the current line as you choose, with the •
command, as in •&<CR>, which changes the window to five lines. You can also use • or-.
Thus the command s&. redraws the screen with the current line in the center of a five-line win­
dow, Note that the command &s. has an entirely different effect, placing line 5 in the center of
a new window. Use -, as in &s- to position the cursor at line 5 in the file.

The default window sizes are 8 lines at 300 baud, 16 lines at 1200 baud, usually also 16 for a
typical 24 line CRT). and full screen size at 9600 baud. Any baud rate less than 1200 behaves
like 300, and any over 1200 like 9600.
If the editor is redrawing or otherwise updating large portions of the display, you can interrupt
this updating by typing a DEL or RUB as usual. If you do this, you may partially confuse the
editor about what is displayed on the screen. You can otill edit the text on the ocreen if you
wish; clear up the confusion by typing a ·L; or move or oearch again, ignoring the current otate
of the display.
See the section on open mode for another way to use the vi command set on slow terminals .

•
2,10.5. Upper-case Only Terminals

If your terminal has only upper case, you can still use vi by using the normal system convention
for typing on such a terminal. Characters which you normally type are converted to lower case,
and you can type upper-case letters by preceding them with a '\'. The characters { - } I ' are
not available on such terminals, but you can escape them as \(\ • \) \! \ '. These characters are
represented on the display in the same way they are typed.g

O The'\' character you give will not echo until you type another key.

Revision C of 7 January 1984 2·45

Using vi, the Visual Display Editor Editing and Text Processing

2.11. Command Summary

The following is a quick summary of frequently used commands. Refer to the quick reference
pages for a reference summary of all commands.

SPACE
'B
·o
'E
'F
·a
'H
'N
•p
·u
·y

+
I
T
B
G
H
M
L
w
b
e
D
w

·w
DEL
·u
•
0
u
•
C

d
l
0

u

s
)

2-46

Table 2-7: Frequently Used Commands

advance the cursor one position
backwards to previous page
scrolls down in the file
ex poses another line at the bottom
forward to next page
tell what is going on
backspace the cursor
next line, same column
previous line, same column
scrolls up in the file
exposes another line at the top (v3)
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan backwards
back a word, ignoring punctuation
go to specified line, last default
home screen line
middle screen line
last screen line
forward a word, ignoring punctuation
back a word
end of current word
scan for next instance of / or T pattern
word after this word

erase a word during an insert
your erase (or 'H), erases a character during an insert
your kill (or 'X), kills the insert on this line
repeats the changing command
opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the curspr
changes the object you specify to the following text
deletes the object you specify
inserts text before the cursor
opens and inputs new lines, below the current
undoes the last change

first non-white on line
end of line
forward sentence

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

}
II
(
{
[[
rz
p

'1
h
Fz
p
Tz

forward paragraph
forward section
backward sentence
backward paragraph
backward section
find z forward in line
put text back, after cursor or below current line
yank operator, for copies and moves
up to z forward, for operators
f backward in line
put text back, before cursor or above current line
t backward in line

Revision C of 7 January 1984

Using vi, the Visual Display Editor

2-47

01

0

0

0

0

Vi Quick Reference

Entering/Leaving vi
% vi name edit n a:me at top

... at line n % vi +n name
% vi+ name
% vi -r
% vi -r name
% vi name •.•
% vi -t tag

... at end
list saved files
recover file name
edit first; rest via :n
start at tag

% vi +/pat n•m•
% view name
zz

search for pat

read only mode
exit from ft, saving changes
stop vi for later resumption 'Z

The Display
Last line

@ lines
~ lines
'z
tabs

Vi Modes

Error messages, echoing input to : / !
and !, feedback about i/o and large
changes.
On screen only, not in file.
Lines pa.st end of file.
Control characters, DEL is delete.
Expand to spaces, cursor at last.

Command Normal and initial state. Others return
here. ESC (escape) cancels partial com•
mand.

Insert Entered by a i A I o O c C • S R.
Arbitrary text then terminates with
ESC character, or abnormally with
interrupt.

La.st line Reading input for : / ? or !; terminate
with ESC or CR to execute, interrupt
to cancel.

Counts Before vi Commands
line/column number z G I
scroll amount AD Au
replicate insert
repeat effect
Simple Commands
dw
de
dd
3dd
it,ztESC
cwnewESC
ea,ESC
xp

Revision C of 7 January 1984

a i A I
most rest

delete a word
... leaving punctuation
delete a line
... 3 lines
insert text abc
change word to new
pluralize word
transpose characters

Interrupting, Cancelling
ESC end insert or incomplete cmd
'C interrupt (or DEL)
"L refresh screen it scrambled

File Manipulation
:w
:wq
:q
:qi
:e name
:el
:e + name
:e +a

:•.*
:w name

write back changes
write a.nd quit
quit
quit, discard changes
edit file name
reedit, discard changes
edit, starting at end
edit starting at line n
edit alternate file
synonym tor :e #
write file name

:wl name overwrite file name
:sh run shell, then return
:lcmd run cmd, then return
:n edit next file in arglist
:n arg, specify new arglist
:t show current file and line
.. G synonym for :t
:ta t•g to tag file entry tag
"] :ta., !oilowing word is tag

Positioning within File
"F forward screenfull
"B backward screenfull
"D scroll down half screen
"U scroll up half screen
G goto line (end default)
/ pat next line matching pat
fpat prev Jine matching p11t

n repeat last / or ?
N reverse la.st / or !
/p•t/+a n'th line alter pat
fpat?-n n'th line before p11t
]] next section/function
[(previous section/function
% find matching () { or }

Adjusting the Screen
"L clear and redraw
'R retype, eliminate @ lines
zCR redraw, current at window top
z- ... at bottom

••
I P•'l•­
zn.
'E
'Y

... at center
pat line at bottom
use n line window
scroll window down 1 line
scroll window up 1 line

Marking and Returning
previous context
... at first non-white in line

mz mark position with letter z
~z to mark z
'z ... at first non-white in line

Line Positioning
H home window line
L la.st window line
M middle window line
+ next line, at first non-white

previous line, at first non-white
CR return, same a.s +
l or j next line, same column
f or k previous line, same column

Character Positioning
first non white

0 beginning of line

• end of line
h or - forward

I or - backwards
.H same as -
space same a.s -
r, find , rorward
F, r backward
t, upto z forward
T, back upto z

repeat last r F t or T
inverse of;
to specified column

% find matching ({) or }
Words, Sentences, Paragraphs

w

b
e

word forward
back word
end of word

) to next sentence
} to next paragraph
(back sentence
{ back paragraph
W blank delimited word
B back W
E to end or W

Commands for LISP

)
}
(
{

Forward s-expression
... but don't stop at atoms
Backs-expression
... but don't stop at atoms

Correction• During Ineert
.. B erase la.st character
"W erases last word
erase your erase, same M "'B
kill your kill, erase input this line
\ escapes • H, your erase and kill
ESO ends insertion, back to command
·c interrupt, terminates insert
"D backtab over cutoi11,e,at
""'D kill outoiaJent, .save for next
o·o ... but at margin next also
"V quote non-printing character

Ineert and Replace
a
I
A
I

append after cursor
insert before
append at end of line
insert before first non-blank

o open line below
0 open above
rs replace single char with s
R replace character9

Operatore ldouble to affect lines)
d delete
c change
< left shirt
> right shift
I filter through command
- indent for LISP

y yank lines to buffer
Miscellaneous Operation•

C change rest or line
D delete rest of line
a substitute chars
S substitute lines
J join lines
x delete characters
X ... before cursor
Y yank lines

Yank and Put
p put back lines
P put before
"ap put from buffer z
• ,y yank to buffer ,
"m delete into buffer z

Undo, Redo, Retrieve
u undo last change
U restore current line

repeat last change
• dp retrieve cl'th last delete

Revision C of 7 January 1984

0

0

0

0

0

0

Ex Quick Reference

Entering/Leaving ex
% ex name
% ex +n aame
% ex -t tag
% ex-r
% ex-r 1Hme
% ex name •••
% ex-R name
: X

edit no:me, start at end
... at line •
start at tag
list saved files
recover file name
edit first; rest via :n
read only mode
exit, saving changes

: qi ex it, discarding changes
ex States
Command

Insert

Open/visual

Normal and initial state. Input
prompted for by :. Your kill ch..­
acter cancels partial command.
Entered by a i and c. Arbitrary
text then terminates with line hav•
ing only • character on it or abnor·
mally with interrupt.
Entered by open or vi, terminates
with Q or"\.

ex Commands
abbrev ab next n unabbrev una

append a number nu undo u
args ar open 0 unmap unm
change C preserve pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit X

file r read re yank ya
global g recover rec window I

insert rewind rew escape I
join j set se
list I shell sh
map source ao
mark ma stop st
move m substitute s
ex Command Addresses
• line • /pat

current ?pat
S last >•
+ next z,1

+•
%

previous
11 forward
1,S

'z

Revision C or 7 January 1Q84

shift <
print next CR
resubst Rt.
rshirt
scroll

next with pst
previous with pst
"before z
z through r
marked with z
previous context

>
"D

Specifying Terminal Type
% setenv TERM tvp• (ror e,A)

(for ,A) S TERM-tvpe; export TERM
See abo t,et in the user's manual.

Some Terminal Types
2621
2646
300s
33

43
733
746
act4

adm31
adm3a
c!OO
dm1520

dwl h19
dw2 i!OO
gt40 mime
gt42 owl

37 acto dm2500 h1500 t1061
4014 adm3 dm3025 hl510 vt52
Initializing Options
EXINIT place set's here in environment v&r.
set z enable option
11et noz disable option
set z-11al give value 11al
set show changed options
set all show all options
set z? show value of option z
Useful Options
autoindent
autowrite
ignorecase
liop
liot
magic
number
paragraphs
redraw
scroll
sections
shiftwidth
show match
slowopen
window
wrapscan

ai supply indent
aw writ.e before changing files
ic in scanning

() {) are s-exp's
print ·1 for tab, S at end
• [• special in patt.erns

nu number lines
para macro names which start ...

simulate smart terminal
command mode lines

sect macro names ...
sw for < >, and input "D
sm to) and } as typed
slow choke updates during insert

visual mode lines
ws around end of buffer

wrapmargin wm automatic Jine splitting

Scanning Pattern Formation

*
\<
\>
[,t,]
[t ,tr)
[z-r)
•

•

beginning of line
end of line
any character
beginning of word
end of word
any char in ,tr
... not in lfr
... between z and p
any number of preceding

0

o;

•

0

0

0

0

Table of Contents

Chapter 3 Command Reference for the ex Line Editor .. 3-1
3.1. Using ex .. 3-1
3.2. File Manipulation .. 3-2

3.2.1. Current File ... 3-2
3.2.2. Alternate File .. 3-2
3.2.3. Filename Expansion.. 3-2

3.3. Special Characters .. 3-2
3.3.1. Multiple Files and Named Buffers .. 3-3
3.3.2. Read Only Mode ... 3-3

3.4. Exceptional Conditions .. 3-3
3.4.1. Errors and Interrupts ... 3-3
3.4.2. Recovering If Something Goes Wrong ... 3-3

3.5. Editing Modes ... 3-4
3.6. Command Structure .. 3-4

3.6.l. Specifying Command Parameters ... 3-4
3.6.2. Invoking Command Variants.. 3-5
3.6.3. Flags after Commands .. 3-5
3.6.4. Writing Comments .. 3-5
3.6.5. Putting Multiple Commands on a Line .. 3-5
3.6.6. Reporting Large Changes .. 3-5

3.7. Command Addressing... 3-5
3.7.1. Addressing Primitives.. 3-5
3.7.2. Combining Addressing Primitives .. 3-6

3.8. Regular Expressions and Substitute Replacement Patterns ... 3-6
3.8.l. Regular Expressions.. 3-6
3.8.2. Magic and Nomagic ... 3-6
3.8.3. Basic Regular Expression Summary ... 3-7
3.8.4. Combining Regular Expression Primitives ... 3-7
3.8.5. Substitute Replacement Patterns... 3-8

3.9. Command Reference ... 3-8
3.10. Option Descriptions ... 3-17
3.11. Limitations .. 3-21

0

0 .
'

o,

0

0

0

Chapter 3

Command Reference for the ex Line Editor

This chapter• provides reference material for ez, the line-oriented text editor, which also sup­
ports display oriented editing in the form of the vi editor described in U,ing Vi, the Viaual
Di,play Editor. The contents of this chapter describe the line-oriented part of ez. You can also
use these commands with vi. For a summary of ez commands, see the Ez Quick Reference

3.1. Using ex

Ez has a set of options, which you can use to tailor ez to your liking. The command edit
invokes a version of ez designed for more casual or beginning users by changing the default set­
tings of some of these options. To simplify the description which follows, we assume the default
settings of the options, and we assume that you are running ez on a Sun Workstation.

If there is a variable EXINIT in the environment, ez executes the commands in that variable,
otherwise if there is a file .ezrc in your HOME directory ez reads commands from that file, simu­
lating a aource command. Option setting commands placed in EXINIT or .ezrc are executed
before each editor session.
If you are running ez on a terminal, ez determines the terminal type from the TERM variable in
the environment when invoked. It there is a TERMCAP variable in the environment, and the
type of the terminal described there matches the TERM variable, that description is used. Also
if the TERMCAP variable contains a pathname (beginning with a /),ez seeks the description of
the terminal in that file, rather than in the default /etc/termcap.)

The standard ez command format follows. Brackets '[' ']' surround optional parameters here.

logo% ex [-] [-v] [-t lag] [-r] [-I J [-wn] [-x] [-R] [+command] filename ...

The most common case edits a single file with no options, that is,:

logo% ex filename

The '-' command line option option suppresses all interactive-user feedback and is useful in pro­
cessing ez scripts in command files. The -v option is equivalent to using vi rather than ez. The
-t option is equivalent to an initial lag command, editing the file containing the lag and posi­
tioning the editor at its definition.
Use the -r option to recover a file after an editor or system problem, retrieving the last saved
version of the named file or, if no file is specified, displaying a list of saved files. The -1 option
sets up for editing LISP, setting the ahowmatch and liap options. The -w option sets the
default window size to n, and is useful on dialups to start in small windows. The -x option
causes ez to prompt for a key, which is used to encrypt and decrypt the contents of the file,
which should already be encrypted using the same key (see crypt in Uaer', Manual for the Sun

1 The material in this chapter is derived from Ez Re/erenee Manual, W.N. Joy, M. Horton,
University or Cali!ornia, Berkeley.

Revision C of 7 January 1984 3-1

Command ReCerence Cor the ex Line Editor Editing and Text Processing

Workatation). The -R option sets the readonlu option at the start. Ir set, writes will (ail unless
you use an '!' after the write. This option affect ZZ, autowrite and anything that writes to 0 guarantee you won't clobber a file by accident. Filename arguments indicate files to be edited. :
An argument of the form +command indicates that the editor should begin by executing the
specified command. If command is omitted, it defaults to '$', initially positioning es at the last
line of the first file. Other useful commands here are scanning patterns of the form '/ pat' or line
numbers, such as'+ 100', which means 'start at line 100.'

3.2. File Manipulation

The following describes commands for handling files.

3.2.1. Current File

E:i normally edits the contents of a single file, whose name is recorded in the current filename.
Ex performs all editing actions in a buffer into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless and until you write the
buffer contents out to the file with a write command. After the buffer contents are written, the
previous contents of the written file are no longer accessible. When a file is edited, its name
becomes the current filename, and its contents are read into the buffer.
The current file is almost always considered to be edited. This means that the contents of the
buffer are logically connected with the current filename, so that writing the current buffer con­
tents onto that file, even if it exists, is a reasonable action •. If the current file is not edited, e:i
will not normally write on it if it already exists. The file command will say '(Not edited)' if the

0 current file is not considered edited.

3.2.2. Alternate File

Each time a new value is given to the current filename, the previous current filename is saved as
the alternate filename. Similarly if a file is mentioned but does not become the current file, it is
saved as the alternate filename.

3.2.3. Filename Expansion

You may specify filenames within the editor using the normal Shell expansion conventions. In
addition, the character '%' in filenames is replaced by the current filename and the character
'#' by the alternate filename. This makes it easy to deal alternately with two files and elim­
inates the need for retyping the name supplied on an edit command after a 'No write since last
change' diagnostic is received.

3.3. Special Characters

Some characters take on special meanings when used in context searches and in patterns given
to the aubatitute command. For edit, these are •·• and '$', meaning the beginning and end of a
line, respectively. Ex has the following additional special characters:

3-2 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

& •

To use one or the special characters as its simple graphic representation rather than with its
special meaning, precede it by a backslash (\). The backslash always has a special meaning.

3.3.1. Multiple Files and Named Buffers

Ir more than one file is given on the ez command line, the first file is edited as described above.
The remaining arguments are placed with the first file in the argument liat. You can display the
current argument list with the arg• command. To edit the next file in the argument list, use
the nozl command. You may also respecify the argument list by specifying a list or names to
the nezl command. These names are expanded, the resulting list or names becomes the new
argument list, and oz edits the first file on the list.

To save blocks of text while editing, and especially when editing more than one file, oz has a
group or named buffers. These are similar to the normal buffer, except that only a limited
number or operations are available on them. The buffers have names a through z. It is also
possible to refer to A through Z; the upper-case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper-case names are used.

3.3.2. Read Only Mode

It is possible to use ez in read only mode to look at files that you have no intention of modify­
ing. This mode protects you from accidently overwriting the file. Read only mode is on when
the readon/y option is set. It can be turned on with the -R command line option, by the view
command line invocation, or by setting the roadonl11 option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file with :w nowfilonamo, or can use the
:w! form of write, even while in read only mode.

3.4. Exceptional Conditions

The following describes additional editing situations.

3.4.1. Errors and Interrupts

When errors occur oz flashes the workstation screen and displays an error diagnostic. If the pri­
mary input is from a file, editor processing terminates. If you interrupt ez, it displays 'Inter­
rupt' and returns to its command level. If the primary input is a file, oz exits when this occurs.

3.4.2. Recovering Ir Something Goes Wrong

If something goes wrong and the buffer has been modified since it was last written out, or if the
system crashes, either the editor or the system (after it reboots) attempts to preserve the buffer.
The next time you log in, you should be able to recover the work you were doing, losing at most
a few lines of changes from the last point before the problem. To recover a file, use the -r
option. If you were editing the file reaumo for example, change to the directory where you were

Revision C or 7 January 1984 3-3

Command Reference for the ex Line Editor Editing and Text Processing

when the problem occurred, and use e:i with the -r (recover) option:

logo% ex -r Jile 0
After checking that the retrieved file is indeed. ok, you can write it over the previous contents of
that file.
You will normally get mail from the system telling you when a file has been saved after the sy&­
tem has gone down .• Use the -r option without a following filename:

logo% ex -r

to display a list of the files which have been saved for you. In the case of a hangup, the file will
not appear in the list, although it can be recovered.

3.5. Editing Modes

E:i has five distinct modes. The primary mode is command mode. You type in commands in
command mode when a':' prompt is present, and execute them each time you send a complete
line. In inaert mode, e:i gathers input lines and places them in the file. The append, in,ert, and
change commands use insert mode. No prompt is displayed when you are in text input mode.
To leave this mode and return to command mode, type a '.' alone at the beginning of a line.

The last three modes are open and visual modes, entered by the commands of the same names,
and, within open and visual modes te:it insertion mode. In open and vi,ual modes, you do
local editing operations on the text in the file. The open command displays one line at a time
on the screen, while visual works on the workstation and CRT terminals with random position­
ing cursors, using the screen as a single window for file editing changes. See U,ing Vi, The
Visual Display Editor for descriptions of these modes. 0
3.6. Command Structure

Most command names are English words; you can use initial prefixes of the words as acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands. As an example, the command sub,titute can be abbreviated as 's' while the shortest
available abbreviation (or the set command is ae. See Command Reference for descriptions and
acceptable abbreviations.

3.6.1. Specifying Command Parameters

Most commands accept prefix addresses specifying the lines in the file upon which they are to
have effect. The forms of these addresses will be discussed below. A number of commands also
may take a trailing count specifying the number of lines to be involved in the command.
Counts are rounded down if necessary. Thus the command lOp displays the tenth line in the
buffer, while d5 deletes five lines from the buffer, starting with the current line.

Some commands take other information or parameters, that you provide after the command
name. Examples would be option names in a ,et command such as, aet number, a filename in
an edit command, a regular expression in a ,u6,tilule command, or a target address for a cop11
command, such as, 1,5 copy 25.

3.4 Revision C of 7 January 1984

0

0

Editing and Text Processing Command Reference for the ex Line Editor

3.6.2. Invoking Command Variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an 'I' immediately after the command name. You can control some of the
default variants with options; in this case, the '!' serves to toggle the default.

3.6.3. Flags after Commands

You may place the characters '#', p and I after many commands. You must precede a p or I
by a blank or tab except in the single special case of dp. The command that these characters
abbreviates is executed after the command completes. Since ez normally shows the new current
line after each change, pis rarely necessary. You can also give any number of'+' or'-' charac­
ters with these flags. Ir they appear, the specified offset is applied to the current line value
before the display command is executed.

3.6.4. Writing Comments

It is possible to give editor commands which are ignored. This is useful when making complex
editor scripts for which comments are desired. Use the double quote ' " ' as the comment char­
acter. Any command line beginning with ' " ' is ignored. You can also put comments beginning
with ' " ' at the ends of commands, except in cases where they could be confused as part of
text, for example as Shell escapes and the ,ub,titute and mop commands.

Q 3.6.5. Putting Multiple Commands on a Line

0

You can place more than one ez command on a line by separating each pair of commands by a
'I' character. However the global commands, comments, and the Shell escape '!' must be the
last command on a line, as they are not terminated by a 'j'.

3.6.6. Reporting Large Changes

Most commands which change the contents of the editor huller give feedback if the scope of the
change exceeds a threshold given by the report option. This feedback helps to detect undesir­
ably large changes so that you may quickly and easily reverse them with undo. After commands
with more global effect, such as global or viaual, you will be informed if the net change in the
number of lines in the huller during this command exceeds this threshold.

3.7. Command Addressing

The following describes the editor commands called addreaaing primitive,.

3.7.1. Addressing Primitives

The current line. The current line is traditionally called 'dot' because you address it
with a dot '.'. Most commands leave the current line as the last line which they
affect. The default address for most commands is the current line, so you rarely use

Revision C of 7 January 1984 3-5

Command Reference for the ex Line Editor Editing and Text Processing

n

s

'.' alone as an address.
The nth line in the editor's buffer, lines being numbered sequentially from 1.

The last line in the buffer.

% An abbreviation for '1,$', the entire buffer.

+n -n An offset relative to the current buffer line. The forms '.+ 3' '+ 3' and '+ + +' are
all equivalent; if the current line is line 100, they all address line 103.

/pat/ ?pat?
Scan forward and backward respectively for a line containing pot, a regular expres­
sion (as defined below in Regular Ezpreuion, anti Sub,titute Replacement Pattern,.
The scans normally wrap around the end of the buffer. If all that is desired is to
show the next line containing pat, you may omit trailing / or ?. If you omit. pat or
leave it explicitly empty, the last regular expression specified is located. The forms
\/ and \? scan using the last regular expression used in a scan; after a 1ub1titute, / /
and ?? would scan using the substitute'• regular expression.

" 'z Before each non-relative motion of the current line '.', the previous current line is
marked with a tag, subsequently referred to as '" '. This makes it easy to refer or
return to this previous context. You can also establish marks with the mark com­
mand, using single lower-case letters z and the marked lines referred to as '' z '.

3.7.2. Combining Addressing Primitives

0

Addresses to commands consist of a series of addressing primitives, separated by ',' or ';'. Such
address lists are evaluated left-to-right. When addresses are ·separated by ';' the current line '.'
is set to the value of the previous addressing expression before the next address is interpreted. 0
If you give more addresses than the command requires, all but the last one or two are ignored.
If the command takes two addresses, the first addressed line must precede the second in the
buffer. Null address specifications are permitted in a list of addresses; the default in this case is
the current line '.'. So ',100' is equivalent to '.,100'. It is an error to give a prefix address to a
command which expects none.

3.8. Regular Expressions and Substitute Replacement Patterns

3.8.1. Regular Expressions

A regular expression specifies a set of strings of characters. A member of this set of strings is
said to be matched by the regular expression. Ez remembers two previous regular expressions:
the previous regular expression used in a ,ubatitute command and the previous regular expres­
sion used elsewhere (referred to as the previous ,canning regular expression.) The previous regu­
lar expression can always be referred to by a null re, that is '//'or'!!'.

3.8.2. Magic and Nomagic

The regular expressions allowed by ez are constructed in one of two ways depending on the set-
ting of the magic option. The ez and Iii default setting of magic gives quick access to a power- 0
ful set of regular expression metacharacters. The disadvantage of magic is that the user must

3-6 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

remember that these metacharacters are magic and precede them with the character '\' to use
them as "ordinary" characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters, namely,., (beginning or line) and '$' (end
or line). The power of the other metacharacters is still available by preceding the (now) ordi­
nary character with a '\'. Note that '\' is thus always a metacharacter.

The remainder or the discussion or regular expressions assumes that that the setting or this
option is magic.2

3.8.3. Basic Regular Expression Summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters ,., at the beginning or a line,
'$' at the end or line, '•' as any character other than the first, '.', '\', '[', and ,-, are
not ordinary characters and must be escaped (preceded) by '\' to be treated as such.

At the beginning of a pattern forces the match to succeed only at the beginning or a
line.

$

\<

\>

[atring)

At the end or a regular expression forces the match to succeed only at the end of the
line.

Matches any single character except the new-line character.

Forces the match to occur only at the beginning or a 'variable' or 'word'; that is,
either at the beginning or a line, or just before a letter, digit, or underline and after
a character not one of these.

Similar to'\<', but matching the end of a 'variable' or 'word,' that is either the end
of the line or before character which is neither a letter, nor a digit, nor the underline
character.
Matches any single character in the class defined by airing. Most characters in
airing define themselves. A pair of characters separated by '-' in airing defines a set
or characters between the specified lower and upper bounds, thus '(a-z]' as a regular
expression matches any single lower-case letter. Ir the first character or airing is a
'· ', the construct matches all but those characters; thus '[' a-z]' matches anything
but a lower-case letter and or course a newline. You must escape any of the charac­
ters'"','{', or'-' in airing with a preceding'\'.

3.8.4. Combining Regular Expression Primitives

The concatenation or two regular expressions matches the leftmost and then longest string,
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the single character matching regular expressions mentioned
above may be followed by the character '•' to form a regular expression which matches any
number or adjacent occurrences (including 0) or characters matched by the regular expression it
follows.

2 To discern what is true with nomagic it suffices to remember that the only special characters
in this case will be , .. , at the beginning of a regular expression, '$' at the end of a regular expre~
sion, and '\'. With nomagic the characters,-, and'&' also lose their special meanings related to
the replacement pattern or a substitute.

Revision C or 7 January 1984 3-7

Command Reference for the ex Line Editor Editing and Text Processing

The character ' - ' may be used in a regular expression, and matches the text which defined the
replacement part of the last ,ub,tilule command. A regular expression may be enclosed

0 between the sequences '\(' and '\)' with side effects in the ,ubatitute replacement patterns. ,

3.8.5. Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are '&' and ,-,; these are given as '\&'
and '\ -, when nomagic is set. Each instance of '&' is replaced by the characters which the reg­
ular expression matched. The metacharacter ,-, stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping
character '\'. The sequence '\n' is replaced by the text matched by the r»-th regular subexpres­
sion enclosed between '\(' and '\)'.3 The sequences '\u' and '\I' cause the immediately following
character in the replacement to be converted to upper- or lower-case respectively if this charac­
ter is a letter. The sequences '\ U' and '\L' turn such convel'llion on, either until '\E' or '\e' is
encountered, or until the end of the replacement pattern.

3.9. Command Reference

The following form is a prototype for all e:r commands:

addreu command ! parameter, count flag,

All parts are optional; the simplest case is the empty command, which displays the next line in
the file. To avoid confusion from within viaual mode, e:r ignores a ':' preceding any command.

In the following command descriptions, the default addresses are shown in parentheses, which
are not, however, part of the command.

abbreviate word rha abbr: ab
Add the named abbreviation to the current list. When in input mode in visual, if word is typed
as a complete word, it will be changed to rha.

(,) append
te:it

abbr: a

a!
tezl

Reads the input text and places it after the specified line. After the command, '.' addresses
the last line input or the specified line if no lines were input. If address 'O' is given, text is
placed at the beginning or the buffer.

The variant flag to append toggles the setting for the autoi"ndent option during the input of
tezt.

3 When nested, parenthesized subexpressions are present, 11 is determined by counting oc­
currences or '\(' starting from the left.

3-8 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

arg11
The members of the argument list are printed, with the current argument delimited by '['

and']'.

(, , ,) change count
tezt

abbr: c

c!
te:zt

Replaces the specified lines with the input te:zt. The current line becomes the last line
input; if no lines were input it is left as for a delete.

The variant toggles autoindent during the change.

(• , •) copy addr flag, abbr: co

A copy of the specified lines is placed after addr, which may be 'O'. The current line '.'
addresses the last line of the copy. The command t is a synonym for copy.

(, , •) delete buffer count flag, abbr: d
Removes the specified lines from the buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end, the new last line becomes the
current line. If a named buffer is specified by giving a letter, then the specified lines are
saved in that buffer, or appended to it if an upper case letter is used.

edit file
ex file
edit! file

abbr: e

Used to begin an editing session on a new file. Same as :vi file. The editor first checks to
see if the buffer has been modified since the last write command was issued. Ir it has been,
a warning is issued and the command is aborted. The command otherwise deletes the
.entire contents of the editor buffer, makes the named file the current file and prints the new
filename. After insuring that this file is sensible the editor reads the file into its buffer. A
'sensible' file is not a binary file such as a directory, a block or character special file other
than / dev/ tty, a terminal, or a binary or executable file as indicated by the first word.

If the read of the file completes without error, the number of lines and characters read is
typed. Ir there were any non-ASCil characters in the file they are stripped of their non-ASCil
high bits, and any null characters in the file are discarded. Ir none of these errors occurred,
the file is considered edited. Ir the last line of the input file is missing the trailing newline
character, it will be supplied and a complaint will be issued. This command leaves the
current line '.' at the last line read. If executed from within open or vi,ual, the current line
is initially the first line of the file.

el file
The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

Revision C or 7 January 1984 3-9

Command Reference for the ex Line Editor Editing and Text Proces:sing

e +n file

file

Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, for example: '+/pat'.

abbr: r
Prints the current file name, whether it has been '[Modified]' since the last write command,
whether it is read onl11, the current line, the number of lines in the buffer, and the percen­
tage of the way through the buffer of the current line. In the rare case that the current file
is '[Not edited]' this is also noted. You have to use wl to write to the file, since cz does not
want to write a file unrelated to the current contents of the buffer.

file file
The current filename is changed to file which is considered '[Not edited]'.

(1 , S) global /pal/ cmd, abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with '.' initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a'\'. If cmd, (and possi­
bly the trailing / delimiter) is omitted, each line matching pal is printed. Append, in,crt,
and change commands and associated input are permitted; the'.' terminating input may be
omitted if it would be on the last line of the command list. Open and vi,ual commands are
permitted in the command list and take input from the terminal.

0

The global command itself may not appear in cmd,. The· undo command is also not permit-
ted there, as undo instead can be used to reverse the entire global command. The options Q
autoprint and autoindenl are inhibited during a global, (and possibly the trailing / delim-
iter) and the value of the report option is temporarily infinite, in deference to a report for
the entire global. Finally, the context mark ''~ is set to the value of'.' before the global
command begins and is not changed during a global command, except perhaps by an open
or viaual within the global.

g! / pat/ cmda abbr: v

The variant form of global runs cmd, at each line not matching pat.

(.) insert
text

abbr: i

ii
text

Places the given text before the specified line. The current line is left at the last line input;
if there were none input it is left at the line before the addres:sed line. This command
differs from append only in the placement of text.

The variant toggles autoindent during the in,crt.

3-10 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

(• , .+ 1) join count Jlaga abbr: j

jl

Places the text from a specified range of lines together on one line. White space is adjusted
at each junction to provide at least one blank character, two if there was a '.' at the end of
the line, or none if the first following character is a')'. If there is already white space at the
end of the line, then the white space at the start of the next line will be discarded.

The variant causes a simpler join with no white space processing; the characters in the lines
are simply concatenated.

(.) k "
The k command is a synonym for mark. It does not require a blank or tab before the fol­
lowing letter.

(, , •) list count Jlaga

Prints the specified lines in a more unambiguous way: tabs are printed as '"I' and the end of
each line is marked with a trailing '$'. The current line is left at the last line printed.

map Iha rha

The map command is used to define macros for use in viaual mode. Lha should be a single
character, or the sequence "#n", for n a digit, referring to function key n. When this char­
acter or function key is typed in viaual mode, it will be as though the corresponding ,ha had
been typed. On terminals without function keys, you can type "#n". See Macro• in Uaing
'vi', the Viaual Di,play Editor for more details.

(.) mark z

Gives the specified line mark z, a single lower case letter. The z must be preceded by a
blank or a tab. The addressing form ''x' then addresses this line. The current line is not
affected by this command.

(, , •) move addr abbr: m
The move command repositions the specified lines to be after add,. The first of the moved
lines becomes the current line.

next abbr: n
The next file from the command line argument list is edited.

n!
The variant suppresses warnings about the modifications to the buffer not having been writ­
ten out, discarding (irretrievably) any changes which may have been made.

n fi/eliat
n +command fileliat

The specified fileliat is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. Ir command is given (it must contain no spaces),
then it is executed after editing the first such file.

Revision C of 7 January 1984 3-11

------------------------~--

Command Reference for the ex Line Editor Editing and Text Processing

(• , •) number count flag, abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at the 0
last line printed.

(•) open flag, abbr: o
(•) open /pat/ flag,

Enters intraline editing open mode at each addressed line. IC pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See Uaing 'lli' the Viaual Diapla11 Editor.

preserve

The current editor buffer is saved as though the system had just crashed. This command is
for use only in emergencies when a write command has resulted in an error and you don't
know how to save your work. After a preaer11e you should seek help.

(• , •) print count abbr: p orP

Prints the specified lines with non-printing characters printed as control characters •· z ';
delete (octal 177) is represented as ''!'. The current line is left at the last line printed.

(•) put buffer abbr: pu

Puts back previously deleted or 11anked lines. Normally used with delete to effect movement
of lines, or with yank to effect duplication of lines. IC no buffer is specified, then the last
deleted or yanked text is restored. But no modifying commands may intervene between the
delete or yank and the put, nor may lines be moved between files without using a named
buffer. By using a named buffer, text may be restored that was saved .there at any previous
time.

quit abbr: q

q!

Causes ez to terminate. No automatic write of the editor buffer to a file is performed.
However, ez issues a warning message if the file has changed since the last write command
was issued, and does not quit. Ez also warns you if there are more files in the argument list.
Normally, you do want to save your changes, so you should use a write command; if you
wish to discard them, use the q! command variant.

Quits from the editor, discarding changes to the buffer without complaint.

(•) read file abbr: r

3-12

Places a copy of the text of the given file in the editing buffer after the specified line. Ir no
file is given the current file name is used. The current file name is not changed unless there
is none in which case file becomes the current name. The sensibility restrictions for the
edit command apply here also. If the file buffer is empty and there is no current name then
ez treats this as an edit command.

Address 'O' is legal for this command and causes the file to be read at the beginning of the
buffer. Statistics are given as for the edit command when the read successfully terminates.
After a read the current line is the last line read. Within open and lli,ua1 the current line
is set to the first line read rather than the last.

Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

(,) read !command

Reads the output of the command command into the buffer after the specified line. This is
not a variant form o(the command, rather a read specifying a command rather than a
filename; a blank or tab before the I is mandatory.

recover file

Recovers file from the system save area. Used after an accidental hangup or the phone or a
system crash or preaerve command. The system saves a copy or the file you were editing
only if you have made changes to the file. Except when you use preaerve you will be
notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rewl
Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all or the option values.

Giving an option name followed by a '!' causes the current value or that option to be
printed. The '?c is unnecessary unless the option is Boolean valued. Boolean options are
given values either by the form 'set option' to turn them on or 'set nooption' to turn them
off; string and numeric options are assigned via the form 'set aplion=value'.

More than one parameter may be given to ad ; they are interpreted Iert-to-right.

shell abbr: sh
A new shell is created. When it terminates, editing resumes.

source file abbr:so
Reads and executes commands Crom the specified file. Source commands may be nested.

(, , ,) substitute /pat /repl/ optfona count flag, abbr: s

On each specified line, the first instance or pattern pal is replaced by replacement pattern
repl. Ir the global indicator option character 'g' appears, then all instances are substituted;
if the confirm indication character 'c' appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with ,., characters. By typ,
ing an 'y' one can cause the substitution to be performed, any other input causes no change
to take place. After a aubatitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in repl must
be escaped by preceding it with a '\ '. Other metacharacters available in pat and repl are
described below.

stop
Suspends the editor, returning control to the top level shell. Ir autawrite is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands is
only available where supported by the teletype driver and operating system.

Revision C of 7 January 1984 3-13

Command Reference for the ex Line Editor Editing and Text Processing

(• , •) substitute optiom count flag, abbr:•

Ir pat and rep/ are omitted, then the last substitution is repeated. This is a synonym for o-
the & command.

(. , .) t addr flag,

The t command is a synonym for cop11,

ta tag

The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file. If you have modified the
current file before giving a tag command, you must write it out; giving another tag com•
mand, specifying no tag reuses the previous tag.

The tags file is normally created by a program such as ctag,, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the tag,
the second the name of the file where the tag resides, and the third gives an addressing form
which can be used by the editor to find the tag; this field is usually a contextual scan using
'/pat/' to be immune to minor changes in the file. Such scans are always performed as if
nomagic was set.

The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una

Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that g/o· o--
bal commands are considered a single command for the purpose of undo (as are open and
viaua/.) Also, the commands write and edit which interact with the file system cannot be
undone. Undo is its own inverse.

Undo always marks the previous value of the current line '.' as '·~. After an undo the
current line is the first line restored or the line before the first line deleted if no lines were
restored. For commands with more global effect such as global and vi,ual the current line
regains it's pre-command value after an undo.

unmap lh,

The macro expansion associated by map for lh, is removed.

(1, S)v /pal/ cmd,

A synonym for the global command variant gl, running the specified cmd, on each line
which does not match pat.

version abbr: ve
Prints the current version number of the editor as well as the date the editor was last
changed.

vi file

Same as :edit file or :ex file.

3-14 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Command Rererence ror the ex Line Editor

(,) visual type count flag, abbr: vi

Enters visual mode at the specified line. Tupe is optional and may be '-' , ,., or'.' as in the
z command to speciry the placement or the specified line on the screen. By derault, ir tupe
is omitted, the specified line is placed as the first on the screen. A count specifies an initial
window size; the derault is the value or the option window. See U,ing Vi, the Vi,ual Di1pla11
Editor for more details. To exit visual mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1 , S) write file abbr: w

Writes changes made back to file, printing the number or lines and characters written. Nor­
mally file is omitted and the text goes back where it came rrom. Ir a file is specified, then
text will be written to that file.4 Ir the file does not exist it is created. The current file
name is changed only ir there is no current file name; the current line is never changed.

Ir an error occurs while writing the current and edited file, the editor considers that there
has been "No write since last change" even ir the buffer had not previously been modified.

(1 , S) write>> file abbr: w>>
Writes the buffer contents at the end or an existing file.

w! name

Overrides the checking or the normal write command, and will write to any file which the
system permits.

(1 , S) w !command

Writes the specified lines into command. Note the difference between wl which overrides
checks and w ! which writes to a command.

wq name

Like a write and then a quit command.

wq! name

The variant overrides checking on the sensibility or the write command, as wl does.

xit name abbr: x

Ir any changes have been made and not written, writes the huller out. Then, in any case,
quits. Same as wq, but does not bother to write ir there have not been any changes to the
file.

• The editor writes to a file only ir it is the current file and is edited, ir the file does not exist, or
ir the file is actually a teletype, /deo/tt1, /deo/n.U. Otherwise, you must give the variant Corm wl
to rorce the write.

Revision C or 7 January 1984 3-15

Command Reference for the ex Line Editor Editing and Text Processing

(• , •) yank buffer count abbr: ya

Places the specified lines in the named buffer, for later retrieval via put. If no buffer name is o
specified, the lines go to a more volatile place; see the put command description.

(.+1) • count

Print the next count lines, default window.

(•) s type count

Displays a window of text with the specified line at the top. Ir tgpe is '-' the line is placed
at the bottom; a '.' places the line in the center. A count gives the number of lines to be
displayed rather than double the number specified by the ,croll option. On a terminal, the
screen is cleared before display begins unless you give a count which is less than the screen
size. The current line is left at the last line displayed. Forms 'z=' and •z·' also exist; 'z='
places the current line in the center, surrounds it with lines of '-' characters and leaves the
current line at this line. The form •z·• prints the window before 'z-' would. The characters
'+ ', ,., and'-' may be repeated for cumulative effect.

! command

The remainder of the line after the '!' character is sent to a shell to be executed. Within
the text of command the characters '%' and '*'' are expanded as in filenames and the char­
acter '!' is replaced with the text of the previous command. Thus, in particular, '!!' repeats
the last such shell escape. If any such expansion is performed, the expanded line will be
echoed. The current line is unchanged by this command.

If there has been "[No write)" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single '!' is printed when the command completes. Q,

I
(addr , addr) ! command

Takes the specified address range and supplies it as otandard input to command; the result­
ing output then replaces the input lines.

($) =
Prints the line num her of the addressed line. The current line is unchanged.

(. , .) > count flag,
(. , .) < count flag,

'D

3-16

Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the ahiftwidt/a option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white charac­
ters are discarded in a left-shift. The current line becomes the last line which changed due
to the shifting.

An end-of-file from a terminal input scrolls through the file. The acroU option specifies the
size of the scroll, normally a half screen of text.

Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

(.+ 1 , .+ 1)
(.+ 1 , .+ 1) I

An address alone causes the addressed lines to be printed. A blank line prints the next line
in the file.

(, , •) & option, count flog,

Repeats the previous ,ub,tilule command.

(• , ,) opli on, count flog,

Replaces the previous regular expression with the previous replacement pattern from a sub­
stitution.

3.10. Option Descriptions

autoindent, ai default: noai

Can be used to ease the preparation or structured program text. At the beginning or each
append, change or in,ert command or when a new line is opened or created by an append,
change, inaert, or ,ubatitule operation within open or vi,uol mode, ez looks at the line
being appended after, the first line changed or the line inserted before and calculates the
amount or white space at the start or the line. It then aligns the cursor at the level or
indentation so determined.

Ir you then type in lines or text, they will continue to be justified at the displayed indenting
level. Ir more white space is typed at the beginning or a line, the following line will be
aligned with the first non-white character or the previous line. To back the cursor up to
the preceding tab stop, type ·o. The tab stops going backwards are defined at multiples or
the ahiftwidth option. You cannot backspace over the indent, except by sending an end-or­
file with a ·o.
Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe­
cially processed in this mode are lines beginning with a •·' and immediately followed by a
·o. This causes the input to be repositioned at the beginning or the line, but retains the
previous indent for the next line. Similarly, a 'O' followed by a ·o repositions at the begin­
ning but without retaining the previous indent.

Autoindent doesn't happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, cop11, join, move, aubatitute, t, undo
or shift command. This has the same effect as supplying a trailing 'p' to each such com­
mand. Autoprint is suppressed in globals, and only applies to the last or many commands
on a line.

autowrite, aw default: noaw

Causes the contents or the buffer to be written to the current file if you have modified it
and give a next, rewind, ,top, lag, or ! command, or a .. (switch files) or ') (tag goto)
command in vi,ual. Note, that the edit and ez commands do not autowrite. In each case,
there is an equivalent way or switching when autowrite is set to avoid the outowrite (edit
for next, rewind! for rewind, atop! for atop, tag! for tog, ,hell for !, and :e # and a :ta!

Revision C or 7 January 1984 3-17

Command Reference for the ex Line Editor Editing and Text Processing

command from within viaual).

beautify, bl default: nobeautify

Causes all control characters except tab, newline and form-feed to be dffll:arded from the
input. A complaint is registered the first time a backspace character is dffll:arded. Beouti/11
does not apply to command input.

directory, dir default: dir=/tmp
Specifies the directory in which e:i places its buffer file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible default: noedcompatible

Causes the presence of absence of g and c suffixes on substitute commands to be remem­
bered, and to be- toggled by repeating the suffices. The sulflX r makes the substitution be
as in the • command, instead of like 8.

errorbells, eb · default: noeb

Error messages are preceded by a beep or bell.s If possible the editor always places the error
message in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression match­
ing. In addition, all upper case characters in regular expressions are mapped to lower case
except in character class specifications.

lisp default: nolisp

list

A utointlent indents appropriately for /i,p code, and the () { } [(and)] commands in open
and viaual are modified to have meaning for liap.

default: nolist

All printed lines will be displayed (more) unambiguously, showing tabs and end-of-lines as
in the /i,t command.

magic default: magic for e:i and "'"'
Ir nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only ,., and '$' having special effects. In addition the metacharacters ,-, and '&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a'\'.

6 Beeping and hell ringing in ope• and oinal on enonds not suppressed by setting aot6.
B Nomagic for edit.

3-18 Revision C of 7 January 1084

0

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomeag is set.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and viaual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize

Throughput of text is expedited by setting the terminal to not do automatic carriage
returns when printing more than one (logical) line of output, greatly speeding output on ter­
minals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP Libp

Specifies the paragraphs for the { and } operations in open and viaual. The pairs of charac­
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt

Command mode input is prompted for with a':'.

readoniy default: off

If set, writes will unless you use an '!' after the write. Affects x, ZZ, autowrite and any­
thing that writes to guarantee you won't clobber a file by accident. Abbreviate to ro.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in viaual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if o is mapped to
0, and O is mapped to I, then if remap is set, o will map to I, but if noremap is set, it will
map to 0. Can map q to # and #1 to something else, and ql to something else. If off,
can map ·L to 1 and ·R to ·L without having ·R map to 1.

report default: report=57

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number or lines will provide feedback as to the scope of its changes. For
commands such as global, open, undo, and viaual which have potentially more far reaching
scope, the net change in the num her of lines in the buffer is presented at the end of the
command, subject to this same threshold. Thus notification is suppressed during a global
command on the individual commands performed.

7 2 tor edit.

Revision C of 7 January 1984 3.19

Command Refer~nce for the ex Line Editor Editing and Text Processing

scroll default: scroll= window

Determines the number or logical lines scrolled when an end-of-file is received from a termi­
nal input in command mode, and the number of lines printed by a command mode z com­
mand (double the value of ,croll).

sections default: sections=SHNHH HU

Specifies the section macros for the [(and)) operations in open and lli,ual. The prurs of
characters in the options 's value are the names of the macros which start paragraphs.

shell,sh default: ah-/bin/sh

Gives the path name of the shell forked for the shell escape command 'I', and by the ,hell
command. The default is taken from SHELL in the environment, if present.

ahiftwidth, aw default: sw=8

Gives the width a software tab stop, used in reverse tabbing with ·» when using outoin­
Jent to append text, and by the shift commands.

showmatch, sm default: nosm
In open and vi,ual mode, when a) or } is typed, move the cursor to the matching (or { for
one second if this matching character is on the screen. Extremely useful with li,p.

slowopen, slow terminal dependent
Affects the display algorithm used in lli,ual mode, holding off diaplay updating during input
of new text to improve throughput when the terminal in. use is both slow and unintelligent.
See Uaing Vi, the Vi,ual Di,pla11 Editor for more details.

tabatop, ta default: ts=8

The editor expands tabs in the input file to be on tabllop boundaries for the purposes of
display.

taglength, ti default: tl=O

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tags default: tags=tags /usr/Iib/tags

A path of files to be used as tag files for the tag command, similar to the pat/, variable of
c,h. Separate the files by spaces, and precede each space with a backslash. Files are
searched left to right. Always put tag• as your first entry. A requested tag is searched for
in the specified files, sequentially. By default (even in version 2) files called tags are
searched for in the current directory and in /usr/lib (a master file for the entire system.)

term from environment TERM

The terminal type of the output device.

terse default: noterse

Shorter error diagnostics are produced for the experienced user.

3-20 Revision C of 7 January 1984

I

ol
I

0

0

0

0

0

Editing and Text Processing Command Reference for the ex Line Editor

timeout default: on

Causes macros to time out after one second. Turn it off and they wait forever. Use this if
you want multi-character macros. If your terminal sends an escape sequence for arrow keys,
type ESC twice.

warn default: warn

Warn if there has been '(No write since last change)' before a '!' command escape.

window default: window=speed dependent

The number of lines in a text window in the vi,ual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus one
line) at higher speeds.

w300, w1200, w9600
These are not true options but set window only if the speed is slow (300), medium (1200),
or high (9600), respectively. They are suitable for an EXINIT and make it easy to change
the 8/16/full screen rule. Can specify a 12-line window at 300 baud and a 23-line window
at 1200 in your EXINIT with: :aet w300=12 w1200=23. Synonymous with window
but only at 300, 1200, and 9600 baud.

wrapscan, w1 default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: wm=O

Defines a margin for automatic wrapover of text during input in open and vi,ual modes.
Any number other than O is a distance from the right edge of the area where wraps can
take place. If you type past the margin, the entire word is rewritten on the next line.
Behaves much like fill/nojustify mode in nroff. See U1in11 Vi, the Vi,ual Di,plag Editor for
details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file which
the system protection mechanism will allow.

3.11. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 256
characters per global command list, 128 characters per file name, 128 characters in the previous
inserted and deleted text in open or vi,ual, 100 characters in a shell escape command, 63 char­
acters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines in
the file is silently enforced.

The vi1ual implementation limits the number of macros defined with map to 32, and the total
number of characters in macros to be less than 512.

Revision C of 7 January 1984 3-21

!

O !.

'

O'

0

0

0

Ex Quick Reference

Entering/Leaving ex
% ex name edit ,same, start at end

••• at line • % ex +• name
% ex -t tog
%ex-r
% ex -r aame
% ex name •••
% ex-R asme
: X

:qi
ex States
Command

Insert

Open/visual

stut at tag
list saved files
recover file namt
edit first; rest via :n
read only mode
exit, saving changes
exit, discarding changea

Normal and initial et&te. Input
prompted for by :. Your kill char­
acter ea.ncels partial command.
Entered by a i and c. Arbitrary
text then terminates with line hav·
ing only • character· on it or abnor­
mally with interrupt.
Entered by open or vi, terminates
with Q or'\.

ex Commands
abbrev ab next n unabbrev una
append a number nu undo u
args ar open 0 unmap unm
change C presene pre version ve
copy co print p visual vi
delete d put pu write w
edit e quit q xit X

file r read re yank ya
global g recover rec window I

insert rewind rew escape I
join j set ••
list I shell sh
map source 10

mark ma stop st
move m substitute 11

ex Command Addresses
a line • /pat

current ?pat
$ last
+ next z,J

+•
%

previous
n forward , .•

Revision C of 7 January ig94

shirt <
print next CR
resubst &
rshirt
scroll

next with p4'
previous with pat
"betore z
z through p
marked with z
previous context

>
'D

Specifying Terminal Type
% setenv TERM 11/1'<
$ TERM-tgpe; export TERM
See also t,et in the user's manual.

Some Terminal Types
2621 43 adm31
264S 733 adm3a
300a 7 4S c!OO
33 acU dm1520
37 act5 dm2500
4014 adm3 dm3025
lnltlali1ing Options

dwl
dw2
gt40
gt42
h1500
h1510

(Cor ed)
(for ,A)

h!O
ilOO
mime
owl
t1061
vt52

EXINIT place set's here in environment var.
set z enable option
set noz disable option
aet z-ul give value ~al
set show changed options
aet all show all options
aet zT show value of option z
Useful Options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
liep () (} ares-exp'•
liet print ... I for tab, t at end
magic • (• special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
ecroll command mode lines
eections sect macro names ...
shlftwidth SW for < >, and input "D
show match sm to) and } as typed
elowopen slow choke updates during insert
window visual mode lines
wrapacan WS around end of buffer
wrapmargin wm automatic line splitting:

Scanning Pattern Formation

•
\<
\>
[,tr)
[I ,tr)
[•-vi
•

beginning of line
end of line
any character
beginning: of word
end of word
any char in ,tr
... not in ,tr
... between $ and J
any number of preceding

o;

0

J
0

Table of Contents

Chapter 4 Using the ed Line Editor ... 4-1
4.1. Getting Started... 4-1

4.1.1. Creating Text - the Append Command 'a' 4-2
4.1.2. Error Messages - '?' .. 4-2
4.1.3. Writing Text Out as a File - the Write Command 'w' .. 4-3
4.1.4. Leaving 'ed' - the Quit Command 'q' .. 4-4
4.1.5. Exercise: Displaying Your File - the 'cat' Command.. 4-4
4.1.6. Creating a New File - the Edit Command 'e' .. 4-5
4.1.7. Exercise: Trying the 'e' Command .. 4-6
4.1.8. Checking the Filename - the Filename Command 'f' ... 4-6
4.1.9. Reading Text from a File - the Read Command 'r' .. 4-7
4.1.10. Printing the Buffer Contents - the Print Command 'p' .. 4-8
4.1.11. Exercise: Trying the 'p' Command ... 4-9
4.1.12. Displaying Text - the List Command 'I' .. 4-9
4.1.13. The Current Line - 'Dot' or'.' ... 4-10
4.1.14. Deleting Lines - the Delete Command 'd' ... , 4-11
4.1.15. Exercise: Experimenting .. 4-11
4.1.16. Modifying Text - the Substitute Command 's' .. 4-12
4.1.17. The Ampersand '&' ·················-·· 4-14
4.1.18. Exercise: Trying the 's' and 'g' Commands ... 4-15

0
4.1.19. Undoing a Command - the Undo Command 'u' .. 4-15

4.2. Changing and Inserting Text - the 'c' and 'i' Commands .. 4-15
4.2.1. Exercise: Trying the 'c' Command .. 4-16

4.3. Specifying Lines in the Editor ... 4-16
4.3.1. Context Searching .. 4-17
4.3.2. Exercise: Trying Context Searching ... 4-18
4.3.3. Specifying Lines with Address Arithmetic - + and - .. 4-18
4.3.4. Repeated Searches - '//' and '?!' ... 4-19
4.3.5. Default Line Numbers and the Value of Dot ... 4-20
4.3.6. Combining Commands - the Semicolon ';' 4-22
4.3.7. Interrupting the Editor ... 4-23

4.4. Editing All Lines - the Global Commands 'g' and 'v' ... 4-23
4.4.1. Multi-line Global Commands .. 4-24

4.5. Special Characters .. 4-25
4.5.1. Matching Anything - the Dot '.' 4-25
4.5.2. Specifying Any Character - the Backslash \ .. 4-26
4.5.3. Specifying the End of Line - the Dollar Sign '$' .. 4-28
4.5.4. Specifying the Beginning of the Line - the Circumflex ''' ... 4-29
4.5.5. Matching Anything - the Star'•' .. 4-30
4.5.6. Character Classes - Brackets [] , ... 4-31

4.6. Cutting and Pasting with the Editor .. 4-32
4.6.1. Moving Lines Around .. 4-32
4.6.2. Moving Text Around - the Move Command 'm' ... 4-32
4.6.3. Substituting Newlines .. 4-34

0

Editing and Text Processing

4.6.4. Joining Lines - the Join Command 'j,' .. 4-35
4 .. 6.5. Rearranging a Line with \(... \) .. 4-35
4.6.6. Marking a Line - the Mark Command 'k' ... 4-36
4.6.7. Copying Lines - the Transfer Command 't' .. 4-36

4.7. Escaping t.o. the Shell with '!' .. , , .. , 4-36
4.8. Supporting Tools - , 4-37

4.8.1. Editing Scrip.t•,,., , , .. ,,.. , .. ,•..... ,•........ ,................ 4-37
4.8.2 .. Matching Patterns with 'g,ep',, , ,, ,., , .. , ,..... 4-3.'t

4.9. Summary of Commands and Line Nlll(lben ,,., , .. , ~ , ,. 4-~

ii

O·
I

0

0

0

0

0

Chapter 4

Using the ed Line Editor

This chapter1 describes the editing tools or the ed line editor. It provides the newcomer with
elementary instructions and exercises for learning the most necessary and common commands
and the more advanced user with information about additional editing facilities. The contents
include descriptions of appending, changing, deleting, moving, copying and inserting lines or
text; reading and writing files; displaying your files; context searching; the global commands;
line addressing; and using special characters. There are also brief discussions on the pattern­
matching tool grep, which is related to ed, and on writing scripts.

We assume that you know how to log in to the system and that you have an understanding of
what a file is. You must also know what character to type as the end-of-line on your worksta­
tion or terminal. This character is the RETURN key in most cases.

Do the exercises in this chapter as you read along. What you enter at the keyboard is shown in
bold face type like this.

Ir you need basic information on the Sun system, refer to the Beginner 'a Guide to the Sun
Workatation. See ed in the Uaer'a Manual for the Sun Workatation for a nutshell description or
the ed commands.

4.1. Getting Started

The ed text editor is an interactive program for creating and modifying text, using directions
that you provide from your workstation. The text can be a document, a program or perhaps
data for a program.

We'll assume that you have logged in to your system, and it is displaying the hostname and
prompt character, which we show throughout this manual as:

logo%

To use ed, type ed at the 'logo%' prompt:

logo login:
Password:
Last login: Mon Jul 18 07:50:22 on ttypO
Sun UNIX 4.2 (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
logo% ed

You are now ready to go. Ed does not prompt you for information, but waits for you to tell it
what to do. First you'll learn how to get some text into a file and later how to change it and
make corrections.

1 The material in this chapter is derived from A Tutorial Introduction to the UNIX Tezt Editor,
B. W. Kernighan and Ad•onced Editing on UNIX, B. W. Kernighan, Bell Laboratories, Murray Hill,
New Jersey.

Revision C or 7 January 1984 4-1

Using the ed Line Editor Editing and Text Proc:el!Bing

4.1.1. Creating Text - the Append Command 'a'

Let's assume you are typing the first draft of a memo and starting from scratch. When you 0
first start ed, in this case, you are working with a 'blank piece of paper;' there is no text or
information present. To supply this text, you either type it in or read it in from a file. To type
it in, use the append command a.

So, to type in lines of text into the huller, you type an a followed by a RETURN, followed by the
lines of text you want, like this:

logo% ed
a<CR>
Now is the time
for all good men
to come to the aid of their party.

tr you make a mistake, use the DEL key to back up over and correct your mistakes. You can•
not go back to a previous line after typing RETURN to correct your errors. The only way to
stop appending is to tell ed that you have finished by typing a line that contains only a period.
It takes practice to remember it, but it has to be there. If ed seems to be ignoring you, type an
extra line with just '.' on it. You may then find you've added some garbage lines to your text,
which you'll have to take out later.

After the append command, your file contains the lines:

Now is the time
for all good men
to come to the aid of their party.

The a and '.' aren't there, because they are not text.

To add more text to what you already have, type another a, and continue typing.

tr you have not used a text editor before, read the following to learn a bit of terminology. tr
you have used an editor, continue to Error Meuage, - 'I''.
In ed jargon, the text being worked on is said to be in a work space or 'kept in a huller.' In
effect the huller is like a piece of paper on which you write things, change some of them, and
finally file the whole thing away for another day.

You have learned how to tell ed what to do to the text by typing instructions called command,.
Most commands consist of a single letter, which you must type in lower case, like the append
command a. Type each command on a separate line. You sometimes precede the command by
information about what line or lines of text are to be affected; we discul!S this shortly.

As you have seen, ed does not respond to most commands; that is, there isn't any prompting or
message display like 'ready.' If this bothers you as a beginner, be patient. You'll get used to it.

4.1.2. Error Messages - '!'

When you make an error in the commands you type, ed asks you:

!

This is about as cryptic as it can be, but with practice, you can usually figure out how you
goofed.

4-2 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

4.1.3. Writing Text Out as a File - the Write Command 'w'
When you want to save your text for later use, write out the contents of the buffer into a file
with the write command w, followed by the filename you want to write in. Thew command
copies the buffer's contents into the specified file, destroying any previous information on the
file. To save the text in a file named junk, for example, type:

w junk
68

Leave a space between the w and the filename. Ed responds by displaying the number of char­
acters it wrote out, in this case 68. Remember that blanks and the return character at the end
of each line are included in the character count. The buffer's contents are not disturbed, so you
can go on adding lines to it. This is an important point. Ed works on a copy of a file at all
times, not on the file itself. There is no change in the contents of a file until you type a w.
Writing out the text into a file from time to time is a good idea to save most of your text
should you make some horrible mistake. If you do something disastrous, you only lose the text
in the buffer, not the text that was written into the file.
When you want to copy a portion of a file to another name so you can format it separately, use
the w command. Suppose that in the file being edited you have:

.TS
.. .Iota of atuff

.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate file
called table, first find the start of the table (the '.TS' line), then write out the interesting part:

r\.TS/
• TS {ed printa the line it found)
.,r\.TE/w table

and the job is done. If you are confident, you can do it all at once with:

r\.Ts/;r\.TE/w table

The point is that w can write out a group of lines, instead of the whole file. In fact, you can
write out a single line if you like; give one line number instead of two (we explain line numbers
later - see Specifying Line, in the Editor for details). For example, if you have just typed a
very long, complicated line and you know that you are going to need it or something like it
later, then save it - don't re-type it. In the editor, say:

Revision C of 7 January 1984 4-3

Using the ed Line Editor

a
... Iota of atujJ. ..
... very long, complicated line ...

• w temp
number of character,
a
... more stuff ...

,r temp
number of character,
a
... more atuff. ..

Editing and Text Processing

This last example is worth studying to be sure you appreciate what's going on. The .w temp
writes the very long, complicated line (the current line) you typed to the file called temp. The
.r temp reads that line from temp into the file you are editing after the current line 'dot' so you
don't have to re-type it.

4.1.4. Leaving 'ed' - the Quit Command 'q'

To terminate an ed session, save the text you're working on by writing it onto a file using the w
command, and then type the quit command q.

w
number of charactera
q
logo%

The system responds with the hostname prompt. At this point your buffer vanishes, with all its
text, which is why you want to write it out before quitting. Actually, ed displays '!' if you try
to quit without writing. At that point, write the file if you want; if not, type another q to get
you out of ed regardless.

4.1.5. Exercise: Displaying Your File - the 'cat' Command

Enter ed, create some text using a, write it out using w, and then quit the editor with q.

a
... tezt . ..

w
number of character,
q
logo%

Now display the file to see that everything worked. Type the cat command with the junk
filename as the argument in response to the prompt character:

4-4 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

logo% cat junk
Now is the time
for all good men
to come to the aid of their party.
logo%

Use cat when you want to examine a file of less than one screenfull. To view a file of more than
a screenfull, use the more command:

logo% more junk

To scroll forward in the file, press the space bar. To quit the file, type q.

4.1.6. Creating a New File - the Edit Command 'e'

The edit command e says 'I want to edit a new file called newfile, without leaving the editor.'
To do this, you type:

e newfile

· The e command discards whatever you're currently working on and starts over on newfile. It's
exactly the same as if you had quit with the q command, then re-entered ed with a new
filename, except that if you have a pattern remembered, a command like 'I/' will still work.
(See Repeated Searchea - 'II' and 'ff'.)
If you enter ed with the command:

logo% ed file

ed remembers the name of the file, and any subsequent e, r or w commands that don't contain
a filename refer to this remembered file. Thus:

logo% ed filel
... { editing) ..•

w (write• back in file1}
e file2{edit new file, without leaving editor}
... {editing an file2} ...

w {write• back on file2}

and so on does a series of edits on various files without ever leaving ed and without typing the
name or any file more than once. As an aside, if you examine the sequence or commands here,
you can see why you can use e as a synonym for ed.

A common way to get text into the buffer is to read it Crom a file in the file system. This is
what you do to edit text that you saved with w in a previous session. The edit command e also
fetches the entire contents of a file into the buffer. So if you had saved the three lines 'Now is
the time', etc., with w in an earlier session, the ed command e fetches the entire contents of the
file junk into the buffer, and responds with the number of characters in junk:

logo% ejunk
68

If anlflhing waa already in the buffer, it ia deleted /irat.
If you use e to read a file into the buffer, you do not need to use a filename after a subsequent
w command; ed remembers the last filename used in an e command, and w will write on this
file. Thus a good way to operate is:

Revision C of 7 January 1984 4-5

Using the ed Line Editor

logo% ed
e file
number of character,
/editing aeuionf
w
number of character,
q
logo%

Editing and Text Processing

This way, you can simply say w from time to time, and be secure that you are writing into the
proper file each time.

4.1.7. Exercise: Trying the 'e' Command

Experiment with the e command - try reading and displaying various files. You may get an
error

!name

where name is the name of a file; this means that the file doesn't exist, typically because you
spelled the filename wrong, or perhaps because you are not allowed to read or write it. Try
alternately reading and appending to see that they work similarly. Verify that:

logo% ed filename

is equivalent to:

logo% ed
e filename
number of character,

4.1.8. Checking the Filename - the Filename Command 'f'

You can find out the remembered filename at any time with the f command; just type f without
a filename. You can also change the name of the remembered filename with f; this following
sequence guarantees that a careless w command will write on junk instead of preciou,. Try:

logo% ed precious
r junk .
. . . (editing) ...

You can find out at any time what filename ed is remembering by typing the file command f.
In this example, if you type f, ed replies:

logo% ed junk
68
r
junk

4-6 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

4,1,9. Reading Text from a File - the Read Command 'r'

Sometimes you want to read a file into the buffer without destroying anything that is already
there. To do this, use the read command r. The command:

r junk
68

reads the file junk into the buffer, adding it to the end of whatever is already in the buffer. So
if you do a read af'ter an edit:

ejunk
68
rjunk
68
w
136
q
logo%

the buffer contains two copies or the text or six lines in this case. Like w and e, I' displays the
number or characters read in after the reading operation is complete. Now check the buffer con­
tents with cat:

logo% cat junk
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid or their party.
logo%

Generally speaking, you won't use I' as much as e.
Suppose you have a file called memo, and you want the file called table to be inserted just after
the reference to Table 1. That is, in memo somewhere is a line that says

Table 1 shows that ...

The data contained in table has to go there so nrof!or trof!will format it properly. Now what!

This one is easy. Edit memo, find 'Table 1 ', and add the file table right there:

logo% ed memo
/Table 1/
Table 1 shows that ... {reaponae from ed)
.r table

The critical line is the last one. As we said earlier, the I' command reads a file; here you asked
for it to be read in right after line dot. An I' command without any address adds lines at the
end, which is the same as Sr.

Revision C of 7 January lll84 4-7

Using the ed Line Editor Editing and Text Processing

4.1.10. Printing the Buffer Contents - the Print Command 'p'

To print or 'display' the contents of the buffer or parts of it on the screen, use the print com­
mand p. To do this, specify the lines where you want the display to begin and where you want
it to end, separated by a comma, and followed by p. Thus to show the first two lines of the
huller, for example, say:

l,2p (atarting /ine=1, ending line=e p)
Now is the time
for all good men

Suppose you want to print all the lines in the huller. You could use l,3p if you knew there
were exactly three lines in the huller. But in general, you don't know how many lines there are,
so what do you use for the ending line number! Ed provides a shorthand symbol for 'line
number of last line in huller' - the dollar sign 'S'. Use it to display all the lines in the buffer,
line 1 to last line:

1,$p
Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

If you want to stop the display of more than one screenfull before it is finished, type the
INTERRUPT character ·c (or the DEL key).

·c
t

Ed waits for the next command.

To display the laat line of the huller, you can use:

$,$p
to come to the aid of their party.

or abbreviate it to:

Sp
to come to the aid of their party.

You can show any single line by typing the line number followed by a p. So, to display the first
line of the huller, type:

lp
Now is the time

In fact, ed lets you abbreviate even further: you can display any single line by typing juat the
line number - there is no need to type the letter p. So if you say:

2
for all good men

ed displays the second line of the huller.

You can also use '$' in combinations to display the last two lines of the huller, for example:

4-8 Revision C of 7 January 1984

0
I

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

$-l,$p
for all good men
to come to the aid of their party.

This helps when you want to see how far you got in typing.

4.1.11. Exercise: Trying the 'p' Command

As before, create some text using the a command and experiment with the p command. You
will find, for example, that you can't show line O or a line beyond the end of the buffer, and
that attempts to show a buffer in reverse order don't work. For example, you get an error mes­
sage if you type:

3,lp
!

4.1.12. Displaying Text - the List Command 'I'

Ed provides two commands for displaying the contents of the lines you're editing. You are Cam•
iliar with the p command that displays lines of text. Less familiar is the lid command I (the
letter '/'), which gives slightly more information than p. In particular, I makes visible charac­
ters that are normally invisible, such as tabs and backspaces. If you list a line that contains
some of these, I will show each tab as ~ and each backspace as <. A sample display of a ran·
dom file with tab characters and backspaces is:

I
Now is the > > time for < < all good men

This makes it much easier to correct the sort of typing mistake that inserts extra spaces adja­
cent to tabs, or inserts a backspace followed by a space.

The I command also 'folds' long lines for printing. Any line that exceeds 72 characters is
displayed on multiple lines. Each printed line except the last is terminated by a backslash ' \',
so you can tell it was folded. This is useful for displaying long lines on small terminal screens.
A sample output of a folded line is:

I
This is an example of using the 'I' command to display a very long line that\
has more than 72 characters ...

Occasionally the 1 command displays in a line a string of numbers preceded by a backslash, such
as '\07' or '\16'. These combinations make visible the characters that normally don't show, like
form feed or vertical tab or bell. Each such combination is a single character. When you see
such characters, be wary - they may have surprising meanings when displayed on some termi­
nals. Often their presence means that your finger slipped while you were typing; you almost
never want them.

Revision C of 7 January 1984 4.9

Using the ed Line Editor Editing and Text Processing

4.1.13. The Current Line - 'Dot' or '.'

Suppose your buffer still contains the six lines as above, and that you have just typed:

1,3p
Now is the time
for all good men
to come to the aid of their party.

Ed has displayed the three lines for you. Try typing just a p to display:

p {no line number,)
to come to the aid of their party.

which is the third line of the buffer. In fact it is the last or most recent line that you have done
anything with. (You just displayed it!) You can repeat p without line numbers, and it will con­
tinue to display line 3.

The reason is that ed maintains a record of the last line that you did anything to (in this case,
line 3, which you just displayed) so that you can use it instead of an explicit line number. You
refer to this most recent line by the shorthand symbol:

• {pronounced 'dot')
to come to the aid of their party.

Dot is a line number in the same way that '$' is; it means exactly 'the current line', or loosely,
'the line you most recently did something to.' You can use it in several ways - one possibility
is to display all the lines from and including the current line ~o the end of the buffer .

. ,$p
Now is the time
for all good men
to come to the aid of their party.
to come to the aid of their party.

In our ex am pie these are lines 3 through 6.

Some commands change the value of dot, while others do not. The p command sets dot to the
number of the last line displayed; that is, after this command sets both '.' and 'S' refer to the
last line of the file, line 6.

Dot is most useful in combinations like:

.+1 {or equivalently, .+lp)

This means 'show the next line' and is a handy way to step slowly through a buffer. You can
also say:

,-1 {or .-lp)

which means 'show the line before the current line.' Use this to go backwards if you wish.
Another useful one is something like:

.-3,.-lp

which shows the previous three lines.

Don't forget that all of these change the value of dot. You can find out what dot is at any time
by typing:

4-JO Revision C of 7 January lll84

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

.-
3

Let's summarize some things about p and dot. Essentially you can precede p by O, I, or 2 line
numbers. If you do not give a line number, p shows the 'current line,' the line that dot refers
to. If there is one line number given with or without the letter p, it shows that line and dot is
set there; and if there are two line numbers, it shows all the lines in that range, and sets dot to
the last line displayed. If you specify two line numbers, the first can't be bigger than the
second.
Typing a single RETURN displays the next line - it's equivalent to .+lp. Try it. Try typing a
-; you will find that it's equivalent to .-lp.

4.1.14. Deleting Lines - the Delete Command 'd'

Suppose you want to get rid of the three extra lines in the buffer. To do this, use the delete
command d. The d command is similar to p, except that d deletes lines instead of displaying
them, You specify the lines to be deleted for d exactly as you do for p:

,tarting line, end1°ng lined

Thus the command:

•,Sd
deletes lines 4 through the end. There are now three lines left, as you can check by using:

1,Sp
Now is the time
for all good men
to come to the aid of their party.

And notice that '$' now is line 3. Dot is set to the next line after the last line deleted, unless
the last line deleted is the last line in the buffer. In that case, dot is set to '$'.

4.1.15. Exercise: Experimenting

Experiment with a, e, r, w, p and d until you are sure you know what they do, and until you
understand how to use dot, '$' and the line numbers.
If you are adventurous, try using line numbers with a, r and w as well. You will find that a
appends lines after the line number that you specify rather than after dot; that r reads a file in
after the line num her you specify and not necessarily at the end of the buffer; and that w writes
out exactly the lines you specify, not necessarily the whole buffer. These variations are handy,
for instance, for inserting a file at the beginning of a buffer:

Or filename
number of character,

Ed indicates the number of characters read in. You can enter lines at the beginning of the
buffer by saying:

Revision C of 7 January I 984 4-11

Using the ed Line Editor Editing and Text Processing

Oa
... tezt . ..

•
Or you can write out the lines you specify with w. Notice that .w is ver11 different from:

w
number of charact~r,

4.1.16. Modifying Text - the Substitute Command 's'

One of the most important commands is the ,ub,titute command •. Use • to change individual
words or letters within a line or group of lines. For example, you can correct spelling mistakes
and typing errors.

Suppose that by a typing error, line 1 says:

Now is th time

- the 'e' has been left off 'the'. You can use• to fix this up as follows:

ls/th/the/

This says: 'in line 1, substitute for the characters 'th' the characters 'the'. Ed does not display
the result automatically, so verify that it works with:

p
Now is the time

You get what you wanted. Notice that dot has been set to the line where the substitution took
place, since p printed that line. The • command always sets dot in this way.

The general way to use the substitute command is:

,tarting-line, ending-lines/ change thia/to thi1/

Whatever string of characters is between the first pair of slashes is replaced by whatever is
between the second pair, in all the lines between ,tarting-line and ending-line. Only the first
occurrence on each line is changed, however. If you want to change ever11 occurrence, read on
below. The rules for line numbers are the same as those for p, except that dot is set to the last
line changed. But there is a trap for the unwary: if no substitution took place, dot is not
changed. This causes an error '!' as a warning.

Thus you can say:

1,$s/speling/spelling/

and correct the first spelling mistake on each line in the text. (This is useful for people who are
consistent misspellers!)

You can precede any s command by one or two 'line numbers' to specify that the substitution is
to take place on a group of lines. Thus, to change the fir,t occurrence of 'mispell' to 'misspell'
on every line of the file, type:

1,$s/mispell/misspell/

But to change ever11 occurrence in every line, type:

4-12 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

l ,$s / mis pell/ misspell/ g

This is more likely what you wanted in this particular case.

Note: Be careful that this is exactly what you want to do. Unless you specify the substitution
specifically, globally changing the string 'the', will also change every instance of those charac­
ters, including 'other', etc.

If you do not give any line numbers, 1 assumes you mean 'make the substitution on line dot,' so
it changes things only on the current line. You will see that a very common sequence is to
correct a mistake on the current line, and then display the line to make sure everything is all
right:

a/something/something el,,e/p
line with ,omething elae

If it didn't, you can try again.

Notice that there is a p on the same line as the I command. With few exceptions, p can follow
any command; no other multi-command lines are legal.

You can also say:

1/ ... //
which means 'change the first string of characters to nothing;' that is, remove the first string of
characters. Use this sequence for deleting extra words in a line or removing extra letters from
words. For instance, if you had:

Nowxx is the time

To correct this, say:

1/xx//p
Now is the time

Notice that '//' (two adjacent slashes) means 'no characters,' not a blank. There i, a difference!
(See Repeated Searchea for another meaning of'//'.)
If you want to replace the firat 'this' on a line with 'that', for example, use:

1/this/that/

If there is more than one 'this' on the line, a second form with the trailing global command g
changes all of them:

1/this/that/g

The general format is:

•I . .. / ... /gp

Try other characters instead of slashes to delimit the two sets of characters in the I command
- anything should work except blanks or tabs.

If you get funny results using any of the characters:

• • \ &

read the section on Special Character,.

You can follow either form of the I command by p or I to display or list the contents of the
line.

Revision C of 7 January 1984 4-13

Using the ed Line Editor

s/this/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

Editing and Text Processing

are all acceptable and mean slightly different things. Make sure you know what the differences
are.

You should also notice that if you add a p or I to the end or any of these substitute commands,
only the last line that was changed will be displayed, not all the lines. We will talk later about
how to show all the lines that were modified.

4.1.17. The Ampersand'&'

The '&' is a shorthand character - it is used only on the right-hand part of a substitute com­
mand where it means 'whatever was matched on the left-hand side.' Use it to save typing. Sup­
pose the current line contained:

Now is the time

and you wanted to put parentheses around it. You could just retype the line, but this is tedi­
ous. Or you could say:

s/' /(/
s/$/)/

using your knowledge of,., and'$'. But the easiest way uses'the '&':

s/.•/(&)/
This says 'match the whole line, and replace it by itself surrounded by parentheses.'

You can use the '&' several times in a line:

s/.•/&? &!!/
Now is the time! Now is the time!!

The ampersand can occur more than once on the right side:

a/the/ & best and & worst/

makes:

Now is the best and the worst time

You don't have to match the whole line, of course, if the buffer contains:

the end of the world

you can type:

/world/a//& is at hand/
the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing.
The string '/world/' found the desired line; the shorthand '//'found the same word in the line;
and the ' & ' saves you from typing it again.

Notice that '&' is not special on the left side of a substitute, only on the right side.

4-14 Revision C of 7 January 1!>84

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

The '&' is a special character only within the replacement text of a substitute command, and
has no special meaning elsewhere. You can turn off the special meaning of ' & ' by preceding it
with a'\':

1/ampenand/\&/

converts the word 'ampersand' into the literal symbol '&' in the current line. Of course this
isn't much of a saving if the thing matched is just 'the', but if it is something truly long or
awful, or if it is something like '.•' which matches a lot of text, you can save some tedious typ­
ing. There is also much less chance of making a typing error in the replacement text. For
example, to put parentheses around a line, regardless of its length, use:

•/.•/(&)/

4.1.18. Exercise: Trying the 's' and 'g' Commands

Experiment with • and g. See what happens if you substitute for some word on a line with
several occurrences of that word. For example, do this:

a
the other aide of the coin

1/the/on the/p
on the other side of the coin

4.1.19. Undoing a Command- the Undo Command 'u'

Occasionally you will make a substitution in a line, only to realize too late that it was a mis­
take. Use the undo command u to undo the last substitution. This restores the last line that
was substituted to its previous state. For example, study the following example:

1/party/country/
p
to come to the aid of their country.
u
p
to come to the aid of their party.

4.2. Changing and Inserting Text - the 'c' and 'i' Commands

This section discusses .the change command c, which changes or replaces a group of one or more
lines, and the in,ert command i, which inserts a group of one or more lines.

The c command replaces a number of lines with different lines, which you type in at the works­
tation. For example, to change lines'.+ l' through'$' to something else, type:

.+1,Sc
• , , type the line, of tezt you want here , , •

The lines you type between the c command and the '.' take the place of the original lines

Revision C of 7 January 1984 4-15

Using the ed Line Editor Editing and Text Processing

between start line and end line. This is most useful in replacing a line or several lines which
have errors in them.

If you only specify one line in the c command,· just that line is replaced. You can type in as
many replacement lines as you like. Notice the use of '.' to end the input - this works just
like the '.' in the append command and must appear by itself on a new line. If no line number
is given, line dot is replaced. The value of dot is set to the last line you typed in.

'Insert' is similar to append, for instance:

/string/i
... type the line, to be inaerted here , , ,

inserts the given text be/ore the next line that contains 'otring', that is, the text between l and
'.' is inserted be/ore the specified line. Ir no line number is specified dot is used. Dot is set to
the last line inserted.

4.2.1. Exercise: Trying the 'c' Command

Change is rather like a combination of delete followed by insert. Experiment to verify that:

,tart, end d
i
... tezl ...

is almost the same as:

atarl, end c
... lezt ...

These are not preci,e/11 the same if line 'S' gets deleted. Check this out. What is dot!

Experiment with a and i, to see that they are similar, but not the same. You will observe that
to append after the given line, you type:

line-number a
... tezt •••

while to insert before it, you type:

line-number
... lezl ...

Observe that if you do not give a line number, i inserts before line dot, while a appends after
line dot.

4.3. Specifying Lines in the Editor

To specify what lines are to be affected by the editing commands, you use line addreuing.
There are several methods, which are described below.

Revision C of 7 January 1984

0

0

0

Editing and Text Processing Using the ed Line Editor

Q 4.3.1. Context Searching

0

0

One way is contezt aearching. Context searching is simply a method of specifying the desired
line, regardless of what its number is, by specifying some context on it.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

If you want to find the line that contains 'their' so you can change it to 'the'. With only three
lines in the buffer, it's pretty easy to keep track of what line the word 'their' is on. But if the
buffer contains several hundred lines, and you'd been making changes, deleting and rearranging
lines, and so on, you would no longer really know what this line num her would be.

For example, to locate the next occurrence of the characters between slashes ('their'), type:

/their/
to come to the aid of their party.

To search for a line that contains a particular string of characters, the general format is:

/ airing of character, we want lo find/

This is sufficient to find the desired line. It also sets dot to that line and displays the line for
verification. 'Next occurrence' means that ed starts looking for the string at line '.+ 1 ', searches
to the end of the buffer, then continues at line 1 and searches to line dot. That is, the search
'wraps around' from '$' to 1. It scans all the lines in the buffer until it either finds the desired
line or gets back to dot again. If the given string of characters can't be found in any line, ed
displays the error message:

!

Otherwise it shows the line it found.

Less familiar is the use of:

?thing?

which scans backward, for the previous occurrence of 'thing'. This is especially handy when you
realize that the thing you want to operate on is back up the page from where you are currently
editing.
The slash and question mark are the only characters you can use to delimit a context search,
though you can use essentially any character in a substitute command. You can do both the
search for the desired line and a substitution all at once, like this:

/their/s/their/the/p
to come to the aid of the party.

There were three parts to that last command: a context search for the desired line, the substitu­
tion, and displaying the line.

The expression '/their/' is a context search expression. In their simplest form, all context
search expressions are like this - a string of characters surrounded by slashes. Context
searches are interchangeable with line numbers, so you can use them by themselves to find and
show a desired line, or as line numbers for some other command, like 11. We use them both
ways in the examples above.

Revision C of 7 January 1984 4-17

Using the ed Line Editor Editing and Text Processing

4.3.2. Exercise: Trying Context Searching

Experiment with context searching. Try a body of text with several occurrences of the same 0
string of characters, and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print and delete commands. You
can also use context searching with with r, w, and a.
If you get funny results with any of the characters:

$ • \ 8,;

read the section on Special Character,.

4.3.3. Specifying Lines with Address Arithmetic - '+'and'-'

Another area in which you can save typing in specifying lines is to use '-' and '+' as line
numbers by themselves. To move back up one line in the lite, type:

In fact, you can string several minus signs together to move back up that many lines:

moves up three lines, as does '-3'. Thus:

-3,+3p

is also identical to the examples above.

Since'-' is shorter than '.-1', use it to change 'bad' to 'good' on the previous line and on the O··

current line.

-,,s/bad/ good/

You can use '+' and '-' in combination with searches using '/ ... /' and '! ... !', and with'$'. To
find the line containing 'thing', and position you two lines before it, type:

/thing/--

The next step is to combine the line numbers like '.', '$', '/ ... /' and '! ... !' with '+' and '-'.
Thus:

$-1

displays the next to last line of the current lile, that is, one line before line '$'. For example, to
recall how far you got in a previous editing session, type:

$-5_,$p

which shows the last six lines. (Be sure you understand why it's six, not live.) Ir there aren't
six, of course, you'll get an error message. Suppose the buffer contains the three familiar lines:

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers:

Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Using the ed Line Editor

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line, line 2. To make a change
in line 2, you could say:

/Now/+ls/good/bad/

or:

/good/a/good/bad/

or:

/party/-ls/good/bad/

Convenience dictates the choice. You could display all three lines by, for instance:

/Now/,/party/p

or:

/Now/,/Now/+2p

or by any number or similar combinations. The first one or these might be better if you don't
know how many lines are involved. or course, if there were only three lines in the huller, you'd
use:

1,$p

but not if there were several hundred.

The basic rule is: a context search expression is the aame a, a line number, so you can use it
wherever a line num her is needed.

As another example:

.-3,.+3p

displays Crom three lines before where you are now at line dot to three lines after, thus giving
you a bit of context. By the way, you can omit the '+ ':

.-3,.3p

is identical in meaning.

4.3.4. Repeated Searches - '//' and '??'

Suppose you ask for the search:

/horrible thing/

and when the line is displayed, you discover that it isn't the horrible thing that you wanted, so
you have to repeat the search again. You don't have to re-type the search; use the construc­
tion:

II
as a shorthand for 'the previous thing that was searched for', whatever it was. You can repeat
this as many times as necessary. You can also go backwards by typing:

Revision C of 7 January 1984 4-19

Using the ed Line Editor Editing and Text Processing

??
which searches for the same thing, but in the reverse direction.

Not only can you repeat the search, but you can use '//' as the left side of a substitute com­
mand, to mean 'the most recent pattern.'

/horrible thing/
.... ed printa line with 'horrible thing' ...

s//good/p

To go backwards and change a line, say:

??a//good/

You can also use it as the first string of the substitute command, as in:

/stringl/a//string2/

which finds the next occurrence of 'stringl' and replaces it by 'string2'. This can save a lot of
typing.

You can still use the '&' on the right hand side of a substitute to stand for whatever got
matched:

//a//& &/p
This finds the next occurrence of whatever you searched for last, replaces it by two copies of
itself, then displays the line just to verify that it worked.

4.3.5. Default Line Numbers and the Value of Dot

One of the most effective ways to speed up your editing is always to know what lines will be
affected by a command if you don't s.pecify the lines it is to act on, and on what line you will be
positioned, that is, the value of dot, when a command finishes. If you can edit without specify­
ing unnecessary line numbers, you can save a lot of typing.

As the most obvious example, if you give a search command like:

/thing/

you are left pointing at the next line that contains 'thing'. No address is required with com­
mands like a to make a substitution on that line. Addresses are also not required with p to
show it, I to list it, d to delete it, a to append text after it, c to change it, or i to insert text
before it.

What would happen if there were no 'thing'! Then you are left right where you were - dot is
unchanged. This is also true if you are sitting on the only 'thing' when you issue the command.
The same rules hold for searches that use '! ... !'; the only difference is the direction in which you
search.

The delete command d leaves dot pointing at the line that followed the last deleted line. When
line '$' gets deleted, however, dot points at the new line '$'.
The line-changing commands a, c and i by default all affect the current line. If you do not give
a line number with them, the a appends text after the current line, c changes the current line,
and i inserts text before the current line.

0

0

The a, c, and i commands behave identically in one respect - when you stop appending, 0
changing or inserting, dot points at the last line entered. This is exactly what you want for '

4-20 Revision C of 7 January 1984

0

0

0

Editing and Text Processing

typing and editing on the fly. For example, you can say:

a
... tezt .. .
... botch .. .

a/botch/ correct/
a
... more tezt ..•

(minor error)
(fiz botched line)

Using the ed Line Editor

without specifying any line number for the substitute command or for the second append com­
mand. Or you can say:

a
... tezt ...
•.. horrible botch ... (major error)

c (rep/nee entire line)
... fized up line ...

You should experiment to determine what happens if you do not add any lines with a, c or i.
The r command reads a file into the text being edited, either at the end if you do not give an
address, or after the specified line if you do. In either case, dot points at the last line read in.
Remember that you can even say Or to read a file in at the beginning of the text. You can also
say Oa or li to start adding text at the beginning.

The w command writes out the entire file. If you precede the command by one line number,
that line is written, while if you precede it by two line numbers, that range of lines is written.
The w command does not change dot; the current line remains the same, regardless of what
lines are written. This is true even if you say something that involves a context search, such as:

/"\.AB/,/"\.AE/w abstract

Since w is so easy to use, you should save what you are editing regularly as you go along just in
case something goes wrong, or in case you do something foolish, like clobbering what you're
editing.

, With the s command, the rule is simple; you are left positioning on the last line that got
changed. If there were no changes, dot doesn't move.

To illustrate, suppose that there are three lines in the buffer, and you are sitting on the middle
one:

xi
x2
x3

Then to display the third line, which is the last one changed, type:

-,+s/x/y/p
But if the three lines had been:

xi
y2
y3

and the same command had been issued while dot pointed at the second line, then the result
would be to change and show only the first line, and that is where dot would be set.

Revision C of 7 January 1984 4-21

Using theed Line Editor Editing and Text Processing

4.3.6. Combining Commands - the Semicolon ';'

Searches with '/ ... f' and '! ... !' start at the current line and move forward or backward respec­
tively until they either find the pattern or get back to the current line. Sometimes this is not
what is wanted. Suppose, for example, that the buffer contains lines like this:

ab

Starting at line 1, one would expect that the command:

/a/,/b/p

would display all the lines from the 'ab' to the 'be' inclusive. Actually this is not what happens.
Both searches (for 'a' and for 'b') start from the same point, and thus they both find the line
that contains 'ab'. The result is to display a single line. Worse, if there had been a line with a
'b' in it before the 'ab' line, then the print command would be in error, since the second line
number would be less than the first, and you cannot display lines in reverse order.

This happens because the comma separator for line numbers doesn't set dot as each address is
processed; each search starts from the same place. In ed, you can use the semicolon ';' just like
comma, with the single difference that use of a semicolon forces dot to be set at that point as
the line numbers are being evaluated. In effect, the semicolon 'moves' dot. Thus in the exam­
ple above, the command:

/a/;/b/p
displays the range of lines from 'ab' to 'be', because after the 'a' is found, dot is set to that line,
and then 'b' is searched for, starting beyond that line.

Use the semicolon when you want to find the ,econtl occurrence of something. For example, to
find the second occurrence of 'thing', you can say:

/thing/
line with 'thing'

II
ucontl line with 'thing'

But this displays the first occurrence as well as the second, and is a nuisance when you know
very well that it is only the second one you're interested in. The solution is to find the first
occurrence of 'thing', set dot to that line, then find the second and display only that:

/thing/;//

Closely related is searching for the second previous occurrence of something, as in:

?something?;??

We leave you to try showing the third or fourth or ... in either direction.

4-22 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using theed Line Editor

Finally, bear in mind that if you want to find the first occurrence of something in a file, starting
at an arbitrary place within the file, it is not sufficient to say:

1;/thing/

This search fails if 'thing' occurs on line l. But it is possible to say:

O;/thing/

This is one of the few places where O is a legal line number, for this starts the search at line l.

4.3. 7. Interrupting the Editor

As a final note on what dot gets set to, be aware that if you type an INTERRUPT ('C is the
default, but your terminal may be set up with the DELETE, RUBOUT or BREAK keys) while
ed is doing a command, things are put back together again and your state is restored as much
as possible to what it was before the command began. Naturally, some changes are irrevocable
- if you are reading or writing a file or making substitutions or deleting lines, these will be
stopped in the middle of execution in some clean but unpredictable state; hence it is not usually
wise to stop them. Dot may or may not be changed.

Displaying is more clear cut. Dot is not changed until the display is done. Thus if you display
lines until you see an interesting one, then type ·c, you are not sitting on that line or even near
it. Dot is left where it was when the p command was started.

4.4. Editing All Lines - the Global Commands 'g' and 'v'

Use the global command g to execute one or more ed commands on all those lines in the buffer
that match some specified string. For example, to display all lines that contain 'peling', type:

g/peling/p

As another example:

gf'\./p

displays all the formatting commands in a file lines that begin with '. '. The pattern that goes
between the slashes can be anything that could be used in a line search or in a substitute com­
mand; the same rules and limitations apply.
As a more useful command which makes the substitution everywhere on the line, then displays
each corrected line, type:

g/peling/•//pelling/gp

Compare this to the command line, which only shows the last line substituted:

l ,Ss / peling/ pelling/ gp

Another subtle difference is that the g command does not give a '!' if 'peling' is not found where
the II command will.
The substitute command is probably the most useful command that can follow a global because
you can use this to make a change and display each affected line for verification. For example,
you can change the word 'Sun' to 'SUN' everywhere in a file, and verify that it really worked,
with:

Revision C of 7 January 1984 4-23

Using the ed Line Editor Editing and Text Processing

g/Sun/s/ /SUN/gp

Notice that you use '//' in the substitute command to mean 'the previous pattern', in this case,
'Sun'. The p command is done on every line that matches the pattern, not just those on which
a substitution took place.

The command that follows g or v can be anything:

g/'\./d

deletes all lines that begin with '. ', and:

g/'$/d

deletes all empty lines.

The v command is identical to g, except that it operates on those line that do not contain an
occurrence of the pattern; that is, v 'inverts' the process, so:

v/'\./p
The global command operates by making two passes over the file. On the first pass, all lines
that match the pattern are marked. On the second pass, each marked line in turn is examined,
dot is set to that line, and the command executed. This means that it is possible for the com­
mand that follows a g or v to use addresses, set dot, and so on, quite freely.

g/'\.PP/+
displays the line that follows each '.PP' command (the signal for a new paragraph in some for­
matting packages). Remember that '+' means 'one line past" dot'. And:

g/topic/?"\.SH?l

searches for each line that contains 'topic', scans backwards until it finds a line that begins '.SH'
(a section heading) and shows the line that follows that, thus showing the section headings
under which 'topic' is mentioned. Finally:

g/'\.EQ/+,/'\:EN/-p
displays all the lines that lie between lines beginning with '.EQ' and '.EN' formatting com­
mands.

You can also precede the g and v commands by line numbel'!I, in which case the lines searched
are only those in the range specified.

4.4.1. Multi-line Global Commands

You can use several commands at once, including a, e, i, r, w, but not g; in this case, every line
except the last must end with a backslash ' \ '. For example, to make changes in the lines
before and after each line that contains 'xxx ', and then display all three lines, say:

g/xxx/.-ls/abc/def/\
.+2s/ ghi/jkl/\
.-2,.p

You can use more than one command under the control of a global command, although the syn­
tax for expressing the operation is not especially natural or pleasant. As an example, suppose
the task is to change 'x' to 'y' and 'a' to 'b' on all lines that contain 'thing'. Then:

4-24 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

g/thing/e/x/y /\
•/a/b/

Using theed Line Editor

is sufficient. The ' \' signals g that the set of commands continues on the next line; it ter­
minates on the first line that does not end with ' \'. You can't use a substitute command to
insert a newline within a g command.

Watch out for the command:

g/x/s//y/\
•/a/b/

which does not work as you expect. The remembered pattern is the last pattern that was actu­
ally executed, so sometimes it will be 'x' (as expected), and aometimes it will be 'a' (not
expected). You must spell it out, like this:

g/x/s/x/y/\
s/a/b/

It is also possible to execute a, c and i commands under a global command; as with other
multi-line constructions, all that is needed is to add an ' \' at the end of each line except the
last. Thus to add a '.nf' and '.sp' command before each '.EQ' line, type:

gf"\.EQ/i\
.nf\
.sp

You do not need a final line containing a '.' to terminate the I command, unless you are using
further commands under the global command. On the other hand, it does no harm to put it in
either.

4.5. Special Characters

Certain charactera have unexpected meanings when they occur in the left side of a substitute
command, or in a search for a particular line. You may have noticed that things just don't
work right when you use some characters like '.', '•', '$', and others in context searches and
with the substitute command. These special charac:ters are called motacharactora. Basically, od
treats these characters as special, with special meanings. For instance, in a context search or
the first string of the substitute command only, '.' means 'any character,' not a period, so:

/x.y/
means 'a line with an 'x', any character, and a 'y',' not just 'a line with an 'x', a period, and a
'y'.' A complete list of the special characters is:

. s • \

4.5.1. Matching Anything - the Dot '.'

Use the 'dot' metacharacter '.' to match any single character. For example, to find any line
where 'x' and 'y' occur separated by a single character, type:

/x.y/
You may get any of:

Revision C of 7 January 1984 4-25

Using the ed Line Editor

x+y
x-y
xy
x.

and so on.

Editing and Text Proces11ing

On the left side of a substitute command, or in a search with'/ •.. /', '.' stands for 11n11 single
character.

Since '.' matches a single character, it gives you a way to deal with funny characters that I
displays. Suppose you have a line that, when displayed with the l command, appears as:

.... tb07is

and you want to get rid of the 07 (which represents the bell character, by the way).

The most obvious solution is to try:

s/07 //

but this will fail. (Try it.) The brute force solution, which most people would now take, is to
re-type the entire line. This is guaranteed, and is actually quite a reasonable tactic if the line in

. question isn't too big, but for a very long line, re-typing is a bore. This is where the metachar­
acter '.' comes in bandy. Since '07' really represents a single.character, ifwe say:

a/th.is/this/

the job is done. The '.' matches the mysterious character between the 'h' and the 'i', whatever
it i,.

Bear in mind that since '.' matches any single character, the command:

s/./,/
converts the first character on a line into a',', which very often is not what you intended.

As is true of many characters in ed, the '.' has several meanings, depending on its context. This
line shows all three:

.s/./ ./
The first '.' is a line num her, the num her of the line we are editing, which is called 'line dot'.
The second '.' is a metacbaracter that matches any single character on that line. The third •.'
is the only one that really is an honest literal period. On the right side of a substitution, '.' is
not special. If you apply this command to the line:

Now is the time.

the result will be:

.s/ ./ ./

.ow is the time.

which is probably not what you intended.

4.5.2. Specifying Any Character - the Backslash'\'

The backslash character ' \' is special to ed as noted in the description of the ampersand. For
safety's sake, avoid it where possible. If you have to use one of the special characters in a sub­
stitute command, you can turn off its magic meaning temporarily by preceding it with the

4-26 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

backslash. Thus:

•I\.\• /b ackslaah dot star/

changes'\.•' into 'backslash dot star'.

Using the ed Line Editor

Since a period means 'any character', the question naturally arises of what to do when you
really want a period. For example, how do you convert the line:

Now is the time.

into:

Now is the time!

Use the backslash ' \' here as well to turn off any special meaning that the next character might
have; in particular,'\.' converts the'.' from a 'match anything' into a period, so you can use it
to replace the period in 'Now is the time.', type:

11/\./?/p
Now is the time!

Ed treats the pair of characters '\.' as a single real period.

You can also use the backslash when searching for lines that contain a special character. Sup­
pose you are looking for a line that contains:

.PP
The search for '.PP' finds:

/.PP/
THE APPLICATION OF ...

because the'.' matches the letter 'A'. But if you say:

/\.PP/
you will find only lines that contain '.PP'.

You can also use the backslash to turn off special meanings for characters other than ' \' and '. '.
For example, consider finding a line that contains a backslash. The search:

/\/
won't work, because the ' \' isn't a literal ' \ ', but instead means that the second '/' no longer
delimits the search. But by preceding a backslash with another one, you can search for a literal
backslash. Thus:

/\\/
does work. Similarly, you can search for a forward slash'/' with:

/\II
The backslash turns off the meaning of the immediately following '/' so that it doesn't ter­
minate the / ... / construction prematurely.

As an exercise, before reading further, find two substitute commands each of which will convert
the line:

\x\.\y

into the line:

Revision C of 7 January 1984 4-27

Using the ed Line Editor

\x\y

Here are several solutions; verify that each works as advertised.

s/\ \ \.//
s/x .. /x/
s/ .. y/y/

Editing and Text Processing

Here are a couple of miscellaneous notes about backslashes and special characters. First, you
can use any character to delimit the pieces or an • command: there is nothing sacred about
slashes. But you must use slashes for context searching. For instance, in a line that contains a
lot or slashes already, like:

//exec //sys.fort.go // etc ...

you could use a colon as the delimiter - to delete· all the slashes, type:

s:/::g

When you are adding text with a or i or c, the backslash is not special, and you should only
put in one backslash for each one you really want.

4.5.3. Specifying the End of Line - the Dollar Sign '$'

The dollar-sign '$' means the end of a line:

/string$/

0

only finds an occurrence of 'string' that is at the end or some line. This implies, or course, that: Q
/'string$/

finds a line that contains just 'string', and:

f'.$/

finds a line containing exactly one character.

As an obvious use, suppose you have the line:

Now is the

and you wish to add the word 'time' to the end. Use the '$' like this:

s/$/ time/p
Now is the time

Notice that a space is needed before 'time' in the substitute command, or you will get:

Now is thetime

As another example, replace the second comma in a line with a period without altering the first
comma. Type:

s/,$/./p
Now is the time, for all good men,

The '$' sign here provides context to make specific which comma you mean. Without it, of
course, s operates on the first comma to produce:

4-28 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Using the ed Line Editor

•/,/./p
Now is the time. for all good men,

As another example, to convert:

Now is the time.

into:

Now is the time!

as you did earlier, you can use:

s/.$/?/p
Now is the time!

Like'.', the'$' has multiple meanings depending on context. In the line:

$s/S/S/
the first '$' refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

4.5.4. Specifying the Beginning of the Line - the Circumflex'''

The circumflex ''' signifies the beginning of a line. Thus:

/'string/
string

finds 'string' only if it is at the beginning of a line, but not:

the string ...

You will in all likelihood find several lines that contain the desired string before arriving at the
one you want, unless you specify the string more exactly. You narrow the context, and thus
arrive at the desired one more easily if you type something like:

/'the/
the

to find 'the' at the beginning of the line.
You can also use ''' to insert something at the beginning of a line. For example, to place a
space at the beginning of the current line, type:

s/'/ I
You can combine metacharacters. To search for a line that contains only the characters '.PP' by
typing:

/'\PPS/

Revision C of 7 January 1984 4-29

Using the ed Line Editor

4,5,5. Matching Anything - the Star '*'
Suppose you have a line that looks like this:

text x y text

Editing and Text Processing

where text stands for lots of text, and there are some indeterminate number or spaces between
the 'x' and the 'y'. Suppose the job is to replace all the spaces between 'x' and 'y' by a single
space. The line is too long to retype, and there are too many spaces to count. What now!

This is where the metacharacter '•' comes in handy. A character followed by a star stands for
as many consecutive occurrences of that character as possible. To refer to all the spaces at
once, say:

s/x •y/x y/
The construction ' •' means 'as many spaces as possible'. Thus 'x •y' means 'an x, as many
spaces as possible, then a y'.

You can use the star with any character, not just the space. Ir the original example was
instead:

text x--------y text

then you can replace all '-' signs by a single space with the command:

s/x-•y/x y/
Finally, suppose that the line was:

text x y text

Can you see what trap lies in wait for the unwary! What will happen if you blindly type:

s/x-•y/x y/
The answer, naturally, is that it depends. If there are no other x's or y's on the line, then
everything works, but it's blind luck, not good management. Remember that •.' matches an11
single character. Then '. •' matches as many single characters as possible, and unless you're
careful, it can eat up a lot more of the line than you expected. If the line was, for example, like
this:

text x text x y text y tezl

then saying:

s/x.•y/x y/
will take everything from the firat 'x' to the la,t 'y', which, in this example, is undoubtedly
more than you wanted.

The solution, or course, is to turn off the special meaning or '.' with ' \. ':

•/x\.•y/x y/
Now everything works, for ' \.•' means 'as many period, as possible'.

This is useful in conjunction with '•', which is a repetition character; 'a•' is a shorthand for
'any number of 'a 's,' so.'.•' matches any number of anythings. Use this like:

s/.•/stuff/

which changes an entire line, or:

4-30 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

1/,/./p
Now is the time. for all good men,

As another example, to convert:

Now is the time.

into:

Now is the time!

as you did earlier, you can use:

1/.$/?/p
Now is the time?

Like '. •, the '$' has multiple meanings depending on context. In the line:

Ss/S/S/
the first '$' refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

4.5.4. Specifying the Beginning of the Line - the Circumflex,.,

The circumflex ,., signifies the beginning of a line. Thus:

rstring/
string

finds 'string' only if it is at the beginning of a line, but not:

the string ...

You will in all likelihood find several lines that contain the desired string before arriving at the
one you want, unless you specify the string more exactly. You narrow the context, and thus
arrive at the desired one more easily if you type something like:

rthe/
the

to find 'the' at the beginning of the line.
You can also use ,., to insert something at the beginning of a line. For example, to place a
space at the beginning of the current line, type:

•rt I
You can combine metacharacters. To search for a line that contains only the characters '.PP' by
typing:

r\J'PS/

Revision C of 7 January 1984 4-29

Using theed Line Editor

4.5.5. Matching Anything - the Star '*'
Suppose you have a line that looks like this:

text x y tezt

Editing and Text Processing

where text stands for lots of text, and there are some indeterminate number of spaces between
the 'x' and the 'y'. Suppose the job is to replace all the spaces between 'x' and 'y' by a single
space. The line is too long to retype, and there are too many spaces to count. What now!

This is where the metacharacter '•' comes in handy. A character followed by a star stands for
as many consecutive occurrences of that character aa possible. To refer to all the spaces at
once, say:

s/x •y/x y/
The construction ' •' means 'as many spaces as possible'. Thus 'x •y' means 'an x, aa many
spaces as possible, then a y'.

You can use the star with any character, not just the space. Ir the original example was
instead:

text x········Y text

then you can replace all '-' signs by a single space with the command:

s/x-•y/x y/
Finally, suppose that the line was:

text x y text

Can you see what trap lies in wait for the unwary! What will happen if you blindly type:

s/x.•y/x y/
The answer, naturally, is that it depends. If there are no other x's or y's on the line, then
everything works, but it's blind luck, not good management. Remember that '.' matches an11
single character. Then '.•' matches as many single characters as possible, and unless you're
careful, it can eat up a lot more of the line than you expected. Ir the line was, for example, like
this:

text x text x y text y text

then saying:

s/x.•y/x y/
will take everything from the Jirat 'x' to the la,t 'y', which, in this example, is undoubtedly
more than you wanted.

The solution, of course, is to turn off the special meaning of'.' with ' \.':

s/x\.•y/x y/
Now everything works, for '\.•' means 'as many peri"oda aa possible'.

This is useful in conjunction with '•', which is a repetition character; 'a•' is a shorthand for
'any number of 'a 's,' so '.•' matches any number of anythings. Use this like:

s/ .• /stuff/

which changes an entire line, or:

4-30 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

•/,/./p
Now is the time. for all good men,

As another example, to convert:

Now is the time.

into:

Now is the time!

as you did earlier, you can use:

s/.$/?/p
Now is the time!

Like'.', the'$' has multiple meanings depending on context. In the line:

Ss/$/S/
the first '$' refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

4.5.4. Specifying the Beginning of the Line - the Circumflex'''

The circumflex •·' signifies the beginning of a line. Thus:

rstring/
string

finds 'string' only if it is at the beginning of a line, but not:

the string ...

You will in all likelihood find several lines that contain the desired string before arriving at the
one you want, unless you specify the string more exactly. You narrow the context, and thus
arrive at the desired one more easily if you type something like:

rthe/
the

to find 'the' at the beginning of the line.
You can also use ,., to insert something at the beginning of a line. For example, to place a
space at the beginning of the current line, type:

•/'I I
You can combine metacharacters. To search for a line that contains on/11 the characters '.PP' by
typing:

/'\:PP$/

Revision C of 7 January 1984 4-29

Using the ed Line Editor

4.5.5. Matching Anything - the Star'•'

Suppose you have a line that looks like this:

text x y text

Editing and Text Processing

where text stands for lots of text, and there are some indeterminate number of spaces between
the 'x' and the 'y'. Suppose the job is to replace all the spaces between 'x' and 'y' by a single
space. The line is too long to retype, and there are too many spaces to count. What now!

This is where the metacharacter '•' comes in handy. A character followed by a star stands for
as many consecutive occurrences of that character as possible. To refer to all the spaces at
once, say:

s/x •y/x y/
The construction ' •' means 'as many spaces as possible'. Thus 'x •y' means 'an x, as many
spaces as possible, then a y'.
You can use the star with any character, not just the space. Ir the original example was
instead:

text x--------y text

then you can replace all '-' signs by a single space with the command:

s/x-•y/x y/
Finally, suppose that the line was:

text x •................ y text

Can you see what trap lies in wait for the unwary! What will happen if you blindly type:

s/x.•y/x y/
The answer, naturally, is that it depends. Ir there are no other x's or y's on the line, then
everything works, but it's blind luck, not good management. Remember that '.' matches 11n11
single character. Then '.•' matches as many single characters as possible, and unless you're
careful, it can eat up a lot more of the line than you expected. Ir the line was, for example, like
this:

text x text x y text y tezt

then saying:

s/x.•y/x y/
will take everything from the firat 'x' to the 111,t 'y', which, in this example, is undoubtedly
more than you wanted.

The solution, of course, is to turn off the special meaning or'.' with'\.':

s/x\.•y/x y/
Now everything works, for ' \.•' means 'as many period, as possible'.

This is useful in conjunction with '•', which is a repetition character; 'a•' is a shorthand for
'any number of 'a 's,' so'.•' matches any number of anythings. Use this like:

s/.•/stuff/
which changes an entire line, or:

4-30 Revision C or 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

•/.•,//
which deletes all characters in the line up to and including the last comma. Since '•' finds the
longest possible match, this goes up to the last comma.

There are times when the pattern'.•' is exactly what you want. For example, use:

Now is the time for all good men
a/ ror.•/./p
Now is the time.

The '. •' eats up everything after the 'for'.

There are a couple of additional pitfalls associated with '•' that you should be aware of. First
note that 'as many as possible' means zero or more. The fact that zero is a legitimate possibil­
ity is sometimes rather surprising. For example, if your line contained:

text xy text x

and you said:

s/x •y/x y/

y text

the /irat 'xy' matches this pattern, for it consists of an 'x', zero spaces, and a 'y'. The result is
that the substitute acts on the first 'xy', and does not touch the later one that actually contains
some intervening spaces.

The way around this, if it matters, is to specify a pattern like:

/x •y/
which says 'an x, a space, then as many more spaces as possible, then a y', in other words, one
or more spaces.

The other startling behavior of '•' is again related to the fact that zero is a legitimate number
of occurrences of something followed by a star. The following command does not produce what
was intended:

abcdef
s/x•/y/g
p
yaybycydyeyfy

The reason for this behavior is that zero is a legal number of matches, and there are no x 's at
the beginning of the line (so that gets converted into a 'y'), nor between the 'a' and the 'b' (so
that gets converted into a 'y '), nor ... and so on. Make sure you really want zero matches; if
not, in this case write:

s/xx•/y/g
'xx•' is one or more x 's.

4.5.6. Character Classes - Brackets'[)'

The '[' and ']' brackets form 'character classes'; for example, to match any single digit, use:

/(0123458789)/

Any one of the characters inside the braces will cause a match. You can abbreviate this to
'(0-9]'. Or for example, to match zero or more digits (an entire number), to delete all digits

Revision C of 7 January 1984 4-31

Using the ed Line Editor

from the beginning of all lines, type:

1,Ss/' [0123456789)•//

Editing and Text Processing

Suppose that you want to delete any numbers that appear at the beginning of all lines of a file.
You might first think of trying a series of commands like:

l,$s/' l• //
l,h/'2•//
l,Ss/'3•//

and so on, but this is clearly going to take forever if the numbers are at all long. Unless you
want to repeat the commands over and over until all numbers are gone, you must get all the
digits on one pass. This is the purpose of the brackets '[)'.

Any characters can appear within a character class, and just to confuse the issue, there are
essentially no special characters inside the brackets; even the backslash doesn't have a special
meaning. To search for special characters, for example, you can say:

/[.\$'[]/
Within [...], the '[' is not special. To get a ')' into a character class, make it the first character.

It's a nuisance to have to spell out the digits, so you can abbreviate them as [0-9]; similarly,
[a-z] stands for the lower-case letters, and [A-Z) for upper case.

As a final frill on character classes, you can specify a class that means 'none of the following
characters'. To do this, begin the class with a,., to stand for 'any character ezcept a digit':

('0-9]

Thus you might find the first line that doesn't begin with a tab or space by a search like:

r ['(space)(tab))/

Within a character class, the circumflex has a special meaning only if it occurs at the beginning.
Just to convince yourself, verify that to find a line that doesn't begin with a circumflex, you
type:

4.6. Cutting and Pasting with the Editor

Ed has commands for manipulating individual lines or groups of lines in files.

4.6.1. Moving Lines Around

There are several ways to move text around in a file.

4.6.2. Moving Text Around - the Move Command 'm'

Use the move command m for cutting and pasting - you can move a group of lines from one
place to another in the buffer. Suppose you want to put the first three lines of the buffer at the
end instead. You could do it by saying:

4-32 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using the ed Line Editor

1,3w temp
Sr temp
1,3d

This is the brute force way; that is, you write the paragraph onto a temporary file, read in the
temporary file at the end, and then delete it from its current position. As another example,
consider:

.,f'\:PP/-w temp

.,//-d
Sr temp

That is, from where you are now ('.') until one line hefore the next '.PP' ('t\.PP/-'), write
onto temp. Then delete the same lines. Finally, read in temp at the end.

But you can do it a lot easier with m, so you can do a whole operation at one crack.

l,3m$

The general case is:

,tart line, end line m after lhia line

Notice that there is a third line to be specified - the place where the moved stuff gets put.

Ir you try:

l,5m3
!

ed reminds you that you can't do this.

or course you can specify the lines to be moved by context searches; if you had:

First paragraph

end or first paragraph.
Second paragraph

end or second paragraph.

you could reverse the two paragraphs like this:

/Second/ ,/end of second/m/First/-1

Notice the '-1 ': the moved text goes after the line mentioned. Dot gets set to the last line
moved. Suppose you want to move a paragraph Crom its present position in a paper to the end.
How would you do it! As a hint, suppose each paragraph in the paper begins with the format­
ting command '.PP'. Think about it and write down the details before reading on.

The m command is like many other ed commands in that it takes up to two line numbers in
front that tell what lines are to be moved. It is also followed by a line number that tells where
the lines are to go. Thus:

line1, linee m line$

says to move all the lines between 'line!' and 'line2' after 'line3'. Naturally, any or 'line!' etc.,
can be patterns between slashes, '$' signs, or other ways to specify lines.

Suppose again that you 're sitting at the first line or the paragraph. Then you can say:

Revision C of 7 January 1984 4-33

Using the ed Line Editor

.,/·\J.>P /-mS

That's all.

Editing and Text Processing

As another example of a frequent operation, you can revene the order of two adjacent lines by
moving the first one after the second. Suppose that you are positioned at the first. Then, to
move line dot to one line after line dot, type:

m+
If you are positioned on the second line, and want to do the revene, type:

m--

As you can see, m is more succinct and direct than writing, deleting and re-reading. When is
brute force better! This is a matter of personal taste - do what you have most confidence in.
The main difficulty with m is that if you use patterns to specify both the lines you are moving
and the target, you have to take care that you specify them properly, or you may well not move
the lines you thought you did. The result or a botched m command can be a mess. Doing the
job a step at a time makes it easier for you to verify at each step that. you accomplished what
you wanted to. It's also a good idea to use a w command before doing anything complicated;
then if you goof, it's easy to back up to where you were.

4.6.3. Substituting Newlines

You can split a single line into two or more shorter lines by. 'substituting in a newline.' As the

0

simplest example, suppose a line has gotten unmanageably long because or editing or merely o·
because it was unwisely typed. IC it looks like:

text xy text

you can break it between the 'x' and the 'y' like this:

s/xy/x\
y/

This is actually a single command, although it is typed on two lines. Bearing in mind that ' \'
turns off special meanings, it seems relatively intuitive that a ' \' at the end of a line would
make the new line there no longer special.

You can in fact make a single line into several lines with this same mechanism. As a large
example, consider underlining the word 'very' in a long line by splitting 'very' onto a separate
line, and preceding it by the nroff formatting command '.ul'.

lezt a very big tezt

To convert the line into four shorter lines, preceding the word 'very' by the line '.ul', and elim­
inating the spaces around the 'very', all at the same time, type:

•/very/\
.ul\
very\
I

When a newline is substituted in, dot is left pointing at the last line created.

4-34 Revision C or 7 January 1984

0

0

0

0

Editing and Text Processing Using the ed Line Editor

4.6.4. Joining Lines - the Join Command 'j'

You may also join lines together, but use the join command j for this instead of s. Given the
lines:

Now is
the time

and supposing that dot is set to the first of them, then the command:

J
joins them together. No blanks are added, which is why we carefully showed a blank at the
beginning of the second line.
All by itself, a j command joins line dot to line dot+ 1, but any contiguous set of lines can be
joined. Just specify the starting and ending line numbers. For example:

1,$jp

joins all the lines into one big one and displays it.

4.6.5. Rearranging a Line with '\(... \)'

Skip this section if this is the first time you're reading this chapter. Recall that '&' stands for
whatever was matched by the left side of an • command. In much the same way you can cap­
ture separate pieces of what was matched; the only difference is that you have to specify on the
left side just what pieces you're interested in.

Suppose, for instance, that you have a file of lines that consist of names in the form:

Smith, A. B.
Jones, C.

and so on, and you want the initials to precede the name, as in:

A. B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious and error-prone. (It
is instructive to figure out how it is done, though.)
The alternative is to 'tag' the pieces of the pattern, in this case, the last name, and the initials,
and then rearrange the pieces. On the left side of a substitution, if part of the pattern is
enclosed between \(and \), whatever matched that part is remembered, and available for use
on the right side. On the right side, the symbol ' \1' refers to whatever matched the first\(... \)
pair, '\2' to the second\(... \), and so on.

The command:

1,ssr\([" ,]•\), •\(.•\)/\2 \1/
although hard to read, does the job. The first\(... \) matches the last name, which is any string
up to the comma; this is referred to on the right side with '\1'. The second\(... \) is whatever
follows the comma and any spaces, and is referred to as ' \2'.

Of course, with any editing sequence this complicated, it's foolhardy to simply run it and hope.
The global commands g and v provide a way for you to display exactly those lines which were
affected by the substitute command, and thus verify that it did what you wanted in all cases.

Revision C of 7 January 1984 4-35

Using the ed Line Editor Editing and Text Processing

4.6.6. Marking a Line - the Mark Command 'k'

You can mark a line with a particular name so you can refer to it later by name, regardless of
its actual line number. This can be handy for moving lines, and for keeping track of them as
they mov~. The mark command is k. To mark the current line with the name 'x', use:

kx

Ir a line number precedes the k, that line is marked. The mark name must be a single lower­
case letter. Now you can refer to the marked line with the address:

'x

Marks are most useful for moving things around. Find the first line of the block to be moved,
and mark it with ' a. Then find the last line and mark it with ' b. Now position yourself at the
place where the stuff is to go and say:

1 a,' bm,

Bear in mind that only one line can have a particular mark name associated with it at any
given time.

4.6.7. Copying Lines - the Transfer Command 't'

We mentioned earlier the idea of saving a line that wa• hard to type or used often, to cut down
on typing time. Of course this can be more than one line, i~ which case the saving is pre•um­
ably even greater.

Ed provides another command, called t (lran•/er) for making a copy of a group of one or more
lines at any point. This is often easier than writing and reading.

The t command is identical to m, except that instead of moving lines, it simply duplicates them
at the place you named. Thus, to duplicate the entire contents that you are editing, use:

1,StS
A more common use for t is for creating a series of lines that differ only slightly. For example,
you can say:

a x {long line)

t. (make a copy)
s/x/y/ {change it a bit)
t. { make third cop11)
s/y/z/ {change it a bit)

and so on.

4.7. Escaping to the Shell with 'I'

Sometimes it is convenient to be able to temporarily escape from the editor to use some Shell
command without leaving the editor. Use the 'I' (escape) command to do this.

To suspend your current editing state and execute the Shell command you asked for, type:

4-36 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

I an11 Shell command
!

Using the ed Line Editor

When the command finishes, ed will signal you by displaying another '!'; at that point, you can
resume editing.

You can really do an11 Shell command, including another ed. This is quite common, in fact. In
this case, you can even do another '!'.

4.8. Supporting Tools

There are several tools and techniques that go along with the editor, all or which are relatively
easy once you know how ed works, because they are all based on the editor. This section gives
some fairly cursory examples or these tools, more to indicate their existence than to provide a
complete tutorial. For more inrormation on each, rerer to the Uaer'a Manual for the Sun Work,­
tation.

4.8.1. Editing Scripts

Ir you have a rairly complicated set or editing operations to do on a whole set or files, the easiest
thing to do is to make up a 'script', that is, a file that contains the operations you want to per­
rorm, and then apply this script to each file in turn.

For example, suppose you want to change every 'Sun' to 'SUN' and every 'System' to 'SYS­
TEM' in a large number or files. Then put into a file, which we'll call change,, the lines:

g/Sun/s//SUN/g
g/Syatem/a//SYSTEM/g
w
q

Now you can say:

logo% ed file! <script
logo% ed file2 <script

This causes ed to take its commands from the prepared script called change,. Notice that you
have to plan the whole job in advance.

And or course by using the Sun UNIX command interpreter, the Shell, you can cycle through a
set or files automatically, with varying degrees or ease.

4.8.2. Matching Patterns with 'grep'

Sometimes you want to find all occurrences or some word or pattern in a set or files, to edit
them or perhaps just to veriry their presence or absence. You can edit each file separately and
look ror the pattern or interest, but ir there are many files, this can get very tedious, and ir the
files are really big, it may be impossible because or limits in ed.

The program grep gets around these limitations. The search patterns that are described in this
chapter are orten called 'regular expressions', and 'grep' stands for 'general regular expression,
print.' That describes exactly what grep does - it displays every line in a set of files that

Revision C or 7 January 1984 4-37

Using the ed Line Editor Editing and Text Processing

contains a particular pattern. Thus, to find 'thing' wherever it occurs in any of the files filet,
file2, etc., type:

logo% grep I thing' filel file2 file3 ...

logo%

Grep also indicates the file in which the line was found, so you can later edit it if you like.

The pattern represented by 'thing' can be any pattern you can use in the editor, since grep and
ed use exactly the same mechanism for pattern searching. It is wisest always to enclose the pat­
tern in the single quotes 1 •• .' if it contains any non-alphabetic characters, since many such char­
acters also mean something special to the Sun UNIX command interpreter, the Shell. If you
don't quote them, the command interpreter will try to interpret them before grep gets a chance.

There is also a way to find lines that don't contain a pattern:

logo% grep -v I thing' filel file2 ...

logo%

finds all lines that don't contain 'thing'. The -v must occur in the position shown. Given grep
and grep -tt, it is possible to do things like selecting all lines that contain some combination or
patterns. For example, to get all lines that contain 'x' but not 'y', use:

logo% grep x file... grep -v y

logo%

0

The notation 'I' is a 'pipe', which causes the output of the first command to be used as input to
the second command; see the Beginner'• Guide to the Sun Workatation for an introduction to 0
'piping.' See the Uaer '• Manual for the Sun Workatation for details on grep.

4.9. Summary of Commands and Line Numbers

The general form or ed commands is the command name, perhaps preceded by one or two line
numbers, and, in the case ore, r, and w, followed by a filename. Only one command is allowed
per line, but a p command may follow any other command, except fore, r, w and q.

a Append, that is, add lines to the buffer at line dot, unless a different line is specified.
Type a '.' on a new line to terminate appending. Dot is set to the last line
appended.

c Change the specified lines to the new text which follows. Type a '.' as with a to ter­
minate the change. Ir no lines are specified, replace line dot. Dot is set to last line
changed.

d Delete the lines specified. If none is specified, delete line dot. Dot is set to the first
undeleted line, unless'$' is deleted, in which case dot is set to'$'.

e Edit new file. Any previous contents of the buffer are thrown away, so use a w
beforehand.

f Print remembered filename. If a name follows l the remembered name will be set to
it.

g The command:

4-38 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Using the ed Line Editor

i

m

p

q

r

•

V

g/ ···/ command,

executes the commands on those lines that contain ' -- ', which can be any context
search expression.
Insert lines before specified line (or dot) until a '.' is typed on a new line. Dot is set
to last line inserted.
Move lines specified to after the line named after m. Dot is set to the last line
moved.
Display specified lines. Ir none is specified, display line dot. A single line num her is
equivalent to line-number p. Type a single RETURN to show '. + l ', the next line.

Quit ed. This wipes out all text in buffer if you give it twice in a row without first
giving a w command.
Read a file into buffer at the end unless specified elsewhere. Dot is set to last line
read.

The command:

e/stringl/string2/

substitutes the characters 'string2' into 'stringl' in the specified lines. If no lines are
specified, make the substitution in line dot. Dot is set to last line in which a substi·
tution took place, which means that if no substitution took place, dot is not
changed. An • changes only the first occurrence of 'stringl' on a line; to change all
or them, type a g after the final slash.

The command:

v /···/command,

executes command, on those lines that do not contain ' ·- '.

w Write out buffer onto a file. Dot is not changed .
. = Show value of dot. An'=""' by itself shows the value of'$.'.

/··-·/

?--?

The line:

!command-line

executes command-line as a Sun UNIX command.
Context search. Search for next line which contains this string of characters and
display it. Dot is set to the line where string was found. Search starts at '.+ I',
wraps around Crom '$' to 1, and continues to dot, if necessary.

Context search in reverse direction. Start search at '.-1', scan to 1, wrap around to
'$.'.

Revision C or 7 January 1984 4.39

0

0

0

Table of Contents

0
Chapter 5 Using sed, the Stream Text Editor 5-1

5.1. Using sed ... 5-1
5.1.1. Command Options... 5-2

5.2. Editing Commands Application Order... 5-3
5.3. Specirying Lines ror Editing .. 5-3

5.3.1. Line-number Addresses... 5-4
5.3.2. Context Addresses ... 5-4
5.3.3. Number or Addresses ... 5-5

5.4. Functions .. 5-5
5.4.1. Whole Line Oriented Functions 5-5
5.4.2. The Substitute Function 's' ... 5-7
5.4.3. Input-output Functions ... 5-9
5.4.4. Multiple Input-line Functions ... 5-10
5.4.5. Hold and Get Functions ... 5-10
5.4.6. Flow-or-Control Functions ... 5-11
5.4.7. Miscellaneous Functions ... 5-11

0

0

0

Oi

0

0

0

0

Chapter 5

Using sed, the Stream Text Editor

This chapter1 describes aed, the non-interactive context or llream editor. Use aed for editing
files too large for comfortable interactive editing, editing any size file when the sequence of edit­
ing commands is too complicated to be comfortably typed in interactive mode, and performing
multiple global editing functions efficiently in one pass through the input. Because the default
mode is to apply edit commands globally, and because its output is to the Standard Output,
your workstation or terminal screen, aed is good for making changes of a transient nature,
rather than permanent modifications to a file.

You can create a complicated editing script separately and use it as a command file. For com­
plex edits, this saves considerable typing, and its attendant errors. Running ,ed from a com­
mand file is much more efficient than any interactive editor even if that editor can be driven by
a pre-written script.

Whereas the ed editor copies your original file into a buffer aed does not use temporary files, so
you can edit any size file. The only space requirement is that the input and output fit simul­
taneously into the available second storage. Additionally, ed lets you explore the text in what­
ever order you want, while ,ed works on your file from beginning to end, and allows you no
choice of edit commands once you have started it. Basically ,ed passes some data through a set
of transformations called editor /unctions.

By default aed copies the standard input to the standard output, perhaps performing one or
more editing commands on each line before writing it to the output. You can modify this
behavior by adding a command-line option; see Command Option, below.

As a lineal descendant of the ed editor, ,ed recognizes basically the same regular expressions as
ed. The range of pattern matches is called the pattern apace. Ordinarily, the pattern space is
one line of text, but you can read more than one line into the pattern space if necessary. But
because of the differences between interactive and non-interactive operation, ed and ,ed are
different enough that even experienced ed users •hould read this chapter. You cannot use rela­
tive addressing with ,ed as you can with an interactive editor because aed operates a line at a
time. Sed also does not give you any immediate verification that a command has done what
was intended.
Refer to Using the 'ed' Line Editor for more information on ed and to the descriptions of aed
and ed in the Uaer '• Manual for the Sun Workatation.

5.1. Using sed
The general format of an editing command is:

logo% sed [line1[,line2j] /unction [argument,]

l The material in this chapter is derived rrom Se4 - a Non•ltUersetioe Tezt Editor, L.E.
McMahon, Bell Laboratories, Murray Hill, New Jeffley.

Revision C of 7 January 1984 5-1

Using sed, the Stream Text Editor Editing and Text Processing

There is an optional line address, or two line addresses separated by a comma, a single-letter
edit function, followed by other arguments, which may be required or optional, depending on
which function you use. See Specifuino Linea for Editino for the format of line addresses. Any
number of blanks or tabs may separate the line addresses from the function. Sed ignores tab
characters and spaces at the beginning of lines. The function must be present; the available
commands are discussed in Function, under each individual function name. You can either put
the edit commands on the aed command line or put the commands in a file, which is then
applied to the file you want to edit. If the commands are few and simple, put them on the ,ed
command line. For example, assume the following input text in a file called kubla:

In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Let's copy the first two lines of input as a simple example:

logo% sed 2q kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:

As another example, suppose that you want to change the 'Khan' to 'KHAN.' Then the com­
mand:

logo% sed s/Khan/KHAN/g kubla

0

applies the command 's/Khan/KAN/' to all lines from kubla and copies all lines to the standard 0
output. The advantage of using ,ed in such a case is that you can use it with input too large ..
for ed to handle. All the output can be collected in one place, either in a file or perhaps piped
into another program.

Ir the editing transformation is so complicated that more than one editing command is needed,
commands can be supplied from a file or on the command line with a slightly more complex
syntax. To take commands from a file, for example:

logo% sed -f cmdfile input-file, ...

5.1.1. Command Options

Sed has three options that modify ,etfs action. Ir you invoke ,ed with the -f (file) option, the
edit commands are taken from a file. For example:

logo% sed -r edcomds oldflle > newflle
logo%

The name of the file containing the edit commands must immediately follow the -I option.
Here, the edit commands in the edcomd, file are applied to the file oldfile, and the standard out­
put is redirected to newfile.

You use the -e (edit) option to place editing commands directly on the ,ed command line. If
you are only using one edit command, you can omit the -e, but we include it in the example
below for instructive purposes. For example, to delete a line containing the string 'Khan' from
kubla, you type:

5-2 Revision C of 7 January 1984

0

0

Editing and Text Processing

logo% sed -e /Khan/d kubla > newkubla
logo%

Using sed, the Stream Text Editor

If you put more than one edit command on the aed command line, each one must be preceded
by -e. For example:

logo% 11ed -e /Khan/d-e 11/decree/DECREE/ newkubla
logo%

You can also use both the -e and the -f options at the same time.

Sed normally copies all input lines that are changed by the edit operation to the output. If you
want to suppress this normal output, and have only specific lines appear on the output, use the
-n option with the p (print) flag. For example:

logo% sed -n -e s/to/by /p kubla
Through caverns measureless by man
Down by a sunless sea.
logo%

As a quick reference, these options are:
-f Use the next argument as a filename; the file should contain one editing command to

a line.

-e Use the next argument as an editing command.

-n Send only those line specified by p functions or p functions after substitute functions
(see Input-Output Function,) to the output.

0 5.2. Editing Commands Application Order

0

Before any editing is done (in fact, before any input file is even opened), all the editing com­
mands are compiled into a moderately efficient form for execution when the commands are actu­
ally applied to lines of the input file. The commands are compiled in the order in which they
are encountered; this is generally the order in which they will be attempted at execution time.
The commands are applied one at a time; the input to each command is the output of all
preceding commands.
You can change the default linear order of application of editing commands by the llow-of­
control commands, t and b (see Flow-of-Control Function,). Even when you change the order
of application by these commands, it is still true that the input line to any command is the out­
put of any previously applied command.

5.3. Specifying Lines for Editing

Use addresses to select lines in the input file(s) to apply the editing commands to. Addresses
may be either line numbers or context addresses.

Group one address or address-pair with curly braces '{ } ' to control the application of a group
of commands. See Flow-of-Control Function, for more on this.

Revision C of 7 January 1984 5-3

Using sed, the Stream Text Editor Editing and Text Processing

5.3.1. Line-number Addresses

A line number is a decimal integer. As each line is read from the input, a line-number counter
is incremented; a line-number address matches or 'selects' the input line which causes the inter­
nal counter to equal the address line-number. The counter runs cumulatively through multiple
input files; it is not reset when a new input file is opened.

As a special case, the character 'S' matches the last line or the last input &le.

5.3.2. Context Addresses

A context address is a pattern or regular ezpreuion enclosed in slashes('/'). Sed recognizes the
regular expressions that are constructed as follows:

ordinary character
An ordinary character (not one or those discussed below) is a regular expression, and
matches that character.

A circumflex •·' at the beginning or a regular expression matches the null character
at the beginning of a line.

S A dollar-sign 'S' at the end of a regular expression matches the null character at the
end of a line.

\n The characters '\n' match an embedded newline character, but not the newline at
the end of the pattern space.
A period '.' matches any character except the terminal newline of the pattern space.

• A regular expression followed by an asterisk '•' matches any number (including 0) or
adjacent occurrences ,of the regular expression it follows.

(character •Iring)
A string of characters in square brackets '[)' matches any character in the string,
and no others. Ir, however, the first character of the string is a circumflex • • ', the
regular expression matches any character ezcepl the characters in the string and the
terminal newline of the pattern space.

concatenation

\(\)

A concatenation or regular expressions i• a regular expression which matches the
concatenation of strings matched by the components or the regular expression.

A regular expression between the sequences '\(' and '\)' is identical in effect to the
unadorned regular expression, but has side-effects which are described in The Subati-
lule Function '•' and immediately below ..

\d This stands for the same string of characters matched by an expression enclosed in
'\(' and '\)' earlier in the same pattern. Here d is a single digit; the string specified
is that beginning with the dth occurrence of '\(' counting from the left. For exam­
ple, the expression ''\(.•\)\l' matches a line beginning with two repeated
occurrences of the same string.

null The null regular expression standing alone (such as, '//') is equivalent to the last
regular expression compiled.

To use one of the special characters (• S . • [J \ /) as a literal, that is, to match an occurrence
of itself in the input, precede the special character by a backslash ' \'.

For a context address to 'match' the input requires that the whole pattern within the address
match some portion of the pattern space.

5-4 Revision C or 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

5.3.3. Number of Addresses

The commands described in Function., can have 0, 1, or 2 addresses. Specifying more than the
maximum number of addresses allowed is an error. If a command has no addresses, it is applied
to every line in the input. If a command has one address, it is applied to all lines that match
that address. If a command has two addresses, it is applied to the inclusive range defined by
those two addresses.
The command is applied to the first line that matches the first address, and to all subsequent
lines until and including the first subsequent line which matches the second address. Then an
attempt is made on subsequent lines to again match the first address, and the process is
repeated.
A comma separates two addresses.

For example:

/an/ matches lines 1, 3, 4 in our sample kubla file
In Xanadu did Kubla Khan
Where Alph, the sacred river, ran
Through caverns measureless to man

/ an.•an/ matches line 1 In Xanadu did Kubla Khan

f'an/ matches no lines

/./ matches all lines In Xanadu did Kubla Khan A stately pleasure dome
decree: Where Alph, the sacred river, ran Through caverns measureless to man Down to
a sunless sea.
/\./ matches line 5 Down to a sunless sea.
/r•an/ matches lines 1,3, 4 (number= zero!) In Xanadu did Kubla Khan
Where Alph, the sacred river, ran Through caverns measureless to man

/\(an\).•\1/ matches line 1 In Xanadu did Kubla Khan

5.4. Functions

All functions are named by a single character. In the following summary, the maximum
number of allowable addresses is enclosed in parentheses, followed by the single character func­
tion name and possible arguments in italics. The summary provides an expanded English trans­
lation of the single-character name, and a description of what each function does.

5.4.1. Whole Line Oriented Functions

The functions that operate on a whole line of input text are as follows:
(e)d Delete lines. The d function deletes from the file all those lines matched by its

address(es); that is, it does not write the indicated lines to the output, No further
commands are attempted on a deleted line; as soon as the d function is executed, a
new line is read from the input, and the list of editing commands is re-started from

(e}n

the beginning on the new line.
Next line. The n function reads the next line from the input, replacing the current
line. The current line is written to the output if it should be. The list of editing

Revision C of 7 January 1984 5-5

Using sed, the Stream Text Editor Editing and Text Processing

commands is continued following the D command.

(J)a\
tezt Append lines. The a function writes the argument lezf to the output after the line

matched by its address. The a .function is inherently multi•line; a must appear at
the end of a line, and tezt may contain any number of lines. To preserve the one
command to a line, the interior newlines must be hidden by a backslash character
('\ ') immediately preceding the newline. The fezf argument is terminated by the
first unhidden newline (the first one not immediately preceded by backslash). Once
an a function is successfully executed, tezt will be written to the output regardless of
what later commands do to the line which triggered it. The triggering line may be
deleted entirely; lezf will still be written to the output. The fezt is not scanned for
address matches, and no editing commands are attempted on it. It does not change
the line-number counter.

(Jfi\
tezt Insert lines. The i function behaves identically to the a function, except that fezf is

written to the output before the matched line. All other comments about the a
function apply to the i function as well.

(2}c\
tezt Change lines. The c function deletes the lines selected by its address(es), and

replaces them with the lines in fezf. Like a and i, put a newline hidden by a
backslash after c; interior new lines in le:rf must also be hidden by backslashes. The
c function may have two addresses, and therefore- select a range of lines. If it does,
all the lines in the range are deleted, but only one copy of fezf is written to the out­
put, not one copy per line deleted. As with a and i, fezf is not scanned for address
matches, and no editing commands are attempted on it. It does not change the
line-number counter.
No further commands are attempted on a line deleted by a c function.

If text is appended after a line by a or r functions, and the line is subsequently
changed, the text inserted by the c function will be placed be/ore the text of the a or
r functions. See Multiple Input-line Function, for a description of the r function.

Note: Leading blanks and tabs are not displayed in the output produced by these functions. To
get leading blanks and tabs into the output, precede the first desired blank or tab by a
backslash; the backslash does not appear in the output.

For example, put the following list of editing commands in a file called Xkubl11:

5-6 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

logo% cat > Xkubla
D

a\
xxxx
d
.D
logo% eed -fXkubla kubla
In Xanadu did Kubla Khan
xxxx
Where Alph, the sacred river, ran
xxxx
Down to a sunless sea.
logo%

Using sed, the Str,am Text Editor

In this particular case, the same effect would be produced by either of the two following com­
mand lists:

or

D

i\
xxxx
d

D

c\
xxxx

5.4.2. · The Substitute Function 's'

The • (substitute) function changes parts of lines selected by a context search within the line.
The standard format is the same as the ed substitute command:

(2}e pattern replacement flag,
The • function replaces part of a line, selected by pattern, with replacement. It can best be read
'Substitute for pattern, replacement.'
The pattern argument contains a pattern, exactly like the patterns in Specifying Line, for Input.
The only difference between pattern and a context address is that the context address must be
delimited by slash (' /') characters; you can delimit pattern by any character other than space or
newline.
By default, only the first string matched by pattern is replaced. See the g flag below.

The replacement argument begins immediately after the second delimiting character or pattern,
and must be followed immediately by another instance of the delimiting character. Thus there
are exactly three instances of the delimiting character.

The replacement is not a pattern, and the characters which are special in patterns do not have
special meaning in replacement. Instead, other characters are special:

1/r. Is replaced by the string matched by pattern.
\ d ls replaced by the dth substring matched by parts of pattern enclosed in '\(' and '\)'

where d is a single digit. If nested substrings occur in pattern, the dth is determined

Revision C of 7 January 1984 5-7

Using sed, the Stream Text Editor Editing and Text Processing

by counting opening delimiters ('\(').
As in patterns, you can make special characters literal by preceding them with bacblaah ('\ ').
The flag, argument may contain the following flags:
g Substitute replacement for all (non-overlapping) instances of pattern in the line.

After a successful substitution, the scan for the next instance of pattern begins just
after the end of the inserted characters; characters put into the line from replace­
ment are not rescanned.

p Print or 'display' the line if a successful replacement was done. The p flag writes
the line to the output if and only if a substitution was actually made by the 8 func­
tion. Notice that if several , functions, each followed by a p llag, successfully substi­
tute in the same input line, multiple copies of the line will be written to the output:
one for each successful substitution.

w filename
Write the line to a file if a successful replacement was done. The w llag writes lines
which are actually substituted by the , function to a file named by filename. If
filename exists before ,etl is run, it is overwritten; if not, it is created. A single space
must separate w and filename. The possibilities of multiple, somewhat different
copies of one input line being written are the same as for p. You can specify a max•
imum of 10 different filenames after w flags and w functions (see below), combined.

For example, applying the following command to the the ku6la Ille produces on the standard
output:

logo% 11ed -e "11/to/by/w change1" kubla
In Xanadu did Kubla Khan
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

Note that if the edit command contains spaces, you must enclose it with quotes.
It also creates a new file called c/aangea that contains only the lines changed as you can see using
the more command:

logo% more changes
Through caverns measureless by man
Down by a sunless sea.
logo%

If the nocopy option -n is in effect, you see those lines that are changed:

logo% sed -e "11/(.,;!:]/•P&•/gp" -n kubla
A stately pleasure dome decree•P:•
Where Alph•P,• the sacred river•P,• ran
Down to a sunless sea•P .•
logo%

Finally, to illustrate the effect of the g flag assuming nocopy mode, consider:

logo% aed -e "/X/a/an/AN/p" -n kubla
In XANadu did Kubla Khan
logo%

5-8 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

and the command:

logo% sed -e "/X/1/an/AN/gp" -n kubla
In XANadu did Kubla KhAN
logo%

5.4.3. Input-output Functions

The following functions affect the input and output or text. The maximum number or allow-
able addresses is in parentheses.

(e)p Print. The print function writes the addressed lines to the standard output file.
They are written at the time the p function is encountered, regardless or what
succeeding editing commands may do to the lines.

(e)w filename
Write on filename. The write function writes the addressed lines to the file named
by filename. If the file previously existed, it is overwritten; if not, it is created. The
lines are written exactly as they exist when the write function is encountered for
each line, regardless of what subsequent editing commands may do to them. Put
only one space between w and filename. You can u,e a mazimum of ten different
file, in write /unction, and with w jl1Jg1 tJ/ter 1 /unction1, combined.

(1 Jr filename
Read the contents of a file. The read function reads the contents or filename, and
appends them after the line matched by the address. The file is read and appended
regardless of what subsequent editing commands do to the line which matched its
address. If you execute r and a functions on the same line, the text from the a
functions and the r functions is written to the output in the order that the functions
are executed. Put only one space between the r and filename. Ir a file mentioned by
a r function cannot be opened, it is considered a null file, not an error, and no diag­
nostic is displayed.

Note: Since there is a limit to the number or files that can be opened simultaneously, put no
more than ten files in w functions or flags; reduce that number by one if any r functions are
present. Only one read file is open at one time.

Assume that the file notet has the following contents:

Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.

Then the following command reads in notet after the line containing 'Kubla':

logo% sed -e "/Kubla/r notel" kubla
In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan; 1216-1294)
was the grandson and most eminent successor of Genghiz
(Chingiz) Khan, and founder of the Mongol dynasty in China.
A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Revision C of 7 January 1984 5-9

Using sed, the Stream Text Editor Editing and Text Processing

5.4.4, Multiple Input-line Functions

Three functions, all spelled with capital letten, deal specially with pattern ,pace, containing
embedded newlines; they are intended principally to provide pattern matches across lines in the
input. A pattern space is the range of pattern matches. Ordinarily, the pattern space is one
line of the input text, but more than one line can be read into the pattern space by using the N
function described below.
The maximum number of allowable addresses is enclosed in parentheses.

(2}N Next line. The next input line is appended to the current line in the pattern space;
in embedded newline separates the two input lines. Pattern matches may extend
across the embedded newline(s).

{2/D Delete first part of the pattern space. Delete up to and including the first newline
character in the current pattern space. Ir the pattern space becomes empty (the
only newline was the terminal newline), read another line from the input. In any
case, begin the list of editing commands again from its beginning.

{2}P Print or 'display' first part of the pattern space. Print up to and including the first
new line in the pattern space.

The P and D functions are equivalent to their lower-case counterparts if there are no embedded
newlines in the pattern space.

5.4.5. Hold and Get Functions

0

Four functions save and retrieve part of the input for possible later use. Q
{2/h Hold pattern space. The h function copies the contents of the pattern space into a

hold area, destroying the previous contents of the hold area.
(e JH Hold pattern space. The H function appends the contents of the pattern space to

the contents of the hold area; the former and new contents are separated by a new,
line.

{2/g Get contents of hold area. The g function copies the contents of the hold area into
the pattern space, destroying the previous contents of the pattern space.

(e}G Get contents of hold area. The G function appends the contents of the hold area to
the contents oT the pattern space; the former and new contents are separated by a
newline.

(e)x Exchange. The exchange command interchanges the contents of the pattern space
and the hold area.

5-10

For example, if you want to add ':In Xanadu'to our standard example, create a file
called teat containing the following commands:

lh
la/ did.•//
lx
G
s/\n/ :/

Then run that file on the kubla file:

Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Using sed, the Stream Text Editor

logo% aed -f teat kubla
In Xanadu did Kubla Khan :In Xanadu
A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu
logo%

5.4.6. Flow-of-Control Functions

These functions do not edit the input lines, but control the application of Functions to the lines
that are addressed.

(e)! Called 'Don't', the 'I' function applies the next command, written on the same line,
to all and only those input lines not selected by the address part.

(e){ Grouping. The grouping command '{' applies (or does not apply) the next set of
commands as a block to the input lines that the addresses of the grouping command
select. The first of the commands under control of the grouping command may
appear on the same line as the '{' or on the next line.

{OJ: label

(efo label

(e)t label

A matching '}' standing on a line by itself terminates the group of commands.
Groups can be nested.

Place a label. The label function marks a place in the list of editing commands
which may be referred to by b and t functions. The label may be any sequence of
eight or fewer characters; if two different colon functions have identical labels, a
compile time diagnostic will be generated, and no execution attempted.

Branch to label. The branch function restarts the sequence of editing commands
being applied to the current input line immediately after the place where a colon
function with the same label was encountered. If no colon function with the same
label can be found after all the editing commands have been compiled, a compile
time diagnostic is produced, and no execution is attempted.

A b function with no label is taken to be a branch to the end of the list of editing
commands. Whatever should be done with the current input line is done, and
another input line is read. The list of editing commands is restarted from the begin­
ning on the new line.

Test substitutions. The t function tests whether ang successful substitutions have
been made on the current input line; if so, it branches to label; if not, it does noth­
ing. Either reading a new input line or executing a t function resets the flag which
indicates that a successful substitution has occurred.

5.4. 7. Miscellaneous Functions

Two additional functions are:

(1}= Equals. The '=' function writes to the standard output the line number of the line
matched by its address.

Revision C of 7 January 1984 5-11

Using sed, the Stream Text Editor Editing and Text Processing

{1/q

5-12

Quit. The q function writes the current line to the output if it should be, writes any
appended or read text, and terminates execution.

Revision C or 7 January 1984

0

0

0

0

0

0

Table of Contents

Chapter 8 Pattern Scanning and Processing with awk .. .
6.1. Using awk

6.1.1. Program Structure .. .
6.1.2. Records and Fields

6.2. Displaying Text
6.3. Specifying Patterns

6.3.1. BEGIN and END .. .
6.3.2. Regular Expressions
6.3.3. Relational Expressions
6.3.4. Combinations of Patterns .. .
6.3.5. Pattern Ranges

6.4. Actions .. .
6.4.1. Assignments, Variables, and Expressions
6.4.2. Field Variables .. .
6.4.3. String Concatenation .. .
6.4.4. Built-in Functions

6.4.4.1. Length Function .. .
6.4.4.2. Substring Function .. .
6.4.4.3. Index Function
6.4.4.4. Sprintf Function .. .

6.4.5. Arrays
6.4.6. Flow-of-Control Statements .. .

8-1
6-2
6-2
6-2
6-3
6-4
6-5
6-5
6-6
6-6
6-7
6-7
6-7
6-8
6-9
6-9
6-9

6-10
6-10
6-10
6-10
6-11

oi

0

' 0 .
i

0

0

0

Chapter 6

Pattern Scanning and Processing with awk

Awk is a handy utility program, which you can program in varying degrees of complexity.
Awk's basic operation is to search a set of files for patterns based on ,election criteria, and to
perform specified actions on lines or groups of lines which contain those patterns. Selection cri­
teria can be text patterns or regular ezpreuion,. A wk makes data selection, transformation
operations, information retrieval and text manipulation easy to state and to perform.

Basic awk operation is to scan a set of input lines in order, searching for lines which match any
of a set of patterns which you have specified. You can specify an action to be performed on
each line that matches the pattern.

A wk patterns may include arbitrary Boolean combinations of regular expressions and of rela­
tional and arithmetic operators on strings, numbers, fields, variables, and array elements.
Actions may include the same pattern-matching constructions as in patterns, as well as arith­
metic and string expressions and assignments, 1J-el,e, while, for statements, and multiple output
streams.

Ir you are familiar with the grep utility (see the U,er ', Manual for the Sun Work,tation), you
will recognize the approach, although in awk, the patterns may be more general than in grep,
and the actions allowed are more involved than merely displaying the matching line.

As some simple examples to give you the idea, consider a short file called aampie, which contains
some identifying numbers and system names:

125.1303 krypton loghost
125.0x0733 window
125.1313 core
125.19 haley

If you want to display the second and first columns of information in that order, use the awk
program:

logo% awk '{print S2, Sl}' aample
krypton 125.1303
window 125.0x0733
core 125.1313
haley 125.19

This is good for reversing columns of tabular material for example. The next program shows all
input lines with an a, b, or c in the second field.

logo% awk '$2 - /a lb le/' ,ample
125.1313 core
125.19 haley

The material in this chapter is derived from Auii -A PatteNt Scariaing and Proce11ing L,uaguage,
A. Aho, B.W. Kernighan, P. Weinberger, Bell Laborat.ories, Murray Hill, New Jersey.

- · ,·ision C of 7 January 1984 6-1

Pattern Scanning and Processing with awk Editing and Text Processing

6.1. Using awk

The general format for using awk follows. You execute the awk commands in a string that we'll
call program on the set of named file,:

logo% awk program file,

For example, to display all input lines whose length exceeds 13 characters, use the program:

logo% awk 'length > 13' aample
125.1303 krypton loghost
125.0x0733 window
logo%

In the above example, the program compares the length of the ,ample file lines to the number 13
and displays lines longer than 13 characters.
Awk usually takes its program as the first argument. To take a program from a file instead, use
the -f (file) option. For example, you can put the same statement in a file called Aowlong, and
execute it on ,ample with:

logo% a.wk -f howlong Aoat,
125.1303 krypton loghost
l 25.0x0733 window

You can also execute awk on the standard input if there are no files. Put single quotes around
the awk program because the Shell duplicates most of awk's special characters.

6.1.1. Program Structure

A program can consist of just an action to be performed on all lines in a file, as in the Aowlong
example above. It can also contain a pattern that specifies the lines for the action to operate
on. This pattern/action order is represented in awk notation by:

pattern { action }

In other words, each line of input is matched against each of the patterns in turn. For each
pattern that matches, the associated action is executed. When all the patterns have been
tested, the next line is fetched and the matching starts over.

Either the pattern or the action may be left out, but not both. If there is no action for a pat,.
tern, the matching line is simply copied to the output. Thus a line which matches several pat,.
terns can be printed several times. Ir there is no pattern for an action, the action is performed
on every input line. A line which doesn't match any pattern is ignored. Since patterns and
actions are both optional, you must enclose actions in braces ({action}) to distinguish them
from patterns. See more about patterns in Speci/vinfl Pattern,.

6.1.2. Records and Fields

Awk input is divided into record, terminated by a record aeparalor. The default record separa­
tor is a newline, so by default awk processes its input a line at a time. The number of the
current record is available in a variable named NR.
Each input record is considered to be divided into field,. Fields are separated by field aepara­
lora, normally blanks or tabs, but you can change the input field separator, as described in Field

6-2 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and PDcessing with awk

Separator,, Fields are referred to as SX where $1 is the first field, $2 the second, and so on as
shown above. $0 is the whole input record itself. Fields may be assigned to. The number of
fields in the current record is available in a variable named NF.
The variables FS and RS refer to the input field and record separators; you can change them at
any time to any single character. You may also use the optional command-line argument -Fe
to set FS to any character c.

Ir the record separator is empty, an empty input line is taken as the record separator, and
blanks, tabs and new lines are treated as field separators.

The variable FILENAME contains the name of the current input file.

6.2. Displaying Text

The simplest action is to display (or print) some or all of a record with the awk command print.
Print copies the input to the output intact. An action without a pattern is executed for all
lines. To display each record of the aample file, U!Je!

logo% awk '{print}' sample
125.1303 krypton loghost
125.0x0733 window
125.1313 core
125.19 haley
logo%

Remember to put single quotes around the awk program as we show here.

More useful than the above example is to print a field or fields from each record. For instance,
to display the first two fields in reverse order, type:

logo% awk '{print $2, $1}' sample
krypton 125.1303
window 125.0x0733
core 125.1313
logo%

Items separated by a comma in the print statement are separated by the current output field
separator when output. Items not separated by commas are concatenated, so to run the first
and second fields together, type:

logo% awk '{print $1 $2}' sample
125.1303krypton
125.0x0733window
125.1313core
125.19haley
logo%

You can use the predefined variables NF and NR; for example, to print each record preceded
by the record number and the number of fields, use:

Revision C of 7 January 1984 6-3

Pattern Scanning and Processing with awk Editing and Text Processing

logo% awk '{ print NR, NF, SO}' sample
l 3 125.1303 krypton loghost
2 2 125.0x0733 window
3 2 125.1313 core
4 2 125.19 haley
logo%

You may divert output to multiple files; the program:

logo%awk '{print $1 >"fool"; print $1 >"fool"}' filename

writes the first field, $1, on the file fool, and the second field on file fooB. You can also use the
'> >' notation; to append the output to the file Joo (or example, say:

logo% awk '{print U >>"foo"}' filename

In each case, the output files are created if neceesary. The filename can be a variable or a field
as well as a constant. For example, to use the contents or field 2 as a filename, type:

logo% awk '{print U >$2}' filename

This program prints the contents or field 1 or filename on field 2. Ir you run this on our ,ample
file, four new files are created. There is a limit or 10 output files.

Similarly, you can pipe output into another proeess. For instance, to mail the output or an ewk
program to henry, use:

logo% awk '{ print NR, NF, $0 }' sample I mall henry

(See the Mail U•er'• Guido in the Beginner', Guide to the Sun Worhtation for details on moil.)

To change the current output field separator and output record separator, use the variables
OFS and ORS. The output record separator is appended to the output of the print statement.

Awk also provides the print/ statement for output formatting. To format the expressions in the
list according to the specification in format and print them, use:

logo% awk printr format, ezpr, ezpr, ...

To print $1 as a floating point number 8 digits wide, with two after the decimal point, and SI
as a 10-digit long decimal number, followed by a newline, use:

logo% awk '{printf("%8.2f %10ld\n" ,U,$2)}' filename

Notice that you have to specifically insert spaces or tab characters by enclosing them in quoted
strings. Otherwise, the output appears all scrunched together. The version of print/is identical
to that provided in the C Standard 1/0 library (see print/ in O Librar11 Standard 1/ 0 (3S) in the
S11atem Interface Manual for the Sun Workatation).

6.3. Specifying Patterns

A pattern in front or an action acts as a selector that determines whether the action is to be
executed. You may use a variety of expressions as patterns: regular expressions, arithmetic
relational expressions, string-valued expressions, and arbitrary Boolean combinations of these.

6-4 Revision C or 7 January 1984

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with aw k

6.3.1. BEGIN and END

Awk has two built-in patterns, BEGIN and END . BEGIN matches the beginning of the input,
before the first record is read. The pattern END matches the end of the input, after the last
record has been processed. BEGIN and END thus provide a way to gain control before and after
processing, for initialization and wrapup.

As an example, the field separator can be set to a colon by:

BEGIN { FS = ":" }
... real of program ...

Or the input lines may be counted by:

END { print NR }

If BEGIN is present, it must be the first pattern; END must be the last if used.

6.3.2. Regular Expressions

The simplest regular expression is a literal string of characters enclosed in slashes, like

/smith/

This is actually a complete awk program which displays all lines which contain any occurrence
of the name 'smith'. If a line contains 'smith' as part of a larger word,· it is also displayed.
Suppose you have a file lealfile that contains:

summertime
smith
blacksmithing
Smithsonian
hammersmith

If you use awk on it, the display is:

logo% awk /smith/ test&le
smith
blacksmithing
hammersmith

Awk regular expressions include the regular expression forms found in the text editor ed and in
grep (see the U,er', Manual for the Sun Workalalion). In addition, awk uses parentheses for
grouping, 'I' for alternatives, '+' for 'one or more', and '?' for 'zero or one', all as in lez. Char­
acter classes may be abbreviated. For example:

/(a-zA-Z0-9]/

is the set of all letters and digits. As an example, to display all lines which contain any of the
names 'Adams,' 'West' or 'Smith,' whether capitalized or not, use:

'/[Aa]dams l(Ww]est l[Ss]mith/'

Enclose regular expressions (with the extensions listed above) in slashes, just as in ed and ,ed.
For example:

Revision C or 7 January 1984 6-5

Pattern Scanning and Processing with awk

logo% awk '/[Ss]mith/' testflle
smith
blacksmithing
Smithsonian
hammersmith

finds both 'smith' and 'Smith'.

Editing and Text Proceasing

Within a regular expression, blanks and the regular expression metacharacters are significant.
To turn off the magic meaning or one or the regular expression characters, precede it with a
backslash. An example is the pattern

/\/.•\/!
which matches any string or characters enclosed in slashes.
Use the operators ,., and ,,., to find ir any field or variable matches a regular expression (or
does not match it). The program

$1 • /[sS]mith/

displays all lines where the first field matches 'smith' or 'Smith.' Notice that this will also match
'blacksmithing', 'Smithsonian', and so on. To restrict it to exactly (sS)mith, use:

logo% awk '$1 · F[sSJmithS/'. testflle
smith
logo%

The caret '·' refers to the beginning or a line or field; the dollar sign 'S' rerers to the end.

6.3.3. Relational Expressions

An awk pattern can be a relational expression involving the usual relational and arithmetic
operators ' < ' , '<= ' , ' == ', ' !~ ' , ' >~ ', and ' > ', the same as those in C. An
example is:

'$2 > Sl + 100'

which selects lines where the second field is at least 100 greater than the first field.

In relational tests, if neither operand is numeric, a string comparison is made; otherwise it is
numeric. Thus,

logo% awk '$1 >= "•"' testflle
smith

selects lines that begin with an 's', 't', 'u', etc. In the absence of any other information, fields
are treated as strings, so the program

$1 > $2

performs a string comparison between field 1 and field 2.

6.3.4. Combinations of Patterns

A pattern can be any Boolean combination or patterns, using the operators ' 11 ' (or), ' && '
(and), and ' ! ' (not). For example, to select lines where the first field begins with 's', but is not
'smith', use:

6-6 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Processing with aw k

logo% awk 'Sl >= "•" && SI < "t" && Sl I= "smith"' testflle
summertime

' && ' and ' 11 ' guarantee that their operands will be evaluated from left to right; evaluation
stops as soon as the truth or falsehood is determined.

The program:

$1 !=prev {print; prev=Sl}

displays all lines in which the first field is different from the previous first field.

6.3.5. Pattern Ranges

The pattern that selects an action may also consist of two patterns separated by a comma, as in

pattern!, pattern2 { ... }

In this case, the action is performed for each line between an oecurrence of pallern1 and the
next occurrence of pattern2 inclusive. For example, to display all lines between the strings
'sum' and 'black', use:

while

logo% awk '/sum/, /black/' testflle
summertime
smith
blacksmithing
logo%

NR == 100, NR == 200 { ... }

does the action for lines 100 through 200 of the input.

6.4. Actions

An awk action is a sequence or action statements terminated by newlines or semicolons. These
action statements can be used to do a variety or bookkeeping and string manipulating tasks.

6.4.1. Assignments, Variables, and Expressions

The simplest action is an auignment. For example, you can assign 1 to the variable r.

x=l

The '1' is a simple e:ipreuion. Awk variables can take on numeric (floating point) or string
values according to context. In

x=l

:, is clearly a number, while in

x = "smith"

it is clearly a string. Strings are converted to numbers and vice versa whenever context
demands it. For instance, to assign 7 to :i, use:

Revision C of 7 January 1984 6-7

Pattern Scanning and Processing with awk Editing and Text Processing

X = "3" + "4"

Strings which cannot be interpreted as numbers in a numerical context will generally have
numeric value zero, but it is unwise to count on this behavior.
By default, variables other than built-ins are initialized to the null string, which has numerical
value zero; this eliminates the need for most BEGIN sections. Ffr example, the sums of the
first two fields can be computed by:

{ sl + = $1; s2 + = $2 }
END { print sl, s2 }

Arithmetic is done internally in floating point. The arithmetic operators are '+ ', '-', •••, '/',
and'%' (mod). For example:

NF%2==0

displays lines with an even number of fields. To display all lines with an even number of fields,
use:

NF %2 ==0

The C increment '+ +' and decrement '-·' operators are also available, and so are the assign­
ment operators '+ =', '-=', '•=','/=',and'%='.

An awk pattern can be a conditional e~preuion as well as a simple expression as in the 'x = l'
assignment above. The operators listed above may all be used in expressions. An awk program
with a conditional expression specifies conditional selection based on properties of the individual
fields in the record.

6.4.2. Field Variables

Fields in awk share essentially all of the properties of variables - they may be used in arith­
metic or string operations, and may be assigned to.

To replace the first field of each line by its logarithm, say:

{ $1 = log(Sl); print }

Thus you can replace the first field with a sequence number like this:

{ $1 = NR; print }

or accumulate two fields into a third, like this:

{ $1 = $2 + $3; print SO }

or assign a string to a field:

{ if ($3 > 1000)

}

$3 = "too big"
print

which replaces the third field by 'too big' when it is, and in any case prints the record.

Field references may be numerical expressions, as in

{ print $i, S(i+ 1), S(i+ n)}

Whether a field is considered numeric or string depends on context; fields are treated as strings

6-8 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Pattern Scanning and Prvcessing with awk

in ambiguous eases like:

if (St == S2) ...

Each input line is split into fields automatically as necessary. It is also possible to split any
variable or string into fields. To split the string 's' into 'array[l]' ... , 'array[n]', use:

n = split(s, array, sep)

This returns the number of elements found. If the aep argument is provided, it is used as the
field separator; otherwise FS is used as the separator.

6,4,3. String Concatenation

Strings may be concatenated. For example:

length($! $2 $3)

returns the length of the first three fields. Or in a print statement,

print St • is • S2

prints the two fields separated by ' is '. Variables and numeric expressions may also appear in
concatenations.

6.4.4, Built-in Functions

Awk provides several built-in functions.

6.4.4,1, Length Function

The 'length' function computes the length of a string of characters. This program shows each
record, preceded by its length:

logo% awk '{print length, SO}' teat81e
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith
logo%

Length by itself is a 'pseudo-variable' which yields the length of the current record;
length{argument) is a function which yields the length of its argument, as in the equivalent:

logo% awk '{print length(SO), SO}' teat81e
10 summertime
5 smith
13 blacksmithing
11 Smithsonian
11 hammersmith

The argument may be any expression.

Revision C of 7 January 1984 6-9

Pattern Scanning and Processing with awk Editing and Text Processing

Awk also provides the arithmetic functions ,qrt, log, eq, and int, for square root, base e loga,.
rithm, exponential, and integer part of their respective arguments. 0
The name of one of these built-in functions, without argument or parentheses, stands for the
value of the function on the whole record. The program

length < 10 II length > 20

displays lines whose length is less than 10 or greater than 20.

6.4.4.2. Substring Function

The function ,ub,tr{,, m, n) produces the substring of, that begins at position m (origin 1) and
is at most n characters long. If n is omitted, the substring goes to the end or ,.

6.4.4.3. Index Function

The function indez{d, ,e) returns the position where the string ,e occurs in 11, or zero if it does
not.

6.4.4.4. Sprintf Function

The function ,print/(/, el, et, ...) produces the value or the expressions d, et, and so on, in the
print/ format specified by /. Thus, for example, to set x to the string produced by formatting
the values of $1 and $2, use: ·

x = sprintf("%8.2f %10ld", $1, $2)

6.4.5. Arrays

Array elements are not declared; they spring into existence by being mentioned. Subscripts
may have any non-null value, including non-numeric strings. As an example of a conventional
numeric subscript, the statement

x[NRJ = $0

assigns the current input record to the NR •t/a element of the array x. In fact, it is possible in
principle though perhaps slow to process the entire input in a random order with the awk pro­
gram

{ x[NR) =SO}
END { ... program ... }

The first action merely records each input line in the array x.
Array elements may be named by non-numeric values, which gives awk a capability rather like
the associative memory of Snobol tables. Suppose the input contains fields with values like
'apple', 'orange', etc.
Then the program

6-10 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing

/apple/
/orange/
END

{ xrapple"]+ + }
{ xrorange"]++ }
{ print xrapple"], xrorange"] }

Pattern Scanning and Processing with awk

increments counts for the named array elements, and prints them at the end of the input.

6.4.6, Flow-of-Control Statements

Awk provides the basic flow-of-control statements i/-e/,e, while, for, and statement grouping
with braces, as in C. We showed the i/ statement in Field Variable, without describing it. The
condition in parentheses is evaluated; if it is true, the statement following the i/ is done. The
e/,e part is optional.

The while statement is exactly like that of C. For example, to print all input fields one per line,

i=l
while (i <= NF) {

print $i
+ +i

}

The /or statement is also exactly that of C:

for (i = l; i <= NF; i+ +)
print Si

does the same job as the while statement above.

There is an alternate form of the /or statement which is suited for accessing the elements of an
associative array:

for (i in array)
atatement

does atatement with i set in turn to each element of arra1,1. The elements are accessed in an
apparently random order. Chaos will ensue if i is altered, or if any new elements are accessed
during the loop.
The expression in the condition part of an if, while or /or can include relational operators like
'<', '<=', '>', '>=', '==' ('is equal to'), and 'I=' ('not equal to'); regular expression
matches with the match operators ,., and '!"'; the logical operators ' 11 ', '&&', and '!'; and of
course parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or /or; the continue state­
ment causes the next iteration to begin.

The statement nezt causes awk to skip immediately to the next record and begin scanning the
patterns from the top. The statement ezit causes the program to behave as if the end of the
input had occurred.
You may put comments in awk programs: begin them with the character'#' and end them with
the end of the line, as in

print x, y # this is a comment

Revision C of 7 January 1984 6-11

0

C

Table of Contents

0
Chapter 1 Introduction to Document Preparation .. 1-1

Chapter a Formatting Documents with the -ms Macros .. 2-1

Chapter 3 Formatting Documents with nroJJ and troll .. 3-1

Chapter 4 Formatting Tables with tbl ... 4-1

Chapter 5 Typesetting Mathematics with eqn ... 5-1

Chapter 8 Making Bibliographic References with refer .. 8-1

Chapter 7 Formatting Documents with the -me Macros .. 7-1

0

0

0

I

0 .
'

0

Table of Contents

0
Chapter 1 Introduction to Document Preparation .. 1-1

I.I. What Do Text Formatters Do! .. l·l
1.2. What is a Macro Package! .. 1-2
1.3. What is a Preprocessor! .. 1-2
1.4. Typesetting Jargon .. 1-3
1.5. Hints for Typing in Text.. 1·4
1.6. Types of Paragraphs ... 1-4
1.7. Quick References ... 1-7

1.7.l. Displaying and Printing Documents ... 1-7
1.7.2. Technical Memorandum... 1-8
l.7.3. Section Headings for Documents ... 1-10
1.7.4. Changing Fonts ... 1-10
l.7.5. Making a Simple List ... 1-10
l.7.6. Multiple Indents for Lists and Outlines .. 1-11
1.7.7. Displays .. 1-12
1.7.8. Footnotes ... 1-12
l.7.9. Keeping Text Together - Keeps ... 1·12
1.7.10. Double-Column Format ... 1-13
1.7.11. Sample Tables .. 1-13
1.7 .12. Writing Mathematical Equations ... 1-15

0
l.7.13. Registers You Can Change .. 1-16

0

0

I

0

0

0
List of Tables

Table 1-1 Types of Paragraphs... 1-6
Table 1-2 How to Display and Print Documents ... 1-7
Table 1-3 Registers You Can Change ... 1-16

0

0
...

-Ill-

0

0

0

0

0

0

Chapter 1

Introduction to Document Preparation

The main document preparation programs in the Sun System are nroff and troff. These pro­
grams handle one or more files containing both the text to be formatted and requests specifying
how the output should look. From this input, the programs produce formatted output: nroff on
typewriter-like terminals, and troff on a phototypesetter. Although they are separate programs,
nroff and troff are compatible; they share the same command language and produce their output
from the same input file. Descriptions here apply to both troff and nroff unless indicated other­
wise.

1.1. What Do Text Formatters Do?

You can type in the text or a document on lines or any length, and the text formatters produce
lines or uniform length in the finished document. This is called filling, which means that the
formatter collects words from what you type in the input file, and places them on an output line
until no more will fit within a given line length. It hyphenate, words automatically, so a line
may be completed with part or a word to produce the right line length. It also adjuat, a line
after it has been filled by inserting spaces between words as necessary to bring the text exactly
to the right margin. Examples or filling and adjusting follow:

Unfilled text looks like: Filled and adjusted text looks like:

Filled but not adjusted text looks like:

Revision C or 7 January 1984 1-1

Introduction to Document Preparation Editing and Text Processing

Given a file of input consisting only of lines of text without any formatting requests, the for­
matter simply produces a continuous stream of filled, adjusted and hyphenated output. 0
To obtain paragraphs, numbered sections, multiple column layout, tops and bottoms of pages, ·
and footnotes, for example, requires the addition of formatting requests. Requests look like '.u'
where n is one or two lower-case letters or a lower-case letter and a digit. Refer to Formatting
Document, with 'nroff' and 'troff'for details.

1.2. What is a Macro Package?

Nroff and troff provide a flexible, sophisticated command language for requesting operations like
those just mentioned. They are very flexible, but this flexibility can make them difficult to use
because you have to use several requests to produce a simple format. For this reason, it's a
good idea to use a macro package. A macro is simply a predefined aequence o/ nroff requeat, or
text which you can use by including just one request in your input file. You can then handle
repetitious tasks, such as starting paragraphs and numbering pages, by typing one macro
request each time instead of several. A macro looks like '.XX' where XX is one or two upper­
case letters or an upper-case letter and a digit.

A macro package also does a lot of things without the instructions that you have to give nroff,
footnotes and page transitions for example. Some packages set up a page layout style by
default, but you can change that style if you wish. Although a macro package offers only a lim­
ited subset of the wide range of formatting possibilities that nroff provides, it is much easier to
use. We explain how to use a macro package in conjunction with nroff and troff in Di,pla11ing
and Printing Document,.

Sample input with both formatting requests, macros in this case, and text looks like:

.LP
Now is the time
for all good men
to come to the aid of their country .
. LP

Refer to Formatting Document, with the -m, Macro• and to Quick Reference, in this chapter for
more information on macros.

1.3. What is a Preprocessor?

A preproceaaor is a program that you run your text file through first before passing it on to a
text formatter. You can put tables in a document by preproceuing a file with the table-builder
called tbl. You can add mathematical equations with their special fonts and symbols with the
equation formatters, eqn for troff files and neqn for nroff files. These preprocessors convert
material entered in their specific command languages to straight troff or nroff input. Those text
formatters then produce the tables or mathematical equations for the output.

What you type in a file is very much the same as for simple formatting. You include table or
equation material in your troff input file along with ordinary text and add several specific tbl or
eqn requests. Refer to Formatting Table, with 'tbl' and Formatting Mathematic, with 'eqn' for
details.

1-2 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

1.4. Typesetting Jargon

There are several printer's measurement terms that are borrowed from traditional typesetting.
These terms describe the size of the letters, the distance between lines and paragraphs, how long
each line is, where the text is placed on the page, and so on.

Point Point, specify the aize of a letter or type. A point measures about 1/72 of an inch,
which means that there are 72 points to the inch. This manual is in 10-point type,
for instance.

Ema and En,
Ema and en, are measures of distance and are proportional to the type size being
used. An em is the distance equal to the number of points in the width of the letter
'm' in that point size. For examples, here's an em in several point sizes followed by
an em dash to show why this is a proportional unit of measure. You wouldn't want a
20-point dash if you are printing the rest of a document in 12-point. Here's 12-
point:

m
1-1

And here's 20-point:

1ml
An en space is one half of an em or about the width of the letter 'n'. They are typically used
for indicating indention.

Vertical Spacing
Vertical spacing called leading (pronounced 'led-ing') is the distance between the
bottom of one line and the bottom of the next. This manual has 12-point vertical
spacing for example. The rule of thumb is that the spacing be 20% bigger than the
character size for easy readability. A printer would call the ratio for this manual
"Ten over twelve."

Paragraph Depth
As there is a specification for the distance between lines, there is also a term for the
space between paragraphs. This is the paragraph depth. If you are using the stan­
dard '.PP' macro, for instance, the paragraph depth is whatever one vertical space
has been set to.

Paragraph Indent

This is the amount of space that the first line is indented in relation to the rest of the para­
graph. If you use a '.PP' macro to format a standard indented paragraph, the indent is two em
spaces as shown by the first line in this paragraph.

Line Length

Page 0/f,et

Line length specifies the width of text on a page. Here we use a six-inch line length.
Shortening the line length generally makes text easier to read. Recall that many
magazines and newspapers have 2-1/4 inch columns for quick reading.

Page oflaet determines the left margin, that is how far in from the left edge of the
paper the text is set. On a normal 8-1/2 by 11 letter-size page, the page offset is is
normally slightly less than one inch.

Revision C of 7 January 1984 1-3

Introduction to Document Preparation Editing and Text Proce11Sing

Indent The indent of text is the distance the text is set in from the page offset.
emphasizes the text by setting it off from the rest.

The indent

1.5. Hints for Typing in Text

The following provides a few tricks for typing in text and for further online editing and format­
ting.

• A period(.) or apostrophe(') as the first character on a line indicates that the line con.
tains a formatting request. If you type a line of text beginning with either of these con­
trol charactera, nroff tries to interpret them as a request, and the rest of the text on
that line disappears. If you have to print a period or an apostrophe as the first charac­
ter, escape their normal meanings by prefixing them with a backslash and an amper­
sand, \& ... , for instance.

• Following the control character is a one- or two-character name of a formatting request.
As described earlier, nroff and troff names usually consist of one or two lower-case
letters or a lower-case letter and a digit. Macro package names usually consist of one or
two upper-case letters or one upper-case letter and a digit. For example, '.sp' is an
nroff request for a space and '.PP' is an -nu macro request for an indented paragraph.

• End a line of text with the end of a word along with any trailing punctuation. Nroff
inserts a space between whatever ends one line of input text and whatever begins the
next.

0

• Start lines in the input file with something other than a space. A space at the begin­
ning of an input line creates a break at that point in the output and nroff skips to a
new output line, interrupting the process of filling and adjusting. This is the easiest r"'\
way to get spaces between paragraphs, but it does not leave much ftexibility for chang· ~
ing things later.

• Some requests go on a line by themselves, while others can take one or more additional
pieces of information on the same line. These extra pieces of information on the request
line are called argument,. Separate them from the request name and from each other
by one or more spaces. Sometimes the argument is a piece of text on which the request
operates; other times it can be some additional information about what the request is to
do. For example, the vertical space request '.sp 3' shows an nroff request with one
argument. It requests three blank spaces.

1.6. Types of Paragraphs

There are several types of paragraphs. When should you use one type of paragraph instead of
another! Here are a few words about paragraphs, their characteristics, and formatting in gen­
eral. See the Type, of Paragraph, figure that follows for examples.

Use regular indented and block paragraphs for narrative descriptions. It is a matter of style as
to which type you choose to use. In general, indented paragraphs remove the need for extra
space between paragraphs - the indent tells you where the start of the new paragraph is. Most
business communication is done with block paragraphs.

If you want to indicate a set of points without any specific order, use a bulleted list. For exam­
ple:

1-4 Revision C of 7 January 1984

C

0

0

0

Editing and Text Processing Introduction to Document Preparation

There are many kinds of coffee:

• Jamaica Blue Mountain

• Colombian

• Java

• Moka

• French Roast

• Major Dickenson 's Blend

When you want to describe a set of things in some order, such as a step-by-step procedure, use
a numbered list:

To repair television, follow these steps:

1. Remove screws in rear casing.

2. Carefully slide out picture tube.

3. Gently smash with hammer.

Use description lists to explain a set of related or unrelated things, or sometimes to highlight
keywords. For instance,

Options
-v Verbose

-f filename Take script from filename

-o Use old format

In typographic parlance, anything that is not part of the "body text" - regular paragraphs and
such - is considered a diaplag, and often has to be specially handled. Generally a display is
"displayed" exactly as you type it or draw it originally, with no interference from the formatter.
Displays are used to set off important text, special effects, drawings, or examples, as we do
throughout this manual, The following paragraph is a diaplag:

Tom appeared on the sidewalk with a bucket of whitewash and
a long-handled brush.
He surveyed the fence, and all gladness left him and
a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

Quotations set off quoted material from the rest of the text for emphasis. For example,

" ... in the conversation between Alice and the Queen, we read this piece of homespun philoso­
phy:

"A slow sort of country!" said the Queen. "Now, here, you see, it takes all the run­
ning you can do, to keep in the same place. If you want to get somethwere else, you
must run at least twice as fast as that!"

Through the Looking Glaa,
Lewis Carroll

Examine the following thumbnail sketches of paragraph types to see how each can serve a spe­
cial function:

Revision C of 7 January 1984 1-5

Introduction to Document Preparation Editing and Text Processing

Table 1-1: Types of Paragraphs

Indented - .PP Description Lista - .IP • • n 0

Left Block - .LP

Display - .DS

Bulleted - .IP \(bu

• 0
•

• Quotation - .QP

Numbered - .IP l.

I.

2.

0
1-6 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Introduction ,o Document Preparation

1.7. Quick Reterences

This section I provides some simple templates (or producing your documents with the -m• macro package.
Remember that (or a quick, paginated, and justified document, you can simply type an '.LP' to start your
document, and then type in the text separated by blank lines to produce paragraphs. Type a space and
RETURN to get a blank line.

Throughout the examples, input is shown in

bold Tlmee Roman font

while the output is shown in

this Times Roman font.

1.7.1. Displaying and Printing Documents

Use the following to format and print your documents. You can use either nroff or troff depending on the
output you desire. Use nroff to either display formatted output on your workstation screen or to print a
formatted document. The default is to display on the standard output, your workstation screen. For
easy viewing, pipe your output to more or redirect the output to a Ole.
Using troff or your installation's equivalent prepares your output for phototypesetting.

1 Some of the material in this section is derived from A Grsitk to Preparing Doeument, t11itA '-m•', M.E.
Lesk, Bell Laboratories, Murray Hill, New Jersey.

Revision C of 7 January 1984 1-7

Introduction to Document Preparation Editing and Text Processing

Table 1-2: How to Display and Print Documents

What You Want to Do
Display simple text

Display text with tables only

Display text with equations only

Display text with both tables and equations

Print raw text and requests

Print text

Print text with tables only

Print text with equations only

Print text with both tables and equations

Phototypeset simple text

Phototypeset text with tables

Phototypeset text with equations

HowtQ Do It
nroff -option, file,

tbl fil•• I nroff -option,

neqn fil•• I nroff -option,

tbl files I neqn I nroff -option,

pr file, j lpr -Pprinter

nroff-option, filea j lpr -Pprinter

tbl file, I nroff-option, j lpr -Pprinter

neqn fil•• 1 nroff-option, j lpr -Pprinter

tbl fileal neqnj nroff-option, j lpr -Pprinter

troff -option, file,

tbl file, I troff -option,

eqn filei I troff -option,

Phototypeset text with both tables and equations tbl filea I eqn I troff -option,

1.7.2. Technical Memorandum

Here we provide a sample format for a technical memorandum.

1-8 Reviaioa C of 7 Ja.nu&cy 1084

0

0

0

0

0

0

Editing and Text Processing Introdu'-tion to Document Preparation

Input:

.DA March 11, IDBI

.TL
Aa Allal;yob of
Cucumben and Pick.lea
.AU
A.B.Hacker
.AU
C. D. Wiurd
.Al
Stanford Univer1it7
Stanford, California
.AB
This abstract should be short enou1la to
It on a single page cover sheet.
It provide9 a n.mmaey of memorandum
content. •
• AE
.NH
Introduction •
• PP
Now the lrst paragrapla of actual text •••

Ouput:

Lui line of text •
• NH
Reference1

Aa Aaal71ho of
Cucumber• and Plckleo

A. B. Hceier
C. D. Wiza,,

St&nford Univenity
SlaDloid, Cali!omia

ABSTRACT

This abstrad should be short enough to &t on a single page cover sheet. 1* providee a eammary of memorandum con­
tents.

1. Introduction.

Now the &nt pan.graph of aciual text ...

1. Reference.

Revision C of 7 January 1984 1-9

Introduction to Document Preparation Editing and Text Proceosing

1.7.3. Section Headings for Documents

.NH .SH
Introduction. Appendix I
.PP .PP
tezt tezt tezt lezl lezl lezl

1. Introduction Appendix I

text text text text text text

1.7.4. Changing Fonts

The rollowing table shows the easiest way to change the default roman font to italic or bold. To change
the font or a single word, put the word on the same line as the macro. To change more than one word,
put them on the line following the macro.

Input Output

.I Hello Hello

.J
Puta thla line In ltallca. Puls this line in italic, .

• B Goodbye Goodbye

.e
Print• thla line In bold. Prints thla line In bold •

. R
Print• thla line In roman. Puts this line in roman.

1.7.5. Making a Simple List

Use the following template (or a simple list.

1-10 Revi11io11 C of 7 January 1084

0

0

0

0

0

0

Editing and Text. Proceaaing Introduction to Document Preparation

Input:

Output:

,IP I,
J. Pendlpaolter and X. Hardwired,
.I
A New Kind of Set Screw,
.R
Proc. IEEE
.Bf&
(IOft), 11-Z&& .
. IP:.
H. Nalls and R. Irons,
.I
Fastener. for Printed Circuit Board-,
,R
Proc.ASME
.B 11
(1014), H•H,
.LP (termi•olt1 fi,t)

1. J. Pencilpaaher and X. Hardwired, A Ne• Ki•' of Sd Scrn,, Proc. IEEE 16 (1976), 23--2SS.

2. H. Na.ila and R. Iron,, Fadewer, /or Printe, Cireuif Boord,, Proc. AS:ME U (1074), 23-24.

1,7,6. Multiple Indents for Lists and Outlines

This template shows how to format lists or outlines.
Input:

Output:

Thia I, ordinary text to polat out
the margin• of the pap •
• IP 1.
Firs& leYel l&em
.RS
.IP a)
Sea>Rd level •
. IP b)
Continued here with another aecoad
level item, ba.t eomewhat longer.
,RE
.IP:.
Return to prevlou1 value of the
Indenting at this polnL
,IPI,
Another
line.

Thi, is ordinary text to point. out the m&rgin.1 of the page.

1. Finl level item

a) Second level.

b) Continued here with another second level item, bui aomewh&t longer.

2. Retum io previous value of ihe indenting a.t this point.

3. Another liae.

Revision C or 7 January 1984 1-11

Introduction to Document Preparation Editing and Text Processing

1.7.7. Displays

A display does not fill or justify the text. It keeps the text together, and sets the lines oll from the rest.
Input:

test tut tut tesl test tesl
.DS
and DOW

for 90methin1
completel7 ditl'ereat
.DE
test tezt test tut test test

Output:
hoboken hanison newa.rk roseville avenue grove street eul orange brick c••rc• orange •ichlud &TU.at moaataia Ratio• ,oath
orange ma.plewood millbum short hil111 Hmmit new provident't

and now
for something
completely diferent

murray hill bcrkcley heights gillette 11tirling millington lyon• baaking ridge ben.ardmlle far hilll peapact gla.d,tone

Options: '.DS L': left-adjust; '.DSC': line-by•line center; '.DS B': make block, then center.

1.7.8. Footnotes

For automatically numbered footnotes, put the predellned string\ .. at the end of the text you want to
footnote like this:2

you want to footnote like thlaa\ ••
.FS
Here'• a numbered footnote •
.FE

To mark footnotes with other symbols, put the symbol aa the llrst argument to '.FS' and at the end of the
text you want to footnote like this:t

and at the end of the text you want tot footnote like thlaa\(da
.FS \(d1
You can also un an uterlak (•) or a double daa• t (\(dd) •
.FE

1.7.9. Keeping Text Together - Keeps

Lines bracketed by the following commands are kept together, and will appear entirely on one page:

.KS not moved .Kl' may lloat

.KE through text .KE in text

2 Here's a numbered rootnote.

t You can also use an asterisk(•) or a double dagger l (\(dd).

1·12 Revision C or 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Introduction to Document Preparation

1.7.10. Double-Column Format

Put a '.2C' at the beginning or the material you want printed in two columns. To return to one column,
use '.IC'. Note that '.IC' breaks to a new page.
Input:

.TL
The Declaration of Independence
.2C
.PP
When. in. the coune of human even.ta, it becomee D.ece!IU.IJ for one people to diasolve the political bond11 which have con­
nected them with another, and to aanme among the powen of the earth the 1eparate u.d equal 1btion to which the lawa
of Nature ud of Nature', God entitle them, a decent reaped to the opinion, of ...

1.7.11. Sample Tables

Two sample table templates follow.

Input:

.TS
box center tab (/)1
mm
IL
Column Header Column Header

Output:

text/text
text/text
text/text
text/text
.TE

Revision C or 7 January 1984

Column Header Column Header
text text
text text
text text
text text

1-13

Introduction to Document Preparation

Input:

Output:

.TS
allbox tab U)1
caa
CCC

n n n.
AT&T Common Stock
Year /Price/Dividend
1971/41-54/$Z.GO
Z/41-54/Z.70
3/4G-55/Z.87
4/40-53/3.24
5 / 45-5Z /3.40
G/51-59/.95•
.TE
• (flr1t quarter oncy,)

AT&T Common Stock
Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95•

• (first quarter only)
The meanings of the key-letters describing the alignment of each entry are:

Letter
C

r
I

Meaning Letter
center n
right-adjust a
left-adjust s

Meaning
numerical
subcolumn
spanned

Editing and Text Processing

The global table options are center, expand, box, doublebox, allbox, tab (:i:) and linesize (n).
Input:

1-14

.TS
box, center tab(/);
cc
I I.
Name/Definition
.sp
Gamma/$GAMMA (z) = int sub O sup inf t sup {z-1} e sup -t dt$
Sine/$sin (x) = I over 2i (e sup ix - e sup -ix)S
Error/$ roman err (z) = 2 over sqrt pi int sub O sup z e sup {-t sup 2} dt$
Bessel/$ J sub O (z) = 1 over pi int sub O sup pi cos (z sin the.ta) d theta$
Zeta/$ zeta (s) = sum from k=l to inf t sup·• --(Re"s > 1)$
.TE

Revision C or 7 January 1984

0

0

0

0

0

Editing and Text Processing

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Definition

1.7.12. Writing Mathematical Equations

lntroductioo to Document Preparation

A displayed equation is marked with an equation number at the right margin by adding an argument to
the '.EQ' line:

Input:

.EQ (1.3)
x aup :II over a aup :II-=- aqrt {p • aup :II +ci•+•}
.EN

A displayed equation is marked with an equation number at the right margin by adding an argument to
the EQ line:

Output:

Input:

Output:

.EQ I (:11.:lla)
bold V bar aub nu-=-left [plle { a above b above
c } right J + left [matrix { col { A(ll) above •
above . } col { • above • above • } col {. above •
above A(33) } } right J cdot left [plle { alpha
above beta above gamma } right J
.EN

[•] [A (11) . .]· ta] v.- b + . . . /J
e • • A(33) :,

Revision C of 7 January 1984

(1.3)

(2.2a)

1-15

Introduction to Document Preparation

Input:

.EQ L
F hat (chi) - mark = - I del V I aup 2
.EN

Editiilg and Text Processing

.EQ L
lineup=- {left ({partial V} over {partial x} right)} aup 2 + { left ({partial V} over
{partial ;y} right)} aup 2 ------lambda·> Int
.EN

Output:

fl'(xl - 1vv1•

Input:

$ a dot $, $ b dotdot$, $ xi tllde tlmea ;y vec$.

Output:

•, ;;, ex;.
(with delim $$ on).

1.7.13. Registers You Can Change

Table 1-3: Registers You Can Change

1-16

Controla
Line length
Point size
Column width
Margins - head and foot

Paragraph spacing
Page heading

Page numbers

Reglater
.nr LL 7i
.or PS 9
.or CW 3i
.or HM .75i
.or FM .75i
.nrPD 0
.ds CH Appendix

(center)
ds RH 7-25-76

(right)
.ds LH Private

(left)
.or% 3

Controla
Title length
Vertical spacing
Jntercolumn opacing
Paragraph indent

Page offset
Page footer

Reglater
.or LT 7i
.or VS 11
.or GW .Si
.or Pl 2n

.or PO 0.5i

.ds CF Draft

.ds LF . ii

.dsRF Rm ar

Revision C of 7 January 1984

0

0

0

0

0

Table of Contents

Chapter 2 Formatting Documents with the -ms Macros .. 2-1
2.1. Changes in the New -ms Macro Package... 2-1
2.2. Displaying and Printing Documents with -ms.. 2-1
2.3. What Can Macros Do! ... 2-2
2.4. Formatting Requests... 2-2

2.4.1. Paragraphs .. 2-3
2.4.1.1. Standard Paragraph - '.PP' ... 2-3
2.4.1.2. Left-Block Paragraph - '.LP' ... 2-3
2.4.1.3. Indented Paragraph - '.IP' .. 2-3
2.4.1.4. Nested Indentation - '.RS' and '.RE' ... 2-5
2.4.1.5. Quoted Paragraph - '.QP' ... 2-6

2.4.2. Section Headings - '.SH' and '.NH'... 2-6
2.4.3. Cover Sheets and Title Pages ... 2-7
2.4.4. Running Heads and Feet - 'LH', 'CH', 'RH' .. 2-8
2.4.5. Custom Headers and Footers - '.OH', '.EH', '.OF', and 'EF' 2-9
2.4.6. Multi-column Formats - '.2C' and '.MC'.. 2-9
2.4.7. Footnotes - '.FS' and '.FE' , .. 2-10
2.4.8. Endnotes .. 2-11
2.4.9. Displays and Tables - '.DS' and '.DE' .. 2-ll
2.4.10. Keeping Text Together - '.KS', '.KE' and '.KF' ... 2-12
2.4.11. Boxing Words or Lines - '.BX' and '.B2' and '.B2' .. 2-13
2.4.12. Changing Fonts - '.I', '.B', '.R' and '.UL' .. 2-13
2.4.13. Changing the Type Size - '.LG', '.SM' and '.NL' ... 2-14
2.4.14. Dates - '.DA' and '.ND' ... 2-14
2.4.15. Thesis Format - '.TM' ... 2-14
2.4.16. Bibliography - '.XP' .. 2-15
2.4.17. Table or Contents - '.XS', '.XE', '.XA', '.PX' .. 2-15
2.4.18. Defining Quotation Marks .. 2-16
2.4.19. Accent Marks .. 2-16

2.5. Modifying Default Features .. 2-17
2.5.1. Dimensions .. 2-18

2.6. Using 'nroff/troff' Requests ... 2-20
2.7. Using -ms with tbl to Format Tables .. 2-21
2.8. Using -ms with eqn to Typeset Mathematics 2-21
2.9. Register Names ... 2-22
2.10. Order or Requests in Input ... 2-23
2.11. -ms Request Summary .. 2-24

Oi

0 1

I

o!

0
List of Tables

Table 2-1 Display Macros .. 2-12
Table 2-2 Old Accent Marks .. 2-16
Table 2-3 Accent Marks 2-16
Table 2-4 Units of Measurement in nroff and troff ... 2-19
Table 2-5 Summary of-ms Number Registers ... 2-19
Table 2-6 Old Bell Laboratories Macros.. 2-24
Table 2-7 New -ms Requests .. 2-24
Table 2-8 New String Definitions .. 2-25
Table 2-9 -ms Request Summary ... 2-25
Table 2-10 -ms String Definitions .. 2-27
Table 2-11 Printing and Displaying Documents ... 2-27

0

0
-iii-

0

I

o'

or

0

0

0

Chapter 2

Formatting Documents with the -ms Macros

This chapter1 describes the new -ma macro package for preparing documents with nroff and
troff on the Sun system. The -ma Requeal Summary at the end of this chapter provides a quick
reference for all the -ms macros and for useful displaying and printing commands. If you are
acquainted with -ms, there is a quick reference for the new requests and string definitions as
well. The differences between the new and the old -ms macro packages are described in
Changea in the New '-ma' Macro Package. Diaplaying and Printing with '-m, 'describes how you
can produce documents on either your workstation, or on the printer or phototypesetter without
changing the text and formatting request input.

2,1. Changes in the New -ms Macro Package

The old -ms macro package has been revised, and the new macro package assumes the name
-ms. There are some extensions to previous -ms macros and a number of new macros, but all
the previously documented -ms macros still work exactly as they did before, and have the same
names as before. The new -ms macro package includes several bug fixes, including a problem
with the single-column '.IC' macro, minor difficulties with boxed text, a break induced by '.EQ'
before initialization, the failure to set tab stops in displays, and several bothersome errors in the
re/er bibliographic citation macros. Macros used only at Bell Laboratories have been removed
from the new version. We list them at the end of this chapter in -m, Requeal Summary.

Note: The new macros are annotated with i.

2.2. Displaying and Printing Documents with -ms

After you have prepared your document with text and -m, formatting requests and stored it in
a file, you can display it on your workstation screen or print it with nroff or troff with the -ms
option to use the -m, macro package. A good way to start is to pipe your file through more for
viewing:

logo% nroff' -ms file . . . I more

If you forget the -ma option, you get continuous, justified, unpaginated output in which -m•
requests are ignored. You can format more than one file on the command line at a time, in
which case nroff simply processes all of them in the order they appear, as if they were one file.
There are other options to use with nroff and troff, see the Uaer', Manual for the Sun Workata­
tion for details.

1 The material in this ehaptier is derived from A Refl,etl Vern'on o/ '-m1', B. Tuthill, University
of California, Berkeley; T1pc'ng Document, on tAe UNIX Sg,tem: U,ing tAe '-m,' Maero, toitla 'troff'
and 'nroff', M.E. Leak, Bell Laboratories, Murray Ifill, New Jersey; a.nd Document Formatting 011

UNIX: Uli•g t4e '-m,' M•cro,, Joel Kies, University ol California, Berkeley.

Revision C of 7 January 1984 2-1

Formatting Documents with the -ms Macros Editing and Text Processing

You can get preview and final output of various sorts with the following commands. To send o
nroff output to the line printer, type:

logo% nrofl' -ms file I lpr -printer

To produce a file with tables, use:

logo% tbl file I nrofl' -ms I lpr -printer

To produce a file with equations, type:

logo% neqn file I nrofl' -ms I lpr -printer

To produce a file with tables and equations, w,e the following order:

logo% tbl file I neqn I nrofl' -ms I lpr -printer

To print your document with troff, use:

logo% trofl' -ma file I lpr -t -printer

Use the same order with troff for preprocessing files with tbl and eqn.

If you use the two-column '.2C' request, either pipe the nroff output through col or make the
first line of the input '.pi /usr/bin/col.'

See /pr in the Uaer 'a Manual for the Sun Work,tation for details on printing.

2,3, What Can Macros Do?

Macros can format facilities for paragraphs, lists, sections (optionally with automatic number­
ing), page titles, footnotes, equations, tables, two-column format, a table of contents, endnotes,
running heads and feet, and cover pages for papers. As with other formatting utilities such as
nroff and troff, you prepare text interspersed with formatting requests. However, the macro
package, which itself is written in troff commands, provides higher-level commands than those
provided with the basic troff program. In other words, you can do a lot more done with jw,t
one macro than with one nroffrequest.

2.4. Formatting Requests

When you use a macro package, you type in text as you normally do and intersperse it with for­
matting requeata. For example, instead of spacing in with the space bar or typing a tab to
indent for paragraphs, type a line with the '.PP' request before each paragraph. When format­
ted, this leaves a space and indents the first line of the following paragraph.

An -m• request is one or two upper-case characters, and usually in the form '.XX'.
The easiet way to produce simple formatted text is to put an '.LP' request at the start of the
document and add your text, typing just a space to separate paragraphs. The '.LP' produces a
left-aligned (block) paragraph, as used throughout this chapter. Your output will have para­
graphs and be paginated with right and left-justified margins.

Note: You cannot just begin a document with a line of text. You must include some -ma
request before any text input. When in doubt, use '.LP' to properly initialize the file, although

0

any of the requests '.PP', '.LP', '.TL', '.SH', '.NH' is good enough. See Co1Jer Sheet, and Title

0 Page• for the correct arrangement of requests at the start of a document.

2-2 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with the -ms Macros

Q 2,4,1. Paragraphs

0

0

You can produce several different kinds or paragraphs with the -m• macro package: standard,
left-block, indented, labeled, and quoted.

2.4.1.1. Standard Paragraph - '.PP'

To get an ordinary paragraph, use the '.PP' request, followed on subsequent lines by the text of
the paragraph. For example, you type:

.PP
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.

to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He
surveyed the fence, and all gladness left him and a deep melancholy settled down upon his
spirit. Thirty yards of board fence nine feet high. Life to him seemed hollow, and existence but
a burden.

2.4.1.2. Left-Block Paragraph - '.LP'

You can also produce a left-block paragraph, like those in this manual, with '.LP'. The first
line is not indented as it is with the '.PP' request. For example, you type:

.lJ>
Tom appeared ...

to produce:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He sur­
veyed the fence, and all gladness left him and a deep melancholy settled down upon his spirit.
Thirty yards of board fence. nine feet high. Life to him seemed hollow, and existence but a bur­
den.

There are default values for the vertical spacing before paragraphs and for the width of the
indentation. To change the paragraph spacing, see Modifying Default Feature•.

2.4.1.3. Indented Paragraph - '.IP'

Another kind of paragraph is the indented paragraph, produced by the '.IP' request. These
paragraphs can have hanging numbers or labels. For example:

Revision Q of 7 January 1984 2-3

Formatting Documents with the -ms Macros Editing and Text Processing

.IP [1]
Text for first paragraph, typed
normally for as long as ;you would
like on as many lines as needed •
.IP [2]
Text for second paragraph, ...
.LP

produces
[l] Text for first paragraph, typed normally for as long as you would like on as many lines as

needed.

(2) Text for second paragraph, ..•
A series of indented paragraphs may be followed by an ordinary paragraph beginning with '.PP'
or '.LP', depending on whether you wish indenting or not. Here we used the '.LP' request.

More sophisticated uses of '.JP' are also possible. Ir the label is omitted, for example, you get a
plain block indent:

Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush •
.IP
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit.
Thirty ;yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden.
.LP

which produces
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush.

He surveyed the fence, and all gladness left him and a deep melancholy settled down upon
his spirit. Thirty yards of board fence nine feet high. Life to him seemed hollow, and
existence but a burden.

If a non-standard amount of indenting is required, specify it after the label in character posi­
tions. It remains in effect until the next '.PP' or '.LP'. Thus, the general form of the '.IP'
request contains two additional fields: the label and the indenting length. For example,

.IP "Example one:" 15
Notice the longer label, requiring larger
indenting for these paragraphs .
.IP "Example two:"
And so forth •
.LP

produces this:

Example one:

Example two:

Notice the longer label, requiring larger indenting for these paragraphs.

And so forth.
/

Notice that you must enclose the label in double quote marks because it contains a space; other-
wise, the space signifies the end of the argument. The indentation request above is in the
n um her of ena, a unit of dimension used in typesetting. An en is approximately the width of a
lowercase 'n' in the particuiar point size you are using.

2-4 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text .Processing Formatting Documents with the -ms Macros

The '.IP' macro adjusts properly by causing a break to the next line if you type in a label
longer than the space you allowed for. For example, if you have a very long label and have
allowed 10 n spaces for it, your input looks like:

.IP • A very, very, long and verbose label" 10
And now here'• the text that you want,
And now here'• the text that you want.
And now here'• the text that you want.
And now here's the text that you want.
And now· here's the text that you want.

And your output is adjusted accordingly with a break between the label and the text body:

A very, very, long and verbose label
And now here's the text that you want. And now here's the text that you want.
And now here's the text that you want. And now here's the text that you want.
And now here's the text that you want.

2.4.1.4. Nested Indentation - '.RS' and '.RE'

It is also possible to produce multiple (or relative) nested indents; the '.RS' request indicates
that the next '.IP' starts its indentation from the current indentation level. Each '.RE' undoes
one level of indenting, so you should balance '.RS' and '.RE' requests. Think or the '.RS'
request as 'move right' and the '.RE' request as 'move left'. As an example:

.IP I.
South Bay Area Restaurants
.RS
.IP A.
Palo Alto
.RS
.IP 1.
La Terrasse
.RE
.IPB.
Mountain View
.RS
.IP l,
Grand China
.RE .
.IP c.
Menlo Park
.RS
.IP 1.
Late for the Train
.IP 2.
Flea Street Cafe
.RE
.RE
.LP

results in

Revision C of 7 January 1984 2-5

Formatting Documents with the -ms Macros

I. South Bay Area Restaurants

A. Palo Alto

1. La Terrasse

B. Mountain View

1. Grand China

C. Menlo Park

1. Late for the Train

2. Flea Street Cafe

Editing and Text Processing

Note the two '.RE' requests in a row at the end of the list. Remember that you need one end
for each ,tart.

2.4.1.5. Quoted Paragraph - '.QP'

All of the variations on '.LP' leave the right margin untouched. Sometimes, you need a a para­
graph indented on both right and left sides. To set off a quotation as such, use:

.QP
Precede each paragraph that you
want offset as a quotation
with a '.QP'. This produces a paragraph
like this.
Notice that the right edge is also indented (r~m the right margin,

to produce
Precede each paragraph that you want offset as a quotation with a '.QP'. This pro­
duces a paragraph like this. Notice that the right edge is also indented from the right
margm.

2.4.2. Section Headings - '.SH' and '.NH'

There are two varieties of section headings, unnumbered with '.SH' and numbered with '.NH'.
In either case, type the text of the section heading on one or more lines following the request.
End the section heading by typing a subsequent paragraph request or another section heading
request. When printed, one line of vertical space precedes the heading, which begins at the left
margin. Nroff offsets the heading with blank lines, while troff sets it in boldface type. '.NH'
section headings are numbered automatically. The macro takes an argument number represent­
ing the level-number of ·the heading, up to 5. A third-level section number is one like '1.2.1'.
The macro adds one to the section number at the requested level, as shown in the following
example:

2-6 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

.NH
Bay Area Recreation
.NH2
Beaches
.NH3
San Gregorio
.NH3
Half Moon Bay
.NH2
Parks
.NH3
Wunderlich
.NH3
Los Trancos
.NH2
Amusement Parks
.NH3
Marine World/Mrica USA

generates:

2, Bay Area Recreation
2,1 Beaches

2.1.1 San Gregorio
2.1.2 Half Moon Bay

2.2 Parks
2.2.1 Wunderlich
2,2,2 Los Trancos

2.3 Amusement Parks
2.3.1 Marine World/Africa USA

Formatting Documents with the -ms Macros

'.NH' without a level-number means the same thing as '.NH 1 ', and '.NH O' cancels the number­
ing sequence in effect and produces a section heading numbered 1.

2.4.3. Cover Sheets and Title Pages

-Ma provides a group of macros to format items that typically appear on the cover sheet or title
page of a formally laid-out paper. You can use them selectively, but if you use several, you
must put them in the order shown below, normally at or near the beginning of the input file.

The first line of a document signals the general format of the first page. In particular, if it is
'.RP' (released paper), a cover sheet with title and abstract is prepared. The default format is
useful for scanning drafts.

Sample input is:

Revision C of 7 January 1984 2-7

Formatting Documents with the -ms Macros

.RP {Optional for releaaetl paper format)

.TL
Title of document (one or more line,)
.AU
Author{,) {may al,o be aeveral line,)
.AI
Author 'a inatitution(,)
.AB
Abstract; to be placed on the cover sheet or a paper.
Line length is 5/6 or normal; use '.II' here to change .
.AE (abstract end)
tezt ... (begin, with '.PP')

(See Order of Requeat, in Input for a quick example of this scheme.)

Editing and Text Processing

If the '.RP' request precedes '.TL', the title, author, and abstract material are printed
separately on a cover sheet. The title and author information (not the abstract) is then
repeated automatically on page one (the title page) of the paper, without your having to type it
again. If you do not include an '.RP' request, all of this material appears on page one, followed
on the same page by the main text or the paper. ·

To omit some or the standard headings (such as no abstract, or no author's institution), just
omit the corresponding fields and command lines. To suppress the word ABSTRACT type '.AB
no' for '.AB'. You can intersperse several '.AU' and '.Al lines to format for multiple authors.

0

These macros are optional; you may begin a paper simply with a section heading or paragraph
request. When you do precede the main text with cover sheet and title page material, include a
paragraph or section heading between the last title page request and the beginning of the main
text. Don't forget that some -ma request must precede any input text. Q
2.4.4. Running Heads and Feet - 'LH', 'CH', 'RH'

The -ma macros, by default, print a page heading containing a page number (if greater than I).
You can make minor adjustments to the page headings and footings by redefining the strings
LH, CH, and RH which are the left, center and right portions or the page headings, respectively;
and the strings LF, CF, and RF, which are the left, center and right portions or the page
footer. For nroff output, there are two default values: CH is the current page number sur­
rounded on either side by hyphens, and CF contains the current date as supplied by the com­
puter. For troff CH also contains the page number, but CF is empty. The other four registers
are empty by default for both nroff and troff. You can use the '.ds' request to assign a value to
a string register. For example:

.ds RF Draft Only \(em Do Not Distribute

This prints the character string 'Draft Only - Do Not Distribute' at the bottom right or every
page. You do not need to enclose the string in double quote marks. To remove the contents of
a string register, simply redefine it as empty. For instance, to clear string register CH, and
make the center header blank on the following pages, use the request:

.ds CH

To put the page number in the right header, use:

.dsRH%

2-8

0
Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

In a string definition, '%' is a special symhol referring to nrof!s automatic page counter. If you
want hyphens on either side or the page number, place them on either side or the '%' in the
command, that is:

.dsRH-%-

Remember that putting the page number in the right header as shown above does not remove it
from the default CF; you still have to clear out CF.

Ir you want requests that set the values or string and number registers to take effect on the first
page of output, put them at or near the beginning of the input file, before the initializing macro,
which in turn must precede the first line of text. Among other functions, the initializing macro
causes a 'pseudo page break' onto page one of the paper, including the top-of-page processing
for that page. Be sure to put requests that change the value of the PO (page offset), HM (top
or head margin), and FM (bottom or foot margin) number registers and the page header string
registers before the transition onto the page where they are to take effect.

For more complex formats, you can redefine the macros PT (page top) and BT (page bottom),
which are invoked respectively at the top and hot tom of each page. The margins (taken from
registers HM and FM for the top and bottom margin respectively) are normally 1 inch; the page
header/footer are in the middle of that space. Ir you redefine these macros, be careful not to
change parameters such as point size or font without resetting them to default values.

2.4.5. Custom Headers and Footers - '.OH', '.EH', '.OF', and
'EF'

You can also produce custom headers and footerst that are different on even and odd pages.
The '.OH' and '.EH' macros define odd and even headers, while '.OF' and '.EF' define odd and
even footers. Arguments to these four macros are specified as with the nroff '.ti', that is, there
are three fields (left, center and right), each separated by a single apostrophe. For example, to
get odd-page headers with the chapter name followed by the page number and the reverse on
even pages, use:

.OH 'For Whom the Bell Tolls"Page %'

.EH 'Page % ''For Whom the Bell Tolls'

if you need one, use a different delimiter around the left, center, and right portions of the title.
You can use any character as a delimiter, provided it doesn't appear elsewhere in the argument
to '.OH', '.EH', '.OF', or '.EF'.
You can use the '.Pl'f (Pone) macro to print the header on page 1. If you want roman numeral
page numbering, use an '.af PN i' request.

2.4.6. Multi-column Formats - '.2C' and '.MC'

Ir you place the request '.2C' in your document, the document will be printed in double column
format beginning at that point. This is often desirable on the typesetter. Each column will have
a width 7 /15 that of the text line length in single-column format, and a gutter (the space
between the columns) of 1/15 of the full line length. Remember that when you use the two­
column '.2C' request, either pipe the nroff output through col or make the first line of the input
'.pi /usr/bin/col.'
The '.2C' request is actually a special case or the '.MC' request that produces formats of more
than two spaces:

Revision C or 7 January 1984 2-9

Formatting Documents with the -ms Macros Editing and Text Processing

.MC (column width (gutter width]l

This formats output in as many columns of column width as will fit acl'Ol!s the page with a gao
of gutter width. You can specify the column width in any unit of scale, but if you do not specify
a unit, the setting defaults to ens. '.MC' without any column width is the same thing as '.2C'.
To return to single-column output, use '.lC'. For example:

.MC
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush,
He surveyed the fence, and all gladness left him and a deep melancholy
settled down upon his spirit,

Switching from double to single-column always causes a skip to a new page.

2.4.7. Footnotes - '.FS' and '.FE'

Material placed between lines with the commands '.FS' (footnote) and '.FE' (footnote end) is
collected, remembered, and placed at the bottom of the current page.• The formatting of the
footnote is:

at the bottom of the current page.•
.FS
• Like this .
.FE

By default, footnotes are 11/12th the length of normal text, but you can modify this by chang-o
ing the FL register (see Modifying Default Featurea). When typeset, footnotes appear in smaller
size type.

Because the macros only save a passage or text for printing at the bottom of the page, you have
to mark the footnote reference in some way, both in the text preceding the footnote and again
as part of the footnote text. We use a simple asterisk, but you can use anything you want.

You can also produce automatically numbered footnotes.f Footnote numbers are printed by a
pre-defined string (\••), which you invoke separately from '.FS' and '.FE'. Each time this
string is used, it increases the footnote number by one, whether or not you use '.FS' and '.FE'
in your text. Footnote numbers are superscripted on the phototypesetter and on daisy-wheel
terminals, but on low-resolution devices (such as the lpr and a crt), they are bracketed. If you
use \ ** to indicate numbered footnotes, the '.FS' macro automatically includes the footnote
number at the bottom of the page. This footnote, for example, was produced as follows:2

Thia footnote, for example, was produced as follows:\••
.FS
text
.FE

If you are using'**' to number footnotes, but want a particular footnote to be marked with an

• Like this.
2 Ir you never use the '**' stringr no footnote numbers will appear 2mywhere in the text, includ­

ing down here, The output footnotes will look exa-ctly like footnotes produced with -mos, the old
-ms macro package.

0
2-10 Revision C or 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

asterisk or a dagger, then give that mark as the first argument to '.FS': t
then give that mark as the first argument to '.FS': \(dg
.FS \(dg ...
.FE

Footnote numbering is temporarily suspended, because the '\ u' string is not used. Instead of a
dagger, you could use an asterisk • or double dagger t, represented as '\(dd'.

2.4.8. Endnotes

If you want to produce endnotesf rather than footnotes, put the references in a file of their own.
This is similar to what you would do if you were typing the paper on a conventional typewriter.
Note that you can use automatic footnote numbering without actually having the '.FS' and
'.FE' pairs in your text. If you place footnotes in a separate file, you can use '.IP' macros with
\ •• as a hanging tag; this gives you numbers at the left-hand margin. With some styles of end­
notes, you would want to use '.PP' rather than '.IP' macros, and specify \ •• before the refel'­
ence begins.

2.4.9. Displays and Tables - '.DS' and '.DE'

To prepare displays of lines, such as tables, in which the lines should not be re-arranged or bro­
ken between pages, enclose them in the requests '.DS' and '.DE':

.DS
lines, like the
examples here, are placed
between '.DS' and '.DE'
.DE

which produces:

lines, like the
examples here, are placed
between '.DS' and '.DE'

By default, lines between '.DS' and '.DE' are indented from the left margin.

If you don't want the indentation, use '.DS L' to begin and '.DE' to produce a left-justified
display:

to get
something like
this

You can also center lines with the '.DSC' and '.DE' requests:

t In the footnote, the dagger will appear where the footnote number would otherwise appear, as
on the left.

Revision C of 7 January 1984 2-11

Formatting Documents with the -ms Macros Editing and Text Processing

This is an
example

of a centered display.

Note that each line is centered individually.

0
A plain '.DS' is equivalent to '.DS I', which indents and left-adjusts. An extra argument to the
'.DS I' or '.DS' request is taken as an amount to indent. For example, '.DS I 3' or '.DS 3' begins
a display to be indented 3 ens from the margin.
There is a variant '.DS B' that makes the display into a left-adjusted block of text, and then
centers that entire block.
Normally a display is kept together on one page. If you wish to have a long display which may
be split across page boundaries, use '.CD', '.LD', and '.BD' in place of the requests '.DSC', '.DS
L', and '.DS B' respectively. Use '.ID' for either a plain '.DS' or '.DS I'. You can also specify
the about of indention with the '.ID' macro.

Use the following table as a quick reference:

Table 2-1: Display Macros

Macro with Keep
.DS I
.DS L
.DSC
.DS B
.DS

Macro without Keep
.ID
.LD
.CD
.BD
.ID

Note: It is tempting to assume that '.DS R' will right adjust lines, but it doesn't work.

2.4.10. Keeping Text Together - '.KS', '.KE' and '.KF'

0

If you wish to keep a table or other block of lines together on a page, there are 'keep - release'
requests. If a block of lines preceded by '.KS' and followed by '.KE' does not fit on the
remainder of the current page, it will begin on a new page. There is also a 'keep floating'
request. If the block to be kept together is preceded by '.KF' instead of '.KS' and does not fit
on the current page, it will be moved down through the text to the top of the next page. Nroff
fills in the current page with the ordinary text that follows the keep in the input file to avoid
leaving blank space at the bottom of the page preceding the keep. Thus, no large blank space
will be introduced in the document.

In multi-column output, the keep macros attempt to place all the kept material in the same
column.

If the material enclosed in a keep requires more than one page, or more than a column in multi­
column format, it will start on a new page or column and simply run over onto the following
page or column.

0
2-12 Revision C of 7 January 1984

0

Editing and Text Processing Formatting Documents with the -ms Macros

2.4.11. Boxing Words or Lines - '.BX' and '.B2' and '.B2'

To draw rectangular boxes around words, use the request

.BX word

to print !word! as shown.

You can box longer pieces of text by enclosing them with '.Bl' and '.B2':

.Bl
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled
brush.
He surveyed the fence, and all gladneu left him and a deep melancholy
settled down upon his spirit.
Thirty yards of board fence nine feet high.
Life to him seemed hollow, and
existence but a burden •
.B2

This produces:
Tom appeared on the sidewalk with a bucket of whitewash and a long-handled brush. He sur·
veyed the fence, and all gladness left him and a deep melancholy settled down upon his spirit.
Thirty yards of board fence nine feet high. Life to him seemed hollow, and existence but a bur­
den

Q 2.4.12. Changing Fonts - '.I', '.B', '.R' and '.UL'

0

To get italics on the typesetter or reverse display on the workstation, say:

.I
a11 much text a11 you want
can be typed here
.R

as was done for theae three worda. The '.R' request restores the normal (usually Roman) Cont.
If only one word is to be italicized, yoy can put it on the line with the '.I' request:

.I word

and in this case you do not need to use an '.R' to restore the previous font.

You can print boldface font by

.B
Text to be set in boldface
goes here
.R

As with '.I', you can place a single word in boldface font by putting it on the same line as the
'.B' request. Also, when '.I' or '.B' is used with a word as an argument, it can take as a second
argumept any trailing punctuation to be printed immediately after the word but set in normal
typeface. For example:

.B word)

prints

Revision C of 7 January 1984 2-13

Formatting Documents with the -ms Macros Editing and Text Processing

word)

that is, the word in boldface and the closing parenthesis in normal Roman directly adjacent •O
the word.
Ir you want actual underlining as opposed to italicizing on the typesetter, use the request

.UL word

to underline a .!!.QJ'.9.. There is no way to underline multiple words on the typesetter.

2.4.13. Changing the Type Size - '.LG', '.SM' and '.NL'

You can specify a few size changes in troff output with the requests '.LG' (make larger), '.SM'
(make smaller), and '.NL' (return to normal size). The size change is two points (see Dimen-
1ion1 for a discussion of point size); you can repeat the requests for increased elld (here one '.NL'
canceled two '.SM' requests). These requests are primarily useful for temporary size changes for
a small number of words. They do not affect vertical spacing of lines of text. See Modifying
Default Feature, for other techniques for changing the type size and vertical spacing of longer
passages.

2.4.14. Dates - '.DA' and '.ND'

When you use -ma, nroff prints the date at the bottom of each page, but troff does not. Both
nroff and troff print it on the cover sheet if you have requested one with '.RP'. To make troff
print the date as the center page footer, say '.DA' (date). To suppress the date, say '.ND' (noo
date). To lie about the date, type '.DA July 4, 1776,' which puts the specified date at the ho .
tom of each page. The request:

.ND September 16, 1959

in '.RP' format places the specified date on the cover sheet and nowhere else. Place either '.ND'
or '.DA' before the '.RP'. Notice this is one instance that you do not need to put double quote
marks around the arguments.

2.4.15. Thesis Format - '.TM'

To format a paper as a thesis, use the '.TM' macrof (thesis mode). It is much like the '.th'
macro in the -me macro package. It puts page numbers in the upper right-hand comer,
numbers the first page, suppresses the date, and doublespaces everything except quotes,
displays, and keeps. Use it at the top of each file making up your thesis. Calling '.TM' defines
the '.CT'f macro for chapter titles, which skips to a new page and moves the page number to
the center footer. You can use the '.Pl' (P one) macro even without thesis mode to print the
header on page 1, which is suppressed except in thesis mode. If you want roman numeral page
numbering, use an '.af PN i' request.

2-14

O'
I

Revision C of 7 January 1984

0

Editing and Text Processing Formatting Documents with the -ms Macros

2.4.16. Bibliography - '.x:F'

To format bibliography entries,t use the '.XP' macro, which stands for ezdented paragraph. It
exdents the first line of the paragraph by \n(PI units, usually 5n, the same as the indent for the
first line of a '.PP'. An example of exdented paragraphs is:

.xp
Lumley, Lyle S., \fiSex in Crustaceans: Shell Fish Habits, \fP\I
Harbinger Pren, Tampa Bay and San Diego, October 1979.
243 pages.
The pioneering work in this field •
.xp
Lefiadinger, Harry A., "Mollusk Mating Season: 52 Weeks, or All Year?"
in \fi.Acta Biologica,\fP\I vol. 42, no. 11, November 1980.
A provocative thesis, but the conclusions are wrong.

which produces:

Lumley, Lyle S., Sez in Cruataceana: Shell Fiah Babita, Harbinger Press, Tampa Bay and San
Diego, October 1979. 243 pages. The pioneering work in this field.

Lefladinger, Harry A., "Mollusk Mating Season: 52 Weeks, or All Year?" in Acta Biologica, vol.
42, no. 11, November 1980. A provocative thesis, but the conclusions are wrong.

You do have to italicize the book and journal titles and quote the title of the journal article.
You can change the indentation and exdentation by setting the value of number register Pl.

Q 2.4.17. Table of Contents - '.XS', '.XE', '.x:A.', '.PX'

0

There are four macros that produce a table or contents.t Enclose table or contents entries in
'.XS' and '.XE' pairs, with optional '.XA' macros for additional entries. Arguments to '.XS' and
'.XA' specify the page number, to be printed at the right. A final '.PX' macro prints out the
table of contents. A sample or typical input and output text is:

.XS ii
Introduction
.xA. 1
Chapter 1: Review of the Literature
.xA. 23
Chapter 2: Experimental Evidence
.xE
.PX

Table of Contents

Introduction ... ii
Chapter 1: Review or the Literature .. 1
Chapter 2: Experimental Evidence ... 23

You can also use the '.XS' and '.XE' pairs in the text, after a section header for instance, in
which case page numbers are supplied automatically. However, most documents that require a
table of contents are too long to produce in one run, which is necessary if this method is to
work. It is recommended that you make the table of contents after finishing your document.
To print out the table of contents, use the '.PX' macro or nothing will happen.

Revision C of 7 January 1984 2-15

Formatting Documents with the -ms Macros Editing and Text Processing

2.4.18. Defining Quotation Marks

To produce quotation marksf and dashes that format correctly with both nroff and troff, the-0
are some string definitions for each or the formatting programs. The \ •- string yields two
hyphens in nroff, and produces an em dash - like this one in troff. The \ *Q and \ *U strings
produce " and " in troff, but " in nroff.

2.4.19. Accent Marks

To simpliry typing certain foreign words, the -m• package defines strings representing common
accent marks. There are a large number or optional foreign accent marksf defined by the -m,
macros. All the accent marks available in -mo, are present, and they all work just as they
always did. Unlike the old accent marks, Place '.AM' (accent mark) at the beginning or your
document, and type the accent strings •fter the letter being accented.
For the old accent marks, type the string before the letter over which the mark is to appear.
For example, to print 't'elephone with the old macros, you type:

t\ •'el\ •'ephone

A list or both sets or diacritical marks and examples or what they look like follows. Note: Do
not use the tbl macros '.TS' and '.TE' with any of the accent marks as the marks do not line up
correctly.

Table 2-2: Old Accent Marks

Accent Name Input Output 0
acute \•'e

,
e

\•'e ' grave e
umlaut \•:u ii
circumflex \•'e

A e
tilde \•"a a
hacek \•Cr

V r
cedille \•,c ~

0
2-16 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Table 2-3: Accent Marks

Accent Name Input Output

acute e\ •' ' e
grave e*' e
circumflex o\•. ()

cedilla c\ •' ~

tilde n*· n
question *? J
exclamation \ •1 i
umlaut u*: u
digraphes *8 fJ
hatek c\•v

V
C

macron a\•_ a
o-sl38h o\•/ <I
yogh kni\ •at kni3t
angstrom a\•o • a
Thorn \•(Th p
thorn \ *(th p
Eth \•(D- D
eth \•(d- 8
hooked o *q 9
ae ligature \•(ae ae
AE ligature \•(Ae ~

oe ligature \ *(oe a,

OE ligature \"(Oe (E

If you want to use these new diacritical marks, don't forget the '.AM' at the top of your file.
Without it, some of these marks will not print at all, and others will be placed on the wrong
letter.

2.5. Modifying Default Features

The -ms macro package supplies a standard page layout style. The text line has a default
length of six inches; the indentation of the first line of a paragraph is five ens; the page number
is printed at the top center of every page after page one; and so on for standard papers. You
can alter many of these default features by changing the values that control them.

The computer memory locations where these values are stored are called number regi•ter• and
•tring regi,ter•. Number and string registers have names like those of requests, one or two
characters long. For instance, the value of the line length is stored in a number register named
LL. Unless you give a request to change the value stored in register LL, it will contain the stan­
dard or default value assigned to it by -m•. The Summar11 of -m• Number Regi.ter, table
lists the number registers you can change along with their default values.

Revision C of 7 January 1984 2-17

Formatting Documents with the -ms Macros Editing and Text Processing

2.5.1. Dimensions

To change a dimension like the line length from its default value, reset the associated numbeo
register with the nroJJrequest '.nr' (number register):

.nr LL 6i

The first argument, 'LL', is the name of a number register, and the second, '5i' is the value
being assigned to it. In the case above, the line length is adjusted from the default 6 inches to
five inches. As another example, consider:

.nr PS 9

which makes the default point size 9 point.
The value may be expressed as an integer or may contain a decimal fraction. When setting the
value or a number register, it is almost always necessary to include a unit or scale immediately
after the value. In the example above, the 'i' as the unit of scale lets nroJJknow you mean five
inches and not five or some other unit of distance. But the point size (PS) and vertical spacing
(VS) registers are exceptions to this rule; ordinarily they should be assigned a value as a number
of points without indicating the unit of acale. For example, to set the vertical spacing to 24
points, or one-third of an inch (double-spacing), use the request:

.nrVS 2-i

In the unusual case where you want to set the vertical spacing to more than half an inch (more
than 36 points), include a unit or scale in setting the VS register. The Unit, of Metuurement in
'nroff' and 'troff'table explains the units or measurement.

0

'
0

2-18 Revision C or 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Table 2-4: Units of Measurement in nroff and troff

Unit Abbr
point p
pica p
em m

en n
vertical space v

inch
centimeter
machine unit

C

u

nroff

1/72 inch
1/6 inch
width of one character

width of one character
amount of space in
which each line of
text is set, measured
baseline to baseline

1/72 inch
1/6 inch

troff

distance equal to number of
points in the current typesize
half an em
same

inch inch
centimeter
1/240 inch

centimeter
1/432 inch

The units point, pica, em, and en are units of measurement used by tradition in typesetting.
The vertical ,pace unit also corresponds to the typesetting term leading, which refers to the dis­
tance from the baseline of one line of type to the baseline of the next. Em and en are particu­
lary interesting in that they are proportional to the type size currently in use (normally
expressed as a number of points). An em is the distance equal to the number of points in the
type size (roughly the width of the letter 'm' in that point size), while an en is half that (about
the width of the letter 'n'). These units are convenient for specifying dimensions such as inden­
tation. In troff, em and en have their traditional meanings, that is one em of distance is equal
to two ens. For nroff, on the other hand, em and en both mean the same quantity of distance,
the width of one typewritten character.

The machine unit is a special unit of dimension used by nroff and troff internally. This is the
unit to which the programs convert almost all dimensions when storing them in memory, and is
included here primarily for completeness. In using the features of -m,, it is sufficient to know
that such a unit of measure exists.

Note that a change to a number register such as LL does not immediately change the related
dimension at that point in the output. Instead, in the case of the line length for example, the
change takes place at the beginning of the next paragraph, where -m, resets various dimensions
to the current values of the related number registers.

If you need the effect immediately, use the normal troff command in addition to changing the
number register. For example, to control the vertical spacing immediately, use:

.VII

This takes effect at the place where it occurs in your input file. Since it does not change the VS
register, however, its effect lasts only until the beginning of the next paragraph. As a general
rule, to make a permanent change, or one that will last for several paragraphs until you want to
change it again, alter the value of the -m, register. If the change must happen immediately,
somewhere other than the point shown in the table, use the nroff request. If you want the
change to be both immediate and lasting, do both.

Revision C of 7 January 1984 2-19

Formatting Documents with the -ms Macros Editing and Text Processing

Table 2-5: Summary of -ma Number Registers

Register Controls Takes Default
0

Efl'ect
PS point size next para. 10
vs line spacing next para. 12 pts
LL line length next para. 6"
LT title length next para. 6"
PD para. spacing next para. 0.3 vs
Pl para. indent next para. 5 ens
FL footnote length next FS 11/12 LL
cw column width next 2C 7/15 LL
GW intercolumn gap next 2C 1/15 LL
PO page offset next page 26/271

'

HM top margin next page 1"
FM bottom marein next patt 1"

You may also alter the strings LH, CH, and RH which are the left, center, and right headings
respectively; and similarly LF, CF, and RF which are strings in the page footer. Use the nroff
'.ds' (define string) request to alter the string registers, as you use the '.nr' request for number
registers. The page number on output is taken from register PN, to permit changing its output
style. For more complicated headers and footers, you can redefine the macros PT and BT, as
explained earlier. See Regiater Name, for a full list.

2.6. Using 'nroff/troff' Requests 0
You can use a small subset of the nroff requests to supplement the -m, macro package.

Use '.nr' and '.ds' requests to manipulate the -m, number and string registers as described in
Modifying Default Feature,. You can also freely use the other following requests in a file for pro­
cessing with the -ma macro package. They all work with both typesetter and workstation or
terminal output .
. ad b Adjust both margins. This is the default adjust mode .

. hp Begin new page ..

.hr

.ce n

. ds XX

. na

. nrXX

.sp n

'Break' line; start a new output line whether or not the current one has been com­
pletely filled with text.

Center the following n input text lines individually in the output. If n is omitted,
only the next line of text is centered.

Define string register .

Turn off adjusting of right margins to produce ragged right .

Define number register .

Insert n blank lines. If n is omitted, one blank line is produced (the current value of
the unit v). You can attach a unit of dimension to n to specify the quantity in units
other than a number of blank lines.

Note: The macro package executes sequences of nroff requests on its own, in a manner invisible
to you. By inserting your own nroff requests, you run the risk of introducing errors. The mosb
2-20 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

likely result is simply for your nroff requests to be ignored, but in some cases the results can
include fatal nroff errors and garbled typesetter output.

As a simple example, if you try to produce a centered heading with the input:

.ce

.SH
Text or section heading

you will discover that the heading comes out left-adjusted; the '.SH' macro, appearing after the
'.ce' request overrules it and forces left-adjusting. But consider the following sequence:

.sp

.ce

.B
Line of tezt

which successfully produces a centered, boldface heading preceded by one line of vertical space.
There are lots of tricks like this, so be careful.

To learn more about troff see Formatting Document, wit/a 'nroff' and 'troff'.

2.7. Using -ms with tbl to Format Tables

Similar to the eqn macros are the macros '.TS' and '.TE' defined to separate tables (see Format•
ting Table, wit/a 'tbl) from text with a little space. A very long table with a heading may be
broken across pages by beginning it with '.TS H' instead of '.TS', and placing the line '.TH' in
the table data after the heading. Ir the table has no heading repeated from page to page, just
use the ordinary '.TS' and '.TE' macros.

2.8. Using -ms with eqn to Typeset Mathematics

Ir you have to print Greek letters or mathematical equations, see Typeaetting Mathematic, wit/a
'eqn' for equation setting. To aid eqn users, -m, provides definitions of '.EQ' and '.EN' which
normally center the equation and set it off slightly . .An argument to '.EQ' is taken to be an
equation number and placed in the right margin near the equation. In addition, there are three
special arguments to '.EQ': the letters C, I, and L indicate centered (default), indented, and left
adjusted equations, respectively. Ir there is both a format argument and an equation number,
give the format argument first, as in

.EQ L (1.3a)

(or a left-adjusted equation numbered (1.3a).

Revision C of 7 January 1984 2-21

Formatting Documents with the -ms Macros Editing and Text Processing

2.9. Register Names

The -ma macro package uses the following register names internally. Independent use of theseQ
names in your own macros may produce incorrect output. Note that there are no lower-case
letters in any ~m, internal name.

Number Registers Used in -m,
: DW GW HM IQ LL NA OJ PO T. TV
#T EF Hl HT IR LT NC PD PQ TB VS
T. FC H2 IF IT MF ND PE PS TC WF
IT FL H3 IK Kl MM NF PF PX TD YE
AV FM H4 IM Ll MN NS PI RO TN yy
cw FP H5 IP LE MO 01 PN ST TO ZN

Strin2 Remsters Used in m,
I A5 CB DW EZ I KF MR Rl RT TL
• AB cc DY FA 11 KQ ND R2 so TM . AE CD El FE 12 KS NH R3 Sl TQ
- Al CF E2 FJ 13 LB NL R4 S2 TS
: AU CH E3 FK 14 LD NP R5 SG TT
, B CM E4 FN 15 LG OD RC SH UL
IC BG cs E5 FO ID LP OK RE SM WB
2C BT CT EE FQ IE ME pp RF SN WH
Al C D EL FS IM MF PT RH SY WT
A2 Cl DA EM FV IP MH PY RP TA XD
A3 C2 DE EN FY IZ MN QF RQ TE XF 0
A4 CA DS EO HO KE MO R RS TH XK

0
2-22 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

2.10, Order of Requests in Input

The following diagram provides a quick reference on how to order requests when using the -ms
macro package to format a document in released format. For simplier documents, start with an
'.LP' initializing request.

TL

!
AU

t
Al
I

Revision C or 7 January 1984

RP

AB

!
AE

I
NH, SH

I

text .•.

2-23

Formatting Documents with the -ms Macros Editing and Text Processing

2.11. -ms Request Summary

This section includes tables of the old Bell Laboratories that have been removed from the neO
-ms package, of new -ms requests and string definitions, and of useful printing and displaying
commands. It also includes a complete -me request and string summary for easy reference.

2-24

Table 2-6: Old Bell Laboratories Macros

Macro Explanation
.cs
.EG
. HO
.JH
.IM
.MF
. MH
.MR
.ND
.OK
. PY
.SG
.TM
. TR
. WH

Request
AM
. CT
.EH
. EF
. FE
. FS
.JP \u
.IX
. OF
. OH
. Pl
. PX
. TM
.XS
. XE
. XA
. PX
.XP

Cover sheet
BTL Engineer's Notes
Bell Labs, Holmdel, N.J .
Bell Labs, Naperville, Ill .
BTL internal memo
BTL file memo
Bell Labs, Murray Hill, N.J .
BTL record memo
BTL date
BTL keywords for tech memo
Bell Labs, Piscataway, N.J .
Signatures for tech memo
BTL technical memo
BTL report format .
Bell Labs, Whinnanv, N.J .

Table 2-7: New -me Requests

Exnlanatlon
New accent mark definitions.
Chapter title in '.TM' format .
Define even three-part page header .
Define even three-part page footer.
End automatically numbered footnote .
Begin automatically numbered footnote .
Number endnotes .
Index words .
Define odd three-part page footer.
Define odd three-part page header .
Put header on page one in '.TM' format .
Print table of contents .
Thesis format .
Start table of contents entry •
End table of contents entry .
Additional table of contents entry .
Prints table of contents .
Exdented paragraph.

0

0
Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with the -ms Macros

0 Table 2-8: New String Definitions

0

0

Request
. tc
. 2C
.AB
.AE
. Al
.AM
.AT

• AU
.B s

. Bl

. 82

.BT

. BX :i

.CM

.CT

. DA :i

. DE

.DS :i

.EF s

.EN

Definition In nroff' In troff'

\•· Two hyphens - Em dash-
\•Q Open quote " Open quote "
\•U Closed ouote " Closed quote "

Table 2-9: -ms Request Summary

Initial Value Cause Break
yes yes
no yes
no yes

yes
no yes

no
no yes

no yes
no no

no yes
no yes
date no

no no
if t no
if TM yes

nroff no

yes
no yes

no
yes

Explanation
One column format on a new page .
Two column format .
Begin abstract.
End abstract.
Author's institution follows .
New accent mark definitions
Print ' ... Attached' and turn off line
filling.
Author's name follows .
Print s in boldface; if no argument
switch to boldface.
Begin text to be enclosed in a box .
End text to be boxed and print it .
Bottom title, automatically invoked
at foot of page. May be redefined.
Print sin a box .
Cut mark between pages.
Chapter title in '.TM' only. Page
number moved to CF.
'Date line' at bottom of page is s .
Default is today.
End displayed text. Implies '.KE' .
Start of displayed text to appear
verbatim liine-by-line. s=I for
indented display (default), s=L for
left-adjusted on the page, s=C for
centered, •=B for make
left-justified block, then center
whole block. Implies '.KS'.
Even three-part page footer s
Space after equation produced by
eqn or neqn.

Revision C of 7 January 1984 2-25

Formatting Documents with the -ms Macros

Request
.EQ z II

. FE

.FS z

.I z

.IP z 11

.KE

.KF

. KS

. LG

. LP

.ND date

.NH n

. NL

.IX z II

. OF z

. OH header

. Pl

.PP

.PT

. PX z

.QP

. R

.RE

2-26

Initial Value Cause Break
yes

yes
no

no no

no yes

yes

no yes

no yes
no yes
yes yes
troff no

yes

yes no
yes

no
no

if TM no
no yes

pg#

yes

yes

yes no
yes

Editing and Text Processing

Explanation
Precede equation; break out and add
space. Equation number is 11· The
optional argument z may be I to
indent equation (default), L to
left-adjust the equation, or C to
center it.
End footnote .
Start footnote. z is optional foot­
note label. The note will be printed
at the bottom of the page.
Italicize z; if z is missing, italic text
follows.
Start indented paragraph, with
hanging tag z. Indentation is II ens
(default 5).
End keep. Put kept text on next
page if not enough room.
Start floating keep. If the kept text
must be moved to the next page,
Boat later text back to this page.
Start keeping following text .
Make letters larger .
Start left-blocked paragraph .
Use date supplied if any as page
footer; only in special format posi­
tions.
Same as '.SH' with section number
supplied automatically. Numbers
are multilevel, like 1.2.3, where n
tells what level is wanted (default is
1).
Make letters normal size .
Index entries w and II and so on up
to 5 levels. Make letters normal size.
Odd three-part page footer .
Odd three-part page header .
Print header on first page .
Begin paragraph. First line
indented.
Page title, automatically invoked at
top of page. May be redefined .
Print table of contents; r-=no
suppresses title.
Begin single paragraph which is
indented and shorter.
Roman text follows .
End relative indent level.

0

0

0

Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -ms Macros

Request
.RP

. RS

.SH

. SM

. TA z •••

. TE

. TH

. TL

. TM

.TS z

.UL z

.XA z 11

.XE

.XS z II

.UL z

quote
unquote
dash

Initial Value Cause Break Explanation
no Cover sheet and first page for

released paper. Must precede other
requests.

yes Start level of relative indentation .
Fallowing '.!P's are measured from
current indentation.

yes Section head follows, font automati­
cally bold.

no no Make letters smaller .
5... no Set tabs in ens. Default is 5 10 15 ...

yes End table .
yes End heading section of table .

no yes Title follows .
off no Thesis format .

Name

yes Begin table; if z is H, table has
repeated heading on subsequent
pages.

yes
yes

IIU

Underline argument, even in troff.
Another index entry; a,=page for no
for none, v==indent.
End index entry or series of '.IX'
entries.
Begin index entry; z=page for no
for none, v==indent.
Underline argument, even in troff.

Table 2-10: -me String Definitions

Definition In nroff' In troff'
\•Q " u

\•U " "
\•-

month of year \•(MO January January
current date \•(DY January 19, 1984 January 19, 1984
automatically numbered footnote , ..

Revision C of 7 January 1984 2-27

' '

0

0

0

0

0

Formatting Documents with nrofl' and trofl'

Introduction

This chaptert provides a tutorial user's guide and examples, reference section, and a summary and index
for nroff and troff.

nroff and troff are text processors for the Sun system that format text for typewriter-like terminals and for
a phototypesetter, respectively. They accept lines of text interspersed with lines of format control info,.
mation and format the text into a printable, paginated document having a user-designed style. nroff and
troff offer unusual freedom in document styling, including: arbitrary style headers and footers; arbitrary
style footnotes; multiple automatic sequence numbering for paragraphs, sections, etc; multiple column
output; dynamic font and point-size control; arbitrary horizontal and vertical local motions at any point;
and a family of automatic overstriking, bracket construction, and line drawing functions.

nroff and troff are highly compatible with each. other and it is almost always possible to prepare input
acceptable to both. Conditional input is provided that enables the user to embed input expressly destined
for either program. nroff can prepare output directly for a variety of terminal types and is capable of utiJ.
izing the full resolution of each terminal. '

Usage

The general form of invoking nroff(or lrolfl at UNIX command level is

logo% nroff option• file• (or troff option, fiJ••)
where options represents any of a number of option arguments and fiJ•• represents the list of Bies contain­
ing the document to be formatted. An argument consisting or a single minus (-) is taken to be a Ole
name corresponding to the standard input. If no Ole names are given, input is taken from the standard
input. The options, which may appear in any order so long as they appear before the Bies, are:

Op lion Effect

--oliBI Print only pages whose page numbers appear in liBI, which consists of comma­
separated numbers and number ranges. A number range has the form N-M and
means pages N through M; a initial -N means from the beginning to page N; and a
final N- means from N to the end.

-nN Number first generated page N .

... N Stop every Npages. nroff will halt prior to every Npages (default N=l) to allow
paper loading or changing, and will resume upon receipt of a newline.

-mnome Prepends the macro ftle /uar/Ub/tmae/tmu..nome to the input file•.

-roN Register a (one-character) is set to N.

-1 Read standard input after the input Bies are exhausted.

-q Invoke the simultaneous input-output mode or the rd request.

-• Suppress formatted output. Only meMage output occurs (from 'tm's and diagnostics.

Tla.e material iD thUII cl&pt.er i1 derived from Nro6/ Tro6 U1er'1 Manual, Joseph Osaanna.

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

nroff Onl1

-h Output tabs used during horizontal spacing to speed output "" well as reduce byte
count. Device tab settings assumed to be every 8 nominal character widths. Default
settings or input (logical) tabs is also initialized to every 8 nominal character widths.

-Tname Specifies the name of the output terminal type. Currently defined names are 37 for
the (default) Model 37 Teletype , tn300 for the GE TermiNet 300 (or any terminal
without half-line capabilities), aoos for the DAS1-300S, aoo for the DASI-300, and
4&0 for the DASl-450 (Diablo H,yterm).

-e Produce equally-spaced words in adjusted lines, using full terminal resolution.

lro60nl1

-t Direct output to the standard output instead of the phototypesetter.

-a Send a printable {ASCil) approximation of the results to the standard output.

-pN Print all characters in point size N while retaining all prescribed spacings and
motions, to reduce phototypesetter elasped time.

Each option is invoked as a separate argument; for example,

logo% nrotr -o,1,8-10 -T900S -mabc file! fil•t
requests formatting of pages 4, 8, 9, and 10 of a document contained in the files named file! and filet,
specifies the output terminal as a DAS1-300S, and invokes the macro package abc.

O'

I

Various pre- and post-processors are available for use with nroff and troff. These include the equation
preprocessors NEQN and EQN2 (for nroff and troff respectively), and the table-construction preprocessor
TBL3. A reverse-line postprocessor COL• is available for ·multiple-column nroff output on terminals
without reverse-line ability; COL expects the Model In Teletype escape sequences that nroff produces by o
default. TK• is a 37 Teletype simulator postprocessor for printing nroff output on a Tektronix 4014. ·
TCAT4 is phototypesetter-simulator postprocessor for troff that produces an approximation of photo­
typesetter output on a Tektronix 4014. For example, in

logo% tbl file• I eqn I troll' -t options I teat

the first I indicates the piping of TBL 's output to EQN's input; the second the piping of EQN's output to
lrof!s input; and the third indicates the piping or lroJ!s output to TCAT.

a

0

0

0

1. A trofl' Tutorial
This tutorialt presents the basic uses of troff for producing phototypeset documen­

tation. See Formatting Document, with 'nroff' and 'trofl', the first section in this chapter
for complete details.

trofl' is a text-formatting program, for producing high-quality printed output from
the phototypesetter on the Sun UNIX operating system. This tutorial is an example of
trofl' output.

The single most important rule of using trofl' is not to use it directly, but through
some intermediary. In many ways, trofl' resembles an assembly language - a remark­
ably powerful and flexible one - but nonetheless such that many operations must be
specified at a level of detail and in a form that is too hard for most people to use
effectively.

For two special applications, there are programs that provide an interface to trofl'
for the majority of users. eqn (see Tweaetting Mathematic, with 'eqn} provides an easy
to learn language for typesetting mathematics; the eqn user need know no trofl' w hatso­
ever to typeset mathematics. tbl (see Formatting Tobie, with 'lb/' provides the same
convenience for producing tables of arbitrary complexity.

For producing straight text (which may well contain mathematics or tables), there
are a number of 'macro packages' that define formatting rules and operations for specific
styles of documents, and reduce the amount or direct contact with trofl'. In particular,
the '-ms' package (see Formatting Document, with the '-m,' Macro Package) provides
most or the facilities needed for a wide range or document preparation. (This memo was
prepared with '-ms'.) There are also packages for viewgraphs, for simulating the older
rofl' formatters on UNIX, and for other special applications. Typically you will find these
packages easier to use than trofl' once you get beyond the most trivial operations; you
should always consider them first.

In the few cases where existing packages don't do the whole job, the solution is not
to write an entirely new set of trofl' instructions from scratch, but to make small
changes to adapt packages that already exist.

In accordance with this philosophy of letting someone else do the work, the part of
trofl' described here is only a small part of the whole, although it tries to concentrate on
the more useful parts. In any case, there is no attempt to be complete. Rather, the
emphasis is on showing how to do simple things, and how to make incremental changes
to what already exists. The contents of the remaining sections are:

2. Point sizes and line spacing
3. Fonts and special characters
4. Indents and line length
5. Tabs
6. Local motions: Drawing lines and characters
7. Strings
8. Introduction to macros
9. Titles, pages and numbering

10. Number registers and arithmetic
11. Macros with arguments

The material in this tutorial is derived from A TROFF Tutorial, Brian W. Kernighan.

Revision C of 7 January 1984 3-2.

Editing and Text Processing Formatting Documents with nroff and troff

12. Conditionals
13. Environments
14. Diversions

Appendix: Typesetter character set

To use troll' you have to prepare not only the actual text you want printed, but
some information that tells how you want it printed. For troll' the text and the format­
ting information are often intertwined quite intimately. Most commands to troll' are
placed on a line separate from the text itself, beginning with a period (one command per
line). For example,

Some text .
. ps 14
Some more text.

will change the 'point size', that is, the size of the letters being printed, to '14 point'
(one point is 1/72 inch) like this:

Some text. Some more text.

Occasionally, though, something speeial occurs in the middle of a line - to produce

Area= irr2

you have to type

Area = \(*p\flr\ffi\ l\s8\u2\d\s0

0

(which we will explain shortly). The backslash character \ is used to introduce troll' O· ·

commands and speeial characters within a line of text.

2. Point Sizes; Line Spacing
As mentioned above, the command .ps sets the point size. One point is 1/72 inch,

so 6-point characters are at most 1/12 inch high, and 36-point characters are 1/2 inch.
There are 15 point sizes, listed below.

e pod: Pact. m, bait whh fhfJ do-, li,p::ir ;-..
7 polot: Pa.de nv OOX wltb ftve doa:en llqaor Jup.
8 point; Pack my box with five dona liquor jugs.
9 point: Pack my box with five dozen liquor jugs.
10 point: Pa.ck my box with five dozen liquor
11 point: Pack my box with five dozen
12 point: Pack my box with five dozen
14 point: Pack my box with five

16 point 18 point 20 point

22 24 28 36
If the num her after .ps is not one of these legal sizes, it is rounded up to the next

valid value, with a maximum of 36. II no number follows .ps, troll' reverts to the previ­
ous size, whatever it was. troll' begins with point size 10, which is usually fine. This
document is in 9 point.

Revision C of 7 January 1984 3-3

Q

0

0

0

Formatting Documents with nroff and troff Editing and Text Processing

The point size can also be changed in the middle of a line or even a word with the
in-line command \s. To produce

The POWER or a SUN

type

The \s8POWER\s10 of a \s8SUN\sl0

As above, \s should be followed by a legal point size, except that \sO causes the size to
revert to its previous value.

Relative size changes are also legal and useful:

\s-2SUN\s+ 2

temporarily decreases the size, whatever it is, by two points, then restores it. Relative
size changes have the advantage that the size difference is independent of the starting
size of the document. The amount of the relative change is restricted to a single digit.

The other parameter that determines what the type looks like is the spacing
between lines, which is set independently of the point size. Vertical spacing is measured
from the bottom or one line to the bottom of the next. The command to control vertical
spacing is .vs. For running text, it is usually best to set the vertical spacing about 20%
bigger than the character size. For example, so far in this document, we have used "9
on 11 ", that is,

.ps 9

.vs llp

Ir we changed to

.ps 9

.vs 9p
the running_ text would look like this. After a few lines, you will agree it looks a little
cramped. The right vertical spacing is partly a matter 01 taste, dependin_g on how much
text you want to squeeze into a given space, and partly a matter of traditional printing
style. By default, troff uses 10 on 12.

Point size and vertical spacing make a substantial difference in the amount
of text per square inch. This is 12 on 14.

RJlm D 111d fll1:bl tpadris nab a sut.Antbil ciflir-=- la 1bl _. d tmcS pr.- Inda. For ti:amph. 10 aa. 12 - ab:iut $wb • ..di
..-:e • 7 oa a. n. ia e oa 1, wllida ii, - amaillir. II pacb a lot_,. wadi par liDI, tu 11111 cap blind lr)'ias to rad it.

When used without arguments, .ps and .vs revert to the previous size and vertical
spacing respectively.

The command .sp is used to get extra vertical space. Unadorned, it gives you one
extra blank line (one .VII, whatever that has been set to). Typically, that's more or less
than you want, so .sp can be followed by information about how much space you want

.sp 2i

means 'two inches of vertical space' .

. sp 2p

means 'two points of vertical space'; and

3-4 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

.sp 2

means 'two vertical spaces' - two of whatever .vs is set to (this can also be made expli­
cit with .sp 2v); troff' also understands decimal fractions in most places, so

.sp l.5i

is a space of 1.5 inches. These same scale factors can be used after .vs to define line
spacing, and in fact after most commands that deal with physical dimensions.

It should be noted that all size numbers are converted internally to 'machine units',
which are 1/432 inch (1/6 point). For most purposes, this is enough resolution that you
don't have to worry about the accuracy of the representation. The situation is not quite
so good vertically, where resolution is 1/144 inch (1/2 point).

3. Fonts and Special Characten
troff' and the typesetter allow four different fonts at any one time. Normally three

fonts (Times roman, italic and bold) and one collection of special characters are per­
manently mounted.

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqratuvwzuz 01!!9,156189
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqntuvwxy• 0123466788
ABCDEFGillJKLMNOPQRSTUVWXYZ

The greek, mathematical symbols and miscellany of the special font are listed in Appen­
dix A.

troff' prints in roman unless told otherwise. To switch into bold, use the .ft com­
mand

.rt B

and for italics,

.ft I

To return to roman, use .ft R; to return to the previous font, whatever it was, use either
.ft P or just .ft. The 'underline' command

.ul

causes the next input line to print in italics. .ul can be followed by a count to indicate
that more than one line is to be italicized.

Fonts can also be changed within a line or word with the in-line command \f:

bold/ace text

is produced by

\ffibold\fiface\ffi text

If you want to do this so the previous font, whatever it was, is left undisturbed, insert
extra \fP commands, like this:

\ffibold\fP\fiface\rP\ffi text\fP

0

0

Because only the immediately previous font is remembered, you have to restore the o
Revision C of 7 January 1984 3-5

0

0

0

Formatting Documents with nroff and troff Editing and Text Processing

previous font after each change or you can lose it. The same is true of .ps and .vs when
used without an argument.

There are other fonts available besides the standard set, although you can still use
only four at any given time. The command .fp tells troff' what fonts are physically
mounted on the typesetter:

.fp 3 H

says that the Helvetica font is mounted on position 3. (For a complete list of fonts and
what they look like, see the troff' manual.) Appropriate .fp commands should appear at
the beginning of your document if you do not use the standard fonts.

It is possible to make a document relatively independent of the actual fonts used to
print it by using font numbers instead of names; for example, \f3 and .rt-3 mean 'what­
ever font is mounted at position 3', and thus work for any setting. Normal settings are
roman font on 1, italic on 2, bold on 3, and special on 4 .

. There is also a way to get 'synthetic' bold fonts by overstriking letters with a slight
offset. Look at the .bd command in the nroff/ lroffreference manual.

Special characters have four-character names beginning with \(, and they may be
inserted anywhere. For example,

1/4 + 1/2 = 3/4

is produced by

\(14 + \(12 = \(34

In particular, greek letters are all of the form \(•-, where - is an upper or lower case
roman letter reminiscent of the greek. Thus to get

E(oXP)-+ oo

in bare troll' we have to type

\(*S(\(*a\(mu\(*b) \(-> \(if

That line is unscrambled as follows:

\(*S E
((
\(*a o
\(mu X
\(*b p
))
\(-> -+

\(if 00

A complete list of these special names occlll'S in Appendix A.
In eqn (Formattino Mathematic, with 'eqn? the same effect can be achieved with

the input

SIGMA (alpha times beta) - > inf

which is less concise, but clearer to the uninitiated.
Notice that each four-character name is a single character as far as troll' is con­

cerned - the 'translate' command

3-6 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

.tr \(mi\(em

is perfectly clear, meaning

.tr--

that is, to translate - into -.
Some characters are automatically translated into others: grave ' and acute '

accents (apostrophes) become open and close single quotes ,-,; the combination of" •.• " is
generally preferable to the double quotes w ••• w. Similarly a typed minus sign becomes a
hyphen -. To print an explicit - sign, use \-. To get a backslash printed, use \e.

4.. Indents and Line Length•

troll' starts with a line length of 6.5 inches, too wide for S.1/2X 11 paper. To reset
the line length, use the .II command, as in

.II 6i

As with .sp, the actual length can be specified in several ways; inches are probably the
most intuitive.

The maximum line length provided by the typesetter is 7 .5 inches, by the way. To
use the full width, you will have to reset the default physical left margin ("page offset"),
which is normally slightly less than one inch from the left edge of the paper. This is
done by the .po command .

. po 0

sets the offset as far to the left as it will go.

The indent command .in causes the left margin to be indented by some specified
amount from the page offset. If we use .in to move the left margin in, and .II to move
the right margin to the left, we can make offset blocks of text:

.in 0.3i

.II -0.3i
text to be set into a block
.II + 0.3i
.in -0.3i

will create a block that looks like this:

Pater noster qui est in caelis sanctificetur nomen tuum; adveniat regnum
tuum; fiat voluntas tua, sicut in caelo, et in terra. ..• Amen.

Notice the use of '+ ' and '-' to specify the amount of change. These change the previ­
ous setting by the specified amount, rather than just overriding it. The distinction is
quite important: .II + li makes lines one inch longer; .11 li makes them one inch long.

With .in, .II and .po, the previous value is used if no argument is specified.

To indent a single line, use the 'temporary indent' command .ti. For example, all
paragraphs in this memo effectively begin with the command

.ti 3

Three of what! The default unit for .ti, as for most horizontally oriented commands (.II,
.in, .po), is ems; an em is roughly the width of the letter 'm' in the current point size.

Revision C of 7 January 1984 3-7

0

0

0

0

0

0

Formatting Documents with nroff and troff Editing and Text Processing

Thus, an em is always proportional to the point size you are using. An em in size p is
the number or p points in the width or an 'm'. Here's an em followed by an em dash in
several point sizes to show why this is a proportional unit of measure. You wouldn't
want a 20-point dash if you are printing the rest of a document in 12-point. Here's 12-
point:

m
1-1

Here's 16-point:

m
1-1

And here's 20-point:

Thus a temporary indent of .ti 3 in the current point size results in an indent of three
m's width or lmmml.
Although inches are usually clearer than ems to people who don't set type for a living,
ems have a place: they are a measure or size that is proportional to the current point
size. Ir you want to make text that keeps its proportions regardless or point size, you
should use ems for all dimensions. Ems can be specified as scale factors directly, as in
.ti 2.Sm.

Lines can also be indented negatively if the indent is already positive:

.ti --0.3i

causes the next line to be moved back three tenths of an inch. Thus to make a decora­
tive initial capital, we indent the whole paragraph, then move the letter 'P' back with a
.ti command:

P ater noster qui est in caelis sanctificetur nomen tuum; adveniat regnum
tuum; fiat voluntas tua, sicut in caelo, et in terra. ... Amen.

or course, there is also some trickery to make the •p• bigger (just a '\s36\s0'), and to
move it down from its normal position (see the section on local motions).

6, Tabs
Tabs (the ASCII 'horizontal tab' character) can be used to produce output in

columns, or to set the horizontal position of output. Typically tabs are used only in
unfilled text. Tab stops are set by default every hair inch from the current indent, but
can be changed by the .ta command. To set stops every inch, for example,

.ta 1i 2i 3i 4i Si 6i

Unfortunately the stops are left-justified only (as on a typewriter), so lining up
columns of right-justified numbers can be painful. Ir you have many numbers, or if you
need more complicated table layout, don't use trofF directly; use the tbl program
described in Formatting Table, with 'tbl'.

For a handful of numeric columns, you can do it this way: Precede every number
by enough blanks to make it line up when typed.

3-8 Revision C of 7 January 1984

Editing and Text Processing

.nr

.ta Ii 2i 3i
l tab 2 tab 3

40 tab 50 tab 60
700 tab 800 tab 000
.fi

Formatting Documents with nroff and troff

Then change each leading blank into the string \0. This is a character that does not
print, but that has the same width as a digit. When printed, this will produce

l
40

700

2
50

800

3
60

000

It is also possible to fill up tabbed-over space with some character other than
blanks by setting the 'tab replacement character' with the .tc command:

.ta l.5i 2.5i

.tc \(ru (\(ru is "_•)
Name tab Age tab

produces
Name ______ Age __ _

To reset the tab replacement character to a blank, use .tc with no argument. (Lines can
also be drawn with the \I command, described in Section 6.)

trofl' also provides a very general mechanism called 'fields' for setting up compli­
cated columns. (This is used by tbl). We will not go into it in this tntorial.

6, Local Motion•: Drawing lines and charactera
Remember 'Area = :rr2' and the big 'P' in the Paternoster. How are they done!

troff' provides a host of commands for placing characters of any size at any place. You
can use them to draw special characters or to tune your output for a particular appear­
ance. Most of these commands are straightforward, but messy to read and tough to
type correctly.

Ir you won't use eqn, subscripts and superscripts are most easily done with the
half-line local motions \u and \d. To go back up the page hair a point-size, insert a \u
at the desired place; to go down, insert a \d. (\u and \d should always be used in pairs,
as explained below.) Thus

Area = \(*pr\u2\d

produces

Area= :rr2

To make the '2' smaller, bracket it with \s-2 ••• \sO. Since \u and \d refer to the current
point size, be sure to put them either both inside or both outside the size changes, or
you will get an unbalanced vertical motion.

Sometimes the space given by \u and \d isn't the right amount. The \v command
can be used to request an arbitrary amount of vertical motion. The in-line command

\ v 1 amount)'

0

0

causes motion up or down the page by the amount specified in '(amount)'. For example, 0
Revision C or 7 January 1984 3-9

0

0

0

Formatting Documents with nroff and troff

to move the 'P' down, we used

.in+ 0.6i (move paragraph in)

.ll -0.3i (shorten lines)

.ti --0.3i (move P back)
\v'l '\s36P\s0\v'-l 'ater noster qui est
in caelis ...

Editing and Text Processing

A minus sign causes upward motion, while no sign or a plus sign means down the page.
Thus \v'-11 causes an upward vertical motion of one line space.

There are many other ways to specify the amount of motion -

\v 'O.li'
\v'3p'
\v '--0.5m'

and so on are all legal. Notice that the scale specifier i or p or m goes inside the quotes.
Any character can be used in place of the quotes; this is also true of all other troff' com­
mands described in this section.

Since troff' does not take within-the-line vertical motions into account when figur­
ing out where it is on the page, output lines can have unexpected positions if the left
and right ends aren't at the same vertical position. Thus \ v, like \ u and \d, should
always balance upward vertical motion in a line with the same amount in the downward
direction.

Arbitrary horizontal motions are also available - \h is quite analogous to \ v,
except that the default scale factor is ems instead of line spaces. As an example,

\h '-0.li'

causes a backwards motion of a tenth of an inch. As a practical matter, consider print­
ing the mathematical symbol '>>'. The default spacing is too wide, so eqn replaces
this by

> \h '--0.3m '>
to produce >>.

Frequently \his used with the 'width function' \w to generate motions equal to the
width of some character string. The construction

\w 'thing'

is a number equal to the width of 'thing' in machine units (1/432 inch). All troff' com­
putations are ultimately done in these units. To move horizontally the width of an 'x',
we c:an say

\h '\w 'x 'u'

As we mentioned above, the default scale factor for all horizontal dimensions is m, ems,
so here we must have the u for machine units, or the motion produced will be far too
large. troff' is quite happy with the nested quotes, by the way, so long as you don't
leave any out.

As a live example of this kind of construction, all of the command names in the
text, like .sp, were done by overstriking with a slight offset. The commands for .sp are

.sp\h '-\w '.sp'u '\h 1u '.sp

That is, put out '.sp', move left by the width of '.sp', move right 1 unit, and print '.sp'

3-10 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

again. (or course there is a way to avoid typing that much input for each command
name, which we will discuss in Section 11.) 0

There are also several special-purpose troll' commands for local motion. We have
already seen \0, which is an unpaddable white space of the same width as a digit.
'Unpaddable' means that it will never be widened or split across a line by line
justification and filling. There is also \(blank), which is an unpaddable character the
width or a space, \I, which is half that width, \", which is one quarter of the width or a
space, and \&, which has zero width. (This last one is useful, for example, in entering a
text line which would otherwise begin with a'.'.)

The command \o, used like

\o 'set or characters'

causes (up to 9) characters to be overstruck, centered on the widest. This is nice for
accents, as in

syst \o" e\(ga" me t \o" e\(aa"l\o" e\(aa"phonique

which makes

systeme te1ephonique

The accents are \(ga and \(aa, or \' and \ '; remember that each is just one character to
trotr.

You can make your own overstrikes with another special convention, \z, the zero­
motion command. \zx suppresses the normal horizontal motion after printing the single
character x, so another character can be laid on top of it. Although sizes can be 0
changed within \o, it centers the characters on the widest, and there can be no horizon-
tal or vertical motions, so \z may be the only way to get what you want:

is produced by

.sp 2
\s8\ z \(ci\sl 4 \ z \ (ci\s22\ z \(ci\ s36 \ z \(ci

The .sp is needed to leave room for the result.

As another example, an extra-heavy semicolon that looks like

; instead of ; or ;

can be constructed with a big comma and a big period above it:

\s+ 6\z,\ v '-0.25m '.\ v'0.25m '\sO
'0.25m' is an empirical constant.

A more ornate overstrike is given by the bracketing function \b, which piles up
characters vertically, centered on the current baseline. Thus we can get big brackets,
constructing them with piled-up smaller pieces:

Revision C or 7 January 1984 3-11

0

0

0

0

Formatting Documents with nroff and troff

{ [X]}

by typing in only this:

.sp
\b' \(lt\(lk\(lb' \b' \(lc\(lf' x \b' \(rc\(rf' \b' \(rt\(rk\(rb'

Editing and Text Processing

trofl' also provides a convenient facility for drawing horizontal and vertical lines or
arbitrary length with arbitrary characters. \I' li1 draws a line one inch long, like this:
------· The length can be followed by the character to use if the _ isn't
appropriate; \11 0.5i.' draws a hall-inch line or dots: The construction \L is
entirely analogous, except that it draws a vertical line instead or horizontal.

7. Strings
Obviously if a paper contains a large number or occurrences or an acute accent over

a letter 'e', typing \o"e\ • for each e would be a great nuisance.
Fortunately, trofl' provides a way in which you can store an arbitrary collection or

text in a 'string', and thereafter use the string name as a shorthand for its contents.
Strings are one or several trofl' mechanisms whose judicious use lets you type a docu­
ment with less effort and organize it so that extensive format changes can be made with
few editing changes.

A reference to a string is replaced by whatever text the string was defined as.
Strings are defined with the command .ds. The line

.ds e \o"e\"'

defines the string e to have the value \o" e\ •
String names may be either one or two characters long, and are referred to by \ •x

for one character names or \ •(xy for two character names. Thus to get telephone, ·given
the definition or the string e as above, we can say t \ *el\ •ephone.

Ir a string must begin with blanks, define it as

.ds xx" text

The double quote signals the beginning of the definition. There is no trailing quote; the
end or the line terminates the string.

A string may actually be several lines long; if trofl' encounters a \ at the end or on11
line, it is thrown away and the next line added to the current one. So you can make a
long string simply by ending each line but the last with a backslash:

.ds xx this\
is a very\
long string

Strings may be defined in terms or other strings, or even in terms or themselves; we
will discuss some or these possibilities later.

8. Introduction to Macro•
Before we can go much further in trofl', we need to learn a bit about the macro

facility. In its simplest form, a macro is just a shorthand notation quite similar to a

3-12 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

string. Suppose we want every paragraph to start in exactly the same way - with a O·

space and a temporary indent of two ems:

.sp

.ti+ 2m

Then to save typing, we would like to collapse these into one shorthand line, a trofl'
'command' like

.PP

that would he treated by trofl' exactly as

.sp

.ti+ 2m

.PP is called a macro. The way we tell trofl' what .PP means is to 4efine it with the .de
command:

.de PP

.sp

.ti+ 2m

The first line names the macro (we used '.PP' for 'paragraph', and upper case so it
wouldn't conflict with any name that trofl' might already know about). The last line •.
marks the end of the definition. In between is the text, which is simply inserted when­
ever troff' sees the 'command' or macro call

.PP

A macro can contain any mixture of text and formatting commands.

The definition of .PP has to precede its first use; undefined macros are simply
ignored. Names are restricted to one or two characters.

Using macros for commonly occurring sequences of commands is critically impor­
tant. Not only does it save typing, but it makes later changes much easier. Suppose we
decide that the paragraph indent is too small, the vertical space is much too big, and
roman Cont should be forced. Instead of changing the whole document, we need only
change the definition of .PP to something like

.de PP \" paragraph macro

.sp 2p

.ti+ 3m

.ft R

and the change takes effect everywhere we used .PP.

\ • is a trofl' command that causes the rest of the line to he ignored. We use it here
to add comments to the macro definition (a wise idea once definitions get complicated).

As another example of macros, consider these two which start and end a block of
offset, unfilled text, like most of the examples in this paper:

Revision C of 7 January 1984 3-13

0

0

0

0

0

Formatting Documents with nroff and troff

.de BS \" start indented block

.Sp

.nf

.in+ 0.3i

.de BE

.sp

.Ii

.in --0.3i

\ • end indented block

Now we can surround text like

Copy to
John Doe
Richard Roberts
Stanley Smith

Editing and Text Processing

by the commands .BS and .BE, and it will come out as it did above. Notice that we
indented by .in + 0.3i instead of .in 0.3i. This way we can nest our uses of .BS and BE
to get blocks within blocks.

If later on we decide that the indent should be O.Si, then it is only necessary to
change the definitions of .BS and .BE, not the whole paper.

9, Titles, Pages and Numbering

This is an area where things get tougher, because nothing is done for you automati­
cally. Of necessity, some of this section is a cookbook, to be copied literally until you
get some experience.

Suppose you want a title at the top of each page, saying just
----left top center top right top ___ _

In roll', one can say

.he 1eft top 'center top 'right top'

.fo 1eft bottom 'center bottom 'right bottom'

to get headers and footers automatically on every page. Alas, this doesn't work in troll',
a serious hardship for the novice. Instead you have to do a lot of specification.

You have to say what the actual title is (easy); when to print it (easy enough); and
what to do at and around the title line (harder). Taking these in reverse order, first we
define a macro .NP (for 'new page') to process titles and the like at the end of one page
and the beginning of the next:

.de NP
'bp
1 sp O.Si
.ti 1eft top 'center top 'right top'
1 sp 0.3i

To make sure we're at the top of a page, we issue a 'begin page' command 1bp, which
causes a skip to top-of-page (we'll explain the ' shortly). Then we space down half an
inch, print the title (the use of .ti should be self explanatory; later we will discuss

3-14 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

parameterizing the titles), space another 0.3 inches, and we're done.

To ask for .NP at the bottom of each page, we have to say something like 'when 0
the text is within an inch of the bottom of the page, start the processing for a new ·
page.' This is done with a 'when' command .wh:

.wh -Ii NP

(No '.' is used before NP; this is simply the name of a macro, not a macro call.) The
minus sign means 'measure up from the bottom of the page', so '-Ii' means 'one inch
from the bottom'.

The .wh command appears in the input outside the definition of .NP; typically the
input would be

.de NP

.wh-li NP

Now what happens! As text is actually being output, trolF keeps track of its verti­
cal position on the page, and after a line is printed within one inch from the bottom, the
.NP macro is activated. (In the jargon, the .wh command sets a trap at the specified
place, which is 'sprung' when that point is passed.) .NP causes a skip to the top of the
next page (that's what the 'bp was for), then prints the title with the appropriate mar­
gins.

Why I bp and 'sp instead of .bp and .sp! The answer is that .sp and .bp, like
several other commands, cause a break to take place .. That is, all the input text col-
lected but not yet printed is flushed out as soon as possible, and the next input line is

0 guaranteed to start a new line of output. If we had used .sp or .bp in the .NP macro,
this would cause a break in the middle of the current output line when a new page is
started. The effect would be to print the left-over part of that line at the top of the
page, followed by the next input line on a new output line. This is not what we want.
Using ' instead of . for a command tells trolF that no break is to take place - the out-
put line currently being filled should not be forced out before the space or new page.

The list of commands that cause a break is short and natural:

.bp .br .ce .Ii .nf .sp .in .ti

All others cause no break, regardless of whether you use a . or a ' . If you really need a
break, add a . br command at the appropriate place.

One other thing to beware of - if you're changing fonts or point sizes a Jot, you
may find that if you cross a page boundary in an unexpected font or size, your titles
come out in that size and font instead of what you intended. Furthermore, the length of
a title is independent of the current line length, so titles will come out at the default
length of 6.5 inches unless you change it, which is done with the .It command.

There are several ways to fix the problems of point sizes and fonts in titles. For
the simplest applications, we can change .NP to set the proper size and font for the title,
then restore the previous values, like this:

Revision C of 7 January 1984 3-15

0

0

0

0

Formatting Documents with nroff and troff

.de NP
'bp
1 sp 0.5i
.ft R \" set title font to roman
.ps IO \" and size to 10 point
.It 6i \" and length to 6 inches
.ti 1eft 'center 'right'
.ps \" revert to previous size
.ft P \" and to previous font
I sp 0.3i

Editing and Text Processing

This version of .NP does not work if the fields in the .ti command contain size or
font changes. To cope with that requires troff's 'environment' mechanism, which we
will discuss in Section 13.

To get a footer at the bottom of a page, you can modify .NP so it does some pro­
cessing before the I bp command, or split the job into a footer macro invoked at the bot­
tom margin and a header macro invoked at the top of the page. These variations are
left as exercises.

Output page numbers are computed automatically as each page is produced (start­
ing at 1), but no numbers are printed unless you ask for them explicitly. To get page
numbers printed, include the character% in the .ti line at the position where you want
the number to appear. For example

.ti ". % - ,,

centers the page number inside hyphens, as on this page. You can set the page number
at any time with either .bp n, which immediately starts a new page numbered n, or with
.pn n, which sets the page number for the next page but doesn't cause a skip to the new
page. Again, .bp + n sets the page number to n more than its current value; .bp means
.bp + I.

10. Number Registers and Arithmetic

troff' has a facility for doing arithmetic, and for defining and using variables with
numeric values, called number regiotera. Number registers, like strings and macros, can
be useful in setting up a document so it is easy to change later. And of course they
serve for any sort of arithmetic computation.

Like strings, number registers have one or two character names. They are set by
the .nr command, and are referenced anywhere by \nx (one character name) or \n(xy
(two character name).

There are quite a few pre-defined number registers maintained by troff', among
them % for the current page number; nJ for the current vertical position on the page;
dy, mo and yr for the current day, month and year; and J!I and .f for the current size
and font. (The font is a number from I to 4.) Any of these can be used in computations
like any other register, but some, like .s and .f, cannot be changed with .nr.

M an example of the use of number registers, in the -ms macro package (Format­
ting Document, with the '-ma' Macro Package). most significant parameters are defined
in terms of the values of a handful of number registers. These include the point size for
text, the vertical spacing, and the line and title lengths. To set the point size and

3-16 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

vertical spacing for the following paragraphs, for example, a user may say

.nr PS 9

.nr VS 11

The paragraph macro .PP is defined (roughly) as follows:

.de PP

.ps \ \n(PS

.vs \\n(VSp
Jt R
.sp 0.5v
.ti +3m

\" reset size
\" spacing
\" Cont
\" half a line

This sets the Cont to Roman and the point size and line spacing to whatever values are
stored in the number registers PS and VS.

Why are there two backslashes? This is the etemal problem or how to quote a
quote. When troff originally reads the macro definition, it peels off one backslash to see
what's coming next. To ensure that another is left in the definition when the macro is
uaed, we have to put in two backslashes in the definition. IC only one backslash is used,
point size and vertical spacing will be frozen at the time the macro is defined, not when
it is used.

Protecting by an extra layer or backslashes is only needed for \n, \•, \S (which we
haven't come to yet), and \ itself. Things like \s, \f, \h, \v, and 80 on do not need an
extra backslash, since they are converted by trofl' to ail internal code immediately upon
being seen.

Arithmetic expressions can appear anywhere that a number is expected. As a
trivial example,

.nr PS \ \n(PS-2

decrements PS by 2. Expressions can use the arithmetic operators +, -, •, /, % (mod),
the relational operators >, >=, <, <=,=,and!= (not equal), and parentheses.

Although the arithmetic we have done so Car has been straightforward, more com­
plicated things are somewhat tricky. First, number registers hold only integers. troff
arithmetic uses truncating integer division, just like Fortran. Second, in the absence or
parentheses, evaluation is done left-to-right without any operator precedence (including
relational operators). Thus

7*-4+ 3/13

becomes '-1'. Number registers can occur anywhere in an expression, and 80 can scale
indicators like p, i, m, and 80 on (but no spaces). Although integer division causes trun­
cation, each number and its scale indicator is converted to machine units (1/432 inch)
before any arithmetic is done, 80 li/2u evaluates to 0.5i correctly.

The scale indicator u often has to appear when you wouldn't expect it - in partic­
ular, when arithmetic is being done in a context that implies horizontal or vertical
dimensions. For example,

.II 7 /2i

would seem obvious enough - 3 inches. Sorry. Remember that the default units for

Revision C of 7 January 1984 3-17

0

0

o'

0

0

0

Formatting Documents with nrolf and trolf Editing and Text Processing

horizontal parameters like .U are ems. That's really '7 ems / 2 inches', and when
translated into machine units, it becomes zero. How about

.II 7i/2

Sorry, still no good - the '2' is '2 ems', so '7i/2' is small, although not zero. You muat
use

.II 7i/2u

So again, a safe rule is to attach a scale indicator to ever, number, even constants.

For arithmetic done within a .nr command, there is no implication of horizontal or
vertical dimension, so the default units are 'units', and 7i/2 and 7i/2u mean the same
thing. Thus

.nr II 7i/2

.II \ \n(llu

does just what you want, so long as you don't forget the u on the .II command.

11. Macro• with argument.
The next step is to define macros that can change from one use to the next accord­

ing to parameters supplied as arguments. To make this work, we need two things: first,
when we define the macro, we have to indicate that some parts of it will be provided as
arguments when the macro is called. Then when the macro is called we have to provide
actual arguments to be plugged into the definition.

Let us illustrate by defining a macro .SM that will print its argument two points
smaller than the surrounding text. That is, the macro call

.SM TROFF

will produce TROFF.

The definition of .SM is

.de SM
\s-2\ \Sl \s+ 2

Within a macro definition, the symbol \ \Sn refers to the nth argument that the macro
was called with. Thus \ \Sl is the string to be placed in a smaller point size when .SM is
called.

AB a slightly more complicated version, the following definition of .SM permits
optional second and third arguments that will be printed in the normal size:

.de SM
\ \S3\s-2\ \Sl\s+ 2\ \S2

Arguments not provided when the macro is called are treated as empty, so

.SM TROFF),

produces TROFF), while

.SM TROFF). (

produces (TROFF). It is convenient to reverse the order of arguments because trailing
punctuation is much more common than leading.

3-18 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

By the way, the number of arguments that a macro was called with is available in
number register .S.

The following macro .BD is the one used to make the 'bold roman' we have been
using for troll' command names in text. It combines horizontal motions, width compu­
tations, and argument rearrangement •

. de BD
\&\ \$3\fl\ \$1\h '-\w '\ \11 'u+ tu'\ \11\fP\ \S2

The \h and \w commands need no extra backslash, as we discussed above. The\& is
there in case the argument begins with a period.

Two backslashes are needed with the \ \Sn commands, though, to protect one of
them when the macro is being defined. Perhaps a second example will make this clearer.
Consider a macro called .SH which produces section headings rather like those in this
paper, with the sections numbered automatically, and the title in bold in a smaller size.
The use is

.SH "Section title ... "

(Ir the argument to a macro is to contain blanks, then it must be •urrountletl by double
quotes, unlike a string, where only one leading quote is permitted.)

Here is the definition of the .SH macro:

.nr SH O \" initialize section number

.de SH

.sp 0.3i

.rt B

.nr SH \ \n(SH+ 1 \" increment number

. ps \ \ n(PS-1 \ • decrease PS
\ \n(SH. \ \St \" number. title
.ps \ \n(PS \ • restore PS
.sp 0.3i
Jt R

The section number is kept in number register SH, which is incremented each time just
before it is used. (A number register may have the same name as a macro without
conflict but a string may not.)

We used \ \n(SH instead of \n(SH and \ \n(PS instead of \n(PS. If we had nsed
\n(SH, we would get the value or the register at the time the macro was tlefinetl, not at
the time it was uaetl. If that's what you want, fine, but not here. Similarly, by using
\ \n(PS, we get the point size at the time the macro is called.

As an example that does not involve numbers, recall our .NP macro which had a

.ti 1eft 'center 'right'

We could make these into parameters by using instead

.ti '*(LT'*(CT'*(RT'

so the title comes from three strings called LT, CT and RT. If these are empty, then

Revision C of 7 January 1984 3-19

0

0

0

0

0

0

Formatting Documents with nroff and troff Editing and Text Processing

the title will be a blank line. Normally CT would be set with something like

.dsCT-%-

to give just the page number between hyphens (as on the top of this page), but a user
could supply private definitions for any of the strings.

12. Conditionals
Suppose we want the .SH macro to leave two extra inches of space just before sec­

tion 1, but nowhere else. The cleanest way to do that is to test inside the .SH macro
whether the section number is 1, and add some space if it is. The .if command provides
the conditional test that we can add just before the heading line is output:

.if\ \n(SH=l .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the condi­
tion is logically true, or arithmetically greater than zero, the rest of the line is treated as
if it were text - here a command. If the condition is false, or zero or negative, the rest
of the line is skipped.

It is possible to do more than one command if a condition is true. Suppose several
operations are to be done before section 1. One possibility is to define a macro .Sl and
invoke it if we are about to do section 1 (as determined by an .if) .

. de Sl
-- processing for section 1 -

.de SH

.if \ \n(SH=l .Sl

An alternate way is to use the extended form of the .if, like this:

.if \\n(SH=l \ {-- processing
for section 1 --\}

The braces \{ and \} must occur in the positions shown or you will get unexpected
extra lines in your output. troff' also provides an 'if-else' construction, which we will not
go into here.

A condition can be negated by preceding it with !; we get the same effect a., above
(but less clearly) by using

.if !\\n(SH> 1 .Sl

There are a handful of other conditions that can be tested with .if. For example, is
the current page even or odd!

.if e .ti "even page title"

.if o .ti "odd page title"

gives facing pages different titles when used· inside an appropriate new page macro.

Two other conditions are t and n, which tell you whether the formatter is troff' or
nroff'.

3-20 Revision C of 7 January 1984

Editing and Text Processing Formatting Documents with nroff and troff

.if t troff stuff .. .

. if n nroff stuff .. .

Finally, string comparisons may be made in an .if:

.if 'stringl 'string2' stuff

does 'stuff' if ,tringl is the same as .tringe. The character separating the strings can be
anything reasonable that is not contained in either string. The strings themselves can
reference strings with \ •, arguments with \S, and so on.

13. Environment.

As we mentioned, there is a potential problem when going across a page boundary:
parameters like size and font for a page title may well be different from those in effect in
the text when the page boundary occurs. troff' provides a very general way to deal with
this and similar situations. There are three 'environments', each of which has indepen:.
dently settable versions of many of the parameters associated with processing, including
size, font, line and title lengths, fill/nofill mode, tab stops, and even partially collected
lines. Thus the titling problem may be readily solved by processing the main text in one
environment and titles in a separate one with its own suitable parameters.

The command .ev n shifts to environment n; n must be 0, 1 or 2. The command
.ev with no argument returns to the previous environment. Environment names are
maintained in a stack, so calls for different environments may be nested and unwound
consistently.

0

Suppose we say that the main text is processed in environment 0, which is where O·

troff' begins by default. Then we can modify the new page macro .NP to process titles
in environment 1 like this:

.de NP

.ev 1

.It 6i

.ft R

.ps 10

\" shift to new environment
\" set parameters here

... any other processing ...

. ev \" return to previous environment

It is also possible to initialize the parameters for an environment outside the .NP macro,
but the version shown keeps all the processing in one place and is thus easier to under­
stand and change.

14. Diversions
There are numerous occasions in page layout when it is necessary to store some

text for a period of time without actually printing it. Footnotes are the most obvious
example: the text of the footnote usually appears in the input well before the place on
the page where it is to be printed is reached. In fact, the place where it is output nor­
mally depends on how big it is, which implies that there must be a way to process the
footnote at least enough to decide its size without printing it.

troff' provides a mechanism called a diversion for doing this processing. Any part
of the output may be diverted into a macro instead of being printed, and then at some o
convenient time the macro may be put back into the input.

Revision C of 7 January 1984 3-21

0

0

0

Formatting Documents with nroff and troff Editing lllld Text Processing

The command .di xy begins a diversion - all subsequent output is collected into
the macro xy until the command .di with no arguments is encountered. This terminates
the diversion. The processed text is available at any time thereafter, simply by giving
the command

.xy

The vertical size of the last finished diversion is contained in the built-in number register
dn.

As a simple example, suppose we want to implement a 'keep-release' operation, so
that text between the commands .KS and .KE will not be split across a page boundary
(as for a figure or table). Clearly, when a .KS is encountered, we have to begin diverting
the output so we can find out how big it is. Then when a .KE is seen, we decide
whether the diverted text will fit on the current page, and print it either there if it fits,
or at the top of the next page if it doesn't. So:

.de KS

.hr

.ev 1

.fi

.di xx

\" start keep
\" start fresh line
\" collect in new environment
\" make it filled text
\" collect in XX

.de KE \" end keep

.hr \" get last partial line

.di \" end diversion

.if\ \n(dn>=\ \n(.t .bp \" hp if doesn't fit

.nf \" bring it back in no-fill

.XX \" text

.ev \" return to normal environment

Recall that number register nl is the current position on the output page. Since output
was being diverted, this remains at its value when the diversion started. dn is the
amount of text in the diversion; .t (another built-in register) is the distance to the next
trap, which we assume is at the bottom margin of the page. If the diversion is large
enough to go past the trap, the .if is satisfied, and a .bp is issued. In either case, the
diverted output is then brought back with .XX. It is essential to bring it back in no-fill
mode so troll' will do no further processing on it.

This is not the most general keep-release, nor is it robust in the face of all conceiv­
able inputs, but it would require more space than we have here to write it in full gen­
erality. This section is not intended to teach everything about diversions, but to sketch
out enough that you can read existing macro packages with some comprehension.

3-22 Revision C of 7 January I 984

Editing and Text Processing Formatting Documents with nroff and troff

Appendix A: Phototypesetter Character Set
These characters exist in roman, italic, and bold. To get the one on the left, type the
four-character name on the right.

ff \(ff fi \(fi ft \(fl ffi \(Fi ffl \(Fl
- \(ru -\(em lit \(14 \(12 \(34
© \(co ' \(de t \(dg I \(rm \(ct

\(rg • \(bu \(sq • \(hy
(In bold, \(sq is .)

The following are speciaJ..font characten:

+ \(pl \(mi X \(mu + \(di - \(eq - \(-- ~ \(>- s \(<-.,. \(!- :I: \(+- ~ \(no I \(•I
\(•p "" ,r- ... \(pt V \(gr

-+ \(-> +- \(<· t \(ua l \(da
I \(is a \(pd 00 \(it ./ \(er
C \(sb ::> \(sp u \(cu n \(••
~ \(ib 2 \(ip e \(mo • \(es

\(.. ' \(ga 0 \(ci 0 \(bs
§ \(sc * \(dd ... \(lh .. \(rh

\(It \(rt r \(le l \(re
\(lb \(rb L \(If J \(rr
\(lk \(rk I \(bv I" \(ts
\(br \(or \(ul - ·\(m

• \(••

These four characters also have two-character names. The I is the apostrophe on terminals; the ' is the other
quote mark.

\' \' \- _

These characters exist only on the special font, but they do not have four•chara.eter names:

" { } < > \ f 0

For greek, precede the roman letter by \(• to get the corresponding greet; for example, \(*a is a.

abgdezyhiklmncoprstufxqw
aP16,rql,~~µv(owpurv;x~w

ABGDEZYHIKLMNCOPRSTUFXQW
ABr~EZH81KAMN50IlPETT+x•o

Revision C of 7 January 1984

0

0

0

0

0

0

Formatting Documents with Nroff and Tro/1
Editing and Text Processing
Revision C or 7 January 1984

Request Reference

1. General Explanation

1.1.Form ofinpul. Input consists or lezt line,, which are destined to be printed, interspersed with control
lines, which set parameters or otherwise control subsequent processing. Control lines begin with a control
character-normally • (period) or '(acute accent)-followed by a one or two character name that specifies
a basic request or the substitution or a user-deftned macro in place of the control line. The control char­
acter ' suppresses the break function-the forced output of a partially filled line---<:aused by certain
requests. The control character may be separated from the request/macro name by white space (spaces
and/or tabs) for esthetic reasons. Names must be followed by either space or newline. Control lines with
unrecognized names are ignored.

Various special functions may be introduced anywhere in the input by means or an escape character, nor­
mally \. For example, the function \nR causes the interpolation of the contents or the number register R
in place or the function; here R is either a single character name as in \nz, or left-parenthesis-introduced,
two-character name as in \n(zz.

1.f. Formatter and device resolution. troff internally uses 432 units/inch, corresponding to the photo­
typesetter which bas a horizontal resolution of 1/432 inch and a vertical resolution or 1/144 inch. nroff
internally uses 240 units/inch, corresponding to the least common multiple or the horizontal and vertical
resolutions of various typewriter-like output devices. tro/frounds horizontal/vertical numerical parameter
input to the actual horizontal/vertical resolution or the Graphic Systems typesetter. nroff similarly
rounds numerical input to the actual resolution or the output device indicated by the -T option (default
Model 37 Teletype).

1.9. Numerical parameter input. Both nro/1 and troff accept numerical input with the appended scale indi­
cators shown in the following table, where Sis the current type size in points, Vis the current vertical
line spacing in basic units, and C is a nominal character width in basic units.

Scale Number or basic units
Indicator Meaning troff nroff

I Inch 432 240
C Centimeter 432XW/127 240XW/127
p Pica = 1/6 inch 72 240/6
m Em= Spoints 6XS C
n En= Em/2 3XS C, eame ae Em
p Point = 1/72 inch 6 240/72
u Basic unit 1 1
V Vertical line space V V

none Default, see below

In nroff, both the em and the en are taken to be equal to the C, which is output-device dependent; com­
mon values are 1/10 and 1/12 inch. Actual character widths in nroff need not be all the same and con­
structed characters such as-> (-) are often extra wide. The default scaling is ems for the horizontally­
oriented requests and functions ll, In, ti, ta, It, po, me, \h, and \1; Vs for the vertically-oriented requests
and functions pl, wh, ch, dt, •P, av, ne, rt, \v, \x, and \L; p for the vs request; and u for the requests
nr, It, and le. AU other requests ignore any scale indicators. When a number register containing an
already appropriately scaled number is interpolated to provide numerical input, the unit scale indicator u
may need to be appended to prevent an ad<litional inappropriate default scaling. The number, N,

- 23 -

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

may be specified in decimal-fraction form but the parameter final/11 stored is rounded lo an integer number
of basic unite. 0
The absolute position indicator I may be prepended to a number N to generate the distance to the vertical
or horizontal place N. For vertically-oriented requests and functions, IN becomes the distance in basic
units from the current vertical place on the page or in a diversion (§7.4) to the the vertical place N. For
all other requests and functions, IN becomes the distance from the current horizontal place on the input
line to the horizontal place N. For example,

.ap 1a.2c
will space in the required direction to 3.2centimeters from the top of the page.

1.~. Numerical ezpressione. Wherever numerical input is expected an expression involving parentheses,
the arithmetic operators+,-,/,•,% (mod), and the logical operators<,>,<=, >=,=(or==),
& (and), 1 (or) may be used. Except where controlled by parentheses, evaluation of expressions is left-to­
right; there is no operator precedence. In the case of certain requests, an initial + or - is stripped and
interpreted as an increment or decrement indicator respectively. In the presence of default scaling, the
desired scale indicator must be attached to ever11 number in an expression for which the desired and
default scaling differ. For example, if the number register x contains 2 and the current point size is 10,
then

Jl (4.151+ \nxP+ 3)/lu
will set the line length to 1/2 the sum of 4.25 inches + 2 picas + 30 points.

1.5. Notation. Numerical parameters are indicated in this manual in two ways. ± N means that the argu­
ment may take the forms N, + N, or -N and that the corresponding effect is to set the affected parameter
to N, to increment it by N, or to decrement it by N respectively. Plain N means that an initial algebraic
sign is not an increment indicator, but merely the sign of N. Generally, unreasonable numerical input is
either ignored or truncated to a reasonable value. For exampfe, most requests expect to set parameters to
non-negative values; exceptions are ep, wh, ch, nr, and It. The requests pa, ft, po, va, ls, 11, In, and It
restore the previous parameter value in the absence of an argument.

Single character arguments are indicated by single lower case letters and one/two character arguments are
indicated by a pair of lower case letters. Character string arguments are indicated by multi-character
mnemonics.

z. Font and Character Sin Control

IU. Character eel. The troff character set consists or the Graphics Systems Commercial II character set
plus a Special Mathematical Font character set----<,ach having 102 characters. These character sets are
shown in the attached Table I. All ASCII characters are included, with some on the Special Font. With
three exceptions, the ASCII characters are input as themselves, and non-ASCII characters are input in the
form \(zz where zz is a two-character name given in the attached Table II. The three ASCII exceptions
are mapped as follows:

ASCII Input Printed by lroJ!
Character Name Character Name . acute accent ' close quote . grave accent • open quote

- minus - hyphen

The characters ·, ·, and - may be input by \ ·, \ ', and \- respectively or by their names (Table II). The
ASCII characters 0, #, •, •• ·, <, >, \, {, }, -, ·, and_ exist only on the Special Font and are printed
as a 1-em space if that Font is not mounted.

0

nroff understands the entire troff character set, but can in general print only ASCII characters, additional
characters as may be available on the output device, such characters as may be able to be constructed by
overstriking or other combination, and those that can reasonably be mapped into other printable charac-o
ters. The exact behavior is determined by a driving table prepared for each device. The characters ·, ·,

- 24 -

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

and _ print as themselves.

f!.f!. Fonts. The default mounted fonts are Times Roman (R), Times Italic (I), Times Bold (B), and the
Special Mathematical Font (S) on physical type,ietter positions 1, 2, 3, and 4 respectively. These fonts are
used in this document. The current font, initially Roman, may be changed (among the mounted fonts) by
use of the ft request, or by imbedding at any desired point either \fz, \f(zz, or \fN where z and zz are
the name of a mounted font and N is a numerical font position. It is not necessary to change to the Spe­
cial font; characters on that font are aut.omatically handled. A request for a named but not-mounted font
is ignored. troff can be informed that any particular font is mounted by use or the fp request. The list or
known fonts is installation dependent. In the subsequent discussion or font-related requests, F represents
either a one/two-character font name or the numerical font position, 1-4. The current font is available (as
numerical position) in the read-only number register .f.

nroff understands font control and normally underlines Italic characters (see §10.5).

f!.9. Character size. Character point sizes available on the Graphic Systems typesetter are 6, 7, 8, 9, 10,
11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. This is a range or 1/12 inch to 1/2 inch. The ps request is used
to change or rest.ore the point size. Alternatively the point size may be changed between any two charac­
ters by imbedding a \•N at the desired point to set the size t.o N, or a \•± N (l~N~9) to
increment/decrement the size by N; \•O restores the previous size. Requested point size values that are
between two valid sizes yield the larger or the two. The current size is available in the .. register. nroff
ignores type size control.

R equeet Initial
Form V&lue

. pa±N lOpoint

... N 12/36em

.etJFNM off

.bdF N off

I/No
Arg•ment

previous

ignored

Nole•• Es,l•••lion

E

E

p

p

Point size set to ± N. Alternatively imbed \•Nor \•± N .
Any positive size value may be requested; it invalid, the
next larger valid size will result, with a maximum or 36.
A paired sequence + N, -N will work because the previous
requested value is also remembered. Ignored in nroff.

Space-character size is set to N/36ems. This size is the
minimum word spacing in adjusted text. Ignored in nroff.

Constant character space (width) mode is set on for font F
(it mounted); the width or every character will be taken to
be N/36 ems. Ir M is absent, the em is that or the
character's point size; if M is given, the em is M-points.
All affected characters are centered in this space, including
those with an actual width larger than this space. Special
Font characters occurring while the current font is F are
also so treated. Ir N is absent, the mode is turned off.
The mode must be still or again in effect when the charac•
ters are physically printed. Ignored in nroff.

The characters in font F will be artificially emboldened by
printing each one twice, separated by N-1 basic units. A
reasonable value tor N is 3 when the character size is in
the vicinity or 10 points. Ir N is missing the embolden
mode is turned off. The column heads above were printed
with .bd 13. The mode must be still or again in effect
when the characters are physically printed. Ignored in
nroJl;

•Noffl are o:plaiaed U ihe end ·of the Summa.ry and-Index above.

• 25-

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

.bd SF N off p The characters in the Special Font will be emboldened
whenever the current font is F. This manual was printed Q.
with .bd SB 3. The mode must be still or again in effect

.ft F Roman previous

.fp NF R,J,B,S ignored

.ta SF N none

3. Page control

E

when the characters are physically printed.

Font changed to F. Alternatively, imbed \tF. The font
name P is reserved to mean the previous font.

Font position. This is a statement that a font named Fis
mounted on position N (1-4). It is a fatal error if Fis not
known. The phototypesetter has four fonts physically
mounted. Each font consists of a film strip which can be
mounted on a numbered quadrant of a wheel. The default
mounting sequence assumed by lroff is R, I, B, and S on
positions 1, 2, 3 and 4.

Forces font F to be in size N. A .ta 3 -I canoes implicit
\s-2 every time font 3 is entered, and a matching \s+ 2
when left. Same for Special font characters that are used
during F. Use S to handle Special characters during F (fa
3 -3 or la S 3 -0 cause automatic reduction of font 3 by
3 points while special characters are not affected. Any fp
request specifying a font on some position must precede fa
requests relating to that position.

Top and bottom margins are nol automatically provided; it is conventional to define two macro• and to
set trap, for them at vertical positions O (top) and -N (N from the bottom). See §7 and Tutorial Exam­
ples §T2. A pseudo-page transition onto the /iral page occurs either when the first 6real: occurs or when
the first non-diverted text processing occurs. Arrangements for a trap to occur at the top of the ftrst page
must be completed before this transition. In the following, references to the current diveraion (§7.4) mean
that the mechanism being described works during both ordinary and diverted output (the former con­
sidered as the top diversion level).

The useable page width on the Graphic Systems phototypesetter is about 7.54 inches, beginning about
1/Zl inch from the left edge of the 8 inch wide, continuous roII paper. The physical limitations on nroff
output are output-device dependent.

Regue,I lnilial If No
Form Value Argamenl Nol•• E:r1lanation

.pl ± N 11 in 11 in v Page length set to ± N. The internal limitation is about
75 inches in troff and about 136 inches in nroff. The
current page length is available in the .p register .

• bp ± N N 1 B•,v Begin page. The current page i• ejected and a new page is
begun. If± N is given, the new page number will be ± N.
Also see request na .

• pn ± N N 1 ignored Page number. The next page (when it occurs) will have
the page number ± N. A po must occur before the initial
pseudo-page transition to effect the page number of the
first page. The current page number is in the % register .

• po ± N O; 26/27 int previous v Page offset. The current left margin is set to ± N. The
troff initial value provides about 1 inch of paper margin
including the physical typesetter margin of 1/27 inch. In

•The use of " ~" a.e control cba.ra.cter (in11tead of•.•) eupprenea the brea.k functioa.

fValues separated by";" are for nroff and troff respectively.

- 26-

0

0

0

0

Formatting Docnments with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1084

.neN N=1V D,v

.mkR none internal D

troff the mazimum {line-length)+ (page-off,et) i• about 7.5,l
incheB. See §6. The current page off,et iB available in the
.o register.

Need N vertical space. It the distance, D, to the next trap
position (see §7.5) is less than N, a forward vertical space
of size D occurs, which will spring the trap. It there are
no remaining traps on the page, D is the distance to the
bottom of the page. It D < V, another line could still be
output and spring the trap. In a diversion, D is the di&­
tance to the diversion trap, if any, or is very large.

Mark the current vertical place in an internal register
(both associated with the current diversion level), or in
register R, it given. See rt request .

.rt :I: N none internal D,v Return upward onl11 to a marked vertical place in the
current diversion. It :I: N (w.r.t. current place) is given,
the place is :I: N from the top or the page or diversion or,
it N is absent, to a place marked by a previous mk. Note
that the 1p request (§5.3) may be used in all cases instead
of n by spacing to the absolute place stored in a explicit
register; e. g. using the sequence .mk Rap I \nRu.

,. Text Fllllna, AdJutlng, and Centering

,l.1. Filling and o~u,ting. Normally, words are collected from input text lines and assembled into a out­
put text line until some word doesn't &t. An attempt is then made the hyphenate the word in effort to
assemble a part of it into the output line. The spaces between the words on the output line are then
increased to spread out the liue to the current line length minus any current indenl A word is any string
or characters delimited by the ,pace character or the begiuniug/end of the input line. Any adjacent pair
of words that must be kept together (neither split acrOBS output lines nor spread apart in the adjustment
process) cau be tied together by separating them with the unpoddable 1poce character "\ • (backslash­
space). The adjusted word spacings are uniform in lroff and the minimum interword spacing can be con­
trolled with the u request (§2). In nroff, they are normally nonuniform because of quantization to
character-size spaces; however, the command line option -e causes uniform spacing with full output dev­
ice resolution. Filling, adjustment, and hyphenation (§13) can all be prevented or controlled. The te%1
length on the last line output is available in the .n register, and text base-line position on the page for this
line is in the n1 register. The text base-line high-water mark (lowest place) on the current page is in the
.h register.

An input text line ending with ., f, or I is taken to be the end of a ,entence, and an additional space char­
acter is automatically provided during filling. Multiple inter-word space characters found in the input are
retained, except for trailing spaces; initial spaces also cause a break

When filling is in effect, a \p may be imbedded or attached to a word to cause a 6real: at the end of the
word and have the resulting output line •pread out to 611 the current line length.

A text input line that happens to begin with a control character can be made to not look like a control
line by prefacing it with the non-printing, zero-width filler character \&. Still another way is to specify
output translation of some convenient character into the control character using tr (§10.5).

4.t. Interrupted tezl. The copying of an input line in nofill (non-611) mode can be interrupted by terminat­
ing the partial line with a \c. The nezl encountered input text line will be considered to be a continua­
tion of the same line or input text. Similarly, a word within filled text may be interrupted by terminating
the word (and line) with \c; the next encountered text will be taken as a continuation of the interrupted
word. It the intervening control lines cause a break, any partial line will be forced out along with any
partial word.

• 27 -

Formatting Documents with Nroff a.fid Troff
Editing and Text Processing
Revision C of 7 January 1984

RequeBI
Form

.br

.ti

.nt

.&d C

.na

.ce N

Initial
Value

611 OD

fill OD

adj,both

adjust

off

5. Vertical Spacing

I/No
Argamenl

adjust

N=l

Nole• E:r1lanalion

B Break. The filling of the line currently being collected is
etopped and the line is output without adjuetment. Text
lines beginning with space chara.cten and empty text lines
(blank lines) also cause a break.

B,E

B,E

E

E

B,E

Fill subsequent output lines. The register .u is I in ftll
mode and O in no611 mode.

Noftll. Subsequent output lines are neither ftlled nor
adjusted. Input text lines are copied directly to output
lines without regard for the current line length.

Line adjustment is begun. It ftll mode is not on, adjust­
ment will be deferred until fill mode is back on. Ir the
type indicator c is present, the adjustment type i• changed
as shown in the following table.

Indicator Adjuet Type
I adjust left margin only
r adjuet right margin only
C center

born adjust both margins
absent unchanged

c can be number obtained from J register.

Noadjust. Adjustment ie turned off; the right margin will
be ragged. The adjustment type for ad is not changed.
Output line filling still occun it 611 mode is on.

Center the next N input text lines within the current
(line-length minue indent). Ir N=O, any residual count i•
cleared. A break occun alter ea.ch of the N input lines. Ir
the input line is too long, it will be left adjueted.

5.1. Ba•e-line spacing. The vertical spacing {VJ between the base-lines of successive output lines can be
set using the va request with a resolution of 1/144 inch= 1/2 point in troff, and to the output device reso­
lution in nroff. V must be large enough to accommodate the character sizes on the affected output lines.
For the co'!'mon type sizes (9-12 points), usual typesetting practice is to set V to 2 points greater than the
point size; troff default is IO-point type on a 12-point spacing (as in this document). The current V is
available in the .v register. Multiple-¥ line separation (e.g. double spacing) may be requested with la.

5./J. Extra line-space. Ir a word contains a vertically tall construct requiring the output line containing it
to have extra vertical space before and/or after it, the eztra-line-space function \x 'N • can be imbedded
in or attached to that word. In this and other functions having a pair of delimiten around their parame­
ter (here '), the delimiter choice is arbitrary, except that it can't loot like the continuation of a number
expression for N. It N is negative, the output line containing the word will be preceded by N extra verti­
cal space; if N is positive, the output line containing the word will be followed by N extra vertical space.
Ir successive requests for extra space apply to the same line, the maximum values are used. The most
recently utilized post-line extra line-space is available in the .a register.

5.9. Blocks of vertical space. A block of vertical space is ordinarily requested using ap, which honon the
no-space mode and which does not space past a trap. A contiguous block of vertical space may be
reserved using av.

- 28 -

0

0

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

Reqaed lailial I/No
Form v., •. Ar1amenl

.vaN 1/6in;l2pts previous

.IIIN N=l previous

.apN N lV

.avN N lV

.01

.na space

.... space

Blank text line.

II. Line Length and Indenting

Nol••

E,p

E

B,v

V

D

D

B

Esploaalion

Set vertical base-line. spacing size V. Transient eztra verti­
cal space available with \x 'N • (see above).

Line spacing set to ± N. N-1 Vs {blank lines} are
appended to each output text line. Appended blank lines
are omitted, if the text or previous appended blank line
reached a trap position.

Space vertically in either direction. Ir N is negative, the
motion is backward (upward) and is limited to the distance
to the top or the page. Forward (downward) motion is
truncated to the distance to the nearest trap. Ir the no­
epace mode is on, no spacing occurs (see na, and ra
below).

Save a contiguous vertical block of size N. Ir the distance
to the next trap is greater than N, N vertical space is out,.
put. No-space mode has no effect. Ir this distance is less
than N, no vertical space is immediately output, but N is
remembered for later output (see oa). Subsequent av
requests will overwrite any still remembered N.

Output saved vertical space. No-space mode has no effect .
Used to finally output a block of vertical space requested
by an earlier av request.

No-space mode turned on. When on, the no-space mode
inhibits •P requests and bp requests without a next page
number. The no-space mode is turned off when a line of
output occurs, or with n.

Restore spacing. The no-space mode is turned off.

Causes a break and output of a blank line exactly like
•P 1.

The maximum line length for fill mode may be set with 11. The indent may be set with In; an indent
applicable to on/11 the nezt output line may be set with ti. The line length includes indent space but not
page offset space. The line-length minus the indent is the basis for centering with ce. The effect of II, In,
or ti is delayed, if a partially collected line exists, until after that line is output. In 611 mode the length of
text on an output line is less than or equal to the line length minus the indent. The current line length
and indent are available in registers J and J respectively. The length of three-part lille• produced by ti
(see §14) is indep endent/11 set by It.

R egued lniliol If No
Form Value Argamenl Nole, E:rploaolion

Jl±N 6.5in

Jn±N N=O

.ti ±N

previous

previous

ignored

E,m Line length is set to ± N. In troff the maximum (line­
length)+ (page-offset) is about 7.54 inches.

B,E,m Indent is set to ± N. The indent is prepended to each out,.
put line.

B,E,m Temporary indent. The nezl output text line will be
indented a distance ± N with respect to the current
indent. The resulting total indent may not be negative.
The current indent is not changed.

- 29 -

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January Hl84

7. Macros, Strings, Dlveralon, and Po1ltlon Traps

7.1. Macros and strings. A macro is a named oet or arbitrary line, that may be invoked by name or with
a trap. A siring is a named string or character,, not including a newline character, that may be interpo­
lated by name at any point. Request, macro, and string names share the ,ame name list. Macro and
string names may be one or two characters long and may usurp previously defined request, macro, or
string names. Any or these entities may be renamed with rn or removed with rm. Macros are created by
de and di, and appended to by am and da; di and da cause normal output to be stored in a macro.
Strings are created by da and appended to by u. A macro is invoked in the same way as a request; a
control line beginning .zz will interpolate the contents or macro rz. The remainder of the line may con-
tain up to nine arguments. The strings z and zz are interpolated at any desired point with \ •z and \ *(zz
respectively. String references and macro invocations may be nested.

7.f!. Copy mode input interpretation. During the definition and extension of otringo and macros (not by
diversion) the input is read in cop11 mode. The input is copied without interpretation ezcept that:

• The contents of number registen, indicated by \n are interpolated.
• Strings indicated by \ • are interpolated.
• Arguments indicated by \$ are interpolated.
• Concealed newlines indicated by \(newline) are eliminated.
• Comments indicated by \ • are eliminated.
• \t and \a are interpreted as ASCII horizontal tab and SOB respectively (§9).
• \ \ is interpreted as \.
•\.is interpreted as".".

These interpretations can be suppressed by prepending a \. For example, since \ \ maps into a \, \ \n
will copy as \n which will be interpreted as a number register indicator when the macro or string is
reread.

0

7.9. Arguments. When a macro is invoked by name, the remainder of the line is taken to contain up to O·

nine arguments. The argument separator is the space character, and arguments may be surrounded by
double-quotes to permit imbedded space characters. Pairs of double-quotes may be imbedded in double-
quoted arguments to represent a single double-quote. U the desired arguments won't fit on a line, a con-
cealed newline may be used to continue on the next line.

When a macro is invoked the input level is pushed down and any arguments available at the previous level
become unavailable until the macro is completely read and the previous level is restored. A macro's own
arguments can be interpolated at any point within the macro with \$N, which interpolates the Nth argu­
ment (I:5N:59). If an invoked argument doesn't exist, a null string results. For example, the macro zz
may be defined by

.de xx \ "begin definition
Today la \ \$1 the \ \$2.

\•end definition

and called by

.xx Monday Uth

to produce the text

Today la Monda:y the Uth.

Note that the \$ was concealed in the definition with a prepended \. The number of currently available
arguments is in the .$ register.

No arguments are available at the top (non-macro) level in this implementation. Because string referenc­
ing is implemented as an input-level push down, no arguments are available from within a string. No
arguments are available within a trap-invoked macro.

Arguments are copied in cop11 mode onto a stack where they are available for reference. The mechanism
does not allow an argument to contain a direct reference to a long string (interpolated at copy time) and o
it is advisable to conceal string references (with an extra \) to delay interpolation until argument

- 30-

0

0

0

For1J1atting 'Docu1J1ents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

reference time.

7.,1. Diver,iona. Processed output may be diverted into a macro for purposes such as footnote processing
(see Tutorial §T5) or determining the horizontal and vertical size or some text ror conditional changing or
pages or columns. A single diversion trap may be set at a specified vertical position. The number regi&­
ters dn and dl respectively contain the vertical and horizontal size or the most recently ended diversion.
Processed text that is diverted into a macro retains the vertical size or each or its lines when reread in
nofiU mode regardless or the current V. Constant-spaced (ca) or emboldened (bd) text that is diverted
can be reread correctly only ir these modes are again or still in effect at reread time. One way to do this
is to imbed in the diversion the appropriate ca or bd requests with the transparent mechanism described
in §10.6.

Diversions may be nested and certain parameters and registers are associated with the current diversion
level (the top non-diversion level may be thought or as the 0th diversion level). These are the diversion
trap and associated macro, no-space mode, the internally-saved marked place (see mk and rt), the
current vertical place (.d register), the current high-water text base-line (.h register), and the current
diversion name (.a register).

7.5. Traps. Three types of trap mechanisms are available-page traps, a diversion trap, and an input­
line-count trap. Macro-invocation traps may be planted using wh at any page position including the top.
This trap position may be changed using ch. Trap positions at or below the bottom or the page have no
effect unless or until moved to within the page or rendered effective by an increase in page length. Two
traps may be planted at the same position only by first planting them at different positions and then mov­
ing one or the traps; the first planted trap will conceal the second unless and until the first one is moved
(see Tutorial Examples §T5). If the first one is moved back, it again conceals the second trap. The
macro associated with a page trap is automatically invoked when a line or text is output whose vertical
size reaches or sweeps past the trap position. Reaching the bottom of a page springs the top-of-page trap,
if any, provided there is a next page. The distance to the next trap position is available in the .t register;
if there are no traps between the current position and the bottom of the page, the distance returned is the
distance to the page bottom.

A macro--invocation trap effective in the current diversion may be planted using dt. The .t register works
in a diversion; if there is no subsequent trap a large distance is returned. For a description or input-line­
count traps, see It below.

Requeal I11ilial
Form Val••

.de Z% UU

.am zzw

.d1 zz siring -

.a.a zz string-

.rm zz

.rn zz UI/

I/No
Argcmenf

,1J1J=··

.uu=-
ignored

ignored

ignored

ignored

Nole, E:r1la11olion

Define or redefine the macro zz. The contents of the
macro begin on the next input line. Input lines are copied
in copU mode until the definition is terminated by a line
beginning with •W, whereupon the macro w is called. In
the absence or W, the definition is terminated by a line
beginning with " •• ". A macro may contain de requests
provided the terminating macros differ or the contained
definition terminator is concealed. " •• " can be concealed
as \\•• which will copy as \ •• and be reread as " .. ".

Append to macro (append version or de) .

Define a string zz containing siring. Any initial double­
quote in siring is stripped off to permit initial blanks.

Append siring to string zz (append version or d1).

Remove request, macro, or string. The name zz is
removed from the name list and any related storage space
is Creed. Subsequent references will have no effect.

Rename request, macro, or string zz to yy. If 1111 exists, it
is first removed.

- 31 -

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

.di zz end D Divert output to macro zz. Normal text processing occurs 0
during diversion except that page offsetting is not done. ·
The diversion ends when the request d1 or da is encoun-
tered without an argument; extraneous requests of this
type should not appear when nested diversions are being
used.

.da zz end D Divert, appending to zz (append version or di).

.wh Nzz V Install a trap to invoke zz at page position N; a negative N
will be interpreted with respect to the page bollom. Any
macro previously planted at N is replaced by zz. A zero N
refers to the lop of a page. In the absence of zz, the first
found trap at N, it any, is removed.

.ch zz N V Change the trap position for macro zz to be N. In the
absence or N, the trap, if any, is removed.

.dt N zz ofl' D,v Install a diversion trap at position Nin the currenl diver-
sion to invoke macro zz. Another dt will redefine the
diversion trap. Ir no arguments are given, the diversion
trap is removed.

.It N zz ofl' E Set an input-line-count trap to invoke the macro zz after
N lines of lezl input have been read (control or request
lines don't count). The text may be in-line text or text
interpolated by inline or trap-invoked macros.

.em zz none none The macro zz. will be invoked when all input has ended.
The efl'ect is the same as if the contents of zz had been at
the end or the last file processed.

8. Number Register•

A variety of parameters are available to the user as predefined, named number regiBler, (see Summary and
Index, page 7). In addition, the user may define his own named registers. Register names are one or two
characters long and do nol conflict with request, macro, or string names. Except tor certain predefined
read-only registers, a number register can be read, written, automatically incremented or decremented,
and interpolated into the input in a variety of formats. One common use or user-defined registers is to
automatically number sections, paragraphs, lines, etc. A number register may be used any time numerical
input is expected or desired and may be used in numerical ezpressionB (§1.4).

Number registers are created and modified using nr, which specifies the name, numerical value, and the
auto-increment size. Registers are also modified, it accessed with an auto-incrementing sequence. Ir the
registers z and zz both contain N and have the auto-increment size M, the following access sequences have
the efl'ect shown:

Efl'ect on Value
Sequence Register Interpolated

\nz none N
\n(zz none N
\n+z z incremented by M N+M
\n-z z decremented by M N-M
\n+(zz zz incremented by M N+M
\n-(zz zz decremented by M N-M

0

When interpolated, a number register is converted to decimal {default), decimal with leading zeros, lower-
case Roman, upper-case Roman, lower-case sequential alphabetic, or upper-case sequential alphabetic o
according to the format specified by at.

- 32 -

I
\

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

I/No Regae,t
Form

/ailial v., •. Arg•menl Nole,

.nrR±NM u

.at R c arabic

.rr R ignored

II. Taha, Leaden, and Field•

E:r1lanolion

The number register R is assigned the value ± N with
respect to the previous value, if any. The increment for
auto-incrementing is set to M.

Assign format c to register R. The available Cormats are:

Numbering
Format Sequence

1 0,1,2,3,4,5, ...
001 000,001,002,003,004,005, ...

I O,i,ii,iii,iv ,v , ...
I 0,1,Il,Ill,N,V, ...
a 0,a,b,c, ... ,z,aa,ab, ... ,zz,aaa, ...
A O,A,B,C, ... ,Z,AA,AB, ... ,ZZ,AAA, ...

An arabic format having N digits specifies a field width of
N digits (example 2 above). The read-only registers and
the width function (§11.2) are always arabic.

Remove register R. If many registers are being created
dynamically, it may become necessary to remove no longer
used registers to recapture internal storage space for newer
registers.

9.1. Tabs and leaders. The ASCII horizontal tab character and the ASCII SOH (hereafter known as the
leader character) can both be used to generate either horizontal motion or a string of repeated characters.
The length of the generated entity is governed by internal tah stop, specifiable with ta. The default
difference is that tabs generate motion and leaders generate a string of periods; tc and le offer the choice
of repeated character or motion. There are three types of internal tab stops-le/I adjusting, right adjust,.
ing, and centering. In the following table: D is the distance from the current position on the input line
(where a tab or leader was found) to the next tab stop; nezt-string consists of the input characters follow­
ing the tab (or leader) up to the next tab (or leader) or end of line; and Wis the width or nezt-string.

Tab Length of motion or Location of
type repeated characters nezt-atring

Left D Following D
Right D-W Right adjusted within D

Centered D-W/2 Centered on right end of D

The length of generated motion is allowed to be negative, but that of a repeated character string cannot
be. Repeated character strings contain an integer number of characters, and any residual distance is
prepeoded as motion. Tabs or leaders found after the last tab stop are ignored, but may be used as nezt­
string terminators.

Tabs and leaders are not interpreted in copy mode. \t and \a always generate a non-interpreted tab and
leader respectively, and are equivalent to actual tabs and leaders in copy mode.

9.11. Field•. A Mid is contained between a pair of field delimiter characters, and consists of sub-strings
separated by padding indicator characters. The field length is the distance on the input line from the posi­
tion where the field begins to the next tab stop. The difference between the total length of all the sub­
strings and the field length is incorporated as horizontal padding space that is divided among the indi­
cated padding places. The incorporated padding is allowed to be negative. For example, if the field del­
imiter is# and the padding indicator is-, #·zzz·right# specifies a right,.adjusted string with the string

- 33 -

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

zzz centered in the remaining epace.

Reque,t
Form

.ta Nt ...

.tc C

Initial
Value

0.8; O.Sin

none

//No
Ar,amenl

none

none

Nol•• E:r,lanalion

E,m Set tab stops and types. l=R, right adjusting; l=C,
centering; I absent, left adjusting. lroff tab stops are
preset every O.Sin.; nroff every 0.8in. The stop values are
separated by spaces, and a value preceded by + is treated
as an increment to the previous stop value.

E The tab repetition character becomes c, or is removed
specifying motion .

• le c none E The leader repetition character becomes c, or is removed
specifying motion .

• fc a b off off The fleld delimiter is set to a; the padding indicator is set
to the space character or to b, if given. In the absence of
arguments the fteld mechanism is turned off.

10. Input and Output Conventlom and Ch&J'acter Tranalatlom

10.1. Input character translations. Ways of inputting the graphic character set were discussed in §2.1.
The ASCII control characters horizontal tab (§9.1), SOH (§9.1), and backspace (§10.3) are discussed else­
where. The newline delimits input lines. In addition, STX, ETX, ENQ, ACK, and BEL are accepted, and
may be used as delimiters or translated into a graphic with tr (§10.5). All others are ignored.

The escape character \ introduces escape sequence,.._causes the following character to mean another char-
acter, or to indicate some function. A complete list or such sequences is given in the Summary and Index

0

on page 6. \ should not be confused with the ASCII control character ESC of the same name. The escape
character \ can be input with the sequence \ \. The escape character can be changed with ec, and all o
that has been said about the default \ becomes true for the new escape character. \e can be used to print • .
whatever the current escape character is. Ir necessary or convenient, the escape mechanism may be
turned off with eo, and restored with ec.

Reque,I Initial If No
Form Value Argamenl Nol•• E:r,loaolion

.ec c

.eo

\
on

\ Set escape character to \, or to c, if given.

Turn escape mechanism off.

10./!. Ligatures. Five ligatures are available in the current troff character set - ft, ft, ff, ffl, and ffl. They
may be input (even in nro!/J by \(ft, \(ft, \(ff, \(Fl, and \(Fl respectively. The ligature mode is nor­
mally on in troff. and automatically invokes ligatures during input.

Request
Form

.lg N

Initial
Value

off'; on

I/No
Argamenl Note, E:r,taaolion

on Ligature mode is turned on if N is absent or non-zero, and
turned off if N=O. If N=2, only the two-character liga.­
tures are automatically invoked. Ligature mode is inhi­
bited for request, macro, string, register, or file names, and
in copy mode. No effect in nroff.

10.9. Backspacing, underlining, overstriking, etc. Unle88 in cop11 mode, the ASCll backspace character is
replaced by a backward horizontal motion having the width or the space character. Underlining as a form
of line-drawing is discussed in §12.4. A generalized overstriking function is described in §12.1.

nroff automatically underlines characters in the underline Cont, specifiable with uf, normally that on font
position 2 (normally Times Italic, see §2.2). In addition to ft and \tF, the underline font may be selected
by ul and cu. Underlining is restricted to an output-device-dependent subset of reasonable characters.

- 34 -

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

Re1ue,I
Form

.ul N

.cu N

.ur F

lailiol
Valve

off

off

Italic

I/No
Argamenl

N=al

N=al

Italic

Nole, E:rplanalion

E Underline in nroff (italicize in troff) the next N input text
lines. Actually, switch to underline font, saving the
current font for later restoration; other font changes within
the span of a ul will take effect, but the restoration will
undo the last change. Output generated by ti (§14) i•
affected by the font change, but does not decrement N. Ir
N> 1, there is the risk that a trap interpolated macro may
provide text lines within the span; environment switching
can prevent this.

E A variant of ul that causes every character to be under­
lined in nroff. Identical to ul in troff.

Underline font set to F. In nroff, F may not be on posi­
tion 1 (initially Times Roman).

10.,1. Control character,, Both the control character • and the no- &real: control character • may be
changed, if desired. Such a change must be compatible with the design of any macros used in the span of
the change, and particularly of any trap-invoked macros.

Re9ued
Form

lailial
Val•e

I/No
Ar1amenl Nole, Esplaaalion

.cc c E The b88ic control character is set to c, or reset to • .• .

.cl c E The no6reak control character is set to c, or reset to • ~.

10.5. Output tran,lation. One character can be made a stand-in for another character using tr. All text
processing (e. g. character comparisons) takes place with the input (stand-in) character which appears to
have the width of the final character. The graphic translation occurs at the moment of output (including
diversion).

Re9ue,I
Form

.tr abed

laili&I v., ••
none

I/No
Ar1amenl Nol•• Esplaaalion

0 Translate a into 6, c into d, etc. Ir an odd number or
characters is given, the last one will be mapped into the
space character. To be consistent, a particular translation
must stay in effect from input to output time.

10.6. Tran•parent throughput. An input line beginning with a\! is read in copy mode and tran,parenlly
output (without the initial \!); the text processor is otherwise unaware of the line's presence. This
mechanism may be used to pass control information to a post-processor or to imbed control lines in a
macro created by a diversion.

10. 7. Comment• and concealed newlines. An uncomfortably long input line that must stay one line (e. g. a
string definition, or nofilled text) can be split into many physical lines by ending all but the last one with
the escape \. The sequence \(newline) is alway, ignored--,,xcept in a comment. Comments may be
imbedded at the end of any line by prefacing them with\•. The newline at the end of a comment cannot
be concealed. A line beginning with \" will appear as a blank line and behave like .ap l; a comment can
be on a line by itself by beginning the line with • \ •.

11. Local Horbontal and Vertical Motlona, and the Width Function

11.1. Local Motion,. The functions \v 'N' and \b 'N • can be used for local vertical and horizontal motion
respectively. The distance N may be negative; the po,itive directions are rightward and downward. A
local motion is one contained within a line. To avoid unexpected vertical dislocations, it is necessary that
the net vertical local motion within a word in filled text and otherwise within a line balance to zero. The
above and certain other escape sequences providing local motion are summarized in the following table .

• 35.

Formatting Documents with Nroff and TrvJ
Editing and Text Processing
Revision C or 7 January 1984

Vertical Effect in
Local Motion troff nroff

\v'N' Move distance N

\u 'hem up 'h line up
\d 'hem down 'h line down
\r 1 em up l line up

Horizontal Effect in
Local Motion troff nroff

\h'N' Move distance N
\(space) Unpaddable space-size space
\0 Digit-size space

\I 1,1, em space ignored
\· 'fu em space ignored

As an example, E' could be generated by the sequence E\11-l\v '-0.4m '1\v 'U.4m ,a+I; it should be
noted in this example that the 0.4 em vertical motions are at the smaller size.

11.£. Width Function. The width function \w'slring' generates the numerical width of •Iring (in basic
units). Size and font changes may be safely imbedded in ,Iring, and will not affect the current environ,
ment. For example, .tl -\w'l. ·u could be used to temporarily indent leftward a distance equal to the
size or the string "1. ".

The width function also sets three number registers. The registers at and ab are set respectively to the
highest and lowest extent or siring relative to the baseline; then, for example, the total height of the string
is \n(atu-\n(abu. In troff the number register ct is set to a value between O and 3: 0 means that all of
the characters in string were short lower case characters without descenders (lite e); 1 means that at least
one character has a descender (like 7); 2 means that at least one character is tall (like B); and 3 means
that both tall characters and characters with descenden, are present.

0

11.S. Mark horizontal place. The escape sequence \k:r will cause the current horizontal position in the
input line to be stored in register :r. As an example, the construction \kxword\h 'I \nxu+lu 'word will
embolden word by backing up to almost its beginning and overprinting it, resulting in 1110,l.

U. Overstrike, Bracket, Line-drawing, and Zero-width Functlona 0
1£.1. Overstriking. Automatically centered oven,triking or up to nine characters is provided by the over-
strike function \o 'siring·. The characters in siring overprinted with centers aligned; the total width is
that or the widest character. siring should not contain local vertical motion. As examples, \o 'a\ .. pro-
duces e, and \o "mo\(sl' produces i.
1£.£. Zero-width characters. The function \ac will output c without spacing over it, and can be used to
produce left-aligned overstruck combinations. As examples, \•\(cl\(pl will produce G, and
\(br\z\(rn\(ul\(br will produce the smallest possible constructed box O.
12.S. Large Brackets. The Special Mathematical Font contains a number or bracket construction pieces
(1 l I J ! j I LJ n) that can be combined into various bracket styles. The function \b 'siring· may be used
to pile up vertically the characters in siring (the first character on top and the last at the bottom); the
characters are vertically separated by 1 em and the total pile is centered 1/2 em above the current base-

line ('k line in nroff). For example, \b '\(lc\(lf 'E\ I \b'\(rc\(rf '\x · -0.&m '\x 'U.&m · produces (ii: J
1£.4, Line drawing. The function \ l 'Ne• will draw a string of repeated c 's towards the right tor a dis­
tance N. (\I is \(lower case L). Ir c looks like a continuation or an expression tor N, it may insulated
from N with a \&. Ir c is not specified, the _ (baseline rule) is used (underline character in nroff). U N is
negative, a backward horizontal motion or size N is made before drawing the string. Any space resulting
from N /(size or c) having a remainder is put at the beginning (left end) or the string. In the case or char­
acters that are designed to be connected such as baseline-rule_, underrule _, and root-en - , the
remainder space is covered by over-lapping. Ir N is /es, than the width of c, a single c is centered on a
distance N. As an example, a macro to underscore a string can be written

.de us
\ \$1 \ I 'I O\(ul.

- 36 -

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

or one to draw a box around a string

.debx
\(br\l \\$1\ I \(br\1 ·10\(rn '\l ·10\(u1· ..

such that

.ul •underllned worde•

and

.bx •worde In a box•

yield underlined words and !words in a box!.
The function \L •Ne• will draw a vertical line consisting of the (optional) character c stacked vertically
apart 1 em (1 line in nroff), with the first two characters overlapped, if necessary, to form a continuous
line. The default character is the 6oz rule I (\(br); the other suitable character is the bold vertical I
(\(bv). The line is begun without any initial motion relative to the current base line. A positive N
specifies a line drawn downward and a negative N specifies a line drawn upward. After the line is drawn
no compensating motions are made; the instantaneous baseline is at the end of the line.

The horizontal and vertical line drawing functions may be used in combination to produce large boxes.
The zero-width 6oz-rule and the -em wide underru/e were designed to form corners when using 1-em
vertical spacings. For example the macro

.deeb
Jp -1 \"compensate for next automatic bue-llne epaclng
.of \ •avoid poulbb' overflowing word buffer
\h·-.&n '\L ·1 \\nau-1 '\1'\\n(.lu+ln\(ul'\L ·-I\ \nau+l \1·10u-.&n\(ut· \•draw box
.fl

will draw a box around some text whooe beginning vertical place was saved in number register a (e. g.
usino -L- a\ .-..11 done for this narae:rant.

13. Hyphenation.

The automatic hyphenation may be switched off and on. When switched on with by, several variants
may be set. A hyphenation indicator character may be imbedded in a word to specify desired hyphenation
points, or may be prepended to suppress hyphenation. In addition, the user may specify a small exception
word list.

Only words that consist or a central alphabetic string surrounded by (usually null) non-alphabetic strings
are considered candidates for automatic hyphenation. Words that were input containing hyphens (minus),
em-dashes (\(em), or hyphenation indicator characters-such as mother-in-Jaw-are alway, subject to
splitting after those characters, whether or not automatic hyphenation is on or off.

R egue,1 lnilia/ If No
Form Value Argemenl Nol.. Es1lonalio11

hyphenate .oh
.hyN on,N=l on,N=l

.he C \% \%

.hw wordl ... ignored

E

E

E

Automatic hyphenation is turned off.

Automatic hyphenation is turned on for N?, l, or off for
N-0. If N=Z, laBI lines (ones that will cause a trap) are
not hyphenated. For N=4 and 8, the last and first two
characters respectively or a word are not split off. These
values are additive; i. e. N= 14 will invoke all three res­
trictions.

Hyphenation indicator character is set to c or to the
default\%. The indicator does not appear in the output.

Specify hyphenation points in words with imbedded minus
signs. Versions of a word with terminal • are implied; i.e.

• 37 •

Formatting Documents with Nro!Jand Troff
Editing and Text Processing
Revision C of 7 January 1984

dig-ii implies dig-ila. This list is examined initially and

0 after each suffix stripping. The space available is small- .
about 128 characters.

14. Three Part Tltlee.

The titling function ti provides for automatic placement of three fields at the left, center, and right of a
line with a title-length specifiable with It. ti may be used anywhere, and is independent of the normal
text collecting process. A common use is in header and footer macros.

Regued
Form

Initial
Value

.ti 'le/I 'center 'right '

.pc C %

.It± N 6.5in

I/No
Ar1amenl Note• E:r1lanation

off

previous

The strings le/I, center, and right are respectively left-­
adjusted, centered, and right-adjusted in the current title­
length. Any of the strings may be empty, and overlapping
is permitted. If the page-number character (initially %) is
found within any of the fields it is replaced by the current
page number having the format assigned to register %.
Any character may be used as the string delimiter.

The page number character is set to c, or removed. The
page-number register remains %.

E, m Length of title set to ± N. The line-length and the title­
length are independent. Indents do not apply to titles;
page-offsets do.

15. Output Line Numbering.

Automatic sequence numbering of output lines may be requested with nm. When in effect, a three-
digit, arabic number plus a digit-space is prepended to output text lines. The text lines are thus Q, ·1

3 offset by four digit-spaces, and otherwise retain their line length; a reduction in line length may be
desired to keep the right margin aligned with an earlier margin. Blank lines, other vertical spaces,
and lines generated by ti are not numbered. Numbering can be temporarily suspended with no, or

6 with an .nm followed by a later .nm +o. In addition, a line number indent I, and the number-text
separation S may be specified in digit-spaces. Further, it can be specified that only those line
numbers that are multiples of some number M are to be printed (the others will appear as blank

9 number fields).

RegueBI
Form

Initial
Value

.nm±NM SI

I/No
Argamenl

off

Not.. E:r,lanalion

E Line number mode. H ± N is given, line numbering is
turned on, and the next output line numbered is numbered
± N. Default values are M= 1, S= 1, and l=O. Parame­
ters corresponding to missing arguments are unaffected; a
non-numeric argument is considered missing. In the
absence of all arguments, numbering is turned off; the next
line number is preserved for possible further use in number
register In .

.on N N=l E The next N text output lines are not numbered.

As an example, the paragraph portions of this section are numbered with M= 3: .nm 1 3 was placed
at the beginning; .nm was placed at the end of the first paragraph; and .nm +o was placed in front

12 of this paragraph; and .nm finally placed at the end. Line lengths were also changed (by
\wllOOO'u) to keep the right side aligned. Another example is .nm +5 5 x 3 which toms on
numbering with the line number of the next line to be 5 greater than the last numbered line, with

15 M = 5, with spacing S untouched, and with the indent I set to 3.

- 38 -

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Proce66ing
Revision C of 7 January 1984

l&. Condltlonal Acceptance of Input

In the following, c is a one-character, buil!rin condilion name, I signifies nol, N is a numerical expression,
slringl and slringe are strings delimited by any non-blank, n.on-numeric character not in the strings, and
an11thing represents what is conditionally accepted.

If No Reque,I
Form

/nilial v., •. Argumenl Nol.. Es,l•••lion

JI c an11lhing

JI le an11lhing

JI N an11thing

JI IN an11lhing

JI 'slringl 'siring!! • an11lhing

JI I 'slringl 'slringe • an11lhing

Je c an11lhing

. el an11thing

The builtrin condition names are:

u

u

u

Condition
Name

0

•
t
n

If condition c true, accept an11thing as input; in multi­
line case use \ { an11lhing \}.

If condition c false, accept an11thing.

If expression N > 0, accept an11thing.

If expre66ion N ~ 0, accept an11lhing.

If slringl identical to siring!!, accept on11thing.

If slringl not identical to siring!!, accept an11lhing.

If portion of if-else; all above forms (like lf).
Eloe portion of if-else .

True If
Current page number is odd
Current page number is even
Formatter is troff
Formatter is nroff

It the condition c is true, or if the number N is greater than zero, or if the strings compare identically
(including motions and character size and font), an11lhing is accepted as input. If a I precedes the condi­
tion, number, or string comparison, the sense of the acceptance is reversed.

Ally spaces between the condition and the beginning of an11lhing are skipped over. The an11lhing can be
either a single input line (text, macro, or whatever) or a number of input lines. In the multi-line case, the
first line must begin with a left delimiter\{ and the last line must end with a right delimiter\}.

The request le (if-else) is identical to If except that the acceptance state is remembered. A subsequent
and matching el (else) request then uses the reverse sense of that state. le - el pairs may be nested.

Some examples are:

Jf e .ti 'Even Pap % ...
which outputs a title if the page number is even; and

Je \n%>1 \{\
'•p 0.61
.ti 'Pap%'''
'•P 11.z1 \}
.el.•p IZ.61

which treats page 1 differently from other pages.

17. Environment Switching.

A number of the parameters that control the text proce66ing are gathered together into an environmenl,
which can be switched by the user. The environment parameters are those associated with requests not,
ing E in their Noles column; in addition, partially collected lines and words are in the environment.
Everything else is global; examples are pag-riented parameters, diversion-oriented parameters, number

- 39-

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

registera, and m•cro and string definition,. AU environment, are initialized with de/au/I parameter value,.

Request
Form

.ev N

Initial
Value

N 0

I/No
Arg•menl Nolu Es1lsnalion

previous Environment switched to environment 0;5;N;5;2. Switch­
ing is done in push-down fashion so that restoring a previ­
ous environment must be done with .ev rather than
specific reference.

18. Jnaertlona from the Standard Input

The input can be temporarily switched to the system ,tandard input with rd, which will switch back when
two newlines in a row are found (the eztra blank line is not used). This mechanism is intended for inser­
tions in form-letter-like documentation. On UNIX, the standard input can be the user's keyboard, a pipe,
or a file.

Requerl
Form

Initial
Value

.rd prompt -

.ex

I/No
Arg•ment

prompt=BEL

Nole• E:r1lanalion

Read insertion from the standard input until two new-
lines in a row are found. Ir the standard input is the
user's keyboard, prompt (or a BEL) is written onto the
user's terminal. rd behaves like a macro, and arguments
may be placed after prompt.

Exit from nroff/ troff. Text processing is terminated
exactly as if all input had ended.

0

Ir insertions are to be taken from the terminal keyboard while output is being printed on the terminal, the
command line option -q will turn off the echoing of keyboard input and prompt only with BEL. The reg­
ular input and insertion input cannot simultaneously come from the standard input.

AB an example, multiple copies or a form letter may be prepared by entering the insertions for all the 0
copies in one file to be used as the standard input, and causing the file containing the letter to reinvoke
itself using nx (§19); the process would ultimately be ended by an ex in the insertion file.

UI. Input/Output File Switching

Requerl Initial If No
Form Value Arg•ment Nole• Es1lanalion

.so filename

.nx filename end-of-file

.pl program

ZO. Miscellaneous Requests

Reque,I Initial If No
Form Value Arg•menl

.me c N off

Switch source file. The top input (file reading) level is
switched to filename. The effect or an IIO in a macro is felt
when 110 is encountered. When the new file ends, input is
again taken from the original file. IIO's may be nested.

Next file is filename. The current file is considered ended,
and the input is immediately switched to filename.

Pipe output to program (nroff only). This request must
occur before any printing occurs. No arguments are
transmitted to program.

Nol•• E:r1lanalion

E,m Specifies that a margin character c appear a distance N to
the right or the right margin after each non-empty text
line (except those produced by ti). Ir the output line is
too-long (as can happen in nofill mode) the character will
be appended to the line. Ir N is not given, the previous N
is used; the initial N is 0.2 inches in nroff and lem in troff.

- 40-

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1084

.tm siring newline

.lg 1111 .J/1/=··

.pm I all

.ft B

ab te:i:1 none

U. Output and Error Meuagea.

The margin character used with this paragraph was a Jf!.
point bo:i:-rule.

After skipping initial blanks, string (rest of the line) is
read in copy mode and written on the user's terminal.

Ignore input lines. Is behaves exactly like de (§7) except
that the input is discarded. The input is read in copy
mode, and any au~incremented registers will be affected.

Print macros. The names and sizes of all of the defined
macroe and strings are printed on the user's terminal; if I
is given, only the total of the sizes is printed. The sizes is
given in blocb of 128 characters.

Flush output buffer. Used in interactive debugging to
force output.

Displays le:,;I and terminates without further processing. If
le:i:I is missing, 'User Abort' is displayed. Does not cause a
break. The output buffer is Hushed.

The output from tm, pm, and the prompt from rd, as well 88 various error messages are written onto
UNIX's standard message output. The latter is different from the standard output, where nroff formatted
output goes. By default, both are written onto the user's terminal, but they can be independently
redirected.

Various error conditions may occur during the operation of nroff and troff. Certain less serious errors hav­
ing only local impact do not cause processing to terminate. Two examples are word overflow, caused by a
word that is too large to fit into the word buffer (in 811 mode), and line overflow, caused by an output line
that grew too large to fit in the line buffer; in both ca,es, a message is printed, the offending excess is di&­
carded, and the affected word or line is marked at the point of truncation with a • in nroff and a <= in
troff. The philosophy is to continue processing, if possible, on the grounds that output useful for debug­
ging may be produced. If a serious error occurs, processing terminates, and an appropriate message is
printed. Examples are the inability to create, read, or write files, and the exceeding of certain internal
limits that make future output unlikely to be useful.

- 41 -

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

0
Tutorial Examplea

Tl. Introduction
Although nroff and troff have by design a oyntax
reminiscent or earlier text processors• with the
intent ol easing their use, it is almost always
necessary to prepare at least a small set or macro
definitions to describe most documents. Such
common formatting needs as page margins and
footnotes are deliberately not built into nroff and
troff. Instead, the macro and string definition,
number register, diversion, environment switching,
page-position trap, and conditional input mechan­
isms provide the basis tor user-defined implemen­
tations.

The examples to be discussed are intended to be
useful and somewhat realistic, but won't neces­
sarily cover all relevant contingencies. Explicit
numerical parameters are used in the examples to
make them easier to read and to illustrate typical
values. In many cases, number registers would
really be used to reduce the number or places
where numerical information is kept, and to con­
centrate conditional parameter initialization like
that which depends on whether troff or nroff is
being used.

TZ. Page Marglm

As discussed in §3, header and footer macros are
usually defined to describe the top and bottom
page margin areas respectively. A trap is planted
at page position O tor the header, and at -N (N
Crom the page bottom) tor the tooter. The sim­
plest such definitions might be

.de hd \" define header
·ap 11

.de fo
bp

.wh O hd

.wh -11 to

\•end definition
\" define footer

\ "end definition

which provide blank 1 inch top and bottom mar­
gins. The header will occur on the jirBt page, only
it the definition and trap exist prior to the initial

•For example: P.A. Cri11ma.n, Ed., TAe Compoti61c Time·
Sharing Sy,tem, MIT Prct111, 196S, Section AHQ.01 (Oe11crip&ioa
of RUNOFF program on MIT'a CTSS eysiem}.

pseudo-page transition (§3). In 611 mode, the out­
put line that springs the rooter trap was typically
forced out because some part or whole word didn't
fit on it. U anything in the footer and header that
follows causes a 6reak, that word or part word will
be forced out. In this and other examples,
requests like bp and ap that normally cause
breaks are invoked using the no-6reai control
character • to avoid this. When the header /footer
design contains material requiring independent
text processing, the environment may be switched,
avoiding most interaction with the running text.

A more realistic example would be

.de hd \ "header

.If t .ti '\(rn ·,(rn • \ "troff cut mark

.If \\n%>1 \{\
'ap I 0.6l-1 \ "ti bue at 0.61
.ti ··- %-·· \"centered page number
.pa \ "reatore alee
.n· \ "reatore font

·"!• l\}Ol \\"reetore ve o
•P 1. "apace to 1.01

.na \ "turn on no-apace mode . .

.de to \ "footer

.pa 10 \ "eet footer /header elze

.ft R \ "nt font

.ve lip \ "eet baae-llne epaclng

.If \\n%=1 \{\
'ep I\ \n(.pu-0.&l-l \ "ti bue 0.61 up
.ti ··- % - •• \} \ "flnt page number
bp ..
. whOhd
.wh-11 to

which sets the size, font, and base-line spacing for
the header /tooter material, and ultimately restores
them. The material in this case is a page number
at the bottom or the first page and at the top of
the remaining pages. Ir troff is used, a cul mark is
drawn in the form of root-en's at each margin.
The ep's refer to absolute p08itions to avoid
dependence on the base-line spacing. Another rea­
son for this in the footer is that the footer is
invoked by printing a line whose vertical spacing
swept past the trap position by possibly as much

0 as the base-line spacing. The no-space ·

- 42-

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

mode i8 turned on al lhe end of hd to render
ineffective accidental occurrences or ep at the top
or the running text.

The above method or restoring size, Cont, etc.
presupposes that such requests (that set previoiu
value) are nol used in the running text. A better
scheme is save and restore both the current and
previous values as shown for size in the rollowing:

.de fo

.nr al \ \n(.a \•current else

.pa

. nr 12 \\n(.a

. -
••
. de hd
. -
.pa \\n(a2
.pa \\n(al

\ • prevloua else
\ "rest of footer

\ "header atuff
\ •re1tore prevloue else
\ •reatol'tl current else

Page numbers may be printed in the bottom mar­
gin by a separate macro triggered during the
rooter's page ejection:

.de bn \"bottom number

.ti ··- % - •• \•centered page number

.wh -0.51-lv bn \"ti base 0.61 up

T3. Paragraph• and Headlnp
The housekeeping associated with starting a new
paragraph should be collected in a paragraph
macro that, for example, does the desired prepar,..
graph spacing, forces the correct ront, size, base­
line spacing, and indent, checks that enough space
remains (or more than one line, and requests a
temporary indent.

.de pg \ "paragraph

.hr \"break

.ft R \ "force font,
• pa 10 \ •• ,
.vs Up \"spacing,
.In O \"and Indent
.ap 0.4 \ "prespace
.ne 1+\\n(.Vu\"want more than 1 llne
.ti O.ZI \ "temp Indent

The first break in pg will rorce out any previous
partial lines, and must occur before the vs. The
forcing or root, etc. is partly a derense against
prior error and partly to permit things like section
beading macros to set parameters only once. The
prespacing parameter is suitable ror lroJ!, a larger
space, at least as big as the output device vertical

resolution, would be more suitable in nroff. The
choice or remaining space to test for in the ne is
the smallest amount greater than one line (the .V
is the available vertical resolution).

A macro to automatically number section head­
ings might look like:

.de ac \ •section
• - \ "force font, etc.
.ap 0.4 \ "preapaee
.ne 2.4+\ \n(.Vu \"want Z.4+ llnea
.ft
\\n+s .

.nrS01 \"lnlt s
The usage is .ac, followed by the section heading
text, followed by .pg. The ne test value includes
one line or heading, 0.4 line in the following pg,
and one line or the paragraph text. A word con­
sisting or the next section number and a period is
produced to begin the beading line. The rormat or
the number may be set by af (§8).

Another common Corm ie the labeled, indented
paragraph, where the label protrudes lert into the
indent space.

.de Ip \ "labeled paragraph
•Pl
.In 0.51
.ta 0.21 0.61
.ti 0
\t\\$1\t\c

\"paragraph Indent
\ "label, paragraph

\ "flow Into paragraph

The intended usage is "Jp label"; label will begin
at 0.2 inch, and cannot exceed a length or 0.3 inch
without intruding into the paragraph. The label
could be right adjusted against 0.4 inch by setting
the tabs instead with .ta 0.41R 0.51. The last
line or Ip ends with \c so that it will become a
part or the first line or the text that follows .

T4. Multiple Column Output

The production or multiple column pages requires
the rooter macro to decide whether it was invoked
by other than the last column, so that it will begin
a new column rather than produce the bottom
margin. The header can initialize a column regis­
ter that the rooter will increment and test. The
following is arranged for two columns, but is
easily modified for more.

.de hd \ "header . -

.nrcl01

.mk
\ "lnlt column count
\ "mark top of text

- 43-

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

.de fo \"footer

.ie \\n+ {cl<ll \{\

.po+ /l.4i \"nezl column; 9.1+ 0.9

.rl \" back lo mark

.n• \} \" no-,pace mode

.el\{\

.po \\nMu \"re,tore left margin

'bp \}

.II 9.li

.nr M \\n{.o
\" column width
\" ,ave left margin

Typically a portion of the top of the &rst page
contains full width text; the request for the nar­
rower line length, as well as another .mk would be
made where the two column output was to begin.

T5. Footnote Proceulng

The footnote mechanism to be described is used
by imbedding the footnotes in the input text at
the point of reference, demarcated by an initial
.fn and a terminal .et:

.fn
Footnote tezl and control line, ...
.et

In the following, footnotes are processed in a
separate environment and diverted for later print­
ing in the space immediately prior to the bottom
margin. There is provision for the case where the
last collected footnote doesn't completely &t in the
available space.

.de bd

. -

.nr x O 1

.nr)' 0-\ \nb

.ch to -\\nbu

.If\ \n(dn .fa

.de to

.nr dn 0

.It\ \nx \{\

\"header

\" !nit footnote count
\"' current footer place
\ "reoet footer trap
\" leftover footnote

\"footer
\•zero laot diversion slN

.ev 1 \ "expand footnotes In evl

.nf \ "retain vertical obe

.FN \ "footnotes

.rm FN \•delete It

.It"\ \n(.a"f)'" .di\ "end overflow dlverolon

.nr x O \ • dloable fx

.ev \} \ "pop environment

. -
"bp

.de fx \ "proceu footnote overflow

Jt \ \nx .di f)' \•divert overflow

.de fn \ •start footnote

.da FN \ "divert (append) footnote

.ff 1 \ "In environment 1
Jt \\n+x=l .r. \ "If first, Include separator
.ft \ "fill mode

.de et \ "end footnote

.br \ "finish output
JlJ' • \\n(.v \"aave spacing
..,., \"popev
.di \"end diversion
.nr 7 -\ \n(dn \ "new footer pooltlon,
Jt \\nx=l JlJ' y -(\\n(.v-\ \ns) \

\ "uncertainty correction
.ch to \ \nyu \ •y la negative
.It(\ \n(nl+lv)>(\ \n(.p+\ \ny) \
.ch to \\n(nlu+lv \"lt didn't flt

.de fa
\1 '11'
.br

.de fa

.tn

.nf

.ty

.et

\"aeparator
\ "l Inch rule

\ •get leftover footnote

\ "retain vertical size
\ "where fx put It

.nr b 1.01 \ "bottom margin size

.wh O hd \"header trap

. wh UII to \ "footer trap, temp position

.wh -\ \nbu fx \ •tx at footer pooltlon

.ch to -\\nbu \"conceal fx with to
The header hd initializes a footnote count register
x, and sets both the current footer trap position
register 7 and the footer trap itself to a nominal
position speeilied in register b. In addition, if the
register dn indicates a leftover footnote, ts is
invoked to reprocess it. The footnote start macro
fn begins a diversion (append) in environment 1,
and increments the count x; ii the count is one,
the footnote separator fa is interpolated. The
separator is kept in a separate macro to permit
user redefinition. The footnote end macro et
restores the previous environment and ends the
diversion alter saving the spacing size in register
s. y is then decremented by the size of the foot­
note, available in dn; then on the &rst footnote, 7
is further decremented by the difference in vertical
base-line spacings of the two environments, to
prevent the late triggering the footer trap from
causing the last line of the combined footnotes to

• 44 •

0

0

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

overflow. The footer lrop i8 lhen sel lo the lower
{ on lhe page) ofy or the current page position (nl)
plus one line, to allow for printing the reference
line. Ir indicated by x, the footer fo rereads the
footnotes from FN in nolill mode in environment
1, and deletes FN. Ir the footnotes were too large
to lit, the macro fx will be trap-invoked to
redivert the overftow into fy, and the register dn
will later indicate to the header whether fy is
empty. Both fo and fx are planted in the nominal
footer trap position in an order that causes fx to
be concealed unless the fo trap is moved. The
footer then terminates the overftow diversion, if
necessary, and zeros x to disable fx, because the
uncertainty correction together with a not-too-late
triggering of the footer can result in the footnote
rereading finishing before reaching the fx trap.

A good exercise for the student is to combine the
multiple-column and footnote mechanisms.

TII. The Last Page

After the last input file has ended, nroff and troff
invoke the end macro (§7), if any, and when it
finishes, eject the remainder of the page. During
the eject, any traps encountered are processed nor­
mally. At the end of this last page, processing ter­
minate5 unlezs a partial line1 word, or partial word
remains. If it is desired that another page be
started, the end-macro

.de en \ • end-mauo
\c
bp ..
.em en

will deposit a null partial word, and effect another
last page.

- 45 -

Formatting Documents with Nro!fand Troff
Editing and Text Processing
Revision C of 7 January 1984

Table I

Font Style Examples

The following fonts are printed in 12-point, with a vertical spadng or 14-point, and with non­
alphanumeric characters separated by 'l•em space. They are Times Roman, Italic, Bold, and a special
mathematical font.

Times Roman

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
1234567890
!$%&()"*+-.,/:;=![JI
• ___ ,,. fifl.ffffiffl' t' ©

Times Italic

abcdef ghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPQRSTUVWXYZ
128,1567890
!$%&()"*+ -.,/:;='If/I
• fiflffjfiffl't' ©©

Times Bold

abcdefghijklmnopqrstuvwxys
ABCDEFGmJKLMNOPQRSTUVWXYZ
1234567890
! $ % & (> "• +-.' /:; = r 111
• ftflfl'fflffl O t' ©©

Special Mathematical Font

" '\. - , - I< > {} #@ + - = *
a /3 "f 8 e Pl (} t K).. µ v f. o 1r p <T <p T tJ ¢, x t/J w
f~0ASITET$\JIO
J- > < = ~ ~ ~-+ +- f ! X + ± Un C :JC :Joo iJ
§'i7·f~0ei~ <= 010,l\ 101 uni

- 46-

0

0

0

0

0

0

Formatting Documents with Nro/fand Troff
Editing and Text Processing
Revision C or 7 January 1984

Table II

Input Naming Conventions for ', ',and
and for Non-ASCII Special Characters

Non-ASCII characten and minu on the atandard font&.

Jnpul Chroeler lnpal Chroder
C1ar Name Nome Chr Name Nome

close quote ft \(8 ft
open quote 0 \(0 ft

\(em 3/4 Em dash II \(11 II
hyphen or m \(Fi m

\(hy hyphen m \(Fl m
\- current font minus • \(de degree

• \(bu bullet t \(dg dagger
\(sq square \(rm root mark
\(ru rule \(ct cent sign

JI< \(14 1/4 \(rg registered
\(12 1/2 © \(co copyright
\(34 3/4

Non• ASCII characten and ·, ', _, +, -, -, and • on the apeclal font.

The ASCII characters 0, #, ", ·, ·, <, >, \, {, }, -, ·,and_ exist only on the special font and are
printed as a 1-em space if that font is not mounted. The following characters exist only on the special
font except for the upper case Greek letter names followed by t which are mapped into upper case English
letters in whatever font is mounted on font position one (default Times Roman). The special math plus,
minus, and equals are provided to insulate the appearance of equations from the choice of standard fonts.

lnpul Chracler Jnpul Chraeler
Cliar Name Name Cbr Name Name

+ \(pl math plus >. \(•I lambda
\(mi math minus µ \(•m mu

= \(eq math equals V \(•n nu
• \(•• math star (\(•c xi
§ \(sc section 0 \(•o omicron

\(aa acute accent " \(•p pi
\(ga grave accent p \(•r rho
\(ul underrule (T \(•s sigma

I \(sl slash (matching backslash) rp \(ts terminal sigma
a \(•a alpha T \(•t tau
fJ \(•b beta t) \(•u upsilon
1 \(•g gamma ; \(•r phi
6 \(•d delta X \(•x chi

• \(•e epsilon
"'

\(•q psi
r \(•, zeta w \(•w omega

" \(*Y eta A \(•A Alphat
8 \(•h theta B \(•B Betat

' \(•i iota r \(•G Gamma
IC \(•k kappa A \(•D Delta

- 47 •

Formatting Documents with Nroff and Troll
Editing and Text Processing
Revision C of 7 January 1984

lnpul Charaeler lnpul Character

0 Char Name Name CAar Name Name

E \(•E Epsilont =t \(rb right hand
z \(•Z Zetat ~ \(lh left hand
H \(•Y Etat 0 \(bs Bell System logo
e \(•H Theta I \(or or
I \(•I lotat 0 \(ci circle
K \(•K Kappat

' \(It left top ot bi& curly bracket
A \(•L Lambda ' \(lb left bottom
M \(•M Mut l \(rt ri&bt top
N \(•N Nut) \(rb right bot
8 \(•C Xi I \(It left center of big curly bracket
0 \(•O Omicront \(rk right center of bi& curly bracket
n \(•P Pi \(bv bold vertical
p \(•R Rhot L \(If left Door (left bottom of big
i:; \(•S Sigma square bracket)
T \(•T Taut J \(rf right Door (right bottom)
T \(•U Upsilon r \(le left ceiling (left top)

• \(•F Phi l \(re right ceiling (right top)
X \(•X Chit
'II \(•Q Psi
(l \(•W Omega
{ \(sr square root

\(rn root en extender
?: \(>= >=
:5 \(<= <=
= \(== identically equal 0 - \C= approx=

\(ap approximates

'I' \(!= not equal \(-> right arrow
+- \(<- left arrow
t \(ua up arrow
I \(da down arrow
X \(mu multiply

\(di divide
± \(+- plus-minus
u \(cu cup (union)
n \(ca cap (intersection)
C \(sb subset of
:::) \(sp superset of
!'.;; \(ib improper subset
2 \(ip improper superset
00 \(it infinity
a \(pd partial derivative
'v \(gr gradient
~ \(no not
J \(is integral sign

""' \(pt proportional to
II \(es empty set
e \(mo member of
I \(br box vertical rule

* \(dd double dagger

0
- 48 -

0

0

0

Formatting'Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

SumlD&I')' and Index for Request Reference

R•guell l•ilial If No
Form Vala•• Ar1•m•11I Nol•a# Eql111111lio11

1. General Explanation

z. Font and Character She Control

•P• :I: N 10 point previous E
... N 12/36em ignored E
.caFNM off P
.bd F N off P
~dSFN ~ P
.ft F Roman previous E
.tp NF R,l,B,S ignored
.ts SF N none

a. Page Control

Point size; also \•:!: N. t
Space-character size set to N/36em.t
Constant character space (width) mode (font F).t
Embolden font F by N-1 units.t
Embolden Special Font when current font is F.t
Change to font F = :,:, :i:z, or 1·4. Also \lz, \t(:i:z, \tN .
Font named F mounted on physical position 1SNS4.
Forces font For S for special characters to be in size N.

.pl :I: N 11 in 11 in v Page length .
• bp :I: N N= 1 BJ, v Eject current page; next page number N .
• pn :I: N N=l ignored Next page number N .
• po :I: N O; 26/27 in previous v Page offset .
. ne N N=l V D,v Need Nvertical space (V = vertical spacing) .
• ml< R none internal D Mark current vertical place in register R .
.rt :I: N none internal D,v Return (upward on/11) to marked vertical place.

,. Text Fllllng, Adjusting, and Centering

.br B

.ft 1111 B,E

. nr 611 B,E

.ad c adj,both adjust E

.na adjust E

. ce N off N=s 1 B,E

&. Vertical Spacing

.va N 1/6in;12pts previous

.la N N=l

.ep N

.ev N

.o•

.na

.r•
space

previous
N=lV
N=lV

ti. Line Length and Indenting

E,p
E
B,v
V

D
D

Break.
Fill output lines .
No filling or adjusting or output lines,
Adjust output lines with mode c from J .
No output line adjusting.
Center following N input text lines .

Vertical base line spacing (V).
Output N-1 Vs after each text output line.
Space vertical distance Nin either direction.
Save vertical distance N.
Output saved vertical distance .
Turn no-space mode on.
Restore spacing; turn no-space mode off .

.II :I: N 6.5 in previous E,m Line length.
Jo :I: N N O previous B,E,m Indent .
• ti :I: N ignored B,E,m Temporary indent.

'I. Macros, Strlnp, Diversion, and Poaltlon Trap•

.de zz Ill/

.amzzw

.d• :,::,: siring •

.1111-..
• 1111=­
ignored

Deftne or redeftne macro :zz; end at call of 1111·
Append to a macro .
Deftne a string zz containing string.

•Values separated by 11
;• are for •offnd lro§reapedively.

#Notes are explained at the end of thi1 SUD1IIW1 a.nd Index.
tNo efed in •rol-
i,'he use of 11 ... u control chuader (inatead of• •11) 11uppresaea the break fundion.

• 49-

Formatting Document. with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1084

I/No Requell
Form

Iailial
Value Argument Nol•• Es1laaalioa

.aa zz siring -

.rm zz

.rn zz YU

.di%%

.da zz
• wh Nzz
.ch zz N
.dt Nzz
• It N zz
.em zz none

8. Number Reglatera

• nrR±NM
.at R c arabic
. rr R

ignored
ignored
ignored
end
end

off
off
none

O. Taha, Leadera, and Flelda

• ta NI ... 0.8; 0.5in none
.tc C

.IC C

• fc • 6

none

off

none
none
off

D
D
V

V

D,v
E

u

E,m
E
E

Append ,Iring to &tring n.
Remove reque&t, macro, or &tring.
Rename reque&t, macro, or &tring :u to 1111.
Divert output to macro n.
Divert and append to z:.
Set location trap; negative is w.r.t. page bottom .
Change trap location .
Set a diversion trap.
Set an input-line count trap .
End macro is :u.

Define and set number register R; auto-increment by M .
As&ign format to register R (c=l, I, I, a, A) .
Remove register R .

Tab setting&; le/I type, unle&a l=R(right), C(centered) .
Tab repetition character.
Leader repetition character.
Set field delimiter a and pad character 6 .

10. Input and Output Conventions and Character Tranalatlons

0

.ec C \ \ Set e&cape character .
• eo on Turn off e&eape character mechanism. 0
.lg N -; on on Ligature mode on it N>O .
• ul N off N= l E Underline (italicize in troff) N input line& .
• cu N off N=l E Continuous underline in nroff, like ul in troff.
.uf F Italic Italic Underline font set to F (to be &witched to by ul) .
• cc c E Set control character to c •
.cZ c E Set nobrealt control character to c .
• tr abed.... none O Translate a to 6, etc. on output.

11. Local Horl&ontal and Vertical Motions, and the Width Function

U. Overstrike, Bracket, Line-drawing, and Zero-width Function•

13. Hyphenation.

• nh hyphenate E
• h;y N hyphenate hyphenate E
.he c \% \% E
. hw wordl ... ignored

14. Three Part Tltlea.

• ti 'le/I 'center 'right '
.pc C %

No hyphenation .
Hyphenate; N = mode .
Hyphenation indicator character c .
Exception words.

Three part title .
Page number character.

.It± N 6.5in
off
previous E,m Length of title.

15. Output Line Numbering .

• nm ± NM SI off
• nn N N 1

E
E

Number mode on or off, set parameters.
Do not number next N line& .

- 50 -

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C or 7 January 1984

I/No Ro9aed
Form

/ailial v., .. Ar1emonl Nol•• E:qlaaolion

111. Conditional Acceptance of Input

JI c anything

JI le anything
JI N anything u
JI IN anything u
JI 'stringl 'stringt' anything
JI I 'stringl 'stringe' anything
Je c anything u
.el anything

17. Environment Switching.

.ev N N=O previous

18. lnsertlona from the Standard Input

.rd prompt -

.ex
prompl=BEL

II condition c true, accept an11thing as input,
for multi-line use \{anything\}.
II condition c false, accept anything.
II expression N > 0, accept anything.
tr expression N ~ 0, accept anything.
tr 1lringl identical to Blringt, accept anything.
tr 1lringl not identical to siring/!, accept anything.
tr portion or if-else; all above Corms (lite U').
Else portion of if-else .

Environment switched (pu,A down) .

Read insertion .
Exit from nrojf/troJJ.

UI. Input/Output Flle Switching

JIO jiJename
JlX jiJename end-of-&le

Interpolate source file nam• contents when IIO encountered.
Next &le.

• pl program Pipe output to program (nroff only) .

20. Mlaeellaneous Request.

.ab lezl none
output buffer is Bushed.
• me cN

User Abort •

off E,m

Displays lozl and terminates without further proceMing;

Set margin character c and separation N .
• tm •Iring
Jg UY
.pm I

newline
·111J=-..

Print •Iring on terminal (UNIX standard message output) .
Ignore till call of 1/1/·

all Print macro names and sizes;

.n B
if I present, print only total of sizes.
Flush output buffer.

a1. Output and Error Meseq•

Notea-

B Request normally causes a break.
D Mode or relevant parameten associated with current diversion level.
E Relevant parameten are a part of the current environment.
O Must stay in effect un tit logical output.
P Mode must be still or again in effect at the time of physical output.

v ,p,m,u Default scale indicator; if not specified, scale indicaton are ignored.

Alpltabedcal Reqee1i ud Sedlo• Number Cro• Refereaee

ad 4 cc 10 d, 7 le 0 ie 18 II 8 ah 13 pi 10 m 7
af 8 ce 4 dl 7 i • if 18 .. 6 nm 15 pl 3 .. 8
•m 7 •• 7 ec 10 I 20 ig 20 " 14 •• 16 pm20 n 6 .. 7 a, 2 ,I II Ip 2 in 6 me 20 or 8 pa 3 " 3
bd 2 ca 10 em 7 " 2 il 7 ml 3 .. 6 po 3 .. 10
bp a d& 7 .. 10 •c 1S Jc 0 •• 4 IIX 10 pa 2 ap 5

br 4 de 7 .. 17 hw 13 lg 10 •• a •• 5 rd 18 .. 2
c2 10 di 7 .. 18 hy 13 Ii 10 ., • pc 14 rm 7 av 6

• 51 •

l& 0 .. 6
le 0 wh 7
li 8
,1 14
tm 20
lr 10 ., 10
ul 10

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

Escape Sequences for Charactera, Jndleatora, and Funetlona

Section E•eape
R e/erence Se9uenee

10.1 \ \
10.1 \•
2.1 \ •
2.1 \'
2.1 \-
7 \.

11.1 \(space)
11.1 \0
11.1 \I
11.1 \.
4.1 \.1:

10.6 \!
10.7 \"
7.3 \$N

13 \%
2.1 \(zz
7.1 *z, *(zz
9.1 \•

12.3 \b 'abc ... •
4.2 \c

11.1 \d
2.2 \fz, \t(zz, \IN

11.1 \h 'N'
11.3 \kz
12.4 \I 'Ne'
12.4 \L 'Ne'
8 \nz,\n(zz

12.1 \o'abc ... •
4.1 \p

11.1 \r
2.3 \•N, \•± N
9.1 \t

11.1 \u
11.1 \v'N'
11.2 \w'etring •
5.2 \x'N'

12.2 \sc
16 \{
16 \}
10.7 \(newline)

\X

Meanin1

\ (to prevent or delay the interpretation of \)
Printable version of the current escape character.
'(acute accent); equivalent to \(aa
• (grave accent); equivalent to \(s•
- Minus sign in the current font
Period (dot) (see de)
Unpaddable space-size apace character
Digit width space
1/6 em narrow apace character (iero width in nroJfl
1/12em halt-narrow apace character (zero width in nroJ/1
Non-printing, zero width character
Transparent line indicator
Beginning or comment
Interpolate argument lSNSO
Default optional hyphenation character
Character named u
Interpolate string z or u
Non-interpreted leader character
Bracket building function
Interrupt text processing
Forward (down) 1/2em vertieal motion (1/2 line in nroJ/)
Change to Cont named ;r or n, or 'J)Ol!ition N
Local horizontal motion; move right N (negative left)
Mark horizontal inpul place in register z
Horizontal line drawing function (optionally with c)
Vertical line drawing function (optionally with c)
Interpolate number register z or u
Overstrike characters a, 6, c, ..•
Break and spread output line
Reverse 1 em vertical motion (reverse line in nroJ/1
Point-size change function
Non-interpreted horizontal tab
Reverse (up) 1/2em vertical motion (1/2 line in nroJ/1
Local vertical motion; move down N (negative up)
Interpolate width of siring
Extra line-space function (negative before, positive after)
Print c with zero width (without spacing)
Begin conditional input
End conditional input
Concealed (ignored) newline
X. any character nol listed above

The escape sequences\\,\.,\",\$,*,\•, \n, \t, and \(newline) are interpreted in cop11 mode (§7.2).

• 52-

0

0

0

0

0

0

Formatting Documents with Nroff and Troff
Editing and Text Processing
Revision C of 7 January 1984

Predefined General Number Reglatera

Seclion Reri-ler
Re/erenee Name De,eriplioa

e.
3 %

11.2 et
7.4 di
7.4 dn

dw
cl)<

11.3 hp
15 In

mo
4.1 nl

11.2 •b
11.2 at

yr

Input line-number in current input file; same as .c.
Current page number.
Character type (set by width function).
Width (maximum) or last completed diversion.
Height (vertical size} of last completed diversion.
Current day of the week (1-7}.
Current day or the month (1-31).
Current horizontal place on inpul line.
Output line number.
Current month (1-12).
Vertical position of last printed text base-line.
Depth or string below base line (generated by width function).
Height of string above base line (generated by width function).
Last two digits of current year.

Predefined Read-Only Number Repter•

Section R•fi•ler
Reference Name De•eriplion

7.3 .$ Number of arguments available at the current ma<ro level.
.A Set to 1 in troff, if -a option used; always 1 in nroff.

11.1 .B Available horizontal resolution in basic units.
.L Current line-spa<ing parameter (la} .
.P 1 if current page is printed, otherwise zero .
. T Set to 1 in nroff, if -T option used; always O in troff.

11.1 .V Available vertical resolution in basic units.
5.2 .a Post-line extra line-space most recently utilized using \x 'N •.

.e Number of /in•• read from current input file .
7.4 .d Current vertical pla<e in current diversion; equal to nl, if no diversion.
2.2 .I Current font as physical quadrant (1-4}.
4 .h Text base-line high-water mark on current page or diversion.
6 J Current indent.

J Current adjustment mode and type .
.I< Horizontal text portion •ize of current output line.

6 J Current line length.
4 .n Length of text portion on previous output line.
3 .o Current page offset.
3 •P Current page length.
2.3 .a Current point size.
7.5 .t Distance to the next trap.
4.1 .u Equal to 1 in fill mode and O in noflll mode.
5.1 .v Current vertical line spacing.

11.2 .w Width of previous character.
.x Reserved version-dependent register .
.y Reserved version-dependent register .

7.4 • a Name of current diversion.

- 53 -

0

O'

0
Table of Contents

Chapter 4 Formatting Tables with tbl ... 4-1
4.1. Running tbl .. 4-2
4.2. Input Commands ... 4-3

4.2.1. Options ... 4-4
4.2.2. Format .. 4-4
4.2.3. Data .. 4-7
4.2.4. Changing the Format... 4-8

4.3. Examples .. 4-9
4.4. Thi Commands ... 4-20

0

0

O'

0

0

0
List of Tables

Table 4-1 tbl Command Characters and Words .. 4-20

0

0
• iii-

0

0

0

0

0

0

Chapter 4

Formatting Tables with tbl

This chapter! provides instructions for preparing tbl input to format tables and for running the
tb/ preprocessor on a file. It also supplies numerous examples after which to pattern your own
tables. The description of instructions is precise but technical, and the newcomer may prefer to
glance over the examples first, as they show some common table arrangements.

Tb/ turns a simple description of a table into a troff or nroff program that prints the table.
From now on, unless noted specifically, we'll refer to both troff and nroff as troffsince th/treats
them the same. Tb/ makes phototypesetting tabular material relatively simple compared to nor­
mal typesetting methods. You may use tbl with the equation formatting program eqn or various
layout macro packages, as tbl does not duplicate their functions.

Tables are made up of columns which may be independently centered, right-adjusted, left­
adjusted, or aligned by decimal points. Headings may be placed over single columns or groups
of columns. A table entry may contain equations, or may consist of several rows of text. Hor­
izontal or vertical lines may be drawn as desired in the table, and any table or element may be
enclosed in a box. For example:

1970 Federal Budget Transfers
in billions or dollars)

State
Taxes Money

Net
collected soent

New York 22.91 21.35 -1.56
New Jersey 8.33 6.96 -1.37
Connecticut 4.12 3.10 -1.02
Maine 0.74 0.67 -0.07
California 22.29 22.42 +0.13
New Mexico 0.70 1.49 +0.79
Georgia 3.30 4.28 +0.98
Mississippi 1.15 2.32 + 1.17
Texas 9.33 11.13 + 1.80

The input to tbl is text for a docµment, with the text preceded by a '.TS' (table start) com­
mand and followed by a '.TE' (table end) command. Tbl processes the tables, generating troff
formatting commands, and leaves the remainder of the text unchanged. The ' . TS' and '. TE'
lines are copied, too, so that troff page layout macros, such as the formatting macros, can use
these lines to delimit and place tables as necessary. In particular, any arguments on the '.TS'
or '.TE' lines are copied but otherwise ignored, and may be used by document layout macro
commands.

l The material in this chapter is derived from TM -A Program to Format Table,, M.E. Leek,
Bell Laboratories, Murray Hill, New Jer-.y.

Revision C of 7 January 1984 4-1

Formatting Tables with tbl
'

The format of the input is as follows:

text
.TS
table
.TE
text
.TS
table
.TE
text

where the format of each table is as follows:

.TS
optiona ;
format .
data
.TE

Editing and Text Processing

Each table is independent, and must contain formatting information, indicated by formal, fol­
lowed by the data to be entered in the table. You may precede the formatting information,
which describes the individual columns and rows of the table, by option• that affect the entire
table.

4.1. Running tbl

You can run tbl on a simple table by piping the tbl output to troff (or your installation's
equivalent for the phototypesetter) with the command:

logo% tbl file I troll' -option•

where file is the name of the file you want to format. For more complicated use, where there
are several input files, and they contain equations and -ma macro package requests as well as
tables, the normal command is:

logo% tbl file1 filee . . . I eqn I troll' -m•
You can, of course, use the usual options on the troff and eqn commands. The usage for nroff is
similar to that for troff, but only TELETYPE Model 37 and Diablo-mechanism (DASI or GSI) ter­
minals can print boxed tables directly.

If you are running tbl on a line printer that does not filter reverse paper motions, use the col
processor to filter the multicolumn output.

If you are using an IBM 1403 line printer without adequate driving tables or post-filters, there is
a special -TX command line option to tbl which produces output that does not have fractional
line motions in it. The only other command line options recognized by tbl are -ma, -mm, and
which are turned into commands to fetch the corresponding macro files; usually it is more con­
venient to place these arguments on the troff part of the command line, tbl accepts them as
well.

Caveata: Note that when you use eqn and tbl together on the same file, put tbl first. If there are
no equations within tables, either order works, but it is usually faster to run tbl first, since eqn
normally produces a larger expansion of the input than tbl. However, if there are equations

4-2 Revision C of 7 January 1984

0

0

Oi
I

0

0

0

Editing and Text Processing Formatting Tables with tbl

within tables, using the tlelim mechanism in eqn, you must put tbl first or the output will be
scrambled. Also, beware of using equations in n-style columns; this is nearly always wrong,
since tbl attempts to split numerical format items into two parts, and this is not possible with
equations. To avoid this, give the tlelim {u) table option; this prevents splitting numerical
columns within the delimiters.
For example, if the eqn delimiters are$$, giving tlelim ($$) a numerical column such as
'1245 ± 16' will be divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical columns may fail
because of limits in troff, producing the 'too many number registers' message. Avoid using troff
number registers used by tbl within tables; these include two-digit names from 31 to 99, and
names of the forms #z, z+, z I, ·z, and :»---, where z is any lower-case letter. The names ##,
#-, and # • are also used in certain circumstances. To conserve number register names, the n
and a formats share a register; hence the restriction that you may not use them in the same
column.

For aid in writing layout macros, tbl defines a number register TW which is the table width; it
is defined by the time that the '. TE' macro is invoked and may be used in the expansion of
that macro. More importantly, to assist in laying out multi-page boxed tables the macro '.T#'
is defined to produce the bottom lines and side lines of a boxed table, and then invoked at its
end. Use of this macro in the page footer boxes a multi-page table. In particular, you can use
the -ma macros to print a multi-page boxed table with a repeated heading by giving the argu­
ment H to the '.TS' macro. Ir the table start macro is written

.TSH

a line of the Corm

.TH

must be given in the table after any table heading, or at the start if there aren't any. Material
up to the '.TH' is placed at the top of each page of table; the remaining lines in the table are
placed on several pages as required. For example:

.TS H
center box tab (/);
cs
11.
Employees

Name/Phone

.TH
Jonathan Doe/123-4567
<etc.>
.TE

Note that this is not a feature of t61, but of the -ma layout macros.

4.2. Input Commands

As indicated above, a table contains, first, global options, then a format section describing the
layout of the table entries, and then the data to be printed. The format and data are always
required, but not the options. The sections that follow explain how to enter the various parts

Revision C of 7 January 1984 4-3

Formatting Tables with tbl Editing and Text Processing

or the table.

4.2.1. Options

There may be a single line of options affecting the whole table. If present, this line must follow
the '.TS' line immediately, must contain a list of option names aeparated by spaces, tabs, or
commas, and must be terminated by a semicolon. The allowable options are:

center center the table (default is left-adjusted)

expand make the table as wide as the current line length

box

allbox
doublebox

tab(x)

linesize(n)
delim(:iy)

enclose the table in a box

enclose each item in the table in a box

enclose the table in two boxes

use x instead or tab to separate data items

set lines or rules (such as from box) in n point type

recognize :,: and y as the eqn delimiters

A standard option line is:

center box tab (/) ;

which centers the table on the page, draws a box around it, and uses the slash '/' character as
the column separator.

0

The tbl program tries to keep boxed tables on one page by issuing appropriate 'need' (' .ne')
commands. These requests are calculated from the number of lines in the tables, so if there are
spacing commands em bedded in the input, these requests may be inaccurate. Use normal troff 0:
procedures, such as keep-release macros, in this case. If you must have a multi-page boxed
table, use macros designed for the purpose, as explained below under Running 'tbl'.

4.2.2. Format

The format section of the table specifies the layout of the columns. Each line in this section
corresponds to one line of the table, except that the last line corresponds to all following lines
up to the next '.T&', if present as shown below. Each line contains a key-letter for each
column of the table. It is good practice to separate the key letters for each column by spaces,
tabs, or a visible character such as a slash '/'. Each key-letter is one of the following:

4-4

L or I indicates a left-adjusted column entry.

R or r

C or c

Norn

A or a

Sor a

indicates a right-adjusted column entry.

indicates a centered column entry.

indicates a numerical column entry, to line up the units digits of numerical
entries.
indicates an alphabetic subcolumn; all corresponding entries are aligned on the
left, and positioned so that the widest is centered within the column (see the
'Some London Transport Statistics' example).

indicates a spanned heading; that is, it indicates that the entry from the previ­
ous column continues across this column; not allowed for the first column.

Revision C of 7 January 1984

0

0

0

0

Editing and ,Text Processing Formatting Tables with tbl

indicates a vertically spanned heading; that is, it indicates that the entry from
the previous row continues down through this row; not allowed for the first row
of the table.

When you specify numerical alignment, tbl requires a location for the decimal point. The right­
most dot (.) adjacent to a digit is used as a decimal point; if there is no dot adjoining a digit,
the rightmost digit is used as a units digit; if no alignment is indicated, the item is centered in
the column. However, you may use the special non-printing character string '\&' to override
unconditionally dots and digits, or to align alphabetic data; this string lines up where a dot nor­
mally would, and then disappears from the final output. In the example below, the items shown
at the left will be aligned in a numerical column as shown on the right:

13
4.2
26.4.12
abc
abc\&
43\&3.22
749.12

13
4.2

26.4.12
abc

abc
433.22

749.12

Note: If numerical data are used in the same column with wider L or r type table entries,
the widest number is centered relative to the wider L or r items (we use L here instead of I
for readability; they have the same meaning as key-letters). Alignment within the numeri­
cal items is preserved. This is similar to the way a type data are formatted, as explained
above. However, alphabetic subcolumns (requested by the a key-letter) are always slightly
indented relative to L items; if necessary, the column width is increased to force this. This
is not true for n type entries.

Note: Do not use the n and a items in the same column.

For readability, separate the key-letters describing each column with spaces. Indicate the
end of the format section by a period. The layout of the key-letters in the format section
resembles the layout of the actual data in the table. Thus a simple format is:

.TS
C S 8

1 n n .
tezt
.TE

which specifies a table of three columns. The first line of the table contains a centered head­
ing that spans across all three columns; each remaining line contains a left-adjusted item in
the first column followed by two columns of numerical data. A sample table in this format
is:

Item-a
ltem-b

Overall title
34.22
12.65
23
69.87

Items: c,d,e
Total

9.1
.02

5.8
14.92

Additional features of the key-letter system follow:

Horizontal line,
- A key-letter may be replaced by '-' (underscore) to indicate a horizontal line in place
of the corresponding column entry, or by '=' to indicate a double horizontal line. You

Revision C of 7 January 1984 4.5

Formatting Tables with tbl Editing and Text Processing

can also type this in the data portion. If an adjacent column contains a horizontal line,
or if there are vertical lines adjoining this column, this horizontal line is extended to O·

meet the nearby lines. If any data entry is provided for this column, it is ignored and a
warning message is displayed.

Vertical line,
- A vertical bar may be placed between column key-letters. This draws a vertical line
between the corresponding columns of the table. A vertical bar to the left of the first
key-letter or to the right of the last one produces a line at the edge of the table. If two
vertical bars appear between key-letters, a double vertical line is drawn.

Space between column,
- A number may follow the key-letter. This indicates the amount of separation
between this column and the next column. The number normally specifies the separa­
tion in en, (one en is about the width of the letter 'n').2 If the 'expand' option is nsed,
these numbers are multiplied by a constant such that the table is as wide as the current
line length. The default column separation number is 3. If the separation is changed,
the worst case, that is the largest space requested, governs.

Vertical ,panning
- Normally, vertically spanned items extending over several rows of the table are cen­
tered in their vertical range. If a key-letter is followed by t or T, any corresponding
vertically spanned item begins at the top line of its range.

Font change•
- A key-letter may be followed by a string containing a font name or number preceded
by the letter f or F. This indicates that the c9rresponding column should be in a
different font from the default font, which is usually Roman. All font names are one or
two letters; a one-letter font name should be separated from whatever follows by a o
space or tab. The single letters B, b, I, and i are shorter synonyms for m and fl.
Font change commands given with the table entries override these specifications.

Point ,ize change•
- A key-letter may be followed by the letter p or P and a number to indicate the
point size of the corresponding table entries. The number may be a signed digit, in
which case it is taken as an increment or decrement from the current point size. If both
a point size and a column separation value are given, one or more blanks must separate
them.

Vertical ,pacing change,
- A key-letter may be followed by the letter v or Vanda number to indicate the vert­
ical line spacing to be used within a multi-line corresponding table entry. The number
may be a signed digit, in which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be separated by blanks or
some other specification from a vertical spacing request. This request has no effect
unless the corresponding table entry is a text block (see Tezt Blocb below).

Column width indication
- A key-letter may be followed by the letter w or W and a width value in parentheses.
This width is used as a minimum column width. If the largest element in the column is
not as wide as the width value given after the w, the largest element is considered to be
that wide. If the largest element in the column is wider than the specified value, its

2 More precisely, an en is a number of points (1 point - 1/72 inch) equal to hall the current
type size.

4-6 Revision C of 7 January 1984

0

0

0

0

Editi.ng and,,Text Processing Formatting Tables with tbl

width is used. The width is also used as a default line length for included text blocks.
Normal troff units can be used to scale the width value; if none is used, the default is
ens. Ir the width specification is a unitless integer, you may omit the parentheses. If
the width value is changed in a column, the ltut one given controls.

Equal width column,
- A key-letter may be followed by the letter e or E to indicate equal width columns.
All columns whose key-letters are followed by e or E are made the same width. In this
way, you can format a group of regularly spaced columns.

Note:
The order of the above features is immaterial; they need not be separated by spaces,
except as indicated above to avoid ambiguities involving point size and font changes.
Thus a numerical column entry in italic font and 12-point type with a minimum width
of 2 .5 inches and separated by 6 ens from the next column could be specified as

npl2w(2.5i)fl 6

Alternative notation
- Instead of listing the format of successive lines of a table on consecutive lines of the
format section, separate successive line formats on the same line by commas. The for­
mat for the sample table above can be written:

cs s, 1 n n .

Default
- Column descriptors missing from the end of a format line are assumed to be L. The
longest line in the format section, however, defines the number of columns in the table;
extra columns in the data are ignored silently.

4.2.3. Data

Type the data for the table after the format line. Normally, each table line is typed as one line
of data. Break very long input lines by typing a backslash ' \' as a continuation marker at the
end of the run-on line. That line is combined with the following line upon formatting and the '
\' vanishes. The data for different columns, that is, the table entries, are separated by tabs, or
by whatever character has been specified in the option tab, option. We recommend using a
visible character such as the slash character '/'. There are a few special cases:

Troff command, within table,
- An input line beginning with a '.' followed by anything but a number is assumed to
be a command to troff and is passed through unchanged, retaining its position in the
table. So, for example, you can produce space within a table by '.sp' commands in the
data.

FuU width horizontal line,
- An input line containing only the character '-' (underscore) or '=' (equal sign)
represents a single or double line, respectively, extending the full width of the table.

Single column horizontal line,
- An input table entr11 containing only the character '-' or '=' represents a single or
double line extending the full width of the column. Such lines are extended to meet
horizontal or vertical lines adjoining this column. To obtain these characters explicitly
in a column, either precede them by '\&' or follow them by a space before the usual tab
or newline.

Revision C of 7 January 1984 4-7

Formatting Tables with tbl Editing and Text Processing

Short horizontal line,
- An input table entr11 containing only the string '\..' represents a single line as wide
as the contents or the column. It is not extended to meet adjoining lines.

Vertica/111 ,panned item,
- An input table entry containing only the character string '\A' indicates that the
table entry immediately above spans downward over this row. It is equivalent to a
table format key-letter of '· '.

Text block,
- In order to include a block of text as a table entry, precede it by 'T{' and follow it
by 'T}'. To enter, as a single entry in the table, something that cannot conveniently be
typed as a simple string between tabs, use:

... T{.
block of te:it
T} ...

Note that the 'T}' end delimiter must begin a line; additional columns of data may fol­
low after a tab on the same line. See the 'New York Area Rocks' example for an illus­
tration of included text blocks in a table. Ir you use more than twenty or thirty text
blocks in a table, various limits in the troJJprogram are likely to be exceeded, producing
diagnostics such as 'too many text block diversions.'

Text blocks are pulled out from the table, processed separately by troff, and replaced in
the table as a solid block. Ir no line length is specified in the block of te:it itself, or in
the table format, the default is to use L X C /(N+ I) where L is the current line length,
C is the number of table columns spanned by the text, and N is the total number of

0

columns in the table. The other parameters (point size, font, etc.) used in setting the 0
block of te:it are those in effect at the beginning of the table (including the effect of the ·
'.TS' macro) and any table format specifications of size, spacing and font, using the p,
v and f modifiers to the column key-letters. Commands within the text block itself are
also recognized, of course. However, troff commands within the table data but not
within the text block do not affect that block.

Note:
Although you can put any number of lines in a table, only the first 200 lines are used in
calculating the widths of the various columns. Arrange a multi-page table as several
single-page tables if this proves to be a problem. Other difficulties with formatting may
arise because, in the calculation of column widths all table entries are assumed to be in
the font and size being used when the' .TS' command was encountered, except for font
and size changes indicated (a) in the table format section and (b) within the table data
(as in the entry \s+ 3\fidata\fP\sO). Therefore, although arbitrary troff requests may
be sprinkled in a table, use requests such as '.ps' with care to avoid confusing the width
calculations.

4.2.4. Changing the Format

tr you must change the format of a table after many similar lines, as with sub-headings or sum­
marizations, use the '.T&' (table continue) command to change column parameters. The out­
line of such a table input is:

4-8 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing

.TS
optiom;
format •
data

.T&
format •
data
.T&
format •
data
.TE

Formatting Tables with tbl

as in the 'Composition of Foods' .and 'Some London Transport;Statisties' examples. Using this
procedure, each table line can be close to its corresponding forma\ line.
Note: It is not possible to change the number of columns, the space between columns, the global
options such as bo:i:, or the .selection of. columns to be made equal width.

4.3. Examples

Here are some examples illustrating features of tbl. Glance through them to find one that you
can adapt to your needs.

Although you can use a tab to separate colamns of data, a visible character is easier to read.
The standard column separator here is the slash '/'. Ir a slash is part of the data, we indicate a
different separator, as in the first example.

Input:

.TS
tab(%) box;

CCC
111.
Lan,guage%Authors%Runs on

Fortran%Many%Almost anything
PL/1%IBM%360/370
C%BTL%11/45,H6000,370
BLISS%Carnegie-Mellon%PDP-10,l 1
1DS%Honeywell%H6000
•Pll8cal%Stanfordo/o370
.TE

Revision C of 7 January 1984

Output:

Language

Fortran
PL/1
C

· BLISS
JDS
•Pascal

Authors

Many
IBM
BTL
Carnegie-Mellon
Honeywell
Stanford

Runs on

Almost anything
360/370
11/45,H0000,370
PDP-10,11
H6000

.. 370 -,

4-9

Formatting Tables with tbl

Input:

.TS
tab (/) all box;
CS S

CCC

n n n.
AT&T Common Stock
Year /Price/Dividend
1971/41-54/$2.60
2/41-54/2.70
3/46-55/2 .87
4/40-53/3.24
5/45-52/3 .40
6/51-59/ .95•
.TE
• (first quarter only)

Input:

.TS
tab(/) box;
C S S

cJcJc
1 J I J n.
Major New York Bridges
=
Bridge/ Designer /Length

-
Brooklyn/ J. A. Roebling/1595
Manhattan/G. Lindenthal/1470
Williamsburg/L. L. Buck/1600

Queensborough/Palmer &/1182
/ Hornbostel

//1380
Triborough/0. H. Ammann/_
//383

Bronx Whitestone/0. H. Ammann/2300
Throgs Neck/0. H. Ammann/1800

Editing and Text Processing

Output:

AT&T Common Stock

Year Price Dividend
1971 41-54 $2.60

2 41-54 2.70
3 46-55 2.87
4 40-53 3.24
5 45-52 3.40
6 51-59 .95•

• (first quarter only)

Output:

Maior New York Brid2es
Brid2e Designer Length

Brooklyn J. A. Roehling 1595
Manhattan G. L indenthal 1470
Williamsburg L. L. Buck 1600
Queens borough Palmer & 1182

Hornbostel
1380

Triborough O. H. Ammann
383

Bronx Whitestone 0. H. Ammann 2300
Thro2S Neck O.H.Ammann 1800
George Washington 0. ff.Ammann 3500

George Washington/0. H. Ammann/3500
.TE

4-10 Revision C of 7 January 1984

. i

0 I

0

0

0

0

0

· Editing &I\~ Text Processing

Input:

.TS
tab(/);
cc
np-2 I n: I .
/Stack
/_
1/46
/_
2/23
/_
3/15
/_
4/6.5
/_
5/2.1
/_
.TE

Input:

.TS
tab(/) box;
LLL
LL_
LL ILB
LL_
LL L.
january /february /march
april/may
june/july/Months
august/september
october/november/december
.TE

Revision C of 7 January 1984

Output:

Stack
1 46

·2 23
a 15
4 6.5
5 2.1

Output:

january
april
june
august
october

Formatting Tables with tbl

february march
may

1 july :t.fontha
september
november december

4-11

Formatting Tables with tbl

Input:

.TS
tab (/) box;

cm s s s.
Composition of Foods

-
.T&
C IC S S

C IC s s
C IC IC I c.
Food/Percent by Weight
,·1_
\·/Protein/Fat/Carbo­
\ • /\·/\·/hydrate

-
.T&
I In In In.
Apples/ .4/ .5/13 .0
Halibut/18.4/5.2/.
Lima beans/7 .5/ .8/22 .0
Milk/3 .3/4 .0/5 .0
Mushrooms/3 .5/ .4/6 .0
Rye bread/9.0/ .6/52 .7
.TE

Input:

.TS
tab(/) allbox;

cfi s s
c cw(li) cw(li)
lp9 lp9 lp9.
New York Area Rocks
Era/Formation/ Age (years)
Precambrian/Reading Prong/> 1 billion
Paleozoic/Manhattan Prong/400 million
Mesozoic /T {
.na
Newark Basin, incl.
Stockton, Lockatong, and Brunswick
formations; also Watchungs
and Palisades.
T} /200 million
Cenozoic/Coastal Plain/T{
On Long Island 30,000 years;
Cretaceous sediments redeposited
by recent glaciation .
. ad
T}
.TE

4-12

Editing and Text ProceMing

Output1

Com >oaltlon of Food•
Percent by Wei2ht 0

Food
Protein Fat

Carbo-
hvdrate

Apples .4 .5 13.0
Halibut 18.4 5.2 ...
Lima beans 7.5 .8 22.0
Milk 3.3 4.0 5.0
Mushrooms 3.5 .4 6.0
Rye bread o.o .6 52.7

0

0
Revision C of 7 January 1984

0

0

0

Editing and'Text Processing

Input:

.EQ
delim $$
.EN

.TS
tab (/) doublebox;
C C

11.
Name/Definition
. sp
.vs +2p

Output1

Era
Precambrian

Paleozoic

Me801oic

Oeno1oic

Output:

Name

Gamma

Sine

Error

Bessel

Zeta

Formatting Tables with tbl

New York Area Rock,
Formation

Reading Prong

Manhattan Prong

Newark Basin,
incl·· Stockton,
Lockatong, and
Brunswick forma-
tions; also
Waichungs and
Palisadea.

Coastal Plain

Definition

00

r(z l= J
0

,•-•e·• d1
1 . .

sin(z)=
2
i(e"-e·")

2 J,' • erf(z)=,- e·1 di
V1f o

Age (years)
> I billion

400 million

200 million

On Long Island
30,000 years; Cre-
taceous sediments
redeposited by
recent idaeiation.

1 •
IJ..z)=-J, cOB(zsinO)dO

1f 0
00

d•)=Ei·• (Rea>l) .

Gamma/SGAMMA (z) = int sub O •up inf t •up {z-1} e sup -t dt$
Sine/$sin (x) = 1 over 2i (e sup ix - e sup -ix)$
Error/$ roman erf (z) = 2 over sqrt pi int sub O sup z e sup {-t sup 2} dt$
Bessel/$ J sub O (z) = 1 over pi int sub O sup pi cos (z sin theta) d theta $
Zeta/$ zeta (s) = sum from k=l to inf k sup-s ""(Re"s > 1)$
.vs -2p
.TE

Revision C of 7 January 1984 4-13

Formatting Tables with tbl

Input:

.TS
box, tab(:);
cb s s s s
cp-2 s s s s
cllclclclc
cllclclclc
r2 11 n2 I n2 I n2 I n.
Readability of Text
Line Width & Leading for 10-Pt. Type
=
Line: Set: I-Point: 2-Point: 4-Point
Width: Solid: Leading: Leading: Leading

9 Pica: \-9.3: \-6 .0: \-5 .3: \-7 .1
14 Pica:\-4.5:\-0.6:\-0.3:\-1.7
19 Pica:\-5.0:\-5.1: 0.0:\-2.0
31 Pica:\-3.7:\-3.8:\-2.4:\-3.6
43 Pica:\-9.1 :\-9.0:\-5.9:\-8.8
.TE

4-14

Editing and Text ProceBSing

Output:

Readabillt:r of Text
Line Width & Leadin• For 10-Pt. ~ ·~e 0

Line Set l•Point 2-Point 4-Point
Width Solid Leadintt Leadintt Leadintt
9 Pica -9.3 ~-0 -5.3 -7.1

14 Pica -4.5 -0.8 -0.3 -1.7
19 Pica -5.0 -5.1 0.0 -2.0
31 Pica -3.7 -3.8 -2.4 -3.8
43 Pica -9.1 -9.0 -5.9 -8.8

0

0
Revision C of 7 January 1984

0

0

0

Editing and Text Processing

lapa&:

.TS
bb (/);
ca
cip,-2 1

•• ••• Some Londoa Tn.asport Stati~ice
(Year 1964)
Railway route milea/244
Tobe/66
Soi>-mface/22
Surface/ 160
.,p .5
.T&
Ir
ar.
Pa2n,enger traffic \· railway
Journeya/674 m.illioa
Average leogth/4 .56 mil'9
Pusenger m.iles/3,068 millioa
.T&
Ir
ar.
Pue:enger tra.fic \· road
Jooroey,/2,252 millioa
Avenge length/2 .29 miles
Pu11eager milC111/5,004 millioa
.T&

•• • ••
.Ip .5
Vehideo/12,521
Railway motor c,n/2,005
Railway trailer can/1,260
Toh.I ra.ilwa.y/4,174
Omnibuse11/8,347
.T&

•• •••
• 11p .5
Stall/73,739
Administra.tive, etc. /8,553
Civil cngineering/5,134
Electrical eng./1,714
Me<h. eog. \· railway/4,310
Mech. eng. \· road/9,152
Railway opera.tions/8,930
Road operatioaa/35,046
.TE

Revision C of 7 January 1984

Formatting Tables with tbl

Output:

Some London Transport St.atistics
(Y••• 196l}

Railway route miles 244
Tube 66
Sub-surface
Surface

Passenger traffic - railway
Journeys
Average length
Passenger miles

Passenger traffic - road
Journeys
Average length
Passenger miles

Vehicles
Railway motor cars
Railway trailer cars
Total railway
Omnibuses

Staff
Administrative, etc.
Civil engineering
Electrical eng.
Mech. eng. - railway
Mech. eng. - road
Railway operations
Road operations

22
156

674 million
4.55 miles

3,066 million

2,252 million
2.26 miles

5,094 million

12,521
2,005
1,269
4,174
8,347

73,739
5,553
5,134
1,714
4,310
9,152
8,930

35,946

4-15

Formatting Tables with tbl

Input:

.pll 8

.V8 lOp

.TS
tab (/) center box;
C"
ci a s
CCC

18 I a.
New Jersey Reprcsenta.tivea
(Democrat.II)
.sp .5
Na.me/Office address/Phone
.sp .5
Jame11 J, Florio/23 S. White Hol"l!le Pike, Somerdale 08083/GOM27.s222
William J. Hughe:,/2920 Atlantic Ave., Atlantic City 08401/60~S45-48-H
Ja.mell J, Howa.rd/801 Ba.ng11 Ave., Asbury Park 07712/201-774•1600
Frank Thompson, Jr ./10 Rutgelll Pl., Trenton 08618/600--500.1610
Andm, Maguire/116 W. Pauaic St., Rochelle Puk 07662/201-843-0240
Roberi A. Roe/U .S.P.O., 104 Ward St., Patenoa 07610/201-623-6162
Henry Hebtoski/666 Pater.ion Ave., Ea.st Rutherford 07073/201-03Q-OOOO
Peter W. Rodino, Jr ./Suite 1435A, 070 Bro&d St., Newark 07102/201-646-3213
Joseph G. Minish/308 Main SL, Orange 07060/201-645-6363
Helen S. Meyner/32 Bridg~ St., La.mbertville 08530/600.307-1830
Dominick V, Da.niel:,/895 Bergen Ave., Jer!ey City 07306/201-660-7700
Edward J. Patten/Natl. Bank Bldg., Perth Amboy 08881/201-826-4610
.sp .S
.T&
ci s s
18 In.
(Republicans)
.sp .Sv
Millicent Fcnwick:/41 N. Bridge SL, Somerville 08876/201-722-8200
Edwin B. Forsythe/SOI Mill St., Moorestown 08067 /600-236-6622
Matthew J. Rinaldo/1Q61 Morris Ave., Union 07083/201-687•4235
.TE
,ptl 10
.n 12p

Output:

Name

James J. Florio
William J. Hughe•
James J. Howard
Frank Thomp90n, Jr.
Andrew Maguire
Robert A. Roe
Henry Helstoski
Peter W. Rodino, Jr,
Joseph G. Minish
Helen S. Meyner
Dominick V. Daniel,
Edward J. Patten

Millicent Fenwick
Edwin B. Forsythe
Matthew J. Rinaldo

New Jeney Repret1enta.tivea
(Democroll}

Office &ddret11

23 S. White Hone Pike, Somerdale 08083
2020 Atlantic Ave., Atla.ntic City 08401
801 Bang, Ave., A,buty Park 07712
10 Rutger! Pl., Trenton 08618
115 W. Puaaic St., Rochelle Park 07662
U.S.P.O., 194 Ward St., Patenoa 07610
666 Paterson Ave., East Rutherford 07073
Suite 1435A, 070 Broad St., Newark 07102
308 Ma.in St., Orange 070SO
32 Bridge St., Lambertville 08530
805 Bergen Ave., Jersey City 07306
Natl. Bank Bldg., Perth Amboy 08861

{R,pufie•••J

41 N. Bridge St., Somerville 08878
301 Mill St., Moorestown 08057
lOGl Morris Ave., Union 07083

Editing and Text Processing

Phone

600-627-8222
609-346-4844
201-774-1600
600-500-1619
201-843--0240
201-623-6162
201-030-001l0
201-&46-3213
201-646-6363
600-307-1830
201-660-7700
201-826-4610

201-722-8200
600-236-6622
201-687-4236

This is a paragraph of normal text placed here only to indicate where the left and right margins are.
Examine the appearance of centered tables or expanded tables, and observe how such tables are format­
ted.

4-16 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text.Processing

Input,

.TS
center tab (/) ;
C 8 8 8

C88S

cccc
n n n n.
LYKEWAKEWALK
Successful Crossings 1959-1966
Year /First Crossings/Repeats/Total
1959/89/23/112
1900/222/33/255
1961/650/150/800
1962/1100/2fi1/1367
1963/1054/409/1463
1964/1413/592/2005
1965/2042/771/'}}1,13
1966/2537/723/3260
.TE

Output,
LYKE WAKE WALK

Succ ... ful CroMings 1959-1966
Year First CroMings Repeats Total
1959 89 23 112
1900 222 33 255
1961 650 150 800
1962 1100 2fi7 1367
1963 1054 409 1463
1964 1413 592 2005
1965 2042 771 2813
1966 2537 723 3260

Revision C of 7 January 1984

Formatting Tables with tbl

4-17

Formatting Tables with tbl

Input:

.TS
tab(/) box;
cb I II 8

C IC IC •
ltiw(li) I Itw(2i) I lp8 I Iw(l .6i)p8.
Some Interesting Pla.ces

Na.me/De11cription/Pra.ctica.l Informatioa

T{
American Museum of Natural History
T)/T{
The collections 61111.5 acres (Michelin) or 25 a.Cffll (MTA)
of exhibition halls on four Ooon. There is a full-aired replica
of a blue whale a.nd the world'11 largest star sapphire (Hole• ia lDCM).
T} /Honn/10-5, ex. Sun 11-5, Wed. to 0
\ • /\ • /Location/T{
Central Park We81 & nth SI.
T)
\ • /\ • / Admi,.ion/Donation: $1.00 a,ked
\·J\·/subway/AA to 8181 St.
\ • /\ • /Telephone/212-8734225

Bronx Zoo /T {
About a mile long and .6 mile wide, thi, it the largeai 100 ia America.
A lion ea.ts 18 pounds
of mea.t a. day while a 11ea lion ca.h IS pounds of &a~.
T)/Houn/T{
10-.f:30 winter, to 5:00 summer
T)
\ • /\ • /Lontion/T{
185th St. & Southern Blvd, the Bronx.
T)
\ • /\ • /Admi,.ion/$1.00, but Tu,We,Thfn,e
\ • /\" /Subw,y/2, 5 to Em Tremont Ave.
\ • /\ • /Telephone/212-g33-175g

Brooklyu Mu,eum/T{
Five floon of ga.lleries contain American and ancient an.
There &re American period rooma and a.rehitedural on.&m.enit sa.ved
from wrcckcn, :!Inch u a dassicaJ figure from Pennsylvania Sta.tioa.
T}(}Houn/Wed-Sai, 10-6, Sun 12-5
\. /\ • /Location/T{
Eutem Pulc:way & Wuhington Ave., Brooklya.
T)
\ • /\ • / Admi,oion/Free
\ • /\" /Subway/2,3 to Ea,tem Parkway.
\ • /\ • /Telephone/212-638-SOOO

T{
New-York Historica.l Societ.y
T)/T{
All the originaJ paintings for Audubon's
.I
Bird!! of America
.R
are here, u are exhibit11 of American decorative a.rt11, New York hiatoty,
Hud11on River school paintinp, ca.niages, and gla.as paperweighb.
T)/Hour,/T{
Tues-Fri & Sun, 1-5; Sa.t 10-5
T)
\ • /\ • /Loc&tion/T{
Centra.1 Parle Wen & 77th SL
T)
\" /\ ·/Admi.,ion/Free
\•/\•/Subway/AA to 8181 SI.
\ • /\ • /Telephone/212·873-.1400
.TE

4-18

Editing and Text ProceBSing

0

0

0
Revision C of 7 January 1984

Editing and Text Processing Formatting Tables with tbl

0 Output:

Some Interesting Placee
Name Description Practical Information

American Mu,e- The collections Ii.II 11.5 acres Hoan 10-5, ex. Sun 11·5, Wed. to g

um of Natural (Michelin) or 25 acres (MTA) Loatioa Ceatn.l Park Wesi & ?gth St.

Hiator11 of exhibition halls on four Admia11ioa Doa&&ioa: St.oo a.sted

floors. There is a full-sized Subway AA to Bbt St.

replica of a blue whale and Telephone 212-873-4225

the world's largest star sap-
phire (stolen in 1964).

Bron:z Zoo About a mile long and .6 Houn 10.4:SO winter, to 5:00 aummer

mile wide, this is the largest Locatioa 185th St. It Southera Blvd, the

zoo in America. A lion eats Bronx.

18 pounds of meat a day Admiei,ioa $1.00, bat. Ta,We,Th free

while a sea lion eats 15 Subway 2, 6 \0 E&n Tremont Ave.

nnunds of fish. Telephone 212·DS3-17SD

Brooklyn Mu,eum Five floors of galleries con- Hoan Wed-Sat, 10-S, Sun 12-5

tain American and ancient Locatioa ~tem Parkway .l Waahin~oa

art. There are American Ave., Brooklya.

period rooms and architectur- Admi11ioa Flff

al ornaments saved from Subway 2,S to Eas\en Parkway.

wreckers, such as a classical Telephoae 212-MS.SOOO

fi.gure from Pennsylvania Sta-

0 tion.
New-York Hiator- All the original paintings for Houn Tues-Fri .l Sun, 1-5; Sa.t. 10.5

ical SociellJ Audubon's Biru of America Locatioa Cen.tnl Park Wed A 77th St.

are here, as are exhibits of Admiesioa Flff
American decorative arts, Subway AA to 8bi Si.

New York history, Hudson Telephone 212-873-3400

River school paintings, car-
riages, and glass paper-
weights.

0
Revision C of 7 January 1984 4-19

Formatting Tables with tbl Editing and Text Procel!Bing

4.4. Thi Commands

0
Table 4-1: tbl Command Characters and Words

Command Meanintr
aA Alphabetic subcolumn
allbox Draw box around all items
bB Boldface item
box Draw box around table
cC Centered column
center Center table in page
doublebox Doubled box around table
eE Equal width columns
expand Make table full line width
IF Font change
i I Italic item
IL Left adj11Sted column
nN Numerical column
nnn Column separation
pP Point size change
rR Right adjusted column
.s Spanned item
tT Vertical spanning at top
tab (z) Change data separator character
T{ T} Text block
vV Vertical spacing change 0
wW Minimum width value
.zz Included troff command

I Vertical line

II Double vertical line
A Vertical opan
\A Vertical span
= Double horizontal line

Horizontal line
\ Short horizontal line

0
4-20 Revision C or 7 January 1984

0
Table of Contents

Chapter 6 Typesetting Mathematics with eqn .. 6-1
5.1. Displaying Equations - '.EQ' and '.EN'.. 5-1
5.2. Running eqn and neqn ... 5-2
5.3. Putting Spaces in the Input Text ... 5-3
5.4. Producing Spaces in the Output Text ... 5-4
5.5. Symbols, Special Names, and Greek Letters .. 5-5
5.6. Subscripts and Superscripts - 'sub' and 'sup' ... 5-5
5.7. Grouping Equation Parts - '{' and '}' ... 5-6
5.8. Fractions - 'over'.. 5-7
5.9. Square Roots - 'sqrt' .. 5-8
5.10. Summation, Integral, and Other Large Operators ... 5-9
5.11. Size and Font Changes.. 5-9
5.12. Diacritical Marks ... 5-11
5.13. Quoted Text .. 5-11
5.14. Lining Up Equations - 'mark' and 'lineup' .. 5-12
5.15. Big Brackets ... 5-13
5.16. Piles - 'pile' .. 5-13
5.17. Matrices - 'matrix' .. 5-14
5.18. Shorthand for In-line Equations - 'delim' ... 5-15
5.19. Definitions - 'define' ... 5-15

0
5.20. Tuning the Spacing .. 5-17
5.21. Troubleshooting ... 5-17
5.22. Precedences and Keywords ... 5-18
5.23. Several Examples .. 5-22

0

ol

0
List of Tables

Table 5-1 Character Sequence Transalation 5-19
Table 5-2 Greek Letters .. 5-19
Table 5-3 eqn Keywords .. 5-21

0

0
-iii-

0

0

0

0

0

Chapter 5

Typesetting Mathematics with eqn

This chapter1 explains how to use the eqn preprocessor for printing mathematics on a photo­
typesetter and provides numerous examples after which to model equations in your documents.

You describe mathematical expressions in an English-like language that the eqn program
translates into troff commands for final troff formatting. In other words, eqn sets the mathemat­
ics while troff does the body of the text. Eqn provides accurate and relatively easy mathemati­
cal phototypesetting, which is not easy to accomplish with normal typesetting machines.
Because the mathematical expressions are imbedded in the running text of a manuscript, the
entire document is produced in one process. For example, you can set in-line expressions like
lim (tan z)"" 2' = 1 or display equations like

z-+1t/2

[
s,z'] s .. ,.

G(z) = •"' G(z) = exp E-- = n ..
><!I j; t<!l

[· Sfz2 I [S2z
2 siz• = l+ S1z+ 21+ · · · l+ - 2 -+ 22.2! + .. · I · ..

Eqn knows relatively little about mathematics. In particular, mathematical symbols like +, -,
X, parentheses, and so on have no special meanings. Eqn is quite happy to set these symbols,
and they will look good.

Eqn also produces mathematics with nroff. The input is identical, but you have to use the pro­
grams neqn instead of eqn and troff. Of course, some things won't look as good because your
workstation or terminal does not provide the variety of characters, sizes and fonts that a photo­
typesetter does, but the output is usually adequate for proofreading.

5.1. Displaying Equations - '.EQ' and '.EN'

To tell eqn where a mathematical expression begins and ends, mark it with lines beginning '.EQ'
and '.EN'. Thus if you type the lines:

1 The material in this chapter is derived from A Sr.tem for Tppe1dting Mathematic,, B.W. Ker­
nighan, L. L. Cherry and T1pt1etting Mathematic, - U,er', Guitle, B.W. Kernighan, L.L. Cherry,
Bell Laboratories, Murray Hill, New Jersey.

Revision C of 7 January 1984 5-1

Typesetting Mathematics with eqn Editing and Text Processing

.EQ
x=y+ z
.EN

your output will look like:

z=11+ z

Eqn copies '.EQ' and '.EN' through untouched. This means that you have to take care of
things like centering, numbering, and so on yourself. The common way is to use the troff and
nroff macro package package '-ms', which provides macros for centering, indenting, left­
justifying and making numbered equations.

With the -m• package, equations are centered by default. To left-justify an equation, use
'.EQ L' ins.tead of '.EQ'. To indent it, use '.EQ I'.

You can also supplement eqn with troff commands as desired; for example, you can produce a
centered display with the input:

.ce

.EQ
x sub i = y sub i ...
. EN

which produces

Zj=J/1 •''

You can call out any of these by an arbitrary 'equation number,' which will be placed at the
right margin. For example, the input ·

.EQ I (3.la)
X = f(y/2) + y/2
.EN

produces the output

z=f(y/Z)+ y/Z (3.la)

There is also a shorthand notation so you can enter in-line expressions like "~ without '.EQ '
and '.EN'. This is described in Shorthand for In-line Equation,.

5.2. Running eqn and neqn

To print a document that contains mathematics on the phototypesetter, use:

logo% eqn file• I troff' -option,
logo%

where troff (or your installation's equivalent) sends the output to your phototypesetter. If you
use the -m• macro package for example, type:

logo% eqn filea I troff' -m•
logo%

To display equations on the standard output, your workstation screen, use nroff as follows:

logo% neqn file• I nroff' -option,

5-2 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

The language for equations recognized by neqn is identical to that or eqn, although of course the
output is more restricted. You can use the online rendition of the mathematical formulae £or
proofing, but the output does not accurately represent the symbols and fonts. You can or
course pipe the output through more for easier viewing:

logo% neqn file, I nroff' -option, !more

or redirect it to a file:

logo% neqn file, I nroff' -option, > newfile

To use a GSI or DASI terminal as the output device, type:

logo% neqn file, I nroff' -Tz

where is the terminal type you are using, such as 900 or SOOS. To send neqn output to the
printer, type:

logo% neqn file I nroff' -option, J lpr -Pprinter

You can use eqn and neqn with the tb/ program for setting tables that contain mathematics.
Use tbl before eqn or neqn, like this:

or

logo% tbl file, I eqn I troff' -option,
logo%

logo% tbl file, I neqn I nroff' -option,

5.3. Putting Spaces in the Input Text

Eqn throws away spaces and newlines within an expression and leaves normal text alone. Thus
between '.EQ' and '.EN ',

and

and

.EQ
x=y+z
.EN

.EQ
X =y+ Z

.EN

.EQ
X = y

+ z
.EN

all produce the same output:

z=11+ z

You should use spaces and newlines freely to make your input equations readable and easy to
edit. In particular, very long lines are a bad idea, since they are often hard to fix if you make a
mistake.

Revision C or 7 January 1984 5-3

Typesetting Mathematics with eqn Editing and Text Processing

The only way eqn can deduce that some sequence of letters might be special is if that sequence
is separated from the letters on either side of it. To do this, surround a special word by ordi- o
nary spaces (or tabs or newlines), 88 shown in the previous section.

You can also make special words stand out by surrounding them with tildes or circumflexes:

.EQ
x-= -2-pi-int-sin-c omega-t-rdt
.EN

is much the same 88 the last example, except that the tildes not only separate the magic words
like ,in, omega, and so on, but also add extra spaces, one space per tilde:

:r=2irfsin(wl)di

You can also use braces '{ }' and double quotes'" ... " 'to separate special words; these charac­
ters which have special meanings are described later.

Remembering that a blank is a delimiter can be a problem. For instance, a common mistake is
typing:

.EQ
f(x sub i)
.EN

which produces

instead of

J (:r;)

Eqn cannot tell that the right parenthesis is not part of the subscript. Type instead:

.EQ
f(x sub i)
.EN

5.4. Producing Spaces in the Output Text

To force extra spaces into the output, use a tilde ,-, for each space you want:

.EQ

gives

x-= y + z
.EN

:r=g+z

You can also use a circumflex ''', which gives a space hair the width of a tilde. It is mainly use­
ful for fine-tuning. Use tabs to position pieces of an expression, but you must use troff com­
mands to set the tab st;,ps.

5-4 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text. Processing Typesetting Mathematics with eqn

6.6. Symbols, Special Names, and Greek Letters

Eqn knows some mathematical symbols, some mathematical names, and the Greek alphabet.
For example,

.EQ
x=2 pi int sin (omega t)dt
.EN

produces

z=2,r J sin(wl)di

Here the spaces in the input are neceuary to tell eqn that inl, pi, ,in and omega are separate
entities that should get special treatment. The ,in, digit 2, and parentheses are set in roman
type instead of italic; pi and omega are made Greek; and inl becomes the integral sign.

When in doubt, leave spaces around separate parts of the input. A very common error is to
type /(pi) without leaving spaces on both sides or the pi. As a result, eqn does not recognize pi
as a special word, and it appears as /(pi) instead or /(11).

A complete list or eqn names appears in Precedence, and Keyword,; You can also use special
characters available in tro/!for anything eqn doesn't know about.

5.6. Subscripts and Superscriptg - 'sub' and 'sup'

To obtain subscripts and superscripts, use the words ,ub and ,up.

gives

.EQ
x sup 2 + y sub k
.EN

z2+ lit
Eqn takes care of all the size changes and vertical motions needed to make the output look
right. You must surround the words ,ub and ,up by spaces; :i aube gives you uub 2 instead of
z2• As another example, consider:

.EQ
x sup 2 + y sup 2 = z sup 2
.EN

which produces:

z2+112=z2

Furthermore, don't forget to leave a space (or a tilde, etc.) to mark the end of a subscript or
superscript. A common error is to say something like

.EQ
y = (x sup 2)+ 1
.EN

which causes

Revision C of 7 January 1984

11=(z2}H

5-5

Typesetting Mathematics with eqn

instead of the intended

which is produced by:

.EQ
y = (x sup 2)+ 1
.EN

Subscripted subscripts and superscripted superscripts also work:

.EQ

IS

x sub i sub 1
.EN

z '•

Editing and Text Processing

A subscript and superscript on the same thing are printed one above the other if the subscript
comes first:

is

.EQ
x sub i sup 2
.EN

0

Other than this special case, aub and aup group to the right, so z aup II aub z means z'•, not z• ,. 0
5.7. Grouping Equation Parts - '{'and'}'

Normally, the end of a subscript or superscript is marked simply by a blank, tab, tilde, and so
on. If the subscript or superscript is something that has to be typed with blanks in it, use the
braces'{' and'}' to mark the beginning and end of the subscript or superscript:

is

.EQ
e sup {i omega t}
.EN

You can alwaya use braces to force eqn to treat something as a unit, or just to make your intent
perfectly clear. Thus:

IS

5-6

.EQ
x sub {i sub 1} sup 2
.EN

.,2

'•

Revision C or 7 January 1984

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

with braces, but

.EQ

is

x sub i sub 1 sup 2
.EN

which is rather different.

Braces can occur within braces if necessary:

.EQ

is

e sup {i pi sup {rho + 1}}
.EN

The general rule is that anywhere you could use some single entry like ,: , you can use an arbi­
trarily complicated entry if you enclose it in braces. Eqn looks after all the details of positioning
it and making it the right size.

In all cases, make sure you have the right number of braces. Leaving one out or adding an
extra causes eqn to complain bitterly.

Occasionally you have to print braces. To do this, enclose them in double quotes, like ' "{" '
Quoting is discussed in more detail in Quoted Ted.

5.8. Fractions - 'over'

To make a fraction, use the word over:

.EQ

gives

a+ b over 2c =1
.EN

a+b=l
2c

The line is made the right length and positioned automatically .

. EQ
a+ b over c+ d+ e = 1
.EN

produces

Use braces to clarify what goes over what:

Revision C of 7 January 1984

a+b =l
c+ d+ e

5-7

Typesetting Mathematics with eqn

IS

.EQ
{ alpha + beta} over {sin (x)}
.EN

a+P
sin(:r)

Editing and Text Processing

When there is both an over and a ,up in the same expression, eqn does the ,up before the over,
so

.EQ
-b sup 2 over pi
.EN

2 2

is .:±_ instead of -6 • The rules which decide which operation is done first in cases like this are
" summarized in Precedence, and Ke11111ord1. When in doubt, however, use brace, to make clear

what goes with what.

5.9. Square Roots - 'sqrt'

To draw a square root, use aqrt:

.EQ
sqrt a+ b
.EN

produces

and

.EQ
sqrt a+ b + 1 over sqrt {ax sup 2 + bx+ c}
.EN

is

Jii+T + 1
,/ oz•+ 6z+ C

Note: Square roots of tall quantities look sloppy because a root-sign big enough to cover the
quantity is too dark and heavy:

IS

.EQ
sqrt {a sup 2 over b sub 2}
.EN

Big square roots are generally better written as something to a power:
.!.

(a2
/ 62) 2

5-8 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text, Processing Typesetting Mathematics with eqn

which is

.EQ
(a sup 2 /b sub 2) sup {1 over 2)
.EN

5.10. Summation, Integral, and Other Large Operators

To produce summations, integrals, and similar constructions, use:

.EQ
sum from i=O to {i= in!} x sub i
.EN

which produces

Notice that you use braces to indicate where the upper part i=oo begins and ends. No braces
are necessary for the lower part i=O, because it does not contain any blanks. The braces will
never hurt, and if the from and to parts contain any blanks, you must use braces around them.

The from and to parts are both optional, but if both are used, they have to occur in that order.

Other useful characters can replace the ,um in our example:

.EQ
int prod union inter
.EN

become, respectively,

I n u n
Since the thing before the from can be anything, even something in braces, from-to can often be
used in unexpected ways:

is

.EQ
lim from {n -> inf} x sub n -0
.EN

5.11. Size and Font Changes

By default, equations are set in 10-point type with standard mathematical conventions to deter­
mine what characters are in roman and what in italic. Although eqn makes a valiant attempt
to use aesthetically pleasing sizes and fonts, it is not perfect. To change sizes and fonts, use ,ize
n and roman, italic, bold and fat. Like ,ub and ,up, size and font changes affect only the thing
that follows them; they revert to the normal situation at the end of it. Thus

Revision C of 7 January 1984 5-9

Typesetting Mathematics with eqn

IS

.EQ
bold X Y
.EN

XI/

and

gives

.EQ
size 14 bold x = y +

size 14 { alpha + beta}
.EN

X=11+ a+ {3

Editing and Text Processing

As always, you can use braces if you want to affect something more complicated than a single
letter. For example, you can change the size of an entire equation by

.EQ
size 12 { ... }
.EN

Legal sizes which may follow •ize are the same as those allowed in troff. 6, 7, 8, 9, 10, 11, 12, 14,
16, 18, 20, 22, 24, 28, 36. You can also change the size 611 a given amount; for example, you can

0

say •ize- + e to make the size two points bigger, or •ize--9 to make it three points smaller. This o
is easier because you don't have to know what the current size is.

If you are using fonts other than roman, italic and bold, you can •ay font X where X is a one
character troff name or number for the font. Since eqn is tuned for roman, italic and bold, other
fonts may not give quite as good an appearance.

The fat operation takes the current font and widens it by oventriking: fat grad is v and fat { z
•ub ,} is z,.

If an entire document is to be in a non-standard size or font, it is a severe nui•ance to have to
write out a size and font change for each equation. Accordingly, you can set a 'global' size or
font which thereafter affects all equations. At the beginning of any equation, you might say, for
instance,

.EQ
gsize 16
gfont R

.EN

to set the size to 16 and the font to roman thereafter. In place of R, you can U8e any of the
troff font names. The size after g•ize can be a relative change with '+'or '-'.

Generally, gaize and g/ont will appear at the beginning of a document but they can also appear
throughout a document: you can change the global font and size as often as needed. For exam­
ple, in a footnote2 you will typically want the size of equations to match the size of the footnote

2 Like this one, in which we have a few random expressions like ~ and ..-2. The sizes tor these
were set by the command g,iu- -!J.

5-10 Revision C of 7 January lll84

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

text, which is two points smaller than the main text. Don't forget to reset the global size at the
end of the footnote.

5.12. Diacritical Marks

To get tunny marks on top of letters, there are several words:

X dot Z

x dotdot ii
X hat i;

X tilde i
x vec :t
X dyad z'
X bar Z
x under 1

The diacritical mark is placed at the right height. The 6ar and under are made the right length
for the entire construct, as in z+ u+ z; other marks are centered. For example

.EQ
x dot under + x hat + y tilde
+ X hat + Y dotdot = z+ Z bar
.EN

produces

i+ z+ ;+x+ Y=z+ z

5.13. Quoted Text

Any input entirely within quotes (" ... ") is not subject to any of the font changes and spacing
adjustments that you normally set. This provides a way to do your own spacing and adjusting
if needed:

is

.EQ
italic "sin(x)" + sin (x)
.EN

Bin(z}+ sin(z)

You also use quotes to get braces and other eqn keywords printed:

.EQ

is

and

" { size alpha }"
.EN

Revision C o(7 January 1984

{ Bize alpha }

5-11

Typesetting Mathematics with eqn

IS

.EQ
roman " { size alpha } "
.EN

Editing and Text Processing

{ size alpha }

The construction ' "" ' is often used as a place-holder when grammatically eqn needs something,
but you don't actually want anything in your output. For example, to make "He, you can't just
type sup 2 roman He because a ,up has to be a superscript on something. Thus you must say

.EQ
"" sup 2 roman He
.EN

To get a literal quote use '\" '. Troff characters like \(6, can appear unquoted, but more compli­
cated things like horizontal and vertical motions with \/a and \t1 should always be quoted.

5.14. Lining Up Equations - 'mark' and 'lineup'

Sometimes it's necessary to line up a series of equations at some horizontal position, often at an
equals sign. To do this, use the two operations called mark and lineup.

The word mark may appear once at any place in an equation. It remembers the horizontal posi­
tion where it appeared. Successive equations can contain one occurrence of the word lineup.
The place where lineup appears is made to line up with the place marked by the previous mark
if at all possible. Thus, for example, you can say

.EQ I
x+y mark= z
.EN
.EQ I
x lineup= I
.EN

to produce

x+y=z

x=l

For reasons out of the scope of this chapter, when you use eqn and '-m,', use either '.EQ I' or
'.EQ L', as mark and lineup don't work with centered equations. Also bear in mind that mark
doesn't look ahead;

.EQ
x mark =I

x+ y lineup =z
.EN

isn't going to work, because there isn't room for the :i+ y part after the mark has processed the
%.

5-12 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

5.15. Big Brackets

To get big brackets '[)', braces '{ }', parentheses '()', and bars 'I I' around things, use the left
and right commands:

is

.EQ
left { a over b + 1 right }
-=- left (cover d right)
+ left (e right J

.EN

The resulting brackets are made big enough to cover whatever they enclose. Other characters
can be used besides these, but they are not likely to look very good. One exception is the floor
and ceiling characters:

.EQ
left floor x over y right floor
< = left ceiling a over b right ceiling
.EN

produces

Several warnings about brackets are in order. First, braces are typically bigger than brackets
and parentheses, because they are made up of three, five, seven, etc., pieces, while brackets can
be made up or two, three, etc. Second, big left and right parentheses often look poor, because
the character set is poorly designed.

The right part may be omitted: a 'left something' need not have a corresponding 'right some­
thing'. If the right part is omitted, put braces around the thing you want the left bracket to
encompass. Otherwise, the resulting brackets may be too large.

If you want to omit the left part, things are more complicated, because technically you can't
have a right without a corresponding left. Instead you have to say

left"" right)

for example. The left "" means a 'left nothing'. This satisfies the rules without hurting your
output.

5.16. Piles - 'pile'

There is a general facility for making vertical piles of things; it comes in several flavors. For
example:

Revision C of 7 January 1984 5-13

Typesetting Mathematics with eqn

.EQ
A-=- left [

pile { a above b above c }
- - pile { x above y above z }

right J

.EN

will make

Editing and Text Processing

The elements of the pile are centered one above another at the right height for most purposes.
There can be as many elements as you want. The keyword above is used to separate the pieces;
put braces around the entire list. The elements of a pile can be as complicated as needed, even
containing more piles.

Three other forms of pile exist: /pile makes a pile with the elements left-justified; rpile makes a
right-justified pile; and cpile makes a centered pile, just like pile. The vertical spacing between
the pieces is somewhat larger for 1-, r- and cpile, than it is for ordinary piles. For example:

makes

.EQ
roman sign (xr=­
left {

!pile {l above O above -1}
- - !pile
{Wx>O above Wx=O above iC-x<O}

.EN

{

1 it z>O
sigo(z) = 0. if z=O

-1 if z<O

Notice the left brace without a matching right one.

5.17. Matrices - 'matrix'

It is also possible to make matrices. For example, to make a neat array like

zi z2

you have to type

.EQ
matrix {

ecol { x sub i above y sub i }
ecol { x sup 2 above y sup 2 }

}
.EN

Iii 112

This produces a matrix with two centered columns. The elements of the columns are then
listed just as for a pile, each element separated by the word above. You can also use lcol or real

5-14 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

to left or right adjust columns. Each column can be separately adjusted, and there can be as
many columns as you like.

The reason for using a matrix instead of two adjacent piles, by the way, is that if the elements
of the piles don't all have the same height, they won't line up properly. A matrix forces them
to line up, because it looks at the entire structure before deciding what spacing to use.

A word of warning about matrices: each column muat have the ,ame number of element, in it.
Otherwise, results are unpredictable.

5.18. Shorthand for In-line Equations - 'delim'

In a mathematical document, it is necessary to follow mathematical conventions not just in
display equations, but also in the body of the text. For example you need variable names like z
to be in italics. Although you can do this by surrounding the appropriate parts with '.EQ' and
'.EN', the continual repetition of '.EQ' and '.EN' is a nuisance. Furthermore, with '-m•', '.EQ'
and '.EN' imply a displayed equation.

Eqn provides a shorthand for short in-line expressions. You can define two characters to mark
the left and right ends of an in-line equation, and then type expressions in the middle of text
lines. To set both the left and right characters to dollar signs, for example, add to the begin­
ning of your document the three lines

.EQ
delim $$
.EN

Having done this, you can then say things like

Let $alpha sub iS be the primary variable, and let $beta$ be zero. Then we can show
that Sx sub lS is S>=OS.

This works as you might expect; spaces, newlines, and so on are significant in the text, but not
in the equation part itself. Multiple equations can occur in a single input line.

Enough room is left before and after a line that contains in-line expressions that something like
$sum from i=l ton x sub i$ does not interfere with the lines surrounding it.

The printed result looks like: Let a; be the primary variable, and let P be zero. Then we can
show that z1 is ;::o.
To tum off the delimiters, use:

.EQ
delim off
.EN

Note: Don't use braces, tildes, circumflexes, or double quotes as delimiters; chaos will result.

5.19. Definitions - 'define'

Eqn provides a string-naming facility so you can give a frequently-used string of characters a
name, and thereafter just type the name instead of the whole string. For example, if the
sequence

Revision C of 7 January 1984 5-15

Typesetting Mathematics with eqn

.EQ
x sub i sub 1 + y sub i sub 1
.EN

Editing and Text Processing

appears repeatedly throughout a paper, you can save re-typing it each time by defining it like
this:
.EQ
define xy 'x sub i sub 1 + y sub i sub l'
.EN

This makes zy a shorthand for whatever characters occur between the single quotes in the
definition. You can use any character instead of quote to mark the ends of the definition, so
long as it doesn't appear inside the definition.

Now you can use zy like this:

.EQ
f(x) = xy ...
. EN

and so on. Each occurrence of zy will expand into what it was defined as. Be sure to leave
spaces or their equivalent around the name when you actually use it, so eqn will be able to iden­
tify it as special.

There are several things to watch out for. First, although definitions can use previous
definitions, as in

.EQ
define xi ' x sub i '
define xil ' xi sub 1 '
.EN

don 'I define aomething in term, of itaelf. A favorite error is to say

.EQ
define X ' roman X '
.EN

This is a guaranteed disaster, since X i, now defined in terms of itself. If you say

.EQ
define X ' roman "X" '
.EN

however, the quotes protect the second X, and everything works fine.

You can redefine eqn keywords. You can make '/' mean over by saying

.EQ
define / ' over '
.EN

or redefine over as '/' with

.EQ

5-16

define over ' / '
.EN

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text. Processing Typesetting Mathematics with eqn

If you need things to print on a workstation or terminal as well as on the phototypesetter, it is
sometimes worth defining a symbol differently in neqn and eqn. To do this, use ndefine and
tdefine. A definition made with ndefine only takes effect if you are running neqn; if you use
tdefine, the definition only applies for eqn. Names defined with plain define apply to both eqn
and neqn.

5.20. Tuning the Spacing

Although eqn tries to get most things at the right place on the paper, it isn't perfect, and occa­
sionally you will need to tune the output to make it just right. You can get small extra hor­
izontal spaces with tilde and circumflex. You can also say back n and fwd n to move small
amounts horizontally. The n is how far to move in 1/lOO's or an em (an em is about the width
of the letter 'm'.) Thus back 50 moves back about half the width or an m. Similarly you can
move things up or down with up n and down n. As with ,u6 or ,up, the local motions affect the
next thing in the input, and this can be anything if it is enclosed in braces.

5.21. Troubleshooting

If you make a mistake in an equation, like leaving out a brace, having one too many, or having
a ,up with nothing before it, eqn tells you with the message:

syntax error between lines x and y, file z

where z and II are approximately the lines between which the trouble occurred, and z is the
name or the file in question. The line numbers are approximate; look nearby as well. There are
also self-explanatory messages that arise if you leave out a quote or try to run eqn on a non­
ex is tent file.

If you want to check a document before actually printing it, run:

logo% eqn file, >/dev/null

to throw away the output but display the messages.

If you use something like dollar signs as delimiters, it is easy to leave one out. You may also
occasionally forget one hair of a pair of macros or have an unbalanced font change. These can
cause problems, but you can check for balanced pairs or delimiters and macros with checkeq and
checknr. For instance, to run checkeq on this chapter called eqn.ug to check for unbalanced
pairs of '.EQ' and '.EN', type:

logo% checkeq eqn.ug
eqn.ug:

New delims , line 2
in EQ, line 2

Spurious EN, line 46
Delim off, line 1254
New delims , line 1278
New delims , line 1635
in EQ, line 1635

New delims ##, line 1991
Delim off, line 1999

logo%

We left out the '.EQ' before the '.EN' on line 46 to show you some sample output. This also

Revision C or 7 January 1984 5-17

Typesetting Mathematics with eqn Editing and Text Processing

reports on the delimiters. You can also use checknr with specific options to check specifically for 0
a particular macro pair. For example, to run checknr to check that there is an '.EQ' for every
'.EN', type:

logo% checknr -s -f -a.EQ.EN eqn.ug
46: Unmatched .EN
logo%

Specify the macro pair you want to check for with the -a option and the six characters in the
pair. The -a option ignores size changes and the -/ option ignores font changes. See the user's
manual on checknr for more details.

In-line equations can only be so big because of an internal buffer in troff. If you get a message
'word overflow,' you have exceeded this limit. If you print the equation as a displayed equation,
that is, offset from the body of the text with '.EQ' and '.EN', this message will usually go away.
The message 'line overflow' indicates you have exceeded an even bigger buffer. The only cure
for this is to break the equation into two separate ones.

On a related topic, eqn does not break equations by itself; you must split long equations up
across multiple lines by yourself, marking each by a separate '.EQ ..•. EN' sequence. Eqn does
warn about equations that are too long to fit on one line.

5.22. Precedences and Keywords

If you don't use braces, eqn will do operations in the order shown in this list.

dyad vec under bar tilde hat dot dotdot
fwd back down up
fat roman italic bold size
sub sup sqrt over
from to

The operations that group to the left are:

over sqrt left right

All others group to the right. For example, in the expression

.EQ
a sup 2 over b
.EN

aup 1s defined
2

instead of a'.

2
to have a higher precedence than over, so this construction is parsed as .!._

6

Naturally, you can always force a particular parsing by placing braces around
expressions.

Digits, parentheses, brackets, punctuation marks, and the following mathematical words are
converted to Roman font when encountered:

5-18

sin cos tan sinh cosh tanh arc
max min lim log In exp
Re Im and if for det

Revision C of 7 January 1984

0

0

Editing and Text ProceBSing Typesetting Mathematics with eqn

The following character sequences are recognized and translated as shown.

0 Table 5-1: Character Sequence Transalation

You Tvue Translation

>= <!:
<- s
==== ...
I= " +· :I:
·> -+

<· -<< <<
>> >>
inf 00

partial {J

prime
approx ""
nothing
cdot
times X
de) V
grad V

0 , ... , , ... ,
sum E
int I
prod 11
union u
inter n

0
Revision C of 7 January 1984 5-19

Type,,etting Mathematics with eqn Editing and Text Processing

To obtain Greek letters, simply spell them out in whatever cue you want:

Table 5-2: Greek Letters 0
You Type Translation You TYDe Translation
DELTA A iota ' GAMMA r kappa " LAMBDA A lambda .>.
OMEGA 0 mu /J
PHI • DU V

Pl n omega w
PSI • omicron 0

SIGMA E phi ;
THETA e pi 11

UPSILON T psi ~
XI 8 rho p

alpha a sigma (1

beta /J tau ~

chi X theta ' delta 6 upsilon V

epsilon • XI e
eta " zeta r
i,:amma 7

0

0
5-20 Revision C or 7 January 1984

Editing and Text Processing Typesetting Mathematics with eqn

The eqn keywords, except for characters with names, follow.

0 Table li-3: eqn Keywords

above lpile
back mark
bar matrix
bold ndefine
ecol over
col pile
cpile rcol
define right
delim roman
dot rpile
dotdot size
down sqrt
dyad sub
fat sup
font tdefine
from tilde
fwd to
gfont under
pize up

0
hat vec
italic ,
lcol { }
left • •
lineup

0
Revision C of 7 January 1984 5-21

Typesetting Mathematics with eqn Editing and Text Processing

6.23. Several Examples

Here is the complete source for several examples and for the three display equations in the
introduction to this chapter.

Squareroot

Input:

Output:

.EQ
x = {-b + - sqrt{b sup 2-4ac}} over 2a
.EN

:, ... -•+-~

Summation, Integral, and Other Large Operaton
Input:

Output:

Input:

Output:

Input:

Output:

5-22

.EQ
lim from {x -> pi /2} (tan-x)-= inf
.EN

.EQ
sum from i=O to infinity x sub i - pi over 2
.EN

.EQ
lim from {x-> pi /2} (tan-x) sup{sin-2x}--=-l
.EN

•

Revision C or 7 January Ul84

0

0

0

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

Input:

.EQ
define emx " { e •up mx }"
define mab "{m sqrt ab}"
define sa " { sqrt a}"
define sb "{sqrt b}"
int dx over {a emx - be sup -mxr=­
left { !pile {

1 over {2 mab} -log-
{sa emx - sb}over{sa emx + sb}

above
1 over mab-tanh sup -1 (sa over sb emx)

above
-1 over mab-coth sup-1 (sa over sb emx)

l:N
Output:

Quoted Text
Input:

Ouput:

.EQ
lim- roman "sup" -x sub n = 0
.EN

Big Brackets
Input:

Output:

.EQ
left (x+ y over 2a right r = -1
.EN

Revision C of 7 January 1984

1 I ,/a , ... _..fb
2mlcii" og la•"'+ ../b

= 1 tanh-1(,/a•'") mlcii" Vb
Jat cothsup-1~•"')

m ab Vb

lim sup z .. =O

fz:/] = 1

5-23

Typesetting Mathematics with eqn

Fractions

Input:

Output:

Input:

Output:

Input:

Output:

5-24

.EQ
a sub O + b sub 1 over
{ a sub 1 + b sub 2 over
{ a sub 2 + b sub 3 over
{a sub 3 + ... }}}

.EN

6,
•o+-------62 •,+---,---

.EQ I
G(zrmark =- e sup { In - G(z)}
-=- exp left (

•• •2+---
•a+

sum from k>=l {S sub k z sup k} over k right)
- - - prod from k>=l e sup {S sub k z sup k /k}
.EN

G(z) = em G(,) = exp[E S;z• 1 = II es,z'/t
t;>:1 k t;>:l

.EQ I
lineup = left (1 + S sub 1 z +
{ S sub 1 sup 2 z sup 2 } over 2! + ... right)
left (1 + { S sub 2 z sup 2 } over 2
+ { S sub 2 sup 2 z sup 4 } over { 2 sup 2 cdot 21 }
+ ... right) ...
. EN

[sf,2
J [S2z

2
Sfz'] = l+ s,z+ --+ . . . l+ --+ --+

2! 2 22 ·2!

Editing and Text Processing

0

0

0
Revision C of 7 January 1984

0

0

0

Editing and Text Processing Typesetting Mathematics with eqn

Input:

Output:

.EQ I
lineup= sum from m>=O left (
sum from
pile { k sub 1 ,k sub 2 , ... , k sub m >=O
above
k sub 1 + 2k sub 2 + ... + mk sub m =m}
{ S sub 1 sup {k sub 1} } over { 1 sup k sub 1 k sub 1 I } -
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 I } -

{ S sub m sup {k sub m} } over {m sup k sub m k sub m I}
right) z sup m
.EN

Shorthand for In-line Equation•
Input:

.EQ
delim ##
.EN

Let #x sub i#, #y# and #alpha# be positive

Output:

Let z,, I/ and a be positive

Revision C of 7 January 1984 5-25

O'

0:

0
Table of Contents

Chapter 8 Making Bibliographic References with refer .. 6-1
6.1. Indexing and Searching ... 6-1

6.1.1. Make Keys - 'mkey' ... 6-4
6.1.2. Hash and Invert - 'inv' ... 6-5
6.1.3. Searching and Retrieving - 'hunt' ... 6-6

6.2. Selecting and Formatting References for 'troll' - 'refer' and 'lookbib' 6-8
6.3. Reference Files .. 6-9
6.4. Collecting References and other Refer Options .. 6-12
6.5. Updating Publication Lists ... , ... 6-14

6.5.1. Publication Format ... 6-14
6.5.2. Updating and Re-indexing .. 6-17

6.5.2.1. Checking What's There Now .. 6-17
6.5.2.2. Adding New Papers .. 6-17
6.5.2.3. Changing Items 6-17
6.5.2.4. Deleting Entries .. 6-18
6.5.2.5. Updating and Reindexing ... 6-19

6.5.3. Printing a Publication List ... 6-21

0

0

0

0

0

0

0

0

Chapter 6

Making Bibliographic References with refer

This chapter1 describes re/er, the preprocessor for nroff and lroJJ that finds and formats biblio­
graphic references. There is a user information for re/er in Selecting and Formatting Refer­
ence, for 'troff. Reference File, details reference files for adding references to data bases or
writing new lroJJ macros to use with re/er. The options to make re/er collect identical citations,
or otherwise relocate and adjust references, are described in Collecting Reference, and other
're/er' Option,. '

This chapter is of interest to those who are interested in facilities for searching large but rela­
tively unchanging text files on the Sun system, and those who are interested in handling biblio­
graphic citations with troff. The Sun system bas many utilities, such as, grep, awk, lez, egrep,
and /grep, that search through files of text, but most of them are based on a linear scan through
the entire file. Refer uses inverted indexes so you can use it on much larger data bases. See D.
Knuth, The Ari of Computer Programming: Vol. 9, Sorting and Searching, Addison-Wesley,
Reading, Mass., (Hl77). See section 6.5. for more information.

Refer draws from a list of 4300 references that is maintained on line and contains primarily
papers written and cited by local authors. Whenever one of these references is required in a
paper, a few words from the title or author list will retrieve it, and you need not bother to re­
enter the exact citation. Alternatively, authors can use their own lists of papers.

There are also auxiliary programs to update reference lists. The programs permit a large
amount of individual control over the content of publication lists, but retain the usefulness of
the files to other users. re/er uses standard input by default as its input file, and copies it to

· standard output. You can also update the reference lists.

Macro packages print the finished reference text, flag the point of reference. References are
noted by numbers by default. The way the system works is to make keyword indexes for
volumes of material too large for linear searching. You can search quickly for combinations of
single words. The programs for general searching are divided into two phases. The first makes
an index from the original data, and the second searches the index and retrieves items. Both of
these phases are further divided into two parts to separate the data-dependent and algorithm­
dependent code. The re/er preprocessor formats references, and the lookaU command searches
through all text files on the system.

8.1. Indexing and Searching

The indexing and searching process is divided into two phases, each made of two parts. These
are:

1 The material in this chapter i• derived from Up4ating Publi,atioa Li,t,, M.E. Leek and Some
Applie.tioa, of /attrle, /a4e,e, o• Ile UNIX Srlfem, M.E. Leslt, Bell Laboratories, Murray Hill,
New Jersey. It ii in the proeeSB of being rewritten for the Sun system and may not yet accurately
describe the program.

Revision C of 7 January 1984 6-1

Making Bibliographic References with refer Editing and Text Processing

1. Construct the index.
• Find keys - turn the input files into a sequence of tags and keys, where each tag

identifies a distinct item in the input and the keys for each such item are the strings
under which it is to he indexed.

• Hash and sort - prepare a set of inverted indexes from which, given a set of keys, the
appropriate item tags can be found quickly.

2. Retrieve an item in response to a queey.
• Search - Given some keys, look through the files prepared by the hashing and sorting

facility and derive the appropriate tags.
• Deliver - Given the tags, find the original items. This completes the searching process.

The first phase, making the index, is presumably done relatively infrequently. It should, of
course, be done whenever the data being indexed change. In contrast, the second phase, retriev­
ing items, is presumably done often, and must he rapid.
An effort is made to separate code which depends on the data heing handled from code which
depends on the searching procedure. The search algorithm is involved only in programs (hash
and sort) and (search), while knowledge of the actual data files is needed only by programs (find
keys) and (deliver). Thus it is easy to adapt to different data files or different search algorithms.

To start with, it is necessary to have some way of selecting or generating keys from input files.
For dealing with files that are basically English, we have a key-making program which automat­
ically selects words and passes them to the hashing and sorting program. The format used has
one line for each input item, arranged as follows:

name:start,length (tab) ke71 ke72 ke73 •••

where name is the file name, ,tart is the starting byte number, and length is the number of
bytes in the entry.
These lines are the only input used to make the index. The first field (the file name, byte posi­
tion, and byte count) is the tag or the item and can he used to retrieve it quickly. Normally, an
item is either a whole file or a section of a file delimited by blank lines. After the tab, the
second field contains the keys. The keys, if selected by the automatic program, are any
alphanumeric strings which are not among the 100 most frequent words in English and which
are not entirely numeric (except for four-digit numbers beginning 19, which are accepted as
dates). Keys are truncated to six characters and converted to lower case. Some selection is
needed if the original items are very large. We normally just take the first n keys, with n less
than 100 or so; this replaces any attempt at intelligent selection. One file in our system is a
complete English dictionary; it would presumably be retrieved for all queries.

To generate an inverted index to the list of record tags and keys, the keys are hashed and
sorted to produce an index. What is wanted, ideally, is a series of lists showing the tags associ­
ated with each key. To condense this, what is actually produced is a list showing the tags asso­
ciated with each hash code, and thus with some set of keys. To speed up access and further
save space, a set of three or possibly four files is produced. These files are:

6-2 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

File
entry

Making Bibliographic References with refer

Contents
Pointers to posting file
for each hash code

po•ling Lists of tag pointers for
each hash code

tag Tags for each item
key Keys for each item

(optional)

The posting file comprises the real data: it contains a sequence or lists of items posted under
each hash code. To speed up searching, the entry file is an array of pointers into the posting
file, one per potential hash code. Furthermore, the items in the lists in the posting file are not
referred to by their complete tag, but just by an address in the tag file, which gives the com­
plete tags. The key file is optional and contains a copy of the keys used in the indexing.

The searching process starts with a query, containing several keys. The goal is to obtain all
items which were indexed under these keys. The query keys are hashed, and the pointers in the
entry file used to access the lists in the posting file. These lists are addresses in the tag file of
documents posted under the hash codes derived from the query. The common items from all
lists are determined; this must include the items indexed by· every key, but may also contain
some items which are false drops, since items referenced by the correct hash codes need not
actually have contained the correct keys. Normally, if there are several keys in the query, there
are not likely to be many false drops in the final combined list even though each hash code is
somewhat ambiguous. The actual tags are then obtained from the tag file, and to guard against
the possibility that an item has false-dropped on some hash code in the query, the original items
are normally obtained from the delivery program (deliver) and the query keys checked against
them by string comparison.

Usually, therefore, the check for bad drops is made against the original file. However, if the key
derivation procedure is complex, it may be preferable to check against the keys fed to program
(hash and sort). In this case the optional key file which contains the keys associated with each
item is generated, and the item tag is supplemented by a string

;start,length

which indicates the starting byte number in the key file and the length of the string of keys for
each item. This file is not usually necessary with the present key-selection program, since the
keys always appear in the original document.

There is also an option (-Cn) for coordination level searching. This retrieves items which
match all but n of the query keys. The items are retrieved in the order of the number of keys
that they match. Of course, n must be less than the number of query keys (nothing is retrieved
unless it matches at least one key).

The /ookaU program is useful when looking for a document which you believe is stored on-line,
but do not know where. For example, many memos can be in the file system, but it is often
difficult to guess where a particular memo might be (it might have several authors, each with
many directories, and have been worked on by a secretary with yet more directories). Instruc­
tions for the use of the lookaU command are given in the manual section.

The only indexes maintained routinely are those of publication lists and all English files. To
make other indexes, the programs for making keys, sorting them, searching the indexes, and
delivering answers must be used. Since they are usually invoked as parts of higher-level com­
mands, they are not in the default command directory, but are available to any user in the
directory /u•r/lib/re/er. Three programs are of interest: mkey, which isolates keys from input

Revision C of 7 January 1984 6-3

Making Bibliographic References with refer Editing and Text Processing

files; in11, which makes an index from a set of keys; and hunt, which searches the index and
delivers the items. Note that the two parts of the retrieval phase are combined into one pro- 0
gram, to avoid the excessive system work and delay which would result from running these as
separate processes.
These three commands have a large number of options to adapt to different kinds of input. If
you not interested in the detailed description that now follows, skip to Selecting and Formatting
Reference, for Troff, which describes the re/er program, the packaged-up version of these tools
specifically oriented towards formatting references.

6.1.1. Make Keys - 'mkey'

The program mkey is the key-making program corresponding to the 'find keys' step in phase I.
Normally, it reads its input from the file names given as arguments, and if there are no argu­
ments it reads from the standard input. It assumes that blank lines in the input delimit
separate items, for each of which a different line of keys should be generated. The lines of keys
are written on the standard out put. Keys are any alphanumeric string in the input not among
the most frequent words in English and not entirely numeric (except that all-numeric strings are
acceptable if they are between 1900 .and 1999). In the output, keys are translated to lower case,
and truncated to six characters in length; any associated punctuation is removed. Mkey recog·
nizes the following options:

Option
-c name
-f name

-i chara

-kn
-In
-nm

-s

-w

mkey Options

Meaning
Name of file of common words; default is / uar/ lib/ eign.
Read a list of files from name and take each as an input
argument.
Ignore all lines which begin with '%' followed by any char­
acter in chara.
Use at most n keys per input item.
Ignore items shorter than n letters long.
Ignore as a key any word in the first m words of the list of
common English words. The default is 100.
Remove the labels (file:atart,length) from the output; just
give the keys. Used when searching rather than indexing.
Each whole file is a separate item; blank lines in files are ir­
relevant.

The normal arguments for indexing references are the defaults, which are -c /usr/lib/eign,
-nlOO, and -13. For searching, the -a option is also needed. When the big lookall index of all
English files is run, the options are -w, -k50, and -f (fileliat). When running on textual
input, the mkey program processes about 1000 English words per processor second. Unless the
-k option is used (and the input files are long enough for it to take effect) the output of mkey is
comparable in size to its input.

6-4 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Making Bibliographic References with refer

6.1.2. Hash and Invert - 'inv'

The in11 program computes the hash codes and writes the inverted files. It reads the output of
mke11 and writes the set or files descrihed earlier in this section. It expects one argument, which
is used as the base name for the three (or four) files to he written. Assuming an argument of
Indez (the default) the entry file is named Indez.ia, the posting file Jndez.ib, the tag file
Jndez.ic, and the key file (if present) lnde:11.itl. The in11 program recognizes the following
options:

Revision C of 7 January 1984 6-5

I
Making Bibliographic References with refer Editing and Text Processing

I

O•
I

in11 Options

01>tion Meaninit
-a Append the new keys to a previous set of inverted files,

making new files if there is no old set using the same base
name.

-d Write the optional key file. This is needed when you can
not check for false drops by looking for the keys in the ori•
ginal inputs, i.e. when the key derivation procedure is com­
plicated and the output keys are not words from the input
files.

-hn The hash table size is n (default 997); n should be prime.
Making n bigger saves search time and spends disk space.

-i[u] name Take input from file name, instead of the standard input;
if u is present name is unlinked when the sort is started.
Using this option permits the sort scratch space to overlap
the disk space used for input keys.

-n Make a completely new set of inverted files, ignoring previ­
ous files.

-p Pipe into the sort program, rather than writing a tem­
porary input file. This saves disk space and spends proces­
sor time.

-v Verbose mode; print a summary of the number of keys
which finished indexintt.

About half the time used in inv is in the contained sort. Assuming the sort is roughly linear, 0
however, a guess at the total timing for im, is 250 keys per second. The space used is usually of
more importance: the entry file uses four bytes per possible hash (note the -h option), and the
tag file around 15-20 bytes per item indexed. Roughly, the posting file contains one item for
each key instance and one item for each possible hash code; the items are two bytes long if the
tag file is less than 65336 bytes long, and the items are four bytes wide if the tag file is greater
than 65536 bytes long. Note that to minimize storage, the hash tables should be over-full; for
most of the files indexed in this way, there is no other real choice, since the entry file must fit in
memory.

6.1.3. Searching and Retrieving - 'hunt'

The hunt program retrieves items from an index. It combines, as mentioned above, the two
parts of phase (2): search and delivery. The reason why it is efficient to combine delivery and
search is partly to avoid starting unnecessary processes, and partly because the delivery opera­
tion must be a part of the search operation in any case. Because of the hashing, the search part
takes place in two stages: first items are retrieved which have the right hash codes associated
with them, and then the actual items are inspected to determine false drops, i.e. to determine if
anything with the right hash codes doesn't really have the right keys. Since the original item is
retrieved to check on false drops, it is efficient to present it immediately, rather than only giving
the tag as output and later retrieving the item again. If there were a separate key file, this
argument would not apply, but separate key files are not common.

Input to hunt is taken from the standard input, one query per line. Each query should be in
mkey -a output format; all lower case, no punctuation. The hunt program takes one argument

6-6 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Making Bibliographic References with refer

which specifies the base name of the index files to be searched. Only one set of index files can
be searched at a time, although many text files may be indexed as a group, or course. Ir one of
the text files has been changed since the index, that file is searched with /grep; this may occa­
sionally slow down the searching, and care should he taken to avoid having many out of date
files. Hunt recognizes the following option arguments:

Revision C of 7 January 1984 6-7

Making Bibliographic References with refer Editing and Text Processing

/aunt Options

Option Meaning
-a Give all output; ignore checking for false drops.
-C n Coordination level n; retrieve items with not more than n

terms of the input missing; default CO, implying that each
search term must he in the output items.

-F[ynd) -Fy gives the text of all the items found; -Fn suppresses
them. -Ftl where ti is an integer gives the text of the first
d items. The default is -Fy.

-g Do not use fgrep to search files changed since the index
was made; print an error comment instead.

-i airing Take airing as input, instead of reading the standard
input.

-I n The maximum length of internal lists of candidate items is
n; default 1000.

-o ,tring Put text output (-Fy) in ,tring; of use onl11 when invoked
from another program.

-p Print hash code frequencies; mostly for use in optimizing
hash table sizes.

-T(ynd) -Ty gives the tags of the items found; -Tn suppresses
them. -T d where d is an integer gives the first d tags.
The default is -Tn.

-t airing Put tag output (-Ty) in llring; of uiie on/11 when invoked
from another program.

If you underspecify a query (one search term), many potential items will be examined and dis­
carded as false drops, wasting time. If you overspecify the query (a dozen search terms), many
keys will be examined only to verify that the single item under consideration has that key
posted. The optimal search is achieved when the query just specifies the answer; however,
overspecification is quite cheap. In general, overspecification can be recommended; it protects
you against additions to the data base which turn previously uniquely-answered queries into
ambiguous queries.

6.2. Selecting and Formatting References for 'troff' - 'refer' and
'look bib'

Refer, is a troff preprocessor like eqn (see Tweaetling Mathematic, with 'eqn ') for processing
mathematical equations. Refer scans its input looking for items of the form

. [
imprecise citation
.)

where an impreciae citation is merely a string of words found in the relevant bibliographic cita­
tion. This is translated into a properly formatted reference. If the imprecise citation does not
correctly identify a single paper (either selecting no papers or too many) a message is given.
The data base of citations searched may be tailored to each system, and individual users may

0

specify their own citation files. The default data base is accumulated from the publication lists O·

of the mem hers of an organization, plus about half a dozen personal bibliographies that were
collected.

6-8 Revision C of 7 January 1984

Editing and Text Processing Making Bibliographic References with refer

0 For example, you can specify a reference for the paper by D. Knuth above as

sorting and searching

0

0

.[
knutb addison 1977
.)

The above input text can be processed by re/er as well as 161 and troff with:

logo% refer memofl.le I tbl I trotr -ms

and the reference is automatically translated into a correct citation to the paper on computer
programming.

To place a reference in a paper using re/er, first use the look6i6 command to check that the
paper is in the data base and to find out what keys are necessary to retrieve it. Type look6i6
and then type some potential queries until a suitable query is found. For example, if you bad
one started to find a paper on eqn by presenting the query

logo% lookbib
kernighan cherry
(EOT)

look6i6 would find several items. The query given above is adequate. Overspecifying the query
is of course harmless. There are supplemental common extra keywords in the data base, such
as common abbreviations for journals or other sources, to aid in searching.

If the reference is in the data base, you can insert the query that retrieved it in the text,
between .[and .] brackets. Ir it is not in the data base, you can type it into a private file of
references, using the format discussed in the next section, and then the -p option used to search
this private file. Such a command might read (if the private references are called mvfile)

logo% refer -p myfl.le document I tbl I eqn I trotr -m• •••
where you can omit tbl and/or eqn if they are not needed. You can use the -ma macros (see
Formatting Document, with the '-m,' Macro Package) or some other macro package, but a
macro package is essential. Re/er only generates the data for the references; some macro pack­
age does the formatting, and if none is supplied the references will not be printed.

By default, the references are numbered sequentially, and the -m, macros format references as
footnotes at the bottom of the page. Other possibilities are discussed in Collecting Reference,
anti Other 're/er' Option,.

6.3. Reference Files

A reference file is a set of bibliographic references that you can use with re/er. It can be indexed
using the software described in /ntlezing anti Searching for fast searching. What re/er does is to
read the input document stream, looking for imprecise citation references. It then searches
through reference files to find the full citations, and inserts them into the document. The for­
mat of the full citation is arranged to make it convenient for a macro package, such as the -m•
macros, to format the reference for printing. Since the format of the final reference is deter­
mined by the desired style of output, which is determined by the macros used, re/er avoids forc­
ing any kind or reference appearance. All it does is define a set of string registers w hicb contain
the basic information about the reference; and provide a macro call which is expanded by the

Revision C of 7 January 1984 6-9

Making Bibliographic References with refer Editing and Text Processing

macro package to format the reference. It is the responsibility of the final macro package to see a
that the reference is actually printed; if no macros are used, and the output of re/er fed
untranslated to troff, nothing at all will be printed.
The strings that re/er defines are taken directly from the files of references, which are in the fol­
lowing format. Separate the references by blank lines. Each reference is a sequence of lines
beginning with % and followed by a key-letter. The remainder of that line, and successive lines
until the next line beginning with %, contain the information specified by the key-letter. In
general, re/er does not interpret the information, but merely presents it to the macro package
for final formatting. If you have a separate macro package, for example, you can add new key­
letters or use the existing ones for other purposes without bothering re/er.

The meaning of the key-letters given below, in particular, is that assigned by the -nu macros.
Not all information, obviously, is used with each citation. For example, if a document is both
an internal memorandum and a journal article, the macros ignore the memorandum version and
cite only the journal article. Some kinds of information are not used at all in printing the refer­
ence; if you do not like finding references by specifying title or author keywords, and prefer to
add specific keywords to the citation, a field is available which is searched but not printed (K).
The key letters that refer and -m, currently recognize with the kind of information implied,
are:

Key Letters

Kev Information Specified
A Author's name
B Title of book containing item
C City of publication
D Date
E Editor of book containing item
G Government (NTIS) ordering number
I Issuer (publisher)
J Journal name
K Keys (for searching)
L Label
M Memorandum label

For example, a sample reference is:

%T Bounds on the Complexity of the Maximal
Common Subsequence Problem
%Z ctr127
%A A. V. Aho
%AD. S. Hirschberg
%A J. D. Ullman
%J J.ACM
%V23
%Nl
%P 1-12
%M abcd-78
%D Jan. 1976

Kev Information Specified
N Issue number
0 .Other information
p Page(s) of article
R Technical report reference
T Title
V Volume number

X or
y or
z Information not used by re/er

0

Order is irrelevant, except that authors are shown in the order given. The output of re/er is a
stream of string definitions, one for each of the fields of each reference, as shown below. o
6-10 Revision C of 7 January 1984

0

0

0

Editing and Text Processing

.)-

.ds (A author,' name, .•.

. ds [T title ...

. ds (J journal ...

. I[type-number

Making Bibliographic References with refer

The special macro .)- precedes the string definitions and the special macro .) [follows. These
are changed from the input .[and .) so that running the same file through re/er again is harm­
less. The macro package uses the .)- macro for initialization. Use the .) [macro to print the
reference; add an argument twe-nuinber to indicate the kind of reference, as follows:

Value
1
2
3
4
5
0

Argument Type-numbers

Kind of reference
Journal article
Book
Article within book
Technical report
Bell Labs technical memorandum
Other

The reference is flagged in the text with the sequence

\•([.number\•(. J

where number is the footnote number. The macro package uses the strings[. and .J to format
the reference flag in the text. These strings can be replaced for a particular footnote, as
described in Collecting Reference, and other 're/er' Option,. The footnote number (or other sig­
nal) is available to the reference macro .] [as the string register [F.
In some cases you may wish to suspend the searching, and merely use the reference macro for­
matting; that is, if you don't want to provide a search key between .[and .) brackets, but
merely the reference lines for the appropriate document. Alternatively, you may wish to add a
few fields to those in the reference as in the standard file, or to override some fields. To alter or
replace fields, or supply whole references, insert lines beginning with %; any such line is taken
as direct input to the reference processor rather than keys to be searched. Thus

. [
key} key2 key3 ...
%Q New format item
%R Override report name
.)

makes the indicated changes to the result of searching for the keys. Put all of the search keys
before the first % line.

If no search keys are provided, an entire citation can be provided in-line in the text. For exam­
ple, if the eqn paper citation were to be inserted in this way, rather than by searching for it in
the data base, the input would read

Revision C of 7 January 1984 6-11

Making Bibliographic References with refer

preprocessor like
.I eqn .
. [
%A B. W. Kernighan
%A L. L. Cherry
%T A System for Typesetting Mathematics
%J Comm.ACM
%V 18
%N3
%P 151-157
%D March 1975
.]
It scans its input looking for items

Editing and Text Processing

This would produce a citation of the same appearance as that resulting from the file search.

As shown, fields are normally turned into troff strings. Sometimes you would rather have them
defined as macros, so that you can put other troff commands into the data. When this is neces­
sary, simply double the control character % in the data. Thus re/er processes the input:

into

.[\
%V 23
%%M
Bell Laboratories,
Murray Hill, N.J. 07974
.]

.ds [V 23

.de [M
Bell Laboratories,
Murray Hill, N.J. 07974

The information after %%M is defined as a macro to be invoked by .[M while the information
after %V is turned into a string to be invoked by \ •([V. At present -m, expects all informa­
tion as strings.

6.4. Collecting References and other Refer Options

Normally, the combination of re/er and -m, prints output as troff footnotes, which are con­
secutively numbered and placed at the bottom of the page. However, there are options to place
the references at the end, to arrange references alphabetically by senior author, and to indicate
references by strings in the text of the form [Namel975a) rather than by number. Whenever
references are not placed at the bottom of a page identical references are coalesced.

For example, the -e option to re/er specifies that references are to be collected; in this case they
are produced whenever the sequence

6-12 Revision C of 7 January 1984

0

0

0

0

0

Editing and Text Processing Making Bibliographic References with refer

.[
$LIST$
.]

is encountered. Thus, to place references at the end of a paper, you run re/er with the -e
option and place the above $LISTS commands after the last line of the text. Refer then moves
all the references to that point. To aid in formatting the collected references, re/er writes the
references preceded by the line

.]<
and followed by the line

.]>
to invoke special macros before and after the references.

Another refer option is -• which specifies sorting of references. The default, of course, is to list
references in the order presented. The -• option implies the -e option, and thus requires a

.[
$LISTS
.)

entry to call out the reference list. The -a option may be followed by a string of letters,
numbers, and '+ ' signs indicating how the references are to be sorted. The sorting is done
using the fields whose key•letters are in the string as sorting keys; the numbers indicate how
many of the fields are to be considered, with '+' taken as a large number. Thus the default is
-sAD meaning 'Sort on senior author, then date.' To sort on all authors and then title, specify
-aA+T. And to sort on two authors and then the journal, write -sA2J.

Other options to refer change the signal or label inserted in the text for each reference. Nor­
mally these are just sequential numbers, and the macro package determines their exact place­
ment (within brackets, as superscripts, etc.). The -I option replaces reference numbers by
strings composed of the senior author's last name, the date, and a disambiguating letter. If a
number follows the I as in -13 only that many letters of the last name are used in the label
string. To abbreviate the date as well the form -lm,n shortens the last name to the first m
letters and the date to the last n digits. For example, the option -13,2 can refer to the eqn
paper (reference 3} by the signal Ker75G, since it is the first cited reference by Kernighan in
1975.

If you want to specify particular labels for a private bibliography, use the -k option. Specifying
-k:r uses the field :r as a label. The default is L. If this field ends in -, that character is
replaced by a sequence letter; otherwise the field is used exactly as given.

If you want to suppress the re/er-produced signals, use ihe -b option, which entirely suppresses
automatic text signals.

You can override the -m, treatment of the reference signal, which is normally to enclose the
number in brackets in nroff and make it a superscript in troff. If the lines .[or .] contain any­
thing following these characters, the remainders of these lines are used to surround the reference
signal, instead of the default. Thm, for example, to say 'See reference (2).' and avoid 'See refer­
ence.2' the input can be

Revision C of 7 January 1984 6-13

Making Bibliographic References with refer Editing and Text Processing

See reference
. [(
imprecise citation ...
.]).

Note that blanks are significant in this construction. Ir a permanent change is desired in the
style or reference signals, however, it is probably easier to redefine the strings [. and .], which
are used to bracket each signal, than to change each citation.

Although normally re/er limits itself to retrieving the data for the reference, and leaves to a
macro package the job of arranging that data as required by the local format, there are two spe­
cial options for rearrangements that macro packages cannot do. The -c option puts fields into
all upper case (CAPS-SMALL CAPS in troff output). The key-letters indicating what information
is to be translated to upper case follow the c, so that ~ means that authors' names and
journals are to be in caps. The -a option writes the names of authors last name first, that is A.
D. Hall, Jr. is written as Hall, A. D. Jr. The citation form of the Journal of the ACM, for
example, would require both -cA and -a options. This produces authors' names in the style
KERNIGHAN, B. W. AND CHERRY, L. L. for the previous example. The -a option may be fol­
lowed by a number to indicate how many author names should be reversed; -al (without any
-c option) would produce Kernighan, B. W. anti L. L. Cherr11, for example.

Finally, there is also the previously-mentioned -p option to specify a private file of references to
be searched before the public files. Note that re/er does not insist on a previously made index
for these files. Ir a file is named which contains reference data but is not indexed, it will be
searched (more slowly) by refer using /grep. In this way it is easy for you to keep small files of
new references, which you can add later to the public data bases.

6.5. Updating Publication Lists

This section describes several commands to update the publication lists. The data base consist­
ing of these lists is kept in a set of files in the directory / uar /diet/paper,. The reason for hav­
ing special commands to update these files is that they are indexed, and the only reasonable
way to find the items to be updated is to use the index. However, altering the files destroys the
usefulness of the index, and makes further editing difficult. So the recommended procedure is
to

1. Prepare additions, deletions, and changes in separate files.

2. Update the data base and reindex.

Whenever you make changes or whatever, it is necessary to run the 'add & index' step changes
do not take effect. The next section shows the format of the files in the data base. After that,
the procedures for preparing additions, preparing changes, preparing deletions, and updating the
public data base are given.

6.5.1. Publication Format

The format of a data base entry is summarized here through a few examples. In each example,
the output format for an item is shown first, and then the corresponding data base entry.

6-14 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Making Bibliographic References with refer

Journal article:
A. V. Aho, D. J. Hirschberg, and J. D. Ullman, "Bounds on the
Complexity of the Maximal Common Subsequence Problem," J.
Auoc. Comp. Mach., vol. 23, no. 1, pp. 1·12 (Jan. 1976).

%T Bounds on the Complexity of the Maximal Common
Subsequence Problem
%AA. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V23
%Nl
%P 1-12
%D Jan. 1976
%M TM 75-1271-7

Conference proceedings:

Book:

B. Prabhala and R. Sethi, "Efficient Computation of Exp=sions
with Common Subexpressions," Proc. 5th ACM Symp. on Princi­
ple, of Programming Language,, pp. 222-230, Tucson, Ariz. (Janu­
ary 1978).

%AB. Prabhala
%AR. Sethi
%T Efficient Computation of Exp=sions with
Common Subexp=sions
%J Proc. 5th ACM Symp. on Principles
of Programming Languages
%C Tucson, Ariz.
%D January 1978
%P 222-230

B. W. Kernighan and P. J. Plauger, Software Tool,, Addison­
Wesley, Reading, Mass. (1976).

%T Software Tools
%A B. W. Kernighan
%AP. J. Plauger
%1 Addison· Wesley
%C Reading, Mass.
%D 1976

Revision C of 7 January 1984 6-15

Making Bibliographic References with refer Editing and Text Processing

Article within book:
J. W. de Bakker, "Semantics of Programming Languages," pp.
173-227 in A dvancc, in Information S11atcrm Science, Vol. D, ed. J.
T. Tou, Plenum Press, New York, N. Y. (1969).

%A J. W. de Bakker
%T Semantics of programming languages
%E J. T. Tou
%8 Advances in Information Systems Science, Vol. 2
%1 Plenum Press
%C New York, N. Y.
%D 1969
%P 173-227

Technical Report:
F. E. Allen, "Bibliography on Program Optimization," Report
RC-5767, IBM T. J. Watson Research Center, Yorktown Heights,
N. Y. (1975).

%A F. E. Allen
%D 1975
%T Bibliography on Program Optimization
%R Report RC-5767
%I IBM T. J. Watson Research Center
%C Yorktown Heights, N. Y.

Technical Memorandum:
A. V. Aho, B. W. Kernighan and P. J. Weinberg, "AWK - Pat­
tern Scanning and Processing Language", TM 77-1271-5, TM 77-
1273-12, TM 77-3444-1 (1977).

%T A WK - Pattern Scanning and Processing Language
%A A. V. Aho
%A B. W. Kernighan
%AP. J. Weinberger
%M TM 77-1271-5, TM 77-1273-12, TM 77-3444-1
%D 1977

You can enter other forms of publication similarly. Note that conference proceedings are
entered as if journals, with the conference name on a %J line. This is also sometimes appropri­
ate for obscure publications such as series of lecture notes. When something is both a report
and an article, or both a memorandum and an article, enter all necessary information for both;
see the first article above, for example. Extra information (such as "In preparation" or
"Japanese translation") should be placed on a line beginning %0 • The most common use of
%0 lines now is for "Also in ... " to give an additional reference to a secondary appearance of
the same paper.

Note that %8 indicates the title of a book containing the article being entered; when an item is
an entire book, enter the title with a %T as usual.

0

0

Normally, the order of items does not matter. The only exception is that if there are multiple o
authors (%A lines), the order of authors should be that on the paper. If a line is too long, you

6-16 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Making Bibliographic References with ~efer

can continue it on to the next line; any line not beginning with% or'.' (dot) is assumed to be a
continuation of the previous line. Again, see the first article above for an example of a long
title. Except for authors, do not repeat any items; if two %J lines are given, for example, the
first is ignored. Separate multiple items on the same file by blank lines.

Note that in formatted printouts of the file, the exact appearance of the items is determined by
a set of macros and the formatting programs. Do not try to adjust fonts, punctuation, or what­
ever by editing the data base. If someone has a real need for a differently-formatted output,
generate a new set of macros to provide alternative appearances of the citations.

6.5.2. Updating and Re-indexing

This section describes the commands for manipulating and changing the data base. It explains
the procedures for (a) finding references in the data base, (b) adding new references, (c) chang­
ing existing references, and (d) deleting references. Remember that you should prepare all
changes, additions, and deletions in separate files and then run an 'update and reindex' step.

6.5.2.1. Checking What's There Now

Often you will want to know what is currently in the data base. There is a special command
lookbib to look for things and print them out. It searches for articles based on words in the
title, or the author's name, or the date. For example, you could find the first paper above with

logo% lookbib aho oilman maximal aubeequence 1978

or

logo% lookbib aho oilman hirachberg

Jr you don't give enough words, several items will be found; if you spell some wrong, nothing
will be found. There are around 4300 papers in the public file; you should always use this com­
mand to check when you are not sure whether a certain paper is there or not.

6.5.2.2. Adding New Papers

To add new papers, just type in, on one or more files, the citations for the new papers.
Remember to check first if the papers are already in the data base. For example, if a paper has
a previous memo version, this should be treated as a change to an existing entry, rather than a
new entry. Ir several new papers are being typed on the same file, be sure that there is a blank
line between each two papers.

6.5.2.3. Changing Items

To change an item, extract it onto a file with the command

logo% pub.chg ke111 ke112 ke11S •••

where the items keyl, key2, key3, etc. are a set of keys that will find the paper, as in the look­
bib command. That is, if

logo% lookbib johnson yacc cstr

Revision C of 7 January 1984 6-17

Making Bibliographic References with refer Editing and Text Processing

finds a item (in this case, Computing Science Technical Report No. 32, "YACC: Yet Another 0
Compiler-Compiler," by S. C. Johnson), then

logo% pub.chg johnson yacc cstr

permits you to edit the item. The pub.chg command extracts the item onto a file named 6i6zu
where zzz is a 3-digit number, such as 6ib!J9,l. The command displays the filename it has
chosen. If the set of keys finds more than one paper (or no papers), an error message is
displayed and no file is written. You must extract each reference to be changed with a separate
pub.chg command, so each will be placed on a separate file. You should then edit the bibz:iz file
as desired to change the item, using an editor. Do not delete or change the first line of the file,
however, which begins %# as it is a special code line to tell the update program which item is
being altered. You may delete or change other lines, or add lines, as you wish. The changes are
not actually made in the public data base until you run the update command pub.run
(described below). Thus, if after extracting an item and modifying it, you decide that you'd
rather leave things as they were, delete the 6ibuz file, and your change request will disappear.

6.5.2.4. Deleting Entries

To delete an entry from the data base, type:

logo% pu b.del ke111 ke11!J ke119 ...

where the items keyl, key2, etc. are a set of keys that will find the paper, as with the lookbib
command. That is, if

logo% lookbib Aho hirschberg ullman

will find a pa per,

logo% pub.del aho hirschberg ullman

deletes it. Note that upper and lower case are equivalent in keys. The pub.del command
displays the entry being deleted. It also gives the name of a bibzu file on which the deletion
command is stored. The actual deletion is not done until the changes, additions, and so on are
processed, as with the pub.chg command. If, after seeing the item to be deleted, you change
your mind about throwing it away, delete the 6ibzzz file and the delete request disappears.
Again, if the list of keys does not uniquely identify one paper, an error message is given.

Remember that the default versions of the commands described here edit a public data base.
Do not delete items unless you are sure deletion is proper; usually this means that there are
duplicate entries for the same paper. Otherwise, view requests for deletion with skepticism;
even if one person has no need for a particular item in the data base, someone else may want it
there.
If an item is correct, but should not appear in the "List of Publications" as normally produced,
add the line

%KDNL

to the item. This preserves the item infact, but implies "Do Not List" to the to the commands
that print publication lists. The DNL line is normally used for some technical reports, minor
memoranda, or other low-grade publications.

6-18 Revision C of 7 January 1984

0

0

Editing and Text Processing Making Bibliographic References with refer

6.5.2.5. Updating and Reindexing

0 When you have completed a session of changes, you should type:

0

logo% pub.run tllel tlle3 ...

where the names fild, ... are the new files of additions you have prepared. You need not list
the bibzz:r files representing changes and deletions; they are processed automatically. All of the
new items are edited into the standard public data base, and then a new index is made. This
process takes about 15 minutes; during this time, searches of the data base will be slower.

Normally, you should execute pub.run just before you logoff after performing some edit
requests. However, if you don't, the various change request files remain in your directory until
you finally do execute pub.run. When the changes are processed, the bibzzz files are deleted. Do
no wait too long before processing changes, however, to avoid conflicts with someone else who
wishes to change the same file. If executing pub.run produces the message "File bibxxx too
old" it means that someone else has been editing the same file between the time you prepared
your changes, and the time you typed pub.run. You must delete such old change files and re­
enter them.

Note that although pub.run discards the bibzz:r files after processing them, your files of additions
are left around even after pub.run is finished. If they were typed in only for purposes of updat,.
ing the data base, you may delete them after they have been processed by pub.run.

Consider the following example.

Suppose, for example, that you wish to
1. Add to the data base the memos "The Dilogarithm Function of a Real Argument" by

R. Morris, and "UNIX Software Distribution by Communication Link," by M. E. Lesk
and A. S. Cohen;

2. Delete from the data base the item "Cheap Typesetters", by M. E. Lesk, SIGLASH
Newsletter, 1973; and

3. Change "J. Assoc. Comp. Mach." to "Jour. ACM" in the citation for Abo, Hirschberg,
and Ullman shown above.

The procedure is to make a file containing the additions, here called new.1, in the normal way
using an editor. In the script shown below, you would type w bat is in boldface.

logo% ed new.I
?
a
%T The Dilogarithm Function of a Real Argument
%A Robert Morris
%D 1978

%T UNIX Software Distribution b7 Communication Link
roA M. E. Leek
%A A, S. Cohen
%D 1978
w new.I
199
q
logo%

0 Next you would specify the deletion with the pub.dd command and see the following response:

Revision C of 7 January 1984 6-19

Making Bibliographic References with refer

logo% pub.eel lesk cheap typesettera elglasla

Will delete: (file bibl76)

%T Cheap Typesetters
%AM. E. Lesk
%J ACM SIGLASH Newsletter
%V6
%N4
%P 14-16
%D October 1978

Editing and Text Processing

You would then extract the Aho, Hirschberg and Ullman paper. The dialogue involved is shown
below. First run pub.chg to extract the paper; it responds by displaying the citation and
informing you that it was placed on file bibJS.'J. That file is then edited.

logo% pub.chg aho hirechberg ullman
%Extracting as file bibl23
%T Bounds on th Complexity of the Maximal
Common Subsequence Problem
%AA. V.Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Assoc. Comp. Mach.
%V23

0

%Nl 0
%P 1-12
%M TM 75-1271-7
%D Jan. 1976

0
6-20 Revision C of 7 January 1984

0

Editing and Text Proces•ing

logo% eel bibl23
312
/~c/s/J/Jour/p
%J Jour. Assoc. Comp. Mach.
•/~c.•/ACM/p
%J Jour. ACM
1,Sp
%# /usr/dict/papers/p76 233 245 change

Making Bibliographic References with refer

%T Bound. on the Complexity of the Maximal
Common Subsequence Problem
%AA. V. Aho
%A D. S. Hirschberg
%A J. D. Ullman
%J J. Jour. ACM
%V23
%NI
%P 1-12
%M TM 75-1271-7
%D Jan. 11176

w
292
q
logo% 0 Finally, execute pub.run, making sure to remember that you have prepared a new file new.1;

logo% pub.run new.I

0

and about fifteen minutes later the new index i• complete with all the changes.

6.5.3. Printing a Publication List

There are two command• for printing a publication list, depending on whether you want to
print one person's list, or the list of many people. To print a list for one person, use the
pub.indiv command:

logo% pub.indiv M Leek

This runs off the list for M. Lesk and puts it in file output. Note that no '.' is given after the
initial. If only one initial does not make it clear, use two initials. Similarly, to get the list for
group of people, say

logo% pub.org xxx

which prints all the publications of the members of organization :r:r:r, taking the names for the
list in the file / u,r/ diet/ paper,/ centliat/ u:r. Run this command in the background as it takes
perhaps 15 minutes. Two options are available with these commands:

logo% pub.indiv -p M Leak

displays only the papers, leaving out unpublished notes, patents, and so on. Also

logo% pub.indiv -t M Leak I gcat

Revision C of 7 January 1984 6-21

Making Bibliographic References with refer Editing and Text Processing

prints a typeset copy, instead of a computer printer copy. In this case it has been directed to
an alternate typesetter with the gcal command. You can use these options together, and with 0
the pub. org command as well. For example, to print only the papers for all of organization zzz
and typeset them, type

logo% pub.center -t -p HS I gcat A

These publication lists are printed double column with a citation style taken from a set of publi­
cation list macros; you can change the macros, of course, to adjust the format of the lists.

6-22 Revision C of 7 January 1984

0

0

0

0

0

Table of Contents

Chapter 7 Formatting Documents with the -me Macros
7.1. Using -me
7 .2. Basic -me Requests

7.2.1. Paragraphs
7.2.1.1. Standard Paragraph - '.pp' .. .
7.2.1.2. Left Block Paragraphs - '.Ip' .. .
7.2.1.3. Indented Paragraphs - '.ip' and '.np' .. .
7.2.1.4. Paragraph Reference

7.3. Headers and Footers - '.he' and '.fo' .. .
7.3.1. Headers and Footers Reference
7.3.2. Double Spacing - '.ls 2' .. .
7 .3.3. Page Layout
7.3.4. Underlining - '.ul'
7.3.5. Displays

7.3.5.1. Major Quotes - '.(q' and '.)q' .. .
7 .3.5.2. Lists - '.(I' and '.)I' .. .
7.3.5.3. Keeps - '.(b' and '.)b', '.(z' and '.)z' .. .

7 .4. Fancy Displays
7.4.1. Display Reference .. .
7.4.2. Annotations
7.4.3. Footnotes - '.(£' and '.)r
7.4.4. Delayed Text
7.4.5. Indexes - '.(x' '.)x' and '.xp' .. .
7.4.6. Annotations Reference .. .

7.5. Fancy Features .. .
7.5.1. Section Headings - '.sh' and '.uh'

7.5.1.1. Section Heading Reference .. .
7.5.2. Parts or the Standard Paper .. .

7.5.2.1. Standard Paper Reference
7.5.3. Two-Column Output - '.2c'

7.5.3.1. Columned Output Reference .. .
7.5.4. Defining Macros - '.de' .. .
7.5.5. Annotations Inside Keeps

7 .6. Using 'troff' for Phototypsetting
7.6.1. Fonts
7.6.2. Point Sizes - '.sz'

7.6.2.1. Fonts and Sizes Reference
7.6.3. Quotes - '' and ''

7 .7. Adjusting Macro Parameters .. .
7 .8. Roll Support .. .
7 .9. Preprocessor Support
7 .10. Predefined Strings
7.11. Miscellaneous Requests .. ,
7.12. Special Characters and Diacritical Marks - '.sc'

7-1
7-1
7-2
7-2
7-2
7-2
7-3
7-5
7-5
7-6
7-6
7-6
7-8
7-8
7-8
7-9
7-9
7-9

7-11
7-12
7-12
7-13
7-13
7-14
7-14
7-14
7-16
7-16
7-18
7-19
7-20
7-20
7-20
7-21
7-21
7-23
7-23
7-23
7-24
7-25
7-25
7-26
7-26
7-27

Editing and Text Processing

7.13. '-me' Request Summary ... 7-28

0

0

0

II

0
List of Tables

Table 7-1 Special Characters and Diacritical Marks .. 7-27
Table 7-2 -me Request Summary .. 7-28

0

0
.jjj -

0

o:

0

0

0

Chapter 7

Formatting Documents with the -me Macros

This chapter! describes the -me macro package text processing facility. The first part of each
section presents the material in user's guide format and the second part lists the macro requests
for quick reference. The chapter contents include descriptions of the basic requests, displays,
annotations, such as footnotes, and how to use -me with nroff and troff.

We assume that you are somewhat familiar with nroff and troff and that you know something
about breaks, fonts, point sizes, the use and definition of num her registers and strings, and scal•
ing factors for ens, points, vertical line spaces (v's), etc. If you are a newcomer, try out the
basic features as you read along.
All request names in -me follow a naming convention. You may define number registers,
strings, and macros, provided that you use single-character, upper-case names or double charac­
ter names consisting of letters and digits with at least one upper-case letter. Do not use special
characters in the names you define. The word argument in this chapter means a word or
number which appears on the same line as a request and which modifies the meaning of that
request. Default parameter values are given in brackets. For example, the request

.sp

spaces one line, and

.sp 4

spaces four lines. The number '4' is an argument to the '.sp' request; it modifies '.sp' to produce
four lines instead of one. Spaces separate arguments from the request and from each other.

7 ,1, Using -me

When you have your raw text ready, run the nroff formatter with the -me option to send the
output to the standard output, your workstation screen. Type:

logo% nroff' -me -T type file,

where type describes the type of terminal you are outputting to. Common values are dtc for a
DTC 300s (daisy-wheel type) printer and lpr for the line printer. If you omit the -T ftag, a
'lowest common denominator' terminal is assumed; this is good for previewing output on most
terminals.
For easier viewing, pipe the output to more or redirect it to another file.

For formatting on the phototypesetter with troff(or your installation's equivalent), use:

logo% troff' -me file

1 The material in this chapter is derived rrom Writing Paper, toilA 'aro/f' U,iag '-m•', E.P. All­
man and '-me' Re/ereaee Manual, E.P. Allman, University of California, Berkeley.

Revision C of 7 January 1984 7-1

Formatting Documents with the -me Macros Editing and Text Processing

7 .2. Basic -me Requests

The following sections provide descriptiom and examples of the basic -me requests.

7 .2.1. Paragraphs

The -me package has requests for formatting standard, left block, and indented paragraphs.

7.2.1.1, Standard Paragraph - '.pp'

Begin standard paragraphs by using the '.pp' request. For example, the input:

.pp
Now is the time for all good men
to come to the aid of their party.
Four score and seven years ago, ...

produces

Now is the time for all good men to come to the aid of their party. Four score and seven
years ago, ...
that is, a blank line followed by an indented first line.
Do not begin the sentences of a paragraph with a space, since blank lines and lines beginning
with spaces cause a break. For example, if you type:

.pp
Now is the time for all good men

to come to the aid of their party.
Four score and seven years ago, ...

The output is:

Now is the time for all good men
to come to the aid of their party. Four score and seven years ago, ...
A new line begins after the word 'men' because the second line begim with a space character.
Because the first call to one of the paragraph macros defined in a section or the '.H' macro (see
Section Heading,) initialize, the macro processor, do not use any of the following requests: '.sc',
'.lo', '.th', or '.ac'. Also, avoid changing parameters, notably page length and header and footer
margins, which have a global effect on the format of the page.

7 .2.1.2. Left Block Paragraphs - '.Ip'

A formatted paragraph can start with a blank line and with the first line indented. You can get
left-justified block-style paragraphs as shown throughout this manual by using '.Ip' (left para­
graph) instead of '.pp'.

7-2 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

0 7 .2.1.3. Indented Paragraphs - '.ip' and '.np'

0

Sometimes you want to use paragraphs that have the body indented, and the first line exdented,
that is, the opposite of indented, with a label. Use the '.ip' request for this. A word specified
on the same line as '.ip' is printed in the margin, and the body is lined up at a specified posi­
tion. For example, the input:

.ip one
This is the first paragraph.
Notice how the first line
of the resulting paragraph Jines up
with the other lines in the paragraph .
• ip two
And here we are at the second paragraph already.
You may notice that the argument to '.ip'
appears in the margin,
.Ip
We can continue text ...

produces as output:

one This is the first paragraph. Notice how the first line of the resulting paragraph lines up
with the other lines in the paragraph.

two And here we are at the second paragraph already. You may notice that the argument to
'.ip' appears in the margin.

We can continue text without starting a new indented paragraph by using the '.Ip' request.

If you have spaces in the label of an '.ip' request, use an 'unpaddable space' instead of a regular
space. This is typed as a backslash character ' \ ' followed by a space. For example, to print
the label 'Part l ', type:

.ip "Part\ l"

If a label of an indented paragraph, that is, the argument to '.ip', is longer than the space allo­
cated for the label, '.ip' begins a new line after the label. For example, the input:

.ip longlabel
This paragraph has a long label,
The first character of text on the first line
will not line up with the text on second and subsequent lines,
although they will line up with each other.

produces:

longlabel
This paragraph has a long label. The first character of text on the first line will not line
up with the text on second and subsequent lines, although they will line up with each
other.

You can change the size of the label by using a second argument which is the size of the label.
For example, you can produce the above example correctly by saying:

.ip longlabel 10 o which will make the paragraph indent 10 spaces for this paragraph only. For example:

Revision C of 7 January 1984 7.3

Formatting Documents with the -me Macros Editing and Text Processing

longlabel
This paragraph has a long label. The first character of text on the first line will not
line up with the text on second and subsequent lines, although they will line up with
each other.

Ir you have many paragraphs to indent all the same amount, use the number reoi1ter ii. For
example, to leave one inch of space for the label, type:

.nr ii li

somewhere before the first call to '.ip '.
Ir you use '.ip' without an argument, no hanging tag is printed. For example, the input:

.ip [a]
This is the first paragraph of the example.
We have seen this sort of example before •
• ip
This paragraph is lined up with the prevloua paragraph,
but it does not have a tag in the margin.

produces as output:

(a] This is the first paragraph of the example. We have seen this sort of example before.

This paragraph is lined up with the previous paragraph, but it does not have a tag in the
margin.

A special case of '.ip' is '.np', which automatically numbers paragraphs sequentially from 1.
The numbering is reset at the next '.pp', '.Ip', or '.H' request. 'For example, the input:

.np
This is the first point •
• op
This is the second point.
Points are just regular paragraph•
which are given sequence numbers automatically
by the '.op' request •
.Ip
This paragraph will reset numbering by '.op' .
• np
For example,
we have reverted to numbering from one now.

generates:

(1) This is the first point.
(2) This is the second point. Points are just regular paragraphs which are given sequence

numbers automatically by the '.np' request.

This paragraph will reset numbering by '.op'.

(1) For example, we have reverted to numbering from one now.

7-4 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

Q 7 .2.1.4. Paragraph Reference

0

0

.Ip Begin left-justified paragraph. Centering and underlining are turned off if they were
on, the font is set to \n(pf (1], the type size is set to \n(pp (lOp], and a \(nps space
is inserted before the paragraph (0.35v in troff, lv or 0.5v in nroff depending on dev­
ice resolution). The indent is reset to \n(U (OJ plus \n(po [OJ unless the paragraph
is inside a display (see '.ha' in Mi1cellaneou1 Reque1t1). At least the first two lines
of the paragraph are kept together on a page .

. pp Like '.Ip', except that it puts \n(pi [5n] units of indent. This is the standard para­
graph macro .

. ip T I Indented paragraph with hanging tag. The body of the following paragraph is
indented / spaces (or \n(ii [5n] spaces if / is not specified) more than a non-indented
paragraph is (such as with '.Ip'). The title Tis exdented. The result is a paragraph
with an even left edge and T printed in the margin. Any spaces in T must be
unpaddable. If Twill not fit in the space provided, '.ip' starts a new line .

. np An '.ip' variant that numbers paragraphs. Numbering is reset after an '.Ip', '.pp', or
'.H'. The current paragraph number is in \nSp.

7 .3. Headers and Footers - '.he' and '.fo'

You can put arbitrary headers and footers at the top and bottom of every page. Two requests
of the form '.he title' and '.fo title' define the titles to put at the head and the foot of every
page, respectively. The titles are called three-part titles, that is, there is a left-justified part, a
centered part, and a right-justified part. The first character of title (whatever it may be) is used
as a delimiter to separate these three parts. You can use any character but avoid the backslash
and double quote marks. The percent sign is replaced by the current page number whenever it
is found in the title. For example, the input:

.he"%"

.lo 'Jane Jones" My Book'

results in the page number centered at the top of each page, 'Jane Jones' in the lower left
comer, and 'My Book' in the lower right comer.

If there are two blanks adjacent anywhere in the title or more than eight blanks total, you must
enclose three-part titles in single quotes.

Headers and footers are set in font \n(tf [3] and size \n(tp [!Op]. Each of the definitions
applies as of the nezt page.

Three number registers control the spacing of headers and footers. \n(hm [4v] is the distance
from the top of the page to the top of the header, \n(fm [3v] is the distance from the bottom of
the page to the bottom of the footer, \n(tm [7v] is the distance from the top of the page to the
top of the text, and \n(bm (6v] is the distance from the bottom of the page to the bottom of
the text (nominal). You can also specify the space between the top of the page and the header,
the header and the first line of text, the bottom of the text and the footer, and the footer and
the bottom of the page with the macros '.ml', '.m2', '.m3', and '.m4'.

Revision C of 7 January 1984 7-5

Formatting Documents with the -me Macros Editing and Text Processing

7 .3.1. Headers and Footers Reference

.he 'l'm'r'

.fo 'l'm'r'

. eh 'l'm'r'

. oh 'l'm'r'

. er 'l'm'r'

. of 'l'm'r'

. hx

. ml +N

. m2 +N

. m3 +N

. m4 +N

. ep

.Sh

Define three-part header, to be printed on the top of every page .

Define footer, to be printed at the bottom of every page .

Define header, to be printed at the top of every even-numbered page .

Define header, to be printed at the top of every odd-numbered page .

Define footer, to be printed at the bottom of every even-numbered page .

Define footer, to be printed at the bottom of every odd-numbered page.

Suppress headers and footers on the next page •

Set the space between the top of the page and the header (4v] .

Set the space between the header and the first line of text (2v] .

Set the space between the bottom of the text and the footer [2v] .

Set the space between the footer and the bottom of the page (4v] .

End this page, but do not begin the next page. Useful for forcing out footnotes .
Must be followed by a '.bp' or the end of input.
Called at every page to print the header. May be redefined to provide fancy
headers, such as, multi-line, but doing so loses the function of the '.he', '.Co', '.eh',
'.oh', '.ef', and '.of' requests, as well as the chapter-style title feature of'.+ c' •

. $f Print footer; same comments apply as in '.Sh' .

. $H A normally undefined macro which is called at the top of each page after processing
the header, initial saved floating keeps, etc.; in other words, this macro is called
immediately before printing text on a page. Used for column headings and the like.

7.3.2. Double Spacing - '.ls 2'

Nroff will double space output text automatically if you use the request '.Is 2', as is done in this

section. You can revert to single spaced mode by typing '.Is l ',

7 .3.3. Page Layout

You can change the way the printed copy looks, sometimes called the lauout of the output page
with the following requests. Most of these requests adjust the placing of 'white space' (blank
lines or spaces). In theSt' explanations, replace characters in italics with values you wish to use;
bold characters represent characters which you should actually type.

Use '. bp' (break page) to start a new page.

0

0

The request '.sp N leaves N lines of blank space. You can omit N to skip a single line or you
can use the form 'Ni' (for Ninches) or 'N c' (for Ncentimeters). For example, the input: o
7-6 Revision C of 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

.sp 1.5i
My thoughts on the subject
.sp

leaves one and a half inches of space, followed by the line 'My thoughts on the subject', fol­
lowed by a single blank line.

The '.in + N (indent) request changes the amount of white space on the left of the page. The
argument N can be of the form '+ N (meaning leave N spaces more than you are already leav­
ing),'- N (meaning leave less than you do now), or just N(meaning leave exactly Nspaces). N
can be of the form 'Ni' or Ne' also. For example, the input:

initial t ezt
.in 6
,ome tezt
.in +li
more tezt
.in -2c
final tezt

produces 'some text' indented exactly live spaces from the left margin, 'more text' indented live
spaces plus one inch from the left margin (fifteen spaces on a pica typewriter), and 'final text'
indented live spaces plus one inch minus two centimeters from the margin. That is, the output
is:

initial text
some text

more text
final text

The '.ti + N (temporary indent) request is used like '.in + N when the indent should apply to
one line only, after which it should revert to the previous indent. For example, the input:

.in li

.ti 0
Ware, James R. The Best of Confucius,
Halcyon House, 1950.
An excellent book containing translations of
most of Confucius' most delightful sayings.
A definite must for anyone interested in the early foundations
of Chinese philosophy.

produces:

Ware, James R. The Best of Confucius, Halcyon House, 1950. An excellent book containing
translations of most of Confucius' most delightful sayings. A definite must for
anyone interested in the early foundations of Chinese philosophy.

You can center text lines with the '.ce' (center) request. The line after the '.ce' is centered hor­
izontally on the page. To center more than one line, use '.ce N, where N is the number of lines
to center, followed by the N lines. If you want to center many lines but don't want to count
them, type:

Revision C of 7 January 1984 7-7

Formatting Documents with the -me Macros

.ce 1000
Linea to center
.ce 0

Editing and Text Processing

The '.ce O' request tells nroff to center zero more lines, in other words, to stop centering.

All of these requests cause a break; that is, they always start a new line. If you want to start a
new line without performing any other action, use '.br' (break).

7.3.4. Underlining - '.ul'

Use the '.ul' (underline) request to underline text. The '.ul' request operates on the next input
line when it is processed. You can underline multiple lines by stating a count of input lines to
underline, followed by those lines, the same as with the '.ce' request. For example, the input:

.ul 2
The quick brown f'ox
jumped over the lazy dog.

underlines those words in nroff. In troff they are italicized.

7 .3.5. Displays

Use displays to set off sections of text Crom the body of the paper. Major quotes, tables, and
figures are types of displays, as are all the examples used in. this manual. All displays except
centered text blocks are single spaced.

7 .3.5.1. Major Quotes - '.(q' and '.)q'

Major quotes are quotes which are several lines long, and hence are set in from the rest of the
text without quote marks around them. Use '.(q' and '.)q' to surround the quote. For example,
the input:

As Weizenbaum points out:
.(q
It is said that to explain is to explain away,
This maxim is nowhere so we11 f'ulfl11ed
as in the areas of' computer programming, ...
•)q

generates as out put:

As Weizenbaum points out:

It is said that to explain is to explain away. This maxim is nowhere so well fulfilled
as in the areas of computer programming, ...

7-8 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

7 .3.5.2. Lists - '.(I' and '.)I'

A li,t is an indented, single-spaced, unfilled display. You should use lists when the material to
be printed should not be filled and justified like normal text. This is useful for columns of
figures, for example. Surround the list text by the requests '.(l' and '.)I'. For example, type:

Alternatives to avoid deadlock are:
.(I
Lock in a specified order
Detect deadlock and back out one proceu
Lock all resourcee needed before proceeding
.)I

to produce:

Alternatives to avoid deadlock are:
Lock in a specified order
Detect deadlock and back out one process
Lock all resources needed before proceeding

7 .3.5.3. Keeps - '.(b' and '.)b', '.(z' and '.)z'

A keep is a display of lines which are kept on a single page if possible. Keeps are useful for
printing diagrams, for example. Keeps differ from lists in that lists may be broken over a page
boundary, whereas keeps will not.

Blocks are the basic kind of keep. They begin with the request '.(b' and end with. the request
'.)b'. If there is not enough room on the current page for everything in the block, a new page is
begun. This has the unpleasant effect of leaving blank space at the bottom of the page. When
this is not appropriate, you can use the alternative called a floating keep.

Floating keep, move relative to the text. Hence, they are good for things which will be referred
to by name, such as 'See figure 3'. A floating keep will appear at the bottom of the current
page if it will fit; otherwise, it will appear at the top of the next page. Floating keeps begin
with the line '.(z' and end with the line '.)z'. An example of a floating keep is:

.(•

.hi
Text of keep to be floated •
.ep
.ce
Figure 1. Example of a Floating Keep .
• hi

·>·
The '.hi' request draws a horizontal line so that the figure stands out from the text.

7 .4. Fancy Displays

Keeps and lists are normally collected in nofill mode, so that they are good for tables and such.
If you want a display in fill mode (for text), type '.(l F'. Throughout this section, comments
applied to '.(I' also apply to '.(b' and '.(z'. This kind of display produced by '.(l' is indented
from both margins. For example, the input:

Revision C of 7 January 1984 7-9

Formatting Documents with the -me Macros Editing and Text ProceBSing

.(IF
And now boys and girls,
a newer, bigger, better toy than ever before!
Be the first on your block to have your own computer!
Yes kids, you too can have one of these modern
data processing devices.
You too can produce beautifully formatted papers
without even batting an eye!
.)I

will be formatted as:
And now boys and girls, a newer, bigger, better toy than ever before! Be the first on
your block to have your own computer! Yes kids, you too can have one of these
modern data processing devices. You too can produce beautifully formatted papers
without even batting an eye!

Lists and blocks are also normally indented, while floating keeps are normally left justified. To
get a left-justified list, type '.(IL'. To center a list line-for-line, type '.(I C'. For example, to
get a filled, left-justified list, use:

.(IL F
text of block
.)I

The input:

.(1
first line of unfilled display
more lines
.)I

produces the indented text:

first line of unfilled display
more lines

Typing the character 'L' after the '.(I' request produces the left-justified result:

first line of unfilled display
more lines

Using 'C' instead of 'L' produces the line-at-a-time centered output:

first line of unfilled display
more lines

Sometimes you may want to center several lines as a group, rather than centering them one line
at a time. To do this use centered blocks, which are surrounded by the requests '.(c' and '.)c'.
All the lines are centered as a unit, such that the longest line is centered, and the rest are lined
up around that line. Notice that lines do not move relative to each other using centered blocks,
whereas they do using the 'C' keep argument.

Centered blocks are not keeps, and you may use them in conjunction with keeps. For example,
to center a group of lines as a unit and keep them on one page, use:

7-10 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

.(b L

.(c
first line of unfilled display
more lines
.)c
.)b

to produce:

first line of unfilled display
more lines

the reimlt would have been the same, but with no guarantee that the lines of the centered block
would have all been on one page. Note the use of the 'L' argument to '.(b'; this centers the cen­
tered block within the entire line rather than within the line minus the indent. Also, you must
nest the center requests inaide the keep requests.

7 .4.1. Display Reference

All displays except centered blocks and block quotes are preceded and followed by an extra
\n(bs (same as \n(ps) space. Quote spacing is stored in a separate register; centered blocks
have no default initial or trailing space. The vertical spacing of all displays except quotes and
centered blocks is stored in register \n($R instead of \n(Sr .
. (1 m / Begin list. Lists are single spaced, unfilled text. If/ is F, the list will be filled. If m

[I) is I the list is indented by \n(bi (4n); if it is M, the list is indented to the left
margin; if it is L, the list is left justified with respect to the text (different from M
only if the base indent (stored in \n(Si and set with '.ba') is not zero}; and if it is C,
the list is centered on a line-by-line basis. The list is set in font \n(df (!J). You
must use a matching '.)I' to end the list. This macro is almost like '.OS' except that

•)1
.(q

.)q

.(b m/

.)b

.(z m /

no attempt is made to keep the display on one page .

End list.
Begin major quote. · The lines are single-spaced, filled, moved in from the main body
of text on both sides by \n(qi (4n), preceded and followed by \n(qs (same as \n(bs)
space, and are set in point size \n(qp, that is, one point smaller than the surround­
ing text .

End major quote.

Begin block. Blocks are a form of keep, where the text of a keep is kept together on
one page if possible. Keeps are useful for tables and figures which should not be bro­
ken over a page. If the block will not fit on the current page a new page is begun,
unless that would leave more than \n(bt (OJ white space at the bottom of the text.
If \n(bt is zero, the threshold feature is turned off. Blocks are not filled unless / is
F, when they are filled. The block will be left-justified if m is L, indented by \n(bi
[4n) if mis I or absent, centered (line-for-line) if mis C, and left justified to the mar­
gin, not to the base indent, if mis M. The block is set in font \n(df (OJ •
End block.

Begin floating keep. Like '.(b' except that the keep is floated to the bottom of the
page or the top of the next page. Therefore, its position relative to the text changes.
The floating keep is preceded and followed by \n(zs (1 v) space. Also, it defaults to

Revision C of 7 January 1984 7-11

Formatting Documents with the -me Macros Editing and Text Processing

.)z

.(c

.)c

modeM.

End floating keep .
Begin centered block. The next keep is centered as a block, rather than on a line­
by-line basis as with '.(b C'. This call may be nested inside keeps.

End centered block .

7 .4.2. Annotations

There are a number of requests to save text for later printing. Footnote, are printed at the bot­
tom or the current page. Delayed tezt is intended to be a variant form of footnote; the text is
printed only when explicitly called for, such as at the end of each chapter. Intle:i:e, are a type of
delayed text having a tag, usually the page number, attached to each entry after a row of dots.
Indexes are also saved until explicitly called for.

7.4.3. Footnotes - '.(f' and '.)f'

Footnotes begin with the request '.(r and end with the· request '.)f'. The current footnote
number is maintained automatically, and can be used by typing ' \ .. ', to produce a footnote
number.I The number is automatically incremented after every footnote. For example, the
input:

.(q
A man who is not upright
and at the same time is presumptuous;
one who is not diligent and at the same time is ignorant;
one who is untruthful and at the same time is incompetent;
such men I do not count among acquaintances.\••
.(r
\••James R. Ware,
.ul
The Best of Confucius,
Halcyon House, 1960.
Page 77 •
•)f
.)q

generates the result:
A man who is not upright and at the same time is presumptuous; one who is not
diligent and at the same time is ignorant; one who is untruthful and at the same
time is incompetent; such men I do not count among acquaintances.2

Make sure that the footnote appears inaitle the quote, so that the footnote will appear on the
same page as the quote.

I 'Like thiB.
1 2James R. Ware, The But of Oon/uciu,, Halcyon House, 1950. Page 77.

7-12 Revision C of 7 January 1984

0

0

Editing and Text Processing Formatting Documents with the -me Macros

o 7 .4.4. Delayed Text

0

0

Delayed text is very similar to a footnote except that it is printed when explicitly called for.
Use this feature to put a list of references at the end of each chapter, as is the convention in
some disciplines. Use'\•#' on delayed text instead of'**' as on footnotes.

If you are using delayed text as your standard reference mechanism, you can still use footnotes,
except that you may want to refer to them with special characters• rather than numbers.

7.4.5. Indexes - '.(x~ '.)x' and '.xp'

An index resembles delayed text, in that it is saved until called for. It is actually more like a
table of contents, since the entries are not sorted alphabetically. However, each entry has the
page num her or some other tag appended to the last line of the index entry after a row of dots.

Index entries begin with the request '.(x' and end with '.)x'. An argument to the '.)x' indicates
the value to print as the 'page number.' It defaults to the current page number. If the page
number given is an underscore (_), no page number or line of dots is printed at all. To get the
line of dots without a page number, type .)x "", which specifies an explicitly null page number.

The '.xp' request prints the index.

For example, the input:

.(x
Sealing wax
.)x g
.(x
Cabbages and kings
.)x ~
.(x
Why the sea is boiling hot
.)x 2.Sa
.(x
Whether pigs have wings
.)x '"'
,(x
This is a terribly long index en try, such as might be used
for a list of illustration•, tables, or flgures; I expect it to
take at least two lines .
.)x g
.xp

generates:

Sealing wax ... 9

Cabbages and kings

<etc.>

1 •Such as an asterisk..

Revision C of 7 January 1984 7-13

Formatting Documents with the -me Macros Editing and Text Processing

The '.(x' request may have a single character argument, specifying the name of the index; the
normal index is x. Thus, you can maintain several indicie, simultaneously, such as a list of
tables and a table of contents.

Notice that the index must be printed at the end of the paper, rather than at the beginning
where it will probably appear (as a table of contents); you may have to rearrange the pages
after printing.

7 .4.6. Annotations Reference

.(d Begin delayed text. Everything in the next keep is saved for output later with '.pd'
in a manner similar to footnotes .

.)d n End delayed text. The delayed text number register \n(Sd and the associated string
\•# are incremented if\•# has been referenced .

. pd Print delayed text. Everything diverted via '.(d' is printed and truncated. You
might use this at the end of each chapter .

. (f Begin footnote. The text of the footnote is floated to the bottom of the page and set
in font \n(ft' [1] and size \n(fp [8p]. Each entry is preceded by \n(fs [0.2v] space, is
indented \n(fi [3n] on the first line, and is indented \n(fu [OJ from the right margin.
Footnotes line up underneath two-columned output. If the text of the footnote will
not all fit on one page, it will be carried over to the next page .

.)r n End footnote. The number register \n($f and the associated string \•• are incre­
mented if they have been referenced .

. $s

. (x "

.)x PA

.xp z

The macro to generate the footnote separator. You may redefine this macro to give
other size lines or other types of separators. It currently draws a 1.5-inch line .

Begin index entry. Index entries are saved in the index z until called up with '.xp'.
Each entry is preceded by a \n(x11 [0.2v] space. Each entry is 'undented' by \n(xu
[0.5i]; this register tells how far the page number extends into the right margin.

End index entry. The index entry is finished with a row of dots with A [null] right
justified on the last line, such as for an author's name, followed by P [\n%]. Ir A is
specified, P must be specified; \n% can be used to print the current page" number.
I(P is an underscore, no page number and no row or dots are printed.

Print index z [x]. The index is formated in the font, size, and so forth in effect at
the time it is printed, rather than at the time it is collected.

7 .5. Fancy Features

A large number or fancier requests exist, notably requests to provide other sorts of paragraphs,
numbered sections of the form '1.2.3', such as those used in this manual, and multicolumn out­
put.

7.5.1. Section Headings - '.sh' and '.uh'

You can automatically generate section numbers, using the '.sh' request. You must tell '.sh' the
depth or the section number and a section title. The depth specifies how many numbers
separated by decimal points are to appear in the section number. For example, the section

7-14 Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

number '4.2.5' has a depth of three.

Section numbers are incremented if you add a number. Hence, you increase the depth, and the
new number starts out at one. If you subtract section numbers, or keep the same number, the
final number is incremented. For example, the input:

.eh 1 "The Preprocessor"

.eh 2 "Basic Concepts"

.eh 2 "Control Inputs"

.eh 3

.eh3

.eh 1 "Code Generation"

.eh3

produces as output the result:

1. The Preprocessor
1.1. Basic Concepts
1.2. Control Inputs
1.2.1.
1.2.2.
2. Code Generation
2.1.1.

You can specify the beginning section number by placing the section number after the section
title, using spaces instead of dots. For example, the request:

.eh 3 "Another section" 7 3 4

will begin the section numbered '7.3.4'; all subsequent '.sh' requests will be numbered relative to
this number.

There are more complex features which indent each section proportionally to the depth of the
section. For example, if you type:

.nr ai Nz

each section will be indented by an amount N. N must have a scaling factor attached, that is,
it must be of the form Nz, where z is a character telling what units N is in. Common values for
z are 'i' for inches, 'c' for centimeters, and 'n' for 'ens,' the width of a single character. For
example, to indent each section one-half inch, type:

.nr ai O.Si

The request indents sections by one-half inch per level of depth in the section number. As
another example, consider:

.nr si 3n

which gives three spaces of indent per section depth.

You can produce section headers without automatically generated numbers using:

.uh "Title"

which will do a section heading, but will not put a number on the section.

Revision C of 7 January 1984 7-15

Formatting Documents with the -me Macros Editing and Text Procel!Sing

7 .5.1.1. Section Heading Reference

.sh + N T a b c d e /
Begin numbered section of depth N. If N is missing, the current depth (maintained
in the number register \n{$0) is used. The values of the individual parts of the sec­
tion number are maintained in \n($1 through \n($8. There is a \n(as [lv) space
before the section. T is printed as a section title in font \n(sf (8) and size \n(sp
[top]. The 'name' of the section may be accessed via \•(Sn. Ir \n(si is non-zero, the
base indent is set to \n(si times the section depth, and the section title is exdented
(see '.ba'in Miacellaneoua Roque.ta). Also, an additional indent of \n(so (OJ is added
to the section title but not to the body of the section. The font is then set to the
paragraph font, so that more information may occur on the line with the section
number and title. A '.sh' insures that there is enough room to print the section head
plus the beginning of a paragraph, which is about 3 lines total. If you specify a
through /, the section number is set to that number rather than incremented
automatically. If any of a through/ are a hyphen that number is not reset. If Tis a
single underscore (_),the section depth and numbering is reset, but the base indent
is not reset and nothing is printed. This is useful to automatically coordinate section
numbers with chapter numbers .

. sx +N
Go to section depth 'N [-1)', but do not print the number and title, and do not
increment the section number at level N. This has the effect of starting a new para­
graph at level N .

0

. uh T Unnumbered section heading. The title Tis printed with the same rules for spacing,
font, etc., as for '.sh'. 0

.$p T B N Print section heading. May be redefined to get fancier headings. T is the title
passed on the '.sh' or '.uh' line; Bis the section number for this section, and Nis the
depth of this section. These parameters are not always present; in particular, '.sh'
passes all three, '.uh' passes only the first, and '.sx' passes three, but the first two
are null strings. Be careful if you redefine this macro, as it is quite complex and sub­
tle .

. $0 T B N Callled automatically after every call to '.Sp'. It is normally undefined, but may be
used to automatically put every section title into the table of contents or for some
similar function. Tis the section title for the section title which was just printed, B
is the section number, and N is the section depth .

. $1 - .$6 Traps called just before printing that depth section. May be defined to give variable
spacing before sections. These macros are called from '.$p', so if you redefine that
macro you may lose this feature.

7 .5.2. Parts of the Standard Paper

There are some requests which assist in setting up papers. The '.tp' request initializes for a title
page. There are no headers or footers on a title page, and unlike other pages, you can space
down and leave blank space at the top. For example, a typical title page might appear as:

7-16 Revision C of 7 January 1984

0

0

0

0

Editing and Text ProceBSing Formatting Documents with the -me Macros

.tp

.ap 2i

.(IC
A BENCHMARK FOR THE NEW SYSTEM
.ap
by
.ap
J.P. Hacker
.))
.bp

The request '.th' sets up the environment of the nroff processor to do a thesis. It defines the
correct headers, footers, a page number in the upper right-hand corner only, sets the margins
correctly, and double spaces.

Use the '.+ c T request to start chapters. Each chapter is automatically numbered from one,
and a heading is printed at the top of each chapter with the chapter number and the chapter
name T. For example, to begin a chapter called Conclu,ion,, use the request:

.+ c "CONCLUSIONS"

CONCLUSIONS

with appropriate spacing for a thesis. Also, the header is moved to the foot of the page on the
first page of a chapter. Although the '.+ c' request was not designed to work only with the '.th'
request, it is tuned for the format acceptable for a standard PhD thesis.

If the title parameter Tis omitted from the '.+ c' request, the result is a chapter with no head­
ing. You can also use this at the beginning of a paper.

Although papers traditionally have the abstract, table of contents, and so forth at the front, it
is more convenient to format and print them last when using nroff. This is so that index entries
can be collected and then printed for the table of contents. At the end of the paper, give the
'.+ + P' request, which begins the preliminary part of the paper. After using this request, the
'.+ c' request will begin a preliminary section of the paper. Most notably, this prints the page
number restarted from one in lower-case Roman numbers. You may use '.+ c' repeatedly to
begin different parts of the front material for example, the abstract, the table of contents, ack­
nowledgments, list of illustrations, and so on. You may also use the request '.+ + B' to begin
the bibliographic section at the end of the paper. For example, the paper might appear as out­
lined below. (In this figure, comments begin with the sequence ' \"'.)

Revision C of 7 January 1984 7-17

Formatting Documents with the -me Macros Editing and Text Processing

.th \" set Cor thesis mode

.Co "DRAFT" \" define Cooter (or each page Q,

.tp \" begin title page

.(I C \" center a large block
A BENCHMARK FOR THE NEW SYSTEM
.sp
by
.sp
J.P. Hacker
.)I
.+ c INTRODUCTION
.(x t
Introduction
.)x
text or chapter one
.+ c "NEXT CHAPTER"
.(x t
Next Chapter
.)x
text or chapter two
.+ c CONCLUSIONS
.(x t
Conclusions
.)x
text or chapter three
.++ B
.+ c BIBLIOGRAPHY
.(x t
Bibliography
.)x
text or bibliography

\" end centered part
\" begin chapter named 'INTRODUCTION'
\" make an entry into index 't'

\" end or index entry

\" begin another chapter
\" enter into index 't' again

\" begin bibliographic information
\" begin another 'chapter'

. + + P \" begin preliminary material

.+ c "TABLE OF CONTENTS"

.xp t

.+c PREFACE
text of preface

\" print index 't' collected above
\" begin another preliminary section

Outline or a Sample Paper

7 .5.2.1. Standard Paper Reference

.tp Begin title page. Spacing at the top or the page can occur, and headers and footers
are suppressed. Also, the page number is not incremented Cor this page .

. th Set thesis mode. This defines the modes acceptable Cor a doctoral dissertation. It
double spaces, defines the header to be a single page number, and changes the mar-

0

gins tho. be 1.5 inch on the left abnd on~ i~~hl on the top. Use '.+ + ' and '.+ c' with O·
it. T 1s macro must be stated eCore m1t1a ization, that is, before the first call or a

7-18 Revision C or 7 January 1984

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

.++ mH

paragraph macro or '.H'.

This request defines the section of the paper which you are typing. The section type
is defined by m: 'C' means that you are entering the chapter portion of the paper,
'A' means that you are entering the appendix portion of the paper, 'P' means that
the material following should be the preliminary portion (abstract, table of contents,
etc.) portion of the paper, 'AB' means that you are entering the abstract (numbered
independently from I in Arabic numerals), and 'B' means that you are entering the
bibliographic portion at the end of the paper. You can also use the variants 'RC'
and 'RA', which specify renumbering of pages from one at the beginning of each
chapter or appendix, respectively. The H parameter defines the new header. If
there are any spaces in it, the entire header must be quoted. If you want the header
to have the chapter number in it, use the string ' \\ \ \n(ch '. For example, to
number appendixes 'A.I' etc., type .++ RA "'\ \ \ \n(ch.% '. Precede each section
(chapter, appendix, etc.) by the '.+ c' request. When using troff, it is easier to put
the front material at the end of the paper, so that the table of contents can be col­
lected and generated; you can then physically move this material to the beginning of
the paper .

. + c T Begin chapter with title T. The chapter number is maintained in \n(ch. This regis­
ter is incremented every time '.+ c' is called with a parameter. The title and chapter
number are printed by '.Sc'. The header is moved to the footer on the first page of
each chapter. If T is omitted, '.Sc' is not called; this is useful for doing your own
'title page' at the beginning of papers without a title page proper. '.Sc' calls '.SC' as
a hook so that chapter titles can be inserted into a table of contents automatically.
The footnote numbering is reset to one .

. Sc T Print chapter number (from \n(ch) and T. You can redefine this macro to your lik­
ing. It is defined by default to be acceptable for a standard PhD thesis. This macro
calls 'SC', which can be defined to make index entries, or whatever .

. $CK NT
This macro is called by '.Sc'. It is normally undefined, but can be used to automati­
cally insert index entries, or whatever. K is a keyword, either 'Chapter' or 'Appen­
dix' (depending on the '.++'mode); N is the chapter or appendix number, and Tis
the chapter or appendix title .

. ac A N This macro (short for '.acm') sets up the nroff environment for photo-ready papers
as used by the Associattion for Computing Machines (ACM). This format is 25%
larger, and has no headers or footers. The author's name A is printed at the bottom
of the page, but off the part which will be printed in the conference proceedings,
together with the current page number and the total number of pages N. Addition­
ally, this macro loads the file /tJar/lib/me/acm.mo, which may later be augmented
with other macros for printing papers for ACM conferences. Note that this macro
will not work correctly in troff, since it sets the page length wider than the physical
width of the phototypesetter roll.

7 .5.3. Two-Column Output - '.2c'

You can get two column output automatically by using the request '.2c'. This produces every­
thing after it in two-column form. The request '.be' will start a new column; it differs from '.bp'
in that '.bp' may leave a totally blank column when it starts a new page. To revert to single

Revision C of 7 January 1984 7-19

Formatting Documents with the -me Macros Editing and Text Processing

column output, use '.le'.

7.5.3.1. Columned Output Reference

.2c +SN
Enter two-column mode. The column separation is set to + S (4n, O.Si in ACM
mode] (saved in \n(Ss). The column width, calculated to fill the single column line
length with both columns, is stored in \n(Sl. The current column is in \n(Sc. You
can test register \n(Sm (l] to see if you are in single column or double column mode.
Actually, the request enters N (2) columned output .

. le Revert to single-column mode .

. be Begin column. This is like '.hp' except that it begins a new column on a new page
only if necessary, rather than forcing a whole new page if there is another column
left on the current page.

7 .5.4. Defining Macros - '.de'

A macro is a collection of requests and text which you may use by stating a simple request.
Macros begin with the line '.de ,z,z' where ,z,z is the name of the macro to be defined, and end
with the line consisting of two dots. After defining the macro, stating the line '.,z,z' is the same
as stating all the other lines. For example, to define a macro that spaces 3 lines and then
centers the next input line, type:

.de SS

.sp 3

.ce

and use it by typing:

.ss
Title Line
{beginning of te,zt)

Macro names may be one or two characters. In order to avoid conflicts with command names in
-me, always use upper-case letters as names. Avoid the names 'TS', 'TH', 'TE', 'EQ', and 'EN'.

7 .5.5. Annotations Inside Keeps

Sometimes you may want to put a footnote or index entry inside a keep. For example, if you
want to maintain a 'list of figures', you will want to use something like:

7-20 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing

·<· .(c
Text of figure
.)c
.ce
Figure 6.
\t.(x r
\!Figure 6
\!.)x

·>·

Formatting Documents with the -me Macros

which will give you a figure with a label and an entry in the index •r, presumably a list of
figures index. Because the index entry is read and interpreted when the keep is read, and not
when it is printed, you have is to use the magic string ' \!' at the beginning of all the lines deal­
ing with the index. Otherwise, the page number in the index is likely to be wrong. This defers
index processing until the figure is generated, and guarantees that the page number in the index
is correct. The same comments apply to blocks with '.(b' and '.)b'.

7 .6. Using 'troff' for Phototypsetting

You can prepare documents for either displaying on a workstation or for phototypesetting using
the troffformatting program.

Q 7.6.1. Fonts

0

A font is a style of type. There are three fonts that are available simultaneously, Times Roman,
Times Italic, and Times Bold, plus the special math font for use with the eqn and neqn
mathematical equation processors. The normal font is Roman. Text which would be under­
lined in nroff with the '.ul' request is set in italics in troff.

There are ways of switching between fonts. The requests '.r', '.i', and '.b' switch to Roman,
italic, and bold fonts respectively. You can set a single word in some font by typing for exam·
pie:

.i word
which will set word in italics but does not affect the surrounding text. In nroff, italic and bold
text is underlined.
Notice that if you are setting more than one word in whatever font, you must surround that
word with double quote marks ('" ') so that it will appear to the nroff processor as a single
word. The quote marks will not appear in the formatted text. Ir you do want a quote mark to
appear, quote the entire string even if a single word, and use two quote marks where you want
one to appear. For example, if you want to produce the text:

"Mader Control"

in italics, you must type:

.i """Master Control\!"""

The ' \I' produces a very narrow space so that the 'I' does not overlap the quote sign in troff.

Revision C of 7 January 1984 7-21

Formatting Documents with the -me Macros Editing and Text Processing

There are also several paeudo-font, available. For example, the input:

. u underlined

generates

underlined

and

.bx "words in a box"

produces

l words in a box !
You can also get bold italics with

.bi "bold italics"

Notice that pseudo Cont requests set only the single parameter in the pseudo font; ordinary font
requests will begin setting all text in the special font if you do not provide a parameter. No
more than one word should appear with these three font requests in the middle of lines. This is
because or the way troff justifies text. For example, if you were to give the requests:

.bi "some bold italics"
and
.bx "words in a box"

in the middle or a line, troff would overwrite the first and the box lines on the second would be
poorly drawn.

0

The second parameter or all font requests is set in the original font. For. example, the font Q
request:

.b bold face

generates 'bold' in bold Cont, but sets 'face' in the font of the surrounding text, resulting in:

boldface

To set the two words 'bold' and 'face' both in bold face, type:

.b "bold face"

You can mix Con ts in a word by using the special sequence ' \c' at the end of a line to indicate
'continue text processing'; you can join input lines together without a space between them. For
example, the input:

.u under \c

.i italics

generates J!ll9!:nta/ic, , but if you type:

.u under

.i italics

the result is under italic, as two words.

7-22 Revision C of 7 January 1984

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

7 .6.2. Point Sizes - '.sz'

The phototypesetter supports different sizes of type, measured in points. The default point size
is 10 points for most text and eight points for footnotes. To change the point size, type:

.as+N
where N is the size wanted in points. The 'vertical spacing,' that is, the distance between the
bottom of most letters (the baae/ine) and the adjacent line is set to be proportional to the type
size.

Note: Changing point sizes on the phototypesetter is a slow mechanical operation. Consider size
changes carefully.

7.6.2.1, Fonts and Sizes Reference

.sz + P The point size is set to P (lOp), and the line spacing is.set proportionally. The ratio
of line spacing to point size is stored in \n(Sr. The ratio used internally by displays
and annotations is stored in \n(SR, although '.sz' does not use this .

. r W X Set Win roman font, appending X in the previous font. To append different font
requests, use 'X = \c'. Ir no parameters, change to roman font .

. i W X Set Win italics, appending X in the previous font. Ir no parameters, change to italic
font. Underlines in nroff.

.b W X Set W in bold font and append X in the previous font. Ir no parameters, switch to
bold font. Underlines in nroff.

.rb W X Set Win bold font and append X in the previous font. Ir no parameters; switch to
bold font. '.rb' differs from '.b' in that '.rb' does not underline in nroff.

.u W X Underline Wand append X. This is a true underlining, as opposed to the '.ul'
request, which changes to 'underline font' (usually italics in tro6). It won't work
right if W is spread or broken, which includes being hyphenated, so in other words,
it is only safe in nofill mode .

. q W X Quote Wand append X In nroff this just surrounds W with double quote marks ('
"" '), but in troff uses directed quotes .

. bi W X Set Win bold italics and append X. Actually, sets Win italic and overstrikes once.
Underlines in nroff. It won't work right if W is spread or broken, which includes
being hyphenated, so in other words, it is only safe in nofill mode .

. bx W X Sets Win a box, with X appended. Underlines in nroff. It won't work right if Wis
spread or broken, which includes being hyphenated, so in other words, it is only safe
in nofill mode.

7.6.3. Quotes - '\•(lq' and '\•(rq'

It looks better to use pairs of grave and acute accents to generate double quotes, rather than
the double quote character ('" ') on a phototypesetter. For example, compare "quote" to
"quote". In order to make quotes compatible between the typesetter and the workstation or a
terminal, use the sequences ' \ •(lq' and ' \ •(rq' to stand for the left and right quote respectively.
These both appear as ' " ' on most terminals, but are typeset as ' " ' and ' " ' respectively. For
example, use:

Revision C of 7 January 1984 7-23

Formatting Documents with the -me Macros

\•(lqSome things aren't true
even if they did happen.\•(rq

to generate the result:

"Some things aren't true even if they did happen."

As a shorthand, the special font request:

.q "quoted text"

Editing and Text Processing

which generates "quoted text". Notice that you must surround the material to be quoted with
double quote marks if it is more than one word.

7.7. Adjusting Macro Parameters

You may adjust a number of macro parameters. You may set fonts to a font number only. In
nroff font 8 is underlined, and is set in bold font in troff (although font 3, bold in troff, is not
underlined in nroff). Font O is no font change; the font of the surrounding text is used instead.
Notice that fonts O and 8 are p1eudo-font1; that is, they are simulated by the macros. This
means that although it is legal to set a font register to zero or eight, it is not legal to use the
escape character form, such as:

\f8
All distances are in basic units, so it is nearly always necessary to use a scaling factor. For
example, the request to set the paragraph- indent to eight one.en spaces is:

.nr pi Sn

and not

.nr pi 8

which would set the paragraph indent to eight basic units, or about 0.02 inch.

You may use registers and strings of the form 'S z' in expressions but you should not change
them. Macros of the form 'S z' perform some function as described and may be redefined to
change this function. This may be a sensitive operation; look at the body of the original macro
before changing it.

On daisy wheel type printers in twelve pitch, you can use the '-rxl' flag to make lines default
to one eighth inch, which is the normal spacing for a newline in twelve-pitch. This is normally
too small for easy readability, so the default is to space one sixth inch.

7-24 Revision C of 7 January 1984

0

I

ol

0

0

0

0

Editing and Text Processing Formatting Documents with the -me Macros

7 .8. Roff Support

.ix +N

. bl N

. pa+N

. ro

. ar

. nl

. n2 N

.sk

Indent, no break. Equivalent to '' in N .

Leave N contiguous white spaces, on the next page if not enough room on this page .
Equivalent to a '.sp N inside a block.

Equivalent to '.hp' .

Set page number in Roman numerals. Equivalent to '.af % i' .
Set page number in arabic. Equivalent to '.af % 1 ' .

Number lines in margin from one on each page .

Number lines from N, stop if N = 0 .

Leave the next output page blank, except for headers and footers. Use this to leave
space for a full-page diagram which is produced externally and pasted in later. To
get a partial-page paste-in display, say '.sv N, where N is the amount of space to
leave; this space will be generated immediately if there is room, and will otherwise be
generated at the top of the next page. However, be warned: if N is greater than the
amount of available space on an empty page, no space will ever be generated.

7 .9. Preprocessor Support

· .EQ m T Begin equation. The equation is centered if m is 'C' or omitted, indented \n(bi (4n)
if m is 'I', and left justified if m is 'L'. T is a title printed on the right margin next
to the equation. See the Typeaetting Mathematic, with 'eqn' chapter in this manual.

.EN c End equation. If c is 'C', the equation must be continued by immediately following
with another '.EQ', the text of which can be centered along with this one. Other­
wise, the equation is printed, always on one page, with \n(es (0.5v in troff, lv in

.TS h

. TH

.TE

nro.111 space above and below it.

Table start. Tables are single spaced and kept on one page if possible. If you have
a large table which will not fit on one page, use h = H and follow the header part to
be printed on every page of the table with a '.TH'. See the Formatting Table, with
'tbl' chapter in this manual.

With '.TS H', ends the header portion of the table .

Table end. Note that this table does not float, in fact, it is not even guaranteed to
stay on one page if you use requests such as '.sp' intermixed with the text of the
table. If you want it to float (or if you use requests inside the table), surround the
entire table (including the '.TS' and '.TE' requests) with '.(z' and '.)z'.

Revision C of 7 January 1984 7-25

Formatting Documents with the -me Macros Editing and Text Processing

7 .10. Predefined Strings

'i** Footnote number, actually \•(\n(Sf\•]. This macro is incremented alter each call to U i
I•)f' •

\ •# Delayed text number. Actually (\n(Sd].
\ •[Superscript. This string gives upward movement and a change to a smaller point

size if possible, otherwise it gives the left bracket character (' ('). Extra space is left
above the line to allow room for the superscript. For example, to produce a super­

\•)
\•<

\•>
\•(dw

\•(mo

\•(td

\•(lq
\•(rq
\•-

script you can type x\•[2\•], which will produce xZ.
Unsuperscript. Inverse of\•[.
Subscript. Defaults to '<' if half.carriage motion not possible. Extra space is left
below the line to allow for the subscript.

Inverse to \ • <.
The day of the week, as a word.

The month, as a word.
Today's date, directly printable. The date is of the form September 16, 1983. Other
forms of the date can be used by using \n(dy (the day of the month; for example,
16), \•(mo (as noted above) or \n(mo (the same, but as an ordinal number; for
example, September is 9), and \n(yr (the last two digits of the current year).

Left quote marks; double quote in nroff.

Right quote marks; double quote in nroff.

An em dash in troff, two hyphens in nroff.

7.11. Miscellaneous Requests

.re Reset tabs. Set to every 0.5i in troff and every 0.8i in nroff.

.ba + N Set the base indent to + N [OJ (saved in \n($i). All paragraphs, sections, and
displays come out indented by this amount. Titles and footnotes are unaffected.
The '.H' request performs a '.ba' request if \n(si (OJ is not zero, and sets the base
indent to \n(si•\n($0 .

. xi + N Set the line length to N [6.0i]. This differs from '.11' because it only affects the
current environment .

. II + N Set line length in all environments to N [6.0i]. Do not use this after output has
begun, and particularly not in two-columned output. The current line length is
stored in \n($1.

.hi Draws a horizontal line the length of the page. This is useful inside floating keeps to
differentiate between the text and the figure .

.lo This macro loads another set of macros in /uar/lib/me/local.me which is a set of
locally defined macros. These macros should all be of the form '.• X', where X is
any letter (upper or lower case) or di~it.

7-26 Revision C of 7 January 1984

0

0

,O

0

0

Editing and Text Processing Formatting Documents with the -me Macros

7 .12. Special Characters and Diacritical Marks - '.sc'

There are a number of special· characters and diacritical marks, sueh as accents, available with
-me; To use these characters, you must call the macro '.sc' to define the characters before using
them .
. sc Define special characters and diacritical marks. Youcmust, state .. tliis macro before

initialization.
··The special characters·available·a,e listed below.

Table 7•1: Special Characters and Diacritical Marks

- .
Name .Usage Example
Acute accent \•' a*' a
Grave accent \•' e*' e
Umlaut \•: u\•~ Vi
tilde ,.- ii\•- ii
Caret , .. e\•· e
Cedilla \•, c\•, ·~
Csech \•v e*v

V ·e ..
Circle \•o A\•o 'A
There exists ·\•(qe ,3
For all . \•foa "

Revision C of 7 January 1984 7-27

Formatting Documents with the -me Macros Editing and Text Processing

7 .13. '-me' Request Summary

Request
. (c
. (d
. (r
. (1
. (q
.(x "
. (z
.)c
.)cl
. Jr
.)I
.)q
.)x
.)z
.++ mH

.+c T

. le

. 2c

.EN

.EQ z y

. TE

.TH

.TS z

. ac AN

7-28

Table 7-2: -me Request Summary

Initial Value Cause Break Explanation

1
1

yes Begin centered block .
no Begin delayed text .
no Begin footnote .
yes Begin list .
yes Begin major quote •
no Begin indexed item in index z.
no Begin floating keep .
yes End centered block .
yes End delayed text .
yes End footnote .
yes End list .
yes End major quote .
yes End index item .
yes End floating keep.
no Define paper section. m defines the

part or the paper and can be C
(chapter), A (appendix), P (prelim­
inary, for examl!le, abstract, table or
contents, etc.), B (bibliography), RC
(chapters renumbered from page one
each chapter), or RA (appendix
renumbered from page one).

yes Begin chapter (or appendix, etc., as
set by '.+ + '). T is the chapter
title.

yes
yes
yes

yes

yes
yes
yes

no

One column format on a new page .
Two column format .
Space after equation produced by
eqn or neqn.
Precede equation; break out and add
space. Equation number is If· The
optional argument z may be / to
indent equation (default), L to left­
adjust the equation, or C to center
the equation.
End table .
End heading section of table.
Begin table; if z is H, table has
repeated heading .
Set up for ACM style output. A is
the Author's name(s), N is the total
number of pages. Must be given
before the first initialization.

Revision C of 7 January 1984

0

0

0

0

0

0

Editing and Text Processing

Request
.b z

. ha +n

.be

. bi z

. bx z

. er 'z' u' z'

. eh 'z'y'z'
Jo 'z'!lz'
.he 'z'u'z'
. hi
.hx

.i z

.ip z JI

.Ip

.lo

.np

.or 'z' !I z'

.oh ; z' !I z'

. pd

.pp

.r

.re

.SC

.sh n z

.sk

.sz + n
• th

. tp

.u z

. uh

.xp z

Initial Value
no

0

no
no
no ,,,,
,,,,
,,,,

""

no

no

yes

1

"" ,,,,

no

yes

no

lOp
no

no

Cause Break
yes

yes

yes
no
no
no
no
no
no
yes
no

no

yes

yes
no

yes
no
no
yes
yes

no
no
no

yes

no

no
no

yes
no

yes
no

Revision C of 7 January 1984

Formatting Documents with the -me Macros

Explanation
Print z in boldface; if no argument
switch .to boldface.
Augments the base indent by n .
This indent is used to set the indent ·
on regular text (like paragraphs).
Begin new column. ·
Print z in bold italics (nofill only) .
Print z in a box (nofill only) .
Set even footer to x y z .
Set even header to x y z .
Set footer to x y z.
Set header to x y z.
Draw a horizontal line .
Suppress headers and footers on
next page.
Italicize :r, if z is missing, italic text
follows.
Start indented paragraph, which
hanging tag z. Indentation is II ens
(default 5).
Start left-block paragraph .
Read in a file or local macros of the
form '.•z'. Must be given before ini-
tialization. · ·
Start numbered paragraph.
Set odd rooter to X y z.
Set odd header to x y z.
Print delayed text .
Begin paragraph. First line
indented.
Roman text follows.
Reset tabs to default values.
Read in a file of special characters
and diacritical marks. Must be
given before initialization.
Section head follows, font automati­
cally bold. n is level of section, z is
title of section.
Leave the next page blank. Only
one page is remembered ahead.
Increase the point size by n points.
Produce the paper in thesis format .
Must be given before initialization.
Begin title page .
Underline argument (even in troff)
(no fill only).
Like '.sh' but unnumbered .
Print index z.

7-29

0

0

0

0

0

READER COMMENT SHEET

Dear Customer,
We who work here at Sun Microsystems wish to provide the best possible documentation for
our products. To this end, we solicit your comments on this manual. We would appreciate
your telling us about errors in the content of the manual, and about any material which you
feel should be there but isn't.

Typographical Errors:
Please list typographical errors by page number and actual text of the error.

Technical Errors:
Please list errors of fact by page number and actual text of the error.

Content:
Did this guide meet your needs? If not, please indicate what you think should be
added or deleted in order to do so. Please comment on any material which you feel
should be present but is not. Is there material which is in other manuals, but would be
more convenient if it were in this manual?

Layout and Style:
Did you find the organization of this guide useful! If not, how would you rearrange
things! Do you find the style of this manual pleasing or irritating! What would you
like to see different!

C

0

0

0

0

0

0

0

0

0

0

Part Number 800-1114-01
Revision: C of 7th January 1984

For: Sun System Release 1.1

FORTRAN and Pascal

for the

Sun Workstation

Sun Microsystems, Inc.,
2550 Garcia Avenue

Mountain View
California 94043
(415) 960-1300

0

01

0

0

0

0

Section I, FORTRAN

FORTRAN and Pascal

Table of Contents

1. The FORTRAN Programmer's Guide
Describes the compiler and run-time system for the new extended language, FOR­
TRAN 77.

2. FORTRAN Language Reference Manual
To be supplied in a subsequent release.

3. FORTRAN Library Functions
A collection of reference manual pages (section 3F) which describe the FORTRAN
interfaces to the basic UNIXt supervisor facilities.

3. Ratfor - A Preprocessor for a Rational FORTRAN.
Converts a FORTRAN with e-like control structures and cosmetics into real, ugly
FORTRAN.

Section II, Pascal

Pascal User's Manual.
An interpretive implementation of the reference language.

t UN1X ia a trademark of Bell Laboratories.

0

0

0

0

0

0

Fortran Programmer's Guide

for the

Sun Workstation

Credits and Acknowledgements

This manual is based on Bell Laboratories document entitled A Portable Fortran 77 Compiler,
by S. I. Feldman and P. J. Weinberger, dated 1 August 1978. Material on the 1/0 Library was
derived from the paper entitled Introduction to the /77 I/ 0 Library, by David L. Wasley,
University of California, Berkeley, California 94720. Further work was done at Sun Microsys­
tems.

Trademarks

Sun Workstation is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright © 1983 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

- ii -

0

0

0

0

Revision History

Revision Date Comments

A 15 July 1983 First release of this Programmer's Guide.

B 1 November 1983 Incorporates corrections.

C 7 January 1984 Reorganized and some extra material added.

0

0
Revision C of 7 January 1984 0-iii

0

0

O l
' !
j

0
Fortran Programmer's Guide

Table of Contents

Chapter 1 Introduction.. 1-1

Chapter 2 Fortran Input and Output .. 2-1

0 Chapter 3 Data Representations ... 3-1

Chapter 4 Inter-Procedure Interface ... 4-1

Appendix A Deviations from the Fortran-77 Standard ... A-1

Appendix B Differences Between Fortran-66 and Fortran-77 B-1

Appendix C Bibliography .. C-1

0
-v-

0

0

0

0

0

0

Fortran Programmer's Guide

Table of Contents

Chapter 1 Introduction.. 1-1
1.1. Using the FORTRAN-77 Compiler on the Sun Workstation................. 1-2
1.2. Source Files that F77 Understands ... 1-3
1.3. Options to the F77 Command ... 1-3

Chapter 2 Fortran Input and Output .. 2-1
2.1. Structure of FORTRAN-77 Files .. 2-1
2.2. Pre-Connected Files and File Positions.. 2-1
2.3. FORTRAN 1/0 .. 2-2

2.3.1. Types of 1/0 .. 2-2
2.3.1.1. Direct access... 2-2
2.3.1.2. Sequential access ... 2-2
2.3.1.3. List directed 1/0 ... 2-3
2.3.1.4. Internal 1/0 .. 2-3

2.3.2. 1/0 execution... 2-3
2.4. Implementation details ... 2-3

2.4.1. Number of logical units ... 2-3
2.4.2. Standard logical units ... 2-3
2.4.3. Vertical format control .. 2-4
2.4.4. The open statement ... 2-4
2.4.5. Format interpretation .. 2-4
2.4.6. List directed output ... 2-5
2.4.7. 1/0 errors :... 2-5

2.5. Non-'ANSI Standard' extensions.. 2-5
2.5.1. Format specifiers.. 2-5

- vii -

2.5.2. Print files .. 2-6
2.5.3. Scratch files ... 2-6
2.5.4. List directed 1/0 .. 2-7

2.6. Running older programs.. 2-7
2.6.L Traditional unit control parameters .. 2-7
2.6.2. Preattachment or logical units .. 2-7

2.7. Magnetic tape 1/0 ... 2-7

Chapter 3 Data Representations ... 3-1
3.1. Storage Allocation .. :.. 3-1
3.2. Data Representations .. 3-2

3.2.L Representation of real and double precision ... 3-2
3.2.2. Representation of Extreme Numbers .. 3-2
3.2.3. Hexadecimal Representation of Selected Numbers 3-3
3.2.4. Deviations from the Proposed IEEE Standard...................................... 3-3
3.2.5. Arithmetic Operations on Extreme Values.. 3-3

Chapter 4 Inter-Procedure Interface ... 4-1
4.1. Procedure Names ... 4-1
4.2. Data Representations .. 4-1
4.3. Return Values.. 4-1
4.4. Argument Lists.. 4-2

Appendix A Deviations from the Fortran-77 Standard ... A-1
A.l. Extensions to the FORTRAN-77 Standard... A-1

A.LL Double Complex Data Type.. A-1
A.1.2. Internal Files ... A-1
A.1.3. Implicit Undefined statement.. A-1
A.1.4. Recursion... A-2
A.1.5. Automatic Storage... A-2
A.L6. Source Input Format.. A-2
A.1.7. Include Statement.. A-3
A.1.8. Binary Initialization Constants .. A-3
A.1.9. Character Strings ... A-3
A.1.10. Hollerith .. :.............. A-4
A.I.II. Equivalence Statements... A-4
A.1.12. One-Trip DO Loops... A-4
A.Ll3. Commas in Formatted Input ... A-4
A.1.14. Short Integers... A-4
A.Ll5. Additional Intrinsic Functions... A-5

A.2. Violations of the Standard .. A-6
A.2.1. Dummy Procedure Arguments... A-6
A.2.2. T and TL Formats.. A-6
A.2.3. Carriage Control ... A-6
A.2.4. Assigned Goto .. A-6

- viii -

0

0

0

A.2.5. Default files .. A-6

0 A.2.6. Lower case strings.. A-7
A.2.7. Exponent representation on Ew.dEe output... A-7
A.2.8. Repeat counts for null values ... A-7

Appendix B Differences Between Fortran-66 and Fortran-77 B-1
B.1. Features Deleted from FORTRAN-66 ... B-1

B.1.1. Hollerith ... B-1
B.1.2. Extended Range.. B-1

B.2. Program Form .. B-1
B.2.1. Blank Lines .. B-1
B.2.2. Program and Block Data Statements... B-1
B.2.3. ENTRY Statement.. B-2
B.2.4. DO Loops .. B-2
B.2.5. Alternate Returns .. B-2

B.3. Declarations .. B-3
B.3.1. CHARACTER Data Type .. B-3
B.3.2. IMPLICIT Statement .. B-3
B.3.3. PARAMETER Statement ... B-3
B.3.4. Array Declarations ... B-3
B.3.5. SA VE Statement ... B-4
B.3.6. INTRINSIC Statement ... B-4

B.4. Expressions ... B-4
B.4.1. Character Constants... B-4
B.4.2. Concatenation ... B-5 0
B.4.3. Character String Assignment .. B-5
8.4.4. Substrings.. B-5
B.4.5. Exponentiation ... B-5
B.4.6. Relaxation of Restrictions .. B-5

B.5. Executable Statements .. B-6
B.5.1. IF-THEN-ELSE... B-6
B.5.2. Alternate Returns .. B-6

B.6. Input/Output .. B-7
B.6.1. Format Variables.. B-7
B.6.2. END=, ERR=, and IOSTAT= Clauses ... B-7
B.6.3. Formatted 1/0 ... B-7

B.6.3.1. Character Constants.. B-7
B.6.3.2. Positional Editing Codes ... B-8
B.6.3.3. Colon ... B-8
B.6.3.4. Optional Plus Signs .. B-8
B.6.3.5. Blanks on Input .. B-8
B.6.3.6. Unrepresentable Values.. B-8
B.6.3.7. lw.m ... B-9
B.6.3.8. Floating Point .. B-9
B.6.3.9. 'A' Format Code .. B-9

0
- ix -

B.6.4. Standard Units ... B-0

/

B.6.5. List-Directed Formatting... B-0
B.6.6. Direct 1/0 ... B-10
B.6.7. Internal Files ... B-10

0
B.6.8. OPEN, CLOSE, and INQUIRE Statements .. B-10

B.6.8.1. OPEN .. B-11
B.6.8.2. CLOSE ... B-11
B.6.8.3. INQUIRE .. B-11

Appendix C Bibliography .. 0-1

0

0
-x-

0
Fortran Programmer's Guide

List of Tables

Table 1-1 Filename Sufrixes that F77 Understands .. 1-3
Table 3-1 Representation of Real and Double Precision Numbers...................... 3-2
Table 3-2 Hexadecimal Representation of Selected Numbers 3-3
Table 3-3 Meaning of Abbreviations for Numbers ... 3-4

0
Table 4-1 Corresponding FORTRAN and C Declarations....................................... 4-1
Table A-1 Backslash Escape Sequences .. A-3

0
- XI -

0

0

0

0

0

0

Chapter 1

Introduction

The language known as FORTRAN-77 became an official American National Standard in 1978.
This Programmer', Guide provides a description of using FORTRAN-77 in the environment of the
Sun Workstation. The Sun /77 compiler generates code compatible with calling sequences pro­
duced by the C compiler. This guide is not a language reference manual - at this time the
reader is directed to one of the many books on the market, or to the ANSI standard as a last
resort.
All examples in this user's guide assume that you are working on a host called fortr&n. What
the user types is shown in bold face text llke thla and the system's replies are shown in the
standard Roman font like the rest of this sentence.

The next section in this guide provides a very brief introduction to using the /77 compiler on
the Sun Workstation. It is assumed that you are familiar with at least the basic aspects of the
UNIXt system, its file system, and some of the commands you need to find your way around. In
addition to /77, there are some other tools you may wish to know about, and they are summar­
ized here.

Te:it Editing
The major text editor for source programs is the Iii (vee-eye) visual editor. Vi has consider­
able power and is specially directed at program source text. For more information, see
Editing and Te:it Proceuing.

Fortran Toala

Fpr
is a FORTRAN 'output filter' for printing files which have FORTRAN carriage-control
characters in columne one. As noted in the appendix describing deviations from the
ANSI standard, the UNIX implementation on the Sun system does not know about car­
riage control since there are no explicit printer files. Thus you use /pr when it is vitally
necessary to have FORTRAN files with carriage-control in them.

Ratfor
is 'Rational Fortran' - a preprocessor intended to add some reasonable control struc­
tures to Fortran. Ratfor was written in the days of FORTRAN-66 and is not so useful for
FORTRAN-77 which has some control structures.

Debug Aiu
There are two main debug tools available on the Sun system:

t UNIX is a trademark or Bell Laboratoriee.

Revision C of 7 January 1984 1-1

Introduction Fortran Programming Guide

Dbz
is a symbolic debugger that understands FORTRAN-77 programs.

Adb
is the 'old' debugger - it is not as easy to use as db:r.

1.1. Using the FORTRAN-77 Compiler on the Sun Workstation

Source code for FORTRAN-77 programs should be in files whose names end in .f. F11 compiles
the source code in such ./ files and generates object code. in files whose names end in .o.
Finally, /77 calls up the UNIX loader to create an executable file whose name is a.out. F11 also
understands other filename extensions (such as .r for Ratfor files - these topics are discussed
later on).
As an example, here is just about the simplest FORTRAN-77 program, which just displays a mes­
sage on the workstation's screen:

tutorial% cat greetings.f
program greetings

print •, 'Real programmers hack Fortran!'
end

tutorial%

You compile greeting, using the /77 command like this:

tutorial% f77 greetings.r
greetings.!:

MAIN greetings:
tutorial%

Note that /77 displays messages indicatring the state of the compilation while it proceeds. The
results of the compilation end up on a file called a.out and you can then run that program by
typing the a.out command line:

tutorial% a.out
Real programmers hack Fortran!

tutorial%

It might be inconvenient to have the results of every dilferent FORTRAN-77 compilation ending
up on a file called a.out. One way to change this situation is to just change the name of the file
after the compilation has completed, using the m11 command, but the better way is to tell the
/77 compiler to place the executable file on a file of the same name as the source, minus the ./
suffix:

tutorial% f77 -o greetings greetings.f
greetings.f:

MAIN greetings:
tutorial%

and then you run the program just by typing:

1-2 Revision C of 7 January 1984

0

0

0

0

0

0

Fortran Programming Guide Introduction

tutorial% greeting•
Real programmers hack Fortran!

tutorial%

This concludes the basic introduction to the /77 compiler. The remainder of this chapter
discusses the kinds of files that /11 understands, the options that you may type on the /77 com•
mand line, and covers other topics such as how to use the loader and the tlb:, debug utility.

1.2. Source Files that F77 Understands

F11 is a general-purpose 'driver' command for compiling and loading FORTRAN-77 and FORTRAN

-related files. As mentioned above, FORTRAN-77 source code is contained in files having an ./
suffix, In addition to the ./ suffix filenames, /77 understands these filename conventions:

Table 1-1: Filename Sull'txes that F77 Understands

Suff'tx Language Action

./ FORTRAN-77 FORTRAN-77 source programs - are compiled, and each object
program is left on the file in the current directory whose name
is that of the source with .o substituted for ,/ .

. F FORTRAN-77 FORTRAN-77 source programs which are processed by the C
preprocessor before being compiled by /77.

.c C

.r Ratfor

. s Assembler

• 0 Object Files

C source files are compiled by the C compiler. The /77 and cc
commands generate slightly different loading sequences, since
FORTRAN-77 programs need a few extra libraries and a
different startup routine than do C programs.

Ratfor source files are processed by the Ratfor preprocessor
before being compiled by /77.

Assembler source files are processed by the assembler .

Object files are passed through to the loader .

1.3. Options to the F77 Command

The list below is the complete list of options that /77 understands.
-c Suppress loading and produce ,o files for each source file.
-g Produce additional symbol table information for tlbz(l). Also pass the -lg flag to ld(l).

-w Suppress all warning messages. If the option is -w66, only FORTRAN-66 compatibility
warnings are suppressed.

-Dnome=tle/

Revision C of 7 January 1984 1-3

Introduction Fortran Programming Guide

-Dname
Define the name to the C preprocessor, as if by '#define'. If no definition is given, the o
name is defined as" l". (.F sutrix files only). ·

-Idir
'#include' files whose names do not begin with'/' are always sought first in the directory of
the file argument, then in directories named in -I options, then in directories on a standard
list. (.F sutr1X files only).

-p Prepare object files for profiling, see proj(l).

-pg
Produce counting code in the manner of -p, but invoke a run-time recording mechanism
that keeps more extensive statistics and produces a f1111on.out file at normal termination.
An execution profile can then be generated by use of gproj(l).

-0 Optimize the object-code.

-S Compile the named programs, and leave the assembler-language output on corresponding
files suffixed ., (no .o file is created).

-o output

-go

Name the final output file output instead of a.out.

Produce additional symbol table information in an older format used by the ,db debugger
and can still be used by the adb(lS) debugger, which has not yet been converted to the
new format of -g. Also pass the -lg Bag to ld(l).

-faky
Generate code which assumes the presence of a SKY Boating-point processor board. Pro-
grams compiled with this option can only be run in systems that have a SKY board 0
installed. Programs compiled without the -faky option will use the SKY board, but won't
run as fast as they would if the -fsky option were used. If any part of a program is com-
piled using the -fsky option, you must also use this option when loading with the /77 com-
mand, since a different set of startup routines is used.

The following options are peculiar to /77:

-i2 On machines which support short integers, make the default integer constants and variables
short. (-i4 is the standard value of this option). All logical quantities will be short.

-m Apply the M4 preprocessor to each .r file before transforming it with the Ratfor preproces­
sor.

-onetrip
Compile DO loops that are performed at least once if reached. FORTRAN-77 DO loops are not
performed at all if the upper limit is smaller than the lower limit.

-u Make the default type of a variable 'undefined' rather than using the default FORTRAN
rules.

-v Print the version number of the compiler, and the name of each pass as it executes.

-C Compile code to check that subscripts are within declared array bounds.

-F Apply the Ratfor preprocessor to relevant files, put the result in the file with the sutr1X
changed to .I, but do not compile.

-R:i
Use the string :,: as a Rat.for option in processing .r files.

1-4 Revision C of 7 January 1984

0

0

0

0

Fortran Programming Guide Introduction

-N(qxscn)nnn
Make static tables in the compiler bigger. F77 complains if tables overflow 2nd suggests you
apply one or more or these flags. These flags have the following meanings:

q Maximum number of equivalenced variables. Default is 150.
x Maximum number of external names (common block names, subroutine and function

names). Default is 200.

a Maximum number of statement numbers. Default is 401.
c Maximum depth of nesting for control statements (for example, DO loops). Default is

20.

n Maximum number of identifiers. Default is 1009.
-U Do not convert upper case letters to lower case. The default is to convert FORTRAN pro-

grams to lower case except within character string constants.
Other arguments are taken to be either loader option arguments, or F77-compatible object pro­
grams, typically produced by an earlier run, or perhaps libraries of F77-compatible routines.
These programs, together with the results of any compilations specified, are loaded (in the order
given) to produce an executable program called a.out.
Other flags, all library names (arguments beginning -1), and any names not ending with one of
the understood sutrixes are passed to the loader.

Revision C of 7 January 1984 1-5

0

o'

0

0

0

0

Chapter 2

Fortran Input and Output

2.1. Structure of FORTRAN-77 Files

FORTRAN-77 requires four kinds of external files: sequential formatted and unformatted, and
direct formatted and unformatted. On UNIX systems, these are all implemented as ordinary
files which are assumed to have the proper internal structure.

FORTRAN-77 1/0 is based on 'records'. When a direct file is opened in a FORTRAN-77 program,
the record length of the records must be given, and this is used by the FORTRAN-77 1/0 system
to make the file look as if it is made up of records of the given length. In the special case that
the record length is given as 1, the files are not considered to be divided into records, but are
treated as byte-addressable byte strings; that is, as ordinary UNIX file system files. A read or
write request on such a file keeps consuming bytes until satisfied, rather than being restricted to
a single record.

The peculiar requirements on sequential unformatted files make it unlikely that they will ever
be read or written by any means except FORTRAN-77 1/0 statements. Each record is preceded
and followed by an integer containing the record's length in bytes.

The FORTRAN-77 1/0 system breaks sequential formatted files into records while reading by
using each newline as a record separator. The result of reading off the end of a record is
undefined according to the Standard. The 1/0 system is permissive and treats the record as
being extended by blanks. On output, the 1/0 system writes a newline at the end of each
record. It is also possible for programs to write newlines for themselves. This is an enor, but
the only effect is that the single record the user thought he wrote is treated as more than one
record when being read or backspaced over.

2.2. Pre-Connected Files and File Positions

Units 5, 6, and O are preconnected when the program starts. Unit 5 is connected to the stan­
dard input, unit 6 is connected to the standard output, and unit O is connected to the standard
error unit. All are connected for sequential formatted 1/0.

All the other units are also preconnected when execution begins. Unit n is connected to a file
named /ort.n. These files need not exist, nor are they created unless their units are used
without first executing an open. The default connection is for sequential formatted 1/0.

The Standard does not specify where a file which has been explicitly opened for sequential 1/0
is initially positioned. The 1/0 system will position the file at the beginning. Therefore, a

Revision C of 7 January 1984 2-1

Fortran Input and Output Fortran Programming Guide

write will destroy any data already in the file, but a read will work reasonably. To position a
file to its end, use a 'read' loop, or the system dependent '(seek' function. The preconnected Q
units 0, 5, and 6 are positioned as they come from the program's parent process.

The /77 I/0 Library implements the ANSI X3.9 1978 FORTRAN-77 standard input and output
with a few minor exceptions. Where the standard is vague, we have tried to provide flexibility
within the constraints of the UNIX operating system.

The f77 I/0 library, libI77.a, includes routines to perform all of the standard types or
FORTRAN-77 input and output. Several enhancements and extensions to FORTRAN-77 1/0 have
been added. The f77 library routines use the C stdio library routines to provide efficient
buffering for file I/0.

2.3. FORTRAN 1/0

The requirements of the ANSI standard impose significant overhead on programs that do large
amounts of I/0. Formatted I/0 can be very 'expensive' while direct access binary 1/0 is usu­
ally very efficient. Because of the complexity of FORTRAN-77 I/0, some general concepts deserve
clarification.

2.3.1. Types of 1/0

There are three forms of 1/0, namely: formatted, unformatted, and lia'9directed. The last
is related to formatted but does not obey all the rules for formatted I/0. There are two modes
of access to external and internal files: direct and eequential. The definition of a logical
record depends upon the combination of I/0 form and mode specified by the FORTRAN·77 I/0 o
statement.

2.3.1.1. Direct access

A logical record in a direct access external file is a string of bytes of a length specified when
the file is opened. Read and write statements must not specify logical records longer than the
original record size definition. Shorter logical records are allowed. Unformatted direct writes
leave the unfilled part of the record undefined. Formatted direct writes cause the unfilled
record to be padded with blanks.

2.3.1.2. Sequential access

Logical records in sequentially accessed external files may be of arbitrary and variable length.
Logical record length for unformatted sequential files is determined by the size of items in the
iolist. The requirements of this form of I/0 cause the external physical record size to be some­
what larger than the logical record size. For formatted write statements, logical record length
is determined by the format statement interacting with the iolist at execution time. The 'new­
line' character is the logical record delimiter. Formatted sequential access causes one or more
logical records ending with 'newline' characters to be read or written.

2-2 Revision C of 7 January 1984

0

Fortran Programming Guide Fortran Input and Output

2.3.1.3. List directed 1/0

0 Logical record length for list-directed 1/0 is relatively meaningless. On output, the record
length is dependent on the magnitude of the data items. On input, the record length is detel'­
mined by the data types and the file contents.

0

0

2.3.1.4. Internal 1/0

The logical record length for an internal read or write is the length of the character variable or
array element. Thus a simple character variable is a single logical record. A character variable
array is similar to a fixed length direct access file, and obeys the same rules. Unformatted 1/0
is not allowed on "internal" files.

2.3.2. 1/0 execution

Note that each execution of a FORTRAN-77 unformatted 1/0 statement causes a single logical
record to be read or written. Each execution of a FORTRAN-77 formatted 1/0 statement cans~
one or more logical records to be read or written.

A slash, '/', will terminate assignment of values to the input list during list-directed input and
the remainder of the current input line is skipped. Text following the slash is ignored and may
be used to comment the data file.

Direct access list-directed 1/0 is not allowed. Unformatted Internal 1/0 is not allowed.
Both the above will be caught by the compiler. All other 8avors of 1/0 are allowed, although
some are not part of the ANSI standard.

Any error detected during 1/0 processing will cause the program to abort unless alternative
action has been provided specifically in the program. Any 1/0 statement may include an err=
clause (and iostat= clause) to specify an alternative branch to be taken on errors (and return
the specific error code). Read statements may include end= to branch on end-of-file. File
position and the value of 1/0 list items is undefined following an error.

2.4. Implementation details

Some details of the current implementation may be useful in understanding constraints on
FORTRAN-77 1/0.

2.4.1. Number of logical units

The maximum number of logical units that a program may have open at one time is the same
as the UNIX system limit, currently 20.

2.4.2. Standard logical units

By default, logical units O, 5, and 6 are opened to 'stderr', 'stdin', and 'stdout' respectively.
However they can be re-defined with an open statement. To preserve error reporting, it is an
error to close logical unit O although it may be reopened to another file.

Revision C of 7 January 1984 2-3

Fortran Input and Output Fortran Programming Guide

Ir you want to open the default file name for any preconnected logical unit, remember to close
the unit first. Redefining the standard units may impair normal console 1/0. An alternative is
to use shell re-direction to externally re-define the above units. To re-define default blank con- 0
trol or format of the standard input or output files, use the open statement specifying the unit
number and no file name (see below).

The standard units, 0, 5, and 6, are named internally 'stderr', 'stdin', and 'etdout' respectively.
These are not actual file names and can not be used for opening these units. Inquire will not
return these names and will indicate that the above units are not named unless they have been
opened to real files. The names are meant to make error reporting more meaningful.

2.4.3. Vertical format control

Simple vertical format control is implemented. The logical unit must be opened for sequential
access with form = 'print'. Control codes 'O' and 'l' are replaced in the output file with '\n'
and '\r respectively. The control character '+ ' is not implemented and, like any other charac­
ter in the first position of a record written to a 'print' file, is dropped. No vertical format con­
trol is recognized for direct formatted output or list directed output. See /pr(l) for an alter­
native way of mapping Fortran carriage control to ASCII control characters.

2.4.4. The open statement

An open statement need not specify a file name. If it refers to a logical unit that is already
open, the blank= and form= specifiers may be redefined without affecting the current file
position. Otherwise, if atatua = '1cratch' is specified, a temporary file with a name of the Q
form 'tmp.FXXXXXX' will be opened, and, by default, will be deleted when closed or during
termination of program execution. Any other atatu1= specifier without an associated file
name results in opening a file named 'fort.N' where N is the specified logical unit number.

It is an error to try to open an existing file with atatua = 'new' . It is an error to try to open
a nonexistent file with statua = 'old' . By default, statua = 'unknown' will be assumed,
and a file will be created if necessary.

By default, files are positioned at their beginning upon opening, but see ioinil(.3f) for alterna­
tives. Existing files are never truncated on opening. Sequentially accessed external files are
truncated to the current file position on close , backspace , or rewind only if the last access
to the file was a write. An endflle always causes such files to be truncated to the current file
position.

2.4.5. Format interpretation

Formats are parsed at the beginning of each execution of a formatted 1/0 statement. Upper as
well as lower case characters are recognized in format statements and all the alphabetic argu­
ments to the 1/0 library routines.

Ir the external representation of a datum is too large for the field width specified, the specified
field is filled with asterisks (•). On Ew .dEe output, the exponent field will be filled with aster­
isks if the exponent representation is too large. This will only happen if 'e' is zero (see appendix
B).

On output, a real value that is truly zero will display as 'O.' to distinguish it from a very small 0
non-zero value. This occurs in F and G format conversions. This was not done for E and D

2-4 Revision C of 7 January 1984

0

0

0

Fortran Programming Guide Fortran Input and Output

since the em bedded blanks in the external datum causes problems for other input systems.

Non-destructive tabbing is implemented for both internal and external formatted 1/0. Tabbing
left or right on output does not affect previously written portions of a record. Tabbing right on
output causes unwritten portions of a record to be filled with blanks. Tabbing right off the end
of an input logical record is an error. Tabbing left beyond the beginning of an input logical
record leaves the input pointer at the beginning of the record. The format specifier T must be
followed by a positive non-zero number. Ir it is not, it will have a different meaning.

Tabbing left requires seek ability on the logical unit. Therefore it is not allowed in 1/0 to a ter­
minal or pipe. Likewise, nondestructive tabbing in either direction is possible only on a unit
that can seek. Otherwise tabbing right or spacing with X will write blanks on the output.

2.4.6. List directed output

In formatting list directed output, the 1/0 system tries to prevent output lines longer than 80
characters. Each external datum will be separated by two spaces. List-directed output of com­
plex values includes an appropriate comma. List-directed output distinguishes between real
and double precision values and formats them differently. Output of a character string that
includes '\n' is interpreted reasonably by the output system.

2.4.7. I/0 errors

Ir 1/0 errors are not trapped by the user's program an appropriate error message will be written
to 'stderr' before aborting. An error number will be printed in [) along with a brief error mes­
sage showing the logical unit and 1/0 state. Error numbers < 100 refer to UNIX errors; these
are described in inlro(2) in the Sun Syalem Interface Manual. Error numbers > 100 come from
the 1/0 library, and are described further in the appendix to this writeup. For internal 1/0,
part of the string will be printed with 'I' at the current position in the string. For external 1/0,
part of the current record will be displayed if the error was caused during reading from a file
that can backspace.

2.5. Non-'ANSI Standard' extensions

Several extensions have been added to the 1/0 system to provide for functions omitted or
poorly defined in the standard. Programmers should be aware that these are non-portable.

2.5.1. Format specifiers

B is an acceptable edit control specifier. It causes return to the default mode of blank interpre­
tation. This is consistent with S which returns to default sign control.

P by itself is equivalent to OP . It resets the scale factor to the default value, 0.

The form of the Ew .dEe format specifier has been extended to D also. The form Ew .d.e is
allowed but is not standard. The 'e' field specifies the minimum number of digits or spaces in
the exponent field on output. If the value of the exponent is too large, the exponent notation e
or d will be dropped from the output to allow one more character position. Ir this is still not
adequate, the 'e' field will be filled with asterisks(•). The default value for 'e' is 2.

Revision C of 7 January 1984 2-5

Fortran Input and Output Fortran Programming Guide

An additional form of tab control specification has been added. The ANSI standard forms TRn,
TLn, and Tn are supported where n is a positive non-zero number. Ir T or nT is specified,
tabbing will be to the next (or n-th) 8-column tab stop. Thus columns of alphanumerics can be o
lined up without counting.
A format control specifier has been added to suppress the newline at the end or the last record
of a formatted sequential write. The specifier is a dollar sign ($). It is constrained by the same
rules as the colon(:). It is used typically for console prompts. For example:

write(*, "('enter value for x: ',$)")
read(•,•) x

Radices other than IO can be specified for formatted integer 1/0 conversion. The specifier is
patterned after P, the scale factor for floating point conversion. It remains in effect until
another radix is specified or format interpretation is complete. The specifier is defined as (n)R
where 2 < n < 36. If n is omitted, the default decimal radix is restored.

In conjunction with the above, a sign control specifier has been added to cause integer values to
be interpreted as unsigned during output conversion. The specifier is SU and remains in effect
until another sign control specifier is encountered, or format interpretation is complete. Radix
and 'unsigned' specifiers could be used to format a hexadecimal dump, as follows:

2000 format (SU, 16R, 8110.8)

Note: Unsigned integer values greater than (2**30 - I), i.e. any signed negative value, can not be
read by FORTRAN-77 input routines. All internal values will be output correctly.

2.5.2. Print files

The ANSI standard is ambiguous regarding the definition of a 'print' file. Since UNIX has no
default 'print' file, an additional form= specifier is now recognized in the open statement.
Specifying form = 'print' implies formatted and enables vertical format control for that log­
ical unit. Vertical format control is interpreted only on sequential formatted writes to a 'print'
file.

The inquire statement will return print in the form= string variable for logical units opened
as 'print' files. It will return -I for the unit number of an unconnected file.

Jr a logical unit is already open, an open statement including the form=- option or the
blank= option will do nothing but re-define those options. This instance of the open state­
ment need not include the file name, and must not include a file name if unit= refers to a
standard input or output. Therefore, to re-define the standard output as a 'print' file, use:

open (unit=6, form='print')

2.5.3. Scratch files

A close statement with status = 'keep' may be specified for temporary files. This is the
default for all other files. Remember to get the scratch file's real name, using Inquire , if you
want to re-open it later.

2-6 Revision C of 7 January 1984

0

0

0

0

0

Fortran Programming Guide Fortran Input and Output

2.5.4. List directed 1/0

List directed read has been modified to allow in put of a string not enclosed in quotes. The string
must not start with a digit, and can not contain a separator(, or /) or blank (space or tab). A
newline will terminate the string unless escaped with \. Any string not meeting the above res­
trictions must be enclosed in quotes (" or ').
Internal list-directed 1/0 has been implemented. During internal list reads, bytes are consumed
until the iolist is satisfied, or the 'end-of-file' is reached. During internal list writes, records are
filled until the iolist is satisfied. The length of an internal array element should be at least 20
bytes to avoid logical record overflow when writing double precision values. Internal list read
was implemented to make command line decoding easier. Internal list write should be avoided.

2.6. Running older programs

Traditional FORTRAN· 77 environments usually assume carriage control on all logical units, usu­
ally interpret blank spaces on input as 'O's, and often provide attachment of global file names to
logical units at run time. There are several routines in the 1/0 library to provide these func­
tions.

2.6.1. Traditional unit control parameters

Ir a program reads and writes only units 5 and 6, then including -1188 in the f77 command will
cause carriage control to be interpreted on output and cause blanks to be zeros on input
without further modification of the program. If this is not adequate, the routine ioini~3f) can
be called to specify control parameters separately, including whether files should be positioned
at their beginning or end upon opening.

2.6.2. Preattachment of logical unite

The ioinit routine also can be used to attach logical units to specific files at run time. It will
look for names of a user specified form in the environment and open the corresponding logical
unit for sequential formatted 1/0. Names must be of the form PREFIXnn where PREFIX is
specified in the call to ioinit and nn is the logical unit to be opened. Unit numbers < 10 must
include the leading 'O'.
loinit should prove adequate for most programs as written. However, it is written in FOR­
TRAN-77 specifically so that it may serve as an example for similar user-supplied routines. A
copy may be retrieved by 'ar x /usr/lib/libI77.a ioinit.r.

2.7. Magnetic tape 1/0

Because the 1/0 library uses stdio buffering, reading or writing magnetic tapes should be done
with great caution, or avoided if possible. A set of routines has been provided to read and write
arbitrary sized buffers to or from tape directly. The buffer must be a character object. Inter­
nal 1/0 can be used to fill or interpret the buffer. These routines do not use normal FORTRAN-
77 1/0 processing and do not obey FORTRAN-77 1/0 rules. See tapeio(3f).

Revision C of 7 January 1984 2-7

Error diagnostics Berkeley Pascal User Manual

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently
clear to allow easy determination of the problem in the expressions.

2.2.7. Type equivalence

Several diagnostics produced by the Pascal translator complain about 'non-equivalent types'. In
general, Berkeley Pascal considers variables to have the same type only if they were declared
with the same constructed type or with the same type identifier. Thus, the variables z and y
declared as

var
x: f integer;
y: l integer;

do not have the same type. The assignment

X :=y

thus produces the diagnostics:

Wed Nov 9 15:52 1983 typequ.p:
E 7 - Type clash: non-identical pointer types

... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = f integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x, y: f integer;

then the assignment statement would have worked. The statement

xf := yf
is allowed in either case. Since the parameter to a procedure or function must be declared
with a type identifier rather than a constructed type, it is always necessary, in practice, to
declare any type which will be used in this way.

2.2.8. Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to errors in
the program logic. Note that a statement is considered to be reachable if there is a potential
path of control, even if it can never be taken. Thus, no diagnostic is produced for the state­
ment:

if false then
writeln('impossible!')

2-8 Revision C of 7 January 1984

0

0

0

0

0

0

Chapter 3

Input/output

This section describes features of the Pascal input/output environment, with special considera­
tion of the features peculiar to an interactive implementation.

3.1. Introduction

Our first sample programs, in the Baaic UNIX Paacal section, used the file output. We gave
examples there of redirecting the output to a file and to the line printer using the shell. Simi­
larly, we can read the input from a file or another program. Consider the following Pascal pro­
gram which is similar to the program cat (1).

tutorial% pix -I kat.p <primes
Berkeley Pascal Pl -- Version 2.13 (4/7 /83)

Wed Nov 9 15:53 1983 kat.p

1 program kat(input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end { kat }.
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution begins ..•
Execution terminated.

Revision C of 7 January 1984 3-1

Input/output

925 statements executed in 0.20 seconds cpu time.
tutorial%

Berkeley Pascal User Manual

Here we have used the shell's syntax to redirect the program input Crom a file in prime, in
which we had placed the output or our prime number program in the Execution profiling sec­
tion. It is also possible to 'pipe' input to this program much as we piped input to the line
printer daemon /pr (1) before. Thus, the same output as above would be produced by

tutorial% cat primes I pix -I kat.p

All or these examples use the shell to control the input and output Crom files. One very simple
way to associate Pascal files with named UNIX files is to place the file name in the program
statement. For example, suppose we have previously created the file data. We then use it as
input to another version of a listing program.

tutorial% cat data
line one.
line two.
line three is the end.
tutorial% pix -I copydata.p
Berkeley Pascal Pl -- Version 2.13 (4/7 /83)

Wed Nov 9 15:53 1983 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
5 begin
6 reset(data);
7 while not eor(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);

10 write(ch)
11 end;
12 readln(data);
13 writeln
14 end
15 end { copydata }.

line one.
line two.
line three is the end.
Execution begins ...
Execution terminated.

134 statements executed in 0.05 seconds cpu time.
tutorial%

By mentioning the file data in the program statement, we have indicated that we wish it to
correspond to the UNIX file data. Then, when we 'reset(data)', the Pascal system opens our file
'data' for reading. More sophisticated, but less portable, examples or using UNIX files will be
given in the Output buffering and Filea, react, and rewrite sections below. There is a portability

3-2 Revision C of 7 January 1984

0

0

0

0

0

0

Fortran Programming Guide Data Representations

ones), and a zero mantissa.

Not-a-Number (NaN)
is represented by the largest value that the exponent can assume (all ones), and a non-zero
mantissa. The sign is usually ignored.

Normalized real and double precision numbers are said to contain a 'hidden' bit, providing
for one more bit of precision than would normally be the case.

The largest non-infinite double precision number is approximately 1.797693e+ 308; the smal­
lest positive normalized double precision number is approximately 2.22507 4e-308. The largest
non-infinite real number is approximately 3.402823e+ 38; the smallest positive, normalized real
number is approximately 1.175494e-38.

3.2.3. Hexadecimal Representation of Selected Numbers

Table 3-2: Hexadecimal Representation of Selected Numbers

Value Real Double Precision

+o 00000000 0000000000000000
-0 80000000 8000000000000000

+ 1.0 3F800000 3FFOOOOOOOOOOOOO
•1.0 BF800000 BFFOOOOOOOOOOOOO

+2.0 40000000 4000000000000000
+3.0 40400000 4008000000000000

+ Infinity 7F800000 7FFOOOOOOOOOOOOO
-Infinity FF800000 FFFOOOOOOOOOOOOO

NaN 7F8xxxxx 7FFxxxxxxxxxxxxx

3.2.4. Deviations from the Proposed IEEE Standard

Deviations from the proposed IEEE standard in this implementation are as follows:

• affine mapping for infinities,

• normalizing mode for denormalized numbers,
• rounds approximately to nearest • 7 or more guard bits are computed, but the 'sticky' bit is

not,
• exception flags are not implemented.

3.2.5. Arithmetic Operations on Extreme Values

This subsection describes the results derived from applying the basic arithmetic operations on
combinations of extreme values and ordinary values.

Revision C of 7 January 1984 3-3

Data Representations Fortran Programming Guide

No traps or any other exception actions are taken.

All inputs are assumed to be positive. Overflow, underflow, and cancellation are assumed not to 0
happen.

In all the tables below, the abbreviations have the following meanings:

3-4

Table 3-3: Meaning of Abbreviations for Numbers

Abbreviation

Den
Num
Inf
NaN
Uno

Meaning

Denormalized Number
Normalized Number
Infinity (positive or negative)
Not a Number
Unordered

Revision C of 7 January 1984

0

0

Fortran Programming Guide Data Representations

Addition and Subtraction

0 Left Right Operand
Operand 0 Den Num Inf NaN

0 0 Den Num Inf NaN

Den Den Den Num Inf NaN

Num Num Num Num Inf NaN

Inf Inf Inf Inf Note 1 NaN

Nan NaN NaN NaN NaN NaN

Note 1: Inf + Inf = Inf; Inf· Inf = NaN

Multiplication

Left Right Operand
Operand 0 Den Num Inf NaN

0 0 0 0 NaN NaN

Den 0 0 Num Inf NaN

0 Num 0 Num Num Inf NaN

Inf NaN Inf Inf Inf NaN

Nan NaN NaN NaN NaN NaN

Division

Left Right Operand
Operand 0 Den Num Inf NaN

0 NaN 0 0 0 NaN

Den Inf Num Num 0 NaN

Num Inf Num Num 0 NaN

Inf Inf Inf Inf NaN NaN

Nan NaN NaN NaN NaN NaN

0
Revision C of 7 January 1984 3-5

Data Representations Fortran Programming Guide

Comparison

Left Right Operand 0
Operand 0 Den Num Inf NaN

0 = < < < Uno

Den > < < Uno

Num > > < Uno

Inf > > > Uno

Nan Uno Uno Uno Uno Uno

• NaN compared with NaN is Unordered, and also results in inequality.

• + 0 com pares equal to -0.

Max

Left Right Operand
Operand 0 Den Num Inf NaN

0 0 Den Num Inf NaN

Den Den Den Num Inf NaN 0
Num Num Num Num Inf NaN

Inf Inf Inf Inf Inf NaN

Nan NaN NaN NaN NaN NaN

Min

Left Right Operand
Operand 0 Den Num Inf NaN

0 0 0 0 0 NaN

Den 0 Den Den Den NaN

Num 0 Den Num Num NaN

Inf 0 Den Num Inf NaN

Nan NaN NaN NaN NaN NaN

0
3-6 Revision C of 7 January 1984

Fortran Programming Guide Data Representations

0

0

0
Revision C of 7 January 1984 3-7

0

0

0

0

JO

0

Chapter 4

Inter-Procedure Interface

To be able to write C procedures that call or are called by FORTRAN-77 procedures, it is neces­
sary to know the conventions for procedure names, data representation, return values, and argu­
ment lists that the compiled code obeys.

4.1. Procedure Names

F11 appends an underscore to the name of a common block or procedure to distinguish it from
C procedures or external variables with the same use!'-assigned name. FORTRAN-77 library pro­
cedure names have embedded undel'!ICores to avoid clashes with use!'-assigned subroutine names.

4.2. Data Representations

The following is a table of corresponding FORTRAN-77 and C declarations:

Table 4-1: Corresponding FORTRAN and C Declarations

FORTRAN

integer•2 x
integer x
logical x
real x
double precision x
complex x
double complex x
character•6 x

short int x;
long int x;
long int x;
float x;
double x;

C

struct { float r, i; } x;
. struct { double dr, di; } x;
· char x(6);

By the rules of FORTRAN-77, integer, logical, and real data occupy the same amount of
memory.

4.3. Return Values

A function of type integer, logical, real, or double precision declared as a C function that
returns the corresponding type. A complex or double complex function is equivalent to a C
routine with an additional initial argument that points to the place where the return value is to

. be stored. Thus,

complex function f(••.)

Revision C of 7 January 1984 4-1

Inter-Procedure Interface

is equivalent to

fjtemp, ...)
struct { float r, i; } •temp;

Fortran Programming Guide

A character-valued function is equivalent to a C routine with two extra initial arguments,
namely a data address and a length. Thus,

character• ts function g(•.•)

is equivalent to

gjresult, length, ...)
char result(];
long int length;

and could be invoked in C by

char chars[15];

gjchars, 15L, ...);

Subroutines are invoked as if they were integer-valued functions whose value specifies which
alternate return to use. Alternate return arguments (statement labels) are not passed to the
function, but are used to do an indexed branch in the calling procedure. Ir the subroutine has
no entry points with alternate return arguments, the returned value is undefined. The state­
ment

call nret(*l, •2, *3)

is treated exactly as if it were the computed goto

goto (1, 2, 3), nret()

4.4. Argument Lists

All FORTRAN-77 arguments are passed by address. In addition, for every argument that is of
type character or that is a dummy procedure, an argument giving the length of the value is
passed. The string lengths are long int quantities passed by value. The order of arguments is
then:

Extra arguments for complex and character functions
Address for each datum or function
A long int for each character or procedure argument

Thus, the call in

4-2 Revision C of 7 January 1984

0

0

0

0

0

0

Fortran Programming Guide

external f
character•7 s
integer b(3)

call sam(f, b(2), s)

is equivalent to that in:

int fj);
char s(7];
long int b(3);

samjf__, &b(l), s, OL, 7L);

Inter-Procedure Interface

Note that the first element of a C array always has subscript zero, but FORTRAN-77 arrays begin
at 1 by default. FORTRAN-77 arrays are stored in column-major order, C arrays are stored in
row-major order.

Revision C of 7 January 1984 4-3

0

0

0

0

0

0

Appendix A

Deviations from the Fortran-77 Standard

FORTRAN-77 includes almost all of FORTRAN-66 as a subset. Appendix B contains a brief
description of the differences between FORTRAN-66 and FORTRAN-77.

The most important additions are a character string data type, file-oriented input/output state­
ments, and random access 1/0. Also, the language has been cleaned up considerably.

This appendix is in two major parts: the &rst part describes extensions to the ANSI standard
that this FORTRAN compiler and run-time system inplement. The second part describes areas
where this compiler and run-time system violate the ANSI standard, usually because the compiler
or rune-time system cannot correctly implement the ANSI standard.

A.l. Extensions to the FORTRAN-77 Standard

In addition to implementing the language specified in the ANSI Standard, the Sun /77 compiler
implements some extensions as described in this chapter. Some of the extensions are useful
additions to the language. The remaining extensions make it easier to communicate with C
procedures or to permit compilation or old FORTRAN-66 programs.

A.1.1. Double Complex Data Type

The new type double complex is defined. Each datum is represented by a pair or double pre­
cision real variables. A double complex version of every complex built-in function is provided.
The specific function names begin with • instead of c.

A.1.2. Internal Files

The FORTRAN-77 standard introduces 'internal files' (memory arrays), but restricts their use to
formatted sequential 1/0 statements. The Sun /77 1/0 system also permits internal files to be
used in direct reads and writes.

A.1.3. Implicit Undefined statement

FORTRAN-66 has a fixed rule that the type of a variable that does not appear in a type state­
ment is integer if its first letter is l, J, k, 1, m, or n, and real otherwise. FORTRAN-77 has an
implicit statement for overriding this rule. As an aid to good programming practice, the Sun
/77 compiler has an additional undefined data type. The statement:

Revision C of 7 January 1984 A-1

Deviations from the Fortran-77 Standard Fortran Programming Guide

implicit undefined(a-z)

turns off the automatic data typing mechanism, and /11 issues a diagnostic for each variable O
that is used but does not appear in a type statement. Specifying the -u compiler flag is
equivalent to beginning each procedure with this statement.

A.1.4. Recursion

Procedures may call themselves, directly or through a chain of other procedures. But note that
a subroutine or function may not pass its own name as a procedure parameter. To do so would
require the name to appear in an external statement, which is prohibited by the ANSI standard.
Note also that use of recursion makes FORTRAN programs non-portable.

A.1.5. Automatic Storage

Two new keywords are recognized, static and automatic. These keywords may appear as
'types' in type statements and in Implicit statements. Local variables are static by default;
there is exactly one copy of the datum, and its value is retained between calls. There is one
copy of each variable declared automatic for each invocation of the procedure. Automatic
variables may not appear in equivalence, data, or save statements.

A.1.6. Source Input Format

The Standard expects input to /11 to be in 72 column format: except in comment lines, the
first five characters are the statement number, the next is the continuation character, and the
next sixty-six are the body of the line. If a line of this format contains fewer than 72 charac•
ters, /77 pads it with blanks. Characters after the seventy-second are ignored.
In order to make it easier to type FORTRAN-77 programs, this compiler also accepts input in
variable length lines. An ampersand ('&') in the first position of a line indicates a continuation
line; the remaining characters form the body of the line. A tab character in one of the first six
positions of a line signals the end of the statement number and continuation part of the line;
the remaining characters form the body of the line. A tab elsewhere on the line is treated as
another kind of blank by /77. Lines containing a tab among the first six characters, or lines
beginning with an ampersand, are not padded with blanks, nor does /77 ignore characters past
the 72nd character in lines of this format.

In the Standard, there are only 26 letters - FORTRAN-77 is a one-case language. Consistent
with ordinary UNIX system usage, this compiler expects lower case input. By default, the com­
piler converts all upper case characters to lower case except those inside character constants.
However, if the -U compiler Bag is specified, upper case letters are not transformed. In this
mode, it is possible to specify external names with upper case letters in them, and to have dis­
tinct variables differing only in case. However, FORTRAN-77 reserved words are only recognized
in lower case.

A-2 Revision C of 7 January 1984

0

0

Fortran Programming Guide Deviations from the Fm tran-77 Standard

A.1.7. Include Statement

0 The statement

0

0

include I stuff'

is replaced by the contents of the file stuff'. includes may be nested to a reasonable depth,
currently ten.

A.1.8. Binary Initialization Constants

A logical, real, or integer variable may be initialized in a data statement by a binary con­
stant, denoted by a letter followed by a quoted string. Ir the letter is b, the string is binary,
and only zeroes and ones are permitted. If the letter is o, the string is octal, with digits 0-7. Ir
the letter is II or x, the string is hexadecimal, with digits 0-9, a-f. Thus, the statements

integer a(3)
data a/ b1 1010', o1 121

, z' a' /

initialize all three elements of a to ten.

A.1.9. Character Strings

For compatibility with C usage, the following backslash escapes are recognized:

Table A-1: Backslash Escape Sequences

Character Meaning

\n newline
\t tab
\ b backspace
\r form feed
\0 null
\ 1 apostrophe (does not terminate a string)
\" quotation mark (does not terminate a string)
\\ \
\z z, where z is any other character

FORTRAN-77 only has one quoting character, namely the apostrophe. This compiler and 1/0
system recognize both the apostrophe (1) and the double-quote ("). Ir a string begins with
one variety of quote mark, the other may be embedded within it without using the repeated
quote or backslash escapes.
Every unequivalenced scalar local character variable and every character string constant is
aligned on an integer word boundary. Each character string constant appearing outside a
data statement is followed by a null character to ease communication with C routines.

Revision C of 7 January 1984 A-3

Deviations from the Fortran-77 Standard Fortran Programming Guide

A.1.10. Hollerith

FORTRAN-77 does not have the old Hollerith (nh) notation, though the new Standard recom- Q,

mends implementing the old Hollerith feature in order to improve compatibility with old pro-
grams. In this compiler, Hollerith data may be used in place of character string constants, and
may also be used to initialize non-character variables in data statements.

A.1.11. Equivalence Statements

As a very special and peculiar case, FORTRAN-88 permits an element of a multiply-dimensioned
array to be represented by a singly-subscripted reference in equivalence statements.
FORTRAN-77 does not permit this usage, since subscript lower bounds may now be different from
1. The Sun /77 compiler permits single subscripts in equivalence statements, under the
interpretation that all missing subscripts are equal to 1. A warning message is printed for each
such incomplete subscript.

A.1.12. One-Trip DO Loops

The FORTRAN-77 standard requires that the range of a do loop not be performed if the initial
value is already past the limit value, as in

do 10 i = 2, 1

The FOR TRAN-66 standard stated that the effect of such a statement was undefined, but it was
common practice that the range of a do loop would be performed at least once. In order to
accommodate old programs, though they were in violation of the FORTRAN-88 standard, the o
-onetrip compiler flag makes /77 generate non-standard loops.

A.1.13. Commas in Formatted Input

The 1/0 system attempts to be more lenient than the Standard when it seems worthwhile.
When doing a formatted read of non-character variables, commas may be used as value separa­
tors in the input record, overriding the field lengths given in the format statement. Thus, the
format

(ilO, f20.10, i4)

will read the record

-345,.05e-3,12

correctly.

A.1.14. Short Integers

On machines that support halfword integers, /77 accepts declarations of type lnteger•2. Ordi­
nary integers follow the FORTRAN-77 rules about occupying the same space as a real variable;
they are assumed to be of C type long Int; halfword integers are of C type •hort Int. An
expression involving only objects of type integer•2 is of that type. Generic functions return
short or long integers depending on the actual types of their arguments. If a procedure is com- o
piled using the -i2 flag, all small integer constants will be of type integer•2. If the precision of

A-4 Revision C of 7 January 1984

0

0

0

Fortran Programming Guide Deviations from the F ori,ran-77 Standard

an integer-valued intrinsic function is not determined by the generic function rules, one is
chosen that returns the prevailing length (integer*2 when the -i2 command ftag is in effect).
When the -i2 option is in effect, all quantities of type logical will be short. Note that these
short integer and logical quantities do not obey the standard rules for storage association.

A.1.15. Additional Intrinsic Functions

This compiler supports all of the intrinsic functions specified in the FORTRAN-77 Standard. In
addition, there are functions for performing bitwise Boolean operations (or, and, xor, and not)
and for accessing the UNIX command arguments (getarg and iargc) and environment
(getenv).

Revision C of 7 January 1984 A-5

Deviations from the Fortran-77 Standard Fortran Programming Guide

A.2. Violations of the Standard

There are only a few ways in which this implementation of FORTRAN-77 system violates the 0
ANSI FORTRAN-77 standard:

A.2.1. Dummy Procedure Arguments

If any argument of a procedure is of type character, all dnmmy procedure arguments of that
procedure must be declared in an external statement- This requirement arises as a subtle
corollary of the way we represent character string arguments and of the one-pass nature of the
compiler. A warning is printed if a dummy procedure is not declared external Code is correct
if there are no character argnments.

A.2.2. T and TL Formats

The implementation of the t (absolute tab) and ti (leftward tab) format codes is defective.
These codes allow rereading or rewriting part of the record which has already been processed­
The 1/0 library uses seeks, so if the unit is not one which allows seeks, such as a terminal, the
program is in error. A benefit of the implementation chosen is that there is no upper limit on
the length of a record, nor is it necessary to predeclare any record lengths except where
specifically required by FORTRAN-77 or the operating system.

A.2.3. Carriage Control

The ANSI standard leaves as implementation-dependent which logical unit(s) are treated as
'printer' files. In this implementation, there is no printer file and thus carriage control specifiers
such as '+' are not implemented. It would be difficult to implement these carriage-control chal'­
acters correctly and still provide UNIX-like file 1/0.

Furthermore, the carriage control implementation is asymmetrical. A file written with carriage
control interpretation can not be read again with the same characters in colnmn 1.
An alternative to interpreting carriage control internally is to run the output file through a FOR­
TRAN 'output filter' before printing. See the /pr(l) command in the Uaer', Manual.

A.2.4. Assigned Goto

The optional /iat associated with an assigned goto statement is not checked against the actual
assigned value during execution.

A.2.5. Default files

Files created by default use of rewind or endflle statements are opened for aequential for­
matted access. There is no way to redefine such a file to allow direct or unformatted access.

A-6 Revision C of 7 January 1984

0

0

0

1 lo

0

Fortran Programming Guide Deviations from the Fortran-77 Standard

A.2.6. Lower case strings

It is not clear if the ANSI standard requires internally generated strings to be upper case or not.
As currently written, the inquire statement returns lower case strings for any alphanumeric
data.

A.2.7. Exponent representation on Ew.dEe output

Ir the field width for the exponent is too small, the ANSI standard allows dropping the exponent
character but only if the exponent is > 99. This system does not enforce that restriction.
Further, the standard implies that the entire field, 'w', should be filled with asterisks if the
exponent can not be displayed. This system fills only the exponent field in the above case since
that is more informative.

A.2.8. Repeat counts for null values

Repeat counts for null values on list-directed input are not recognized correctly.

Revision C of 7 January 1984 A-7

0

0

0

0

0

0

Appendix B

Differences Between Fortran-66 and Fortran-77

The following is a very brief description of the differences between the 1966 [2) and the 1977 [l)
Standard languages. We assume that the reader is familiar with FORTRAN-88.

B.1. Features Deleted from FORTRAN-66

B.1.1. Hollerith

All notions of 'Hollerith' (nh) as data have been officially removed, although this compiler, like
almost all in the foreseeable future, still supports this anachronism.

B.1.2. Extended Range

In FORTRAN-66, under a set of very restrictive and rarely-understood conditions, it is permissible
to jump out of the range of a do loop, then jump back into it. Extended range has been
removed in the FORTRAN-77 language. The restrictions are so special, and the implementation
of extended range is so unreliable in many compilers, that this change really counts as no loss.

B.2. Program Form

B.2.1. Blank Lines

Completely blank lines are now legal comment lines.

B.2.2. Program and Block Data Statements

A main program may now begin with a statement that gives that program an external name:

program work

Block data procedures may also have names.

Revision C of 7 January 1984 B-1

0

0

0

•

0

0

0

Differences Between Fortran-66 and Fortran-77 Fortran Programming Guide

block data stuff

There is now a rule that only one unnamed block data procedure may appear in a program. 0
This rule is not enforced by this system. The Standard does not specify the effect of the pro-
gram and block data names, but they are clearly intended to aid conventional loadere.

B.2.3. ENTRY Statement

Multiple entry points are now legal. Subroutine and function subprograms may have additional
entry points, declared by an entry statement with an optional argument list.

entry extra(a, b, c)

Execution begins at the first statement following the entry line. All variable declarations must
precede all executable statements in the procedure. If the procedure begins with a aubroutine
statement, all entry points are subroutine names. If it begins with a fun~lon statement, each
entry is a function entry point, with type determined by the type declared for the entry name.
Ir any entry is a character-valued function, all entries must be. In a function, an entry name of
the same type as that where control entered must be 8811igned a value.
Arguments do not retain their values between calls. The ancient trick of calling one entry point
with a large number of arguments so that the procedure 'remembere' the locations or those
arguments, then invoking an entry with just a few arguments for later calculation, is still illegal.
Furthermore, the trick doesn't work in this implementation, since arguments are not kept in
static storage.

B.2.4. DO Loops

do variables and range parametere may now be or integer, real, or double precision types. The
use of floating point do variables is very dangerous because or the possibility of unexpected
roundoff, and we strongly recommend against their use. The action or the do statement is now
defined for all values of the do parameters. The statement

do 10 i = I, u, d

performs max(O, ku-1)/d J) iterations. The do variable has a predictable value when exiting a
loop: the value at the time a goto or return terminates the loop; otherwise the value that
failed the limit test.

B.2.5. Alternate Returns

In a subroutine or subroutine entry statement, some or the arguments may be noted by an
asterisk, as in

subroutine s(a, •, b, •)

The meaning of the 'alternate returns' is described in section 5.2 or this appendix.

B-2 Revision C or 7 January 1984

0

0

0

0

0

Fortran Programming Guide Differences Between Fortran-66 and Fortran-77

B.3. Declarations

B.3.1. CHARACTER Data Type

One of the biggest improvements to the language is the addition of a character-string data type.
Local and common character variables must have a length denoted by a constant expression:

character*l7 a, b(3,4)
character*(6+ 3) c

Ir the length is omitted entirely, it is assumed equal to 1. A character string argument may
have a constant length, or the length may be declared to be the same as that of the correspond­
ing actual argument at run time by a statement like

character•(•) a

There is an intrinsic function len that returns the actual length of a character string. Character
arrays and common blocks containing character variables must be packed: in an array or char­
acter variables, the first character or one element must follow the last character of the preceding
element, without holes.

B.3.2. IMPLICIT Statement

The traditional implied declaration rules still hold: a variable whose name begins with l, J, k, I,
m, or n is or type integer, other variables are of type real, unless otherwise declared. This
general rule may be overridden with an implicit statement:

implicit real(a-c,g), complex(w-z), character*(l7) (s)

declares that variables whose name begins with an a ,b, e, or g are real, those beginning with
w, x, y, ors are assumed complex, and so on. It is still poor practice to depend on implicit
typing, but this statement is an industry standard.

B.3.3. PARAMETER Statement

It is now possible to give a constant a symbolic name, as in

parameter (x=l7, y=x/3, pi=3.14159d0, s='hello1
)

The type of each parameter name is governed by the same implicit and explicit rules as for a
variable. The right side of each equal sign must be a constant expression (an expression made
up of constants, operators, and already defined parameters).

B.3.4. Array Declarations

Arrays may now have as many as seven dimensions - only three were permitted in 1966. The
lower bound of each dimension may be declared to be other than l by using a colon. Further­
more, an adjustable array bound may be an integer expression involving constants, arguments,
and variables in common

Revision C of 7 January 1984 B-3

Differences Between Fortran-66 and Fortran-77 Fortran Programming Guide

real a(-5:3, 7, m:n), b(n+ l:2•n)

The upper bound on the last dimeilllion of an array argument may be denoted by an asterisk to
indicate that the upper bound is not specified:

integer a(S, •), b(•), c(0:1, -2:•)

B.3.5. SA VE Statement

A poorly known rule of FORTRAN-66 is that local variables -in a procedure do not necessarily
retain their values between invocations of that procedure. At any instant in the execution of a
program, if a common block is declared neither in the currently executing procedure nor in any
of the procedures in the chain of callers, all of the variables in that common block also become
undefined. The only exceptioilll are variables that have been defined in a data statement and
never changed. These rules permit overlay and stack implementations for the affected variables.
FORTRAN-77 permits one to specify that certain variables and common blocks are to retain their
values between invocations. The declaration

save a, /b/, c

leaves the values of the variables a and c and all of the contents of common block b unaffected
by a return. The simple declaration

save

has this effect on all variables and common blocks in the procedure. A common block must be
saved in every procedure in which it is declared if the desired effect is to occur.

B.3.6. INTRINSIC Statement

All of the functions specified in the Standard are in a single category, 'intrinsic functions',
rather than being divided into 'intrinsic' and 'basic external' functions. If an intrinsic function
is to be passed to another procedure, it must be declared Intrinsic Declaring it external (as in
FORTRAN-66) passes a function other than the built-in one. -

B.4. Expressions

B.4.1. Character Constants

Character string constants are marked by strings surrounded by apostrophes. If an apostrophe
is to be included in a constant, it is repeated:

'abc'
'ain" t'

There are no null (zero-length) character strings in FORTRAN-77. Our compiler has two different
quotation marks, " ' "' and " " ".

B-4 Revision C of 7 January 1984

0:
I

I

0

0

0

0

0

Fortran Programming Guide Differences Between Fortran-66 and Fortran-77

B.4.2. Concatenation

One new operator has been added, character string concatenation, marked by a double slash
('/ f'). The result of a concatenation is the string containing the characters of the left operand
followed by the characters of the right operand. The strings

1 ab' // 1 cd1

1 abed'

are equal. The strings being concatenated must be of constant length in all concatenations that
are not the right sides of assignments. (The only concatenation expressions in which a charac­
ter string declared adjustable with a ••(•)' modifier or a substring denotation with nonconstant
position values may appear are the right sides of assignments).

B.4.3. Character String Assignment

The left and right sides of a character assignment may not share storage. (The assumed imple­
mentation of character assignment is to copy characters from the right to the left side.) If the
left side is longer than the right, it is padded with blanks. If the left side is shorter than the
right, trailing characters are discarded.

B.4.4. Substrings

It is possible to extract a substring of a character variable or character array element, using the
colon notation:

a(i,j) (m:n)

is the string of (n-m+ 1) characters beginning at the m11 character of the character array ele­
ment a;1 • Results are undefined unless m ::5 n. Substrings may be used on the left sides of
assignments and as procedure actual arguments.

B.4.5. Exponentiation

It is now permissible to raise real quantities to complex powers, or complex quantities to real or
complex powers. The principal part of the logarithm is used. Also, multiple exponentiation is
now defined:

a••buc = a•• (b**c)

B.4.6. Relaxation of Restrictions

Mixed mode expressions are now permitted. For instance, it is permissible to combine integer
and complex quantities in an expression.
Constant expressions are permitted where a constant is allowed, except in data statements. (A
constant expression is made up of explicit constants and parameters and the FORTRAN opera­
tors, except for exponentiation to a floating-point power). An adjustable dimension may now
be an integer expression involving constants, arguments, and variables in common.

Revision C of 7 January 1984 B-5

Difference8 Between Fortran-66 and Fortran-77 Fortran Programming Guide

Subscripts may now be general integer expressions; the old ev:t t! rules have been removed. do
loop bounds may be general integer, real, or double precision expressions. Computed goto

0 expressions and 1/0 unit numbers may be general integer expressions.

B.5. Executable Statements

B.5.1. IF-THEN-ELSE

At last, the if-then-else branching structure has been added to FORTRAN. It is called a 'Block If'.
A Block If begins with a statement of the form

if(...) then

and ends with an

end if

statement. Two other new statements may appear in a Block If. There ma7 be several

else if(. . .) then

statements, followed by at most one

else

statement. If the logical expression in the Block If statement is true, the statements following it
up to the next elseil, else, or endil are executed. Otherwise, the next eJ.ell statement in the
group is executed. If none of the elseif conditions are true, control passes to the statements fol- o
lowing the else statement, if any. The else must follow all elnifa. in. a. Block Ir. Of course,
there may be Block Ifs embedded inside of other Block If structures. A case construct may be
rendered

if (s .eq. 1 ab') then

else if (s .eq. 1 cd') then

else

end if

B.5.2. Alternate Returns

Some of the arguments of a subroutine call may be statement labels preceded by an asterisk, aa
in

call joe(j, * 10, m, *2)

A return statement may have an integer expression, such aa

return k

If the entry point has n alternate return (asterisk) arguments and if lSl:<n, the return is fol­
lowed by a branch to the corresponding statement label; otherwise the usual return to the state­
ment following the call is executed.

B-6 Revision C of 7 January 1984

0

Fortran Programming Guide Differences Between Fortran-60 and Fortran-77

0 B.6. Input/Output

B.6.1. Format Variables

A (ormat may be the value or a character expression (constant or otherwise), or be stored in a
character array, as in

write(6, 1 (i5Y) x

B.6.2. END=, ERR=, and IOSTAT= Clauses

A read or write statement may contain end=-, err""", and ioatat= clauses, as in

write(6, 101, err-20, iostat=a(4))
read(5, 101, err=20, end=30, iostat=x)

Here 5 and 6 are the unit, on which the 1/0 is done, 101 is the statement number or the associ­
ated format, 20 and 30 are statement numbers, and a and x are integers. Ir an error occurs
during 1/0, control returns to the program at statement 20. Ir the end or the file is reached,
control returns to the program at statement 30. In any case, the variable referred to in the loa­
tat= clause is given a value when the 1/0 statement finishes. (Yes, the value is assigned to the
name on the right side or the equal sign.) This value is zero if all went well, negative for end or o file, and some positive value for errors.

0

B.6.3. Formatted 1/0

B.6.3.1. Character Constants

Character constants in formats are copied literally to the output. Character constants cannot
be read into.

write(6,' (i2,11 isn1111 t 11 ,il)') 7, 4

produces

7 isn't 4

Here the format is the character constant

(i2,' isn11 t I ,il)

and the character constant

isn't

is copied into the output.

Revision C of 7 January 1984 B-7

Differences Between Fortran-66 and Fortran-77 Fortran Programming G11cide

B.6.3.2. Positional Editing Codes

t, ti, tr, and x codes control where the next character is in the record. trn or nx specifies that o
the next character is n to the right of the current position. tin specifies that the next character
is n to the left of the current position, allowing parts of the record to be reconsidered. tn says
that the next character is to be character number n in the record. See section 3.4 in the main
text.

B.6.3.3. Colon

A colon in the format terminates the 1/0 operation if there are no more data items in the 1/0
list, otherwise it has no effect. In the fragment

x=' ("hello", :, " there", i4Y
write(6, x) 12
write(6, x)

the first write statement prints:

hello there 12

w bile the second only prints

hello

B.6.3.4. Optional Plus Signs

According to the Standard, each implementation has the option of putting plus signs in front of 0
non-negative numeric output. The •P format code may be used to make the optional plus signs
actually appear for all subsequent items while the format is active. The a format code guaran-
tees that the 1/0 system will not insert the optional plus signs, and the • format code restores
the default behavior of the 1/0 system. Since we don't normally put out optional plus signs, a
and • codes have the same effect in this implementation.

B.6.3.5. Blanks on Input

Blanks in numeric input fields, other than leading blanks are ignored following a bn code in a
format statement, and are treated as zeros following a bs code in a format statement. The
default for a unit may be changed by using the open statement. Blanks are ignored by default.

B.6.3.6. Unrepresentable Values

The ANSI standard requires that if a numeric item cannot be represented in the form required by
a format code, the output field must be filled with asterisks.

B-8 Revision C of 7 January 1984

0

0

0

0

Fortran Programming Guide Differences Between Fortran-66 and Fortran-77

B.6.3.7. lw.m

There is a new integer output code, iw.m. It is the same as iw, except that there will be at least
m digits in the output field, including, if necessary, leading zeros. The case iw.O is special, in
that if the value being printed is 0, the output field is entirely blank. iw.1 is the same as iw.

B.6.3.8. Floating Point

On input, exponents may start with the letter E, D, e, or d. All have the same meaning. On
output we always use e. The e and d format codes also have identical meanings. A leading
zero before the decimal point in e output without a scale factor is optional with the implemen­
tation. We do not print it. There is a gu,.d format code which is the same as ew.d and fu,.d on
input, but which chooses fore formats for output depending on the size of the number and of
d.

B.6.3.9. 'A' Format Code

A codes are used for character values. aw use a field width of w, while a plain a uses the length
of the character item.

B.6.4. Standard Units

There are default formatted input and output units. The statement

read 10, a, b

reads from the standard unit using format statement 10. The default unit may be explicitly
specified by an asterisk, as in

read(*, 10) a,b

Similarly, the standard output units is specified by a print statement or an asterisk unit:

print 10
write(•, 10)

B.6.5. List-Directed Formatting

List-directed 1/0 is a kind of free form input for sequential 1/0. It is invoked by using an
asterisk as the format identifier, as in

read(6, •) a,b,c

On input, values are separated by strings of blanks and possibly a comma. Values, except for
character strings, cannot contain blanks. End of record counts as a blank, except in character
strings, where it is ignored. Complex constants are given as two real constants separated by a
comma and enclosed in parentheses. A null input field, such as between two consecutive com­
mas, means the corresponding variable in the 1/0 list is not changed. Values may be preceded
by repetition counts, as in

Revision C of 7 January 1984 B-9

Differences Between Fortran-66 and Fortran-77 Fortran Programming Guide

4*(3.,2.) 2•, 4*' hello'

which stands for 4 complex constants, 2 null values, and 4 string constants.
For output, suitable formats are chosen fcl'r each item. The values of character strings are
printed; they are not enclosed in quotes, so they cannot be read back using liswlirected input.

B.6.6. Direct 1/0

A file connected for direct access consists of a set of equal-sized records each of which is
uniquely identified by a positive integer. The records may be written or read in any order,
using direct access 1/0 statements.
Direct access read and write statements have an extra argument, rec=-, which gives the
record number to be read or written.

read(2, rec=l3, err=20) (a(i), i=l, 203)

reads the thirteenth record into the array a
The size of the records must be given by an open statement (see below). Direct access files may
be connected for either formatted or unformatted 1/0.

B.6. 7. Internal Files

Internal files are character string objects, such as variables or substrings, or arrays of type chlll'-

0

acter. In the former cases there is only a single record in the file, in the latter case each array

0 element is a record. The ANSI standard includes only sequential formatted 1/0 on internal files.
(1/0 is not a very precise term to use here, but internal files are dealt with using read and
write) There is no list-directed 1/0 on internal files. Internal files are used by giving the name
of the character object in place of the unit number, ail in

character*80 X

read(5,'(a)') x
read(x,'(i3,i4)') nl,n2

which reads a card image into x and then reads two integers from the front of it. A sequential
read or write always starts at the beginning of an internal file.
We also support a compatible extension, direct 1/0 on internal files. This is like direct 1/0 on
external files, except that the number of records in the file cannot be changed. In this case, a
record is a single element of an array of character strings.

B.6.8. OPEN, CLOSE, and INQUIRE Statements

These statements are used to connect and disconnect units and files, and to gather information
about units and files.

B-10 Revision C of 7 January 1984

0

0

0

0

Fortran Programming Guide Differences Between Fortran-66 and Fortran-77

B.6.8.1. OPEN

The open statement connects a file with a unit, or to alter 90me properties of the connection.
The following is a minimal example.

open(l, file=' Cort.junk')

open takes a variety of arguments with meanings described below.
unit== a small non-negative integer which is the unit to which the file is to be connected.

We allow, at the time of this writing, 0 through 19. If this parameter is the first one in
the open statement, the unit= can be omitted.

iostat= is the same as in read or write
err== is the same as in read or write
&le=s a character expression, which when stripped of trailing blanks, is the name of the file

to be connected to the unit. The filename should not be given if the status=scratch
status= a character expression which evaluates to one of 'old', 'new', 'scratch', or 'unk­

nown'. If this parameter is not given, 'unknown' is assumed. The meaning of 'unk­
nown' is processor dependent; this system treats it as synonymous with 'old' If
'scratch' is given, a temporary file is created. Temporary files are destroyed at the end
or execution. If 'new' is given, the file must not exist. It will be created for both read­
ing and writing. If 'old' is given, it is an error for the file not to exist.

acc:eu= a character expression which evaluates to 'aequential' or 'direct', depending on
whether the file is to be opened for sequential or direct 1/0.

form= a character expression which evaluates to 'formatted' or 'unformatted'.
reel== a positive integer specifying the record length of the direct acce8S file being opened.

We measure all record lengths in bytes. On UNIX systems a record length of 1 has the
special meaning explained in section 5.1 ol the text.

blank= a character expression which evaluates to 'null' or 'aero'. This parameter has
meaning only for formatted 1/0. The default value is null; aero means that blanks,
other than leading blanks, in numeric input fields are to be treated as zeros.

Opening a new file on a unit which is already connected has the effect of first closing the old file.

B.6.8.2. CLOSE

close severs the connection between a unit and a file. The unit number must be given. The
optional parameters are iostat= and err= with their usual meanings, and status= either
'keep' or 'delete' Scratch files cannot be kept, otherwise keep is the default. delete means the
file will be removed. A simple example is

close(3, err-17)

B.6.8.3. INQUffi.E

The inquire statement gives information about a unit (inquire by unit) or a file (inquire by file).
Simple examples are:

Revision C or 7 January 1984 B-11

Differences Between Fortran-66 and Fortran-77 Fortran Programming Guide

inquire(unit=3, namexx)
inquire(file=' junk', number=n, exist-I)

file- a character variable specifies the file the Inquire is about. Trailing blanks in the file
name are ignored.

unit= an integer variable specifies the unit the Inquire is about. Exactly one of file=- or
unit= must be used.

iostat=, err= are as before.
exist= a logical variable. The logical variable is set to .true. if the file or unit exists and

is set to .false. otherwise.
opened= a logical variable. The logical variable is set to .true. if the file is connected to a

unit or if the unit is connected to a file, and it is set to .false. otherwise.
number= an integer variable to which is assigned the number of the unit connected to the

file, if any.
named= a logical variable to which is assigned .true. if the file has a name, or .falae. oth­

erwise.
name= a character variable to which is assigned the name of the file (inquire by file) or

the name of the file connected to the unit (inquire by unit). The name will be the full
name of the file.

acceH= a character variable to which is assigned the value I aequenttar if the connection
is for sequential 1/0, 1 dired1 if the connection is for direct 1/0. The value becomes
undefined if there is no connection.

0

sequential= a character variable to which is assigned the value 11• if the file could be
connected for sequential 1/0, 'no' if the file could not be connected for sequential 1/0, o
and 'unknown' if we can't tell.

direct= a character variable to which is assigned the value '1• if the file could be con­
nected for direct 1/0, 1 no1 if the file could not be connected for direct 1/0, and' unk­
nown' if we can't tell.

form= a character variable to which is assigned the value I formatted' if the file is con­
nected for formatted 1/0, or I unformatted' if the file is connected for unformatted
1/0.

formatted= a character variable to which is assigned the value 11• if the file could be
connected for formatted 1/0, 1 no' if the file could not be connected for formatted 1/0,
and I unknown' if we can't tell.

unformatted= a character variable to which is assigned the value '1• if the file could
be connected for unformatted 1/0, 'no' if the file could not be connected for unformat­
ted 1/0, and I unknown' if we can't tell.

reel= an integer variable to which is assigned the record length of the records in the file if
the file is connected for direct access.

nextrec= an integer variable to which is assigned one more than the number of the the
last record read from a file connected for direct access.

blank= a character variable to which is assigned the value 'null' if null blank control is
in effect for the file connected for formatted 1/0, 1 aero' if blanks are being converted
to zeros and the file is connected for formatted 1/0.

Tho gentle reader will remember that the people who wrote the ANSI standard probably weren't 0
thinking of his needs. Here is an example. The declarations are omitted.

B-12 Revision C of 7 January 1984

0

0

0

Fortran Programming Guide Differences Between Fortran-66 and Fortran-77

open(l, file=" /dev/console")

On a UNIX system this statement opens the console ror rormatted sequential 1/0. An Inquire
statement for either unit 1 or Ii.le "/dev /console" would reveal that the Ii.le exists, is connected
to unit 1, has a name, namely "/dev/console", is opened ror sequential 1/0, could be connected
for sequential 1/0, could not be connected ror direct 1/0 (can't seek), is connected for formatted
1/0, could be connected (or rormatted 1/0, could not be connected ror unformatted 1/0 (can't
seek), has neither a record length nor a next record number, and is ignoring blanks in numeric
fields.
In the UNIX system environment, the only way to discover what permissions you have ror a file
is to use the acceu(3f) (unction. The inquire statement does not give a way of determining
permissions.

Revision C of 7 January 1984 B-13

0

0

0

0

0

0

Appendix C

Bibliography

1. American Notional Stontlartl Progrommin1 L•n1uoge FORTRAN, ANSI XS.9-1978. New
York, American National Standards Institute, 1978.

2. USA Stontlartl FORTRAN, USAS XS.9-1988, New York: United States of America Stan­
dards Institute, March 7, 1966. Clarified in Comm. ACM 12, esg {1989) •ntl Comm. ACM
14, 828 {1971).

3. B. W. Kernighan and D. M. Ritchie, Tle C Programming Lanf1Uage, Englewood Cliffs:
Prentice-Hall (1978).

5. S. C. Johnson, 'A Portable Compiler: Theory and Practice', Proc. 5th ACM Symp. on Prin­
ciples of Programming Languages (January 1978).

7. B. W. Kernighan, 'RATFOR - A Preprocessor for a Rational Fortran', Bell Laboratorie,
Computing Science Tecllnical Report #55, (January 1977).

The following books or documents describe upects of FORTRAN-77. This list is not necessarily
complete. No particular endorsement is implied.

1. Brainerd, Walter S., et al. FORTRAN-77 Programming. Harper Row, 1978.
2. Day, A. C. Compatible Fortran. Cambridge University Press, 1979.
3. Dock, V. Thomas. Structured FORTRAN-77 /V Programming. West, 1979.

4. Feldman, S. l. 'The Programming Language EFL,' Bell Laboratoriu Tecllnical Report.
June 1979.

5. Hume, J. N., and R. C. Holt. Programmin1 FORTRAN-77. Reston, 1979.

8 Katzan, Harry, Jr. FORTRAN-77. Van Nostrand-Reinhold, 1978.
7. Meissner, Loren P., and Organick, Elliott I. FORTRAN-77 Featuring Structured Program-

ming. Addison-Wesley, 1979.
8. Merchant, Michael J. ABC', of FORTRAN-77 Programming. Wadsworth, 1979.

9. Page, Rex, and Richard Didday. FORTRAN-77 for Human,. West, 1980.
10. Wagener, Jerrold L. Principle, of FORTRAN-77 Programming. Wiley, 1980.

Revision C of 7 January 1984 C-1

0

0

0

0

0

0

A FORTRAN Language Reference Manual
is currently in preparation.

0

0

0

0

0

0

FORTRAN LIBRARY FUNCTIONS

The following collection of manual pages (section 3F) describes the functions from the Fortran
run-time library.

0

0
i

I
I

0,

0

0

0

INTRO(SF) FORTRAN LIBRARY ROUTINES INTR0(3F)

NAME
intro - introduction to FORTRAN library functions

DESCRIPTION
This section describes those functions that are in the FORTRAN run time library. The functions
listed here provide an interface Crom /77 programs to the system in the same manner as the C
library does Cor C programs. They are automatically loaded as needed by the Fortran compiler
/77(1).
Most or these functions are in libU77.a. Some are in libF77.a or libl77.a. A few intrinsic functions
are described Cor the sake or completeness.
For efficiency, the SCCS ID strings are not normally included in the a.out file. To include them,
simply declare

external C771id

in any /77 module.

LIST OF FUNCTIONS
Nam• Appear, on Pago Do,criplion

abort abort.3C terminate abruptly with memory image
access access.3C determine accessability or a Ille
alarm alarm.3C execute a subroutine after a specified time
bessel functions bessel.3CoC two kinds Cor integer orders
bit bit.3C and, or, xor, not, rshiCt, lshiCt bitwise functions
chdir chdir .3C change default directory
chmod chmod.3C change mode or a Ille
ctime time.SC return system time
dflmax range.SC return extreme values
dftmin range.SC return extreme values
drand rand.SC return random values
dtime etime.SC return elapsed execution time
etime etime.SC return elapsed execution time
exit exit.SC terminate process with status
Cdate Cdate.SC return date and time in an ASCII string
Cgetc getc.SC get a character Crom a logical unit
flmax range.SC return extreme values
flmln range.SC return extreme values
flush Dush.SC Dush output to a logical unit
Cork Cork.SC create a copy or this process
Cpecnt trpCpe.SC trap and repair floating point faults
Cputc putc.SC write a character to a FORTRAN logical unit
Cseek Cseek.SC reposition a Ole on a logical unit
Cstat stat.SC get Ole status
Ctcll Cseek.3C reposition a Ole on a logical unit
gerror perror.3f get system error messages
getarg getarg.SC return command line arguments
getc getc.SC get a character Crom a logical unit
getcwd getcwd.sr get pathname or current working directory
getenv getenv .3r get value oC environment variables
getgid getuid.Sr get user or group ID or the caller
getlog getlog.SC get user's login name
getpid getpid.3C get process id
getuid getuid.Sr get user or group ID or the caller
gmtime time.Sr return system time

Sun Release 1.1 Last change: 12 January 1984 1

INTR0(3F) FORTRAN LIBRARY ROUTINES INTRO(aF)

bostnm bostnm.ar get name of current host
iargc getarg.ar return command line arguments 0 idate idate.ar return date or time in numerical form
iermo perror.ar get system error messages
index index.at tell about character objects
inmax range.at return extreme values
ioinit ioinit.ar change !77 1/0 initialization
irand rand.at return random values
isatty ttynam.ar find name or a terminal port
itime idate.ar return date or time in numerical form
kill kill.at send a signal to a process
len index.at tell about character objects
link link.at make a link to an existing file
lnblnk index.at tell about character objects
loc loc.ar return the address or an object
long long.at integer object conversion
!stat stat.at get file status
ltime time.3! return system time
perror perror.3! get system error messages
putc putc.3! write a character to a FORTRAN logical unit
qsort qsort.ar quick sort
rand rand.at return random values
rename rename.3! rename a file
rindex index.at tell about character objects
short long.at integer object conversion
signal signal.3f change the action tor a signal
sleep sleep.at suspend execution for an interval
stat stat.at get file status 0 symlnk link.at make a link to an exioting file
system syotem.3! execute a UNIX command
tclose topen.3! !77 tape 1/0
time time.at return system time
topen topen.ar !77 tape 1/0
tread topen.ar !77 tape 1/0
trewin topen.3f !77 tape 1/0
trpfpe trpfpe.3! trap and repair Doating point faults
tskipf topen.ar !77 tape 1/0
totate topen.ar !77 tape 1/0
ttynam ttynam.ar find name or a terminal port
twrite topen.3f !77 tape 1/0
unlink unlink.at remove a directory entry
wait wait.at wait tor a process to terminate

0
2 Last change: 12 January 1984 Sun Release 1.1

0

0

0

ABORT(3F) FORTRAN LIBRARY ROUTINES

NAME
abort - terminate abruptly with memory image

SYNOPSIS
aubroutlne abort (string)
character*(*) string

DESCRIPTION

ABORT(3F)

Abort cleans up the 1/0 buffers and then aborts producing a core file in the current directory. If
siring is given, it is written to logical unit O preceeded by "abort:".

FILES
/usr/lib/libF77.a

SEE ALSO
abort(3)

Sun Release 1.1 Last change: 13 3

ACCESS(3F) FORTRAN LIBRARY ROUTINES ACCESS(3F)

NAME
accelll! - determine accessability or a file

SYNOPSIS
Integer function acceu (name, mode)
character•(•) name, mode

DESCRIPTION

FILES

Access checks the given file, name, for accessability with respect to the caller according to mode.
Mode may include in any order and in any combination one or more of:

r test for read permission

w test for write permission

x test for execute permission

(blank) test for existence

An error code is returned if either argument is illegal, or if the file can not be accessed in all of
the specilled modes. 0 is returned if the specified acce88 would be succeMful.

/usr/lib/libU77.a

SEE ALSO
access(2), perror(3F)

4 Last change: 23 August 1983 Sun Release 1.1

0

0

0

0

0

0

ALARM(3F) FORTRAN LIBRARY ROUTINES

NAME
alarm - execute a subroutine arter a specifted time

SYNOPSIS
Integer function alarm (time, proc)
Integer time
external proc

DESCRIPTION

ALARM(3F)

This routine arranges ror subroutine proc to be called arter lime seconds. Ir lime is "O", the alarm
is turned off and no routine will be called. The returned value will be the time remaining on the
last alarm.

FILES
/usr /lib/libU77 .a

SEE ALSO
alarm(3C), sleep(3F), signal(3F)

BUGS
A subroutine cannot pass its own name to alarm because or restrictions in the standard.

Sun Release 1.1 Last change: 16 February 1984 5

CHDIR (3F) FORTRAN LIBRARY ROUTINES CHDIR(3F)

NAME
chdir - change default directory

SYNOPSIS
Integer function chdlr (dlrname)
character•(•) dlrname

DESCRIPTION

FILES

The default directory for creating and locating Illes will be changed to dirname. Zero is returned if
successful; an error code otherwise.

/usr/lib/libU77.a

SEE ALSO

BUGS

6

chdir(2), cd(l), perror(3F)

Pathnames can be no longer than MAXP ATlll,EN as deftned in <sys/param.h>.

Use of this function may cause Inquire by unit to fail.

Certain FORTRAN file operations reopen Illes by name. Using chdir while doing 1/0 may result
in the run-time eystem to lose track of flies created with relative pathnames (including files
created by OPEN statements without Ille names).

Last change: 13 June 1983 Sun Release 1.1 ·

0

0

0

0

0

0

CHM0D(3F) FORTRAN LIBRARY ROUTINES

NAME
chmod - change mode of a file

SYNOPSIS
Integer function chmod (name, mode)
character*(*) name, mode

DESCRIPTION

CHM0D(3F)

This function changes the fllesystem mode of file name. Mode can be any specification recognized
by chmod(l). Name must be a single pathname.

The normal returned value is 0. Any other value will be a system error number.

FILES
/usr/Iib/IibU77.a
/bin/chmod

SEE ALSO
chmod(l)

BUGS

exec'ed to change the mode.

Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

Sun Release 1.1 Last change: 13 June 1983 7

EXIT(3F) FORTRAN LIBRARY ROUTINES

NAME
exit - terminate proce•s with status

SYNOPSIS
subroutine exit (atatu1)
Integer 1tatu1

DESCRIPTION

EXIT(3F·)

Ezil Oushes and cloees all the process's Dies, and notiftes the parent process ir it is executing a
wail. The low-order 8 bits or ,tatu, are available to the parent process. (Therefore ,talu, should
be in the range O - 255)

Thia call will never return.

The C function ezil may cause cleanup actions hetore the Ona! 'sys exit'.

FILES
/usr /lib/libF77.a

SEE ALSO
exit(2), tork(2), tork(3t), wait(2), wait(3t)

8 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

FLUSH(3F) FORTRAN LIBRARY ROUTINES FLUSH(3F)

NAME
Oush - ftush output to a logical unit

SYNOPSIS
subroutine flush (lunlt)

DESCRIPTION
Flush causes the contents of the buffer for logical unit lunil to be Hushed to the associated Ille.
This is ·most useful for logical units O and 6 when they are both associated with the control termi­
nal.

FILES
/usr/lib/libl77.a

SEE ALSO
fclose(3S)

Sun Release 1.1 Last change: 13 June 1983 9

FORK(3F) FORTRAN LIBRARY ROUTINES FORK(3F)

NAME
Cork - create a copy or this process

SYNOPSIS
Integer function fork()

DESCRIPTION

FILES

Fork creates a copy or the calling process. The only distinction between the 2 processes is that
the value returned to one or them (referred to as the 'parent' process) will be the process id if the
copy. The copy is usually referred to as the 'child' process. The value returned to the 'child' pro­
cess will be zero.

All logical units open for writing are flushed before the fork to avoid duplication or the contents
or I/0 buffers in the external 6le(s).

Ir the returned value is negative, it indicates an error and will be the negation or the system error
code. See perror(3F).

A corresponding ezec routine has not been provided because there is no satisfactory way to retain
open logical units across the exec. However, the usual function or fork/ ezec can be performed
using sgslem(3F).

/usr /Jib/libU77 .a

SEE ALSO
Cork(2), wait(3F), ki11(3F), system(3F), perror(3F)

10 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

FSEEK(3F) FORTRAN LIBRARY ROUTINES FSEEK(3F)

NAME
roeek, ttell - reposition a file on a logical unit

SYNOPSIS
Integer function faeek (lunlt, olf1et, from)
Integer offset, from

Integer function ftell (lunlt)

DESCRIPTION

FILES

lunil must refer to an open logical unit. of!eel is an offset in bytes relative to the position
specified by from. Valid value• tor from are:

O meaning 'beginning or the file'
1 meaning 'the current position'
2 meaning 'the end or the file'

The value returned by /seek will be O it successful, a system error code otherwise. (See
perror(3F))
Flell returns the current position or the file aooociated with the opecified logical unit. The value i•
an offset, in byte•, from the beginning or the file. tr the value returned is negative, it indicates an
error and will be the negation or the system error code. (See perror(3F))

/uor /lib/libU77 .a

SEE ALSO
foeek(3S), perror(3F)

Sun Release 1.1 Last change: 13 June 1983 11

GETARG(3F) FORTRAN LIBRARY ROUTINES

NAME
getarg, iargc - return command line arguments

SYNOPSIS
subroutine getarg (k, arg)
character*(*) arg

function large ()

DESCRIPTION

GETARG(3F)

A call to getarg will return the klh command line argument in character string arg. The 0th argu­
ment is the command name.

I orgc returns the index of the last command line argument.

FILES
/usr /lib/libU77 .a

SEE ALSO
execve(2), getenv(3F)

12 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

GETC(3F) FORTRAN LIBRARY ROUTINES

NAME
getc, fgetc - get a chuacter from a logical unit

SYNOPSIS
Integer function getc (char)
character char

Integer function fgetc (lunlt, char)
character char

DESCRIPTION

GETC(3F}

These routines return the next character from a file Moociated with a fortran logical unit, bypass­
ing normal fortran 1/0. Gelc reado from logical unit &, normally connected to the control termi­
nal input.

The value of each function is a system status code. Zero indicates no error occured on the read;
-1 indicates end of file WM detected. A positive value will be either a UNIX system error code or
an m 1/0 error code. See perror(3F}.

FILES
/uar/lib/libU77 .a

SEE ALSO
getc(3S), intro(2), perror(3F)

Sun Releaae 1.1 Last change: 13 June 1983 13

GETCWD(3F) FORTRAN LIBRARY ROUTINES

NAME
getcwd - get pathname of current working directory

SYNOPSIS
Integer function getewd (dlrname)
character*(*) dlrname

DESCRIPTION

GETCWD(3F)

The pathname of the default directory for creating and locating Illes will be returned in dirnome.
The value of the function will be zero it successful; an error code otherwise.

FILES
/usr/lib/libU77.a

SEE ALSO
chdir(3F), perror(3F), getwd(3)

BUGS
Pathnames can be no longer than MAXP ATHLEN as defined in <sys/param.h>.

14 Last change: 13 June 1983 Sun Release I.I

0

0

0

0

0

0

GETENV(3F) FORTRAN LIBRARY ROUTINES

NAME
getenv - get value or environment variables

SYNOPSIS
aubroutlne getenv (ename, evalue)
character*(*) ename, evalue

DESCRIPTION

GETENV(3F)

Getenv ••arches the environment list (see environ(5)) for a string or the Corm ename=value and
return• value in evalue if •uch a •tring ia present, otherwise 1111• evalue with blank!.

FILES
/uor/lib/libU77.a

SEE ALSO
execve(2), environ(5)

Sun ReleaH 1.1 Last change: 13 June 1983 15

GETFD(3F) FORTRAN LIBRARY ROUTINES

NAME
getfd - get the Ille descriptor of an external unit number

SYNOPSIS
Integer function getfd(unltn)
lnteser unltn

DESCRIPTION

GETFD(3F)

Gel/d return, the 'Ille descriptor' of an external unit number if the unit ii connected and -1 other­
wise.

FILES
/usr/lib/libI77.a

SEE ALSO
open(2)

16 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

GETLOG(3F) FORTRAN LIBRARY ROUTINES

NAME
getlog - get user'• login name

SYNOPSIS
aubroutlne getlog (name)
character*(*) name

character*(*) function getlogQ

DESCRIPTION

GETLOG(3F)

Getlog will return the user'• login name or all blanks if the proce88 io running detached from a ter­
minal.

FILES
/usr /lib /libU77 .a

SEE ALSO
getlogin(3)

Sun Release 1.1 Last change: 13 June 1983 17

GETPID(3F) FORTRAN LIBRARY ROUTINES GETPID(3F)

NAME
getpid - get process id 0

SYNOPSIS
Integer function getpldQ

DESCRIPTION
Getpid returns the process ID number or the current process.

FILES
/usr /lib/libU77 .a

SEE ALSO
getpid(2)

0

0
18 Last change: 13 June 1983 Sun Release 1.1

0

0

0

GETUID(3F) FORTRAN LIBRARY ROUTINES

NAME
getuid, getgid - get user or group ID of the caller

SYNOPSIS
Integer function getuld()

Integer function getgld()

DESCRIPTION
These functions return the real user or group ID of the user of the process.

FILES
/usr/lib/libU77.a

SEE ALSO
getuid(2)

Sun Release 1.1 Last change: 13 June 1983

GETUID(3F)

19

HOSTNM(3F) FORTRAN LIBRARY ROUTINES

NAME
hostnm - get name or current host

SYNOPSIS
Integer function ho1tnm (name)
character*(*) name

DESCRIPTION

HOSTNM(3F)

This function puts the name of the current host into character string name. The return value
should be O; any other value indicates an error.

FILES
/uar /lib/libU77.a

SEE ALSO
gethootname(2)

20 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

IDATE(3F) FORTRAN LIBRARY ROUTINES

NAME
idate, itime - return date or time in numerical form

SYNOPSIS
aubroutlne ldate (!array)
Integer larray(3)

aubroutlne ltlme (larray)
Integer larray(3)

DESCRIPTION

IDATE(3F)

/dale returns the current date in iarra11. The order is: day, mon, year. Month will be in the range
1·12. Year will be ~ 1969.

/lime returns the current time in iarra11. The order is: hour, minute, second.

FILES
/usr/llb/libU77.a

SEE ALSO
ctime(3F), fdate(3F)

Sun Release 1.1 Last change: 13 June 1983 21

INDEX(3F) FORTRAN LIBRARY ROUTINES IN0EX(3F)

NAME
index, rindex, lnblnk, Jen - tell about character objects

SYNOPSIS
(lntrlnalc) function Index (atrlns, aubatr)
character*(*) atrlns, aubatr

lnteser function rlndex (atrlns, aubatr)
character*(*) atrlns, aubatr

function lnblnk (1trlns)
character*(*) 1trlns

(lntrln1lc) function len (atrlns)
character*(*) atrlns

DESCRIPTION

FILES

22

lntle:, (rintle:,) returns the index of the first (last) occurrence of the substring auhlr in airing, or
zero if it does not occur. Intle:, ia an f77 intrinsic function; rintle:, ia a library routine.

Ln6/nl: returns the index of the last non-blank character in siring. Thia is useful since all f77 char­
acter objects are fixed length, blank padded. Intrinsic function /en returns the size of the charac­
ter object argument. ·

/usr/lib/libF77.a

Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

IOINIT(3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

NAME
ioinit - change m 1/0 initialization

SYNOPSIS
logical function lolnlt (cctl, baro, apnd, preftx, vrbo1e)
logical cctl, baro, apnd, vrboae
character•(•) prefix

DESCRIPTION
This routine will initialize several global parameters in the m 1/0 system, and attach externally
defined Bies to logical units at run time. The effect or the llag arguments applies to logical units
opened after ioinil is called. The exception is the preassigned units, 5 and 6, to which cctl and
bro will apply at any time. /oinil is written in Fortran-77.

By default, carriage control is not recognized on any logical unit. Ir cctt is .true. then carriage
control will be recognized on formatted output to all logical units except unit 0, the diagnostic
channel. Otherwise the default will be restored.

By default, trailing and embedded blanks in input data llelds are ignored. Ir bzro is .true. then
such blanks will be treated as zero's. Otherwise the default will be restored.

By default, all files opened for sequential access are positioned at their beginning. It is sometimes
necessary or convenient to open at the END-OF-Fll,E so that a write will append to the existing
data. Ir opnd is .true. then Illes opened subsequently on any logical unit will be positioned at
their end upon opening. A value or .falae. will restore the default behavior.

Many systems provide an automatic association or global names with fortran logical units wben a
program is run. There is no such automatic association in r77. However, if the argument pre ju is
a non-blank string, then names or the form preftxNN ·will be sought in the program environment.
The value associated with each such name found will be used to open logical unit NN for format­
ted sequential acceu. For example, if m program m11program included the call

call ioinit (.true., .falee., .false., 'FORT', .falee.)

then when the following sequence

% setenv FORTOl mydata
% setenv FORT12 myresults
% myprogram

would result In logical unit 1 opened to Ille m11dolo and logical unit 12 opened to Ille mgresults.
Both llle1 would be positioned at their beginning. Any formatted output would have column 1
removed and interpreted as carriage control. Embedded and trailing blanks would be ignored on
Input.

Ir the argument vrbo,eI~ .true. then ioinil will report on its activity.

The effect of

call ioinit (.true., .true., .raise., ", .raise.)

can be achieved without the actual call by including "-1166" on the /77 command line. This gives
carriage control on all logical units except 0, causes files to be opened at their beginning, and
causes blanks to be interpreted as zero's.

The internal flags are stored in a labeled common block with the following dellnition:

integer•2 ieor, ictl, ibzr
common /ioillg/ leor, ictl, ibzr

Sun Rele- 1.1 Last change: 13 June 1983 23

IOINIT(3F) FORTRAN LIBRARY ROUTINES IOINIT(3F)

FILES
/usr/lib/Iib177.a
/usr/Iib/liblOO.a

177 1/0 library
sets older rortran 1/0 modes

SEE ALSO

BUGS

24

getarg(3F), getenv(3F), "Introduction to the 177 1/0 Library"

Prefiz can be no longer than 30 characters. A pathname associated with an environment name
can be no longer than 255 characters.

The "+" carriage control does not work.

Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

KILL (3F) FORTRAN LIBRARY ROUTINES

NAME
kill - send a signal to a process

SYNOPSIS
function kW (pld, elgnum)
lntega pld, elgnum

DESCRIPTION

KILL (3F)

Pid must be the process id of one of the user's processes. Signum must be a valid signal number
(see signa1(3)). The returned value will be O if successful; an error code otherwise.

FILES
/usr/lib/libU77.a

SEE ALSO
kill(2), signal(3), signa1(3F), fork(3F), perror(3F)

Sun Release 1.1 Last change: 26 August 1983 25

LINK(3F) FORTRAN LIBRARY ROUTINES

NAME
link, symlnk - make a link to an existing file

SYNOPSIS
function llnk (namel, nameZ)
character*(*) namel, nameZ

Integer function e;ymlnk (namel, nameZ)
character*(*) namel, nameZ

LINK(3F)

DESCRIPTION
Namel must be the pathname or an existing file. Names is a pathname to be linked to &le
namel. Names must not already exist. The returned value will he O if successful; a system error
code otherwise.

Sumlnl: creates a symbolic link to namtl.

FILES
/usr/lib/libU77.a

SEE ALSO
link(2), symlink(2), perror(3F), unlink(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <sys/param.h>.

26 Last change: 13 June 1983 Sun Release 1.1

0

0

0

LOC(3F) FORTRAN LIBRARY ROUTINES LOC(3F)

0 NAME
loc - return the address or an object

SYNOPSIS
function loc (arg)

DESCRIPTION
The returned value will be the address or arg.

FILES
/usr/lib/libU77.a

0

0
Sun Releaae 1.1 Last change: 13 June 1983 27

PERROR(3F) FORTRAN LIBRARY ROUTINES PERROR(3F)

NAME
perror, gerror, ierrno - get system error messages

SYNOPSIS
subroutine perror (string)
character*(*) atrlng

aubroutlne gerror (atrlng)
character*(*) atrlng

character*(*) function gerrorQ

function lerrnoQ

DESCRIPTION

FILES

Perror will write a message to fortran logical unit O appropriate to the laat detected system error.
String will be written preceding the standard error message.

Gerror returns tbe system error message in character variable string. Gerror may be called either
aa a subroutine or aa a function.
lerrno will return the error number or the laat detected system error. This number is updated
only when an error actually occurs. Most routines and 1/0 statements that might generate such
errors return an error code after the call; that value is a more reliable indicator or what caused
the error condition.

/usr /lib/libU77 .a

SEE ALSO
intro(2), perror(3), "Introduction to the r77 I/0 Library"

BUGS
String in the call to perror can be no longer than 127 characters.

The length or the string returned by gerror is determined by the calling program.

NOTES

28

UNIX system error codes are described in inlro(2). The r77 1/0 error codes and their meanings
are:

100
101
102
103
104
106
106
107
108
109
110
111
112
113
114
115
116
117

"error in format"
"illegal unit number"
"formatted io not allowed"
"unformatted io not allowed"
"direct io not allowed"
"sequential io not allowed"
"can't backspace file"
"off beginning or record"
"can't etat file"
1100 * after repeat count''
"off end of record"
"truncation failed"
"incomprehensible list input"
"out of free space"
"unit not connected"
''read unexpected character''
"blank logical input field"
"'new' Ole exists"

Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

PERROR{3F)

Sun Release 1.1

118
119
120
121
122
123

FORTRAN LIBRARY ROUTINES

"can't find 'old' file"
"unknown system error"
"requires seek ability"
"illegal argument"
"negative repeat count"
"illegal operation for unit"

Last change: 13 June 1983

PERROR(3F)

29

PUTC(3F) FORTRAN LIBRARY ROUTINES PUTC(3F)

NAME
putc, fputc - write a character to a FOR TRAN logical unit

SYNOPSIS
Integer function putc (char)
character char

Integer function fputc (lunlt, char)
character char

DESCRIPTION
Theee runtions write a character to the Ole associated with a FORTRAN logical unit bypaosing
normal FORTRAN I/0. Pule write• to logical unit 6, normally connected to the control terminal
output.

FILES

The value or each function will be zero unless some error occurred; a system error code otherwise.
See perror(3F).

/usr/lib/libU77.a

SEE ALSO
putc(3S), intro(2), perror(3F)

30 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

QS0RT(3F) FORTRAN LIBRARY ROUTINES QS0RT(3F)

NAME
qsort - quick sort

SYNOPSIS
aubroutlne qaort (arrlQ', len, lalae, compar)
external compar
lnteger*:1 compar

DESCRIPTION

FILES

One dimensional arrau contains the elements to be sorted. len is the number or elements in the
array. ieize is the size or an element, typically -

4 for Integer and real
8 for double preclalon or complex
16 for double complex
{length of character object) for character array•

Compar is the name of a user oupplied integer*2 function that will determine the sorting order.
This function will be called with 2 argument• that will be element• of arrau. The function must
return -

negative if arg 1 is conoidered to precede arg 2
zero if arg 1 io equivalent to arg 2
pooitive if arg 1 i• conoidered to follow arg 2

On return, the elements of arrau will be oorted.

/usr/lib/libU77.a

SEE ALSO
qoort(3)

Sun Release 1.1 Last change: 13 June 1983 31

RANGE(3F) FORTRAN LIBRARY ROUTINES RANGE(3F)

NAME
llmin, llma.x, dllmin, dllma.x, inma.x - return extreme values

SYNOPSIS
function flmlnQ

function flmax()

double preclalon function dflmln()

doubl~ preclalon function dflmax()

function lnmax()
DESCRIPTION

FILES

32

Functions ftmin and ftmaz return the mtnunum and maximum positive lloating point values
respectively. Functions dftmin and dftma:,: return the minimum and maximum positive double
precision lloating point values. Function inmoz returns the maximum positive integer value.

These functions can be used by programs that must scale algorithms to the numerical range or the
processor.
The values returned by ftmin and dftmin are the smallest normalized IEEE format lloating point
values. The values returned by ftmoz and dftmaz are the largest llnite IEEE format lloating point
values.

The approximate values of these functions for the Sun Workstation are:

flmln 1.175494e-38

flmax 3.402823e+ 38

dflmln 2.2250738590e-308

dflmax
1. 7976931349e+ 308

lnmax 2147483647

/usr /lib/libF77.a

Last change: 16 February 1984 Sun Release 1.1

0

0

0

0

0

0

RENAME(3F) FORTRAN LIBRARY ROUTINES

NAME
rename - rename a file

SYNOPSIS
Integer function rename (from, to)
character*(*) from, to

DESCRIPTION

RENAME(3F)

From must be the pathname of an existing ftle. To will become the new pathname for the ftle. If
lo exists, then both from and lo must be the same type of ftle, and must reside on the same
ftlesystem. If lo exists, it will be removed ftrst.

The retumed value will be O if successful; a system error code otherwise.

FILES
/usr/lib/llbU77 .a

SEE ALSO
rename(2), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN aa deftned in <sys/param.h>.

Sun Releaae 1.1 Last change: 13 June 1983 33

SIGNAL(3F) FORTRAN LIBRARY ROUTINES SIGNAL(3F)

NAME
signal - change the action for a signal

SYNOPSIS
lntegl!l' function algnal{algnum, proc, flag)
lntegl!l' algnum, flag
external proc

DESCRIPTION

FILES

When a proceH incurs a signal (see ,ignal(3)) the default action is usually to clean up and abort.
The user may choose to write an alternative signal handling routine. A call to lignal is the way
this alternate action is specifted to the system.

Signum is the signal number (see ,ignal(3)). Ir flag is negative, then proc must be the name of the
user signal handling routine. Ir flag is zero or positive, then proc is ignored and the value of flag
is passed to the system as the signal action deftnition. In particular, this is how previously saved
signal actions can be restored. Two possible values for flag have speciftc meanings: 0 means "use
the default action" (See NOTES below), 1 means "ignore this signal".

A positive returned value is the previous action deftnition. A value greater than 1 is the address
of a routine that was to have been called on occurrence of the given signal. The returned value
can be used in subsequent calla to lignal in order to restore a previous action deftnition. A nega­
tive returned value is the negation of a system error code. (See perror(3F))

/uar /lib/libU77 .a

SEE ALSO
kill(l), signal(3), ki11(3F)

NOTES

34

t17 arranges to trap certain signals when a process is started. The only way to restore the
default t17 action is to save the returned value from the Drat call to ,ignal.

Ir the user signal handler is called, it will be passed the signal number as an integer argument.

Last change: 26 August 1983 Sun Release 1.1

0

0

0

0

0

10

SLEEP(3F) FORTRAN LIBRARY ROUTINES SLEEP(3F)

NAME
sleep - suspend execution for an interval

SYNOPSIS
subroutine aleep (ltlme)

DESCRIPTION
Sleep causes the calling process to be suspended for ilime seconds. The actual time can be up to 1
second lesa than ilime due to granularity in system timekeeping.

FILES
/usr/lib/libU77.a

SEE ALSO
sleep(3)

Sun ReleaaQ 1.1 Last change: 13 June 1983 35

SYSTEM(3F) FORTRAN LIBRARY ROUTINES SYSTEM(3F)

NAME
system - execute a UNIX command

SYNOPSIS
Integer function 1y1tem (1trlng)
character•(•) 1trlng

DESCRIPTION

FILES

S11slom causes siring to be given to your shell as input as it the string had been typed as a com­
mand. It environment variable SHELL is found, its value will be used as the command inter­
preter (shell); otherwise •h(l) is used.

The current process waits until the command terminates. The returned value will be the exit
status ot the shell. See wai1(2) tor an explanation ot thia value.

/usr/lib/libU77.a

SEE ALSO
execve(2), wait(2), system(3)

BUGS
Siring can not be longer than NCARGS-60 characters, as defined in <sys/param.h>.

36 Last change: 13 June 1983 Sun Release 1.1

0

0

I
I

O!

0

0

0

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

NAME
topen, tclose, tread, twrite, trewin, tskipf, tstate - m tape 1/0

SYNOPSIS
Integer function topen (tlu, devnam, label)
Integer tlu
character•(•) devnam
loslcal label

Integer function tcloae (tlu)
lnteser tlu

lnteser function tread (tlu, buffer)
Integer tlu
character•(•) buffer

Integer function twrlte (tlu, buffer)
Integer tlu
character•(•) buffer

Integer function trewln (tlu)
Integer tlu

lnteser function taklpf (tlu, ntlles, nrecs)
lnteser tlu, ntlles, nrecs

lnteser function tatate (tlu, tlleno, recno, enf, eoff, eotf, tear)
lnteser tlu, tlleno, recno, tear
loslcal enf, eoff, eotf

DESORIPTION
These functions provide a simple interface between rn and magnetic tape devices. A "tape logi­
cal unit", llu, is "topen"ed in much the same way as a normal rn logical unit is "open"ed. All
other operation, are performed via the llu. The llu has no relationship at all to any normal 177
logical unit.

Topen associates a device name with a llu. Tiu must be in the range O to 3. The logical argu­
ment label should indicate whether the tape includes a tape label. This is used by lrewin below.
Topen does not move the tape. The normal returned value is 0. If the value of the function is
negative, an error has occured. See perror(3f) for details.

Tclo,e closes the tape device channel and removes its association with tlu. The normal returned
value is 0. A negative value indicates an error.

Tread reads the next physical record from tape to buffer. Buffer must be of type character.
The size of buffer should be large enough to hold the largest physical record to be read. The
actual number of bytes read will be returned as the value of the function. If the value is 0, the
end-of-ftle has been detected. A negative value indicates an error.

Twrih writes a p~ysical record .to tape from buffer. The physical record length will be the size of
buffer. Buffer must be of type character. The number of bytes written will be returned. A
value of O or negative indicates an error.

Trewin rewinds the tape associated with 1/u to the beginning of the first data file. If the tape is a
labelled tape (see lopen above) then the label is skipped over after rewinding. The normal
returned value is 0. A negative value indicates an error.

Sun Release 1.1 Last change: 13 June 1983 37

TOPEN(3F) FORTRAN LIBRARY ROUTINES TOPEN(3F)

Tskip/ allows the user to skip over files and/or records. First, nfile• end-of-file marks are skipped. C)
It the current file is at EOF, this counts as 1 file to skip. (Note: This is the way to reset the EOF
status for a 1/u.) Next, nrecs physical records are skipped over. The normal returned value is 0.

FILES

A negative value indicates an error.

Finally, tstate allows the user to determine the logical state of the tape I/0 channel and to see
the tape drive control status register. The values of fileno and recno will be returned and indicate
the current file and record number. The logical values err/, eoJ!, and eol/ indicate an error has
occurred, the current file is at EOF, or the tape has reached logical end-of-tape. End-of-tape
(EOT) is indicated by an empty file, often referred to as a double EOF mark. It is not allowed to
read past EOT although it is allowed to write. The value of lcsr will reftect the tape drive con­
trol status register. See lm(4S) for details.

/uor/lib/libU77.a

SEE ALSO
tm(4S), perror(3f)

38 Last change: 13 June 1983 Sun Release 1.1

C

0

0

0

0

TRPFPE(3F) FORTRAN LIBRARY ROUTINES TRPFPE(3F)

NAME
trpfpe, fpeent - trap and repair floating point faults

SYNOPSIS
subroutine trpfpe (numeag, rtnval)
double preclalon rtnval

Integer function fpecnt 0

common /fpeflt/ fperr
logical fperr

DESCRIPTION

FILES

NOTE, Thia routine applies onb' to Vax computel'I, It is a null routine on the PDPU.

Trp/pe sets up a signal handler to trap arithmetic exceptions. Ir the exception is due to a floating
point arithmetic fault, the result or the operation is replaced with the rtnval specifted. Rtnval
must be a double precision value. For example, "OdO" or "dflmax()".

The ftrst num••I occurrences or a Boating point arithmetic error will cause a message to be writ­
ten to the standard error ftle. Any exception that can't be repaired will result in the default
action, typically an abort with core image.

Fpecnl returns the number or faults since the last call to lrp/pe.

The logical value in the common block labelled /pcfU will be set to ,true, each time a fault
occurs.

/usr/lib/libF77.a

SEE ALSO

BUGS

aignal(3f), range(3f)

This routine works only for fault•, not trap,. This is primarily due to the Vax architecture.

Ir the operation involves changing the stack pointer, it can't be repaired. This seldom should be a
problem with them compileribut such an operation might be produced by the optomizer.

The POLY and EMOD opcodes are not dealt with.

Sun Release 1.1 Last change: 13 June 1983 39

TTYNAM(3F) FORTRAN LIBRARY ROUTINES TTYNAM(3F)

NAME
ttynam, ioatty - find ilame or a terminal port

SYNOPSIS
character•(•) function ttynam (!unit)

logical function laatty (I unit)

DESCRIPTION

FILES

Ttunom returns a blank padded path name or the terminal device associated with logical unit
/unit.

/Boll11 returns .true. it /unit is associated with a terminal device, .false. otherwise.

/dev/•
/uor /lib/libU77.a

DIAGNOSTICS

40

Tt11nom retumo an empty string (all blanks) it /unit is not associated with a terminal device in
directory '/dev'.

Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

0

0

UNLINK(3F) FORTRAN LIBRARY ROUTINES

NAME
unlink - remove a directory entry

SYNOPSIS
Integer function unlink (name)
character*(*) name

DESCRIPTION

UNLINK(3F)

Unlinl: causes the directory entry •pecifled by pathname name to be removed. U thi• was the last
link to the file, the contents of the file are lost. The returned value will be zero if successful; a
ayatem error code otherwise.

FILES
/uar /lib/libU77.a

SEE ALSO
unlink(2), link(3F), perror(3F)

BUGS
Pathnames can be no longer than MAXPATHLEN as defined in <•Y•/param.h>.

Sun Release 1.1 Last change: 13 June 1983 41

WAIT(3F) FORTRAN LIBRARY ROUTINES WAIT(3F)

NAME
wait - wait for a proceS11 to terminate

SYNOPSIS
Integer function wait (atatu1)
Integer 1tatua

DESCRIPTION

FILES

Wail causes its caller to be suspended until a signal is received or one of its child processes ter­
minates. Ir any child bas terminated since the last wail, return is immediate; if there are no cbil,.
dren, return is immediate with an error code.

Ir the returned value is positive, it is the process ID or the child and slalua is its termination
status (see wail(2)). Ir the returned value is negative, it is the negation or a system error code.

/usr /lib/libU77.a

SEE ALSO
wait(2), signal(3F), ki11(3F), perror{3F)

42 Last change: 13 June 1983 Sun Release 1.1

0

0

0

0

RATFOR
A Preprocessor for a Rational Fortran

0

0

0

0

0
Table of Contents

1. Introduction To Ratfor .. 2
1.1. Using the Ratfor Translator.. 2

2. Language Description .. 3
2.1. Design.. 3
2.2. Statement Grouping ... 3
2.3. The 'else' Clause ... 4
2.4. Nested ifs ... 5
2.5. if-else ambiguity.. 6
2.6. The 'switch' Statement .. 7
2.7. The 'do' Statement ... 8
2.8. 'break' and 'next' ... 9
2.9. The 'while' Statement... 9
2.10. The 'for' Statement .. 11

0
2.11. The 'repeat-until' statement... 12
2.12. More on break and next.. 12
2.13. 'return' Statement... 12
2.14. Cosmetics.. 13
2.15. Free-form Input .. 14
2.16. Translation Services ... 14
2.17. 'define' Statement ... 15
2.18. 'include' Statement... 15
2.19. Pitfalls, Botches, Blemishes and other Failings... 16

3. Implementation ... 16

4. Experience .. 18
4.1. Good Things .. 18
4.2. Bad Things... 18

&. Conclusions .. 19

A. Acknowledgements ... 19

B. Bibliography ... 20

0
-i-

0

0

I,

I
01

0

0

0

Ratfor - A Preprocessor for a Rational FORTRAN

Although FORTRAN is not a pleasant language to use, it does have the advantages of universal­
ity and (usually) relative efficiency. The Ratfor language attempts to conceal the main
deficiencies of FORTRAN while retaining its desirable qualities, by providing decent control low
statements:
,tatement grouping

using { and } in the style of C.

Jeci,ion-mding
via if-elee and awlich statements.

looping con,truct,
via while, for, do, and repeat-until statements.

controUeJ esit, /ron loop,
via break and next statements.

and some 'syntactic sugar':

/ree form input
multiple statements/line, automatic continuation

wno6truaive comment,
signalled by a f sign anywhere on the line.

tramlation
of >, >=-, etc., into .GT., .GE., etc.

return (expr-lon)
•tatement for function•

,umbolic parameter,
via the define statement.

,ource file inclu,ion
via the include statement.

Ratfor is implemented as a preprocessor which translates this language into FORTRAN.

Once the control low and cosmetic deficiencies of FORTRAN are hidden, the resulting language
is remarkably pleasant to use. Rat/or programs are markedly easier to write, and to read, and
thus easier to debug, maintain and modify than their FORTRAN equivalents.
It is readily possible to write Rst/or programs which are portable to other environments. Ratfor
is written in itself in this way, so it is also portable; versions of Ratfor are now running on at
least two dozen different types of computers at over five hundred locations.
This paper discusses design criteria for a FORTRAN preprocessor, the Ratfor language and its
implementation, and user experience.

Thia paper ii a nviaod and expanded venion of one published in Soft•••• - Praclice ad E~p•ri-

Revision C of 7 January 1984 1

Ratfor Manual Fortran and Pascal for the Sun Workstation

1. Introduction To Ratfor

Most programmers will agree that FORTRAN is an unpleasant language to program in, yet there
are many occasions when they are forced to use it. For example, FORTRAN is often the only
language thoroughly supported on the local computer. Indeed, it is the closest thing to a
universal programming language currently available: with care it is possible to write large, truly
portable FORTRAN programs[l). Finally, FORTRAN is often the most 'efficient' language avail­
able, particularly for programs requiring much computation.
But FORTRAN i, unpleasant. Perhaps the worst deficiency is in the control flow statements -
conditional branches and loops - which express the logic of the program. The conditional
statements in FORTRAN are primitive. The Arithmetic D' forces the user into at least two state­
ment numbers and two (implied) GOTO's; it leads to unintelligible code, and is eschewed by good
programmers. The Logical IF is better, in that the test part can be stated clearly, but hope­
lessly restrictive because the statement that follows the IF can only be one FORTRAN statement
(with some further restrictions!). And of course there can be no ELSE part to a FORTRAN IF:
there is no way to specify an alternative action if the D' is not satisfied.

The FORTRAN DO restricts the user to going forward in an arithmetic progression. It is fine for
'1 to N in steps of 1 (or 2 or ...)', but there is no direct way to go backwards, or even (in ANSI
FORTRAN[2)) to go from 1 to N-1. And of course the DO is useless if one's problem doesn't map
into an arithmetic progression.
The result of these failings is that FORTRAN programs must be written with numerous labels
and branches. The resulting code is particularly difficult to read and understand, and thus hard
to debug and modify.
When one is faced with an unpleasant language, a useful technique is to define a 11ew language
that overcomes the deficiencies, and to translate it into the unpleasant one with a 'preprocessor.
This is the approach taken with Rat/or. (The preprocessor idea is of course not new, and
preprocessors for FORTRAN are especially popular today. A recent listing [3) of preprocessors
shows more than 50, of which at least half a dozen are widely available.)

1.1. Using the Ratfor Translator

Rat/or is the basic translator; it takes either a list of file names or the standard input and writes
FORTRAN on the standard output. Options include -Ix, which uses x as a continuation charac•
ter in column 6 (UNIX uses 6r. in column 1), and -0, which copies Ratfor comments into the
generated FORTRAN.

Re provides an interface to the Ratfor command which is much the same as cc. Thus

tutorial% re (option, J file ...

compiles the files specified by file,. Files with names ending in .r are Ratfor source; other files
are assumed to be for the loader. The flags -0 and -8x described above are recognized, as are:

-c compile only; don't load

-f save intermediate FORTRAN ./ files

-r Ratfor only; implies -c and -f

ence, October 11)75.

2 Revision C of 7 January 1984

0

0

0

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

-U flag undeclared variables (not universally available) Other flags are passed on to the loader.

2. Language Description

2.1. Design

Ratfor attempts to retain the merits of FORTRAN (universality, portability, efficiency) while hid­
ing the worst FORTRAN inadequacies. The language i, FORTRAN except for two aspects. First,
since control flow is central to any program, regardless of the specific application, the primary
task of Ratfor is to conceal this part of FORTRAN from the user, by providing decent control
flow structures. These structures are sufficient and comfortable for structured programming in
the narrow sense of programming without GOTO's. Second, since the preprocessor must examine
an entire program to translate the control structure, it is possible at the same time to clean up
many of the 'cosmetic' deficiencies of FORTRAN, and thus provide a language which is easier and
more pleasant to read and write.

Beyond these two aspects - control flow and cosmetics - Ratfor does nothing about the host
of other weaknesses of FORTRAN. Although it would be straightforward to extend it to provide
character strings, for example, they are not needed by everyone, and of course the preprocessor
would be harder to implement. Throughout, the design principle which has determined what
should be in Rat/or and what should not has been Rat/or tloe,n 't knou, an11 FOR TRAN. Any
language feature which would require that Ratfor really understand FORTRAN has been omitted.
We will return to this point in the section on implementation.
Even within the confines of control flow and cosmetics, we have attempted to be selective in
what features to provide. The intent has been to provide a small set of the most useful con­
structs, rather than to throw in everything that has ever been thought useful by someone.

The rest or this section contains an informal description of the Rat/or language. The control
flow aspects will be quite familiar to readers used to languages like Algol, PL/I, Pascal, etc., and
the cosmetic changes are equally straightforward. We shall concentrate on showing what the
language looks like.

2.2. Statement Grouping

FORTRAN provides no way to group statements together, short of making them into a subrou­
tine. The standard construction 'if a condition is true, do this group of things,' for example,

if (x > 100)
{ call error(" x > 100"); err = I; return }

cannot be written directly in FORTRAN. Instead a programmer is forced to translate this rela­
tively clear thought into murky FORTRAN, by stating the negative condition and branching
around the group of statements:

Revision C of 7 January 1984 3

Ratfor Manual

if (x .le. 100) goto 10

10

call error(5hx > 100)
err= 1
return

Fortran and Pascal (or the Sun Workstation

When the program doesn't work, or when it must be modified, this must be translated back
into a clearer form before one can be sure what it does.

Ratfor eliminates this error-prone and confusing back-and-forth translation; the first Corm ia the
way the computation is written in Rat/or. A group or statements can be treated as a unit by
enclosing them in the braces { and }. This is true throughout the language: wherever a single
Rat/or statement can be used, there can be several enclosed in braces. (Braces seem clearer and
less obtrusive than begin and end or do and end, and of course do and end already have
FORTRAN meanings.)

Cosmetics contribute to the readability of code, and thus to its understandability. The charac­
ter'>' is clearer than '.GT.', so Ratfor translates it appropriately, along with several other simi­
lar shorthands. Although many FORTRAN compilers permit character strings in quotes (like
"""x> 100"""), quotes are not allowed in ANSI FORTRAN, so Rat/or converts it into the right
number of H 'a: computers count better than people do.

Ratfor is a free-form language: statements may appear anywhere on a line, and several may
appear on one line if they are separated by semicolons. The example above could also be writ­
ten as

if (x > 100) {

}

call error("x > 100")
err= 1
return

In this case, no semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

Of course, if the statement that follows the if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the statement is clearly not finished on the first line.
In general Rat/or continues lines when it seems obvious that they are not yet done. (The con­
tinuation convention is discussed in detail later.)

Although a free-form language permits wide latitude in formatting styles, it is wise to pick one
that is readable, then stick to it. In particular, proper indentation is vital, to make the logical
structure of the program obvious to the reader.

2.3. The 'else' Clause

Rat for provides an "else" statement to handle the construction 'if a condition is true, do this

0

0

thing, otherwiu do that thing.' 0

4 Revision C of 7 January 1984

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

if (a<= b)
{ sw = O; write{6, 1) a, b }

else
{ sw = l; write{6, 1) b, a }

This writes out the smaller of a and b, then the larger, and sets aw appropriately.

The FORTRAN equivalent of this code is circuitous indeed:

if (a .gt. b) goto 10
SW =0
write(6, 1) a, b
goto 20

10 SW= 1
write(6, 1) b, a

20

This is a mechanical translation; shorter forms exist, as they do for many similar situations.
But all translations suffer from the same problem: since they are translations, they are less clear
and understandable than code that is not a translation. To understand the FORTRAN version,
one must scan the entire program to make sure that no other statement branches to statements
10 or 20 before one knows that indeed this is an lf-elae construction. With the Rot/or version,
there is no question about how one gets to the parts of the statement. The lf-elae is a single
unit, which can be read, understood, and ignored if not relevant. The program says what it
means.
As before, if the statement following an If or an elae is a single statement, no braces are needed:

if (a<= b)
sw=O

else
SW= 1

The syntax of the if statement is

if (legal FORTRAN condition)
Ratfor atatcmcnt

else
Ratfor ,tatement

where the else part is optional. The legal FORTRAN condition i, anything that can legally go
into a FORTRAN Logical IF. Ratfor does not check this clause, since it does not know enough
FORTRAN to know what is permitted. The Ratfor ,tatcmcnt is any Ratfor or FORTRAN state­
ment, or any collection of them in braces.

2.4. Nested it's

Since the statement that follows an If or an elae can be any Rat/or statement, this leads
immediately to the possibility of another If or elae. As a useful example, consider this problem:
the variable f is to be set to -1 if x is lesa than zero, to + 1 if x is greater than 100, and to 0
otherwise. Then in Rat/or, we write

Revision C of 7 January 1984 5

Ratfor Manual

if(x < 0)
f =-1

else if (x > 100)
f = +l

else
f=O

Fortran and Pascal for the Sun Workstation

Here the statement after the first eJae is another If-else. Logically it is just a single statement,
although it is rather complicated.
This code says what it means. AJJy version written in straight FORTRAN will necessarily be
indirect because FORTRAN does not let you say what you mean. AJJd as always, clever shortcuts
may turn out to be too clever to understand a year from now.

Following an else with an if is one way to write a multi-way branch in Ratfor. In general the
structure

if(...)

else if(...)

else if(...)

else

0

provides a way to specify the choice of exactly one of several alternatives. (Ratfor also provides
a switch statement which does the same job in certain special cases; in more general situations, 0
we have to make do with spare parts.) The tests are laid out in sequence, and each one is fol-
lowed by the code associated with it. Read down the list of decisions until one is found that is
satisfied. The code associated with this condition is executed, and then the entire structure is
finished. The trailing else part handles the 'default' case, where none of the other conditions
apply. If there is no default action, this final else part is omitted:

if (x < 0)
x=O

else if (x > 100)
X = 100

2.5. if-else ambiguity

There is one thing to notice about complicated structures involving nested It's and else '•• Con­
sider

· if (x > 0)
if(y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are two irs and only one else. Which lf does the else go with?

6 Revision C of 7 January 1984

0

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

This is a genuine ambiguity in Ratfor, as it is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by saying that in such cases the else goes with
the closest previous else 'ed un• if. Thus in this case, the else goes with the inner if, as we
have indicated by the indentation.
It is a wise practice to resolve such cases by explicit braces, just to make your intent clear. In
the case above, we would write

if(x > 0) {
if(y > 0)

}

write(6, 1) x, y
else

write(6, 2) y

which does not change the meaning, but leaves no doubt in the reader's mind. If we want the
other association, we mud lllf'ile

ir(x > 0) {
if(y > 0)

write(6, 1) x, y
}
else

write(6, 2) y

2.8. The 'switch' Statement

The switch statement provides a clean way to express multi-way branches which branch on the
value of some integer-valued expression. The syntax is

•witch (ezpre11ion) {

}

case ezpr1:
,tatement,

case ezpr e, ezpr !J 1

,tatement, ...
default:

atatement,

Each cue is followed by a list of comma-separated integer expressions. The e:ipre11ion inside
•witch is compared against the case expressions e:ipr1, e:ip,e, and so on in tum until one
matches, at which time the statements following that cue are exeeuted. If no cases match
ezpru,ion, and there is a default seetion, the statements with it are done; if there is no
default, nothing is done. In all situations, as soon as some block of statements is executed, the
entire switch is exited immediately. (Readers familiar with C(4] should beware that this
behavior is not the same as the C •witch .)

Revision C of 7 January 1984 7

Ratfor Manual Fortran and Pascal for the Sun Workstation

2.7. The 'do' Statement

The do statement in Ratfor is quite similar to the DO statement in FORTRAN, except that it Q,

uses no statement number. The statement number, after all, serves only to mark the end of the
DO, and this can be done just as easily with braces. Thus

do i = 1, n {

}

is the same as

. x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

do 10 i = 1, n
x(i) = 0.0
y(i) = 0.0
z(i) = 0.0

10 continue

The syntax is:

do legal-FORTRAN-DO-tezt
Ratfor ,tatement

The part that follows the keyword do has to be something that can legally go into a FORTRAN
DO statement. Thus if a local version of FORTRAN allows DO limits to be expressions (which is
not currently permitted in ANSI FORTRAN), they can be used in a Ratfor do.
The Ratfor atatement part will often be enclosed in braces, but as with the if, a single statement a
need not have braces around it. This code sets an array to zero: ·

do i = 1, n
x(i) = 0.0

Slightly more complicated,

do i = 1, n
do j = 1, n

m(i, j) = 0

sets the entire array m to zero, and

do i = 1, n
doj = 1, n

ir(i < j)
m(i, j) = -1

else if (i == j)
m(i, j) = 0

else
m(i, j) = + 1

sets the upper triangle of m to -1, the diagonal to zero, and the lower triangle to + 1. (The
operator == is 'equals', that is, '.EQ.'.) In each case, the statement that follows the do is logi­
cally a ,ingle statement, even though complicated, and thus needs no braces.

8 Revision C of 7 January 1984

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

2.8. 'break' and 'next'

Ratfor provides a statement for leaving a loop early, and one for beginning the next iteration.
"break" causes an immediate exit from the do; in effect it is a branch to the statement after
the do. next is a branch to the bottom of the loop, so it causes the next iteration to be done.
For example, this code skips over negative values in an array:

do i = 1, n {

}

if (x(i) < 0.0)
next

proceu poaitive element

break and next also work in the other Rat/or looping constructions that we will talk about in
the next few sections.

break and next can be followed by an integer to indicate breaking or iterating that level of
enclosing loop; thus

break 2

exits from two levels of enclosing loops, and break 1 is equivalent to break. next ll iterates
the second enclosing loop. (Realistically, multi-level break's and next's are not likely to be
much used because they lead to code that is hard to undentand and somewhat risky to change.)

0 2.9. The 'while' Statement

0

One of the problems with the FORTRAN DO statement is that it generally insists upon being
done once, regardless of its limits. If a loop begins

DO I= 2, 1

this will typically be done once with I set to 2, even though common sense would suggest that
perhaps it shouldn't be. Of coune a Ratfor do can easily be preceded by a test

if (j <= k)
do i = j, k {

}

but this has to be a conscious act, and is often overlooked by programmen.
A more serious problem with the DO statement is that it encourages that a program be written
in terms of an arithmetic progression with small positive steps, even though that may not be
the best way to write it. If code has to be contorted to &t the requirements imposed by the
FORTRAN DO, it is that much harder to write and undentand.
To overcome these difficulties, Ratfor provides a while statement, which is simply a loop:
'while some condition is true, repeat this group of statements'. It has no preconceptions about
why one is looping. For example, this routine to compute sin(x) by the Maclaurin series com­
bines two termination criteria.

Revision C of 7 January 1984 9

Ratfor Manual

real function sin(x, e)
returns sin(x) to accuracy e, by
sin(x) = x - x••3/31 + x .. 5/51- ...

sin= x
term= x

i == 3
while (abs(term)>e & i<lOO) {

}

term = -term • x••2 / float(i*(i-1))
sin = sin + term
i = i + 2

return
end

Fortran and Pascal for the Sun Workstation

Notice that if the routine is entered with term already smaller than e, the loop will be done
zero time,, that is, no attempt will be made to compute x••a and thus a potential underflow is
avoided. Since the test is made at the top of a whlle loop instead of the bottom, a special ca.,e
disappears - the code works at one of its boundaries. (The test 1<100 is the other boundary
- making sure the routine stops after some maximum number of iterations.)

As an aside, a sharp character '#' in a line marks the beginning of a comment; the rest of the
line is comment. Comments and code can co-exist on the. same line - one can make marginal

0

remarks, which is not possible with FORTRAN's 'C in column l' convention. Blank lines are also
permitted anywhere (they are not in FORTRAN); they should be used to emphasize the natural 0
divisions of a program.

The syntax of the w bile statement is

w bile (legal FOR TRAN condition)
Rat/or atatement

As with the if, legal FOR TRAN condition is something that can go into a FORTRAN Logical IF,
and Ratfor ,tatement is a single statement, which may be multiple statements in braces.

The while encourages a style of coding not normally practiced by FORTRAN programmers. For
example, suppose nextch is a function which returns the next input character both as a func­
tion value and in its argument. Then a loop to find the first non-blank character is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which is necessary here to mark the end of the whlle ;
if it were not present, the while would control the next statement. When the loop is broken,
ich contains the first non-blank. Of course the same code can be written in FORTRAN as
100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few compilers) believe this line is illegal. The language
at one's disposal strongly influences how one thinks about a problem.

10 Revision C of 7 January 1984

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

2.10. The 'for' Statement

The for statement is another Ratfor loop, which attempts to carry the separation of loop-body
from reason-for-looping a step further than the while. A for statement allows explicit initializa­
tion and increment steps as part of the statement. For example, a DO loop is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to

i=l
while (i <= n) {

i = i + 1
}

The initialization and increment of i have been moved into the for statement, making it easier
to see at a glance what controls the loop.
The for and while versions have the advantage that they will be done zero times if n is less
than 1; this is not true of the do.
The loop of the sine routine in the previous section can be re-written with a for as
for (i=3; abs(term) > e & i < 100; i=i+ 2) {

}

term= -term• x**2 / Boat(i*(i-1))
sin = sin + term

0 The syntax of the for statement is

0

for (init ; condition ; increment)
Ratfor atatement

init is any single FORTRAN statement, which gets done once before the loop begins. increment is
any single FORTRAN statement, which gets done at the end of each pass through the loop,
before the test. condition is again anything that is legal in a logical IF. Any of init, condition,
and increment may be omitted, although the semicolons mu,t always be present. A non•
existent condition is treated as always true, so "for(;;)" is an indefinite repeat. (But see the
repeat-until in the next section.)
The for statement is particularly useful for backward loops, chaining along lists, loops that
might be done zero times, and similar things which are hard to express with a DO statement,
and obscure to write out with JF's and GOTO's. For example, here is a backwards DO loop to
find the last non-blank character on a card:

for (i = 80; i > O; i = i • 1)
if (card(i) != blank)

break

('!-' is the same as '.NE.'). The code scans the columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken. break and and ned work in for's and whtle's just as
in do 's. If i reaches zero, the card is all blank.

This code is rather nasty to write with a regular FORTRAN DO, since the loop must go forward,
and we must explicitly set up proper conditions when we fall out or the loop. Forgetting this is
a common error. Thus:

Revision C of 7 January 1984 11

Ratfor Manual

DO IO J = 1, 80
I= 81 - J
IF (CARD(I) .NE. BLANK) GO TO 11

IO CONTINUE
l=O

11

Fortran and Pa.seal for the Sun Workstation

The version that uses the tor handles the termination condition properly for free; I i, zero when
we Call out of the tor loop.
The increment in a for need not be an arithmetic progression; the following program walks
along a list (stored in an integer array ptr) until a zero pointer is found, adding up elements
from a parallel array of values:

sum= 0.0
for (i = first; i > O; i = ptr{i))

sum = sum + value(i)

Notice that the code works correctly if the list is empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential boundary error.

2.11. The 'repeat-until' statement

In spite of the dire warnings, there are times when one really needs a loop that tests at the bot­
tom after one pass through. This service is provided by the repeat-untll:

repeat
Ratfor ,tatement

until (legal FOR TRAN condition)

The Ratfor ,tatement part is done once, then the condition is evaluated. If it is true, the loop is
exited; if it is false, another pass is made.
The until part is optional, so a bare repeat is the cleanest way to specify an infinite loop. or
course such a loop must ultimately be broken by some transfer or control such as atop, return,
or break, or an implicit stop such as running out of input with a READ statement.

As a matter of observed fact(8], the repeat-until statement is muc/1 less used than the other
looping constructions; in particular, it is typically outnumbered ten to one by tor and while.
Be cautious about using it, for loops that test only at the bottom often don't handle null cases
well.

2.12. More on break and next

break exits immediately from do, while, tor, and repeat-until. next goes to the test part or
do, while and repeat-until, and to the increment step or a tor.

2.13. 'return' Statement

The standard FORTRAN mechanism for returning a value from a function uses the name or the
function as a variable which can be assigned to; the last value stored in it is the function value
upon return. For example, here is a routine equal which returns 1 if two arrays are identical,

12 Revision C or 7 January 1984

0

0

0

0

0

0

Fortran and Pascal for the Sun Workstation

and zero if they dilfer. The array ends are marked by the special value -1.

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(lOO), str2(100)
integer i

for (i = 1; strl(i) ==- str2(i); i - i + 1)
if (strl(i) == -1) {

equal== 1
return

}
equal= 0
return
end

In many languages (e.g., PL/I) one instead says

return (ezpreHion)

Ratfor Manual

to return a value from a function. Since this is often clearer, Ratfor provides such a return
statement - in a function F, return (expreuion) is equivalent to

{ F == expression; return }

For example, here is equal again:

equal - compare strl to str2;
return 1 if equal, 0 if not

integer function equal(strl, str2)
integer strl(lOO), str2(100)
integer i

for (i = 1; strl(i) ==== str2(i); i ... i + 1)
if (strl(i) === -1)

return(l)
retum(O)
end

Ir there is no parenthesized expression after return, a normal RETURN is made. (Another ver­
sion of equal is presented shortly.)

2.14. Cosmetics

As we said above, the visual appearance of a language has a substantial elfect on how easy it is
to read and understand programs. Accordingly, Ratfor provides a number or cosmetic facilities
which may be used to make programs more readable.

Revision C of 7 January 1984 13

Ratfor Manual Fortran and Pascal for the Sun Workstation

2.15. Free-form Input

Statements can be placed anywhere on a line; long statements are continued automatically, as o
are long conditions in if, while, for, and until. Blank lines are ignored. Multiple statements ·
may appear on one line, if they are separated by semicolons. No semicolon is needed at the end
of a line, if Rat/or can make some reasonable guess about whether the statement ends there.
Lines ending with any of the characters

= + • & (

are assumed to be continued on the next line. Underscores are discarded wherever they occur;
all others remain as part of the statement.

Any statement that begins with an all-numeric field is assumed to be a FORTRAN label, and
placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write(6, 100)
100 format(Shhello)

2.16. Translation Services

Text enclosed in matching single or double quotes is converted to nB ..• but is otherwise unal­
tered (except for formatting - it may get split across card boundaries during the reformatting
process). Within quoted strings, the backslash '\' serves as an escape character: the next char- o
acter is taken literally. This provides a way to get quotes (and of course the backslash itself) .
into quoted strings:

. \ \ \'.
is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character '%' is left absolutely unaltered except for stripping oft'
the '%' and moving the line one position to the left. This is useful for inserting control cards,
and other things that should not be transmogrified (like an existing FORTRAN program). Use
'%' only for ordinary statements, not for the condition parts of If, while, etc., or the output
may come out in an unexpected place.

The following character translations are made, except within single or double quotes or on a line
beginning with a'%'.

center box tab (/) ; c c c c c I c I .

character/translation/character/translation

==/.eq./!=/.ne. > /.gt./>=/ .ge. </.It./<=/ .le. &/.and.Jl/.or. 1/.not.r /.not.

In addition, the following translations are provided for input devices with restricted character
sets.

center box tab (/) ; c c c c c I c I .

character/ translation/ character /translation

14 Revision C of 7 January 1984

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

V {/)/} S(/ {IS)/}

2.17. 'define' Statement

Any string of alphanumeric characters can be.defined as a name; thereafter, whenever that
name occurs in the input (delimited by non-alphanumerics) it is replaced by the rest or the
definition line. (Comments and trailing white spaces are stripped off). A defined name can be
arbitrarily long, and must begin with a letter.
define is typically used to create symbolic parameters:

define
define

ROWS
COLS

100
50

dimension a(ROWS), b(ROWS, COLS)

if (i > ROWS I j > COLS) ...

Alternately, definitions may be written as

define(ROWS, 100)

In this case, the defining text is everything after the comma up to the balancing right
parenthesis; this allows multi-line definitions.
It is generally a wise practice to use symbolic parameters for most constants, to help make clear
the function or what would otherwise be mysterious numbers. As an example, here is the rou­
tine equal again, this time with symbolic constants.

define YES 1
define NO 0
define EOS • l
define ARB 100

equal - compare strl to str2;
return YES if equal, NO if not

integer function equal(strl, str2)
integer strl(ARB), str2(ARB)
integer i

for (i = l; strl(i) == str2(i); i = i + 1)
if (strl(i) == EOS)

return(YES)
return(NO)
end

2.18. 'include' Statement

The statement

include file

inserts the file found on input stream file into the Rat/or input in place or the Include

Revision C of 7 January 1984 15

Ratfor Manual Fortran and Pascal for the Sun Workstation

statement. The standard usage is to place COMMON blocb on a file, and Include that file
whenever a copy is needed:

subroutine x
include commonblocb

end

suroutine y
include commonblocb

end

This ensures that all copies of the COMMON blocks are identical

2.19. Pitfalls, Botches, Blemishes and other Failings

Rat for catches certain syntax errors, such as missing braces, else clauses without an if, and
most errors involving missing parentheses in statements. Beyond that, since Rat/or knows no
FORTRAN, any errors you make will be reported by the FORTRAN compiler, so you will from
time to time have to relate a FORTRAN diagnostic back to the R al/or source.

Keywords are reserved - using if, else, etc., as variable names will typically wreak havoc.
Don't leave spaces in keywords. Don't use the Arithmetic IF.

The FORTRAN nH convention is not recognized anywhere by Ratfor; use quotes instead.

3. Implementation

Ratfor was originally written in C(4) on the UNIX operating system(5). The language is specified
by a context free grammar and the compiler constructed using the YACC compiler-compiler(6).
The Rat/or grammar is simple and straightforward, being essentially

prog stat
prog stat

stat if (...) stat
if (...) stat else stat
while(...) stat
for(... ; ... ; ...) stat
do ... stat
repeat stat
repeat stat until(...)
switch (...) { case ... : prog ...

I return
I break
I next

default: prog }

I digits stat
l{prog}
I anything unrecognizable

The observation that Ratfor knows no FORTRAN follows directly from the rule that says a

16 Revision C of 7 January 1984

0

0

0

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

statement is 'anything unrecognizable'. In fact most of FORTRAN falls into this category, since
any statement that does not begin with one of the keywords is by definition 'unrecognizable.'

Code generation is also simple. If the first thing on a aource line is not a keyword (like if, else,
etc.) the entire statement is simply copied to the output with appropriate character translation
and formatting. (Leading digits are treated as a label.) Keywords cause only slightly more com­
plicated actions. For example, when if is recognized, two consecutive labels L and L+ 1 are
generated and the value of L is stacked. The condition is then isolated, and the code

if (.not. (condition)) goto L

is output. The ,tatement part of the if is then translated. When the end of the statement is
encountered (which may be some distance away and include nested It's, of course), the code

L continue

is generated, unless there is an else clause, in which case the code is

goto L+ 1
L continue

In this latter case, the code

L+ 1 continue

is produced after the ,tatement part of the else. Code generation for the various loops is equally
simple.
One might argue that more care should be taken in code generation. For example, if there is no
trailing else,

if (i > 0) X - a
' should be left alone, not converted into

if (.not. (i .gt. 0)) goto 100
x=a

100 continue

But what are optimizing compilers for, if not to improve code! It is a rare program indeed
where this kind of 'inefficiency' will make even a measurable difference. In the few cases where
it is important, the offending lines can be protected by '%'.
The use of a compiler-compiler is definitely the preferred method of aoftware development. The
language is well-defined, with few syntactic irregularities. Implementation is quite simple; the
original construction took under a week. The language is sufficiently simple, however, that an
ad hoc recognizer can be readily constructed to do the same job if no compiler-compiler is avail­
able.
The C version of Ratfor is used on UNIX. C compilers are not as widely available as FORTRAN,
however, ao there is also a Ratfor written in itself and originally bootstrapped with the C ver­
sion. The Rat/or version was written so as to translate into the portable subset of FORTRAN
described in (1), ao it is portable, having been run essentially without change on at least twelve
distinct machines. The main restrictions of the portable subset are: only one character per .
machine word; subscripts in the form c*tl± c; avoiding expre11sions in places like DO loops; con­
sistency in subroutine argument usage, and in COMMON declarations. Ratfor itself will not gra­
tuitously generate non-standard FORTRAN.

Revision C of 7 January 1984 17

Ratfor Manual Fortran and Pascal for the Sun Workstation

The Ratfor version is about 1500 lines of Rot/or (compared to about 1000 lines of C); this com-
piles into 2500 lines of FORTRAN. This expansion ratio is somewhat higher than average, since

0 the compiled code contains unnecessary occurrences of COMMON declarations. The execution
time of the Rat/or version is dominated by two routines that read and write cards. Clearly
these routines could be replaced by machine coded local versions; unless this is done, the
efficiency of other parts of the translation process is largely irrelevant.

4. Experience

4.1. Good Things

'It's so much better than FORTRAN' is the most common response of users when asked how well
Rat/or meets their needs. Although cynics might consider this to be vacuous, it does seem to be
true that decent control flow and cosmetics converts FORTRAN from a bad language into quite a
reasonable one, assuming that FORTRAN data structures are adequate for the task at hand.
Although there are no quantitative results, users feel that coding in Ratfor is at least twice as
fast as in FORTRAN. More important, debugging and subsequent revision are much faster than
in FOR TRAN. Partly this is simply because the code can be read. The looping statements which
test at the top instead of the bottom seem to eliminate or at least reduce the occurrence of a
wide class of boundary errors. And of course it is easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to reliability.
One interesting and encouraging fact is that programs written in Rot/or tend to be as readable
as programs written in more modem languages like Paseal. Once one is freed from the shackles
of FORTRAN's clerical detail and rigid input format, it is easy to write code that is readable,
even esthetically pleasing. For example, here is a Ratfor implementation of the linear table
search discussed by Knuth (7):

A(m+ I)= x
for (i = I; A(i) != x; i = i + 1)

' if(i > m) {
m = i
B(i) = I

}
else

B(i) = B(i) + I

A large corpus (5400 lines) of Ratfor, including a subset of the Rot/or preprocessor itself, can be
found in (8).

4.2. Bad Things

0

The biggest single problem is that many FORTRAN syntax errors are not detected by Rot/or but
by the local FORTRAN compiler. The compiler then prints a message in terms of the generated
FORTRAN, and in a few cases this may be difficult to relate back to the offending Rot/or line,
especially if the implementation conceals the generated FORTRAN. This problem could be dealt
with by tagging each generated line with some indication of the source line that created it, but 0

18 Revision C of 7 January 1984

0

0

0

Fortran and Pascal for the Sun Workstation Ratfor Manual

this is inherently implementation-dependent, l!O no action has yet been taken. Error message
interpretation is actually not so arduous aa might be thought. Since R et/or generates no vari­
ables, only a simple pattern oflF's and GOTO's, data-related errors like missing DIMENSION state­
ments are easy to find in the FORTRAN. Furthermore, there has been a steady improvement in
Rat/or's ability to catch trivial syntactic errors like unbalanced parentheses and quotes.
There are a number of implementation weaknesses that are a nuisance, especially to new usen.
For example, keywords are reserved. This rarely makes any difference, except for those hardy
souls who want to use an Arithmetic IF. A few standard FORTRAN constructions are not
accepted by Ratfor, and this is perceived aa a problem by users with a large corpus of existing
FORTRAN programs. Protecting every line with a '%' is not really a complete solution, although
it serves as a stop-gap. The best long-term solution is provided by the program Struct (9),
which converts arbitrary FORTRAN programs into Rat/or.
Users who export programs often complain that the generated FORTRAN is 'unreadable' because
it is not tastefully formatted and contains extraneous CONTINUE statements. To some extent
this can be ameliorated (Ratfor now has an option to copy Ratfor comments into the generated
FORTRAN), but it has always seemed that effort is better spent on the input language than on
the output esthetics.
One final problem is partly attributable to suecess - since Ratfor is relatively easy to modify,
there are now several dialects of Ratfor. Fortunately, so far most of the differences are in chlll'­
acter set, or in invisible aspects like code generation.

5. Conclusions

Ratfor demonstrates that with modest effort it is possible to eonvert FORTRAN from a bad
language into quite a good one. A preprocessor is clearly a useful way to extend or ameliorate
the facilities of a base language.
When designing a language, it is important to concentrate on the essential requirement of pro­
viding the user with the best language possible for a given effort. One must avoid throwing in
'features' - things which the user may trivially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems pointless for
Rat/or to prepare a neatly formatted listing of either its input or its output. The user is
presumably capable of the self-discipline required to prepare neat input that reflects his
thoughts. It is much more important that the language provide free-form input so he can for­
mat it neatly. No one should read the output anyway except in the most dire circumstances.

Appendix A. Acknowledgements

C. A. R. Hoare once said that 'One thing (the language designer) should not do is to include
untried ideas of his own.' Ratfor follows this precept very closely - everything in it has been
stolen from someone else. Most of the control flow structures are taken directly from the
language C(4) developed by Dennis Ritchie; the comment and continuation conventions are
adapted from Altran{lO).
I am grateful to Stuart Feldman, whose patient simulation of an innocent user during the early
days of Rat/or led to several design improvements and the eradication of bugs. He also
translated the C parse-tables and YACC parser into FORTRAN for the &rat Ratfor version of Rat­
for.

Revision C of 7 January 1984 19

Ratfor Manual Fortran and Pascal for the Sun Workstation

Appendix B. Bibliography

[l) B. G. Ryder, 'The PFORT Verifier,' Software-Practice (1 Esperience, October 1974.

(2) American National Standard FORTRAN. American National Standards Institute, New York,
rn66.

(3) For-word: FORTRAN Development New,lettu, August 1975.
(4) B. W. Kernighan and D. M. Ritchie, Tie C Programming Lan(IV•ge, Prentic&-Hall, Inc.,

1978.
(5) D. M. Ritchie and K. L. Thompson, 'The UNIX Tim&-sharing System.' CACM, July 1974.

(6) S. C. Johnson, 'YACC - Yet Another Compiler-Compiler.' Bell Laboratories Computing
Science Technical Report *32, 1978.

(7) D. E. Knuth, 'Structured Programming with goto Statements.' Computing Svrve111,
December 1974.

(8) B. W. Kernighan and P. J, Plauger, Software Tool,, Addison-Wesley, 1976.

(9) B. S. Baker, 'Struct - A Program which Structures FORTRAN', Bell Laboratories internal
memorandum, December 1975.

(10) A. D. Hall, 'The Altran System for Rational Function Manipulation - A Survey.' CACM,
August 1971.

20 Revision C of 7 January 1984

0

0

0

0

0

0

Revision: C of 7th January 1984
For: Sun System Release 1.1

Berkeley Pascal User's Manual

for the

Sun Workstation

Sun Microsystems, Inc.,
2550 Garcia Avenue,

Mountain View,
California 94043
(415) 960-1300

Acknowledgements

Material in this Berkele11 Po,cal U,er', Manual was originally produced by William N. Joy,
Susan L. Graham, Charles B. Haley Marshall Kirk McKusick, and Peter B. Kessler of the Com­
puter Science Division, Department of Electrical Engineering and Computer Science, at the
University of California at Berkeley.

The financial support of the first and second authors' work by the National Science Foundation
under grants MCS74-07644-A04, MCS78-07291, and MCS80-05144, and the first author's work
by an IDM Graduate Fellowship are gratefully acknowledged.

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main features of
the present system were implemented by Charles Haley and William Joy during the latter half
of 1976. Earlier versions of this system have been in use since January, 1977.

The system was moved to the VAX-11 by Peter Kessler and Kirk McKusick with the porting of
the interpreter in the spring of 1979, and the implementation of the compiler in the summer of
1980.

The whole system was moved to the Sun Workstation in 1983 by Peter Kessler and Kirk
McKusick.

Copyrights

(C) 1977, 1979, 1980, 1983 by W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B.
Kessler

Copyright© 1982, 1983, 1984 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

- 11 -

0

0

0

0

Revision History

Rev Date Comments

A October 1980 This revision was the Berkeley Pascal User's Manual Version 2.0.

B July 1983 This revision was the Berkeley Pascal User's Manual Version 3.0.
Sun Microsystems updates to this manual removed references to
the CYBER 6000 implementation details.

C 7 January 1984 Minor corrections and updates.

0

0

- lll -

Preface

Berkeley Pascal is designed for interactive instructional use and runs on the Sun Workstation,
the PDP/11 and VAX/11 computers. Interpretive code is produced, providing fast translation at
the expense of slower execution speed. There is also a fully compatible compiler for the Sun
Workstation and for the VAX/11. An execution profiler and Wirth's cross reference program are
also available with the system.

The system supports full Pascal. The language accepted is 'standard' Pascal, and a small
number of extensions. There is an option to suppress the extensions. The extensions include a
separate compilation facility and the ability to link to object modules produced from other
source languages.

The U,er '• Manual gives basic usage examples for the Pascal components pi, pz, pix, pc, and
pzp. Errors commonly encountered in these programs are discussed. Details are given of special
considerations due to the interactive implementation. A number of examples are provided
including many dealing with input/output. An appendix supplements Wirth's Paual Report to
form the full definition of the Berkeley implementation of the language.

The Berkeley Pascal U•er '• Manual consists of four major sections and an appendix. Section I
introduces the Berkeley implementation and provides a number or tutorial examples. Section 2
discusses the error diagnostics produced by the translators pc and pi, and the runtime inter­
preter pz. Section 3 describes input/output with special attention given to features of the
interactive implementation and to features unique to UNIX.t Section 4 gives details on the com­
ponents of the system and explanation of all relevant options. The Uur '• Manual concludes
with an appendix to Wirth's Paual Report with which it forms a precise definition of the
implementation.

t UNIX is a trademark or Bell Laboratories.

- iv -

0

0

0

0

0

0

Table of Contents

Preface.. 1v

Chapter 1 Basic UNIX Pascal ... 1-1
1.1. A First Program 1-1
1.2. A Larger Program ... 1-4
1.3. Correcting the First Errors .. 1-6
1.4. Executing the Second Example... 1-9
1.5. Formatting the Program Listing .. 1-11
1.6. Execution Profiling ... 1-11

1.6.1. An Example .. 1-11
1.6.2. Discussion... 1-12

Chapter 2 Error diagnostics ... 2-1
2.1. Translator syntax errors.. 2-1

2.1.1. Illegal characters.. 2-1
2.1.2. String errors.. 2-1
2.1.3. Comments in a comment, non-terminated comments 2-2
2.1.4. Digits in numbers .. 2-2
2.1.5. Replacements, insertions, and deletions .. 2-2
2.1.6. Undefined or improper identifiers .. 2-3
2.1.7. Expected symbols, malformed constructs... 2-3
2.1.8. Expected and unexpected end-of-file, "QUIT" 2-4

2.2. Translator semantic errors .. 2-5
2.2.1. Format of the error diagnostics.. 2-5
2.2.2. Incompatible types 2-5
2.2.3. Scalar .. 2-6
2.2.4. Function and procedure type errors .. 2-6
2.2.5. Can't read and write scalars, etc. .. 2-6
2.2 .6. Expression diagnostics ... 2-7
2.2.7. Type equivalence ... 2-8
2.2.8. Unreachable statements... 2-8
2.2.9. Goto's into structured statements .. 2-9
2.2.10. Unused variables, never set variables ... 2-9

2.3. Translator panics, i/o errors 2-9
2.3.1. Panics ... 2-9
2.3.2. Out of memory .. 2-9

-v-

2.3.3. 1/0 errors .. 2-10
2.4. Run-time errors ... 2-10

2.4.1. Start-up errors .. 2-10
2.4.2. Program execution errors ... 2-10
2.4.3. Interrupts ... 2-11
2.4.4. 1/0 interaction errors .. 2-11

Chapter 3 Input/output ... 3-1
3.1. Introduction... 3-1
3.2. Eof and eoln .. 3-3
3.3. More about eoln ... 3-4
3.4. Output buffering.. 3-5
3.5. Files, reset, and rewrite .. 3-5
3.6. Argc and argv ... 3-6

Chapter -i Details on the Components of the System .. f-1
4.1. Options... 4-1
4.2. Options Common to Pi, Pc, and Pix ... 4-2

4.2.1. b - Buffering of the File 'output' .. 4-2
4.2.2. i - Include File Listing ... 4-2
4.2.3. I - Make a Listing .. 4-3
4.2.4. s - Standard Pascal Only 4-3
4.2.5. t and C - Runtime Tests......................... 4-3
4.2.6. w - Suppress Warning Diagnostics .. 4-3
4.2.7. z - Generate Counters for a pxp Execution Profile......................... 4-3

4.3. Options available in Pi ... 4-4
4.3.1. p - Post-Mortem Dump.. 4-4

4.4. Options available in Px .. 4-4
4.5. Options available in Pc .. 4-4

4.5.1. S - Generate Assembly Language .. 4-4
4.5.2. g - Symbolic Debugger Information .. 4-5
4.5.3. o - Redirect the Output File.. 4-5
4.5.4. p and pf - Generate Counters for an Execution Profile 4-5
4.5.5. 0 - Run the Object Code Optimizer .. 4-5

4.6. Options available in Pxp ... 4-5
4.6.1. a - Include the Bodies of All Routines in the Profile 4-5
4.6.2. d - Suppress Declaration Parts from a Profile.................................... 4-6
4.6.3. e - Eliminate include Directives ... 4-6
4.6.4. f - Fully Parenthesize Expressions .. 4-6
4.6.5. j - Left Justify all Procedures and Functions..................................... 4-6
4.6.6. t - Print a Table Summarizing Procedure and Function

Calls... 4-6
4.6.7. z - Enable and Control the Profile.. 4-6

4.7. Formatting programs using pxp ... 4-7
4.7 .I. s - Strip Comments.. 4-8

- VI -

0

0

0

0

0

0

4.7.2. _ - Underline Keywords.. 4-8
4.7.3. (23456789) - Specify Indenting Unit.. 4-8

4.8. Pxref .. 4-8
4.9. Multi-file programs.. 4-9
4.10. Separate Compilation with Pc ... 4-9

Appendix A Appendix to Jensen and Wirth Pascal Report A-1
A.1. Extensions to the language Pascal ... A-1

A.1.1. String padding ... A-1
A.1.2. Octal constants, octal and hexadecimal write A-1
A.1.3. Assert statement... A-2
A.1.4. Enumerated type input-output.. A-2
A.1.5. Structure returning functions ... A-2
A.1.6. Separate compilation.. A-2

A.2. Resolution of the undefined specifications A-2
A.2.1. File name file variable associations .. A-2
A.2.2. The program statement .. A-3
A.2.3. The files input and output A-3
A.2.4. Details for files ... A-3
A.2.5. Buffering .. A-4
A.2.6. The character set .. A-4
A.2.7. The standard types.. A-4
A.2.8. Comments ... A-5
A.2.9. Option control .. A-5
A.2.10. Notes on the listings .. A-5
A.2.11. The standard procedure write ... A-6

A.3. Restrictions and limitations ... A-6
A.3.1. Files .. A-6
A.3.2. Arrays, sets and strings .. A-6
A.3.3. Line and symbol length .. . A-6
A.3.4. Procedure and function nesting and program size............................. A-7
A.3.5. Overflow ... A-7

A.4. Added types, operators, procedures and functions A-7
A.4.1. Additional predefined types A-7
A.4.2. Additional predefined operators .. A-7
A.4.3. Non-standard procedures .. A-8
A.4.4. Non-standard functions A-8

- Vil -

0

0

0

0

0

0

Chapter 1

Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we use the
ez(l) text editor. Users of the ed text editor should have little trouble following these exam­
ples, as ez is similar to ed. We use ez because we can make clearer examples. Users with Sun
Workstations should find fli (visual editor) more pleasant to use; we do not show its use here
because its display-oriented nature makes it difficult to illustrate. The new UNIX user will find
it helpful to read one of the introductory chapters on text editors, either in the Sun Beginner'•
Guide to the Sun Work3tation, or in the Editing and Tezt Proceuing manual before continuing
with this section.

1.1. A First Program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to
'login' to the system on this account. These procedures are described in the Beginner'• Guide.

Once we are logged in, we need to choose a name for our program; let's call it firat since this is
the first example. We must also choose a name for the file in which the program will be stored.
The Berkeley Pascal system requires that programs reside in files which have names ending with
the sequence .p so we call our file firat.p.

A sample editing session to create this file would begin:

tutorial% ex first.p
"first.p" (New file)

We didn't expect the file to exist, so the 'New file' message doesn't bother us. ez now knows
the name of the file we are creating. The ':' prompt indicates that ez is ready for command
input. We can add the text for our program using the 'append' command as follows.

:append
program first(output)
begin

writeln(1Iello, world!')
end .

. .
The line containing the single '.' character here indicated the end of the appended text. The ':'
prompt indicates that ez is ready for another command. As ez operates in a temporary work

Revision C of 7 January 1984 1-1

Basic UNIX Pascal Berkeley Pascal User Manual

space we must now store the contents or this work space in the file firat.p so we can use the
Pascal translator and executor piz on it.

: write
"first.p" [New file] 4 lines, 59 characters
: quit
tutorial%

We wrote out the file from the edit buffer here with the 'write' command, and ez indicated the
number or lines and characters written. We then quit the editor, and now have a prompt from
the shell.f

We are ready to try to translate and execute our program.

tutorial% pix first.p
Wed Oct 29 17:11 1980 first.p:

2 begin
e ----- f --- Inserted ' ;
Execution begins ...
Hello, world!
Execution terminated.

l statements executed in 0000.40 seconds cpu time.
tutorial%

The translator first printed a syntax error diagnostic. The number 2 here indicates that the
rest or the line is an image or the second line or our program. The translator is saying that it
expected to find a ';' before the keyword begin on this line. Ir we look at the Pascal syntax
charts in the Jensen-Wirth Uaer Manual, or at some of the sample programs therein, we see
that we have omitted the terminating ';' of the program statement on the first line of our pro­
gram.

One other thing to notice about the error diagnostic is the letter 'e' at the beginning. It stands
for 'error', indicating that our input was not legal Pascal. The fact that it is an 'e' rather than
an 'E' indicates that the translator managed to recover from this error well enough that genera­
tion of code and execution could take place. Execution is possible whenever no fatal 'E' errors
occur during translation. The other classes of diagnostics are 'w' warnings, which do not neces­
sarily indicate errors in the program, but point out inconsistencies which are likely to be due to
program bugs, and 's' standard-Pascal violations.t

After completing the translation of the program to interpretive code, the Pascal system indi­
cates that execution of the translated program began. The output from the execution of the
program then appeared. At program termination, the Pascal runtime system indicated the
number of statements executed, and the amount of cpu time used, with the resolution of the
latter being l/60'th of a second.

Let us now fix the error in the program and translate it to a permanent object code file obj
using pi. The program pi translates Pascal programs but stores the object code instead of exe­
cuting itf.

t Our examples here assume you are using ed.
fThe standard Pa.seal warnings occur only when the associated s translator option is enabled. The
s option is discussed in the Option, section, below. Warning diagnostics are discussed near the end
or the Error Diagnoetiu section, below; the associated w option is described in the Optfon• com­
mon to Pi, Pc, and Pz section.
fThis script indicates some other useful approaches to debugging Pascal programs. As in ed we can

1-2 Revision C or 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual Basic UNIX Pascal

tutorial% ex fi:·st.p
"first.p" 4 lines, 59 characters
:1 print
program first(output)
:s/$/;
program first(output);
:write
"first.p" 4 lines, 60 characters
:quit
tutorial% pi first.p
tutorial%

If we now use the UNIX I, list files command we can see what files we have:

tutorial% ls
first.p
obj
tutorial%

The file 'obj' here contains the Pascal interpreter code. We can execute this by typing:

tutorial% px obj
Hello, world!

1 statements executed in 0.02 seconds cpu time.

Alternatively, the command:

tutorial% obj

has the same effect. Some examples of different ways to execute the program follow.

tutorial% px
Hello, world!

1 statements executed in 0.02 seconds cpu time.
tutorial% pi -p first.p
tutorial% px obj
Hello, world!
tutorial% px -p lirst.p
Hello, world!
tutorial%

Note that p:z assumes that 'obj' is the file we wish to execute if we don't tell it otherwise. The
last two translations use the -p no-post-mortem option to eliminate execution statistics and
'Execution begins' and 'Execution terminated' messages. See the Option• common to Pi, Pc,
and P:i section for more details. If we now look at the files in our directory we will see:

shorten comm&nds in u to &n initial prefix of the command name as we did with the eubetitute
command here. We have also used the 'l' shell escape command here to execute other commands
with a shell without leaving the editor.

Revision C of 7 January 1984 1-3

Basic UN(X Pascal Berkeley Pascal User Manual

tutorial% Is
first.p
obj
tutorial%

We can give our object program a name other than 'obj' by using the move command mv(l).
Thus to name our program 'hello':

tutorial% mv obj hello
tutorial% hello
Hello, world!
tutorial% Is
first.p
hello
tutorial%

Finally we can get rid of the Pascal object code by using the rm(I) remove file command:

tutorial% rm hello
tutorial% Is
first.p
tutorial%

For small programs which are being developed piz tends to be more convenient to use than pi
and pz. Except for absence of the obj file after a piz run, a piz command is equivalent to a pi
command followed by a pz command. For larger programs, where a number of runs testing
different parts of the program are to be made, pi is useful as this obj file can be executed any
desired num her of times.

1.2. A Larger Program

Suppose that we have used ez to put a larger program in the file 'bigger.p'. We can list this
program with line numbers by using the cat(l) command with the - n option:

!~4

tutorial% cat -n bigger.p
1 (•
2 • Graphic representation of a function
3 • f(x) = exp(-x) • sin(2 •pi• x)
4 •)
5 program graphl(output);
6 const
7 d = 0.0625; (• 1/16, 16 lines for interval [x, x+ l] •)
8
9

IO
11
12
13
14
15
16
17

s = 32; (• 32 character width for interval [x, x+ 1]
h = 34; (• Character position of x-axis •)
C = 6.28138; (• 2 • pi •)
lim = 32;

var
x, y: real;
i, n: integer;

begin
for i := 0 to lim begin

X := d / i;

Revision C of 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual

18
19
20
21
22
23
24 end.

tutorial%

y := exp(-x9 • sin(i • x);
n := Round(s • y) + h;
repeat

write(' 1;
n := n-1

writeln('• 1

Basic UNIX Pascal

This program is similar to program 4.9 on page 30 of the Jensen-Wirth Uaer Manual. A
number of problems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using piz we get the following response:

tutorial% pix bigger.p
Wed Nov 9 15:53 1983 bigger.p:

9 h = 34; (• Character position of x-axis •)
w -------·-----1 -- (• in a (• •.. •) comment

16 for i := 0 to Jim begin
e ----------------· 1 ···· Inserted keyword do

18 y := exp(-x9 • sin(i • x);
E -------···-----1- Undefined variable
e -·-----·----------1-· Inserted 1'

19 n := Round(s • y) + h;
E -------·-·1-· Undefined function
E -------····--···-··-··1·- Undefined variable

23 writeln('• 1
e ------1-- Inserted ';'

24 end.
E ---1- Expected keyword until
E -------1 -- Malformed declaration

------1 -- Unexpected end-of-file - QUIT
Execution suppressed due to compilation errors
tutorial%

Since there were fatal 'E' errors in our program, no code was generated and execution was
necessarily suppressed. One thing which would be useful at this point is a listing of the pro­
gram with the error messages. We can get this by using the command:

tutorial% pi -1 bigger.p

There is no point in using piz here, since we know there are fatal errors in the program. This
command will produce the output at our terminal. If we are at a terminal which does not pro­
duce a hard copy we may wish to print this listing off-line on a line printer. We can do this
with the command:

tutorial% pi -1 bigger.p j lpr

In the next few sections we will illustrate various aspects of the Berkeley Pascal system by
correcting this program.

Revision C of 7 January 1984 1-5

Basic UNIX Pascal Berkeley Pascal User Manual

1.3. Correcting the First Errors

Most of the errors which occurred in this program were ayntactic errors, those in the format and 0
structure of the program rather than its content. Syntax errors are flagged by printing the
offending line, and then a line which flags the location at which an error was detected. The flag
line also gives an explanation stating either a possible cause of the error, a simple action which
can be taken to recover from the error so as to be able to continue the analysis, a symbol which
was expected at the point of error, or an indication that the input was 'malformed'. In the last
case, the recovery may skip ahead in the input to a point where analysis of the program can
continue.

In this example, the first error diagnostic indicates that the translator detected a comment
within a comment. While this is not considered an error in 'standard' Pascal, it usually
corresponds to an error in the program which is being translated. In this case, we have acciden­
tally omitted the trailing '*)' of the comment on line 8. We can begin an editor session to
correct this problem by doing:

tutorial% ex bigger.p
"bigger.p" 24 lines, 512 characters
:8s/$/ •)

s = 32; (* 32 character width for interval [x, x+ 1] *)

The second diagnostic, given after line 16, indicates that the keyword do was expected before
the keyword begin in the for statement. If we examine the •tatement syntax chart on page
118 of the Jensen-Wirth Uaer Manual we will discover that do is a necessary part of the for
statement. Similarly, we could have referred to section C.3 of the Jensen-Wirth Uaer Manual to o
learn about the for statement and gotten the same information there. It is often useful to refer ·
to these syntax charts and to the relevant sections of this book.

We can correct this problem by first scanning for the keyword for in the file and then substi­
tuting the keyword do to appear in front of the keyword begin there. Thus:

:/for
for i := 0 to lim begin

:s/begin/do &
for i := 0 to lim do begin

The next error in the program is easy to pinpoint. On line 18, we didn't hit the shift key and
got a '9' instead of a ')'. The translator diagnosed that 'x9' was an undefined variable and,
later, that a ')' was missing in the statement. It should be stressed that pi is not suggesting
that you should insert a ')' before the ';'. It is only indicating that making this change will help
it to be able to continue analyzing the program so as to be able to diagnose further errors. You
must then determine the true cause of the error and make the appropriate correction to the
source text.

This error also illustrates the fact that one error in the input may lead to multiple error diag­
nostics. Pi attempts to give only one diagnostic for each error, but single errors in the input
sometimes appear to be more than one error. It is also the case that pi may not detect an error
when it occurs, but may detect it later in the input. This would have happened in this example
if we had typed 'x' instead of 'x9'.

1-B Revision C of 7 January 1984

0

0

0

0

Berkeley Pascal User Manual Basic UNIX Pascal

The translator next detected, on line 19, that the function Round and the variable h were
undefined. It does not know about Round because Berkeley Pascal normally distinguishes
between upper and lower case.t On UNIX lower-case is preferredj, and all keywords and built-in
procedure and runction names are composed of lower-case letters, just as they are in the
Jensen-Wirth Paacal Report. Thus we need to use the function round here. As far ash is con­
cerned, we can see why it is undefined if we look back to line 9 and note that its definition was
lost in the non-terminated comment. This diagnostic need not, therefore, concern us.

The next error which occurred in the program caused the translator to insert a ';' before the
statement calling writeln on line 23. If we examine the program around the point of error we
will see that the actual error is that the keyword until and an associated expression have been
omitted here. Note that the diagnostic from the translator does not indicate the actual error,
and is so mew hat misleading. The translator made the correction which seemed to be most plau­
sible. As the omission of a ';' character is a common mistake, the translator chose to indicate
this as a possible fix here. It later detected that the keyword until was missing, but not until it
saw the keyword end on line 24. The combination of these diagnostics indicate to us the true
problem.

The final syntactic error message indicates that the translator needed an end keyword to match
the begin at line 15. Since the end at line 24 is supposed to match this begin, we can infer
that another begin must have been mismatched, and have matched this end. Thus we see that
we need an end to match the begin at line rn, and to appear before the final end. We can
make these corrections:

:/x9/a/ /x)
y := exp(-x) • sin(i • x);

:+ a/Round/round

:/write

:/

:insert

•
:$
end.
:insert

end

n := round(s • y) + h;

write(' ');

writeln(' • ')

untiln - O;

At the end of each procedure or runction and the end of the program the translator sum­
marizes references to undefined variables and improper usages of variables. It also gives warn­
ings about potential errors. In our program, the summary errors do not indicate any further
problems but the warning that c is unused is somewhat suspicious. Examining the program we
see that the constant was intended to be used in the expression which is an argument to •in, so
we can correct this expression, and translate the program. We have now made a correction for
each diagnosed error in ·our program.

tin "standard" Pascal no distinction is made based on case.
tOne good reason for using lower-case is that it is easier to type.

Revision C of 7 January 1984 1-7

Basic UNIX Pascal Berkeley Pascal User Manual

:?i ?s//c /
y := exp(-x) • sin(c • x);

:write
"bigger.p" 26 lines, 538 characters
:quit
tutorial% pi bigger,p
tutorial%

It should be noted that the translator suppresses warning diagnostics for a particular pro­
cedure, function or the main program when it finds severe syntax errors in that part of the
source text. This is to prevent possibly confusing and incorrect warning diagnostics from being
produced. Thus these warning diagnostics may not appear in a program with bad syntax errors
until these errors are corrected.

We are now ready to execute our program for the first time. We will do so in the next section
after giving a listing of the corrected program for reference purposes.

1-8

tutorial% cat -n bigger.p
l (•
2 • Graphic representation of a function
3 • f(x) = exp(-x) • sin(2 •pi• x)
4 •)
5 program graphl (output);
6 const
7 d = 0.0625; (• 1/16, 16 lines for interval [x, x+ l] •)
8
9

IO
II
12 var
13
14
15 begin
16
17
18
19
20
21
22
23
24
25
26 end.

tutorial%

s = 32; (• 32 character width tor interval [x, x+ l] •)
h = 34; (• Character position of x-axis •)
C = 6.28138; (• 2 *pi*)
lim = 32;

x, y: real;
i, n: integer;

for i := 0 to lim do begin
X := d Ii;

end

y := exp(-x) • sin(c • x);
n := round(s • y) + h;
repeat

write(' 1;
n := n-1

until n = O;
writeln('• 1

Revision C of 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual Basic UNIX Pascal

1.4. Executing the Second Example

We are now ready to execute the second example. The following output was produced by our
first run.

tutorial% px

Statement count limit of 500000 exceeded

Error in "graph!"+ 7 near line 22.
Execution terminated abnormally.

500000 statements executed in 95.68 seconds cpu time.
tutorial%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a 'division by
zero' at line 17. Examining line 17, we see that we have written the statement 'x := d / i'
instead of 'x := d • i'. We can correct this and rerun the program:

tutorial% ex bigger.p
"bigger. p" 26 lines, 538 characters
:17

X := d / i
:s '/'•

X := d • i
:write
"bigger.p" 26 lines, 538 characters
:q
tutorial% pix bigger.p

•
•

•
•
•

•
•

Revision C of 7 January 1984

•

•

•
•

•

•
*
*

•
•

•

•
•

•

1-9

Basic UNIX Pascal

*
*

*
*
*
•
*

Execution begins ...
Execution terminated.

*
*

*
*

*

2550 statements executed in 0.67 seconds cpu time.
tutorial%

Berkeley Pascal User Manual

This appears to be the output we wanted. We could now save the output in a file if we wished
by using the shell to redirect the output:

tutorial% px > graph

We can use cat(l) to see the contents of the file graph. We can also make a listing of the
graph on the line printer without putting it into a file:

tutorial% px j Ipr
Execution begins ...
Execution terminated.

2550 statements executed in 0.70 seconds cpu time.
tutorial%

Note here that the statistics lines came out on our terminal. The statistics line comes out on
the diagnostic output (unit 2.) There are two ways to get rid of the statistics line. We can
redirect the statistics message to the printer using the syntax 'I&' to the shell rather than 'I',
I.e.:

tutorial% px I& lpr
tutorial%

or we can translate the program with the p option disabled on the command line as we did
above. This will disable all post-mortem dumping including the statistics line, thus:

tutorial% pi -p bigger.p
tutorial% px j lpr
tutorial%

This option also disables the statement limit which normally guards against infinite looping.
You should not use it until your program is debugged. Also if p is specified and an error occurs,
you will not get run time diagnostic information to help you determine what the problem is.

1-10 Revision C of 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual Basic UNIX Pascal

1.5. Formatting the Program Listing

It is possible to use special lines within the source text of a program to format the program list­
ing. An empty line (one with no characters on it) corresponds to a 'space' macro in an assem­
bler, leaving a completely blank line without a line number. A line containing only a control-I
(form-feed) character will cause a page eject in the listing with the corresponding line number
suppressed. This corresponds to an 'eject' pseudo-instruction. --- See also the Optiona common
to Pi, Pc, and Pz section for details on the n and i options of pi.

1.6. Execution Profiling

An execution profile consists of a structured listing of (all or part of) a program with informa­
tion about the number of times each statement in the program was executed for a particular
run of the program. These profiles can be used for several purposes. In a program which was
abnormally terminated due to excessive looping or recursion or by a program fault, the counts
can facilitate location of the error. Zero counts mark portions of the program which were not
executed; during the early debugging stages they should prompt new test data or a re­
examination of the program logic. The profile is perhaps most valuable, however, in drawing
attention to the (typically small) portions of the program that dominate execution time. This
information can be used for source level optimization.

1.6.1. An Example

A prime number is a number which is divisible only by itself and the number one. The program
primea, written by Niklaus Wirth, determines the first few prime numbers. In translating the
program we have specified the • option to piz. This option causes the translator to generate
counters and count instructions sufficient in number to determine the number of times each
statement in the program was executed. t When execution of the program completes, either nor­
mally or abnormally, this count data is written to the file pmon.out in the current directoey.t It
is then possible to prepare an execution profile by giving pzp the name of the file associated
with this data, as was done in the following example.

tutorial% pix -1-s primes.p
Berkeley Pascal Pl - Version 2.13 (4/7 /83)

Wed Nov 9 15:53 1983 primes.p

1 program primes(output);
2 const n = 50; nl = 7; (•nl = sqrt(n)•)
3 var i,k,x,inc,lim,square,l: integer;
4 prim: boolean;
5 p, v: array(l..nl] of integer;

tThe counts are completely accurate only in the absence of runtime errors and nonlocal goto state­
ments. This is not generally a problem, however, as in structured programs nonlocal goto state­
ments occur in!requently, and counts are incorrect after abnormal termination only when the up­

toa.rd look described below to get a count passes a suspended call point.
tPmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the
C compiler cc(l). See pro/(1) for a. discussion of the C compiler profiling facilities.

Revision C of 7 Januaey 1984 I 11

Basic UNIX Pascal Berkeley Pascal User Manual

6 begin
7 write(2:6, 3:6); I := 2;
8 x := l; inc:= 4; Jim := l; square:= 9;
9 for i := 3 to n do

IO begin (•find next prime•)
11 repeat x := x + inc; inc := 6-inc;
12 if square <= x then
13 begin Jim := Jim+ l;
14 vPim) := square; square := sqr(ppim+ l))
15 end;
16 k := 2; prim := true;
17 while prim and (k<lim) do
18 begin k := k+ 1;
19 if v[k) < x then v[k) := v[k) + 2•p[k);
20 prim := x < > v(k]
21 end

until prim; 22
23
24
25
26
27
28
29
30

if i <= nl then p[i] := x;
write(x:6); I := I+ 1;
if I= IO then

begin writeln; I := 0

2
31
73

127
179

end
end;
writeln;

end.
3 5

37 41
79 83

131 137
181 191

Execution begins ...
Execution terminated.

7 11 13
43 47 53
89 97 101

139 149 151
193 197 199

17 19
59 61

103 107
157 163
2ll 223

1404 statements executed in 0.29 seconds cpu time.
tutorial%

1.6.2. Discussion

23 29
67 71

109 113
167 173
227 229

The header lines of the outputs of pix and pxp in this example indicate the version of the trans­
lator and execution profiler in use at the time this example was prepared. The time given with
the file name (also on the header line) indicates the time of last modification of the program
source file. This time serves to veraion •tamp the input program. Pxp also indicates the time
at which the profile data was gathered.

tutorial% pxp -z primes.p
Berkeley Pascal PXP -- Version 2.ll (2/6/83)

Wed Nov 9 15:53 1983 primes.p

1-12 Revision C of 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual

Profiled Fri Jan 13 09:23 1984

1
2
2
2
3
3
4
5
6
7
7
8
8
8
8
9
9

11
11
12
13
14
14
14
16
16
17
18
19
19
20
20
20
23
23
24
24
25
26
26
26
26
29
29

tutorial%

1.----lprogram primes(output);
iconst
I n = 5o;
I nl = 7; (•nl = sqrt(n)•)
Ivar
I i, k, x, inc, lim, square, I: integer;
I prim: boolean;
I p, v: array [l..nl J or integer;
!begin
I write(2: 6, 3: 6);
I I:= 2;
I X := l;
I inc:= 4;
I Iim := 1;
I square := 9;
I for i := 3 ton do begin (•find next prime•)

48.----1 repeat
76.----1 x := x + inc;

I inc := 6 - inc;
I if square < = x then begin

5.-----1 Jim := Jim + l;
I v[lim) := square;
I square := sqr(p[lim + 1 I)

end;
k := 2;
prim := true;

I w bile prim and (k < lim) do begin
157.----1 k := k + l;

I if v[k] < x then
42.----1 v[k] := v[k] + 2 • p(k];

I prim:= x <> v[k]

I end
luntil prim;

I ifi <= nl then
5.---1 p[i] := x;
I write(x: 6);
I 1 := 1 + l;
I if 1 = 10 then begin

5.-----1 writeln;
I 1 := 0

end
I end;
I writeln
lend.

Basic UNIX Pascal

To determine the number of times a statement was executed, one looks to the left of the state­
ment and finds the corresponding vertical bar 'j'. If this vertical bar is labelled with a count
then that count gives the number of times the statement was executed. If the bar is not

Revision C of 7 January 1984 1-13

Basic UNIX Pascal Berkeley Pascal User Manual

labelled, we look up in the listing to find the first 'I' which directly above the original one which
has a count and that is the answer. Thus, in our example, k was incremented 157 times on line
18, while the write procedure call on line 24 was executed 48 times as given by the count on the
repeat.

More information on pxp can be found in its manual section pxp (1) and in the Optiona available
in Px, Options available in Pc, and Separate Compilation with Pc sections below.

1-14 Revision C of 7 January 1984

C

C

C

0
Chapter 2

Error diagnostics

This section of the Uaer 'a Manual discusses the error diagnostics of the programs pi, pc and pz.
Pix is a simple but useful program which invokes pi and pz to do all the real processing. See
its manual section piz (1) and the Optiona common to Pi, Pc, and Px section below for more
details. All the diagnostics given by pi will also be given by pc.

2.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal program­
mers and the recovery mechanisms of the current translator may help in using the system.

0 2.1.1. Illegal characters

0

Characters such as'$','!', and'@' are not part of the language Pascal. If they are found in the
source program, and are not part of a constant string, a constant character, or a comment, they
are considered to be 'illegal characters'. This can happen if you leave off an opening string
quote'''. Note that the character'"', although used in English to quote strings, is not used to
quote strings in Pascal. Most non-printing characters in your input are also illegal except in
character constants and character strings. Except for the tab and form feed characters, which
are used to ease formatting of the program, non-printing characters in the input file print as the
character '!' so that they will show in your listing.

2.1.2. String errors

There is no character string of length O in Pascal. Consequently the input ''" is not acceptable.
Similarly, encountering an end-of-line after an opening string quote ''' without encountering the
matching closing quote yields the diagnostic "Unmatched 'for string". It is permissible to use
the character '#' instead of '" to delimit character and constant strings for portability reasons.
For this reason, a spuriously placed '#' sometimes causes the diagnostic about unbalanced
quotes. Similarly, a'#' in column one is used when preparing programs which are to be kept in
multiple files.

Revision C of 7 January 1984 2-1

Error diagnostics Berkeley Pascal User Manual

2.1.3. Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter. You can o
convert parts of your program to comments without generating this diagnostic since there are
two different kinds of comments - those delimited by '{' and '} ', and those delimited by '(•'and
'•)'. Thus consider:

{ This is a comment enclosing a piece of program
a := functioncall; (• comment within comment •)
procedurecall;
lhs := rhs; (• another comment•)
}

By using one kind of comment exclusively in your program you can use the other delimiters
when you need to "comment out" parts of your program. In this way you will also allow the
translator to help by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will point to the
beginning of the comment, indicating that the comment is not terminated. In this case process­
ing will terminate immediately. See the discussion of "QUIT" below.

2.1.4. Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both
before and after the decimal point. Thus the following statements, which look quite reasonable
to FORTRAN users, generate diagnostics in Pascal:

Wed Nov 9 15:53 1983 digits.p:
4 r := O.;

e --------------t ---- Digits required after decimal point
5 r := .O;

e ------------ t ---- Digits required before decimal point
6 r := l.elO;

e -------------- t ---- Digits required after decimal point
7 r := .05e-10;

e ------------ t ---- Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter p:z.

2.1.5. Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error recovery pro­
cedure. This procedure examines the input text immediately after the point of error and con­
siders a set or simple corrections to see whether they will allow the analysis to continue. These
corrections involve replacing an input token with a different token, inserting a token, or replac­
ing an input token with a different token. Most of these changes will not cause fatal syntax
errors. The exception is the insertion of or replacement with a symbol such as an identifier or a
num her; in this case the recovery makes no attempt to determine which identifier or what
number should be inserted, hence these are considered fatal syntax errors.

2-2 Revision C of 7 January 1984

0

0

0

0

0

Berkeley Pascal User Manual

Consider the following example.

tutorial% pix -l s;ynerr.p
Berkeley Pascal PI -- Version 2.13 (4/7 /83)

Wed Nov 9 15:52 1983 synerr.p

1 program syn(output);
2 var i, j are integer;

e --------f- Replaced identifier with a ':'
3 begin
4 for j :• 1 to 20 begin

e -----------------f- Replaced '•'with a'-'
e -----------------------f- Inserted keyword do

5 write(j);
6 i = 2 •• j;

e ------------- f--- Inserted ':'
E -------------------f--- Inserted identifier

7 writeln(i))
E --------------------f- Deleted 1'

8 end
9 end.

tutorial%

Error diagnostics

The only surprise here may be that Pascal does not have an exponentiation operator, hence the
complaint about • .. •. This error illustrates that, if you assume that the language has a feature
which it does not, the translator diagnostic may not indicate this, as the translator is unlikely to
recognize the construct you supply.

2.1.6. Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will replace it
with an identifier of the appropriate class. Further references to this identifier will be summar­
ized at the end of the containing procedure or function or at the end of the program if the
reference occurred in the main program. Similarly, if an identifier is used in an inappropriate
way, e.g. if a type identifier is used in an assignment statement, or if a simple variable is used
where a record variable is required, a diagnostic will be produced and an identifier of the
appropriate type inserted. Further incorrect references to this identifier will be flagged only if
they involve incorrect use in a different way, with all incorrect uses being summarized in the
same way as undefined variable uses are.

2.1.7. Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will examine
the input to the left of the point of error to see if there is only one symbol which can follow this
input. If this is the case, the recovery will print a diagnostic which indicates that the given
symbol was 'Expected'.

In cases where none of these corrections resolve the problems in the input, the recovery may
issue a diagnostic that indicates that the input is "malformed". If necessary, the translator may

Revision C of 7 January 1984 2-3

Error diagnostics Berkeley Pascal User Manual

then skip forward in the input to a place where analysis can continue. This process may cause
some errors in the text to be missed.

Consider the following example:

tutorial% pix -I synerr2.p
Berkeley Pascal Pl -- Version 2.13 (4/7 /83)

Wed Nov 9 15:52 1983 synerr2.p

1 program synerr2(input,outpu);
2 integer a(10)

E ----l ---· Malformed declaration
3 begin
4 read(b);

E -------------------- l ---- Undefined variable
5 for c := 1 to 10 do

E ------------------ t ·--- Undefined variable
6 a(c) := b • c;

E ---··---------------- l ---- Undefined procedure
E -·--·-·--------------------1-·-- Malformed statement

7 end.
E I - File outpu listed in program statement but not declared
In program synerr2:

E - a undefined on line 6
E - b undefined on line 4
E - c undefined on lines 5 6

Execution suppressed due to compilation errors
tutorial%

Here we misspelled output and gave a FORTRAN style variable declaration which the translator
diagnosed as a 'Malformed declaration'. When, on line 6, we used '(' and ')' for subscripting (as
in FORTRAN) rather than the '[' and ']' which are used in Pascal, the translator noted that a
was not defined as a procedure. This occurred because procedure and function argument
lists are delimited by parentheses in Pascal. As it is not permissible to assign to procedure calls
the translator diagnosed a malformed statement at the point of assignment.

2.1.8. Expected and unexpected end-of-file, "QUIT"

If the translator finds a complete program, but there is more non-comment text in the input file,
then it will indicate that an end-of-file was expected. This situation may occur after a bracket­
ing error, or if too many ends are present in the input. The message may appear after the
recovery ·says that it "Expected ','"since '.' is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a diagnostic
followed by "QUIT". One example of this was given above - a non-terminated comment;
another example is a line which is longer than 160 characters. Consider also the following
example.

tutorial% pix -I mism.p
Berkeley Pascal PI -- Version 2.13 (4/7 /83)

2-4 Revision C of 7 January 1984

a

0

0

0

0

0

Berkeley Pascal User Manual

Wed Nov 9 15:53 1983 mism.p

I program mismatch(output)
2 begin

e --1- Inserted ';'
3 write In(' u • 1;
4 { The next line is the last line in the file }
5 writeln

E ------1- Malformed declaration
-------------------!-- Unexpected end-of-file - QUIT

tutorial%

2.2. Translator semantic errors

Error diagnostics

The extremely large number of semantic diagnostic messages which the translator produces
make it unreasonable to discuss each message or group of messages in detail. The messages are,
however, very informative. We will here explain the typical formats and the terminology used
in the error messages so that you will be able to make sense out of them. In any case in which
a diagnostic is not completely comprehensible you can refer to the Uaer Manual by Jensen and
Wirth for examples.

2.2.1. Format of the error diagnostics

As we saw in the example program above, the error diagnostics from the Pascal translator
include the number of a line in the text of the program as well as the text of the error message.
While this number is most often the line where the error occurred, it is occasionally the number
of a line containing a bracketing keyword like end or until. In this case, the diagnostic may
refer to the previous statement. This occurs because of the method the translator uses for sam­
pling line numbers. The absence of a trailing ';' in the previous statement causes the line
number corresponding to the end or until. to become associated with the statement. As Pas­
cal is a free-format language, the line number associations can only be approximate and may
seem arbitrary to some users. This is the only notable exception, however, to reasonable associ­
ations.

2.2.2. Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as type
errors. These are called 'type clashes' by the translator. The types allowed for various opera­
tors in the language are summarized on page 108 of the Jensen-Wirth Uaer Manual. It is
important to know that the Pascal translator, in its diagnostics, distinguishes between the fol­
lowing type 'classes':

Revision C of 7 January 1984 2-5

Error diagnostics Berkeley Pascal User Manual

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign an
integer value to a char variable you would receive a diagnostic like the following:

Wed Nov 9 15:53 1983 clash.p:
E 7 - Type clash: integer is incompatible with char

... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than
once, the same explanatory diagnostic will be given each time.

2.2.3. Scalar

The only class whose meaning is not self-explanatory is 'scalar'. Scalar has a precise meaning in
the Jensen-Wirth Uaer Manual where, in fact, it refers to char, integer, real, and Boolean types
as well as the enumerated types. For the purposes of the Pascal translator, scalar in an error

· message refers to a user-defined, enumerated type, such as op, in the example above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in the
context of the Uaer Manual to refer to an integer variable as a acalar variable pi prefers the
more specific identification.

2.2.4. Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are called with
the wrong number of arguments a message similar to:

Wed Nov 9 15:52 1983 sinl.p:
E 12 - sin takes exactly one argument

is given. If the type of the argument is wrong, a message like

Wed Nov 9 15:52 1983 sin2.p:
E 12 - sin's argument must be integer or real, not char

is produced.

2.2.5. Can't read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from files
are often mysterious. It is in fact the case that if you define

type color = (red, green, blue)

0

0

"standard" Pascal does not associate these constants with the strings 'red', 'green', and 'blue' in
any way. An extension has been added which allows enumerated types to be read and written,
however if the program is to be portable, you will have to write your own routines to perform 0
these functions. Standard Pascal only allows the reading of characters, integers and real

2-6 Revision C of 7 January 1984

0

0

0

Berkeley Pascal User Manual Error diagnostics

numbers from text files. You cannot read strings or Booleans. It is possible to make a

file of color

but the representation is binary rather than string.

2.2.6. Expression diagnostics

The diagnostics for semantically ill-formed expressions are very explicit. Consider this sample
translation:

tutorial% pi -1 expr.p
Berkeley Pascal PI -- Version 2.13 (4/7 /83)

Wed Nov 9 15:53 1983 expr.p

l program x(output);
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

var

begin

21 end.

a: set of char;
b: Boolean;
c: (red, green, blue);
p: f integer;
A: alfa;
B: packed array (1..5] of char;

b := true;
c := red;
new(p);
a ·-a· .- '
A := 11ello, yellow ';
b := a and b;
a:= a• 3;
if input < 2 then writeln(boo');
if p < = 2 then writeln('sure null');
if A = B then writeln('same');
if c = true then writeln('hue "s and color"s ')

E 14 - Constant string too long
E 15 - Left operand of and must be Boolean, not set
E 16 - Cannot mix sets with integers and reals as operands of •
E 17 - files may not participate in comparisons
E 18 - pointers and integers cannot be compared - operator was < =
E 19 - Strings not same length in = comparison
E 20 - scalars and Booleans cannot be com pared - operator was =
e 21 - Input is used but not defined in the program statement
In program x:

w - constant green is never used
w - constant blue is never used
w - variable B is used but never set

tutorial%

Revision C of 7 January 1984 2-7

Fortran Input and Output Fortran Programming Guide

C

0

0
2-8 Revision C of 7 January 1984

0

0

0

Berkeley Pascal User Manual Error diagnostics

2.2.9. Goto's into structured statements

The translator detects and complains ahout goto statements which transfer control into struc­
tured statements (for, while, etc.) It does not allow such jumps, nor does it allow branching
from the then part of an if statement into the else part. Such checks are made only within the
body of a single procedure or function.

2.2.10. Unused variables, never set variables

Although pi always clears variables to O at procedure and function entry, pc does not unless
runtime checking is enabled using the C option. It is not good programming practice to rely on
this initialization. To discourage this practice, and to help detect errors in program logic, pi
llags as a 'w' warning error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables for
which values are computed but which are never used, and those completely unused.

In fact, these diagnostics are applied to all declared items. Thus a canst or a procedure which
is declared but never used is llagged. The w option of pi may be used to suppress these warn­
ings; see the Option, and Option, common to P1~ Pc, and Pz sections, below.

2.3. Translator panics, i/o errors

2.3.1. Panics

One class of error which rarely occurs, but which causes termination of all processing when it
does is a panic. A panic indicates a translator-detected internal inconsistency. A typical panic
message is:

snark (rvalue) Iine=llO yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully ter­
minated. Contact your system manager after saving a copy of your program for later inspec­
tion. If you were making changes to an existing program when the problem occurred, you may
be able to work around the problem by ascertaining which change caused the mark and making
a different change or correcting an error in the program. A small number of panics are possible
in pz.

2.3.2. Out of memory

The only other error which will abort translation when no errors are detected is running out of
memory. All tables in the translator, with the exception of the parse stack, are dynamically
allocated, and can grow to take up a good deal of process space. In general, very large programs
should be translated using pc and the separate compilation facility.

If you receive an out of space message from the translator during translation of a large pro­
cedure or function or one containing a large number of string constants you may yet be able

Revision C of 7 January 1984 2-9

Error diagnostics Berkeley Pascal User Manual

to translate your program if you break this one procedure or function into several routines.

2.3.3. 1/0 errors

Other errors which you may encounter when running pi relate to input-output.
open the file you specify, or if the file is empty, you will be so informed.

2.4. Run-time errors

If pi cannot

We saw, in our second example, a run-time error. We here give the general description of run­
time errors. The more unusual interpreter error messages are explained briefly in the manual
section for pz (1).

2.4.1. Start-up errors

These errors occur when the object file to be executed is not available or appropriate. Typical
errors here are caused by the specified object file not existing, not being a Pascal object, or
being inaccessible to the user.

2.4.2. Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in an inap­
propriate way. Typical errors are values or subscripts out of range, bad arguments to built-in
functions, exceeding the statement limit because of an infinite loop, or running out of memoryf.
The interpreter will produce a backtrace after the error occurs, showing all the active routine
calls, unless the p option was disabled when the program was translated. Unfortunately, no
variable values are given and no way of extracting them is available.•

As an example of such an error, assume that we have accidentally declared the constant nl to
be 6, instead of 7 on line 2 of the program primes as given in the Ezecution profiling section
above. If we run this program we get the following response.

tutorial% pix primes.p
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167Execution begins ...

Subscript value of 7 is out of range

Error in "primes"+8 near line 14.
Execution terminated abnormally.

tThe checks for running out ot memory are not toolproor and there is a chance that the interpreter
will fault, producing a core image when it runs out of memory. This situation occurs very rarely.
• On the VAX-11, each variable is restricted to allocate at most 65000 bytes of storage (this is a
PDP-llism that has survived to the VAX.)

2-10 Revision C of 7 January 1984

0

0

0

0

0

0

Berkeley Pascal User Manual Error diagnostics

941 statements executed in 0.21 seconds cpu time.
tutorial%

Here the interpreter indicates that the program terminated abnormally due to a subscript out of
range near line 14, which is eight lines into the body of the program primes.

2.4.3. Interrupts

If the program is interrupted while executing and the p option was not specified, then a back­
trace will be printed. t The file pmon. out of profile information will be written if the program
was translated with the z option enabled to pi or piz.

2.4.4. 1/0 interaction errors

The final class of interpreter errors results from inappropriate interactions with files, including
the user's terminal. Included here are bad formats for integer and real numbers (such as no
digits after the decimal point) when reading.

fOccasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an in­
terrupt terminates a procedure or (unction entry or exit. In this case, the ba.cktra.ee will only
contain the current line. A reverse call order list or procedures will not be given.

Revision C of 7 January 1984 2-11

0

0

0
I
i

0

0

0

Chapter 3

Data Representations

This chapter describes the ways that FORTRAN-77 represents data in storage. This chapter is
intended as a guide to those programmers who wish to write modules in languages other than
FORTRAN-77 and have those modules interface to FORTRAN-77.

3.1. Storage Allocation

This section describes the way in which storage is allocated to variables of various types.

In general, any word value (a value which occupies 16 bits) is always aligned on a word boun•
dary. Anything larger than a word is also aligned on a word boundary. Values that can fit into
a single byte are aligned on a byte boundary.

integer•2
occupies 16 bits (two bytes or one word), aligned on a word boundary.

integer and integer•4
occupy 32 bits (four bytes or two words), aligned on a word boundary.

real and real• 4
occupy 32 bits (four bytes or two words), aligned on a word boundary. A real element bas
a sign bit, an 8-bit exponent and a 23-bit mantissa. FORTRAN-77 real elements conform to
the IEEE standard for reals as defined in the March 1081 Computer magazine. The layout
of a real element is shown below.

dou hie precision and real•8
elements occupy 64 bits (eight bytes or four words), aligned on a word boundary. A dou­
ble precision element has a sign bit, an 11-bit exponent and a 52-bit mantissa. FORTRAN-
77 double precision elements conform to the IEEE standard for double precision data as
defined in the March 1981 Computer magazine. The layout of a double precision element
is shown below.

complex
elements are represented by two real elements. The first element represents the real part of
the number, the second represents the imaginary part.

double complex
elements are represented by two double precision elements. The first element represents
the real part of the number, the second represents the imaginary part.

logical•2
occupies two bytes (16 bits) of storage, aligned on a word boundary. A value of 0
represents the value ,false, . A value of 1 represents the value .true, . Any other value is
an 'undefined' logical value.

logical and logical•4
occupies four bytes (32 bits) of storage, aligned on a word boundary. A value of 0
represents the value .false. . A value of 1 represents the value .true. . Any other value is
an 'undefined' logical value.

Revision C of 7 January 1984 3-1

Data Representations Fortran Programming Guide

3.2. Data Representations

Whatever the size of the data element in question, the most significant bit of the data element 0
is always in the lowest numbered byte of however many bytes are required to represent that
object.

3.2.1. Representation of real and double precision

real and double precision data elements are represented according to the proposed IEEE stan­
dard described in Computer magazine of March, 1981:

Table 3-1: Representation of Real and Double Precision Numbers

Single Preci,ion Double Preci,ion

Sign bit 31 bit 63

Exponent bits 30-23 bits 62-52
bias 127 bias 1023

Mantissa bits 22-0 bits 51-0

The parts of real and double precision numbers are as follows:
• a one-bit sign bit. The sign bit is a 1 if, and only if, the number is negative.

• a biased exponent. The exponent is eight bits for a real number, and is eleven bits for a
double precision number. The values of all zeros, and all ones, are reserved values for
exponents.

• a normalized mantissa, with the high-order 1 bit 'hidden'. The mantissa is 23 bits for a real
number, and is 52 bits for a double precision number. A real or double precision
number is represented by the form:

2ezponent-bia, • l.f

where 'f' is the bits in the mantissa.

3.2.2. Representation of Extreme Numbers

zero (signed)
is represented by an exponent of zero, and a mantissa of zero.

denormalized numbers
are a product of 'gradual underflow'. They are non-zero numbers with an exponent of zero.
The form of a denormalized number is:

2ezponent-bia1+ I • O.f

where 'r is the bits in the mantissa.

C

signed infinity 0
(that is, affine infinity) is represented by the largest value that the exponent can assume (all

3-2 Revision C of 7 January 1984

0

0

0

Berkeley Pascal User Manual Input/output

problem even with this simple example. Some Pascal systems attach meaning to the ordering of
the file in the program statement file list. Berkeley Pascal does not do so.

3.2. Eot and eoln

An extremely common problem encountered by new users of Pascal, especially in the interactive
environment offered by UNIX, relates to the definitions of eo/ and eoln. These functions are
supposed to be defined at the beginning of execution of a Pascal program, indicating whether
the input device is at the end of a line or the end of a file. Setting eo/ or eoln actually
corresponds to an implicit read in which the input is inspected, but no input is "used up". In
fact, there is no way the system can know whether the input is at the end-of-file or the end-of­
line unless it attempts to read a line from it. If the input is from a previously created file, then
this reading can take place without run-time action by the user. However, if the input is from a
terminal, then the input is what the user types. t If the system were to do an initial read
automatically at the beginning of program execution, and if the input were a terminal, the user
would have to type some input before execution could begin. This would make it impossible for
the program to begin by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given time,
the Pascal system may or may not know whether the end-of-file or end-of-line conditions are
true. Thus, internally, these functions can have three values - true, false, and "I don't know
yet; if you ask me I'll have to find out". All files remain in this last, indeterminate state until
the Pascal program requires a value for eo/ or eoln either explicitly or implicitly, e.g. in a call to
read. The important point to note here is that if you force the Pascal system to determine
whether the input is at the end-of-file or the end-of-line, it will be necessary for it to attempt to
read from the input.

Thus consider the following exam pie code

while not eof do begin
write('number, please! 1;
read(i);
writeln('that was a ', i: 2)

end

At first glance, this may be appear to be a correct program for requesting, reading and echoing
numbers.. Notice, however, that the while loop asks whether eo/ is true before the request is
printed. This will force the Pascal system to decide whether the input is at the end-of-file. The
Pascal system will give no messages; it will simply wait for the user to type a line. By produc­
ing the desired prompting before testing eo/, the following code avoids this problem:

write('number, please! 1;
while not eof do begin

read(i);
writeln('that was a ', i:2);
write('number, please!')

end
The user must still type a line before the while test is completed, but the prompt will ask for

tit is not possible to determine whether the input is a terminal, as the input may appear to be a file
but actually be a pipe, the output or a program which is reading from the terminal.

Revision C of 7 January 1984 3-3

Input/output Berkeley Pascal User Manual

it. This example, however, is still not correct. To understand why, it is first necessary to
know, as we will discuss below, that there is a blank character at the end of each line in a Pas-
cal text file. The read procedure, when reading integers or real numbers, is defined so that, if c
there are only blanks left in the file, it will return a zero value and set the end-of-file condition.
If, however, there is a number remaining in the file, the end-of-file condition will not be set even
if it is the last number, as read never reads the blanks after the number, and there is always at
least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the
problem in this example is to use the procedure readln instead of read here. In general, unless
we test the end-of-file condition both before and after calls to read or readln, there will be
inputs for which our program will attempt to read past end-of-file.

3.3. More about eoln

To have a good understanding of when eoln will be true it is necessary to know that in any file
there is a special character indicating end-of-line, and that, in effect, the Pascal system always
reads one character ahead of the Pascal read commands. t For instance, in response to
'read(ch)', the system sets ch to the current input character and gets the next input character.
Ir the current input character is the last character of the line, then the next input character
from the file is the new-line character, the normal UNIX line separator. When the read routine
gets the new-line character, it replaces that character by a blank (causing every line to end with
a blank) and sets eoln to true. Eoln will be true as soon as we read the last character of the
line and before we read the blank character corresponding to the end of line. Thus it is almost C;
always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal proce,aing

as this will almost surely have the effect of ignoring the last character in the line. The 'read(ch)'
belongs as part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call, which is defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input sym­
bol and then discards this blank. The next character availaL;~ from read will therefore be the
first character of the next line, if one exists.

fin Pascal terms, 'read(ch)' corresponds to 'ch:= input"; get(input)'

3-4 Revision C of 7 January I 984

0

0

0

0

Berkeley Pascal User Manual Input/output

3.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering of the
file output. It is extremely inefficient for the Pascal system to send each character to the user's
terminal as the program generates it for output; even less efficient if the output is the input of
another program such as the line printer daemon lpr (1). To gain efficiency, the Pascal system
"buffers" the output characters (i.e. it saves them in memory until the buffer is full and then
emits the entire buffer in one system interaction.) However, to allow interactive prompting to
work as in the example given above, this prompt must be printed before the Pascal system
waits for a response. For this reason, Pascal normally prints all the output which has been gen­
erated for the file output whenever

1) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure meuage or Jluah is called.

Thus, in the code sequence

for i := 1 to 5 do begin
write(i: 2);
Compute a lot with no output

end;
writeln

the output integers will not print until the writeln occurs. The delay can be somewhat discon­
certing, and you should be aware that it will occur. By setting the b option to O before the
program statement by inserting a comment of the form

(•$b0•)

we can cause oulpt,I to be completely unbuffered, with a corresponding horrendous degradation
in program efficiency. Option control in comments is discussed in the Option, section below.

3.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reaet and rewrite to get more gen­
eral associations of UNIX file names with Pascal file variables. When a file other than input or
output is to be read or written, then the reading or writing must be preceded by a reaet or
rewrite call. In general, if the Pascal file variable has never been used before, there will be no
UNIX filename associated with it. By mentioning the file in a program statement, however, we
can cause a UNIX file with the same name as the Pascal variable to be associated with it. If we
do not mention a file in the program statement and use it for the first time with the statement

reset(f)

or

rewrite(f)

then the Pascal system will generate a temporary name of the form 'tmp.x' for some character
'x ', and associate this UNIX file name name with the Pascal file. The first such generated name
will be 'tmp.l' and the names continue by incrementing their last character through the ASCII
set. The advantage of using such temporary files is that they are automatically removed by the

Revision C of 7 January 1984 3-5

Input/output Berkeley Pascal User Manual

Pascal system as soon as they become inaccessible. They are not removed, however, if a run­
time error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can give 0
that name in the reaet or rewrite call, e.g. we could have associated the Pascal file data with
the file 'primes' in our example in the Tranalator ayntaz errora section above by doing:

reset(data, 'primes 1
instead of a simple

reset(data)

In this case it is not essential to mention 'data' in the program statement, but it is still a good
idea because is serves as an aid to program documentation. The second parameter to reaet and
rewrite may be any string value, including a variable. Thus the names of UNIX files to be asso­
ciated with Pascal file variables can be read in at run time. Full details on file name/file vari­
able associations are given in Reatriction and limitation• section of the appendix.

3.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a variable
length character string. The built-in function argc and the built-in procedure arfllJ can be used
to access and process these arguments. The value of the function argc is the number of argu­
ments to the process. By convention, the arguments are treated as an array, and indexed from
0 to argc-l, with the zeroth argument being the name of the program being executed. The rest
of the arguments are those passed to the command on the command line. Thus, the command

tutorial% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element
accessed by argv will be 'obj', the first '/etc/motd', etc.

Pascal does not provide variable size arrays, nor does it allow character strings of varying
length. For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly trun­
cated or blank padded) i 'th argument of the current process to the string variable a. The file
manipulation routines reaet and rewrite will strip trailing blanks from their optional second
arguments so that this blank padding is not a problem in the usual case where the arguments
are file names.

We are now ready to give a Berkeley Pascal program 'kat', based on that given in the Tranala­
tor •yntaz errora section above, which can be used with the same syntax as the UNIX system
program cat (1).

3-6

tutorial% cat kat.p
program kat(input, output);
var

ch: char;
i: integer;
name: packed array [1..100] of char;

Revision C of 7 January 1984

C

0

0

0

Berkeley Pascal User Manual

begin
i := 1;
repeat

if i < argc then begin
argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end
until i >= argc

end { kat }.
tutorial%

Input/output

Note that the reaet call to the file input here, which is necessary for a clear program, may be
disallowed on other systems. As this program deals mostly with argc and argv and UNIX sys­
tem dependent considerations, portability is of little concern.

If this program is in the file 'kat.p', then we can do

tutorial% pi kat.p
tutorial% mv obj kat
tutorial% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

930 statements executed in 0.16 seconds cpu time.
tutorial% kat
This is a line of text.
This is a line of text.
The next line contains only an end-of-file (an invisible control-d!)
The next line contains only an end-of-file (an invisible control-d!)

287 statements executed in 0.04 seconds cpu time.
tutorial%

Thus we see that, if it is given arguments, 'kat' will, like cat, copy each one in turn. Ir no argu­
ments are given, it copies from the standard input. Thus it will work as it did before, with

tutorial% kat < primes o now equivalent to

Revision C of 7 January 1984 3-7

Input/output Eel'i<eiey Pascai User Manual

tutorial% kat primes

although the mechanisms are quite different in the two cases. Note that if 'kat' is given a bad a
file name, for example: . .

tutorial% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat" + 5 near line 11.

4 statements executed in 0.00 seconds cpu time.
tutorial%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were
going to use 'kat', we might want to translate it differently, e.g.:

tutorial% pi -pb kat.p
tutorial% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the
full traceback on error. The b option will cause the system to block buffer the input/output so
that the program will run more efficiently on large files. We could have also specified the t
option to turn off runtime tests if that was felt to be a speed hindrance to the program. Thus
we can try the last examples again:

tutorial% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"
tutorial% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

tutorial%

The interested reader may wish to try writing a program which accepts command line argu­
ments like pi does, using argc and argv to process them.

3-8 Revision C of 7 January 1984

0

0

0

0

0

Chapter 4

Details on the Components of the System

4.1. Options

The programs pi, pc, and p:zp take a number of options.t There is a standard UNIX convention
for passing options to programs on the command line, and this convention is followed by the
Berkeley Pascal system programs. As we saw in the examples above, option related arguments
consisted of the character '-' followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on (enabled) or
off (disabled.) When an on/off valued option appears on the command line of pi or it inverts the
default setting of that option. Thus

tutorial% pi -I foo.p

enables the listing option I, since it defaults off, while

tutorial% pi -t foo,p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also possible
to control the pi options within the body of the program by using comments of a special form
illustrated by

{$1-}

Here we see that the opening comment delimiter (which could also be a '(•') is immediately fol­
lowed by the character'$'. After this'$', which signals the start of the option list, we can place
a sequence of letters and option controls, separated by ',' characters. The most basic actions for
options are to set them, thus

{$1+ Enable listing}

or to clear them

{$t-,p--- No run-time tests, no post mortem analysis}

t.As pi~ uses pi to translate Pascal programs, it takes the options of pi also. We refer to them
here, however, as pi options.

Revision C of 7 January 1984 4-1

Details on the Components of the System Berhky P:,scal User Manual

Notice that '+ ' always enables an option and '-' always disables it, no matter what the default
is. Thus '-' has a different meaning in an option comment than it has on the command line.
As shown in the examples, normal comment text may follow the option list.

4.2. Options Common to Pi, Pc, and Pix

The following options are common to both the compiler and the interpreter. With each option
we give its default setting, the setting it would have if it appeared on the command line, and a
sample command using the option. Most options are on/off valued, with the b option taking a
single digit value.

4.2.1. h - Buffering of the File 'output'

The b option controls the buffering of the file output. The default is line buffering, with flush­
ing at each reference to the file input and under certain other circumstances detailed in the
Option• available in Pc section below. Mentioning b on the command line, that is:

tutorial% pi -b assembler.p

makes standard output block-buffered, where a block is some system-defined number of charac­
ters. The b option may also be controlled in comments. It, unique among the Berkeley Pascal
options, takes a single digit value rather than an on or off setting. A value of 0, that is:

{$bO}

makes output unbuffered. Any value 2 or greater causes block buffering and is equivalent to the
flag on the command line. The option control comment setting b must precede the program
statement.

4.2.2. i - Include File Listing

The i option takes the name of an include file, procedure or function name and causes it to
be listed while translatingt. Typical uses would be

tutorial% pix -i scanner.i compiler.p

to make a listing of the routines in the file scanner.i, and

tutorial% pix -i scanner compiler.p

to make a listing of only the routine acanner. This option is especially useful for conservation­
minded programmers making partial program listings.

flnclude files a.re discussed in the Multi-file program, section below.

4-2 Revision C of 7 January 1984

0

C

0

0

0

0

Berkeley Pascal User Manual Details on the Components of the System

4.2.3. l - Make a Listing

The I option enables a listing of the program. The I option defaults off. When specified on the
command line, it causes a header line identifying the version of the translator in use and a line
giving the modification time of the file being translated to appear before the actual program list­
ing. The I option is pushed and popped by the i option at appropriate points in the program.

4.2.4. s - Standard Pascal Only

The II option causes many of the features of the UNIX implementation which are not found in
standard Pascal to be diagnosed as 's' warning errors. This option defaults off and is enabled
when mentioned on the command line. Some of the features which are diagnosed are: non­
standard procedures and functions, extensions to the procedure write, and the padding of
constant strings with blanks. In addition, all letters are mapped to lower case except in strings
and characters so that the case of keywords and identifiers is effectively ignored. The II option
is most useful when a program is to be transported, thus

tutorial% pi -11 isit11td.p

produces warnings unless the program meets the standard.

4.2.5. t and C - Runtime Tests

These options control the generation of tests that subrange variable values are within bounds at
run time. pi defaults to generating tests and uses the option t to disable them. pc defaults to
not generating tests, and uses the option C to enable them. Disabling runtime tests also causes
assert statements to be treated as comments.t

4.2.6. w - Suppress Warning Diagnostics

The w option, which defaults on, allows the translator to print a number of warnings about
inconsistencies it finds in the input program. Turning this option off with a comment of the
form

{Sw-}

or on the command line

tutorial% pi -w tryme.p

suppresses these usually useful diagnostics.

4.2.7. z - Generate Counters for a pxp Execution Profile

The II option, which defaults off, enables the production of execution profiles. By specifying z
on the command line:

tSee the section on the Assert statement in the appendix tor details.

Revision C of 7 January 1984 4-3

Details on the Components of the System Berkeley Pascal User Manual

tutorial% pi-• roo.p

or by enabling it in a comment before the program statement causes pi and pc to insert 0
operations in the interpreter code to count the number of times each statement was executed. ·
An example of using pxp was given in the Execution profiling section above; its options are
described in the Optiona available in Pxp section below. Note that the • option cannot be used
on separately com piled programs.

4.3. Options available in Pi

4.3.1. p - Post-Mortem Dump

The p option defaults on, and causes the runtime system to initiate a post-mortem backtrace
when an error occurs. The p option also makes px count statements in the executing program,
enforcing a statement limit to prevent infinite loops. Specifying p on the command line disables
these checks and the ability to give this post-mortem analysis. It does make smaller and faster
programs, however. It is also possible to control the p option in comments. To prevent the
post-mortem backtrace on error, p must be off at the end of the program statement. Thus,
the Pascal cross-reference program was translated with

tutorial% pi -pbt pxref.p

4.4. Options available in Px

The first argument to px is the name of the file containing the program to be interpreted. If no
arguments are given, then the file obj is executed. If more arguments are given, they are avail­
able to the Pascal program by using the built-ins argc and argv as described in the Argc and
argv section above.

Px may also be invoked automatically. In this case, whenever a Pascal object file name is given
· as a command, the command will be executed with pz prepended to it; that is

tutorial% obj primes

will be converted to read

tutorial% px obj primes

4.5. Options available in Pc

4.5.1. S - Generate Assembly Language

The program is compiled and the assembly language output is left in file appended .s. Thus

tutorial% pc -S foo.p

4-4 Revision C of 7 January 1984

0

0

0

0

0

Berkeley Pascal User Manual Details on the Components of the System

creates a file foo.a. No executable file is created.

4.5.2. g - Symbolic Debugger Information

The g option causes the compiler to generate information needed by adb(l), the assembly-level
debugger.

4.5.3. o - Redirect the Output File

The name argument after the -o is used as the name of the output file instead of a.out. Its
typical use is to name the compiled program using the root of the file name. Thus:

tutorial% pc -o myprog myprog.p

causes the compiled program to be called myprog.

4.5.4. p and pf - Generate Counters for an Execution Profile

The compiler produces -code which counts the number of times each routine is called. The
profiling is based on a periodic sample taken by the system rather than by inline counters used
by pxp. This results in less degradation in execution, at somewhat of a loss in accuracy. '- p'
causes a mon.out file to be produced for pro/(1) (Q.V.). '-pg' causes a gmon.out file to be pro­
duced for gpro/(l)(Q.V.), a more elaborate profiling tool.

4.5.5. 0 - Run the Object Code Optimizer

The output of the compiler is run through the object code optimizer. This provides an increase
in compile time in exchange for a decrease in compiled code size and execution time.

4.6. Options available in Pxp

Pxp takes, on its command line, a list of options followed by the program file name, which must
end in '.p' as it must for pi, pc, and pix. Pxp will produce an execution profile if any of the z,
t or c options is specified on the command line. If none of these options is specified, then pxp
functions as a program reformatter.

It is important to note that only the• and w options of pxp, which are common to pi, pc, and
pxp can be controlled in comments. All other options must be specified on the command line to
have any effect.

The following options are relevant to profiling with pxp:

4.6.1. a - Include the Bodies of All Routines in the Profile

Pxp normally suppresses printing the bodies of routines which were never executed, to make the
profile more compact. This option forces all routine bodies to be printed.

Revision C of 7 January 1981 4-5

Details on the Components of the System Berkeley Pascal User Manual

4.6.2. d - Suppress Declaration Parts from a Profile

Normally a profile includes declaration parts. Specifying d on the command line suppresses
declaration parts.

4.6.3. e - Eliminate include D~rectives

Normally, pzp preserves include directives to the output when reformatting a program, as
though they were comments. Specifying -e causes the contents o(the specified files to be refor­
matted into the output stream instead. This is an easy way to eliminate include directives, for
example, before transporting a program.

4.6.4. f - Fully Parenthesize Expressions

Normally pzp prints expressions with the minimal parenthesization necessary to preserve the
structure o(the input. This option causes pzp to fully parenthesize expressions. Thus the
statement which prints as

d := a + b mod c / e

with minimal parenthesization, the default, will print as

d := a+ ((b mod c) / e)

with the r option specified on the command line.

4.6.5. j - Left Justify all Procedures and Functions

Normally, each procedure and function body is indented to reflect its static nesting depth.
This option prevents this nesting and can be used if the indented output would be too wide.

4.6.6. t - Print a Table Summarizing Procedure and Function
Calls

The t option causes pzp to print a table summarizing the number o(calls to each procedure
and function in the program. It may be specified in combination with the • option, or
separately.

4.6.7. z - Enable and Control the Profile

The • profile option is very similar to the i listing control option o(pi. l(• is specified on the
command line, then all arguments up to the source file argument which ends in '.p' are taken to
be the names o(procedures and functions or include files which are to be profiled. I(this list
is null, then the whole file is to be profiled. A typical command (or extracting a profile of part
of a large program would be

tutorial% pxp -z teat parser.i compiler.p

4-6 Revision C of 7 January 1984

0

C

0

0

0

0

Berkeley Pascal User Manual Details on the Components of the System

This specifies that profiles of the routines in the file paraer.i and the routine teat are to be
made.

4.7. Formatting programs using pxp

The program p:ip can be used to reformat programs, by using a command of the form

tutorial% pxp dirty .p > clean.p

Note that since the shell creates the output file 'clean.p' before p:ip executes, so 'clean.p' and
'dirty.p' must not be the same file.

P:ip automatically paragraphs the program, performing housekeeping chores such as comment
alignment, and treating blank lines, lines containing exactly one blank and lines containing only
a form-feed character as though they were comments, preserving their vertical spacing effect in
the output. P:ip distinguishes between four kinds of comments:

1. Left marginal comments, beginning in the first column of the input line and are placed in
the first column of an output line.

2. Aligned comments, preceded by no input tokens on the input line are aligned in the output
with the running program text.

3. Trailing comments, preceded in the input line by a token with no more than two spaces
separating the token from the comment.

4. Right marginal comments, preceded in the input line by a token from which they are
separated by at least three spaces or a tab are aligned down the right margin of the output,
currently to the first tab stop after the 40th column from the current "left margin".

Consider the following program.

tutorial% cat comments.p
{ This is a left marginal comment. }
program hello(output);
var i : integer; { This is a trailing comment}
j : integer; {This is a right marginal comment}
k : array [1..10) of array (1..10) of integer; {Marginal, but past the margin}
{

An aligned, multi-line comment
which explains what this program is
all about

}
begin
i := 1; {Trailing i comment}
{ A left marginal comment}
{An aligned comment}

j := 1; {Right marginal comment}
k(l) := 1;
writeln(i, j, k[l))
end.

When formatted by p:ip the following output is produced.

tutorial% pxp comments.p

Revision C of 7 January 1984 4-7

Details on the Components of the System

{ This is a left marginal comment. }

program hello(output);
var

{

}

i: integer; {This is a trailing comment}
j: integer;
k: array [I..10) of array (1..10) of integer;

An aligned, multi-line comment
which explains what this program is
all about

begin
i := l; {Trailing i comment}

Berkeley Pascal User Manual

{This is a right marginal comment}
{Marginal, but past the margin}

{ A left marginal comment} { An aligned comment}
j := l; {Right marginal comment}
k[l] := l;
writeln(i, j, k(l])

end.
tutorial%

The following formatting related options are currently available in pzp. The options f and j
described in the previous section may also be of interest.

4.7.1. s - Strip Comments

The s option causes pzp to remove all comments from the input text.

4.7.2. _- Underline Keywords

A command line argument of the form - _ as in

tutorial% pxp -_dirty.p

can be used to cause pzp to underline all keywords in the output for enhanced readability.

4.7.3. [23456789) - Specify Indenting Unit

The normal unit which pzp uses to indent a structure statement level is 4 spaces. By giving an
argument of the form -d with d a digit, 2 < d < 9 you can specify that d spaces are to be
used per level instead.

4.8. Pxref

The cross-reference program pzre/ may be used to make cross-referenced listings of Pascal pro­
grams. To produce a cross-reference of the program in the file 'foo.p' one can execute the com­
mand:

tutorial% pxref foo.p

4-8 Revision C of 7 January 1984

0

C

0

0

C

0

Berkeley Pascal User Manual Details on the Components of the System

The cross-reference is, unfortunately, not block structured. Full details on pxre/ are given in its
manual section pxre/ (1).

4.9. Multi-file programs

A text inclusion facility is available with Berkeley Pascal. This facility allows the interpolation
of source text from other files into the source stream of the translator. It can be used to divide
large programs into more manageable pieces for ease in editing, listing, and maintenance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place the
character '#' in the first portion of a line and then, after an arbitrary num her of blanks or tabs,
the word 'include' followed by a filename enclosed in single '~ or double '"' quotation marks.
The file name may be followed by a semicolon ';' if you wish to treat this as a pseudo-Pascal
statement. The filenames of included files must end in '.i'. An example of the use of included
files in a main program would be:

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i"
#include "parser.i"
#include • semantics.i"

begin
{ main program }

end.

At the point the include pseudo-statement is encountered in the input, the lines from the
included file are interpolated into the input stream. For the purposes of translation and run­
time diagnostics and statement numbers in the listings and post-mortem backtraces, the lines in
the included file are numbered from 1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in the Option, common to Pi, Pc, and Pix section
above; this can be used to control listing when include files are present.

When a non-trivial line is encountered in the source text after an include finishes, the 'popped'
filename is printed, in the same manner as above.
For the purposes of error diagnostics when not making a listing, the filename is printed before
each diagnostic if the current filename has changed since the last filename was printed.

4.10. Separate Compilation with Pc

A separate compilation facility is provided with the Berkeley Pascal compiler, pc. This facility
allows programs to be divided into a number of files and the pieces to be compiled individually,
to be linked together at some later time. This is especially useful for large programs, where
small changes would otherwise require time-consuming re-compilation of the entire program.

Normally, pc expects to be given entire Pascal programs. However, if given the -c option on
the command line, it will accept a sequence of definitions and declarations, and com pile them
into a .o file, to be linked with a Pascal program at a later time. In order that procedures and
functions be available across separately compiled files, they must be declared with the directive
external. This directive is similar to the directive forward in that it must precede the

Revision C of 7 January 1984 4-9

Details on the Components of the System Berkeley Pascal User Manual

resolution of the function or procedure, and formal parameters and function result types must
be specified at the external declaration and may not be specified at the resolution.

Type checking is performed across separately compiled files. Since Pascal type defintions define
unique types, any types which are shared between separately compiled files must be the same
definition. This seemingly impossible problem is solved using a facility similar to the include
facility discussed above. Definitions may be placed in files with the extension .h and the files
included by separately compiled files. Each definition from a .h file defines a unique type, and
all uses of a definition from the same .h file define the same type. Similarly, the facility is
extended to allow the definition of consts and the declaration of labels, vars, and external
functions and procedures. Thus procedures and functions which are used between
separately compiled files must be declared external, and must be so declared in a ,h file
included by any file which calls or resolves the function or procedure. Conversely, functions
and procedures declared external may only be so declared in .h files. These files may be
included only at the outermost level, and thus define or declare global objects. Note that since
only external function and procedure declarations (and not resolutions) are allowed in .h
files, statically nested functions and procedures can not be declared external.

An example of the use of included .h files in a program would be:

program compiler(input, output, obj);

#include "globals.h"
#include "scanner.h"
#include "parser.h"
#include "semantics.h"

begin
{ main program }

end.

This might include in the main program the definitions and declarations of all the global labels,
consts, types vars from the file globals.h, and the external function and procedure declar&­
tions for each of the separately compiled files for the scanner, parser and semantics. The header
file acanner.h would contain declarations of the form:

4-10

t;ype
token = record

{ token fields }
end;

function scan(var inputfile: text): token;
external;

Revision C of 7 January 1984

0

0

0

0

0

Berkeley Pascal User Manual Details on the Components of the System

Then the scanner might be in a separately compiled file containing:

#include "globals.h"
#include "scanner.h"

function scan;
begin

{ scanner code }
end;

which includes the same global definitions and declarations and resolves the scanner functions
and procedures declared external in the file scanner.h.

Revision.C of 7 January 1984 4-11

0

0

0

0

0

0

Appendix A

Appendix to Jensen and Wirth Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth 's Paa cal
Report and, with that Report, precisely defines the Berkeley implementation. This appendix
includes a summary of extensions to the language, gives the ways in which the undefined
specifications were resolved, gives limitations and restrictions of the current implementation,
and lists the added functions and procedures available.

A.1. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The II stan­
dard Pascal option of the translators pi and pc can be used to detect these extensions in pro­
grams which are to be transported.

A.1.1. String padding

Berkeley Pascal will pad constant strings with blanks in expressions and as value parameters to
make them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed arr&)' [1 .. 13] of char;
begin

z := 'red';
writeln(z)

end;

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z := 'red

which is standard Pascal.

A.1.2. Octal constants, octal and hexadecimal write

Octal constants may be given as a sequence of octal digits followed by the character 'b' or 'B'.
The forms

write(a:n oct)

Revision C of 7 January 1984 A-1

Appendix to Jensen and Wirth Pascal Report Berkeley Pascal User Manual

and

write(a:n hex)

cause the internal representation of expression a, which must be Boolean, character, integer,
pointer, or a user-defined enumerated type, to be written in octal or hexadecimal respectively.

A.1.3. Assert statement

An assert statement causes a Boolean expression to be evaluated each time the statement is
executed. A runtime error results if any of the expressions evaluates to be falae. The assert
statement is treated as a comment if run-time tests are disabled. The syntax for anert is:

assert <expr>

A.1.4. Enumerated type input-output

Enumerated types may be read and written. On output the string name associated with the
enumerated value is output. If the value is out of range, a runtime error occurs. On input an
identifier is read and looked up in a table. of names associated with the type of the variable, and
the appropriate internal value is assigned to the variable being read. If the name is not found
in the table a runtime error occurs.

A.1.5. Structure returning functions

An extension has been added which allows functions to return arbitrary sized structures rather
than just scalars as in the standard.

A.1.6. Separate compilation

The compiler pc has been extended to allow separate compilation of programs. Procedures and
functions declared at the global level may be compiled separately. Type checking of calls to
separately compiled routines is performed at load time to insure that the program as a whole is
consistent. See the section Separate compilation wit/a Pc, above, for details.

A.2. Resolution of the undefined specifications

A.2.1. File name - file variable associations

Each Pascal file variable is associated with a named UNIX file. Except for input and output,
which are exceptions to some of the rules, a name can become associated with a file in any of
three ways:

1. If a global Pascal file variable appears in the program statement then it is associated with
UNIX file of the same name.

A-2 Revision C of 7 January 1984

0

C

0

0

0

0

Berkeley Pascal User Manual Appendix to Jensen and Wirth Pascal Report

2. If a file was reset or rewritten using the extended two-argument form of read or rewrite
then the given name. is associated.

3. If a file which has never had UNIX name associated is reset or rewritten without specifying a
name via the second argument, then a temporary name of the form 'tmp.x' is associated
with the file. Temporary names start with 'tmp.l' and continue by incrementing the last
character in the USASCil ordering. Temporary files are removed automatically when their
scope is exited.

A.2.2. The program statement

The syntax of the program statement is:

program <id> (<file id> { , <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in
the global declaration part.

A.2.3. The files input and output

The formal parameters input and output are associated with the UNlX standard input and out­
put and have a somewhat special status. The following rules must be noted:

1. The program heading must contains the formal parameter output. If input is used, expli­
citly or implicitly, then it must also be declared here.

2. Unlike all other files, the Pascal files input and output must not be defined in a declaration,
as their declaration is automatically:

var input, output: text

3. The procedure reaet may be used on input. If no UNlX file name has ever been associated
with input, and no file name is given, then an attempt will be made to 'rewind' input. If
this fails, a run time error will occur. Rewrite calls to output act as for any other file,
except that output initially has no associated file. This means that a simple

rewrite(output)

associates a temporary name with output.

A.2.4. Details for files

If a file other than input is to be read, then reading must be initiated by a call to the procedure
reael which causes the Pascal system to attempt to open the associated UNlX file for reading. If
this fails, then a runtime error occurs. Writing of a file other than output must be initiated by
a rewrite call, which causes the Pascal system to create the associated UNlX file and to then
open the file for writing only.

Revision C of 7 January 1984 A-3

Appendix to Jensen and Wirth Pascal Report Berkeley Pascal User Manual

A.2.5. Buffering

The buffering for output is determined by the value of the b option at the end of the program 0
statement. Ir it has its default value 1, then output is buffered in blocks of up to 512 charac-
ters, flushed whenever a writeln occurs and at each reference to the file input. Ir it has the value
0, output is unbuffered. Any value of 2 or more gives block buffering without line or input
reference flushing. All other output files are always buffered in blocks of 512 characters. All
output buffers are flushed when the files are closed at scope exit, whenever the procedure me,-
aage is called, and can be flushed using the built-in procedure Jlu,h. ·

An important point for an interactive implementation is the definition of 'inputf'. Ir input is a
teletype, and the Pascal system reads a character at the beginning of execution to define
'inputt', then no prompt could be printed by the program before the user is required to type
some input. For this reason, 'inputt' is not defined by the system until its definition is needed,
reading from a file occurring only when necessary.

A.2.6. The character set

Seven bit USASCil is the character set used on UNIX. The standard Pascal symbols 'and', 'or',
'not', '<=', '>=','<>',and the uparrow 'l' (for pointer qualification) are recognized.t Less
portable are the synonyms tilde ,-, for not, '&' for and, and 'I' for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure and
function names are composed of all lower case letters. Thus the identifiers GOTO and GOto
are distinct both from each other and from the keyword goto. The standard type 'boolean' is
also available as 'Boolean'.

Character strings and constants may be delimited by the character M or by the character '#'; 0
the latter is sometimes convenient when programs are to be transported. Note that the '#'
character has special meaning when it is the first character on a line - see Multi-file program,
below.

A.2.7. The standard types

The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of type
integer are:

cQnst maxint = 2147483647; minint = -2147483648;

The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are 'minchar' and 'maxchar', 'bell' and 'tab'; ord(minchar) = O,

tOn many terminals and printers, the up arrow is represented as a circumflex , .. , • These are not
distinct characters, but rather different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

A-4 Revision C of 7 January 1984

0

0

0

0

Berkeley Pascal User Manual Appendix to Jensen and Wirth Pascal Report

ord(maxchar) = 127.
The type real is implemented using 64 bit floating point arithmetic. The floating point arith­
metic is done in 'rounded' mode, and provides approximately 15 digits of precision with
numbers as small as 10 to the negative 308th power and as large as 10 to the 308th power.

A.2.8. Comments

Comments can be delimited by either'{' and'}' or by '(•'and'•)'. If the character'{' appears
in a comment delimited by '{' and '}', a warning diagnostic is printed. A similar warning will
be printed if the. sequence '(•' appears in a comment delimited by '(•' and '•)'. The restriction
implied by this warning is not part of standard Pascal, but detects many otherwise subtle
errors.

A.2.9. Option control

Options of the translators may be controlled in two distinct ways. A number of options may
appear on the command line invoking the translator. These options are given as one or more
strings of letters preceded by the character '-' and cause the default setting of each given option
to be changed. This method of communication of options is expected to predominate for UNIX.
Thus the command

tutorial% pi -1-e foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only
standard Pascal features available.
If more control over the portions of the program where options are enabled is required, then
option control in comments can and should be used. One places the character 'S' as the first
character of the comment and follows it by a comma separated list of directives. Thus an
equivalent to the command line example given above would be:

{SI+ ,s+ listing on, standard Pascal}

as the first line of the program. The 'I' option is more appropriately specified on the command
line, since it is extremely unlikely in an interactive environment that one wants a listing of the
program each time it is translated.
Directives consist of a letter designating the option, followed either by a '+' to turn the option
on, or by a '-' to tum the option off. The b option takes a single digit instead of a'+' or'-'.

A.2.10. Notes on the listings

The first page of a listing includes a banner line indicating the version and date of generation of
pi or pc. It also includes the UNIX path name supplied for the source file and the date of last
modification of that file.
Within the body of the listing, lines are numbered consecutively and correspond to the line
numbers for the editor. Currently, two special kinds of lines may be used to format the listing:
a line consisting of a form-feed character, control-I, which causes a page eject in the listing, and
a line with no characters which causes the line number to be suppressed in the listing, creating a
truly blank line. These lines thus correspond to 'eject' and 'space' macros found in many

Revision C of 7 January 1984 A·,5

Appendix to Jensen and Wirth Pascal Report Berkeley Pascal User Manual

assemblers. Non-printing characters are printed as the character '!' in the listing. t

A.2.11. The standard procedure write

Ir no minimum field length parameter is specified for a write, the following default values are
assumed:

integer
real
Boolean
char
string
oct
hex

10
22

length of 'true' or •raise'
I

length of the string
11
8

The end or each line in a text file should be explicitly indicated by 'writeln(f)', where
'writeln(output)' may be written simply as 'writeln'. For UNIX, the built-in function 'page(f)'
puts a single ASCII Corm-feed character on the output file. For programs which are to be tran­
sported the filter pee can be used to interpret carriage control, as UNIX does not normally do so.

A.3. Restrictions and limitations

A.3.1. Files

Files cannot be members or files or members of dynamically allocated structures.

A.3.2. Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arithmetic.
This restricts the types over which arrays and sets may be defined. The lower bound of such a
range must be greater than or equal to -32768, and the upper bound less than 32768. In partic­
ular, strings may have any length from I to 65535 characters, and sets may contain no more
than 65535 elements.

A.3.3. Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be distinct if
they differ in any single position over their entire length. There is a limit, however, on the max­
imum input line length. This limit is quite generous however, currently exceeding 160 charac­
ters.

fThe character generated by a control-i indents to the next 'tab stop'. Tab stops are set every 8
columns in UNIX. Tabs thus provide a quick way or indenting in the program.

A-6 Revision C of 7 January 1984

C

C

0

0

0

0

Berkeley Pascal User Manual Appendix to Jensen and Wirth Pascal Report

A.3.4. Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamental,
translator defined limit on the size of the program which can be translated. The ultimate limit
is supplied by the address space. If one runs up against the 'ran out of memory' diagnostic the
program may yet translate if smaller procedures are used, as a lot of space is freed by the trans­
lator at the completion of each procedure or function in the current implementation.

On the VAX-11, there is an implementation defined limit of 65536 bytes per variable. There is
no limit on the number of variables.

A.3.5. Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the PDP-11
or Sun. Overflow checking is performed on theVAX-11 by the hardware.

A.4. Added types, operators, procedures and functions

A.4.1. Additional predefined types

The type alfa is predefined as:

type alfa = packed array [1 .. 10) of char

The type int,et is predefined as:

type intset = Bet of 0 .. 127

In most cases the context of an expression involving a constant set allows the translator to
determine the type o' the set, even though the constant set itself may not uniquely determine
this type. In the cases where it is not possible to determine the type of the set from local con­
text, the expression type defaults to a set over the entire base type unless the base type is
integert. In the latter case the type defaults to the current binding of int,et, which must be
''type set of (a subrange of) integer" at that point.

Note that if int,et is redefined via:

type intset = set of 0 .. 58;

then the default integer set is the implicit int.et.

A.4.2. Additional predefined operators

The relationals '<'and'>' of proper set inclusion are available. With a and b sets, note that

(not (a< b)) <>(a>= b)

fThe current translator makes a special case of the construct 'if ... in [...) ' and enforces only the
more Ju restriction on 18 bit arithmetic given above in this case.

Revision C of 7 January 1984 A-7

Appendix to Jensen and Wuth Pascal Report Berkeley Pascal User Manual

As an example consider the sets a = (0,2) and I> = (1). The only relation true between these
sets is'<>'. 0
A.4.3. Non-standard procedures

argv(i,a)

date(a)

flush(().

halt

linelimit(r,x)t

message(x, ...)

null

remove(a)

reset(f,a)

rewrite(f,a)

stlimit(i)

time(a)

where i is an integer and fl is a string variable assigns the (possibly trun­
cated or blank padded) i 'th argument of the invocation of the current
UNIX process to the variable a. The range of valid i is O to flrge-1.

assigns the current date to the alfa variable fl in the format 'dd mmm yy
', where 'mmm' is the first three characters of the month, i.e. 'Apr'.

writes the output buffered for Pascal file/ into the associated UNIX file.

terminates the execution of the program with a control flow backtrace.

with / a textfile and :r an integer expression causes the program to be
abnormally terminated if more than :r lines are written on file /. If :r is
less than O then no limit is imposed.

causes the parameters, which have the format of those to the built-in
procedure write, to be written unbuffered on the diagnostic unit 2,
almost always the user's terminal.

a procedure of no arguments which does absolutely nothing. It is useful
as a place holder, and is generated by pzp in place of the invisible empty
statement.

where a is a string causes the UNIX file whose name is fl, with trailing
blanks eliminated, to be removed.

where a is a string causes the file whose name is a (with blanks trimmed)
to be associated with / in addition to the normal function of ruet.

is analogous to 'reset' above.

where i is an integer sets the statement limit to be i statements. Speci­
fying the p option to pc disables statement limit counting.

causes the current time in the form ' hh:mm:ss ' to be assigned to the
alfa variable a.

A.4.4. Non-standard functions

argc

card(x)

clock

expo(x)

returns the count of arguments when the Pascal program was invoked.
A rgc is always at least 1.

returns the cardinality of the set :i, i.e. the num her of elements contained
in the set.

returns an integer which is the number of central processor milliseconds
of user time used by this process.

yields the integer valued exponent of the floating-point representation of
z; expo(:i) = entier(log2(abs(z))).

tCurrently ignored by pdp-11 pz.

A-8 Revision C of 7 January 1984

0

0

0

0

0

Berkeley Pascal User Manual Appendix to Jensen and Wirth Pascal Report

random(x)

seed(i)

sysclock

undefined(x)

wallclock

where :, is a real parameter, evaluated but otherwise ignored, invokes a
linear congruential random number generator. Successive seeds are gen­
erated as (seed•a + c) mod m and the new random number is a normali­
zation of the seed to the range 0.0 to 1.0; a is 62605, c is 113218009, and
m is 536870912. The initial seed is 7774755.

where i is an integer sets the random number generator seed to i and
returns the previous seed. Thus seed(seed(i)) has no effect except to yield
value i.
an integer function of no arguments returns the number of central pro­
cessor milliseconds of system time used by this process.

a Boolean function. Its argument is a real number and it always returns
false.
an integer function of no arguments returns the time in seconds since
00:00:00 GMT January 1, 1970.

Revision C of 7 January 1984 A-9

0

0

0

0

0

0

0

•

0

