
-· ENGINEERING LABORATORIES

REFERENCE MANUAL
SYSTE-MS 810A/810B Assembler

323-095052-002
Price: $10.00

REFERENCE MANUAL
SYSTEMS 810A/810B Assembler

December 1968

6901 West Sunrise Blvd., Fort Lauderdale, Florida 33313
Area Code 305 587-2900

<01968, Systems Engineering Laboratories
Printed in U.SA.

LIST OF EFFECTIVE PAGES

The total number of pages in this manual 1s 40, consisting of the following:

Page Number Issue Page Number Issue

Title Original
A Original
1 and 11. ••••••••.•••••••••• Original
1-1 and 1-2 Original
2- 1 thru 2-6 Original
3-1 thru 3-6 Original
4-1 thru 4-4 Original
5-1 thru 5-4 Original
6-1 thru 6-4 Original
A-1 and A-2 Original
B-1 and B- 2 Original
C-1 and C-2 Original
D-1 thru D-4 Original

A

Section

I

II

III

IV

V

VI

TABLE OF CONTENTS

Title

THE SEL 810A/810B ASSEMBLER PROGRAM

1- 1
1- 3
1-5

General Description
Scope and Purpose • • • • • • • • • • • • • • • •

Computer and Peripheral Equipment • • • • • • • • • • • • • •

THE ASSEMBLER

2-1
2-3
2-5
2-7
2-9
2-11
2-13
2-15
2-17
2-19
2-21
2-23

Introduction
Input Language Format

Location Field (Card Columns 1 - 4)
Operation Field (Card Columns 6 - 9) .••...•....•............

Address, Index Field/Variable Field (Starts in Column 1)
Comment Field (Start After First Space in Address Field)

Identification Field (Card Columns 73 - 80) • • • •
Symbolic Coding Using Assembler
Location Field
Operation Field
Address and Index Field (Variable Field)
Comments Field • • •

PSEUDO-OPERATIONS

3- 1
3- 3

General Description .
Pseudo-Operations

MACRO SYSTEM

4-1
4-3

Introduction
Macro Prototype

.

ASSEMBLER OPERA TING INFORMATION

5-1
5-3
5-5
5-7
5-9
5-11
5-13
5-15
5-17
5-19

Introduction • • • • • • • • • •

Computer Configuration • • • • • • • • • • • • • • • •

Mode of Operation
Two-Pass Mode (Preferred)

Symbolic Listing Format • • • • • • • • • • • • • •

Paper Tape Preparation of Source Program
Punch Card Pre,paration of Source Program•....
Deletion of Errors on the Source Tape or Source Deck
Error Messages
Assignment Table Size ~

SAMPLE ASSEMBLER PROGRAM

6- 1
6-3
6-5
6-7

Introduction.
Pr o g r am I n pu t . •

Program Coding • • • • • • • • • • • • • • • •

A s s em b 1 e r Out pu t ' . . •

APPENDIX A. SEL 810A/810B Instruction List Summary • • • •

Page

1-1
1-1
1-1

2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-3
2-6

3-1
3-1

4-1
4-1

5-1
5-1

, 5-1

5-1
5-1
5-2
5-3
5-3
5-4
5-4

6-1
6-1
6-1
6-1

A-1

APPENDIX B. Loading the Assembler . B-1

.
1

Section

Figure

2-1
3-1
6-1

Table

6- I

. .
11

TABLE OF CONTENTS (Cont'd)

Title

APPENDIX C.

APPENDIX D.

SEL 810A Sample Error Printout. • • •

Update, Debug, Loader Procedures • • • • • • • • • • • • • • • • •

LIST OF ILLUSTRATIONS

Title

SEL Assembler Coding Form. • . • • • • • •

Pseudo Operation Code Summary (Sheets 1 and 2) • . • . •

Sample Assembler Program. • • . . . • . . • •

LIST OF TABLES

Title

A s s em b 1 er Output.

Page

C-1

D-1

Page

2-2
3-2
6-3

Page

6-1

SECTION I
THE SEL 810A/810B ASSEMBLER PROGRAM

1-1 GENERAL DESCRIPTION

1- 2 This manual describes programming of the
SEL 81QA General Purpose Digital Computer using
the Assembler Program. The various sections
describe the language, operations, and program­
ming techniques. The machine language pro­
gramming computer characteristics, and com­
puter operating instructions are found in the SEL
81 QA Reference Manual and 81 QA Operating
Instructions Manual.

1-3 SCOPE AND PURPOSE

1-4 The Assembler is a programming aid that
will translate a symbolic program into machine
language code. It provides the following features:

a. Enables substitution of mnemonic codes
(i.e., AMA, SMA, LAA) for their octal equivalents,
while maintaining the characteristics, flexibility,
speed, and conciseness of machine language.

b. Permits the programmer assign symbolic
address to storage locations.

c. Provides pseudo-operations to supplement
the standard instruction repertoires.

1- 5 COMPUTER AND PERIPHERAL EQUIPMENT

1-6 The Assembler will operate with a basic SEL
81 QA computer configuration. This consists of:

a. A minimum 4096 words of memory.

b. An ASR-33 Keyboard Printer, Paper Tape
Reader and Punch.

1-7 Assemblers are available for 810A computers
with extended memory. The Assembler may also
utilize optional peripheral devices: card reader,
card punch, line printer, magnetic tape, paper
tape reader, and paper tape punch.

1-1/1-2

SECTION II
THE ~~MBLER

2-1 INTRODUCTION

2-2 The SEL 810A/810B Assembler Program is a
two pass assembly program that accepts symbolic
instruction input from such devices as the type­
writer keyboard, a card reader, or a paper tape
reader. Output consists of binary relocatable
cards, paper tape or magnetic (object tape) ready
for loading into the computer, and an optional
symbolic listing with error messages and a side­
by-side octal listing on the console typewriter or
line printer.

2-3 INPUT LANGUAGE FORMAT

2-4 The general format of the SEL 810A Assembly
symbolic instruction input (source Input) consists
of five major fields. These fields are: Location,
Operation, Address-Index, Comments, and Identi­
fication. A discuss ion of the contents of each
field follows. The standard SEL coding form is
shown in Figure 2- 1.

2-5 LOCATION FIELD (CARD COLUMNS 1 - 4)

2- 6 This field provides a method of symbolic iden­
tification of this location in the code string. The
symbolic label consists of 1 to 4 characters with
the first character being a letter and the remaining
characters being either letters or digits. The
first character must be alphabetic and must begin
in Column 1. The Assembler assigns actual mem­
ory addresses to the symbolic locations when
assembling the object program.

2- 7 OPERATION FIELD (CARD COLUMNS 6 - 9)

2-8 The operation field consists of a mnemonic
computer instruction or a pseudo instruction. A
list and definition of mnemonic operation instruc­
tions is given in Appendix A. A list and definition
of pseudo-operation instructions is provided in
Section III. Mnemonic computer instructions con­
sist of three letters. If the instruction's address
is to be made indirect, the three-letter instruction
is followed by the asterisk (:":') character. Pseudo

. instructions consist of 3 or 4 letters and represent
either instructions to the assembly program or
data definitions.

2-9 ADDRESS, INDEX FIELD/VARIABLE FIELD
(STARTS IN COLUMN 1)

2-10 Memory reference instructions use this
field to define the operand address. The address
followed by the characters "comma" and "one"
(, 1) signifies indexing where the B-Accumulator
is the index register. In the 81 OB Computer the
optional index register may also be used for
indexing. Instructions, such as shift, I/0 machine
operations, and some pseudo-operations, have
special formats for the variable field. These are
discussed later in this section.

2-11 COMMENTS FIELD (START AFTER FIRST
SPACE IN ADDRESS FIELD)

2-12 The Comments Field may be used for any
comments that the programmer cares to make.
Contents of this field have no effect upon the
assembler, but is printed on the symbolic listing.
The comments field must not start before column
13. Any line that has an asterisk (~:,) in the first
character position of that line is considered a line
of comments.

2-13 IDENTIFICATION FIELD (CARD COLUMNS

73 - 80)

2- 14 This field is not checked and is considered
part of the comments, and is provided as a pro­
grammers aid. For example, it may be used to
identify a card or cards in a card deck or for
sequencing the card deck.

2-15 SYMBOLIC CODING USING ASSEMBLER

2-16 The number field title boxes of the coding
form refer to card column locations. Regardless
of input device the same form is used.

2-17 LOCATION FIELD

2-18 The Location Field may consist of a symbol
for an address or control, or it may contain
nothing.

2-19 OPERATION FIELD

2-20 The Operation Field is the same as the
operation portion of the machine language instruc­
tion, and is coded as a mnemonic computer in-

2- l

N
I
N

1-rj
(JQ

~
1-i
(l)

N
I

U'l
M
~

>
f./J
f./J
(l)

B er
I-'
(l)

1-i

n
0
0..
:=$

O'Q

1-rj
0
1-i

3

USUEULL
PROGRAMMER:

PROGRAM:

LOC. OPER. ADDRESS, INDEX

I 6 I I ...

.

. .

. . . .

. . .

. . . .

. . . .

. . .

.

.

.

. . .

. .

. . .

. . . .

.

. . .

.

.

I . I

ASSEMBLY CODING FORM

PAGE OF

DATE
I I

73 80
! I I I I I I I ' IDENTIFICATION

25 50 72
I I

I . I . .

I I
. .

I I . .
I I

. I I . .

. I . I

! .. .
• I • I

I . . ! .
I I

T

I . I . .
I I

. .

I I .
I I . .

I . . I . . .
I

.
I

I I . . .
I I

I I .
I I . . .

I I

I I .

I . . I
I

. I .

I I .
I I .
I . . . I
I I .

I . I
I

. I . '

. I . I
• I I

I . . ! .
I I .

. I I .
I I

I I
I I

I . I ' . .

LOC.

I

'51~:T .
Aoot .
1 ST~

'

6

.

OPER.

6

AMA
LBA

N .\Y} E
,_

u :-...

11

: . .

. .

. . .

I I

struction. The n1nemonic instruction consists of
three alpha characters and a pseudo-operation of
three of four alpha characters.

2-21 ADDRESS AND INDEX FIELD (VARIABLE

FIELD)

2-22 The Address, Index Field (operand address)
is the address portion referred to by memory

OPER. ADDRESS, INDEX

I 6 11

SAZ

25 50
I I

1 (ASSE M Blt. l< ~ SSJG}\JS L,0CA Tr 0 N I
I . I

I
5Tl2T LAl3EL) .

I . .
I I

1(1LL E.~~~). . . I

25 50

(MNEM0NIC

25

WITH NDIRECJ ACD €SS)
N

SEIJD

reference instructions, shift instructions, I/ 0
machine operations, and some pseudo-operations.
An operand address may have any of the following
formats:

a. .B.LANK ADDRESS: When no address sub­
field is required.

b. SYMBOLIC ADDRESS: Consists of l to 4
characters starting with a letter.

50
I I

,(~~ ADb~E.CSS RtQUlf<ED) . I . . • I • • I

,(BL~N~ ADDRESS 1~ DE.'l(EO) BRU 0, 1

OPER. ADDRESS, INDEX

I 6 11

S,.A Al P~
ST A B002,1 . . .

c. EXTERNAL SYMBOLIC ADDRESS: An

external symbolic address consists of a dollar sign
($) followed by 1 to 6 characters, the first of which
must be a letter. This external address is pre­
sumed undefined within the program in which it is

• I I I I

25 50

: (SYMB0L1C ADDRE.S~)
I

.. I
I . .

I

(SYMB0LIC ADDRE.SS l~DE.XED)
I I • • • .

contained. It refers to a sub-routine or item

located in a different sub-program or the library
tape. A CALL;:~ statement does not require a

$XXXX Lable. No address arithmetic may be per­
formed on External Symbolic Addresses.

2-3

OFER. ADDRESS, INDEX

I 6 II

. . I .M.S. $_SQ.RT.

C .~ .l l SUBRT

SPB $_SUB RJ

OFER. ADDRESS, INDEX

I 6 I J

L ~ A ~48

S1A* I 1061

d. ABSOLUTE ADDRESS: An absolute ad­
dress is used to reference a fixed memory loca­
tion or to represent a count as in a shift instruc­
tion. The address is presumed to be decimal
unless preceded by an apostrophe (1

), in which
case it is treated as an octal number. Absolute
notations for the variable field are shown in

Appendix D.

e. CURRENT LOCATION: The location of
this instruction is used as the instruction's
effective address if a single asterisk(:::,) appears

OPER. ADDRESS, INDEX

I 6 I I

LA A *+2

*
.

AM A.

LBA *) 1

OPER. ADDRESS, INDEX

I 6 II

LB.A. * - 2

S,B NAME+4

. S~A C¢MtJ- 2 I 1

6T~ ALP~+BOO'l) .1

LB~ *-~~ME.+9

.

2-4

25 50
I I

,(E.'tTE.RNAL SYMB~LIC AD_DRE:..SS) . I
· I • · · I

(E.'XTER>JAL CALL US1NG CALL PS£UD¢ -~P)
. I I . 1

(E.){T ERJJAL CALL USING SP8 INSTRUCTl¢1J)' . I I

25 50
I I

1
(ABS¢LUTE At>DRE.SS, D[ClMAL)

I . . . I I

(ABS¢LUTt ADDRtSSl ¢CTAL lNOlRECT)
I . I • •

• I .

I

25
I

in the address sub-field. This allows for reference
to this or nearby relative location without assign­
ing a symbolic name.

f. ADDRESS ARITHMETIC: Any current
location (;;:~)., symbolic (NAME)., or absolute

(
1 1234) address may be joined with a constant,

current locations (==:~), symbolic (NAME) or
absolute (1234) address by an intervening plus
(+) or minus (-) operator to define an effective
address (NAME+ 4). The above may be extend-

' ed to more than two operc\nds (A - B + 2).

50
I

,(~UR RENT L0CAT10N + 2) I . .
I . .

I
(CUR RE. ~T L9}C A 1"1¢ tJ)

I I . .
1

(CURREJJT L0C1'TI¢N l~DE.XED)
. I

I I .. • • • • .
-

25 50

MINUS C¢NSTAN~)_
I

, (CUR RE.NT L0C ~ Ttf6ij
I

I . . • . I

,('3YMB0L1C L¢CAT1¢N PLUS Cf6N5TANT)
I

;(S'lMB0LtC L~CATr¢~ MHJUS r,wsTANT 1~t>Exe.t>)'
. l

I . • I

(SYM 8~LlC AD Df<ESS ARrTl-tME,lC lt\JDt.XED)
I • I I I

(ADD fE'55 ARlT~METIC USJijG CUR('[MT
I . I
I .

1 L¢~A:I0lJ \ SYMB¢LlC AND A. C¢N<3TANT
I

I

OPER. ADDRESS, INDEX

6 II

AMB
LAA ' = -2

OPER. ADDRESS, INDEX

I 6 II

L ,\ ~ ** . . . • I

LAA **) 1
I •

g. LITERAL ADDRESS: Literal addresses
allow a constant to be defined, assigned to a
memory cell and the location then used as the
address for this instruction. All constants de­
fined in literal addresses will optimize storage
so that all identical constants (regardless of
their format) will be assigned only once. A
literal address consists of an equal sign (=)

followed by the constant. Any decimal integer,
octal number, single asterisk (current location)

LOC. ADDRESS, INDEX

I 6 II

*

~

25 50

(L11'E ~AL DECIMAL CRftJ9TANT)

25 50
I I

, (~DDRE.CSS Tf6 6E J:91LLE.D) I I I .

(A DDl<c.'SS "T¢ BE. FtLLE.0 lNDE.XED)
I I • • .

25

. .

symbolic name or combination of these formats
joined by a+ or - may follow the equal sign in a
literal address.

h. LOCATION TO BE FILLED: A double
a st e r is k (;,:~ ;,:~) ind i c ate s the add re s s portion of

the instruction is to be filled in by the object pro­
gram at run time. This add re s s is set du r -
in g as s e n-i b 1 y to an ab s o 1 u t e add re s s of

00000.

50
1

(T~l':> IS A~ E.~,\MPLE 0V A C¢MME~T)
I

I I • .
I PR0GRAM) I

I (J:IRST CARD ¢~ ,~E.
I .

2-5

NOTE

The assembly program pre­
sumes the computer has a 15-
bit address and, therefore,
does not attempt to reduce the
argument address to a 9- bit
address. When the resulting
object tape is loaded by the
loader into memory starting
at a location determined by
the operator, these 15-bit
addresses are modified as
follows:

1. If the argument address is located in
MAP zero, the address is truncated to 9-bits and
the lv1AP bit is set to zero.

2. If the argument address is located in the
same MAP as the instruction in which it is con­
tained, the address is truncated to 9- bits and the
MAP bit is set to one.

2-6

3. Otherwise, truncate the 15-bit address to
14- bits and store the 14-bit address and its in­
direct and index bits automatically into a cell in
MAP zero, set the 9-bit address of this cell in
the instruction being loaded, and set the MAP bit
to zero and the indirect bit to one.

2-23 COMMENTS FIELD

2- 24 The comments field starts immediately after
the first space in the variable address field, but
never before column 13. This field has no effect
on the assembler but is printed out on the sym­
bolic listing if a listing is requested. Any line
which has an asterisk (>:<) in the first character
position of that line will be considered a line of
comments.

2-25 Because of width limitations on the type­
writer, comments appearing after column 50 can­
not be printed. If a line printer is used for
listing, comments after column 50 will be
printed.

SECTION Ill
PSEUD:0-0PERATIONS

3-1 GENERAL DESCRIPTION

3- 2 In addition to symbolic instructions, the
MNEMBLER Assembler will accept certain pseudo­
operations for controlling the assembly process.
Examples of the general format and use of the
pseudo-operations are given in figure 3-1.

3-3 PSEUDO-OPERATIONS

3-4 The following describes the pseudo-operations
used with the Assembler:

ABS

REL

ORG

EQU

DAC

Set the mode of the assembly program
to ABSolute. When in this mode, all
symbolic addresses will be assigned
relative to location 00000 and output
in a non- relocatable format.

Set the mode of the assembly program
to RELative. When in this mode, all
symbolic addresses will be assigned
relative to the start load address (as­
signed when loading the program into
memory) and output in a relocatable
format compatible with the loader.
The assembly program is initialized
to the absolute mode and will remain
in this mode until changed by an REL
pseudo- op).

The variable field specifies an address.
When the assembly is in absolute
mode, this address specifies the lc,ca­
tion of the next instruction. When the
assembly is in relative mode, this
address will be added to the start load
address {assigned when loading the
program into memory) in order to
specify the location of the next instruc­
tion. In either case, all following
instructions will be stored sequentially
in memory until another ORG pseudo-

. .
op 1s given.

The symbol in the location field will
be assigned the address or value
specified in the variable field. Con­
stant values may not exceed 15 bits.

This pseudo-op is used to generate
Direct Address Constants used as

EAC

argument addresses for subroutine
calling sequences, or referred to by
indirect instructions. The address in
the variable field may be in any of the
formats shown previously. The
address will be truncated to 14 bits
and will occupy bits 2 to 15 of the re­
sulting word. The address may be
indexed and the pseudo-op may be
tagged indirect if required. (Setting
bits O and 1.)

This pseudo-op 1s used to generate
15-bit Extended Address Constants
used as arguments of Lon~ Branch
instructions. Any of the Formats
shown previously are acceptable in
the variable field, except that the in­
struction may not be indexed nor made
indirect.

DATA The variable field of this pseudo- op
may contain any number and any mix­
ture of the following data item formats.
The variable field may extend to
column 72. If the location field con­
tains a symbol, it will be as signed
the location of the first data item. If
more than one data item is present
(separated by commas), they will be
assigned sequential storage locations.

a. Octal Data Item - Format: An optional
sign (+ or -), followed by an apostrophe character
('), followed by 1 to 6 octal digits (0 through 7
- / N

8
/ S ' 7 7 7 7 7). If 1 es s than 6 digits are present,

the number will be right justified with leading
zeros added. If a minus sign is present, the num­
ber will be 2 1 s complemented, a plus sign is

. ignored.

b. Decimal Integer - Format: An optional
sign (+ or -) followed by 1 to 5 decimal digits
(0 through 9 -/N/< 32767). The number will be
converted to binary and stored at a scale of B 15.
The number will be stored positively unless a

minus sign is present. A minus sign will cause
the 2 's complement of the number to be stored.

c. Fixed-Point Single Precision Decimal
Data - Format: An optional sign(+ or-), l to 5
decim.al digits, (0 through 9), n1ixed with an

3- l

l>J
I

N

rrj
I-'.

(JQ

C
1-i
r::
l>J
I

...... .

1j
{/)

/'D
C
0..
0

0
"'T1

I')

1-i
p.,
rt
I-'.

0
::s
n
0
0..
ro
r.n
C

3
3
p.,
1-i
'< -r.n
::J"'
ro
ro
M-

l--'

0
H.

N --

ASSEMBLY CODING FORM

~SUEULL
PROGRAMMER: PAGE I OF 1.. .
PROGRAM: DATE

I I

73 80

I I I I I I I I I LOC. OPER. ADDRESS, INDEX
IDENTIFICATION

I 6 II 25 50 72
I I

. ASS ,SET M0DE. A6S¢LUTE I
I I

. .

REL _'5Ei M 0 D t- RE. L AT l VE. I
I I

UAP
1SEi SINGLE MAP M~D E J . .
I I

. .

0~G I 1000 ,SET ~I? I GI ~ 0 F P 1<0.G RAM I . . .
I I

BETA EQU I 1 777 ,SE. T SYYB~L EQUAL i0 At>DRE/:)5
ALP~ BE., A+ 2

I

SY M &~ L T0 SYMB0~L EQU ,SET EQU"'L
I I

. .
I~O E_QU 2 /SE -r SY MB~ L EQUAL T¢ ij lJ MB E,e

I .

(DA1 :A STAlE.ME.!JT<.> MA'< Gfa ,~ C¢L 1'2) . 0C, D~1 A 1 1 ?. 7 34 , - ' 2 1 , + ',b4 7 0 .. 0C'T AL DAi A
I .

I

DA,~ 987~) ~QQQ l +24 I DECIMAL INTE.G£,1? DATA . .
I I

. .
Ml~ DAT A 2 '3 • 4; ~ B 10 , - 3 B b1 , 1 2 t ~ FIXED P 0 I ~ T. D A 1 T A

I .
I

FL~, CAT A 2~.3~44£¢, .11~,4':,[)'2, J:'LQATlijG P ¢ 1 tJ T I t> A _T A . . I I .
ALP A DAiA 1 r HE L P ' 1

, • • 1 '2 - ,3 4 , A • E 1. ALPJ.IA~UME.RIC D,AT A .
I . .

I .

b A 1 ~ X4,TE~1+1,A-DL~A~1 SYMBGLlC ADDRE/3S _D_ATA
• I

' DA,/\ -:S , 1 -, 7 , 1 .. 2 ~ B 4. , - , 1 2 ?> E. • 3 , 'I. 4 MIXED r: 0 RM AT t>,A i A_ . .
I I

TABL BSS 100 I BL 0C K ST 0 R A GE ,'3 " I P (FR¢NT LAS€.L) . . .
I I .

BES s I B_L ~ C ~ S T 0 R A G E ,S K I P. (E tJ I>. L A B E L) . . .
• I

I

CAL l SI ij .. I . LIB~ARY TAt>E C ,ALL .
I I •

NA.ME S1N,S'2.1. . I LIB~A.ev SU 8 - R 0,U T I tJ t ti.JANE .
I . I

. .

rt 1 Z ALP~A I 1~STRUCTI¢N B1,TS=OO0O . .
I I

i** ** W¢RD T~ B E. Fll,LED ,AT .RU.N. TIM_E . J ' ' I l .

vJ
I
vJ

~ ,....
(JQ

~
1-t
(t)

w
I

...... .
,:l
C/)

(t)

~
~
0

~
(1)

1-t
p.,
rt ,... .
0
::;$

n
0
~
(t)

Ul
~

3
3
p.,
1-t
'< -Ul
::r
(t)
(t)
rt

N

0
.......
N -

' .,

ASSEMBLY CODING FORM

lfslfElf[L PROGRAMMER: PAGE 1 OF '2

PROGRAM: DATE
I I

73 80

OPER.
I I I I I I I I I

LOC. ADDRESS, INDEX IDENTIFICATION

I 6 II 25 50 72
I I

. M~.R . . ,PAUSE. w,.rt_~ ASSEMBLI~G . 1 . -
I

PT? 0 GR,\ M_ (S_f:E . VO.Tl_):
. .

E:ij 0 '51~T . ,E tJ D qjF . . .
- - . I I

. . .

E.N D. I
• 1E ND 0F SU 8- \?~ UT_l ~E . ,, I - I I

AD2 D AC. TI M.E. , .i . ,DIRE.CT ADDRESS C0~STA.NT I/JDt.XE.D_
I I

ADt 1>AC4E LtVL
- ,1 ND _l R E._C T ADORE.<:,S C0 ij~T At.JT 1

I I
.

. EAC ~E M2. . 1E"lT_E~_DE.O ADORE.~CS C0>J<;T A>JT 1
I . I

~ t) C. EAC MEM2., 1 1E ~TE tJ DE D ADD~E.SS C¢MSTA~T 1 INDEXED
I

.
I

. I I
. I . . I

.

. I I . . . I I . . .

. I I . . .
I I

. I I . - I I

. . . I . I . .
I I • . . .

. . . I I
I I

I . I -.
I I

. I . I I I • . . I • • •

. • I . . I _. • • I • • '-. .
I I

. . I i .
• I I

. . I . . I - .
- .

I I

. . I I
I .

I

. . . . I . I . . .

Note: S1'RT is address of first location to be executed.

optional decimal point, the letter B, followed by

a decimal number (SCALE FACTOR) between +15
and -15. Example: - 3. 141 B6. A minus sign will
cause the 2 's complement of the number to be
stored. One word will be generated.

d. Fixed-Point Double Precision Data - For­
mat: An optional sign (+ or -), l to l O digits
(/N/S 1073741823) mixed with an optional decimal
point, the letter C, followed by a decimal number
between +30 and -30. Example: 103. 637942Cl0.
A minus sign will cause the 2's complement of

the number to be stored. Two words will be

generated.

e. Floating Point Data - Format: Written
on the coding with optional sign (+ or -), l to 6
decimal digits (0 through 9), mixed with an option­
al decimal point, and optionally followed by a
decimal exponent consisting of the letter E,
preceding a decimal number between +75 and -75.
(Either the decimal point, the letter E, or the
sign of the exponent must be present. Two sequen­
tial memory cells are generated for each floating
point data item using the following format.

SINGLE-PRECISION FLOATING POINT DATA

0

0

EXAMPLES:
O. 1 IS STORED AS: o

-503. 25 IS
STORED AS:

0

0

0

0

1

I

0

0 0

0 0

1

Least Significant
Bits of Mantissa

0 0 1

1 0 0

0 0 0

0 0 0

Most Significant 15 Bits of Mantissa z-lS WORD l

8-Bit Exponent WORD 2

6 7 8 15

0 0 0 0 0 WORD 1

0 l WORD 2

6 7 8 15

0 0 0 0 0 0 0 WORD l

0 0 0 0 0 0 0 0 WORD 2.

6 7 8 15

£. Floating Point Double Precision Data -
Format: An optional sign (+ or -), l to 11
digits mixed with an optional decimal number

between + 7 5 and - 7 5. Three sequential men1ory

cells are generated for each double-precision
floating point item using the following format:

Most Significant 15 Bits of Mantissa (Fl) z-lS WORD l

0 2 - 16 Fraction (F2)
- 21 2 S 8 - Bit Expo n e n t (E) WORD 2.

•

0 15 Least Significant Bits of Fraction (F3) WORD 3

0 6 7 8 15

E = Characteristic (2 1 s complement if negative)
Fl, Fl, F3 = Double-Precision Fraction (Z's complement if negative)

3-4

g. Alphanumeric Data - Format: Two

apostrophe characters (' ') followed by any num­
ber of characters (including blanks) until another
pair of apostrophes is read. The characters
within the apostrophe pairs are stored 2 per word
(last character left justified, if necessary).

EXAMPLE: "ALPHA TEST" is to be stored into
memory starting at location 2000.

2000

2001

2002

2003

2004

1

1

1

1

1

100 000

101 000

100 000

101 010

101 001

1 1 1 001

011 001

110 100

011 000

1 1 1 010

b - space

100

000

000

101

100

AL

PH

Ab

TE

ST

3- 5 The above exarnple is in ASR- 33 code
(FULL ASCII code). This code will be used
internally by the assembler to represent alpha­
nurr1e ric data. The I/ 0 handling sub- routines
will translate from external to internal code and
vice versa when necessary depending upon the
I/0 device in use.

h. Syn1bolic Address Data - Format: Any
symbolic address optionally followed by address
arithrnetic. The effective address \Vill be stored
in memory as a 15-bit address (similar to that
generated by the EAC pseudo-op). The address
may not be tagged as indexed or indirect.

FORM This pseudo-op is used to set up
the format for the FDAT pseucto­
op. There is no data gene rated
and no memory locations aroused.
This pseudo-op allows the pro­
grammer to define the bit assign­
ments of 16-bit words generated
by the FDAT statement. Up to 8
fields are allowed but the total
number of bits must not exceed
16. All FDAT statements that
follow a FORM will be in the same
format until another FORM is
encountered.

Example:

FORM 6, 4, 3, 1 , 2

This as signs the FDA T bits as
follows:

Field 1 - 6 bits (bits 0- 5)

FDAT

BSS

BES

CALL

Field 2 - 4 bits (bits 6- 9)
Field 3 - 3 bits (bits 10-12)
Field 4 - l bit {bit 13)
Field 5 - 2 bits (bits 1 4- l S)

This pseudo-op is used to generate
data in a format which has been
previously defined by a FORM
statement. The variable field for
this instruction will accept decimal,
octal, and alphanumeric data, but
will mask off the most significant
bits not defined by the previous
FORM statement. Multiple FDA T
statements 1nay be placed on a card
separated by slashes (/). If the
location field contains a symbol, it
will be assigned the location of the
first data item. Example (using
the FORM defined above):

FDAT "A" 8 7 0 l/'75
' ' ' ' ' '13,4,1,3

This will generate the following
two consecutive octal words:

'003071
'173347

Block Start Symbol. Reserve a
block of memory storage starting
at the current location and extend­
ing for the number of words speci­
fied in the variable field. (If the
variable field is symbolic, it must
have been defined by a previous in-
put line.) The location field is optional
but if a symbol is inserted in this
field, it will refer to the first word
in the block.

Block End Symbol. Same as BSS
except that if the location field is
occupied, it refers to the last+ 1

word in the block.

CALL Library Tape. This pseudo­
Of will generate the necessary
coding and actions to call in a sub­
routine fron1 a library tape into

· memory. The CALL pseudo-op is
then replaced by a sub-routine
transfer instruction (SPB) to this
sub- routine. The variable field
con ta ins the sub- routine name. The
location field, when occupied,
refers to the resulting SPB instruc­
tion. Logic is contained within the
loader to assure that only one copy
of a sub- routine is called into

3- 5

NAME

zzz

3-6

memory from the library tape re­
gardless of the number of CALL' s
for that sub- routine. The sub­
routine's name must start with a
letter and may contain from 1 to 6
characters. An equally good way
to call external sub- routines would
be with a leading dollar sign on the
sub- routine's name.

EXAMPLES: SPB $SQRT

OR

CALL SQRT

NAME of Library Sub-routine. When
writing sub-routines for inclusion
into a library tape, the name by
which the sub- routine must be
called is specified by the NAME
pseudo-op, followed by the specified
name. The variable field consists
of two symbolic names. The first
is the name of the sub- routine and
is 1 to 6 characters long {FOR TRAN
compatible). The second name is
the symbolic entry location for the
sub- routine and is 1 to 4 characters
long, the first character being a
letter. More than one NAME
pseudo-op may be included in a sub­
routine if alternate names for the
sub-routine exist with either the
same or different entry points.
Also, external variables are de­
fined by the NAME pseudo-op.

The instruction bits (0 to 3) are set
to 0000. The rest of the instruction
is determined by the variable field
and the presence of an indirect indi-

ca tor (~:,) following the pseudo-op
(zzz~:~).

Same as ZZZ but indicates the in­
struction will be filled at run time.

MOR This pseudo-op causes a pause in the
assembly process useful when the
source program is on more than one
tape, and a pause is needed to change
tapes.

END This pseudo-op must appear as the
last instruction in any program or
sub-routine being assembled and
tells the assembly program that
assembly is complete. If the vari­
able field is not blank, it should
specify the starting location of the
program just assembled.

LIST Set the mode of the symbolic output
routine to list the output provided
sense switch one is not ON. The
assembler assumes the LIST mode
until otherwise directed.

NOLS Set the mode of the symbolic output
routine to suppress the listing of out­
put unless an error is detected. This
pseudo operation remains in control
until a LIST pseudo- operation 1s en­
countered.

NOTE

The LIST and NOLS statements
are not printed as part of the
listing output except when they
appear within a MACRO proto­
type. The line count reflects
the presence of the pseudo-
ops even though they do not
appear on the listing.

SECTION IV

MACRO SYSTEM

4-1 INTRODUCTION

4-2 The Macro System generates in-line coding
according to the respective prototype and param­
eter list as signed to a given Macro call name.
The general form of a Macro prototype is as
follows:

Loe. Oper.

l'TAME MACR.__

EMAC

Columns 1-4

Column 5

Columns 6-9

Column 10

Columns 11- 72

Address, Index

A SET OF DETAIL STATE-
MENTS

The call name of the
Macro which can be any
combination of legal char­
acters, blanks included.

Blank

To denote the beginning of
a prototype code MAC or
MACR. To denote the end
of a prototype code EMA
or EMAC.

Blank

Can be used as comments.

NOTE

Do not use an END or a $ end
of job statement in a Macro
prototype.

4- 3 MACRO PROTOTYPE

4-4 The prototype is a set of detail statements
which can contain elements to be supplied either
internally or from a list of parameters. Elements
are of three basic types as follows.

• Internal to a given Macro prototype
• Parameter supplied by user
• Fixed element name

4- 5 The internal assignment applies only to labels
and n1ust be of the form @X where the at sign

(ASCII 300) must be the first character of the
label. The X is a decimal value from one through
16 and can be assigned in any order (not neces­
sarily monotonically) per Macro. Leading zeros
are suppressed, @009 is the same as @9. Each
call of the same Macro which contains internal
labels will generate a unique respective set
increased by the last assembler assigned label
plus one. The assembler will not allow more
than 999 internal labels to be generated. All
assignments in excess of 999 "Nill be flagged as
an error.

4-6 Example of internal label:

Loe. Oper. Address, Index

WAIT MACR NAME AND BEGIN PROTO-
TYPE

@l NOP INTERNAL LABEL FIXED
OP

NOP FIXED OPERATION CODE
NOP FIXED OPERATION CODE
BRU @l FIXED OP CODE, INTER-

NAL LABEL
EMAC END OF W\AIT PROTOTYPE

4-7 Every call to WAIT will generate @l into a
unique label for each wait loop.

4-8 The user supplied parameter can apply to
any field of a valid assembler statement. The
form of a user parameter is #X where the num­
ber sign .(ASCII 243) may appear anywhere in a
label or value to be specialized and must be
immediately followed by a decimal value from
one through I 6 representing the correct param­
eter number to be concatenated into the gener-

· ated element. Leading zeros are suppressed on
parameter number assignments. Parameters
which are requested but omitted from the list are
replaced by a single blank character. Paramete-r
numbers in excess of 16 will not be processed
and will be flagged as an error.

4- 9 An example of user supplied parameters is:

LOC OPER VARIABLE

FILL MACR

LAA = #1 Character to fill area

4-1

LBA

STA

!BS

BRU

EMAC

=-#2 Size of area

.
#3+#2, 1 Area plus

index
size minus

Increment index

.. ,... 2 , ... _ Loop to fill area

4-10 To use the Macro, enter an M in column 5
of the coding sheet, followed by the prototype
name in columns 6-9 and the parameter list
starting in column 11, e. g. , the general form of
the call for FILL is

MFIL DATA, SIZE, AREA,

so we call FILL by

LOC OFER V.ARIABLE

X FILL '240, 80, T ABL,

which will fill 80 locations of the buffer TABL
with right justified ASCII spaces.

4-11 Parameter elements in the main program
call list are separated by a single level of de­
limiter which can be a cornma, left parenthesis,
or right parenthesis. The parameter list may be
terminated by on of the three delimiters. Extra
sets of parenthesis can be added for clarity but
each must be counted when assigning values to
the elements of a detail entry. Elements can be
assigned in any order or any set of digits pro­
vid·cd a parameter exist for the des ired elements.

·LOC

PAR

or

4-2

Example: To use even numbered parameters

only.

OPER VARIABLE

MACR

DATA #2, #4, #6, #8, #10

EMAC

M PAR (1 3) (6) (11 A 11
) (3. 141 5 9B 3) ('3 7 7)

M PAR , 1 3 , , () , , ' ' A ' ' , , 3 . 1 4 1 5 9 B 3 , , ' 3 7 7

which is not the same as

1113, 16; 11A 11
, 3. 14159B3, '377,

The second call requires a prototype like so:

LOC

PAR

OFER VARIABLE

MACR

DATA #1, #2, #3, #4, #5

EMAC

NOTE

The delimiters may not be
used as data in a parameter
list needed, supply them as
octal data. If a comma and/
or parentheses are needed,
supply them as octal data.

4- 12 The fixed element name is any field in
which the detail statement supplies the value,
operation code, operand or any portion of a
statement.

Example:

LOC OPER

X 1v1ACR

CLA

LBA

EMAC

VARIABLE

=l Load the accumulators
with a double precision
constant (l).

To use this Macro we need only to write:

OPER VARIABLE

X

4-13 Comments may be entered in a prototype;
however, only the asterisk and the next 24 posi­
tions will be retained when the prototype is
specialized. If a detail line has comments as a
continuation of a statement, they will not be
processed at the time of specialization.

4-14 The MACRO storage area is normally 700
10

\Vo r cl s with a name tab 1 e capacity of 3 0 name s.
The forn1ula for computing the exact number of
words needed to store a prototype is as follows:
Sum of words for each statement + 1.

4-15 The words for each statement = l+ (number
of characters in location field + number of charac­
ters in op code field + number of characters in
variable field)-:- 2 + 0 if the remainder is 1, I if
the remainder is 0. Count internal and parameter

supplied labels as 2, that is, #003 + #02 + 6 is
counted as 7 characters. A general safe rule­
of-thumb would be to multiply the number of de­
tail lines by 5 to obtain the storage requirements
for a Macro prototype.

4-1/4-4

SECTION V
A1SSEM8L'ER OPER!ATING INFORMATION

5- 1 INTRODUCTION

5-2 This section contains a description-of the
Assembler Symbolic Listing Format. Also in­
cluded is a sample source program written on
the coding form plus a description and output
listing of the same program after it has been
assembled. Procedures for source program
preparation and assembly are referenced.

5-3 COMPUTER CONFIGURATION

5-4 The assembler program will operate within a
minimum SEL 810A/810B Computer system: 4096
words of memory for the SEL 81 OA and 8192 for
the SEL 81 OB.

5-5 MODE OF OPERATION

5-6 The SEL 810A/810B program operate in the
two pass mode.

5-7 TWO-PASS MODE(PREFERRED)

5-8 In the two-pass mode of assembly, the
source program is read twice. During the second
reading, a symbolic listing is generated complete
with octal equivalences and error mes sages.
Also, an object output tape is produced during
the second reading which represents the assembled
program in a binary relocatable format accept­
able to the Loader Program.

NOTE

The side- by-side octal listing
is complete, all error mes­
sages are printed with the
line they effect, and the ob­
ject output tape is approxi­
mately 30 percent shorter
than that produced by the one­
pass mode of assembly (al­
though the memory require­
ment for the program is the
same). The source tape or
deck must be read twice for
each assembly (two-pass).

5-9 SYMBOLIC LISTING FORMAT

5-10 The symbolic listing is optional and when
requested, is made on the console typewriter or

line printer (device determined by sense switch
setting). A typical line has the following format:

016 0l 733M01301745
017 01734 00000610
018 01735 11101360
019 01736 00000001
020 01737 00000002

ALPH LAA~:<DATA TEST FLAG
RSA 6 NEXT TEST
BRU AL30 RESTART
DATA 1, 2, 3SWITCHES

021 01740
02201741
02301745
024 01746

00000003
00000004 LIST BSS 4 LIST
00101733 DATA DAC ALPH, 1 COUPLING
00000000 DAT A BSS 1

♦
@ Card/ Line Image

(80 Characters)

@ Side-by~Side Octal Equivalence
(8 Octal Digits)

@ Error. Flag (1 Letter)

@ Instruction's Memory Location
(5 Octal Digits)

Q) Line Number (Por Update Purposes) (3
Decimal Digits)

© LINE NUMBER - This decimal number can
be referred to when updating a source tape

.
using

the Update Program. (See Appendix D-1).

® MEMORY LOCATION - This octal number
represents either the actual (or relative) memory
location where the assembled instruction will be
stored.

® ERROR FLAG - (See Paragraph 4. 8 for
interpretation). The letter represents a sus­
pected error situation within the line.

@ OCTAL INSTRUCTIONS - The octal listing
may have any of five following formats:

A. These four provide information to be
loaded into memory.

oocaaaaa Assembled instruction usually
resulting from a DATA or
EQU pseudo- operation in­
struction where "caaaaa" is
any octal number with "c"

5- 1

being one or zero. The
"caaaaa" portion of the list­
ing will be loaded into memory

exactly as it appears.

abcddddd Assembled instruction re­
sulting from a DAC or EAC
pseudo-operation, with 11 a"
setting the mode (ABS or
REL) and 11b 11 indicating DAC
or EAC. 11 c 11 indicates in­
dexing and indirect addressing.
The address is indicated by
11 ddddd 11

•

oooobbxx Assembled augment instruc­
tion where 11bb 11 is up to 6
augmenting bits and "xx' 1 is
the operation code. The in­
struction will appear in mem­

ory as 11 oobbxx 11
•

1 0 R OP CODE X I ADDRESS
I I I I I I I I I

C D 0 0 0 0 0 0 N 0 0 0 0 0 0
I I I I I I I I I I

Sl S2
I • I I I . . I I I I I I

S4 S,5
' I I I I • I I I I I I

0 7 8

CD - 00: Subroutine definition

xxyzzzzz Assembled memory referencing
instruction ,.vhere ''xx 11 is the
operation code, ··y 11 is index,

indirect and relocation bits.
"zzzzz" is the relative address
except v..~here literal address-
ing is used. In that case, 11 zzzzz 1

'

is the octal equivalent of. the
literal address. The 11xx 11 por­
tion oi the listed instruction is
the only part ,vhich will always
appear the same in i.--re mory. The

other portions will be altered ...
depending on how the loader must

loac: them. (See Appendix D.)

B. The iollo-.-i:--_~ t,,-o formats provide infor­

mation to the loader only, \t,,-ith one exception,
i. e. , CALL, ·,T..-hich -.. ,-ill £enerate an SPB and

load it into n1e mo::_---;.-.

LE,NGTH
I I I I I I •

Line 1

SIZE Line 2
I I I . • . •

S3 Line 3
I I I I I • • I

S6 Line 4
I I I J I I I I

15 16 23

CD - 10: Common de ;jnition

(NAME} address = length
address - relative entry point

CD - 11: Common request

address = relative to

block
N - negation flag

0 1 2 3 6 7 8 9

Code - 00, Establish Load Point (ORG)
- 01, END Jump (END)
- 02, STRING
- 03, 9-bit ADD-TO (from one-pass

assembly)
- 04, 14- bit ADD-TO (DAC) (from one-pass

assembly)
- 05, 15-bit ADD-TO (EAC) (from one-

pass assembly)
- 06, Turn on CHAIN flag
- 07, Turn on LOAD flag
- 10, END-OF-JOB ($)

® CARD/ LINE IMAGE - The complete input
line will be listed in its <..'riginal format, if

5-2

CD - 01: Subroutine call (CALL)

Address -0

ADDRESS
I I

23

output is on the line printer, or the first 50 char­

acters of the input line will be output if output is

on the typewriter.

5-11 PAPER ~APE PREPARATION OF SOURCE

PROGRAM

5- 12 Paper tape source programs may be prepared
using the Console Keyboard in the following
manner:

Step 1. Place the Console Keyboard in the

OFF-LINE mode.

Step 2. Depress the HERE IS key on the Con­

sole Keyboard (provides leader for the Paper Tape

Punch). Depress as many times as necessary to

get the required length of leader.

Step 3. Type in the instructions and data
words from an ASSEMBLER SOURCE PROGRAM

coding form. Include comments if so desired.
Blank spaces must be punched everywhere a blank
is shown except after last character in comments
field.

LOC. OPER. ADDRESS, INDEX

I 6

. END. .

$.

NOTE

The last character on the
paper tape should be a

"FORM" character (\);
this character is used by

the UPDATE Program as
TERMINATOR.

Punch the tape utilizing

the standard Systems En­

gineering Laboratories,

Incorporated coding form.

11

. . . .

.

5-13 PUNCH CARD PREPARATION OF SOURCE
PROGRAM~:,

5-14 Punch card source programs may be pre­
pared for the SEL 81 0A computer using an off-

. .

line 80 column card keypunch. Punch the cards
from the ASSEMBLER coding form utilizing the
card columns as shown on the standard Systems
Engineering Laboratories, Incorporated Assembler
coding form. Use one card for each line of
coding.

To assemble using a punched card source
program the following steps are necessary:

Step 1. Load the Assen1bler Progran1.
(See Appendix B.)

Step 2. Place the symbolic punched card
deck in the optional Systems Engineering Labor­

atories, Incorporated Card Reader.

~:~ Optional SE L Model 80-410 Card Reader Required.

I

Step 4. Depress the CARRIAGE RETURN
(CR) and LINE FEED after each statement line.

These must be punched or typed in this order.

Step 5. Complete preparation of the source
program.

Step 6. The last two instructions on the
ASSEMBLER coding form must be as follows:

FOLLOWED BY CARRIAGE

RETURN AND LINE FEED

FOLLOWED BY CARRIAGE
RETURN AND LINE FEED

Step 3. Set the proper Sense Switches.
(See Appendix B.)

NOTE

Output will be a puncherl
paper tape. The control
cards are:

The last two cards of a

punched card source pro­
gram must be an END

pseudo-op in columns 6-8
followed by a card with

a dollar sign ($) punched
in column 1.

5-15 DELETION OF ERRORS ON THE SOURCE
TAPE OR SOURCE DECK

5-16 Errors encountered during punching of the
original source input tape n1ay be deleted if
discovered before punching the LINE FEED and
CARRIAGE RETURN for that staten1ent line by
depressing the 11 UP ARROW" (f), followed by
CARRIAGE RETURN and LINE FEED. This will
cause the entire statement line, including the
11 UP ARROW", to be ignored by the ASSEMBLER.
If the 11 UP ARROW" is not followed by a CAR­
RIAGE RETURN and a LINE FEED, the entire

line will be processed by the ASSEMBLER as an
error. The correct line must be the next infor­
n1ation punched on tape.

Errors in the Source Card Deck may be cor­
rected by removing the error card and replacing
with the correct card.

After assembly, errors 1n the source

tape rr1ay be corrected using the UPDATE

Program. (See UPDATE Program, Appendix D.)

5- 3

•

5-1 7 ERROR MESSAGES

5-18 The error flag letters given 1n the symbolic
listing have the following meaning:

U - - Undefined Symbol

M - - Multiple defined symbol

A - - Address field missing when required

S - - Use of MAP in one-pass mode or with
program over 512 words

Q Undefined operation name

D Data conversion has exceed limits

T Assignment table full

E Any other type of detected error

Errors will cause the affected fields to be set to
zero. More than one error may be detected for
each line but only the last error is flagged in the
listing.

5-4

NOTE

See Appendix C for examples
of Error messages.

5-19 ASSIGNMENT TABLE SIZE

5- 20 The assignment table contains all symbols
defined in the program being assembled plus all
literal constants, subroutine names, and modi­
fier instructions. For a 4096 word memory the
number of entries is approximated by:

400 = S + L + C + M

S = No. of s ym b o 1 i c add re s s e s

L = No. of unique literal constants
defined

C = No. of unique subroutine names
called

M - No. of times an "undefined" symbol
appears in the Variable field of an
instruction combined with constants
by a + or - .

If the computer configuration is greater than 4K,
the assignment table can be easily expanded and
the following equation holds:

400+ 1365(N-l)=S+L+C+M

where

N - Number of 4096 word memories

SECTION YI
SAMPLE ASSE1MBLER PROGRAM

6-1 INTRODUCTION

6-2 This section contains a sample program
using the symbolic coding of the SEL 810A com­
puter. It is intended to assemble this program
using the SEL 810A/810B Assembler. The pro­
gram is a sample only to demonstrate the use of
the Assembler. The sample coding can be punched
either on paper tape or cards for input during
the assembly. It may be run in either the one­
pass or two-pass mode.

6-3 PROGRAM INPUT

6-4 The programming example is intended to be
sin1ple so that only use of the Assembler may be

demonstrated. There 1s no attempt to teach
programming.

The example will order constants from dif­
ferent storage locations, sum then1 and restore
them in different memory locations.

6- 5 PROGRAM CODING

6-6 The coding sheets are shown in figure 6-1.

6-7 ASSEMBLER OUTPUT

6-8 The machine code is shown along with its
symbolic code in table 6-1 Assembler output.

Table 6- 1. Assembler Output

0001 00000 00000000 ~·- Sample Progra1n To Sort And Sum ~,-

0002 01000 60001000 ORG '1000
0003 01000 01077767 STRT LAA =-9
0004 01001 03001040 STA NDX
0005 01002 01001035 LAA ADDR
0006 01003 03001036 STA ADDl
0007 01004 00000003 CLA
0008 01005 03001041 BACK STA SUM
0009 01006 02001040 LBA NUX
0010 01007 01001036 LAA ADDl
0011 01010 03001037 STA ADD2
0012 01011 05077777 AMA =- l
0013 01012 03001036 STA ADDl
0014 01013 01201037 THER LAA~:, ADD2

0015 01014 15201036 CMA~:, ADDl
0016 01015 11001024 BRU INK
0017 01016 11001025 BRU :.:~+7
0018 01017 04001042 STB TEMP
0019 01020 02201036 LBA~:~ ADDI
0020 01021 03201036 ST A~:, ADDI

0021 01022 04201037 STB~:! ADD2

0022 01023 02001042 LBA TEMP

0023 01024 00000026 INK !BS
0024 01025 11001013 BRU THER
0025 01026 01201036 LAA~:! ADDI

0026 01027 05001041 AMA SUM

0027 01030 14001040 IMS NDX
0028 01031 11001005 BRU BACK

0029 01032 05001043 AMA DATA

0030 01033 03001041 STA SlT !vl

0031 01034 00000000 HLT
0032 01035 25601055 ADDR DAC DATA + l 0, l
0033 01036 25400000 ADDI DAC .. , , ...

~I' .. 1'

6- 1

Table 6-1. Assembler Output (Cont'd)

0034 01037 25400000 ADD2 DAC ,
'f'" ,

0035 01040A 00000000 NUX
•• ,.1, ... , , , , , ...

0036 01041 00000001 SUM BSS 1

0037 · 01042 00000001 TEMP BSS 1

0038 01043 00050000 DATA DATA 5 B 3 , ' 1 2 3 4, 3 . 1 4 2 C 1 2 , - 1 , 2. E S)I

11 ABCD 11

0038 01044 00001234
0038 01045 00000031

0038 01046 00010550

0038 01047 00177777

0038 01050 00060650

0038 01051 00000022
0038 01052 00140702
0038 01053 00141704
0039 01054 60401000 ;END STPT

6-2

O'
I

v.>

~ ,.... .
(TQ

C
1-i
(1)

O'
I

...... .

en
Pl

3
'"d
I-'
(1)

► (/l

(/l

(1)

3
CJ"
(1)

1-i

'TI
1-i
0

(TQ

1-i
Pl

3

ASSEMBLY CODING FORM

PROGRAMMER:
UsUEULL

PROGRAM: 810A
I

LOC. OPER. ADDRESS, INDEX

I 6 II 25

*
I

_SA M PLE p R~6RAM T¢ S¢RT1 AND SUM I

0RG 1 1000
I . . . I

STRT LAA =-9 I . . I

STA NDX
I . .
I

LAA ADD.~ I . I

STA ~DDi . I . .
I

CLA
I .
I

BACK STA SUM I . . .
I

LBA NDX I
I

L.AA ADD1 _ I . .
I

.

STA ADD2
I . . I .

AMA ::: - 1
I
I

STA ADD! I . .
I

THER LAA~ ~D.D2 I
I

CMA* ~DD1
I . .
I . .

BRU INK I
I

BRlJ *+7 I .
I

S.TB TEMP I . . .
I

. .

LBA* ~DD1 I
I .

STA* ADD1 . I I . . .

PAGE I OF 2

DATE
I

73 80

I I I I I I I I I

IDENTIFICATION

50 72
I

I
I

I
I

. . .

l .
I

. .

l
I

I
I

I ~ ~ . I

. l . . .
.

I

. 1
I

. . .

. l
I

. .

I . . .
I .

I . .
I

.

I .
I

l . .
I

I
I

. .

I
I

. .

1 . .
I

1 . .
I

. I
I

1 .
I

.

I . . .

--· ---~=. -~- cq,r-q.=,.,,~, Oc<'-' ___ -, •·· .. ~,,;:., ~ ~•~---~

O'
I
~

rrj
(JQ

C
Ii
(")

V'
I

...... .

en
~

3
'"d
~

(!)

► U)

U)

(!)

3
ct
~
(!)

Ii

,:j
Ii
0

O'Q

Ii
~

3 -n
0
::s
rt-.....
::s
~
(!)

0.. -

ASSEMBLY CODING FORM

PROGRAMMER: PAGE 1._ OF 1_
USUELILLL-------------------...:..----;---------,

PROGRAM: 810 A DATE

I
1

73 80

LOC. OPER. ADDRESS, INDEX I~~N~IFIC.ATI1

0N

I 6 11 25 50 72
I I

STB* A_DD2 . .I • • .•. ; . :.:
I ' I .

l. 8 A T. E. .M. P . . . , . , . : : . : .
I ' ' I

ItJK IBS. . . I I
• I I

B ~ u T H .E ~ . I I
I • • I .

LAA* AD_DI I . . I • . • .
I . I

AMA SUM I .. I
• I • I • •

. lMS NDX . . I I . .
• I • I '

B R u. B. A C. -~ I . . I
I I •

AMA t>AlA I I . .
I I .

STA SUM I I
. . • I . I ' . . •

H LT I I
• I • I T • • •

AD DR DA C D A_T A+ I O , I . 1 • , • • •.
I I '

f\ () D ' DA C ~* I I . . . •
---- ' I' I •

At>D2 OAC ~* , 1 • . • ••••
• ' I I

~ t) X ~~ ,E I . I
• : I . • I • • I • •

s u M B c; .s I I I
I ' I •

TEMP B'35 I _ 1 _ . , • • • •
.. • .. T ' • I • •

D A , ~ D. A 1 A 5 B. 3 ~ 1
• I '2 -~ _4 , '3 . _ I ~ 1 2 C I 2 , - I ~ '2. • E '5 .. ' 1 A B C O 1

' 1 • • •
I I .

Ek.I[) S1RT • . , .
I I •

I • • • I I & I I I I I I I • I • •

APPENDIX A
SEL 81 OA/81 OB INSTRUCTION LIST SUMMARY

CLASS MNEMONIC OP CODE

ARITHMETIC: AMA 05
AMB 16
SMA 06
MPY 07
DIV 10
RNA' 00-01

eOVS' 00-37

LOAD/STORE: LAA 01
LBA 02
STA 03
STB 04
LCS' 00-31

eLIX' 00-45
eSTX' 00-44

BRANCH/SKIP: BRU 1 1
SPB 12
SNS 13-4

IMS 14

CMA 15

IBS' 00-26

SAZ' 00-22
SAP' 00-24
SAN' 00-23
SOF' 00-25
SAS' 00-21

SNO' 00-32

LOB' 00-36
eSXB' 00-50

eIXS' 00-51

LOGICAL: ABA' 00-27

OBA' 00-30

NEG' 00-02

ASC' 00-20

CNS' 00-34

FUNCTION

ADD MEMORY TO A
ADD MEMORY TO B
SUBTRACT MEMORY FROM A
MULTIPLY B TIMES MEMORY
DIVIDE A AND B BY MEMORY
ROUND A BY MSB IN B
SET OVERFLOW

LOAD A FROM MEMORY
LOAD B FROM MEMORY
STORE MEMORY FROM A
STORE MEMORY FROM B
LOAD CONTROL SWITCHES

IN A
LOAD INDEX REGISTER
STORE INDEX REGISTER

UNCONDITIONAL BRANCH
STORE PLACE AND BRANCH
SKIP IF CONTROL SWITCH

NOT SET
INCREMENT MEMORY AND

SKIP IF 0
COMPARE MEMORY AND A

(3 WAY)

n + 1 if (A)< (M)
n + 2 if (A)=(M)
n + 3 if (A)>(M)

INCREMENT B(INDEX) AND
SKIP IF 0

SKIP IF A IS ZERO
SKIP IF A IS POSITIVE
SKIP IF A IS NEGATIVE
SKIP NO OVERFLOW
SKIP ON A SIGN (3 WAY)

n -t 1 (-), n + 2 (0),
n + 3(+)

SKIP IF A IS NORMALIZED
LONG BRANCH
SKIP IF INDEX POINTER IS

SET TO B
INCREMENT INDEX A AND

SKIP IF> 0

AND A AND B
OR AND B
NEGATE A
COMPLEMENT A SIGN
CONVERT NUMBER SYSTEM

A-1

I
I
i

CLA5.5 MNEMONIC

REGISTER CLA'

CHANGE: TAB'
IAB'
CSB'

TBA'
eTBP

eTPB

eTAX'

eTXA'

eXPX'

eXPB'

TBV'

TVB'

SHIFT: RSA'
LSA'
FRA'
FLA'
RSL'
FRL'

LSL'
FLL'

CONTROL: HLT'
NOP'
TOI'
PIE'
PID'

••PON'
eePOF'

INPUT /OUTPUT CEU'

NOTES:

A-2

TEU'
AOP'

AIP'

MOP'
MIP'

(a) • = 810B only

(b) •• = 810A only

OP CODE

00-03

00-05
00-06
00-07

00-04
00-40

00-41

00-52

00-53

00-46

00-47

00-42

00-43

00-10
00-11
00-12
00-17
00-15
00-14

00-16
00-13

00-00
00-33
00-35
130600
130601
002040
002041

13. OIM. 0
13.0IM.2
1700

1702

1 7. OIM. 4
17. OIM. 6

FUNCTION

CLEAR A

TRANSFER A TO B
INTERCHANGE A AND B
TRANSFER B SIGN TO CARRY

AND CLEAR B SIGN TO
POSITIVE

TRANSFER B TO A
TRANSFER B-ACCUMULATOR

TO PROTECT REGISTER
TRANSFER PROTECT REGISTER

TO B-ACCUMULATOR
TRANSFER A-ACCUMULATOR

TO HARDWARE INDEX
REGISTER

TRANSFER HARDWARE INDEX
REGISTER TO A-
ACCUMULATOR

SET INDEX POINTER TO INDEX
REGISTER

SET INDEX POINTER TO B-
ACCUMULATOR

TRANSFER B-ACCUMULATOR
TO VBR

TRANSFER VBR TO B-ACCUM-
ULATOR

RIGHT SHIFT A
LEFT SHIFT A
RIGHT SHIFT A AND B
LEFT SHIFT A AND B
RIGHT LOGICAL SHIFT A
FULL ROTATE LOGICAL A

AND B LEFT
LEFT LOGICAL SHIFT A
LEFT LOGICAL SHIFT A

AND B

HALT
NO OPERATION
TURN OFF INTERRUPT
ENABLE INTERRUPT
DISABLE INTERRUPT
PROTECT BIT ON
PROTECT BIT OFF

COMMAND EXTERNAL UNIT
TEST EXTERNAL UNIT
ACCUMULATOR WORD OUT TO

UNIT
ACCUMULATOR ¥!ORD IN FROM

UNIT
MEMORY WORD OUT TO UNIT
MEMORY WORD IN FROM UNIT

(c) ' = Augmented

(d) Underlined instructions require optional hardware.

CLASS MNEMONIC

REGISTER CLA'

CHANGE: TAB'
IAB'
CSB'

TBA'
eTBP

eTPB

eTAX'

eTXA'

eXPX'

eXPB'

TBV'

TVB'

SHIFT: RSA'
LSA'

FRA'
FLA'

RSL'
FRL'

LSL'
FLL'

CONTROL: HLT'
NOP'
TOI'
PIE'
PID'

••PON'
eePOF'

INPUT /OUTPUT CEU'

NOTES:

A-2

TEU'
AOP'

AIP'

MOP'
MIP'

(a) • = 8 l OB on 1 y

(b) •• = 810A only

OP CODE

00-03

00-05
00-06
00-07

00-04
00-40

00-41

00-52

00-53

00-46

00-47

00-42

00-43

00-10
00-11
00-12
00-17
00-15
00-14

00-16
00-13

00-00
00-33
00-35
130600
130601
002040
002041

13.0IM.0
13.0IM.2
1700

1702

l 7. 0IM. 4
l 7. 0IM. 6

FUNCTION

CLEAR A

TRANSFER A TO B
INTERCHANGE A AND B
TRANSFER B SIGN TO CARRY

AND CLEAR B SIGN TO
POSITIVE

TRANSFER B TO A
TRANSFER B-ACCUMULATOR

TO PROTECT REGISTER
TRANSFER PROTECT REGISTER

TO B-ACCUMULATOR
TRANSFER A-ACCUMULATOR

TO HARDWARE INDEX
REGISTER

TRANSFER HARDWARE INDEX
REGISTER TO A-
ACCUMULATOR

SET INDEX POINTER TO INDEX
REGISTER

SET INDEX POINTER TO B-

ACCUMULATOR
TRANSFER B-ACCUMULATOR

TO VBR
TRANSFER VBR TO B-ACCUM-

ULATOR

RIGHT SHIFT A
LEFT SHIFT A
RIGHT SHIFT A AND B

LEFT SHIFT A AND B

RIGHT LOGICAL SHIFT A
FULL ROTATE LOGICAL A

AND B LEFT
LEFT LOGICAL SHIFT A
LEFT LOGICAL SHIFT A

AND B

HALT
NO OPERATION
TURN OFF INTERRUPT
ENABLE INTERRUPT
DISABLE INTERRUPT
PR.OTECT BIT ON
PROTECT BIT OFF

COMMAND EXTERNAL UNIT
TEST EXTERNAL UNIT
ACCUMULATOR WORD OUT TO

UNIT
ACCUMULATOR VlORD IN FROM

UNIT
MEMORY WORD OUT TO UNIT
MEMORY WORD IN FROM UNIT

(c) 1 = Augmented

(d) Underlined instructions require optional hardware.

APPENDIX B
LOADING THE ASSEMBLER

B. l INTRODUCTION

The SEL 810A/810B ASSEMBLER PAPER TAPE
PROGRAM is in Relocatable Format. The
ASSEMBLER must be loaded with the Relocatable
LOADER as described in Section IV of the SEL
810A OPERATING INSTRUCTION MANUAL. If
the LOADER is not resident in memory prior to
assembly, follow these initial procedures:

1. Load into memory a binary non-reloca­
table paper tape of the LOADER.

The operating procedures to load a binary non­
relocatable paper tape, using either the MANUAL
BOOTSTRAP or the BINARY PAPER TAPE READ
PROGRAM, may be found in Section 3. 3 of the
OPERATING INSTRUCTION MANUAL.

2. The ASSEMBLER has an origin address
of 00000; the operating procedures assume this
or1g1n. A new origin must be entered into the
PROGRAM COUNTER if the ASSEMBLER 1s
relocated.

B. 2 ASSEMBLING A PAPER TAPE SOURCE

PROGRAM

Step 1. Turn the Console Keyboard LINE,
OFF, LOCAL switch to the LINE position.

Step 2. Place the Paper Tape Reader
START, STOP, FREE toggle switch in the
START position.

Step 3. Place the paper tape source pro­
gram in position on the Paper Tape Reader.

Step 4. Raise the appropriate SENSE
switches on the Console Control Panel to desig­
nate mode of assembly and I/O devices to be
used.

Step 5. Choose assembly mode ---

a. TWO-PASS MODE-- -FOLLOW STEPS
6- l 0.

Step 6. If a TWO-PASS assembly mode is
designated, ready the Console Paper Tape Punch
by depressing the "ON" button located on the
punch unit.

Step 7. Raise NO PROGRAM ADVANCE, de­
press START.

NOTE

IF A TWO PASS ASSEMBLY
IS DESIGNATED, the assembly
will HALT the computer upon
recognizing the "END" punch­
ed in the paper tape source
program.

Step 8. Reposition the source program paper
tape into the Paper Tape Reader to allow the
ASSEMBLER to complete PASS TWO of the assembly.

Step 9. Depress ST ART toggle on the Console
Control Panel.

B. 3 SELECTION OF ASSEMBLER OPTIONS BY
SENSE SWITCH SETTINGS

The many options available for use by the ASSEM­
BLER are controlled by the SENSE SWITCH set­
tings on the SEL 810A Console Control Panel.
The following SENSE SWITCH settings will en­
able the ASSEMBLER to perform the desired
mode of assembly and indicate the type of devicl's
to be used for source program input and object
program output. SENSE SWITCHES are the
ENTRY TOGGLES operating in the RAISED state.
When the ENTRY TOGGLES are returned to their
center posit ion they are said to be in a NEUTRAL
state.

SENSE
SWITCH

0

0

l
1

2

2

3

3

STATE

RAISED
NEUTRAL

RAISED
NEUTRAL

RAISED
NEUTRAL

RAISED

NEUTRAL

FUNCTION

TWO PASS ASSEMBLY
ONE PASS ASSEMBLY

NO LISTING
LISTING PROVIDED

NO OBJECT OUTPUT
OBJECT OUTPU'f
PROVIDED

LIST THE ERROR
LINES ONLY
LIST ACCORDING TO
SENSE SWITCH l

R-1

SENSE
SWITCH STATE FUNCTION

4 RAISED LISTING ON CONSOLE
KEYBOARD PRINTER

4 NEUTRAL LISTING ON HI-SPEED

5

5

6

6

7
7

8

8

9

(OPTIONAL) PRINTER

RAISED SOURCE INPUT FROM
PAPER TAPE READER

NEUTRAL SOURCE INPUT FROM
CARD READER

RAISED OBJECT OUTPUT ON ASR-
33 PAPER TAPE PUNCH

NEUTRAL OBJECT OUTPUT ON HI­
SPEED (OPTIONAL)PAPER
TAPE PUNCH

RAISED
NEUTRAL

RAISED

LIST THE SYMBOL TABLE
SYMBOL TABLE NOT
LISTED

SOURCE INPUT FROM
ASR-33 PAPER TAPE
READER

NEUTRAL SOURCE INPUT FROM HI-
SPEED PAPER TAPE
READER

RAISED SOURCE INPUT FROM
CONSOLE KEYBOARD

9 NEUTRAL CHECK OTHER SWITCHES

10 .. ,., .. , ...
SEE NOTE BELOW

SENSE
SWITCH

11

12

1.

STATE

RAISED

RAISED

FUNCTION

MAGNETIC TAPE
SOURCE INPUT

MAGNETIC TAPE
OBJECT OUTPUT

NOTE

THE FOLLOWING PROCEDURE
MUST BE FOLLOWED TO OB­
TAIN A LISTING AND/OR
OBJECT PAPER TAPE OUTPUT
WHEN THE CONSOLE KEY­
BOARD PRINTER IS USED TO
OUTPUT THE OBJECT PAPER
TAPE DURING ASSEMBLY:

TWO-PASS MODE --- Process the source
input from any device other than the Console
Keyboard with SENSE SWITCPES 0, 1, 6, raised
on the second pass to produce output on paper
tape.

If an assembly listing is required, set SENSE
SWITCH 1 to its NEUTRAL position and set
SENSE SWITCHES 2 and 10 to the RAISED position.

Depress the START toggle to produce an assembly
listing.

2. SENSE SWITCHES 1, 2, 3, in the RAISED
state will produce no output other than a listing
of the source program statement line in error.

APPENDIX C
SEL 81 0A SAMPLE ERROR PRINTOUT

0001 00000 40000004 NAME ERROR, C

0001 00000 00000000

0001 00000 01211022
0001 00000 03611040

0002 00000 00000000 REL
0003 00000 00000000 ~:~This Program Was Written to Provide A
0004 00000 00000000 ~:~sample Error Listing
0005 00000 00000000 ,,, ,,,

0006 000000 01000000 A LAA B Undefined Symbol
0007 00001M 05100004 A AMA C Multiple Defined Sy1nbol
0008 00002A 03000000 STA No Address
0009 00003Q 00100004 ADD C Undefined Operation
0010 00004 00001130 C BSS 600 Overflows Map
0011 01134 00000500 DATA 5825 Data Conversion Error
0012 0113 6E 70001136 lBC BES 1 Miscellaneous Error
0013 01136 70400000 END
M A 00000
u B 00000

C 00004
IBC 01136

C-1 /C-2

APPENDIX D
UPDATE, DEBUG, LOADER PROCEDURES

D. 1 UPDATE INSTRUCTIONS

The UPDATE program is designed to allow the
operator to easily correct or modify a symbolic
source program by providing the following func­
tions:

1. Deletion of a specified line or a group
of lines.

2. Insertion of a new or replacement line
or lines.

3. List the source program complete with
line reference numbers.

All references to the symbolic source tape are
made by referring to a sequence number. The
sequence number is present on all assembly
typeouts and on all typeouts generated by the
UPDATE porgram.

Each function is initiated by a keyword entry on
the Console Keyboard Printer. The functions
are all initiated by a type-in consisting of the
SLASH CHARACTER (/), (KEYWORD AND)
TERMINATOR (CARRIAGE RETURN).

The keyword processor of the UPDATE program
looks only at the first character, digits O through
0, and the terminator (carriage return): All
0th.er characters are ignored.

Note that there must be a space between the 20
and 29 below.

Example:

/D20 29 CR

/DELETE ALL LINES BETWEEN 20 and
29 CR

/133 CR

/INSERT CORRECTIONS AFTER LINE 33
CR

D. 2 DEBUG INSTRUCTIONS

The DEBUG program is a utility program de­
signed to help a programmer debug a program

while it is in memory. The following functions
are provided:

1. Type the contents of specified m emery in
octal or command format.

2. Modify the specified memory. Input being
in octal format or command format.

3. Dump specified memory areas onto paper
tape in a self- loading (non- relocatable) format.

4. Load binary tape.

5. Enter breakpoints in order to "leap-frog"
trace a program.

6. Clear specified areas of memory to zero.

7. Search memory for references to specified
areas.

8. Initiate branches (or HALT and BRANCH)
to any part of memory.

Each of these functions are initiated by typing a
keyword through the Console Typewriter Keyboard.
This keyword con s is ts of a 1 et t e r, an add re s s (or
addresses) and a terminator (CARRIAGE RE TURN).

When a keyword requires two addresses (a lower
and upper boundary), separate the addresses with

a space or comma.

If an error is gene rated during input of the key­
word but before the keyword was terminated, type
a slash character (/). This will cause the keyword
in error to be completely ignored, cause the Con­
sole Keyboard to generate a carriage return, and
will then ask for a new keyword input. If the com­
puter detects an error, it will initiate the sarne
action automatically.

The keyword input portion of the DEBUG progran1
looks only at the first character, digits O through
7, and the term in a tor (carriage return). Leading
zeros on octal entries or addresses are not necessary.

For example the operator types:

SZO CR or
Tl40-153 CR

D-1

The sense switches are as follows:

Sense Switch 0 RAISED High Speed Paper
Tape Reader Load and High
Speed Paper Tape Punch
Dump

Sense Switch 0 NEUTRAL ASR- 33 Paper
Tape Reader Load and
Paper Tape Dump

D. 3 LOADER OPERATING INSTRUCTIONS

This procedure assumes that the LOADER pro­
gram has been read into memory according to
the SEL 810A Operating Instructions Manual
Section IV.

NOTE

The LOADER uses the
ENTRY TOGGLES as
SENSE switches. SENSE
switches are the ENTRY
TOGGLES in a raised
state.

The main program must be loaded first. Once
loaded, the subroutine library may be loaded for
automatic integration by the software LOADER.
These 11 steps are as follows:

Step 1. Depress HALT toggle on the Con­
sole Control Panel.

Step 2. Depress computer MASTER CLEAR
toggle.

Step 3. Place the program to be loaded 1n
the Paper Tape Reader.

Step 4. Rotate the Keyboard Printer
LOCAL, LINE, OFF switch to the LINE position.

Step 5. Raise the START, STOP, FREE
toggle on the Paper Tape Reader to the START
posit ion.

Step 6. Set the PROGRAM COUNTER to the
starting address for LOADER.

Step 7. Set the A-Accumulator to the pro­
gram starting address.

D-2

NOTE

a) A-Accumulator is set to
zero if the program is absolute.

b) A-Accumulator is set to the
relocation base if the program
is relative.

Step 8. Set the B-Accumulator to the MAP
starting address. MAP must be greater than 10
if library routines are to be called.

NOTE

B-Accumulator is set to 777
if the ASSEMBLER is being
loaded into MAP zero.

Step 9. Set SENSE switches by raising the
ENTRY TOGGLES to the desired SENSE switch
setting.

The Entry Toggle settings before Step 10 are as
follows:

ENTRY
TOGGLE STATE FUNCTIONS TO BE PERFORMED

0 RAISED INPUT ACCEPTED FROM OP­
TIONAL HIGH SPEED PAPER
TAPE READER.

0

l

2

3

NEUTRAL INPUT ACCEPTED FROM
ASR-33 PAPER TAPE READER

RAISED

RAISED

RAISED

PRINTED OUTPUT WILL LIST
ALL SUBROUTINES ON THE
KEYBOARD PRINTER.

WILL LIST ALL SUBROUTINES
NOT LOADED.

INPUT FROM MAGNETIC
TAPE.

Step l 0. Raise "No Program Advance Toggle 11
•

Step 11. Depress the START toggle switch.

D. 4 OPERA TOR COMMUNICATIONS

When Loading is Complete

1. If SENSE switch No. 2 is RAISED, the
type out will include a list of subroutines that are

. .
m1ss1ng.

2. If SENSE switch No. 1 is RAISED, the
type out w i 11 inc 1 u de a 1 is t of a 11 the subroutine s .

3. If no subroutines were required, the typeout
will contain 11 LCEJ" and the program will arrive
at a normal HALT.

4. The LOADER will HALT after each library
paper tape load. Depressing START when more
subroutines are needed will cause the LOADER to
search for a new or next library record on paper tape.

5. Depressing START after all subroutines
are loaded will cause a branch to the first in­
struction of the main program just loaded.

EOJ - Typeout

Whenever an EOJ {$) block is encountered, the
loader types out EJ. If no external subroutines
have been requested by the main program, it
halts. When an EOJ ($) code is encountered at
the end of a library input file, the loader will do
the following according to the settings of sense
switches Nos. l and 2;

1. Both neutral: No subroutine name is
listed.

2. No. 1 raised, No. 2 neutral: All sub­
routine names are listed.

3. No. 1 neutral, No. 2 raised: Only
unloaded subroutine names are listed.

4. Both Raised: All subroutine names are
listed.

By depressing the start button, the loader will
either transfer control to the start location of the
loaded program {if the number of undefined sub­
routine calls remaining is 0), or read more infor­
mation from the next library file.

D. 5 RECOVERY PROCEDURES

"CL" Checksum Error

1. Each block of input is concluded with a
logical difference checksum. An error in the
checksum causes the LOADER to typeout "CK"
with a program HALT.

2. Loading resumes with depressing of the
ST ART toggle.

11MO" Memory Overflow

1. "MO" will be typed followed by a pro
gram HALT when the program exceeds the
available memory space.

D- 3 / J)-4

