Part Number 800-1113-01
Revision: D of 7th January 1984
For: Sun System Release 1.1

Programming Tools
for the
Sun Workstation

Sun Microsystems, Inc.,
2550 Garcia Avenue
Mountain View
California 94043
(415) 960-1300

Credits and Acknowledgements

The chapters of this manual were originally derived from the work of many people at Bell
Laboratories, University of California at Berkeley, and other noble institutions. Their names
and the titles of the original works appear here.

Shell Programming
was derived from the papers An Introduction to the UNIX Shell, by S. R. Bourne, Bell
Laboratories, Murray Hill, New Jersey, and An Introduction to the C Shell, by William Joy,
University of California at Berkeley.

UNIX Programming
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lint, ¢ C Program Checker
by S. C. Johnson, Bell Laboratories, Murray Hill, New Jersey.
Make — A Program for Maintaining Computer Programs
by S. 1. Feldman, Bell Laboratories, Murray Hill, New Jersey.
DC — An Interactive Desk Calculator
by Robert Morris and Lorinda Cherry, Beil Laboratories, Murray Hill, New Jersey.
BC — An Arbitrary Precision Desk-Calculator Language
by Lorinda Cherry and Robert Morris, Bell Laboratories, Murray Hill, New Jersey.

The M§ Macro Processor
by Brian W. Kernighan and Dennis M. Ritchie, Bell Laboratories, Murray Hill, New Jersey.

Lez — A Lexical Analyzer Generator
by M. E. Lesk and E. Schmidt, Bell Laboratories, Murray Hill, New Jersey.

Yace -— Yet Another Compiler-Compiler
by Stephen C. Johnson, Bell Laboratories, Murray Hill, New Jersey.

Source Code Control System User’s Guide
by L. E. Bonanni and C. A. Salemi, Bell Laboratories, Piscataway, New Jersey.

Source Code Control System
by Eric Allman, Formerly of Project Ingres, University of California at Berkeley.

Assembler Reference Manual for the Sun Workstation
started life as an edited version of the MICAL Manual for the Intel 8080, written by Mike
Patrick; transformed by James L. Gula and Thomas J. Teixeira, March 1980; revised by
Henry McGilton at Unisoft Systems of Berkeley Corporation during March 1982; rewritten
by Henry McGilton and Richard Tuck, of Sun Microsystems, during October and November
1982, .

.-

PROGRAMMING TOOLS

Contents

This is a list of the major sections in this manual. There is a detailed table-of-contents at the
start of each paper.

e Programming the Shells
¢ UNIX Programming

Lint, a C Program Checker

e Make — A Program for Maintaining Computer Programs
e Source Code Control System

e DC — An Interactive Desk Calculator

e BC — An Arbitrary Precision Desk-Calculator Language
e The M4 Macro Processor

o Lex — A Lexical Analyzer Generator

o Yacc — Yet Another Compiler-Compiler

o Assembler Reference Manual for the Sun Workstation

Table of Contents

Programming the Shells

Part | — Programming the C Shell ...

1. Invocation and the Argv Variable

2. Variable Substitution

3. Expressions ...

4. Sample Shell Seript

B. Other Control Structures ..

8. Supplying Input to Commands ...

7. Catching Interrupts with ‘onintr’ ...

8. Other C-Shell Features

8.1. Loops at the Terminal and Variables as Vectors

8.2. Command Substitution ...

9. Special Characters ...

Part Il — Programming the Bourne Shell

10. Control Flow — for

11. Control Flow — case

13. Here Documentso

13. Shell Variables ..o

14. The ‘test’ Command ___.....oooomicneenncnnan

10

12

12

13

14

16

17

15.
18.
17.
18.
19.
20.
21.
23,
23,
24.
25.
20.
27.
28,
29.

30.

Control Flow — while

Control Flow — if

Command Grouping ..o

Debugging Shell Procedures ...

The ‘man’ Command

Keyword Parameters ...

Parameter Transmission . oo ——

Parameter Substitution

Command Substitution _.

..

Evaluation and Quoting ...

Error Handling ...

Fault Handling

Command Execution .

Calling the Shell

Grammar ...

......................

..

17

18

30

21

23

24

a7

31

Trademarks

Multibus is a trademark of Intel Corporation.
Sun Workstaticn is a trademark of Sun Microsystems Incorporated.

UNIX is a trademark of Bell Laboratories.

Copyright © 1983 by Sun Microsystems.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

— iii -

Revision History

Comments

Revision Date
A 15th July 1983 First release of this Manual.
B 15th August 1983 Second Release of this manual entailed a complete reorganiza-
tion and some rewriting of the individual articles.
C 1st November 1983 | Third Release of this manual entailed minor corrections and
updates.
D 7th January 1984 Added chapter on Shell Programming. Added chapter on

ADB. Many minor corrections and updates.

—iv -

O

Programming the Shells

F

You can put programs in files called Shell scripts, and then call up the Shells to read and exe-
cute the commands from these files.

Understand that Shell scripts do not serve the same function as the make program. Make pro-
gram is very useful for maintaining a group of related files or performing sets of operations on
related files. For instance, a large program consisting of one or more files can have its depen-
dencies described in a makefile, which contains definitions of the commands used to create these
different files when changes occur. Definitions for printing listings, cleaning up the directory in
which the files reside, and installing the resultant programs are easily, and most appropriately
placed in this makefile. Using a makefile is superior to maintaining a group of Shell procedures
to update these files. Similarly when working on a document, you can create a makefile, which
defines how different versions of the document are to be created and which options of nroff or
troff are appropriate.

When you have a file full of Shell commands and you simply type the name of that file as a

command, the system looks at the very first line of that file to decide which Shell should run

the script:

o If the first line does not start with a # (hash sign), the system uses the Bourne Shell to run
the script.

o If the first line starts with a # (hash sign) and is not followed by a ! (exclamation mark), the
system uses the C-Shell to run the script.

e Finally, if the first line of the Shell script starts with a #! combination and is followed
 immediately by a name, the system looks for a program of that name to run the Shell script.

Revision D of 7 January 1984 ‘ 1

Programming the C Shell Programming Tools

Part I — Programming the C Shell

This section details C-Shell features useful for writing Shell scripts.

1. Invocation and the Argv Variable

A csh command script may be interpreted by saying:

tutorial% csh script ...
tutorial%

where script is the name of the file containing a group of csh commands and ...’ is replaced by a
sequence of arguments. The Shell places these arguments in the variable arge and then begins
to read commands from the script. These parameters are available through the same mechan-
isms used to refer to any other Shell variables.

If you make the file script executable by changing its permissions with the chAmod command:
tutorial% chmod 755 script
tutorial%
and place a Shell comment at the beginning of the Shell script, that is, begin the file with a ‘#'
character, [bin/csh will then automatically be called to execute acript when you type:
tutorial% script
tutorial%

If the file does not begin with a ‘#’, then the standard Shell [bin/sh executes it. Thus, you can
convert your older Shell scripts to use csh at your convenience.

2. Variable Substitution

After each input line is broken into words and history substitutions are applied, the input line is
parsed into distinct commands. Before each command is executed, the variable subststution
mechanism is applied on these words. Keyed by the character ‘$’, this substitution replaces the
names of variables with their values. Thus, if you place:

echo $argv

in a command script, the current value of the variable argv is echoed to the output of the Shell
script. It is an error for argy to be unset at this point.

A number of notations are available for accessing components and variable attributes. The
notation:

$’name

2 Revision D of 7 January 1984

O

Programming Tools Programming the C Shell

expands to ‘1’ if name is set or to ‘0’ if name is not set. This is the fundamental mechanism
used for checking whether particular variables have been assigned values. All other forms of
reference to undefined variables cause errors.

The notation
$#name
expands to the number of elements in the variable name: Thus

tutorial% set argv=(a b c)
tutorial% echo $?argv
1

tutorial% echo $#argv
3

tutorial% unset argv
tutorial% echo $?argv
0

tutorial% echo $argv
Undefined variable: argv.
tutorial%

It is also possible to access the components of a variable that has several values. To get the
first component of argv or in the example above ‘a’, use:

$argv(l]
Similarly to get ‘c’, use:
$argv{$#argv]
and to get ‘a b’, use:
$argv(1-2]
Qther notations useful in Shell scripts are:
$n
where n is an integer as a shorthand for
$argv(n]
the nth parameter and
$»
which is a shorthand for
- $argv
To expand to the process number of the current Shell, use the form:
$$

Since this process number is urique in the system, it can be used in generation of unique tem-
porary file names. The form

$<

is quite special and is replaced by the next line of input read from the Shell's standard input
(not the script it is reading). Use this for writing Shell scripts that are interactive, reading com-
mands from the termiral, or even writing a Shell script that acts as a filter, reading lines from

Revision D of 7 January 1984 3

Programming the C Shell Programming Tools

its input fille. Thus to write out the prompt ‘yes or no!’ without a newline and then read the
answer into the variable ‘a’, use:

echo 'yes or no?\¢’

set a=($<)
In this case ‘$#a’ would be ‘0’ if either a blank line or end-of-file ("D) was typed.

Note one minor difference between ‘$n’ and ‘$argv[n]’. The form ‘$argv(n] yields an error if n
is not in the range ‘1-$#fargv’, while ‘$n’ never yields an out of range subscript error. This is
for compatibility with the way older Shells handled parameters.

Another important point is that it is never an error to give a subrange of the form ‘n-’; if there -

are less than n components of the given variable then no words are substituted. A range of the
form ‘m-n’ likewise returns an empty vector without giving an error when m exceeds the
number of elements of the given variable, provided the subscript n is in range.

3. Expressions

To construct interesting Shell scripts, it must be possible to evaluate expressions in the Shell
based on the values of variables. In fact, all the arithmetic operations of the C language are
available in the Shell with the same precedence that they have in C. In particular, the opera-
tions ‘===' and ‘!==' compare strings, and the operators ‘&&’ and ‘| |' implement the boolean
and/or operations. The special operators ‘=="" and ‘1"’ are similar to ‘====’ and ‘I==' except
that the string on the right side can have pattern-matching characters (like +, ? or []), and the
test is whether the string on the left matches the pattern on the right.

The Shell also allows file enquiries of the form:
-! filename
where ‘" is replaced by a number of single characters. For instance, the expression primitive:

—¢ filename

tells whether the file filename exists. Other primitives test for read, write and execute access to
the file, whether it is a directory, or has non-zero length.

It is possible to test whether a command terminates normally, by a primitive of the form ‘{
command }'. This primitive returns true, that is ‘', if the command exits normally with exit
status 0, or ‘0’ if the command terminates abnormally or with exit status non-zero. If more
detailed information about the execution status of a command is required, it can be executed
and the variable ‘$status’ examined in the next command. Since every command sets ‘$status’,
it is very transient. It can be saved if it is inconvenient to use it only in the single immediately
following command.

For a full list of expression components available, see the user’s manual section on the C-Shell.

4. Sample Shell Script

A sample Shell script that uses the Shell expression mechanism and some of its control structure
follows:

4 Revision D of 7 January 1984

O

Prozramming Tools - Programming the C Shell

tutorial% cat copye

#

Copyc copies those C programs in the specified list
to the dlrect.ory ~ [backup if they differ from the files
already in ~ /backup

#

set noglob

foreach i ($argv)

if ($i 1" *.c) continue # not a .c file so do nothing

if (! -r " /backup/$i:t) then
echo $i:t not in backup... not cp\’‘ed
continue

endif
cmp -3 $i ~/backup/$i:t # to set $status

if ($status = 0) then
echo new backup of $i
cp $i " /backup/$i:t
endif
end

This script uses the foreach command, which causes the Shell to execute the commands between
the foreach and the matching end for each of the values given between (" and ‘) with the
named variable, in this case ‘i’ set to successive values in the list. Within this loop you may use
the command break to stop executing the loop and continue to prematurely terminate one itera-
tion and begin the next. After the foreach loop, the iteration variable (s in this case) has the
value at the last iteration.

We set the variable noglob here to prevent filename expansion of the members of argv. Thisis a
good idea, in general, if the arguments to a Shell script are filenames that have already been
expanded or if the arguments may contain filename expansion metacharacters. It is also possi-
ble to quote each use of a ‘$’ variable expansion, but this is harder and less reliable.

The other control construct used here is a statement of the form:
if (expression) then
command

endifm

The placement of the keywords here is not flexible due to the current implementation of the
Shell.$

{The Shell does not accept the following two formats:

if (expression } ¢ Won't work!
then

command
endif

Revision D of 7 January 1984 5

Programming the C Shell Programming Tools

The Shell does have another form of the if statement of the form:
if (expression } command
which can be written

if (expression) \
command

Here you escape the newline for the sake of appearance. The command must not involve *|’,
‘&’ or *;’ and must not be another control command. The second form requires the final ‘\’ to
immediately precede the end-of-line.

The more general if statements above also admit a sequencé of else-if pairs followed by a single
else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else -
commands

endif

Use the *' modifier in Shell scripts, for instance in the modifier “r’' to extract a root of a
filename or ‘:¢’ to extract the eztension. Thus if the variable ¢ has the value /mnt/foo.bar, then:

tutorial% echo $i $i:r $ize
Jmnt/foo.bar /mnt/foo bar
tutorial%%

shows how the ‘r’ modifier strips off the trailing ‘.bar’, and the ‘¢’ modifier leaves only the
‘bar’. Other modifiers take off the last component of a pathname leaving the head “:h’ or all bat
the last component of a pathname leaving the tail “:t’, See the csh pages in the user’s manual
for a full description of these modifiers.

It is also possible to use the command substitution mechanism to perform modifications on
strings to then re-enter the Shell’s environment. Since calling this mechanism creates a new
process each time, it is much more expensive to use than the ‘.’ modification mechanism.#

Finally, note that the character ‘#’ lexically introduces a Shell comment in Shell scripts, but
not from the terminal. The Shell discards all subsequent characters on the input line after a
‘4. Quote this character using '” or ‘\’ to place it in an argement word.

and

if (expression) then command endif # Won't work
#Note that the current implementation of the Shell limits the number of ¢’ modifiers on 3 ‘§’ sub-
stitution to 1. Thus:

tutorial% echo $i $i:h:t

[afbfc [a/bt

tutorial%

does not do what one mght expect.

6 Revision D of 7 January 1984

©

Programming Tools Programming the C Shell

5. Other Control Structures

The Shell also has control structures while and switch similar to those of C. These take the
forms:

while (expression)
commands
end

and
switch (word)

case strl:
commands
bresksw

.es

case strn:
commands
breaksw

default:
commands
breaksw

endsw

See the user’s manual pages on csh for details. C programmers should note that breaksw exits
from a switch, while break exits a while or foreach loop. Do not make the common mistake in
csh scripts of using break instead of breaksw in switches.

Finally, csb allows a goto statement, with labels looking like they do in C, that is:

loop:
commands
goto loop

6. Supplying Input to Commands

Commands run from Shell seripts receive by default the standard input of the Shell that is run-
ning the script. This is different from previous Shells running under UNIX. It allows Shell scripts
to participate fully in pipelines, but mandates extra notation for commands which are to take
inline data.

Thus use a metanotation for supplying inline data to commands in Shell scripts. As an exam-
ple, consider this script which runs the editor to delete leading blanks from the lines in each
argument file: ‘

Revision D of 7 January 1984 7

Programming the C Shell Programming Tools

tutorial% cat deblank

deblank — remove leading blanks
foreach i ($argv)

ed - $i << EOF’

1,8s/1[]¢//

w

q

‘EOF’
end
tutorial%

The notation ‘< < ‘EOF ” means that the standard input for the ed command is to come from
the text in the Shell script file up to the next line consisting of exactly ‘‘EOF ”. The fact that
the ‘EOF’ is enclosed in ‘” characters, that is quoted, prevents the Shell from performing var-
able substitution on the intervening lines. In general, the Shell uses ‘< <' to terminate the text
to be given to the command. If any part of the word following the ‘< <’ is quoted, these sub-
stitutions are not performed. In this case, since you used the form ‘1,$' in your editor script,
you needed to insure that this ‘$’' was not variable substituted. You can also insure this by
preceding the ‘$’ here with a ‘\’, for instance:

L\Ss/t[]+//

but quoting the ‘EOF’ terminator is a more reliable way of achieving the same thing.

7. Catching Interrupts with ‘onintr’

If your Shell script creates temporary files, you may wish to catch the Shell script interruptions
80 you can clean up these files. You can then use onintr as follows:

onintr label

where label is a label in your program. If the Shell receives an interrupt, it does a ‘goto label,
and you can remove the temporary files and then do an ezit command (which is built in to the
Shell) to exit from the Shell script. If you wish to exit with a non-zero status, do the following:

exit{1)
that is, to exit with status ‘1,

Briefly, there are other Shell features that are useful for writing Shell procedures. You can use
the verbose and echo options and the related —v and —x command line options to help trace the
actions of the Shell. The —n option causes the Shell only to read commands and not to execute
them.

Also note that csh only executes Shell scripts that begin with the character ‘#’, that is, Shell
scripts that begin with a comment (assuming that another Shell was not specified via the !
mechanism). Similarly, the /bin/sh on your system may well defer to csh to interpret Shell
scripts which begin with ‘J'. This allows Shell scripts for both Shells to live in harmony.

There is also another quotation mechanism using ‘"’ that allows only some of the expan'aion
mechanisms to occur on the quoted string and makes this string into a single word as *” does.

8 Revision D of 7 January 1984

Programming Tools Programming the C Shell

8. Other C-Shell Features

This section describes other less commonly used C-Shell features.

8.1. Loops at the Terminal and Variables as Vectors

The foreach control structure aids in performing a number of similar commands. For instance,
there were at one point three Shells in use on the Cory UNIX system at Cory Hall, [bin/sh,
Jbin/nsh, and /bin/csh. To count the number of persons using each Shell, you can say:

tutorial% grep —c csh$ /etc/passwd
27

tutorial% grep —c nsh$ [etc/passwd
128

tutorial% grep —c —v sh$ Jetc/passwd
430

tutorial%

Since these commands are very similar, you can use foreach to do this more easily.

tutorial% foreach i (‘'sh$’ ‘csh$” v sh$’)
? grep — $i [etc/passwd

? end

27

128

430

tutorial%

Note here that the Shell prompts for input with ‘? * when reading the body of the loop.

Variables that contain lists of filenames or other words are very useful with loops. You can, for
example, do:

tutorial% set a==("ls")
tutorial% echo $a
¢sh.n cshorm

tutorial% Is

csh.n

csh.rm

tutorial%% echo $#a

2

tutorial%

The set command here gave the variable a a list of all the filenames in the current directory as
value. You can then iterate over these names to perform any chosen function.

The Shell converts the output of a command within ‘** characters to a list of words. You can
also place the ** quoted string within ' characters to take each {non-empty) line as a com-
ponent of the variable, preventing the lines from being split into words at blanks and tabs. Use
a modifier “x’ later to expand each component of the variable into another variable, splitting it
into separate words at embedded blanks and tabs.

Revision D of 7 January 1984 0

Programming the C Shell Programming 1'cols -

8.2. Command Substitution

A command enclosed in **' characters is replaced, just before filenames are expanded, by the
output from that command. Thus, to save the current directory in the variable pwd, say:

set pwd="pwd"
Or to run the ez editor, say:
ex ‘grep -1 TRACE ».¢’

This uses those files whose names end in ‘.c’, which have the string ‘TRACE’ in them as argu-

ments.*

In particular circumstances, you may need to know the exact nature and order of different sub-
stitutions that the Shell performs and the exact meaning of certain combinations of quotations.
Moreover, the Shell has a number of command line option flags used mostly in writing UNIX pro-
grams and debugging Shell scripts. See the user’s manual section on csh and A for details.

9. Special Characters

The following table lists the special csh and UNIX system characters. A number of these charac-
ters also have special meaning in expressions. See the coh manual section for a complete list.

Syntactic Metacharacters

separates commands to be executed sequentially
separates commands in a pipeline
) brackets expressions and variable values
& follows commands to be executed without waiting for completion

p— a— -

Filename Metacharacters

/ separates components of a file's pathname

? expansion character matching any single character

* expansion character matching any sequence of characters

{1 expansion sequence matching any single character from a set

- used at the beginning of a filename to indicate home directories
{} used to specify groups of arguments with common parts

Quotation Metacharacters

\ prevents meta-meaning of following single character
: prevents meta-meaning of a group of characters

r like ‘, but allows variable and command expansion

Input/output Metacharacters

< indicates redirected input
> indicates redirected output

Expansion/substitution Metacharacters

Command expansion also occurs in input redirected with ‘<<’ and within “’ quotations. Refer
to the user's manual for full details.

10 Revision D of 7 January 1984

o

O

Programming Tools Programming the C Shell

3 indicates variable substitution
! indicates history substitution
: precedes substitution modifiers
t _ used in special forms of history substitution

indicates command substitution

Other Metacharacters

begins scratch file names; indicates Shell comments
- prefixes option (flag) arguments to commands
% prefixes job name specifications

Revision D of 7 January 1984 11

Programming the Bourne Shell Programming Tools

Part II — Programming the Bourne Shell

10. Control Flow — for

A frequent use of Shell procedures is to loop through the arguments ($1, $3, ...} executing com-
mands once for each argument. An example of such a procedure is fel that searches the file
[usr/lib] telnos that contains lines of the form

fred mh0123
bert mh0789

The text of telis

for i
do grep $i fusr/libftelnos; done

The command

tutorial$ tel fred
displays those lines in [usr/lib/ telnos that contain the string fred. To display those lines con-
taining fred followed by those for bert, type:

tutorial$ tel fred bert
The for loop notation is recognized by the Shell and has the general form

for name in w!l w?...
do command-lsst
done

A command-list i3 a sequence of one or more simple commands separated or terminated by a
newline or semicolon. Furthermore, reserved words like do and done are only recognized fol-
lowing a newline or semicolon. Name is a Shell variable that is set to the words wl w2... in
turn each time the command-list following do is executed. If in w! w? ... is omitted, then the
loop is executed once for each positional parameter; that is, in § xis assumed.

Another example of the use of the for loop is the create command whose text is

for i do >$i; done

The command:

12 Revision D of 7 January 1984

Programming Tools Programming the Bourne Shell

tutorial$ create alpha beta

ensures that two empty files alpha and beta exist and are empty. Use the notation > file on its
own t{o create or clear the contents of a file, Notice also that a semicolon {or newline) is
required before done.

11. Control Flow — case
The case notation provides a multiple way branch. For example:

case $# in

1) cat >>§1;;

2) cat >>82 <81 ;;

%) echo ‘usage: append [from | to”";;
esac

is an append command. When called with one argument as

tutorial$ append file

$4 is the string I and the standard input is copied onto the end of file using the cat command.
To append the contents of filel onto file?, say:

tutorial$ append filel file2
tutorial$

If the number of arguments supplied to append is other than 1 or 2, a message is displayed indi-
cating proper usage.

The general form of the case command is:

case word in
pattern) command-list3;

esac

The Shell attempts to match word with each pattern, in the order in which the patterns appear.
If a match is found the associated command-list is executed, and execution of the case is com-
plete. Since * is the pattern that matches any string, you can use it for the default case.

A word of caution: no check is made to ensure that only one pattern matches the case argu-
ment. The first match found defines the set of commands to be executed. In the example
below the commands following the second * will never be executed.

case $# in
%) eee s
x) eeess
esac

Another example of the use of the case construction is to distinguish between different forms of
an argument. The following example is a fragment of a cc command:

Revision D of 7 January 1984 13

Programming the Bourne Shell _ Programming Tools

fori

"R -

-%) echo ‘unknown flag $i’;;
%) [libfcO $i...;;
x)echo “unexpected argument $i°;;
esac

done.

To allow the same commands to be associated with more than one pattern the case command -
provides for alternative patterns separated by a ‘|'. For example:

case $i in
=X I _y) sae
€sac

is equivalent to

case $i in

-xs]) ...

The usual quoting conventions apply so that

case $i in
D ...
will match the character ?. N

12. Here Documents

The Shell procedure tel in ‘Control Flow — for’ uses the file fuar/lib/teinos to supply the data

for grep. An alternative is to include this data within the Shell procedure as a Aere document,
as in,

for i

do grep $i <<!
fred mh0123
bert mh0789

LN]

!
done

In this example the Shell takes the lines between <<! and ! as the standard input for grep.

The string ! is arbitrary, the document being terminated by a line that consists of the string fol-
lowing <<

Parameters are substituted in the document before it is made available to grep as illustrated by
the following procedure called edg.

14 Revision D of 7 January 1984

Programming Tools Programming the Bourne Shell

ed $3 <<%
g/$1/s//%2/g
w
%

The call

tutorial% edg stringl string3 file
is then equivalent to the command

ed file <<%
g/stringl s/ [string2 /g

w

%
and changes all occurrences of sfring! in file to string®. You can prevent substitution using ‘\’
to quote the special character $§ as in

ed $3 <<+
1,\$s/81/32/g

w
+

(This version of edg is equivalent to the first except that ed displays a ? if there are no
occurrences of the string $1.) Quoting the terminating string prevents substitution entirely
within a here document, for example:

grep $i <<\#

#

The document is presented without modification to grep. If parameter substitution is not
required in a here document, this latter form is more efficient.

13. Shell Variables

The Shell provides string-valued variables. Variable names begin with a letter and consist of
letters, digits and underscores. You may give variables values by writing, for example:

user={red box=m000 acct=mh0000

which assigns values to the variables user, box and acct. To set a variable to the null string,
you can say:

null=
The value of a variable is substituted by preceding its name with $; for example:

tutorial$ echo $user
fred

echos fred. .
Use variables interactively to provide abbreviations for frequently used strings. For example:

Revision D of 7 January 1984 15

Programming the Bourne Shell : Programming Tools

b=/usr/fred /bin
mv pgm $b

moves the file pgm from the current directory to the directory /usr/fred/bin. A more general
notation is available for parameter (or variable) substitution, as in:

echo ${user}

which is equivalent to

echo $user

and is used when the parameter name is followed by a letter or digit. For example,

tmp=/tmp/ps
ps a >${tmp}a

directs the output of ps to the file [tmp/psa, whereas:

ps a >$tmpa

causes the value of the variable tmpa to be substituted.

Except for $? the following are set initially by the Shell. $? is set after executing each com-
mand.
$? The exit status (return code) of the last command executed as a decimal string.
Most commands return a zero exit status if they complete successfully, otherwise a
non-zero exit status is returned. Testing the value of return codes is dealt with
later under if and while commands.

$4# The number of positional parameters (in decimal). Used, for example, in the
append command to check the number of parameters.

$3 The process number of this Shell (in decimal). Since process numbers are unique
among all existing processes, this string is frequently used to generate unique tem-
porary filenames. For example:

ps a > [tmp/ps$$

rm /tmp/ps$$

$! The process number of the last process run in the background (in decimal).
$- The current Shell flags, such as —x and -v,
Some variables have a special meaning to the Shell; avoid them in general use.

$MAIL When used interactively the Shell looks at the file specified by this variable before
it issues a prompt. If the specified file has been modified since it was last looked
at, the Shell prints the message you have mail before prompting for the next com-
mand. This variable is typically set in the file .profile, in the user’s login directory.
For example:

MAIL =/usr/mail/fred

$HOME The default argument for the ¢d command. The current directory is used to
resolve filename references that do not begin with a /, and is changed using the ¢d
command. For example:

16 Revision D of 7 January 1984

-

Programming Tools Programming the Bourne Shell

tutorial$ cd /usr/fred /bin
makes the current directory [usr/fredfbin.

" tutorial$ cat wn

displays on the screen the file wn in this directory.” The command cd with no argument is
equivalent to:

cd $HOME

This variable is also typically set in the your login profile.

$PATH A list of directories that contain commands (the search path). Each time the Shell
executes a command, a list of directories is searched for an executable file. If
$PATH is not set, then the current directory, /bin, and /usr/bin are searched by
default. Otherwise $PATH consists of directory names separated by :. For exam-

ple,
PATH==:/usr/fred/bin:/bin:/usr/bin

specifies that the current directory (the null string before the first 1), /usr/fred/bin, [bin
and [usr/bin are to be searched in that order. In this way individual users can have their
own ‘private’ commands that are accessible independently of the current directory. If the
command name contains a /, then this directory search is not used; a single attempt is
made to execute the command.

$PS1 The primary Shell prompt string, by default, ‘$.

$PS2 The Shell prompt when further input is needed, by default, ‘> *.

$IFS The set of characters used by blank interpretation,

14. The ‘test’ Command

Although not part of the Shell, Shell programs use the test command. For example:

test -{ file

returns zero exit status if file exists and non-zero exit status otherwise. In general test evaluates
a predicate and returns the result as its exit status. Some of the more frequently used test
arguments are given here. See test (1) for a complete specification.

test s true if the argument ¢ is not the null string
test —f file true if file exists

test —r file true if file is readable

test —w file true if file is writable

test —d file true if file is a directory

15. Control Flow — while

The actions of the for loop and the case branch are determined by data available to the Shell.
A while or until loop and an if then else branch are also provided whose actions are deter-
mined by the exit status returned by commands. A while loop has the general form

Revision D of 7 January 1984 17

Programming the Bourne Shell Programming Tools

while command-list,
do command-list, -~
done :)

The value tested by the while command is the exit status of the Jast simple command following
while. Each time round the loop commaond-list, is executed; if a zero exit status is returned
then command-list, is executed; otherwise, the loop terminates. For example,

while test $1
do ...

shift
done

is equivalent to

for i
do...

done

shift is a Shell command that renames the positional parameters $2, $3, ... as $1, $2, ... and
loses $1.

Another kind of use for the while/until loop is to wait until some external event occurs and
then run some commands. In an until loop the termination condition is reversed. For example,

until test I file
do sleep 300; done
commands

will loop until file exists. Each time round the loop it waits for 5 minutes before trying again. \:)
(Presumably another process will eventually create the file.)

16. Control Flow — if

Also available is a general conditional branch of the form,

if command-list
then command-list
else command-list

fi
that tests the value returned by the last simple command following if.

The if command may be used in conjunction with the test command to test for the existence of
a file as in

if test —f file
then process file

else do something else
f

An example of the use of if, case and for constructions is given in ‘The ‘man’ Command’ sec-
tion.

18 Revision D of 7 January 1984

Programming Tools Programming the Bourne Shell

A multiple test if command of the form

if eee

then ...

e!se iftoo
then ...
else if...

fi
fi
fi

may be written using an extension of the if notation as,

if ees

then ...
elif ...
then ...
elif ...

fi

The following example is the touch command, which changes the ‘last modified’ time for a list of
files. The command may be used in conjunction with make (1) to force recompilation of a list of

files.

flag==
for i
do case $i in
—c) flag=Nj;
*)if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file \ $i\ " does not exist
else >$i
fi
esac
done

The —c flag is used in this command to force subsequent files to be created if they do not

already exist. Otherwise, if the file does not exist, an error message is displayed. The Shell

variable flag is set to some non-null string if the —¢ argument is encountered, The commands
In...rm...

make a link to the file and then remove it, causing the last modified date to be updated.

The sequence

if commandl
then command?2

fi

may be written

Revision D of 7 January 1984 19

Programming the Bourne Shell Programming Tools

commandl &£& command2

o

Conversely,

commandl || command?2

executes command? only if commandl fails. In each case the value returned is that of the last
simple command executed. :

17. Command Grouping
Commands may be grouped in two ways,

{ command-list ; }

and
(command-list)

In the first command-list is simply executed. The second form executes command-list as a
separate process. For example,

(cd x; rm junk)

executes rm gunk in the directory x without changing the current directory of the invoking
Shell. |

The commands

¢d x; rm junk Q

have the same effect but leave the invoking Shell in the directory z.

18. Debugging Shell Procedures

The Shell provides two tracing mechanisms to help when debugging Shell procedures. The first
is invoked within the procedure as

set —v
(v for verbose) and causes lines of the procedure to be printed as they are read. It is useful to
help isolate syntax errors. It may be invoked without modifying the procedure by saying

sh -v proc ...

where proc is the name of the Shell procedure. This flag may be used in conjunction with the
~n flag which prevents execution of subsequent commands. (Note that saying set -n at a termi-
nal will render the terminal useless until an end-of-file is typed.)

The command
set —x

will produce an execution trace. Following parameter substitution, each command is displayed
as it is executed. (Try these at the workstation to sce what effect they have.) Both flags may be

turned off by saying i :

20 Revision D of 7 January 1984

Programming Tools

set —

and the current setting of the Shell flags is available as $-.

19. The ‘man’ Command

Programming the Bourne Shell

The man command displays sections of the user’s manual. It is called, for example, as

man sh
man -t ed
man 2 fork

In the first the manual section for #A is printed. Since no section is specified, section 1 is used.
The second example will typeset (-t option) the manual section for ed. The last prints the fork

manual page from section 2.

¢d fusr/man

: ‘colon is the comment command’
: ‘default is nroff ($N), section 1 ($s)°
N=n s=1

fori
do case $i in
[1-9]%) s=8$i;;
-t) N=t ;;
-n) N=nj;
-%) echo unknown flag \ $i\";;
*)if test —f man$s/$i.$s

then ${N}roff man0/${N}as man$s/$i.$s
else : Took through all manual sections’

found=no
forjin123456789
do if test —f man$j/$i.$j
then man $j $i
found=yes
fi
done
case $found in

no) echo ‘$i: manual page not found’

esac

esac
done

Figure 1: A version of the man command

Revision D of 7 January 1984

21

Programming the Bourne Shell Programming Tools

20. Keyword Parameters

Shell variables may be given values by assignment or when a Shell procedure is invoked. An
argument to a Shell procedure of the form name=value that precedes the command name
causes value to be assigned to name before execution of the procedure begins. The value of
name in the invoking Shell is not affected. For example,

user=fred command

will execute command with user set to fred The -k flag causes arguments of the form

name==value to be interpreted in this way anywhere in the argument list. Such names are .

sometimes called keyword parameters. If any arguments remain, they are available as positional
parameters $1, $3,

You can also use the set command to set positional parameters from within a procedure. For
example,
set — %

will set $1 to the first filename in the current directory, $3 to the next, and so on. Note that
the first argument, —, ensures correct treatment when the first filename begins with a —.

21. Parameter Transmission

When a Shell procedure is called both positional and keyword parameters may be supplied with
the call. Keyword parameters are also made available implicitly to a Shell procedure by specify-
ing in advance that such parameters are to be exported. For example,

export user box

marks the variables user and box for export. When a Shell procedure is called, copies are
made of all exportable variables for use within the invoked procedure. Modification of such
variables within the procedure does not affect the values in the calling Shell. It is generally true
of a Shell procedure that it may not modify the state of its caller without explicit request on the
part of the caller. (Shared file descriptors are an exception to this rule.)

Names whose value is intended to remain constant may be declared readonly. The form of this
command is the same as that of the ezport command,

readonly name ...

Subsequent attempts to set readonly variables are illegal.

22. Parameter Substitution

If a Shell parameter is not set, then the null string is substituted for it. For example, if the
variable d is not set

tutorial$ echo $d

or

tutorial$ echo ${d}
will echo nothing. A default string may be given as in

29 Revision D of 7 January 1984

o

Piogramming Tools Programming the Bourne Shell

tutorial$ echo ${d-.}

which will echo the value of the variable d if it is set and *.' otherwise. The default string is
evaluated using the usual quoting conventions so that

tutorial$ echo ${d-"s"}

will echo # if the variable d is not set. Similarly

tutorial$ echo ${d-$1}

will echo the value of d if it is set and the value (if any) of $1 otherwise. A variable may be
assigned a default value using the notation

echo ${d=.}

which substitutes the same string as

echo ${d-.}

and if d were not previously set then it will be set to the string *.". (The notation ${...=...}
is not available for positional parameters.)

If there is no sensible default then the notation

echo ${d?message}

will echo the value of the variable d if it has one; otherwise the Shell prints message and execu-
tion of the Shell procedure is abandoned. If message is absent, then a standard message is
printed. A Shell procedure that requires some parameters to be set might start as follows.

: ${user?} ${acct?} ${bin?}

Colon (:) is a command that is built in to the Shell and does nothing once its arguments have
been evaluated. If any of the variables user, acct or bin are not set then the Shell will aban-
don execution of the procedure.

23. Command Substitution

In a similar way, you can substitute the standard output from a command to parameters. The
command pwd displays on its standard output the name of the current directory. For example,
if the current directory is /usr/fredfbin then the command

d="pwd*
is equivalent to
d=/usr/fred /bin

The entire string between grave accents (...") is taken as the command to be executed and is
replaced with the output from the command. The command is written using the usual quoting
conventions except that a * must be escaped using a \ . For example,

Is. ‘echo "$17*

is equivalent to

Revision D of 7 January 1984 23

Programming the Bourne Shell ~ Programming Tools

Is $1

Command substitution occurs in all contexts where parameter substitution occurs (including
here documents) and the treatment of the resulting text is the same in both cases. This
mechanism use of string processing commands within Shell procedures. An example of such a
command is basename, which removes a specified suffix from a string. For example,

basename main.c .c

displays the string main. The following fragment from a ¢c command illustrates its use:

case $A in
x.¢) B='basename $A .c*

€8ac

that sets B to the part of $A with the suffix .c stripped.
Here are some composite examples.
e foriin'ls-t';do...
The variable 1 is set to the names of files in time order, most recent first.

e set ‘date’; echo $68 $2 $3, $4
will print, such as, 1977 Nov 1, £3:59:59

24. Evaluation and Quoting

The Shell is a macro processor that provides parameter substitution, command substitution and
filename generation for the arguments to commands. This section discusses the order in which
these evaluations occur and the effects of the various quoting mechanisms.

Commands are parsed initially according to the grammar given in the ‘Grammar’ section.
Before a command is executed, the following substitutions occur.

o Parameter substitution, such as $user

o Command substitution, such as ‘pwd’
Only one evaluation occurs so that if, for example, the value of the variable X is the
string $y then

echo $X

will echo $y.
¢ Blank interpretation

Following the above substitutions, the resulting characters are broken into non-blank
words (blank interpretation). For this purpose ‘blanks’ are the characters of the string
$IFS. By default, this string consists of blank, tab and newline. The null string is not
regarded as a word unless it is quoted. For example,

r

echo *

will pass on the null string as the first argument to echo, whereas
echo $null

24 Revision D of 7 January 1984

O

O

Prezramming Tools Programming the Bourne Shell

will call echo with no arguments if the variable null is not set or set to the null string.
o Filename generation

Each word is then scanned for the file pattern characters , ! and [...], and an alpha-
betical list of file names is generated to replace the word. Each such filename is a
separate argument.

The evaluations just described also occur in the list of words associated with a for loop. Only
substitution occurs in the word used for a case branch.

As well as the quoting mechanisms described earlier using \ and ...’ a third quoting mechan-
ism is provided using double quotes. Within double quotes, parameter and command substitu-
tion occur, but filename generation and the interpretation of blanks does not. The following
characters have a special meaning within double quotes and may be quoted using \.

$ parameter substitution
* command substitution
ends the quoted string
\ quotes the special characters § *” \

”

For example,
echo " $x”

will pass the value of the variable x as a single argument to echo. Similarly,
echo " $x” |

will pass the positional parameters as a single argument and is equivalent to

echo "$1 $2...

The notation $@ is the same as $x except when it is quoted.
echo "$Q”
will pass the positional parameters, unevaluated, to echo and is equivalent to

echo "$1” "$2" ...

The following table gives, for each quoting mechanism, the Shell metacharacters that are
evaluated.

metacharacter
\ s * [] ’
’ n n n n n t
' y n n t n n
"y y m y t n
1 terminator
y interpreted
B not interpreted

Figure 2: Quoting Mechanisms

Revision D of 7 January 1984 _ 25

Programming the Bourne Shell Programming Tools

In cases where more than one evaluation of a string is required, use the built-in command eval
For example, if the variable X has the value $y, and if y has the value pgr, then

eval echo $X

will echo the string pgr.

In general the eval command evaluates its arguments (as do all commands) and treats the result
as input to the Shell. The input is read and the resulting command(s) executed. For example,

wg=="eval who |grep’
$wg fred

is equivalent to

who | grep fred

In this example, eval is required since there is no interpretation of metacharacters, such as |,
following substitution.

25. Error Handling

The treatment of errors detected by the Shell depends on the type of error and on whether the
Shell is being used interactively. An interactive Shell is one whose input and output are con-
nected to a terminal (as determined by gtty (2)). A Shell invoked with the i flag is also interac-
tive.

Execution of a command (see also ‘Command Execution') may fail for any of the following rea-
sons.

e Input-output redirection may fail, for example, if a file does not exist or cannot be created.
o The command itself does not exist or cannot be executed.

e The command terminates abnormally, for example, with a ‘bus error’ or ‘memory fault.’ See
Figure 3 for a complete list of UNIX signals.

¢ The command terminates normally but returns a non-zero exit status.

In all of these cases the Shell goes on to execute the next command. Except for the last case,
the Shell displays an error message. All remaining errors cause the Shell to exit from a com-
mand procedure. An interactive Shell will return to read another command from the terminal.
Such errors include the following:

e Syntax errors such as, if ... then ... done

e A signal such as interrupt. The Shell waits for the current command, if any, to finish exe-
cution and then either exits or returns to the terminal.

¢ Failure of any of the built-in commands such as cd.
The Shell flag —e terminates the Shell if any error is detected.

26 Revision D of 7 January 1984

O

o

Pregiamming Tools Programming the Bourne Shell

1 hangup
2 interrupt
3+ quit

4+ illegal instruction

b* trace trap

6+ IOT instruction

7+ EMT instruction

8* floating point exception

9 kill (cannot be caught or ignored)
10* bus error

11¢# segmentation violation

12+ bad argument to system call

13 write on a pipe with no one to read it
14 alarm clock

15 software termination (from ksl (1))

Figure 3: UNIX Signals

Those signals marked with an asterisk produce a core dump if not caught. However, the Shell
itself ignores quit which is the only external signal that can cause a dump. The signals in this
list of potential interest to Shell programs are 1, 2, 3, 14 and 15.

26. Fault Handling

Shell procedures normally terminate when an interrupt is received from the terminal. The trap
command is used if some cleaning up is required, such as removing temporary files. For exam-

ple,
trap Tm [tmp/ps$$; exit’ 2

sets a trap for signal 2 (terminal interrupt), and if this signal is received will execute the com-
mands

rm ftmp/ps$$; exit

Ezit is another built-in command that terminates execution of a Shell procedure. The ezit is
required; otherwise, after the trap has been taken, the Shell will resume executing the procedure
at the place where it was interrupted.

UNIX signals can be handled in one of three ways. They can be ignored, in which case the sig-
" nal is never sent to the process. They can be caught, in which case the process must decide
what action to take when the signal is received. Lastly, they can be left to cause termination of
the process without it having to take any further action. If a signal is being ignored, on entry
to the Shell procedure, for example, by invoking it in the background (see ‘Command Execu-
tion’), then ¢rap commands {and the signal) are ignored.

The use of trap is ilustrated by this modified version of the touch command (Figure 5). The
cleanup action is to remove the file junk$$.

Revision D of 7 January 1984 27

Programming the Bourne Shell Programming Tools

flag=
trap rm —f junk$$; exit’ 12 3 15
fori
do case $i in
—~) flag=Nj;
) if test —f $i
then In $i junk$$; rm junk$$
elif test $flag
then echo file | $i\ " does not exist
else >8$i
fi

esac
done

Figure 4: The touch Command

The trep command appears before the creation of the temporary file; otherwise it would be pos-
sible for the process to die without removing the file.

Since there is no signal 0 in UNIX, the Shell uses it to indicate the commands to be executed on
exit from the Shell procedure.

A procedure may, itself, elect to ignore signals by specifying the null string as the argument to
trap. The following fragment is taken from the nobup command:

trap "123 15
which causes both the procedure and the invoked commands to ignore the Aangup, interrupt,and
kill signals.
Traps may be reset by saying:

trap 2 3
which resets the traps for signals 2 and 3 to their default values. A list of the current values of
traps may be obtained by writing:

trap

The procedure scan (Figure 6) is an example of the use of trap where there is no exit in the trap
command. Scan takes each directory in the current directory, prompts with its name, and then
executes commands typed at the terminal until an end of file or an interrupt is received. Inter-
rupts are ignored while executing the requested commands but cause termination when scan is
waiting for input.

28 Revision D of 7 January 1984

-

&

Programming Tools Programming the Bourne Shell

d="‘pwd’
foriin %
do if test -d $d/$i
then cd $d/$i
while echo " $i”

trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Figure 5: The scan Command

read z is a built-in command that reads one line from the standard input and places the result
in the variable x. It returns a non-zero exit status if either an end-of-file is read or an interrupt
is received.

27. Command Execution

To run a command {other than a built-in), the Shell first creates a new process using the system
call fork. The execution environment for the command includes input, output and the states of
signals, and is established in the child process before the command is executed. The bailt-in
command ezec is used in the rare cases when no fork is required and simply replaces the Shell
with a new command. For example, a simple version of the nohup command looks like:

trap 12315
exec $%

The trap turns off the signals specified so that they are ignored by subsequently created com-
mands and ezec replaces the Shell by the command specified.

Most forms of input output redirection have already been described. In the following, word is
only subject to parameter and command substitution. No filename generation or blank
interpretation takes place so that, for example,

echo «o0 > %.c

will write its output into a file whose name is #.c. Input output specifications are evaluated left

to right as they appear in the command.

> word The standard output (file descriptor 1) is sent to the file word which is created if it
does not already exist.

>> word The standard output is sent to file word. If the file exists, then output is
appended (by seeking to the end); otherwise the file is created.

< word The standard input (file descriptor 0} is taken from the file word.

<< word The standard input is taken from the lines of Shell input that follow up to but not
including a line consisting only of word. If word is quoted then no interpretation
of the document occurs. If word is not quoted, then parameter and command sub-

stitution occur, and \ is used to quote the characters \ $ * and the first character
of word. In the latter case \newline is ignored (c.f. quoted strings).

Revision D of 7 Jaruary 1984 29

Programming the Boarne Shell Programming Tools

>& digit The file descriptor digit is duplicated using the system call dup (2) and the result is
used as the standard output.

<& digit The standard input is duplicated from file descriptor digit.
<&- The standard input is closed.
>&- The standard output is closed.

Any of the above may be preceded by a digit in which case the file descriptor created is that
specified by the digit instead of the default 0 or 1. For example,

ase 2>ﬁle i
runs a command with message output (file descriptor 2) directed to file.

LN X] 2>&1
runs a command with its standard output and message output merged. (Strictly speaking file
descriptor 2 is created by duplicating file descriptor 1 but the effect is usually to merge the two
streams.)

The environment for a command run in the background such as

list x.c | Ipr &

is modified in two ways. Firstly, the default standard input for such a command is the empty
file /dev/null. This prevents two processes (the Shell and the command), which are running in
parallel, from trying to read the same inpui. Chaos would ensue if this were not the case. For
example,

tutorial$ ed file &

would allow both the editor and the Shell to read from the same input at the same time.

The other modification to the environment of a background command is to turn off the QUIT
and INTERRUPT signals so that the command ignores them. This allows these signals to be
used at the terminal without causing background commands to terminate. For this reason the
UNIX convention for a signal is that if it is set to 1 (ignored), then it is never changed even for
a short time. Note that the Shell command trap has no effect for an ignored signal.

28. Calling the Shell

The Shell interprets the following flags when it is called. If the first character of argument zero

is a minus, then commands are read from the file .profile.

—c string
If the —¢ flag is present then commands are read from string.

-8 If the -8 flag is present or if no arguments remain, commands are read from the standard
input. Shell output is written to file descriptor 2.

-i If the i flag is present or if the Shell input and output are attached to a terminal (as told
by gtty), then this Shell is interactive. In this case TERMINATE is ignored (so that kill 0
does not kill an interactive Shell), and INTERRUPT is caught and ignored (so that wait is
interruptable). In all cases, the Shell ignores QUIT.

30 Revision D of 7 January 1984

Programming Tools Programming the Bourne Shell

29. Grammar

Q Commands are parsed initially according to the following grammar.

-

Revision D of 7 Januvary 1984 31

Programming the Bourne Shell

32

item: word
snput-oulpul
name = value

ssmple-command: stem
simple-command item

command: simple-command
(command-list)
{ command-list }
for name do command-list done
for name in word ... do command-list done
while command-list do command-list done
until command-list do command-list done
case word in case-part ... esac
if command-list then command-list else-part i

pipeline: command
pipeline | command

andor: pipeline ‘
andor && pipeline
andor | | pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

snput-output: > file

< file
> word
<< word

file: word
& digit
& -

case-part: pattern) command-list 33

pattern: word
pattern | word

else-part: elif command-list then command-list else-part

else command-list
emply

empty:

word: a sequence of non-blank characters

Programming Tools

Revision D of 7 January 1984

-

O

Programming Tools

Programming the Bourne Shell

name: a sequence of letters, digits or underscores starting with a letter

digit: 0123450789

30. Metacharacters and Reserved Words

a) syntactic
| pipe symbol
&& ‘andf’ symbol
] ‘orf” symbol
3 command separator
3 case delimiter
& background commands
() command grouping
< input redirection
<< input from a here document
> output creation
>> output append

b) patterns
» match any character(s) including none
? match any single character

[«] match any of the enclosed characters

c) substitution
${...} substitute Shell variable

. .

" substitute command output

d) quoting
\ quote the next character

rd ’

v’ quote the enclosed characters except for *
” ”

" quote the enclosed characters except for $ *\ "

¢) reserved words

Revision D of 7 January 1984

33

Programming the Bourne Shell Programming Tools

if then else elif fi

case in esac @

for while until do done

{}

@

34 Revision D of 7 January 1984

Table of Contents

UNIX Programming ...

1. Basics . et eremetese ieseee s sereneaseaseEA SRS ASE RS SER SRR B AR SRR RS R SRR SRR A SRR RS LRSS e en
1.1. Program Arguments ...

2. The ‘Standard Input’ and ‘Standard Qutput’

3. THE STANDARD IO LIBRARYovmmmmsenccssssessmmsssesssansssssssosons
3.1, File ACCESS ..ot
3.2. Error Handling — Stderr and Exit ...,
3.3. Miscellaneous I/O FURCLIOMScomnimimnsisssssssmsesssersssssssssserseson

4, LOW-LEVEL IJO
4.1, File Descriptors ...,
4.2. Read and Write ...
4.3. Open, Creat, Close, Unllnk
4.4. Random Access — Seek and Lseek
4.5, EITOP PrOCESSIIE ...t vtsieesssesssssssams e s samss s e e armaes e

Be PROGESSES ... oo oeeeseees s v sseessebss i sssssssssssbsss s s 222n s 25 R0
5.1. The ‘System’ Function "
5.2. Low-Level Process Creation — Execl and Execv
5.3. Control of Processes — Fork and Wait ...

8. SIGNALS — INTERRUPTS AND ALL THAT ... rereeseoene
T RELCTOICES e e ceeseeessssom s eeresme s be b8 bbA o b R RS 10

A. The Standard I/O Library
A.l. General Usage
A2, Calls ..ot

[y
-0 O~ >0 W

[

12
12
13
14

16
20
21

21
21

UNIX Programming

This chapter is an introduction to programming on the UNIXt system. The emphasis is on how
to write programs that interface to the operating system, either directly or through the stan-
dard 1/0 library. The topics discussed include

handling command arguments

rudimentary 1/O; the standard input and output
the standard 1/O library; file system access
low-level [/O: open, read, write, close, seek
processes: exec, fork, pipes

e signals — interrupts, etc.
There is also an appendix which describes the standard I/O library in detail.

This chapter describes how to write programs that interface with the UNIX operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke
other commands as they rum, or that attempt to catch interrupts and other signals during exe-
cution.

The document collects material which is scattered throughout several sections of The Sun Refer-
ence Manuals {User’s Monual, System Interface Manual, and System Manager’s Manual)[1].
There is no attempt to be complete; only generally useful material is dealt with. It is assumed
that you will be programming in C, 80 you must be able to read the language roughly up to the
level of The C Programming Language [2]. Some of the material in sections 2 through 4 is based
on topics covered more carefully there. You should also be familiar with UNIX itself at least to
the level of UNIX for Beginneras [3].

1. Basics

1.1. Program Arguments

When a C program is run as a command, the arguments on the command line are made avail-
able to the function main as an argument count arge and an array argv of pointers to charac-
ter strings that contain the arguments. By convention, argv[0] is the command name itself, so
arge is always greater than 0.

The following program illustrates the mechanism: it simply echoes its arguments back to the
terminal — This is essentially the echo command.

1 UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 1

UNIX Programming Programming Tools

main(arge, argy) [+ echo arguments */
int arge;
char sargv(];

int i;

for i=1; i < arge; i++)
printf(” %s%c", argvli], (i<arge-1) ¢ ' ' : "\n');
} .
argv is a pointer to an array whose individual elements are pointers to arrays of characters;
each is terminated by \0, so they can be treated as strings. The program starts by printing
argv([l] and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must copy them to external variables.

2. The ‘Standard Input’ and ‘Standard Output’

The simplest input mechanism is to read the ‘standard input,’ which is generally the user’s ter-
minal. The function getchar returns the next input character each time it is called. A file may
be substituted for the terminal by using the < convention: if prog uses getchar, then the
command line '

tutorial% prog < file

causes prog to read file instead of the terminal. prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the pipe
mechanism:

tutorial% otherprog | prog

provides the standard input for prog from the standard output of otherprog.

getchar returns the value EOF when it encounters the end of file (or an error) on whatever
you are reading. The value of EOF is normally defined to be -1, but it is unwise to take any
advantage of that knowledge. As will become clear shortly, this value is automatically defined
for you when you compile a program, and need not be of any concern.

Similarly, putchar(c) puts the character ¢ on the ‘standard output,’ which is also by default
the terminal. The output can be captured on a file by using >: if prog uses putchar,

tutorial?% prog > outfile

writes the standard output on outfile instead of the terminal. outfile is created if it doesn’t
exist; if it already exists, its previous contents are overwritten. And a pipe can be used:

tutorial% prog | otherprog

puts the standard output of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism as
putchar does, so calls to printf and putchar may be intermixed in any order; the output will
appear in the order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as

9 Revision D of 7 January 1984

Programming Tools UNIX Programming

getchar, so calls to them may also be intermixed.

Many programs read only one input and write one output; for such programs 1/O with
getchar, putchar, scanf, and printf may be entirely adequate, and it is almost always enough
to get started. This is particularly true if the UNIX pipe facility is used to connect the output
of one program to the input of the next. For example, the following program strips out all ascii
control characters from its input (except for newline and tab).

#tinclude <stdio.h>
main() /¢ cestrip: strip non-graphic characters +/

int c;
while ((c = getchar()) == EOF)
if((c>="'"' && ¢ <0177) || c =e="\t' || ¢ == "\n')
putchar(c);
exit(0);
}

The line
#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(/usr/include/ stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

tutorial% cat filel file2 ... | cestrip > output

and thus avoid learning how to access files from a program. By the way, the call to exit at the
end is not necessary to make the program work properly, but it assures that any caller of the
program will see a normal termination status (conventionally) from the program when it com-
pletes. Section 6 discusses status returns in more detail.

3. THE STANDARD I/O LIBRARY

The ‘Standard I/O Library’ is a collection of routines intended to provide efficient and portable
1/O services for most C programs. The standard 1/O library is available on each system that
supports C, so programs that confine their system interactions to its facilities can be tran-
sported from one system to another essentially without change.

In this section, we will discuss the basics of the standard 1/O library. The appendix contains a
more complete description of its capabilities.

3.1. File Access

The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is we, which
counts the lines, words and characters in a set of files. For instance, the command

tutorial% we x.c y.c

Revision D of 7 January 1984 3

UNIX Programming Programming Tools

prints the number of lines, words and characters in x.c and y.c and the totals.

The question is how to arrange for the named files to be read — that is, how to connect the file
system names to the]/O statements which actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. fopen takes an external name (like x.c or y.c), does some housekeep-
ing and negotiation with the operating system, and returns an internal name which must be
used in subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains

information about the file, such as the location of a buffer, the current character position in the

buffer, whether the file is being read or written, and the like. Users don’t need to know the
details, because part of the standard I/O definitions obtained by including stdio.h is a structure
definition called FILE. The only declaration needed for a file pointer is exemplified by

FILE +fp, +fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to s FILE. FILE (isa
type name, like int, not a structure tag.

The actual call to fopen in a program is

tp = fopen(name, mode);

The first argument of fopen is the name of the file, as a character string. The second argument
is the mode, also as a character string, which indicates how you intend to use the file. The only
allowable modes are read "r"), (write "w”), (or append "a”). (

If a file that you open for writing or appending does not exist, it is created (if possible). Open-
ing an existing file for writing causes the old contents to be discarded. Trying to read a file
that does not exist is an error, and there may be other causes of error as well (like trying to
read a file when you don’t have permission). If there is any error, fopen will return the null
pointer value NULL (which is defined as zero in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several possi-
bilities, of which getc and putc are the simplest. getc returns the next character from a file; it
needs the file pointer to tell it what file. Thus '

¢ == gete(fp)

places in ¢ the next character from the file referred to by fp; it returns EOF when it reaches
end of file. pute is the inverse of gete:

putc(c, fp)
puts the character ¢ on the file fp and returns ¢. getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided
for them. These files are the standard input, the standard output, and the standard error out-
put; the corresponding file pointers are called stdin, stdout, and stderr. Normally these are
all connected to the terminal, but may be redirected to files or pipes as described in Section 2.2.
stdin, stdout aud stderr are pre-defined in the I/O library as the standard input, output and
error files; they may be used anywhere an object of type FILE # can be. They are constants,
however, not variables, so don’t try to assign to them.

With some of the preliminaries out of the way, we can now write we. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they
are processed in order. If there are no arguments, the standard input is processed. This way

4 Revision D of 7 January 1984

.

-

Programming Tools UNIX Programming

the program can be used stand-alone or as part of a larger process.
#include <stdio.h>

main(arge, argv) [+ we: count lines, wordﬁ, chars ¢/
int arge; :
char *argv| });

int ¢, i, inword;

FILE #fp, *fopen();

long linect, wordct, charct;

long tlinect == 0, twordct = 0, tcharet = 0;

i=1;
fp = stdin;
do {
if (arge > 1 && (fp=fopen(argvli], "r")) === NULL) {
fprintf(stderr, "wc: can't open %s\n”, argvli]);
continue;
}
linect == wordct = charct == inword == 0;
while ((¢ == getc(fp)) I== EOF) {
charct+ +; -
if (¢ =="\n’)
linect+ + ;
if (c ==""]| ¢ =="\¢' || ¢ == "\n')
inword = 0;
else if (inword == 0) {
inword ==];
wordet+ + ;

}

printf(® %71d %71d %71d”, linect, wordct, charet);
printf(arge > 11" %s\n” : "\n", argvii]);
fclose{fp);
tlinect + == linect;
twordct + = wordct;
tcharct + = charct;
} while (+ +i < arge);
if (arge > 2)
printf(” %71d %71d %7Md total\n", tlinect, twordet, tcharct);
exit(0);

The function fprintf is identical to printf, save that the first argument is a file pointer that
specifies the file to be written.

The function fclose is the inverse of fopen; it breaks the connection between the file pointer
and the external name that was established by fopen, frecing the file pointer for another file.
Since there is a limit on the number of files that a program may have open simultaneously, it's
a good idea to free things when they are no longer needed. There is also another reason to call
fclose on an output file — it flushes the buffer in which pute is collecting output. (fclose is

Revision D of 7 January 1984 5

UNIX Programming Programming Tools

called automatically for each open file when a program terminates normally.)

3.2. Error _Ha.ndling — Stderr and Exit

stderr is assigned to a program in the same way that stdin and stdout are. Output written
on stderr appears on the user’s terminal even if the standard output is redirected. we writes its
diagnostics on stderr instead of stdout so that if one of the files can’t be accessed for some
reason, the message finds its way to the user's terminal instead of disappearing down a pipeline
or into an output file.
The program actually signals errors in another way, using the function exit to terminate pro-
gram execution. The argument of exit is available to whatever process called it (see Section 6},
so the success or failare of the program can be tested by another program that uses this one as
a sub-process. By convention, a return value of 0 signals that all is well; non-zero values signal
abnormal situations.

exit itself calls fclose for each open output file, to flush out any buffered output, then calls a

routine named _exit. The function _exit causes immediate termination without any buffer
flushing; it may be called directly if desired.

3.3. Miscellaneous I/O Functions

The standard I/O library provides several other I/O functions besides those we have illustrated
above.

Normally output with pute, etc., is buffered (except to stderr); to force it out immediately, use
fflush(fp).

fscanf is identical to scanf, except that its first argument is a file pointer (as with fprintf)
that specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the first
argument names a character string instead of a file pointer. The conversion is done from the
string for sscanf and into it for sprintf.

fgets(buf, size, fp) copies the next line from fp, up to and including a newline, into buf; at
most size-1 characters are copied; it returns NULL at end of file. fputs(buf, fp) writes the
string in buf onto file fp.

The function ungetc(c, fp) ‘pushes back’ the character ¢ onto the input stream fp; a subse-
quent call to getc, fscanf, etc., will encounter ¢. Only one character of pushback per file is per-
mitted.

4. LOW-LEVEL I/O

This section describes the bottom level of I/O on the UNIX system. The lowest level of 1/O in
UNIX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite simple, this isn't as bad as it sounds.

8 Revision D of 7 January 1984

Programming Tools UNIX Programming

4.1. File Descriptors

In the UNIX operating system, all input and output is dope by reading or writing files, because
all peripheral devices, even the user's terminal, are files in the file system. This means that a
single, homogeneous interface handles all communication between a program and peripheral
devices. -

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called ‘opening’ the file. If you are going to write on a file, it
may also be necessary to create it. The system checks your right to do so (Does the file exist!
Do you have permission to access it?), and if all is well, returns a small positive integer called a
[file descriptor. Whenever 1/O is to be done on the file, the file descriptor is used instead of the
name to identify the file. (This is roughly analogous to the use of READ(S,...) and WRITE(S,...) in
Fortran.) All information about an open file is maintained by the system; the user program
refers to the file only by the file descriptor.

The file pointers discussed in section 3 are similar in apirit to file descriptors, but file descriptors
are more fundamental. A file pointer is a pointer to a structure that contains, among other
things, the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the ‘shell’) runs a program, it opens
three files, with file descriptors 0, 1, and 2, called the standard input, the standard output, and
the standard error output. All of these are normally connected to the terminal, so if a program
reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O without worry-
ing about opening the files.

If 1/O is redirected to and from files with < and >, as in

tutorial% prog < infile > outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Nor-
mally file descriptor 2 remains attached to the terminal, so error messages can go there. In all
cases, the file assignments are changed by the shell, not by the program. The program does not
need to know where its input comes from nor where its output goes, so long as it uses file 0 for
input and ! and 2 for output.

4.2. Read and Write

All input and output is done by two functions called read and write. For both, the first argu-
ment is a file descriptor. The second argument is a buffer in your program where the data is to
come from or go to. The third argument is the number of bytes to be transferred. The calls
are

n_read = read(fd, buf, n);

p_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. (When the file is a terminal, read normally reads only up to the
next newline, which is generally less than what was requested.) A return value of zero bytes
implies end of file, and -1 indicates an error of some sort. For writing, the returned value is the

Revision D of 7 January 1084 7

UNIX Programming Programming Tools

number of bytes actually written; it is generally an error if this isn't equal to the number sup-
posed to be written.

The number of bytes to be read or written is quite arbitrary. The two most common values are
1, which means one character at a time (‘unbuffered’), and 512, which corresponds to a physical
blocksize on many peripheral devices. This latter size will be most efficient, but even character
at a time I/O is not inordinately expensive.

Putting these facts together, we can write a simple program to copy its input to its output.
This program will copy anything to anything, since the input and output can be redirected to
any file or device.

ffdefine BUFSIZE 512 [+ best size for PDP-11 UNIX ¢/
main() [+ copy input to output ¢/

char buf{BUFSIZE];
int m;

while {(n == read(0, buf, BUFSIZE)) > 0)
write(1, buf, n);
exit(0);

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes
to be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered
input.

##define CMASK 0377 [+ for making ¢har's > 0 ¢/
getchar() /+ unbuffered single character input */

char c;

return((read{0, &c, 1) > 0) ! ¢ & CMASK : EOF);

¢ must be declared char, because read accepts a character pointer. The character being
returned must be masked with 0377 to ensure that it is positive; otherwise sign extension may
make it negative. (The constant 0377 is appropriate for the PDP -11 but not necessarily for
other machines.)

The second version of getchar does input in big chunks, and hands out the characters one at a
time.

8 . Revision D of 7 January 1984

O

Programming Tools UNIX Programming

#define CMASK 0377 [+ for making char's > 0 */
ftdefine BUFSIZE 512

getchar() /+ buffered version ¢/
{

static char buf{BUFSIZE];
static char *bufp = buf;
staticint n = 0;

if (n —— 0) { l‘ bnﬂ'el' iﬂ emptry ‘I
n = read(0, buf, BUFSIZE);
bufp = bauf;

}
return{{~-n >== 0) ? sbufp+ + & CMASK : EOF);
}

4.3. Open, Creat, Close, Unlink

Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat [sic].

open is rather like the fopen discussed in the previous section, except that instead of return-
ing a file pointer, it returns a file descriptor, which is just an int.

int fd;

fd = open{name, rwmode);

As with fopen, the name argument is a character string corresponding to the external file
name. The access mode argument is different, however: rwmode is 0 for read, 1 for write, and
2 for read and write access. open returns -1 if any error occurs; otherwise it returns a valid file
descriptor. ‘

It is an etror to try to open a file that does not exist. The entry point creat is provided to
create new files, or to re-write old ones.

fd = creat(name, pmode);

returns a file descriptor if it was able to create the file called name, and -1 if not. If the file
already exists, creat will truncate it to rero length; it is not an error to creat a file that
already exists.

If the file is brand new, creat creates it with the protection mode specified by the pmode argu-
ment. In the UNIX file system, there are nine bits of protection information associated with a
file, controlling read, write and execute permission for the owner of the file, for the owner's
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner, and
read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the UNIX utility ¢p, a program which copies one file
to another. (The main simplification is that our version copies only one file, and does not per-
mit the second argument to be a directory.)

Revision D of 7 January 1984 9

UNIX Programming Programming Tools

#define NULL 0
#fdefine BUFSIZE 512
ftdefine PMODE 0644 [+ RW for owner, R for group, others +/

main(arge, argv) /+ cp: copy f1 to 12 ¢/
int arge;
char +argv(|;

int f1,f2, n;
char buf[BUFSIZE);

if (arge !==3)
error(” Usage: cp from to”, NULL);
if ((f1 = open(argv[l], 0)) === -1)
error("cp: can't open %s", argv(l]);
if ((f2 = creat(argv[2], PMODE)) === -1)
error(”cp: can't create %»”, argv(2]);

while ((n == read{f1, buf, BUFSIZE)) > 0)
if (write(f2, buf, n) == n)
error{” cp: write error”, NULL);
exit{0);

}

error(sl, s2) /* print error message and die */
char #sl, #s2;

printf(sl, s2);
printf("\n");
exit(1);

As we said earlier, there is a limit (typically 15-25) on the number of files which a program may
have open simultaneously. Accordingly, any program which intends to process many files must
be prepared to re-use file descriptors. The routine close breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termina-
tion of a program via exit or return from the main program closes all open files.

The function unlink(filename) removes the file filename from the file system.

4.4. Random Access — Seek and Lseek

File I/O is normally sequential: each read or write takes place at a position in the file right
after the previous one. When necessary, however, a file can be read or writter in any arbitrary
order. The system call Iseek provides a way to move around in a file without actually reading
or writing:

Iseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position offset, which is
taken relative to the location specified by origin. Subsequent reading or writing will begin at

10 Revision D of 7 January 1984

-

Programming Tools UNIX Programming

that position. offset is a long; fd and origin are int ’s. origin can be 0, 1, or 2 to specify that
offset is to be measured from the beginning, from the current position, or from the end of the
file respectively. For example, to append to a file, seck to the end before writing:

lseek(fd, OL, 2);
To get back to the beginning (‘rewind’),

Iseek(fd, OL, 0);
Notice the OL argument; it could also be written as (long) 0.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower
access. For example, the following simple function reads any number of bytes from any arbi-
trary place in a file,

get(fd, pos, buf, n) /+ read n bytes from position pos */
int fd, n;

long pos;

char *buf;

lseek(fd, pos, 0); /+ get to pos */
return{read(fd, buf, n));

In pre-version 7 UNIX the basic entry point to the 1/O system was called seek. seek was identi-
cal to Iseek, except that its offset argument was an int rather than a long. Accordingly,
since PDP -11 integers have only 18 bits, the offset specified for seek was limited to 85,535; for
this reason, origin values of 3, 4, 5 caused seek to multiply the given offset by 512 (the number
of bytes in one physical block) and then interpret origin as if it were 0, 1, or 2 respectively.
Thus to get to an arbitrary place in a large file required two secks, first one which selected the
block, then one which has origin equal to 1 and moved to the desired byte within the block.

4.5. Error Processing

The routines discussed in this section, and in fact all the routines which are direct entries into
the system can incur errors. Usually they indicate an error by returning a value of -1. Some-
times it is nice to know what sort of error occurred; for this purpose all these routines, when
appropriate, leave an error number in the external cell errno. The meanings of the various
error numbers are listed in intro(2) in the Sun System Interface Manual so your program can,
for example, determine if an attempt to open a file failed because it did not exist or because the
user lacked permission to read it. Perhaps more commonly, you may want to print out the rea-
son for failure. The routine perror will print a message associated with the value of errno;
more generally, sys_errno is an array of character strings which can be indexed by errno and
printed by your program.

5. PROCESSES

It is often easier to use a program written by someone else than to invent one’s own. This sec-
tion describes how to execute a program from within another.

Revision D of 7 January 1984 11

UNIX Programming Programming Tools

5.1. The ‘System’ Function

The easiest way to execute a program from another is to use the standard library routine sys-
tem. system takes one argument, a command string exactly as typed at the terminal (except
for the newline at the end) and executes it. For instance, to time-stamp the output of a pro-

gram,

main(} {
system(”date”); /¢ rest of processing */
}

If the command string has to be built from pieces, the iﬁ-memory formatting capabilities of
sprintf may be useful.

Remember than getc and putc normally buffer their input; terminal 1/O will not be properly
synchronized unless this buffering is defeated. For output, use fllush; for input, sec setbuf in
the appendix.

5.2. Low-Level Process Creation — Execl and Execv

If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library's system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
execl . To print the date as the last action of a running program, use

execl(” /bin/date”, "date”, NULL);

The first argument to execl is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name {that is, the
last component of the file name), but this is seldom used except as a place-holder. If the com-
mand takes arguments, they are strung out after this; the end of the list is marked by a NULL
argument.

The exeel call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program.

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an exec] call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can’t be found or is not executable. If you don't know
where date is located, say

execl(” /bin/date”, "date”, NULL);
execl(” fusr/bin/date”, "date”, NULL);
fprintf(stderr, "Someone stole "date’\n");

A variant of exeel called execv is useful when you don't know in advance how many arguments
there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be
NULL so execv can tell where the list ends. As with exec], filename is the file in which the

12 Revision D of 7 January 1984

Programming Tools UNIX Programming

program is found, and argp[0] is the name of the program. (This arrangement is identical to
the argv array for program arguments.)

Neither of these routines provides the miceties of normal command execution. There is no
automatic search of multiple directories — you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, #, ?, and [] in the argu-
ment list. If you want these, use execl to invoke the shell sh, which then does all the work.
Construct a string commandline that contains the complete command as it would have been
typed at the terminal, then say

execl(” /bin/sh”, "sh”, "-c”, commandline, NULL);

The shell is assumed to be at a fixed place, Jbin/sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in con-
structing the right information in commandline.

5.3. Control of Processes — Fork and Wait

So far what we've talked about isn't really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply over-
lay the new program on the old one, to save the old one requires that it first be split into two
copies; one of these can be overlaid, while the other waits for the new, overlaying program to
finish. The splitting is done by a routine called fork:

proc_id = fork{);

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the ‘process id.’ In one of these processes (the ‘child’), proc_id
is zero. In the other (the ‘parent’), proc_id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program is

if (fork({)} === 0)
execl(” /bin/sh”, "sh”, "-¢", emd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the pro-
gram. In the child, the value returned by fork is zero, so it calls execl which does the ecom.
mand and then dies. In the parent, fork returns non-zero so it skips the execl. (If there is any
error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This
can be done with the function wait:

int status;

if (fork() === 0)
execl(...);
wait(&status);

This still doesn’t handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns
the process id of the terminated child, if you want to check it against the value returned by
fork .) Finally, this fragment doesn’t deal with any funny behavior on the part of the child
(which is reported in status). Still, these three lines are the heart of the standard library’s sys-
tem routine, which we'll show in a moment.

Revision D of 7 January 1984 13

UNIX Programming Programming Tools

The status returned by wait encodes in its low-order eight bits the system’s idea of the child’s
termination status; it is O for normal termination and non-zero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to
return meaningful status.

When a program is called by the shell, the three file descriptors 0, 1, and 2 are set up pointing
at the right files, and all other possible file descriptors are available for use. When this program
calls another one, correct etiquette suggests making sure the same conditions hold. Neither
fork nor the exec calls affects open files in any way. If the parent is buffering output that
must come out before output from the child, the parent must flush its buffers before the execl. -
Conversely, if a caller buffers an input stream, the called program will lose any information that
kas been read by the caller.

5.4. Pipes

A pipe is an 1/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and syn-
chronizing the two processes. Most pipes are created by the shell, as in

tutorial% Is | pr

which connects the standard output of Is to the standard input of pr. Sometimes, however, it
is most convenient for a process to set up its own plumbing; in this section, we will illustrate
how the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[2);

stat = pipe(fd);
if (stat ==-1)
/#+ there was an error ... %/

fd is an array of two file descriptors, where £d[0] is the read side of the pipe and fd[1] is for
writing. These may be used in read, write and close calls just like any other file descriptors.

If a process reads a pipe which is empty, it will wait until data arrives; if a process writes into a
pipe which is too full, it will wait until the pipe empties somewhat. If the write side of the pipe
is closed, a subsequent read will encounter end of file.

To illustrate the use of pipes in a realistic setting, let us write a function called
popen(cmd, mode), which creates a process emd (just as system does), and returns a file
descriptor that will either read or write that process, according to mode. That is, the call

fout = popen(”pr”, WRITE});

creates a process that executes the pr command; subsequent write calls wsing the file descriptor
fout will send their data to that process through the pipe.

popen first creates the the pipe with a pipe system call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the
pipe, then calls the shell (via execl) to run the desired process. The parent likewise closes the
end of the pipe it does not use. These closes are necessary to make end-of-file tests work prop-
erly. For example, if a child that intends to read fails to close the write end of the pipe, it will

14 Revision D of 7 January 1984

-

Programming Tools UNIX Programming

never see the end of the pipe file, just because there is one writer potentially active.

#include <stdio.h>

ffdefine READ 0

ftdefine WRITE 1 .
ftdefine tst{a,b) (mode === READ ?(b):(a))
staticint popen_pid;

popexn{cmd, mode)
char *cmd;
int mode;
{
int p[2);
if (pipe(p) < 0)
return{NULL);

if ((popen_pid = fork()) === 0) {
close(tst(p[WRITE}, p[READ)));
close{tst(0, 1));
dup(tst(p[READ)], p[WRITE}));
close(tst(p{READ], p[WRITE)));
execl(” /bin/sh”, "sh”, "-c”, cmd, 0);
_exit(1); [+ disaster has occurred if we get here +/

if (popen_pid === -1)
retern{ NULL);
close(tst(p[READ], p[WRITE]));
} return(tst{p[WRITE], p[READ]));

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(0, 1)); dup(tst{p|[READ], p[WRITE]));

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pige (vead side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. = Finally, the old read side of the pipe is closed.

A similar sequence of operations takes place when the child process is supposed to write from
the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pelose to close the pipe created by
popen. The main reason for using a separate function rather than close is that it is desirable
to wait for the termination of the child process. First, the return value from pclose indicates
whether the process succeeded. Equally important when a process creates several children is

s Yes, this is a bit tricky, but it's s standard idiom,

Revision D of 7 January 1984 15

UNIX Programming Programming Tools

that only a bounded number of unwaited-for children can exist, even if some of them have ter-
minated; performing the wait lays the child to rest. Thus:

##include <signalh>

pelose(fd) [+ close pipe fd s/

int fd;

{
register r, (+hstat)(), (*istat)(), (sqstat));
int status; '

extern int popen_pid;

close(fd);
istat == signal(SIGINT, SIG_IGN);
qtat = signal(SIGQUIT, SIG_IGN);
hstat == signal(SIGHUP, SIG_IGN);
while ({r == wait(&status)) !== popen_pid && r = -1);
if (r ===-1)

status == -1;
signal(SIGINT, istat);
signal(SIGQUIT, gstat);
signal(SIGHUP, hstat);
return(status);

}

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is
the topic of the next section.

The routine as written has the limitation that only one pipe may be open at once, because of
the single shared variable popen_pid; it really should be an array indexed by file descriptor. A
popen function, with slightly different arguments and return value is available as part of the
standard I/O library discussed below. As currently written, it shares the same limitation.

6. SIGNALS — INTERRUPTS AND ALL THAT

This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there's nothing very useful that can be done from
within C about program faults, which arise mainly from illegal memory references or from exe-
cution of peculiar instructions, we'll discuss only the outside-world signals: interrupt, which is
sent when the DEL character is typed; quit, generated by the FS character; hangup, caused by
hanging up the phone; and terminate, generated by the kill command. When one of these
events occurs, the signal is sent to all processes which were started from the corresponding ter-
minal; unless other arrangements have been made, the signal terminates the process, In the guit
case, a core image file is written for debugging purposes.

The routine which alters the default action is called signal. It has two arguments: the first
specifies the signal, and the second specifies how to treat it. The first argument is just a
number code, but the second is the address is either a function, or a somewhat strange code
that requests that the signal either be ignored, or that it be given the default action. The
include file signal.h gives names for the various arguments, and should always be included
when signals are used. Thus

18 Revision D of 7 January 1984

o

Programming Tools UNIX Programming

#tinclude <signalh>
signal(SIGINT, SIG_IGN);
causes interrupts to be ignored, while

signal(SIGINT, SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value
of the signal. The second argument to signal may instead be the name of a function (which
has to be declared explicitly if the compiler hasn't seen it already). In this case, the named rou-
tine will be called when the signal occurs. Most commonly this facility is used to allow the pro-
gram to clean up unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>
main()
int opintr();

if (signal(SIGINT, SIG_IGN) l= SIG_IGN)
signal(SIGINT, onintr);

/* Process ... s/

exit(0);

}

onintr()
unlink(tempfile);
exit(1);

}

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non-
interactively (started by &), the shell turns off interrupts for it s0 it won't be stopped by inter-
rupts intended for foreground processes. If this program began by announcing that all inter-
rupts were to be sent to the onintr routine regardless, that would undo the shell’s effort to pro-
tect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that sig-
nal returns the previous state of a particular signal. If signals were already being ignored, the
process should continue to ignore them; otherwise, they should be caught.

A more sophisticated program may wish to intercept an interrupt and interpret it as a request
to stop what it is doing and return to its own command-processing loop. Think of a text editor:
interrupting a long printout should not cause it to terminate and lose the work already done.
The outline of the code for this case is probably best written like this:

Revision D of 7 January 1984 17

UNIX Programming Programming Tools

#include <sigralh>
#finclude <setjmp.h>
jmp_buf sjbuf;

main()
int (+istat)), onintx();

istat = signal{ SIGINT, SIG_IGN); /¢ save original status ¢/
setjimp(sjbuf); /+ save current stack position */
if (istat != SIG_IGN)

signal(SIGINT, onintr);

/* main processing loop */

}

onintr{)

printf(” \nInterrupt\n”);
longjmp(sjbuf); /#+ return to saved state */

The include file setjmp.h declares the type jmp_buf an object in which the state can be saved.
sjbuf is such an object; it is an array of some sort. The setjmp routine then saves the state of
things. When an interrupt occurs, a call is forced to the onintr routine, which can print a mes-
sage, set flags, or whatever. longjmp takes as argument an object stored into by setjmp, and
restores control to the location after the call to setjmp, so control (and the stack level) will pop
back to the place in the main routine where the signal is set up and the main loop entered.
Notice, by the way, that the signal gets set again after an interrupt occurs. This is necessary;
most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arblt.rary point, for
example in the middle of updating a linked list. If the routine called on occurrence of a signal
sets a flag and then returns instead of calling exit or longjmp, execution will continue at the
exact point it was interrupted. The interrupt flag can then be tested later.

There is one difficulty associated with this approach. Suppose the program is reading the termi-
nal when the interrupt is sent. The specified routine is duly called; it sets its flag and returns.
If it were really true, as we said above, that ‘execution resumes at the exact point it was inter-
rupted,’ the program would continue reading the terminal until the user typed another line.
This bebavior might well be confusing, since the user might not know that the program is read-
ing; he presumably would prefer to have the signal take effect instantly. The method chosen to
resolve this difficulty is to terminate the terminal read when execution resumes after the signal,
returning an error code which indicates what bappened.

Thus programs which catch and resume execution after signals should be prepared for ‘errors’
which are caused by interrupted system calls. (The ones to watch out for are reads from a ter-
minal, wait, and pause). A program whose onintr program just sets intflag, resets the inter
rupt signal, and returns, should usually include code like the following when it reads the stan-
dard input:

18 Revision D of 7 January 1984

Programming Tools UNIX Programming

if {getchar() === EOF)
if (intflag)
/+ EOF caused by interrupt s/ else
/# true end-of-file */

A final subtlety to keep in mind becomes important when signal-catching is combined with exe-
cution of other programs. Suppose a program catches interrupts, and also includes a method
(like ‘I’ in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() === 0)

execl(...);
signal(SIGINT, SIG_IGN); [+ ignore interrupts /
wait(&status); /¢ until the child is done ¢/
signal(SIGINT, onintr); /# restore interrupts */

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard IO library function system:

ftinclude <signalh>

system(s) /* run command string s */
char *s;
{

int status, pid, w;
register int (*istat)), (*qstat));

if ((pid = fork{ }) === 0) {
execl(” /bin/sh”, "sh”, "-¢”, s, 0);
-exit{127);

}

istat == signal(SIGINT, SIG_IGN});

gstat = signal(SIGQUIT, SIG_IGN);

while ((w = wait{&status)) == pid && w 1= -1)
»

if (w ==-1)
status = -1,

signal(SIGINT, istat);

signal{SIGQUIT, gstat);

return(status);

}

As an aside on declarations, the function signal obviously has a rather strange second argu-
ment. It is in fact a pointer to a fanction delivering an integer, and this is also the type of the

signal routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are
chosen so they coincide with no possible actual functions. For the enthusiast, here is how they

Revision D of 7 January 1984 19

UNIX Programming Programming Tools

are defined for the PDP-11; the definitions should be sufficiently ugly and nonportable to
encourage use of the include file.

ftdefine SIG_DFL (int (*}))0
ftdefine SIG_IGN (int (*})N

7. References

[1] Sun Microsystems Reference Manuals: User’s Manual, System Interface Manual, and Sys- -

tem Manager’s Manual,

{2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Inc.,
1978.

i3] B. W. Kernighan, UNIX for Beginners — Second Edition, Bell Laboratories, 1078
Reprinted in the Sun Tutorial for Beginners Manual.

20 Revision D of 7 January 1984

O

Programming Tools UNIX Programming

Appendix A. The Standard I/O Library

The standard 1/O library was designed with the following goals in mind.

1. It must be as efficient as possible, both in time and in space, so that there will be no hesita-
tion in using it no matter how critical the application.

2. It must be simple to use, and also free of the magic numbers and mysterious calls whose use
mars the understandability and portability of many programs using older packages.

3. The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
PDP-11 running a version of UNIX

A.l. General Usage

Each program using the library must have the line
ftinclude <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no spe-
cial library argument is needed for loading. All names in the include file intended only for inter-
nal use begin with an underscore _ to reduce the possibility of collision with a user name. The
names intended to be visible outside the package are

stdin The name of the standard input file

stdout The name of the standard output file

stderr The name of the standard error file

EOF is actually -1, and is the value returned by the read routines on end-of-file or error.

NULL is a notation for the null pointer, returned by pointer-valued functions to indicate an
error

FILE expands to struct _fob and is a useful shorthand when declaring pointers to
streams.

BUFSIZ is a number (viz. 512) of the size suitable for an I1/O buffer supplied by the user. See
setbuf, below.

getc, getchar, pute, putchar, feof, ferror, fileno
are defined as macros. Their actions are described below; they are mentioned here to
point out that it is not possible to redeclare them and that they are not actually
functions; thus, for example, they may not have breakpoints set on them.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are in effect constants and
may not be assigned to.

A.2. Calls

FILE sfopen(filename, type) char *filename, *type;
opens the file and, if needed, allocates a buffer for it. fillename is a character string specify-

nn n_.n

ing the name. type is a character string (not a single character). It may be "r”, "w", or
"a” to indicate intent to read, write, or append. The value returned is a file pointer. If it is

Revision D of 7 January 1984 21

Yacc Compiler Generator | Programming Tools

9.3. Lexical Tie-ins

Some lexical decisions depend on context. For example, the lexical analyzer might want to
delete blanks normally, but not within quoted strings. Or names might be entered into a sym-
bol table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical

analyzer, and set by actions. For example, suppose a program consists of 0 or more declara-
tions, followed by O or more statements. Consider:

%1{
int dflag;
%}
. other declarations ...
%%

prog : decls stats

.
b

decls : /* empty */
{ dflag=1; }
{ decls declaration

stats : /* empty */
{ dflag=0; }
| stats statement

... other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, ezcept for the
first token in the first statement. This token must be seen by the parser before it can tell that
the declaration section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of ‘backdoor’ approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

9.4. Reserved Words

Some programming languages permit the user to use words like ‘if’, which are pormally
reserved, as label or variable names, provided that such use does not conflict with the legal use
of these names in the programming language. This is extremely hard to do in the framework of
Yacc; it is difficult to pass information to the lexical analyzer telling it ‘this instance of ‘if’ is a
keyword, and that instance is a variable’. The user can make a stab at it, using the mechanism
described in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that the
keywords be reserved ; that is, be forbidden for use as variable names. There are powerful
stylistic reasons for preferring this, anyway.

29 Revision D of 7 January 1984

O

O

Programming Tools | UNIX Programming

occurred.

fputs(s, ioptr) char *s; FILE eloptr;
writes the null-terminated string (character array) s on the stream loptr. No newline is
appended. No value is returned.

ungete(e, loptr) FILE sioptr;
The argument character ¢ is pushed back on the lnput stream named by loptr. Only one
character may be pushed back.

printf(format, al, ...) char *format;

fprintf(ioptr, format, al, ...) FILE sioptr; char *format;

sprintf(s, format, al, ...)char *s, ¢format;
printf writes on the standard output, fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifications are
as described in printf (3) in the Sun System Interface Manual.

scanf(format, al, ...) char *format;
fscanf(ioptr, format, al, ...) FILE sioptr; char *format;
sscanf(s, format, al, ...) char ¢s, tformat;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. scanf reads characters, interprets
them according to a format, and stores the results in its arguments, Each routine
expects as arguments a control string format, and a set of arguments, each of which
must be & pointer, indicating where the converted input should be stored.

scanf returns as its value the number of successfully matched and assigned input items.
This can be used to decide how many input items were found. On end of file, EOF is
returned; note that this is different from 0, which means that the next input character
does not match what was called for in the control string.

fread(ptr, sizeof(*ptr), nitems, ioptr) FILE *loptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that binary
I/0O is being done is required; when, for portability reasons, it becomes required, it will be
done by adding an additional character to the mode-string on the fopen call.

fwrite(ptr, sizeof(*ptr), nitems, ioptr) FILE ¢ioptr;
Like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by loptr. It is not very useful except on input, since a rewound
output file is still open only for output.

system(string) char *string;
The string is executed by the shell as if typed at the terminal.
getw(ioptr) FILE #ioptr;
returns the next word from the input stream named by ioptr. EOF is returned on end-of-

file or error, but since this a perfectly good integer feof and ferror should be used. A
‘word’ is 16 bits on the PDP-11.

putw(w, ioptr) FILE #ioptr;
writes the integer w on the named output stream.
setbuf(ioptr, buf) FILE sioptr; char sbuf;

Revision D of 7 January 1984 23

UNIX Programming

setbuf may be used after a stream has been open
NULL, the stream will be unbuffered. Otherwise

be a character array of sufficient size:
char buf[BUFSIZ);
fileno(ioptr) FILE #ioptr;

returns the integer file descriptor associated with th
fseek(ioptr, offset, ptrname) FILE sioptr; long offi

Programming Tools

e buffer supplied will be used. It must

qg but before I/O has started. If buf is

file.
H

The location of the next byte in the stream named by loptr is adjusted. offset is » long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if ptrname
is 1, the offset is measured from the current read| or write pointer; if ptrname is 2, the

offset is measured from the end of the file. The ro

tine accounts properly for any buffering.

(When this routine is used on non UNIX systems, the offset must be a value returned from

ftell and the ptrname must be 0).
long ftell(ioptr) FILE *ioptr;

The byte offset, measured from the beginning of ¢
is returned. Any buflering is properly accounted
this call is useful only for handing to fseek, so as
was when ftell was called.)
getpw(uid, buf) char sbuf;

The password file is searched for the given integer
it is copied into the character array buf, and 0 is
ing to the user ID then 1 is returned.

char *malloc(num);

allocates num bytes. The pointer returned is suffi
purpose. NULL is returned if no space is available

char calloc(num, sise);
allocates space for num items each of size sise. T

g;ﬁle, associated with the named stream

. (On non UNIX systems the value of
to position the file to the same place it

ID. If an appropriate line is found,

Ftumed. If no line is found correspond-

t:iently well aligned to be usable for any

space is guaranteed to be set to 0 and

e
the pointer is sufficiently well aligned to be usable :Lr any purpose. NULL is returned if no

space is available .
cfree(ptr) char sptr;

Space is returned to the pool used by calloe. Disq

not obtained from calloe.
The following are macros whose definitions may be obt
isalpha(c) returns non-zero if the argument is alpha
isupper(c) returns non-zero if the argument is upper-c
islower(c) returns non-zero if the argument is lower-c
isdigit{c) returns non-zero if the argument is a digit.

isspace(c) returns non-zero if the argument is a spacin
vertical tab, form feed, space.

ispunct(c) returns non-rero if the argument is any p
letter, digit or control character.

isalnum(c) returns non-zero if the argument is a letter,

24

order can be expected if the pointer was

ined by including <etype.h>.
ic.

alphabetic.

alphabetic.

character: tab, newline, carriage return,
nctuation character, that is, not a space,

or a digit.

Revision D of 7 Janunary 1984

Programming Tools UNIX Programming

isprint(c) returns non-zero if the argument is printable — a letter, digit, or punctuation char-
acter.

iscntrl{c) returns non-zero if the argument is a control character.

isascii(c) returns non-zero if the argument is an ascii character, that is, less than octal 0200.
toupper(c) returns the upper-case character corresponding to the lower-case letter c.
tolower(c) returns the lower-case character corresponding to the upper-case letter .

Revision D of 7 January 1984 95

LINT — A C PROGRAM CHECKER ...

l.

3.

4.

b.

6.

7.

8.

10.

11.

12.

13.

14.

15.

186.

17.

Table of Contents

Using Lint ot

A Word About Philosophy ...,

Unused Variables and Functions

SetfUsed Information

................................

Flow of Control ...

Function Values

..

Type Checking ...

Type Casts

Nonportable Character Use

Assignments of longs toints ...

Strange COnStrUCtIONS ..o ees e oee oo eeeeeeeeeeeeeeeeee e oo

Ancient History ...

Pointer AGNIMENt ... ssssmscsssssessssessssessssssssessss oo e st eess

Multiple Uses and Side Effectst

Implementation

POFLADIILYoocrererices e smresses sssssssssssssseseresmsesssseessessessssssssssess s sttt

Shutting Lint Up ...

18. Library Declaration Files

18. Bugs,ete.

.........

20. References. ..o,

A. Current Lint Options ...

10

11

12

13

=)

LINT — A C PROGRAM CHECKER

Lint is a command which examines C source programs, detecting a number of bugs and obscuri-
ties. It enforces the type rules of C more strictly than the C compilers. It may also be used to
enforce a number of portability restrictions involved in moving programs between different
machines and/or operating systems. Another option detects a number of wasteful, or error
prone, constructions which nevertheless are, strictly speaking, legal. :

Lint accepts multiple input files and library specifications, and checks them for consistency.

The separation of function between lint and the C compilers has both historical and practical
rationale. The compilers turn C programs into executable files rapidly and efficiently. This is
possible in part because the compilers do not do sophisticated type checking, especially between
separately compiled programs. Lint takes a more global, leisurely view of the program, looking
much more carefully at the compatibilities.

This document discusses the use of lint , gives an overview of the implementation, and gives
some hints on the writing of machine independent C code.

1. Using Lint

Suppose there are two C! source files, filel.c and file.c, which are ordinarily compiled and
loaded together. Then the command:

tutorial% lint filel.c file2.c
produces messages describing inconsistencies and inefficiencies in the programs. The program

enforces the typing rules of C more strictly than the C compilers (for both historical and practi-
cal reasouns) enforce them. The command:

tutorial% lint —p filel.c file2.c

will produce, in addition to the above messages, additional messages which relate to the porta-
bility of the programs to other operating systems and machines. Replacing the —p by —h will
produce messages about various error-prone or wasteful constructions which, strictly speaking,
are not bugs. Saying —hp gets the whole works.

The next several sections describe the major messages; the document closes with sections dis-
cussing the implementation and giving suggestions for writing portable C. An appendix gives a
summary of the lint options.

Revision D of 7 January 1984 1

Lint C Program Checker Programming Tools

2. A Word About Philosophy

Many of the facts which lint needs may be impossible to discover. For example, whether a
given function in a program ever gets called may depend on the input data. Deciding whether
ezit is ever called is equivalent to solving the famous ‘halting problem,’ known to be recursively
undecidable.

Thus, most of the lint algorithms are a compromise. If a function is never mentioned, it can
never be called. If a function is mentioned, lint assumes it can be called; this is not necessarily

so, but in practice is quite reasonable.

Lint tries to give information with a high degree of relevance. Messages of the form ‘zzz might -

be a bug' are easy to generate, but are acceptable only in proportion to the fraction of real bugs
they uncover. If this fraction of real bugs is too small, the messages lose their eredibility and
serve merely to clutter up the output, obscuring the more important messages.

Keeping these issues in mind, we now consider in more detail the classes of messages which lint
produces,

3. Unused Variables and Functions

As sets of programs evolve and develop, previously used variables and arguments to functions
may become unused; it is not uncommon for external variables, or even entire functions, to
become unnecessary, and yet not be removed from the source. These ‘errors of commission’
rarely cause working programs to fail, but they are a source of inefficiency, and make programs
harder to understand and change. Moreover, information about such unused variables and
functions can occasionally serve to discover bugs; if a function does a necessary job, and is never
called, something is wrong!

Lint complains about variables and functions which are defined but not otherwise mentioned.
An exception is variables which are declared through explicit extern statements but are never
referenced; thus the statement:

extern float sin();

will evoke no comment if #in is never used. Note that this agrees with the semantics of the C
compiler. In some cases, these unused external declarations might be of some interest; they can
be discovered by adding the ~x flag to the lint invocation.

Certain styles of programming require many functions to be written with similar interfaces; fre-
quently, some of the arguments may be unused in many of the calls. The v option is available
to suppress the printing of complaints about unused arguments. When —v is in effect, no mes-
sages are produced about unused arguments except for those arguments which are unused and
also declared as register arguments; this can be considered an active (and preventable) waste of
the register resources of the machine.

There is one case where information about unused, or undefined, variables is more distracting
than helpful. This is when lint is applied to some, but not all, files out of a collection which are
to be loaded together. In this case, many of the functions and variables defined may not be
used, and, conversely, many functions and variables defined elsewhere may be used. The —u
flag may be used to suppress the spurious messages which might otherwise appear.

9 Revision D of 7 January 1984

Programming Tools Lint C Program Checker

4. Set/Used Information

Lint attempts to detect cases where a variable is used before it is set. This is very difficult to
do well; many algorithms take a good deal of time and space, and still produce messages about
perfectly valid programs. Lint detects local variables (automatic and register storage classes)
whose first use appears physically earlier in the input file than the first assignment to the vari-
able. It assumes that taking the address of a variable constitutes a ‘use,’ since the actual use
may occur at any later time, in a data dependent fashion.

The restriction to the physical appearance of variables in the file makes the algorithm very sim-
ple and quick to implement, since the true flow of control need not be discovered. It does mean
that lint can complain about some programs which are legal, but these programs would prob-
ably be comsidered bad on stylistic grounds (for example, might contain at least two goto’s).
Because static and external variables are initialized to 0, no meaningful information can be
discovered about their uses. The algorithm deals correctly, however, with initialized automatic
variables, and variables which are used in the expression which first sets them.

The set/used information also permits recognition of those local variables which are set and
never used; these form a frequent source of inefficiencies, and may also be symptomatic of bugs.

5. Flow of Control

Lint attempts to detect unreachable portions of the programs which it processes. It will com-
plain about unlabeled statements immediately following goto, break, continue, or return
statements. An attempt is made to detect loops which can never be left at the bottom, detect-.
ing the special cases while(1) and for(;;) as infinite loops. Lint also complains about loops
which cannot be entered at the top; some valid programs may have such loops, but at best they
are bad style, at worst bugs.

Lint has an important area of blindness in the flow of control algorithm: it has no way of
detecting functions which are called and never return. Thus, a call to ezit may cause unreach-
able code which lint does not detect; the most serious effects of this are in the determination of
returned function values (see the next section).

One form of unreachable statement is not usuvally complained about by lint; a break statement
that cannot be reached causes no message. Programs gemerated by yace,? and especially lez,3
may have literally hundreds of unreachable break statements. The —~O flag in the C compiler
will often eliminate the resulting object code inefficiency. Thus, these unreached statements are
of little importance, there is typically nothing the user can do about them, and the resulting
messages would clutter up the lint output. If these messages are desired, lint can be invoked
with the —b option.

6. Function Values

Sometimes functions return values which are never used; sometimes programs incorrectly use
function ‘values’ which have never been returned. Lint addresses this problem in a number of
ways.

Locally, within a function definition, the appearance of both:
return(ezpr);

and:

Revision D of 7 January 1984 3

Lint C Program Checker Programming Tools

return ;
statements is cause for alarm; lint will give the message
function name contains return(e) and return

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f(a){
if(a)
return (3);
g (%

}

Notice that, if a tests false, f will call g and then return with no defined return value; this will
trigger a complaint from lint . If g, like czit, never returns, the message will still be produced
when in fact nothing is wrong.

In practice, some potentially serious bugs have been discovered by this feature; it also accounts
for a substantial fraction of the ‘noise’ messages produced by lint .

On a global scale, lint detects cases where a function returns a value, but this value is some-
times, or always, unused. When the value is always unused, it may constitute an inefliciency in
the function definition. When the value is sometimes unused, it may represent bad style (for
example, not testing for error conditions).

The dual problem, using a function value when the function does not return one, is also
detected. This is a serious problem. Amazingly, this bug has been observed on a couple of
occasions in ‘working’ programs; the desired function value just happened to have been com-
puted in the function return register!

7. Type Checking

Lint enforces the type checking rules of C more strictly than the compilers do. The additional
checking is in four major areas: across certain binary operators and implied assignments, at the
structure selection operators, between the definition and uses of functions, and in the use of
enumerations.

There are a number of operators which have an implied balancing between types of the
operands. The assignment, conditional { ?:), and relational operators have this property; the
argument of a return statement, and expressions used in initialization also suffer similar
conversions. In these operations, char, short, int, long, unsigned, float, and double types
may be freely intermixed. The types of pointers must agree exactly, except that arrays of z's
can, of course, be intermixed with pointers to z’s.

The type checking rules also require that, in structure references, the left operand of the —> be
a pointer to structure, the left operand of the . be a structure, and the right operand of these
operators be a member of the structure implied by the left operand. Similar checking is done
for references to unions.

Strict rules apply to function argument and return value matching. The types float and dou-
ble may be freely matched, as may the types char, short, int, and unsigned. Also, pointers
can be matched with the associated arrays. Aside from this, all actual arguments must agree in
type with their declared counterparts. '

4 Revision D of 7 January 1984

Programming Tools Lint C Program Checker

With enumerations, checks are made that enumeration variables or members are not mixed with
other types, or other enumerations, and that the only operations applied are =, initialization,
====, =, and function arguments and return values.

8. Type Casts

The type cast feature in C was introduced largely as an aid to producing more portable pro-
grams. Consider the assignment:

p=1;
where p is a character pointer. Lint will quite rightly complain. Now, consider the assignment
p = (char *)1 ; '

in which a cast has been used to convert the integer to a character pointer. The programmer
obvicusly had a strong motivation for doing this, and has clearly signaled his intentions. It
seems harsh for lint to continue to complain about this. On the other band, if this code is
moved to another machine, such code should be looked at carefully., The —¢ flag controls the
printing of comments about casts. When —c is in effect, casts are treated as though they were
assignments subject to complaint; otherwise, all legal casts are passed without comment, no
matter how strange the type mixing seems to be.

9. Nonportable Character Use

On the PDP-11, characters are signed quantities, with a range from -128 to 127. On most of
the other C implementations, characters take on only positive values. Thus, lint will flag cer
tain comparisons and assignments as being illegal or nonportable. For example, the fragment:

char ¢;

if((¢ ;ogetchar() <0)...

works on the PDP-11, but will fail on machines where characters always take on positive values.
The real solution is to declare ¢ an integer, since getchar is actually returning integer values. In
any case, lint will say ‘nonportable character comparison’.

A similar issue arises with bitficlds; when assignments of constant values are made to bitfields,
the field may be too small to hold the value. This is especially true because on some machines
bitfields are considered as signed quantities., While it may seem unintuitive to consider that a
two bit field declared of type int cannot hold the value 3, the problem disappears if the bitfield
is declared to have type unsigned .

10. Assignments of longs to ints

Bugs may arise from the assignment of long to an int , which loses accuracy. This may happen
in programs which have been incompletely converted to use typedefs . When a typedef vari-
able is changed from int to long, the program can stop working because some intermediate
results may be assigned to ints, losing accuracy. Since there are a number of legitimate reasons
for assigning longs to ints, the detection of these assignments is enabled by the —a flag.

Revision D of 7 January 1984 5

Lint C Program Checker Programming Tools

11. Strange Constructions

Several perfectly legal, but somewhat strange, constructions are flagged by lint; the messages
hopefully encourage better code quality, clearer style, and may even point out bugs. The -h
flag is used to enable these checks. For example, in the statement:

*p++ ;
the * does nothing; this provokes the message ‘null effect’ from lint . The program fragment:
unsigned x ; if(x < 0)...
is clearly somewhat strange; the test will never succeed. Similarly, the test:
if(x >0)...
is equivalent to:
f{x!=0)

which may not be the intended action. Lint will say ‘degenerate unsigned comparison’ in these
cases. If one says:

if(11=0)...

lint will report ‘constant in conditional context’, since the comparison of 1 with 0 gives a con-
stant result.

Another construction detected by lint involves operator precedence. Bugs which arise from
misunderstandings about the precedence of operators can be accentuated by spacing and for-
matting, making such bugs extremely hard to find. For example, the statements:

if(x&077 ==10)...
or

x<<2+ 40

probably do not do what was intended. The best solution is to parenthesize such expressions,
and lint encourages this by an appropriate message.

Finally, when the —h flag is in force lint complains about variables which are redeclared in inner
blocks in a way that conflicts with their use in outer blocks. This is legal, but is considered by
many (including the author) to be bad style, usually unnecessary, and frequently a bug.

12. Ancient History

There are several forms of older syntax which are being officially discouraged. These fall into
two classes, assignment operators and initialization.

The older forms of assignment operators (for example,, =+, =, ...) could cause ambiguous
expressions, such as:

a =-1;
which could be taken as either:
= 1] ;

or:

8 Reviston D of 7 January 1984

O

Programming Tools ' Lint C Program Checker

a = ~1;

The situation is especially perplexing if this kind of ambiguity arises as the result of a macro
substitution. The newer, and preferred operators (+ =, ——, ete. } have no such ambiguities.
To spur the abandonment of the older forms, lint complains about these old fashioned opera-
tors.

A similar issue arises with initialization. The older language allowed:
int x 1;

to initialize z to 1. This also caused syntactic difficulties. For example:
int x (-1);

looks somewhat like the beginning of a function declaration:

int x (y){ ...

and the compiler must read a fair ways past z in order to sure what the declaration really is.
Again, the problem is even more perplexing when the initializer involves a macro. The current
syntax places an equals sign between the variable and the initializer:

int x = -1;

This is free of any possible syntactic ambiguity.

13. Pointer Alignment

Certain pointer assignments may be reasonable on some machines, and illegal on others, due
entirely to alignment restrictions. For example, on the PDP-11, it is reasonable to assign
integer pointers to double pointers, since double precision values may begin on any integer
boundary. On the Honeywell 6000, double precision values must begin on even word boun-
daries; thus, not all such assignments make sense. Lint tries to detect cases where pointers are
assigned to other pointers, and such alignment problems might arise. The message ‘possible
pointer alignment problem’ results from this situation whenever either the —p or —h flags are in
effect.

14. Multiple Uses and Side Effects

In complicated expressions, the best order in which to evaluate subexpressions may be highly
machine dependent. For example, on machines (like the PDP-11) in which the stack runs back-
wards, function arguments will probably be best evaluated from right-to-left; on machines with
a stack runming forward, left-to-right seems most attractive. Function calls embedded as argu-
ments of other functions may or may not be treated similarly to ordinary arguments. Similar
issues arise with other operators which have side eflects, such as the assignment operators and
the increment and decrement operators.

In order that the efficiency of C on a particular machine not be unduly compromised, the C
language leaves the order of evaluation of complicated expressions up to the local compiler, and,
in fact, the various C compilers have considerable differences in the order in which they will
evaluate complicated expressions. In particular, if any variable is changed by a side effect, and
also used elsewhere in the same expression, the result is explicitly undefined.

Revision D of 7 January 1984 7

Lint C Program Checker Programming Tools

Lint checks for the important special case where a simple scalar variable is affected. For exam-
ple, the statement:

ali] = b[i+ +];
will draw the complaint:

warning: ¢ evaluation order undefined

15. Implementation

Lint consists of two programs and a driver. The first program is a version of the Portable C
Compiler® 3 which is the basis of the IBM 370, Honeywell 6000, and Interdata 8/32 C compilers.
This compiler does lexical and syntax analysis on the input text, constructs and maintains sym-
bol tables, and builds trees for expressions. Instead of writing an intermediate file which is
passed to a code generator, as the other compilers do, lint produces an intermediate file which
consists of lines of ASCIH text. Each line contains an external variable name, an encoding of the
context in which it was seen {use, definition, declaration, etc.), a type specifier, and a source file
name and line number. The information about variables local to a function or file is collected
by accessing the symbol table, and examining the expression trees.

Comments about local problems are produced as detected. The information about external
pames is collected onto an intermediate file. After all the source files and library descriptions
have been collected, the intermediate file is sorted to bring all information collected about a
given external name together. The second, rather small, program then reads the lines from the
intermediate file and compares all of the definitions, declarations, and uses for consistency.

The driver controls this process, and is also responsible for making the options available to both
passes of lint .

16. Portability

C on the Honeywell and IBM systems is used, in part, to write system code for the host operat-
ing system. This means that the implementation of C tends to follow local conventions rather
than adhere strictly to UNIXt system conventions. Despite these differences, many C programs
have been successfully moved to GCOS and the various IBM installations with little effort. This
section describes some of the differences between the implementations, and discusses the lint
features which encourage portability.

Uninitialized external variables are treated differently in different implementations of C. Sup-
pose two files both contain a declaration without initialization, such as:

int a;

outside of any function. The UNIX loader will resolve these declarations, and cause only a single
word of storage to be set aside for a. Under the GCOS and IBM implementations, this is not
feasible (for various stupid reasons!) so each such declaration causes a word of storage to be set
aside and called a. When loading or library editing takes place, this causes fatal conflicts which
prevent the proper operation of the program. If lint is invoked with the —p flag, it will detect
such multiple defiritions.

{ UNIX is a trademark of Bell Laboratories,

8 Revision D of 7 January 1984

-

O

Programming Tools Lint C Program Checker

A related difficulty comes from the amount of information retained about external names during
the loading process. On the UNIX system, externally known names have seven significant char-
acters, with the upper/lower case distinction kept. On the IBM systems, there are eight
significant characters, but the case distinction is lost. On GCOS, there are only six characters,
of a single case, This leads to situations where programs run on the UNIX system, but
encounter loader problems on the IBM or GCOS systems. Lint —p causes all external symbols
to be mapped to one case and truncated to six characters, providing a worst-case analysis.

A number of differences arise in the area of character handling: characters in the UNIX system
are eight bit ASCII, while they are eight bit EBCDIC on the IBM, and nine bit ASCII on GCOS.
Moreover, character strings go from high to low bit positions (‘left to right’) on GCOS and IBM,
and low to high (‘right to left') on the PDP-11. This means that code attempting to construct
strings out of character constants, or attempting to use characters as indices into arrays, must
be looked at with great suspicion. Lint is of little help here, except to flag multi-character char-
acter constants,

Of course, the word sizes are different! This causes less trouble than might be expected, at least
when moving from the UNIX system (16 bit words) to the IBM (32 bits) or GCOS (36 bits). The
main problems are likely to arise in shifting or masking. C now supports a bit-field facility,
which can be used to write much of this code in a reasonably portable way. Frequerntly, porta-
bility of such code can be enhanced by slight rearrangements in coding style. Many of the
incompatibilities seem to have the flavor of writing:

x &= 0177700 ;

to clear the low order six bits of z. This suffices on the PDP-11, but fails badly on GCOS and
IBM. If the bit field feature cannot be used, the same effect can be obtained by writing:

X &= ~ 077;
which will work on all these machines.

The right shift operator is arithmetic shift on the PDP-11, and logical shift on most other
machines. To obtain a logical shift on all machines, the left operand can be typed unsigned.
Characters are considered signed integers on the PDP-11, and unsigned on the other machines.
This persistence of the sign bit may be reasonably considered a bug in the PDP-11 hardware
which bas infiltrated itself into the C language. If there were a good way to discover the pro-
grams which would be affected, C could be changed; in any case, lint is no help here.

The above discussion may have made the problem of portability seem bigger than it in fact is.
The issues involved here are rarely subtle or mysterious, at least to the implementor of the pro-
gram, although they can involve some work to straighten out. The most serious bar to the por-
tability of UNIX system utilities has been the inability to mimic essential UNIX system functions
on the other systems. The inability to seek to a random character position in a text file, or to
establish a pipe between processes, has involved far more rewriting and debugging than any of
the differences in C compilers. On the other hand, lint has been very helpful in moving the
UNIX operating system and associated utility programs to other machines.

17. Shutting Lint Up

There are occasions when the programmer is smarter than lint . There may be valid reasons for
‘illegal’ type casts, functions with a variable number of arguments, etc. Moreover, as specified
above, the flow of control information produced by lint often has blind spots, causing occasional
spurious messages about perfectly reasonable programs. Thus, some way of communicating
with lint , typically to shut it up, is desirable.

Revision D of 7 January 1984 9

Lint C Program Checker Programming Tools

The form which this mechanism should take is not at all clear. New keywords would require
current and old compilers to recognize these keywords, if only to ignore them. This has both
philosophical and practical problems. New preprocessor syntax suffers from similar problems.

What was finally done was to cause a number of words to be recognized by lint when they were
embedded in comments. This required minimal preprocessor changes; the preprocessor just had
to agree to pass comments through to its output, instead of deleting them as had been previ-
ously done. Thus, lint directives are invisible to the compilers, and the effect on systems with
the older preprocessors is merely that the lint directives don't work.

The first directive is concerned with flow of control information; if a particular place in the pro-
gram cannot be reached, but this is not apparent to lint , this can be asserted by the directive

/* NOTREACHED +/

at the appropriate spot in the program. Similarly, if it is desired to turn off strict type checking
for the next expression, the directive

/+ NOSTRICT #+/

can be used; the situation reverts to the previous default after the next expression. The —v flag
can be turned on for one function by the directive:

/* ARGSUSED #/

Complaints about variable number of arguments in calls to a function can be turned off by the
directive:)

/* VARARGS #*/

preceding the function definition. In some cases, it is desirable to check the first several argu-
ments, and leave the later arguments unchecked. This can be done by following the VARARGS
keyword immediately with a digit giving the number of arguments which should be checked;
thus,

/* VARARGS?2 /
will cause the first two arguments to be checked, the others unchecked. Finally, the directive:
/+ LINTLIBRARY #/

at the head of a file identifies this file as a library declaration file; this topic is worth a section
by itself.

18. Library Declaration Files

Lint accepts certain library directives, such as:

_]y
and tests the source files for compatibility with these libraries. This is done by accessing library

description files whose names are constructed from the library directives. These files all begin
with the directive:

/+ LINTLIBRARY #/

which is followed by a series of dummy function definitions. The critical parts of these
definitions are the declaration of the function return type, whether the dummy function returns
a value, and the number and types of arguments to the function. The VARARGS and
ARGSUSED directives can be used to specify features of the library functions.

10 Revision D of 7 January 1984

o

Programming Tools Lint C Program Checker

Lint library files are processed almost exactly like ordinary source files. The only difference is
that functions which are defined on a library file, but are not used on a source file, draw no
complaints. Lint does not simulate a full library search algorithm, and complains if the source
files contain a redefinition of a library routine (this is a feature!).

By default, lint checks the programs it is given against a standard library file, which contains
descriptions of the programs which are normally loaded when a C program is run. When the
—p flag is in effect, another file is checked containing descriptions of the standard I/O library
routines which are expected to be portable across various machines. The —n flag can be used to
suppress all library checking.

19. Bugs, etc.

Lint was a difficult program to write, partially because it is closely connected with matters of
programming style, and partially because users usually don't notice bugs which cause lint to
miss errors which it should have caught. (By contrast, if int incorrectly complains about some-
thing that is correct, the programmer reports that immediately!)

A number of areas remain to be further developed. The checking of structures and arrays is
rather inadequate; size incompatibilities go unchecked, and no attempt is made to match up
structure and union declarations across files. Some stricter checking of the use of the typedef
is clearly desirable, but what checking is appropriate, and how to carry it out, is still to be
determined.

Lint shares the preprocessor with the C compiler. At some point it may be appropriate for a
special version of the preprocessor to be conmstructed which checks for things such as unused
macro definitions, macro arguments which have side effects which are not expanded at all, or
are expanded more than once, etc.

The central problem with lint is the packaging of the information which it collects. There are
many options which serve only to turn off, or slightly modify, certain features. There are pres-
sures to add even more of these options.

In conclusion, it appears that the general notion of having two programs is a good one. The
compiler concentrates on quickly and accurately turning the program text into bits which can
be run; lint concentrates on issues of portability, style, and efficiency. Lint can afford to be
wrong, since incorrectness and over-conservatism are merely annoying, not fatal. The compiler
can be fast since it knows that lint will cover its flanks. Finally, the programmer can concen-
trate at one stage of the programming process solely on the algorithms, data structures, and
correctness of the program, and then later retrofit, with the aid of fint , the desirable properties
of universality and portability.

Revision D of 7 January 1984 11

Lint C Program Checker Programmirg Tools

20. References.

1. B. W. Kerpighan ard D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J. Q
(1978). |

2. S, C. Johnson, ‘Yace: Yet Another Compiler-Compiler,” Comp. Sci. Tech. Rep. No. 32, Bell
Laboratories, Murray Hill, New Jersey (July 1975). |

3. M. E. Lesk, ‘Lex — A Lexical Analyzer Generator,’ Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975).

4. S. C. Johnson and D. M. Ritchie, ‘UNIX Time-Sharing System: Portability of C Programs
and the UNIX System,' Bell Sys. Tech. J. 57(8) pp. 202i-2048 (1978).

5. 8. C. Johnson, ‘A Portable Compiler: Theory and Practice,’ Proc. 5th ACM Symp. on
Principles of Programming Languasges, (January 1978).

12 Revision D of 7 January 1984

Programming Tools Lint C Program Checker

Appendix A. Current Lint Options

The command currently has the form
tutorial% lint [-options | files... library-descriptors...

The options are

Perform heuristic checks

Perform portability checks

Don’t report unused arguments

Don't report unused or undefined externals
Report unreachable break statements.
Report unused external declarations

Report assignments of long to int or shorter.
Complain about questionable casts

No library checking is done

& oo X e <90

Same as h {for historical reasons)

Revision D of 7 January 1984 13

Table of Contents

MAKE -— A PROGRAM FOR MAINTAINING COMPUTER

1o Basic FEALUES ..o sssssee s o . 2

2. Description Files and Substitutions .

3. Command USBEE ... ssoessseees s ees s oo 5

4. Tmplicit Rules ..o e B

8 EXampPle oo I |

8. Suggestions and WAarDIngsiimesnoemrersesosssseesssssssesessssssssossonn 8

7o ACKnOWIEdEMENtSooooeooeceee oo sessee s s ssesoen e 9

8. References

9. Appendix. Suffixes and TransformationRules 10

MAKE — A PROGRAM FOR MAINTAINING
COMPUTER PROGRAMS

In a programming project, it is easy to lose track of which files need to be reprocessed or recom-
piled after a change is made in some part of the source. Make provides a simple mechanism for
maintaining up-to-date versions of programs that result from many operations on a number of
files. It is possible to tell Make the sequence of commands that create certain files, and the list
of files that require other files to be current before the operations can be done. Whenever a
change is made in any part of the program, Make will create the proper files simply, correctly,
and with a minimum amount of effort.

The basic operation of Make is to find the name of a needed target in the description, ensure
that all of the files on which it depends exist and are up to date, and then create the target if it
has not been modified since its generators were. The description file really defines the graph of
dependencies; Make does a depth-first search of this graph to determine what work is really
necessary.

Make also provides a simple macro substitution facility and the ability to encapsulate commands
in a single file for convenient administration.

It is common practice to divide large programs into smaller, more manageable pieces. The
pieces may require quite different treatments: some may need to be run through a macro proces-
sor, some may need to be processed by a sophisticated program generator (for example, Yace{l]
or Lex[2]). The outputs of these generators may then have to be compiled with special options
and with certain definitions and declarations. The code resulting from these transformations
may then need to be loaded together with certain libraries under the control of special options.
Related maintenance activities involve running complicated test scripts and installing validated
modules. Unfortunately, it is very easy for a programmer to forget which files depend on which
others, which files have been modified recently, and the exact sequence of operations needed to
make or exercise a new version of the program. After a long editing session, one may easily lose
track of which files have been changed and which object modules are still valid, since a change
to a declaration can obsolete a dozen other files. Forgetting to compile a routine that has been
changed or that uses changed declarations will result in a program that will not work, and a
bug that can be very hard to track down. On the other hand, recompiling everything in sight
Just to be safe is very wasteful.

The program described in this report mechanizes many of the activities of program development
and maintenance. If the information on inter-file dependences and command sequences is stored
in a file, the simple command:

tutorial% make

is frequently sufficient to update the interesting files, regardless of the number that have been
edited since the last ‘make’. In most cases, the description file is easy to write and changes
infrequently. It is usually easier to type the make command than to issue even ome of the

Revision D of 7 January 1984 1

Make Programming Tools

needed operations, so the typical cycle of program development operations becomes

think — edit — make — test ..

Make is most useful for medium-sized programming projects; it does not solve the problems of
maintaining multiple source versions or of describing huge programs.

1. Basic Features

The basic operation of make is to update a target file by ensuring that all of the files on which it
depends exist and are up to date, then creating the target if it has not been modified since its
dependents were. Make does a depth-first search of the graph of dependences. The operation of
the command depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling
and loading three C-language files z.c, y.c, and z.c with the IS library. By convention, the out-
put of the C compilations will be found in files named z.0, y.0, and z.0. Assume that the files
z.c and y.c share some declarations in a file named defs, but that z.c does not. That is, z.c and
y.c have the line

#include " defs”
The following text describes the relationships and operations:

prog: Xx.0 y.o r.o A
¢cc X0 yo z0o -1S —-o prog

X.0 y.0o: defs
If this information were stored in a file named makefile, the command:

tutorial% make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files z.c, y.c, z.¢, or defs.

Make operates using three sources of information: a user-supplied description file (as above), file
names and ‘last-modified’ times from the file system, and built-in rules to bridge some of the
gaps. In our example, the first line says that prog depends on three ‘.0’ files. Once these object
files are current, the second line describes how to load them to create prog. The third line says
that z.0 and y.0 depend on the file defs. From the file system, make discovers that there are
three ‘.c' files corresponding to the needed ‘.o’ files, and uses built-in information on how to gen-
erate an object from a source file (that fs, issue a ‘cc -¢’ command).

The following long-winded description file is equivalent to the one above, but takes no advan-
tage of make’s innate knowledge:

prog: X.0 y.o .0

¢¢ X.0 yo 2.0 -IS -o prog
x.0: x.c defs

¢c —€ X.cy.0: yc defs

cc ¢ Y.C72.0: IC
¢cc ¢ I.C

If none of the source or object files had changed since the last time prog was made, all of the
files would be current, and the command:

9 Revision D of 7 January 1984

Programming Tools Make

tutorial% make

would just announce this fact and stop. If, however, the defs file had been edited, z.c and y.c
(but not z.c } would be recompiled, and then prog would be created from the new ‘.o’ files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog :

If no target name is given on the make command line, the first target mentioned in the descrip-
tion is created; otherwise the specified targets are made. The command:

tutorial% make x.0

would recompile z.0 if z.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in further
decisions; otherwise the current time is used. It is often quite useful to include rules with
mnemonic names and commands that do not actually produce a file with that name. These
entries can take advantage of make ‘s ability to generate files and substitute macros. Thus, an
entry ‘save’ might be included to copy a certain set of files, or an entry ‘cleanup’ might be used
to throw away unneeded intermediate files. In other cases one may maintain a gzero-length file
purely to keep track of the time at which certain actions were performed. This technique is use-
ful for maintaining remote archives and listings.

Make has a simple macro mechanism for substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs.
A macro is invoked by preceding the name by a dollar sign; macro names longer than one char-
acter must be parenthesized. The name of the macro is either the single character after the dol-
lar sign or a name inside parentheses. The following are valid macro invocations:

$(CFLAGS) $2 $(xy) $Z2-3(2)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $<. They will be discussed later. The following fragment
shows the use;

OBJECTS = x.0 y.0 z.0
LIBES = -IS
prog: $(OBJECTS)
ce $(OBJECTS) $(LIBES) -o prog

The command:
tutorial% make

loads the three object files with the IS library. The command:
tutorial% make "LIBES== -]l -IS"

loads them with both the Lex (‘-1I') and the Standard (*-IS’) libraries, since macro definitions on
the command line override definitions in the description. (It is necessary to quote arguments
with embedded blanks in UNIX{ commands.)

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

1 UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 3

Make Programming Tools

2. Description Files and Substitutions

A description file contains three types of information: macro definitions, dependency informa-
tion, and executable commands. There is also a comment convention: all characters after a
sharp (#) are ignored, as is the sharp itsell. Blank lines and lines beginning with a sharp are
totally ignored. If a non-comment line is too long, it can be continued using a backslash. If the
last character of a line is a backslash, the backslash, newline, and following blanks and tabs are
replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab, The
name (string of letters and digits) to the left of the equal sign (trailing blanks and tabs are
stripped) is assigned the string of characters following the equal sign (leading blanks and tabs
are stripped.) The following are valid macro definitions:

2 = xyz
abc = -l -ly -IS
LIBES =

The last definition assigns LIBES the null string. A macro that is never explicitly defined has
the null string as value. Macro definitions may also appear on the make command line (see
below). '

Other lines give information about target files. The general form of an entry is:

target] [target2 .. .| :[:] [dependentl . .] [; commands] [#'. |
[(tab) commands] [# . .]

Items inside brackets may be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters ‘*' and ‘1" are expanded.) A command is any string
of characters not including a sharp {except in quotes) or newline. Commands may appear either
after a semicolon on a dependency line or on lines beginning with a tab immediately following a
dependency line.

A dependency line may have either a single or a double colon. A target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a command
sequence associated with it. If the target is out of date with any of the dependents on any
of the lines, and a command sequence is specified (even a null one following a semicolon or
tab), it is executed; otherwise a default creation rule may be invoked.

9. In the double-colon case, a command sequence may be associated with each dependency line;
if the target is out of date with any of the files on a particular line, the associated com-
mands are executed. A built-in rule may also be executed. This detailed form is of particu-
lar value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command
line is printed and then passed to a separate invocation of the Shell after substituting for mac-
ros. {The printing is suppressed in silent mode or if the command line begins with an © sign).
Make normally stops if any command signals an error by returning a non-zero error code.
(Errors are ignored if the ‘~i' flags has been specified on the make command line, if the fake tar-
get name ‘IGNORE' appears in the description file, or if the command string in the description
file begins with a hyphen. Some UNIX commands return meaningless status). Because each
command line is passed to a separate invocation of the Shell, care must be taken with certain
commands (for example, cd and Shell control commands) that have meaning only within a single

4 Revision D of 7 January 1984

Programming Tools Make

Shell process; the results are forgotten before the next line is executed,

Before issuing any command, certain macros are set. $@ is set to the name of the file to be
‘made’. $? is set to the string of names that were found to be younger than the target. If the
command was generated by an implicit rule (see below), $ < is the name of the related file that
caused the action, and $* is the prefix shared by the current and the dependent file names,

If a file must be made but there are no explicit commands or relevant built-in rules, the com-
mands associated with the name ‘.DEFAULT’ are used. If there is no such name, make prints a
message and stops.

3. Command Usége

The make command takes four kinds of arguments: macro definitions, flags, description file
names, and target file names.

tutorial% masake [flags] [macro definitions] { targets]
The followirg summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments {argements with embedded equal signs) are analyzed and
the assignments made. Command-line macros override corresponding definitions found in the
description files. '

Next, the flag arguments are examined. The permissible flags are

- Ignore error codes returned by invoked commands. This mode is entered if the fake target
name ‘IGNORE’ appears in the description file.

-3 Silent mode. Do not print command lines before executing. This mode is also entered if
the fake target name ‘.SILENT’ appears in the description file.

-r Do pot use the built-in rules.

-n No execute mode. Print commands, but do not execute them. Even lines beginning with
an ‘@’ sign are printed.

-t Touch the target files (causing them to be up to date) rather than issue the usual com-
mands.

—-q Question. The make command returns a zero or non-zero status code depending on whether
the target file is or is not up to date.

—-p Print out the complete set of macro definitions and target descriptions
-d Debug mode. Print out detailed information on files and times examined.

—~f Description file name. The next argument is assumed to be the name of a description file.
A file name of ‘-’ denotes the standard input. If there are no ‘-f’ arguments, the file named
makefile or Makefile in the current directory is read. The contents of the description files
override the built-in rules if they are present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left to right order. If there are no such arguments, the first name in the description files
that does not begin with a period is ‘made’.

Revision D of 7 January 1984 5

Make Programming Tools

4. Implicit Rules

The Make program uses a table of interesting suffixes and a set of transformation rules to sup-
ply default dependency information and implied commands. The Appendix describes these
tables and means of overriding them. The default suffix list is:

Suffix Type of File
.0 Object file
.c C source file
. Efl source file
o Ratfor source file
of Fortran source file
8 Assembler source file
Y Yace-C source grammar
-y Yacc-Ratfor source grammar
ye Yacc-Eft source grammar
o Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

|

r oy yr ye A d
4

If the file 2.0 were needed and there were an 2.c in the description or directory, it would be com-
piled. If there were also an z.l, that grammar would be run through Lex before compiling the
result. However, if there were no z.c but there were an z.l, make would discard the intermediate
C-language file and use the direct link in the graph above.

It is possible to change the names of some of the compilers used in the default, or the flag argu-

ments with which they are invoked by knowing the macro names used. The compiler names are
the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command:

.

P E————

Y. ye

tutorial% make CC==newcc

uses the ‘nmewcc’ command instead of the usual C compiler. The macros CFLAGS, RFLAGS,
EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued with
optional flags. Thus:

tutorial?% make "CFLAGS==-0"

uses the optimizing C compiler. causes the optimizing C compiler to be used.

6 Revision D of 7 January 1984

-

Programming Tools Make

5. Example

As an example of the use of Make, we will present the description file used to maintain the Make
command itself. The code for Make is spread over a number of C source files and a Yace gram-
mar. The description file contains:

Description file for the Make command

FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c \
gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o

LIBES= -IS
LINT = lint -p
CFLAGS == -0

make: $(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) —o make

size make

$(OBJECTS): defs
gram.o: lex.c

cleanup:
-rm *.0 gram.c
-du
install:
@size make fusr/bin/make
cp make fusr/bin/make ; rm make
print: $(FILES) # print recently changed files
pr $1| 8P
touch print
test:
make —dp | grep -v TIME >1zap
[usr/bin/make —dp | grep -v TIME >2zap
diff 1zap 2zap
rm lzap 2zap

lint : dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
I'm gram.c

arch:
ar uv [sys/source/s2/make.a $(FILES)

Make usually prints out each command before issuing it. The following cutput results from typ-
ing the simple command:

tutorial% make

in a directory containing only the source and description file:

Revision D of 7 January 1984 7

Make Programming Tools

cc —c version.c

c¢ —¢ main.c

cc —c doname.c

c¢ ~—c misc.c

cc —c files.c

cc —c dosys.c

yacc gram.y

mv y.tab.c gram.c

cC —C gram.c

cc version.o main.o doname.o misc.o files.o dosys.o gram.o -IS —o make
13188+ 3348+ 3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the ‘size make' command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the 2ize command in the description file suppressed the printing of
the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The ‘print’ entry
prints only the files that have been changed since the last ‘make print’ command. A zero-length
file print is maintained to keep track of the time of the printing; the $! macro in the command
lice then picks up only the names of the files changed since print was touched. The printed
output can be sent to a different printer or to a file by changing the definition of the P macro:

tutorial% make print "P = opr —sp”
or:

tutorial% make print "P== cat >sap”

6. Suggestions and Warnings

The most common difficulties arise from make's specific meaning of dependency. If file z.c has a
‘4tinclude "defs”’ line, then the object file 2.0 depends on defs; the source file 2.c does not. (If
defs is changed, it is not necessary to do anything to the file z.¢, while it is necessary to recreate
z.0).

To discover what make would do, the ‘-n’ option is very useful. The command:
tutorial% make —n

orders make to print out the commands it would issue without actually taking the time to exe-
cute them. If a change to a file is absolutely certain to be benign (for example, adding a new
definition to an include file), the ‘-t' (touch) option can save a lot of time: instead of issuing a
large number of superfluous recompilations, make updates the modification times on the affected
file. Thus, the command:

tutorial%% make —ts

(‘touch silently’) causes the relevant files to appear up to date. Obvious care is necessary, since
this mode of operation subverts the intention of make and destroys all memory of the previous
relationships.

The debugging flag (‘-d’) causes make to print out a very detailed description of what it is
doing, including the file times. The output is verbose, and recommended only as a last resort.

8 Revision D of 7 January 1984

O

-

Programming Tools Make

7. Acknowledgments

I would like to thank S. C. Johnson for suggesting this approach to program maintenance con-
trol. I would like to thank S. C. Johnson and H. Gajewska for being the prime guinea pigs dur-
ing development of make.

8. References

1. S. C. Johnson, ‘Yacc — Yet Another Compiler-Compiler’, Bell Laboratories Computing Sci-
ence Technical Report #32, July 1978.

2. M. E. Lesk, ‘Lex — A Lexical Analyzer Generator’, Computing Science Technical Report
#39, October 1975.

Revision D of 7 January 1984 9

Make Programming Tools

8. Appendix. Suffixes and Transformation Rules

Make itself does not know what file name suffixes are interesting or how to transform a file with Q

one suffix into a file with another suffix. This information is stored in an internal table that has
the form of a description file. If the ‘' flag is used, this table is not used.

The list of suffixes is actually the dependency list for the name ‘.SUFFIXES'; Make looks for a
file with any of the suffixes on the list. If such a file exists, and if there is a transformation rule
for that combination, Make acts as described earlier. The transformation rule names are the
concatenation of the two suffixes. The name of the rule to transform a ‘.r’ file to a ‘.0’ file is

thus ‘.r.0". If the rule is present and no explicit command sequence has been given in the user’s -

description files, the command sequence for the rule ‘r.0’ is used. If a command is generated by
using one of these suffixing rules, the macro $* is given the value of the stem (everything but
the suffix) of the name of the file to be made, and the macro $< is the name of the dependent
that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to be
appended, the user can just add an entry for ‘SUFFIXES' in his own description file; the
dependents will be added to the usual list. A ‘.SUFFIXES’ line without any dependents deletes
the current list. (It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

10 Revision D of 7 January 1984

O

Programming Tools Make

SUFFIXES: 0ceaxfyyryels
YACC=yacc
YACCR=yace r
YACCE=yacc —¢
YFLAGS=
LEX==lex
LFLAGS=
CC==cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ecc
EFLAGS=
FFLAGS=
£.0:
${CC) $(CFLAGS) < §<
.0.r.o fo:
$(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) —< $<
8.0 :
$(AS) -0 80 $<
.yo:
$(YACC) $(YFLAGS) $<
$(CC) $(CFLAGS) —¢ y.tab.c
rm y.tab.c
mv y.tab.o $@

" $(YACC) $(YFLAGS) $<
mv y.tab.c $@

Revision D of 7 January 1984 11

Table of Contents

LoLo SofIle oo ss e ssmses s s st st sser
1.3. SID'S (VErsion BUMBEIS)cocommmmersememmnn
LA, T KEYWORAS ..o ssssssssesssssesmsmsns e et et s s e nensb e
2. Creating SCCS Database Files with ‘sccs create’

3. Retrieving Files for Compilation with ‘sces get’

4. Changing Files (Creating Deltas) ... -
4.1. Retrieving a File for Editing w:th sces edlt’ ..
4.2. Merging Changes Back Into the s-file with ‘sces delta’
4.3, When to Make Deltas . -

4.4. Finding Out What's Gomg On with ‘sces info’ ...

4.5, ED KEFWORDS oo oot e s s s e
4.5.1. Finding Out What Versions Are Being Run with ‘sccs

what’ . ..

4.5.2. Where to Put Id Keywords ...

4.8. Keeping SID’s Consistent Across Files ...

4.7. Creating New Releases ... s smscsssessssssesse e

5. Restoring Old Versions
5.1. Reverting to Old Vers:ons ..
5.2. Selectively Deleting Old Deltas ...

8. Auditing ChADEES ... s s s s e s
8.1. Displaying Delta Comments with ‘sces prt’ ..

6.2. Finding Why Lines Were Inserted .
6.3. Discovering What Changes You Have Made wnth sces dlﬁs'

7. Shorthand Notations e

& e o e

™ 00~y -] =] =3 &

oo Oo®

7.1. Making a Delta and Getting a File with ‘sccs delget’

7.2. Replacing a Delta with the ‘sces fix’ ..

7.3. Backing Off From an Edit with ‘sccs unedlt'
7.4. Working From Other Directories with thed Flag

8. Using SCCS on a Project

9. Saving Yoursell ... s s

9.1. Recovering a2 Munged Edit Flle ...

9.2. Restoring the s-file ...

10. Managing SCCS Files with ‘sccs admin’ ...

11. Maintaining Different Versions (Branches)
11.1. Creating a Branch

11.2. Getting From a Branch

....................................

11.3. Merging a Branch Back into the Main Trunk

11.4. A More Detailed Example

11.5. A Warning

12. Using SCCS with Make

12.1. Maintaining Single Programs ..
12.2. Maintaining A Library ...

12.3. Maintaining A Large Program

13, COMIMATAS oo eecesvccesssstosessssmmsbas rmsassassaens 110844588 Sars bR SR8 RS SR8 $ETR S nm bk abnk b b0

14, Id Keywords ...

Part II — The SCCS Low-Level Command Interface

15. SCCS For Beginners ..
15.1. Terminology .

15.2. Creating an SCOS File with ‘admil’o

15.3. Retrieving a File with ‘get’ ...
15.4. Recording Changes with ‘delta’ ..

15.5. More about the ‘get’ Command ...

15.8. Getting Explanations of Errors with ‘help’

18. SCCS File Numbering Conventions

17. SCCS Command Conventions

17.1. Command Line Syntax ..o

1.2, FIAES oo e est e st ey s sess eSS R 58 e 158 s e b

17.3. Real/Effective User

10
10
10
10

10

11
u
11

11

13
12
12
13
13
13

13
14
15
16

17

18

19

19
20
20
21
21
22
23

23

-

17.4. Back-up Files Created During Processing ...,
17.5. Diagnostics

18. SCCS Commands
18.1. get — Retrieve a File
18.1.1. ID Keywords . e e v 8RR R ARt R e s e e e
18.1.2. Retrieving Dllferent Vers:ons
18.1.3. Retrieving to Make Changes
18.1.4. Concurrent Edits of Different SIDs
18.1.5. Concurrent Edits of the Same SID
18.1.6. Options That Affect Output
18.2. delta — Make a Delta
18.3. admin — Administer SCCS Flles ..
18.3.1. Creating SCCS Files . o
18.3.2. Inserting Commenta.ry for the Imtlal Delta
18.3.3. Initializing and Modifiying SCCS File Paramet.ers
18.4, prs — Print SCCS File .
18.5. help — Ask for Help ...
18.6. rmdel — Remove a Delta
18.7. c¢de — Change Delta Commentary ..
18.8. what — Identify SCCS Files . "
18.9. sccediff — Compare Two Versnons of an SCCS Flle
18.10. comb — Combine Deltas .
18.11. val — Validate Charactenstlcs of an SCCS Flle

..

19. SCCS Files .
19.1. Protectlon .
19.2. Layout of an), SCCS Flle
193, AUGICIDG ..o e mssr o

—iii -

27
27

28
28
29
29
31
32
35
35

38
39
40
41
41
42
42
43
43
43

414
44
45
45

SOURCE CODE CONTROL SYSTEM

The Source Code Control System (SCCS) is a system for controlling changes to text files (typi-
cally, the source code and documentation of software systems).

You can think of SCCS as a custodian of files: SCCS provides facilities for storing, updating, and
retrieving any version of a file of text; for controlling updating privileges to that file; for identi-
fying the version of a retrieved file; and for recording who made each change, when and where it
was made, and why. This is important in environments where programs and documentation
undergo frequent chanrges (due to mainterance and/or enhancement work), because regenerating
an unrevised version of a program or document is often desirable. Obviously, this could be done
by keeping copies (on paper or other media), but this quickly becomes urmanageable and waste-
ful as the number of programs and documents increases. SCCS provides an attractive solution to
stockpiling multiple versions of the same text, because it stores only the original file and subse-
quent sets of changes on disk.

There are two major divisions of SCCS and these two divisions are reflected in the layout of this
document:

o The sccs command itself is a high-level ‘user friendly’ front end that provides an interface to
a collection of tools for manipulating SCCS files. In general, users can get by using the facili-
ties provided by the sccs command, and so accs is described in Part I of this document. The
individual SCCS tools are not too easy to use, but they do provide extremely close control over
the SCCS database files.

e The SCCS commands are a collection of programs for manipulating the sCCS database files.
Although the sccs front end command normally abstracts the most common operations you
might want to do, there may be times when it is necessary to use the raw facilities of the
SCCS commands themselves — these commands are described in Part II of this document and
gives a deeper description of how to use SCCS. Of particular interest are the numbering of
branches, the l-file, which gives a description of what deltas were used on a get, and certain
other SCCS commands.

The SCCS manual pages are a good last resort. These should be read by software managers and

by people who want to know everything about everything.

Both the SCCS User’s Guide and the SCCS manual pages were written in the days before the
sccs command existed, so most of the examples are slightly different from those in this docu-
ment.

Revision D of 7 January 1984 1

SCCS High-Level User Interface - Programming Tools

Part I — The SCCS High-Level User Interface

This first part of this document is a quick introduction to using SCCS via the sccs command.
The presentation is geared towards people who want to know how to get the job done done
rather than how the SCCS works; for this reason some of the examples are not well explained.
For details of what the magic options do, see the section entitled: Further Information.

Throughout this introduction, we assume that you are using the C-Shell on a machine called
‘tutorial’, and so the hostname is shown followed by the % sign prompt in the examples. What
you type is shown in bold faced text like this, and the system'’s responses are shown in ordi-
nary typeface, like this:

tutorial% sccs get prog.c
1.1
87 lines

SCCS is a source management system. Such a system maintains a record of versions of a system;
a record is kept with each set of changes of what the changes are, why they were made, who
made them, and when they were made. Old versions can be recovered, and different versions
can be maintained simultaneously. In projects with more than one persom, ensures that two
people are not editing the same file at the same time.

All versions of your program, plus the log and other information, is kept in a file called the -
file. There are three major operations that can be performed on the #-file:

1. Get a file. This operation retrieves a version of the file from the s-file. By default, the
latest version is retrieved. This file is intended for compilation, printing, or whatever; it is
specifically NOT intended to be edited or changed in any way; any changes made to a file
retrieved in this way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file from the s-file, but
this file is intended to be edited and then incorporated back into the s-file. Only one per-
son may be editing a file at one time.

3. Merge a file back into the s-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

1. Learning the Lingo

There are a number of terms that are worth learning before we go any farther.

9 Revision D of 7 January 1984

-

O

Pregramming Tools SCCS High-Level User Interface

1.1. S-file

The s-file is a single file that holds all the different versions of your file. The s-file contains
only the differences between versions, rather than the entire text of the new version. This saves
disk space and allows selective changes to be removed later. Also included in the s-file is some
header information for each version, including the comments given by the person who created
the version explaining why the changes were made.

1.2. Deltas

Each set of changes to the s-file — which is approximately, but not exactly, equivalent to a ver-
sion of the file — is called a delta. Although technically a delta only includes the changes made,
in practice it is usual for each delta to be made with respect to all the deltas that have occurred
beforel. However, it is possible to get a version of the file that has selected deltas removed out
of the middle of the list of changes — equivalent to removing your changes later.

1.3. SID’s (version numbers)

A SID — SCCS Id — is a number that represents a delta. This is normally a two-part number
consisting of a ‘release’ number and a ‘level' number. Normally the release number stays the
same, however, it is possible to move into a new release if some major change is being made.

Since all past deltas are normally applied, the SID of the final delta applied can be used to
represent a version number of the file as a whole.

1.4. Id keywords

When you get a version of a file with intent to compile and install it that is, something other
than edit it), some special keywords that are part of the text of the file are expanded inline by
SCCS. These Id Keywords can be used to include the current version number or other informa-
tion into the file. All id keywords are of the form %z%, where z is an upper case letter. For
example, %1% is the SID of the latest delta applied, %6W% includes the module name, SID, and a
mark that makes it findable by a program, and %G% is the date of the latest delta applied.
There are many others, most of which are of dubious usefulness.

When you get a file for editing, the id keywords are not expanded; this is so that after you put
them back in to the s-file, they will be expanded automatically on each new version. But
notice: if you were to get them expanded accidently, your file would appear to be the same ver-
sion forever more, which would of course defeat the purpose. Also, if you should install a ver-
sion of the program without expanding the id keywords, it will be impossible to tell what ver-
sion it is (since all it will have is ‘%OW%' or whatever).

1 This matches normal usage, where the previous changes are not saved at all, so all changes are
automatically based on all other changes that have happened through history.

Revision D of 7 January 1984 3

SCCS High-Level User Interface Programming Tools

2. Creating sccs Database Files with ‘sccs create’

To put a bunch of source files into SCCS format, you do the following things:
o Make the SCCS subdirectory if it isn’t there already:

tutorial% mkdir SCCS Note that SCCS ia upper-case
tutorial%

¢ Then you use the sccs create command to actually create the SCCS database files for all the
source files you have. Suppose that you want to have all your .c and .A files under SCCS

control:

tutorial% sccs create s.[ch)
lots of messages from SCCS here
tutorial%

For each file you have, the sccs create command does the following things for you:
Creates a file called s.file in the SCCS subdirectory,

Renames each file by placing a comma in front of the name, so that you end up with files of
the form ,file.

Gets a read-only copy of each file by using the scce get command, as described later on.

When you are convinced that SCCS has correctly created the o-files, you should remove the files
whose names start with commas,

If you want to have id keywords in the files, it is best to put them in before you create the »-
files. If you do not, create will print ‘No Id Keywords (cm7)’, which is a warning message only.

3. Retrieving Files for Compilation with ‘sccs get’

To get a copy of the latest version of a file, run
tutorial% sccs get prog.c
scCs will respond:

1.1
87 lines

meaning that version 1.1 was retrieved? and that it has 87 lines. The file prog.c is created in
the current directory — it is created read-only to remind you that you are not supposed to
change it.

This copy of the file should not be changed, since SCCS is unable to merge the changes back into
the s-file. If you do make changes, they will be lost the next time someone does a get.

4. Changing Files (Creating Deltas)

2 Actually, the SID of the final delta applied was 1.1,

4 Revision D of 7 January 1984

-

-

-

Programming Tools SCCS High-Level User Interface

4.1. Retrieving a File for Editing with ‘sccs edit’

To edit a source file, you must first get it, requesting permission to edit it3. The response will
be the same as with get except that it also says that a new delta is being created:

tutorial% sces edit prog.c
New delta 1.2

You then edit it, using a standard text editor:

tutorial% vi prog.c

4.2. Merging Changes Back Into the s-file with ‘sccs delta’

When the desired changes are made, you can put your changes into the SCCS file using the delta
command:

tutorial% sccs delta prog.c

Delta prompts you for ‘comments?’ before merging the changes in. At this prompt you should
type a one-line description of what the changes mean (more lines can be entered by ending each
line except the last with a backslash. Delta will then type: '

1.2

5 inserted

3 deleted

84 unchanged

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84 lines
unchanged?, The prog.c file will be removed; it can be retrieved using get.

4.3. When to Make Deltas

It is probably unwise to make a delta before every recompilation or test; otherwise, you tend to
get a lot of deltas with comments like ‘fixed compilation problem in previous delta’ or
‘fixed botch in 1.3". However, it is very important to delta everything before installing a module
for general use. A good technique is to edit the files you need, make all necessary changes and
tests, compiling and editing as often as necessary without making deltas. When you are
satisfied that you have a working version, delta everything being edited, re-get them, and
recompile everything.

4.4, Finding Out What’s Going On with ‘sccs info’
To find out what files are being edited, type:

8 The edit command is equivalent to using the —e flag to get, as:
tutorial% sccs get —e prog.c
Keep this in mind when reading other documentation.
4 Changes to line are counted as a line deleted and a line inserted.

Revision D of 7 January 1984 5

SCCS High-Level User Interface Programming Tools

tutorial% sces info

to display a list of all the files being edited and other information — such as the name of the
user who did the edit. Also, the command:

tutorial% sccs check

is nearly equivalent to the info command, except that it is silent if nothing is being edited, and
returns non-zero exit status if anything is being edited. It can thus be used in an ‘install’ entry
in a makefile to abort the install if anything has not been properly deltaed.

If you know that everything being edited should be deltaed, you can use:
tutorial% sces delta ‘sces tell’

The tell command is similar to info except that only the names of files being edited are output,
one per line.

All of these commands take a —b flag to ignore ‘branches’ (alternate versions, described later)
and the —u flag to only give files being edited by you. The —u flag takes an optional user argu-
ment, giving only files being edited by that user. For example:

tutorial% sces info —ujohn
gives a listing of files being edited by johm.

4.5. ID keywords
Id keywords can be inserted into your file that will be expanded automatically by get. For
example, a line such as:
static char Sccsld| | = " %W%B\t%G%";
will be replaced with something like:
static char Scesld]] = "@(#)progc 1.2 08/29/80";

This tells you the name and version of the source file and the time the delta was created. The
string ‘@(#)' is a special string which signals the beginning of an SCCS Id keyword.

4.5.1. Finding Out What Versions Are Being Run with ‘sccs what’

To find out what version of a program is being run, use:
tutorial% sccs what prog.c fusr/bin/prog

which will print all strings it finds that begin with ‘Q(#)’. This works on all types of files,
including binaries and libraries. For example, the above command will output something like:

prog.c:
prog.c 1.2 08/29/80
Jusr/bin/prog:
prog.c 1.1 02/05/79

From this I can see that the source that I have in prog.c will not compile into the same version
as the binary in /usr/bin/prog.

8 Revision D of 7 January 1984

i
i
i
!
i
|
3
!

Programming Tools SCCS High-Level User Interface

4.5.2. Where to Put Id Keywords

ID keywords can be inserted anywhere, including in comments, but Id Keywords that are com-
piled into the object module are especially useful, since it lets you find out what version of the
object is being run, as well as the source. However, there is a cost: data space is used up to
store the keywords, and on small address space machines this may be prohibitive.

When you put id keywords into header files, it is important that you assign them to different
variables. For example, you might use:

static char AccessSid] | = "%W% %G%";
in the file access.h and:
static char OpsysSid| | = "%W%%G%";

in the file opsys.h. Otherwise, you will get compilation errors because ‘Scesld’ is redefined. The
problem with this is that if the header file is included by many modules that are loaded
together, the version number of that header file is included in the object module many times;
you may find it more to your taste to put id keywords in header files in comments.

4.8. Keeping sID’s Consistent Across Files

With some care, it is possible to keep the SID’s consistent in multi-file systems. The trick here is
to always edit all files at once. The changes can then be made to whatever files are necessary
and then all files (even those not changed) are redeltaed. This can be done fairly easily by just
specifying the name of the directory that the SCCS files are in:

tutorial% sccs edit SCCS
which will edst all files in that directory. To make the delta, use:
tutorial% sces delta SCCS

You will be prompted for comments only once.

4.7. Creating New Releases

When you want to create a new release of a program, you can specify the release number you
want to create on the edit command. For example:

tutorial% sccs edit —r2 prog.c

will put the next delta in release two (that is, it will be numbered 2.1). Future deltas will
automatically be in release two. To change the release number of an entire system, use:

tutorial% sccs edit —r2 SCCS

5. Restoring Old Versions

Revision D of 7 January 1984 7

SCCS High-Level User Interface Programming Tools

5.1. Reverting to Old Versions

Suppose that after delta 1.2 was stable you made and released a delta 1.3. But this introduced
a bug, so you made a delta 1.4 to correct it. But 1.4 was still buggy, and you decided you
wanted to go back to the old version. You could revert to delta 1.2 by choosing the SID in a

get:

tutorial% sccs get —r1.2 prog.c
This will produce a version of prog.c that is delta 1.2 that can be reinstalled so that work can
proceed.

In some cases ybu don't know what the SID of the delta you want is. However, you can revert
to the version of the program that was running as of a certain date by using the —¢ (cutoff) flag.
For example,

tutorial% scecs get —c800722120000 prog.c

will retrieve whatever version was current as of July 22, 1980 at 12:00 noon. Trailing com-
ponents can be stripped off (defaulting to their highest legal value), and punctuation can be
inserted in the obvious places; for example, the above line could be equivalently stated:

tutorial% sccs get —c"80/07 /22 12:00:00" prog.c

5.2. Selectively Deleting Old Deltas

Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should
be removed. You could do this by ezcluding delta 1.3:

tutorial% sccs edit -x1.3 prog.c

When delta 1.5 is made, it will include the changes made in delta 1.4, but will exclude the
changes made in delta 1.3. You can exclude a range of deltas using a dash. For example, if you
want to get rid of 1.3 and 1.4 you can use:

tutorial% sccs edit —x1.3-1.4 prog.c
which will exclude all deltas from 1.3 to 1.4. Alternatively,
tutorial% sccs edit —x1.3-1 prog.c

will exclude a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using —x (or -1 — see below) there will be conflicts between versions; for
example, it may be necessary to both include and delete a particular line. If this happens, SCCs
always prints out a message telling the range of lines affected; these lines should then be exam-
ined very carefully to see if the version SCCS got is ok.

Since each delta (in the sense of ‘a set of changes') can be excluded at will, it is most useful to
put each semantically-distinct change into its own delta.

6. Auditing Changes

8 Revision D of 7 January 1984

O

Programming Tools SCCS High-Level User Interface

6.1. Displaying Delta Comments with ‘sces prt’

When you created a delta, you presumably gave a reason for the delta to the ‘comments?
prompt. To print out these comments later, use:
tutorial% sces prt prog.c

This will produce a report for each delta of the SID, time and date of creation, user who created
the delta, number of lines inserted, deleted, and unchanged, and the comments associated with
the delta. For example, the output of the above command might be:

D 1.280/08/29 12:35:31 bill 2 1 00005/00003/00084
removed "-q” option '

D 1.179/02/0500:19:31 eric 1 0 (00087/00000/00000
date and time created 80/06/10 00:19:31 by eric

68.2. Finding Why Lines Were Inserted

To find out why you inserted lines, you can get a copy of the file with each line preceded by the
SID that created it:

tutorial% sccs get —m prog.c

You can then find out what this delta did by printing the comments using prt.
To find out what lines are associated with a particular delta, 1.3 for instance, use:

- tutorial% sccs get —-m ~p prog.c| grep “1.3°

The —p flag causes SCCS to output the generated source to the standard output rather than to a
file.

6.3. Discovering What Changes You Have Made with ‘sccs diffs’

When you are editing a file, you can find out what changes you have made using:
tutorial% sces diffs prog.c '

Most of the “diff”’ flags can be used. To pass the —c flag, use —C.
To compare two versions that are in deltas, use:

tutorial% sccs scesdiff -r1.3 -r1.8 prog.c
to see the differences between delta 1.3 and delta 1.6.

7. Shorthand Notations

There are several sequences of commands that are used freqﬁently. Scca tries to make it easy to
do these.

Revision D of 7 January 1984 9

SCCS High-Level User Interface Programming Tools

7.1. Making a Delta and Getting a File with ‘sccs delget’
A frequent requirement is to make a delta of some file and then get that file. This is done by
using:
tutorial% sces delget prog.c
which is entirely equivalent to using:

tutorial% sccs delta prog.c
tutorial% sccs get prog.c

except that if an error occurs while making a delta of any of the files, none of them will be got-
ten. The deledit command is equivalent to delget except that the edit command is used instead
of the get command.

7.2. Replacing a Delta with the ‘sccs fix’

Freqﬁently, there are small bugs in deltas, for instance, compilation errors, for which there is no
reason to maintain an audit trail. To replace a delta, use:
tutorial% sccs fix —rl.4 prog.c

This gets a copy of delta 1.4 of prog.c for you to edit and then deletes delta 1.4 from the SCCS
file. When you do a delta of prog.c, it will be delta 1.4 again. The —r flag must be specified,
and the delta that is specified must be a leaf delta, that is, no other deltas may have been made
subsequent to the creation of that delta.

7.3. Backing Off From an Edit with ‘sccs unedit’

If you found you edited a file that you did not want to edit, you can back out by using:

tutorial? sccs unedit prog.c

7.4. Working From Other Directories with the —d Flag

If you are working on a project where the SCCS code is in a directory somewhere, you may be
able to simplify things by using a shell alias. For example, the alias:

alias syssccs sccs ~d/usr/sre
will allow you to issue commands such as:

syssces edit emd/who.c

which will lock for the file ‘fusr/src/cmd/SCCS/who.c’. The file ‘who.c’ is always created in
your current directory regardless of the value of the —d flag.

8. Using SCCs on a Project

Working on a project with several people has its own set of special problems. The main prob-
lem occurs when two people modify a file at the same time. SCOS prevents this by locking an -

file while it is being edited.

10 Revision D of 7 January 1984

Programming Tools SCCS High-Level User Interface

As a result, files should not be reserved for editing unless they are actually being edited at the
time, since this will prevent other people on the project from making necessary changes. For
example, a good scenario for working might be:

tutorial% sces edit a.c g.c t.c

tutorial% vi a.c g.c t.c

do testing of the (experimental) version
tutorial% sces delget a.c g.c t.c
tutorial% sces info

should respond " Nothing being edited”
tutorial% make install

As a general rule, all source files should be deltaed before installing the program for general use.
This will ensure that it is possible to restore any version in use at any time.

9. Saving Yourself

9.1. Recovering a Munged Edit File

Sometimes you may find that you have destroyed or trashed a file that you were trying to editS.
Unfortunately, you can’t just remove it and re-edit it; SCCS keeps track of the fact that someone
is trying to edit it, so it won't let you do it again. Neither can you just get it using get, since
that would expand the Id keywords. Instead, you can say:

tutorial% sces get -k prog.c

This will not expand the Id keywords, so it is safe to do a delta with it.
Alternatively, you can unedit and edit the file.

9.2. Restoring the s-file

In particularly bad circumstances, the SCCS file itself may get munged. The most common way
this happens is that it gets edited. Since SCCS keeps a checksum, you will get errors every time
you read the file. To fix this checksum, use:

tutorial% sccs admin —= prog.c

10. Managing SCCS Files with ‘sccs admin’

There are a number of parameters that can be set using the admin command. The most
interesting of these are flags. Flags can be added by using the ~f option. For example:

tutorial% sccs admin ~fd1 prog.c

gets the ‘d’ flag to the value ‘1’. This flag can be deleted by using:

& Or given up and decided to start over.

Revision D of 7 January 1984 11

SCCS High-Level User Interface Programming Tools

tutorial% sccs admin -dd prog.c

The most useful flags are:
b Allow branches to be made using the -b flag to cdit.

dsiD :
Default SID to be used on a get or edit. If this is just a release number it constrains the ver-

sion to a particular release only.
i Give a fatal error if there are no Id Keywords in a file. This is useful to guarantee that a

version of the file does not get merged into the s-file that has the Id Keywords inserted as

constants instead of internal forms.

y The ‘type’ of the module. Actually, the value of this flag is unused by SCCS except that it
replaces the %Y % keyword.

The —tfile flag can be used to store descriptive text from file. This descriptive text might be the
documentation or a design and implementation docurment. Using the —t flag ensures that if the
s0cs file is sent, the documentation will be sent also. If file is omitted, the descriptive text is
deleted. To see the descriptive text, use ‘prt —t'.

The admin command can be used safely any number of times on files. A file need not be gotten
for admin to work.

11. Maintaining Different Versions (Branches)

Sometimes it i3 convenient to maintain an experimental version of a program for an extended
period while normal maintenance continues on the version in production. This can be done
using a ‘branch’. Normally deltas continue in a straight line, each depending on the delta
before. Creating a branch ‘forks off’ a version of the program.

The ability to create branches must be enabled in advance using:
tutorial% sccs admin —fb prog.c
The —fb flag can be specified when the SCCS file is first created.

11.1. Creating a Branch

To create a branch, use:
tutorial% sccs edit -b prog.c

This will create 2 branch with (for example) SID 1.5.1.1. The deltas for this version will be num-
bered 1.5.1.n.

11.2. Getting From a Branch

Deltas in a branch are normally not included when you do a get. To get these versions, you will
have to say:

tutorial% sccs get —r1.5.1 prog.c

12 Revision D of 7 January 1984

o

Programming Tools SCCS High-Level User Interface

11.3. Merging a Branch Back into the Main Trunk

At some point you will have finished the experiment, and if it was successful you will want to
incorporate it into the release version. But in the meantime someone may have created a delta
1.6 that you don’t want to lose. The commands:

tlltol'ial% Bccs edit —i10501.1—10501 pros.c
tutorial% sccs delta prog.c

will merge all of your changes into the release system. If some of the changes conflict, get will
print an error. The generated result should be carefully examined before the delta is made.

11.4. A More Detailed Example

The following technique might be used to maintain a different version of a program. First,
create a directory to contain the new version:

tutorial% mkdir ../newxys
tutorials cd ../newxys

Edit a copy of the program on a branch:
tutorial% sccs ~d../xys edit ~b prog.c

When using the old version, be sure to use the —~b flag to info, check, tell, and clean to avoid
confusion. For example, use:

tutorial% sccs info —-b

when in the ‘xyz’ directory.

If you want to save a copy of the program (still on the branch) back in the s-file, you can use:
tutorial% aces -d../xys deledit prog.c

which will do a delta on the branch and reedit it for you.
When the experiment is complete, merge it back into the s-file using delta:

tutorial% sces -d../xys delta prog.c

At this point you must decide whether this version should be merged back into the trunk, that
is, the default version, which may have undergone changes. If so, it can be merged using the —i
flag to edit as described above.

11.5. A Warning

Branches should be kept to a minimum. After the first branch from the trunk, SID's are
assigned rather haphazardly, and the structure gets complex fast.

12. Using sccs with Make

$CCS and make can be made to work together with a little care. A few sample makefiles for
common applications are shown.

There are a few basic entries that every makefile ought to have. These are:

Revision D of 7 January 1984 13

SCCS High-Level User Interface Programming Tools

a.out
(or whatever the makefile generates.) This entry regenerates a program. if the makefile @
regencrates many things, this should be called ‘all’ and should in turn have dependencies on
everything the makefile can generate.

install
Moves the objects to the final resting place, doing any special chmod's or ranlil’s as
appropriate.

sources
Creates all the source files from SCCS files.

clean

Removes all cruft from the directory.
print

Prints the contents of the directory.
The examples shown below are only partial examples, and may omit some of these entries when
they are deemed to be obvious.
The clean entry should not remove files that can be regenerated from the SCCS files. It is
sufficiently important to have the source files around at all times that the only time they should
be removed is when the directory is being mothballed. To do this, the command:

tutorial% sces clean
can be used. This will remove all files for which an s-file exists, but which is not being edited.

12.1. Maintaining Single Programs Q

Frequently there are directories with several largely unrelated programs (such as simple com-
mands). These can be put into a single makefile:

LDFLAGS== -j -s
PTOg: prog.o

$(CC) $(LDFLAGS) —o prog prog.o
prog.o: prog.c prog.h
example: example.o

$(CC) $(LDFLAGS) o example example.o
example.o: example.c
.DEFAULT:

sces get $<

The trick here is that the .DEFAULT rule is called every time something is needed that does
not exist, and no other rule exists to make it. The explicit dependency of the .o file on the .c
file is important. Another way of doing the same thing is:

O

14 Revision D of 7 January 1984

o

Programming Tools SCCS High-Level User Interface

SRCS= prog.c prog.h example.c
LDFLAGS= -i-s
prog: prog.o

$(CC) $(LDFLAGS) —o prog prog.o
prog.o: prog.h
example: example.o

${CC) $(LDFLAGS) -0 example example.o
sources: $(SRCS)
$(SRCS):

sccs get $@

There are a couple of advantages to this approach: (1) the explicit dependencies of the .o on
the .c files are not needed, (2) there is an entry called "sources” so if you want to get all the
sources you can just say ‘make sources' and (3) the makefile is less likely to do confusing things
since it won’t try to get things that do not exist.

12.2. Maintaining A Library

Libraries that are largely static are best updated using explicit commands, since make doesn’t
know aboat updating them properly. However, libraries that are in the process of being
developed can be handled quite adequately. The problem is that the .o files kave to be kept out
of the library as well as in the library.

configuration information
OBJS= a0 bocodo
SRCS= acbecccdsxhyhsh
TARG=/usr/lib
programs
GET= sccs get
REL=
AR== -ar
RANLIB=ranlib
lib.a: $(OBIJS)
$(AR) rvu lib.a $(OBJS)
$(RANLIB) lib.a
install: lib.a
sces check
cp lib.a $(TARG)/lib.a
$(RANLIB) $(TARG)/lib.a
sources: $(SRCS)
$(SRCS):
$(GET) $(REL) $Q
print: sources
pr *.h + [c9]
clean:
rm —f *.0
rm -f core a.out $(LIB)

The ‘$(REL)’ in the get can be used to get old versions easily; for example:

Revision D of 7 January 1984 15

SCCS High-Level User Interface Programming Tools

make b.o REL=-r1.3

The install entry includes the line ‘sccs check’ before anything else. This guarantees that all the
s-files are up to date (that is, nothing is being edited), and will abort the make if this condition

is not met.

12.3. Maintaining A Large Program

OBJS= aobocodo
SRCS== acbecycdsxhyhzh
GET= sces get
REL=
a.out: $(OBJS)
$(CC) $(LDFLAGS) $(OBJS) $(LIBS)
sources: ${SRCS)
$(SRCS):
$(GET) $(REL) $0

The print and clean entries are identical to the previous case. This makefile requires copies -of
the source and object files to be kept during development. It is probably also wise to include
lines of the form: :

a.o:x.hyh

b.o: z.h

co:x.hyhzh

z.h: x.h
so that modules will be recompiled if header files change.
Since make does not do transitive closure on dependencies, you may find in some makefiles lines
like:

z.h: x.h

touch z.h

This would be used in cases where file z.h has a line:

#tinclude "x.h” '

The touch command brings the modification date of z.h in line with the modification date of
x.h. When you have a makefile such as above, the touch command can be removed completely;
the equivalent effect will be achieved by doing an automatic get on z.h.

16 Revision D of 7 January 1984

-

Programming Tools SCCS High-Level User Interface

Quick Reference

13. Commands

The following commands should all be preceded with ‘sces’. This list is not exhaustive; for more
options see Further Information.

get Gets files for compilation (not for editing). I1d keywords are expanded.

-rSiD
-P
-k
~iliat
—x liat
-m
—cdate
edit

Version to get.

Send to standard output rather than to the actual file.
Don't expand id keywords.

List of deltas to include.

List of deltas to exclude.

Precede each line with SID of creating delta.

Don’t apply any deltas created after date.

Gets files for editing. Id keywords are not expanded. Should be matched with a delta com-

mand.
~rSID

-b

~ilist

~xliat
delta

unedit

prt

info

check

tell

clean
what
admin

Same as get. If SID specifies a release that does not yet exist, the highest num-
bered delta is retrieved and the new delta is numbered with s/p.

Create a branch.
Same as gel,
Same as get.

Merge a file gotten using edst back into the s-file. Collect comments about why this
delta was made.

Remove a file that has been edited previously without merging the changes into the
s-file.
Produce a report of changes.

-t Print the descriptive text.
- Print (nearly) everything.
Give a list of all files being edited.
-b Ignore branches.

—u[user] Ignore files not being edited by user.

Same as info, except that nothing is printed if nothing is being edited and exit
status is returned.

Same as info, except that one line is produced per file being edited containing only
the file name.

Remove all files that can be regenerated from the s-file.
Find and print id keywords.
Create or set parameters on a-files.

Revision D of 7 January 1984 17

SCCS High-Level User Interface Programming Tools

-ifile Create, using file as the initial contents.

-t Rebuild the checksum in case the file has been trashed.
—{flag Turn on the flag.

—dflag Turn off (delete) the flag.

—tfile Replace the descriptive text in the a-file with the contents of file. If file
is omitted, the text is deleted. Useful for storing documentation or
‘design & implementation’ documents to ensure they get distributed with

the o-file.
Useful flags are:

b Allow branches to be made using the -b flag to edit.

dsmp Default SID to be used on a get or edit.

i Cause ‘No Id Keywords' error message to be a fatal error rather than a
warning.

t The module ‘type’; the value of this flag replaces the %Y% keyword.

fix Remove a delta and reedit it.

delget Do a delta followed by a get.
deledit Do a delta followed by an edit.

14. Id Keywords

%Z% Expands to ‘@(#)’ for the what command to find.

%M % The current module name, for example, ‘prog.c’.

%1% The highest SID applied.

W% A shorthand for ‘%Z%%M% <tab> %1%'.

%G% The date of the delta corresponding to the ‘%1%’ keyword.

%R % The current release number, that is, the first component of the ‘%1%’ keyword.
%Y % Replaced by the value of the t flag (set by admin).

18 ‘ Revision D of 7 January 1984

-

-

Programming Tools SCCS Low-Level Commands

Part II — The SCCS Low-Level Command Inter-
face

Part I of this document described the sccs front-end command for using the facilities of SCCS. In
general, you can do most things using the sccs command, and so you should in theory pever
have to look at this part of the document. There may be times however, when it is necessary to
use the raw facilities of the SCCS commands themselves, and so this part of the document is a
reference guide for SCCS. The following topics are covered in this document:

e How to get started with SCCS.

e The scheme used to identify versions of text kept in an SCCS file.

¢ Basic information needed for day-to-day use of SCCS commands, including a discussion of the
more useful arguments.

e Protection and auditing of SCCS files, including the differences between the use of SCCS by
individual users on one hand, and groups of users on the other.

This document is a user’s guide to SCCS. This document contains the following sections:

e 50CCS for Beginners: How to make an SCCS file, update it, and retrieve a version of it.

e 5008 File Numbering Conventions: How versions of SCCS files are numbered and named.

e 35CCS Command Conventions: Conventions and rules generally applicable to all SCCS com-
mands.

e 5¢CS Commands: Explanation of all SCCS commands, with discussions of the more useful
arguments.

o 35003 Files: Protection, format, and auditing of SCCS files, including a discussion of the

differences between using SCCS as an individual and using it as a member of a group or pro-
ject. The role of a ‘project SCCS administrator’ is introduced.

15. SCCS For Beginners

We assume here that you know how to log onto a UNIXt system, create files, and use a text edi-
tor like ez or vi. If you need more information on these subjects, see the User’s Manual for the
Sun UNIX System.

In this section, we present some basic concepts of SCCS. Examples are fragments of terminal ses-
sions, with what you type shown in boldface text like this, and what the terminal displays
shown in ordinary Roman text, like the ordinary text of this paragraph. After familiarizing
yourself with basics, use the manual pages for detailed SCCS command descriptions.

% { UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 19

SCCS Low-Level Commands Programming Tools

Note that all the SCOS commands described here live in the usr/scce directory, so you must
either state that directory explicitly when using SCCS commands, or include that pathname in
your .login file. All the examples shown in this guide assume that you have /usr/sccs in your
path and so you just have to type the required SCCS command name.

15.1. Terminology

Each SCCS file is composed of one or more sets of changes applied to the null (empty) version of

the file; each set of changes usually depends on all previous sets. Each set of changes is called a

‘delta’ and is assigned a name called the SCCS /Dentification string { SID).

The SID is composed of at most four components; for now let's focus on only the first two: the
‘release’ and ‘level’ numbers. Each set of changes to a file is named ‘release.level; hence, the
first delta is called ‘1.1°, the second ‘1.2’, the third ‘1.3, and so on. The release number can
also be changed, allowing, for example, deltas ‘2.1', ‘3.19", etc. A change in the release number
usually indicates a major change to the file.

Each delta of an SCCS file defines a particular version of the file. For example, delta 1.5 defines
the version of the SCCS file obtained by applying the changes that constitute deltas 1.1, 1.2, etc.,
up to and including delta 1.5 itself, in that order, to the null (empty) version of the file.

15.2. Creating an SCCS File with ‘admin’

Consider, for example, a file called ‘lang’ containing a list of programming languages:

tutorial% cat lang
€

pl/i

fortran

cobol

algol

tutorial%

We wish to give SCCS custody of ‘lang’ by using admin (which administers SCCS files) to create
an SCCS file and initialize delta 1.1. To do so, we use admin as shown, and admin responds with
3 message:

tutorial% admin -ilang s.lang
No id keywords (cm7)
tutorial%

All sccs files must have names that begin with ‘s.’, hence, ‘s.lang’. The —i option, together with
its value ‘lang’, indicates that admin is to create a new SCCS file and snitialize it with the con-
tents of the file ‘lang’. This initial version is a set of changes applied to the null SCCS file; it is
delta 1.1.

The message is a warning message (which may also be issued by other SCCS commands) that
you can ignore for the present. In the following examples, this warning message is not shown,
although it may actually be issued by the various commands. .

Remove the file ‘lang’ now — it can be easily reconstructed with the get command, described
below.

20 ' Revision D of 7 January 1984

-

Programming Tools SCCS Low-Level Commands

15.3. Retrieving a File with ‘get’

Get creates (retrieves) the latest version of an SCCS file and gives you some information about it.
For example, here is how to retrieve the file we created above:

tutorial% get s.lang
1.1

5 lines

tutorial%

Get tells you it has retrieved version 1.1 of the file, which contains 5 lines of text. The retrieved
text is placed in a file whose name is formed by deleting the ‘s.’ prefix from the name of the
SCCs file; hence, the file ‘lang’ is created.

The above get command simply creates the read-only file ‘lang’ and keeps no information what-
soever regarding its creation. If you wish to subsequently change an SCCS file with the delta
command (see below), however, you must create a file which can be written as well as read.

You do this by using get with the —e {edit) option:

tutorial’ get —e s.lang
1.1

new delta 1.2

5 lines

tutorial%

When you use the —e option, get creates a file ‘lang’ for both reading and writing (so that it
may be edited) and places certain information about the SCCS file in another new file, called the
p-file, that the delta command reads later. Get prints the same messages as before, and in addi-
tion displays the SID of the version to be created using delta.

You can now change ‘lang’ by adding (say) snobol and ratfor to the list using your favorite
editor. Then take a loock at the new file:

tutorial% cat lang
c

pl/i

fortran

cobol

algol

snobol

ratfor

tutorial%

15.4. Recording Changes with ‘delta’

To record the changes that were applied to ‘lang’ within the SCCS file, use the delta command.
Delta asks for comments describing the change, and you respond with a description of why the

changes were made:
tutorial% delta s.lang
comments! added snobol and ratfor

More messages from delta — see below
tutorial%

Revision D of 7 Japuary 1984 21

SCCS Low-Level Commands Programming Tools

Delta then reads the p-file and determines what changes were made to the file ‘lang’. Delta does
this by doing its own get to retrieve the original version, and then applying diff(1) to the origi-
nal version and the edited version. When the changes to ‘lang’ have been stored in ‘s.lang’, the
dialogue with delta looks like:

tutorial% delta s.lang

comments! added snobol and ratfor
1.2

2 inserted

0 deleted

5 unchanged

tutorial %

The number ‘1.2’ is the name of the delta just created, and the next three lines are a summary
of the changes made to ‘s.lang’.

15.5. More about the ‘get’ Command

As we have seen:
tutorial% get s.lang

retrieves the latest version (now 1.2) of the file ‘s.lang’ by starting with the original version of
the file and successively applying deltas (the changes) in order, until all deltas have been
applied. For our example, the following commands are all equivalent:

tutorial% get s.lang
tutorial% get —rl s.lang
tutorial% get -r1.2 s.lang

" The numbers following the —r option are SIDs. Note that omitting the level number of the SID
(as in the second example above) is equivalent to specifying the highest level number that exists
within the specified release. Thus, the second get retrieves the latest version in release 1, namely
1.2. The third get specifically retrieves a particular version, in this case, also 1.2.

Whenever a truly major change is made to a file, the significance of that change is usually indi-
cated by changing the release number (first component of the SID) of the delta being made.
Since normal, automatic, numbering of deltas proceeds by incrementing the level number
(second component of the SID), we must indicate to SCCS that we wish to change the release
number. This is done with a get —r command to indicate that a new release will be made:

tutorial® get —e -r2 s.lang
1.2

new delta 2.1

7 lines

tutorial%

Release 2 does not exist, as indicated by the ‘new delta’ message, so get retrieves the latest ver-
sion before release 2. Get also changes the release number of the delta we wish to create to 2,
and thus names the new version 2.1, rather than 1.3. This information is conveyed to delts via
the p-file.

Now suppose you edit the file and remove eobol from the list of languages, so that the new file
looks like this:

29 Revision D of 7 January 1984

-

Programming Tools ' SCCS Low-Level Commands

tutorial% cat lang
c

pl/i

fortran

algol

snobol

ratfor

tutorial %

and then use delts, you will see from delta’s output, that version 2.1 is indeed created:

tutorial% delta s.lang

comments? deleted cobol from list of languages
2.1

0 inserted

1 deleted

6 unchanged

tutorial%

Deltas may now be created in release 2 (deltas 2.2, 2.3, etc.), or another new release may be
created in a similar manner.

15.8. Getting Explanations of Errors with ‘help’

Help displays explanations of SCCS commands and diagnostic messages. As an example, let's
type a command line incorrectly and generate an error message:

tutorial% get abc
ERROR [abc}: not an SCCS file (col)
tutorial%

The string ‘col’ is a code for the diagnostic message. Use it as an argument to Aelp to get a
fuller explarnation of the error:

tutorial% help col

col:

"not an SCCS file"

A file that you think is an SCCS file
does not begin with the characters "s.”.
tutorial%

Thus, help is useful whenever there is any doubt about the meaning of an SCCS message. Fuller
explanations of almost all SCCS messages may be found in this manner.

18. SCCS File Numbering Conventions

You can think of the deltas applied to an SCCS file as the nodes of a tree; the root is the initial
version of the file. The root delta (node) is normally named ‘1.1’ and successor deitas (nodes)
are named ‘1.2', ‘1.3’, etc. We have already discussed these two components of the names of
the deltas, the ‘release’ and ‘level’ numbers; and you have seen that normal naming of successor
deltas proceeds by incrementing the level number, which is performed automatically by sccs
whenever a delta is made. In addition, you have seen how to change the release number when

Revision D of 7 January 1984 23

SCCS Low-Level Commands Programming Tools

making a delta, to indicate that a major change to the file is being made. The new release
number applies to all successor deltas, unless it is specifically changed again. Thus, the evolu-
tion of a particular file may be represented as in Figure 1.

Release 2

Release |

Figure 1: Evolution of an SCCS File

We can call this structure the ‘trunk’ of the SCCS tree. It represents the normal sequential
development of an SCCS file, in which changes that are part of any given delta are dependent
upon all the preceding deltas.

However, there are situations when a branch on the tree is needed: when changes applied as
part of a given delta are not dependent upon all previous deltas., As an example, consider a pro-
gram which is in production use at version 1.3, and for which development work on release 2 is
already in progress. Thus, release 2 may already have some deltas, precisely as shown in Fig-
ure 1. Assume that a production user reports a problem in version 1.3 which cannot wait until
release 2 to be repaired. The changes necessary to repair the trouble will be applied as a delta
to version 1.3 (the version in production use). This creates a new version that will then be
released to the user, but will not affect the changes being applied for release 2 (that is, deltas
14, 2.1, 2.2, etc.).

The new delta is a node on a ‘branch’ of the tree, and its name consists of four components:
the release and level numbers, as with trunk deltas, plus the ‘branch’ and ‘sequence’ numbers.
Its SID thus appears as: release.level.branch.sequence. The branch number is assigned to each
branch that is a descendant of a particular trunk delta; the first such branch is 1, the next one
2, and so on. The sequence number is assigned, in order, to each delta on a particular branch.
Thus, 1.3.1.2 identifies the second delta of the first branch that derives from delta 1.3. This is
shown in Figure 2.

924 Revision D of 7 January 1984

-

-

Programming Tools SCCS Low-Level Commands

Release 2

Release |

Branch |
1312

Figure 2: Tree Structure with Branch Deltas

The concept of branching may be extended to any delta in the tree; the naming of the resulting
deltas proceeds in the manner just illustrated. :

Two observations are of importance with regard to naming deltas. First, the names of trunk
deltas contain exactly two components, and the names of branch deltas contain exactly four
components. Second, the first two components of the name of branch deltas are always those of
the ancestral trunk delta, and the branch component is assigned in the order of creation of the
branch, independently of its location relative to the trunk delta. Thus, a branch delta may
always be identified as such from its name. Although the ancestral trunk delta may be
identified from the branch delta’s name, it is not possible to determine the entire path leading
from the trunk delta to the branch delta. For example, if delta 1.3 has one branch emanating
from it, all deltas on that branch will be named 1.3.1.n. If a delta on this branch then has
another branch emanating from s, all deltas on the new branch will be named 1.3.2.n (see Fig-
ure 3). The only information that may be derived from the name of delta 1.3.2.2 is that it js
the chronologically second delta on the chronologically second branch whose trunk ancestor is
delta 1.3. In particular, it is not possible to determine from the name of delta 1.3.2.2 all of the
deltas between it and its trunk ancestor (1.3).

Revision D of 7 January 1984 25

SCCS Low-Level Commands Programming Tools

Release 2

Release |

Branch |

Branch 2
.3.2.2

Figure 3: Extending the Branching Concept

It is obvious that the concept of branch deltas allows the generation of arbitrarily complex tree
structures. Although this capability has been provided for certain specialized uses, it is strongly
recommended that the SCCS tree be kept as simple as possible, because comprehension of its
structure becomes extremely difficult as the tree becomes more complex.

17. SCCS Command Conventions

This section discusses the conventions and rules that apply to SCCS commands. These rules and
conventions are generally applicable to all SCCS commands, except as indicated below.

17.1. Command Line Syntax

SCCS commands accept options and file arguments,

Options begin with a minus sign {~}, followed by a lower-case alphabetic character, and, in some
cases, followed by a value. Options modify actions of commands on which they are specified.

File arguments (which may be names of files and/or directories) specify the file(s) that the given
SCCS command is to process; naming a directory is equivalent to naming all the SCCS files within
the directory. Non- SCCS files and unreadable® files in the named directories are silently ignored.

In general, file arguments may not begin with a minus sign. However, if the name ‘-’ (a lone
minus sign) is specified as an argument to a command, the command reads the standard input
for lines and takes each line as the name of an SCCS file to be processed. The standard input is
read until end-of-file. This feature is often used in pipelines with, for example, the find(1) or
{s(1) commands. Again, names of non- SCCS files and of unreadable files are silently ignored.

Options specified for a given command apply to all file arguments of that command. Options
are processed before any file arguments; therefore the placement of options is arbitrary, that is,
options may be interspersed with file arguments. File arguments, however, are processed left to
right.

8 Because of permission modes — see chmod(1).

26 Revision D of 7 January 1984

-

Programming Tools SCCS Low-Level Commands

Somewhat different argument conventions apply to the help, what, sccadiff, and val commands.

17.2. Flags

Certain actions of various SCCS commands are modified by flags embedded in the text of SCCS
files. Some of these flags are discussed below. For a complete description of all such flags, see
admin(1).

17.3. Real/Effective User

The distinction between the real user (see passwd(1)) and the effective user of a UNIX system is

of concern in discussing various actions of SCCS commands. For the present, it is assumed that
both the real user and the effective user are one and the same, that is, the user who is Iogged
into a UNIX system.

17.4. Back-up Files Created During Processing

All 8¢CS commands that modify an SCCS file do so by writing a temporary copy, called the 2-
file, to ensure that the SCCS file will not be damaged if processing terminates abnormally. The
name of the z-file is formed by replacing the ‘s.’ of the SCCS file name with ‘x.’. When process-
ing is complete, the old SCCS file is removed and the z-file is renamed to be the SCCS file. The
z-file is created in the directory containing the SCCS file, is given the same mode (see chmod(1))
as the SCCS file, and is owned by the effective user,

To prevent simultaneous updates to an SCCS file, commands that modify $CCS files create a
lock-file, called the z-file, whose name is formed by replacing the ‘s.’ of the SCCS file name with
‘2.'. The z-file contains the process number of the command that creates it, and its existence is
an indication to other commands that that SCCS file is being updated. Thus, other commands
that modify SCCS files will not process an SCCS file if the corresponding :z-file exists. The z-file is
created with mode 444 (read-only) in the directory containing the SCCS file, and is owned by the
effective user. The z-file exists only for the duration of the execution of the command that
creates it. In general, users can ignore z-files and :-files; they may be useful in the event of sys-
tem crashes or similar situations.

17.5. Diagnostics
SCCS commands direct their diagnostic responses to the standard error file. SCCS diagnostics
generally look like this:

ERROR [name-of-file-being-processed): message text (code)

The code in parentheses may be used as an argument to Aelp to obtain a further explanation of
the diagnostic message,

If the 5CCS command detects a fatal error during the processing of a ﬁle it terminates processing
of that file and proceeds with the next file in the series, if more than one file has been named.

Revision D of 7 January 1984 97

SCCS Low-Level Commands Programming Tools

18. SCCS Commands

This section describes the major features of all the S0CS commands. For detailed descriptions of
the commands and of all their arguments, see the individual SCCS manual pages. The discussion
below covers only the more common arguments of the various SCCS commands.

The get and delta commands are presented first because they are the most frequently used. The
other commands follow in approximate order of importance.

The following is a summary of all the SCCS commands and their major functions:

get Retrieves versions of SCCS files.)

delta)’fpplies changes (deltas) to the text of SCCS files; that is, delta creates new ver-
sions.

admin Creates SCCS files and applies changes to parameters of SCCS files.

prs Prints portions of an SOCS file in user-specified format.

help Explains $CCS commands and diagnostic messages.

rmdel Removes a delta from an SOCS file; useful for removing deltas that were created
by mistake.

cde Changes the commentary associated with a delta.

what Searches UNIX file(s) for all occurrences of a special pattern and prints what fol-
lows it. What is useful in finding identifying information inserted by get.

sccsdiff Shows the differences between any two versions of an SCCS file.

comb Combines two or more consecutive deltas of an SCCS file into a single delta.

val " Validates an SCCS file.

18.1. get — Retrieve a File

Get creates a text file containing a particular version of an SCCS file. The particular version is
retrieved by beginning with the initial version, and then applying deltas, in order, until the
desired version is obtained. The created file is called the g-file; its name is formed by removing
the ‘s.’ from the SCCS file name. The g-file is created in the current directory and is owned by
the real user. The permissions (mode) assigned to the g-file depend on the options used with
get, as discussed below.

Get is normally used to retrieve the latest version of a file on the trunk of the SCCs file tree:
tutorial% get s.abc
1.3
67 lines
No id keywords (cm?7)
tutorial%
The messages tell you that:
1. Version 1.3 of file ‘s.ab¢’ was retrieved (1.3 is the latest trunk delta).
2. This version has 67 lines of text.

3. No ID keywords were substituted in the file — see below for a discussion of ID key-
words.

The generated g-file (file ‘abe’) is given mode 444 (read-only), since this particular way of invok-
ing get is intended to produce g-files only for inspection, compilation, or whatever, but not for

98 Revision D of 7 January 1984

St N BT IR TR EEEE AEEIEE T S-S

Programming Tools SCCS Low-Level Commands

editing -— that is, not for making deltas.

If you use get with several file arguments (or directory-name arguments), similar information is
given for each file processed, but the SCCS file name precedes it:

tutorial% get s.abc s.def
s.abc:

1.3

67 lines

No id keywords (cm7)

s.def:

1.7

85 lines

No id keywords (¢cm?7)
tutorial%

18.1.1. Ip Keywords

When you generate a g-file to be used for compilation, it is useful and informative to record the
date and time of creation, the version retrieved, the module’s name, etc., within the g-file, so
that this information appears in a load module when one is eventually created. SCCS provides a
convenient mechanism for doing this automatically. Identification (ID) keywords appearing any-
where in the generated file are replaced by appropnate values according to the definitions of
these ID keywords,

The format of an ID keyword is an upper-case letter enclosed by percent signs (%). For exam-
ple, %1% is defined as the ID keyword that is replaced by the SID of the retrieved version of a
file. Similarly, %H% is defined as the ID keyword for the current date (in the form

‘mm/dd/yy’), and %M% is defined as the name of the g-file.

Thus, using get on an SCCS file that contains the C declaration:
char identification [| = "%M% %I% %H%";

gives (for example) the following:
char identification [] = "modulename 2.3 03/17/83";

If there are no ID keywords in the text, get might display:

No id keywords (¢cm7)
tutorial%

This message is normally treated as a warning by get. However, if an i flag is present in the
8Ces file, it is treated as an error — see the section entitled delta — Make a Delta for further
information).

For a complete list of the approximately twenty ID keywords provided, see get(1).

18.1.2. Retrieving Different Versions
You can retrieve versions other than the default version of an SCCS file by using various options.

Normally, the default version is the most recent delta of the highest-numbered release on the
trunk of the SCCS file tree. However, if the SCCS file being processed has a d (default SID) flag,

Revision D of 7 January 1984 : : 29

SCCS Low-Level Commands Programming Tools

the SID specified as the value of this flag is used as a default. The default SID is interpreted in
exactly the same way as the value supplied with the —r option of get. ©

The —r option specifies an SID to be retrieved, in which case the d (default SID) flag (if any) is
ignored. For example, to retrieve version 1.3 of file ‘s.abc’, type:

tutorial% get -rl.3 s.abe
1.3

64 lines

tutorial%

A branch delta may be retrieved in the same way:

tutorial% get -r1.5.2.3 s.abe
1.5.2.3

234 lines

tutorial%

When a two- or four-component SID is specified as a value for the —r option (as above) and the
particular version does not exist in the SCCS file, an error message results.

If you omit the level number of the SID, get retrieves the trunk delta with the highest level
number within the given release, if the given release exists:

tutorial% get -r3 s.abe
3.7

213 lines

tutorial%

Get retrieved delta 3.7, the highest level trunk delta in release 3. If the given release does not

exist, get goes to the next-highest existing release, and retrieves the trunk delta with the highest O
level number. For example, if release 9 does not exist in file ‘s.abe’, and release 7 is actually the
highest-numbered release below 9, then get would generate:

tutorial% get -r9 s.abe
7.6

420 lines
tutorial%

indicating that trunk delta 7.8 is the latest version of file ‘s.abc’ below release 9.

Similarly, if you omit the sequence number of a SID, as in:

tutorial’% get -r4.3.2 s.abc
4.2.2.8

89 lines

tutorial %

get retrieves the branch delta with the highest sequence number on the given branch, if it exists.
If the given branch does not exist, an error message results.

The —t option retrieves the latest {‘top’} version in a particular release (that is, when no —r
option is supplied, or when its value is simply a release number). The latest version is defined
as that delta which was produced most recently, independent of its location on the sccCs file
tree. Thus, if the most recent delta in release 3 is trunk delta 3.5, doing a get -t on release 3
produces:

30 Revision D of 7 January 1984

Joll |

Programming Tools SCCS Low-Level Commands

tutorial% get —r3 -t s.abe
35

59 lines

tutorial%

However, if branch delta 3.2.1.5 were the latest delta (created after delta 3.5), the same com-
mand produces: '

tutoriai% get —-r3 -t s.abe
3.2.1.5

46 lines

_tutorial%

18.1.3. Retrieving to Make Changes

Specifying the —e option to the get command indicates the intent to make a delta sometime
later, and, as such, its use is restricted. If the ~e option is present, get checks the following
things:
1. The user list, the list of login names andfor group IDe of users allowed to make deltas,
to determine if the login name or group ID of the user executing get is on that list. Note
that a null (empty) user list behaves as if it contained all possible login names.

2. That the release (R) of the version being retrieved satisfies the relation:
floor < R < ceiling
to determine if the release being accessed is a protected release. The floor and cesling
are specified as flags in the SCCS file.
3. That the release (R) is not locked against editing. The lock is specified as a flag in the
scces file.
4. Whether or not multiple concurrent edits are allowed for the SCCS file as specified by the

j flag in the sccs file. Multiple concurrent edits are described in the section entitled
Concurrent Edits of the Same SID.

Get terminates processing of the corresponding SCCS file if any of the first three conditions fail.

If the above checks succeed, get with the —e option creates a g-file in the current directory with
mode 644 (readable by everyone, writable only by the owner) owned by the real user.

Get terminates with an error if a writable g-file already exists — this is to prevent inadvertent
destruction of a g-file that already exists and is being edited for the purpose of makirg a delta.

ID keywords appearing in the g-file are not substituted by get when the —e option is specified,
because the generated g-file is to be subsequently used to create another delta, and replacement
of ID keywords would permanently change them within the SCCS file. In view of this, get does
not check for the presence of ID keywords within the g-file, so that the message: ‘No id key-
words (cm7)’ is never displayed when get is invoked with the —e option.

In addition, a get with the —e option creates (or updates) a p-file, for passing information to the
delta command. Let's look at an example of get -e:

Revision D of 7 January 1984 31

SCCS Low-Level Commands Programming Tools

tutorial% get —e s.abc
1.3

new delta 1.4

67 lines

tutorial%

The message indicates that get has retrieved version 1.3, which has 67 lines; the version delta
will create is version 1.4.

If the —r and/or —t options are used together with the —e option, the version retrieved for edit-

ing is as specified by the —r and/or —t options.

The options —i and —-x may be used to specify a list of deltas to be sncluded and ezcluded,
respectively, by get. See get(1) for the syntax of such a list. ‘Including a delta’ forces the
changes that constitute the particular delta to be included in the retrieved version — this is use-
ful for applying the same changes to more than one version of the SCCS file. ‘Excluding a delta’
forces it not to be applied. This is useful for undoing the effects of a previous delta in the ver-
sion of the SCCS file to be created.

Whenever deltas are included or excluded, get checks for possible interference between such del-
tas and those deltas that are normally used in retrieving the particular version of the SCCS file.
Two deltas can interfere, for example, when each one changes the same line of the retrieved g-
file. Any interference is indicated by a warning that displays the range of lines within the
retrieved g-file in which the problem may exist. The user is expected to examine the g-file to
determine whether a problem actually exists, and to take whatever corrective measures are
deemed necessary.

= The —i and —x options should be used with extreme care.

The —k option to get can be used to regenerate a g-file that may have been accidentally removed
or ruined after executing get with the —e option, or to simply generate a g-file in which the
replacement of ID keywords has been suppressed. Thus, a g-file generated by the —k option is
identical to one produced by get executed with the —e option. However, no processing related to
the p-file takes place.

18.1.4. Concurrent Edits of Different siDs

The ability to retrieve different versions of an SCCS file allows a number of deltas to be ‘in pro-
gress' at any given time. In general, several people may simultaneously edit the same SCCS file
provided they are editing different versions of that file. This is the situation we discuss in the
following section. However, there i3 a provision for multiple concurrent edits, so that more than
one person can edit the same version — see the section entitled Concurrent Edits of the Same
SID.

The p-file — created via a get -¢ command — is named by replacing the ‘s,” in the SCCs file
name with ‘p.’. The p-file is created in the directory containing the SCCS file, is given mode 644
(readable by everyone, writable only by the owner), and is owned by the effective user. The p-
file contains the following information for each delta that is still ‘in progress’:?

s The SID of the retrieved version.

7 Other information may be present, but is not of concern here. See get(1) for further discus-
sion.

39 Revision D of 7 January 1984

O

O

Programming Tools SCCS Low-Level Commands

o The SID that will be given to the new delta when it is created.
e The login name of the real user executing get.

The first execution of get —e creates the p-file for the corresponding SCCS file. Subsequent exe-
cutions only update the p-file by inserting a line containing the above information. Before
inserting this line, however, get performs two checks. First, it searches the entries in the p-file
for an SID which matches that of the requested version, to make sure that the requested version
has not already been retrieved. Secondly, get determines whether or not multiple concurrent
edits are allowed. If the requested version has been retrieved and multiple concurrent edits are
not allowed, an error message results. Otherwise, the user is informed that other deltas are in
progress, and processing continues.

It is important to note that the various executions of get should be carried out from different
directories. Otherwise, only the first use of get will succeed; since subsequent gets would
attempt to over-write a writable g-file, they produce an SCCS error condition. In practice, this
problem does not arise: normally such multiple executions are performed by different users®
from different working directories.

Table 1 shows, for the most useful cases, what version of an SCCS file is retrieved by get, as well
as the SID of the version to be eventually created by delta, as a function of the SID specified to
gel. '

8 See the section entitled Protection for a discussion of how different users can use SCCS com-
mands on the same files,

Revision D of 7 January 1984 33

$CCS Low-Level Commands

Table 1 — Determination of New SID

Programming Tools

Case SID -b Option Other SID SID of Delta
Specified* Usedt Conditions Retrieved to be Created
1. . none} no R defaults to J mR.mL mR.(mL + 1)
2. none} yes R defaults to mR mR.mL mR.mL.(mB + 1).1
3. no R > mR mR.mL R.1§
4 R no R = mR - mR.mL mR.(mL + 1)
5. R yes R > mR mR.mL mR.mL.(mB + 1).1
6. R yes R = mR mR.ml mR.mL.(mB + 1).1
7. R - R mRand e BRmle BRamL(mB+1).1
Trunk successor
8. R - in release > R R.mL R.mL.(mB+ 1).1
and R exists
9. R.L no No trunk successor R.L RJ{L+1)
10. R.L yes No trunk successor ~ R.L R.L.mB + 1).1
1. RL - e R.L R.L.(mB+ 1).1
122 R.L.B no No branch successor R.L.B.mS R.L.B.(mS+1)
13. RL.B yes No branch successor R.L.B.mS R.L.mB+ 1).1
14. R.L.B.S no No branch successor R.L.B.S RL.B.{S+1)
15, R.L.BS yes No branch successor R.L.B.S R.L.mB+ 1).1
16. R.L.B.S - Branch successor R.L.B.S R.L.{mB+ 1).1

e

R’, ‘L, ‘B", and ‘S’ are the ‘release’, ‘level’, ‘branch’, and ‘sequence’ components of the SID, respectively; ‘m’ means
‘maximum’. Thus, for example, ‘R.mL’ means ‘the maximum level number withia release R’; ‘R.L{mB+ 1).1 means
‘the first sequence number on the new branch (that is, maximum branch number pius 1) of level L within release R’
Note that if the SID specified is of the form ‘R.L’, ‘R.L.B’, or ‘R.L.B.8", ¢ach of the specified components must exist.

The -b option is effective only if the b flag {see sdmin(1)) is present in the file. In this table, an entry of ‘-

‘irrelevant’,

' means

This case applies if the d {default SID) flag is mot present in the file. If the d flag ¢ present in the file, then the SID
obtained from the d flag is interpreted as if it had been specified on the command fine. Thus, one of the other cases in

this table applies.
This case is used to force the creation of the first delta in & wew release.

‘hR’ is the highest ezisting release that is lower than the specified, nomesiatent, release.

34

Revision D of 7 January 1084

-

O

Programming Tools SCCS Low-Level Commands

18.1.5. Concurrent Edits of the Same SID

Normally, gets for editing (-e option specified) cannot operate concurrently on the same SID.
Usually delta must be used before another get —e on the same SID. However, multiple con-
current edits (two or more successive get e commands based on the same retrieved SID) are
allowed if the j flag is set in the SCCS file. Thus:

tutorial%s get —e s.abc
1.1

new delta 1.2

5 lines

tutorial%

may be immediately followed by:

tutorial% get —e s.abe
1.1

new delta 1.1.1.1

5 lines

tutorial %

without an intervening use of delta. In this case, a deltsa command corresponding to the first get
produces delta 1.2 (assuming 1.1 is the latest (most recent) trunk delta), and the deltsa command
corresponding to the second get produces delta 1.1.1.1.

18.1.8. Options That Affect Output

When the —p option is specified, get writes the retrieved text to the standard output, rather
¢han to a g-file. In addition, all output normally directed to the standard output (such as the
SID of the version retrieved and the number of lines retrieved) is directed instead to the diagnos-
tic output. This may be used, for example, to create g-files with arbitrary names:

tutorial? get —p s.abe > arbitrary-filename

The —s option suppresses all output that is normally directed to the standard output. Thus, the
SID of the retrieved version, the number of lines retrieved, and so on, do not appear on the stan-
dard output. —s does not affect messages directed to the diagnostic output. —s is often used in
conjunction with the —p option to ‘pipe’ the output of get, as in:

tutorial% get ~p -8 s.abc | nroff

A get -g verifies the existence of a particular SID in an SCCS but does not actually retrieve the
text. This may be useful in a number of ways. For example,

tutorial% get —g —r4.3 s.abe

displays the specified SID if it exists in the SCCS file, and generates an error message if it doesn'’t.
—g can also be used to regenerate a p-file that may have been accidentally destroyed:

tutorial% get —e —g s.abc

Get used with the -1 option creates an [file, which is named by replacing the ‘s.’ of the SCCS file
pame with ‘I.". This file is created in the current directory, with mode 444 (read-only), and is
owned by the real user. It contains a table (format described in get(1))} showing which deltas
were used in constructing a particular version of the SOCS file. For example:

tutorial% get -r2.3 ~| s.abe

generates an [-file showing which deltas were applied to retrieve version 2.3 of the SCCs file.
Specifying a value of ‘p’ with the —1 option, as in:

Revision D of 7 January 1984 35

SCCS Low-Level Commands Programming Tools

tutorial% get —lp -r2.3 s.abe

sends the generated output to the standard output rather than to the i-fle. Note that the —g
option may be used with the —1 option to suppress the actual text-retrieval.

The —m option identifies the origin of each change applied to an SCCS file. —m tags each line of
the generated g-file with the SID of the delta it came from. The SID precedes the line, and is
separated from the text by a tab character.

When the —n option is specified, each line of the generated g-file is preceded by the value of the
%M% ID keyword and a tab character. The —n option is most often used in a pipeline with
grep(1). For example, to find all lines that match a given pattern in the latest version of each
sccs file in a directory: :

tutorial’% get -p —n -s directory | grep pattern

If both the —m and —n options are specified, each line of the generated g-file is preceded by the
value of the %M% ID keyword and a tab (the effect of the —n option), followed by the line in
the format produced by the —m option. :

Since using the —m option, the —n option, or both, modifies the contents of the g-file, such a g-
file must not be used for creating a delta. Therefore, neither the —m nor the —n options may be
used with the —e option.

See get(1) for a full description of additional get options.

18.2. delta — Make a Delta

Delta incorporates changes made to a g-file into the corresponding SCCS file. This process is
known as ‘making a delta’, which is essentially a new version of the file. '

Delta does a series of checks before creating the delta:

1. Searches the p-file for an entry containing the user’s login name, because the user who
retrieved the g-file must be the one who creates the delta. Delta displays an error message if
the entry is not found. Note that if the login name of the user appears in more than one
entry (that is, the same user did a get -e more than once on the same sCCS file), the —r
option must be used with delta to specify an SID that uniquely identifies the p-file entry?.

2. Performs the same permission checks as get -e. -

If these checks succeed, delta compares the g-file (via diff{1)) with its own, temporary copy of

the g-file as it was before editing, to determine what has been changed. This temporary copy of

the g-file is called the d-file (its name is formed by replacing the ‘s.’ of the SCCS file name with

‘d."); delta retrieves it by doing its own get at the SID specified in the p-file entry. If you would
like to see the results of delta’s diff, use the —p option to display it on standard output.

In practice, the most common use of delta is:
tutorial% delta s.abe

If your standard output is a terminal, delta replies: ‘comments?’. You may now type a response
— usually a description of why the delta is being made — of up to 512 characters, terminating
with a newline character. Newline characters not intended to terminate the response should be
preceded by ‘\'. .

If the SCCS file has a v flag, delta asks for ‘MRs?’ before prompting for ‘comments?’ (again, this
prompt is printed only if the standard output is a terminal). Enter MR 10 numbers, separated

9 The SID specified may be either the SID retrieved by get, or the SID delts is to create,

10 In a tightly controlled environment, one would expect deltas to be created only as a result of
some trouble report, change request, trouble ticket, ete. (collectively called here Modification Re-
quests, or MRs) and would think it desirable or necessary to record such MR number(s) within each

36 Revision D of 7 January 1984

el Ll

Programming Tools SCCS Low-Level Commands

by blanks and/or tabs, and terminate your response with a newline character.

If you want to enter commentary (comments and/or MR numbers) directly on the command
line, use the —y and/or —m options, respectively. For example:

tutorial% delta —y”descriptive comment” -m”mrnuml mroum2® s.abe

inserts the ‘descriptive comment' and the MR numbers ‘mrnuml’ and ‘mrnum2’ without
prompting or reading from standard input. —m can only be used if the SCCS file has a v flag.
These options are useful when delta is executed from within a Shell procedure (see ah(1)).

The commentary (comments and/or MR numbers), whether solicited by delta or supplied via
options, is recorded as part of the entry for the delta being created, and applies to all SCCS files
processed by the same invocation of delta. Thus if delta is used with more than one file argu-
ment, and the first file named has a v flag, all files named must have this flag. Similarly, if the
first file named does not have this flag, then none of the files named may have it. Only files
conforming to these rules are processed.

After the prompts for commentary, and before any other output, delta displays:
No id keywords (¢cm7)

if it finds no ID keywords in the edited g-file while making a delta. If there were any ID key-
words in the SCCS file, this might mean ome of two things. The keywords may have been
replaced by their values (if a get without the —e option was used to retrieve the g-file). Or, the
keywords may have been accidentally deleted or changed while editing the g-file. Of course, the
file may never have had any ID keywords. In any case, it is left up to you to decide whether any
action is necessary, but the delta is made (unless there is an i flag in the SCCS file, which makes
this a fatal error and kills the delta).

When processing is complete, delta displays a message containing the SID of the created delta
(obtained from the p-file entry), and the counts of lines inserted, deleted, and left unchanged.
Thus, a typical message might be:

14

14 inserted

7 deleted .
345 unchanged

The reported counts may not agree with your sense of changes made; there are a number of
ways to describe a set of such changes, especially if lines are moved around in the g-file, and
delta may describe the set differently than you. However, the total number of lines of the new
delta (the number inserted plus the number left unchanged) should agree with the number of
lines in the edited g-file. '

After {)rocessing of an SCCS file is complete, the corresponding p-file entry is removed from the
p-file1!, If there is only one entry in the p-file, the p-file itself is removed.

In addition, delta removes the edited g-file, unless the —n option is specified. Thus:
tutorial% delta -n s.abe

keeps the g-file upon completion of processing.

The —a (silent) option suppresses all output that is normally directed to the standard output,
except the initial prompts for commentary. If you use —8 with —y (and, possibly, ~m), delta
neither reads standard input nor writes to standard output.

delta.
11 Al updates to the p-file sre made to 3 temporary copy, the g-fle, whose use is similar to the
use of the z-fle described in earlier.

Revision D of 7 January 1984 37

SCCS Low-Level Commands Programming Tools

18.3. admin — Administer SCCS Files

Admin administers sOCS files, that is, creates new SCCS files and changes parameters of existing
ones. When an SCCS file is created, its parameters are either initialized by use of options or
assigned default values if no options are supplied. The same options are used to change the
parameters of existing files.

The two options used when detecting and correcting ‘corrupted’ SCCS files are discussed in the
section entitled Auditing.

Newly-created SCCS files are given mode 444 (read-only) and are owned by the effective user.

Only a user with write permission in the directory containing the SCCS file may use the admin -

command upor that file.

18.3.1. Creating SCCS Files

tutorial% admin -—ifirst s.abe

creates the initial delta of the SCCS file ‘s.abc’. This delta contains the text from the file (‘first’)
specified as the value of the —i option. If you use —I without a value, admin reads its text from
standard input. Thus, the command:

tutorial’ admin -i s.abe < first
produces the same result as our first example. If the text of the initial delta does not contain ID
keywords, admsn displays the warning message:

tutorial?% admin -ifirst s.abe
No id keywords (¢m?7)
tutorial%

If you use the same admin command to set the i flag in the text (not to be confused with the —i
option for admin), the message is treated as a fatal error and the SCCS file is not created. Only
one SCCS file may be created at a time using the —i option.

When an SCCS file is created, the release number assigned to its first delta is normally ‘1’, and
its level number is always ‘1’. Thus, the first delta of an SCCS file is normally ‘1.1’. If you wish
to specify a release number for the first delta, use the —r option: '

tutorial% admin -ifirst —r3 s.abe

to name the first delta ‘3.1" rather than ‘1.1’. The —r option can only be used with the —i
option, because —r is only meaningful in creating the first delta.

18.3.2. Inserting Commentary for the Initial Delta

You can use the —y and —m options with admin, just as with delta, to insert initial descriptive
commentary and/or MR numbers when an SCCS file is created. !f you don't use -~y to com-
ment, admén automatically inserts a comment line of the form:

date and time created YY/MM/DD HI:MM:SS by logname

If you want to supply MR numbers (—m option), the v flag must also be set (using the —f
option described below). The v flag simply determines whether or not MR numbers must be
supplied when using any SCCS command that modifies a delta commentary in the SCCS file (see
sccefile(5)). Thus:

tutorial’ admin -ifirst ~mmroum} -fv s.abe

38 Revision D of 7 January 1984

-

Programming Tools - SCCS Low-Level Commands

Note that the —~y and —m options are only effective if a new SCCS file is being created.

18.3.3. Initializing and Modifiying SCCS File Parameters

The portion of the SCCS file reserved for descriptive text — see the section entitled Descriptive
Tezt — may be initialized or changed through the use of the —t option. The descriptive text is
intended as a summary of the contents and purpose of the SCCS file; actually its contents and
length are up to you.

When an SCCS file is being created and the —t option is supplied, it must be followed by the
name of a file from which the descriptive text should be taken. For example, the command:

tutorial” admin —ifirst ~tdesc s.abc

specifies that the descriptive text is to be taken from file ‘desc’.

When processing an eziating SCCS file, the —t option specifies that the descriptive text (if any)
currently in the file is to be replaced with the text in the named file. Thus:

tutorial’s admin —tdesc s.abe

specifies that the descriptive text of the SCCS file is to be replaced by the contents of ‘desc’.
Omitting the file name after the —t option removes the descriptive text from the sCCs file:

tutorial% admin -t s.abc

The flags — see the section entitled Descriptive Teat — of an SCCS file may be initialized and
changed with the —f (flag) option, or may be deleted with the —d (delete) option. The flags of
an SCCS file direct certain actions of the various commands. See admin{1) for a description of
all the flags. For example, the 1 flag specifies that the warning message stating there are no ID
keywords contained in the SCCS file should be treated as an error, and the d (default SID) flag
specifies the default version of the SCCS file to be retrieved by the get command. The —f option
sets a flag and, possibly, sets its value. For example:

tutorial’ admin -ifirst - —fmmodname s.abe

sets the i flag and the m (module name) flag. The value ‘modname’ specified for the m flag is
the value that the get command uses to replace the %GM% ID keyword. (In the absence of the m
flag, the name of the g-file is used as the replacement for the %6M% ID keyword). Note that
several —f options may be supplied on a single admin command, and that —f options may be
supplied whether the command is creating a new SCCS file or processing an existing one.

The —d option deletes a flag from an SCCS file, and may only be specified when processing an
existing file. As an example, the command:

tutorial% admin -dm s.abe

removes the m flag from the SCCs file. Several —d options may be supplied on a single admin
command, and may be interspersed with —f options.

SCcs files contain a list {user list) of login names and/or group IDs of users who are allowed to
create deltas. This list is normally empty, implying that anyone may create deltas. To add
login names and/or group IDs to the list, use the admin command with the —a option. For
example: '

tutorial% admin —awendy -aalison —-al234 s.abc

adds the login names ‘wendy’ and ‘alison’ and the group ID ‘1234’ to the list. The ~a option
may be used whether admin is creating a new SCCS file or processing an existing one, and may
appear several times. The —e option is used in an analogous manner if one wishes to remove
(‘erase’) login names or group IDs from the list.

Revision D of 7 January 1984 39

SCCS Low-Level Commands Programming Tools

18.4. prs — Print SCCS File

Prs displays all or parts of an SCCS file on the standard output. The format of this display,
called the output data specification, is set via the —d option.

The data specification is a string consisting of SCCS file data keywords'? interspersed with
(optional) text. Data keywords are replaced by appropriate values according to their
definitions. For example: :I: is defined as the data keyword that is replaced by the SID of a
specified delta. Similarly, :F: is defined as the data keyword for the name of the file currently
being processed, and :C: is defined as the comment line associated with a specified delta. All

parts of an SCCS file have an associated data keyword. For a complete list of the data key-

words, see prs(1).
There is no limit to the number of times a data keyword may appear in a data specification; prs
will respond with as many substitutions as you call for:

tutorial% prs —d”d: this is the top delta for F::I:" s.abe
2.1 this is the top delta for s.abe 2.1
tutorial%

If you want prs to print from a single delta, use the —r option to specify the SID of that delta:

tutorial% prs —d":F: :J: comment line is: :C:” —r1.4 s.abe
s.abc: 1.4 comment line is: THIS IS A COMMENT
tutorial %

if the —r option is not specified, the value of the SID defaults to the most recently created delta.

If you want information from a range of deltas, use the —e or | option. —e substitutes data
keywords for the SID designated via the —r option and all deltas created earlier:

tutoriai% prs —-d:d: -rl.4 —e s.abc
1.4

1.3

1.2.1.1

1.2

1.1

tatorial%

-1 substitutes data keywords for the SID designated via the —r option and all deltas created
later:

tutorial% prs —d:I: -rl1.4 -1 s.abe
3.3

3.2

3.1

2.2.1.1

2.2

2.1

1.4

tutorial%

Prs substitutes data keywords for all deltas of the SCCS file if you use both the —e and -1
options.

12 Not to be confused with get /D keyworde.

40 _ Revision D of 7 January 1984

O

-

-

Programming Tools SCCS Low-Level Commands

18.5. help — Ask for Help

Help displays explanations of SCCS commands, and of messages these commands may print.
Help takes zero or more arguments, which are are simply the names of SCCS commands or the
code numbers that appear in parentheses after SCCS messages. Help has no concept of options
or file arguments. If no argument is given, help prompts for one. When help cannot find any
information on an argument, it displays an error message. Each argument is processed indepen-
dently; an error resulting from one argument does not terminate processing of the others.

If an argument is a command, Aelp ‘explains’ it by giving you its synopsis. For example, the
following asks for help on the ‘ge5’ error message and information about the rmdel command:

tutorial% help ge5 rmdel

gehs

" nonexistent sid”

The specified sid does not exist in the

given file.
Check for typos.
rmdel:
rmdel -rSID name ...
tutorial%

18.6. rmdel — Remove a Delta

Rmdel removes a delta from an SCCS file — it should be reserved for cases in which incorrect,
global changes were made to a delta.

The delta to be removed must be a ‘leal’ delta; that is, it must be the latest (most recently
created) delta on its branch or on the trunk of the SCCS file tree. In Figure 3, only deltas
1.3.1.2, 1.3.2.2, and 2.2 can be removed; once they are removed, deltas 1.3.2.1 and 2.1 can be
removed, and so on.

To remove a delta, the effective user must have write permission in the directory containing the
sces file. In addition, the real user must either have created the delta being removed, or be the
owner of the SCCS file and its directory.

You must specify the complete SID of the delta to be removed, preceded by —r. The SID must
have two components for a trunk delta, and four components for a branch delta. Thus:
tutorial? rmdel -r2.3 s.abe

removes (trunk) delta ‘2.3’ of the SCCS file.
Before removing the delta, rmdel checks the following things:
1. the release number (R) of the given SID satisfies the relation:
floor < R < ceiling
2. the SID specified is not that of a version for which a get for editing has been executed
and whose associated delta has not yet been made.
3. the login name or group ID of the user either appears in the file's user list or the user
list is empty.
4. the release specified cannot be locked against editing (that is, if the 1 flag is set (see
admin(1)), the release specified must not be contained in the list).
If these conditions are satisfied, the delta is removed. Otherwise, processing is terminated.

Revision D of 7 Japuary 1984 41

SCCS Low-Level Commands Programming Tools

After the specified delta has been removed, its type indicator in the delta table of the SCCS file is
changed from ‘D’ (delta) to ‘R’ (removed).

18.7. cdc¢ — Change Delta Commentary

Cdc changes the commentary supplied to a delta when it was created. Cde has the same com-
mand syntax and restrictions as rmdel, but the delta to be processed does not have to be a leaf
delta. For example:

tutorial% ede -r3.4 s.abe

specifies that the commentary of delta *3.4' of the SCCS file is to be changed.

Cdec behaves like delta when it solicits new commentary. The old commentary associated with
the specified delta is kept, but it is preceded by a comment line indicating that it has been
changed (that is, superseded), and the new commentary is entered ahead of this comment line.
The ‘inserted’ comment line records the login name of the user executing cdec and the time of its
execution.

You can also use cde to delete selected MR numbers associated with the specified delta by
preceding them with ‘Y. For example, to insert ‘mrnum3’ and delete ‘mrnuml’ for delta 1.4:

tutorial% cde —rl.4 s.abe
MRs?! mrnum3 !mrauml
comments! deleted wrong MR number and inserted correct MR number

18.8. what — Identify SCCS Files

What finds SCCS identifying information within any specified UNIX file. What does pot use any
options, nor does it treat directory names and a name of ‘-’ (a lone minus sign) in any special
way, as do other SCCS commands.

What searches the given file(s) for all occurrences of the string ‘G(#)’, which is the replacement
for the 9%Z% ID keyword (see get(1)). What then displays whatever follows that string until the
first double quote ("), greater than (>), backslash (\), newline, or (non-printing) NUL charac-
ter.

As an example, let’s begin with the SCCS file ‘s.prog.c’ (a C program), which contains the follow-
ing line:

char id[] "%Z%%M%:%1%";
We then do the folowing get:
tutorial% get -r3.4 s.prog.c

and finally compile the resulting g-file to produce ‘prog.o’ and ‘a.out’.
Using what as follows then displays:

tutorial% what prog.c prog.o a.out
prog.c:
prog.c:3.4
prog.o:
prog.c:3.4
a.out:
prog.c:3.4
tutorial%

42 | Revision D of 7 January 1984

o

Programming Tools SCCS Low-Level Commands

The string what searches for need not be inserted via an ID keyword of get — it may be inserted
in any convenient manner,

18.9. sccsdiff — Compare Two Versions of an SCCS File

Seccadiff compares two specified versions of one or more SCCS files, and displays the differences in
difi-like format. The versions to be compared are specified with —r, as in get, and must be
specified as the first two arguments to sccsdiff in the order in which they were created, that is,
the older version is specified first. The —p option may be used after these two arguments to
pipe the output of sccadiff through pr(1). SCCS files to be processed are named last. Sccadiff
does not accept directory names or a name of ‘-’ (a lone minus sign). An example:

tutorial% scesdiff -r3.4 -r5.8 s.abe

18.10. comb — Combine Deltas

Comb generates a Shell procedure (see sh(1)) which tries to reconstruct new SCCS files leaner
than their original counterparts. The generated Shell procedure is written on the standard out-
put.

The rebuilding discards unwanted deltas and combines others. Comb is intended for those SCCS
files with deltas so old that they are no longer useful; it should only be used a small number of
times in the life of an SCCS file.

Used without options, comb preserves only leaf deltas and the minimum number of ancestor del-
tas necessary to preserve the ‘shape’ of the SCCS file tree; ‘middle’ deltas on the trunk and on all
branches of the tree are eliminated. In Figure 3, deltas 1.2, 1.3,2.1, 1.4, and 2.1 would be elim-
inated.

Some options to comb are:

The —p option specifies the oldest delta that is to be preserved in the reconstruction. All older
deltas are discarded.

The —c option specifies a liat of deltas to be preserved. All other deltas are discarded. See
get(1) for the syntax of such a list.

When used with the —s option, comb generates a Shell procedure, which, when run, produces
only a report summanzlng the percentage space (if any) to be saved by reconstructing each
named SOCS file. It is a good idea to run comd with the —s option {in a.dd:t:on to any other
desired options) before attempting any actual reconstructions.

Note that the Shell procedure which comb generates is not guaranteed to save any space — in
fact, it is possible for the reconstructed file to be larger than the original. Note, too, that the
shape of the SCCS file tree may be altered by the reconstruction process.

18.11. val — Validate Characteristics of an SCCS File

Val determines if a file is an SCCS file meeting the characteristics specified by an optional list of
options. Any characteristics not met are considered errors.

Val checks for the existence of a particular deita when the SID for that delta is explicitly
specified via the —r option. The string following the —y or —m option is used to check the value
set by the ¢ or m flag respectively (see admin(1) for a description of the flags).

Val treats the special argument ‘~’ (a lone minus sign) differently from other SCCS commands.
When the — argument is specified, val reads the argument list from the standard input instead
of from the command line., The standard input is read until end-of-file. Thus val can be used

Revision D of 7 January 1984 ' 43

SCCS Low-Level Commands Programming Tools

once with different values for the option and file arguments. For example:

tutorial% val -

-yc —mabec s.abe
-mxys -ypll sxys
"D

tutorial%

This sequence first checks if file ‘s.abc’ has a value ‘¢’ for its type flag and value ‘abc’ for the
module name flag. Once processing of the first file is completed, val processes the remaining
files, in this case ‘s.xyz’, to determine if they meet the characteristics specified by the options
associated with them. -

Val returns an 8-bit code which is a disjunction of the possible errors detected — that is, each
bit set indicates the occurrence of a specific error (see val(1) for a description of the possible
errors and their codes). In addition, an appropriate diagnostic is printed unless suppressed by
the —s (silent) option. A return code of ‘0’ indicates all named files met the characteristics
specified.

19. SCCS Files

This section discusses several topics that must be considered before extensive use is made of
SCCS. These topics deal with the protection mechanisms relied upon by SCCS, the format of SCCs
files, and the recommended procedures for auditing SCCS files.

19.1. Protection

SCCS relies on the capabilities of the UNIX operating system for most of the protection mechan-
isms required to prevent unauthorized changes to SCCS files (that is, changes made by non- sCCS
commands). The only protection features provided directly by SCCS are the release lock flag, the
release floor and cesling flags, and the uaer list.

New 5CCS files created by admin are given mode 444 (read only). It is best not to change this
mode, as it prevents any direct modification of the files by non- SCCS commands. Further,
directories containing SCCS files should be given mode 755, so that only the owner of the direc-
tory can modify its contents.

sccs files should be kept in directories that contain only SCCS files and any temporary files
created by SCCS commands. This simplifies protection and auditing of SCCS files. The contents
of directories should correspond to convenient logical groupings, for example, sub-systems of a
large project.

SCCS files must have only one link (name). Commands that modify SCCS files do so by creating
a temporary copy of the file (called the z-file, and, upon completion of processing, remove the
old file and rename the z-file. If the old file has more than one link, removing it and renaming
the z-file would break the link. Rather than process such files, SCCS commands produce an
error message. All SCCS files must have names that begin with ‘s.’.

When only one user uses SCCS, the real and effective user IDs are the same, and that user ID
owns the directories containing SCCS files. Therefore, SCCS may be used directly without any
preliminary preparation.

However, in those situations in which several users with unique user IDs are assigned responsibil-
ity for ome SCCS file (for example, in large software development projects), one user
(equivalently, one user ID) must be chosen as the ‘owner’ of the SCCS files and as the one who
will ‘administer’ them (for example, by using admin). This user is termed the .SM SCCS
administrator for that project. Because other users of SCCS do not have the same privileges and
permissions as the SCCS administrator, they are not able to execute directly those commands

44 Revision D of 7 January 1984

-

Prcgramming Tools SCCS Low-Level Commands

that require write permission in the directory containing the SCCS files. Therefore, a project-
dependent program is required to provide an interface to the get, delta, and, if desired, rmdel
and cdc commands.

The interface program must be owned by the SCCS administrator, and must have the
sct user [D on ezecution bit on (see chmod(1})), so that the effective user ID is the administrator’s
user ID. This program’s function is to invoke the desired SCCS command and to cause it to
inherst the privileges of the interface program for the duration of that command’s execution. In
this manger, the owner of an SCCS file can modify it at will. Other users whose login names or
group IDs are in the user list for that file (but who are not its owners) are given the necessary
permissions only for the duration of the execution of the interface program, and are thus able to
modify the SCCS files only through the use of delta and, possibly, rmdel and cdc. The project-
dependent interface program, as its name implies, must be custom-built for each project.

19.2. Layout of an SCCS File

SCCS files are composed of lines of ASCH text arranged in six parts, as follows:

- Checksum A line containing the ‘logical’ sum of all the characters of the file (not
including this checksum itself).
Delta Table Information about each delta, such as its type, SID, date and time of
creation, and commentary included.
User Names List of login names and/or group IDs of users who are allowed to modify
the file by adding or removing deltas.
Flags Indicators that control certain actions of various SCCS commands.

Descriptive Text
Text provided by the user; usually a summary of the contents and pur-
pose of the file.

Body Actual text that is being administered by SCCS, intermixed with internal
$CCSs control lines. |

Detailed information about the contents of the various sections of the file may be found in
sccafile(5). In the following, the checksum is the only portion of the file discussed.

Because SCCS files are ASCII files, they may be processed by various UNIX commands: editors
such as vi(1), text processing programs such as grep(1), awk(1), and cat(1), and so on. This is
quite useful when an SCCS file must be modified manually (for example, when the time and date
of a delia was recorded incorrectly because the system clock was set incorrectly), or when one
wants to simply ‘look’ at the file.

= FEaxtreme care should be exercised when modifying SCCS files with non- SCCS commands.

19.3. Auditing

On rare occasions, perhaps due to an operating system or hardware malfunction, all or part of
an SCCS file is destroyed. SCCS commands {like most UNIX commands) display an error message
when a file does not exist. In addition, SCCS commands use the checksum stored in the SCCS file
to determine whether a file has been corrupted since it was last accessed (has lost data, or has
been changed). The only SCCS command which will process a corrupted sCCs file is admin with
the —h or —s options. This is discussed below.

SCCS files should be audited (checked) for possible corruptions on a regular basis. The simplest
and fastest way to audit such files is to use admin with the —h option on them:

Revision D of 7 January 1984 45

SCCS Low-Level Commands Programming Tools

tutorial% admin -h s.filel s.file3 ...

or
tutorial% admin -h directoryl directory2 ...

If the new checksum of any file is not equal to the checksum in the first line of that file, the
message:

corrupted file (co6)

is produced for that file. This process continues until all files have been examined. When exa-
mining directories (as in the second example above), the process just described does not detect
missing files. A simple way to detect whether any files are missing from a directory is to period-
ically list the contents of the directory (using ls(1)), and compare the current listing with the
previous one. Any file which appears on the previous list but not the current one has been
removed by some means.

When a file has been corrupted, the method of restoration depends upon the extent of the corr
uption. If damage is extensive, the best solution is to restore the file from a backup copy.
When damage is minor, repairing the file with your favorite text editor may be possible. If you
do repair the file with the system’s text processing capabilities, you must use admin(1) with the
~= option to recompute the checksum to bring it into agreement with the actual contents of the
file: -

tutorial?% admin —s s.file

After this command is executed on a file, any corruption which may have existed in that file
will no longer be detectable.

46 Revision D of 7 January 1984

-

-

A Debugging Tools document,
is currently in preparation.

Table of Contents

DC — An Interactive Desk Calctlator ...t sreans

1. Synoptic Description ...

1.1. number

1.2. Binary Operators — + % % oo R
1.3. s — Pop the Stack Into A Named Registercumicinmmnrrnn

2. 1 — Push Contents of a Named Register Onto the Stack ...

2.1. d — Duplicate the Top of Stack ...

9.2. p — Display the Value on the Top of Stack
2.3. f — Display All Register and Stack Values

2.4. x — Execute the Top of Stackccrrvecens

2.5. | ...] — Put Character String on Top of Stack ...

2.6. q— Quit From DC ..t anes
2.7. Comparison Operators — <x >x =x !<x I>x l=x __

2.8. v — Compute Square Root of Top of Stack ...

2.9. | — Execute a System Command

R A — -

2.11. i — Use Top of Stack Value as Input Number Radix

2.13. k — Use Top of Stack Value as a Scale Factor ..

2.12. o — Use Top of Stack Value as Output Number Radix

2.14. z — Push Value of Stack Level Onto Stack ...

2.15. ! — Execute a Line of Input from Input Source ...

3. Detailed Description
3.1. Internal Representation of Numbers
3.2. The Allocator

3.3, Internal Arithmetic ..o

3.4. Addition and Subtraction

3.5. Multiplicationcccocoovmrecimmsrmmssessresrnnnons
3.6. Division

3.7. Remainder

3.8. Square Root
3.9. Exponentiation _..
3.10. Input Conversion and Base ...

3.11. Output Commands ...

[

S 0D i e

b i G0 GD 0) 0O 00 00 0O G BD KD D B D RO

] =1 SO e i

3.12. Output Format and Basecccneee.

..............

3.13. Internal Registers
3.14. Stack Commands

3.15. Subroutine Definitions and Calls

3.16. Internal Registers Programming DC
3.17. Push-Down Registers and Arrays

3.18. Miscellaneous Commands

4. Design Choices .

..............

5. References eeemeseeeeneseneesisanis

00 00 00 00 00 =) =~y

DC — An Interactive Desk Calculator

DC is an interactive desk calculator program implemented on the UNIX} time-sharing system to
do arbitrary-precision integer arithmetic. It has provision for manipulating scaled fixed-point
numbers and for input and output in bases other than decimal.

The size of numbers that can be manipulated is limited only by available memory storage. On
typical implementations of UNIX, the size of numbers that can be handled varies from several
hundred digits on the smallest systems to several thousand on the largest.

DC is an arbitrary precision arithmetic package implemented on the UNIX time-sharing system
in the form of an interactive desk calculator. DC works like a stacking calculator using reverse
Polish notation. Ordinarily DC operates on decimal integers, but one may specify an input
base, output base, and a number of fractional digits to be maintained.

A language called BC [1] has been developed which accepts programs written in the familiar
style of higher-level programming languages and compiles output which is interpreted by DC.
Some of the commands described below were designed for the compiler interface and are not
easy for a human user to manipulate.

Numbers that are typed into DC are put on a push-down stack. DC commands work by taking
the top number or two off the stack, performing the desired operation, and pushing the result
on the stack. If an argument is given, input is taken from that file until its end, then from the
standard input.

1. Synoptic Description

Here we describe the DC commanrds that are intended for use by people. The additional com-
mands that are intended to be invoked by compiled output are described in the detailed descrip-
tion.

Any number of commands are permitted on a line. Blanks and new-line characters are ignored
except within numbers and in places where a register name is expected.

The following constructions are recoguized:

1.1. number

The value of the number is pushed onto the main stack. A number is an unbroken string of the
digits 0-9 and the capital letters A-F which are treated as digits with values 10-15 respectively.
The number may be preceded by an underscore to input a negative number. Numbers may
contain decimal points.

t UNIX is a trademark of Bell Laboratories.

Revision D of 7 Jannary 1984 1

DC Desk Calculator Programming Tools

1.2. Binary Operators — 4+ — * % °

The top two values on the stack are added {+), subtracted (-), multiplied (*), divided (/), @
remaindered {%8), or exponentiated (). The two entries are popped off the stack; the result is
pushed on the stack in their place. The result of a division is an integer truncated toward zero.

See the detailed description below for the treatment of numbers with decimal points. An
exponent must not have any digits after the decimal point.

1.3. s — Pop the Stack Into A Named Register

The sz command pops the value from the top of the main stack and stores that value into a
register named z, where z may be any character. If the s is capitalized, z is treated as a stack
and the value is pushed onto it. Any character, even blank or new-line, is a valid register name.

2. 1 — Push Contents of a Named Register Onto the Stack

The 1z command pushes the value in register z onto the stack. The register z is not altered. If
the | is capitalized, register z is treated as a stack and its top value is popped onto the main
stack.

All registers start with empty value which is treated as a zero by the 1 command and is treated
as an error by the L command.

2.1. d — Duplicate the Top of Stack
The top value on the stack is duplicated. @

2.2. p — Display the Value on the Top of Stack

The top value on the stack is printed. The top value remains unchanged.

2.3. f — Display All Register and Stack Values

All values on the stack and in registers are printed.

2.4. x — Execute the Top of Stack

treats the top element of the stack as a character string, removes it from the stack, and exe-
cutes it as a string of DC commands.

2.5. [...] — Put Character String on Top of Stack

puts the bracketed character string onto the top of the stack.

<O

2 Revision D of 7 January 1984

Programming Tools DC Desk Calculator

2.6. q — Quit From DC

exits the program. If executing a string, the recursion level is popped by two. If q is capital-
ized, the top value on the stack is popped and the string execution level is popped by that
value.

2.7. Comparison Operators — <x >x =x [<x I>x l=x

The top two elements of the stack are popped and compared. Register z is executed if they
obey the stated relation.- Exclamation point is negation.

2.8. v — Compute Square Root of Top of Stack

replaces the top element on the stack by its square root. The square root of an integer is trun-
cated to an integer. For the treatment of numbers with decimal points, see the detailed descrip-
tion below.

2.9. ! — Execute a Systemm Command

interprets the rest of the line as a3 UNIX command. Control returns to DC when the UNIX com-
mand terminates.

2.10. ¢ — Clear the Stack

All values on the stack are popped; the stack becomes empty.

2.11. i — Use Top of Stack Value as Input Number Radix

The top value on the stack is popped and used as the number radix for further input. If i is
capitalized, the value of the input base is pushed onto the stack. No mechanism has been pro-
vided for the input of arbitrary numbers in bases less than 1 or greater than 16.

2.12. o — Use Top of Stack Value as OQutput Number Radix

The top value on the stack is popped and used as the number radix for further output. If o is
capitalized, the value of the output base is pushed onto the stack.

- 2.13. k — Use Top of Stack Value as a Scale Factor

The top of the stack is popped, and that value is used as a scale factor that influences the
pumber of decimal places that are maintained during multiplication, division, and exponentia-
tion. The scale factor must be greater than or equal to zero and less than 100. If k is capital-
ized, the value of the scale factor is pushed onto the stack.

Revision D of 7 January 1984 3

DC Desk Calculator Programming Tools

2.14. z — Push Value of Stack Level Onto Stack
The value of the stack level is pushed onto the stack. O

2.15. ? — Execute a Line of Input from Input Source

A line of input is taken from the input source (usually the console) and executed.

3. Detailed Description

3.1. Internal Representation of Numbers

Numbers are stored internally using a dynamic storage allocator. Numbers are kept in the form
of a string of digits to the base 100 stored one digit per byte (centennial digits). The string is
stored with the low-order digit at the beginning of the string. For example, the representation
of 157 is 57,1. After any arithmetic operation on a number, care is taken that all digits are in
the range 0-99 and that the number has no leading zeros. The number zero is represented by
the empty string.

Negative numbers are represented in the 100’s complement notation, which is analogous to
two's complement notation for binary numbers. The high order digit of a negative number is
always -1 and all other digits are in the range 0-99. The digit preceding the high order -1 digit
is never a 99. The representation of -157 is 43,98,—-1. We shall call this the cancnical form of a
number. The advantage of this kind of representation of negative numbers is ease of addition. @
When addition is performed digit by digit, the result is formally correct. The result need only
be modified, if necessary, to put it into canonical form. '

Because the largest valid digit is 99 and the byte can hold numbers twice that large, addition
can be carried out and the handling of carries done later when that is convenient, as it some-
times is.

An additional byte is stored with each number beyond the high order digit to indicate the
number of assumed decimal digits after the decimal point. The representation of .001 is 1,8
where the scale has been italicized to emphasize the fact that it is not the high order digit. The
value of this extra byte is called the scale factor of the number.

3.2. The Allocator

DC uses a dynamic string storage allocator for all of its internal storage. All reading and writ-
ing of numbers internally is done through the allocator. Associated with each string in the allo-
cator is a four-word header containing pointers to the beginning of the string, the end of the
string, the next place to write, and the next place to read. Communication between the alloca-
tor and DC is done via pointers to these headers.

The allocator initially has one large string on a list of free strings. Al headers except the one
pointing to this string are on a list of free headers. Requests for strings are made by size. The
size of the string actually supplied is the next higher power of 2. When a request for a string is
made, the allocator first checks the free list to see if there is a string of the desired size. If none
is found, the allocator finds the next larger free string and splits it repeatedly until it has a ©

4 Revision D of 7 January 1984

WL bl D L

Programming Tools DC Desk Calculator

string of the right size. Left-over strings are put on the free list. If there are no larger strings,
the allocator tries to coalesce smaller free strings into larger ones. Since all strings are the result
of splitting large strings, each string has a neighbor that is next.to it in memory and, if free, can
be combined with it to make a string twice as long. This is an implementation of the ‘buddy
system’ of allocation described in [2].

Failing to find a string of the proper length after coalescing, the allocator asks the system for
more space. The amount of space on the system is the only limitation on the size and number
of strings in DC. If at any time in the process of trying to allocate a string, the allocator runs
out of headers, it also asks the system for more space.

There are routines in the allocator for reading, writing, copying, rewinding, forward-spacing,
and backspacing strings. All string manipulation is done using these routines.

The reading and writing routines increment the read pointer or write pointer so that the charac-
ters of a string are read or written in succession by a series of read or write calls. The write
pointer is interpreted as the end of the information-containing portion of a string and a call to
read beyond that point returns an end-of-string indication. An attempt to write beyond the
end of a string causes the allocator to allocate a larger space and then copy the old string into
the larger block.

3.3. Internal Arithmetic

All arithmetic operations are done on integers. The operands (or operand) needed for the opera-
tion are popped from the main stack and their scale factors stripped off. Zeros are added or
digits removed as necessary to get a properly scaled result from the internal arithmetic routine.
For example, if the scale of the operands is different and decimal alignment is required, as it is
for addition, zeros are appended to the operand with the smaller scale. After performing the
required arithmetic operation, the proper scale factor is appended to the end of the number
before it is pushed on the stack.

A register called seale plays a part in the results of most arithmetic operations. scale is the
bound on the number of decimal places retained in arithmetic computations. scale may be set
to the number on the top of the stack truncated to an integer with the k command. K may be
used to push the value of scale on the stack. scale must be greater than or equal to 0 and less
than 100. The descriptions of the individual arithmetic operations will include the exact effect
of scale on the computations.

3.4. Addition and Subtraction

The scales of the two numbers are compared and trailing zeros are supplied to the number with
the lower scale to give both numbers the same scale. The number with the smaller scale is mul-
tiplied by 10 if the difference of the scales is odd. The scale of the result is then set to the
larger of the scales of the two operands.

Subtraction is performed by negating the number to be subtracted and proceeding as in addi-
tion.

Finally, the addition is performed digit by digit from the low order end of the number. The
carries are propagated in the usual way. The resulting number is brought into canonical form,
which may require stripping of leading zeros, or for negative numbers replacing the high-order
configuration 99,-1 by the digit -1. In any case, digits which are not in the range 0-99 must be
brought into that range, propagating any carries or borrows that result.

Revision D of 7 January 1984 5

DC Desk Calculator Programming Tools

3.5. Multiplication

The scales are removed from the two operands and saved. The operands are both made posi-
tive. Then multiplication is performed in a digit by digit manner that exactly mimics the hand
method of multiplying. The first number is multiplied by each digit of the second number,
beginning with its low order digit. The intermediate products are accumulated into a partial
sum which becomes the final product. The product is put into the canonical form and its sign is
computed from the signs of the original operands.

The scale of the result is set equal to the sum of the scales of the two operands. If that scale is

larger than the internal register scale and also larger than both of the scales of the two-

operands, then the scale of the result is set equal to the largest of these three last quantities.

3.6. Division

The scales are removed from the two operands. Zeros are appended or digits removed from the
dividend to make the scale of the result of the integer division equal to the internal quantity
scale. The signs are removed and saved.

Division is performed much as it would be done by hand. The difference of the lengths of the
two numbers is computed. If the divisor is longer than the dividend, zero is returned. Other-
wise the top digit of the divisor is divided into the top two digits of the dividend. The result is
used as the first (high-order) digit of the quotient. It may turn out be one unit too low, but if it
is, the next trial quotient will be larger than 99 and this will be adjusted at the end of the pro-
cess. The trial digit is multiplied by the divisor and the result subtracted from the dividend
and the process is repeated to get additional quotient digits until the remaining dividend is
smaller than the divisor. At the end, the digits of the quotient are put into the cancnical form,
with propagation of carry as needed. The sign is set from the sign of the operands.

3.7. Remainder

The division routine is called and division is performed exactly as described. The quantity
returned is the remains of the dividend at the end of the divide process. Since division trun-
cates toward zero, remainders have the same sign as the dividend. The scale of the remainder is
set to the maximum of the scale of the dividend and the scale of the quotient plus the scale of
the divisor.

3.8. Square Root

The scale is stripped from the operand. Zeros are added if necessary to make the integer result
have a scale that is the larger of the internal quantity scale and the scale of the operand.

The method used to compute sqrt(y) is Newton’s method with successive approximations by the
rule

Ihp1 = (2.4 'L)
Ty

The initial guess is found by taking the integer square root of the top two digits.

6 Revision D of 7 January 1984

O

Programming Tools DC Desk Calculator

3.9. Exponentiation

Only exponents with zero scale factor are handled. If the exponent is zero, then the result is 1.
If the exponent is negative, then it is made positive and the base is divided into one. The scale
of the base is removed.

The integer exponent is viewed as a binary number. The base is repeatedly squared and the
result is obtained as a product of those powers of the base that correspond to the positions of
the one-bits in the birary representation of the exponent. Epough digits of the result are
removed to make the scale of the result the same as if the indicated multiplication had been
performed.

3.10. Input Conversion and Base

Numbers are converted to the internal representation as they are read in. The scale stored with
a number is simply the number of fractional digits input. Negative numbers are indicated by
preceding the number with a _. The hexadecimal digits A-F correspond to the numbers 10-15
regardless of input base. The i command can be used to change the base of the input numbers.
This command pops the stack, truncates the resulting number to an integer, and uses it as the
input base for all further input. The input base is initialized to 10 but may, for example be
changed to 8 or 16 to do octal or hexadecimal to decimal conversions. The command I will
push the value of the input base on the stack.

3.11. Output Commands

The command p causes the top of the stack to be printed., It does not remove the top of the
stack. All of the stack and internal registers can be output by typing the command f. The o
command can be used to change the output base. This command uses the top of the stack,
truncated to an integer as the base for all further output. The output base in initialized to 10.
It will work correctly for any base. The command O pushes the value of the output base on
the stack.

3.12. Output Format and Base

The input and output bases only affect the interpretation of numbers on input and output; they
have no effect on arithmetic computations. Large numbers are output with 70 characters per
line; a \ indicates a continued line. AH choices of input and output bases work correctly,
although not all are useful. A particularly useful output base is 100000, which has the effect of
grouping digits in fives. Bases of 8 and 18 can be used for decimal-octal or decimal-hexadecimal

conversions.

3.13. Internal Registers

Numbers or strings may be stored in internal registers or loaded on the stack from registers
with the commands s and |. The command 8z pops the top of the stack and stores the result in
register x. z can be any character. lz puts the contents of register x on the top of the stack.
The | command has no effect on the contents of register 2. The s command, however, is des-
tructive.

Revision D of 7 January 1984 7

DC Desk Calculator Programming Tools

3.14. Stack Commands

The command ¢ clears the stack. The command d pushes a duplicate of the number on the top
of the stack on the stack. The command s pushes the stack size on the stack. The command
X replaces the number on the top of the stack with its scale factor. The command Z replaces
the top of the stack with its length.

3.15. Subroutine Definitions and Calls

Enclosing a string in [J pushes the ascii string on the stack. The q command quits or in execut- "

ing a string, pops the recursion levels by two.

3.16. Internal Registers — Programming DC

The load and store commands together with [] to store strings, x to execute and the testing
commands ‘<’, ‘>, ‘=’ ‘U<, 1>’ =" can be used to program DC. The x command
assumes the top of the stack is an string of DC commands and executes it. The testing com-
mands compare the top two elements on the stack and if the relation holds, execute the register
that follows the relation. For example, to print the numbers 0-9,

flipi+ si lil0>alsa
0si lax

3.17. Push-Down Registers and Arrays

These commands were designed for used by a compiler, not by people. They involve push-down
registers and arrays. In addition to the stack that commands work on, DC can be thought of as
having individual stacks for each register. These registers are operated on by the commands S
and L. Sz pushes the top value of the main stack onto the stack for the register z. Lz pops the
stack for register z and puts the result on the main stack. The commands s and] also work on
registers but not as push-down stacks. | doesn’t effect the top of the register stack, and s des-
troys what was there before.

The commands to work on arrays are : and ;. :z pops the stack and uses this value as an index
into the array 2. The next element on the stack is stored at this index in 2. An index must be
greater than or equal to 0 and less than 2048. ;z is the command to load the main stack from
the array z. The value on the top of the stack is the index into the array z of the value to be
loaded.

3.18. Miscellaneous Commands

The command ! interprets the rest of the line as a UNIX
command and passes it to UNIX to execute. Omne other compiler command is Q. This com-
mand uses the top of the stack as the number of levels of recursion to skip.

8 Revision D of 7 January 1984

-

-

1L

Programming Tools DC Desk Calculator

4. Design Choices

The real reason for the use of a dynamic storage allocator was that a general purpose program
could be (and in fact has been) used for a variety of other tasks. The allocator has some value
for input and for compiling (that is, the bracket [...] commands) where it cannot be known in
advance how long a string will be. The result was that at a modest cost in execution time, all
considerations of string allocation and sizes of strings were removed from the remainder of the
program and debugging was made easier. The allocation method used wastes approximately
25% of available space.

The choice of 100 as a base for internal arithmetic seemingly has no compelling advantage. Yet
the base cannot exceed 127 because of hardware limitations and at the cost of 5% in space,
debugging was made a great deal easier and decimal output was made much faster.

The reason for a stack-type arithmetic design was to permit all DC commands from addition to
subroutine execution to be implemented in essentially the same way. The result was a consider-
able degree of logical separation of the final program into modules with very little communica-
tion between modules.

The rationale for the lack of interaction between the scale and the bases was to provide an
understandable means of proceeding after a change of base or scale when numbers had already
been entered. An earlier implementation which had global notions of scale and base did not
work out well. If the value of scale were to be interpreted in the current input or output base,
then a change of base or scale in the midst of a computation would cause great confusion in the
interpretation of the results, The current scheme has the advantage that the value of the input
and output bases are only used for input and output, respectively, and they are ignored in all
other operations. The value of scale is not used for any essential purpose by any part of the
program and it is used only to prevent the number of decimal places resulting from the arith-
metic operations from growing beyond all bounds.

The design rationale for the choices for the scales of the results of arithmetic were that in no
case should any significant digits be thrown away if, on appearances, the user actually wanted
them. Thus, if the user wants to add the numbers 1.5 and 3.517, it seemed reasonable to give
him the result 5.017 without requiring him to unmnecessarily specify his rather obvious require-
ments for precision.

On the other hand, multiplication and exponentiation produce results with many more digits
than their operands and it seemed reasonable to give as a minimum the number of decimal
places in the operands but not to give more than that number of digits unless the user asked for
them by specifying a value for scale. Square root can be handled in just the same way as mul-
tiplication. The operation of division gives arbitrarily many decimal places and there is simply
no way to guess how many places the user wants. In this case only, the user must specify a
scale to get any decimal places at all.

The scale of remainder was chosen to make it possible to recreate the dividend from the quo-
tient and remainder. This is easy to implement; no digits are thrown away.

5. References

L. L. Cherry, R. Morris, BC - An Arbitrary Precision Desk-Calculator Language.
K. C. Knowlton, A Fast Storage Allocator, Comm. ACM 8, pp. 623-825 (Oct. 1965).

Revision D of 7 January 1984 9

Table of Contents

BC — ARBITRARY PRECISION DESK-CALCULATOR

1.
2.

3.

O 7.

9.

310. References

11. Notation ..
BI.0, TOKEIS oo ceeeesseesseeeresenssess s senssenn e sas s et s st bR s bR R
D1.2. COMIMEIES ..ot e mssemessemsist s s s s s s n0
11.3. Identifiers
11.4, KeyWords _.......rsrreeemmsescsssinssomonsssssisses
11.5. Constants

12. Expressions
12.1. Primitive expressions
12.2. Function Calls ...
12.3. CODILANES ... mreesest s e sssss st st sm e aemensasrass st
12.4. Parentheses ...
12.5. Unary operators ...,
12.6. Binary Operators ...

Simple Computations with Integers ...

Scaling

Functions

Subscripted Variables

Control Statements

Some Details ..o eesierens

Three Important Thingscommcriroenione

Acknowledgement

- 12.7. Additive operators

12.8.
12.9.

assignment operators

......

.........

Relations .

13. Storageclasses

14. Statementso,

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.

Expression statements ...

Compound statements ...

Quoted string statements

I statementsncenieiresessesmreen

.....

..................

..............

[

.........

....................................

Auto statements
Define statements ...

..............

—ii-

14
14
14
14
15
15
15
15
15
15
16
18

PR A P N

el

BC — ARBITRARY PRECISION DESK-
CALCULATOR

BC is a language and a compiler for doing arbitrary precision arithmetic on the PDP-11 under
the UNIX} time-sharing system. The output of the compiler is interpreted and executed by a
collection of routines which can input, output, and do arithmetic on indefinitely large integers
and on scaled fixed-point numbers.

These routines are themselves based on a dynamic storage allocator. Overflow does not occur
until all available core storage is exhausted.

The language has a complete control structure as well as immediate-mode operation. Functions
can be defined and saved for later execution.

Two five hundred-digit numbers can be multiplied to give a thousand digit result in about ten
seconds.

A small collection of library functions is also available, including sin, cos, arctan, log, exponen-
tial, and Bessel functions of integer order.

Some of the uses of this compiler are

-~ to do computation with large integers,

- to do computation accurate to many decimal places,
- conversion of numbers from one base to another base.

BC is a language and a compiler for doing arbitrary precision arithmetic on the UNIX time-
sharing system [1]. The compiler was written to make conveniently available a collection of rou-
tines (called DC [5]) which are capable of doing arithmetic on integers of arbitrary size. The
compiler is by no means intended to provide a complete programming language. It is a minimal
language facility.

There is a scaling provision that permits the use of decimal point notation. Provision is made
for input and output in bases other than decimal. Numbers can be converted from decimal to
octal by simply setting the output base to equal 8.

The actual limit on the number of digits that can be handled depends on the amount of sterage
available on the machine. Manipulation of numbers with many hundreds of digits is possible
even on the smallest versions of UNIX.

The syntax of BC has been deliberately selected to agree substantially with the C language {2].
Those who are familiar with C will find few surprises in this language.

t UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 1

BC Desk Calculator Programming Tools

1. Simple Computations with Integers
The simplest kind of statement is an arithmetic expression on a line by itself. For instance, if Q
you type in the line:
142857 + 285714
the program responds immediately with the line
428571

The operators —, +, /, %, and " can also be used; they indicate subtraction, multiplication, divi-
sion, remaindering, and exponentiation, respectively. Division of integers produces an integer
result truncated toward zero. Division by zero produces an error comment.

Any term in an expression may be prefixed by a minus sign to indicate that it is to be negated
(the ‘unary’ minus sign). The expression

7+-3
is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted just as in
Fortran, with * having the greatest binding power, then * and % and /, and finally + and -.
Contents of parentheses are evaluated before material outside the parentheses. Exponentiations
are performed from right to left and the other operators from left to right. The two expressions

a’b’c and a"(b’c)
are equivalent, as are the two expressions
a*b*c and (a*b)c
BC shares with Fortran and C the undesirable convention that | Q
a/b*c is equivalent to (a/b)*c
Internal storage registers to hold numbers have single lower-case letter names. The value of an
expression can be assigned to a register in the usual way. The statement
x=x+ 3

has the effect of increasing by three the value of the contents of the register named x. When, as
in this case, the outermost operator is an =, the assignment is performed but the result is not
printed. Only 26 of these named storage registers are available.

There is a built-in square root function whose result is truncated to an integer {but see scaling
below). The lines

x == sqrt(191) x
produce the printed result
13

2. Bases

There are special internal quantities, called ‘ibase’ and ‘obase’. The contents of ‘ibase’, initially
set to 10, determines the base used for interpreting numbers read in. For example, the lines:

2 Revision D of 7 January 1984

Programming Tools BC Desk Calculator

ibase = 8
11

will produce the output line
9

and you are all set up to do octal to decimal conversions. Beware, however of trying to change
the input base back to decimal by typing

ibase = 10

Because the number 10 is interpreted as octal, this statement will have no effect. For those who
deal in hexadecimal notation, the characters A-F are permitted in numbers (no matter what
base is in effect) and are interpreted as digits having values 10-15 respectively. The statement:

ibase = A

will change you back to decimal input base no matter what the current input base is. Negative
and large positive input bases are permitted but useless. No mechanism has been provided for
the input of arbitrary numbers in bases less than 1 and greater than 16.

The contents of ‘obase’, initially set to 10, are used as the base for output numbers. The lines
obase = 16 1000

will produce the output line
3E8

which is to be interpreted as a 3-digit hexadecimal number. Very large output bases are permit-
ted, and they are sometimes useful. For example, large numbers can be cutput in groups of five
digits by setting ‘obase’ to 100000. Strange (that is, 1, 0, or negative) output bases are handled
appropriately.

Very large numbers are split across lines with 70 characters per line. Lines which are continued
end with \. Decimal output conversion is practically instantaneous, but output of very large
numbers (that is,, more than 100 digits) with other bases is rather slow. Nop-decimal output
conversion of a one hundred digit number takes about three seconds.

It is best to remember that ‘ibase’ and ‘obase’ have no effect whatever on the course of internal
computation or on the evaluation of expressions, but only affect input and output conversion,
respectively.

3. Scaling

A third special internal quantity called ‘scale’ is used to determine the scale of calculated quan-
tities, Numbers may have up to 99 decimal digits after the decimal point. This fractional part
is retained in further computations. We refer to the number of digits after the decimal point of
a number as its scale.

When two scaled numbers are combined by means of one of the arithmetic operations, the result
has a scale determined by the following rules. For addition and subtraction, the scale of the
result is the larger of the scales of the two operands. In this case, there is never any truncation
of the result. For multiplications, the scale of the result is never less than the maximum of the
two scales of the operands, never more than the sum of the scales of the operands and, subject
to those two restrictions, the scale of the result is set equal to the contents of the internal quan-
tity ‘scale’. The scale of a quotient is the contents of the internal quantity ‘scale’. The scale of

Revision D of 7 January 1984 3

BC Desk Calculator Programming Tools

a remainder is the sum of the scales of the quotient and the divisor. The result of an exponen-
tiation is scaled as if the implied multiplications were performed. An exponent must be an
integer. The scale of a square root is set to the maximum of the scale of the argument and the
contents of ‘scale’.

All of the internal operations are actually carried out in terms of integers, with digits being dis-
carded when necessary. In every case where digits are discarded, truncation and not rounding is
performed.

The contents of ‘scale’ must be no greater than 99 and no less than 0. It is initially set to 0. In
case you need more than 99 fraction digits, you may arrange your own scaling.

The internal quantities ‘scale’, ‘ibase’, and ‘obase’ can be used in expressions just like other
variables. The line:

scale = scale + 1
increases the value of ‘scale’ by oune, and the line
scale

causes the current value of ‘scale’ to be printed.

The value of ‘scale’ retains its meaning as a number of decimal digits to be retained in internal
computation even when ‘ibase’ or ‘obase’ are not equal to 10. The internal computations (which
are still conducted in decimal, regardless of the bases) are performed to the specified number of
decimal digits, never hexadecimal or octal or any other kind of digits.

4. Functions

The name of a function is a single lower-case letter. Function names are permitted to collide
with simple variable names. Twenty-six different defined functions are permitted in addition to
the twenty-six variable names. The line:

define a(x){

begins the definition of a function with one argument. This line must be followed by one or
more statements, which make up the body of the function, ending with a right brace }. Return
of control from a function occurs when a return statement is executed or when the end of the
function is reached. The return statement can take either of the two forms '

return
return(x)

In the first case, the value of the function is 0, and in the second, the value of the expression in
parentheses,

Variables used in the function can be declared as automatic by a statement of the form
auto x,y,z

There can be only one ‘auto’ statement in a function and it must be the first statement in the
definition. These automatic variables are allocated space and initialized to zero on entry to the
function and thrown away on return. The values of any variables with the same names outside
the function are not disturbed. Functions may be called recursively and the automatic variables
at each level of call are protected. The parameters named in a function definition are treated in
the same way as the automatic variables of that function with the single exception that they
are given a value on entry to the function. An example of a function definition is

4 | Revision D of 7 January 1984

Programming Tools BC Desk Calculator

define a(x,y}{
auto z

I == xiy
return(z) }
The value of this function, when called, will be the product of its two arguments.

A function is called by the appearance of its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number of
arguments is used.

Functions with no arguments are defined and called using parentheses with nothing between
them: b{).
If the function a above has been defined, then the line

a(7,3.14)
would cause the result 21.98 to be printed and the line

x = a(a(3,4),5)

would cause the value of x to become 80.

5. Subscripted Variables

A single lower-case letter variable name followed by an expression in brackets is called a sub-
scripted variable (an array element). The variable name is called the array name and the
expression in brackets is called the subscript. Only one-dimensional arrays are permitted. The
names of arrays are permitted to collide with the names of simple variables and function names.
Any fractional part of a subscript is discarded before use. Subscripts must be greater than or
equal to zero and less than or equal to 2047,

Subscripted variables may be freely used in expressions, in function calls, and in return state-
ments.

An array name may be used as an argument to a function, or may be declared as automatic in a
function definition by the use of empty brackets:

f(a{])
define f(a]])

auto a]

When an array name is so used, the whole contents of the array are copied for the use of the
function, and thrown away on exit from the function. Array names which refer to whole arrays
cannot be used in any other contexts.

6. Control Statements

The ‘if", the ‘while’, and the ‘for’ statements may be used to alter the flow within programs or
to cause iteration. The range of each of them is a statement or a compound statement consist-
ing of a collection of statements enclosed in braces. They are written in the following way

Revision D of 7 January 1984 ' 5

BC Desk Calculator Programming Tools

if(relation) statement

while(relation) statement O

for{expressionl; relation; expression2) statement
or

if(relation) {statements}
while(relation) {statements}
for{expression]; relation; expression2) {statements}

A relation in one of the control statements is an expression of the form:

X>y

where two expressions are related by one of the six relational operators <, >, <=, >=,
== or !=. The relation == stands for ‘equal to’ and != stands for ‘not equal to’. The
meaning of the remaining relational operators is clear.

BEWARE of using == instead of == in a relational. Unfortunately, both of them are legal, so
you will not get a diagnostic message, but == really will not do a comparison.

The ‘if’ statement causes execution of its range if and only if the relation is true. Then control
passes to the next statement in sequence.

The ‘while’ statement causes execution of its range repeatedly as long as the relation is true.
The relation is tested before each execution of its range and if the relation is false, control
passes to the next statement beyond the range of the while.

The ‘for’ statement begins by executing ‘expressionl’. Then the relation is tested and, if true,
the statements in the range of the ‘for’ are executed. Then ‘expression2’ is executed. The rela~

tion is tested, and so on. The typical use of the ‘for’ statement is for a controlled iteration, as O
in the statement:

for{i=1; i<=10; i=i+ 1) i
which will print the integers from 1 to 10. Here are some examples of the use of the control
statements. ,

define f(n}{

auto i, x

x=1

for(i=1; i<=n; i=i+ 1) x=x#

return(x)

}
The line:

f(a)
will print a factorial if a4 is a positive integer. Here is the definition of a function which will
compute values of the binomial coefficient (m and n are assumed to be positive integers).

define b{n,m){

auto X, j

x=l1

for(j=1; j<=m; j=j+ 1) x=x*(n-j+ 1)/j
return(x)

}
The following function computes values of the exponential function by summing the appropriate O

8 Revision D of 7 January 1984

-

Programming Tools BC Desk Calculator

series without regard for possible truncation errors:

scale = 20
define e(x){
auto a, b,c,d, n
a=1
b=1
c=1
d=0
n=1
while(1==1){
a = a*x
b= b#*n
c=c+ a/b
n=n+1
if{c==d) return(c)
d=¢ '

7. Some Details

There are some language features that every user should know about even if he will not use
them,

Normally statements are typed one to a line. It is also permissible to type several statements on
a line separated by semicolons.

If an assignment statement is parenthesized, it then has a value and it can be used anywhere
that an expression can. For example, the line

(x=y+ 17)
not only makes the indicated assignment, but also prints the resulting value.

Here is an example of a use of the value of an assignment statement even when it is not
parenthesized.

x = afi=i+ 1]
causes a value to be assigned to x and also increments i before it is used as a subscript.

The following constructs work in BC in exactly the same manner as they do in the C language.
Consult the appendix or the C manuals [2] for their exact workings.

Revision D of 7 January 1984 7

BC Desk Calculator

x=y=1 is the same as

x=+Y5
X =-Y¥
x=iy
x=/y
x=%y
x="y
x++
x__
++X
—X

Programming Tools

x=(y=z)

X =Xx+Yy

X = X-¥y

X == Xy

x = x[y

x = x%y
Xx=x"y
(x=x+1)-1
(x=x-1)+1
x = x+1

x =x-1

Even if you don't intend to use the constructs, if you type one inadvertently, something correct

but unexpected may happen.

WARNING! In some of these constructions, spaces are significant. There is a real difference
between x==—y and x== —y. The first replaces x by x-y and the second by -y.

8. Three Important Things

1. To exit a BC program, type ‘quit’.
2. There is 3 comment convention identical to that of C and of PL/I. Comments begin with

‘/+' and end with ‘*/’.

3. There is a library of math functions which may be obtained by typing at command level:

be -1

This command will load a set of library functions which, at the time of writing, consists of
sine (named ‘s’), cosine {‘c'), arctangent (‘a’), natural logarithm (‘'), exponential (‘¢’) and
Bessel functions of integer order (‘j(n,x)’). Doubtless more functions will be added in time.
The library sets the scale to 20. You can reset it to something else if you like. The design
of these mathematical library routines is discussed elsewhere [3].

If you type
be file ...

BC will read and execute the named file or files before accepting commands from the keyboard.
In this way, you may load your favorite programs and function definitions.

9. Acknowledgement

The compiler is written in YACC [4]; its original version was written by S. C. Johnson.

10. References

1] K. Thompson and D. M. Ritchie, UNIX Programmer’s Manual, Bell Laboratories, 1978.
[2] B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, 1978.
[3] R. Morris, A Library of Reference Standard Mathematical Subroutines, Bell Laboratories

internal memorandum, 1975.

Revision D of 7 January 1984

-

O

-

BC Desk Calculator

Programming Tools
o [4] S. C. Johnson, YACC — Yet Another Compiler-Compiler. Bell Laboratories Computing Sci-
ence Technical Report #32, 1978.

[5] R.Morris and L. L. Cherry, DC - An Interactive Desk Calculator.

Revision D of 7 January 1984

BC Desk Calculator Programming Tools

11. Notation

In the following pages syntactic categories are in stalics; literals are in bold; material in bracketsc
[} is optional.

11.1. Tokens

Tokens consist of keywords, identifiers, constants, operators, and separators. Token separators
may be blanks, tabs or comments. Newline characters or semicolons separate statements.

11.2. Comments

Comments are introduced by the characters /+ and terminated by /.

11.3. Identifiers

There are three kinds of identifiers - ordinary identifiers, array identifiers and function
identifiers. All three types consist of single lower-case letters. Array identifiers are followed by
square brackets, possibly enclosing an expression describing a subscript. Arrays are singly
dimensioned and may contain up to 2048 elements. Indexing begins at zero so an array may be
indexed from 0 to 2047. Subscripts are truncated to integers. Function identifiers are followed
by parentheses, possibly enclosing arguments. The three types of identifiers do not conflict; a
program can have a variable named x, an array named x and a function named x, all of which
are separate and distinct. @

11.4. Keywords

The following are reserved keywords:
ibase if
obase break
scale define
sqrt auto
length return
while quit
for

11.5. Constants

Constants consist of arbitrarily long numbers with an optional decimal point. The hexadecimal
digits A-F are also recognized as digits with values 10-15, respectively.

12. Expressions
The value of an expression is printed unless the main operator is an assignment. Precedence is

the same as the order of presentation here, with highest appearing first. Left or right associa-
tivity, where applicable, is discussed with each operator.

10 Revision D of 7 January 1984

Programming Tools BC Desk Calculator

12.1. Primitive expressions

Named capressions are places where values are stored. Simply stated, named expressions are
legal on the left side of an assignment. The value of a named expression is the value stored in
the place named.

Stmple identifiers are named expressions. They have an initial value of zero.
Array elements are named expressions. They have an initial value of zero.

The internal registers scale, ibase and obase are all named expressions. seale is the number
of digits after the decimal point to be retained in arithmetic operations. scale has an initial
value of zero. ibase and obase are the input and output number radix respectively. Both
ibase and obase have initial values of 10.

12.2. Function Calls

function-name ([ezpression|, ezpression. . .]])

A function call consists of a function name followed by parentheses containing a comma-
separated list of expressions, which are the function arguments. A whole array passed as an
argument is specified by the array name followed by empty square brackets. All function argu-
ments are passed by value. As a result, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return statement, the value
of the function is the value of the expression in the parentheses of the return statement or is
zero if no expression is provided or if there is no return statement.

sqrt

sqrt{ ezpression)
The result is the square root of the expression. The result is truncated in the least significant
decimal place. The scale of the result is the scale of the expression or the value of scale, which-
ever is larger.

length

length{ ezpression)

The result is the total number of significant decimal digits in the expression. The scale of the
result is zero.

scale

scale(ezpression)

The result is the scale of the expression. The scale of the result is zero.

Revision D of 7 January 1984 11

BC Desk Calculator Programming Tools

12.3. Constants

Constants are primitive expressions, @

12.4. Parentheses

An expression surrounded by parentheses is a primitive expression. The parentheses are used to
alter the normal precedence.

12.5. Unary operators

The vnary operators bind right to left.

— ezpression

The result is the negative of the expression.

+ + named-ezpression

The named expression is incremented by one. The result is the value of the named expression
after incrementing.

— named-czpression

The named expression is decremented by one. The result is the value of the named expression
after decrementing.

named-ezpression + -+ O

The named expression is incremented by one. The result is the value of the named expression
before incrementing.

named-czpression —

The named expression is decremented by one. The result is the value of the named expression
before decrementing.

12.6. Binary Operators

Exponentiation operator
The exponentiation operator binds right to left.

expression " ezpression

The result is the first expression raised to the power of the second expression. The second
expression must be an integer. If ais the scale of the left expression and b is the absolute value
of the right expression, then the scale of the result is:

min(aX b,max (scale, a))

Multiplicative operators

-

12 Revision D of 7 January 1984

Programming Tools BC Desk Calculator

The operators *, /, % bind left to right.

ezpression * ezpression

The result is the product of the two expressions. If s and b are the scales of the two expres-
sions, the scale of the result is:

min(a+ b, max (scale, g, b))
ezpression | expression
The result is the quotient of the two expressions. The scale of the result is the value of scale.

ezpression % ezpression

The % operator produces the remainder of the division of the two expressions. More precisely,
a%b is 6-afb+b.

The scale of the result is the sum of the scale of the divisor and the value of scale

12.7. Additive operators

The additive operators bind left to right.

ezpression + ezpression

The result is the sum of the two expressions. The scale of the result is the maximun of the
scales of the expressions.

ezpression — €zpresaton

The result is the difference of the two expressions. The scale of the result is the maximum of
the scales of the expressions.

12.8. assignment operators

The assignment operators bind right to left.

named-czpression = expression

This expression results in assigning the value of the expression on the right to the named
ex pression on the left. :

named-ezpression =+ expression
named-ezpression =— ezpression
named-ezpression =* expression
named-ezpression =/ ezpression
named-czpression =% czpression
named-ezpression =" ezpression

The result of the above expressions is equivalent to ‘“‘named expression == named expression OP
expression’’, where OP is the operator after the == sign.

Revision D of 7 January 1984 13

BC Desk Calculator Programming Tools

12.9. Relations

Unlike all other operators, the relational operators are only valid as the object of an if, while, {)
or inside a for statement,

expreasion < ezrpression
expression > ezpression
expresston <== ezpression
ezpression > = ezpression
ezpression == ezpression
ezpression = ezpression

13. Storage classes

There are only two storage classes in BC, global and automatic (local). Only identifiers that are
to be local to a function need be declared with the auto command. The arguments to a func-
tion are local to the function. All other identifiers are assumed to be global and available to all
functions. All identifiers, global and local, have initial values of zero. Identifiers declared as
auto are allocated on entry to the function and released on returning from the function. They
therefore do not retain values between function calls. auto arrays are specified by the array
name followed by empty square brackets.

Automatic variables in BC do not work in exactly the same way as in either C or PL/I. On
entry to a function, the old values of the names that appear as parameters and as automatic
variables are pushed onto a stack. Until return is made from the function, reference to these
pnames refers only to the new values. ©

14. Statements

Statements must be separated by semicolon or newline. Except where altered by control state-
ments, execution is sequential.

14.1. Expression statements

When a statement is an expression, unless the main operator is an assignment, the value of the
expression Is printed, followed by a newline character.

14.2. Compound statements

Statements may be grouped together and used when one statement is expected by surrounding
them with { }.

14.3. Quoted s*ring statements

"any string”

This statement prints the string inside the quotes.

-

14 Revision D of 7 Jannary 1984

Programming Tools BC Desk Calculator

14.4. If statements

if (relation) statement
The substatement is executed if the relation is true,

14.5. While statements

while(relation) statement

The statement is executed while the relation is true. The test occurs before each execution of
the statement,

14.6. For statements

for (ezpression; relation; expression) statement

The for statement is the same as
firat-expression
while (relation) {
statement
last-ezpression

)

All three expressions must be present.

14.7. Break statements

break
break causes termination of a for or while atatement,

14.8. Auto statements

auto identifier [,sdentifier]
The auto statement causes the values of the identifiers to be pushed down. The identifiers can
be ordinary identifiers or array identifiers. Array identifiers are specified by following the array
name by empty square brackets. The auto statement must be the first statement in a function
definition.

14.9. Define statements

define([parameter [, parameter...]]) {
statements }

The define statement defines a function. The parameters may be ordinary identifiers or array
names. Array names must be followed by empty square brackets.

Revision D of 7 January 1984 15

BC Desk Calculator Programming Tools

14.10. Return statements ;

return © :

return(ezpression)

The return statement causes termination of a function, popping of its auto variables, and
specifies the result of the function. The first form is equivalent to return(0). The result of the

function is the result of the expression in parentheses.

14.11. Quit

The quit statement stops execution of a BC program and returns control to UNIX when it is
first encountered. Because it is not treated as an executable statement, it cannot be used in a
function definition or in an if, for, or while statement.

Q

16 Revision D of 7 January 1984

M4 — A MACRO PROCESSOR

1.

3.

4.

5.

7.

10, PrIDING oo ssss st sersssssssessasres
11. Summary of Built-ins ... smnnnereee
12. Acknowledgements

13. References

Table of Contents

USBEE ..ooooeor s ssssssssses s sssss s s

Defining Macros

Quoting .,

Argumentscconnnne

Arithmetic Built-ins ...

File Manipulation

System Command

Conditionals

String Manipulation ..

M4 — A MACRO PROCESSOR

M4 is a macro processor available on UNIX} Its primary use has been as a front end for Ratfor
for those cases where parameterless macros are not adequately powerful. It has also been used
for languages as disparate as C and Cobol. M4 is particularly suited for functional languages
like Fortran, PL/I and C since macros are specified in a functional notation. '

M4 provides features seldom found even in much larger macro processors, including
e arguments
e condition testing
e arithmetic capabilities
e string and substring functions
o file manipulation

This paper is a user’s manual for M4.

A macro processor is a useful way to enhance a programming language, to make it more palat-
able or more readable, or to tailor it to a particular application. The #define statement in C
and the analogous define in Ratfor are examples of the basic facility provided by any macro
processor — replacement of text by other text.

The M4 macro processor is an extension of a macro processor called M3 which was written by
D. M. Ritchie for the AP-3 minicomputer; M3 was in turn based on a macro processor imple-
mented for [1). Readers unfamiliar with the basic ideas of macro processing may wish to read
some of the discussion there. .

M4 is a suitable front end for Ratfor and C, and has also been used successfully with Cobol.
Besides the straightforward replacement of one string of text by another, it provides macros
with arguments, conditional macro expansion, arithmetic, file manipulation, and some special-
ized string processing functions.

The basic operation of M4 is to copy its input to its output. As the input is read, however,
each alphanumeric “token” (that is, string of letters and digits) is checked. If it is the name of
a macro, then the name of the macro is replaced by its defining text, and the resulting string is
pushed back onto the input to be rescanned. Macros may be called with arguments, in which
case the arguments are collected and substituted into the right places in the defining text before
it is rescanned. '

M4 provides a collection of about twenty built-in macros which perform various useful opera-
tions; in addition, the user can define new macros. Built-ins and user-defined macros work
exactly the same way, except that some of the built-in macros have side effects on the state of
the process.

t UNIX is a trademark of Bell Laboratories.

Revision D of 7 January 1984 ‘ 1

M4 Macro Processor Programming Tools

1. Usage

o~
On UNIX, use -’
m4 [files] '

Each argument file is processed in order; if there are no arguments, or if an argument is ‘', the
standard input is read at that point. The processed text is written on the standard output,
which may be captured for subsequent processing with

m4 [files] >outputfile

2. Defining Macros

The primary built-in function of M4 is define, which is used to define new macros. The input
define(name, stuff)

causes the string name to be defined as stuff. All subsequent occurrences of name will be
replaced by stuff. name must be alphanumeric and must begin with a letter (the underscore _
counts as a letter). stuff is apy text that contains balanced parentheses; it may stretch over
multiple lines.

Thus, as a typical example,
define(N, 100)

if (i > N)
defines N to be 100, and uses this “symbolic constant” in a later if statement. @

The left parenthesis must immediately follow the word define, to signal that define has argu-
ments. If a macro or built-in name is not followed immediately by ‘(’, it is assumed to have no
arguments. This is the situation for N above; it is actually a macro with no arguments, and
thus when it is used there need be no {...) following it.

You should also notice that a macro name is only recognized as such if it appears surrounded by
non-alphanumerics. For example, in

define(N, 100)

if (NNN > 100)
the variable NNN is absolutely unrelated to the defined macro N, even though it contains a lot
of N's.
Things may be defined in terms of other things. For example,

define(N, 100}
define{M, N)
defines both M and N to be 100.

What happens if N is redefined? Or, to say it another way, is M defined as N or as 100? In M4,
the latter is true — M is 100, so even if N subsequently changes, M does not.

This bebavior arises because M4 expands macro names into their defining text as soon as it pos-
sibly can. Here, that means that when the string N is seen as the arguments of define are
being collected, it is immediately replaced by 100; it’s just as if you had said : @

9 Revision D of 7 January 1984

Programming Tools M4 Macro Processor

define(M, 100}

in the first place.

If this isn't what you really want, there are two ways out of it. The first, which is specific to
this situation, is to interchange the order of the definitions:

define(M, N)
define(N, 100)

Now M 1s defined to be the string N, so when you ask for M later, you'll always get the value
of N at that time (because the M will be replaced by N which will be replaced by 100).

3. Quoting

The more general solution is to delay the expansion of the arguments of define by guoting
them. Any text surrounded by the single quotes * and ’is not expanded immediately, but has
the quotes stripped off. If you say

define(N, 100)
define(M, ‘N’)

the quotes around the N are stripped off as the argument is being collected, but they have
served their purpose, and M is defined as the string N, not 100. The general rule is that M4
always strips off one level of single quotes whenever it evaluates something. This is true even
outside of macros. If you want the word define to appear in the output, you bave to quote it
in the input, as in

‘define’ = 1;
As another instance of the same thing, which is a bit more surprising, consider redefining N:
define(N, 100)

define(N, 200)

Perbaps regrettably, the N in the second definition is evaluated as soon as it’s seen; that is, it is
replaced by 100, so it's as if you had written '

define(100, 200)

This statement is ignored by M4, since you can only define things that look like names, but it
obviously doesn'’t have the effect you wanted. To really redefine N, you must delay the evalua-
tion by quoting:

define(N, 100)

define(*N’, 200)
In M4, it is often wise to quote the first argument of a macro.

If * and ’ are not convenient for some reason, the quote characters can be changed with the
built-in changequote:

changequote(],])

makes the new quote characters the left and right brackets. You can restore the original char-
acters with just

Revision D of 7 January 1984 3

M4 Macro Processor Programming Tools

changequote
There are two additional built-ins related to define. undefine removes the definition of some @
macro or built-in:

undefine(‘N’)

removes the definition of N. (Why are the quotes absolutely necessary!) Built-ins can be
removed with undefine, as in

undefine(‘define’)

but once you remove one, you can never get it back.

The built-in ifdef provides a way to determine if a macro is currently defined. In particular,
M4 has pre-defined the names unix and gcos on the corresponding systems, so you can tell
which one you're using:

ifdef{‘unix’, ‘define{ wordsize,16)’)
ifdef{‘gcos’, ‘define(wordsize,38)")

makes a definition appropriate for the particular machine. Don’t forget the quotes!

ifdef actually permits three arguments; if the name is undefined, the value of ifdef is then the
third argument, as in

ifdef(‘unix’, on UNIX, not on UNIX)

4, Arguments O

So far we have discussed the simplest form of macro processing — replacing one string by
another (fixed) string. User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the second argument of its
define) any occurrence of $n will be replaced by the nth argument when the macro is actually
used. Thus, the macro bump, defined as

defire(bump, $1 = §1 + 1)

generates code to increment its argament by 1:
bump(x)

is
x=x-4+1

A macro can have as many arguments as you want, but only the first nine are accessible,
through $1 to $9. (The macro name itself is $0, although that is less commonly used.) Argu-
ments that are not supplied are replaced by null strings, so we can define a macro eat which
simply concatenates its arguments, like this:

define(cat, $1$283$4$536373889)
Thus
cat(x, y, z)

is equivalent to Z_

4 Revision D of 7 January 1984

Programming Tools M4 Macro Processor

Xyz
$4 through $9 are null, since no corresponding arguments were provided.

Leading unquoted blanks, tabs, or newlines that occur during argument collection are discarded.
All other white space is retained. Thus

define(a, b ¢)

defines atobe b e.
Arguments are separated by commas, but parentheses are counted properly, so a comma “pro-
tected” by parentheses does not terminate an argument. That is, in

define(a, (b,c))

there are only two arguments; the second is literally (b,c). And of course a bare comma or
parenthesis can be inserted by quoting it.

5. Arithmetic Built-ins

M4 provides two built-in functions for doing arithmetic on integers (only). The simplest is incr,
which increments its numeric argument by 1. Thus to handle the common programming situa-
tion where you want a variable to be defined as ‘‘one more than N, write

define(N, 100)

define(N1, ‘incr{N))
Then N1 is defined as one more than the current value of N.
The more general mechanism for arithmetic is a built-in called eval, which is capable of arbi-
trary arithmetic on integers. It provides the operators (in decreasing order of precedence)

unary + aed —
**or ° (exponentiation)
* | % (modulus)

+

! (not)

& or &£& (logical and)
| or || (logical or)

Parentheses may be used to group operations where needed. All the operands of an expression
given to eval must ultimately be numeric. The numeric value of a true relation (like 1>0) is 1,
and false is 0. The precision in eval is 32 bits on UNIX and 36 bits on GCOS.

As a simple example, suppose we want M to be 2**N+1. Then
define(N, 3)
define(M, ‘eval(2**N+ 1))

As a matter of principle, it is advisable to quote the defining text for a macro unless it is very
simple indeed (say just a number); it usually gives the result you waat, and is a good habit to

get into.

Revision D of 7 January 1984 5

M4 Macro Processor Programming Tools

6. File Manipulation

You can include a new file in the input at any time by the built-in function include:
include(filename)

inserts the contents of filename in place of the include command. The contents of the file is
often a set of definitions. The value of include (that is, its replacement text) is the contents of
the file; this can be captured in definitions, ete.

It is a fatal error if the file named in include cannot be accessed. To get some control over this

situation, the alternate form sinclude can be used; sinclude (“silent include’) says nothing and

continues if it can't access the file,

It is also possible to divert the output of M4 to temporary files during processing, and output
the collected material upon command. M4 maintains nine of these diversions, numbered 1
through 9. If you say

divert(n)

all subsequent output is put onto the end of a temporary file referred to as n. Diverting to this
file is stopped by another divert command; in particular, divert or divert(0) resumes the nor
mal output process.

Diverted text is normally output all at once at the end of processing, with the diversions output
in numeric order. It is possible, however, to bring back diversions at any time, that is, to
append them to the current diversion.

undivert

brings back all diversions in numeric order, and undivert with arguments brings back the
selected diversions in the order given. The act of undiverting discards the diverted stuff, as does
diverting into a diversion whose number is not between 0 and 9 inclusive.

The value of undivert is not the diverted stuff. Furthermore, the diverted material is not res-
canned for macros.

The built-in divnum returns the number of the currently active diversion. This is zero during
normal processing.

7. System Command

You can run any program in the local operating system with the sysemd built-in. For exam-
ple,

syscmd{date)
on UNIX runs the date command. Normally sysemd would be used to create a file for a subse-
quent include.

To facilitate making unique file names, the built-in maketemp is provided, with specifications
identical to the system function mktemp: a string of XXXXX in the argument is replaced by the
process id of the current process.

6 Revision D of 7 January 1984

-

C

Programming Tools M4 Macro Processor

8. Conditionals
There is a built-in called ifelse which enables you to perform arbitrary conditional testing. In
the simplest form,

ifelse(a, b, ¢, d)

compares the two strings & and b. If these are identical, ifelse returns the string c; otherwise it
returns d. Thus we might define a macro called compare which compares two strings and
returns “yes' or “‘no” if they are the same or different.

define(compare, ‘ifelse($1, $2, yes, no)’)
Note the quotes, which prevent toé-early evaluation of ifelse.

If the fourth argument is missing, it is treated as empty.

ifelse can actually have any number of arguments, and thus provides a limited form of multi-
way decision capability, In the input

ifelse(a, b, ¢, d, ¢, {, g)

if the string a matches the string b, the result is ¢. Otherwise, if d is the same as e, the result
is f. Otherwise the result is g. If the final argument is omitted, the result is aull, so

ifelse(a, b, c)

is ¢ if a matches b, and null otherwise.

9. String Manipulation

The built-in len returns the length of the string that makes up its argument. Thus
len(abcdef)
is 6, and len{{a,b)) is 5.
The built-in substr can be used to produce substrings of strings. substr(s, i, n) returns the

substring of s that starts at the ith position {origin zero), and is n characters long. If n is omit-
ted, the rest of the string is returned, so

substr{‘now is the time', 1)
is
ow is the time

If i or n are out of range, various sensible things happen.

index(sl, s2) returns the index (position) in s1 where the string 82 occurs, or -1 if it doesn’t
occur. As with substr, the origin for strings is 0.

The built-in translit performs character transliteration.
transhit(s, f, t)

modifies s by replacing any character found in f by the corresponding character of t. That is,
translit(s, aciou, 12345)

replaces the vowels by the corresponding digits. If ¢ is shorter than f, characters which don’t
have an entry in t are deleted; as a limiting case, if t is not present at all, characters from f are
deleted from 8. So

Revision D of 7 January 1984 ‘ 7

M4 Macro Processor Programming Tools

translit{s, aeiou)

deletes vowels from s. @

There is also a built-in called dnl which deletes all characters that follow it up to and including
the next newline; it is useful mainly for throwing away empty lines that otherwise tend to
clutter up M4 output. For example, if you say

define(N, 100)
define(M, 200)
define(L, 300)

the newline at the end of each line is not part of the definition, so it is copied into the output,
where it may not be wanted. If you add dnl to each of these lines, the newlines will disappear.

Another way to achieve this, due to J. E. Weythman, is

divert{-1)
define(...)

divert

10. Printing

The built-in errprint writes its arguments out on the standard error file. Thus you can say
errprint(‘fatal error’)

dumpdef is a debugging aid which dumps the current definitions of defined terms. If there are
no arguments, you gei everything; otherwise you get the ones you name as arguments. Don’t
forget to quote the names! '

11. Summary of Built-ins

Each entry is preceded by the page number where it is described.

-

8 ' Revision D of 7 January 1984

-

Programming Tools M4 Macro Processor

changequote(L, R)
define(name, replacement)
divert(number) :
divnum

dnl

dumpdef(‘name’, ‘pame’, ...)
errprint(s, s, ...}
eval(numeric expression)
ifdef(*name’, this if true, this if false)
ifelse(a, b, ¢, d)

include(file)

incr{number)

index(sl, s2)

len(string)
maketemp(...XXXXX...)
sinclude(file)

substr{string, position, number)
syscmd(s)

translit(str, from, to)
undefine(‘name ‘)
undivert(number,number,...)

e SO O e SN b e @ QN GO W OGN GO W OV G N e e e GO

12. Acknowledgements

We are indebted to Rick Becker, John Chambers, Doug Mcllroy, and especially Jim Weythman,
whose pioneering use of M4 has led to several valuable improvements. We are also deeply grate-
ful to Weythman for several substantial contributions to the code.

13. References

[t] B. W. Kernighan and P. J. Plauger, Software Tools, Addison-Wesley, Inc., 1976.

Revision D of 7 January 1934 9

LEX — A LEXICAL ANALYZER GENERATOR

1.
2,
3.
4.
5.
6.

O 7.
8.
9.
10.
11.
12.
13.

14.

Table of Contents

...

LeX SOUTCE. oottt eansssssmresssrestessessrssrne

Lex Regular EXPressions.ooooeoeoooeecoeceessesmessessssssssmressessssesmessosseesseston

L0 A OIS, o ————————eeo et s 2t 2t e e eme o e ee s s e e e

Ambiguous Source Rules. ...

Lex Source DefIMItIONS. ... oo reeer s eeees s eesesseseseees soesenessenssens aeeneere

USage. ..o

Lex and Yace, ...

Examples. eevsvee s sesets

Left Context Sensitivity. ... eeeeeeeseee oo ssseme e et 1ok e st et e

Character Set. ..ot msremetsmsssios

Summary of Source Format.

Caveats and Bugs. ...

AcknowledBments. | ...t s e st

References. ...,

10

11

12

i3

13

10

18

18

20

20

20

LEX — A LEXICAL ANALYZER GENERATOR

Lex helps write programs whose control flow is directed by instances of regular expressions in
the input stream. It is well suited for editor-script type transformations and for segmenting
input in preparation for a parsing routine.

Lex source is a table of regular expressions and corresponding program fragments. The table is
translated to a program which reads an input stream, copying it to an output stream and parti-
tioning the input into strings which match the given expressions. As each such string is recog-
nized the corresponding program fragment is executed. The recognition of the expressions is
performed by a deterministic finite automaton generated by Lex. The program fragments writ-
ten by the user are executed in the order in which the corresponding regular expressions occur
in the input stream.

The lexical analysis programs written with Lex accept ambiguous specifications and choose the
longest match possible at each input point. If necessary, substantial lookahead is performed on
the input, but the input stream will be backed up to the end of the current partition, so that
the user has general freedom to manipulate it.

Lex can generate analyzers in either C or Ratfor, a language which can be translated automati-
cally to portable Fortran. Lex is designed to simplify interfacing with Yace, described in the
next chapter.

Lex is a program generator designed for lexical processing of character input streams. It
accepts a high-level, problem oriented specification for character string matching, and produces
a program in a general purpose language which recognizes regular expressions. The regular
expressions are specified by the user in the source specifications given to Lex. The Lex written
code recognizes these expressions in an input stream and partitions the input stream into strings
matching the expressions. At the boundaries between strings program sections provided by the
user are executed. The Lex source file associates the regular expressions and the program frag-
ments. As each expression appears in the input to the program written by Lex, the correspond-
ing fragment is executed.

The user supplies the additional code beyond expression matching needed to complete his tasks,
possibly including code written by other generators. The program that recognizes the expres-
sions is generated in the general purpose programming language employed for the user’s pro-
gram fragments. Thus, a high level expression language is provided to write the string expres-
sions to be matched while the user’s freedom to write actions is unimpaired. This avoids forcing
the user who wishes to use a string manipulation language for input analysis to write processing
programs in the same and often inappropriate string handling language.

Lex is not a complete language, but rather a generator representing a new language feature
which can be added to different programming languages, called ‘host languages.’ Just as general
purpose languages can produce code to run on different computer hardware, Lex can write code
in different host languages. The host language is used for the output code generated by Lex
and also for the program fragments added by the user. Compatible run-time libraries for the

Revision D of 7 January 1984 1

Lex Lexical Analyzer Generator Programming Tools

different host languages are also provided. This makes Lex adaptable to different environments
and different users. Each application may be directed to the combination of hardware and host
language appropriate to the task, the user’s background, and the properties of local implementa-
tioms.

Lex turns the user’s expressions and actions (called source in this memo) into the host general-
purpose language; the generated program is named yyles. The yyles program will recognize
expressions in a stream (called énput in this memo) and perform the specified actions for each
expression as it is detected. See Figure 1.

Source — — yylex

Input — — Output

Figure 1: An overview of Lex

For a trivial example, consider a program to delete from the input all blanks or tabs at the ends
of lines.

%%
[\e+ 8 5

is all that is required. The program contains a %% delimiter to mark the beginning of the
rules, and one rule. This rule contains a regular expression which matches one or more
instances of the characters blank or tab (written \t for visibility, in accordance with the C
language convention) just prior to the end of a line. The brackets indicate the character class
made of blank and tab; the + indicates ‘one or more specified, so the program generated by
Lex (yylex) will ignore these characters. Everything else will be copied. To change any remain-
ing string of blanks or tabs to a single blank, add another rule:

%%
[\t]+$
[\t]+ printf(” ”);

The finite automaton generated for this source will scan for both rules at once, observing at the
termination of the string of blanks or tabs whether or not there is a newline character, and exe-
cuting the desired rule action. The first rule matches all strings of blanks or tabs at the end of
lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on a
lexical level. Lex can also be used with a parser generator to perform the lexical analysis phase;
it is particularly easy to interface Lex and Yace [3]. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class of context free grammars, but require
a lower level analyzer to recognize input tokens. Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a later parser gemerator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow of
control in such a casc (which might be the first half of a compiler, for example} is shown in Fig-
ure 2. Additional programs, written by other generators or by hand, can be added easily to pro-
grams written by Lex.

9 _ Revision D of 7 January 1984

-

Programming Tools Lex Lexical Analyzer Generator

lexical grammar
rules rules

$ 3
[Lex | rYacc J

Input — r yylexJ - Lyypa.rseJ —+ Parsed input

Figure 2: Lex with Yace

Yace users will realize that the name gylezr is what Yacc expects its lexical analyzer to be
named, so that the use of this name by Lex simplifies interfacing.

Lex generates a deterministic finite automaton from the regular expressions in the source [4].
The automaton is interpreted, rather than compiled, in order to save space. The result is still a
fast analyzer. In particular, the time taken by a Lex program to recognize and partition an
input stream is proportional to the length of the input. The number of Lex rules or the com-
plexity of the rules is not important in determining speed, unless rules which include forward
context require a significant amount of rescanning. What does increase with the number and
complexity of rules is the size of the finite automaton, and therefore the size of the program
generated by Lex.

In the program written by Lex, the user’s fragments (representing the actions to be performed
as each regular expression is found) are gathered as cases of a switch. The automaton inter-
preter directs the control flow. Opportunity is provided for the user to insert either declarations
or additional statements in the routine containing the actions, or to add subroutines outside this
action routine.

Lex is not limited to source which can be interpreted on the basis of one character lookahead.
For example, if there are two rules, one looking for ab and another for abedefg , and the input
stream is abedefh , Lex will recognize ab and leave the input pointer just before "ed...” Such
backup is more costly than the processing of simpler languages.

1. Lex Source.

The general format of Lex source is:

{definitions}
%%
{rules}

%%

{user subroutines}
where the definitions and the user subroutines are often omitted. The second %% is optional,
but the first is required to mark the beginning of the rules. The absolute minimum Lex pro-
gram is thus

%%

(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of Lex programs shown above, the rules represent the user's control decisions;
they are a table, in which the left column contains regular ezpressions (see section 3) and the

Revision D of 7 January 1984 : 3

Lex Lexical Analyzer Generator Programming Tools

right column contains actions, program fragments to be executed when the expressions are
recognized. Thus an individual rule might appear
integer printf("found keyword INT"); O

to look for the string integer in the input stream and print the message ‘found keyword INT’
whenever it appears. In this example the host procedural language is C and the C library func-
tion printfis used to print the string. The end of the expression is indicated by the first blank
or tab character. If the action is merely a single C expression, it can just be given on the right
side of the line; if it is compound, or takes more than a line, it should be enclosed in braces. As
a slightly more useful example, suppose it is desired to change a number of words from British
to American spelling. Lex rules such as

colour printf{”color”);
mechanise printf(” mechanize”);
petrol printf(” gas”);

would be a start. These rules are not quite enough, since the word petroleum would become
gaseum ; a way of dealing with this will be described later.

2. Lex Regular Expressions.

The definitions of regular expressions are very similar to those in QED [5]. A regular expression
specifies a set of strings to be matched. It contains text characters (which match the
corresponding characters in the strings being compared) and operator characters (which specify
repetitions, choices, and other features). The letters of the alphabet and the digits are always
text characters; thus the regular expression

integer @
matches the string énteger wherever it appears and the expression

ab7D
looks for the string a57D.
Operators. The operator characters are

"NNIT-rr+ 1O)8/{ %< >

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"++"7

matches the string zyz+ + when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyz+ +"7

is the same as the one above. Thus by quoting every non-alphanumeric character being used as
a text character, the user can avoid remembering the list above of current operator characters,
and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with \ as in
xyz\+ \+
which is another, less readable, equivalent of the above expressions. Another use of the quoting @

4 Revision D of 7 January 1984

Programming Tools Lex Lexical Analyzer Generator

mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs
end a rule. Any blank character not contained within [] (see below) must be quoted. Several
normal C escapes with \ are recognized: \n is newline, \t is tab, and \b is backspace. To enter
\ itself, use \\. Since newline is illegal in an expression, \n must be used; it is not required to
escape tab and backspace. Every character but blank, tab, newline and the list above is always
a text character. :

Character classes. Classes of characters can be specified using the operator pair []. The con-
struction [abe] matches a single character, which may be &, &, or ¢ . Within square brackets,
most operator meanings are ignored. Only three characters are special: these are \ — and .
The - character indicates ranges. For example,

[a~20-9<>_]

indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using — between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation
dependent and will get a warning message. For example, [0-z] in ASCIl is many more charac-
ters than it is in EBCDIC. If it is desired to include the character — in a character class, it
should be first or last, thus:

[-+0-9]
matches all the digits and the two signs.

In character classes, the * operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character
set. Thus

[*abe]
matches all characters except a, b, or ¢, including all special or control characters; or
[*a-zA-Z]

is any character which is not a letter. The \ character provides the usual escapes within charac-
ter class brackets.

Arbstrary character. To match almost any character, the operator character

is the class of all characters except newline. Escaping into octal is possible although non-
portable;

[\40-—\176] ,
matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176
(tilde).
Optional cxpressions. The operator findicates an optional element of an expression. Thus
able

matches either ac or abe .
Repeated ezpressions. Repetitions of classes are indicated by the operators * and + .

a*

is any number of consecutive @ characters, including zero; while

Revision D of 7 January 1984 5

Lex Lexical Analyzer Generator Programming Tools

a+
is one or more instances of @. For example, ' @
[a-2)+
is all strings of lower case letters. And
[A-Za-z)[A-Za-20-9]*
indicates all alphanumeric strings with a leading alphabetic character. This is a typical expres-
sion for recognizing identifiers in computer languages. _
Alternation and Grouping. The operator | indicates alternation:
(ab]ed)
matches either ab or ed. Note that parentheses are used for grouping, although they are not
necessary on the outside level;
ab|ed
would have sufficed. Parentheses can be used for more complex expressions:
(ab | cd+)M(ef)*
matches such strings as abefef, efefef, edef, or cddd ; but not abe , abed , or abedef .

Contezt sensitivity. Lex will recognize a small amount of surrounding context. The two sim-

plest operators for this are " and § . If the first character of an expression is " , the expression

will only be matched at the beginning of a line (after a newline character, or at the beginning of

the input stream). This can never copflict with the other meaning of * , complementation of
character classes, since that only applies within the [] operators. If the very last character is § ,

the expression will only be matched at the end of a line (when immediately followed by new- @
line). The latter operator is a special case of the [operator character, which indicates trailing
context. The expression

abfed _
matches the string ab , but only if followed by ¢d. Thus
ab$
is the same as

ab/\n

Left context is handled in Lex by start conditions as explained in section 10. If a rule is only
to be executed when the Lex automaton interpreter is in start condition z, the rule should be
prefixed by

<X >

using the angle bracket operator characters. If we considered ‘being at the beginning of a line'
to be start condition ONE , then the * operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Decfinitions. The operators {} specify either repetitions (if they enclose
numbers) or definition expansion (if they enclose a name). For example

-

6 Revision D of 7 January 1984

Programming Tools Lex Lexical Analyzer Generator

{digit}
looks for a predefined string named dsgit and inserts it at that point in the expression. The
definitions are given in the first part of the Lex input, before the rules. In contrast,

a{1,5}
looks for 1 to 5 occurrences of a .
Finally, initial % is special, being the separator for Lex source segments.

3. Lex Actions.

When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without produc-
ing any output, must provide rules to match everything. When Lex is being used with Yacc,
this is the normal situation. One may consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a
character combination which is omitted from the rules and which appears as input is likely to
be printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null state-
ment, ; as an action causes this result. A frequent rule is

[\e\n]
whick causes the three spacing characters (blank, tab, and newline) to be ignored.
Another easy way to avoid writing actions is the action character |, which indicates that the
action for this rule is the action for the next rule. The previous example could also have been
written

nn l

”\tﬂ l

ﬂ\n” ;
with the same result, although in different style. The quotes around \n and \t are not required.

In more complex actions, the user will often want to know the actual text that matched some
expression like fa-z/+ . Lex leaves this text in an external character array named gytezt.
Thus, to print the name found, a rule like

[a~z]+ printf("%6s”, yytext);
will print the string in gytezt. The C function printf accepts a format argument and data to be
printed; in this case, the format is ‘print string’ (% indicating data conversion, and s indicating
string type), and the data are the characters in gytest.
So this just places the matched string on the output. This action is so common that it may be
written as ECHO:

[a-z}+ ECHO;

is the same as the above. Since the default action is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default action? Such rules
are often required to avoid matching some other rule which is not desired. For example, if there
is a rule which matches read it will normally match the instances of read contained in dread or

Revision D of 7 Japuary 1984 ' 7

Lex Lexical Analyzer Generator Programming Tools

readjust ; to avoid this, a rule of the form [a-z/+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also pro-
vides a count yyleng of the number of characters matched. To count both the number of words
and the pumber of characters in words in the input, the user might write

la-zA-Z}+ {words+ +; chars + = yyleng;}

which accumulates in chars the number of characters in the words recognized. The last charac-
ter in the string matched can be accessed by

yytext{yyleng-1]

Occasionally, a Lex action may decide that a rule has not recognized the correct span of charac-
ters. Two routines are provided to aid with this situation. First, yymore() can be called to
indicate that the next input expression recognized is to be tacked on to the end of this input.
Normally, the next input string would overwrite the current entry in yytest. Second, yyless {n)
may be called to indicate that not all the characters matched by the currently successful expres-
sion are wanted right now. The argument n indicates the number of characters in yyfezt to be
retained. Further characters previously matched are returned to the input. This provides the
same sort of lookahead offered by the / operator, but in a different form.

Ezample: Consider a language which defines a string as a set of characters between quotation
(") marks, and provides that to include a ” in a string it must be preceded by a \. The regular
expression which matches that is somewhat confusing, so that it might be preferable to write
T
if (yytextlyyleng-1] == *\\')
yymore();
else
... normal user processing

}

which will, when faced with a string such as ” abc\" def” first match the five characters ” abe\ ;
then the call to yymore() will cause the next part of the string, " def, to be tacked on the end.
Note that the final quote terminating the string should be picked up in the code labeled ‘normal
processing’.

The function yylessf) might be used to reprocess text in various circumstances. Consider the C
problem of distinguishing the ambiguity of ‘==—a’. Suppose it is desired to treat this as ‘=- a’
but print a message. A rule might be

=-[a-zA-Z]
printf(” Operator (=-) ambiguous\n”);

yyless(yyleng-1);
... action for =— ...

}

‘which prints a message, returns the letter after the operator to the input stream, and treats the
operator as ‘==-'. Alternatively it might be desired to treat this as ‘== -a’. To do this, just
return the minus sign as well as the letter to the input:

8 Revision D of 7 January 1984

<

Programming Tools Lex Lexical Analyzer Generator

=-[a-zA~7] {
priutf(” Operator (=-) ambiguous\n");
yyless(yyleng-2);
... action for = ...

}

will perform the other interpretation. Note that the expressions for the two cases might more
easily be written ‘

=-[[A~Za-1)
in the first case and
=/-[A-Za-1)

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of ‘=-3', however, makes

=—/[" \t\n]
a still better rule.
In addition to these routines, Lex also permits access to the 1/O routines it uses. They are:
1) input() which returns the next input character;
2) outputfc) which writes the character ¢ on the output; and
3) unput{c} pushes the character ¢ back onto the input stream to be read later by énput().

By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and inter-
nal characters, and must all be retained or modified consistently. They may be redefined, to
cause input or output to be transmitted to or from strange places, including other programs or
internal memory; but the character set used must be consistent in all routines; a value of rero
returned by input must mean end of file; and the relationship between unput and input must be
retained or the Lex lookahead will not work. Lex does not look ahead at all if it does not have
to, but every rule ending in + * £ or $ or containing / implies lookahead. Lookahead is also
necessary to match an expression that is a prefix of another expression. See below for a discus-
sion of the character set used by Lex. The standard Lex library imposes a 100 character limit
on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrap() which is
called whenever Lex reaches an end-of-file. If gywrap returns a 1, Lex continues with the nor-
mal wrapup on end of input. Sometimes, however, it is convenient to arrange for more input to
arrive from a new source. In this case, the user should provide a yywrap which arranges for new
input and returns 0. This instructs Lex to continue processing. The default yywrep always
returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end of a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access to
this condition is through yywrap. In fact, unless a private version of input(}is supplied a file
containing nulls cannot be handled, since a value of 0 returned by input is taken to be end-of-

file.

Revision D of 7 January 1984 9

Lex Lexical Analyzer Generator Programming Tools

4. Ambiguous Source Rules.

Lex can handle ambiguous specifications. When more than one expression can match the O
current input, Lex chooses as follows:

1) The longest match is preferred.
2) Among rules which matched the same number of characters, the rule given first is preferred.
Thus, suppose the rules

integer keyword action ...;
[a-2z]+ identifier action ...;

to be given in that order. If the input is integers , it is taken as an identifier, because [a-3/+
matches 8 characters while snteger matches only 7. If the input is integer , both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (for
example, int) will not match the expression integer and so the identifier interpretation is used.
The principle of preferring the longest match makes rules containing expressions like .*
dangerous. For example,

[

might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

!first' quoted string here, ' second' here
the above expression will match
!first' quoted string here, ! second’

which is probably not what was wanted. A better rule is of the form @
U \n]*

which, on the above input, will stop after ! firs# . The consequences of errors like this are miti-

gated by the fact that the . operator will not match newline. Thus expressions like .* stop on

the current line. Don’t try to defeat this with expressions like [\n/+ or equivalents; the Lex
generated program will try to read the entire input file, causing internal buffer overflows.

Note that Lex is normally partitioning the input stream, not searching for all possible matches
of each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both she and he in an input text. Some
Lex rules to do this might be

she s+ +;
he h++;

\n |
where the last two rules ignore everything besides he and she. Remember that . does not

include newline. Since she includes he, Lex will normally not recognite the instances of ke
included in she, since once it has passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means ‘go do the
next alternative.’ It causes whatever rule was second choice after the current rule to be exe-
cuted. The position of the input pointer is adjusted accordingly. Suppose the user really wants
to count the included instances of Ae:

-

10 Revision D of 7 January 1984

Programming Tools Lex Lexical Analyzer Generator

she {s++; REJECT;}
he {h+ +; REJECT;}
\n |
. ’

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other expression will then be counted. In
this example, of course, the user could note that she includes he but not vice versa, and omit
the REJECT action on he; in other cases, however, it would not be possible a priori to tell
which input characters were in both classes.

Consider the two rules

afbe]+ {..; REJECT;}
aled)+ { ...; REJECT;}

If the input i1s b, only the first rule matches, and on &d only the second matches. The input
string aceb matches the first rule for four characters and then the second rule for three charac-
ters. In contrast, the input eccd agrees with the second rule for four characters and then the
first rule for three.

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream
but to detect all examples of some items in the input, and the instances of these items may
overlap or include each other. Suppose a digram table of the input is desired; normally the
digrams overlap, that is the word the is considered to contain both ¢ and ke . Assuming a
two-dimensional array named digrem to be incremented, the appropriate source is

%%
[a—z][zt-z] {digram[yytext[0]}[yytext[1]]+ + ; REJECT;}

\a

where the REJECT is necessary to pick up a letter pair beginning at every character, rather
than at every other character.

5. Lex Source Definitions.

Remember the format of the Lex source:

{definitions}
%%

{rules}

%%

{user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions sec-
tion or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is
copied into the generated program. There are three classes of such things.

1) Any line which is not part of a Lex rule or action which begins with a blank or tab is
copied into the Lex generated program. Such scurce input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the first %%, it
appears in an appropriate place for declarations in the function written by Lex which con-
tains the actions. This material must look like program fragments, and should precede the

Revision D of 7 January 1984 11

Lex Lexical Analyzer Generator Programming Tools

first Lex rule.

As a side effect of the above, lines which begin with a blank or tab, and which contain a
comment, are passed through to the generated program. This can be used to include com-
ments in either the Lex source or the generated code. The comments should follow the host
language convention.

9) Anything included between lines containing only %{ and %]} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

3) Anything after the third %% delimiter, regardless of formats, etc., is copied out after the

Lex output.

Definitions intended for Lex are given before the first %% delimiter. Any line in this section
not contained between %{ and %}, and begining in column 1, is assumed to define Lex substi-
tution strings. The format of such lines is

name transiation

and it causes the string given as a translation to be associated with the name. The name and
translation must be separated by at least one blank or tab, and the name must begin with a
letter. The translation can then be called out by the {name} syntax in a rule. Using {D} for
the digits and {E} for an exponent field, for example, might abbreviate rules to recogmize
numbers:

D [0-9]

E [DEde}[-+]{D}+

%%

{D}+ printf(”integer”);
{D}+"."{D}*({E}? |
{D}*"."{D}+({E})? |
{D}+{E} printf("real”);

Note the first two rules for real numbers; both require a decimal point and contain an optional
exponent field, but the first requires at least one digit before the decimal point and the second
requires at least one digit after the decimal point. To correctly handle the problem posed by a
Fortran expression such as 85.£Q.I , which does not contain a real number, a context-sensitive
rule such as

[0-9)+ /""EQ printf("integer”);
could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection of a host
language, a character set table, a list of start conditions, or adjustments to the default size of
arrays within Lex itself for larger source programs. These possibilities are discussed below
ender ‘Summary of Source Format,’ section 12.

6. Usage.

There are two steps ia compiling a Lex source program. First, the Lex source must be turned
into a generated program in the host general purpose language. Then this program must be
compiled and loaded, usually with a library of Lex subroutines. The generated program is on a
file named lez.yy.c . The 1/O library is defined in terms of the C standard library [8].

12 Revision D of 7 January 1984

-

-

Programming Tools Lex Lexical Analyzer Generator

The library is accessed by the loader flag -ll . So an appropriate set of commands is

lex source
cc lex.yy.c -1l

The resulting program is placed on the usual file s.out for later execution. To use Lex with
Yacc see below. Although the default Lex I/O routines use the C standard library, the Lex
automata themselves do not do so; if private versions of input, output and unput are given, the
library can be avoided.

7. Lex and Yace.

If you want to use Lex with Yacc, note that what Lex writes is a program named yylez(}, the
name required by Yace for its analyzer. Normally, the default main program on the Lex library
calls this routine, but if Yace is loaded, and its main program is used, Yacc will call gylez().

In this case each Lex rule should end with
return{token);

where the appropriate token value is returned.

An easy way to get access to Yacc’s names for tokens is to compile the Lex output file as part
of the Yacc output file by placing the line

include "lex.yy.c”

in the last section of Yacc input. Supposing the grammar to be named ‘good’ and the lexical
rules to be named ‘better’ the UNIX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -1l

The Yacc library (-ly) should be loaded before the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex and Yacc programs can be dome in either
order. :

8. Examples.

As a trivial problem, consider copying an input file while adding 3 to every positive number
divisible by 7. Here is a suitable Lex source program

%%
int k;
o-o}+ {
k = atoi(yytext);
if (k%7 == 0)
printf(”%d”, k+ 3);
else

printf(” %d” k);

to do just that. The rule [0-9]+ recognizes strings of digits; atos converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether k is divisible

Revision D of 7 January 1984 13

Lex Lexical Analyzer Generator Programming Tools

by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program

will alter such input items as §9.68 or X7 . Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add a few more rules after the active one, @
as here:

%%
int k;
-to-9)+ {
k = atoi(yytext);
printf(" %d", k%7 == 0! k+ 3 : k);

}
-N0-9]+ ECHO;
[A-Za-z][A-Za-20-9]+ ECHO;

Numerical strings containing a ‘.’ or preceded by a letter will be picked up by one of the last
two rules, and not changed. The ¢f-else has been replaced by a C conditional expression to save
space; the form afb:c means ‘if 8 then belse ¢

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of letters.

int lengs[100};
%%
[a-z}+ lengs[yyleng]+ + ;

\n
%%

%;'wrapo o

int i;
printf("Length No. words\n");
for(i=0; i <100; i+ +)
if (lengs[i] > 0)
printf(" %65d%10d\n" i lengs]il);
return(1);

}

This program accumulates the histogram, while producing no output. At the end of the input
it prints the table. The final statement return(1); indicates that Lex is to perform wrapup. If
yywrap returns zero {false) it implies that further input is available and the program is to con-
tinue reading and processing. To provide a yywrap that never returns true causes an infinite
loop.

As a larger example, here are some parts of a program written by N. L. Schryer to convert dou-
ble precision Fortran to single precision Fortran. Because Fortran does not distinguish upper
and lower case letters, this routine begins by defining a set of classes including both cases of
each letter:

-

14 Revision D of 7 January 1984

Programming Tools Lex Lexical Analyzer Generator

a [aA]
b [bB]
¢ [cC]
: {27
An additional class recognizes white space:
W\

The first rule changes ‘double precision’ to ‘real’, or ‘DOUBLE PRECISION’ to ‘REAL’.
{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{l}{s}{l}{o}{n} {

printf(yytext[0]=="d"? "

Care is taken throughout this program to preserve the case (upper or lower) of the original pro-
gram. The conditional operator is used to select the proper form of the keyword. The next rule
copies continuation card indications to avoid confusing them with constants:

*» 7*0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as ‘beginning of line,
then five blanks, then anything but blank or zero.’ Note the two different meanings of ~
There follow some rules to change double precision constants to ordinary floating constants.

[0-9]+ {WH{d}{W}[+ -[t{W}o-ol+ |
[o-9]+ {W}" " {WHdH{W}[+ -] {W}[o-9]+ |
" {WHo-9l+ {WHAHW}H+ - {W}o-9]+ {
/* convert constants */
for(p=yytext; *p !=0; p+ +)

{

if(*p =="d' || *p =="D")
¢p.___..+ lel_ldl;

ECHO;

}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d
or D . The program than adds ‘¢ ' , which converts it to the pext letter of the alphabet.
The modified constant, now single-precision, is written out again. There follow a series of
names which must be respelled to remove their initial d By using the array yytest the same
action suffices for all the names (only a sample of a rather long list is given here).

{dH{s}{i}{n} |
{di{cHo}{s} |
{d}{s}{a}{r}{¢} |
{dH{a}{tHa}{n} |

(B (oHaMt) printh("%s" yytext+ 1);

Another list of names must have initial d changed to initial a:

Revision D of 7 January 1984 15

Lex Lexical Analyzer Generator Programming Tools

{d}{i}{o}{g} |
{d} {1 {o}{gho |
{d}{m}{i}{n}1 |
{d}{m}{a}{x}1 {

yytext[0] =+ 'a' -'d';

ECHO;

}

And one routine must have initial d changed to initial r:

{d}1{m}{a}{c}{h} {yytext[o] =+ '¥ -'d';
ECHO;

}

To avoid such names as dsins being detected as instances of dasn, some final rules pick up
longer words as identifiers and copy some surviving characters:

[A-Za-z]{A-Za-20-9]* |
[o-9}+ |

\n
. ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran
or with the use of keywords as identifiers.

9. Left Context Sensitivity.

Sometimes it is desirable to have several sets of lexical rules to be applied at different times in
the input. For example, a compiler preprocessor might distinguish preprocessor statements and
analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The “ operator, for example, is a prior
context operator, recognizing immediately preceding left context just as $ recognizes immedi-
ately following right context. Adjacent left context could be extended, to produce a facility
similar to that for adjacent right context, but it is unlikely to be as useful, since often the
relevant left context appeared some time earlier, such as at the beginning of a line.

This section describes three means of dealing with different environments: a simple use of flags,
when only a few rules change from one environment to another, the use of atart eenditions on
rules, and the possibility of making multiple lexical analyzers all run together. In each case,
there are rules which recognize the need to change the environment in which the following input
text is analyzed, and set some parameter to reflect the change. This may be a flag explicitly
tested by the user’s action code; such a flag is the simplest way of dealing with the problem,
since Lex is not involved at all. It may be more convenient, however, to have Lex remember
the flags as initial conditions on the rules. Any rule may be associated with a start condition.
it will only be recognized when Lex is in that start condition. The current start condition may
be changed at any time. Finally, if the sets of rules for the different environments are very dis-
similar, clarity may be best achieved by writing several distinct lexical analyzers, and switching
from one to ancther as desired.

Consider the following problem: copy the input to the output, changing the word magic to first
on every line which began with the letter @, changing magic to second on every line which
began with the letter b, and changing magic to third on every line which began with the letter
¢. All other words and all other lines are left unchanged.

18 Revision D of 7 January 1984

@

C

O

o .

Programming Tools Lex Lexical Analyzer Generator

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
%%
*a {flag = 'a'; ECHO;)}
*b {flag ='b'; ECHO;}
‘¢ {flag ="'¢'; ECHO;}
\n {flag = 0; ECHO;}
magic {

switch (flag)

case 'a': printf(” first”); break;
case ' b’ : printf("second”); break;
case ' ¢’ : printf{” third”); break;
default: ECHO; break;

}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
Lex in the definitions section with a line reading
%Start namel name? ...

where the conditions may be named in any order. The word Start may be abbreviated to s or
S. The conditions may be referenced at the head of a rule with the <> brackets:

< namel > expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start
condition, execute the action statement

BEGIN namel;
which changes the start condition to namel. To resume the normal state,

BEGIN ¢;

resets the iritial condition of the Lex automaton interpreter. A rule may be active in several
start conditions:

<namel,name2 name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active.
The same example as before can be written:

%START AA BB CC

%%

"a {ECHO; BEGIN AA;}

"b {ECHO; BEGIN BB;}

“c {ECHO; BEGIN CC;)

\n {ECHO; BEGIN 0;}
<AA>magic printf("first”);
<BB>magic printf{"second”);
<CC>magic printf("third");

where the logic is exactly the same as in the previous method of handling the problem, but Lex

Revision D of 7 January 1584 17

Lex Lexical Analyzer Generator Programming Tools
does the work rather than the user’s code.

10. Character Set. @

The programs generated by Lex handle character 1/O only through the routines input, output,
and unput. Thus the character representation provided in these routines is accepted by Lex and
employed to return values in yytest. For internal use a character is represented as a small
integer which, if the standard library is used, has a value equal to the integer value of the bit
pattern representing the character on the host computer. Normally, the letter @ is represented
as the same form as the character constant ! @ . If this interpretation is changed, by providing
1/O routines which translate the characters, Lex must be told about it, by giving a translation
table. This table must be in the definitions section, and must be bracketed by lines containing
only ‘%T’. The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next example

%T

1 Aa

2 Bb
26 Zz
27 \n
28 +
29 -
30 0
31 1 Q
39 9
%T

Figure 3: Sample character table.

maps the lower and upper case letters together into the integers 1 through 28, newline into 27,
+ and - into 28 and 29, and the digits into 30 through 39. Note the escape for newline. If a
table is supplied, every character that is to appeat either in the rules or in any valid input must
be included in the table. No character may be assigned the number 0, and no character may be
assigned a bigger number than the size of the hardware character set.

11. Summary of Source Format.

The general form of a Lex source file is:

{definitions}
%%
{rules}

%%
{user subroutines}

The definitions section contains a combination of @

18 Revision D of 7 January 1984

Programming Tools

1) Definitions, in the form ‘name space translation’.

Lex Lexical Analyzer Generator

1

2) Included code, in the form ‘space code’.
3) Included code, in the form

%4
code
%}

4) Start conditions, given in the form

%S namel name? ...

5) Character set tables, in the form

%T

number space character-string

%T

8) Changes to internal array sizes, in the form

%z nnn

where nnn is a decimal integer representing an array size and z selects the parameter as fol-

lows:

Letter Parameter
) positions
n states
e tree nodes
a transitions
k packed character classes
0 output array size

Lines in the rules section have the form ‘expression action’ where the action may be continued
on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

x/y
{xx}

the character "x"

an "x”, even if x is an operator.

an "x", even if x is an operator.

the character x or ¥.

the characters x, y or ¢.

any character but x.

any character but newline.

an x at the beginning of a line.

an x when Lex is in start condition y.
an x at the end of a line.

an optional x.

0,1,2, ... instances of x.

1,2,3, ... instances of x.

an X Or a y.

an X.

an x but only if followed by y.

the translation of xx from the definitions section.

Revision D of 7 January 1984 19

Lex Lexical Analyzer Generator Programming Tools

x{m,n} m through n occurrences of x

12. Caveats and Bugs.

There are pathological expressions which produce exponential growth of the tables when con-
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not

have used unput to change the characters forthcoming from the input stream. This is the only -

restriction on the user’s ability to manipulate the not-yet-processed input.

13. Acknowledgments.

As should be obvious from the above, the outside of Lex is patterned on Yacc and the inside on
Aho's string matching routines. Therefore, both S. C. Johnson and A. V. Aho are really origi-
nators of much of Lex, as well as debuggers of it. Many thanks are due to both.

The code of the current version of Lex was designed, written, and debugged by Erie Schmidt.

14. References,

1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, N. J.
(1978).

2. B. W. Kernighan, Retfor: A Preprocessor for a Rational Fortren, Software — Practice and
Experience, 5, pp. 395-498 (1975).

3. S. C. Johnson, Yace: Yet Another Compiler Compiler, Computing Science Technical
Report No. 32, 1975,

4. A.V. Aho and M. J. Corasick, Efficient String Matching: An Aid to Bibliographic Search,
Comm. ACM 18, 333-340 {1975).

5. B. W. Kernighan, D. M. Ritchie and K. L. Thompson, QED Tezt Editor, Computing Sci-
ence Technical Report No, 5, 1972,

6. D. M. Ritchie, private communication. See also M. E. Lesk, The Portable C Library, Com-
puting Science Technical Report No. 31,

20 Revision D of 7 January 1984

-

-

Table of Contents

YACC — YET ANOTHER COMPILER-COMPILER ..o

1. Basic Specifications

..

B ACLIOMS oo ssesessssees oo semesatam s rer ar s v a4 0o et 04 e s e st emsanss s smsmenees

3. Lexical Analysis . oo s eeessersen

4. How the Parser Works

5. Ambiguity and Conflicts

8. Precedence ...,

7. Error Handling

8. The Yacc Environment ...

9. Hints for Preparing Specifications ...

9.1. Input Style ...

9.2, Left Recursion

9.3. Lexical Tie-ins .
9.4. Reserved Words

10. Advanced Topics ...
10.1. Simulatirg Error and Accept in Actions ...

10.2. Accessing Values in Enclosing Rules.

10.3. Support for Arbitrary Value Types ...

11. Acknowledgements ettt e oot b10

110, REfEIENnCes . o cseessessssssese st enseseeeeseeseossessee et sstse s oneesEoss s

B. Yace Input Syntax ...

Ae A SImple EXAMPIE ..ot tssnee s amsss s e eees s e e

12

16

18

19

20
20
21
22
22

23
23
23
23

C. An Advanced Example

D. Old Features Supported but not Encouraged

—ii -

.....

YACC — YET ANOTHER COMPILER-
COMPILER

Computer program input generally has some structure; in fact, every computer program that
does input can be thought of as defining an ‘input langnage’ which it accepts. An input
language may be as complex as a programming language, or as simple as a sequence of numbers.
Unfortunately, usual input facilities are limited, difficult to use, and often are lax about check-
ing their inputs for validity.

Yacc provides a general tool for describing the input to a computer program. The Yacc user
specifies the structures of his input, together with code to be invoked as each such structure is
recognized. Yacc turns such a specification into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of the flow of control in the user’s
application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next basic
input item. Thus, the user can specify his input in terms of individual input characters, or in
terms of higher level constructs such as names and numbers. The user-supplied routine may
also handle idiomatic features such as comment and continuation conventions, which typically
defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very general one:
LALR(1) grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yace has also been used for less
conventional languages, including a phototypesetter language, several desk calculator languages,
a document retrieval system, and a Fortran debugging system.

Yacc provides a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do the
basic input. Yacc then generates a function to control the input process. This function, called
a parser, calls the user-supplied low-level input routine (the lezical analyzer) to pick up the
basic items (called tokens) from the input stream. These tokens are organized according to the
input structure rules, called grammar rules; when one of these rules has been recognized, then
user code supplied for this rule, an action, is invoked; actions have the ability to return values
and make use of the values of other actions.

Yacc is written in a portable dialect of C! and the actions, and output subroutine, are in C as
well. Moreover, many of the syntactic conventions of Yace follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

-’

date : month_pame day °,” year ;

Here, date, month_name, day, and year represent structures of interest in the input process;

Revision D of 7 January 1984 1

Yace Compiler Generator Programming Tools

presumably, month_name, day, and year are defined elsewhere. The comma °,’ is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4, 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine
reads the input stream, recognizing the lower level structures, and communicates these tokens to

the parser. For historical reasons, a structure recognized by the lexical analyzer is called a "ter-

minal symbol’ , while the structure recognized by the parser is called a "nonterminal symbol” .
To avoid confusion, terminal symbols will usually be referred to as tokens.

There is considerable leeway in deciding whether to recognize structures using the lexical
analyzer or grammar rules. For example, the rules

IJ" L

month_name : a’n’ ;
month_name : F " 'b" ;

month_name : D’ ‘%e" ¢’ ;

might be used in the above example. The lexical analyzer would only need to recognire indivi-
dual letters, and month_name would be a nonterminal symbol. Such low-level rules tend to
waste time and space, and may complicate the specification beyond Yace's ability to deal with
it. Usually, the lexical analyzer would recognize the month names, and return an indication
that a month_name was seen; in this case, month_name would be a token.

Literal characters such as ‘,’ must also be passed through the lexical analyzer, and are also con-
sidered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule
date : month ‘/’day /' year ;

allowing
7/4/1778

as a synonym for
July 4, 1776

- In most cases, this new rule could be ‘slipped in’ to a working system with minimal effort, and

little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading
and computing with bad input data substantially reduced, but the bad data can usually be
quickly found. Error handling, provided as part of the input specifications, permits the reentry
of bad data, or the continuation of the input process after skipping over the bad data.

In some cases, Yacc fals to produce a parser when given a set of specifications. For example,
the specifications may be self contradictory, or they may require a more powerful recognition
mechanism than that available to Yacc. The former cases represent design errors; the latter
cases can often be corrected by making the lexical analyzer more powerful, or by rewriting some
of the grammar rules. While Yacc cannot handle all possible specifications, its power compares

9 Revision D of 7 January 1984

-

Programming Tools Yacc Compiler Generator

favorably with similar systems; moreover, the constructions which are difficult for Yace to han-
dle are also frequently difficult for human beings to handle. Some users have reported that the
discipline of formulating valid Yace specifications for their input revealed errors of conception or
design early in the program development.

The theory underlying Yacc has been described elsewhere.: 3:4 Yace has been extensively used
in numerous practical applications, including lint,3 the Portable C Compiler,’ and a system for
typesetting mathematics.?

The next several sections describe the basic process of preparing a Yacc specification; Section 1
describes the preparation of grammar rules, Section 2 the preparation of the user supplied
actions associated with these rules, and Section 3 the preparation of lexical analyzers. Section 4
describes the operation of the parser. Section 5 discusses various reasons why Yacc may be
unable to produce a parser from a specification, and what to do about it. Section 6 describes a
simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and spe-
cial features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced topics,
and Section 11 gives acknowledgements. Appendix A bas a brief example, and Appendix B
gives a summary of the Yacc input syntax. Appendix C gives an example using some of the
more advanced features of Yace, and, finally, Appendix D describes mechanisms and syntax no
longer actively supported, but provided for historical continuity with older versions of Yacc.

1. Basic Specifications

Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexi-
cal analyzer as part of the specification file; it may be useful to include other programs as well.
Thus, every specification file consists of three sections: the declarations, (grammar) rules, and
programs. The sections are separated by double percent ‘%%’ marks. (The percent ‘%’ is gen-
erally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations

%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi-
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed
in/*...*/,asin C and PL/L

The rules section is made up of one or more grammar rules. A grammar rule has the form:
A : BODY ;

A represents a nonterminal name, and BODY represents a sequence of zero or more names and

Revision D of 7 January 1984 .3

Yacc Compiler Generator Programming Tools

literals. The colon and the semicolon are Yace punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ‘., underscore *_’, and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of a O
grammar rule may represent tokens or nonterminal symbols.

A literal consists of a character enclosed in single quotes ‘”. As in C, the backslash ‘\' is an
escape character within literals, and all the C escapes are recognized. Thus

\n’ newline
\r’ return
** single quote ‘"
1\’ backslash ‘\’
\t’ tab
\b”* backspace
\f* form feed
\xxx ‘xxx’ in octal

For a number of technical reasons, the NUL character (0’ or 0) should never be used in gram-
mar rules.

If there are several grammar rules with the same left hand side, the vertical bar ‘|’ can be used
to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be
dropped before a vertical bar. Thus the grammar rules

A BCD ;
A EF ;
A : G

can be given to Yace as

A BCD @

| EF

| G

’
It is not necessary that all grammar rules with the same left side appear together in the gram-
mar rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:
empty : ;

Names representing tokens must be declared; this is most simply done by writing
token namel name?2 ...

in the declarations section. (See Sections 3 , 5, and 8 for much more discussion). Every name
not defined in the declarations section is assumed to represent a montermina! symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

Of all the nonterminal symbols, one, called the "astart saymbol’ , has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most
general structure described by the grammar rules. By default, the start symbol is taken to be
the left hand side of the first grammar rule in the rules section. It is possible, and in fact desir-
able, to declare the start symbol explicitly in the declarations section using the %start keyword:

Costart symbol

4 Revision D of 7 January 1984

O

Programming Tools Yacc Compiler Generator

The end of the input to the parser is signaled by a special token, called the endmarker. If the
tokens up to, but not including, the endmarker form a structure which matches the start sym-
bol, the parser function returns to its caller after the endmarker is seen; it accepts the input. If
the endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious I/O status, such as
‘end-of-file’ or ‘end-of-record’.

2. Actions

With each grammar rule, the user may associate actions to be performed each time the rule is
recognized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if
desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by one or more statements,
enclosed in curly braces ‘{' and ‘}". For example,
A B Y
{ bhello(1, "abe” }; }

and

XXX YYY ZZZ
A printf(”a message\n”);
flag = 25; }
are grammar rules with actions.

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol ‘dollar sign’ ‘$’ is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable ‘83’ to some value. For exam-
ple, an action that does nothing but return the value 1 is

{$8=1; }
To obtain the values returned by previous actions and the lexical analyzer, the action may use
the pseudo-variables $1, $2, . . ., which refer to the values returned by the components of the

right side of a rule, reading from left to right. Thus, if the rule is

A :. BCD ;
for example, then $2 has the value returned by C, and $3 the value returned by D.
As a more concrete example, consider the rule

expr : 1 expr) ;

The value returned by this rule is usually the value of the ezpr in parentheses. This can be
indicated by .

expr : 1" expr %)’ {$8=12%2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules
of the form

Revision D of 7 January 1984 5

Yace Compiler Generator Programming Tools

A : B ;
frequently need not have an explicit action. @
In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable
to get control before a rule is fully parsed. Yacc permits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. In turm, it may access the values returned by
the symbols to its left. Thus, in the rule
A : B
{88=1}
C
{ x=182; y=14$3; }
3
the effect is to set zto 1, and y to the value returned by C.
Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new non-
terminal symbol name, and a new rule matching this name to the empty string. The interior
action is the action triggered off by recognizing this added rule. Yacc actually treats the above
example as if it had been written:

$ACT : /* empty */
{88=1}

A B $ACT C
{ x=82; y=14$3; } :
- O
In many applications, output is not done directly by the actions; rather, a data structure, such
as a parse tree, is constructed in memory, and transformations are applied to it before output is
generated. Parse trees are particularly easy to comstruct, given routines to build and maintain

the tree structure desired. For example, suppose there is a C function node, written so that the
call

node(L, nl, n2)
creates a node with label L, and descendants nl and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:
expr : expr + ° expr
{ 8 = node(+ , 81,83); }
in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks ‘%{’ and ‘%)}’. These declarations and
definitions have global scope, so they are known to the action statements and the lexical
analyzer. For example,

%{ int variable = 0; %]}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in ‘yy’; the user should avoid such nrames.

8 Revision D of 7 January 1984

Programming Tools Yacc Compiler Generator

In these examples, all the values are integers: a discussion of values of other types will be found
in Section 10.

3. Lexical Analysis

The user must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylez.
The function returns an integer, the " token number” , representing the kind of token read. If
there is a value associated with that token, it should be assigned to the external variable yylval.

The parser and the lexical analyzer must agree on these token numbers in order for communica-
tion between them to take place. The numbers may be chosen by Yacc, or chosen by the user.
In either case, the ‘# define’ mechanism of C is used to allow the lexical apalyzer to return
these numbers symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the Yacc specification file. The relevant portion of the lex-
ical analyzer might look like:

yylex(){
extern int yylval;

int ¢;
¢ = getchar();
switch(¢) {

case 0"
case 1"

ca.s;.'g’:
yylval = ¢-0%
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical value of
the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT will be defined as the token number associated with the
token DIGIT. '

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant iz C or the parser;
for example, the use of token names if or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled. The token name error is reserved for error handling, and
should not be used naively (see Section 7).

As mentioned above, the token numbers may be chosen by Yace or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is
the numerical value of the character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name
or literal #n the declarations section can be immediately followed by a nonnegative integer. This

Revision D of 7 January 1984 7

Yace Compiler Generator Programming Tools

integer is taken to be the token number of the name or literal. Names and literals not defined
by this mechanism retain their default definition. It is important that all token numbers be dis-
tinct.

For historical reasons, the endmarker must have token number 0 or negative. This token
number cannot be redefined by the user; thus, all lexical analyzers should be prepared to return
0 or negative as a token number upon reaching the end of their input.

A very useful tool for constructing lexical analyzers is the Lez program developed by Mike

Lesk.® These lexical analyzers are designed to work in close harmony with Yacc parsers. The
specifications for these lexical analyzers use regular expressions instead of grammar rules. Lex

can be easily used to produce quite complicated lexical analyzers, but there remain some -

languages (such as FORTRAN) which do not fit any theoretical framework, and whose lexical
analyzers must be crafted by hand.

4. How the Parser Works

Yace turns the specification file into a C program, which parses the mmput according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself, how-
ever, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yace consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The
current atate is always the one on the top of the stack. The states of the finite state machine
are given small integer labels; initially, the machine is in state 0, the stack contains only state 0,
and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A

move of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylez to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped
off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken,
there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 58, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropri-
ate when the parser has seen the right hand side of a grammar rule, and is prepared to
announce that it has seen an instance of the rule, replacing the right hand side by the left hand
side. It may be necessary to consult the lookahead token to decide whether to reduce, but usu-
ally it is not; in fact, the default action (represented by a ‘.") is often a reduce action.

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer numbers, leading to some confusion. The action

8 Revision D of 7 January 1984

-

Programming Tools Yace Compiler Generator

. reduce 18
refers to grammar rule 18, while the action
IF shift 34

refers to state 34.
Suppose the rule being reduced is

A tX yz

The reduce action depends on the left hand symbol (A in this case), and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from the
stack (In general, the number of states popped equals the number of symbols on the right side
of the rule). In effect, these states were the ones put on the stack while recognizing z, y, and 2z,
and no longer serve any useful purpose. After popping these states, a state is uncovered which
was the state the parser was in before beginning to process the rule. Using this uncovered state,
and the symbol on the left side of the rule, perform what is in effect a shift of A. A new state is
obtained, pushed onto the stack, and parsing continues. There are significant differences
between the processing of the left hand symbol and an ordinary shift of a token, however, so
this action is called a geto action. In particular, the lookahead token is cleared by a shift, and is
not affected by a goto. In any case, the uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action ‘turns back the clock’ in the parse, popping the states off the stack
to go back to the state where the right hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty,
o states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When
a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In
addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the exter-
nal variable yylval is copied onto the value stack. After the return from the user code, the
reduction is carried out. When the goto action is done, the external variable yyval is copied onto
the value stack. The pseudo-variables $1, $2, etc., refer to the value stack.

The other two parser actions are conceptually much simpler. The accep? action indicates that
the entire input has been seen and that it matches the specification. This action appears only
when the lookahead token is the endmarker, and indicates that the parser has successfully done
its job. The error action, on the other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens it has seen, together with the
lookahead token, cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing: the error recovery
(as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

Revision D of 7 January 1984 9

Yacc Compiler Generator Programming Tools

%token DING DONG DELL)
-
rhyme : sound place

sound : DING DONG
H
place : DELL
: ‘
When Yace is invoked with the —v option, a file called y.output is produced, with a human-
readable description of the parser. The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

-

10 Revision D of 7 January 1984

Programming Tools Yacc Compiler Generator

state 0
$accept : _rhyme $end

DING shift 3
. error

rhyme goto 1
sound goto 2

state 1 ‘
$accept : rhyme_8$end

$end accept
. error

state 2
rhyme : sound_ place

DELL shift 5
. error

place goto 4

state 3
sound : DING_DONG

DONG shift 8
. error

state 4
rhyme : sound place_ (1)}

reduce 1

state 5
place : DELL_ (3)

reduce 3

state 8
sound : DING DONG_ (2)
reduce 2

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Revision D of 7 January 1984 11

Yace Compiler Generator Programming Tools

Initially, the current state is state 0. The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING, is read, becoming the looka-
head token. The action in state 0 on DING is is ‘shift 3', so state 3 is pushed onto the stack,
and the lookahead token is cleared. State 3 becomes the current state. The next token,
DONG, is read, becoming the lookahead token. The action in state 3 on the token DONG is
‘shift 6’, so state 8 is pushed onto the stack, and the lookahead is cleared. The stack now con-
tains 0, 3, and 6. In state 6, without even consulting the lookahead, the parser reduces by rule
2.

sound ;: DING DONG

This rule has two symbols on the right hand side, so two étates, 6 and 3, are popped off of the

stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

In state 2, the next token, DELL, must be read. The action is ‘shift 5’, so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5,
the only action is to reduce by rule 3. This has one symbol on the right hand side, so one state,
5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3, is
state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule 1.
There are two symbols on the right, so the top two states are popped off, uncovering state 0
again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the
input is read; the endmarker is obtained, indicated by ‘$end’ in the y.output file. The action in
state 1 when the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted witk such incorrect
strings as "DING DONG DONG", " DING DONG", "DING DONG DELL DELL", etc. A few
minutes spend with this and other simple examples will probably be repaid when problems arise
in more complicated contexts.

5. Ambiguity and Conflicts

A set of grammar rules is ambiguous if there is some input string that can be structured in two
or more different ways. For example, the grammar rule

expr expr ~’ expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to
put two other expressions together with a minus sign between them. Unfortunately, this gram-
mar rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr — expr — expr
the rule allows this input to be structured as either
(expr - expr) — expr
or as
expr — { expr - expr)

(The first is called left association, the second right association).

12 Revision D of 7 January 1984

-

-

Programming Tools Yacc Compiler Generator

Yace detects such ambiguities when it is attempting to build the parser. It is instructive to con-
sider the problem that confronts the parser when it is given an input such as

eXpr — expr - expr
When the parser has read the second expr, the input that it has seen:

expr — expr |
matches the right side of the grammar rule above. The parser could reduce the input by apply-
ing this rule; after applying the rule; the input is reduced to ezpr (the left side of the rule). The
parser would then read the final part of the input:

- expr |
and again reduce. The effect of this is to take the left associative interpretation.
Alternatively, when the parser has seen

expr - expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

eXpr — expr - expr
It could then apply the rule to the rightmost three symbols, reducing them to ezpr and leaving
expr - expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation.
Thus, having read '

expr — expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a "shift / reduce conflict”. It may also happen that the parser has a choice
of two legal reductions; this is called a "reduce [/ reduce conflict” . Note that there are never any
‘Shift/shift’ conflicts,

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice
to make in a given situation is called a " disambiguating rule” .

Yace invokes two disambiguating rules by default:
1. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there is a choice, in favor of shifts. Rule 2

gives the user rather crude control over the behavior of the parser in this situation, but

reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Yacc can construct. The use of actions within
rules can also cause conflicts, if the action must be done before the parser can be sure which
rule is being recognized. In these cases, the application of disambiguating rules is inappropriate,
and leads to an incorrect parser. For this reason, Yacc always reports the number of
shift/reduce and reduce/reduce conflicts resolved by Rule 1 and Rule 2.

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it
is also possible to rewrite the grammar rules so that the same inputs are read but there are no

Revision D of 7 Japuary 1984 13

Yace Compiler Generator Programming Tools

conflicts. For this reason, most previous parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces
slower parsers; thus, Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an ‘if-then-else’ construction:

stat : IF 1" cond °)’ stat
| IF 1’ cond °)’ stat ELSE stat

1
In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional -

(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form
IF (C1)IF (C2) S1 ELSE 82
can be structured according to these rules in two ways:
CIF (C1) {
IF (C2) S1
ELSE 82
or

IF (C1) {
IF (C2) SI
ELSE S2

}

The second interpretation is the one given in most programming languages having this con-
struct. Each ELSE is associated with the last preceding ‘un-ELSE'd’ IF. In this example, con-
sider the situation where the parser has seen

IF(Cl)IF{C2)81
and is looking at the ELSE. It can immediately reduce by the simple-if rule to get
IF (Cl) stat
and then read the remaining input,
ELSE S2 '
and reduce
IF (C1) stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.
On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (C1)IF (C2) S1 ELSE S2
can be reduced by the if-else rule to get
IF (C1) stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

14 Revision D of 7 January 1984

Programming Tools Yace Compiler Generator

Once again the parser can do two valid things - there is a shift /reduce conflict. The application
of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired group-
ing.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE,
and particular inputs already seen, such as

IF(ClL)IF (C2) S1

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state
of the parser,

The conflict messages of Yacc are best understood by examining the verbose (—v) option output
file. For example, the output corresponding to the above conflict state might be:

23: shift freduce conflict (shift 45, reduce 18) on ELSE
state 23

stat : IF (cond) stat_ (18)
stat : IF (cond) stat_ELSE stat

ELSE shift 45
reduce 18

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF (cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible
things. If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as
part of its description, the line

stat : IF (cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by '.’, is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat : IF 1’ cond *}° stat

Once again, notice that the numbers following ‘shift’ commands refer to other states, while the
numbers following ‘reduce’ commands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed after those rules which can be reduced. In most one states, there will
be at most reduce action possible in the state, and this will be the default command. The user
who encounters unexpected shift/reduce conflicts will probably want to look at the verbose out-
put to decide whether the default actions are appropriate. In really tough cases, the user might
need to know more about the behavior and construction of the parser than can be covered here.
In this case, one of the theoretical references® 3. ¢ might be consulted; the services of a local
guru might also be appropriate.

Revision D of 7 January 1984 15

Yace Compiler Generator Programming Tools

6. Precedence

There is one common situation where the rules given above for resolving conflicts are not
sufficient; this is in the parsing of arithmetic expressions. Most of the commonly used construc-
tions for arithmetic expressions can be naturally described by the notion of precedence levels for
operators, together with information about left or right associativity. It turns out that ambigu-
ous grammars with appropriate disambiguating rules can be used to create parsers that are fas-
ter and easier to write than parsers constructed from unambiguous grammars. The basic notion
is to write grammar rules of the form

expr : expr OP expr
and
expr : UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding
strength, of all the operators, and the associativity of the binary operators. This information is
sufficient to allow Yacc to resolve the parsing conflicts in accordance with these rules, and con-
struct a parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a Yace keyword: %left, %right, or %nonassoc, followed
by a list of tokens. All of the tokens on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of increasing precedence or binding strength.
Thus,

%left “+ ° ~-*
%left g I/)

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A LT. B LT. C

is tllegal in Fortran, and such an operator would be described with the keyword Y5nonassoc in
Yace. As an example of the behavior of these declarations, the description

Zeright ="’
%left I+ » l— »
%left L I/ ’

%%

expr : expr ‘=" expr
| expr “+ ° expr
| expr ' expr
| expr "*’ expr
| expr /' expr
| NAME

16 Revision D of 7 January 1984

-

-

Programming Tools Yace Compiler Generator

might be used to structure the input
a=Db = c*d - e - g
as follows:

a=(b=/(((c*d)}-e) - (*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some-
times a unary operator and a binary operator have the same symbolie representation, but
different precedences. An example is unary and binary - , unary minus may be given the same
strength as multiplication, or even higher, while binary minus has a lower strength than multi-
plication. The keyword, %prec, changes the precedence level associated with a particular gram-
mar rule. %prec appears immediately after the body of the grammar rule, before the action or
closing semicolon, and is followed by a token name or literal. It causes the precedence of the
grammar rule to become that of the following token name or literal. For example, to make
unary minus have the same precedence as multiplication the rules might resemble:

%left 4+ ° -’
Toleft ** *f’

%%

expr : expr + ° expr

expr -’ expr

expr *’ expr

expr '/’ expr

-’ expr %prec *’
NAME

S —— ——

A token declared by %left, %right, and %nonassoc need not be, but may be, declared by
%token as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise
to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construc-
tion is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them,

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either the
input symbol or the grammar rule has no precedence and associativity, then the two disam-
biguating rules given at the beginning of the section are used, and the conflicts are reported.

4. I there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative

~ implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and
reduce/reduce conflicts reported by Yacc. This means that mistakes in the specification of pre-
cedences may disguise errors in the input grammar; it is a good idea to be sparing with

Revision D of 7 January 1984 17

Yace Compiler Generator Programming Tools

precedences, and use them in an essentially ‘cookbook’ fashion, until some experience has been
gained. The y.output file is very useful in deciding whether the parser is actually doing what
was intended,

7. Error Handling

Error handling is an extremely difficult area, and many of the problems are semantic ones.
When an error is found, for example, it may be necessary to reclaim parse tree storage, delete or
alter symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to con-
tinue scanning the input to find further syntax errors. This leads to the problem of getting the
parser ‘restarted’ after an error. A general class of algorithms to do this involves discarding a
number of tokens from the input string, and attempting to adjust the parser so that input can
continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably gen-
eral, feature. The token pame ‘error’ is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state where the token ‘error’ is legal. It then
behaves as if the token ‘error’ were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error. If no spe-
cial error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains in
error state until three tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quietly
deleted.

As an example, a rule of the form
stat : error

would, in effect, mean that on a syntax error the parser would attempt to skip over the state-
ment in which the error was seen. More precisely, the parser will scan ahead, looking for three
tokens that might legally follow a statement, and start processing at the first of these; if the
beginnings of statements are not sufficiently distinctive, it may make a false start in the middle
of a statement, and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, ete.

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

stat :° error %’

Here, when there is an error, the parser attempts to skip over the statement, but will do so by
skipping to the next ”. All tokens after the error and before the next %’ cannot be shifted, and
are discarded. When the %" is seen, this rule will be reduced, and any ‘cleanup’ action associ-
ated with it performed. :

Another form of error rule arises in interactive applications, where it may be desirable to permit
a line to be reentered after an error. A possible error rule might be

18 Revision D of 7 January 1984

-

Programming Tools Yace Compiler Generator

input: error \n’ { printf("Reenter last line: "); } input
{ $ = $4;)

There is one potential difficulty with this approach; the parser must correctly process three
input tokens before it admits that it has correctly resynchronized after the error. If the reen-
tered line contains an error in the first two tokens, the parser deletes the offending tokens, and
gives no message; this is clearly unacceptable. For this reason, there is a mechanism that can be
used to force the parser to believe that an error has been fully recovered from. The statement

yyerrok ;
in an action resets the parser to its normal mode. The last example is better written
input: error \n’
{ yyerrok; _
printf("Reenter last line: "); }
input
{ $3 = 84; }

H
As mentioned above, the token seen immediately after the ‘error’ symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery

action might take upon itself the job of finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next
token returned by yylex would presumably be the first token in a legal statement; the old, ille-
gal token must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch(};
yyerrok ;
yyclearin ; }
’
These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of

the parser from many errors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

The Yacc Environment

When the user inputs a specification to Yacc, the output is a file of C programs, called g.tab.c
on most systems (due to local file system conventions, the names may differ from installation to
1nsta]lat.10n) The function produced by Yacc is called yyparse ; it is an integer valued function.
When it is called, it in turn repeatedly calls yylez, the lexical analyzer supphed by the user (see
Section 3) to obtain input tokens. Eventually, either an error is detected, in which case (if no
error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns the end-
marker token and the parser accepts. In this case, yyparse returns the value 0.

Revision D of 7 January 1984 19

Yacc Compiler Generator Programming Tools

The user must provide a certain amount of environment for this parser in order to obtain a
working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

These two routines must be supplied in one form or another by the user. To ease the initial
effort of using Yace, a library has been provided with default versions of main and yyerror. The
name of this library is system dependent; on many systems the library is accessed by a —ly
argument to the loader. To show the triviality of these default programs, the source is given
below:

main(){
return(yyparse());

and

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr, "%6s\n", s);

The argument to yyerror is a string containing an error message, usually the string ‘syntax
error’. The average application will want to do better than this. Ordinarily, the program
should keep track of the input line number, and print it along with the message when a syntax
error is detected. The external integer variable yychar contains the lookahead token number at
the time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
usefu} only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to 0. If it is set to a nonzero value, the
parser will output a verbose description of its actions, including a discussion of which input
symbols have been read, and what the parser actions are. Depending on the operating environ-
ment, it may be possible to set this variable by using a debugging system.

9. Hints for Preparing Specifications

This section contains miscellanecus hints on preparing efficient, easy to change, and clear
specifications. The individual subsections are more or less independent.

9.1. Input Style

It is difficult to provide rules with substantial actions and still have a readable specification file.
The following style hints owe much to Brian Kernighan.

a. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of ‘knowing who to blame when things go wrong.’

b. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

¢. Put all rules with the same left hand side together. Put the left hand side in only once, and
let all following rules begin with a vertical bar.

20 Revision D of 7 January 1984

Programming Tools : Yacc Compiler Generator

d. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

e. Indent rule bodies by two tab stops, and action bodies by three tab stops.
The example in Appendix A is written following this style, as are the examples in the text of
this paper (where space permits). The user must make up his own mind about these stylistic

questions; the central problem, however, is to make the rules visible through the morass of
action code.

9.2. Left Recursion

The algorithm used by the Yacc parser encourages so called ‘left recursive’ grammar raules: rules
of the form

name: pame rest_of_rule ;
These rules frequently arise when writing specifications of sequences and lists:
list item '
| list *," item
’
and
seq item
] seq item
’
In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.
With right recursive rules, such as
seq : item
| item seq
H
the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.

More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable.

It is worth considering whether a sequence with zero elements has any meaning, and if so, con-
sider writing the sequence specification with an empty rule:

seq [* empty */
| seq item
H
Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty
sequences often leads to increased generality. However, conflicts might arise if Yacc is asked to
decide which empty sequence it has seen, when it hasn't seen enough to know!

Revision D of 7 January 1984 21

UNIX Programming _ Programming Tools

NULL the attempt to open failed.
FILE +freopen(filename, type, ioptr) char *filename, stype; FILE #ioptr;

The stream named by foptr is closed, if necessary, and then reopened as if by fopen. If
the attempt to open fails, NULL is returned, otherwise loptr, which will now refer to the

new file. Often the reopened stream is stdin or stdout.
int getc(ioptr) FILE »ioptr;
returns the next character from the stream named by loptr, which is a pointer to a file

such as returned by fopen, or the name stdin. The integer EOF is returned on end-of-file

or when an error occurs. The null character \0 is a legal character.

int fgetc(ioptr) FILE #ioptr;
acts like gete but is a genuine function, not a macro, so it can be pointed to, passed as an
argument, etc.

putc(c, ioptr) FILE »ioptr;
putc writes the character ¢ on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as value, but

EOF is returned on error.
fpute(c, ioptr) FILE sioptr;
acts like pute but is a genuine function, not a macro.
fclose(ioptr) FILE »ioptr; '
The file corresponding to ioptr is closed after any buffers are emptied. A buffer allocated
by the I/O system is freed. fclose is automatic on normal termination of the program.

fllush(ioptr) FILE sioptr;

Any buffered information on the (output) stream named by loptr is written out. Output @

files are normally buffered if and only if they are not directed to the terminal; however,
stderr always starts off unbuffered and remains so unless setbuf is used, or unless it is reo-
pened.

exit(errcode);

terminates the process and returns its argument as status to the parent. This is a special
version of the routine which calls ffllush for each output file. To terminate without flush-
ing, use _exit.

feof(ioptr) FILE sioptr;
returns non-zero when end-of-file has occurred on the specified input stream.
ferror(ioptr) FILE *ioptr;

returns non-zero when an error has occurred while reading or writing the named stream.
The error indication lasts until the file has been closed.

getchar();
is identical to gete(stdin).
putchar(c);
is identical to pute(c, stdout).
char *fgets(s, n, ioptr) char *s; FILE sioptr;

reads up to n—1 characters from the stream loptr into the character pointer ». The read
terminates with a newline character. The newline character is placed in the buffer followed
by a null character. fgets returns the first argument, or NULL if error or end-of-file

22 Revision D of 7 January 1984

-

Programming Tools ' Yacc Compiler Generator

10. Advanced Topics

This section discusses a number of advanced features of Yacc.

10.1. Simulating Error and Accept in Actions

The parsing actions of error and accept can be simulated in an action by use of macros YYAC-
CEPT and YYERROR. YYACCEPT causes yyparae to return the value 0; YYERROR causes
the parser to behave as if the current input symbol had been a syntax error; yyerror is called,
and error recovery takes place. These mechanisms can be used to simulate parsers with multi-
ple endmarkers or context-sensitive syntax checking.

10.2. Accessing Values in Enclosing Rules.

An action may refer to values returned by actions to the left of the current rule. The mechan-
ism is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this
case the digit may be 0 or negative. Consider

sent : adj noun verb adj noun
{ look at the sentence . .. }

adj THE { $$=THE; }
| YOUNG { $8=YOUNG; }

noun : DOG
{ $$ = DOG; }
CRONE
{ if{ $0 == YOUNG)}
printf{ "what?\n”);

}
$3 = CRONE;
}

In the action following the word CRONE, a check is made that the preceding token shifted was
pot YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol roun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

10.3. Support for Arbitrary Value Types

By default, the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, Yacc keeps track of the types,
and inserts appropriate union member names so that the resulting parser will be strictly type

Revision D of 7 January 1984 23

Yace Compiler Generator Programming Tools

checked. The Yacc value stack (see Section 4) is declared to be a union of the various types of
values desired. The user declares the union, and associates union member names to each token
and nonterminal symbol having a value. When the value is referenced through a $$ or $n con-
struction, Yacc will automatically insert the appropriate union name, so that no unwanted
conversions will take place. In addition, type checking commands such as Lint®> will be far
more silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining
the union; this must be done by the user since other programs, notably the lexical analyzer,
must know about the union member names. Second, there is a way of associating a union
member name with tokens and nonterminals. Finally, there is a mechanism for describing the -
type of those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%upion {
body of union ...

}

This ‘declares the Yacc value stack, and the external variables yylval and yyval, to have type
equal to this union. If Yace was invoked with the —d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also

have said:

typedef union {
body of union ...
} YYSTYPE;

The header file must be included in the declarations section, by use of %{ and %}.
Once YYSTYPE is defined, the union member names must be associated with the various ter-
minal and nonterminal names. The construction

< name >

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> "+~ -’
will cause any reference to values returned by these two tokens to be tagged with the union

member name optype. Another keyword, %otype, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype>> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no & prioré type. Similarly, reference to left
context values (such as $0 — see the previous subsection) leaves Yacc with no easy way of
knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule : aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>0}; }

a
b

This syntax has little to recommend it, but the situation arises rarely.

24 Revision D of 7 January 1984

Programming Tools Yace Compiler Generator

A sample specification is given in Appendix C. The facilities in this subsection are not triggered
until they are used: in particular, the use of %type will turn on these mechanisms, When they
are used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to some-
thing with no defined type is diagnosed. If these facilities are not triggered, the Yacc value
stack is used to hold ¢nt’ s, as was true historically.

11. Acknowledgements

Yacc owes much to a most stimulating collection of users, who have goaded me beyond my
inclination, and frequently beyond my ability, in their endless search for ‘one more feature’.
Their irritating unwillingness to learn how to do things my way has usually led to my doing
things their way; most of the time, they have been right. B. W. Kernighan, P. J. Plauger, S. L.
Feldman, C. Imagna, M. E. Lesk, and A. Snyder will recognize some of their ideas in the
current version of Yacc. C. B. Haley contributed to the error recovery algorithm. D. M.
Ritchie, B. W. Kernighan, and M. O. Harris helped translate this document into English. Al
Aho also deserves special credit for bringing the mountain to Mohammed, and other favors.

11.1. References

1. B.W. Kernighan and D.M. Ritchie, The C' Programming L anguage, Prentice-Hall, Englewood
Cliffs, New Jersey (1978).

2. A.V. Aho and S.C. Johnson, ‘LR Parsing,’ Comp. Surveys 62) pp. 99-124 (June 1974).

3. A.V. Aho, S.C. Johnson, and J.D. Ullman, ‘Deterministic Parsing of Ambiguous Grammars,’
Comm. Assoc. Comp. Mach. 1%8) pp. 441-452 (August 1975).

4. A.V. Aho and J.D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading, Mass.
(1977).

5. S.C. Johnson, ‘Lint, a C Program Checker,” Comp. Sci. Tech. Rep. No. 65 (December
1977). This paper is reprinted in this manual.

8. S.C. Johnson, ‘A Portable Compiler: Theory and Practice,” Proc. 5th ACM Symp. on Prin-
ciples of Programming Languages, (January 1978).

7. B.W. Kernighan and L.L. Cherry, ‘A System for Typesetting Mathematics,’ Comm. Assoc.
Comp. Mach. 18 pp. 151-157 (March 1975). This paper is reprinted in the Sun Editing and
Text Processing Manual.

8. M.E. Lesk, ‘Lex — A Lexical Analyzer Generator,’ Comp. Sci. Tech. Rep. No. 39, Bell
Laboratories, Murray Hill, New Jersey (October 1975). This paper is reprinted in this
manual.

Revision D of 7 January 1984 25

Yacc Compiler Generator Programming Tools

Appendix A. A Simple Example

This example gives the complete Yacc specification for a small desk calculator; the desk calcula- @
tor has 26 registers, labeled ‘a’ through ‘z’, and accepts arithmetic expressions made up of the
operators +, -, *, /, % (mod operator), & (bitwise and), | (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; otherwise it is. Asin C,
an integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be
decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing how
precedences and ambiguities are used, and demonstrating simple error recovery. The major -
oversimplifications are that the lexical analysis phase is much simpler than for most applica-
tions, and the output is produced immediately, line by line. Note the way that decimal and
octal integers are read in by the grammar rules; This job is probably better done by the lexical
analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs{26};
int base;

%}

%start list @

%token DIGIT LETTER

%left |’

%left &’

Tleft "+ ° -

Gleft *° °f" "%’

%left UMINUS /* supplies precedence for umary minus */

%% [* beginning of rules section */

list [* empty */
| list stat A\n’
! list error \n’

{ yyerrok; }

stat : expr
{ printf("%d\n", $1); }
| LETTER =" expr
{ regs[$1] = $3; }

expr : " expr)’ @

26 Revision D of 7 January 1984

Programming Tools

$
" expr

$$ =
$3
$

expr
$$ =
expr
$ =
expr

| expr *

-t -

-

| expr —° expr

e

i

| expr *’ expr

| expr

| expr

-

| expr

- -
—~ B o, &ﬂn"’:ﬂ
-

| expr ‘|’ expr

| " expr %%prec
{ $ =
| LETTER
{ $$ =

| number

number : DIGIT

{ $$ = $1;

l pumber DIGIT

{ $$ = base *$1 + $2; }

.
?

%% [* start of programs */

yylex() { /* lexical analysis routine */

$2; }

$1 + $3; }
$1 - $3; }
$1 * §3; }
$1 /83 })
$1 % 83)
$1 & 83;)
$1 | $3; }
UMINUS

- $2; }

regs($1]; }

Yace Compiler Generator

base == ($1==0) ! 8 : 10; }

/* returns LETTER for a lower case letter, yylval =0 through 25 */

/* return DIGIT for a digit, yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;

while((c=getchar()) == *) {/* skip blanks */ }

/* ¢ is now nonblank */

if(islower{ ¢)) {
yylval = ¢ - 3

return { LETTER);

}

if(isdigit{ ¢)) {
yylval = ¢ - 05
return(DIGIT };

return(¢);

" Revision D of 7 January 1984

27

Yace Compiler Generator Programming Tools

-

C

28 Revision D of 7 January 1984

Programming Tools Yacc Compiler Generator

Appendix B. Yacc Input Syntax

This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context
dependencies, etc., are not considered. Ironically, the Yacc input specification language is most
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a
rule, immediately following an action. If this identifier is followed by a colon, it is the start of
the next rule; otherwise it is a continuation of the current rule, which just happens to have an
action embedded in it. As implemented, the lexical analyzer looks ahead after seeing an
identifier, and decide whether the next token (skipping blanks, newlines, comments, etc.)is a
colon. If so, it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER.
Literals (quoted strings) are also returned as IDENTIFIERS, but never as part of
C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities */
%token IDENTIFIER /* includes identifiers and literals */
%token C_IDENTIFIER /* identifier (but not literal} followed by colon */
%token NUMBER /¥ [o-9+ ¥/

/* reserved words: %type => TYPE, %left => LEFT, etc. */
%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION
%token MARK /* the %% mark */

%token LCURL [* the %{ mark */
%token RCURL /* the %} mark */

/* ascii character literals stand for themselves */

%start spec
%%
spec : défs MARK rules tail
3
tail : MARK { [In this action, eat up the rest of the file }
| /* empty: the second MARK is optional */
H
defs : J* empty */
| defs def
def : START IDENTIFIER

| UNION { Copy union definition to oulput }
| LCURL { Copy C code to output file } RCURL
| ndefs rword tag mlist

Revision D of 7 January 1984 20

~

Yacec Compiler Generator Programming Tools

rword

tag

nlist

nmnho

rules

rule

rbody

act

prec

30

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

et s e r— 8

: /* empty: union tag is optional */
| ‘<’ IDENTIFIER ‘>

nmro
| nlist nmno
| plist ', nmno

: IDENTIFIER /* NOTE: literal illegal with %type */
[IDENTIFIER' NUMBER ~ /* NOTE: illegal with %type */

:
/* rules section */

C_IDENTIFIER rbody prec
| rules rule

: C_IDENTIFIER rbody prec
| " rbody prec

: /* empty */
i rbody IDENTIFIER
[rbody act

‘(" { Copy action, translate 88, ete. } °}’

[* empty */
PREC IDENTIFIER
PREC IDENTIFIER act

J.’

prec

" d ———

Revision D of 7 January 1984

-

-

Programming Tools Yace Compiler Generator

Appendix C. An Advanced Example

This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating point con-
stants, the arithmetic operations +, —, *, /, unaty -, and = (assignment), and has 26 floating
point variables, ‘a’ through ‘z'. Moreover, it also understands sntervals, written

(x,y)

where z is less than or equal to y. There are 26 interval valued variables ‘A’ through ‘Z’ that
may also be used. The usage is similar to that in Appendix A; assignments return no value, and
print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are
represented by a structure, consisting of the left and right endpoint values, stored as double ’s.
This structure is given a type name, INTERVAL, by using typedef. The Yacc value stack can
also contain floating point scalars, and integers (used to index into the arrays holding the vari-
able values). Notice that this entire strategy depends strongly on being able to assign structures
and unions in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an interval
containing 0, and an interval presented in the wrong order. In eflect, the error recovery
mechanism of Yacc is used to throw away the rest of the offending line.

In addition to the mixing of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (for example, scalar or interval) of intermedi-
ate expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking at
the two input lines:

25+ (35-4.)
and
25+ (35,4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the *,’ is read; by this time, 2.5 is finished, and the parser cannot go
back and change its mind. More generally, it might be necessary to look ahead an arbitrary
pumber of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were
many kinds of expression types, instead of just two, the pumber of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive,
it is better practice in a more normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Revision D of 7 January 1984 31

Yacc Compiler Generator _ Programming Tools

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C library routine afof is used to do the actual conversion from a character
string to a double precision value. If the lexical analyzer detects an error, it responds by return-
ing a token that is illegal in the grammar, provoking a syntax error in the parser, and thence
€ITOT TECovery,

-

39 . Revision D of 7 January 1984

Programming Tools

%{

include <stdio.h>
include <ctype.h>

typedef struct interval {
double lo, hij;
} INTERVAL;
INTERVAL vmul(), vdiv();
double atof();

double dreg| 26 };
INTERVAL vreg{ 26 J;

%}
O%satart lines

%union {
int ival;
double dval;
INTERVAL vval;

}

%token <ival> DREG VREG /*

%token <dval> CONST
%type <dval> dexp

%type <vval> vexp

Yace Compiler Generator

indices into dreg, vreg arrays */

floating point constant */
expression */

interval expression */

/* precedence information about the operators */

Fleft "+ * -’
Fleft ** |’
%left UMINUS

%%

lines : /* empty */
| lines line
’

line : dexp \n’

/* precedence for unary minus */

{ printf{ "%15.80\n", $1); }

| vexp \n’

Revision D of 7 January 1984

33

Yacc Compiler Generator

dexp

vexp :

34

Programming Tools

{ printf{ "(%15.8f , %15.8f)\n", $1.lo, $Lhi); }

DREG ‘=" dexp \n’

{ dreg[$1] = $3; }
VREG ‘=’ vexp \n’

{ wveegltl] = 83)
error \n’

{ yyerrok; }

CONST
DREG

{ §8 = dreg[$1]; }
dexp ‘+ ° dexp

{ $ =81 + $3; }
dexp -’ dexp

{ 88 =81 - 83; }
dexp ™*° dexp

{ 8§ = $1 *33;}
dexp °/’ dexp

{ $ =381/ 83}
-’ dexp %prec UMINUS

{ $88 = -$82; }

1" dexp Y’
{ $$ = §2; }
dexp
{ $3.hi = 8310 = $1; }
T dexp ,’ dexp)’
és.lo = $2;
$3.hi = ¥4,
if($81o > $8.hi){
printf{ "interval out of order\n" };
YYERROR;
}
}
VREG

{ 38 = wreg[81]; }

vexp '+ ° vexp

{ $$.hi = $1.hi + $3.hi;
$83.lo = $11o + $3.lo; }
dexp “+ ° vexp
{ $3.hi = $1 + $3.hi;
$3Jo = $1 + $3lo; }
vexp —° vexp
{ $3.hi = $1.hi - $3.lo;
$3lo = $1lo - $3.hi; }
dexp -’ vexp
{ $3hi = $§1 - $3.lo;

Revision D of 7 January 1984

-

-

Programming Tools Yace Compiler Generator

$3lo = $1 - $3hi; }
| vexp "’ vexp
{ $§ = vmul($1.lo, $L.hi, $3); }
| dexp *° vexp
{ $8 = wvmul($1, $1, $3); }
| vexp '/’ vexp
{ if(dcheck($3)) YYERROR;
$$ = vdiv($1.lo, $Lhi, $3); }
| dexp °/* vexp
{ if(dcheck($3)) YYERROR;
$3 = vdiv($1, $1, $3); }
i -’ vexp %prec UMINUS
{ $3hi = -$2lo; $3.Jo = -$2.hi; }
{1 vexp
{ §$ = 82, }

%%
define BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis */

yylex(){
register c;
while{ (c=getchar()) == ‘"’){ /* skip over blanks */ }

if(isupper(¢))
yylvalival = ¢ - 'A%
return(VREG);

}

if(islower(¢ } Y
yylvalival = ¢ - a7
return(DREG);
}

if(isdigit{ ¢) || e==""}{
/* gobble up digits, points, exponents */

char buf(BSZ+1], *¢p = buf;
int dot = 0, exp = 0;

for(; (cp-buf)<BSZ ; ++ cpc=getchar()){

*ep = ¢
if(isdigit{ ¢)) continue;
iff ¢ == "~

if(dot++ || exp) return("); /* will cause syntax error */
continue;

Revision D of 7 January 1984 35

Yacc Compiler Generator Programming Tools

}

(¢ == e) @

if{ exp++) return(‘e’); /* will cause syntax error */
continue;

}

/* end of number */
break;

*ep == \0

if((cp-buf) >= BSZ) printf{ "constant too long: truncated\n”);
else ungete(¢, stdin); /* push back last char read */
yylval.dval = atof(buf };

return(CONST });

return(¢);

}

INTERVAL hilo{ a, b, ¢, d) double a, b, ¢, d; {
/* returns the smallest interval containing a, b, ¢, and d */
/* used by * [/ routines */
INTERVAL v;

ifl a>b) { vhi = a; vlo = b; }

else { v.hi = b; vlo = a; } @

if(e>d) {
if(¢>v.hi) v.hi
if{l d<vlo) vlo

[
K

I
B

else {
if{ d>v.hi) vhi = d;
if{ c<vlo) vlo = ¢;

}

return(v);

INTERVAL vmul(a, b, v) double a, b; INTERVAL v; {
return{ hilo{ a*v.hi, a*v.lo, b*v.hi, b*v.lo })

dcheck(v }) INTERVAL v; {
if(vhi >== 0. && vlo <= 0.){
printf{ "divisor interval contains 0.\n");
return{ 1)

return(0);

}

-

36 Revision D of 7 January 1984

-

Programming Tools

INTERVAL vdiv(a, b, v) double a, b; INTERVAL v; {
return(hilo(a/v.hi, a/v.lo, bfv.hi, bfvlo));
}

Revision D of 7 January 1984

Yacc Compiler Generator

37

Yacc Compiler Generator Programming Tools

Appendix D. Old Features Supported but not Encouraged

This Appendix mentions synonyms and features which are supported for historical continuity,
but, for various reasons, are not encouraged.

1.
2.

38

in
.

Literals may also be delimited by double quotes

Literals may be more than one character long. If all the characters are alphabetic, numeric,
or _, the type number of the literal is defined, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it .

suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

Most places where % is legal, backslash ‘\' may be used. In particular, \\ is the same as
%%, \left the same as %left, etc.
There are a number of other synonyms:

%< is the same as %left

%> is the same as %right

%binary and %2 are the same as %nonassoc

%0 and %term are the same as %token
%= is the same as %prec

Actions may also have the form

={...}

and the curly braces can be dropped if the action is a single C statement.

C code between %{ and %} used to be permitted at the head of the rules section, as well as
in the declaration section.

Revision D of 7 January 1984

-

o)

-

Table of Contents

ASSEMBLER REFERENCE MANUAL

1. Overview and Layout of This Chapter

2. How to Use the Assembler ...,

Ba NOLAUIOM e es e s sessereesetss s sesstresresarare e peeet e

Ao FUPtBer Beadingt b s sssss s s s essssssssssssssssnsenss

5. Elements of Assembly LanGUAageo eeeeeeeeemessessssssen
5.1. Character Set Which the Assembler Recognizes ...
B.2. TAemUIIEIS | e eeeeeeeeeere s e st esenemmer e e
5.3, Numeric Labels | oo eees eestenem s st

5.4. Local Labels
5.5. Scope of Labels

5.6. Constants i,

5.7. Numeric Constants
5.8. String Constants
5.9. Assembly Location Counter

Expressions
8.1. Operators
6.2. Terms
6.3. Expressions

6.4. Absolute, Relocatable, and External Expressions

7.1. Label Field ...

72, Overation COde Fle:i.(.i et e e e

7.2.1. Operation Code Su,e Quahﬁers

. Layout of an Assembler Language Source Program ...

7.3. Operand Field

7.3.1. Register Operands ...

7.3.2. Operand Expressions ...

7.4. Comment Field _

7.5. Direct Ass:gnment Statements

el DD DT i e OB

C-NC-B- -

10

11
12
12
13
13
13
14

8. Instructions and Addressing Modes w. 1B
8.1. Instruction MDEMONIESoooiirremcmeseneencsmsissstisissss s ssssssessssssssssssss 15
8.2. Extended Branch Instruction Mnemonics ... 15 @

8.3. Addressing Modes ... 16
8.4. Addressing CatEZOTIES _.......coeeeemevoememmeesessccessssmmisssms s sssssssssssssarss 18
. AsSembler DIFECUIVES ..o esssssssssssssssss s smseorssarsseeere bt bbb s s ars s rs s s 19
9.1. .ascii — Generate Sequence of Character Data ... 20
9.2. .asciz — Generate Zero Terminated Sequence of Character Data . 21
9.3. .byte, .word, .long — Generate Data et s st 21
9.4. .text, .data, .bss — Switch Location Counter ... 22
9.5. .skip — Advance the Location Counter ... 23
9.6. .lcomm — Reserve Space in .bss Arearmeninnnscsennn 23
9.7. .globl — Designate an External Identifierorricnn 24
9.8. .comm — Define the Name and Size of a Common Area 24
9.9. .even — Force Location Counter to Even Byte Boundary ... 24
100 EITOT COCSoooooooooreeeeeeseessrss s s nssssre s s ssss s s s sssssnssssss sssssen 25
A. List of AS Opcodes e e 1144140484414 5414101 £ L R R 28
B. MC68010 Extensions ... - | -

|

]

o

—il -

ASSEMBLER REFERENCE MANUAL

This paper is the Programmer's Reference Manual for as — the assembler for the UNIX{ system
running on the Sun Workstation. As converts source programs written in Assembler Language
into a form that the linker utility, {d(1) will turn into a program that is runnable on the UNIX
operating system.

As provides the assembly language programmer with a minimal set of facilities to write pro-
grams in assembler language. Since the majority of programming is dome in high level
languages, as doesn’t provide any elaborate macro facilities or conditional assembly features. It
is assumed that the volume of assembly code produced is so small that these facilities aren't
required.

This chapter describes the syntax and usage of the as assembler for the Motorola MC63000
microprocessor. The basic format of as is loosely based on the Digital Equipment Corp Macro-
11 assembler described in DEC’s publication DEC-11-0MACA-A-D but also contains elements of
the UNIX PDP-11 as(1) assembler. The instruction mnemonics and effective address format are
derived from a Motorola publication on the MC88000: the MACSS MC68000 Design
Specification Instruction Set Processor dated June 30, 1979.

This is a reference manual as opposed to a treatise on writing in assembler language. It is
assumed that the reader is familiar with the concepts of machine architecture, the reasons for
an assembler, the ideas of instruction mnemonics, operands, and effective address modes, and
assembler directives. It is also assumed that the reader is familiar with the MC68000 processor,
its instruction set, its addressing modes, and especially the irregularities in them.

1. Overview and Layout of This Chapter

In this introduction, below, there is a short summary of how to use as, and its command line
options. The rest of the chapter is organized into sections containing the following material in
this order:

e Basic elements of an assembler language program.
e Description of the lexical elements (tokens) that make up an as program.
e Rules for expressions.

e Layout of an assembly language program — the rules for constructing statements, and the
elements of each statement.

{ UNIX is 3 trademark of Bell Laboratories.

Revision D of 7 January 1984 ' 1

Assembler Manual Programming Tools

e Discussion on the specifics of the MC68000 machine instructions, instruction mnemonics,
addressing modes, and addressing categories.

e Assembler directives (pseudo-ops) that as supports. Assembler directives do not generate
machine instructions, but instead they direct the assemblers actions, and do jobs such as
reserving space, or generating initialized data.

o Error messages.

e Summary of the MC68000 machine instructions {opcodes), their layout, and the condition
codes that are affected.

e New features of the MC68010 processor which provides virtual memory support.

2. How to Use the Assembler

This discussion assumes that the reader is using as on the UNIX operating system.
The assembler source code of the program should be in a file with a .s suffix. Suppose that
your program is in a file called parts.s. To run the assembler, type the command:

% as parts.s

As runs silently (if there are no errors), and generates a file called a.out.
As also accepts several command line options. These are:
-0 Place the output in the file specified by the name following the -o.

-R Make initialized data segments read only (actually the assembler places them at the end of
the .text area).

- Keep local (compiler generated) symbols that start with the letter L. This is a debugging
feature. If the -L option is omitted, the assembler discards those symbols and does not
include them in the symbol table.

-J Make all jumps to external symbols (jsr and jmp) PC relative rather than long absolute.
This is intended for use when the programmer knows that the program is short. If there
are any externals which are too far away, the loader will complain when the program is
linked.

-d2 This is intended for small stand-alone programs. The assembler makes all program refer-
ences PC relative and all data references short absolute. Note that the -J option does half
this job anyway.

Readers should also consult the UNIX Programmer’s Manual page for the man entry on as.

3. Notation

The notation used in this chapter is a somewhat modified Backus-Naur Form (BNF). A string
of characters on its owu stands for itself, for example:

WIDGET

is an occurrence of the literal string “WIDGET", and:

2 Revision D of 7 January 1984

Programming Tools ‘ Assembler Manual

1983

is an occurrence of the literal constant 1983. An element enclosed in < and > signs is a non-
terminal symbol, and must eventually be defined in terms of some other entities. For example,

< identifier>

stands for the syntactic construct called ‘‘identifier”, which is eventually defined in terms of
basic objects. A syntactic object followed by an ellipsis: '

<thing>...

denotes one or more occurrences of <thing>. Syntactic objects which occur one after the
other, as in:

first thing second thing

simply means an occurrence of first thing followed by asccond thing. Syntactic elements
separated by a vertical bar sign (]), as in: ‘

<letter> | <digit>

means an occurrence of <letter> or <digit> but not both. Brackets and braces define the
order of interpretation. Brackets also indicate that the syntax described by the subexpression
they enclose is optional. That is:

[<thing>]
denotes zero or one occurrences of < thing>, while:
{ < thing one> | < thing two> } < thing three>
denotes a <thing one> or a <thing two>, followed by a <thing three>.

4. Further Reading
Motorola MC68000 18-bit Microprocessor User's Manual.

5. Elements of Assembly Language

This chapter covers the lexical elements which comprise an assembly language program. The
next chapter discusses the rules for expressions and operand formation. Topics covered in this
chapter are:

e Character set which the assembler recognizes,
Rules for identifiers,

Syntax for numeric constants,

Syntax for string constants,

Raules for comments,
e Layout of an assembler source atatement.

An assembler langnage program is ultimately constructed from characters. Characters are com-
bined to make up lezical elements or tokens of the language. Combinations of tokens then form
assembler language statements, and sequences of statements then form an assembler program.

Revision D of 7 January 1984 3

Assembler Manual . - Programming Tools

This section describes the basic lexical elements of aa.

5.1. Character Set Which the Assembler Recognizes

As recognizes the following character set:

The letters A through Z and a through s.

The digsts 0 through 9.

The ASCII graphic characters — the printing characters other than letters and digits.

The ASCII non-graphics: space, tab, carriage-return, and newline (also known as line feed).

5.2. Identifiers

Identifiers are used to tag assembler statements (where they are called labels), as the location
tag for data, and as the symbolic names of constants.

An identifier in an as program is a sequence of from 1 to 255 characters from the set:

Upper case letters A through Z.

Lower case letters a through s.

Digits 0 through 9.

The characters underline (_), period (.), and dollar sign ($).

The first character of an identifier must not be numeric. Other than that restriction, there are
a few other points to note:

All 255 characters of an identifier are significant and are checked in comparisons with other
identifiers.

Upper case letters and lower case letters are considered distinct, so that kit_of parts and
KIT_OF_PARTS are two different identifiers.

Although the period (.} and dollar sign (§) characters can be used to comstruct identifiers,
they are reserved for special purposes (pseudo-ops for instance) and should not appear in
user-defined identifiers.

Ezamples of Identifiers

Grab_Hold Widget Pot_of Message MAXNAME

Revision D of 7 January 1984

-

Programming Tools Assembler Manual

5.3. Numeric Labels

A numeric label consists of a digit 0 to 9 followed by a colon. As in the case of name labels, a
numeric label assigns the current value of the location counter to the symbol. However, several
numeric labels with the same digit may be used within the same assembly. References of the
form .

nb
refer to the first numeric label

n:
backwards from the reference;

nf ‘
symbols refer to the first pumeric label

n:
Jorwards from the reference.

5.4. Local Labels

Local labels are a special form of identifier which are strictly local to a control section. Local
labels provide a convenient means of generating labels for branch instructions and such. Use of
local labels reduces the possibility of multiply-defined labels in a program, and separates entry
point labels from local references, such as the top of a loop. Local iabels cannot be referenced
from outside of the current assembly unit. Local labels are of the form n$ where n is any
integer. Valid local labels include:

1$ 273 304$

5.5. Scope of Labels

The scope of a label is the ‘‘distance” over which it is visible to other parts of the program
which want to reference it. An ordinary label which tags a location in the program or data is
visible enly within the current assembly. An identifier which is designated as an external
identifier via a .globl directive are visible to other assembly units at link time.

Local labels have a scope, or span of reference, which extends between one ordinary label and
the next. Every time an ordinary label is encountered, all previous local labels associated with

the current location counter are discarded, and a new local label scope is created. The following
example illustrates the different scopes of the different kinds of labels:

Revision D of 7 January 1984 5

Assembler Manual Programming Tools

first: addl do,d1 | creates a new local label scope
1008: addqw #1,d3 | first appearance of 1008
bees 100% | branches to the label above
second: andl #0x7f,d4 | 100$ has gone away
1008: cmpw d1,d3 | this is a different 1008
beqs 1008 | branches to the previous instruction
third: movw do,d7 | now 100$ has gone away again
beqgs 100$ | generates an error message

The labels first, second, and third all have a scope which is the entire source file containing
them. The first appearance of the local label 1008 has a scope which extends between firat and
second. The second appearance of the local label 1008 has a scope which extends between
second and third. After the appearance of the label third, the branch to 100$ wlll generate an
error message because that label is no longer defined in this scope.

5.6. Constants

There are two forms of constants available to as users, namely numeric constants and string
constants. All constants are considered absolute quantities when they appear in an expression
(see section 3 for a discussion on absolute and relocatable expressions).

Numeric Constants

As assumes that any token which starts with a digit is a numeric constant. As accepts numeric
quantities in either decimal (base 10), hexadecimal (base 18), or octal (base 8) radices. Numeric
constants can represent quantities up to 32 bits in length.

Decimal numbers consist of between one and ten decimal digits (0 through 9). The range of
decimal numbers is between -2,147,483,648 and 2,147,483,647. Note that you can't have com-
mas in decimal numbers even though they are shown here for readability. Note also that
decimal numbers can't be written with leading zeros, because a number starting with a zero is
taken as an octal constant, as described below.

Hezadecimal constants must start with the notation Ox and can then have between one and
eight hexadecimal digits. The hexadecimal digits consist of the decimal digits 0 through 9 and
the hexadecimal digits a through f or A through F.JAs s

digit 0. There can then be from one to 11 octal digits (0 through 7) in the number. But note

that 11 octal digits is 33 bits, so the largest octal number is 037777777777. The assembler gen-
erates an error message if the decimal digits 8 and 9 appear in octal constants.

8 Revision D of 7 January 1984

-

-

Programming Tools Assembler Manual

5.8. String Constants

A string is a sequence of ASCII characters, enclosed in quote signs ".

Within string constants, the quote sign is represented by a backslash character followed by a
quote sign. The backslash character itself is represented by two backslash characters. Any
other character can be represented by a backslash character followed by one, two, or three octal
digits. The table below shows the octal representation of some of the more common non print-
ing characters.

Character Repreos?:tlaﬁon
Backspace 010
Horizontal Tab 011
Newline (Line-Feed) 012
Form-Feed 014
Carriage-Return 015

5.9. Assembly Location Counter

The assembly location counter is the period character (.). It is colloquially known as dot.
When used in the operand field of any statement, dot represents the address of the first byte of
the statement. Even in assembler directives, dot represents the address of the start of that
assembler directive. For example, if dot appears as the third argument in a .Jong directive, the
value placed at that location is the address of the first location of the directive — dot is not
updated until the next machine instruction or assembler directive. For example:

Ralph: movl .,a0 | load value of Ralph into a0

At the beginning of each assembly pass, the assembler clears the location counter. Normally,
consecutive memory locations are assigned to each byte of generated code. However, the loca-
tion where the code is stored may be changed by a direct assignment altering the location
counter:

. == < ezpression>
This <expression> must not contain any forward references, and must not change from one

pass to another. Storage area may also be reserved be advancing dot. For example, if the
current value of dot is 1000, the direct assignment statement:

Table: o=.4+0x100

reserves 256 bytes (100 hexadecimal) of storage, with the address of the first byte as the value
of Table. The next instruction is stored at address 1100. Also see the .skip assembler directive
for another means of achieving the same effect.

Revision D of 7 January 1984 7

Assembler Manual Programming Tools

The value of dot is always relative to the start of the current control section. For instance:

. = 0x1000

does not set dot to absolute location 0x1000, but to location 0x1000 relative to the start of the
current control section. This practice is not recommended.

6. Expressions

Expressions are combinations of operands (numeric constants and identifiers) and operators,

forming new values. The sections below define the operators which as provides, then gives the -

rules for combining terms into expressions.

6.1. Operators

Identifiers and numeric constants can be combined, via arithmetic operators, to form ezpres-
sions. As provides unary operators and binary operators, described below.

Unary Operators

Operator Function Description
- upary minus. Performs a two’s complement of its following argu-
ment.
- logical negation Performs a one’s complement logical negation of its

following argument.

Binary operators

Operator Function Desceription
+ Addition Arithmetic addition of its arguments.
- Subtraction Arithmetic subtraction of its arguments.
. Multiplication Arithmetic multiplication of its arguments.
/ Division Arithmetic division of its arguments. Note that
division is as is snteger division, which truncates to-
wards zero.

Each operator is assemed to work on a 32 bit number. If the value of a particular term occu-
pies only 8 bits or 16 bits, the short quantity is sign extended into a full 32-bit value.

8 Revision D of 7 January 1984

-

Programming Tools Assembler Manual

6.2. Terms

A term is a component of an expression. A term may be one of the following:

e A numeri¢c constant, whose 32-bit value is used. The assembly location counter, known as
dot, is considered a number in this context.

¢ An identifier.

e An expression or term enclosed in parentheses (). Any quantity enclosed in parentheses is
evaluated before the rest of the expression. This can be used to alter the normal left-to-
right evaluation of expressions (for example, differentiating between a*b+ ¢ and a*(b+ ¢)) or
to apply a unary operator to an entire expression (for example, -(a*b+ c)).

¢ A term preceded by a unary operator. For example, both double_plus_ungood and
"double_plus_ungood are terms. .

Multiple unary operators can be used in a term. For example, ——positive has the same
value as positive.

8.3. Expressions

Expression are combinations of terms joined together by binary operators. An expression is
always evaluated to a 32-bit value.

If the operand only requires a single byte value, (a .byte directive or an addq instruction, for
example), the low order eight bits of the expression are used.

If the operand only requires a single 16-bit word value, (a .word directive or an movem
instraction, for example), the low order 18 bits of the expression are used.

Expressions are evaluated left to right with no operator precedence. Thus
14+ 2+3

evaluates to 9, not 7. Unary operators have precedence over binary operators since they are
considered part of a term, and both terms of a binary operator must be evaluated before the
binary operator can be applied.

A missing expression or term is interpreted as having a value of zero. In this case, an Invalid
ezpression error is generated.

An Invalid Operator error means that a valid end-of-line character or binary operator was not
detected after the assembler processed a term. In particular, this error is generated if an expres-
sion contains a identifier with an illegal character, or if an incorrect comment character was
used.

6.4. Absolute, Relocatable, and External Expressions

When an expression is evaluated, its value is either absolute, relocatable, or external:
An expression is absolute if its value is fixed.
e An expression whose terms are constants is absolute.
o An identifier whose value is a constant via a direct assignment statement is absolute.

Revision D of 7 January 1984 9

Assembler Manual Programnﬁng Tools

o A relocatable expression minus a relocatable term is absolute, where both items belong
to the same program section.

An expression is relocatable if its value is fixed relative to a base address, but will have an offset
value when it is linked, or loaded into memory. All labels of a program defined in relocatable
sections are relocatable terms.

Expressions which contain relocatable terms must only add or subtract constants to their value.
For example, assuming the identifier widget was defined in a relocatable section of the program,
then the following demonstrates the use of relocatable expressions:

widget 1s o simple relocatable term. Its value bears a constant relationship
to the base address of the current control section.

widget+ 5 1o a simple relocatable ezpression. Since the value of widget has a
constant relationship to the base address of the current control sec-
tion, adding a constant to it does not change sts relocatable atatus.

widget+2 Not relocatable. Multiplying a relocatable term by a constant invali-
dates the relocatable statua.

2-widget Not relocatable, since the ezpression cannot be linked by adding
widget’s offsct to it.

widget-blivet Absolute, since the offsets added to widget and blivet cancel each oth-
er out.

An expression is external (or global) if it contains an external identifier not defined in the
current program. With one exception, the same restrictions on expressions containing relocat~
able identifiers apply to expressions containing external identifiers. The exception is that the
ex pression

widget—blivet

is incorrect when both blivet is an external identifier. The reason is that you cannot subtract an
external relocatable expression. In addition, you cannot multiply or divide any relocatable
ex pression.

7. Layout of an Assembler Language Source Program

AR as program consists of a series of statements. Each statement occupies exactly one line.

A line is a sequence of characters with a <newline> character at the end. Blank lines (which
have only whitespace with a <newline>> character at the end) are ignored. The maximum line
length is 255 characters. Continuation lines are not supported in this assembler.

Multiple statements (s~e below) can appear on a line, separated by semicolon characters. But
note that once a comment field of a statement has been started, a semicolon appearing in the
comment is part of the comment, and not a statement separator.

The format of an as assembly language statement is:

10 Revision D of 7 January 1984

.

Programming Tools Assembler Manual

[<label field>) <op-code> [<operand field>] || <comment>]

It is possible to have an assembler language statement which consists of only a label field. It is
also possible to have an assembler language statement which consists of only a comment. Then
as a comnsequence of the above two statements, it is possible to have an assembler language
statement which consists of just a label field followed by a comment field.

The fields of a statement can be separated by spaces (blanks) or tabs. There must be at least
one space or tab separating the op-code field from the operand field, but spaces are unnecessary
elsewhere because the label field is terminated by a colon and the comment field starts with a
vertical bar. Spaces can also appear on either side of operators in operand field expressions.
Spaces and tabs are significant when they appear in a character string (for instance, as the
operand of an .ASCI pseudo-op) or in a character constant. In this case, a space or tab stands
for itself.

7.1. Label Field

A label is an identifier which the programmer may use to tag the location of program and data
objects. The format of a <label field> is:

<identifier>: [<identifier>1]...

If present, a label always occurs first in a statement and must be terminated by a colon:

sticky: | there is a label defined here.

More than one label may appear in the same source statement, each one being terminated by a
colon: -

presson: grab: hold: | there are multiple labels defined here.

A maximum of 10 labels may be defined in a single source statement. The collection of label
definitions in a statement is called the label ficld.

When a label is encountered in the program, the assembler assigns that label the value of the
current location counter. The value of a label may be either absolute or relocatable, If the
current value of the location counter is relocatable, the absolute value of the symbol is assigned
when the program is linked via the UNIX system {d(1) command.

-

7.2. Operation Code Field

The operation code field of an assembly language statement identifies the statement as either a
machine instruction or an assembler directive.

One or more spaces {or tabs) must separate the operation code field from the following operand
field in a statement. Spaces or tabs are unnecessary between the label and operation code fields,
but they are recommended to improve readability of the program.

Revision D of 7 January 1984 : I

Assembler Manual Programming Tools

A machine instruction is indicated by an instruction mnemonic. The assembly language state-
ment is intended to produce a single executable machine instruction. The operation of each
instruction is described in the manufacturer’s user manual. Some conventions used in as for
instruction mnemonics are described in section 4 and a complete list of the instructions is
presented in the appendix.

An assembler directive, or pseudo-op, performs some function during the assembly process. It
does not produce any executable code, but it may assign space in a program for data.

Note that s expects that all instruction mnemonics in the op-code field should be in lower case
only. Use of any upper case letters in instruction mnemonic gives rise to an error message.

The names of register operands must also be in lower case only. This behavior differs from the
case of identifiers, where upper case letters and lower case letters are considered distinct.

7.2.1. Operation Code Size Qualifiers

Many MC68000 machine instructions can operate upon byte (8-bit), word (16-bit), or long word
(82-bit) data. The size which the programmer requires is indicated as part of the instruction
mnemonic. For instance, a movb instruction moves a byte of data, a movw instruction moves
a 16-bit word of data, and a movl instruction moves a 32-bit long word of data. In general,
the default size for data manipulation instructions is word.

Similarly, branch instructions can use a long or short offset to indicate the destination. So the
beq instruction uses a 16-bit offset, whereas the beqs uses a short (8-bit) offset.

Note that this implementation of as provides an extended set of branch instructions which start
with the letter j instead of the letter b. If the programmer uses the j forms, the assembler com-
putes the correct offset size for the instruction.

7.3. Operand Field

The operand field of an assembly language statement supplies the arguments to the machine
instruction or assembler directive.

As makes a distinction between the < operand field> and individual <operands>> in a machine
instruction or assembler directive. Some machine instructions and assembler directives require
two or more arguments, and each of these is referred to as an “operand”.

In general, an operand field consists of zero or more operands, and in all cases, operands are
separated by commas. In other words, the format for an <operand field> is:

[<operand> [, <operand>]...]

The format of the operand field for machine instruction statements is the same for all instruc-
tions, and is described in section 4. The format of the operand field for assembler directives
depends on the directive itself, and is included in the directive’s description in section 5 of this
manual.

Depending upoh the machine instruction or assembler directive, the operand field consists of one
or more operands. The kinds of objects which can form an operand are:

19 Revision D of 7 January 1984

Programming Tools Assembler Manual

e Register operands.
o Expressions.
These forms of operands are described in the subsections following.

7.3.1. Register Operands

Register operands in a machine instruction refer to the machine registers of the MC68000 pro-
cessor. Register operands are:

e Any one of the data registers d0 through d7,
s Any one of the address registers a0 through a7,
e Any one of the special registers. The special registers are:
cc The Condition Code register.
sr The Status Register.
sp The Stack Pointer.
usp The User Stack Pointer.
sfc The Source Function Code register {68010 only).
dfe The Destination Function Code register (68010 only).

Note that register a7 and the stack pointer are the same register. The only place where this is
important is when the supervisor must explicitly use usp to refer to the user stack pointer.

The notation dn refers to any data register, an refers to any address register, and rn means any
register from the data or address registers.

Note that register names must be in lower case; s does not recognize register names in upper
case or a combination of upper case and lower case.

7.3.2. Operand Expressions

Ezpressions define rules for using arithmetic and logical operators to operate upon numeric con-
stants and identifiers to yield new values. The rules for expressions were defined in chapter 3.

7.4. Comment Field

As provides the means for the programmer to place comments in the source code. There are
two ways of representing comments:

A line whose first non-whitespace character is the octothorpe character {#) is considered a com-
ment. This feature is handy for passing assembler code through the C preprocessor. For exam-
ple, these lines are comments:

Revision D of 7 January 1984 13

Assembler Manual Programming Tools

This is a comment line.
And this one is also a comment line.

The other way to introduce a comment is when a comment field appears as a part of a state-
ment. The comment field is indicated by the presence of the vertical bar character (|) after the
rest of the source statement.

The comment field consists of all characters on a source line following and including the com-
ment character. The assembler ignores the rest of the comment field up to the end of the line.
Any character may appear in the comment field, with the obvious exception of the <newline>
character, which starts a new line.

An assembler source line canr consist of just the comment field. For example, the two statements
below are quite acceptable to the assembler:

| This is a comment field.
| So is this.

7.5. Direct Assignment Statements

A direct assignment statement assigns the value of an arbitrary expression to a specified
identifier. The format of a direct assignment statement is:

<identifier> = <ezpression>

Examples of direct assignments are:

vect_size = 4

vectora = OxFFFE
vectorb = vectora-vect_gsize
CRLF = 0x0D0A

Any identifier defined by direct assignment may be redefined later in the program, in which case
its value is the result of the last such statement. This is analogous to the SET operation found
in other assemblers.

A local identifier may be defined by direct assignment, though this doesn’t make much sense.
Register identifiers may not be redefined.

An identifier which has already been used as a label may not be redefined, since this would be
tantamount to redefining the address of a place in the program. In addition, an identifier which
has been defined in a direct assignment statement cannot later be used as a label. Both situa-
tions give rise to an assembler error message.

If the <ezpression> is absolute, the identifier is also absolute, and may be treated as a con-
stant in subsequent expressions. If the <ezpression> is relocatable, however, the <identifier>
is also relocatable, and it is considered to be declared the same program section as the expres-
sion.

If the ezpression contains an external identifier, the identifier defined by the = statement is also
considered external. For example:

14 Revision D of 7 January 1984

-

-

Programming Tools Assembler Manual

.globl X | X s declared as external identifier
foo =X | foo becomes an external identifier

assigns the value of X (zero if it is undefined) to foo and makes foo an external identifier.
External identifiers may be defined by direct assignment.

8. Instructions and Addressing Modes

This chapter describes the conventions used in s to specify instruction mnemonics and address-
ing modes. The information in this chapter is specific to the machine instructions and address-
ing modes of the MC68000 processor.

8.1. Instruction Mnemonics

‘The instruction mnemonics which as uses are based on the mnemonics as described in the
Motorola MC68000 processor manual. As deviates from the Motorola manual in several areas.

Most of the MC68000 instructions can apply to byte, word on long operands. Instead of using a
qualifier of .b, .w, or .l to indicate byte. word, or long as in the Motorola assembler, as places a
suffix after the normal instruction mnemoniec, thereby creating a separate mnemonic to indicate
which length operand was intended.

For example, there are three mnemonics for the or instruction: orb, orw and orl, meaning OR
byte, OR word, and OR long, respectively.

Instruction mnemonics for instructions with unusual opcodes may have additional suffixes.
Thus in addition to the normal add variations, there also exist addgb, addqw and addgql for
the add quick instruction.

Branch instructions come in two flavors, byte (or short) and word. uction appends the suffix s
to the basic mnemonic to specify the short appends the suffix s to the basic mnemonic to
specify the short version of the instruction. For example, beq refers to the word version of the
Branch if Equal instruction, while beqs refers to the short version of that instruction.

8.2. Extended Branch Instruction Mnemonics

In addition to the instructions which explicitly specify the instruction length, as supports
extended branch instructions, whose names are generally constructed by replacing the b with j.
If the operand of the extended branch instruction is a simple address in the current segment,
and the offset to that address is sufficiently small, as automatically generates the corresponding
short branch instruction.

If the offset is too large for a short branch, but small enough for a branch, the corresponding
branch instruction is geperated. If the operand references an external address or is complex (see
next paragraph), the extended branch instruction is implemented either by a jmp or jsr (for
jra or jbsr), or by a conditional branch (with the sense of the conditional inverted) around a

Revision D of 7 January 1984 15

Assembler Manual Programming Tools

jmp for the extended conditional branches.

In this context, a complex address is either an address which specifies other than normal mode
addressing, or relocatable expressions containing more than one relocatable symbol. For
instance, if 8, b and ¢ are symbols in the current segment, the expression a+ b-¢ is relocatable,
but not simple.

Consult appendix A for a complete list of the instruction op-codes.

8.3. Addressing Modes

The following table describes the addressing modes that as recognizes. The notations used in
this table have these meanings:

an: refers to an address register,

dn refers to a data register,

ri refers to either a data or an address register,

d refers to a displacement, which is a constant expression in as,

zzz refers to a constant expression.

Certain instructions, particularly move accept a variety of special registers including:
sp the stack pointer which is equivalent to a7,
sr the status register,

cc the condition codes of the status register,
usp the user mode stack pointer,

pc the program counter.

16 Revision D of 7 January 1984

-

Programming Tools Assembler Manual

Addressing Modes

Mode Notation Ezample
Register an,dn,sp,pe,ce,sr,us movw a3,d2
Register Deferred anQ ' movw 238,42
Postincrement anG+ movw a3Q+ d2
Predecrement anQ- movw a39-.d2
Displacement anQ(d) movw a3G(24),d2
Word Index an0(d, RiW) movw a3@(16, d2:W),d3
Long Index an@(d, R¢L) movw a3€(16, d2:L),d3
Absolute Short zzzW movw 14:W,d2
Absolute Long zzzL movw 14:L,d2
PC Displacement pcO(d) _ movw pcG(20),d3
PC Word Index pcB(d, Ri:W) movw pc@(14, d2:W),d3
PC Long Index pcB(d, R¢L) movw pcO(14, d2:L),d3
Normal foo movw foo,d3
Immediate #Fxxx movw #27+ 3,d3

Normal mode assembles as PC relative if the assembler can determine that this is appropriate,
otherwise it assembles as absolute long

The notation for these addressing modes derived from the Motorola notation with the exception
of the colon instead of period in index mode.

The Motorola manual presents different mnemonics (and in fact different forms of the actual
machine instructions) for instructions that use the literal effective address as data instead of
using the contents of the eflective address. For instance, the Motorola manual uses the
mnemonic adda for add addrcss. as does not make these distinctions because it can determine
the type of the operand from the form of the operand. Thus an instruction of the form:

avenue: .word 0

add]l favenue,a0
assembles to the add address instruction because as can see that avenue is an address.

right_now: == 40000
adda fright_now,a0
assembles to an add smmediate instruction because as can see that right_now is a constant.

Because of this determination of operand forms, some of the mnemonics listed in the Motorola
. manual are missing mnemonics from the set of mnemonics that as recognizes.

The MC68000 is restrictive in that certain classes of instructions only accept limited subsets of
the address modes above. For example, the add address instruction does not accept a data
register as a destination.

as tries to check all these restrictions and generates the sllegal operand error code for instruc-
tions that do not satisfy the address mode restrictions.

The next section below describes how the address modes are grouped into address categories.

Revision D of 7 January 1984 17

Assembler Manual Programming Tools

8.4. Addressing Categories

The MC68000 groups the effective address modes into categories derived from the manner in @ o
which they are used to address operands. Note the distinction between address modes and

address categories. There are 14 addressing modes, and they fall into one or more of four

addressing categorics. The addressing categories are defined here, followed by a table which

summarizes the grouping of the addressing modes into the categories.

Data " means that the effective address mode is used to refer to data operands such as a d
register or immediate data.

Memory means that the effective address mode can refer to memory operands. Examples -
include all the a-register indirect address modes and all the absolute address modes.

Alterable means that the effective address mode refers to operands which are writeable (alter-
able). This category takes in every addressing mode except the PC-relative address-
ing modes and the immediate address mode. *

Control means that the effective address mode refers to memory operands without any expli-

o cit size specification. _
Some addressing categories can be combined. So the Motorola MC68000 manual mentions

things like Data Alterable Addressing Mode to mean that the particular instruction can use the
data addressing mode, or the alterable addressing mode, or either of those modes. '

-

18 Revision D of 7 January 1984

Programming Tools Assembler Manual

Table 1: Addressing Categories

Addressing Categories
Adg;;zfny A?;ﬂ"::i" Data Memory Control Alterable

Register Direct an, dn, sp, pe,

cc, sr, Usp X X
A Register Indirect anQ X X X X
A.Register Indirect anQ0+4 X X X
with Post Increment
A_Register Indirect an0- X X X
with Pre Decrement
o w0 x x x X
A.Register Indirect anQ(dri:W) X X X X
with Word Index
it Long ndex wallEl) - x x X 3
Absolute Short xxx:W X X X X
Absolute Long xxx:L X X X X
PC Relative pcQ(d) X X X
PC Relative with Word Index pc@(d;ri:W) X X X
PC Relative with Long Index pc@®(dri:L) X X X
Immediate Data fnnn X X

9. Assembler Directives

Assembler directives are also known as paeudo operations or pscudo-ops. Pseudo-ops are used to
direct the actions of the assembler, and to achieve effects such as generating data. The follow-
ing pseudo-ops are available in g

Revision D of 7 January 1984 19

Assembler Manual Programming Tools

=

Assembler Directives
FPseudo . s
Operation Description
.ascil Generates a sequence of ASCII characters.
.asciz Generates a sequence of ASCIl characters, terminated by a zero byte.
.byte Generates a sequence of bytes in data storage.
.word Generates a sequence of words in data storage.
Jong Generates a sequence of long words in data storage.
text Specifies that generated code be placed in the tezt control section until further notice.
.data Specifies that generated code be placed in the data control section until further no-
tice.
.datal Specifies that generated code be placed in the datal control section until further no-
: tice.
.data2 Specifies that generated code be placed in the data? control section until further no-
tice.
.bss Specifies that space will be reserved in the bas control section until further notice.
.globl Declares an identifier as global (external).
.comm Declares the name and size of a common area.
Jcomm reserves a specified amount of space in the bss area.
.skip advances the location counter by a specified amount.
.even forces location counter to next word (even byte) boundary.
stabz Builds special symbol table entries. These directives are here for the benefit of com-
pilers which generate information for the symbolic debug utility.

These assembler directives are discussed in detail in the sections following.

9.1. .ascii — Generate Sequence of Character Data

The .ascii directive translates character strings into their ASCII equivalents for use in the source
program. The format of the .ascii directive is:

[<label>:] .ascii " <character string>"

< character string>
contains any character or escape sequence which can appear in a character string.
Obviously, a newline must not appear within the character string. A newline can be
represented by the escape sequence \012.

20

Revision D of 7 January 1984

O

Programming Tools Assembler Manual

The examples following illustrate the use of the .ascii statement:

Octal Code Generated: Statement:
150 145 154 154 157 040 .ascti " hello there”
164 150 145 162 145
127 141 162 156 151 156 .ascii ” Warning-\007\007 \012"
147 055 007 007 040 012
141 142 143 144 145 146 .ascii "abedefg”
147
9.2. .asciz — Generate Zero Terminated Sequence of Character

Data

The .ascis directive is equivalent to the .ascis directive with a zero byte automatically inserted
as the final character of the string. This feature is indented for generating strings which C pro-
grams can use.

The examples following illustrate the use of the .ascis statement:

Octal Code Generated: Statement:

110 145 154 154 157 040 .asciz "Hello World!”
127 157 162 144 041 000

124 150 105 040 107 162 .asciz "The Great PROMpkin strikes again!”
145 141 164 040 120 122

117 115 160 153 151 158

040 163 164 162 151 153

145 163 040 141 147 141

151 156 041 000

9.3. .byte, .word, .long — Generate Data

The .byte, .word and .long directives reserve bytes, words, and long words, and initializes
them with specified values.

The format of the various forms of data generation statements is:
[<label>:] .byte |[<eapression>][, <ezpression>]...

[<label>:] .word [<ezpression>]|, <ezpression>]...

[<label>:] .long [<eczpression>][, <ezpression>]...

Revision D of 7 January 1984 21

Assembler Manual Programming Tools

The .byte directive reserves one byte (8 bits) for each expression in the operand field, and ini-
tializes the byte to the low-order 8 bits of the corresponding expression.

The .word directive reserves one word (16 bits) for each expression in the operand field, and
initializes the word to the low-order 18 bits of the corresponding expression.

The .long directive reserves one long word (32 bits) for each expression in the operand field,
and initializes the long word to the low-order 32 bits of the corresponding expression.

Multiple expressions can appear in the operand field of the .byte, .word, or .long directives.
Multiple expressions must be separated by commas.

9.4. .text, .data, .bss — Switch Location Counter

These statements change the “control section” where assembled code will be loaded.

As (and the UNIX system linker) views programs as divided into three distinct sections or
address spaces:

tezt is the address space where the executable machine instructions are placed.

data is the address space where initialized data is placed. The assembler actually knows
about three data areas, namely, data, datel, and data2. The second and third data
areas are mainly for the benefit of the C compiler and are of minimal interest to the
assembly language programmer.
If the -R option is coded on the as command line, it means that the initialized data
should be considered read only. It is actually placed at the end of the tezt area.

bas is the address space where the uninitialized data areas are placed. Also see the
Jcomm directive described below.

For historical reasons, the different areas are frequently referred to as ‘“‘control sections” (csects
for short).

"These sections are equivalent as far as as is concerned with the exception that no instructions or
data are generated for the bss section — only its size is computed and its symbol values are out-
put.

During the first pass of the assembly, as maintains a separate location counter for each section.
Consider the following code fragments:

.text | place the next instruction in the tezt section
code: movw di,d2

.data | now generate some data in the data section
grab: Jong 27 '

text | now revert to the tezt section
more;: addw d2,d1

.data | and now back to the data section
hold: .byte 4

During the first pass, as creates the intermediate output in two sepétate chunks: one for the tezt
section and one for the data section.

22 ' Revision D of 7 January 1984

O

Programming Tools Assembler Manual

In the tezt section, code immediately precedes more; in the data section, grab immediately pre-
cedes hold. At the end of the first pass, as rearranges all the addresses so that the sections are
sent to the cutput file in the order: tezt, data and baa.

The resulting output file is an executable i unage file with all addresses correctly resolved, with
the exception of undefined .globl’s and .comm’s.

For more information on the format of the assembler’s output ﬁle, consult the UNIX Program-
mers manual for the entry on a.out(5).

9.5. .skip — Advance the Location Counter
The .skip directive reserves storage area by advancing the current location counter a specified
amount. The format of the .skip directive is:

skip <size>

where <size>> is the number of bytes by which the location counter should be advanced. The
skip directive is equivalent to performing direct assignment on the location counter. For
instance, a .ekip directive like this:

.skip 1000 _
is equivalent to the direct assignment statement:
» == , -+ 1000

9.6. .lcomm — Reserve Space in .bss Area
The .Jcomm directive is a lazy way to get a specific amount of space reserved in the .bss area.
The format of the .lcomm directive is:

Jeomm < name>>,<size>

where <name> is the name of the area to reserve, and <size>> is the number of bytes to
reserve. The .lcomm directive specifically reserves the space in the .bss area, regardless of
which location counter is currently in effect.

A .lecomm directive like this:
Jeomm lower_forty,1200
is equivalent to these directives:

.bas | switch to .bss area
lower_forty: .skip size
revert to previous control section

Revision D of 7 January 1984 23

Assembler Manual Programming Tools

9.7. .globl — Designate an External Identifier

A program may be assembled in separate modules, and then linked together to form a single
executable unit. See the ld(1) command in the UNIX Programmer’s Manual.

External identifiers are defined in each of these separate modules. An identifier which is declared
(given a value) in one module may be referenced in another module by declaring the identifiers
as external in both modules.

There are two forms of external identifiers, namely, those deﬂned with the .globl and those
defined with the .comm directive. The .comm directive is described in the next section.

External symbols are declared with the .glob] assembler directive. The format is:
.globl <L symbol> |, <aymbol>]...

For example, the following statements declare the array TABLE and the routine SRCH as
external symbols:

_ .globl TABLE,SRCH
TABLE: .word 0,0,0,0,0
SRCH: movw TABLE,d0

ete...

External symbols are only declared to the assembler. They must be defined (that is, given a
value) in some other statement by one of the methods mentioned above. They need not be
defined in the current program; in this case they are flagged as ‘“undefined” in the symbol table.
If they are undefined, they are considered to have a value of zero in expressions.

9.8. .comm — Define the Name and Size of a Common Area

The .comm directive declares the name and size of common areas, for compatibility with FOR-
TRAN and other languages which use common. The format of the .comm statement is:

comm < name>, <constant ezpression>

where name is the name of the common area, and constant ezpression is the size of the common
area.The .comm directive implicitly declares the identifier name as an external identifier.

as does not allocate storage for common symbols; this task is left to the linker. The linker com-
putes the maximum declared size of each common symbol (which may appear in several load
modules), allocates storage for it in the final bss section, and resolves linkages. I, however,
<name> appears as a global symbol (label) in any module of the program, all references to
< name> are linked to it, and no additional spaces is allocated in the .bss area.

9.9. .even — Force Location Counter to Even Byte Boundary

The .even directive advances the location counter to the next even byte boundary, if its
current value is odd. This directive is necessary because word and long data values must lie on
even byte boundaries, and also because machine instructions must start om even byte

24 Revision D of 7 January 1984

-

Programming Tools Assembler Manual

boundaries.

10. Error Codes
Usage Errors

Unknown option ‘2’ ignored
As does not recognize the option 2 Valid options are:

-0 Place the output in the file specified by the name following the -o.
- =R Make initialized data segments read only.
- Keep local (compiler generated) symbols that start with the letter L.

-J Make all jumps to external symbols (jsr and jmp) PC relative rather than long abso- |
late,

-d2 Make all program references PC relative and all data references short absolute.

Cannot open source file
The assembler cannot open a specified source file. Check the spelling, ensure that the path-
name supplied is correct, or check that you have read permission on that file.

Too many file names given
The assembler can’t cope with the number of files given. Break the job into smaller stages.

Cannot open output file
The specified output file cannot be created. Check that the permissions allow opening this
file.

Assembler Error Messages

If as detects any errors during the assembly process, it prints out a message of the form:
as: error (<line_no>): <error_code>

Error messages is sent to the Standard Error file. Here is a list of as error codes, and their pos-
sible causes.

Invalid Character
An unexpected character was encountered in the program text.

Multiply defined symbol
® An identifier appears twice as a label.
e An attempt to redefine a label using an == (direct assignment) statement.

¢ An attempt to use, as a label, an identifier which was previously defined in an == (direct
assignment) statement.

Revision D of 7 January 1984 25

Assembler Manual Programming Tools

Symbol storage ezceeded
No more room is left in the assembler's symbol table. Cut the program into smaller por-

tions; assemble portions of the program separately, then bind them together using the
linker.

Out of strings space
No more room is left in the assembler’s internal string table. Cut the program into smaller
portions; assemble portions of the program separately, then bind them together using the

linker.

Stab storage ezceeded
No more room is left in the assembler’s symbol table for debug information. Cut the pro-
gram into smaller portions; assemble portions of the program separately, then bind them
together using the linker.

Invalid Constant
An invalid digit was encountered in a number. For example, using a decimal digit 8 or 9 in

an octal number. Also happens when an out-of-range constant operand is found in an
instruction — for example:

addq #200,d0
asll #12,d0

Invalid Term
The expression evaluator could not find a valid term: symbol, constant or [<ezpression>).

An invalid prefix to a number or a bad symbol name in an operand generates this message.

Invalid Operator
Check the operand field for a bad operator. The operators that ss recognizes are plus (+),

minus (-), negate or one’s complement (~), multiply (*), and divide (/).

Non-relocatable ezpression

o If an expression contains a relocatable symbol (a label, for instance), the only operations
that can be applied to it are the addition of absolute expressions or the subtraction of
another relocatable symbol (which produces an absolute result).

e This message also appears when a reference is made to a local label which is undefined.

Invalid operand
The operand used is not consistent with the instruction used - for example:

addgb #1,a5

is an invalid combination of instruction and operand. Check the instruction set descriptions
for valid combinations of instructions and operands.

Invalid symbol
If an operand that should be a symbol is not - for example:

26 Revision D of 7 January 1984

Programming Tools Assembler Manual

.globl 3

because the constant 3 is not a symbol.

Invalid assignment
An attempt was made to redefine a label with an = statement.

Too many labels
More than 10 labels appeared on a single siatement.

Invalid op-code
The assembler did not recognize an instruction mnemonic. Probably a misspelling.

Invalid string
An invalid string was encountered in an .ascii or .ascis directive.

e Make sure the string is enclosed in double quotes.

¢ Remember that you must use the sequence \” to represent a double quote inside the
string.

Wrong number of operands _
Check the appendix containing the operation codes list for the correct number of operands
for the current instruction.

Line teo long
A statement was found which has more than 255 characters before the newline.

Invalid register ezpression
A register name was found where one should not appear - for example:

add #d0,_there

Offaet too large _
The instruction is a relative addressing instruction and the displacement between this
instruction and the label specified is too large for the address field of the instruction.

Odd address
The previous instruction or pseudo-op required an odd number of bytes and this instruction
requires word alignment. This error can only follow an .ascii, an .ascis, or a .byte
pseudo-operation.

e Use a .even directive to ensure that the location counter is forced to a 16-bit boundary.

Undefined L-symbol
This is a warning message. A symbol beginning with the letter “L" was used but not
defined. It is treated as an external symbol. Compiler generated labels usually start with
the letter “L" and should be defined in this assembly. The absence of such a definition usu-
ally indicates a compiler code generation error.

Revision D of 7 January 1984 97

Assembler Manual ' Programming Tools

Appendix A. List of AS Opcodes

This appendix is a list of the instruction mnemonics, grouped into logical categories. @
Each operation code describes the following things:

e The mnemonics for the instruction,

e The generic name for the instruction,

o The assembler syntax and the variations on the instruction,

¢ The condition codes that this instruction afects.

The syntax for as machine instructions differs somewhat from the instruction layouts and -
categories shown in the Motorola MC638000 manual. For example, as provides a single set of
mnemonics for add (add binary), adda (add address), and addi (add immediate). In general, as
sclects the appropriate instruction from the form of the operands.

Here is a brief explanation of the notations used below.

e An instruction of the form addz, when describing the assembler syntax, means that the
instruction is coded as addb or addw or addl, etcetera.

An operand field of an means any A register.
An operand field of dn means any D register.
An operand field of rn means any A or D register.

An operand field of ea means an effective address designated by one of the permissible
addressing modes for the MC68000. Consult the Motorola MC88000 manual for details of
the allowed addressing modes for each instruction.

e An operand field of ## data means an immediate operand.

e Other special registers such as cc (condition code register) and sr (status register) are O
specifically called out where appropriate.

o The condition code register has these flags, with the following meanings.
N Set if the most significant bit of the result is set. Cleared otherwise.
Z Set if the result is zero. Cleared otherwise. ‘
V Set if there was an arithmetic overflow. Cleared otherwise.
C

Set if a carry is generated (for addition) or a borrow is generated (for a subtraction) out
of the most significant bit of the operand. Cleared otherwise.

X This condition code is transparent to data movement instructions. When it is affected it
is set the same as the C (carry) condition.

o The notations under condition codes in the tables below have these meanings:
*+ set according to the result of the instruction.
- this instruction does not affect this condition code.
0 this instruction clears this condition code.
1 this instruction sets this condition code.
U this condition code is undefined after the instruction.
’

this condition code is set according to the status register pulled off the stack, or accord-
ing to the immediate operand.

-

28 Revision D of 7 January 1984

Programming Tools Assembler Manua!
Double Operand Instructions
. . Assembler Condition
Mnemonice Operation Syntaz Codes
X N Z V C
w
addb addz eadn
addw add binary addzs dn,ea L I B I
addi addz fdataea
andb andz esdn
andw Jogical and andz dn,ea LI T
and} andz ¢tdata,cn
cmpb cmpz eadn
cmpw arithmetic compare - & & s 8
empl cmpz #dataea
eorb eorz dn,es
eorw . . eors #dataea
ol logical exclusive or corb fdatace - * &« 0 0
eorw fidataser
movb movs eaea
zz:lw move data movl i datadn - = +« 0 0
orb orz eadn
orw orz dnyes
inclusive or or ¥dataes - & s 0 0
orl orb {tdatacc
orw #dataer
subb subz eadn
subw arithmetic subtract subz dn,eca LI A I
subl subz #data,ca

Revision D of 7 January 1984

29

Assembler Manual Programming Tools
Single Operand Instructions
. . Assembler Condition

Mnemonics Operation Syntaz Codes

X N Z VvV C

e e T e e ————————

clrb
clrw clear an operand clrz es - 0 1 0 ©
clrl
neghb
negw negate binary negs e¢a + & s s 3
negl
negxb
negxXw negate binary withextend mnegxz es ¢ s ¢ & 3
negxl
notb
notw logical complement notz ea - s + 0 0
notl
st set all ones st eoa e o e e =
sf set all zeros of eca - o = = =
shi set high shi ea - e = e -
sls set lower or same sls esa - e o e =
scc set carry clear sce ea e« e o o =
scs set carry set scs es .- e . - -
sne set not equal sne ca - e - e =
seq set equal seq ea - e - e -
sve set no overflow sve ead « e« o e
svs set on overflow svs e¢a - e = e =
spl set plus spl ea « = = e =
smi set minus smi ea e e o e =
sge set greater or equal sge eca - = e = =
slt set less than slt ea - - e = .
sgt set greater than sgt es e . - - =
sle set less than or equal sle ea - = e e =
tas test operand then set tas ea - % & 0 0
tstb
tstw test operand tstz ea - + s 0 O
tstl

30

Revision D of 7 January 1984

-

-

Revision D of 7 January 1984

Programming Tools Assembler Manual
O Branch Instructions
. . Assembler Condstion
Mnemonics Operation Syntaz Codes
X N Z V C

bee '

bees branch carry clear beez es - e e e .

g:s branch carry set besz ee - e = e e

:::s branch on equal beqz ea - -+~ - .

bge b

bges ranch greater or equal bgez ea s e e e .

ll:gs branch greater than bgtz eo S

:::’ branch higher bhiz ea = s = e e

ble b

bles ranch less than or equal blex ea S

bls

blas branch lower or same blsz es - e e e .
O ' :}:ﬂ branch less than bltz. eo S

:::s branch minus bmiz ea S -

:::s branch not equal bnez ea - e = e =

bpl branch positi bpt

bpls ranch positive plz ea S L T

:::9 branch always braz ea I

::; subroutine branch bsrz ea - e e =

::zs branch overflow clear bvez es S

::s branch overflow set bvsz ea - - - - .

31

=

Assembler Manual Programming Tools
Test Conditions, Decrement and Dranch
M . Operation Aassembler Condition
nemonics P Syﬂt” Cadea
X N Z Vv ¢C
dbee Decrement & Branch dbee dnlabel .. L.
on Carry Clear
dbes Decrement & Branch dbes dndabel
on Carry Set
Decrement & Branch ’
dbeq on Equal dbeq dn,label - e e e -
dbf Decrement & Branch dbf dn,label Ce ...
on False
Decrement & Branch
dbge on Greater Than or Equal dbge dnlabel - T
Decrement & Branch
dbgt on Greater Than dbgt dn,label - s ="
dbhi Decrement & Branch dbhi dnfebd - - - - -
on High
Decrement & Branch
dble on Less Than or Equal dble dn,label ot e
dbls Decrement & Branch dbls dn,label .. L.
on Low or Same
dblt Decrement & Branch dblt dn,label . e e e
on Less Than
dbmi Decrement & Branch dbmi dn,label . e e .
on Minus
Decrement & Branch
dbne on Not Equal dbne dn,label S T T
" Decrement & Branch
dbpl on Plus dbpl dn,label - e e e -
Decrement & Branch
dbra Alwags (same as dbf) dbra dn,label - e = = =
dbt Decrement & Branch dbt dn, !ﬁbd . .
on True
dbve Decrement & Branch dbve dn,label .. . L.
on Overflow Clear
Decrement & Branch
dbvs on Overflow Set dbvs dn,label - - - ="
32 Revision D of 7 January 1984

-

Programming Tools Assembler Manual
Lztended Branch Instructions
_ . . Assembler Condition
Mnemonsies Operation Syniaz Codes
N Z V
jee jump carry clear jee ea - - -
jes jump on carry jcs ea - - -
jeq jump on equal jeq o - - -
ige jump greater or equal jge ea - - -
igt jump greater than jgt ea - - -
jhi jump higher jhi ea - - -
ile jump less than or equal jle ea - - -
jls jump lower or same jls ea - - -
it jump less than jit ea - - .
jmi jump minus jmi ea - - -
jne jump not equal jne ea - - -
jpl jump positive jpl es - - -
jra jump always jra es - - -
jbsr jump to subroutine jbsr ea - - -
jve jump no overflow jve es - - -
jvs jump on overflow jvs ea - = -

Revision D of 7 January 1984

33

Assembler Manual Programming Tools

Shift Instructions
M . Overation Assembler Condition @
nemontcs L4 Syntaz Codes

X N 2 Vv ¢C

aslb asls dzdy
aslw arithmetic shift left aslz ftdatady L
ash : aslx ea
asrb asrz dzdy
asrw arithmetic shift right asrz #datady s &+ 3 3 s
asrl asrz es
Islb Iblz dzdy
Islw logical shift left Islz #datady + &+ 3 0
Isll Islz ea
Isrb lsrz dzdy
Isrw logical shift right Isrz ftdatedy s+ & = 0
lsrl Isrz ea
rolb rolz dzdy
rolw rotate left rolz {tdate,dy 0 + s 0 =
roll rolz ea
rorb rorz dzdy
rorw rotate right rorz ftdatady 0 = =+ (0 =
rorl rorz ca
roxlb roxlz dzdy @
roxlw rotate left with extend roxlz ftdatady s = &+ 0 =
roxl! roxlz ea
roxrb roxrz dzdy
rOXIrw rotate right with extend roxrz #datady =+ + s+ 0 »
roxrl TOXrz e€a

-

34 Revision D of 7 January 1984

Programming Tools Assembler Manual
Mscellaneous Classes
‘ . . Assembler Condition
Mnemonics Operation Syntaz Codes
' X N Z V C
add decimal abed dy, &z
abed with extend v + v
abed ayQ-,270-
addqb
addqgw add quick addqz ¥ dataca S T
addql
addxb addxz dydsz
addxw add extended s
addxl addxz ay0-,320-
. bchg dn,en
behg test a bit and change behg #dats,ca - & .
. belr dn,ea
belr test a bit and clear belr fdataca - % .
. bset dn,ecs
bset test a bit and set beet #dats,ce - % .
. btst dn,ea
btst test a bit bst #dataea - .
cmpmb
cmpmw compare memory cmpmsz ayG+ A0+ T
cmpml
chk check register chk eadn « U U
against bounds %
divs signed divide divs eadn * % %
divu unsigned divide divs eadn LI
exg exchange registers exg rzry - e .
:::T sign extend ext dn *« % 0
jmp jump jmp ea - -
jsr jump to subroutine st ea - - -
lea load effective addreas lea ea,an - - -
link link and allocate link angfdisp - - -

Revision D of 7 January 1984

35

~

Assembler Mapual Programming Tools
Miscellaneous Classes, continued
M . Operati Assembler Condition
nemonics peration Syntez Codes
X N Z Vv C
m
moveml altipl sters movemz yfmask,ca ... L.
movemw move multiple regist movemz ea,ffmask
movepl . movepz dn,anG(d) L L.
movepw move peripheral movepz dn,anG(d) .
moveq move quick moveq #}datedn - + 0 0
muls signed multiply muls eadn 0 0 s =+ 0
mulu unsigned multiply mule eadn 0 0 =+ =+ O
nbed negate decimal with extend nbed ea s U =+ U
nop no operation nop - - - - -
pea push effective address pea e¢s - e e e
reset reset machine reset - = = e .
rte return from exception rte r r rr 1
rtr return and restore codes rtr r r *r 1
rts return from subroutine ris - e = - =
sbed subtract decimal with extend °0cd duds ¢ U + U
sbcd ay8-,a70-

stop halt machine stop #az2z r v+ r t*r 1
subgb
subgqw subtract quick subqz ¥ data,ca . I R T T)
subgl
subxb subxz dydz -
subxw subtract extended & & % % &
subxl subxz ay0-,a20-
swap swap register halves swap dn I I
trap trap trap ffvector - e e e =
trapv trap on overflow trapv - e = e -
unlk unlink unlk an - & = e =

B. MC68010 Extensions

The Motorola MC68010 processor has some additional instructions and some extensions to
existing instructions. These are documented here. Here is a brief summary of the new features

of the MC88010.
- o When the processor takes a bus error or address error exception, it saves 29 words on top of

the system stack. The software must be cognizant of whether to pop 29 words or four
words on executing an RTE instruction.

¢ A Vector Base Register has been added so that the exception/trap vectors can be located
anywhere in supervisor space. The only time that the startup vectors are read from absolute
location O is on processor reset.

38

Revision D of 7 January 1984

Programming Tools Assembler Manual

o Two new 3-bit registers have been added to provide supervisor access to alternate address
spaces. The Source Function Code register (SFC) and the Destination Function Code regis-
ter (DFC) are used in conjunction with the Move to Address Space (movs) instruction to
control which address spaces is selected for the move.

e There is a new instruction — MOVC — which stands for MOVE to/from Control Register.

¢ A MOVE FROM CCR instruction has been added so that user programs can move the con-
dition code register to a specified destination.

o The MOVE FROM STATUS REGISTER instruction is now privileged.

e A new instruction — MOVS — which stands for MOVE to/from Address Space has been
added.

e The RTE instruction has been enhanced so that the instruction knows about different stack
layouts, and by the addition of a field which gives control over the number of words added
to the stack pointer when the RTE instruction is executed.

¢ The RTS instruction has been enhanced by the addition of a field specifying a number which
should be added to the stack pointer after the program counter has been pulled off the
stack. This means that a subroutine can automatically get its arguments popped off the
stack when an RTS instruction is executed.

MOVC — Move To or From Control Register
The MOVC instruction moves data between an address or data register and the control register.
The format of the MOVC instruction is:

MOVC RnCr
MOVC CrRn

The specified general register is copied to the specified control register, or vice versa. 32 bits are
always transferred, even when the control register has fewer than 32 bits. Unused bits always
read out as zeros.

MOVC is a privileged instruction.
MOVC does not affect any condition codes.
The layout of the MOVC instruction is:

15 14 13 12 1 10 9 8 7 6 & 4 3 2 1 0

0 1 0 o 1 1 1jlojol1]1 l 1 I 11ol11]dr
A Register]
D Number Control Register

The fields in the instruction have the following meanings:
dr field Specifies the direction of the data transfer:

0 Transfer is from Cr to Rn.

1 Transfer is from Rn to Cr.

A/D Field Specifies whether Rn is an address or a data register:
0 Rnis a data register.

Revision D of 7 January 1984 37

Assembler Manual Programming Tools

1 Rnis an address register.

Register Field
Specifies the number of the address or data register involved in the transfer.

Control Register
Specifies the number of the control register involved in the transfer. The only con-
trol register numbers defined are:

-

MC88010 Control Register Codes

Code Name Function
B ——— |
0x000 SFC Source Function Code Register for the MOVS es to Rn instruc-

tion.

0x000 DFC Destination Function Code Register for the MOVS Rnto ea
instruction

0x000 USP User Stack Pointer.

0x000 VBR Base Register for Exception Vector Table.

Any other numbers appearing in the control register field generate an illegal instruction excep-
tion.

a8 Revision D of 7 January 1984

-

-

Programming Tools Assembler Manual

Move From The Condition Code Register

This is a new instruction in the MC688010. The eflect of moving the contents of the condition
code register in the MC88000 was done via the Move from Status Register instruction. In the
MCe88010, the Move from Status Register instruction has been made privileged and the new
Move from Condition Code Register added so that a user program can read the condition codes.

The format of the Move from Condition Code Register instruction is:
movw cc,eq

A word composed of a high order byte of zeros, and the low order byte of the Status Register is

written to the destination location specified by ea. This is a word only sized instruction.

Move from Condition Code Register does not affect any condition codes.

The layout of the Move from Condition Code Register instruction is:

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

01 ojo0jo |0 [|1j0}{1¢{1 Effective Address

The fields in the instruction have the following meanings:

Effective Address :
Specifies the destination location where the Condition Code Register should be
transferred. Only Data Alterable addressing modes are allowed in this instruction.

Revision D of 7 January 1984 a9

Assembler Manual Programming Tools

Move From The Status Register

The effect of moving the contents of the condition code register in the MC88000 was done via
the Move from Status Register instruction. In the MC688010, the Move from Status Register
instruction has been made privileged.

The format of the Move from Status Register instruction is:

movw sr,ca

The contents of the Status Register is written to the destination location specified by ea. This
is a word only sized instruction.

Move from Status Register is a privileged instruction.
Move from Status Register does not affect any condition codes.
The layout of the Move from Status Register instruction is:

15 14 13 12 1 10 9 8 7 6 6 4 3 2 1 O
0 1 0 0 0 ojojoj1]t Effective Address

The fields in the instruction have the following meanings:

Effective Address
Specifies the destination location where the Status Register should be transferred.
Only Data Alterable addressing modes are allowed in this instruction.

40 Revision D of 7 January 1984

-

-

-

Programming Tools Assembler Manual

Move To/From Address Space

Move to or from Address Space moves a byte, word, or long word operand from a data or
address register to an alternate address space, or moves a byte, word, or long word operand
from a location in an alternate address space to a specified data or address register.

The format of the Move to/from Address Space instruction is:
movsb Rn,ea

movsw

movsl e¢sRn

The address space involved in the transfer is determined by the Source Function Code (SFC)
register (for 2 move from address space) and is determined by the Destination Function Code
(DFC) register (for a move to address space).

Move toffrom Address Space is a privileged instruction.
Move to/from Address Space does not affect any condition codes.
The layout of the Move to/from Address Space instruction is:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
0]0jo0 |1 1 |1]|0} Site Effective Address

o»|e

Register dr Unused

Effective Address Extension, if any

The fields in the instruction have the following meanings:
Size Field Specifies the size of the operation:

00 byte operation.

01 word operation.

10 long operation.

Effective Address
Specifies the source or destination location within the alternate address space. Only
Memory Alterable addressing modes are allowed in this instruction.

Register Field
Specifies the number of the address or data register involved in the transfer.

A/D Field Specifies whether Rn is an address or a data register:
0 Rnis a data register.
1 Rnis an address register.
dr field Specifies the direction of the data transfer:
0 Transfer is from effective address location within source address-space to Rn.
1 Transfer is from Rn to effective address location within destination address-space.

Revision D of 7 January 1984 41

Assembler Manual Programming Tools

Return From Exception
Return from Exception is used when returning to a previous context after an interrupt or a
trap has been processed.

The Status Register and the Program Counter are pulled from the system stack, and they
overwrite the previous Status Register and Program Counter. The Vector Offset word is also
pulled from the stack, and is examined to determine how much more information to restore.

The format of the Move to/from Address Space instruction is simply:
rte

The address space involved in the transfer is determined by the Source Function Code (SFC)

register (for a move from address space) and is determined by the Destination Function Code
(DFC) register (for a move to address space).

Move to/from Address Space is a privileged instruction.

All condition codes may be affected by the contents of the Status Register/Condition Code
Register pulled off the stack.

The layout of the Move to/from Address Space instruction is:
15 14 13 12 11 10 ¢ 8 7 86 5 4 3 2 1 0
0 1 0 0 1 1 1{0{o0j111|31]O0]O¢}{1 |1

The Stack Format Field lies within the Vector Offset Word on the stack. The Vector Offset
Word has the following layout:

15 14 13 12 1 10 9 8 7T 6 5§ 4 3 2 1 o
Format 0 0 Vector Offset

The Stack Format Field has the following meanings:

Value Format Description
w

0000 Short Format Remove only four
words from the top of
the stack.

1000 Long Format Remove 29 words from
the top of the stack.

Anything The processor takes a
Else Bad Format Stack Format Error
Exception.

49 Revision D of 7 January 1984

-

-

Programming Tools Assembler Manual

Return From Subroutine

Return from Subroutine is used when returning to a previous place in a program after executing
the body of a subroutine. The MC68010 has enhanced the operation of the RTS instruction to
specify a value to add to the stack pointer after the Program Counter is pulled from the stack.

The Program Counter is pulled from the stack (either user or system), and it overwrites the pre-
vious Program Counter. '

The format of the Return from Subroutine instruction is:

RTS

RTS +#n
The Return from Subroutine instruction does not affect any condition codes.
The layout of the Return from Subroutine instruction is: _

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
oj1]ojo |11]1jojoj1]|1}j1]oj1jo]d
16-bit displacement iff d =0 '

o

The fields in the instruction have the following meanings:

d Field Specifies whether the displacement field should be added to t.he_ stack pointer:
0 16-bit sign-extended displacement is added to the stack pointer.
1 No displacement is added to the stack pointer.

Revision D of 7 January 1984 43

Part Number 800-1112-01
Revision: C of 7 January 1984
For: Sun System Release 1.1

Editing and Text Processing

on the Sun Workstation

Sun Microsystems, Inc.
2550 Garcia Avenue
Mountain View
California 94043
(415) 960-1300

Credits and Acknowledgements

Material in this Editing and Tezt Processing on the Sun Workstation comes from a number of
sources: An Introduction to Display Editing with Vi, William Joy, University of California,
Berkeley, revised by Mark Horton; Vi Command and Function Reference, Alan P. W. Hewett,
revised by Mark Horton; Ez Reference Manual, William Joy, revised by Mark Horton, Univer-
sity of California, Berkeley; Awk — A Pattern Scanning and Processing Language, Alfred V.
Aho, Brian W. Kernighan, Peter J. Weinberger, Bell Laboratories, Murray Hill, New Jersey;
Edit: A Tutorial, Ricki Blau, James Joyce, University of California, Berkeley; A Tutoerial Intro-
duction to the UNIX Tezt Editor, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jer-
sey; Advanced Editing on UNIX, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jer-
sey; Sed — a Non-Interactive Text Editor, Lee. E. McMahon, Bell Laboratories, Murray Hill,
New Jersey; Nrofff Troff User’s Manual, Joseph F. Ossanna, Bell Laboratories, Murray Hill,
New Jersey; A Troff Tutorial, Brian W. Kernighan, Bell Laboratories, Murray Hill, New Jersey;
Typing Documents on the UNIX System: Using the -ms Macros with Troff and Nroff, M. E. Lesk,
Bell Laboratories, Murray Hill, New Jersey; A Guide to Preparing Documents with -ms, M. E.
Lesk, Bell Laboratories, Murray Hill, New Jersey; Document Formatting on UNIX Using the -ms
Macros, Joel Kies, University of California, Berkeley, California; T — A Program to Format
Tablea, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; A System for Typesetting
Mathematics , Brian W. Kernighan, Lorinda L. Cherry, Bell Laboratories, Murray Hill, New Jer-
sey; Typesetting Mathematics — User’s Guide, Brian W. Kernighar, Lorinda L. Cherry, Bell
Laboratories, Murray Hill, New Jersey; Writing Tools — The Style and Diction Programs, L. L.
Cherry, W. Vesterman, Bell Laboratories, Murray Hill, New Jersey; Updating Publications Lists,
M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Some Applications of Inverted Indezes
on the UNIX System, M. E. Lesk, Bell Laboratories, Murray Hill, New Jersey; Writing Paperas
with Nroff Using -me, Eric P. Allman, University of California, Berkeley; and -me Reference
Manual, Eric P. Allman, University of California, Berkeley. Introducing the UNIX System,
Henry McGilton, Rachel Morgan, McGraw-Hill Book Company, 1983. These materials are
gratefully acknowledged.

Sun Workstation, and the combination of Sun with a numeric suffix
are trademarks of Sun Microsystems, Inc.
UNIX, UNIX/32V, UNIX System III, and UNIX
System V are trademarks of Bell Laboratories.
Ethernet is a trademark of Xerox Corporation.

Copyright © 1983, 1884 by Sun Microsystems Inc.

This publication is protected by Federal Copyright Law, with all rights reserved. No part of
this publication may be reproduced, stored in a retrieval system, translated, transcribed, or
transmitted, in any form, or by any means manual, electric, electronic, electro-magnetic,
mechanical, chemical, optical, or otherwise, without prior explicit written permission from Sun
Microsystems.

-1 -

Revision History

Revision Date Comments
A 15 May 1983 First release of Editing and Text Processing.
B 1 November 1983 | Updated and reorganized.
C 7 January 1984 New —ms macros; additions to document preparation intro-

duction; and minor corrections.

—iii -

Table of Contents

Chapter 1 An Introduction to Text Editing ...t
Chapter 2 Using vi, the Visual Display EdIitor ...

Chapter 3 Command Reference for the ex Line Editor ...

Chapter 4 Using the ed Line Editor ..o

Chapter § Using sed, the Stream Text Editorciviicnciicsn

Chapter 8 Pattern Scanning and Processing with awk ..o

Editing and Text Processing

Preface

Editing and Text Processing on the Sun Workstation provides user’s guides and reference infor-
mation for the text editors and document processing tools. We assume you are familiar with a
terminal keyboard and the Sun system. If you are not, see the Beginner's Guide to the Sun
Workstation for information on the basics, like logging in and the Sun file system. If you are
not familiar with a text editor or document processor in general, read An Introduction to Text
Editing and An Introduction to Document Preparation in this manual for descriptions of the
basic concepts and some simple examples that you can try. Finally, we assume that you are
using a Sun Workstation, although specific terminal information is also provided.

If you choose to read one of the user's guides, sit down at your workstation and try the exer-
cises and examples. The reference sections provide additional explanations and examples on
how to use certain facilities and can be dipped into as necessary. For additional details on Sun
system commands and programs, see the User’s Manual for the Sun Workstation.

Use the table of contents to Part One and Part Two as roadmaps to guide you to the informa-
tion you need.

Part One of this manual provides information on the text editors and Part Two describes the
document formatting tools.

The contents of Part One are:

1. An Introduction to Test Editing — Describes the basics of text editing and provides a guide
to the available editing tools. Newcomers should start here.

2, Using ‘w’, the Visual Display Editor — Tutorial and reference information on the visual
display editor vi. Includes a quick reference to tape up by your workstation.

3. Command Reference for the ‘ez’ Line Editor — A command reference for the ez and vi edi-
tors. Also includes a quick reference.

4. Using the ‘ed’ Line Editor — Provides a user’s guide to the ed tools.

5. Using ‘sed’, the Stream Teat Editor — A user's guide to sed, the non-interactive variant of
ed for processing large files.

6. Pattern Scanning and Processing with ‘awk’ — A user's guide to the awk programming
language for data transformation and selection operations.

Part Two contains the following chapters:

1. An Intreduction to Document Preparation — Describes the basics of text processing, macros
and macro packages, provides a guide to the available tools and several simple examples
after which to pattern your papers and documents. Newcomers to the Sun document for-
matters should start here.

2. Formatting Documents with the -ma Macros — User’s guide and reference information for
the —ms macros for formatting papers and documents. Includes new —ms macros.

Revision C of 7 January 1984

Editing and Text Processing

3. Formatting Documents with ‘nroff’ and ‘“troff’ — Provides a user's guide and reference
material for the nroff and troff text processors.

4. Formatting Tables with ‘tbl’ — A user's guide and numerous examples to the table process-
ing utility tbl.

5. Typesetting Mathematice with ‘eqn’ — A user'’s guide to the egn mathematical equation pro-
cessor., _

6. Making Bibliographic References with ‘refer’ — Explains how to use the bibliographic cita-
tion program refer.

7. Formatting Documents with the -me Macros — Describes the —me macro package for pro-
ducing papers and documents.

Throughout this manual we use ‘logo%"' as the hostname to which you type system commands.

Bold face type indicates commands that you type in as is. Jtalics specifies Sun system com-

mand names, general arguments or parameters that you should replace with a specific word or

string, and important terms.

Revision C of 7 January 1984

-

-

Table of Contents

Chapter 1 An Introduction t0 Text EdItingcoomnricirrnsinrsoresrecsnr i ssss s ssss ssrssesins

1.1. Sun System Editors

1.2. Text Editing Basics ...

1.2.1. Regular Expressxons in Text Patterna

1.3. What to Do If Something Goes Wrong

List of Tables

Table 1-1 Utilities and Their Metacharacters

-1it-

ol S T L IR T DTN D

Chapter 1

An Introduction to Text Editing

An editor is a utility program that you use to modify the contents of a file. A tezt editor deals
with files containing a atring of characters in a particular character set. A string is a sequence
of characters, ‘ABC,’ ‘evan’ or ‘m3154’ for example. You usually use an editor interactively;
that is, you can see on the workstation screen what you have and then make changes accord-
ingly.

With a text editor, you can browse through a file, make changes, and then make the changes
permanent.

There are also utilities such as awk, grep, fgrep, egrep, and fr that operate on a file, but do not
change the original file. Rather they modify the data contained in it as the data goes from the
original file to the workstation screen, printer, or whatever. Moreover, these commands operate
on a global basis, that is, they change everything that conforms to a specific regular pattern.
See Pattern Scanning and Proccssing with ‘awk’ in this manual for more information and the
User’s Manual for the Sun Workstation for details on the other utilities.

There are two kinds of editors, line editors and screen editors. A line editor has a line as its
basic unit for change. A line is a string of characters terminated by a newline character, the
character that is generated when you type RETURN. You can give the editor commands to do
operations on lines, display, change, delete, move, copy a line, or insert a new line. You can
substitute character strings within a line or group of lines.

A screen editor displays a portion of a file on the workstation screen. You c¢an move the cursor
around the screen to indicate where you want to make changes, and you can choose which part
of the file to display. Screen editors, such as vi, are also called display editors.

1.1. Sun System Editors

The Sun system has two basic editors. Ed is the basic, interactive line editor from which the
others have been developed. As they are all related, you can see similarities with v, ez, and sed.
Your primary interface to the Sun system is probably i for editing both source code and text.
See Using the ‘ed’ Line Editor for details on ed.

The other basic editor is the stream editor sed, which as a lineal descendant of ed, can perform
similar operations. However, it is not interactive and you cannot move backwards in the edit
file. You specify the command or series of commands to be executed, and sed performs them
from the beginning to the end of the file. Because sed does not copy your file into the buffer to
create a temporary file like ed does, you can use scd to edit any size file. Sed is usually used for
making transient changes omly. Sed recognizes basically the same regular ezpressions as ed.
Regular expressions are described below. See Using ‘sed’, the Stream Tezt Editor for imstruc-
tions on how to use sed.

More useful for general text editing are the screen editors ez and vi. A variant of 'ez, edit, has
features designed to make it less complicated to learn and use.!

1 See Edit: A Twtorial, Ricki Blau and James Joyce, University of California, Berkeley.

Revision C of 7 January 1084 1-1

An Intreduction to Text Editing Editing and Text Processing

Ez is also based on ed, but has many extensions and additional features. Commands are less
cryptic and hence, easier to remember. There are variants of some editor operations, which
modify the way in which those operations are performed under certain conditions. Ez is more
communicative, displaying more descriptive error messages than merely ‘?' as ed does and pro-
viding instructions on how to override the error condition. There are editor options which
modify overall ez behavior. Ez also provides the visual mode, which turns ez into a screen edi-
tor. In this mode, ez is identical to v. You can use the open mode for intraline editing.

Vi is the screen, display or visual editor version of ez. A portion of the file you wish to modify
is displayed on your workstation screen. Within the displayed portion of the file, you can move
the cursor around to control where changes are to be made, and then you can make changes by
replacing, adding or deleting text. You can change the portion of the file displayed on the
screen, so you have access to the whole file,

You also have access to all of the ez line-oriented commands from vi. Many of the more useful
operations that can be performed in vi simply call upon ez fanctions. Additionally, some opera-
tions, such as global substitutions, are easily performed using ez from vi, Because of this con-
nection, refer to both Using ‘vi,’ the Visual Display Editor and the Command Reference for the
‘ez’ Line Editor. For a quick tutorial on the most useful vi commands and features, read the
chapter on vi in the Beginner’s Guide to the Sun Workstation.

1.2. Text Editing Basics

In editing jargon, we say you enter an editor to edit a file and quit an editor to return to the
system command level Shell.

Most editors set aside a temporary work space, called a buffer, separate from your permanent
file. Before starting to work on an existing file, the editor makes a copy of it in the buffer, leav-
ing the original untouched. When you make editing changes to the buffer copy, you must then
save or write the file to make the changes permanent. The buffer disappears at the end of the
editing session.

During an editing session there are two usual modes of operation: command mode and fezt input
mode. (This disregards, for the moment, open and visual modes, discussed below.) In command
mode, the editor may prompt you with ‘?,” a colon (:), or nothing at all as in vi. In text input
mode, there is no prompt and the editor merely adds the text you type in to the buffer. You
start text input mode with a command that appends, inserts, or changes, and terminate it either
by typing a period as the first and only character on a line for ed and ez or by typing the
ESCAPE (ESC) key for vi.

The editor keeps track of lines of text in the buffer by numbering them consecutively starting
with 1 and renumbering as lines are added or deleted. It doesn’t normally display the line
numbers, although you can specify that they be displayed in vi. At any given time the editor is
positioned at one of these lines; this position is called the current line.

Some editor commands take line-number prefixes. The concept of line numbers is especially
important in ed and ez; you use them to indicate which lines to operate on. You also use line
numbers in v, but less frequently. With ed, you can precede most commands by one or two
line-number addresses which indicate the lines to be affected. If you give one line number, the
command operates on that fine only; if you give two, it operates on an inclusive range of lines.
Commands that can take line-number prefixes also assume default prefixes if none are given.
The default assumed by each command is designed to make it convenient to use in many
instances without any line-number prefix. For the most part, a command used without a prefix
operates on the current line, though there are exceptions to this rule. The print command by

1-2 Revision C of 7 January 1984

TRRET s I

-

Editing and Text Processing An Introduction to Text Editing

itself, for instance, displays one line, the current line, on the workstation screen. In the address
prefix notation, ‘.’ stands for the current line and ‘$’ stands for the last line of the buffer. If no
such notation appears, no line-number prefix may be used. Some commands take trailing infor-
mation,

Besides command and text input modes, ez, v# and edit provide other modes of editing called
open and vieual. In these modes you can move the cursor to individual words or characters in a
line. The commands you then use are very different from the standard editor commands; most
do not appear on the screen when typed.

1.2.1. Regular Expressions in Text Patterns

You can use the editors and the utilitics mentioned above to deal with fixed strings of charac-
ters, but this may become tedious if you want to do something more complex. You can also
specify a pattern or template of text you want to modify; this pattern is called a regular ezpres-
ston. Certain characters take on special meanings when used in in these patterns. These special
characters are called mefacharacters because they represent something other than themselves.

Revision C of 7 January 1084 1-3

An Introduction to Text Editing Editing and Text Processing

Here is a table of all the special metacharacters and which utilities support those particular -
characters. _

Table 1-1: Utilities and Their Metacharacters

Supported by.
Character Meaning forep grep egrep awk ed sed ez
e Devept special yes yes yes yes yes yes yes
" ﬁ.a]:f;l; beginning yes yes yes yes yes yes yes
match end
$ of line yes yes yes yes yes yes yes
match beginning _
\< of word no yes no no no no yes
\> :}a‘tﬂ; ; ad no yes no no no no yes
. any character no yes yes yes yes yes yes
[atring] character class no yes yes yes yes yes yes
[* string) negated character class | no yes yes yes yes yes yes
» closure no yes yes yes yes yes yes
(pattern) grouping no no yes yes no no no
| alternation no no yes yes no no no
\(pattern\) remember pattern no no no no yes yes yes

To use one of these special characters as a simple graphic representation rather than its special
meaning, precede it by a backslash (*\'). The backslash always has this special escape meaning.

Some of the metacharacters that ed and some of the other utilities use are also used by the Shell
for matching filenames, so you should enclose the regular expression ia single quotes (').

You can combine regular expressions to specify a lot more than just a single string of text, so
you can give the editor commands that operate on either a very specific string of text or globally
on a whole file.

See the Beginner’s Guide to the Sun Workstation for a more detailed and descriptive explanation
of regular expressions.

1.3. Wha.f. to Do If Something Goes Wrong

Sometimes you may make a mistake or your system may not respond correctly. Here are some
suggestions on what to do.

1-4 Revision C of 7 January 1984

Editing and Text Processing An Introduction to Text Editing

If you make a mistake in the editor that you cannot recover from easily, do not panic. As long
as you do not twrite the file and quit the editor, you can retrieve the original file. Force the edi-
tor to quit (in v, for example, you type :q!, the exclamation point overriding any warning), and
then enter the editor again to start over. When you try to quit the editor without saving
changes, the editor will warn you that you have unsaved changes, so you have to force the quit
with 1",

At the Sun system level, if you make a typing mistake, and see it before you press RETURN,
there are several ways to recover. The DEL key is the erase character. Use it to back up over
and erase the previously typed character. Successive uses of DEL erase characters back to the
beginning of the line, but not beyond. Use “CZ2 to abort or send an interrupt to a currently run-
ning program. You can’t interrupt an editor with "C.

Sometimes you can get into a state where your workstation or terminal acts strangely. For
example, you may not be able to move the cursor, your cursor may disappear, there is no echo-
ing of what you type, or typing RETURN may not cause a linefeed or return the cursor to the
left margin. Try the following solutions:

e First, type “Q to resume possibly suspended output. (You might have typed "8, freezing
the screen.)

e Another possibility is that you accidentally typed a NO SCRL key (also called SET UP/NO
SCROLL on some terminals) on your keyboard. This also freezes the keyboard like typing a
*8. Try typing "Q, which toggles you back to proper operation if you did indeed type the
NO SCRL key in the first place.

e Next, try pressing the LINEFEED key, followed by typing ‘reset’, and pressing LINEFEED
again.

e If that doesn’t help, try logging out and logging back in. If you are using a terminal, try
powering it off and on to regain normal operation.

e If you get unwanted messages or garbage on your screen, type "L to refresh the workstation
screen. (Use "R on a terminal.)

If your system goes down, a file with almost all your latest changes is automatically saved.
After rebooting your system, or doing whatever needs to be done, you will receive mail indicat-
ing that the file has been saved. First, return to the directory where the file belongs, and then
re-enter the editor with the —r option to restore the file:

logo% vi —r filename

This returns you to a version of the file you were editing, minus a few of your most recent
changes.

ir

2 We use the convention ‘" whatever ’ to mean control-whatever — that is, hold down the con-
trol {or CTRL) key while typing a whatever character. '"C’ means hold down the CONTROL key
while typing ‘c’. The case does not matter; “C and "¢ are equivalent,

Revision C of 7 January 1984 1-5

Table of Contents

Chapter 2 Using vi, the Visual Dlsplay Editor ..

2.1. Viand Ex ..
2.2. Getting Started
2.2.1. Editing a Flle

2.2.2. The Editor's Copy — Editing in the BUFErc..oorocorrsesi

2.2.3. Arrow Keys
2.2.4. Special Characters: ESG, CR a.nd C
2.2.5. Getting Out of vi — :q, :q!, :w, ZZ, wq
2.3. Moving Around in the File .. e
2.3.1. Scrolling and Paging — D “U ‘E Y F B

2.3.2, Searching, Goto, and Previous Context — /, ", G

2.3.3. Moving Around on the Screen — h, j, k, | ..

2.3.4. Moving Within a Line — b, w, e, B, W ..

2.3.5. Viewing a File — ‘view’ S
2.4. Making Simple Changes

2.4.1. Inserting — i and a .

2.4.2. Making Small Corrections —xr O
2.4.3. Deleting, Repeating, and Changing — dw, " db, € oo et
2.4.4. Operating on Lines — dd, €6, S .o s e

2.4.5. Undoing— u, U

2.5. Moving About: Rearrangmg a.nd Duplmatlng Text.
2.5.1. Low-level Character Motions — f, F,
2.5.2. Higher Level Text Objects — (|), {,} [[,]]

2.56.3. Rearranging and Duplicating Text — ¥, p, P
. 2-11

2.6. High-Level Commands ..

2.6.1. Writing, Quitting, Edltmg New Flles — ZZ w, q, e, m
. 2-12

2.6.2. Escaping to a Shell —:1, :sh, “Z ..
2.6.3. Marking and Returning — m .

2.6.4. Adjusting thé Sereen "L, z
2.7.1. Options, the Set. Vartablc, and Edltor Start-up F:Ies
. 2-14
- 2-14
. 2-15

2.7. Special Topics ...

2.7.2. Recovering Lost Lines .

2.7.3. Recovering Lost Files — the - OPUOD w..occermrwresmsrienennresecose

2.7.4. Continuous Text Input — Wrapmargin ..o

2,7.5. Features for Editing PrOSrams ... s e sossis
2.7.6. Filtering Portions of the BuUfer ... e
e 2-16
S
v 2-18
e 2-18
e 2-18
e 2-18
e 2-19
. 2-20

2.7.7. Commands for Editing LISP .o nrssssssss s
2.7.8. Macros ...
2.7.9. Word Abbrevmt.lons — ab :una .

2.7.9.1. Abbreviations ..

2,8.0.1, Nitty-gritty Detal!s

2.8.1. Line Representation in the D:spiay

2.8.2, Command Counts ...
2.8.3. File Manipulation Commands

2-1
2-1
2-1
2-2

2-2
2-3
2-3

2-4
2-4
2-5
2-6
2-6
2-7
2-7

2-8
2-8
2-9
2-9
2-9

. 2-10

2-11

2-11

2-12

2-13

2-15
2-16

2.8.4. More about Searching for Strings ...

Editing and Text Processing

2.8.5. More about Input Mode ...

2.9. Command and Function Referenceccoennn.
2.9.1. NOLALIOM ..ot eeeesems s resessesrnesesens

2.9.2, Commands .
2.9.3. Entry and Exn

2.9.4. Cursor and Page Motu;ﬁ S —

2.9.5. Searches .

2.9.8. Text Insert.ion

2.9.7. Text Deletion

2.9.8. Text Replacement ...
2,9.9. Moving Text .. .
2.9.10. Mmcellancous Commands

2.9.11. Special Insert Characters ... o

2.9.12. : Commands ...,

2.9.13. Set Commands .

2.9.14. Character Functions ...

2.10. Terminal Information ..
2.10.1. Specifying Termlnal Type

2.10.2. Special Arrangements for St.artup
2.10.3. Open Mode on Hardcopy Termmals a.nd ‘Glass tty

2.10.4. Editing on Slow Terminals ..

2.10.5. Upper-case Only Terminals
2.11. Command SUMATY ..o ceecassenesessarnesenns

ii

2-21

. 2-22

2-23

. 2-23

2-23

e 2224
. 2-24

2-26

. 2-27

2-27

. 2227
e 2-28
e 2-20
e 230
.. 2-30
. 2-31

2-35

. 2-42

2-42

. 2-43
e 2-44
s 2-44

. 2-45

2-46

Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2.7

List of Tables

1 EdIUOT OPUIOIS oo ereccenioss st s smsssesssstss s oo s s s s s e s s s s
2 File Manipulation Commands ...
Extended Pattern Matching Charactera - —

Input Mode Corrections ... everee et s st i
Common Character Abbrenat.mns ...
Terminal Types
Frequently Used Commands ... s

-1

Chapter 2

Using vi, the Visual Display Editor

This chapter‘ describes vi (pronounced vee-eye) the visual, display editor. The first part of this
chapter provides the basics of using vi. The second part provides a command reference and ter-
minal setiup information. Finally, there is a quick reference, which summarizes the v com-
mands. Keep this reference handy while you are learning vi. As the v editor is the visual
display version of the ez line editor, and because the full command set of the line-oriented ez
editor is available within vi, you can use the ez commands in vi. Some editing, such as global
substitution, is more easily done with ez. So refer to the information in the Command Refer-
ence for the ‘ez’ Line Editor as it also applies to vi,

This chapter assumes you are using vi on the Sun Workstation. If you are using «f on a termi-
nal, refer to Terminal Information for instructions on setting up your terminal.

In the examples, input that must be typed as is will be presented in bold face. Text which you
should replace with appropriate input is given in stalics.

2.1. Viand Ex

As noted above, v is actually one mode of editing within the editor ez. When you are running
vl you can escape to the line-oriented editor ez by typing Q. All of the : commands which are
introduced in File Manipulation Commands are available in ez. This places the cursor on the
command line at the bottom of the screen. Likewise, most ez commands can be invoked from
vi using :. Just give them without the : and follow them with a CR.

In rare instances, an internal error may occur in ¢i. In this case you will get a diagnostic and be
left in the command mode of ex. You car then save your work and quit if you wish by giving a
command x after the : which ez prompts you with, or you can re-enter v by giving ez a vf com-
mand.

There are a number of things which you can do more easily in ez than in vi, Systematic
changes in line-oriented material are particularly easy. Experienced users often mix their use of
ez command mode and vi command mode to speed the work they are doing. Keep these things
in mind as you read on.

2.2. Getting Started

Whean using i, changes which you make to the file you are editing are reflected in what you see
on your workstation screen.

1 The material in this chapter is derived from An Introduction to Dieplay Editing with Vi, W.N.
Joy, M. Horton, University of California, Berkeley and Vi Command and Function Reference,
AP W, Hewett, M. Horton.

Revision C of 7 January 1984 2.1

Using vi, the Visual Display Editor Editing and Text Processing

During an editing session, there are two usual modes of operation: command mode and snsert
mode. In command mode you can move the cursor around in the file. There are commands to
move the cursor forward and backward in units of characters, words, sentences and paragraphs.
A small set of operators, like d for delete and c for change, are combined with the motion com-
mands to form operations such as delete word or change paragraph. You can do other opera-
tions which don’t involve entering fresh text. To enter new text into the file, you must be in
insert mode, which you get with the a (append), o (open) and i (insert) commands. You get out
of insert mode by typing the ESC (escape) key (or ALT on some keyboards). The significant
characteristic of insert mode is that commands can't be used, so anything you type except ESC
is inserted into the file. If you change your mind anytime using w, typing 2ESC cancels the com-
mand you started and reverses to command mode. Also, if you are unsure of which mode you
are in, type ESC until the screen flashes; this means that you are back in command mode,

Run vi on a copy of a file you are familiar with while you are reading this. Try the commands
as they are described.

2.2.1. Editing a File

To use vi on the file, type:
logo% vi filename

replacing filename with the name of the file copy you just created. The screen clears and the
text of your file appears.

If you do not get the display of text, you may have typed the wrong filename. Vi has created a
new file for you with the indication * “file’ [New file]'. Type :q {colon and the ‘q’ key) and then
type the RETURN key. This should get you back to the command level interpreter. Then try
again, this time spelling the filename correctly.

If vi doesn’t seem to respond to the commands which you type here, try sending an interrupt to
it by typing a “C (or INTERRUPT signal) at your workstation {or by pressing the DEL or RUB
keys on your terminal). Then type the :q command again followed by a RETURN. If you are
using a terminal and something else happens, you have may given the system an incorrect ter-
minal type code. Vi may make a mess out of your screen. This happens when it sends control
codes for one kind of terminal to some other kind of terminal. Type a :q and RETURN. Figure
out what you did wrong (ask someone else if necessary} and try again.

2.2.2. The Editor’s Copy — Editing in the Buffer

Vi does not directly modify the file which you are editing. Rather, vf makes a copy of this file in
a place called the buffer, and remembers the file’s name. All changes you make while editing
only change the contents of the buffer. You do not affect the contents of the file unless and
until you write the buffer back into the original file.

2.2.3. Arrow Keys

The editor command set is independent of the workstation or terminal you are using. On most
terminals with cursor positioning keys, these keys will also work within the editor.? If you don't
have cursor positioning keys, that is, keys with arrows on them, or even if you do, you ¢an use
the h j k and I keys as cursor positioning keys. As you will see later, h moves back to the left

2-2 Revision C of 7 January 1084

Editing and Text Processing Using vi, the Visual Display Editor

(like "H which is a backspace), } moves down (in the same column), k moves up (in the same
column), and | moves to the right.

2.2.4. Special Characters: ESC, CR and "C

Several of these special characters are very important, so be sure to find them right now. Look
on your keyboard for a key labelled ESC {or ALT on some terminals). It is near the upper left
corner of your workstation keyboard. Try typing this key a few times. Vi flashes the screen (or
beeps) to indicate that it is in a quiescent state. You can cancel partially formed commands
with ESC. When you insert text in the file, you end the text insertion with ESC. This key is a
fairly harmless one to press, so you car just press it until the screen flashes if you don't know
what is going on.

Use RETURN (or CR for carriage return) key to terminate certain commands. It is at the right
side of the workstation keyboard, and is the same key used at the end of each Shell command.

Use the special character “C (or DEL or RUB key), which sends an interrupt, to tell vi to stop
what it is'doing. It is a forceful way of making vi listen to you, or to return it to the quiescent
state if you don’t know or don’t like what is going on.

Try typing the '/’ key on your keyboard. Use this key to search for a string of characters. Vi
displays the cursor at the bottom line of the screen after a ‘/' is displayed as a prompt. You
can get the cursor back to the current position by pressing RETURN (or ESC or DEL); try this
now. Backspacing over the ‘/’ will also cancel the search. From now on we will simply refer to
typing “C (or pressing the DEL or RUB key) as ‘sending an interrupt.’

Vi often echoes your commands on the last line of the screen. If the cursor is on the first posi-
tion of this last line, then v is performing a computation, such as locating a new position in the
file after a search or running a command to reformat part of the buffer. When this is happen-
ing, you can stop vi by sending an interrupt.

2.2.5. t}etting Out’ofl vi — :q, :q!, :w, ZZ, :wq

When you want to get out of ¢f and end the editing session, type :q to quit. If you have
changed the buffer contents and type :q, v responds with ‘No write since last change {:quit!
overrides).’ If you then want to quit vi without saving the changes, type :q!. You need to know
about :q!l in case you change the editor's copy of a file you wish only to look at. Be very careful
not to give this command when you really want to save the changes you have made.

Do not type :q! if you Want to save your changes. To save or write your changes without quit-
ting vi, type sw. If you are sure about some changes in the middle of an editing session, it’s a
good idea to save your changes from time to time.

To write the contents of the buffer back into the file you are editing, witk any changes you have
made, and then to quit, type ZZ. And finally, to write the file even if no changes have been
made, and exit vi, type :wq.

2 Note for the HP2621: on this terminal the function keys must be shifted (ick) to send to the
machine, otherwise they only act locally. Unshifted use leaves the cursor positioned incorrectly.

% On some systems, this interruptibility comes at a price: you cannot type ahead when the editor
is computing with the cursor on the bottom line,

Revision q of 7 January 1984 2-3

Using vi, the Visual Display Editor Editing and Text Processing

You can terminate all commands which read from the last display line with an ESC as well as a
RETURN.

2.3. Moving Around in the File

Vs has a number of commands for moving around in the file. You can scroll forward and back-
ward through a file, moving part of the text or the screen. You can page forward and back-
ward through a file, by moving a whole screenfull of text. You can also display one more line at
the top or bottom of the screen.

2.3.1. Scrolling and Paging — "D, "U, "E, Y, 'F, 'B

The most useful way to move through a file is to type the control {(CTRL) and D keys at the
same time, sending a control-D or ‘"D'. We use this two-character notation to refer to control
keys from now on. The shift key is ignored, so "D and “d are equivalent. If you are using a
terminal, you may have a key labelled ‘"' on your keyboard. This key is represented as ‘"' and
is used exclusively as part of the ‘“x’ notation for control characters.4

Try typing "D to see that this command scrolls down in the file. The command to scroll up is
*U. (Many dumb terminals can't scroll up at all, in which case type “U to clear and refresh the
screen with a line which is farther back in the file at the top.)

If you want to see more of the file below where you are, you can type "E to ezpose one more

line at the bottom of the screen, leaving the cursor where it is. The Y (which is hopelessly
non-mnemonic, but next to “U on the keyboard) exposes one more line at the top of the screen.
You can also use the keys "F and “B to move forward and backward a page, keeping a couple of
lines of continuity between screens so that it is possible to read through a file using these rather
than "D and "U if you wish. “F and "B also take preceding counts, which specify the number
of pages to mave. For example, 2°F pages forward two pages.

Notice the difference between scrolling and paging. If you are trying to read the text in a file,

typing “F to page forward leaves you only a little context to look back at. Scrolling with "D -
on the other hand, leaves more context, and moves more smoothly., You can continue to read _

the text as scrolling is taking place.

2.3.2. Searching, Goto, and Previous Context — /, ?, G

Another way to position yourself in the file is to give vi a string to search for. Type the charac-
ter ‘/’ followed by a string of characters terminated by RETUR. V¥ positions the cursor at the
next occurrence of this string. Try typing n to then go to the nezt occurrence of this string.
The character ‘?’ searchs backwards from where you are, and is otherwise like ‘/’. N is like n,
but reverses the direction of the search.

You can string several search expressions together, separated by a semicolon in visual mode, the
same as it command mode in ez. For example:

/today/;/tomorrow

4 It you don't have a CTIRL or °** key on your terminal, there is probably a key labelled ‘1"; in
any case these characters are one and the same.

2.4 Revision C of 7 January 1084

C

Editing and Text Processing Using vi, the Visual Display Editor

moves the cursor to the first ‘tomorrow’ after the next ‘today’. This also works within one lire,

Thesae searches normally wrap around the end of the file, so you can find the string even if it is
not on a line in the direction you search, but provided it is somewhere else in the file. You can
disable this wraparound with the command :se nowrapscanCR, or more briefly :se nowscCRr.

If the seapch string you give vf is not present in the file, vi displays ‘Pattern not found’ on the
last line of the screen, and the cursor is returned to its initial position.

If you wivh the search to match only at the beginning of a line, begin the search string with a
‘!, To match only at the end of a line, end the search string with a ‘$’. So to search for the
word ‘seagch’ at the beginning of a line, type:

/ searchcr
and to search for the word ‘last' at the end of a line, type:
/1ast$CR

Actually, the string you give to search for here can be a regular ezpression in the sense of the
editors ¢z and ed. If you don’t wish to learn about this yet, you can disable this more general
facility by typing :se nomagicCR; by putting this command in EXINIT in your environment, you
can have always this nomagic option in effect. See Special Topics for details on how to do this.

The command G, when preceded by a number positions the cursor at that line in the file. Thus
1G moves the cursor to the first line of the file. If you do not give G any count, it positions
you at the last line of the file.

If you are near the end of the file, and the last line is not at the bottom of the screen, vf places
only the character ‘' on each remaining line. This indicates that the last line in the file is on
the screen; that is, the ‘™’ lines are past the end of the file.

You can find out the state of the file you are editing by typing a "G. Vi shows you the name of
the file you are editing, the number of the current line, the number of lines in the buffer, and
the percentage of characters already displayed from the buffer. For example:

“data.flle” [Modified] line 329 of 1276 —8%—

Try doing. this now, and remember the number of the line you are on. Give a G command to
get to the end and then another G command with the line number to get back where you were.

You can get back to a previous posmon by usmg the command *’ (two apostrophes). This
returns you to the first non-white space in the previous location. You can also use ** (two back
quotes) to return to the previous position. The former is more easily typed on the keyboard.
This is often more convenient than G because it requires no advance preparation. Try typing a
QG or a search with / or ? and then a ** to get back to where you were. If you accidentally type
n or any command which moves you far away from a context of interest, you can quickly get
back by typing ** .

2.3.3. Moving Around on the Screen — h, j, k, 1

Now try just moving the cursor around on the screen. Try the arrow keys as well as h, j, k,
and 1. You will probably prefer these keys to arrow keys, because they are right underneath
your fingers. These are very common keys for moving up and down lines in the file. Notice
that if you go off the bottom or top with these keys then the screen scrolls down (and up if pos-
sible) to bring a line at a time into view.

Revision ¢] of 7 January 1984 2.5

Using vi, the Visual Display Editor Editing and Text Processing

Type the + key. Each time you do, notice that the cursor advances to the next line in the file,
at the first non-white position on the line. The — key is like 4+ but goes the other way.

The RETURN key has the same effect as the + key.

Vi also has commands to take you to the top, middle and bottom of the screen. H takes you to
the top (home) line on the screen. Try preceding it with a number as in 3H. This takes you to
the third line on the screen. Try M, which takes you to the middle line on the screen, and L,
which takes you to the [ast line on the screen. L also takes counts, so 5L takes you to the fifth
line from the bottom.

2.3.4. Moving Within a Line — b, w,e, B, W

Now pick a word on some line on the screen, not the first word on the line. Move the cursor
using h, j, k, 1 or RETURN and — to be on the line where the word is. Try typing the w key.
This advances the cursor to the next word on the line. Try typing the b key to back up words
in the line. Also try the e key which advances you to the end of the current word rather than
to the beginning of the next word. Also try SPACE (the space bar) which moves right one char-
acter and the BACKSPACE {or "H) key which moves left one character. The key h works as “H
does and is useful if you don't have a BACKSPACE key. Also, as noted just above, 1 moves to the
right. ‘

If the line had punctuation in it, you may have noticed that the w and b keys stopped at each
group of punctuation. You can also go back and forwards words witbout stopping at punctua-
tion by using W and B rather than the lower case equivalents. Think of these as bigger words.
Try these on a few lines with punctuation to see how they differ from the lower case w and b.

The word keys wrap around the end of line, rather than stopping at the end. Try moving to a
word on a line below where you are by repeatedly typing w. ~

2.3.5. Viewing a File — ‘view’

If you want to use the editor to look at a file, rather than to make changes, use view instead of
vi. This sets the readonly option which prevents you from accidently overwriting the file. For
example, to look at a file called kubla, type:

logo% view kubla

In Xanadu did Kubla Khan

A stately pleasure dome decree:

Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea,

“kubla” [Read only] 5 lines, 149 characters
logo%

To scroll through a file that is bigger than one screen, use the characters described in Scrolling
and Paging. To get out of view, type :q.

2-6 Revision C of 7 January 1984

C

Editing and Text Processing Using vi, the Visual Display Editor

2.4. Making Simple Changes

Simple changes involve inserting, deleting, repeating, and changing single characters, words, and
lines of text. In vi, you can also undo the previous change with ease in case you change your
mind.

2.4.1. Inserting — iand a

There are two basic commands for inserting new text: i inserts text to the left of the cursor,
and a to appends text to the right of the cursor. After you type i, everything you type until
you press ESC is inserted into the file. Try this now; position yourself at some word in the file
and try inserting text before this word. (If you are on an dumb terminal it will seem, for a
minute, that some of the characters in your line have been overwritten, but they will reappear
when you type ESC.)

‘Now try finding a word which can, but does not, end in an ‘s’. Position yourself at this word
g

and type e (move to end of word), then a for append and ESC to terminate the textual insert.
Use this sequence of commands to easily pluralize a word.

Try inserting and appending a few times to make sure you understand how this works.

1t is often the case that you want to add new lines to the file you are editing, before or after
some specific line in the file. Find a line where this makes sense and then give the command o
to create a new line after the line you are on, or the command O to create a new line before the
line you are on. After you create a new line in this way, text you type up to an ESC is inserted
on the new line. :

Many related editor commands are invoked by the same letter key and differ only in that one is
given by a lower-case key and the other is given by an upper-case key. In these cases, the
upper-case key often differs from the lower-case key in its sense of direction, with the upper-case
key working bagkward and/or up, while the lower-case key moves forward andfor down.

Whenever 'you abk typing in text, you can give many lines of input or just a few characters. To
type in more than one line of text, type a RETURN at the middle of your input. A new line will
be created for text, and you can continue to type. (If you are on a slow, dumb terminal vs may
choose to wait to redraw the tail of the screen, and will let you type over the existing screen
lines. This avoids the lengthy delay which would occur if i attempted to always keep the tail
of the screen up to date. The tail of the screen will be fixed up, and the missing lines will reap-
pear, when you type ESC.)

While you are inserting new text, you can use the DEL key at the system command level to
backspace over the last character which you typed. (This may be "H on a terminal.) Use "U
(this may be "X on a terminal) to erase the input you have typed on the current line. In fact,
the character “H (backspace) always works to erase the last input character here, regardless of
whst your erase character is.

*W erases a whole word and leaves you after the space after the previous word; use it to
quickly back up when inserting. '

Notice that when you backspace during an insertion, the characters you backspace over are not
erased; the cursor moves backwards, and the characters remain on the display. This is often use-
ful if you are planning to type in something similar. In any case the characters disappear when
when you press ESC; if you want to get rid of them immediately, hit an ESC and then a again.

Notice also that you can’t erase characters which you didn’t insert, and that you can't back-
space around the end of a line. If you need to back up to the previous line to make a

Revision q of 7 January 1984 9.7

Using vi, the Visual Display Editor Editing and Text Processing

correction, just hit ESC and move the cursor back to the previous line. After making the correc-
tion you can return to where you were and use the insert or append command again.

2.4.2. Making Small Corrections — x, r, x, R

You can make small corrections in existing text quite easily. Find a single character which is
wrong or just pick any character. Use the arrow keys to find the character, or get near the
character with the word motion keys and then either backspace with h (or the BACKSPACE key
or “H) or type a SPACE (using the space bar) until the cursor is on the character which is wrong.
If the character is not needed, type the x key; this deletes the character from the file. It is
analogous to the way you x out characters when you make mistakes on a typewriter, except it's
not as messy.

If the character is incorrect, you can replace it with the correct character by typing the com-
mand re, where ¢ is replaced by the correct character. You don't peed to type ESC. Finally if

the character which is incorrect should be replaced by more than one character, type s which

substitutes a string of characters, ending with ESC, for it. If there are a small number of charac-
ters which are wrong you can precede s with a count of the number of characters to be replaced.
You can use counts with x to specify the number of characters to be deleted and with r, such as
4rx to specify that.a character be replaced with four x’s.

Use xp to correct simple typos in which you have inverted the order of two letters. The p for
put is described later.

2.4.3. Deleting, Repeating, and Changing — dw, ., db, ¢

You already know almost enough to make changes at a highér level. All you need to know now
is that the d key acts as a delete operator. Try the command dw to delete a word. Try typing
‘) a few times. Notice that this repeats the effect of the dw. The ‘.’ repeats the last command
which made a change. You can remember it by analogy with an ellipsis ‘...".

Now try db. This deletes a word backwards, namely the preceding word. Try dSPACE. This
deletes a single character, and is equivalent to the x command.

Use D to delete the rest of the line the cursor is on

Another very useful operator is ¢ or change. Thus cw changes the text of a single word. You
follow it by the replacement text ending with an ESC. Find a word which you can change to
another, and try this now. Notice that the end of the text to be changed is marked with the
character ‘$' so that you can see this as you are typing in the new material.

2.4.4. Operating on Lines — dd, cc, S

It is often the case that you want to operate on lines. Find a line which you want to delete,
and type dd, the d operator twice. This deletes the line.

If you are on a dumb terminal, vf may just erase the line on the screen, replacing it with a line
with only an @ on it. This line does not correspond to any line in your file, but only acts as a
place holder. It helps to avoid a lengthy redraw of the rest of the screen which would be neces-
sary to close up the hole created by the deletion on a terminal without a delete line capability.

Try repeating the ¢ operator twice; this changes a whole line, erasing its previous contents and
replacing them with text you type up to an ESC. The command S is a convenient synonym for

2.8 Revision C of 7 January 1984

LLE

SIS B dalledTclh &1 151 1

I RS | i 1

Editing and Text Processing Using vi, the Visual Display Editor

cc, by analogy. with s. Think of S as a substitute on lines, while 8 is a substitute on characters.

You can delete or change more than one line by preceding the dd or ce with a count, such as
6dd, which deletes 5 lines. You can also give a command like dL to delete all the lines up to
and including the last line on the screen, or d3L to delete through the third from the bottom
line. Try some commands like this now.> Notice that vf lets you know when you change a large
number of lines so that you can see the extent of the change. It also always tells you when a
change you make affects text which you cannot see,

2.4.6. Undoing — u, U

Now suppose that the last change which you made was incorrect; you could use the insert,
delete and append commands to put the correct material back. However, since it is often the
case that we regret a change or make a change incorrectly, vf provides a u command to undo
the last change which you made. Try this a few times, and give it twice in a row to notice that
an u also undoes a u.

The undo command lets you reverse only a single change. After you make a number of changes
to a line, you may decide that you would rather have the original state of the line back. The U
command restores the current line to the state before you started changing it.

You can recover text which'you delete, even if undo will not bring it back; see Recovering Loast
Lines on how to recover lost text.

2.6. Moving About: Rearranging and Duplicating Text

This describes more commands for moving in a file and explains how to rearrange and make
copies of text. :

2.5.1. Low-level Character Motions — f, F, ~

Now move the cursor to a line where there is a punctuation or a bracketing character such as a
parenthesis, a comma or a period. Try the command fz to find the next z character to the right
of the cursor in the current line. Try then hitting a ; which finds the next instance of the same
character. By using the f coinmand and then a sequence of ;'s you can often get to a particular
place in a line much faster than with a sequence of word motions or SPACEs. There is also an F
command, which is like f, but searches backward. The ; also repeats F'.

When you are operating on the text in a line, it is often desirable to deal with the characters up
to, but not including, the first instance of a character. Try dfz for some z now and notice that
the z character is deleted. Undo this with u and then try dtz; the t here stands for to, that is,
delete up to the next z, but not the 2. The command T is the reverse of t.

When working with the text of a single line, a ‘*’ moves the cursor to the first non-white posi-
tion on the line, and a $ moves it to the end of the line. Thus $a appends new text at the end
of the current line (as does A which is easier to type).

5 One subtle point here involves using the ¢/* search after s d. This normally deletes characters
from the current position to the point of the match. If what is desired is to delete whole lines in-
cluding the two points, give the pattern as fpat/+0, a line address.

Revision C of 7 January 1984 | 2-9

Using vi, the Visual Display Editor Editing and Text Processing

Your file may have tab ("I) characters in it. These characters are represented as a number of
spaces expanding to a tab stop, where tab stops are every eight positions.8 When the cursor is
at a tab, it sits on the last of the several spaces which represent that tab. Try moving the cur-
sor back and forth over tabs so you understand how this works.

On rare occasions, your file may have non-printing characters in it. These characters are
displayed in the same way they are represented in this chapter, that is with a two-character
code, the first character of which is ‘*’. On the screen non-printing characters resemble a **’
character adjacent to another, but spacing or backspacing over the character reveals that the
two characters are, like the spaces representing a tab character, a single character.

The editor sometimes discards control characters, depending on the character and the setting of
the beautify option, if you attempt to insert them in your file. You can get a control character
in the file by beginning an insert and then typing a “V before the control character. The "V
quotes the following character, causing it to be inserted directly into the file,

2.5.2. Higher Level Text Objects — (,), {, }, [[,]]

In working with a document it is often advantageous to work in terms of sentences, paragraphs,
and sections. The operations ‘(" and ‘)’ move to the beginning of the previous and next sen-
tences respectively. Thus the command d) deletes the rest of the current sentence; likewise d(
deletes the previous sentence if you are at the beginning of the current sentence, or the current
sentence up to where you are if you are not at the beginning of the current sentence.

A sentence is defined as ending at a ‘., ‘I’ or ‘1" which is followed by either the end of a line, or
by two spaces. Any number of closing ‘)", ‘], ‘"’ and *’ '’ characters may appear after the ‘.’, ‘!’
or ‘!’ before the spaces or end of line.]

The operations ‘{’ and ‘}' move over paragraphs and the operations ‘[[' and ‘]]' move over sec-
tions. The ‘[[' and ‘]]’ operations require the operation character to be doubled because they
can move the cursor far from where it currently is. While it is easy to get back with the com-
mand **"', these commands would still be frustrating if they were easy to type accidentally.

A paragraph begins after cach empty line, and also at each of a set of paragraph macros,
specified by the pairs of characters in the definition of the string valued option paragraphs. The
default setting for this option defines the paragraph macros of the -ms macro package, that is
the “IP’, *LP’, “PP' and *.QP’ macros. You can easily change or extend this set of macros by
assigning a different string to the paragraphs opticn in your EXINIT. See Speeial Topics for
details. The ‘.bp’ directive is also considered to start a paragraph. Each paragraph boundary is
also a sentence boundary. The sentence and paragraph commands take counts to operate over
groups of sentences and paragraphs.

Sections in the editor begin after each macro in the sections option, normally *.NH' and ‘.SH',
and each line with a formfeed "L in the first column, Section boundaries are always line and
paragraph boundaries also.

Try experimenting with the sentence and paragraph commands until you are sure how they
work. If you have a large document, try looking through it using the section commands. The
section commands interpret a preceding count as a different view size in which to redraw the
screen at the new location, and this size is the base size for newly drawn screens until ancther
size is specified. (This is very useful if you are on a slow terminal and are looking for a

® You can set this with a command of the form e tawwzCR, where 2 is four to set tabatopa
every four columns, for example. ‘This affecta the screen representation within the editor.

2-10 Revision C of 7 January 1984

-

LU | T T

Editing ard Text Processing Using vi, the Visual Display Editor

particular section. You can give the first section command a small count to then see each suc-
cessive segtion heading in a small screen area.)

2.5.3. Rearranging and Duplicating Text — y, p, P

Vi has a single unnamed buffer where the last deleted or changed away text is saved, and a set
of named buffers a—s which you can use to save copies of text and to move text around in your
file and between files.

The operator y yanks a copy of the object which follows into the unnamed buffer. If preceded
by a buffer name, "2y, where z here is replaced by a letter a—sg, it places the text in the named
buffer. The text can then be put back in the file with the commands p and P; p puts the text
after or below the cursor, while P puts the text before or above the cursor.

If the téxt which you yank forms a part of a line, or is ar object such as a sentence which par-
tially spans more than one line, then when you put the text back, it will be placed after the cur-
sor (or before if you use P). If the yanked text forms whole lines, they will be put back as
whole lines, without changing the current line. In this case, the put acts much like an o or O
command.

Try the command YP. This makes a copy of the current line and leaves you on this copy,
which is placed before the current lire. The command Y is a convenient abbreviation for yy.
The command Yp will also make a copy of the current line, and place it after the current line.
You can give Y a count of lines to yank, and thus duplicate several lines; try 3YP.

To move text within the buffer, you need to delete it in one place, and put it back in another.
You can precede a delete operation by the name of a buffer in which the text is to be stored as
in "abdd deleting 5 lines into the named buffer a. You can then move the cursor to the even-
tual resting place of the lines and do a "ap or "aP to put them back. In fact, you can switch
and edit another file before you put the lines back, by giving a command of the form :e nameCR
where name is the name of the other file you want to edit. You will have to write back the con-
tents of the current editor buffer (or discard them) if you have made changes before vi will let
you switch to the other file. An ordinary delete command saves the text in the unnamed buffer,
so that an ordinary put can move it elsewhere. However, the unramed buffer is lost when you
change files, so to move text from one file to another you must use a named buffer.

2.6. High-Level Commands

A description of high-level commands that do more than juggle text follows.

2.6.1. Writing, Quitting, Editing New Files — ZZ, :w, :q, e, :n

So far you have seen how to enter ¢f and to write out your file using either ZZ or :wCR. The
first exits from v, writing if changes were made, and the second writes and stays in wi. We
have also described that if you have changed the editor’s copy of the file but do not wish to
save your changes, either because you messed up the file or decided that the changes are not an
improvement to the file, you type :q!CR to quit from the editor without writing the changes.

You can also re-edit the same file and start over by typing :e!CR. Use the ‘I’ command rarely
and with caution, as it is not possible to recover the changes you have made after you discard
them in this manner.

Revision € of 7 January 1984 ' 211

Using vi, the Visual Display Editor Editing and Text Processing

You can also edit a different file without leaving vf by giving the command :e nameCR. If you
have not written out your file before you try to do this, i tells you this, {‘No write since last
change: (:edit! overrides)’) and delays editing the other file. You can then type :wCR to save
your work, followed by the :e nameCR command agaim, or carefully give the command
se! nameCR, which edits the other file discarding the changes you have made to the current file,
To save changes automatically, include set autowrite in your EXINIT, and use tn instead of :e.
See Special Topics for details on EXINIT.

2.6.2. Escaping to a Shell — :!, :sh, "Z

You can get to a Shell to execute a single command by giving a vi command of the form
ilemdCR. The system runs the single command emd and when the command finishes, v asks
you to ‘Press RETURN to continue.’ When you bave finished looking at the output on the screen,
type RETURN, and vf redraws the screen. You can them continue editing. You can also give
another : command when it asks you for a RETURN; in this case the screen will not be redrawn,
If you wish to execute more than one command in the Shell, give the command :shCR. This
gives you a new Shell, and when you finish with the Shell, ending it by typing a "D, vt clears
the screen and continues.

Use “Z to suspend vf and to return to the top level Shell. The screen is redrawn when u is
resumed. This is the same as :stop.

2.6.3. Marking and Returning — m

The command ** returned to the previous place after a motion of the cursor by a command such
as /, ? or G. You can also mark lines in the file with single letter tags and return to these
marks later by naming the tags. Try marking the current line with the command maz, where
you should pick some letter for z, say ‘a’. Then move the cursor to a different line (any way
you like) and type *a. The cursor will return to the place whichk you marked. Marks last only
until you edit another file. '

When using operators such as d and referring to marked lines, it is often desirable to delete
whole lines rather than deleting to the exact position in the line marked by m. In this case you
can use the form ‘z rather than ‘z. Used without an operator, z will move to the first non-
white character of the marked line; similarly ** moves to the first non-white character of the line
containing the previous context mark **.

2.6.4. Adjusting the Screen "L, z

If the screen image is messed up because of a transmission error to your workstation, or because
some program other than vi wrote output to your workstation, you can type a "L, the ASCH
form-feed character, to refresh the screen. (On a dumb terminal, if there are @ lines in the mid-
dle of the screen as a result of line deletion, you may get rid of these lines by typing "R to
retype the screen, closing up these holes.?)

If you wish to place a certain line on the screen at the top middle or bottom of the screen, posi-
tion the cursor to that line, and give a ¥ command. Follow the £ command with a RETURN if

7 This inc‘}udes Televideo 012/020 and ADMS31 terminals.

2.12 ' Revision C of 7 January 1984

T 1 T

Editing and Text Processing Using vi, the Visual Display Editor

you want the line to appear at the top of the window, a ‘.’ if you want it at the center, or a ‘-’
if you want it at the bottom.

If you want to change the window size, use the # command as in 25§ <CR>> to change the win-
dow to five lines.

2.7. Special Topics

There are several facilities that you can use to customize an editing session.

2.7.1. Options, the Set Variable, and Editor Start-up Files

v has a set of options, some of which have been mentioned above. The most useful options are
described in the following table.

Table 2.1: Editor Options

Option Default Description

autoindent noati Supply indentation automatically

autowrite noaw Automatic write before :n, :ta, "1, !
ignorecass ° moic " Ignore letter case in searching

lisp nolisp ({) } commands deal with S-expressions

list nolist Tabs print as "I; end of lines marked with $
magic nomagic The characters . [and # are special in scans
number nonu ' Lines are displayed prefixed with line numbers
paragraphs para=IPLPPPQPbpP LI Macro names which start paragraphs

redraw nore Simulate a smart terminal on a dumb one
sections sect=NHSHH HU " Macro names which start new sections
shiftwidth sw==8 Shift distance for <<, > and input "D and *T
showmatch nosm Show matching (or { as) or } is displayed
slowopen slow Postpone display updates during inserts

term dumb The kind of terminal you are using.

The options are of three kinds: numeric options, string options, and toggle options. You can
set numeric and string options by a statement of the form:

set opt-ﬂuaf
and toggle options can be set or unset by statements of one of the forms

set opt
set noopt

Put these statements in your EXINIT in your environment {described below), or use them while
you are running vi by preceding them with a : and following them with a RETURN. For exam-
ple, to display line numbers, use:

You can get a list of all options which you have changed:

Revision q of 7 January 1984 213

Using vi, the Visual Display Editor Editing and Text Processing

isetCR
redraw term=sun wrapmargin—=3

or the value of a single option with :set opt?CR:

:set noai’er
noautoindent

The :set allCR command generates a list of all possible options and their values. You can
abbreviate set to se. You can also put multiple options on one line, such as, :»e ail aw nucCR.
When you set options with the set command, they only last while you stay in vi. It is common
to want to have certain options set whenever you use the editor. To do this, create a list of ¢z
commands to be run every time you start up vi, ez, or edit. All commands which start with ¢
are exr commands. A typical list includes a set command, and possibly a few map commands.
Put these commands on one line by separating them with the ‘|’ character. If you use csh, put a
line like this in the .login file in your home directory:

setenv EXINIT ‘set ai aw terselmap @ ddimap # x*

which sets the options autoindent, autowrite, terse, (the set command), makes @ delete a line,
(the first map)}, and makes # delete a character, (the second map). (See the Macros section for
a description of the map command.)

If you use the Bourne Sheli, put these lines in the file .profile in your home directory:

EXINIT=set ai aw tersejmap @ dd|map # x*
export EXINIT

Of course, the particulars of the line would depend on which options you wanted to set.

2.7.2. Recovering Lost Lines i

You might have a serious problem if you delete a number of lines and then regret that they
were deleted. Despair not, v saves the last nine deleted blocks of text in a set of numbered
registers 1-9. You can get the n'th previous deleted text back in your file by "np. The ” here
says that a buffer name is to follow, n is the number of the buffer you wish to try {use the
number 1 for now), and p, which puts text in the buffer after the cursor. If this doesn’t bring
back the text you wanted, type u to undo this and then . (period} to repeat the p. In general
the ‘.’ command repeats the last change you made. As a special case, when the last command
refers to a numbered text buffer, the ‘.” command increments the number of the buffer before

repeating the command. Thus a sequence of the form:
"ipu.u.u.

will, if repeated long enough, show you all the deleted text which has been saved for you. You
can omit the u commands here to gather up all this text in the buffer, or stop after any . com-
mand to keep jusi the recovered text. You can also use P rather than p to put the recovered
text before rather than after the cursor.

2.7.3.’ Recovering Lost Files — the —r Option

If something goes wrong so the system goes down, you can recover the work you were doing up
to the last few changes. You will normally receive mail when you next log in giving you the
name of the file which has been saved for you. You should then change to the directory where

9.14 Revision C of 7 January 1084

Editing and Text Processing Using vi, the Visual Display Editor

you were when the system went down and type:
logo% vi ~r name

replacing name with the name of the file which you were editing. This will recover your work to
a point near where you left off. In rare cases, some of the lines of the file may be lost. Vi will
give you the numbers of these lines and the text of the lines will be replaced by the string
‘LOST'. These lines will almost always be among the last few which you changed. You can
either choose to discard the changes which you made (if they are easy to remake) or to replace
the few lost lines by hand.

You can get a listing of the files which are saved for you by typing:
logo% vi -r

If there is more than one instance of a particular file saved, #i gives you the newest instance
each time you recover it. You can thus get an older saved copy back by first recovering the
newer copies.

The invocation ‘vi -r' will not always list all saved files, but they can be recovered even if they
are not listed.

2.7.4. Continuous Text Input — wrapmargin

When you are typing in large amounts of text it is convenient to have lines broken near the
right margin automatically. To do this, use the set wrapmargin option:

ise wm==10CR

This rewrites words on the next line that you type past the right margin.

If vi breaks an input line and you wish to put it back together, you can tell it to join the lines
with J. You can give J a count of the number of lines to be joined as in 3J to join 3 lines. Vi
supplies white apace, if appropriate, at the juncture of the joined lines, and leaves the cursor at
this white space. You can delete the white space with x if you don't want it.

If you want to aplit a line into two, put the cursor where you want the break, and type rCR.

2.%7.56. Features for Editing Programs

Vi has a number of commands for editing programs. To enable the autoindent facility for help-
ing you generate correctly indented programs, use the autoindent option:

tse aiCR.

Now try opening a new line with o and type some characters onr the line after a few tabs. If
you now start another line, notice that v supplies white space at the beginning of the line to
line it up with the previous line. You cannot backspace over this indentation, but you can use
*D key to backtab over the supplied indentation.

Each time you type "D, you back up one position, normally to an eight-column boundary. You
can set this amount with the shiftwidth option, which changes this value. Try giving the com-
mand: .

:se sw—4CR

and then experimenting with autoindent again.

Revision q of 7 January 1984 2.15

Using vi, the Visual Display Editor Editing and Text Processing

For shifting lines in the program left and right, there are operators < and >. These shift the
lines you specify right or left by one shiftwidth. Try << and >>> which shift one line left or
right, and <L and >L shifting the rest of the text left and right.

If you have a complicated expression and wish to see how the parent.heses- match, put the cursor
at a left or right parenthesis and type %5. This shows you the matching parenthesis. This
works also for braces { and }, and brackets [and).

If you are editing C programs, you can use [[and]] to advance or retreat to a line starting with
a {, that is, a function declaration at a time. When you use]] with an operator, it stops after a
line which starts with }; this is sometimes nseful with y}J.

2.7.8. Filtering Portions of the Buffer

You can yun system commands over portions of the buffer using the operator ‘I’, You can use
this to sqyt lines in the buffer, or to reformat portions of the buffer with a pretty printer. Try
typing in a list of random words, one per line and ending them with a blank line. Back up to
the beginning of the list, and then give the command:

1}sortCR.

This says to sort the next paragraph of material, and that the blank line ends a paragraph.
The result is sorted text in your file.

2.7.7. Commands for Editing LISP

If you are editing a LISP program, set the option lisp by doing:
_ :se lispCR. ’ 7
This changes the (and) commands to move backward and forward over s-expressions. The {

and } commands are like (and) but don’t stop at atoms. Use { and } to skip to the next list,
or through a comment quickly.

The autoindent option works differently for LISP, supplying indentation to align at the first
argument to the last open hst If there is no such argument, the indent is two spaces more than

the last level.
The showmatch option shows matching parentheses. Try setting it with:

1se smCR

and then try typing a ‘(' #0me words and then a ‘). Notice that the cursor briefly shows the
position of the ‘(" which matches the ‘)’. This happens only if the matching *(’ is on the screen,
and the cursor stays there for at most one second.
Vi also has an operator to realign existing lines as though they had been typed in with lfisp and
autoindent set. This is the == operator. Try the command =% at the beginning of a func-
tion. This realigns all the lines of the function declaration.

When you are editing LISP, the [[and]| advance and retreat to lines beginning with a (, and are
useful for dealing with entire function definitions.

2-16 Revision C of 7 Japuary 1984

-

Editing and Text Processing Using vi, the Visual Display Editor

2.7.8. Macros

Vi has a parameterless macro facility, which you can set up so that when you type a single
keystroke, vi will act as though you had typed some longer sequence of keys. Set this up if you
find yourself repeatedly typing the same sequence of commands or text.

Briefly, there are two kinds of macros:

1. Ones where you put the macro body in a buffer register, say z. You can then type @x to
invoke the macro. The @ may be followed by another @ to repeat the last macro.

2. You can use the map command from o (typically in your EXINIT) with a command of the
form:
:map lhs rhsCR

mapping lhs into rhe. There are restrictions: lks should be one keystroke (either one char-
acter or one function key) since it must be entered within one second unless notimeout (see
Option Descriptions) is set, in which case you can type it as slowly as you wish, and o will
wait for you to finish it before it echoes anything). The Iks can be no longer than ten char-
acters, the rhs no longer than 100. To get a space, tab or newline into (ks or rhs, escape
them with a *V. It may be necessary to double the "V if you use the map command inside
v, rather than in ¢z. You do not need to escape spaces and tabs inside the rhs.

Thus to make the q key write and exit v, type:
:map q :wq " V'VCR CR

which means that whenever you type q, it will be as though you had typed the four characters
twqOR. A "V is needed because without it the CR would end the : command, rather than
becoming part of the map definition. There are two “V’s because from within vi, you must
type two “V's to get one. The first CR is part of the rhs, the second terminates the : command.

You can delete macros with |

sunmap lhs

If the ths of a macro is ‘#0’ through ‘#9°, this maps the particular function key instead of the
two-character ‘§' sequence. So that terminals without function keys can access such definitions,
the form ‘#x’ will mean function key z or all terminals and need not be typed within one
second. You can change the character ‘#' by using a macro in the usual way:

tmap "V'V'I #
to use tab, for example. This won't affect the map command, which still uses #, but just the
invocation from visual mode.
The undo command reverses an entire macro call as a unit, if it made any changes.

Placing a ‘' after the word map applies the mapping to input mode, rather than command
mode. So, to arrange for T to be the same as four spaces in input mode, type:

1map T “VEBEE

where J is a blank. The "V prevents the blanks from being taken as white space between the
ths and rhe. Type simply:

smap!
to list macros that apply during input mode and

Revision C of 7 January 1984 2.17

Using vi, the Visual Display Editor Editing and Text Processing

imap

to list macros that apply during command mode. Typing map. or map! by itself produces a
listing of macros in the corresponding mode. .

2.7.9. Word Abbreviations — :ab, :una

A feature similar to macros in input mode is word abbreviation. You can type a short word
and have it expanded into a longer word or words with :abbreviate (:ab). For example:

:ab foo find outer otter

always changes the word ‘foo’ into the phrase ‘find outer otter’. Word abbreviation is different
from macyos in that only whole words are affected. If ‘foo’ were typed as part of a larger word,
it would be left alone. Also, the partial word is echoed as it is typed. There is no need for an
abbreviation to be a single keystroke, as it should be with a macro. This only operates in visunal
mode and uses the same syntax as the map command, except that there are no ‘I’ forms.

Use unabbreviate (;una) to turn off the abbreviation. To unabbreviate the above, for exam-
ple, type: :
:una foo

2.7.9.1. Abbreviations

Vi editor has a number of short commands which abbreviate the longer commands have intro-
duced here. You can find these commands easily in the Ez.Commands sectior in the quick
reference. They often save a bit of typing, and you can learn them when it's convenient.

2.8. Nitty-gritty Details

The following presents some functional details and some ez commands (see File Manipulation
Commands) that are particularly useful in vs.

2.8.1. Line Representation in the Display

Vi folds long logical lines onto many physical lines in the display. Commands which advance
lines advance logical lines and skip over all the segments of a line in one motion. The command
| moves the cursor to a specific column, and may be useful for getting near the middle of a long
line to split it in half. Try 80| on a line which is more than 80 columns long. You can make
long lines very easily by using J to join together short lines.

Vi only puts full lines on the display; if there is not enough room on the display to fit a logical
line; vi editor leaves the physical line empty, placing only an ‘@' on the line as a place holder.
(When you delete lines on a dumb terminal, vi will often just clear the lines to '@’ to save time
rather than rewriting the rest of the screen.) You can always maximize the information on the
screen with "R.

It you wish, you can have the editor place line numbers before each line on the display. To
enable this, type the option:

2-18 Revision C of 7 January 1984

I I PR VI ¥ | BN

N

Editing and Text Processing Using vi, the Visual Display Editor

i8¢ nuCR
To turn it off, use the no numbera option:
tse nonuCR

You can have tabs represented as “I and the ends of lines indicated with ‘$’ by giving the list
option:

sse listCR
To turn this off, use:

sse nolistCR

Finally, lines consisting of only the character ‘*’ are displayed when the last line in the file is in
the middle of the screen. These represent physical lines which are past the logical end of file.

2.8.2. Command Counts

Most vi commands use a preceding count to affect their behavior in some way. The following
table gives the common ways in which the counts are used:

New window size O AR 48 | 08) R
Scro!l amount ‘D U
Line/column number s G |
Repeat effect Most of the rest

Vi maintains a notion of the current default window size. (On terminals which run at speeds
greater than 1200 baud vi uses the full terminal screen. On terminals which are slower than
1200 baud, and most dialup lines are in this group, vf uses 8 lines as the default window size.
At 1200 baud the default is 16 lines.)

V¢ uses the default window size when it clears and refills the screen after a search or other
motion moves far from the edge of the current window. The commands which take a new win-
dow size as count all often redraw the screen. If you anticipate this, but do not need as large a
window as you are currently using, you may wish to change the screen size by specifying the
new size before these commands. In any case, the number of lines used on the screen will
expand if you move off the top with a ‘=’ or similar command or off the bottom with a com-
mand such as RETURN or “D. The window will revert to the last specified size the next time it
is cleared and refilled, but not by a "L which just redraws the screen as it is.

The scroll commands "D and “U likewise remember the amount of scroll last specified, using
half the basic window size initially. The simple insert commands use a count to specify a repeti-
tion of the inserted text. Thus 10a-+———ESC will insert a grid-like string of text. A few com-
mands also use a preceding count as a line or column number.

Except for the few commands which ignore any counts, such as "R, the rest of the vi commands
use a count to indicate a simple repetition of their eflect. Thus 5w advances five words on the
current line, while BRETURN advances five lines. A very useful instance of a count as a repeti-
tion is a count given to the . command, which repeats the last ¢changing command. If you do
dw and then 3., you delete first one and then three words. You can then delete two more
words with 2.,

Revision C of 7 January 1984 2.19

Using vi, the Visual Display Editor Editing and Text Processing

2.8.3. File Manipulation Commands

The following table lists the file manipulation commands which you can use when you are in v,

Table 2-2: File Manipulation Commands

Command Meaning

w Write back changes

wq Write and quit

o Write (if necessary) and quit (same as ZZ).
te name Edit file name

sel Re-edit, discarding changes

te + name Edit, starting at end

e +n Edit, starting at line n

e # Edit alternate file

tw name Write file name

sw! name Overwrite file name

iz,yw name Write lines z through y to name

ir name Read file name into buffer

sr lemd Read output of c¢md into buffer

m Edit next file in argument list

:n} Edit next file, discarding changes to current
mn args Specify new argument list

ita tag Edit file containing tag tag, at tag

A OR or ESC follows all of these commands. The most basic commands are :w and :e. End a
normal editing session on a single file with a ZZ command. If you are editing for a long period
of time, use the :w command occasionally after major amounts of editing, and then finish with
a ZZ. When you edit more than one file, you can finish with one with a :w and start editing a
new file by giving a 1¢ command, or set autowrite and use :n file.

If you make changes to the editor’s copy of a file, but do not wish to write them back, give an !
after the command you would otherwise use to exit without changing the file. Use this care-
fully.

{Use the :e command with a + argument to start at the end of the file, or a +n argument to
start at line n. In actuality, n may be any editor command not containing a space, usually a
scan like -+/pat or +?pat. In forming new names to the e command, use the character %
which is replaced by the current filename, or the character # which is replaced by the alternate
filename. The alternate filename is generally the last name you typed other than the current
file. Thus if you try to do a :e and get a diagnostic that you haven’t written the file, you can
give a :w command and then a te # command to redo the previous :e.

You can write part of the buffer to a file by finding out the lines that bound the range to be
written using ", and giving these numbers after the : and before the w, separated by ,’s. You
can also mark these lines with m and then use an address of the form ‘z,’y on the w command
here:

You can read another file into the buffer after the current line by using the :r command. You
can similarly read in the output from a command, just use !cmd instead of a filename.

If you wish to edit a set of files in succession, you can give all the names on the command line,
and then edit each one in turn using the command :n. To respecify the list of files to be edited,

2.90 Revision C of 7 January 1984

11T AT

L OLILITE,

Editing and Text Processing Using vi, the Visual Display Editor

give the :n command a list of filenames, or a pattern to be expanded as you would have given it
on the initial ¥ command.

For editing large programs, use the :ta command. It utilizes a data base of function names and
their locations, which can be created by programs such as ctags, (see the User’s Manual for the
Sun Workstation) to quickly find a function whose name you give. If the :ta command will
require the editor to switch files, then you must :w or abandon any changes before switching.
You can repeat the :ta command without any arguments to look for the same tag again.

2.8.4. More about Searching for Strings

When you are searching for strings in the file with / and ?, vi normally places you at the next
or previous occurrence of the string. If you are using an operator such as d, ¢ or y, then you
may well wish to affect lines up to the line before the line containing the pattern. You can give
a search of the form /pat/—n to refer to the n'th line before the next line containing pat, or you
can use < instead of — to refer to the lines after the one containing pat. If you don't give a line
offset, vi will affect characters up to the match place, rather than whole lines; thus use ‘+ 0’ to
affect to the line which matches.

To have vi ignore the case of words in searches, give the ignorecase option:
ise IcCR)
To turn this off so that vi recognizes case again, use:
sse noicCR
Strings given to searches may actually be regular expressions. !f you do not want or need this
facility, you should put:
set nomagic

in your EXINIT. In this case, only the characters ‘*’ and ‘$’ are special in patterns. The charac-
ter \ is also then special, as it is most everywhere in the system, and you can use it to get at the
extended pattern matching facility. It is also necessary to use a * \' before a '/’ in a forward
scan or a ‘Y in a backward scan, in any case. The following table gives the extended forms
when magic is set. '

Table 2-3: Extended Pattern Matching Characters

Character Meaning

- At beginning of pattern, matches beginning of line
$ At end of pattern, matches end of line

. Matches any character

\< Matches the beginning of a word

\> Matches the end of a word

[string] Matches any single character in string

[string Matches any single character not in string

[=4 Matches any character between z and y

* Matches any number of the preceding pattern

If you use nomagie mode, use the ‘. [' and ‘*’ primitives with a preceding \.

Revision C of 7 January 1984 2-21

Using vi, the Visual Display Editor Editing and Text Processing

2.8.5. More about Input Mode

There are a number of characters to make corrections during input mode. These are summar-
ized in the following table.

Table 2-4: Input Mode Corrections

Character Meaning

"H Deletes the last input character

"W Deletes the last input word, defined as by b
erase Your erase character, same as "H

kill Your kill character, deletes the input on this line
\ Escapes a following "H and your erase and kill
ESC Ends an insertion

DEL Interrupts an insertion, terminating it abnormally
CR Starts a new line

‘D Backtabs over sutoindent

0'D Kills all the autoindent

1°D Same as 0°D, but restores indent next line

"V Quotes the next non-printing charactet into the file

The most usual way of making corrections to input is to type DEL ("H on a termiral) to
correct a single character, or by typing one or more “W'’s to back over incorrect words.

Your system kill character “U (or sometimes “X) erases all the input you have given on the
current line. In general, you can neither erase input back around a line boundary nor can you
erase characters which you did not insert with this insertion command. To make corrections on
the previous line after a new line has been started, press ESC to end the insertion, move over
and make the correction, and then return to where you were to continue. Use A to append at
the end of the current line; this is often useful for continuing text input.

If you wish to type in your erase or kill character, say "U, you must precede it with a \, just as
you would do at the normal system command level. A more general way of typing non-printing
characters into the file is to precede them with a “V. The "V echoes as a { character on which
the cursor rests. This indicates that the editor expects you to type a control character. In fact
you may type any character and it will be inserted into the file at that point.8

If you are using autoindent you can backtab over the indent which it supplies by typing a "D.
Th,e[f backs up to a shiftwidth boundary. This only works immediately after the supplied autoin-
desis.

When you are using autoindent you may wish to place a label at the left margin of a line. The
way to do this easily is to type ~ and then “D. The editor will move the cursor to the left mar-
gin for one line, and restore the previous indent on the next. You can also type a O followed
immediately by a "D if you wish to kill all the indent and not have it come back on the next
line. -

8 This is not quite true. Vi does not allow the NULL ("@) character to appear in files, Also the
editor uses the LF (linefeed or “J) character to separate lines in the file, so it cannot appear in the
middle of a line, You can insert any other character, however, if you wait for the editor to echo the
* before you type the character. In fact, the editor treats a following letter as a request for the
corresponding control character, This is the only way to type *S or “Q, since the system normally
uses them to suspend and resume output and never gives them to the editor to process,

2.99 Revision C of 7 January 1984

-

-

L1 T T T e+ g

Al TR e e 1

-

Editing and Text Processing Using vi, the Visual Display Editor

2.9. Command and Function Reference

The following section provides abridged explanations of the vi and ez commands.

2.9.1, Notation

Notation used in this section is as follows.

{[option] Denotes optional parts of a command. Many vi commands have an optional count.

{end] Means that an optional number may precede the command to multiply or iterate the
command. '

{variable item}
Denotes parts of the command which must appear, but can take a number of
different values.

< character [-character[>

Means that the character or one of the characters in the range described between the
two angle brackets is to be typed. For example <esc>> means type the ESCAPE
key. <a-£> means type a lower-case letter., “<character>> means type the charac-
ter as a control character, that is, with the CTRL key beld down while simultane-
ously typing the specified character. Here we denote control characters with the
upper-case character, but " <uppercase chr> and “<lowercase chr>> are equivalent.
That is, "D is equal to "d. The most common character abbreviations used in this
list are as follows:

Table 2-5: Common Character Abbreviations

Character Abbreviation Meaning
<esc> escape, octal 033

<cr> carriage return, "M, octal 015
<lf> ' linefeed " J, octal 012

 newline, "J, octal 012 (same as linefeed)
<bs> backspace, "H, octal 010
<tab> tab, "I, octal 011

<bell> bell, "G, octal 07

<ff> formfeed, "L, octal 014
<sp> space, octal 040

 delete, octal 0177

2.9.2, Commands

Following are brief explanations of the vi commands categorized by function for easy reference.

Revision q of 7 January 1984 2-23

Using vi, the Visual Display Editor Editing and Text Processing

2.9.3. Entry and Exit

To enter vf on a particular file, type:
logo%ovi file

The file will be read into the buffer, and the cursor is placed at the beginning of the first line.
The first acreenfull of the file is displayed on the screen. ‘

To get oyt of the editor, type:
ZZ (or :q or :q!)

if you are in some special mode, such as input mode or the middle of a multi-keystroke com-
mand, it may be necessary to type ESC first.

2.9.4. Cursor and Page Motion

Note: You can move the cursor on your screen with the arrow keys on your workstation key-
board, the control character versions or the b, j, k, and 1 keys. If you are using a terminal that
does not have arrow keys, use the control character versions or the h, j, k, and 1 keys.

[cnt] <bs> or [ent]h or [cnt)«—
Move the cursor to the left one character. Cursor stops at the left margin of
the page. [cnt) specifies the number of spaces to move.

[ent]"N or [ent]j or [ent]) or [ent] <>
Move down one line. Moving off the screen scrolls the window to force a new
line onto the screen. Mremonic: Next

[ent]*P or [entlk or [ent]”
Move up one line. Moving off the top of the screen forces new text onto the
screen. Mnemonic: Previous

[ent]<sp> eor [cut]l or [cnt]—
Move to the right one character. Cursor will not go beyond the end of the
line.

[cnt]- Move the cursor up the screen to the beginning of the mext line. Scroll if
necessary.

[ent]+ or [ent]<er>
Move the cursor down the screen to the beginning of the next line. Scroll up
if necessary.

[ent]$ Move the cursor to the end of the line. If there is a count, move to the end of
the line ¢nt lines forward in the file.

A

Move the cursor to the beginning of the first word on the line.

0 ' Move the cursor to the left margin of the current line.

[ent]| Move the cursor to the column specified by the count. The default is column
zero.

fent]w Move the cursor to the beginning of the next word. If there is a count, then

move forward that many words and position the cursor at the beginning of
the word. Mnemonic: next-word

2.94 Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

[ent]W

{ent]b
{ent}B

{ent]e
[cnt]E

|line number]G

Move the cursor to the beginning of the next word which follows a ‘white
space’ (<sp>,<tab>, or <nl>). Ignore other punctuation.

Move the cursor to the preceding word. Mnemonie: backup-word

Move the cursor to the preceding word that is separated from the current
word by a ‘white space’ (<sp>,<tab>, or <nl>).

Move the cursor to the end of the current word or the end of the entth word
hence. Mnemonic: end-of-word

Move the cursor to the end of the current word which is delimited by ‘white
space' (<sp>,<tab>, or <nl>}.

Move the cursor to the line specified. Of particular use are the sequences 1G
and G, which move the cursor to the beginning and the end of the file respec-
tively. Mnemonic: Go-to

Note: The next four commands ("D, U, “F, "B) are not true motion commands, in that they
cannot be used as the object of commands such as delete or change,

{ent]"D

{ent)*U

[ent)*F

[cnt]"B
[ent](

[ent])
[ent]}

[ent]{
)

Il
%

Move the cursor down in the file by ent lines (or the last cnt if a new count
isn't given). The initial default is half a page. The screen is simultaneously
scrolled up. Mnemonic: Down

Move the cursor up in the file by cnt lines. The screen is simultaneously
scrolled down, Mnemonic: Up

Move the cursor to the next page. A count moves that many pages. Two
lines of the previous page are kept on the screen for continuity if possible.
Mnemonic: Forward-a-page

Move the cursor to the previous page. Two lines of the current page are kept
if possible, Mnemonic: Backup-a-page

Move the cursor to the beginning of the next sentence. A sentence is defined
as ending with a *.’, ‘V', or ‘!’ followed by two spaces or a <ml>.

Move the cursor backwards to the beginning of a sentence.

Move the cursor to the beginning of the next paragraph. This command
works best inside nroff documents. It understands the nroff macros in -mas,
for which the commands ‘.IP’, ‘*.LP’, *.PP’, *.QP’, as well as the nroff com-
mand *.bp’ are considered to be paragraph delimiters. A blank line also del-
imits a paragraph. The nroff macros that it accepts as paragraph delimiters
are adjustable, See Paragraphs under Set Commanda,

Move the cursor backwards to the beginning of a paragraph.

Move the cursor to the next ‘section,’ where a section is defined by the set of
nroff macros in -ms, in which “NH’ and ‘.SH’ delimit a section. A line begin-
ning with a <fi> <nl> sequence, or a line beginning with a *{’ are also con-
sidered to be section delimiters. The last option makes it useful for finding the
beginnings of C functions. The nroff macros that are used for section delim-
iters can be adjusted. See Sections under Set Commands.

Move the cursor backwards to the beginning of a section.

Move the cursor to the matching parenthesis or brace. This is very useful in
C or lisp code. If the cursor is sitting on a () { or }, it is moved to the
matching character at the other end of the section. If the cursor is not sitting
on a brace or a parenthesis, vi searches forward until it finds one and then

Revision C of 7 January 1984 2-25

Using vi, the Visual Display Editor Editing and Text Processing

jumps to the match mate.

[ent]H if there is no count, move the cursor to the top left position on the screen. If
there is a count, then move the cursor to the beginning of the line ent lines
from the top of the screen. Mnemonic: Home .

[ent]L If there is no count, move the cursor to the beginning of the last line on the
screen. If there is a count, move the cursor to the beginning of the line cnt
lines from the bottom of the screen. Mnemonic: Last

M Move the cursor to the beginning of the middle line on the screen. Mnemonic:
Middle
m<az> Mark the place in the file without moving the cursor; use a character ‘<a-2>’

as the label for referring to this location in the file. See the next two com-
mands. Mnemonic: mark Note: the mark command is not a motion and can-
not be used as the target of commands such as delete.

‘<a-z> Move the cursor to the beginning of the line that is marked with the label
‘Lar>.

‘<arz> Move the cursor to the exact position on the line that was marked with the
label ‘<a-2>>".

” Move the cursor back to the beginning of the line where it was before the last

non-relative move. A non-relative move is something such as searching or
jumping to a specific line in the file, rather than moving the cursor or scrol-
ling the screen.

e Move the cursor back to the exact spot on the line where it was located
before the last non-relative move,

2.9.5. Searches

The following commands search for items in a file.

{ent)f{chr} Search forward on the line for the next or cntth occurrence of the character
chr. The cursor is placed at the character of interest. Mnemonie: find char-
acter

[ent]F {chr} Search backwards on the line for the next or cnith occurrence of the character
chr. The cursor is placed af the character of interest.

{cnt]t{chr} Search forward on the line for the next or entth occurrence of the character

chr. The cursor is placed just preceding the character of interest. Mnemonic:
move cursor up to character

[ent)T{chr} Search backwards on the line for the next or ¢ntth occurrence of the character
chr. The cursor is placed juat preceding the character of interest.

[ent); Repeat the last f, F, t or T command. _ _

lent), Repeat the last f, F, t or T command, but in the opposite search direction.
This is useful if you overshoot what you are looking for.

[ent]/[string]/ <unl>

Search forward for the next occurrence of ‘string’. Wraparound at the end of
the file does occur. The final < /> is not required.

[ent]?[string]? <nl>
Search backwards for the next occurrence of ‘string’. If a count is specified,

2-26 Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

the count becomes the new window size. Wraparound at the beginning of the
file does occur. The final <<?>> is not required.

n Repeat the last /[string]/ or ![string|? search. Mnemonic: next occurrence.
N Repeat the last /[string]/ or ?[string]? search, but in the reverse direction.

:g/[string)/[editor command]<pl>
Using the : syntax, it is possible to do global searches like you can in the ed

editor.

2.9.86. Text Insertion

The following commands insert text. Terminate all multi-character text insertions with an ESC
character. You can always undo the last change by typing a u. The text insert in insertion
mode can contain newlines.

a{text)} <esc> Inmsert text immediately following the cursor position. Mnemonic: appead
A{text}<esc> Imsert text at the end of the current line. Mnemonic: Append

i{text} <ese> Insert text immediately preceding the cursor position. Mnemonic: insert
I{text} <esc> Insert text at the beginning of the current line.

o{text}<esc> Insert a new line after the line on which the cursor appears and insert text
there. Mnemonic: open pew line

Oftext}<esc> Insert a nmew line preceding the line on which the cursor appears and insert
text there,

2.9.7. Text Deletion

The following commands delete text in various ways. You can always undo changes by typing
the u command.

[ent]x Delete the character or characters starting at the cursor position.

[ent]X Delete the character or characters starting at the character preceding the cur-
sor position.

D Delete the remainder of the line starting at the cursor. Mnemonic: Delete the

rest of line

[ent]d{motion}
Delete one or more occurrences of the specified motion. You can use any
motion from L ow Level Character Motions and Higher Level Text Objects here.
You can repeat the d {such as [ent]dd) to delete ent lines.

2.9.8. Text Replacement

Use the following commands to simultaneously delete and insert new text. You can undo all
such actions by typing u following the command.

y<chr> Replace the character at the current cursor position with <chr>. This is a
one-character replacement. No ESC is required for termination. Mnpemonic:
replace character

Revision C of 7 January 1984 2-27

Using vi, the Visual Display Editor Editing and Text Processing

R{text}<esc> Start overlaying the characters on the screen with whatever you type. It does
not stop until you type an ESC.

[ent]s{text} <esc>
Substitute for cnt characters beginning at the current cursor position. A ‘$’
appears at the position in the text where the cn#th character appears so you
will know how much you are erasing. Mnemonic: substitute

[ent]S{text} <esc>
Substitute for the entire current line or lines. If you do not give a count, a ‘§’
appears at the end of the current line. If you give a count of more than 1, all

the lines to be replaced are deleted before the insertion begins.

[ent]e{motion} {text} <esc>
Change the specified motion by replacing it with the insertion text. A ‘¢’
appears at the end of the last item that is being deleted unless the deletion
involves whole lines. Motion's can be any motion from sections Low Level
Character Motions and Higher Level Text Objects. Repeat the ¢ (such as
[ent]ee) to change cnt lines.

2.9.9. Moving Text

You can move chunks of text around in a number of ways with vi. There are nine buffers into
which each piece of text which is deleted or yanked is put in addition to the undo buffer. The
most recent deletion or yank is in the undo buffer and also usually in buffer 1, the next most
recent in buffer 2, and so forth. Each new deletion pushes down all the older deletions. Dele-
tions older than 9 disappear. There is also a set of named registers, a-z, into which text can
optionally be placed. If you precede any delete or replacement type command by " <a-z>>,
that named buffer will contain the text deleted after the command is executed. For example,
"a3dd deletes three lines starting at the current line and puts them in buffer "a. Referring to
an upper-case letter as a buffer name {A-Z) is the same as referring to the lower-case letter,
except that text placed in such a buffer is appended to it instead of replacing it. There are two
more basic commands and some variations useful in getting and putting text into a file.
| <a-2>][cnt]y{motion}
Yank the specified item or cnt items and put in the undo buffer or the
specified buffer. The variety of items that you can yank is the same as those
that you can delete with the d command or changed with the ¢ command. In
the same way that dd means delete the current line and cc means replace the
current line, yy means yank the current line.

[* <a-z>][ent]Y Yank the current line or the ent lines starting from the current line. If no
buffer is specified, they will go into the undo buffer, like any delete would. It
is equivalent to yy. Mnemonic: Yank

[<a-z>lp Put undo buffer or the specified buffer down after the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line following
the line the cursor is on. If you deleted something else, like a word or sen-
tence, it is inserted immediately following the cursor. Mnemonic: put buffer

Note that text in the named buflers remains there when you start editing a
new file with the :e fileCR command. Since this is so, it is possible to copy or
delete text from one file and carry it over to another file in the buffers. How-
ever, the undo buffer and the ability to undo are lost when changing files.

2-28 Revision C of 7 January 1984

©

Editing and Text Processing Using vi, the Visual Display Editor

P <a-z>)P

[ent]> {motion}

[cnt] < {motion}

[ent]={motion}

Put undo bufler or the specified buffer down before the cursor. If you yanked
or deleted whole lines into the buffer, they are put down on the line preceding
the line the cursor is on. If you deleted something else, like a word or sen-
tence, it is inserted immediately preceding the cursor.

The shift operator right shifts all the text from the line on which the cursor is
located to the line where the motion is located. The text is shifted by one
shiftwidth, (See Terminal Information.) >>> means right shift the current
line or lines.

The shift operator left shifts all the text from the line on which the cursor is
located to the line where the stem is located. The text is shifted by one
shiftwidth. (See Terminal Information.) << means left shift the current line
or lines. Once the line has reached the left margin, it is not affected further.

Prettyprints the indicated area according to lisp conventions. The area
should be a lisp s-expression,

2.9.10. Miscellaneous Commands

A number of useful miscellaneous vi commands follow:

ZZ

"L

[ent]J

Exit from wvi. If any changes have been made, the file is written out. Then
you are returned to the shell.

Redraw the current screen. This is useful if messages from a background pro-
cess are displayed on the screen, if someone ‘writes’ to you while you are
using v or if for any reason garbage gets onto the screen.

On dumb terminals, those not having the ‘delete line’ function (the vt100 for
example), vi saves redrawing the screen when you delete a line by just mark-
ing the line with an ‘@’ at the beginning and blanking the live. If you want
to actually get rid of the lines marked with ‘G’ and see what the page looks
like, type a “R.

‘Dot’ repeats the last text modifying command. You can type a command
once and then move to another place and repeat it by just typing ‘.’

Undo the last command that changed the buffer. Perhaps the most impor-
tant command in the editor. Mnemonic: undo

Undo all the text modifying commands performed on the current line since
the last time you moved onto it.

Join the current line and the following line. The <nl> is deleted and the
two lines joined, usually with a space betweenr the end of the first line and the
beginning of what was the second line. If the first line ended with a ‘period’,
two spaces are inserted. A count joins the next ent lines, Mnemonic: Join
lines

Switch to ez editing mode. In this mode vf behaves very much like ed. The
editor in this mode operates on single lines normally and does not attempt to
keep the ‘window’ up to date, Once in this mode you can also switch to the
open mode of editing by entering the command fline numberfopen <nl>. It
is similar to the normal visual mode except the window is only ene line long,
Mnemonic: Quit visual mode

Revision C of 7 January 1984 2-29

Using vi, the Visual Display Editor Editing and Text Processing

“1 An abbreviation for a tag command. The cursor should be positioned at the
beginning of a word. That word is taken as a tag name, and the tag with
that name is found as if it had been typed in a :tag command.

{ent])!{motion}{Sun emd} <nl> '

Any Sun system filter (that i, a command that reads the standard input and
outputs something to the standard output) can be sent a section of the
current file and have the output of the command replace the original text.
Useful examples are programs like cb, sort, and nroff. For instance, using sort
you can sort a section of the current file into a new list. Using !! means take
a line or lines starting at the line the cursor is currently on and pass them to
the Sun system command. Note: To escape to the Shell for just one com-
mand, use :!{emd} <nl> (see High Level Commands).

z{cnt} <nl> Reset the current window size to cnt lines and redraw the screen.

2.9.11. Special Insert Characters

Following are some characters that have special meanings during insert mode.

' During inserts, typing a “V quotes control characters into the file. Any char-
acter typed after the "V is inserted into the file.

[*]'Dor [0]"D "D without any argument backs up one shiftwidth. Use this to remove inden-
tation that was inserted by the autoindent feature. " "D temporarily removes
all the autoindentation, thus placing the cursor at the left margin. On the
next line, the previous indent level is restored. This is useful for putting
‘labels’ at the left margin. 0°D removes all autoindents and keeps it that
way. Thus the cursor moves to the left margin and stays there on successive
lines until you type TAB's. As with the TAB, the "D is effective only before
you type any other ‘non-autoindent’ controlling characters. Mpemonic:
Delete a shiftwidth

"W If the cursor is sitting on a word, “W moves the cursor back to the beginning
of the word, erasing the word from the insert. Mnemonic: erase Word

<bs> The backspace always serves as an erase during insert modes in addition to
your normal ‘erase’ character. To insert a <bs>> into your file, quote it with
the “V.

2.9.12. : Commands

Typing a “' during command mode puts the cursor at the bottom on the screen in preparation

for a command. In the ‘:’ mode, you can give v most ed commards. You can also exit from i

or switch to different files from this mode. Terminate all commands of this variety by a <nl>,

<cr>, or ESC. 4

w1 (Ble] Write out the current text to the disk. It is writter to the file you are editing
unless you supply file. If file is supplied, the write is directed to that file
instead. If that file already exists, i does not write unless you use the ‘'
indicating you really want to write over the older copy of the file.

qlt] Exit from vi. If you have modified the file you are currently looking at and
haven't written it out, vi refuses to exit unless you type the ‘1’

2-30 Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

:e(t] [+ [cmd]] [file]

Start editing a new file called file or start editing the current file over again,
The command :el says ‘ignore the changes I've made to this file and start over
from the beginning’. Use it if you really mess up the file. The optional ‘4’
says instead of starting at the beginning, start at the ‘end’, or, if you supply
e¢md, execute cmd first. Use this where cmd is n (any integer) which starts at
line number n, and /test, which searches for ‘text’ and starts at the line
where it is found.

Switch back to where you were before your last tag command. If your last tag
command stayed within the file, *" returns to that tag. If you have no recent
tag command, it returns to the same place in the previous file that it was
showing when you switched to the current file,

()] Start editing the next file in the argument list. Since you can call v with
multiple filenames, the :n command tells it to stop work on the current file
and switch to the next file. If you have modified the current file, it has to be
written out before the :n will work or else you must use ', which discards the
changes you made to the current file,

:nl] file [file file ...}

Replace the current argument list with a new list of files and start editing the
first file in this new list.

ir file Read in a copy of file on the line after the cursor.

r lemd Execute the emd and take its output and put it into the file after the current
line.

slemd Execute any system Shell command.

tall] tag Vi looks in the file named tags in the current directory. Tags is a file of lines

in the format:
tag filename vi-search-command

If vi finds the tag you specified in the :ta command, it stops editing the
curreut file if necessary, If the current file is up to date on the disk, it
switches to the file specified and uses the search pattern specified to find the
‘tagged’ item of interest. Use this when editing multi-file C programs such as
the operating system. There is a program called ctags which generates an
appropriate tags file for C and f77 programs so that by saying :ta
function<nl>> you can switch to that function. It can also be useful when
editing multi-file documents, though the tags file has to be generated manu-
ally in this case.

2.9.13. Set Commands

Vi has a number of internal variables and switches which you can set to achieve special affects,
These options come in three forms, those that are switches, which toggle from off to on and
back, those that require a numeric value, and those that require an alphanumeric string value.
Set the toggle options by a command of the form:

et option<nl>
and tiirn off the toggle options with the command;

Revision C of 7 January 1984 2-31

Using vi, the Visual Display Editor Editing and Text Processing

iset nooption<<nl>
To set commands requiring a value, use a command of thé form:
iset option=value<nl>
To display the value of a spe;:iﬁc option, type:
et option?<nl>
To display only those that you have changed, type:
tset<nl>
and to display the long table of all the settable pa.rametefs and their current values, type:
met all<nl>

Most of the options have a long form and an abbreviation. Both are described in the following
list as well as the normal default value.

To use values other than the default every time you enter v, place the appropriate set com-
mand in EXINIT in your environment, such as:

setenv EXINIT ’set al aw terse sh==/bin/csh’
or

EXINIT="get ai aw terse sh=/ bin/ésh’
export EXINIT

for ceh and sh, respectively. Place these in your .login or .profile file in your home directory.

autoindent ai Default: noat Type: toggle
When in autoindent mode, vi helps you indent code by starting each line in
the same column as the preceding line. Tabbing to the right with <tab> or
“T moves this boundary to the right; to move it to the left, use "D,

autoprint ap Default: ap Type: toggle
Displays the current line after each ez text modifying command. Not of much
interest in the normal vf visual mode. '

autowrite aw Default: noaw type: toggle
Does an automatic write if there are unsaved changes before certain com-
mands which change files or otherwise interact with the outside world are exe-
cuted. These commands are :I, :tag, :next, :rewind, **, and °].

beautify bf Default: nobf Type: toggle

Discards all control characters except <tab>, <nl>, and <fi>.
directory dir ~ Default: dir=/tmp Type: string

This is the directory in which vi puts its temporary file.

errorbells eb Default: noeb Tj'rpe:,vt_,,o'ggle
Error messages are preceded by a <bell>.

hardtabs ht Default: hardtabs==8 Type: numeric
This option contains the value of hardware tabs in your terminal, or of
software tabs expanded by the Sun system.

ignorecase ic Default: noic Type: toggle
Map all upper-case characters to lower case in regular expression matching,.

2.32 Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

lisp

list

magic

number nu

open

optimize opt

paragraphs para

Default: nolisp Type: toggle

Autoindent for lisp code. The commands () [[and]] are modified appropri-
ately to affect s-expressions and functions.

Default: nolist Type: toggle

Show the <<tab>> and <nl> characters visually on all displayed lines.

Default: magic Type: toggle
Enable the metacharacters for matching. These include . * < > [string]
["string] and [<chr>-<chr>].

Default: nonu Type: toggle
Display each line with its line number.

Default: open Type: toggle
When set, prevents entering open or visual modes from ez or edit. Not of
interest from vi,

Default: opt Type: toggle

Useful only when using the ez capabilities. This option prevents automatic
<cr>s from taking place, and speeds up output of indented lines, at the
expense of losing typeahead on some versions of the operating system.

Default: para=IPLPPPQPP bp Type: string

Each pair of characters in the string indicates nroff macros which are to be
treated as the beginning of a paragraph for the { and } commands. The
default string is for the -ms. To indicate cne letter nroff macros, such as *,P’
or .H’, quote a space in for the second character position. For example:

et paragraphs=PP\ bp<nl>

causes s to consider *.PP’ and ‘.bp' as paragraph delimiters.

prompt Default: prompt Type: toggle
In ez command mode the prompt character : is displayed when ez is waiting
for a command. This is not of interest from vs.

redraw Default: noredraw Type: toggle
On dumb terminals, force the screen to always be up to date by sending great
amounts of output., Useful only at high speeds.

report Default: report=>5 Type: numeric
Set the threshold for the number of lines modified. When more than this
number of lines is modified, removed, or yanked, vi reports the number of
lines changed at the bottom of the screen.

scroll Default: scroll={1/2 window} Type: numeric
This is the number of lines that the screen scrolls up or down when using the
*U and "D commands,

sections Default: sections=SHNHH HU Type: string
Each two-character pair of this string specifies nroff macro names, which are
to be treated as the beginning of a section by the]] and [[commands. The
default string is tior the -ms and -mm macros. To enter one-letter nroff mac-
ros, use a quoted space as the second character. See Paragraphs for a fuller
explanation,

shell sh Default: sh=from environment SHELL or /bin/sh Type: string
Specify the name of the sh to be used for ‘escaped' commands.

Revision C of 7 January 1984 2-33

Using vi, the Visual Display Editor Editing and Text Processing

shiftwidth sw

showmatch sm

slowopen slow

tabstop ts
taglength tl

term

terse

warn

window

Default: sw=38 Type: numeric
Specify the number of spaces that a “T or "D will move over for indenting,
and the amount that < and > will shift by.

Default: nosm Type toggle
When a) or } is typed show the matching (or { by movmg the cursor to it
for one second if it is on the current screen.

Default: terminal dependent Type: toggle
Prevent updating the screen some of the time to improve speed on terminals
that are slow and dumb.

Default: ts=8 Type: numeric
<tab>>s are expanded to boundaries that are multiples of this value,

Default: t1=0 Type: numeric
If ronzero, tag names are only significant to this many characters.

Default: (from environment TERM, else dumb) Type: string

This is the terminal and controls the visual displays. It cannot be changed
when in visual mode; you have to type a Q to change to command mode, type
a sef term command, and enter vt to get back into visual. Or exit from v, fix
$TERM, and re-enter. The definitions that drive a particular terminal type
are in the file fetc/termcap.

Default: terse Type: toggle
When set, the error diagnostics are short.

Default: warn Type: toggle)

Warns if you try to escape to the Shell without writing out the current
changes.

Default: window={8 at 600 baud or less, 16 at 1200 baud, and screen size — 1
at 2400 baud or more} Type: numeric

Specify the number of lines in the window whenever vf must redraw an entire
screen. It is useful to make this size smaller if you are on a slow line.

w300, w1200, w9600

wrapscan ws

wrapmargin wm

2-34

Set the window, but only within the corresponding speed ranges. They are
useful in an EXINIT to fine tune window sizes. For example,

set w300=—=4 w1200—=12

produces a 4-line window at speeds up to 600 baud, a 12-line window at 1200
baud, and a full-screen window (the default) at over 1200 baud.

Default: ws Type: toggle

Searches will wrap around the end of the file when is option is set. When it is
off, the search will terminate when it reaches the end or the beginning of the
file.

Default: wm=0 Type: numeric

Vi automatically inserts a <nl> when it finds a natural break point {usually
a <sp> between words) that occurs within wm spaces of the right margin.
Therefore with ‘wm==0’, the option is off. Setting it to 10 means that any
time you are within 10 spaces of the right margin, v loocks for a <sp> or
<tab> which it can replace with a <nl>. This is convenient if you forget
to look at the screen while you type. If you go past the margin (even in the
middle of a word), the entire word is erased and rewritten on the next line.

Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

writeany wa Default: nowa Type: toggle
Vi normally makes a number of checks before it writes out a file. This

prevents you from inadvertently destroying a file. When the writeany option
is enabled, vf no longer makes these checks.

2.9.14. Character Functions

This section describes how the editor uses each character. The characters are presented in their
order in the ASCH character set: control characters come first, then most special characters, the
digits, upper and finally lower-case characters.

For each character we give the meaning it has as a command and any meaning it has during
insert mode. It may only have meaning as a command.

*a Not a command character. If typed as the first character of an insertion, it is
replaced with the last text inserted, and the insert terminates. Only 128 char-
acters are saved from the last insert; if more characters were inserted the
mechanism is not available. A “@ cannot be part of the file due to the editor

implementation.

“A Unused.

"B Backward window. A count specifies repetition. Two lines of continuity are
kept if possible.

C Unused.

D As a command, scrolls down a half window of text. A count gives the number

of (logical) lines to scroll, and is remembered for future "D and "U commands.
During an insert, backtabs over auteindent white space at the beginning of a
line. This white space cannot be backspaced over.

‘B " Exposes one more line below the current screen in the file, leaving the cursor
where it is if possible.

g Move forward one window. A count specifies repetition. Two lines of con-
tinuity are kept if possible.

"G Equivalent to :fCR, displaying the current file, whether it has been modified,
the current line number and the number of lines in the file, and the percentage
of the way through the file that you are.

“H (BS) Same as < (see h). During an insert, eliminates the last input character, back-
ing over it but not erasing it; it remains so you can see what you typed if you
wish to type something only slightly different.

*I (TAB) Not a command character. When inserted it prints as some number of spaces.

When the cursor is at a tab character, it rests at the last of the spaces which
represent the tab, The tabstop option controls the spacing of tabstops.

*J (LF) Same as | (see j).
‘K Unused.
‘L The ASCH formfeed character, which clears and redraws the screen. This is

useful after a transmission error, if characters typed by a program other than
the editor scramble the screen, or after output is stopped by an interrupt.

“M (CR) A carriage return advances to the next line, at the first non-white position in
the line. Given a count, it advances that many lines. During an insert, a CR
causes the insert to continue onto another line.

Revision C of 7 January 1984 2-35

Using vi, the Visual Display Editor Editing and Text Processing

‘N
"0
“P
'Q

R
‘8
°T

U

vV
"W
X

Y

~Z
“[(E30)

Same as | (see j).

Unused.

Same as " (see k).

Not a command character. In input mode, “Q quotes the next character, the
same as "V, except that some teletype drivers will eat the "Q so that vi never
sees it. Resumes operation suspended by *S.

Redraws the current screen, eliminating logical lines not corresponding to phy-
sical lines (lines with only a single @ character on them). On hardcopy termi-
nals in open mode, retypes the current line.

Some teletype drivers use °S to suspend output until “Q is pressed. Unused.

Not a command character. During an insert with auloindent set and at the
beginning of the line, inserts shiftwidth white space.

Scrolls the screen up, inverting "D which scrolls down. Counts work as they
do for "D, and the previous scroll amount is common to both. On a dumb ter-
minal, "U will often necessitate clearing and redrawing the screen further back
in the file,

Not a command character. In input mode, quotes the next character so that it
is possible to insert non-printing and special characters into the file.

Not a command character. During an insert, backs up as b does in command
mode; the deleted characters remain on the display (see "H).

Unused. ,

Exposes one more line above the current sereen, leaving the cursor where it is
if possible. (No mnemonic value for this key; however, it is next to “U which
scrolls up.)

Stops the editor, exiting to the top level Shell. Same as stopCR.

Cancels a partially formed command, such as a 3 when no following character
has yet been given; terminates inputs on the last lire (read by commands such
as ¢ / and ?); ends insertions of new text into the buffer. If an ESC is given
when quiescent in command state, the editor flashes the screen or rings the
bell. You can thus type ESC if you don't know what is happening till the editor
flashes the screen. If you don’t know if you are in insert mode, you can type
ESCa, and then material to be input; the material is inserted correctly whether
or not you were in insert mode when you started.

Unused.

Searches for the word which is after the cursor as a tag. Equivalent to typing
:ta, this word, and then a CR. Mnemonically, this command is ‘go right to’.
Equivalent to e #CR, returning to the previous position in the last edited file,
or editing a file which you specified if you got a ‘No write since last change
diagnostic’ and do not want to have to type the filename again. You have to
do a :w before "“ will work in this case. If you do not wish to write the file
you should do :e! #CR instead.

Unused. Reserved as the command character for the Tektronix 4025 and 4027
terminal,

Same as — (see 1).

Revision C of 7 January 1984

MU S N ' | S | -

Editing and Text Processing

-

Using vi, the Visual Display Editor

An operator, which processes lines from the buffer with reformatting com-
mands., Follow ! with the object to be processed, and then the command name
terminated by CR. Doubling ! and preceding it by a count filters the count
lines; otherwise the count is passed on to the object after the !. Thus 2!} fimCR
reformats the next two paragraphs by running them through the program fmt.
If you are working on LISP, the command %%grindCR, given at the beginning of
a function, will run the text of the function through the LISP grinder. (*do we
support grind?+) (The grind command and may not be present at all installa-
tions.) To read a file or the output of a command into the buffer, use :r. To
simply execute a command, use 3!,

Precedes a named buffer specification. There are named buffers 1-8 used for
saving deleted text and named buffers a—s into which you can place text.

The macro character which, when followed by a number, will substitute for a
function key on terminals without function keys. In input mode, if this is your
erase character, it will delete the last character you typed in input mode, and
must be preceded with a \ to insert it, since it normally backs over the last
input character you gave.

Moves to the end of the current line. If you :se lthR the end of each line is
indicated by showing a $ after the end of the displayed text in the line. Given
a count, advances to the count’th followmg end of line; thus 2% advances to
the end of the following line,

Moves to the parenthesis or brace { } which balances the parenthesis or brace
at the current cursor position, :

A synonym for :&CR, by analogy with the ez & command

When followed by a ‘”, returns to the previous context at the beginning of a
line. The previous context is set whenever the current line is moved in a non-
relative way. When followed by a letter a-%, returns to the line which was
marked with this letter with a m command, at the first non-white character in
the line. When used with an operator such as d, the operation takes place
over complete lines; if you use °, the operation takes place from the exact
marked place to the current cursor position within the line,

Retreats to the beginning of a sentence, or to the beginning of a LISP s-
expression if the lisp option is set. A sentence ends at a . ! or ? and is followed
by either the end of a line or by two spaces. Any number of closing)] " and *
characters may appear after the . ! or ?, and before the spaces or end of line.
Sentences also begin at paragraph and section boundaries (see { and [below).
A count advances that many sentences.

Advances to the beginning of a sentence. A count repeats the effect. See (
above for the definition of a sentence.

Unused.
Same as CR when used as a command.

Reverse of the last f F t or T command, looking the other way in the current
line. hEspecxally useful after typing too many ; characters. A count repeats the
search.

Retreats to the previous line at the first non-white character. This is the
inverse of 4- and RETURN. If the line moved to is not on the screen, the screen
is scrolled, or cleared and redrawn if scrolling is not possible. If a large amount

Revision C of 7 January 1984 2-37

Using vi, the Visual Display Editor Editing and Text Processing

1-8

L1}

2-38

of scrolling is required, the screen is also cleared and redrawn, with the current
line at the center.

Repeats the last command which changed the buffer. Especially useful when
deleting words or lines; you can delete some words or lines and then type . to
delete more words or lines. Given a count, it passes it on to the command
being repeated. Thus after a 2dw, 3. deletes three words.

Reads a string from the last line on the screen, and scans forward for the next
cccurrence of this string, The normal input editing sequences may be used
during the input om the bottom line; an ESC returns to command state
without ever searching. The search begins when you type CR to terminate the
pattern; the cursor moves to the beginning of the last line to indicate that the
search is in progress; you can then terminate the search with a “C (orDEL or
RUB), or by backspacing when at the beginning of the bottom line, returning
the cursor to its initial position. Searches normally wrap end-around to find a
string anywhere in the buffer.

When used with an operator, the enclosed region is normally affected. By men-
tioning an offset from the line matched by the pattern, you can affect whole
lines. To do this, give a pattern with a closing / and then an offset 4-n or —n.
To include the character / in the search string, you must escape it with a
preceding \. A " at the beginning of the pattern forces the match to occur at
the beginning of a line only; this may speed the search. A § at the end of the
pattern forces the match to occur at the end of a line only. More extended
pattern matching is available. Unless you set nomagic in your .legin file (+?+),
you will have to precede the characters . [* and ~ in the search pattern with a
\ to get them to work as you would naively expect.

Moves to the first character on the current line. Also used, in forming
numbers, after an initial 1-9.
Used to form numeric arguments to commands.

A prefix to a set of commands for file and option manipulation and escapes to
the system. Input is given on the bottom line and terminated with a CR, and
the command is then executed. You can return to where you were by typing
ESC or DEL if you type 3 accidentally.

Repeats the last single character find which used f F ¢t or T. A count iterates

. the basic scan.

Apn operator which shifts lines left one shifiwidth, normally 8 spaces. Like all
operators, affects lines when repeated, as in <<. Counts are passed through
to the basic object, thus 3 < < shifts three lines.

Reindents line for LISP, as though they were typed in with lisp and autoindent
set,.

An operator which shifts lines right one shiftwidth, normally 8 spaces. Affects
lines when repeated as in >>. Counts repeat the basic object.

Scans backwards, the opposite of /. See the / description above for details on
scanning.

A macro character. If this is your kill character, you must escape it with a \
to type it in during input mode, as it normally backs over the input you have
given on the current line.

Revision C of 7 January 1984

Editing and Text Processing . Using vi, the Visual Display Editor

#oOQ Wy

e

o ®

Appends at the end of line; a synonym for $a.

Backs up a word, where words are composed of non-blank sequences, placing
the cursor at the beginning of the word. A count repeats the effect.

Changes the rest of the text on the current line; a synonym for c$.
Deletes the rest of the text on the current line; a synonym for d$.

Moves forward to the end of a word, defined as blanks and non-blanks, like B
and W. A count repeats the effect.

Finds a single following character backwards in the current line. A count
repeats this search that many times.

Goes to the line number given as preceding argument, or to the end of the file
if you do not give a preceding count. The screen is redrawn with the new
current line in the center if necessary.

Home arrow. Homes the cursor to the top line on the screen. If a count is
given, the cursor is moved to the count’th line on the screen. In any case the
cursor is moved to the first non-white character on the line. If used as the tar-
get of an operator, full lines are affected.

Inserts at the beginning of a line; a synonym for "i.

Joins togét.her lines, supplying appropriate white space: one space between
words, two spaces after a *.’, and no spaces at all if the first character of the
joined on line is). A count causes that many lines to be joined rather than the

default two.
Unused.

Moves the cursor to the first non-white character of the last line on the screen.
With a count, to the first non-white of the count’th line from the bottom.
Operators affect whole lines when used with L.

Moves the cursor to the middie line on the screen, at the first non-white posi-
tion on the line.

Scans for the next match of the last pattern given to / or ?, but in the reverse
direction; this is the reverse of n.

Opens a new line above the current line and inputs text there up to an ESC. A
count can be used on dumb terminals to specify a number of lines to be
opened; this is generally obsolete, as the slewopen option works better.

Puts the last deleted text back before/above the cursor. The text goes back as
whole lines above the cursor if it was deleted as whole lines. Otherwise the
text is inserted between the characters before and at the cursor. May be pre-
ceded by a named buffer specification "z to retrieve the contents of the buffer;
buffers 1-9 contain deleted material, buffers a—g are available for general use.

Quits from ¢ to ez command mode. In this mode, whole lines form commands,
ending with a RETURN. You can give all the : commands; the editor supplies
the : as a prompt.

Replaces characters on the screen with characters you type (overlay fashion).
Terminates with an ESC.

Changes whole lines, a synonym for cc. A count substitutes for that many
lines, The lines are saved in the numeric buffers, and erased on the screen
before the substitution begins.

Revision C of 7 January 1984 2-39

Using vi, the Visual Display Editor Editing and Text Processing

-

X W g<cq

2-40

Takes a single following character, locates the character before the cursor in
the current line, and places the cursor just after that character. A couat
repeats the effect. Most useful with operators such as d.

Restores the current line to its state before you started changing it.
Unused.

Moves forward to the beginning of a word in the current fine, where words are
defined as sequences of blank/non-blank characters. A count repeats the effect.

Deletes the character before the cursor. A count repeats the effect, but only
characters on the current line are deleted.

Yanks a copy of the current line into the unnamed baffer, to be put back by a
later p or P; a very useful synonym for yy. A count yanks that many lines,
May be preceded by a buffer name to put lines in that buffer. :

Exits the editor. (Same as :xCR.) If any changes have been made, the buffer is
written out to the current file. Then the editor quits.

Backs up to the previous section boundary. A section begins at each macro in
the zections option, normally a *.NH' or ‘*.SH’ and also at lines which which
start with a formfeed ‘L. Lines beginning with { also stop [[; this makes it
useful for looking backwards, a function at a time, in C programs. If the lisp
option is set, stops at each (at the beginning of a line, and is thus useful for
moving backwards at the top level LISP objects.

Unused.
Forward to a section boundary; see [{ for a definition.
Moves to the first non-white position on the current line.

Unused.

When followed by a * returns to the previous context. The previous context is
set whenever the current line is moved in a non-relative way. When followed
by a letter a-s, returns to the position which was marked with this letter with
an m command. When used with an operator such as d, the operation takes
place from the exact marked place to the current position within the line; if
you use ’, the operation takes place over complete lines.

Appends arbitrary text after the current cursor position; the insert can con-
tinue onto multiple lines by using RETURN within the insert. A count causes
the inserted text to be replicated, but only if the inserted text is all on one
line. Terminate the insertion with an ESC,

Backs up to the beginning of a word in the current line. A word is a sequence
of alphanumerics, or a sequence of special characters. A count repeats the
effect.

An operator which changes the following object, replacing it with the following
input text up to an ESC. If more than part of a single line is affected, the text
which is changed is saved in the numeric named buffers. If only part of the
current line is affected, the last character to be changed away is marked with a
$. A count causes that many objects to be affected, thus both 3c) and ¢3)
change the following three sentences.

-~ An operator which deletes the following object. If more than part of a line is

affected, the text is saved in the numeric buffers. A count causes that many
objects to be affected; thus 3dw is the same as d3w.

Revision C of 7 January 1984

O e VAP AL EENESE TR T

Editing and Text Processing

" a % 0@

wog <

“

Using vi, the Visual Display Editor

Advances to the end of the next word, defined as for b and w. A count
repeats the effect.

Finds the first instance of the next character following the cursor on the
current line, A count repeats the find.

Unused.

Arrow keys b, j, k, 1, and H.
Left arrow., Moves the cursor one character to the left. Like the other arrow

keys, either h, the left arrow key, or one of the synonyms ("H) has the same
effect. A count repeats the effect.

Inserts text before the cursor, otherwise like a.

Down arrow. Moves the cursor one line down in the same column. If the posi-
tion does not exist, v comes as close as possible to the same column.
Synonyms include "J (linefeed) and “N.

Up arrow. Moves the cursor one line up. "P is a synonym.

Right arrow. Moves the cursor one character to the right. SPACE is a
synonym,

Marks the current position of the cursor in the mark register which is specified
by the next character a-s. Return to this position or use with an operator

using ‘*" or ‘",

Repeats the last / or ? scanning commands.

Opens new lines below the current line; otherwise like O.

Puts text after/below the cursor; otherwise like P.

Unused,

Replaces the single character at the cursor with a single character you type.
The new character may be a RETURN; this is the easiest way to split lines. A

count replaces each of the following count characters with the single character
given; see R above which is the more usually useful iteration of r.

Changes the single character under the cursor to the text which follows up to
an ESC; given a count, that many characters from the current line are changed.
The last character to be changed is marked with 8 as in c.

Advances the cursor up to the character before the next character typed. Most
useful with operators such as d and c to delete the characters up to a following
character. You can use . to delete more if this doesn’t delete enough the first
time.

Undoes the last change made to the current buffer. If repeated, will alternate
between these two states, thus is its own inverse. When used after an imsert
which inserted text on more than one line, the lines are saved in the numeric
named buffers.

Unused.
Advances to the beginning of the next word, as defined by b.

Deletes the single character under the cursor. With a count deletes that many
characters forward from the cursor position, but only on the current line.

An operator, yanks the following object into the unnamed temporary buffer. If
preceded by a named buffer specification, "z, the text is placed in that buffer

Revision C of 7 January 1984 2.41

Using vi, the Visual Display Editor Editing and Text Processing

also. Text can be recovered by a later p or P.

s Redraws the screen with the current line placed as specified by the following
character: RETURN specifies the top of the screen, . the center of the screen,
and ‘=’ at the bottom of the acreen. A count before the s gives the number of
the line to place in the center of the screen instead of the default current line.
To change the window size, use a count after the » and before the RETURN, as
in sSB<<CR >,

{ " Retreats to the beginning of the preceding paragraph. A paragraph begins at
each macro in the paragraphs option, normally ‘.IP’, *LP’, ‘PP’, ‘‘QP' and
‘bp'. A paragraph also begins after a completely empty line, and at each sec-
tion boundary (see [[above).

| Places the cursor on the character in the column specified by the count.

} Advances to the beginning of the next paragraph. See { for the definition of
paragraph.

- Unused.

“C (DEL) Interrupts the editor, returning it to command accepting state.

2.10. Terminal Information

Vi works on a large number of display terminals. You can edit a terminal description file to
drive new terminals. While it is advantageous to have an intelligent terminal which can locally
insert and delete lines and characters from the display, v7 functions quite well on dumb termi-
nals over slow phone lines. V7 allows for the low bandwidth in these situations and uses smaller
window sizes and different display updating algorithms to make best use of the limited speed
available.)

You can also use the v command set on hardcopy terminals, storage tubes and ‘glass tty's’
using a one-line editing window.

2.10.1. Specifying Terminal Type

Before you can start vi you must tell the system what kind of terminal you are using. Here is a
(necessarily incomplete} list of terminal type codes. If your terminal does not appear here, you
should consult with one of the staff members on your system to find out the code for your ter
minal. If your terminal does not have a code, one can be assigned and a description for the ter-
minal can be created.

2.42 Revision C of 7 January 1984

Editing and Text Processing Using vi, the Visual Display Editor

Table 2-8: Terminal Types

Code Full Name Type
2621 Hewlett-Packard 2621A/P Intelligent
2645 Hewlett-Packard 264x Intelligent
act4 Microterm ACT-IV Dumb
act5 Microterm ACT-V Dumb
adm3a Lear Siegler ADM-3a Dumb
adm31 Lear Siegler ADM-31 Intelligent
c100 Human Design Concept 100 Intelligent
dm1520 Datamedia 1520 Dumb
dm 2500 Datamedia 2500 Intelligent
dm3025 Datamedia 3025 Intelligent
fox Perkin-Elmer Fox Dumb
h1500 Hazeltine 1500 Intelligent
h19 Heathkit k19 Intelligent
i100 Infoton 100 Intelligent
mime Imitating a smart act4 Intelligent
t1061 Teleray 1061 Intelligent
vt52 Dec VT-52 Dumb

Suppose for example that you have a Hewlett-Packard HP2621A terminal. The code used by
the system for this terminal is ‘2621°. In this case you can use one of the following commands
to tell the system your terminal type:

logo% setenv TERM 2621
If you are using the Bourne Shell, use:

$ TERM==2621

$ export TERM

If you want to arrange to have your terminal type set up automatically when you log in, use the
tset program. If you dial in on a mime, but often use hardwired ports, a typical line for your
dogin file (if you use csh) is

setenv TERM ‘tset — —d mime"*
or for your .profile file (if you use sh):
TERM="tset - -d mime"

Tset knows which terminals are hardwired to each port and needs only to be told that when
you dial in you are probably on a mime. You can use taet to change the erase and kill charac-
ters too.

2.10.2. Special Arrangements for Startup

Vi takes the value of $STERM and looks up the characteristics of that terminal in the file
[ete/termeap. If you don’t know u's name for the terminal you are working on, look in
/eteftermcap. The editor adopts the convention that a null string in the environment is the
same as not being set. This applies to TERM, TERMCAP, and EXINIT.

Revision C of 7 January 1984 2-43

Using vi, the Visual Display Editor Editing and Text Processing

When vi starts, it attempts to read the variable EXINIT from your environment. If that exists,
it takes the values in it as the default values for certain of its internal constants. See Set Values
for further details. If EXINIT doesn’t exist, you will get all the normal defaults,

Should you inadvertently hang up the phone while inside vi, or should something else go wrong,
all may not be lost. Upon returning to the system, type:

logo% vi —r file
This will normally recover the file. If there is more than one temporary file for a specific
filename, v recovers the newest one. You can get an older version by recovering the file more

than once. The command vi —r without a filename lists the files from an on-line list that were
saved in the last system crash (but not the file just saved when the phone was hung up).

2.10.3. Open Mode on Hardcopy Terminals and ‘Glass tty’s’

If you are on a hardcopy terminal or a terminal which does not have a cursor which can move
off the bottom line, you can still use the command set of vi, bat in a different mode. When you
give a vi command, the editor will tell you that it is using open mode. This name comes from
the open command in ez, which is used to get into the same mode,

The only difference between visual mode and open mode is the way in which the text is
displayed. In open mode the editor uses a single-line window into the file, and moving back-
ward and forward in the file displays new lines, always below the current line. Two v com-
mands that work differently in open are: 5 and “R. The s command does not take parameters,
but rather draws a window of context around the current line and then returns you to the
current line. '
If you are on a hardcopy terminal, the "R command retypes the current line. On such termi-
nals, vi normally uses two lines to represent the current line. The first line is a copy of the line
as you started to edit it, and you work on the line below this line. When you delete characters,
the editor types a number of \'s to show you the characters which are deleted. It also reprints
the current line soon after such changes so that you can see what the line looks like again.

It is sometimes useful to use this mode on very slow terminals which can support vi in the full
screen mode. You can do this by entering ez and using an open command.

2.10.4. Editing on Slow Terminals

When you are on a slow terminal, it is important to limit the amount of output which is gen-
erated to your screen so that you will not suffer long delays, waiting for the screen to be
refreshed. We have already pointed out how the editor optimizes the updating of the screen
during insertions on dumb terminals to limit the delays, and how the editor erases lines to @
when they are deleted on dumb terminals.

The use of the slow terminal insertion mode is controlled by the slowopen option. You can
force the editor to use this mode even on faster terminals by giving the command:

:se slowCR

If your system is sluggish this helps lessen the amount of output coming to your terminal. You
can disable this option by: :

ise noslowCR.

2.44 Revision C of 7 January 1984

-

Editing and Text Processing Using vi, the Visual Display Editor

The editor can simulate an intelligent terminal on a dumb one. Try giving the command:
ise redrawCR

This simulation generates a great deal of output and is generally tolerable only on lightly loaded
systems and fast terminals. You can disable this by giving the command:

sse noredrawCR.

The editor also makes editing more pleasant at low speed by starting editing in a small window,
and letting the window expand as you edit. This works particularly well on intelligent termi-
nals. The editor can expand the window easily when you insert in the middle of the screen on
these terminals. If possible, try the editor on an intelligent terminal to see how this works.

You can control the size of the window which is redrawn each time the screen is cleared by giv-
ing window size as an argument to the commands which cause large screen motions:

VRSN 10 B

Thus if you are searching for a particular instance of a common string in a file, you can precede
the first search command by a small number, say 3, and the editor will draw three line windows
around each instance of the string which it locates.

You can expand or contract the window size, placing the current line as you choose, with the =
command, as in 55 <CR >, which changes the window to five lines. You can also use . or —.
Thus the command 5. redraws the screen with the current line in the center of a five-line win-
dow. Note that the command 5s. has an entirely different effect, placing line 5 in the center of
a new window. Use —, as in 53— to position the cursor at line 5 in the file.

The default window sizes are 8 lines at 300 baud, 16 lines at 1200 baud, usually also 16 for a
typical 24 line CRT). and full screen size at 9600 baud. Any baud rate less than 1200 behaves
like 300, and any over 1200 like 9600.

It the editor is redrawing or otherwise updating large portions of the display, you can interrupt
this updating by typing a DEL or RUB as usual. If you do this, you may partially confuse the
editor about what is displayed on the screen. You can still edit the text on the screen if you
wish; clear up the confusion by typing a "L; or move or search again, ignoring the current state
of the display.

See the section on open mode for another way to use the vi command set on slow terminals.

2.10.5. Upper-case Only Terminals

If your terminal has only upper case, you can still use vf by using the normal system convention
for typing on such a terminal. Characters which you normally type are converted to lower case,
and you can type upper-case letters by preceding them with a ‘\’. The characters { ™ } | * are
not available on such terminals, but you can escape them as \(\" \) \! \". These characters are
represented on the display in the same way they are typed.?

9 The *\' character you give will not echo until you ty pe another key.

Revision C of 7 January 1984 2.45

Using vi, the Visual Display Editor

2.11. Command Summary

Editing and Text Processing

The following is a quick summary of frequently used commands. Refer to the quick reference
pages for a reference summary of all commands.

SPACE
‘B
"D
‘B
“F

Q

¢PeTEERROE TN+ il

2-46

Table 2-7: Frequently Used Commands

advance the cursor one position
backwards to previous page

scrolls down in the file

exposes another line at the bottom
forward to next page

tell what is going on

backspace the cursor

next line, same column

previous line, same column

scrolls up in the file

exposes another line at the top (v3)
next line, at the beginning
previous line, at the beginning
scan for a following string forwards
scan backwards

back a word, ignoring punctuation
go to specified line, last default
home screen line

middle screen line

last screen line

forward a word, ignoring punctuation
back a word

end of current word

scan for next instance of / or ? pattern
word after this word

erase a word during an insert

your erase (or “H), erases a character during an insert
your kill (or "X), kills the insert on this line
repeats the changing command

opens and inputs new lines, above the current
undoes the changes you made to the current line
appends text after the cursor

changes the object you specify to the following text
deletes the object you specify

inserts text before the cursor

opens and inputs new lines, below the current
undoes the last change

first non-white on line
end of line
forward sentence

Revision C of 7 January 1984

-

-

-

Editing and Text Processing

} forward paragraph

1 forward section

(backward sentence

{ backward paragraph

([backward section

fz find z forward in line

P put text back, after cursor or below current line
y yank operator, for copies and moves

tz up to z forward, for operators

Fz f backward in line

P put text back, before cursor or above current line
Tz t backward in line

Revision C of 7 January 1984

Using vi, the Visual Display Editor

2-47

-

O

Vi Quick Reference

Entering/Leaving vi

% vi name edit name at top
% vi +n name .. 3t fine n
% vi + name ... at end
% vi-r list saved files
%% vi —r neme recover file name
%% vi name ... edit first; rest via :n
%% vi -t tag start at tag
% vi +/pat name search for pat
% view name read only mode
ZZ exit from vi, saving changes
~Z stop v for later resumption
The Display
Last line Error messages, echoing input to : / ?
and !, feedback about ifo and large
changes.
@ lines On screen only, not in file,
" lines Lines past end of file.
‘z Control characters, DEL is delete.
tabs Expand to spaces, cursor at last.
Vi Modes
Command Normal and initial state. Others return
here. ESC (escape} cancels partial com-
mand.
Insert Entered by ait AToOcCsSR.

Arbitrary text then terminates with
ESC character, or abnormally with

interrupt.

Last line Reading input for : / ? or }; terminate
with ESC or CR to execute, interrupt
to cancel.

Counts Before vi Commands

line/column number z G |

scroll amount ‘D U

replicate insert ai Al

repeat effect most rest

Simple Commands

dw delete a word

de ... leaving punctuation

dd delete a line

3dd ... 3 lines

itestESC insert text abe

cwzewkESC change word to new

easESC pluralize word

xp transpose characters

Revision C of T January 1984

Interrupting, Cancelling

ESC
"G
L

end insert or incomplete cmd
interrupt (or DEL}
refresh screen if scrambled

File Manipulation

w
twq

q

:q!

e name
el

e 4+ name
e +n
o

W name
wl name
sh
Jemd

n

n arge
i

‘G

:ta tag

write back changes

write and quit

quit

quit, discard changes
edit file name

reedit, discard changes
edit, starting at end

edit starting at line n
edit alternate file
synonym for :e #

write file name

overwrite file name

run shell, then return
run emd, then return
edit next file in arglist
specify new arglist

show current file and line
synonym for :f

to tag file entry tag

ta, following word is tag

Positioning within File

‘F
‘B
‘D

%

forward screenfull
backward screenfull

- geroll down half screen

scroll up half screen
goto line (end default)
next line matching pat
prev line matching pat
repeat last / or ?
reverse last [or ?

n’th line after pat

n’th line before pat
next sectionffunction
previous section/function
find matching () { or }

Adjusting the Screen

‘L

‘R

zCR

22—

2.

/ patfe—
in.

“E

Y

clear and redraw

retype, eliminate @ lines
redraw, current at window top
.. at bottom

... 3t center

pat line at bottom

use & line window

scroll window down 1 line
scroll window up 1 line

Marking and Returning

[SY

previous context

... at first non-white in line
mz mark position with letter 2
‘z to mark 2

f .- at first non-white in line

z
Line Positioning

s

H home window line

L last window line

M middle window line

+ next line, at first non-white

- previous line, at first non-white
CR return, same as <+

lor} next line, same column
tork previous line, same column

Character Positioning
" first non white

0 beginning of line

$ end of line

hor — forward

1or+ backwards

‘H same as +—

space same as —

fz find z forward

Fz f backward

tz upto z forward

Tz back upto =

3 repeat last fF ¢t or T
, inverse of 3

| to specified column
% find matching { {) or }

Words, Sentences, Paragraphs

word forward
back word

end of word

to next sentence
to next paragraph
back sentence
back paragraph
blank delimited word
back W

to end of W
cmmands for LISP

Forward s-expression

... but don’t stop at atoms
Back s-expression

... but don’t stop at atoms

mwi,ﬂu\ﬁv-—web c‘i

S oyt g O

Corrections Duiing Insert

‘H erase last character

‘W erases last word

erase - your ersse, same as “H

kill your kill, erase input this line
escapes “H, your erase and kill

ESC ends insertion, back to command

“C interrupt, terminates insert

‘D backtah over quioindent

D kill auteindent, save for next

oD ... but at margin next also

vV quote non-printing character

Insert and Replace

a append after cursor

i insert before

A append at end of line

1 ingert before first non-blank

o open line below

O open above

rs replace single char with 2

R replace characters
Operators (double to affect lines)

d delete

¢ change

< left shift

> right shift

! fitter through command

- indent for LISP

Y yank lines to bufler
Miscellaneous Operations

C change rest of line

D delete rest of line

3 substitute chars

) substitute lines

J join lines

X delete characters

X +. before cursor

Y yank lines
Yank and Put

p put back lines

P put before

"zp put from buffer 2

Py yank to buffer 2

"ad delete into buffer z
Undo, Redo, Retrieve

u undo last change

U restore current line

. repeat last change

"dp retrieve d'th last delete

Revizion C of 7 January 1984

O

Ex Quick Reference

Entering/Leaving ex Specifying Terminal Type
% ex name edit name, start at end %% setenv TERM type _ (for csk)
% ex +n name .. 3t line n $ TERM==type; export TERM (for «k)
%% ex —t tag start at tag See also teet in the user's manual.
% ex —r list saved files Some Terminal Types
%% ex —r name recover file name 2821 43 admsl dwl hi
%% ex name ... edit first; rest via :n 2545 733 adm3a dw2 i100
% ex —R name read only mode 300s 745 <100 gt40 mime
1x exit, saving changes 33 actd dm1520 gt42 owl
: q! exit, discarding changes 37 acth dm2500 h1500 1061
ex States 4014 adm3 dm3025 hi510 vi52
Command Normal and initial state. Input Initializing Options
prompted for by :. Your kill char- EXINIT place set’s here in environment var.
acter cancels partial command. set 2 enable option
Insert Entered by a i and e. Arbitrary set noz disable option
text then terminates with line hav- set z=myal give value val
ing only . character on it or abnor- set show changed options
mally with interrupt. set all show all options
Open/fvisual Entered by open or vi, terminates set 27 show value of option z
with Q or *\. Useful Options
ex Commands autcindent ai supply indent
abbrev ab next n unabbrev una autowrite aw write before changing files
append a number nu undo u ignorecase ie in scanning
args ar open o unmap unm lisp () {} are s-exp’s
change ¢ preserve pre version ve list print "I for tab, $ at end
copy co print P vis.ual vi magic . | * special in patterns
delete d put pu wrte w number nu number lines
edit e quit q xit x paragraphs para macro names which start ...
file f read re yank ya redraw simulate smart terminal
global B recover rec window * scroll command made lines
insert i rewind rew escape ! sections sect TRAcro names ...
join] get se sh?ft. < shiftwidth sw for < >, and input "D
list 1 shell sh print next CR showmatch sm to) and } as typed
map source 80 resubst & slowopen slow choke updates during insert
mark ma stop st rehift > window visual mode lines
move m substitute s scroll ‘D wrapscan ws around end of buffer
ex Command Addresses wrapmargin wm sutomatic line splitting
" line » [pat next with pat Scanning Pattern Formation
. current tpat previous with pat R .. .
$ last 2n n before z beginning of line
$ end of line
+ next oy z through y
. . . . any character
- previous £ marked with = L
+a n forward “ previous context §§ 2;3! :?l:fw:lf word
% 1$ [str] any char in str
[tats] ... not in str
[=-4 ... between zand g
* any number of preceding

Revision C of 7 January 1984

Table of Contents

Chapter 3 Command Reference for the ex Line Editor ...
3.1. Using ex . - S
3.2. File Mampulatlon
3.2.1. Current File .. e teres e e e e AR AR AR SRR ST e
3.2.2. Alternate File
3.2.3. Filename Expansion ...
3.3. Special Characters ..

3.3.1. Multiple Files and Named BUIERs ... —.coooermmossmmcncs

3.3.2. Read Only Mode ..
3.4. Exceptional Conditions
3.4.1. Errors and Interrupts
3.4.2. Recovering If Somethmg Goes Wrong
3.5. Editing Modes ..
3.6. Command Structure
3.6.1. Specifying Command Pa.rameters
3.6.2. Invoking Command Variants ..
3.6.3. Flags after Commands ..
3.6.4. Writing Comments .. -
3.6.5. Putting Multiple Commands on a Lme
3.6.6. Reporting Large Changes
3.7. Command Addressing ...
3.7.1. Addressing Pl’llIHthBs e eeetmeers o ARt e £ 0 R AR £ e e
3.7.2. Combining Addressing Prlmltlves :
3.8. Regular Expressions and Substitute Replacement Patterns ... erisens s eemecesesesseeee
3.8.1. Regular Expressions
3.8.2, Magic and NOMAGICoooovcenmcccmmemmecmmrcenees i sossmsssssssonsssssmmssasssssrsssssssssesss o
3.8.3. Basic Regular Expression SUMMATY ... mssasssssmmsnss s e
3.8.4. Combining Regular Expression Primitives ... e
3.8.5. Substitute Replacement Patterns ... s e
3.9. Command ReferENieecoireeseeiciseis s essssessssessesrssassstsassssss s sesss s sesesssmsmssst s s s
3.10. Option DESCTIPLIONTooccoveceemrereevesmsremmmmssore e cecesisiines e ssssass s s s S8 e
B.10. LAIMEEAEIOMS oo oeoeooeeeeeoereesesssneecs e seeesssmseesesss 5888818585885 1

3-1
3-1
3-2
3-2
3-2
3-2
3-2
3-3
3-3
3-3
3-3
3-3
3-4
3-4
3-4
3.5
3-5
3.5
3.5
3-5
3-5
3-5
3.8
3.8
3-6
3-6
3-7
3-7
3-8
3-8

3-17

3-21

LCLIMI L

R B VoA A 1 8

Chapter 3

Command Reference for the ex Line Editor

This chapter! provides reference material for ez, the line-oriented text editor, which also sup-
ports display oriented editing in the form of the vi editor described in Using Vi, the Visual
Display Editor. The contents of this chapter describe the line-oriented part of ez. You can also
use these commands with vi. For a summary of ez commands, see the Ez Quick Reference

3.1. Using ex

Ez has a set of options, which you can use to tailor ez to your liking. The command edst
invokes a version of ez designed for more casual or beginning users by changing the default set-
tings of some of these options. To simplify the description which follows, we assume the default
settings of the options, and we assume that you are running ez on a Sun Workstation.

If there is a variable EXINIT in the environment, ez executes the commands in that variable,
otherwise if there is a file .ezrc in your HOME directory ez reads commands from that file, simu-
lating a source command. Option setting commands placed in EXINIT or .ezrc are executed
before each editor session.

If you are running ez on a terminal, ez determines the terminal type from the TERM variable in
the environment when invoked. It there is a TERMCAP variable in the environment, and the
type of the terminal described there matches the TERM variable, that description is used. Also
if the TERMCAP variable contains a pathname (beginning with a /),ez seeks the description of
the terminal in that file, rather than in the default [etc/termcap.)

The standard ez command format follows. Brackets ‘[' ‘|’ surround optional parameters here.
logo% ex [-][-v])[-ttag][-r][-1][-wn][-x][~R][+command] filename ...
The most common case edits a single file with no options, that is,:
logo% ex filename

The ‘' command line option option suppresses all interactive-user feedback and is useful in pro-
cessing ez scripts in command files. The —v option is equivalent to using vi rather than ez. The
~t option is equivalent to an initial fag command, editing the file containing the fag and posi-
tioning the editor at its definition.

Use the —r option to recover a file after an editor or system problem, retrieving the last saved
version of the named file or, if no file is specified, displaying a list of saved files. The -l option
sets up for editing LISP, setting the showmatch and lisp options. The —w option sets the
default window size to n, and is useful on dialups to start in small windows. The -x option
causes ez to prompt for a key, which is used to encrypt and decrypt the contents of the file,
which should already be encrypted using the same key (see crypt in User’s Manual for the Sun

1 The material in this chapter i¢ derived from Ez Reference Manual, W.N. Joy, M. Horton,
University of California, Berkeley.

Revision C of 7 January 1984 3-1

Command Reference for the ex Line Editor Editing and Text Processing

Workstation). The —R option sets the readonly option at the start. If set, writes will fail unless
you use an ‘I' after the write. This option affect ZZ, sutowrite and anything that writes to
guarantee you won't clobber a file by accident. Filename arguments indicate files to be edited.
An argument of the form <+command.indicates that the editor should begin by executing the
specified command. If command is omitted, it defaults to ‘$', initially positioning ez at the last
line of the first file. Other useful commands here are scanning patterns of the form ‘/pat’ or line
numbers, such as ‘+ 100’, which means ‘start at line 100.’

3.2. File Manipulation

The following describes commands for handling files.

3.2.1. Current File

Ez normally edits the contents of a single file, whose name is recorded in the current filename.
Ez performs all editing actions in a buffer into which the text of the file is initially read.
Changes made to the buffer have no effect on the file being edited unless and until you write the
buffer contents out to the file with a write command. After the buffer contents are written, the
previous contents of the written file are no longer accessible. When a file is edited, its name
becomes the current filename, and its contents are read into the buffer.

The current file is almost always considered to be edited. This means that the contents of the
buffer are logically connected with the current filename, so that writing the current buffer con-
tents onto that file, even if it exists, is a reasonable action. If the current file is not edited, ez
will not normally write on it if it already exists. The file command will say ‘[Not edited]’ if the
current file is not considered edited.

3.2.2. Alternate File

Each time a new value is given to the current filename, the previous current filename is saved as
the alternate filename. Similarly if a file is mentioned but does not become the current file, it is
saved as the alternate filename.

3.2.3. Filename Expansion

You may specify filenames within the editor using the normal Shell expansion conventions. In
addition, the character ‘%’ in filenames is replaced by the current filename and the character
‘#' by the alternate filename. This makes it easy to deal alternately with two files and elim-
inates the need for retyping the name supplied on an edit command after a ‘No write since last
change’ diagnostic is received.

3.3. Special Characters

Some characters take on special meanings when used in context searches and in patterns given
to the substitute command. For edit, these are ‘"’ and ‘$', meaning the beginning and end of a
line, respectively. Ez has the following additional special characters:

3.9 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

& + [] °

To use one of the special characters as its simple graphic representation rather than with its
special meaning, precede it by a backslash (\). The backslash always has a special meaning.

3.3.1. Multiple Files and Named Buffers

If more than one file is given on the ez command line, the first file is edited as described above.
The remaining arguments are placed with the first file in the argument list. You can display the
current argument list with the args command. To edit the next file in the argument list, use
the nezt command. You may also respecify the argument list by specifying a list of names to
the nezt command. These names are expanded, the resulting list of names becomes the new
argument list, and ez edits the first file on the list.

To save blocks of text while editing, and especially when editing more than one file, ez has a
group of named buffers. These are similar to the normal buffer, except that only a limited
number of operations are available on them. The buffers have names a through z. It is also
possible to refer to A through Z; the upper-case buffers are the same as the lower but commands
append to named buffers rather than replacing if upper-case names are used.

3.3.2. Read Only Mode

It is possible to use ez in read only mode to look at files that you have no intention of modify-
ing. This mode protects you from accidently overwriting the file. Read only mode is on when
the readonly option is set. It can be turned on with the -R command line option, by the view
command line invocation, or by setting the readonly option. It can be cleared by setting
noreadonly. It is possible to write, even while in read only mode, by indicating that you really
know what you are doing. You can write to a different file with sw newfilename, or can use the
sw! form of write, even while in read only mode.

3.4. Exceptional Conditions

The following describes additional editing situations.

3.4.1. Errors and Interrupts

When errors occur ez flashes the workstation screen and displays an error diagnostic. If the pri-
mary input is from a file, editor processing terminates. If you interrupt ez, it displays ‘Inter-
rupt’ and returns to its command level. If the primary input is a file, ez exits when this occurs.

3.4.2. Recovering If Something Goes Wrong

If something goes wrong and the buffer has been modified since it was last written out, or if the
system crashes, either the editor or the system (after it reboots) attempts to preserve the buffer.
The next time you log in, you should be able to recover the work you were doing, losing at most
a few lines of changes from the last point before the problem. To recover a file, use the —r
option. If you were editing the file resume for example, change to the directory where you were

Revision C of 7 January 1984 3-3

Command Reference for the ex Line Editor Editing and Text Processing

when the problem occurred, and use ez with the —r (recover) option: .
logo% ex —r file

After checking that the retrieved file is indeed ok, you can write it over the previous contents of
that file. '

You will normally get mail from the system telling you when a file has been saved after the sys-
tem has gone down. Use the —r option without a following filename:

logo% ex —r

to display a list of the files which have been saved for you. In the case of a hangup, the file will
not appear in the list, although it can be recovered.

3.5. Editing Modes

Ez has five distinct modes. The primary mode is command mode. You type in commands in
command mode when a *;’ prompt is present, and execute them each time you send a complete
line. In insert mode, ez gathers input lines and places them in the file. The append, insert, and
change commands use insert mode. No prompt is displayed when you are in text input mode.
To leave this mode and return to command mode, type a ‘.’ alone at the beginning of a line.

The last three modes are open and visual modes, entered by the commands of the same names,
and, within open and visual modes tezt insertion mode. In open and visual modes, you do
local editing operations on the text in the file. The open command displays one line at a time
on the screen, while visual works on the workstation and CRT terminals with random position-
ing cursors, using the screen as a single window for file editing changes. See Using Vi, The
Visual Display Editor for descriptions of these modes.

3.6. Command Structure

Most command names are English words; you can use initial prefixes of the words as acceptable
abbreviations. The ambiguity of abbreviations is resolved in favor of the more commonly used
commands. As an example, the command substitute can be abbreviated as ‘s’ while the shortest
available abbreviation for the set command is se. See Command Reference for descriptions and
acceptable abbreviations.

3.6.1. Specifying Command Parameters

Most commands accept prefix addresses specifying the lines in the file upon which they are to
have effect. The forms of these addresses will be discussed below. A number of commands also
may take a trailing count specifying the number of lines to be involved in the command.
Counts are rounded down if necessary. Thus the command 10p displays the tenth line in the
buffer, while d5 deletes five lines from the buffer, starting with the current line.

Some commands take other information or parameters, that you provide after the command
name. Examples would be option names in a sef command such as, set number, a filename in
an edi! command, a regular expression in a substitute command, or a target address for a copy
command, such as, 1,6 copy 25.

2.4 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

3.8.2. Invoking Command Variants

A number of commands have two distinct variants. The variant form of the command is
invoked by placing an ‘!’ immediately after the command name. You can control some of the
default variants with options; in this case, the ‘!’ serves to toggle the default.

3.6.3. Flags after Commands

You may place the characters ‘#', p and | after many commands. You must precede a p or |
by a blank or tab except in the single special case of dp. The command that these characters
abbreviates is executed after the command completes. Since ez normally shows the new current
line after each change, p is rarely necessary. You can also give any number of ‘4’ or ‘-’ charac-
ters with these flags. If they appear, the specified offset is applied to the current line value
before the display command is executed.

3.6.4. Writing Comments

It is possible to give editor commands which are ignored. This is useful when making complex
editor scripts for which comments are desired. Use the double quote ‘ " ' as the comment char-
acter. Any command line beginning with * " ' is ignored. You can also put comments beginning
with * 7 ’ at the ends of commands, except in cases where they could be confused as part of
text, for example as Shell escapes and the substitute and map commands.

3.6.5. Putting Multiple Commands on a Line

You can place more than one ez command on a line by separating each pair of commands by a
‘I' character. However the global commands, comments, and the Shell escape ‘I’ must be the
last command on a line, as they are not terminated by a ‘|'.

3.6.6. Reporting Large Changes

Most commands which change the contents of the editor buffer give feedback if the scope of the
change exceeds a threshold given by the report option. This feedback helps to detect undesir-
ably large changes so that you may quickly and easily reverse them with undo. After commands
with more global effect, such as global or visual, you will be informed if the net change in the
number of lines in the buffer during this command exceeds this threshold.

3.7. Command Addressing

The following describes the editor commands called addressing primstives.

3.7.1. Addressing Primitives

. The current line. The current line is traditionally called ‘dot’ because you address it
with a dot ‘.. Most commands leave the current line as the last line which they
affect. The default address for most commands is the current line, so you rarely use

Revision C of 7 January 1984 35

Command Reference for the ex Line Editor Editing and Text Processing

¢ alone as an address.

n The nth lice in the editor’s buffer, lines being numbered sequentially from 1.
$ The last lize in the buffer.
% An abbreviation for ‘1,$', the entire buffer.

+n-n An offset relative to the current buffer line. The forms ‘.-+ 3’ ‘+ 3’ and ‘+ + +’ are
all equivalent; if the current line is line 100, they all address line 103.

/pat/ tpat? , _
Scan forward and backward respectively for a line containing pat, a regular expres-
sion (as defined below in Regular Ezpressions and Substitute Replacement Patterns.
The scans normally wrap around the end of the buffer. If all that is desired is to
show the next line containing pat, you may omit trailing / or ¥. If you omit. pat or
leave it explicitly empty, the last regular expression specified is located. The forms
\/ and \? scan using the last regular expression used in a scan; after a substitute, //
and ?? would scan using the substitute's regular expression.

*# %2 . Before each non-relative motion of the current line ‘.’, the previous current line is
marked with a tag, subsequently referred to as ‘**’. This makes it easy to refer or
return to this previous context. You can also establish marks with the mark com-

mand, using single lower-case letters z and the marked lines referred to as ‘'z’

3.7.2. Combining Addressing Primitives

Addresses to commands consist of a series of addressing primitives, separated by ', or *;’. Such
address lists are evaluated left-to-right. When addresses are separated by *;’ the current line ‘.’
is set to the value of the previous addressing expression before the next address is interpreted.
If you give more addresses than the command requires, all but the last one or two are ignored.
If the command takes two addresses, the first addressed line must precede the second in the
buffer. Null address specifications are permitted in a list of addresses; the default in this case is
the current line *.". So ‘100" is equivalent to ‘.,100". It is an error to give a prefix address to a
command which expects none.

3.8. Regular Expressions and Substitute Replacement Patterns

3.8.1. Regul.ar Expressions

A regular expression specifies a set of strings of characters. A member of this set of strings is
said to be matched by the regular expression. Ez remembers two previous regular expressions:
the previous regular expression used in a substitute command and the previous regular expres-
sion used elsewhere {referred to as the previous scanning regular expression.) The previous regu-
lar expression can always be referred to by a null re, that is ‘//’ or ‘",

3.8.2. Magic and Nomagic
The regular expressions allowed bj ez are constructed in one of two ways depending on the set-

ting of the magic option. The ez and v default setting of magic gives quick access to a power-
ful set of regular expression metacharacters. The disadvantage of magic is that the user must

3-6 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

remember that these metacharacters are magic and precede them with the character ‘\’ to use
them as “ordinary” characters. With nomagic, the default for edit, regular expressions are
much simpler, there being only two metacharacters, namely ‘*’ (beginning of line) and ‘$’ (end
of line). The power of the other metacharacters is still available by preceding the (now) ordi-
nary character with a ‘\’. Note that ‘\" is thus always a metacharacter.

The remainder of the discussion of regular expressions assumes that that the setting of this
option is magic.?

3.8.3. Basic Regular Expression Summary

The following basic constructs are used to construct magic mode regular expressions.

char An ordinary character matches itself. The characters ‘*’ at the beginning of a line,
‘$’ at the end of line, ‘+' as any character other than the first, ‘", ‘\’, ‘[, and * ’ are
not ordinary characters and must be escaped (preceded) by ‘\’ to be treated as such.

At the beginning of a pattern forces the match to succeed only at the beginning of a

lipe.

$ At the end of a regular expression forces the match to succeed only at the end of the
line.

. Matches any single character except the new-line character.

\< Forces the match to occur only at the beginning of a ‘variable’ or ‘word’; that is,

either at the beginning of a line, or just before a letter, digit, or underline and after
a character not one of these.

\> Similar to ‘\<', but matching the end of a ‘variable’ or ‘word,’ that is either the end
of the line or before character which is neither a letter, nor a digit, nor the underline
character.

[string] Matches any single character in the class defined by siring. Most characters in
string define themselves. A pair of characters separated by ‘-’ in string defines a set
of characters between the specified lower and upper bounds, thus ‘[a-z]’ as a regular
expression matches any single lower-case letter. If the first character of atring is a
' the construct matches all but those characters; thus ‘["a-z]' matches anything
but a lower-case letter and of course a newline. You must escape any of the charac-

[Sal I}

ters **’, ‘[, or '~’ in string with a preceding ‘\’.

3.8.4. Combining Regular Expression Primitives

The concatenation of two regular expressions matches the leftmost and then longest string,
which can be divided with the first piece matching the first regular expression and the second
piece matching the second. Any of the single character matching regular expressions mentioned
above may be followed by the character ‘¢’ to form a regular expression whick matches any
number of adjacent occurrences {including 0) of characters matched by the regular expression it
follows.

2 To discern what is true with nomagic it suffices to remember that the only special characters
in this case will be **’ at the beginning of a regular expression, ‘¢’ at the end of a regular expres-
sion, and ‘\’. With nomagic the characters ‘"’ and ‘&’ also lose their special meanings related to
the replacement pattern of a substitute.

Revision C of 7 January 1984 3.7

Command Reference for the ex Line Editor ' Editing and Text Processing

The character * ' may be used in a regular expression, and matches the text which defined the
replacement part of the last substitute command. A regular expression may be enclosed
between the sequences ‘\(’ and ‘\)’ with side effects in the substitute replacement patterns.

3.8.5. Substitute Replacement Patterns

The basic metacharacters for the replacement pattern are ‘&' and ‘”'; these are given as ‘\&’
and ‘\"’ when nomagic is set. Each instance of ‘&’ is replaced by the characters which the reg-
ular expression matched. The metacharacter ‘™' stands, in the replacement pattern, for the
defining text of the previous replacement pattern.

Other metasequences possible in the replacement pattern are always introduced by the escaping
character ‘\'. The sequence ‘\n’ is replaced by the text matched by the n-th regular subexpres-
sion enclosed between ‘\(’ and *\)’.? The sequences ‘\u' and ‘\I’ cause the immediately following
character in the replacement to be converted to upper- or lower-case respectively if this charac-
ter is a letter. The sequences ‘\U’ and ‘\L’ turn such conversion on, elther until ‘\E’ or ‘\¢' is
encountered, or until the end of the replacement pattern.

3.9. Command Reference

The following form is a prototype for all ez commands;
address command ! parametera count flags

All parts are optional; the simplest case is the empty command, which displays the next line in
the file. To avoid confusion from within visual mode, ez ignores a ‘:’ preceding any command.

In the following command descriptions, the default addresses are shown in parentheses, which
are not, however, part of the command.

abbreviate word rhs : abbr: ab
Add the named abbreviation to the current list. When in input mode in visual, if word is typed
as a complete word, it will be changed to rks.

{.)append abbr: a
tezt
" Reads the input text and places it after the specified line. After the command, ‘.’ addresses
the last line input or the specified line if no lines were input. If address ‘0’ is given, text is
placed at the beginning of the buffer.

a!

fext
The variant flag to append toggles the setting for the autoindent option during the input of
tezt,

3 When nested, parenthesized subexpressions are present, s is determined by counting oc-
currences of ‘\(* starting from the left.

3-8 Revision C of 7 January 1984

-

Editing and Text Processing Command Reference for the ex Line Editor

args
The members of the argument list are printed, with the current argument delimited by ‘[’
and ‘J.

(.,.)change count abbr: ¢
text

-

Replaces the specified lines with the input tezt. The current line becomes the last line
input; if no lines were input it is left as for a delete.

c!

tezt
The variant toggles autoindent during the change.

(.,.)copy addr flags abbr: co :
A copy of the specified lines is placed after addr, which may be ‘0’. The current line *.’
addresses the last line of the copy. The command ¢ is a synonym for copy.

{.,.)delete buffer count flags abbr: d
Removes the specified lines from the buffer. The line after the last line deleted becomes the
current line; if the lines deleted were originally at the end, the new last line becomes the
current line. If a named buffer is specified by giving a letter, then the specified lines are
saved in that buffer, or appended to it if an upper case letter is used.

edit file abbr; e

ex file

edit! file

Used to begin an editing session on a new file. Same as :vi file. The editor first checks to
see if the buffer has been modified since the last write command was issued. If it has been,
a warning is issued and the command is aborted. The command otherwise deletes the
entire contents of the editor buffer, makes the named file the current file and prints the new
filename. After insuring that this file is sensible the editor reads the file into its buffer. A
‘sensible’ file is not a binary file such as a directory, a block or character special file other
than [devftty, a terminal, or a binary or executable file as indicated by the first word.

It the read of the file completes without error, the number of lines and characters read is
typed. If there were any non-ASCH characters in the file they are stripped of their non-ASCH
high bits, and any null characters in the file are discarded. If none of these errors occurred,
the §le is considered edited. If the last line of the input file is missing the trailing newline
character, it will be supplied and a complaint will be issued. This command leaves the
current line ‘.’ at the last line read. If executed from within open or visual, the current line
is initially the first line of the file.

el file
The variant form suppresses the complaint about modifications having been made and not
written from the editor buffer, thus discarding all changes which have been made before
editing the new file.

Revision C of 7 January 1984 39

Command Reference for the ex Line Editor Editing and Text Processing

e +n file
Causes the editor to begin at line n rather than at the last line; n may also be an editor
command containing no spaces, for example: ‘+ /pat’.

file abbr:

Prints the current file name, whether it has been ‘[Modified]’ since the last write command,
whether it is read only, the current line, the number of lines in the buffer, and the percen-
tage of the way through the buffer of the current line. In the rare case that the current file
is ‘[Not edited]’ this is also noted. You have to use w! to write to the file, since ez does not
want to write a file unrelated to the current contents of the buffer.

file file -
The current filename is changed to file which is considered ‘[Not edited]'.

(1,$)global /pat/ emds _ abbr: g

First marks each line among those specified which matches the given regular expression.
Then the given command list is executed with *.’ initially set to each marked line.

The command list consists of the remaining commands on the current input line and may
continue to multiple lines by ending all but the last such line with a ‘\". If emds (and possi-
bly the trailing / delimiter) is omitted, each line matching pat is printed. Append, insert,
and change commands and associated input are permitted; the ‘.’ terminating input may be
omitted if it would be on the last line of the command list. Open and visual commands are
permitted in the command list and take input from the terminal.

The global command itself may not appear in ¢cmds. The undo command is also not permit-
ted there, as undo instead can be used to reverse the entire global command. The options
sutoprint and autoindent are inhibited during a global, (and possibly the trailing / delim-
iter) and the value of the report option is temporarily infinite, in deference to a report for

" the entire global. Finally, the context mark ‘’” is set to the value of *.” before the global
command begins and is not changed during a global command, except perhaps by an open
or visugl within the global.

g! /pat/ cmds abbr: v

The variant form of global runs ¢mds at each line not matching pat.
(.)insert abbr: 1
text

-

Places the given text before the specified line. The current line is left at the last line input;
if there were none input it is left at the line before the addressed line. This command
differs from append only in the placement of text,

i!
tezt

The variant toggles autoindent during the snsert.

3-10 Revision C of 7 January 1984

Editing and Text Processing ‘ Command Reference for the ex Line Editor

(«,.+1)join count flags abbr: j
Places the text from a specified range of lines together on one line. White space is adjusted
at each junction to provide at least one blank character, two if there was a ‘.’ at the end of
the line, or none if the first following character is a ‘). If there is already white space at the
end of the line, then the white space at the start of the next line will be discarded.

The variant causes a simpler josn with no white space processing; the characters in the lines
are simply concatenated.

(Jkz
The ¥ command is a synonym for mark. It does not require a blank or tab before the fol-
lowing letter.

(+,.)list count flags

Prints the specified lines in a more unambiguous way: tabs are printed as ‘"I’ and the end of
each line is marked with a trailing ‘$’. The current line is left at the last line printed.

map lhs rhs

The map command is used to define macros for use in visual mode. Lhs should be a single
character, or the sequence “#n", for n a digit, referring to function key n. When this char
acter or function key is typed in viaual mode, it will be as though the corresponding rks had
been typed. On terminals without function keys, you can type “#n’'. See Macros in Using
‘vi’, the Visual Display Editor for more details.

(.)mark z

Gives the specified line mark z, a single lower case letter. The z must be preceded by a
blank or a tab. The addressing form ‘' then addresses this line. The ¢urrent line is not
affected by this command.

(.,.)move addr abbr: m

The move command repositions the specified lines to be after addr. The first of the moved
lines becomes the current line.

next abbr: n
The next file from the command line argument list is edited.

The variant suppresses warnings about the modifications to the buffer not having been writ-
ten out, discarding ({irretrievably) any changes which may have been made.

n filelist
n +command fillelist

The specified filelist is expanded and the resulting list replaces the current argument list;
the first file in the new list is then edited. If command is given (it must contain no spaces),
then it is executed after editing the first such file.

Revision C of 7 January 1984 3-11

Command Reference for the ex Line Editor Editing and Text Processing

(.,.)number count flags abbr: # or nu

Prints each specified line preceded by its buffer line number. The current line is left at the
last line printed.

(.) open flags abbr: o

(.)open [pat/ flags
Enters intraline editing open mode at each addressed line. If pat is given, then the cursor
will be placed initially at the beginning of the string matched by the pattern. To exit this
mode use Q. See Using ‘vi’ the Visual Display Editor.

preserve

The current editor bufler is saved as though the system had just crashed. This command is
for use only in emergencies when a write command has resulted in an error and you don't
know how to save your work. After a preserve you should seek help.

(.,.)print count abbr: p or P

Prints the specified lines with non-printing characters printed as control characters
delete (octal 177) is represented as ‘"?’. The current line is left at the last line printed.

A,
z!

(.) put buffer abbr: pu
Puts back previously deleted or yanked lines. Normally nsed with delete to effect movement
of lines, or with yank to effect duplication of lines. If no buffer is specified, then the last
deleted or yanked text is restored. But no modifying commands may intervene between the
delete or yenk and the put, nor may lines be moved between files without using a named
buffer. By using a named buffer, text may be restored that was saved there at any previous
time,

quit abbr: q
Causes ez to terminate. No automatic write of the editor buffer to a file is performed.
However, ez issues a warning message if the file has changed since the last write command
was issued, and does not gust. Ez also warns you if there are more files in the argument list.
Normally, you do want to save your changes, so you should use a write command; if you
wish to discard them, use the q! command variant,

q!
Quits from the editor, discarding changes to the buffer without complaint.

() read file abbr: r

Places a copy of the text of the given file in the editing buffer after the specified line. If no
file is given the current file name is used. The current file name is not changed unless there
is none in which case file becomes the current name. The sensibility restrictions for the
edit command apply here also. If the file buffer is empty and there is no current name then
ez treats this as an edit command.

Address ‘0’ is legal for this command and causes the file to be read at the beginning of the
buffer. Statistics are given as for the edit command when the read successfully terminates.
After a read the current line is the last line read. Within open and visual the current line
is set to the first line read rather than the last,

3-12 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

(.)read lcommand

Reads the output of the command command into the buffer after the specified line. This is
not a variant form of the command, rather a read specifying a command rather than a
filename; a blank or tab before the ! is mandatory.

recover file

Recovers file from the system save area. Used after an accidental hangup of the phone or a
system crash or preserve command. The system saves a copy of the file you were editing
only if you have made changes to the file. Except when you use preserve you will be
notified by mail when a file is saved.

rewind abbr: rew
The argument list is rewound, and the first file in the list is edited.

rew!
Rewinds the argument list discarding any changes made to the current buffer.

set parameter

With no arguments, prints those options whose values have been changed from their
defaults; with parameter all it prints all of the option values.

Giving an option name followed by a ‘!’ causes the current value of that option to be
printed. The ‘1" is unnecessary unless the option is Boolean walued. Boolean options are
given values either by the form ‘set option’ to turn them on or ‘set nooption’ to turn them
off; string and numeric options are assigned via the form ‘set oplion=value'.

More than one parameter may be given to set ; they are interpreted left-to-right.

shell abbr: sh

A new shell is created, When # terminates, editing resumea.

source file abbr: so
Reads and executes commands from the specified file. Source commands may be nested.

(.,.)substitute /pat/repl/ options count flags abbr: s
On each specified line, the first instance of pattern pat is replaced by replacement pattern
repl. If the global indicator option character ‘g’ appears, then all instances are substituted;
if the confirm indication character ‘c’ appears, then before each substitution the line to be
substituted is typed with the string to be substituted marked with ‘*’ characters. By typ-
ing an ‘y’ one can cause the substitution to be performed, any other input causes no change
to take place. After a substitute the current line is the last line substituted.

Lines may be split by substituting new-line characters into them. The newline in rep! must

be escaped by preceding it with a ‘\’. Other metacharacters available in pat and repl are
described below.

stop

Suspends the editor, returning control to the top level shell. If autowrste is set and there
are unsaved changes, a write is done first unless the form stop! is used. This commands is
only available where supported by the teletype driver and operating system.

Revision C of 7 January 1984 1-13

Command Reference for the ex Line Editor Editing and Text Processing

(., .)substitute options count flags abbr: s
If pat and repl are omitted, then the last substitution is repeated. This is a synonym for
the & command.

(.,.)t addr flags

The ¢t command is a synonym for copy.

ta tag .
The focus of editing switches to the location of tag, switching to a different line in the
current file where it is defined, or if necessary to another file. If you have modified the
current file before giving a fag command, you must write it out; giving another tag com-
mand, specifying no tag reuses the previous tag.

The tags file is normally created by a program such as ctags, and consists of a number of
lines with three fields separated by blanks or tabs. The first field gives the name of the tag,
the second the name of the file where the tag resides, and the third gives an addressing form
which can be used by the editor to find the tag; this field is usually a contextual scan using
‘/pat/’ to be immune to minor changes in the file. Such scans are always performed as if
riomagic was set,

The tag names in the tags file must be sorted alphabetically.

unabbreviate word abbr: una
Delete word from the list of abbreviations.

undo abbr: u

Reverses the changes made in the buffer by the last buffer editing command. Note that glo-
bal commands are considered a single command for the purpose of undo (as are open and
visual.) Also, the commands write and edit which interact with the file system cannot be
undone. Undo is its own inverse.

Undo always marks the previous value of the current line .’ as *’”. After an undo the
current line is the first line restored or the line before the first line deleted if no lines were
restored. For commands with more global effect such as global and visual the current line
regains it's pre-command value after an undo.

unmap lhs
The macro expansion associated by map for lhs is removed.

(1,8)v /pat] emds
A synonym for the global command variant g!, running the specified emds on each line
which does not match pat.

version abbr: ve

Prints the current version number of the editor as well as the date the editor was last
changed.

vi file

Same as :edit file or tex file.

3-14 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

(+) visual type count flage abbr: vi

Enters visual mode at the specified line. Type is optional and may be -’ , ‘"' or ‘.’ as in the

z command to specifly the placement of the specified line on the screen. By default, if type
is omitted, the specified line is placed as the first on the screen. A count specifies an initial
window size; the default is the value of the option window. See Using Vi, the Visual Display
Editor for more details. To exit visual mode, type Q.

visual file
visual + n file

From visual mode, this command is the same as edit.

(1,8) write file abbr: w

Writes changes made back to file, printing the number of lines and characters written. Nor-
mally file is omitted and the text goes back where it came from. if a file is specified, then
text will be written to that file.? If the file does not exist it is created. The current file
name is changed only if there is no current file name; the current line is never changed.

If an error occurs while writing the current and edited file, the editor considers that there
has been “No write since last change’ even if the buffer had not previously been modified.

(1,8$) write>> file abbr: w>>
Writes the buffer contents at the end of an existing file.

w! name

Overrides the checking of the normal write command, and will write to any file which the
system permits.

(1,8$)w lecommand

Writes the specified lines into command. Note the difference between w! which overrides
checks and w ! which writes to a command.

wq name
Like a write and then a gquit command.

wq! name
The variant overrides checking on the sensibility of the write command, as w! does.

Xit name abbr: x

If any changes have been made and not written, writes the buffer out. Then, in any case,

quits. Same as wq, but does not bother to write if there have not been any changes to the
file.

4 The editor writes to a file only if it is the current file and is edited, if the file does not exist, or
if the file is actually a teletype, /devftty, [devf/null. Otherwise, you must give the variant form w!
to force the write,

Revision C of 7 January 1984 3-15

Command Reference for the ex Line Editor Editing and Text Processing

(+,.)yank buffer count abbr: ya
Places the specified lines in the named buffer, for later retrieval via put. If no buffer name is
specified, the lines go to a more volatile place; see the put command description.

{ «+1) x count
Print the next count lines, default window.

(.) = type count

Displays a window of text with the specified line at the top. If type is ‘-' the line is placed
at the bottom; a ‘.’ places the line in the center. A count gives the number of lines to be
displayed rather than double the number specified by the scroll option. On a terminal, the
screen is cleared before display begins unless you give a count which is less than the screen
size. The current line is left at the last line displayed. Forms ‘z=='and ‘z"’ also exist; ‘z="
places the current line in the center, surrounds it with lines of ‘-’ characters and leaves the
current line at this line. The form ‘z"’ prints the window before ‘z—' would. The characters
‘47, *"" and ‘-’ may be repeated for cumulative effect.

! command

The remainder of the line after the ‘I’ character is sent to a shell to be executed. Within
the text of command the characters ‘%’ and ‘4’ are expanded as in filenames and the char-
acter ‘! is replaced with the text of the previous command. Thus, in particular, ‘!’ repeats
the last such shell escape. If any such expansion is performed, the expanded line will be
echoed. The current line is unchanged by this command.

If there has been “[No write]" of the buffer contents since the last change to the editing
buffer, then a diagnostic will be printed before the command is executed as a warning. A
single ‘¥’ is printed when the command completes.

(addr , addr) ! commend

Takes the specified address range and supplies it as standard input to command; the result-
ing output then replaces the input lines.

($)=

Prints the line number of the addressed line. The current line is unchanged.

{.,.)> count flags

(.,.) < count flags
Perform intelligent shifting on the specified lines; < shifts left and > shift right. The
quantity of shift is determined by the shiftwidth option and the repetition of the
specification character. Only white space (blanks and tabs) is shifted; no non-white charac-
ters are discarded in a left-shift. The current line becomes the last line which changed due
to the shifting.

‘D
An end-of-file from a terminal input scrolls through the file. The scroll option specifies the
size of the scroll, normally a half screen of text.

3-16 Revision C of 7 January 1984

©

Editing and Text Processing Command Reference for the ex Line Editor

(oA+1,.+1)

(+1,.+1)]
An address alone causes the addressed lines to be printed. A blank line prints the next line
in the file.

(+,+) & options count flage
Repeats the previous substitute command.

(.,.) options count flags
Replaces the previous regular expression with the previous replacement pattern from a sub-
stitution.

3.10. Option Descriptions

autoindent, ai default: noai

Can be used to ease the preparation of structured program text. At the beginning of each
append, change or insert command or when a new line is opened or created by an append,
change, insert, or substitute operation within open or visual mode, ez looks at the line
being appended after, the first line changed or the line inserted before and calculates the
amount of white space at the start of the line. It then aligns the cursor at the level of
indentation so determined.

If you then type in lines of text, they will continue to be justified at the displayed indenting
level. If more white space is typed at the beginning of a line, the following line will be
aligned with the first non-white character of the previous line. To back the cursor up to
the preceding tab stop, type "ID. The tab stops going backwards are defined at multiples of
the shiftwidth option. You cannot backspace over the indent, except by sending an end-of-
file with a "D.

Specially processed in this mode is a line with no characters added to it, which turns into a
completely blank line (the white space provided for the autoindent is discarded.) Also spe-
cially processed in this mode are lines beginning with a ‘"' and immediately followed by a
“D. This causes the input to be repositioned at the beginning of the line, but retains the
previous indent for the pext line. Similarly, a ‘0’ followed by a "D repositions at the begin-
ning but without retaining the previous indent.

Autoindent doesn’t happen in global commands or when the input is not a terminal.

autoprint, ap default: ap

Causes the current line to be printed after each delete, copy, join, move, substitute, ¢, undo
or shift command. This has the same effect as supplying a trailing ‘p’ to each such com-
mand. Autoprint is suppressed in globals, and only applies to the last of many commands
on a line.

autowrite, aw default: noaw

Causes the contents of the buffer to be written to the current file if you have modified it
and give a nezt, rewind, stop, tag, or ! command, or a ~" (switch files) or "] (tag goto)
command in visual. Note, that the edit and ez commands do not autowrite. In each case,
there is an equivalent way of switching when autowrite is set to avoid the autowrite (edit
for neat, rewind! for rewind, stop! for stop, tag! for tag, shell for !, and :e # and a :ta!

Revision C of 7 January 1984 3-17

Command Reference for the ex Line Editor Editing and Text Processing

command from within visual).

beautify, bf default: nobeautify

Causes all control characters except tab, newline and form-feed to be discarded from the
input. A complaint is registered the first time a backspace character is discarded. Beautify
does not apply to command input.

directory, dir default: dir=/tmp

Specifies the directory in which ez places its bufler file. If this directory in not writable,
then the editor will exit abruptly when it fails to be able to create its buffer there.

edcompatible : default: noedcompatible

Causes the presence of absence of g and ¢ suffixes on substitute commands to be remem-
bered, and to be: toggled by repeating the suffices. The suffix r makes the substitution be
as in the © command, instead of like 8.

errorbells, eb " default: noeb

Error messages are preceded by a beep or bell.’ If possible the editor always places the error
message in a standout mode of the terminal (such as inverse video) instead of ringing the
bell.

hardtabs, ht default: ht—=8

Gives the boundaries on which terminal hardware tabs are set (or on which the system
expands tabs).

ignorecase, ic default: noic

All upper case characters in the text are mapped to lower case in regular expression match-
ing. In addition, all upper case characters in regular expressions are mapped to lower case
except in character class specifications.

lisp default: nolisp

Autoindent indents appropriately for lisp code, and the {) { } [[and]] commands in open
and visual are modified to have meaning for lisp.

list default: nolist

All printed lines will be displayed {more) unambiguously, showing tabs and end-of-lines as
in the list command.

magic default: magic for ez and v®

If nomagic is set, the number of regular expression metacharacters is greatly reduced, with
only ‘"’ and ‘§’ having special effects. In addition the metacharacters ‘™’ and ‘&' of the
replacement pattern are treated as normal characters. All the normal metacharacters may
be made magic when nomagic is set by preceding them with a *\’.

-8 Beeping and bell ringing in open and eiesal on errors is not suppressed by setting neeh.
8 Nomagic for edit.

318 . Revision C of 7 January 1984

.

Editing and Text Processing Command Reference for the ex Line Editor

mesg default: mesg

Causes write permission to be turned off to the terminal while you are in visual mode, if
nomesg is set.

number, nu default: nonumber

Causes all output lines to be printed with their line numbers. In addition each input line
will be prompted for by supplying the line number it will have.

open default: open

If noopen, the commands open and visual are not permitted. This is set for edit to prevent
confusion resulting from accidental entry to open or visual mode.

optimize, opt default: optimize
Throughput of text is expedited by setting the terminal to not do automatic carriage

returns when printing more than one (logical) line of output, greatly speeding output on ter-
minals without addressable cursors when text with leading white space is printed.

paragraphs, para default: para=IPLPPPQPP LIbp

Specifies the paragraphs for the { and } operations in epen and visual. Tke pairs of charac-
ters in the option's value are the names of the macros which start paragraphs.

prompt default: prompt
Command mode input is prompted for with a ‘",

readonly default: off
If set, writes will unless you use an ‘I' after the write. Aflects x, ZZ, autowrite and any-

thing that writes to guarantee you won't clobber a file by accident. Abbreviate to ro.

redraw default: noredraw

The editor simulates (using great amounts of output), an intelligent terminal on a dumb
terminal (e.g. during insertions in visual the characters to the right of the cursor position
are refreshed as each input character is typed.) Useful only at very high speed.

remap default: remap

If on, macros are repeatedly tried until they are unchanged. For example, if o is mapped to
O, and O is mapped to I, then if remap is set, o will map to I, but if noremap is set, it will
map to O. Can map q to # and #1 to something else, and ql to something else. If off,
can map "L to 1 and "R to "L without having "R map to 1.

report default: report=>57

Specifies a threshold for feedback from commands. Any command which modifies more
than the specified number of lines will provide feedback as to the scope of its changes. For
commands such as global, open, undo, and visual which have potentially more far reaching
scope, the net change in the number of lines in the buffer is presented at the end of the
command, subject to this same threshold. Thus notification is suppressed during a global
command on the individual commands performed.

7 2 for edit.

Revision C of 7 January 1984 3-19

Command Reference for the ex Line Editor Editing and Text Processing

scroll default: scroll= window

Determines the number of logical lines scrolled when an end-of-file is received from a termi-
nal input in command mode, and the number of lines printed by a command mode z com-
mand (double the value of scroll).

sections default: sections==SHNHH HU

Specifies the section macros for the [[and]] operations in open and visual. The pairs of
characters in the options's value are the names of the macros which start paragraphs.

shell, sh default: sh==/bin/sh

Gives the path name of the shell forked for the shell escape command ‘", and by the shell
command. The default is taken from SHELL in the environment, if present.

shiftwidth, sw defanlt: sw=—38

Gives the width a software tab stop, used in reverse tabbing with "D when using autosn-
dent to append text, and by the shift commands.

showmatch, sm default: nosm

In open and visual mode, when a) or } is typed, move the cursor to the matching { or { for
one second if this matching character is on the screen. Extremely useful with lisp.

slowopen, slow terminal dependent

Affects the display algorithm used in visual mode, holding off display updating during input
of new text to improve throughput when the terminal in.use is both slow and unintelligent.
See Using Vi, the Visual Display Editor for more details.

tabstop, ts default: ts=8
The editor expands tabs in the input file to be on tabstop boundaries for the purposes of
display. :

taglength, tl default: t1=0

Tags are not significant beyond this many characters. A value of zero (the default) means
that all characters are significant.

tags ' default: tags=tags fusr/lib/tags

A path of files to be used as tag files for the tag command, similar to the path variable of
csh. Separate the files by spaces, and precede each space with a backslash. Files are
searched left to right. Always put tags as your first entry. A requested tag is searched for
in the specified files, sequentially. By default {even in version 2) files called tags are
searched for in the current directory ard in fusr/lib (a master file for the entire system.)

term from environment TERM
The terminal type of the output device.

terse default: noterse
Shorter error diagnostics are produced for the experienced user.

3-20 Revision C of 7 January 1984

Editing and Text Processing Command Reference for the ex Line Editor

timeout . default: on

Causes macros to time out after one second. Turn it off and they wait forever. Use this if
you want multi-character macros. If your terminal sends an escape sequence for arrow keys,
~ type ESC twice.

warn default: warn
Warn if there has been ‘{No write since last change]’ before a ‘'’ command escape.

window default: window=speed dependent

The number of lines in a text window in the visual command. The default is 8 at slow
speeds (600 baud or less), 16 at medium speed (1200 baud), and the full screen (minus one
line) at higher speeds.

w300, w1200, w8600

These are not true options but set window only if the speed is slow (300), medium (1200},
or high (9600), respectively. They are suitable for an EXINIT and make it easy to change
the 8/18/full screen rule. Can specify a 12-line window at 300 baud and a 23-line window
at 1200 in your EXINIT with: et w300=12 w1200=23. Synonymous with window
but only at 300, 1200, and 9600 baud.

Wrapscan, ws default: ws

Searches using the regular expressions in addressing will wrap around past the end of the
file.

wrapmargin, wm default: win=0

Defines a margin for automatic wrapover of text during input in open and visual modes.
Any number other than 0 is a distance from the right edge of the area where wraps can
take place. I you type past the margin, the entire word is rewritten on the next line.
Behaves much like fill/nojustify mode in nroff. See Using Vi, the Visual Display Editor for
details.

writeany, wa default: nowa

Inhibit the checks normally made before write commands, allowing a write to any file which
the system protection mechanism will allow.

3.11. Limitations

Editor limits that the user is likely to encounter are as follows: 1024 characters per line, 258
characters per global command list, 128 characters per file name, 128 characters in the previous
inserted and deleted text in open or visual, 100 characters in a shell escape command, 63 char-
acters in a string valued option, and 30 characters in a tag name, and a limit of 250000 lines in
the file is silently enforced.

The visual implementation limits the number of macros defined with map to 32, and the total
number of characters in macros to be less than 512.

Revision C of 7 Jannary 1984 3.21

.

Ex Quick Reference

Entering/Leaving ex

%% ex name
% ex +n name
% ex -t tag
%% ex —r
%% ex —r name
% ex name ...
% ex —R name
i x

tq!
ex States
Command

Insert

Open/visual

ex Commands

edit mame, start at end
.. st line n

start at fag

list saved files

recover file name

edit first: rest via :n
read only mode

exit, saving changes
exit, discarding changes

Normal and initial state, Input
prompted for by : Your kill char
acter cancels partial command.
Entered by a i and ¢. Arbitrary
text then terminates with line hav-
ing only . character on it or abnor-
mally with interrupt.

Entered by open or vi, terminates
with Q or "\.

abbrev ab next n unabbrev una

append a number nu undo u

args ar open o unmap unm

change c preserve pre version ve
‘! ’ copy ¢o print P visual vi

delete d put pu write w

edit ' quit q xit x

file ¢ read re yank ya

global 4 recover rec window]

insert i rewind rew escape !

join j set se shift <

list l shell sh print next CR

map source 80 resubst &

mark ma stop st rshift >

move m substitute s scroll ‘D

ex Command Addresses

8 line a /pat next with pat

. current tpat previous with pat

$ last P a before 2

+ next E Y] z through y

- previous ‘s marked with 2z

+n n forward " previous context

% 13

-

Revision C of 7 January 1984

Specifying Terminal Type

%% setenv TERM type (for ceh)

$ TERM==type; export TERM (for «h)

See also feet in the user’s manual.
Some Terminal Types
2621 43 adm31 dwl h19
2645 733 adm3s dw?2 100
3008 745 c100 5140 mime
33 actd dmi520 gt42 owl
37 acth dm?2500 h1500 t1051
4014 adm3 dm3025 hi510 vt52
Initializsing Options
EXINIT place set’s here in environment var.
set z enable option
set noz disable option
set smmval give value val
set show changed options
set sl show all options
set z? show value of option
Useful Options
autoindent at supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () {}aresexp’s
list print “I for tab, § at end
magic . [* special in patterns
number nu number lines
paragraphs pars macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect MACTo Names ...
shiftwidth 5w for < >, and input "D
showmatch sm to) and } as typed
slowopen slow choke updates during insert
window visual mode lines
wrapscan - ws around end of buffer
wrapmargin wm automatic line splitting

Scanning Pattern Formation

A

beginning of line
$ end of line
any character

\< beginning of word

\> end of word

fatr] any char in etr

[tetr] ... not in etr

[z-3] ... between zand g

* any number of preceding

C

Table of Contents

Chapter 4 Using the ed Line Editor ... eesssssssssssssrsesnnseenes S
4.1. Getting Started . SO OOUNOONUT - 3
4.1.1. Creating Text — the Append Command al OO =
4.1.2, Error Messages — ‘1" ... SRS 5 -
4.1.3. Writing Text Out as a Flle — the erte Command ‘w’ Y 2
4.1.4. Leaving ‘ed’ — the Quit Command ‘q - OOV OOV =
4.1.5. Exercise: Displaying Your File — the cat’ Command SRS = |
4.1.6. Creating a New File — the Edit Command ‘e’ ... OSSOSO >t
4.1.7. Exercise: Trying the ‘e’ Command .. Y)
4.1.8. Checking the Filename — the Fllename Command ‘f’ RSO = ;)
4.1.9. Reading Text from a File — the Read Command ‘r SO - =
4.1.10. Printing the Buffer Contents — the Print Command ‘p’ OO &
4.1.11. Exercise: Trying the ‘p’ Command ..., 429
4.1.12. Displaying Text — the List Command ‘I’ ... 409
4.1.13. The Current Line — ‘Dot’ or *." st msessensesssessasssrsiesisseesimssasseensenesneess | 4710
4.1.14. Deleting Lines — the Delete Command ‘d’ O =3 § |
4.1.15. Exercise: Experimenting ... ST 53 § |
4.1.18. Modifying Text — the Substitute Command 's' ... 4012
4.1.17. The Ampersand ‘&’ccccvrmncnrines . SPSSTIPIOORURORPIDT 23 L |
4.1.18. Exercise: Trying the ‘s’ and ‘g’ Commands ... ommccnennccsrrnsreriencsnrsnnn. 4218
4.1.19. Undoing a Command — the Undo Command ‘u’ ... 4215
4.2. Changing and Inserting Text — the ‘c’ and ‘i' Commandsc.....ccc... . 4-15
4.2.1. Exercise: Trying the ‘c’ Command ..o sissssms s 4216
4.3. Specifying Lines in the Editor Y 5 { .
4.3.1. Context Searching......... SOOI - 2 ¥ {
4.3.2. Exercise: Trying Context. Searchlng . TR - 28 ¢ -
4.3.3. Specifying Lines with Address Ar;thmet.lc — + and R SUROIURUIY - 3 ¢
4.3.4. Repeated Searches — ‘//" and ‘1" TRV 5 L |
4.3.5. Default Line Numbers and the Value of Dot ervenmsessmmmssssmsssssnsesenssnerersnsnssssenss 4= 20
4.3.6. Combining Commands — the Semicolon ;" ..., 4222
4.3.7. Interrupting the Editor .. SRR OOONORIORUY - ' |
4.4, Editing All Lines — the Global Commands g and v’ SO - =
4.4.1. Multi-line Global Commands .. OO OSSOSO T OO PUOIOOOOPST - %
4.5. Special Characters .. st e sttt st DD
4.5.1. Matching Anythmg — the Dot L OSSOSO =3’
4.5.2. Specifying Any Character — the Backslash \ SOOI TV, i
4.5.3. Specifying the End of Line — the Dollar Sign g " 1.
4.5.4. Specifying the Begirning of the Line — the Clrcumﬂex REROPRTURORONONY: 231!
4.5.5. Matching Anything — the Star ‘*' ... 4230
4.5.6. Character Classes — Brackets [] ..., 4281
4.6. Cutting and Pasting with the EAItor ...t 4238
4.6.1. Moving Lines Around . SOOI U5 7.
4.6.2. Moving Text Around — the Move Command m' ST SO -5/,
4.86.3. Substituting Newlines .. e vsssssse s e e e s s eenennis s nneneneorees A=

Editing and Text Processing

4.6.4. Joining Lines — the Join Command 'j'

4.6.5. Rearranging a Line with \(... \}

4.6.6. Marking a Line — the Mark Command ‘k’
4.8.7. Copying Lines — the Transfer Command ‘t' ...

4.7. Escaping to the Shell with ‘\" .

4.8. Supporting Tools ...

4.8.1. Editing Scnpts

4.8.2.. Matching Patterns with * g;'ep

4.9, Sumniary of Commands and Line Numbers

ii

-

Chapter 4

Using the ed Line Editor

This chapter! describes the editing tools of the ed line editor. It provides the newcomer with
elementary instructions and exercises for learning the most necessary and common commands
and the more advanced user with information about additional editing facilities. The contents
include descriptions of appending, changing, deleting, moving, copying and inserting lines of
text; reading and writing files; displaying your files; context searching; the global commands;
line addressing; and using special characters. There are also brief discussions on the pattern-
matching tool grep, which is related to ed, and on writing scripts.

We assume that you know how to log in to the system and that you have an understanding of
what a file is. You must also know what character to type as the end-of-line on your worksta-
tion or terminal, This character is the RETURN key in most cases.

Do the exercises in this chapter as you read along. What you enter at the keyboard is shown in
bold face type like this.

If you need basic information on the Sun system, refer to the Beginner’s Guide to the Sun
Workstation. See ed in the User’s Manual for the Sun Workstation for a nutshell description of
the ed commands.

4.1. Getting Started

The ed text editor is an interactive program for creating and modifying text, using directions
that you provide from your workstation. The text can be a document, a program or perhaps
data for a program.

We'll assume that you have logged in to your system, and it is displaying the hostname and
prompt character, which we show throughout this manual as:

logo%
To use ed, type ed at the ‘logo%’ prompt:

logo login:

Password:

Last login: Mon Jul 18 07:50:22 on ttyp0

Sun UNIX 4.2 (Berkeley beta release) (GENERIC) #8: Wed Oct 23 13:45:52 PDT 1983
logo% ed

You are now ready to go. Ed does not prompt you for information, but waits for you to tell it
what to do. First you'll learn how to get some text into a file and later how to change it and
make corrections.

1 The material in this chapter is derived from A Tutorial Introduction to the UNIX Tezt Editor,

B.W. Kernighan and Advanced Editing on UNIX, B.W. Kernighan, Bell Laboratories, Murray Hill,
- New Jersey.

Revision C of 7 January 1984 4-1

Using the ed Line Editor Editing and Text Processing

4.1.1. Creating Text — the Append Command ‘a’

Let’s assume you are typing the first draft of a memo and starting from scratch. When you
first start ed, in this case, you are working with a ‘blank piece of paper;’ there is no text or
information present. To supply this text, you either type it in or read it in from a file. To type
it in, use the append command a.

So, to type in lines of text into the buffer, you type an a followed by a RETURN, followed by the
lines of text you want, like this:

logo% ed

a<CR>

Now is the time

for all good men

to come to the aid of their party.

If you make a mistake, use the DEL key to back up over and correct your mistakes. You can-
not go back to a previous line after typing RETURN to correct your errors. The only way to
stop appending is to tell ed that you have finished by typing a line that contains only a period.
It takes practice to remember it, but it has to be there. If ed seems to be ignoring youn, type an
extra line with just ‘.’ on it. You may then find you've added some garbage lines to your text,
which you'll have to take out later.

After the append command, your file contains the lines:
Now is the time
for all good men
to come to the aid of their party.
The a and ‘.’ aren't there, because they are not text.
To add more text to what you already have, type another a, and continue typing.

If you have not used a text editor before, read the following to learn a bit of terminology. If
you have used an editor, continue to Error Messages — ‘¢’

In ed jargon, the text being worked on is said to be in a work space or ‘kept in a buffer.” In
effect the buffer is like a piece of paper on which you write things, change some of them, and
finally file the whole thing away for another day.

You have learned how to tell ed what to do to the text by typing instructions called commands.
Most commands consist of a single letter, which you must type in lower case, like the append
command a. Type each command on a separate line. You sometimes precede the command by
information about what line or lines of text are to be affected; we discuss this shortly.

As you have seen, ed does not respond to most commands; that is, there isn’t any prompting or
message display like ‘ready.’ If this bothers you as a beginner, be patient. You’ll get used to it.

4.1.2. Error Messages — ‘¥’

When you make an error in the commands you type, ed asks you:
’

This is about as cryptic as it can be, but with practice, you can usually figure out how you
goofed.

4-2 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

4.1.3. Writing Text Out as a File — the Write Command ‘w’

When you want to save your text for later use, write out the contents of the buffer into a file
with the write command w, followed by the filename you want to write in. The w command
copies the buffer’s contents into the specified file, destroying any previous information on the
file. To save the text in a file named junk, for example, type:

w junk
68

Leave a space between the w and the filename. Ed responds by displaying the number of char-
acters it wrote out, in this case 68. Remember that blanks and the return character at the end
of each line are included in the character count. The buffer's contents are not disturbed, so you
can go on adding lines to it. This is an important point. Ed works on a copy of a file at all
times, not on the file itself. There is no change in the contents of a file until you type a w.
Writing out the text into a file from time to time is a good idea to save most of your text
should you make some horrible mistake. If you do something disastrous, you only lose the text
in the buffer, not the text that was written into the file.

When you want to copy a portion of a file to another name so you can format it separately, use
the w command. Suppose that in the file being edited you have:

TS
.. lots of stuff
.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate file
called table, first find the start of the table (the ‘. TS’ line), then write out the interesting part:

/‘\.TS/
TS (ed prints the line it found)
o/ \.-TE/w table

and the job is done. If you are confident, you can do it all at once with:

]’ \TS/;/"\.TE/w table

The point is that w can write out a group of lines, instead of the whole file. In fact, you can
write out a single line if you like; give one line number instead of two (we explain line numbers
later — see Specifying Lines in the Editor for details). For example, if you have just typed a
very long, complicated line and you know that you are going to need it or something like it
later, then save it — don’t re-type it. In the editor, say:

Revision C of 7 January 1984 4-3

Using the ed Lige Editor Editing and Text Processing

a
...lota of stuff...

...very long, complicated line... C
W temp

number of characters
a

...more stuff...

.+ temp

number of characters
a

...more stuff...

This last example is worth studying to be sure you appreciate what's going on. The .w temp
writes the very long, complicated line (the current line) you typed to the file called temp. The
.r temp reads that line from temp into the file you are editing after the current line ‘dot’ so you
don’t have to re-type it.

4.1.4. Leaving ‘ed’ — the Quit Command ‘q’

To terminate an ed session, save the text you're working on by writing it onto a file using the w
command, and then type the gust command q.

w
number of characters @

q
logo%

The system responds with the hostname prompt. At this point your buffer vanishes, with all its
text, which is why you want to write it out before quitting. Actually, ed displays ‘?’ if you try
to quit without writing. At that point, write the file if you want; if not, type another q to get
you out of ed regardless.

4.1.5. Exercise: Displaying Your File — the ‘cat’ Command

Enter ed, create some text using a, write it out using w, and then quit the editor with q.

a
... lext, L,

w
number of characters

q
logo%

Now display the file to see that everything worked. Type the cat command with the junk
filename as the argument in response to the prompt character:

-

4-4 Revision C of 7 January 1984

Editing and Text Processing . Using the ed Line Editor

logo% cat junk

Now is the time

for all good men

to come to the aid of their party.
logo%

Use cat when you want to examine a file of less than one screenfull. To view a file of more than
a screenfull, use the more command:

logo% more junk
To scroll forward in the file, press the space bar. To quit the file, type q.

4.1.8. Creating a New File — the Edit Command ‘e’

The edit command e says ‘I want to edit a new file called newfile, without leaving the editor.’
To do this, you type:

e newfile

- The e command discards whatever you're currently working on and starts over on newfile. It’s

exactly the same as if you had quit with the ¢ command, then re-entered ed with a new
filename, except that if you have a pattern remembered, a command like ‘//" will still work.
(See Repeated Searches — /[’ and ‘#¢°)

If you enter ed with the command:
logo% ed file

ed remembers the name of the file, and any subsequent e, r or w commands that don't contain
a filename refer to this remembered file. Thus:

logo% ed filel
... (editing) ...
w {writes back in filel)
e file2(edit new file, without leaving editor}
... (editing on file2} ...
w {writes back on file2)

and so on does a series of edits on various files without ever leaving ed and without typing the
name of any file more than once. As an aside, if you examine the sequence of commands here,
you can see why you can use e as a synonym for ed.

A common way to get text into the buffer is to read it from a file in the file system. This is
what you do to edit text that you saved with w in a previous session. The edit command e also
fetches the entire contents of a file into the buffer. So if you had saved the three lines ‘Now is
the time’, etc., with w in an carlier session, the ed command e fetches the entire contents of the
file funk into the buffer, and responds with the number of characters in junk

logo% e junk
68
If anything was already in the buffer, st is deleted first.

If you use e to read a file into the buffer, you do not need to use a filename after a subsequent
w command; ed remembers the last filename used in an e command, and w will write on this
file. Thus a good way to operate is:

Revision C of 7 January 1984 4-5

Using the ed Line Editor Editing and Text Processing

logo% ed

e file

number of characters
[editing session]

w

number of characters
q

logo%

This way, you can simply say w from time to time, and be secure that you are writing into the
proper file each time.

4.1.7. Exercise: Trying the ‘e’ Command

Experiment with the e command — try reading and displaying various files. You may get an
er7Tor

Tname

where name is the name of a file; this means that the file doesn't exist, typically because you
spelled the filename wrong, or perhaps because you are not allowed to read or write it. Try
alternately reading and appending to see that they work similarly. Verify that:

logo% ed filename

18 equivalent to:

logo% ed
e filename
number of characters

4.1.8. Checking the Filename — the Filename Command ‘f’

You can find out the remembered filename at any time with the f command; just type f without
a filename. You can also change the name of the remembered filename with f; this following
sequence guarantees that a careless w command will write on junk instead of precious. Try:

logo% ed precious
f junk
... (editing) ...

You can find out at any time what filename ed is remembering by typing the file command f.
In this example, if you type f, ed replies: :

logo% ed junk
68

f

junk

4-6 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

4.1.9. Reading Text from a File — the Read Command ‘r’

Sometimes you want to read a file into the buffer without destroying anything that is already
there. To do this, use the read command r. The command:

r junk
68

reads the file junk into the buffer, adding it to the end of whatever is already in the buffer. So
if you do a read after an edit:

e junk
68

r junk
08

w

136

q
logo%

the buffer contains fwo copies of the text or six lines in this case. Like w and e, r displays the
number of characters read in after the reading operation is complete. Now check the buffer con-
tents with caef

logo% cat junk

Now is the time

for all good men

to come to the aid of their party.
Now is the time

for ali good men

to come to the aid of their party.
logo%

Generally speaking, you won’t use r as much as e.
Suppose you have a file called memo, and you want the file called table to be inserted just after
the reference to Table 1. That is, in memo somewhere is a line that says

Table 1 shows that ...

The data contained in table has to go there so nroff or troff will format it properly. Now what!?
This one is easy. Edit memo, find ‘Table 1’, and add the file table right there:

logo% ed memo

/Table 1/

Table 1 shows that ... (response from ed)
.r table

The critical line is the last one. As we said earlier, the r command reads a file; here you asked
for it to be read in right after line dot. An r command without any address adds lines at the
end, which is the same as $r.

Revision C of 7 January 1984 4-7

Using the ed Line Editor Editing and Text Processing

4.1.10. Printing the Buffer Contents — the Print Command ‘p

To print or ‘display’ the contents of the buffer or parts of it on the screen, use the print com-
mand p. To do this, specify the lines where you want the display to begin and where you want
it to end, separated by -a comma, and followed by p. Thus to show the first two lines of the

buffer, for example, say:
1,2p (starting line=1, ending line=2 p}
Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use 1,3p if you knew there
were exactly three lines in the buffer. But in general, you don’t know how many lines there are,
so what do you use for the ending line number!? Ed provides a shorthand symbol for ‘line
number of last line in buffer’ — the dollar sign ‘8'. Use it to display all the lines in the buffer,
line 1 to last line:

1,3p

Now is the time

for all good men

to come to the aid of their party.

Now is the time

for all good men

to come to the aid of their party.

If you want to stop the display of more than one screenfull before it is finished, type the
INTERRUPT character “C (or the DEL key).

"C
?
Ed waits for the next command.

To display the last line of the buffer, you can use:

$,3p .
to come to the aid of their party.

or abbreviate it to:

$p
to come to the aid of their party.

You can show any single lire by typing the line number followed by a p. So, to display the first
line of the buffer, type:

1p
Now is the time

In fact, ed lets you abbreviate even further: you can display any single line by typing just the
line number — there is no need to type the letter p. So if you say:

2
for all good men

ed displays the second line of the buffer.
You can also use ‘4’ in combinations to display the last two lines of the buffer, for example:

4-8 Revision C of 7 January 1984

-

-

Editing and Text Processing Using the ed Line Editor

s"l,sp
for all good men
to come to the aid of their party.

This helps when you want to see how far you got in typing.

4.1.11. Exercise: Trying the ‘p’ Command

As before, create some text using the a command and experiment with the p command. You
will find, for example, that you can't show line 0 or a line beyond the end of the buffer, and
that attempts to show a buffer in reverse order don't work. For example, you get an error mes-
sage if you type:

3,1p
?

4.1.12. Displaying Text — the List Command ‘I’

Ed provides two commands for displaying the contents of the lines you're editing. You are fam-
iliar with the p command that displays lines of text. Less familiar is the list command 1 (the
letter ‘"), which gives slightly more information than p. In particular, 1 makes visible charac-
ters that are normalily invisible, such as tabs and backspaces. If you list a line that contains
some of these, 1 will show each tab as 3> and each backspace as <. A sample display of a ran-
dom file with tab characters and backspaces is:

|
Now is the > > time for < < all good men

This makes it much easier to correct the sort of typirg mistake that inserts extra spaces adja~
cent to tabs, or inserts a backspace followed by a space.

The 1 command also ‘folds’ long lines for printing. Any line that exceeds 72 characters is
displayed on multiple lines. Each printed line except the last is terminated by a backslash * \’,
so you can tell it was folded. This is useful for displaying long lines on small terminal screens.
A sample output of a folded line is:

1 ,
This i3 an example of using the ‘I’ command to display a very long line that \
has more than 72 characters ...

Occasionally the | command displays in a line a string of numbers preceded by a backslash, such
as ‘\07' or ‘\16’. These combinations make visible the characters that normally don't show, like
form feed or vertical tab or bell. Each such combination is a single character. When you see
such characters, be wary — they may have surprising meanings when displayed on some termi-
nals. Often their presence means that your finger slipped while you were typing; you almost
never want them.

Revision C of 7 January 1984 4-9

Using the ed Line Editor Editing and Text Processing

4.1.13. The Current Line — ‘Dot’ or *.]

Suppose your buffer still contains the six lines as above, and that you have just typed:

1,3p

Now is the time

for all good men

to come to the aid of their party.

Ed has displayed the three lines for you. Try typing just a p to display:

p (no line numbers}
to come to the aid of their party.

which is the third line of the buffer. In fact it is the last or most recent lire that you have done
anything with. (You just displayed it!} You can repeat p without line numbers, and it will con-
tinue to display line 3.

The reason is that ed maintains a record of the last line that you did anything to (in this case,
line 3, which you just displayed) so that you can use it instead of an explicit line number. You
refer to this most recent line by the shorthand symbol:

. (pronounced ‘dot’)
to come to the aid of their party.

Dot i5 a line number in the same way that ‘$’ is; it means exactly ‘the current line’, or locsely,
‘the line you most recently did something to.' You can use it in several ways — one possibility
is to display all the lines from and including the current line to the end of the buffer,

owip
Now is the time

for all good men
to come to the aid of their party.
to come to the aid of their party.

In our example these are lines 3 through 6,

Some commands change the value of dot, while others do not. The p command sets dot to the
number of the last line displayed; that is, after this command sets both ‘." and ‘8§’ refer to the
last, line of the file, line 6.

Dot is most usefu} in combinations like:
«F1 for equivalently, .41p)

This means ‘show the pext line' and is a handy way to step slowly through a buffer. You can
also say:

—~1 for —~1p)

which means ‘show the line before the current line." Use this to go backwards if you wish.
Another useful one is something like:

-"“'3’-—1p
which shows the previous three lines.

Don'’t forget that all of these change the value of dot. You can find out what dot is at any time
by typing:

1-10 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

Let's summarize some things about p and dot. Essentially you can precede p by 0, 1, or 2 line
numbers. If you do not give a line number, p shows the ‘current line,’ the line that dot refers
to. If there is one line number given with or without the letter p, it shows that line and dot is
set there; and if there are two line numbers, it shows all the lines in that range, and sets dot to
the last line displayed. If you specify two line numbers, the first can't be bigger than the
second.

Typing a single RETURN displays the next line — it’s equivalent to ~+1p. Tryit. Try typing a
—; you will find that it’s equivalent to ~1p.

4.1.14. Deleting Lines — the Delete Command ‘d’

Suppose you want to get rid of the three extra lines in the buffer. To do this, use the delete
command d. The d command is similar to p, except that d deletes lines instead of displaying
them, You specify the lines to be deleted for d exactly as you do for p: :

starting line, ending line d
Thus the command:
deletes lines 4 through the end. There are now three lines left, as you can check by using:

1,$p

Now is the time

for all good men

to come to the aid of their party.

And potice that ‘¢’ now is line 3. Dot is set to the next line after the last line deleted, unless
the last line deleted is the last line in the buffer. In that case, dot is set to ‘$’.

4.1.15. Exercise: Experimenting

Experiment with a, e, r, w, p and d until you are sure you know what they do, and uatil you
understand how to use dot, ‘$* and the line numbers.

If you are adventurous, try using line numbers with a, r and w as well. You will find that &
appends lines after the line number that you specify rather than after dot; that r reads a file in
after the line pumber you specify and not necessarily at the end of the buffer; and that w writes
out exactly the lines you specify, not necessarily the whole buffer. These variations are handy,
for instance, for inserting a file at the beginning of a buffer:

Or filename
number of characters

Ed indicates the number of characters read in. You can enter lines at the beginning of the
buffer by saying:

Revision C of 7 January 1984 4-11

Using the ed Line Editor Editing and Text Processing

Oa
... text . ..

-

Or you can write out the lines you specify with w. Notice that .w is very different from:

w
number of characters

4.1.16. Modifying Text — the Substitute Command ‘s’

One of the most important commands is the substitute command s. Use s to change individual
words or letters within a line or group of lines. For example, you can correct spelling mistakes
and typing errors.

Suppose that by a typing error, line 1 says:
Now is th time
— the ‘e’ has been left off ‘the’. You can use s to fix this up as follows:
1s/th/the/
This says: ‘in line 1, substitute for the characters ‘th' the characters ‘the’. Ed does not display

the result automatically, so verify that it works with:

P
Now is the time

You get what you wanted. Notice that dot has been set to the line where the substitution took
place, since p printed that line, The s command always sets dot in this way.
The general way to use the substitute command is:

starting-line, ending-line s/ change thisfto this]

Whatever string of characters is between the first pair of slashes is replaced by whatever is
between the second pair, in all the lines between starting-line and ending-line. Only the first
occurrence on each line is changed, however. I you want to change every occurrence, read on
below. The rules for line numbers are the same as those for p, except that dot is set to the last
line changed. But there is a trap for the unwary: if no substitution took place, dot is not
changed. This causes an error ‘!’ as a warning.

Thus you can say:
1,3s/speling/spelling/

and correct the first spelling mistake on each line in the text. (This is useful for people who are
consistent misspellers!)

You can precede any s command by one or two ‘line numbers’ to specify that the substitution is
to take place on a group of lines. Thus, to change the first occurrence of ‘mispell’ to ‘misspell’
on every line of the file, type:

1,3s/mispell/misspell/

But to chapge every occurrence in every line, type:

4-12 Revision C of 7 January 1984

.

CIERENN) N AN D

Editing and Text Processing Using the ed Line Editor

1,$s/mispell/misspell/g
This is more likely what you wanted in this particular case.

Note: Be careful that this is exactly what you want to do. Unless you specify the substitution
specifically, globally changing the string ‘the’, will also change every instance of those charac-
ters, including ‘other’, etc.

If you do not give any line numbers, s assumes you mean ‘make the substitution on line dot,’ so
it changes things only on the current line. You will see that a very common sequence is to
correct a mistake on the current line, and then display the line to make sure everything is all
right:

s/something/something else/p
line with something else
If it didn’t, you can try again.

Notice that there is a p on the same line as the s command. With few exceptions, p can follow
any command; no other multi-command lines are legal.

You can also say:

s/ ...1/

which means ‘change the first string of characters to nothing;’ that is, remove the first string of
characters. Use this sequence for deleting extra words in a line or removing extra letters from
words. For instance, if you had;

Nowxx is the time

To correct this, say:

s/xx//p

Now is the time

Notice that ‘//' (two adjacent slashes) means ‘no characters,” not a blank. There ¢s a difference!
(See Repeated Searches for another meaning of *//'.)

If you want to replace the firet ‘this’ on a line with ‘that’, for example, use:
s/this/that/

If there is more than ope ‘this’ on the line, a second form with the trailing global command g
changes all of them:

s/this/that/g
The general format is:

s/...[/.../gp

Try other characters instead of slashes to delimit the two sets of characters in the s command
— anything should work except blanks or tabs.

If you get funny results using any of the characters:
.8 s\ &
read the section on Special Characters.

You can follow either form of the s command by p or I to display or list the contents of the
line.

Revision C of 7 January 1984 4-13

Using the ed Line Editor Editing and Text Processing

s/this/that/p

s/this/that/l

s/this/that/gp

s/this/that/gl
are all acceptable and mean slightly different things. Make sure you know what the differences
are.

You should also notice that if you add a p or I to the end of any of these substitute commands,
only the last line that was changed will be displayed, not all the lines. We will talk later about
how to show all the lines that were modified.

4.1.17. The Ampersand ‘&’

The ‘&’ is a shorthand character — it is used only on the right-hand part of a substitute com-
mand where it means ‘whatever was matched on the left-hand side.’ Use it to save typing. Sup-
pose the current line contained:

Now is the time

and you wanted to put parentheses around it. You could just retype the line, but this is tedi-
ous. Or you could say:

o/ /(/
s/3/)/

using your knowledge of ‘"' and ‘§’. But the easiest way uses the ‘&'

s/.*/(&)/
This says ‘match the whole line, and replace it by itself surrounded by parentheses.’
You can use the ‘&' several times in a line:

sf.oef&? &N/
Now is the time? Now is the timel!

The ampersand can occur more than once on the right side:
s/the/& best and & worst/

makes:

Now is the best and the worst time

You don’t have to match the whole line, of course, if the buffer contains:
the end of the world

you can type:

[/world/s//& is at hand/
the end of the world is at hand

Observe this expression carefully, for it illustrates how to take advantage of ed to save typing.
The string ‘/world/’ found the desired line; the shorthand ‘//’ found the same word in the line;
and the ‘&’ saves you from typing it again.

Notice that ‘&’ is not special on the left side of a substitute, only on the right side.

4-14 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

The ‘&’ is a special character only within the replacement text of a substitute command, and

has no special meaning elsewhere. You can turn off the special meaning of ‘&’ by preceding it
witha ‘' \

s/ampersand /\&/
converts the word ‘ampersand’ into the literal symbol ‘&’ in the current line. Of course this
isn't much of a saving if the thing matched is just ‘the’, but if it is something truly long or
awful, or if it is something like ‘%’ which matches a lot of text, you can save some tedious typ-

ing. There is also much less chance of making a typing error in the replacement text. For
example, to put parentheses around a line, regardless of its length, use:

e/»/(&)/

4.1.18. Exercise: Trying the ‘s’ and ‘g’ Commands

Experiment with s and g. See what happens if you substitute for some word on a line with
several occurrences of that word. For example, do this:

8
the other side of the coin

s/the/on the/p
on the other side of the coin

4.1.19. Undoing a Command — the Undo Command ‘v’

Occasionally you will make a substitution in a line, only to realize too late that it was a mis-
take. Use the undo command u to undo the last substitution. This restores the last line that
was substituted to its previous state. For example, study the following example:

s/party [country/

p
to come to the aid of their country.

u

p
to come to the aid of their party.

4.2, Changing and Inserting Text — the ‘¢’ and ‘i’ Commands

This section discusses the change command ¢, which changes or replaces a group of one or more
lines, and the insert command i, which inserts a group of one or more lines.

The ¢ command replaces a number of lines with different lines, which you type in at the works-
tation. For example, to change lines ‘.+ 1’ through ‘$' to something else, type:

~+1,8¢
« « o type the lines of text you want here . . .

The lines you type between the ¢ command and the ‘.’ take the place of the original lines

Revision C of 7 January 1984 4-15

Using the ed Line Editor Editing and Text Processing

between start line and end line. This is most useful in replacing a line or several lines which
have errors in them.

If you only specify one line in the ¢ command, just that line is replaced. You can type in as
many replacement lines as you like. Notice the use of ‘.’ to end the input — this works just
like the ‘.’ in the append command and must appear by itself on a new line. If no line number
is given, line dot is replaced. The value of dot is set to the last line you typed in.

‘Insert’ is similar to append, for instance:
/string /i
. . . type the lines to. be inserted here . . .

inserts the given text before the next line that contains ‘string’, that is, the text between § and
'." is inserted before the specified line. If no line number is specified dot is used. Dot is set to
the last line inserted.

4.2.1. Exercise: Trying the ‘¢’ Command

Change is rather like a combination of delete followed by insert. Experiment to verify that:

atart, end d
1 .
N 1 1 SN

.

is almost the same as:

start, end ¢
... text, .,

These are not precisely the same if line ‘$’ gets deleted. Check this out. What is dot?

Experiment with a and i, to see that they are similar, but not the same. You will observe that
to append after the given line, you type:

line-number a
R 7.5 ¢ S

while to insert before it, you type:

line-number
..o bext . ..

Observe that if you do not give a line number, i inserts before line dot, while a appends after
line dot.

4.3. Specifying Lines in the Editor

To specify what lines are to be affected by the editing commands, you use line addressing.
There are several methods, which are described below.

.18 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

4.3.1. Context Searching

One way is contezt searching. Context searching is simply a method of specifying the desired
line, regardless of what its number is, by specifying some context on it.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

If you want to find the line that contains ‘their’ so you can change it to ‘the’. With only three
lines in the buffer, it’s pretty easy to keep track of what line the word ‘their’ is on. But if the
buffer contains several hundred lines, and you’d been making changes, deleting and rearranging
lines, and so on, you would no longer really know what this line number would be.

For example, to locate the next occurrence of the characters between slashes (‘their’), type:

Jtheir/
to come to the aid of their party.

To search for a line that contains a particular string of characters, the general format is:
[string of characters we want to findf

This is sufficient to find the desired line. It also sets dot to that line and displays the line for
verification. ‘Next occurrence’ means that ed starts looking for the string at line ‘.+ 1°, searches
to the end of the buffer, then continues at line 1 and searches to line dot. That is, the search
‘wraps around’ from '$’ to 1. It scans all the lines in the buffer until it either finds the desired
line or gets back to dot again. If the given string of characters can’t be found in any line, ed
dispiays the error message:

?
Otherwise it shows the line it found.

Less familiar is the use of:
?thing?

which scans backwards for the previous occurrence of ‘thing’. This is especially handy when you
reafize that the thing you want to operate on is back up the page from where you are currently
editing.

The slash and question mark are the only characters you can use to delimit a context search,
though you can use essentially any character in a substitute command. You can do both the -
search for the desired line and a substitution all at once, like this:

/their/s/their/the/p
to come to the aid of the party.

There were three parts to that last command: a context search for the desired line, the substitu-
tion, and displaying the line.

The expression ‘ftheir/’ is a context search expression. In their simplest form, all context
search expressions are like this — a string of characters surrounded by slashes. Context
searches are interchangeable with line numbers, so you can use them by themselves to find and
show a desired line, or as line numbers for some other command, like s. We use them both
ways in the examples above.

Revision C of 7 January 1984 4-17

Using the ed Line Editor Editing and Text Processing

4.3.2. Exercise: Trying Context Searching

* Experiment with context searching. Try a body of text with several occurrences of the same @
string of characters, and scan through it using the same context search.

Try using context searches as line numbers for the substitute, print and delete commands. You
can also use context searching with with r, w, and a.

If you get funny results with any of the characters:
. 8 1\ &

read the section on Special Characters.

4.3.3. Specifying Lines with Address Arithmetic — ‘+’ and ‘-’

Another area in which you can save typing in specifying lines is to use ‘-’ and ‘4’ as line

pumbers by themselves. To move back up one line in the file, type:

In fact, you can string several minus signs together to move back up that many lines:

—— —

moves up three lines, as does ‘~3’. Thus:

is also identical to the examples above.)

Since ‘-’ is shorter than ‘.~1’, use it to change ‘bad’ to ‘good' on the previous line and on the

current line. : @
—y8/bad/good/

You can use ‘+’ and ‘-’ in combination with searches using ‘/.../’ and ‘?...?", and with ‘§’. To

find the line containing ‘thing’, and position you two lines before it, type: '
/thing/——

The next step is to combine the line numbers like *.’, ‘§’, ‘/.../" and *1...7" with ‘+ ' and ‘-
Thus:

$-1

displays the next to last line of the current file, that is, one line before line ‘$". For example, to
recall how far you got in a previous editing session, type;

$-5,3p

which shows the last six lines. (Be sure you understand why it's six, not five.) If there aren't
six, of course, you'll get an error message. Suppose the buffer contains the three familiar lines:

Now is the time
for all good men
to come to the aid of their party.

Then the ed line numbers:

118 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line, line 2. To make a change
in line 2, you could say:

/Now/+1s/good/bad/
or: .

/good/s/good/bad/
or:

/party/-1s8/good/bad/
Convenience dictates the choice. You could display all three lines by, for instance:

/Now/,[party/p

ar.

/Now/,/Now /+2p

or by any number of similar combinations. The first one of these might be better if you don't
know how many lines are involved. Of course, if there were only three lines in the buffer, you'd
use:

1,3p
but not if there were several hundred.

The basic rule is: a context search expression is the same as a line number, so you can use it
wherever a line pumber is needed.

As ancther example:
-"3’n+3p

displays from three lines before where you are now at line dot to three lines after, thus giving
you a bit of context, By the way, you can omit the '+

0"3 ’-3p

is identical in meaning.

4.3.4. Repeated Searches — ‘//’ and ‘7?7’

Suppose you ask for the search:

/horrible thing/

and when the line is displayed, you discover that it isn’t the horrible thing that you wanted, so
you have to repeat the search again. You don’t have to re-type the search; use the construec-
tion:

/!

as a shorthand for ‘the previous thing that was searched for’, whatever it was, You can repeat
this as many times as necessary. You can also go backwards by typing:

Revision C of 7 January 1984 4-19

Using the ed Line Editor Editing and Text Processing

7 O

which searches for the same thing, but in the reverse direction.
Not only can you repeat the search, but you can use ‘//' as the left side of a substitute com-
mand, to mean ‘the most recent pattern.’

/horrible thing/
... €d prints line with ‘horrible thing’ ...

s//good/p
To go backwards and change a line, say:

??s//good/
You can also use it as the first string of the substitute command, as in:

/stringl/s/ /atring2/
which finds the next occurrence of ‘stringl’ and replaces it by ‘string2’. This can save a lot of
typing.
You can still use the ‘&’ on the right hand side of a substitute to stand for whatever got
matched:

//s/]& &[p
This finds the next occurrence of whatever you searched for last, replaces it by two copies of
itself, then displays the line just to verify that it worked.

4.3.5. Default Line Numbers and the Value of Dot @

One of the most effective ways to speed up your editing is always to know what lines will be
affected by a command if you don't specify the lines it is to act on, and on what line you will be
positioned, that is, the value of dot, when a command finishes. If you can edit without specify-
ing unnecessary line numbers, you can save a lot of typing.

As the most obvious example, if you give a search command like:

/thing/
you are left pointing at the next line that contains ‘thing’. No address is required with com-
mands like s to make a substitution on that line. Addresses are also not required with p to
show it, 1 to list it, d to delete it, & to append text after it, ¢ to change it, or i to insert text
before it. ‘
What would happen if there were no ‘thing’? Then you are left right where you were — dot is
unchanged. This is also true if you are sitting on the only ‘thing' when you issue the command.

search.

The delete command d leaves dot pointing at the line that followed the last deleted line. When
line ‘¢’ gets deleted, however, dot points at the new line ‘§’.

The line-changing commands a, ¢ and i by default all affect the current line. If you do not give
a line number with them, the a appends text after the current line, ¢ changes the current line,
and i inserts text before the current line.

The a, ¢, and i commands behave identically in one respect — when you stop appending, =N
changing or inserting, dot points at the last line entered. This is exactly what you want for

4-20 Revision C of 7 Januvary 1984

.

Editing and Text Processing Using the ed Line Editor

typing and editing on the fly. For example, you can say:

a

.. teat ...

... botch ... {minor error)
s/botch/correct/ (fix botched line}
a

... more text ...

without specifying any line number for the substitute command or for the second append com-
maerd. Or you can say:

a
o text ...
... horrible botch ... ({major error)

c (replace entire line)
... fized up line ...

You should experiment to determine what happens if you do not add any lines with a, ¢ or i.

The r command reads a file into the text being edited, either at the end if you do not give an
address, or after the specified line if you do. In either case, dot points at the last line read in.
Remember that you can even say Or to read a file in at the beginning of the text. You can also
say Oa or 1i to start adding text at the beginning.

The w command writes out the entire file. If you precede the command by one line number,
that line is written, while if you precede it by two line numbers, that range of lines is written.
The w command does not change dot; the current line remains the same, regardless of what
lines are written. This is true even if you say something that invelves a context search, such as:

/] \-AB/,/"\.AE/w abstract
Since w is s0 easy to use, you should save what you are editing regularly as you go along just in

case something goes wrong, or in case you do something foolish, like clobbering what you're
editing.

- With the s command, the rule is simple; you are left positioning on the last line that got

changed. If there were no changes, dot doesn’t move.

To illustrate, suppose that there are three lines in the buffer, and you are sitting on the middle
one:

x1
x2
x3

Then to display the third line, which is the last one changed, type:
—+s/x/y/p
But if the three lines had been:

x1

y2

¥3
and the same command had been issued while dot pointed at the second line, then the result
would be to change and show only the first line, and that is where dot would be set.

Revision C of 7 January 1984 4-91

Using the ed Line Editor Editing and Text Processing

4.3.8. Combining Commands — the Semicolon ¢}’

Searches with ‘/.../> and ‘?..?" start at the current line and move forward or backward respec-
tively until they either find the pattern or get back to the current line. Sometimes this is not
what is wanted. Suppose, for example, that the buffer contains lines like this:

ab
be

Starting at line 1, one would expect that the command:

/a/,/b/p
would display all the lines from the ‘ab’ to the ‘be’ inclusive. Actually this is not what happens.
Both searches (for ‘a’ and for ‘b’) start from the same point, and thus they both find the line
that contains ‘ab’. The result is to display a single line. Worse, if there had been a line with a
‘b’ in it before the ‘ab’ line, then the print command would be in error, since the second line
number would be less than the first, and you ¢annot display lines in reverse order.

This happens because the comma separator for line numbers doesn’t set dot as each address is
processed; each search starts from the same place. In ed, you can use the semicolon *;’ just like
comma, with the single difference that use of a semicolon forces dot to be set at that point as
the line numbers are being evaluated. In effect, the semicolon ‘moves' dot. Thus in the exam-
ple above, the command:

/a/i/b/p
displays the range of lines from ‘ab’ to ‘be’, because after the ‘a’ is found, dot is set to that line,
and then ‘b’ is searched for, starting beyond that line.

Use the semicolon when you want to find the second occurrence of something. For example, to
find the second occurrence of ‘thing’, you car say:

/thing/
line with ‘thing’

//

second line with ‘thing’

But this displays the first occurrence as well as the second, and is a nuisance when you know
very well that it is only the second one you're interested in. The solution is to find the first
occurrence of ‘thing’, set dot to that line, then find the second and display only that:

/thing/s//
Closely related is searching for the second previous occurrence of something, as in:
?*something?;??

We leave you to try showing the third or fourth or ... in either direction.

4.29 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

Finally, bear in mind that if you want to find the first occurrence of something in a file, starting
at an arbitrary place within the file, it is not sufficient to say:

1;/thing/
This search fails if ‘thing’ occurs on line 1. But it is possible to say:

0;/thing/

This is one of the few places where 0 is a legal line number, for this starts the search at line 1.

4.3.7. Interrupting the Editor

As a final note on what dot gets set to, be aware that if you type an INTERRUPT ("C is the
default, but your terminal may be set up with the DELETE, RUBOUT or BREAK keys) while
ed is doing a command, things are put back together again and your state is restored as much
as possible to what it was before the command began. Naturally, some changes are irrevocable
— if you are reading or writing a file or making substitutions or deleting lines, these will be
stopped in the middle of execution in some clean but unpredictable state; hence it is not usually
wise to stop them. Dot may or may not be changed.

Displaying is more clear cut. Dot is not changed until the display is done. Thus if you display
lines until you see an interesting one, then type "C, you are not sitting on that line or even near
it. Dot is left where it was when the p command was started.

4.4. Editing All Lines — the Global Commands ‘g’ and ‘v’

Use the global command g to execute one or more ed commands on all those lines in the buffer

that match some specified string. For example, to display all lines that contain ‘peling’, type:
g/peling/p

As another example:

g/"\./p
displays all the formatting commands in a file lines that begin with ‘.. The pattern that goes

between the slashes can be anything that could be used in a line search or in a substitute com-
mand; the same rules and limitations apply.

As a more useful command which makes the substitution everywhere on the line, then displays
each corrected line, type:

g/peling/s/ /pelling /gp _
Compare this to the command line, which only shows the last line substituted:

1,8s/peling/pelling /gp
Another subtle difference is that the g command does not give a ‘?’ if ‘peling’ is not found where
the s command will.
The substitute command is probably the most useful command that can follow a global because
you can use this to make a change and display each affected line for verification. For example,

you can change the word ‘Sun’ to ‘SUN’ everywhere in a file, and verify that it really worked,
with:

Revision C of 7 January 1984 4-93

Using the ed Line Editor Editing and Text Processing

g/Sun/s//SUN/gp @

Notice that you use ‘//’ in the substitute command to mean ‘the previous pattern’, in this case,
‘Sun’. The p command is done on every line that matches the pattern, not just those on which
a substitution took place.

The command that follows g or v can be anything:

g/°\./d

deletes all lines that begin with ‘.’, and:
g/'$/d

deletes all empty lines.

The v command is identical to g, except that it operates on those line that do not contain an
occurrence of the pattern; that is, v ‘inverts’ the process, so:

v/\./p

The global command operates by making two passes over the file. On the first pass, all lines
that match the pattern are marked. On the second pass, each marked line in turn is examined,
dot is set to that line, and the command executed. This means that it is possible for the com-
mand that follows a g or v to use addresses, set dot, and so on, quite freely.

g/"\-PP/+

displays the line that follows each ‘PP’ command {the signal for a new paragraph in some for-
matting packages). Remember that ‘+’ means ‘one line past dot’. And:

g/topic/?"\.SH™1 @
searches for each line that contains ‘topic’, scans backwards until it finds a line that begins ‘.SH’

(a section heading) and shows the line that follows that, thus showing the section headings
under which ‘topic’ is mentioned. Finally:

8/ \\-EQ/+,/"\.EN/-p
displays all the lines that lie between lines beginning with ‘EQ' and ‘EN’ formatting com-
mands.

You can also precede the g and v commands by line numbers, in which case the lines searched
are only those in the range specified.

4.4.1. Multi-line Global Commands

You can use several commands at once, including a, ¢, i, r, w, but not g; in this case, every line
except the last must end with a backslash * | '. For example, to make changes in the lines
before and after each line that contains ‘xxx’, and then display all three lines, say:

g/xxx/.~1s/abe/def/\
.-{-zzs/ghi/jkl/\
—2,.p

You can use more than one command under the control of a global command, although the syn-
tax for expressing the operation is not especially natural or pleasant. As an example, suppose
the task is to change ‘x’ to ‘y’ and ‘a’ to ‘b’ on all lines that contain ‘thing’. Then: @

4-24 Revision C of 7 January 1984

JARR L L 1

Editing and Text Processing Using the ed Line Editor

g/thing/s/x/y/\

s/a/b/

is sufficient. The * \’ signals g that the set of commands continues on the next line; it ter-
minates on the first line that does not end with ‘ \'. You can't use a substitute command to
insert a newline within a g command.

Watch out for the command:
g/x/s/[y/\
s/a/b/

which does not work as you expect. The remembered pattern is the last pattern that was actu-
ally executed, so sometimes it will be ‘x’ (as expected), and sometimes it will be ‘a’ (not
expected). You must spell it out, like this:

g/x/s/x/y/\

s/a/b/

It is also possible to execute a, ¢ and i commands under a global command; as with other
multi-line constructions, all that is needed is to add an ‘ \’ at the end of each line except the
last. Thus to add a ‘.nf’ and ‘.sp’ command before each ‘. EQ’ line, type:

8/ \:EQ/i\
.nf\

Sp

You do not need a final line containing a ‘.’ to terminate the i command, unless you are using
further commands under the global command. On the other hand, it does no harm to put it in
either.

4.5. Special Characters

Certain characters have unexpected meanings when they occur in the left side of a substitute
command, or in a search for a particular line. You may have noticed that things just don't
work right when you use some characters like ‘.", ‘+", ‘§’, and others in context searches and
with the substitute command. These special characters are called metacharacters. Basically, ed
treats these characters as special, with special meanings. For instance, in a context search or
the first string of the substitute command only, ‘.’ means ‘any character,’ not a period, so:

/xy/

means ‘a line with an ‘x’, any character, and a ‘y’,’ not just ‘a line with an ‘x’, a period, and a
‘y’." A complete list of the special characters is:

o8 [N

4.5.1. Matching Anything — the Dot ‘.’

Use the ‘dot’ metacharacter ‘.’ to match any single character. For example, to find any line
where ‘x' and ‘y’ occur separated by a single character, type:

/xy/

You may get any of:

Revision C of 7 January 1984 4-25

Using the ed Line Editor Editing and Text Processing

x+y
X-y
Xy
X.
and so on.

On the left side of a substitute command, or in a search with */.../%, *." stands for any single
character.

Since '.' matches a single character, it gives you a way to deal with funny characters that I
displays. Suppose you have a line that, when displayed with the] command, appears as:
th07is

and you want to get rid of the 07 (which represents the bell character, by the way).
The most obvious solution is to try:

s/07//
but this will fail. {Try it.} The brute force solution, which most people would now take, is to
re-type the entire line. This is guaranteed, and is actually quite a reasonable tactic if the line in
. question isn't too big, but for a very long line, re-typing is a bore. This is where the metachar-
acter ‘.’ comes in handy. Since ‘07’ really represents a single character, if we say:
s/th.is/this/
the job is done. The ‘.’ matches the mysterious character between the ‘h’ and the 'i', whatever
it is.
Bear in mind that since ‘.' matches any single character, the command:
s/./+/
converts the first character on a line into a ‘,’, which very often is not what you intended.

As is true of many characters in ed, the ‘.’ has several meanings, depending on its context. This
line shows all three:

sf.f.]

The first “." is a line number, the number of the line we are editing, which is called ‘line dot’.

The second *." is a metacharacter that matches any single character on that line. The third ‘.’
is the only one that really is an honest literal period. On the right side of a substitution, °." is
not special. If you apply this command to the line:

Now is the time.

the result will be;

YN

.ow is the time.

which is probably not what you intended.

4.5.2. Specifying Any Character — the Backslash * \’

The backslash character * \' is special to ¢d as noted in the description of the ampersand. For
safety's sake, avoid it where possible. If you have to use one of the special characters in a sub-
stitute command, you can turn off its magic meaning temporarily by preceding it with the

4-98 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

backslash. Thus:
s/\.*/backslash dot star/
changes ‘\.#’ into ‘backslash dot star’.
Since a period means ‘any character’, the question naturally arises of what to do when you
really want a period. For example, how do you convert the line:
Now is the time.
into:
Now is the time?

Use the backslash ‘ \’ here as well to turn off any special meaning that the next character might
have; in particular, ‘ \.’ converts the ‘.’ from a ‘match anything’ into a period, so you can use it
to replace the period in ‘Now is the time.', type:

s/\./?/p

Now 1s the time!?

Ed treats the pair of characters ‘\.’ as a single real period.

You can also use the backslash when searching for lines that contain a special character. Sup-
pose you are looking for a line that contains:

PP
The search for ‘.PP’ finds:

/ PP/
THE APPLICATION OF ...

because the ‘.’ matches the letter ‘A’. But if you say:

/\.PP/

you will find only lines that contain ‘.PP’.

You can also use the backslash to turn off special meanings for characters other than ‘ \’ and *.".
For example, consider finding a line that contains a backslash. The search:

N

won't work, because the * \’ isn't a literal ¢ \', but instead means that the second '/’ no longer
delimits the search. But by preceding a backslash with another one, you can search for a literal
backslash. Thus:

AYY)

does work. Similarly, you can search for a forward slash */’ with:

N

The backslash turns off the meaning of the immediately following ‘/’ so that it doesn't ter-
minate the /.../ construction prematurely.

As an exercise, before reading further, find two substitute commands each of which will convert
the line:

\x\.\y

into the line:

Revision C of 7 January 1984 4-27

Using the ed Line Editor Editing and Text Processing

\x\y @

Here are several solutions; verify that each works as advertised.

s/\\\.//
sf/x.[x]
s/.y/y/

Here are a couple of miscellaneous notes about backslashes and special characters. First, you
cal use any character to delimit the pieces of an s command: there is nothing sacred about
slashes. But you must use slashes for context searching. For instance, in a line that contains a
lot of slashes already, like:

[[exec [[sys.fort.go /] ete...
you could use a colon as the delimiter — to delete all the slashes, type:
s:/ug

Wken you are adding text with a or i or ¢, the backslash is not special, and you should only
put in one backslash for each one you really want.

4.5.3. Specifying the End of Line — the Dollar Sign ‘$’

The dollar-sign ‘$’ means the end of a line:
/string$/
only finds an occurrence of ‘string’ that is at the end of some line. This implies, of course, that: @
/ “string$/
finds a line that contains just ‘string’, and:
/°-$/
finds a line containing exactly one character.
As an obvious use, suppose you have the line:
Now is the
and you wish to add the word ‘time’ to the end. Use the ‘$’ like this:

s/$/ time/p

Now.is the time
Notice that a space is needed before ‘time’ in the substitute command, or you will get:

Now is thetime

As another example, replace the second comma in a line with a period without altering the first
comma. Type:

s/8/./p

Now is the time, for all good men,

The ‘§’ sign here provides context to make specific which comma you mean. Without it, of
course, 8 operates on the first comma to produce:

4-28 Revision C of 7 January 1984

—

Editing and Text Processing Using the ed Line Editor

s/././p

Now is the time. for all good men,

As another example, to convert:
Now i3 the time.

into:
Now is the time?

as you did earlier, you can use:

s/$//p

Now is the time?

Like “.", the ‘¢’ has multiple meanings depending on context. In the line:

$s/3/%/
the first ‘$’ refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

H

4.5.4. Specifying the Beginning of the Line — the Circumflex *"

The circumflex ‘"’ signifies the beginning of a line. Thus:
/ ‘string/
string

finds ‘string’ only if it is at the beginning of a line, but not:
the string...

You will in all likelihood find several lines that contain the desired string before arriving at the
one you want, unless you specify the string more exactly. You narrow the context, and thus
arrive at the desired one more easily if you type something like:

/ the/

the

to find ‘the’ at the beginning of the line.

You can also use ‘"’ to insert something at the beginning of a line. For example, to place a
space at the beginning of the current line, type:

s/°//
You can combine metacharacters. To search for a line that contains only the characters *.PP’ by
typing:

] \PP$/

Revision C of 7 January 1984 4-29

Using the ed Line Editor Editing and Text Processing

4.5.5. Matching Anything — the Star ‘%’

Suppose you have a line that looks like this:
text x y text

where tezt stands for lots of text, and there are some indeterminate number of spaces between
the ‘x’ and the ‘y’. Suppose the job is to replace all the spaces between ‘x’ and ‘y’ by a single
space. The line is too long to retype, and there are too many spaces to count. What now?!

This is where the metacharacter ‘*' comes in handy. A character followed by a star stands for
as many consecutive occurrences of that character as possible. To refer to all the spaces at
once, say:

s/x*y/xy/
The construction * *’ means 'as many spaces as possible’. Thus ‘x *y' means ‘an x, as many
spaces as possible, then a y'.

You can use the star with any character, not just the space. If the original example was
instead:

?

then you can replace all ‘- signs by a single space with the command:

s/x-*y[x y/

Finally, suppose that the line was:

Can you see what trap lies in wait for the unwary? What will happen if you blindly type:

s/xsy/xyl/

The answer, naturally, is that it depends. If there are no other x's or y's on the line, then
everything works, but it's blind luck, not good management. Remember that ‘.’ matches any
single character. Then ‘.*' matches as many single characters as possible, and unless you're
careful, it can eat up a lot more of the line than you expected. If the line was, for example, like
this:

tezt x text Xouvieorrerennn. y tlext y lext
then saying:
s/x>y/xy/

will take everything from the first 'x’ to the last ‘y’, which, in this example, is undoubtedly
more than you wanted.

The solution, of course, is to turn off the special meaning of ‘.’ with * \.”:

s/x*y/x y/
Now everything works, for ‘ \.#' means ‘as many periods as possible’.

This is useful in conjunction with ‘#’, which is a repetition character; ‘a*' is a shorthand for
‘any number of ‘a 's,’ so ‘.*#' matches any number of anythings. Use this like:

8/.* [stuff/

which changes an entire line, or:

4-30 Revision C of 7 January 1984

Editing and Text Processing Using the ed Line Editor

s/s/-/p

Now is the time, for all good men,

As another example, to convert:
Now is the time.

into:
Now is the time?

as you did earlier, you can use:

s/$//p

Now is the time?

Like *.’, the ‘8’ has multiple meanings depending on context. In the line:

$s/8/8/
the first ‘S’ refers to the last line of the file, the second refers to the end of that line, and the
third is a literal dollar sign, to be added to that line.

?

4.5.4. Specifying the Beginning of the Line — the Circumflex *"

The circumflex ‘"’ signifies the beginning of a line. Thus:
/ “string/
string

finds ‘string’ only if it is at the beginning of a line, but not:
the string...

You will in all likelihood find several lines that contain the desired string before arriving at the
one you want, unless you specify the string more exactly. You narrow the context, and thus
arrive at the desired one more easily if you type something like:

/ the/
the

to find ‘the’ at the beginning of the line.

You can also use ‘*' to insert something at the beginning of a line. For example, to place a
space at the beginning of the current line, type:

s/"//
You can combine metacharacters. To search for a line that contains only the characters PP’ by
typing:

/] \PP$/

Revision C of 7 January 1984 4-29

Using the ed Line Editor Editing and Text Processing

4.5.5. Matching Anything — the Star ‘*’

Suppose you bave a line that looks like this:
text x y tlezt

where tezt stands for lots of text, and there are some indeterminate number of spaces between
the ‘x’ and the ‘y’. Suppose the job is to replace all the spaces between ‘x’ and ‘y’ by a single
space. The line is too long to retype, and there are too many spaces to count. What now!

This is where the metacharacter ‘+’ comes in handy.