

Prime Computer, Inc.

, Programmer's Guide

PDR 3040-16
"’

FORMS

Programmer's Guide

Rev. 16.3

m..‘...;w..u..;..~...-.»—-=—' "4-'01 ;an._.. ‘,,,,.,I_

..~u,u..........

»-..--‘

FORMS PROGRAMMER‘ S GUIDE

PDR3D40

This guide docuents Prime's Eorms Management System (FORMS) at Master

Disk Revision Level 16 (Rev. 16).

PRlME Computer, Inc.

505 Old Connecticut Path

Framingham, Massachusetts ■l76■

All correspondence on suggested changes to this document should be
directed to:

Maxon L. Goudy, Technical Writer

Technical Publications Department
Prime Computer, Inc.

506 Old Connecticut Path

Framingham, Massachusetts @1701

Acknowledgements:

we wish to thank the members of the FORMS team.and also the non—team
members, both customer and Prime, who contributed to and reviewed this
PDR.

Copyright © 1979 by
Prime Computer, Incorporated

59% Old Connecticut Path

Framingham, Massachusetts 01701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for

any errors that may appear in this document.

The software described in this document is furnished under a license

any may be used or copied only in accordance with the terms of such
license.

PRlME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime

Computer, Inc.

First Printing November 1979

Section Title Page

SECTION 1 INTRODUCTION TO FORMS

INTRODUCTION l-1

SCOPE OF DOCUMENT 1-l

PURPOSE OF FORMS l-2

ADVANTAGES OF USING FORMS 1-2

FORMS INTERFACES TO PRIMOS l-3

FORMS ADMINISTRATIVE PROCESSOR l-6

RELATED DOCUMENTS 1-7

SECTION 2 WRITING APPLICATION PROGRAMS FOR USE

WITH FORMS

INTRODUCTION 2-I

PRINCIPLES OF OPERATION 2-l

USING FORMS 2-3

FORMS DIRECTIVES 2-3

PROGRAM EXAMPLES 2-4

SECTION 3 DESCRIBING DATA USED BY FORMS

PURPOSE OF DATA DESCRIPTION 3-l

FORM DEFINITION 3-l

SUMMARY OF FORM DEFINITION 3-3

MAPPING 3-4

FORM DESCRIPTOR PREPARATION 3-5

TRANSLRTING STREAM AND FORMAT CODING 3-7

SECTION 4 FORMS RUN-TIME DIRECTIVES

REFERENCE INFORMATION

FUNCTION 4-l

USAGE 4-l

DESCRIPTION OF DIRECTIVES 4-3

ATTRIBUTE MODIFICATION DIRECTIVES 4-8

SECTION 5 FORMS DEFINITION LANGUAGE,

REFERENCE INFORMATION

SYNTAX OF FORMS DEFINITION LANGUAGE 5-I

FORM DEFINITION DELIMITER.STATEMENTS 5-2

FIELD STATEMENTS WITHIN A STREAM DESCRIPTOR 5-6

FIELD DEFINITION EXAMPLES: STREAM DESCRIPTORS 5-13

FIELD STATEMENTS WITHIN A FORMAT DESCRIPTOR 5-14
FIELD DEFINITION EXAMPLES: FORMAT DESCRIPTOR 5-16

PROGRAMMING AIDS 5-16

MACRO DEFINITION 5-17

ITERATIVE FIELD GENERATION 5-l7

RELATIVE POSITION PARAMETER

LISTING CONTROL STATEMENTS

AUTERNATE INPUT FILE (SINSERT)
FDL TRANSLATION, COMMAND FORMAT

RUN-TIME MESSAGES

FDL TEMPORARY FILES

FDL COMMAND LINE EXAMPLE

SECTION 6 FORMS ADMINISTRATIVE PROCESSOR (FAP)
REFERENCE INFORMATION

FUNCTION

COMMAND FORMAT

FAP COMMANDS

FAP EXAMPLES

SECTION 7 EXAMPLE FORTRAN PROGRAM

INTRODUCTION

WRITING THE PROGRAM

CREATING THE FORM DESCRIPTOR.FILE

COMPILING THE APPLICATION PROGRAM

TRANSLHTING THE FDL SOURCE

INSTALLING FORM DESCRIPTOR IN FORMS CATALOG

LOADING THE APPLICATION PROGRAM

RUNNING TEH PROGRAM

SECTION 8 EXAMPLE COBOL PROGRAM

INTRODUCTION

WRITING THE PROGRAM

CREATING THE FORM DESCRIPTOR FILE

COMPILING THE APPLICATION PROGRAM

TRANSLATING THE FDL SOURCE

INSTALLING FORM DESCRIPTOR IN FORMS LIBRARY

LOADING THE APPLICAITON PROGRAM

MIAS FILE TEMPLATE

RUNNING THE PROGRAM

APPENDIX A INSTALLATION

DIRECTORY INFORMATION

INSTALLING A NEW VERSION OF FORMS

UPGRADING A CURRENT INSTALLATION

REBUILDING FORMS

5-18

5-19

5-19

5-20

5-22

5-22

5-23

8-1

8-3

8-9

8-13

8-13

8-14

8-14

8-15

8-16

A-1

A-1

A-2

A-3

APPENDIX 13 DEVICE I/O

DEVICE INPUT/OUTPUI‘ SYSTEM

IOCS INTERLUDE

DEVICE I/O MECHANISM

PRIME.-SUPPLIED DEVICE DRIVERS

APPENDIX.C USER-WRITTEN DEVICE DRIVERS

INTRODUCTION

INSTALLING THE DEVICE DRIVER

APPENDIX D TROUBLE SHOOTING

APPENDIX E SAMPLE FORTRAN PROGRAM

APPENDIX F FORM DESCRIPTOR FOR FORTRAN

PROGRAM EXAMPLE

APPENDIX G SAMPLE COBOL PROGRAM LISTING

APPENDIX H FORM DESCRIPTOR FOR COBOL

PROGRAM EXAMPLE

APPENDIX I ADVANCED USE OF FORMS

APPENDIX J ERROR MESSAGES

ERROR MESSAGE FORMAT

FDL ERROR MESSAGES

INDEX

B-1

B-l

B-1

B-1

B-3

C-1

C-1

C-6

D-l

F-l

G-I

I-l

J-1

J-1

J-l

PDR3@40 INTRODUCTION TO FORMS

SECTION 1

INTRODUCTION TO FORMS

INTRODUCTION

The Prime Forms Management System (FORMS) provides a convenient and

natural method or defining a form with a language designed for such a

purpose. Defined forms may then be read pr written by any application

program that is capable of using Prhné's Input—Output Control System

(IOCS). Application programs communicate with FORMS through

input/output statements native to the host language. (The host

language is the language in which the application program source was

written.) Programs that currently run in an interactive mode may

easily be converted to use FORMS.

SCOPE OF DOCUMENT

This document is divided into four parts.

The first part, Sections 1 through 3, contains TTORIAL INFORMATION.

These sections are intended to give the user a brief introduction to

forms and quickly show the user how to use FORMS.

The second portion of this document, Sections 4 through 6, contains

REFERENCE INFORMATION. Some of the material discussed in Sections 1 —

3 is repeated, but these sections give more detail on each topic

relating to FORMS. Section 4 is a detailed discussion of the FORMS

run-time directives used in the coding of application programs.

Section 5 describes in detail how to create a form descriptor, which

describes to FORMS the complete format of a form both on the terminal

display screen and in the computer system data record. Section 6 tells

in more detail the features for storing and maintaining form

descriptors in the FORMS catalog.

The third portion of this document, Sections 7 and 8, are of particular

interest to the programmer. Section 7 describes an application program

written in FORTRAN, and Section 8 discusses an example program written

in COBOL.

The last part of the document is the appendices. The appendices

contain information that are needed less frequently by the FORMS user,

for instance "Installation". Appendices also contain information to

support material presented in earlier sections, such as program

listings and form descriptor listings. Advanced FORMS usage and error

messages are the final appendices.

1 - 1 November 1979

SECTION 1 PIR39540

PURPOSE OF FORMS

FORMS simplifies and standardizes the transfer of data fields (or
groups of data fields) between application programs and page—oriented
video terminals and hard-copy devices. FORMS provides easy—to-use
facilities for defining how data fields are to be displayed at or
received from one or more block-mode terminal types, and FORMS uses the
data definitions at run-time to automatically control the data
transfer.

In addition, FORMS provides centralized administrative control and

simplified maintenance. Through commands to the FORMS Administrative

Processor, a user can add, delete, or change either the forms

themselves, or the terminal type.

Finally, FORMS provides the user with a set of run—time directives that
reside in a special subroutine library.

ADVANTAGES OF UING FORMS

Because the user—terminal screen can be formatted to resemble a source
document (i.e., the form on paper), FORMS is easy to use, and allows
user personnel to be trained quickly. Also, any input data errors may
be corrected before they are read by the application program since
visual verification of the data at the terminal, the ability to retype
data fields, and the ability to highlight errors are all possible.

Some additional advantages are:

l. The user is more comfortable using a form displayed at the
terminal that looks the same as the printed form.

2. The user can enter information in any order, by’ moving the
terminal cursor to the correct data item location.

3. The user can see the information and can see what information, if

any, is missing.

4. It is possible for the user to make corrections to entries in the
form before transmitting them from the user terminal to the

computer.

5. Omnputer processing time is minhnized while updating or entering
a form since FORMS "oft loads" the CPU, i.e., it is not

interacting with the user on a character by character basis.

PDR3■4@ INTRODUCTION TO FORMS

FORMS INTERFACES TO PRIMOS

Prime's Forms Management System consists of three major components:

the FORMS Description Language (FDL), the FORMS Administrative

Processor (EAP), and the FORMS Run—Time library. These components work

together to create, administrate, and ru fonms-oriented applications.

Figure 1-1 shows a functional overview'of FORMS and its relation to

some PRIMOS system components. FORMS can be applied quickly in simple

logical steps since each component is independent.

Figure 1-1 illustrates the various steps that go into the creation and

use of a FORMS program.

Part A.of the figure shows the development of the applications program.

First, the source code in created, using Prime's text editor (ED). The

source code is then translated by the appropriate compiler or assembler.

(FTN, COBOL, RPG, PMA). The object code is then loaded using SEG or

LOAD, and the applications program is ready to run. (See the

appnopriate language user's guide for details).

The program thus created contains FORMS directives (for example, in

FORTRAN, the directives are in FORMAT statements). Section 2 of this

guide explains how to write applications programs that include FORMS

directives. Section 7 illustrates this process with a sample FORTRAN

program; section 8 illustrates it with a sample COBOL program.

Part B of Figure 1-1 shows the dual nature of I/O in the executing

program. Standard I/O statements interface with the tenninal through

Prime's Input/Output Control System (IOCS, see PRIMOS Subroutines

Reference Guide). FORMS I/O directives interface through the FORMS

run—time package.

Part C of Figure 1-1 shows how the run-time package receives

information. Notice how closely the user's work here parallels the

user's creation of the applications program.

0 The editor is used to create the form definition source: i.e.,

the STREAM and FORMAH'descriptors. Section 3 of this guide

explains how to create these descriptors.

0 The FDL translator is invoked to translate the source code into

binary. Use of FDL is explained in Section 5.

0 The Fbrms Administrative Processor (EAP) loads the object code

into the FORMS directory, where it is available for run-time

use. Section 6 of this guide explains how to use FAP.

l - 3 November 1979

SECTION 1

:j Z-—:

EDITOR
(ED)

I

SOURCE
PROGRAM

TRANSLATOR
(FTN, COBOL,
PMA, RPG III

PDc<3IJ4■

PART A

I I

OBJECT
CODE

PROGRAM
LISTING

LOADER
ILOAD OR

SEG)

APPLICATION
PROGRAM

I-| € 1 j11 —— -J
STANDARD

I/O STATEMENT
-Z j1Z■

FORMS ORIENTED

PERIPHERAL
OUTPUT
DEVICES

REV. III

Functional Overview, FORMS and

I
I
I
I

I
I
I
I
I
I
I

___|

———_“‘_——

1:1--———:-d—.—I-2-jnjn-1--2-2:;

PART C

EDITOR
(ED)

I

FORM
DEFINITION
SOURCE

FDL
TRANSLATOR

II
SPECIAL
BINARY
OBJECT
CODE

 FORMS
ADMINISTRATIVEV
PROCESSOR (FAPI

I——_T

"""""

"I

TERMINAL AF
‘\ CONFIGURATION CA?.2“L"gGBLOCK

I

TERMINAL
SCREEN/
KEYBOARD

I/O STATEMENT
\

/
”””""""‘

\ FORMS

\\I3EscRII>TION
\

IOCS ;' FORMS \
»- ———— —--A RUN-TIME _

Iocs t _ PACKAGE
INTERLUDE

K
I

II
FORMS
LIBRARYDEVICE (VFORMS OR \DRIVER RFORMSI

PART B

Figure 1-1 .

PRIMOS

PDR304@ INTRODUCTION TO FORMS

Programming Language Interface

The application program source may be written in COBOL, FORTRAN,

RPG-II, BAA, or any language capable of interaction with Prime's

Input—Output Control System (IOCS). For further information about

IOCS, refer to the Reference Guide, PRIMOS Subroutines. For

information on programming in the languages mentioned, refer to the

appropriate language reference guide. Application programs communicate

with FRMS by‘ means of input/output stateents specified within the

format of the source language (e.g., FORTRAN formatted READ and WRITE

statements).

Terminal Software Interface

FORMS provides a means for displaying information on the screen. The

FORMS display on the screen shows what fields are available for the

user to type—in data to be transmitted to the application program. The

screen handling allows the user to validate data because nothing is

transmitted to the application program until the transmit key is

pressed at the terminal. Thus, the user can enter data, visually

verify it, move the terminal cursor to any incorrect entry and enter

the correct data, and transmit each line of data.

Oerating System Interface

FORMS operates under the control of PRDMOS, the Prime operating system.
I

Additionally, because the FORMS interface to application programs is

through standard read/write statements, existing batch—oriented

programs can be readily adapted to run using local and remote terminals

without major re—programming.

FORMS keeps application programs, the forms they use, and terminals

they use separated util run-time so that changes can be made in one

area without necessarily affecting the other two. with this

flexibility, terminal types may be changed; the way a form is

organized at a particular terminal may be changed; or old forms may be

described for new terminals. These changes, and many more, are all

possible without affecting operational programs.

1 - 5 November 1979

SECTION 1 PDR3■40

FORMS ADMINISTRATIVE PROCESSOR

Purpose

The Fbrms Administrative Processor (FAP) allows the user to maintain
the FORMS catalog. This catalog contains the object files created by
FDL. FAP also allows control of the terminal types and lines that are
associated with a form.

FORMS Definition Catalog

The FORMS definition catalog is a segment directory that contains the

binary representations, generated by FDL, of all the STREAM and FORMAT

descriptors (see Section 3) available within the system configuration.
After a form definition is translated by FDL, it is entered in the
FRMS definition catalog with the FAP (Fbrms Administrative Processor)
comand. Refer to Section 6 for details of the FAP command. The FORMS

catalog is in the FORMS system UFD, FORMS*.

FAP Functions

EAP performs the following:

CREATE the FORMS catalog UFD and the segment directory
associated with the specified foam.

0 ADD binary files translated by FDL to the FORMS directory.

0 REPLACE binary files in the FORHS directory.

0 PURGE (delete) binary files from the FORMS directory.

0 LIST the binary files in the FORMS directory.

0 Add, replace and remove user terminal types on the Terminal
Configuration Block.

GENERATE $INSERT files for the run—time device subroutine.

REV. Z l - 6

PDR3@40 INTRODUCTION TO FORMS

RELATED DCIIUMENTS

The following Prime docmnents contain additional supporting information

for the FORMS user.

Language Manuals

Document No. Title

PIR3@3l RPG II Prograrrmers Guide

PDR3@56 COBOL Programmers Guide

FIRBUS7 FORTRAN Programmers Guide

FDR3l@4 New User's Guide to Editor and Runoff

Operating System and Utilities

Document No. Title

PIZR3@6l Reference Guide, MIDAS

FDR3l08 Reference Guide, PRIMOS Commands

PIZR362l Reference Guide, Subroutines

1 - 7 November 1979

PDR3■4@ WRITING PROGRAMS

SECTION 2

WRITING APPLICATION PROGRAMS FOR USE WITH FORMS

INTRODUCTION

This section gives an overview'of how to write application programs for

use with FORMS. A.more detailed discussion of this task is provided in

the programming examples in Sections 7 and 8.

Figure 2-1 shows the flow'of instructions and data in an application

using FORMS. The user must control that flow of data by special I/O
statements that use FORMS run—time directives.

This section discusses how to write I/O statements using the FORMS

run—time directives. I/O statements are the only interface to FORMS in

the application program. Sections 3 and 6 describe how to write a form

descriptor and install it in the FORMS catalog (a UFD named FORMS*).

PRINCIPLES OF OPERATION

Programs that are written in standard languages such as FORTRAN or

COBOL can interact with formatted (sometimes called "block mode")
terminals in either one of two ways. One solution is the user can

supply, in the application program, all of the control character

sequences to the terminal that are needed to output each field (data

area). This usually requires several bytes of cursor positioning

information, plus field identifier and attribute bytes, plus the field

data, and the field terminator byte. The application program can

interpret the character input stream from the terminal, distinguish

input data from control data, and process each datum accordingly. This

is an awkward and somewhat difficult task to program in either FORTRAN

or COOL.

Although there are short cuts (a subroutine package for example), the

application programmer becomes more concerned about device

characteristics than with the application to be accomplished.

Furthermore, once the application program is written, changing the

format of the terminal screen definition described within the

application program is difficult. The application program must often

be rewritten if another type of terminal device requires support. In

sumary, program maintenance using this approach is time—consuming and

costly.

An alternative solution to tenninal I/O being controlled by the

application program is the Prime FORMS management syste. FORMS allows

the user to describe data formats in a forms description language
(refer to Section 3). This definition language is completely separate
from the application program. The form definition serves as an

interface between the application program and the page—oriented

2 — 1 November 1979

SECTION 2 PIR3I54@

+._

/

SHIP TO < ‘

NAME 1:144
/

FORMS
ADDRESS DEVICE
ATTENTION

/

DRIVER

IIVI

FORM

DESCRIPTOR

ISEE SECTION 3)

■e TR

:3 DATA RECORD

EMT
0

t

O
9

WR|TE(1,20)
20 FORMAT (’##|NVOKE ADMN377’)

; NAMADR(75)

REAB (1,100) NAMADR
100 FORMAT (75A2)

O APPLICATIONS

PROGRAM

STORAGE AREA

RAPPLICATIONS

PROGRAM

Figure 2-1. Flow of Instructions and Data between

Terminal Screen, FORMS Descriptor, and Applications Program
Data Area.

REV. 0 2 - 2

PDR3■4@ WRITING PROGRAMS

terminal device in use. The fonms definition describes each data field

transferred (input) to or (output) from the application program by its

position in the input or output data record and further relates this

description and position to the field's position on the terminal

screen. FORMS also relates other information such as the field's

length, display attributes (blink, reverse—video, write protected,

etc), justification, validation - if any, etc. Data is transferred

between the application program and the tenminal using standard input
and output statements (for example, READ and WRITE).

USING FCRMS

FORMS consists of three components. A form definition language
translator (FDL) translates source form definitions into a usable form.

A catalog maintenance tool, the Fbrms Administrative Processor (EAP),
is used to update a systemrwide FORMS directory that contains all form

definitions available for use by application programs. Finally, the

FORMS Run-time System Library is a collection of subroutines that are

invoked by FORMS directives and interact with the application programs
and the terminals to provide I/O handling at execution time.

FORMS is device independent. The user may define a ■onn to be

displayed on any tenminal and/or system (spooled) line printer. (FORMS
works with any page oriented device, hard or soft copy.) Multiple
terminal types may simultaneously run the same application program,
since physical device selection is deferred until execution thne.

To use FORMS, the user must have a terminal that has field

write—enable/protect, absolute cursor positioning, and block—mode

transmission capabilities (refer to Appendix B). FORMS currently

supports the VISTAR3 and OWLl200 devices and systan line printer. If

the user wishes to use a nonstandard terminal, only a device driver

subroutine need be written following the guidelines set forth in

Appendix B.

FCRMS DIRECTIVES

The only difference between a "normal" program and a FORMS application

program is the inclusion of one or more FORMS directives. FORMS

directives consist of keywords preceded by'a double pound sign, for

example, ##INVOKE. These directives are embedded in standard language
constructs. In FORTRAN, the directives are enclosed in quoted ASCII

strings in FORMAT statements. For example,

WRITE (6, 100)

100 FORMAT (
'
#IN’\K)KE SCREENI '

)

As deonstrated in the previous example, FORMS operates on a single
file unit (default is 6) for screen device I/O. All I/O to the device

takes place on that unit.

2 - 3 November 1979

SECTION 2 P1123349

In the FORMAT statement example, the FORMS directive causes a character

string to be passed to the I/O processor. This string is intercepted
for special handling (the double pound sign is the token that prompts
this interpretation). The ##INVOKE directive, when intercepted, causes
a call to be made to the FORMS run—time subroutine library, and the
function of INVOKE is performed, naely the form descriptor named

SCREENl is opened and written to the user tenninal. Thereafter, every
transaction of file unit 6 is controlled by the FORMS library file
known as SCREENl. Sections 3 and 6 discuss ‘more about forms

descriptions and how to create and install them.

Run-time directives are the link between the application program, the

catalogued form descriptions, the terminal configuration, and the
terminal device drivers. For example, one directive selects a form for
a particular application (##INVOKE). Directives pass all data fields a
FIELD or FORMAT at a time, check validation status of input fields,
clear displayed data fields, and change data field attributes during
pmogram execution. The available run—time directives and their
functions are discussed briefly in Table 2-1. For a detailed
discussion of the run-time package, refer to section 4.

PROGRAM EXAMPLES

Section 7 gives an exaple program written in FORTRAN and Section 8

gives an example program written in CCBOL.

REV. 0 2 - 4

Table 2-1.

##BLINK/if ‘#NOB LINK

##CLEAR

##DISPLAY/# #NODISPI.AY

##FKEYS

##FORCEREAD

##INVOKE

##PRINT

##POSITION

##PRO1‘ECT/##NOPROTECT

##RELEASE

at #RVIDB0/# #NvIDEo

##sUBs'rREAM

##VALIDl\TE

PDR304@ WRITING PROGRAMS

Summary of FORMS Directives

Blinks a designated field (##BLINK) or turns off

blinking (##NOBLINK) feature.

Clears unprotected (i.e., variable) data field

displayed on the user tenminal. (##CLEAR ALL

clears all unprotected fields.)

Displays field when form is output (##DISPLKY)

or does not display field (##NODISPLAY).

Enables (##FKEYs ON) or disables (##FKEZYS on?)

user function keys input at the terminal.

Eorces FORMS to wait for and process user input

at the terminal.

Defines the form definition to be used (needed

at least once in every applications program).

Allows output of current form and sends data to

a printer.

Specifies field to which the cursor at the

terminal will be positioned on the next read

operation.

Write—protects a designated field (##PROTECT) or

removes protection (##NOPROTECT).

Specifies that the current form definition is no

longer to be used.

Displays field in reverse video (##RVIDEO) or

normal v1deo (##NVIDEO).

Defines a substream to be processed by the next

read or write statement.

Causes the return of validation status for all

input data.

November 1979

PDR3@4■ DESCRIBING DATA

SECTION 3

DESCRIBING DATA USED BY FORMS

PURPOSE OF DATA DESCRIPTION

Video terminals have a great potential for shnple, powerful data entry
and retrieval. Such features as page mode, cursor control, reverse

video, and blinking can improve the speed and convenience of data

terminal use. However, use of these features places a burden on the

application program.

The Prime FORMS software package makes a terminal with page mode and

cursor control look like any ASCII input-output device (as far as the

application program is concerned.) Terminal input-output data is

exchanged a record at a time by the nonmal I/O rules of the language in

which the application program is written. The input and output formats

of the data transferred to and from the terminal and the computer

system must be indicated to FORMS (and the application program). with

FORMS, the templates of the form and the data do not have to be

specified internally in the application program. Instead, form and

data descriptions are specified externally by the user and translated

by the Fbrms Definition Language (FDL) command.

FORM DEFINITION

A form definition describes user and terminal data formats. The form

definition is divided into two parts. The first part describes the

input/output data record. This descriptor gives the location of each

data item in the record as well as some information about each data

item in the record. The second part of the form definition describes

how each of the data items (or fields) are displayed at the terminal.

A typical form definition is discussed in the following paragraphs.

Consider the design of a simple inquiry program that uses FORMS to

display entries at the terminal from a keyed index file. Program

operations consist of entering an employee-id number at the terminal.

Using the given employee—id, the program performs a file look—up and

displays the information to which the employee—id pertains. If the

employee--id entered is zero or spaces, the program will exit to PRIMOS

corrmand level.

3 — 1 November 1979

SECTION 3 P1113040

Columns iten nane data type

1-4 enployee-id nuneric

5-34 enployee-name alphabetic
35-64 street-address alphanumeric
65-84 city alphabetic
85-86 state alphabetic
87-9l zip—code nuneric

92-103 phone numeric / special

Graphically, the above listed data would appear in the data record
definition as follows:

1-4 5--34 35----64 65--84 85---86 87-91 92-103
I id I name I address I city I state I zip I phone I

This information illustrates the first part of the form definition.
This part is known as the data stream descriptor. The data stream

descriptor contains STREAM.descriptor fields that describe each item in
the user's input/output data record(s) . The data stream descriptor
must include the length of each item, and either implicitly or

explicitly include the position of each iten within the data record
(i.e., the starting character position must be known or must be capable
of being determined). The field descripmor(s) may optionally include a

justify specification. FORMS provides for left-justification,
right-justification, or centering. FOWWS also provides a zero-fill or
space-fill option when entering data with justification. FORMS
validates input data under a specified validation mask, or series of
masks, and allows the user to correct the data if it is incorrect.

The next task to be accomplished in the example inquiry program,
previously discussed, is to design the FORMAT of the data displayed at
the terminal. The display size (number of columns and lines available)
must be taken into consideration. Attributes like write—enabled,
blink, noblink, reverse video, or normal video that may be applied to
each data field must also be considered. Finally, the length of each
field displayed at the terminal must be specified. This parameter may
differ from the length of the corresponding field in the input or

output data record. In addition, when considering the length of fields

displayed at the terminal, any field proximity restrictions imposed by
the device»must be taken into accout, for example, some terminals
require fields be separated by one or more blanks.

Mhile assigning physical device positions and attributes for each data
field in the data STREAM descriptor, the user may also specify titles
(i.e., literal data) in the form definition which is displayed at the
terminal along with the application progra data. This literal data

usually describes or identifies data fields that follow.

REV. 0 3 - N

P133040 DESCRIBING DATA

The information used to construct the second part of the form

definition is known as the device format descriptor. An example of

this type of information is shown by the following table:

line column content leng th attributes

2 2 ‘EMPLOYEE ID‘ 1 l write-protected

2 29 enployee— id 4 write-enabl ed

4 2 ‘NAME ' 4 wr i te—protected

4 29 anployee-name 30 write—protected

6 2 ‘ADDRESS’ 3 write-protected

6 20 street—add ress 30 wri te—protected

7 20 ci ty 2% wr i te-protected

7 45 state 2 write-protected

7 50 zip 3 write-protected

9 2 ‘HOVIE PHONE ' l2 write-protected

According to the information in the foregoing list, when the form is

written to the terminal at application program run-tune, the

information should appear as follows:

COCO COCO]-000.0 00002000O*IOOO3000O*OCOO4000O*OOOO5000O*OOOO

1 I

2 I EMPLOYEE ID

3 I

4 I NAME ********:I:*********************

5 I

6 I ADDRESS ***************************'k**

7 I
-k-k*-k******~k*-k*** ** *****

8 I

9 I HQVIE PHQNE *i:**********

The line and colunn markers in the illustration have been provided for

ease of position identification. They do not appear when the form is

displayed at the terminal. The underline characters represent

write-enabled data. write-enabled data may be modified at the terminal

by the user by typing new information in the appropriate field. The

asterisks in the illustration represent write-protected data, which may

not be modified by the user at the terminal.

SUMMARY OF FORM DEFINITION

This section gives information on how a form is specified and how to

use the FDL command to translate the FDL source input. with FORMS, the

data fields within a form are stored as a stream and must be converted

to some format to be displayed at the user's terminal device.

A format indicates the locations on a terminal screen where literal

text and variable data are to appear.

3 — 3 November 1979

SECTION 3 PlI{3■4@

A stream indicates the mapping of the fields passed to and from the
data record (in the files maintained by the application program) and
those fields displayed on the terminal screen.

Together, the STREAM and the FORMAT are called the form definition.

MAPPING

Mapping establishes a correlation between a STREAM descriptor field and
a FORMAT descriptor field. Mapping binds the record position and item

(field) length information etc. contained in the STREAM field to the
terminal device position and display attribute information contained in
the FORMAT field.

Fields in the data STREAM descriptor are mapped by name to

corresponding fields in the FORMAT descriptor. These field names need
not match the data names used within the application program, but
common sense and good programming practice dictate that the user

should, where practical, keep names as closely matched as possible.
For example, a data item called EMPLOYEE-NAME in a COBOL program might
be represented by a FIELD called EMPLNAME in a form definition. There
is an eight-character maximum for names within FORVIS.

STREAM descriptor fields that are mapped (some are not, refer to
Section 5) contain the name of the FORMAT descriptor field to which

they map in the body of the FIELD definition. Therefore, FORMAT

descriptor FIELDS are mapped to STREAM descriptor FIELDS and are also

assigned a name by the associated STREAM descriptor FIELD. ‘Two fields
are bound when the name specified in the STREAM descriptor FIELD and
the fieldname specified in the FORMAT descriptor FIELD are identical.
A bound field contains all available information regarding the data
therein: i.e., its record and terminal device position and length,
justification, validation, and display attributes.

Because the two parts of the form definition are described separately
in The Form Definition Language (FDL) , they must be in some way related
to each other. Since STREAM fields are mapped to FORMAT fields, so are
STREAM descriptors mapped to FORMAT descriptors. Each data STREAM

descriptor has an associated unique name. wnen the application program
uses a form definition, it is identified by this name. FORMAT

descriptors that correspond to a particular STREAM descriptor are

assigned an identical name.

Refer to the sample STREAM and FORMAT previously discussed. The STREAM

descriptorname must be the same as the FORMAT descriptor name. For

example, the STREAM descriptor FIELD describing the employee—id must

map to the FORMAT descriptor FIELD containing the employee—id.
Likewise, the STREAM descriptor FIELD describing the employee-name must

map to the FORMAT descriptor FIELD describing the employee-name, and so
on.

REV. 0 3 - 4

PDR3@40 DESCRIBING DATA

FORW DESCRIPTOR PREPARATION

The STREAM and FORMAT are coded in Forms Definition Language. This is

the source input to the FDL translator. The source input may be

prepared using the PRIMOS text editor (ED) and may’ be placed into a

file. For information on the editor (ED), refer to the New User's

Guide to Editor and Runoff. The STREAM and FORMAT descripbors are

translated by the FDL translator. When translated, the object output
is placed in the FORMS catalog using the FAP command. (For further

information, refer to Section 6.)

Coding a FORMAT

Figure 3-1 shows a shnple screen layout, amd the associated FORMAT

coding needed to define the tenminal screen layout that is illustrated.

From the exanple shown in Figure 3-1, it is possible to derive some

guidelines of how a FORMAT is defined.

0 The input line is generally free—format.

0 FORMAT descriptors and FIELD naes must start in column

(character position) 1 and be followed by'a space.

0 FIELD and FORMAT names must be from 1 to 8 alphanumeric

characters (Arz, 9-9).

0 FIELD statenentsrnay start anywhere after column. 1 and may

occupy columns 2-72.

0 Columns 73-80 are ignored by FDL.

0 Items in an FDL source input line may be separated by’ a space

or a comma.

Figure 3-1 also shows some of the fields specified as NOPROTECT. It is

a useful practice when specifying a field having the NOPROTECT

attribute, to allow two (2) screen positions either side of the

NOPROTECTed field for possible insertion of control characters.

The boundaries of a FORMAT descriptor are a FORMAT statenent and an END

FORMAT statement. Within the FORMAT definition, there must be at least

one DEVICE statenent and an associated END DEVICE statement. Within

the definition of a DEVICE, there may be as many FIELD statements as

are necessary to define the form. FIELD statenents define both literal

and variable (NOPROTECTed) fields. Optionally, REPEAT and END REPEAT

statements may be included as desired within the boundaries of a DEVICE

definition to define similar fields which are repeated a number of

t■nes on a form, for example, part numbers and part descriptions on a

parts list.

3 - 5 November 1979

SECTION 3 PDR3■4@

INFILE FORMAT

DEVICE OAILIZEQ

FIELD ‘NAME’ POSITION (2l,8) , REVERSE VIDEO
FIELD ': ' POSITION (25,8)

NAM FIELD LENGTH 16, POSITION (38,8), BDPROTECT
FIELD ‘DATE’ POSITION (2l,l), REVERSE VIDEO
FIELD ': '

POSITION (25,l@)
DAT FIELD LENGTH 6, P$ITION (38,l8) , NOPROTECT

FIELD ‘PROFESSION’ POSITION (2l,l2) , REVERSE VIDEO
FIELD ': '

PCBITION (31,l2)
PROF FIELD LENGTH 12, POSITION (38,l2) , l\DPROI'ECT

END DEVICE

END FORMAT

Figure 3-1. Sample FORMAT Code and Screen Display.

REV. 0 3 - 6

P1113040 DESCRIB ING DATA

Coding a STREAM

Figure 3-2 shows a simple data record layout and the associated STREAM

coding needed to define the data record used by the application program
to store the form within the record. From the example shown in Figure

3-2, it is possible to derive some guidelines about how a STREAM is

coded.

There is a slight alteration on the appearance of a FIELD statement in

a STREAM descriptor, compared to a FIELD in a FORMAT descriptor.

Examination of Figures 3-1 and 3-2 reveals the relationship that the

FIELD names used in the FORMAT must be the same as the identifiers in

the FIELD statements in the STREAM specification. Also, the FORMAT

name and the STREAM name are the same. This parallelism of names is

called mappig, and has been discussed in previous paragraphs. The

reason for mapping is to associate the data items in fields on the

screen with their counterparts in the fields stored in the data record

within the computer system.

The guidelines for coding a STREAM are essentially the same as for

coding a FORVIAT. The same rules hold for STREAM descriptors as for

FORMAT descriptors.
’

A STREAM descriptor begins with a STREAM statement, and ends with an

END STREAM statement. The only other kind of statements needed within

the body of a simple STREAM are FIELD statements. However, these FIELD

statements need not have names —
though they can — but must have an

identifier within the FIELD statement that maps to the same FIELD name

in an associated FORMAT descriptor. Optionally, REPEAT and END REPEAT

statements may be used as needed to lay out the description of fields

in the data record that are repeated a number of times.

Mhen coded, the STREAM is translated by FDL. The next portion of this

section discusses translation.

TRANSLATING STREAM AND FCRMAT CODING

To translate a source form definition, the command is:

FDL filename

filename is the name of the file that contains the source text of the

FORMAT and STREAM produced by the user. For example:

ox, FDL DATASI

Go

0000 ERRORS (FDL, REV 16 - l6—FEB-79)

0090 ERRORS (FDL, REV 16 — l6—FEB—79)

OK,

3 - 7 November 1 979

SECTION 3 PIR3040

NUMBER OF BYTES (CHARACTERS)

DATA RECORD

DESCRIBED BY

STREAM FILE

INFILE STREAM

FIELD NAM LENGTH 16, NOPROTECT

FIELD DAT LENGTH 6, NOPROTECT

FIELD PROF LENGTH 12, NOPRO'I‘ECT
END STREAM

Figure 3-2. Sample Data Record Layout and STREAM Coding.

REV. 0 3 - 8

PDR304■ DESCRIBING DATA

The FDL translation produces a binary-form object file and a listingfile named B_■ilename and L_filename, respectively. The above exanple
produces an object file named B_DATASl and a listing named L_DA'I‘AS1.
FDL Output Listing

The listing file for a FORMAT translation provides a listing of the
statements within the FORMAT descriptor and a diagram of the FORMAT
that is translated.

The listing file for a STREAM descriptor also provides a listing of the
statements within the STREAM descriptor. This listing always specifiesboth an input STREAM descriptor listing and an output STREAM descriptor
listing. If not otherwise specified, all STREAM fields are considered
to be INPUT/OUTPUT.

Exanples of the output listing from FDL will be foud in Appendix F and
Append ix H.

Table 3-1 lists the options available for use with the FDL command.

Table 3-1. FDL OPTIONS

Option Meaning

—OBJLIST Produce listing with translated code represented in octal.

+%ACLIST Lists macro expansions.

—ERRLIST List lines containing ERROS only. If errors are present,
this option overrides all others.

—ERRTERM Display (or print) lines containing errors at the user
tenninal.

—REPLIST Generate expanded REPEAT block listings.

—NOWACLIST Suppress expand macro listings.

—NOERRTER% Suppress error output to tenninal.

4NOREPLIST Suppress expanded REPEAT block listings.

3 - 9 November 1979

PDR3■4@ FOR■S RUN4TDWE PACKAGE

SECTION 4

FORMS RUN-TIME DIRECTIVES

REFERENCE INFORMATION

FUNCTION

The FORMS run—-time package provides a series of directives to perform
all form definition lookup, directive processing, data manipulation,
and device input/output (refer to Figure 4-1) .

The directives available in the FORVIS run-time package are listed

below. The following directives are generally concerned with form and

data input-output:

##CLEAR

#Wmm

##FORCEREAD

##INvoKE

##PosITIoN

##PRINT

##RELEAsE

##suBsTREAn

##vALIuATE

In addition, there are a nunber of FCRMS directives that control the

manner in which fields are displayed at the terminal. These are:

H8LINK/HNOBLINK

##DISPLAY/##NODISPLAY

HPROTECT/err #NOPROTE:CT

#RVIDEO/# #NVIDEO

USAGE

The application program passes to FORMS any statement that contains a

forms directive. A FORMS directive is written with two preceding hash

marks (H) in order to be identified by the program as a FORMS

directive. These directive are extensions of the source programning

languages in which the application program is written.

For example, to invoke form E-‘D4190 on the terminal and protect fields

FIELDA, FIELDB, and FIELDC, a FORTRAN application program would execute

the following directives:

WRITE (1 , 4:30)

400 FORMAT ('##INVOKE FD4l9@'/

+ '##PROTECT FIELDA, FIELDB, FIELII3')

4 — 1 November 1979

SECTION 4 PIR3■40

START
PROGRAM

APPLICATION
PROGRAM = :-
LOGIC

H INVOKE __
’

RELEASE ._
FORMS TERMINAL OUTPUT
LOG”; I/O FUNCTION SUBSTREAM _.7

CLEAR _

INPUT PROTECT/NOPROTECT _
CHECK
FOR I##- Pnocess _ NVIDEO/RVIDEO _

DIRECTIVE DIRECTIVE
NOBLINK/BLINK _

'3 DISPLAY NODISPLAYEXIT FORM / ‘T
PROGRAM

INVOKEO FIX/NOFIX __

N0 FORCEREAD __

y POSITION _
DO NORMAL PR CETERMINAL DemfsI/O

Figure 4-1. FORMS Run-time Package Functional Relationships.

REV. 0 4 - 2

PD3@4■ FORMS RUN-TIME PACKAGE

DESCRIPTION OF DIRECTIVES

The following paragraphs describe all directives available in the FORMS

run—time package. For clarity, they are depicted in upper—case

characters. Lower—case characters in FORMS directives arennapped to

upper—case.

P ##cLEAR [ALL]

The ##CLEAR directive clears all unprotected data displayed on the user

terminal. It also causes all data items marked as NOPROTECTed and

displayed in the input/output list to be reset to spaces. This is a

fast and convenient method to erase all user-input data. Alternately,

spacesxnay be written to all unprotected fields on the form. If the

#-HCLEAR directive is followed by the word ALL, the entire display is

erased. This should be done only prior to issuing a ##RELEASE

directive.

##CLEAR Examples

WRITE (l,4000)

4■@ FORMAT ('##CLEAR')

C-- CLEAN UP BEFORE EXITING TO COMMAND LEVEL.

C

WRITE (1 , 5020)

5020 FORMAT ('##CLEAR ALL'/ '##RELEASE')

OFF

D ##FKE.‘YS on

The ##FKEYS directive enables, or disables, user function key input

fran the terminal. If ##FKEYS is followed by the parameter OFF, the

function keys at the tenninal keyboard are disabled; if followed by

the parameter ON, function keys are enabled.

when function keys are disabled, they have no effect if entered. The

standard response is to place a warning message on the tenminal and

wait for the user to press the transnit key. When a form is invoked,

an implicit ##FKEYS OFF directive occurs.

4 — 3 November 1979

SECTION 4 PDR3040

when function keys are enabled, a two~digit code is automatically
appended to each input recond following the rightrmost FIELD defined in
the STREAM or SUBSTREAM. This field contains the number of the
function key that was pressed when the data was transmitted from the

device.(If the nonnal transmit key was pressed, this field contains

00.

If multiple substreams are described in the form definition, the

function key number is appended to each.

It is the user's responsibility to ensure that the two character

positions required for the function key field are available at the en
of each input record. If these two character positions are not

available, the function key number is not returned.

The application program may define each function key to per■onn some

special escape function, such as request a new form definition, exit

program, perform a database update with the new data entered on the

terminal, etc.

The user must not write an application program that makes use of
function keys unless all terminals that are to run the program are

equipped with function keys.

P HFORCEREAD

The ##FORCEREAD directive forces FORMS to wait for and to process user

input from the terminal, thus providing a facility to override the
nonnal input protocol when processing a foam definition with multiple
substreams. Normally, terminal input occurs when the application
program (1) executes the first read statement after the ■onn is

invoked, (2) issues a read statement following a write statement, or

(3) attempts to read a substream that has already been read. The
FORCEREAD directive causes terminal input on the next read operation,
whether or not the next substream to be processed has already been
read.

HFORCEREAD Example

WRITE (1,200)

200 FORMAT ('##FORCEREAD')

READ (1,210) IREC
210 FORMAT (32A2)

REV. 0 4 - 4

PDR304■ FORMS RUN-TIME PACKAGE

5 ##INVOKE fo rmname

The ##INVOKE directive defines the form definition to be used. It is

followed by the form (stream descriptor) name, tormname.

when the ##INVDKE directive is issued, FORMS searches the catalog for

the specified form definition. If found, it is read into memory and

initialized. If not found, an error message is printed and return is

made no HRD■OS command level. When a form is invoked on a device, all

input and output requests for that device are trapped and handled by
the run—time package. when the form definition is subsequently

released, all 1/0 is handled by calls to IOCS subroutines. (Refer to

the subroutine Reference Guide.

If a previous form definition was invoked and not released before

issuing the current ##INVOKE directive, an implied release of the

previous form definition occurs.

##INVOKE Example

WRITE (1,120)

12% FORMAT ('##INVOKE TAXD0l')

V HPOSITION

The ##POSITION directive allows the specification of the field to which

the cursor will be positioned on the next read operation. This coand

is only applicable to the next read operation; subsequent read

operations position the cursor to the first NOPROTECTed character

position on the terminal, unless subsequent ##POSI'I‘ION commands are

issued.

##POSITION Example

C-- POSITION TO FIELD SPECIFIED BY COTENTS OF 'FLDNAM'.
(‘Q

WRITE (1,250) FLDNAM

250 FORMAT ('##POSITION ', 4A2)

} ##PRINT formname [LOCAL]

The ##PRINT directive allows the user to print the current form and

user—entered data from the terminal to either the spooled line printer
or a local printer attached to the individual terminal. This permits
the program to print the current transaction on a hard-copy device

without defining a separate FORMAT'descriptor for the line printer.

4 - 5 November 1979

SECTION 4 PIR3040

If the paraneter LOCAL is included in the ##PRINT'directive, the fonn
is printed on whatever hardcopy device is attached to the terminal. If
the LOCAL parameter is not given, the copy is spooled for printing on
the line printer. If a special paper foam is needed by the line
printer, it must be mouted by the operator.

##PRINT Examples

WRITE (1,200) /*WRITE TRANS. TO SYS PRINTER
200 FORMAT ('##PRINT')

D HRELEASE

The ##RELEASE directive specifies that the current form definition is
no longer to be used. All I/O is processed via calls to IOCS util the
next ##INVOKE directive.

##RELEASE Example

WRITE (1,900)
90 FORMAT ('##RELEASE ')

> ##SLBSTREAM streamname

The ##SUBSTREAM statement defines the substream to be processed on the
next READ or WRITE directive in the host language. The SUBSTREAM name
streannanernust follow the directive and be separated from it by at
least one space. If the named SUBSTREAM does not exist in the STREAM
descriptor, an error message is.generated and the program aborts.

##SUBSTREAM Example

WRITE (l , 200)
200 FORM (' ##SUBSTREPM NAMAD]IR')

D HVALIDATE

The ##VALIDATE directive causes the run-time package to return the
validation status of all input data on encountering the next READ
statenent(s).

REV. 0 4 - 6

P1123049 FORMS RLN-TIME PACKAGE

The status is returned in the form of a two—digit number for each

input/emptyeconditional (see Section 5) or direct field (see Section 5)
that is not declared as output-only. It is not returned for

input-literal fields. The two-digit number returned represents one of

the following conditions:

Number

Range Cbndition

<6 The data failed all validation tests. (Value usually -1,
in this case.

$0 No validation specified for this field.

>0 This is the number of the first validation mask

that the data passed. Validation masks are numbered

in the order in which they appear in the FIELD

definition.

The validation status is returned in the same manner that data is

returned on a READ statement. If there are multiple SUBSTREAM

definitions, the user must do multiple READS to input the validation

status for all fields. The ##VALIDATE directive causes the next READ

statenent to input the validation status of the first SUBSTREAM in the

STREAM.descriptor unless a ##SUBSTREAM directive is issued before

##VALIDATE. The ##VALIDATE function is disabled and nonnal data input
resumed when either the end of the STREAM descriptor is encountered or

a ##SUBSTREAM or ##FORCEREAD directive is issued.

VALIDATE Example

C--- INPUT FIELD VALIDATION. FIRST SUBSTREAM CCNTAINS 5 INPUT

C FIELDS, SECOND CONTAINS '4.

C

WRITE (1,300) /* POS TO FIRST SUBSTREAM

3?J@ FORMAT ('##SUBSTREAVl ONE‘/'##VALIDATE')

READ (1,310)) (IVAL(I),I=l,9) /* READ VALIDATION

31$ FORMAT(5I2/4I2)

4 - 7 November 1 979

SECTION 4 PDR3@4■

ATTRIBUTE MODIFICATION DIRECTIVES

The application progrm may dynamically change .the attributes of a
field by issuing one of the attribute directives. From one to twenty
stream descriptor field names may’ be placed as arguments, each

separated by at least one space. The:modification occurs at the next
WRITE or READ in which data (as opposed to FORMS directives) is
transferred to or from the device.

The following table describes each of the eight attribute-modification
directives and three synonyms.

Statement/Synonym Description

HPROTECT wr 1 te—protects field

##NOPROTECT/ENABLE write-enables field

##RVIDEO field displayed on reverse video

#■■VIDEO field displayed in normal video

##BLINK blinks field when displayed
##NOBLINK field is displayed when fonm is output
##DISPLAY/FREE field is displayed when form is output
##NODISPLAY/HOLD field is not displayed when fonn is output

Example:

WRITE (1,300)
300 FORMAT ('##PROTECT NAME, IDNUMBER, ADDRESS'/

+ '##NoPRoTEcT REMARKI REMARK2 REMARK3')

PRCISRAMMING CONS IDERATIONS

Run-time File Handling

FORMS usually requires only one file unit for all file I/0. This unit
number is assigned dynamically and is the first available file unit not

already'open.

The only exception is for the systen printer device driver. To copy
files into the spool queue, two file units are required. Units 15 and
16 are used by PR$IO. To allocate two other units, modify variables
FUNITC (=5), PRINFO(1) (=15), and PRINFO(2) (=16) in the file

FORMS>IOS>PRO$IO. All are declared in DATA directives.

REV. E 4 - 8

PDR3■40 FORWS RN-TIME PACKAGE

Run—time Error Handling

Run—time error diagnostics generated by FORMS are se1f—exp1anatory.

Error message text is stored in the file FORMS*>RUN.ER. Each line in

the file is preceded by a numeric key, between 1 and 9999. If a

diagnostic requires more than one line (as do most), each following

line contains the same numeric key as the first. The end of the

diagnostic occurs when a line wdth a different numeric key is

encountered.

The procedure that calls the FORMS error handler may supply from 0 to 3

arguments. An argunent is inserted into the error diagnostic when a

percent sign (%) followed by'a value (1-3) is encountered in the text

string.

The calling sequence for Fowus run—time error handler is:

CALL FM$ERR (KEY, FSCODE, TEXI‘l, LENI, TEX'I‘2, LH\12, TEX'I‘3, LEN3)

Parameter Memory

KEY Numeric key of the error diagnostic to be printed. If

this diagnostic is not included in the file, an error

message is printed containing the error number. All

errors generated by FORMS have corresponding text

messages in RUN.ER.

FSCODE The file systen code associated with this error

condition. If this error is not a result of a file

systen error, this value should be zero.

TEXHh Text angument n. If not referenced by’ the error

diagnostic, this need not be supplied.

LENn Length in characters of the corresponding text

argument. If this argument is not used, it may be

anitted.

Users who write their own device driversxnay make use of this error

handling facility. Numeric error codes (keys) 1-999 are reserved.

Users may allocate any error code above, and including, 1069.

4 — 9 November 1979

SECTION 4 P11523040

Loading the Shared Library

It is a systen amninistration decision whether or not to support the
shared libraries. If shared FOHVIS is supported, shared CCBOL, MIDAS

(KI/DA on master disk), and FORTRANrnust be supported as well. If
shared libraries are in use, the FORMS shared library file will be
named‘VFORHS.

Configurable I/O List

The FORMS ru-time package contains a fixed length buffer, called the

I/O list that holds the current fonm definition. The default I/O list
size is 25GB words (dechnal). If the user runs a program which invokes
a form that exceeds this capacity, FORMS prints the error message:

REQUIRED= nnnn, AVAII.ABLE= 250%.

I/O LIST OVERFLON.

The user may allocate a larger I/O list in his (FORTRAN) program by
inserting the following three statements:

PARAMETER
IOLSIZ=desired_size

CQVIMON /IOBCMS/‘IBUF(3) , IOL(IOI_SIZ)
DATA IBUF /IOLSIZ, 3, Z/

All items are 16 bit integers.

The COBOL userxnay enlarge the I/O line size used in his COBOL program
by writing a short FORTRAN subprogram (statements start in column 7):

SUBROUTINE name

PARAMETER IOLSIZ=desired_size
COVIMON /IOBCMS/IBUF(3) ,IOL(IOLSIZ)
DATA IBUF/IOl'.SIZ,QJ,@/
END

Compile this suprogram with the FORTRAN compiler. when loading the
main COBOL program, load this FORTRAN subprogram's binary module

(B_hame) containing the redefinition of the I/O list prior to loading
the FORMS library.

The user may also modify the default buffer pool size by changing the
'IOLSIZ' declaration in 'FORMS>RUN>IOLDEF' and re—campiling the
run—time system, using the appropriate tools provided on the master
disk. Refer to the System Adninistrator‘s Guide. (This should be done
under the direction of a system administrator or senior systens
analyst.)

This feature is not available when using the 64V mode shared FORMS

library; however, the default size for the shared library is 7009
words.

PDR3@40 FORMS DEFINITION LANGUAGE

SECTION 5

FORWS DEFINITION LANGUAGE,

REFERENCE INFORMATION

This section defines the data definition language (FDL) that is used to

describe to the FORMS system the data formats discussed in Sections 1

■mmgh3.

SYNTAX OF FORMS DEFINITION LAMSUAGE

Statements

FDL supports a free—FORMAT statenent line.

Ail descriptor, substream, and field names start in the first character

position of the line and are followed by at least one space. Data

STREAM and device FORMAH‘descripmor statementsxnay start anywhere after

colun l and occupy columns 2 through 72. Columns 73 through 8% are

ignored. Items in the FDL input line must be separated by either a

space or a comma unless otherwise noted. Lower—case characters are

mapped to upper-case, except characters in a literal string (enclosed

within single quotes).

If an input record contains too many characters to fit on one line,

source text may be continued by placing a semicolon (;) at the end of

the line. Input items (words, text strings, etc.) may not be split

across two lines. There is no limit to the number of continuation

lines in a source record. There is, however, a 240 character lhnit per

statement.

Cbmments

If the first character of a line is an asterisk, the line is treated as

a comment, listed in the output file and ignored. If the first

character is a single quote (') the line is treated as a comment, but

this line causes an eject page in the listing and becomes the new page

header.

In addition to full-line comments (lines beginning with an asterisk or

single quote), inrline comments are supported. In—line comments are

preceded by; a fore-slash and asterisk (/*) and followed by an asterisk

and a fore-slash (*/). If the in—line coment is the last item on the

line, the tenninating characters (*/) may be omitted. In—1ine comments

may not occur within an item (e.g., in the middle of a name or text

string).

5 - 1 November 1979

SECTION 5 PER3040

Examples of Comments are:

* THIS IS A COMVIENT LINE

' THIS WILL CAUSE A PAGE-EJECT AND WILL BECOVIE THE NEW HEADER

LABEL FIELD ABC, LENGTH 6 /* THIS IS AN IN-LINE COVIVIENT

LABEL FIELD ABC, /*THIS TOO IS AN IN-LINE COVIMENT*/ LENGTH 6

NAME FIELD ‘FOUR SCORE AND SEVEN YEARS AGO.. . '
;

POSITION (10,l0) PROTECT /* CONTINUATION LINE

Naming Conventions

The rules for naming FORMS descriptors, fields, and substreams are:

0 name length: 1-8 characters

0 first character must be alphabetic
0 permitted characters: A-Z, 9-9

Examples of form descriptor names are:

Example Comment

GAZCRKLEFORM name too long
SHIPFORM val id

SFORM bad first character (5)
FORMS val id

O/sIED$ illegal character ($)
AMTONED val id

Descriptor Structure

Figure 5-1 represents various form definition structures for both the
STREAM descriptor and FORMAT descriptor (refer to Section 3 for an
overview of these descriptors) .

Each statement illustrated in Figure 5-1 is detailed in the paragraphs
that follow.

FORM DEFINITION DELIMITER STATEMENTS

The FDL statements described in this section are used to specify the

beginning and end of a form definition or a section of a form
definition. These statements do not describe data formats but rather
are used to identify STREAM and FORMAT descriptors, SUBSTREAM

descriptions and mVICE descriptions within a FORMAT descriptor.

REV. Q 5 - 2

PDR3@4■ FORWS DEFINITION LANGUAGE

Stream Descriptor

STREAM statement

FIELD definitions

END STREAM statement

END SUBSTREAM statement

END STREAM statement

STREAM statement

SUBSTREAM statement

FIELD definitions

END SDBSTREAM statenent

SUBSTREAM statement

FIELD definitions

FOMEAT Descriptor

FORMAT statement

DEVICE statement 1

FIELD definitions

END DEVICE statenent

DEVICE statenent 2

FIELD definitions

END DEVICE statement

END FORMAT statement

Figure 5-1. Form Definition Statenents.

3 November 1979

SECTION 5 PDR3@4■

STREAM Definition Statements

> name STREAM

The STREAM statement defines the beginning of a STREAM descriptor. The
name field begins in column 1 and must contain a unique stream

descriptor name (i.e., one that does not confl ict with any other stream

descriptor defined within the system). For example:

SHIPFORM STREAM

} END STREAM

The END STREAM statement defines the end of a STREAM descriptor. For

example:

END STREAM

y name SUBSTREAM

The SUBSTREAM statement defines the beginning of a substream

description. The application program transfers data to and from the
substream specified by name. (Refer to the introduction to substreams
in Sections 3 and 4, and the example using substreams in Section 7, For

example:

USERDATA SUBSTREAM

y END SUBSTREAM

The END SUBSTREAM statement terminates a substream description. Each

SUBSTREAM statement must have an associated END SUBSTREAM statement.
For example:

END SUBSTREAM

REV. Z 5 - 4

PDR3@40 FORMS DEFINITION I.AI\K3UAGE

FORMAT Definition Statements

p name FORMAT

The FORMAT statement defines the beginning of a FORMAT descriptor. The

contents of the name field defines the name of the format descriptor.

The name must be equivalent to that of the stream descripuor with which

this FRMAT descriptor will be used. For example:

USERDATA FORMAT

5 END FCRMAT

The END FORMAT statement tenminates the FORMAT descriptor and must be

the last statement in the FORMAT description. For example:

END FORMAT

DEVICE Definition Statements

5 DEVICE dev

The DEVICE statenent specifies the name of the device that is defined

by the field definitions in the following FIELD statements. §§g_is the

specified device nae. This statement is used in the FORMAT descriptor

immediately following a FORMAT or END DEVICE statement. For example:

ADMN377 FORMAT

DEVICE VISTAR3

p END DEVICE

The END DEVICE statement.defines the end of a device description within

a FORMAT descriptor. For example:

END DEVICE

5 — 5 November 1979

 REV. 0 5 -

SECTION 5 PDR3@4@

FIELD STATBWENTS WITHIN A STRENM DESCRIPPOR

The fields defined within the STREAM descriptor by the FIELD statement

identify: first, the location of each data item within the input or
output record; second, its length; and third, optional justification
and validation in■onnation.

Stream fields may be defined to be INPUT only, OUTPUT only, or

INPUT-OUTPUT, which is the default value. INPUT fields are processed
on input operations only, they are ignored on output. The reverse is
true for OUTPUT fields. INPUI‘—OUTPUT fields are processed on both

input and output operations. Using INPUT and OUTPUT fields, the

programmerxnay describe separate input and output record formats in a

single STREAM descripuar.

FIELD Types

There are six types of STREAM descripuor fields. Each type either
describes an iten within the user's data record or describes a literal

string to be mapped to a field defined in the FORMAT descriptor. The
field types are described in the following paragraphs.

Direct: A. direct field maps the data item in the input or output
record to the named FORMAT«descriptor field. Its format is as follows:

FIELD fieldname

Input Literal: An input literal field returns a literal string to the
data record on an input operation. It is ignored on output operations.
Its format is as follows:

FIELD ‘literal text string‘

Output Literal: An output literal field defines a literal text string
to be mapped into a FORMAT field on output operations. It is ignored
on input operations. No data is transferred to or tron the

input/output record. Its format is as follows:

FIELD (fieldname,'Iiteral text string'),OUTPUT

O‘\

PDR3@40 FORMS DEFINITION LA1\GUAGE

Input Empty Conditional: An input empty conditional (IEC) field

functions the same as an input or an input—output direct field with one

exception
— if the data field displayed on the device contains spaces,

the supplied literal string is returned instead of blanks. IEC fields

may not be output only. Also, IEC fields require an input-output
specification (the value of iospec may be INPUT or INPU'I'—OUTPUT) . ts
format is as follows:

FIELD (fieldname,'literal text string‘) , iospec

Filler: Fields defined as fillers perform no data transfer between the

application program and the device. They only define a gap in the

input or output record. On input and/or output operations, the number
of characters designated by the LENGTH parameter in the filler field

definition are skipped. A filler field's format is as follows:

FIELD FILLER, LENGTH n

System Information: Asystem information field (SIF) acts like an

output literal field. It is processedonly on output operations and it

maps data into a selected FORVIAT field. The mapped data, however, is
not a literal text string but a system related piece of information
like: current time, data, user name and number, or form name. The

format of a SIE‘ field is as follows:

t-‘IELD (fieldname , Slbname)

SIF names, contents, format, and length are described below:

DA'I‘El: date, YY/MM/DD {8 characters}

DATE2: date, DD-MMM-YY {9
"

}
DATE3: date, MM/DD/YY {8

"
}

DATE4: date, DD.MM.YY {8
"

}
TIMEl: time, HH:M.'Vl {5

"
}

TIME2: time, HI-I:MM XM {8
"

}
USERNAME: user login name, XXXXXX {6

"
}

USERNLM: user number, NN {2
"

}
FORVINAME: form name, xxxxxxxx {8

"
}

Each field with a direct, an output literal, an empty conditional, or a

system information field type is identified by a one-to-eight-character
name that must be unique within this STREAM definition. This name may
be supplied in the left margin of the field definition statement. If
not explicitly defined, the field name is assumed to be the name of the

format field to which the STREAM field is mapped. To modify any
attributes of this field, the field name is given as a parameter to a
FORMS run-time directive (refer to Section 4).

5 - 7 November 1 979

SECTION 5 PDR304@

FIELD Parameters (for STREAM)

The parameters discussed in the following paragraphs are position
independent. They may appear in the field definition after the mapping
or literal specification.

LENGTH Parameter: The LENGTH parameter defines the number of
characters contained in the field. The keyword LENGTH must be followed

by a positive non-zero integer.

LENGTH Usage: The LENGTH parameter when used with the various field

types has different effects with respect to its usage being required,
optional, or assigned default values. These are smarized in the

following list.

field type remarks

direct required

input-literal optional
— if omitted, defaults to text

string length; if supplied, text string
is padded/truncated as required to meet

given length

output—literal same as input-literal

empty-conditional same as input-literal
filler required

system-info ignored

JUSTIFY Parameter: The JUSTIFY parameter defines the justification to
occur when any data is logically'moved to this» field. It must be
followed by one of the following key words:

NONE specifies no justification
LEFT the field is left justified, right padded
RIGHT the field is right justified, left padded
CENTER the field is centered

Note

‘JUSTIFY NONE‘ has the same effect as not specifying the
JUSTIFY parameter.

If justification is specified on both the STREAM and FORMAT «descriptor
fields, the data is justified according to the STREAM»descriptor field

specification on input and according to the FORMAT descriptor field on

output.

REV. E 5 - 8

PDR3■40 FOHWS DEFINITION LANGUAGE

JUSTIFY Usage: 'I‘he JUSTIFY parameter when used with the various field

types has different effects with respect to its usage being required,

optional, or assigned default values. These are summarized in the

following list.

field type remarks

direct optional

input-literal optional

output-literal optional

empty—conditional optional
filler ignored

system—info lgnored

SPACE—FILL and ZERO-FILL Parameters: SPACE-FILL and ZERO-FILL are

mutually exclusive parameters that define the fill character to be used

when performing left or right justification. For each character

position the data is shifted, either a space or zero is supplied on the

end from which the shift is taking place. If the user enters the field

with the data already right justified and right justification with

zero-—fill is specified in the form definition, left—most spaces (if

any) will not be replaced with zeroes. If neither parameter is

specified, SPACE-FILL is assumed.

SPACE—FILL and ZERO—FILL Usage:

See JUSTIFY Usage.

INPUT, OUTPUT, and INPUT—OUTPUT Parameters: The INPUT, OUTPUI‘, and

INPUT—OUTPUT parameters, which are mutually exclusive, define the

direction of data transfer in which the specified field is to be

processed.

INPU‘I‘/OUTPUT/INPUT—OUTPUT Usage: The INPUT, OU‘I‘PUT, and INPUT-OUTPUT

parameters, when used with the various field types, have different

effects with respect to their usage being required, optional, or being

assigned default values. These are summarized in the following list.

field type remarks

direct optional; default is INPUT—OUTPUT

input-literal default to INPUT, if specified, must

be INPUT

output-literal must be specified as OUTPUT

empty-conditional must be specified as INPUI‘ or INPUT—OUTPUT

filler optional; default in INPUI‘—OUTPUT

system— info ig nored

5 - 9 November 1979

SECTION 5 PIR3■40

VALIDATE Parameter: The VALIDATE parameter defines the validation to

take place on the .field data when read from the device. The keyword
VALIDATE is followed by one or more val idation masks enclosed in single

quotes and optionally separated by the word ‘OR’.

when a field with a validation specification is transferred to the

input record at run-time, the data is checked against the validation

mask(s) supplied by the user. If all of the validation tests are

passed, the next field is transferred to the input record. If the data

fails all tests, FOH■S pertonms one of two actions specified by the

FIX/NOFIX.parameters.

A validation.mask consists of a string of characters, each defining a

certain criterion for the corresponding character in the field. If the

length of the validation mask is less than that of the data field, the

last character of the validation mask is logically repeated util the

data field is exhausted.

The validation mask characters and their meanings are:

Mask Character Validation Criteria

nuneric (0-9)

alphabetic (A-Z, a—z)

alphanumeric (9-9, A-Z, a—z)

period
fore-slash

space (blank)
dollar sign
dash

any character

numeric character (@-9, +, —, or blank)

floating nuneric (@-9, +, —, ., blank)

unsigned integer (9-9, blank)

personal nae (A-Z, a-z, ., ', or blank)

alphabetic character or spaceN"UC."'*JZ

l{DUJ\‘><3’\9

PDR3@40 FORMS DEFINITION LANGUAGE

VALIDATE Usage: The VALIDATE parameter when used with the various
field types has different effects with respect to its usage being
required, optional, or assigned default values. These are summarized
in the followdng-list.

field type remarks

direct optional

input-literal ignored

output-literal ignored

empty—conditional optional
filler ignored

_system—in■o ignored

For example: VALIDATE '99.99' or '99AA'

FIX, NOFIX Parameters: when a field with one or more validation masks
fails to meet any validation criterion, the programmer has a choice of

forcing the FORuS user to correct the data before FOR■S returns it to
the application program.

If FIX is specified, the data must pass one or more of the supplied
validation tests before it is returned to the application program. If
the data fails all validation tests, FRMS prints an error message in
the lower right corner of the terminal display and positions the cursor
to the first character position of the field in error. The user at the
terminal may then correct the error and re—transmit the information.

If the NOFIX parameter is specified, the data is returned to the

program whether or not it passes any of the validation tests. when the

input record is complete, FGWHS returns to the error return location
instead of taking the standard return. An ERR= clause must be present
in a FORTRAN read statement if any fields in the form definition
contain a paragraph to do "error" processing. A.validation error may
be identified by either a FORTRAN or COBOL program by inspecting the
two—character error code in the error vector by calling the GETERR

system subroutine. (Refer to subroutine Reference Guide). FCRMS sets
this code to VA for validation errors.

In most cases, it is convenient to require the data be in proper format

when it reaches the application program (i.e., using the FIX

parameter), eliminating the task of inspecting multiple fields on a

character—by-character basis.

If FIX or NOFIX is not specified, FIX is assued.

FIX/NOFIX Usagezk The FIX or NOFIX parameter when used with the various
field types has different effects with respect to its usage being
required, optional, or assigned default values. These are summarized
in the following list.

5 - 11 November 1979

SECTION 5 P1113040

field type remarks

direct optional

input-literal ignored

output-literal ignored

empty-conditional optional
filler ignored

system—info ignored

START Parameter: The START parameter allows the user to specify the
character position occupied by the first character of the data field
within the input or output record. The the START parameter function is

equivalent to that of the 'T' FORMAT descriptor in a FORTRAN FORMAT
statement. START allows overlapping of input/output fields, a function
not available with the FILLER specification.

The word START must be followed by an integer number that represents
the absolute character position (within the user's data record) of the
first character of the field.

CAUTION

If START dis specified in an input-only field, the

character pointer gets reset for the input record
but not for the output record. The inverse is true
for output-only fields. This is reflected in the

input and output STREAM descriptor formats

generated by FDL, if the -IOFLIST option is

specified.

START Usage: The START parameter when used with the various field

types has different effects with respect to its usage being required,
optional, or assigned default values. These are summarized in the
following list.

field type remarks

direct optional

input-literal optional

output-literal optional

anpty—conditional optional
filler optional

‘

system—info ignored

REV. 0 5 - 12

PDR3■4■ FORMS DEFINITION LANGUAGE

FIELD DEFINITION EXAMPLES: STREAM DESCRIPTORS

The following FDL coding example shows how the types of STREAM

discussed in this section are defined. The lines of code also show

usage of some field parameters discussed. Before each field

definition, a comment line has been inserted that identifies the type
of field being defined.

The following example code shows and example of definition of each

type of field discussed and use of some of the field parameters
that are significant when used with the particular field types.

* DIRECT FIELD TYPE.
*

FIELD IDNUVI, LENGTH 5

* LITERAL INPUT FIELD, RETURN STARTING IN COLUMN 30

FIELD ‘LITERAL INPUT STRING‘ , START 30

* OUTPUT LITERAL FIELD

FIELD (E-1EADER,'HEADER TEX'T') , OUTPUT

* INPUT EMPTY C(1\lDITIONAL FIELD TYPE

FIELD (EMPLNAVlE,'NO EMPLOYEE NAME SPECIFIED‘) , ;

INPUT-OUTPUT
* NOTE USE OF SEMICOLON FOR FDL CONTINUATION LINE

* FILLER FIELD

FIELD FILLER, LENGTH 12

* SYSTEM INFCRMATION FIELD

FIELD (OUTDATEHDATE3)

* INPUT-ONLY FIELD, JUSTIFY AND VALIDATE

FIELD AGE, LENGTH 3, JUSTIFY RIGHT,, INPUT, ;
VALIDATE '999' OR ‘B’

5 - 13 November 1979

SECTION 5 PDR3@40

FIELD STATEMENTS WITHIN A FORMAT DESCRIPPOR

Fields defined within the FORMAT descriptor describe the appearance of
data on the page—oriented device. This definition includes (1) field

coordinates, (2) length, (3) justification, and (4) any display
attributes to be associated with the data (e.g., write enable/protect,
blink, reverse video, etc.) .

FIELD Types

There are two types of FORMAT descriptor field statements: mapped and

literal. These are described in the following paragraphs.

Mapped: A mapped field is actually mapped _t_:_c_>_ by a field defined in the
STREAM descriptor. All mapped fields contain a 1-8 character name

starting in the left margin in the field definition statement. The
format of a mapped field is as follows:

name FIELD field—name

Any mapped field defined in the FORMAT descriptor and not mapped to by
 a STREAM field is ignored. Any STREAM descriptor field that maps to a
nonexistent FORMAT descriptor field is also ignored.

Literal: A literal field contains a text string specified in the

FORMAT descriptor field definition. Literal fields are used to supply
tags (titles) for information displayed on the device and usually
identify mapped fields. The format of a literal field is as follows:

FIELD ‘literal text string‘

The literal data is specified immediately following the FIELD statement
and must be enclosed within single quotes. The name field (left

margin) must be blank (no mapping is done from a stream descriptor
field.)

FIELD Parameters (for FORMAT)

The following parameters may follow the FIELD statement in a mapped
field and the literal specification in a literal field. They are all

non-positional (i.e., they may occur anywhere in the field definition).
All parameters apply to both the mapped and literal device descriptor
field types. All parameters are optional unless otherwise noted.

REV. 0 5 - 14

PDR304D FORMS DEFINITION LANGUAGE

LENGTH Parameter: The LENGTH parameter defines the length of the field

as it is to appear on the device. It must be followed by a positive
non-zero integer that represents the field length in characters. This

parameter is required on mapped fields and is optional on literal

fields. If omitted, the field length is assuned to be the length of

the literal string.

The length of a field in the STREAM descriptor may differ from the

length of a field in the FORMAT descriptor. The STREAM field defines

the length in the input/output record of the application program and

the device format field length defines the length of the field on the

input/output device. If they differ, the data is truncated or padded
as required.

POSITION Parameter: The POSI'I'ION parameter defines the position

(column and line) of the first character in the field. The keyword
POSITION is followed by the colunn and line (x,y) address, enclosed

within parentheses and separated by a comma. This parameter is

mandatory on both mapped and literal fields.

JUSTIFY Parameter: The JUSTIFY parameter defines the justification to

take place when data is logically moved to (through) this field. Refer

to the description of the STREAM descriptor field JUSTIFY parameter.

This parameter is optional on both mapped and literal fields, and its

default value is JUS'I'IFY NONE if JUS‘I'IFY is not specified.

Display Attribute Parameters

The following eight parameters are used to describe the display
characteristics of the field data when it is written to the specified

device. If a device does not support a feature, such as reverse video

or blink, the attribute is ignored.

NOPROTECT (or ENABLE) Parameter: Tne NOPRO'I‘ECT parameter, which is

mutually exclusive with PROTECT, declares the associated field to be

write-enabled upon display at the user terminal. when displayed on the

line printer, the field is underlined (if underlining is available).

PROTECT Parameter: The PROTECT parameter declares that the field is to

be displayed write—protected when written to the user terminal. Wnen

printed at the line printer, it is not underlined (displayed normally).
If neither PROTECT nor NOPROTECT is specified, PROTECT is assumed.

BLINK Parameter: The BLINK parameter defines the field to be blinked

when displayed on the terminal. It has no effect in a device

descriptor for the printer.

5 - 15 November 1979

SECTION 5 P1123040

NOBLINK Parameter: The NOBLINK parameter defines the field as not
blinked when displayed at the user terminal. If both BLINK and NOBLINK
are omitted, the default value is NOBLINK.

REVERSE VIDEO Parameter: The REVERSE VIDEO parameter causes the field
to be displayed in reverse video at the user terminal. It has no
effect when output is printed at the line printer.

NORMAL VIDEO Parameter: The NORMAL VIDEO parameter declares the field
to be displayed in normal video at the terminal. If both the REVERSE
VIDEO and NORMAL VIDEO parameters are omitted, the default value is
NORMAL VIDEO.

NODISPLAY (or HOLD) Parameter: The NODISPLAY parameter causes the
field not to be displayed when the form is output. It is valid on all
terminal and line printer device types.

DISPLAY (or FREE) Parameter: The DISPLAY attribute causes the field to
be displayed when the form is output to either the terminal or the line
printer. If both the DISPLAY and NODISPIAY parameters are omitted, the
default value is DISPLAY.

FIELD DEFINITION EXAMPLES: FORVIAT DESCRIPTOR

The following FDL coding example shows how the types of FCRMAT fields
discussed in this section are defined. The lines of code also show

usage of some field parameters discussed. Before each field
definition, a comment line has been inserted that identifies the type
of field being defined.

* MAPPED FIELD, NOT WRITE-PROTECTED
1:

INVNUVI FIELD POSITION (70,2), LENGTH 6, NO PROTECT

* LITERAL FIELD
*

FIELD ‘Literal String Test‘ , POSITION (1,4) ;

IROGRAMVIING AIIB

The following paragraphs describe FDL statements to assist the

programmer designing a form. They include a macro capability (the
DEFINE statement) and iterative field generation (the REPEAT
statement).

REV. E 5 - 16

PDR3@4■ FOR‘/IS DEFINITION LANGUAGE

MACRO DEFINITION

Currently, a macro consists simply of one text item replacing another
item or text string (i.e., a synonym).

name DEFINE item

The DEFINE statement allows the definition of a macro.

A DEFINE statement must be preceded by the name of the macro, starting
in Column 1. The statement nane must be followed by one or more spaces
and then by the macro text.

whenever the macro name is encountered as a single item within an input
line (not in a literal text string) , the macro name is replaced by the

given definition. All macros must be defined before they are used.

Macro definitions are not retained between form definitions. They are

erased after each END STREAM and END Fa’-{MAT statement.

Examples

FLD DEFINE FIELD

LEN DEFINE LENGTH

POS DEFINE PCB ITION

Dlx DEFINE 5

DIY DEFINE 10
it

it

* FIELD DEFINITION USING ABOVE MACRO DEFINITIONS

DATAl FLD, POS (DlX,DlY), LEN 10
ac

* NOTE THAT THIS HAS THE SAME FUNCTION AS:

DATAl FIELD, PCBITION (5,l■), LENGTH 10

ITERATIVE FIELD GENERATION

Iterative field generation allows generation of multiple blocks of

field statements with only one block definition. Fields to be
A
generated in this manner must be enclosed within REPEAT and END REPEAT

statements .

Iterative field generation is permitted in both STREAM descriptor and

FORMAT descriptor definitions. A two-digit iteration number is

appended to any field name found in either the left margin or

immediately following a STREAM field statement. If the field name is

seven or eight characters, it is truncated to six characters to permit
the iteration number to be appended. The same is true for FORMAT

(mapped) field names encountered in direct, output-literal, and

input/empty-conditional STREAM descriptor fields.

5 - 17 November 1979

SECTION 5 P11713040

D REPEAT n

The REPEAT statenent defines the beginning of an iterative field

generation (REPEAT) block. It. must be followed by an integer (n)
greater than zero that represents the number of iterations to make

through the field definitions that follow in the FDL source text. The
iteration counter is initially set to one and is incremented by one at
each pass through the REPEAT block. when the couter exceeds the

specified repeat count, the statement immediately following the
associated END REPEAT statement is processed.

Only FIELD statements are pennitted wdthin a REPEAT block.

5 END REPEAT

The END REPEAT‘statement tenminates a REPEAT block. Eor each REPEAT
statement there must be a correspondin END REPEAT statement. Repeat
blocks may not be nested.

RELATIVE POSITI(1\I PARAMETER

A second form of the POSITION parameter is available to fields defined
within a repeat block. This permits the field coordinates to be
relative to the current iteration number instead of absolute line and
column.

Relative positioning is specified by placing a plus or minus sign
immediately preceding the line and/or column«definition in the POSITION

peraeter. The absolute line or column number is computed by adding or

subtracting the current iteration number to or tron the specified
offset.

An exaple of both iterative field generation and relative positioning
is shown in the following linew of FDL code:

* THIS BLCXIK WILL BE REPEATED 3 TIMES
*

REPEAT 3

LASTNVI FIELD LENGTH 2%, POSITION (l■,+7)
FRSTNM FIELD LENGTH 10, P(BITI(1\1 (35,+7)
MIDDIN FIELD LENGTH 1, POSITION (50,+7)

END REPEAT

REV. 0 5 - 18

PDR3040 FOHWS DEFINITION LANGUAGE

The previously shown FDL code that used the relative position feature

and a repeat block accomplishes the sane function as the following FDL

code that does not take advantage of these features:

LASTN‘/101

FRSTNVl@l

MIDDINIZJI

LASTNVM2

FRSTNVM2

MIDDINEZ

LAsT‘Nvm3

FRSTNVM3

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

LENGTH

20,

10,

1:

29,

10,

1:

2%,

10,

POSITION

PCBITION

POSITION

PCBITION

POSITION

PCBITION

POSITION

PCBITION

(l■,8)

(35.8)

(50:53)

(l@:9)

(35,9)

(50.9)

(19,191)

(35,l0)

MIDDINU3 FIELD LENGTH 1, POSITION (50, 1%)

LISTING CONTROL STATEMENTS

D NOLIST

The NOLIST statement disables the listing of all FDL statements, macro

and repeat block expansions, except for those containing errors. It is

overridden only by the —EXPLIST command line option.

> EJECT

The EJECT statement causes the listing to eject to the top of a new

page when the listing file is output (spooled) to the line printer.

The old page header is retained. For a new page header, refer to the

section entitled ‘General Syntax‘ . ‘Ihe EJECT statement has no effect

if the listing is turned off (via the ERRORS ONLY option or NOLIST

statement) .

ALTERNATE INPUT FILE ($INSERT)

D $INSERT pathname

The contents of another FDL source file may be inserted into the

primary input file at translation time. This is accomplished by

placing the $INSERT directive in the left margin of the input line,

followed by at least one space, and then the pathname of the file to be

inserted. Input is then obtained from the inserted (alternate) disk

file until the end of file (EOF) is encountered. when EOF is reached,

FDL resumes processing the primary input file at the line following the

SINSERT directive. No modification of the main input file is done.

This temporarily "switches" the input flow from the primary to the

alternate input file.

November 1979

SECTION 5 P11323040

The SINSERT directive provides a convenient method of incorporating a
corrmon macro definition file into an FDL source file. For example:

$INSERT <SOF\'IWR> FORMS> MACROS

FDL TRANSLATION, CLMMAND FORMAT

> FDL pathname -options

FDL is invoked by entering the external command FDL. The command may
be followed by an input file name and/or a list of translation options.

pathname specifies the input (source) text if it is to be obtained from
file specified by pathname. This parameter may only appear immediately
following the command (in the option -INPUT) name.

Option Definition

-INPUT pathname defines the source file, same as pathname, but

may appear anywhere on the command line

-INPUI‘ TTY source text is to be obtained from the user
terminal

—LISTING listing file is to be generated

—LISTING lpath listing is to be written to file specified by the

pathname lpath

-LISTING NO no listing file is to be produced

-LISTING TTY listing is to be printed at user terminal

-LISTING SPOOL listing file is to be routed directly to spool
queue — the name of the spool file is printed on
the user terminal prior to start of translation

—BINARY binary file is to be generated

—BINARY bpath binary file output file is to be generated with
the name specified by bpath

—BINARY NO no binary file ‘is to be generated

REV. 0 5 - 20

PDR3@40 FORMS DEFINITION LANGUAGE

If a —BINARY or —LISTING option is not rollowed by a lpath or opath,
the binary file is written to either the file open on File Unit 3 or to
a file called B filename, if no file is open. Similarly, the listing
file is written t3 either the file open on File Unit 2 or to a file
called LLfilename, if no file is open.

The following are the FDL-specific options (minhnun abbreviations are
underlined):

option definition

:gBJLIST list enitted object text

:gACLIST generate expanded macro listing

—ERRLIST generate errors—only listing

—EXPLIST override NOLIST pseudo—op

—ERRTERM list errors on user terminal

—IOFLIST list I/O and device formats

:3EPLIST expand and list repeat blocks

Each FDL—specific option except —EXPLIST may be preceded by a NO to
reverse the option's meaning. For exmple, —NOWACLIST specifies that
an expanded macro listing is to be suppressed. An optional parameter
may be abbreviated to the minhnun nunber of characters required to
distinguish it from other paraneters. For exanple:

FDL FDEFIS -LISTING SPOOL -BINARY NO -CBJ -MAC

Default Option Values

Each installation may choose a set of default options for the FDL
translator. Currently, the rollowing options are standard:

-LISTING -B INARY -I OF LIST -ERRTERM

All other options are disabled. FDL defaults are set by the A—register
setting in the translator's memory—Lnage file. The user may select his
own default options by RESTORE'ing a copy of FDL and SAVE'ing it with
the desired bits set in the A—register. The following table shows the
A—register bit settings for FDL options and device codes:

5 - 21 November 1979

SECTION 5 PDR3@40

options device codes

bit set for

0 > none
1 -CBJLIST l > terminal
2 4%ACLIST 2 > paper tape
3 —ERRLIST 3 > card reader
4 —EXPLIST 4 > printer
5 -ERRTERM 5 > magtape
6 —IOFLIST 6 > undefined
7 —REPLIST 7 > disk file

8—l■ input device
11-13 listing device
14-16 binary device

The default A—register setting is '6777.

RUN~TIME MESSAGES

After each stream or format descriptor is translated, FDL prints a
message at the user terminal containing the rnnber of errors
encoutered in the source text and the FDL revision nunber.

FDL TEWPORARY FILES

While translating a source file, the FDL translator may produce one or
more of the following files:

Name Fbrmat Contents

ER##uu ascii error definitions (*)
RP##uu ascii current repeat block
IN##uu ascii input stream/substrean definition
OU##uu asci 1/ output stream/substream format

binary device format map

All files are created and deleted by FDL. The only way that the user
can examine them is to use CNTL-P to break out of the translator and/or
pertonn a LISTF while another user is runing FDL in the same UFD.
* The Eu in the filename denotes the current user nunber — this

permits multiple FDL translations simultaneously within the sane
directory.

PH?3040 FORMS DEFINITION LANGUAGE

FDL CUVIMAND LINE EXAMPLE

OK, FDL DSl

GO

0000 ERRCRS (FDL, REV 16 -
16-FEB-79)

0000 ERRORS (FDL, REV 16 - 16-FEB-79)

OK,

5 - 23 November 1979

PD3@4Z ADMINISTRATIVE PROCESSOR

SECTION 6

FORWS ADMINISTRATIVE PROCESSOR

(FAP) .

REFERENCE INFORMATION

FUCTION

The FORMS Administrative Processor (FAP) provides the commands to

create and maintain the forms definition catalog, configure new

terminals and new device drivers into the FORMS system, and obtain the

systen status.

COMMAND FORMAT

FAP is invoked by typing the command: FAP. FAP prints a header line

followed by the current revision number.

EAP COMMANDS

The following paragraphs describe the commands supported by FAP. All

command names may be abbreviated to three characters.

Available FAP commands are:

ADD

CREATE

GENERATE

JOURNAL

LINK

LIST

PURGE

QUIT

REPLACE

TCB

[LIST]5 ADD filename LIST UPDATES

The ADD command enables the user to add form definitions to the FORMS

catalog. The name of the binary form definition file (filename),

generated by the FDL translator, must immediately follow the keyword
ADD. This filename usually starts with B_. the binary file may
contain more than one form definition (e.g., if there was one stream

descriptor and one format descriptor with definitions for three

devices, the binary file contains four form definitions). FAP

considers each EVICE descriptor defined under a single FORVIAT

descriptor to be a separate form.

6 - 1 November 1979

SECTION 6 PIIR3040

The ADD command adds only new modules to the FORMS catalog. Any
attempt to replace a form already residing in the FORMS catalog with

the ADD command causes the new form definition to be ignored and a

warning message to be printed at the user terminal.

The input (binary) file name may be followed by the parameter LIST or

LIST UPDATES. If this is specified, all form definitions added to the

FCRMS directory are listed by name on the terminal.

when the binary file has been processed, the number of modules added

and ignored (‘due to duplicate entries) is printed.

If any translation errors were generated by FDL, the message WARNIBE!

form-name CON'I'AINS ERRORS is printed or displayed at the terminal. A

binary form definition with translation errors will probably generate
undesirable results at run—time. The user must correct the source file
and retranslate it with FDL.

ADD Examples

ADD BGFMQ3

Z1 DEFINITION ADDED.

ADD B-FMG4 LIST

DEIIJCT STR VZO ADDED

DEDUCT EMT VISTAR3 VG 0 ADDED

DEUJCT FMT PRINTER V90 ADDED

0 3 DEFINITIONS ADMD.
*

5 CREATE [DIRECTORY]

The CREATE (or CREATE DIRECTORY) command allows creation of a skeleton
FORMS catalog.

If the FORMS directory does not exist, FAP requests a disk volune-id on

which the UFD named E‘ORMS* is to be created. The user must then enter
the volume—id (DSI<RAT name) of the pack/partition that will contain the

FORMS directory. FAP then asks for the MFD owner password on this

volume. After this information has been entered, the FORMS UFD,

catalog, and terminal configuration files are created. The CREATE

command produces an error message if the FORMS catalog already exists.

To create a fresh copy, the old file must first be deleted using the

TREDEL command under FUFIL.

PDR3■40 ADMINISTRATIVE PROCESSOR

If the FORMS* UFD is created with FAP by the user, the following files

must be copied to this directory before executing an application

program that uses FORVIS:

DCF.AS RLN.ER [IIF.BN

These files may’ be found in the FORMS* UFE>as released on the master

disk.

CREATE Exaple

The followdng is an exmple of CREATE command dialogue.

OK, FAP

GO

FAP REV 16 11 - FEB — 79

* CREATE

UFD "FORMS*" DOES NOT EXIST

SHALL I CREATE IT? _3_(_E_§
ENTER owNER PASS/TORI) (IT WON'T ECHO): ABCDEF

THIS MFD IS FULL, TRY AGAIN.

ENTER DISK VOLUME-ID: SGT/\IR

ENTER (INNER PASSNORD (IT WON'T ECHO) XXXXXX

'I'CB CREATED.

DIRECTORY CREATED.

‘k

On any input request within the CREATE dialogue, the user ‘may input

CNTL—C to abort creation and return to the FAP command level.

> g_E_NEHATE

The GENERATE command is issued when the device control file has been

modified; normally, when a new'device driver has been added to the

systan or a device driver has been removed. The GENERATE command

creates three $INSERT files and one binary file in FORMS* directory.

The files generated are as follows:

6 — 3 November 1979

SECTION 6 PIR304(7J

. DEVEXT — external declaration statements for

run-time device drivers

. DEVDAC - 64R mode driver dispatch table

. lI:VIP - 64V mode driver dispatch table

. DCF.BN —
binary representation of the new device

control file (DCF.AS)

The GENERATE command must be issued and a new run—time I/O package must
be assembled each time the device control file (DCF) is modified.

filename

D JOURNAL START ON filename

STOP

The JOURNAL command allows the logging of transactions with the FORMS

catalog in an ASCII file that can be printed. All ADD, REPLACE, PURGE

(described below), and ‘PCB (described below) transactions are recorded
in the JOLRNAL file.

The JOURNAL command may be used to enable or disable the logging
function. To disable it, the command JOURNAL or JOURNAL STOP may be

issued. To enable it, the command line JOURNAL filename or JOURNAL
START ON <filename> may be issued.

JOURNAL Example

* JOURNAL LOGGED
* ADD BF0l
* 08 DESCRIPTIONS ADDED.
* JOURNAL STOP
*

ALL

> L__I_N_K formname

The LINK command allows users to upgrade to current software revisions
without having to rebuild each form definition. It may also be used to
recover from various form definition file inconsistencies when a
run—time error dictates such recovery is necessary.

There are two LINK command forms. LINK ALL specifies that all form
definitions contained in the FORMS directory are to be re—1inked. If
the LINK command is followed by a formname, only the specified form
definition is linked.

Linking is the process that combines the STREAM and FORMAT descriptors
into one form definition. This form definition is then stored in a
file in the directory named FORMS>LNK.FD, for faster access at
execution time. It is the linked form definition and not the
individual stream and format descriptor that is used when a form is
invoked at execution time (run—time) .

REV. 0 6 - 4

PDR3QJ4■ ADMINISTRATIVE PR(I3ESSOR

The linked form definitions are transparent to the user. They are

automatically created or updated by FAP when a form definition is added

to or replaced in the catalog. The corresponding link file is deleted

when a format descriptor is purged.

.ON TERMINAL

p LIS'I‘ [FILE filename]
ON FILE filename 2

The LIST command causes all or part of the FORMS catalog to be listed

by name and type. This may be followed by a form name specifier to

selectively list a part of the catalog. If the form name specifier is

omitted, the entire catalog is listed. If the phrase ON FILE filename

3 is included, the catalog listing is written to the specified file.

If the phrase ON TERVIINAL is specified, or if the ON FILE specifier is

anitted,lthe listing is written to the user terminal.

The information in the catalog listing includes:

. formname, type, and device (if any)

. version number

. owner (login) name

. creation, last access, last modified dates

(file output only)

LIST Example

* LIST

FORMS DIRECTORY ON THURSDAY, FEBRUARY 2, 1978 AT 9:45 PM

NAME TYPE DEVICE VER GAINER

HDRFO1 STR V02 JIMW

HDRFO 1 FM’I' VISTAR3 V00 JIMW

I-IIRF02 STR V■■ DAVEW

I-IDRFQJ 2 FMT VISTAR3 V00 DAVEW

04 ENTRIES.
*

y PURGE (formname—specification) |[LIST UPDATES]

The PURGE command purges form definitions from the FORMS catalog. The

PURGE conmand must be followed by a form name specification that

designates which form definitions are to be purged. It may also be

followed by the word LIST or LIST UPDATES, which causes all purged

forms to be listed by name on the user terminal.

6 — 5 November 1979

SECTION 6 PIR3@40

'I'ne formname—specification designates the form definitions to which the

invocation of the PURGE command applies. Both PURGE and LIST commands
use this option.

The formname-specification is enclosed in parentheses and has the

following formats:

formname

formname . type
to rmname .type zdev ice

type may be:

STR for stream descriptor, or

FMT for format descriptor

If only formnaine is specified, the PURGE command relates to all forms
with the given name, any type and any device. If the second

specification is used, the command relates to all forms of the given
name and type. If the type is FMT, it relates to all device

descriptors within the format definition. If the third type of

specification is used, the command relates to the one definition that
contains the same name, type, and device. This letter construction
should only be used on format descriptors (there is no device
definition for a stream descriptor!) .

If any item in the form name specifier (formname, type, or device) is

specified as an asterisk (*) , or as the word ANY, no check will be made

on that item when scanning the FORMS catalog.

Up to 20 torumames may be specified within the parentheses, separated

by commas.

PURGE Examples

OK, FAP

GO

FAP REV 16 23-FEB-79

* PURGE (CRDERI9)

2 ENTRIES PURGED.

* PURGE (CRDERZE. STR)

1 EN'I‘RY PURGED.

* PURGE (ORDER2.1.FMT: O/\ILl200)

1 ENTRY PURGED.

REV. 0 6 — 6

PDR3@40 ADMINISTRATIVE PROCESSOR

> 99.1?

The QUIT command causes FAP to exit and return to Primos command level.

FAP may be re-entered by typing the START (S) command.

QUIT Example

* QUIT

OK,

> REPLACE filename

The REPLACE command functions the same as the ADD command, but causes

any form definitions in the FOR)/IS catalog that are redefined in the

input (binary) file filename to be replaced with the new definition.

Any form definitions in the binary file that are not defined in the

catalog are added.

REPLACE Example

* REPLACE B-F@l9

$2 DEFINITIONS REPLACED.
* REPLACE B-FGZQ

01 DEFINITION ADDED 03 DEFINITIONS REPLACED.

uu terminal
* terminal

> TCB LIST filename‘""
LIST

The TCB command modifies the terminal configuration file. This file

contains a 64 by 4 word table that describes the terminal type for each

FORMS user on the (local) computer system. It is used in conjunction

with the device control file (DCF) at run-time to select the terminal

device driver for a given FORMS user. Both TCB and DCF files are

explained in detail in Appendix B.

Tb modify the terminal configuration file, the TCB command may

optionally be followed by parameters that reflect the type of operation

being performed. The parameter terminal specifies a type of terminal,

such as ONLIZM or VISTAR3. The user number, L_1_L_1_ when specified

initiates an addition, a replacement, or a deletion from the Terminal

Configuration file with regard to the user specified by _uu.. when

specified alone, uu causes the user with that number to be removed

(deleted) from the_l'31ock. If it is attempted to delete a nonexistant

entry, a warning message and returns to FAP conmand level. If the

value _uu_ is not already in the terminal configuration file, and if

6 — 7 November 1979

SECTION 6 PDR3@40

specified with a value for tenninal, an addition is made to the file
for user 33 with tenninal type tenninal. However, if an entry for uu

already exists in the terminal configuration file, and if a value 56?
terminal is also specified, then a new entry replaces the existing

entry for uu in the file. The TCB command with the parameter
* in

place of_uu_will cause the current values for ug_to be placed in the
terminal configuration file. TCB with the optional parameter LIST
lists all the files in the FORMS catalog (directory). TCB LIST
filename lists only those entries that pertain to filename. To add or

’change the terminal type, the 1- to 8- character tenninal nanexnust be

input. If the specified user 33 already had a TCB entry, the name of
the old terminal type is printed on the terminal.

* TCB LIST

TERMINAL CCNFIGURATION ON TUESDAY, JANUARY 9, 1979 AT 11:58 AM

USER TERMINAL

03 VISTAR3

G4 GWLl200

05 OWLIZQO

06 GNLIZGQ

07 OWLl20■

08 OWLl20■

09 OWLIZZG

10 OWLIZGG

ll OWLl2■■

12 OWLl2@■

32 ENTRIES .

REV. 0 6 - 8

FAP EXAMPLE

Having translated the example format and stream

PIR3040 ADVIINISTRATIVE PRCIIESSOR

in Section 3 thus

producing a binary file B__DATASl and a listing file L_DATASl, the

binary representation may be placed in the catalog by using the FAP

command , as follows:

OK, FAP

GO

FAP REV 16

* ADD B..DATAS1

23-FEB-79

1 DEFINITION ADDED
* LIST

FORMS DIRECTORY LISTING ON FRIDAY, FEBRUARY 23, 1979 AT 2:12 PM

NPME

PHONVIENU

PHONVIENU

PHONFM

PHONFM

PHONFM

PHONVIENU

DATAS1

MTAS 1

FINCERO1

FINCERO 1

TYPE EVICE

FMT

STR

FMT

STR

FMT

FMT

FMT

STR

STR

FMT

1 1 ENTRIES .
* QUIT

OK,

ONLIZ00

ONL1200

VISTAR3

VISTAR3

ONL1200

GNL.l200

VER

V08

V08

V08

V08

V00

V00

V00

V00

V18

V18

(INNER

DCNL

DONL

DONL

DONL

DONL

DONL

JDOAKS

JDOKKS

STEVE1

STEVE1

November 1979

PDR3040 EXAMPLE FORTRAN PROGRAM

SECTION 7

EXAMPLE FORTRAN PROGRAM

INTRODUCTION

Tis section describes the development of a FORWS application program

from source coding to loading and execution. It also describes how to

prepare the data that defines the form and how to place that data in

the FORMS catalog. The complete source listing for the example is in

Append ix E.

This example is based on a practical use of FOWWS to keep track of

customer orders, shipping information, and billable accouts. The

program allows the user to input information at the terminal and store

this intonmation on a disk file. The application is typical of many

parts distribution and billing operations. An example of the screen

seen by the user is shown in Figure 7-1. Features that are essential

to every FORMS application program as well as some special features

unique to this application are discussed together with source code that

illustrate these features. They are:

0 Setting up data areas through use of standand FORTRAN

statements (i.e., UOGICAL, INTEGER, EQUIVALANCE).

9 Extending terminal I/O buffer size with calls to the Primos

subroutine ATTDEV.

o Initializing control and output files (named ATS.C and ATS.D)

with calls to the Prnmos subroutines SRCH$$ and PRWF$$.

0 Initializing the descriptor for the form to be used by means

of a formatted READ statement that transfers the FORMS

directive ##INVOKE to the terminal device driver ad causes

the form to be initialized at the terminal i.e., displayed on

the terminal screen).

0 Reading the current control nunber from the control file,

ATS.C, and updating the control file with the next control

number.

0 Identifying, to FORMS, the substream that is to be accessed

next. ##SuBSTREAM is used in this case since the data input

and output are contained in more than one logical record. If

there were only one record, then the STREAM statement would

be sufficient. when the header is written, the progra sets

up a substrem for handling errror messages and two other

substreams: one for general name and address information,

and one for parts list infonmation.

7 - 1 November 1979

SEETION 7

REV. Z

P[R3@4■

f■■■ ■S■37?

_n 3&8?-’:£ g
888? <»“

Figure 7-1. Screen Display Produced by Running

Example Program .

::vza‘caaz;xx
P}£KBF
v?R?£EL ?%S3¥=
SFS
FEES? 51833‘' BEE}?

PDR304■ EXAMPLE FORTRAN PRUSRAM

o Accepting input data from the terminal using formatted READS

and FORMS run-time directives.

0 Positioning the control file to the next control nunber to be

read, and clearing the terminal screen of the last block of

data written to the output file.

0 Exiting from the application program when done.

WRITING THE PROGRAM

Setting Up Data Areas

The following code illustrates how some of the data areas for the

example program are defined.

INTEGER NAP/lAHR(75), VIA, HON, REPL, INTC, BILL, SONIM(4),
+

CHNNUM(4) , CPO(4) , ACOTHR(l5) , AIRSPR, INS (5) ,
+ TYPE, CODE, NNIO, ATSNUVI, B, I, J, MCRE, FLDl(4,4),
+ YESNOB(4) , AC'IBUF(4,3) , FLD2(4,3)

NAMAIR, for example, is intended to accomodate up to 75 words (or 150

ASCII characters) of name and address information.

Extending Size of Terminal I/O Buffers

The nunber of characters handled by a single transaction by this

program (159)) happens to be more than the default line size of the

terminal read—write buffers (72). However, the size of the I/O

terminal buffers may be changed by calls to the Primos subroutine

ATTDEV. For example:

C --- EXTEND TEHWINAL, FILE I/O BUFFERS.

C

CALL ATTDEV(l,l,0, 150)
CALL ATTDEV(6,7,2,l50)

The first call to ATTDEV sets up an input buffer, open for reading,
from the terminal on File Unit 1. The second call to ATTDEV sets up an

output buffer, open for writing on File Unit 6. In both cases, the

size of the buffer is specified to be 15% characters.

Shared Library Initialization

In order to use the FORMS run—time directives with the shared

libraries, the tollowing call must be present in the application

program prior to the first HINVOKE directive:

CALL FORVISI

7 — 3 November 1979

SECTION 7 PDR3@40

This requirement is applicable to the 64V mode shared version of FORMS

and is ignored for 64R mode and non-shared 64V mode.

Selecting a Library

It is a system administration decision whether or not to support the

shared libraries. If shared FORMS is supported, shared CCBOL, MIDAS,
and FORTRAN must be supported as well. If shared libraries are in use,
the FORMS shared library file is named VFORMS.

Initializing Control and Output Files

Calls to standard PRIMOS file system subroutines open, and read the
control file (ATS.C) and open and position the output file (ATS.D) for

writing. This is shown in the following code:

C -—- OPEN FILES, INVOKE FORM ON TERMINAL.

C

CALL SRCH$$(K$CLOS,QJ,@,l,@,CODE)
CALL SRCH$$ a<$CLos,®,m,2,a,CoDE)

C

C —-—- READ CCNTROL FILE, ATS.C .

CALL SRCH$$ (KSRDNR, 'ATS.C' , 5,1,TYPE,CODE)
C —-—- CHECK FCR FILE READ/WRITE ERRORS)

IF (CODE.NE.0) CALL ERRPR$(K$NRTN,CODE,'ATS.C',5,@,■)
C -—- OPEN AND POSITION DATR FILE, ATS.D .

CALL SRCHSS (KSRDNR, 'ATS.D' , 5, 2,TYPE,CODE)
IF (CODE‘.NE.@) CALL E‘.RRPR$(K$NRTN,CODE,'ATS.D',5,0,0)

C

CALL PRWF$$ (K$POSN+K$PRER, 2, Loc ((2!) ,0, l@0£M■00,IWIO,CODE)

The first two calls to the subroutine SRCH$$ close any files that might
have been left open on File Units 1 and 2 before the execution of the

application program started. The third call to SRCH$$ opens the file
ATS.C for reading and writing on File Unit 1. The program makes

provision for a standard error return. The fourth call to SRCH$$
likewise opens the output data file ATS.D for reading and writing on
File Unit 2. Then, the call to PRWF$$ positions the output file to the
next record to be written.

Initiali zing Form Descriptor

Every FORMS application program must identify the name of the form

descriptor file installed in the FORMS catalog. This is accomplished
by an HINVOKE run—time directive embedded in a formatted WRITE

statement. The keyword ##INVOKE has meaning to the FORVIS subroutine

package and FORMS user to set up a function call to the run—time
directive ##INVOKE. The use of the ##INVOKE directive causes the form
to be accessed in the FORMS catalog and displayed at the terminal.
Data can then be entered into the unprotected fields at the terminal.
Use of the ##INVOKE directive is illustrated by the following code:

REV. 0 7 - 4

P1133046 EXAMPLE FWTRAN PROGRAM

C --- IDENTIFY FORM FCR USE BY APPLICATICN PROGRAM,

C --- AND WRITE FORM AT TERVIINAL.

C

WRITE (1 , 20)

2% FORMAT ('##INVOKE AIJWN377 ')

This coding identifies the formname to be used as ADVINB77. when

executed, the code causes FORMS to search for ADVIN377 in the forms

catalog, which is contained in a UFD named FORMS* . 'Ihen, FORMS

displays the form at the terminal as previously described.

Reading and Resetting Control Number

This application program accesses a control file named ATS.C to assign
a number to identify the item to the data record currently being

prepared at the terminal. The next sequential control number must also

be assigned for later use in updating the control file. This is

accomplished by the following standard I/O calls and calculation:

c —-- PROCEDURE TO ASSIGN NEX'I' ATS #.

C

C —-- POSITION TO NEXT DATA RECCRD.

c

10% CALL PRWF$$ (K$POSN+K$PREA, 1, LOC(0) ,0,@■0■00,I\WIO,CODE)

C —-- READ ATS.C TO GET ATSNUM

C

READ (5 , 129 , ERR=l 60 , END-‘=1 60) ATSNUVI

12$ FORMAT (I6)

GO TO 20%

C

C —-- HERE ON EOF, ETC.

C

160 ATSNLM=0

C

C —-- ASSIGN NEX'I' SEQUENTIAL ATS #.

18 0 ATSNUVIEATSNUP/1+1

Using Sdbstreams

Figure 7-2 shows how a STREAM (i.e., the data record) typically may be

subdivided into SLBSTREAMS (i.e., logical records).

The use of substreams is not only a means for setting up logical

records within the data record. Normally, FORMS expects the input and

output data record(s) to be only one line of information. Substreams

provide a my that the user may specify data records greater than

normally expected. substreams each may contain up to a line's worth of

characters. As an aggregate, substreams make up a data record

(STREAM). This program demonstrates the use of substreams with FORMS.

when the user desires to logically separate data into several records,
FCRMS substreams are used. Each substream is transferred as an

individual data record when the application program is pertormirg I/O

operations. For example, it is desirable to output any error messages

7 -— 5 November l979

SECTION 7

REV.

ADMN377
STREAM

/

P1123049

FORMNAME ORMNAME

NAME
D R LINE1

LINE2
D RESS LINE3

ATTN

P HIH
BILL SO NUM
A TH R I

P R LINE1 DESCR LINE1 SN LIN
P INE R
PART LINE DE R LIN LI
PART LINE4 D R LIN
MORE

Figure 7-2. SUBSTREAMS Within Data STREAM.

I

I

I

I

HEADER
SUBSTREAM

NAMADR
SUBSTREAM

GENERAL
SUBSTREAM

ITEMS
SUBSTREAM

PER3040 EXAMPLE FORTRAN PROGRAM

in a Separate substream (record). In the Sample program, this is done

by:

C -- WRITE ATS#, CLEAR VARIABLE DATA, ERRCR MESSAGE.

C

200 WRITE (1,210) ATSNUVI

HlROUI‘=. FALSE. /*HEAIER NOT OUTPUT TO DISK FILE

C --- WRITE HEADER AND ERROR MESSAGE FIELD THEN

C -- UNPROTECTED DATA FIELDS,
C --- LBING FORMS ##SlBSTREAM AND ##CLEAR DIRECTIVES.

C

210 FORMAT('IH#SUBSTREAM HEADER‘/I6/'##CLEAR'/'##SUBSTREAM ERROR’/' ')

Statement 210 writes the HEADER and ERROR substreams to the terminal.

It also writes the control number and clears the unprotected (variable)
data areas on the terminal Screen.

Entering Data from the Terminal

The following lines of code read the various data items after the user

has entered them into the appropriate fields displayed at the terminal

and has pressed the "ENTER" key. Some of the accompanying validation

data is shown. For example, if a blank name and address (NAMAIJR) is

entered, the program branches to code that updates the control file,
clears the screen, and exits. (See "exiting" later in this section.)

FORMS directives are not used during this phase of program operation.

c --— READ IN NAMES, ADDRESSES, AND ACCOUNTING INFORMATION.

c

22@ READ (1,240) NAMADR, VIA, HON, REPL, INTC, BILL, SoNuv1,
+ CHGNUM, cpo, ACDTHR, AIRSPR, INS

c

IF (NAMAER (1) .EQ.' ') GO TO 5000 /* BLANK NAME => EXIT

C --- READ NAMADR. NOTE 75 WCRIB = 150 CHARACTERS, ALSO

C —- READ ACCOUNTING INFO (VARIABLES SUCH AS: VIA, HON, ETC.)

240 FORMAT(75A2,2I1,3Al,l2A2,l5A2,Al,4A2,Al)

Writing Data to the Output File

The file header and account header are written to the disk file,
tollowed by individual data itans. Standard FORTRAN 1/0 is used as

follows:

7 — 7 November 1979

SECTION 7 PER3040

C -- WRITE DATA TU DISK FILE.

c

DO 550 I=l,4
IF (DESCR (1,1) .EQ.' ') GO TO 550 /* IGNORE BLANK LINE

IF (noaour) GO TO 549)

c

c -- WRITE ACCOUNT HEADER TO DISK FILE.

c

WRITE (6,525) ATSNLM, NAMAER, VIA, HON, REPL, INTC, BILL, souuvl,
+ CHGNUM, cpo, ACOTHR, AIRSPR, ms

525 FORMAT(' *ATS' ,I6/S (15A2/) ,2I1, 3A1, l2A2/1 5A2/Al,4A2,Al)
c

HDROUI‘=.TRUE.

C

C --' WRITE INDIVIDUAL ITEM LINE T0 DISK FILE.

C

540 WRITE (6, 545) (PART (J,I) ,J'-'-1,8) , (DESCR (J,I) ,J-"-'l,I5) ,
4' (Sq (J11) (J:-1:4) I I RTN (I)

545 FORMAT (7A2,AI,I57-\2, 4?-\2,I4,AI)
C

550 CON'I‘INUE

Data Checking

The application program checks if there are any more items to be

written, by checking tor nonzero data in the MORE field displayed at
the terminal. If the user has entered data other than zero in the MORE

field, it indicates that more information with respect to part numbers
etc is to be associated with the current order. Data items are written

using the ##Su3STREAM directive. This is shown in the tollowing code,

along with the test for "more" data. As each data item is entered from
the terminal and written to the terminal, the terminal cursor is

positioned the the next field to be read or written through use of the
##PO3ITION directive. For exanple, see statement 580 of the tollowing
code.

C -- CI-IECK FOR MCRE ITEM LINES.
C

C —- IF NO MORE ITEMS, THEN EXIT.

C

IF (MORE.EQ.
' '

.OR.M(RE. EQ.'N' .OR.MORE.EQ. 'n') GO TO 18%
C -- USE FORVIS ##SLBSTREAM AND ##P(BITION DIRECTIVES 'I'O
C -- WRITE OUTPUT DATA RECORD.

C

C --- DATA ITEMS HAVE BEEN ENTERED AT THE TERMINAL BY USER.
C

C

WRITE (1 , 580)
580 FORMAT('##SUBSTREAM ITEMS‘/' '/'##SUBSTREAM ITEMS'/

+ '##P(BITI(1\1 PARI‘0l')
GO TO 40% /* NEXT SET OF ITEM LINES

REV. (5 7 — 8

PDR304■ EXAMPLE FORTRAN PROGRAM

Response to Data Input Errors

Checks are made that the proper range or type of data values are

entered by the user at the tenninal. If a data input error occurs, the

progra usually branches to one of a nunber of internal routines that

print and error message in the error substrem and position the

tenninal cursor back to receive a correct value for the data itan that

was in error. These routines uniformly employ the HSUBSTREAM

directive to print the message at the tenninal and the ##POSITIO

directive to reposition the cursor. This is illustrated by the

■ollowing typical lines of code:

C -~- INCORRECT DATA IN ACCOUNTING FIELDS.

C

C ACTION TAKEN ON INCORRECT ‘VIA’ CODE:

F‘

Imam WRITE (1,1a1@)

1010 FORMAT (
'
HSUBSTREAM ERROR‘ /

+ ‘via code must be l-9'/
+ '##POSITION SHIPVIA')

GO TO 220

C

C -- ACTION TAKEN ON INCORRECT ‘HOW’ CODE:

C

l■20 ‘WRITE (1,l■3B)

1030 FORMAT('##SUBSTREAM ERROR'/

+ ‘how code must be l—4'/

+ '##POSITION SHIPHOW')

GO TO 220

C

C -- YES/NO ANSWER REQUIRED.

C

1040 WRITE (1,l050) (FLDl0J,I), J=l,4)

105$ FORMAT('##SUBSTREAM ERROR'/

+ ‘yes/no (Y or N) response required'/
+ '##POSITION ',4A2)

GO TO 22%

7 - 9 November 1979

SECTION 7 PER3@40

Exiting

The exit code updates the control file, closes the control file and

output file, clears the terminal, and exits to ERDHOS. The exiting
code is initiated when the program encounters a NAMADR field that is
blank which will occur when the user enters a blank in the NAMADR

field. The test statement for a NAMADR of blank as well as the exit

code statements are shown in the Iollowing excerpts trom the

aplication progran.

C —- HERE TO EXIT. UPDATE ATS # IN CCNTROL FILE.
C

5000 CALL FRwF$$(K$RosN+K$RREA,1,LoC(.rJ),D,DDDmm,NNIo, CODE)
C --—- wRITE ATsNuv1 IN ATs.C .

wRITE(5,12D) ATSNLM

CALL PRWF$$ (KSTRNC, l,LOC(0) ,@,@0000@,I\WIO,CODE)
C

C -—- CLOSE CCNTROL FILE AND DATA FILE.

CALL sRCH$$ (K$CLos, D, D, 1, D,Com)
CALL SRCI-I$$ (K$CLos,D,D,2,D,CoDE)

C

C -——- USE FCRM ##CLEAR DIRECTIVE TO CLEAR TERMINAL DATA FIELDS, AND

C ——- RELEASE SCREEN AND RETLRN IT FOR USE BY PRIMOS.
C

WRITE (].,5@2■)

592$ FORMAT('##CLEAR ALL’/'##RELEASE')
C

CALL EXIT

END

REV. E 7 - 10

PER3@40 EXAMPLE FORTRAN PROCRAM

CREATING THE FOHVI DESCRI PTOR FILE

The foregoing example discussed how the example application program was

coded and reasons for using the various coding techniques. In

addition, the user must be concerned with describing the form to be

used with the program. The data contained with the form, both on the

terminal screen and in the data record must be described using the FDL

translator and placed on the FOR‘/IS catalog using the FAP command (see

Section 6). The form descriptor specified by the user.,as a template
that describes both how the form is to be displayed at the terminal and

how it is to be stored, in terms of: the attributes of the data items

and the overall arrangement of the form.

As stated in Sections 3 and 5, the FDL forms descriptor language is

available to make a source language description of what the form looks

like both on the terminal and in the data record. The syntax of FDL is

summarized in Section 3 and described in Section 5. The following

paragraphs discuss how the form used by the sample application program
is coded and translated. A complete listing of the sample form

description is given in Appendix F. Features that are essential in

every form description as well as some special features are discussed

in this section together with some excerpts of the FDL source code.

Features discussed in some detail are:

0 setting up the FORMS descriptors

0 defining the terminal devices used

0 initializing the data record and terminal screen display

0 defining data areas (fields)

0 differentiating input data from output data

0 differentiating literal data and variable data

0 using substreams

0 using the macro definition capability of FDL

o specifying listing details

The discussion is completed by a brief description of how to use the

FDL language translator command and how the FDL checks for errors in

the source language input. This is followed by a discussion of how to

install a form description in the FORMS catalog using FAP.

Setting Up a Form Description

Every form description consists of two parts: one to describe the data

record, and the other to describe the form itself. These are the

STREAM and the FORMAT descriptors respectively. The STREAM descriptor
is bounded (defined) by a STREAM statement and an END STREAM statement.

7 -- 11 November 1979

SECTION 7 PIR3@4@

Likewise, a FORMAT descriptor is bounded by a FORMAT and END FORMAT

statement. In each form description, there need be only one STREAM

descriptor, since the internal data record need be only described once.

However, there must be one FORMAT descriptor for each type of device
the user wishes to use with the application program. An example of FDL
code is given in the following paragraphs.

Defining Dev ice Types

For each terminal connected to the system that interfaces with the

application program, there must be a DEVICE descriptor. These

descriptors are bounded by DEVICE and END DEVICE and contained within
the body of the FORMAT descriptor, as illustrated in the following FDL

coding:

ADVIN377 STREAM

END STREAM

ADVIN377 FOHVIAT

DEVICE CWLIZGZ

END DEVICE

IEVICE VISTAR3

END DEVICE

END FOHVIAT

Usi ng SLBSTREAMS

The discussion on the application program showed how the program took

advantage of the ##Su3STREAM directive and the suostream concept of
FORMS to effectively use logical records. within FDL, SIBSTREAM and
END SLBSTREAM statements allow a user to define and delimit substreams.
The substreams are set up in the STREAM descriptor. The data items

(FIELIB) with a SLBSTREAM are mapped to fields in the FORVIAT

descriptor. In the example FDL coding, the substreams that have been
set up correspond to the substreams that are handled by the program,
i.e., there are: a header substream, a general substream, a data item

substream, and an error substream. The following code excerpt shows
how one of the substreams is defined:

ADVIN377 STREAM

HEADER SUBSTREAM

FIELD (FORMNAME, FCRMNAME)
FIELD ATSNUW, LENGTH 6, JUSTIFY RIGHT, ZERO-FILL, OUI‘PUT
END SUBSTREAM

END STREAM

The following code in the FORMAT descriptor is the mapped equivalent of
the sample SUBSTREAM:

REV. 0 7 - 12

P1113040 EXAMPLE FCRTRAN PROGRAM

*--- HEADER LINE INFORMATION:
*

FIELD 'FORM' POSITION (2,1)

FORWNPME FIELD LENGTH 8, P(BITION (7,1)
FIELD ‘ATS #' POSITI(1\l (2■,l)

ATSNUVI FIELD LENGTH 6, MBITION (26,l)
ac

Setting Up Data Areas (FIELDS)

Data items are described by FIELD statements. FIELD statements may
describe a literal, some system wide information, or may describe a

variable. FIELD statements that describe a literal consist of the

keyword FIELD and the literal in single quotes, for example:

FIELD 'CUSTOVlER NAME '

Fields that give system information such as time and date are described

in Section 5. FIELD statements that describe variable (NOPROTECT) data

items give the length of the field and some of the attributes of the

data within the field, such as type, justification, validation, etc.

There are differences between the format of a FIELD statement in a

STREAM descriptor and a FIELD statement in a FORMAT descriptor. For

example, the field name in a S'I‘REAM—FIELD statement is contained within

the body of the statement following the keyword STREAM, and the field

name of a FORMAT descriptor must appear in Column 1. However, there is

a one-for-one mapping between the variable fields in a STREAM

descriptor and the corresponding fields in the associated FORMAT

descriptor. All of these practices are illustrated in the following

code:

7 — 13 November 1979

SECTION 7 PDR3040

AIIVIN377 STREAM

*--- SHIP TO NAME AND ADDRESS.
*

NAMAIR SUBSTREAM

FIELD NAME, LENGTH 30, VALIDATE ‘P‘ OR ‘B‘

REPEAT 3

FIELD ADDR, LENGTH 39

END REPEAT

FIELD ATTN, LENGTH 3.0

END SLBSTREAM
*

ADJIN377 FORMAT

*--- SHIP TO INFCRMATION:
9:

FIELD ‘SHIP TO ‘
POSITION (2,3) , RVIDEO

FIELD ‘NAME‘ POSITION (l2,3)
NAME FIELD LEN 3D, POSI'I‘ION (24.3), NOPROTECT

FIELD ‘ADDRESS’ PosITIoN (12,4)
REPEAT 3

ADDR FIELD LEN 30, POSITION (24,+3) , NOPROTECT
END REPEAT

FIELD 'ATTENTIoN' POSITION (12,7)
ATI‘N FIELD LEN 39 PosITIoN (24,7) NOPROTECT
*

Input and Output Data

The listing generated by FDL separates the STREAM description into two

areas, one showing INPUT field data and one showing OUTPUT field data.
Refer to the listing in Appendix F. If the user does not specify
otherwise, all fields are both INPUT/OUTPUT. An example of an output
field is illustrated by the following line of code:

FIELD ATSNLM, LENGTH 6, JUSTIFY RIGHT, ZERO-FILL, OUTPUT

The listing in Appendix F shows how FDL separates INPUT and OUTPUT

fields. A check of this listing will reveal that the field ATSNUM is

present in the output description but not the input description.

The variable (ATSNUM) is not specified at the terminal by the user, it

is generated and used internally by the program.

Literal and Variable Data

Literal fields within a FORMAT are shnply specified by the FIELD
statement containing the literal string. For example:

FIELD ‘FORM’ POSITION (2,1)

REV. 0 7 - 14

PIFBQMG EXAMPLE FORTRAN PROGRAM

Variable fields may be specified by using the NOPROTECT attribute. For

example:

NAME FIELD LENGTH 30, POSITION (24, 3), NOPRO'I‘ECT

IROTECTed fields may not be written into by the user. A NOPROTECTed

field may be written into by the user. For example:

ATSNUM FIELD LENGTH 6, POSITION (26,1) , PROTECT

Using the Macro Definitions

To show the flexibility and convenience of coding in FDL, the DEFINE

statement is used in the sample coding to make up a series of macro

definitions that allow abbreviation of key words or often used names.

These definitions are:

* MACRO DEFINITICNS FCR FORMS DEFINITION LANGUAGE TRANSLATOR
* COPYRIGHT 1979, PRIME CO"lPUI‘ER, FRAMINGHAM MA
*

F DEF FIELD

V DEF VALIIRTE

LEN DEF LENGTH

POS DEF PCBITION

IN DEF INPUT

OUI‘ DEF OUTPUT

JUS DEF JUSTIFY

R DEF RIGHI‘

L DEF LEFT

C DEF CENTER

NP DEF NOPROTECT

RV DEF REVERSE VIDEO

BL DEF BLINK
*

*---END FCRMS>MACROS

Heretofore, example FDL code in this section were all spelled out.

I-bwever, as Appendix F shows, the user may to take advantage of the

abbreviation macros. For example consider the line:

F NAME, LEN 3%, V ‘P’ OR 'B'

as opposed to:

FIELD NAME, LENGTH 30, VALIDATE ‘P’ OR 'B'

This saves time in typing input when often-used words such as VALIDATE

are abbreviated to one letter (i.e., V).

7 - 15 November 1979

SEIITION 7 PIR3040

CAUTION

Using abbreviations makes it difficult or impossible to

maintain the application program and its associated form

descriptors.

Macros may be written in-line -— in the FDL code as shown here or may
be inserted by the FDL statenent $INSERT. The depth of a macro

definition is internal to the descriptor that contains it. Thus, in
the exanple FDL listing in Appendix F, the macro definition statements

in the STREAM are in—line. In the FORMAT, the same macro definitions

are referenced by a SINSERT statement.

mecifying FDL Listing details

FDL produces an output listing unless the user specifies otherwise.
The user can control listing features with control statements such as

$LIS'I' and $NOLIST. Che advantage of the listing is that the user can
check and be sure his data item in the STREAM portion of the

description map properly to the corresponding data item the FORMAT

portion. For example:

*—-- ITEM INFCRMATION.
it

REPEAT 4

FIELD PART, LENGTH 15, JUSTIFY RIGHT, SPACE—FILL

FIELD DESCR, LENGTH 30, JUSTIFY LEFT

FIELD SN, LENGTH 8, JUSTIFY RIGHT, zERo-FILL

FIELD QTY, LENGTH 4, JUSTIFY RIGHT, zERo—FILL, VALIDATE '9' OR '3'

FIELD RTN, LENGTH 1, VALIDATE ‘A’ OR '3'

END REPEAT

in the SUBSTREAM fields correspond (i.e., map) to the following items
in the FORMAT fields:

REPEAT 4

PART FIELD LENGTH 15, POSITION (2,+l8) , NOPROTECT

DESCR FIELD LENGTH 30, PCBITION (l9,+l8) , NOPROTECT

SN FIELD LENGTH 8, POSITION (5l,+18) , NOPROTECT

QTY FIELD LENGTH 4, PCBITION (6l,+l8) , NOPROTECT

RTN FIELD LENGTH 1, POSITION (67,+l8) , NOPROTECT

END REPEAT

Repeated Text

The code in the previous example shows the use of the REPEAT feature in

FDL which allows a user to specify the duplication of similar fields

over several lines on the terminal screen. In this case, the item
"PARTS" was repeated four times using REPEAT 4. The END REPEAT

statement delimits the domain of a REPEAT.

REV. 0 7 - 16

PER3040 EXAMPIE FCRTRAN PROGRAM

Listing Features

Finally, the FDL output listing shows some additional useful

information about the form descriptor. First, as shown in Appendix F,

the items defined in the input stream and the output stream are listed

in a separate cross-index after the listing of the translated STREAM

code. For example, the header substream is OUTPUT but not INPUT

information. Second, the listing provides a convenient chart of lines

and columns for each DEVICE specified in the FORMAT descriptor(See

Appendix F and Appendix H). For example, the last two pages of the

listing in Appendix F of the output listing (named ADVINB77) show the

fields in their relative position location, show literal fields as they

appear, and show the location of the variable (NOPROTECTed) fields by

the lines of dashes. Refer to the listing in Appendix F for further

information.

7 - 17 November 1979

SECTION 7 PIZR3040

CCIVIPILING THE APPLICATION PRCISRAM

The example program is compiled using the FTN command as follows:

OK, F'I‘N MAIN -64V -LIST

GO

0000 ERRCRS [< .MAIN. >F‘IN-REVl5. 3]

OK,

TRAI\BLATING THE FDL SOURCE

The source description of the form must be input to the FDL translator,

using the FDL command. The translation produces an output file in a

binary form which may be placed in the FORMS catalog. Files listed in
the FORMS catalog can be read and interpreted by the application
program at run—time. The following is an example of the FDL
translation for the sample form descriptor named ADVIN377.

ox, FDL AIMN377

co

emu ERRms (FDL, REV 16 -
16-FEB—79)

mama ERRORS (FDL, REV 16 - l6—FEB—79)

INSTALLING FCRM DESCRIPTOR IN FCRMS CATALOG

The FAP command is used to install forms descriptors in the FORVIS

catalog and otherwise maintain this library. The following is a sample
installation of the form descriptor AIIVIN377 in the FORVIS catalog:

OK, FAP

GO

FAP REV 16 23-DEC-78

* ADD B AIMN377

3 DEFINITIONS ADDED
*
QUIT

OK,

LOADING THE APPLICATION PROGRAM

Since the sample program is compiled in V-mode the SEG loader must be

used, and the appropriate V-mode libraries must be invoked. This

procedure is illustrated in the following example:

REV. 0 7 — 18

PER3040 EXAMPLE FORTRAN PROGRAM

OK, SEG

GO
__

LOAD

SAVE FILE TREE NAME: #MAIN

$ LO B..MAIN

$ LIB VFORMS

S LIB VSPOOS

3 £»_1.'-£3.
LOAD COVIPLETE

$ sAvE

$ QUIT

OK,

RUNNING THE PROGRAM

The program may be run by a simple invocation of the SEG command, as

follows:

SEG #MAIN

7 - 19 November 1979

P1}?304% EXAMPLE CCBOL PRCISRAM

SECTION 8

EXAMPLE CO3OL PROGRAM

INTRODUCTION

This section describes the development of a FORMS application program
from source coding to loading and execution. (he of the significant
differences between the program described in this section and the one

described in Section 7, besides its being written in COBOL, is the fact

that the program uses keyed-index files and interfaces with MIDAS as

well as with FORMS. This section also describes the data used with the

application program that defines the form and describes how to place
the form descriptor in the FORMS catalog.

The example program (named DE‘.MOl) accepts a simple list of orders,

typed at the terminal, and writes the items on the order list to a

keyed-index file (named D31). The data in the form is handled as a

simple STREAM (i.e., only one logical record). An example of the

screen, observed by the user, is shown in Figure 8-1. Features that

are essential to every FORMS application program, as well as some

special features unique to the application are discussed with source

code excerpts. Features discussed in this section are:

0 Defining files.

0 Setting up data areas through use of standard COBOL statements.

0 Defining data screen.

0 Initializing the descriptor for the form to be used to means of a

COBOL read statement that transfers the FOR‘/IS directive ##INVOKE

to the terminal device driver and causes the form to be displayed

on the terminal screen.

0 Writing the header and other data to the tenninal using FORWS

directives.

o Accepting input data from the terminal using READ and FORMS

run-time directives.

0 Positioning the terminal cursor to the home position and clearing

the terminal screen of the last block of data written.

0 Error handling by the application progran.

8 - 1 November 1979

SECTION 8 PDR3040

RCCQURT ■■■i
R■■ RUCP£SS

STOCK ■U■8{F

9UR■TITY

UELIV{RY DRTE

GRBER PEFEREHCE 15

Figure 8-1. Screen Display Producedby mnning Example Program.

PDR3040 EXAMPLE C$OL PROGRAM

0 Exiting from the application program.

WRITING THE PROGRAM

A complete listing of the program's source coding appears in Appendix
G.

Defining Files

The files to be used are defined with a standard CCBOL programming

practice, i.e., by the FILE CONTROL SECTION as follows:

FILE-CONTROL.

SELECT INFILE ASSIGN TO TERMINAL.

SELECT (RDER-FILE ASSIGN 'I'O PFMS

ORGANIZATION IS INDEXED

ACCESS IS DYNAMIC

RECCRD KEY IS ORDER-KEY

ALTERNATE RECORD KEY IS ORDER-NAME WITH DUPLICATES

ALTERNATE RIIICRD KEY IS STCIIK-NO WITH DUPLICATES

ALTERNATE RECCRD KEY IS STOCK-DEL WITH DUPLICATES.

Setting-Up Data Areas

The example program sets up the data areas, first, by defining the

input and output data records in the FILE SECTION of the DATA DIVISION.

This is shown in the following code:

8 - 3 November l979

SECTION 8 PIZR3040

DATA DIVISION.

FILE SECTION.

FD INFILE LABEL RECCRIB ARE OVIITTED.

El SCR.

Z2 FILLER PIC X(l04).
FD (RDER-FILE LABEL RECCRDS ARE STANDARD

VALUE OF FILE-ID IS "ORDERS".

01 (RDER-RECORD.

02 ORDER-KEY.

03 ORDER-NO PIC 9(5).
33 (RDER-ITEM PIC 99.

02 ORDER-NAME PIC X(20) .

02 (RDER-ADDl PIC X(2■) .

Q12 ORDER-ADD2 PIC X(20) .

02 CRDER-ADD3 PIC X(20) .

02 S'I‘OCK-NO PIC X(6) .

02 STCIIK-DEL PIC X(8) .

02 STOCK-QTY PIC S9(5) SIGN TRAILING SEPARATE.

$1 ORDERC.

02 FILLER PIC X(7) .

G2 NEXT-(RDER PIC 9 (b) .

E2 FILLER PIC X(94) .

Extending Size of Terminal I/O Buffers

The number of characters handled by a single transaction by this

program (150) happens to be more than the default line size of the
terminal read—write buffers (72). I-bwever, the size of the I/O
terminal buffers may be changed by calls to the Primos subroutine
ATTEV. For example:

* EXTEND TERMINAL, FILE I/O BUFFERS.
*

MOVE 0

MOVE 1

MOVE 2 TO VAR2.

MOVE 6

MOVE 7 TO VAR7.

MOVE 150 ‘ID VARl50.

CALL 'ATTDEV' USING VARl, VARI, VARO, VARl5■.

CALL 'ATI‘DEV' lJSING VAR6, VAR7, VAR2, VARl50.

The first call to ATTDEV sets up an input buffer, open for reading,
from the terminal on File Unit 1. The second call to ATTIEV sets up an

output buffer, open for writing on File Unit 6. In both cases, the
size of the buffer is specified to be 15% characters.

REV. 0 8 - 4

PDR3@40 EXAMPLE COBOL PROGRAM

Shared Library Initialization

In order to use the FORMS rm—time directives with the shared

libraries, the following call must be present. in the application

program prior to the first ##INVOKE2 directive:

CALL 'FORH$I'.

This requirement is applicable to the 64V mode shared version of FORMS

and is ignored for 64R mode and non-shared 64V mode.

Selecting a Library

It is a system administration decision whether or not to support the

shared libraries. If shared FORMS is supported, shared C$OL, MIDAS,

and FORTRAN must be supported as well. If shared libraries are in use,

the FORVIS shared library file is named VFORVIS.

Defining FORMS Directives

FORM directives used by the application program are defined in the

WCRKING STORAGE SEXZTION of the DATA DIVISION. This is one of the areas

in which the sample program differs from an "ordinary" COBOL program.
The definition of the FORM directives to be used appears as follows:

WORKING-STORAGE SECTION.
* DEFINITION OF FORMS DIRECTIVES

77 INV-C PIC x(12) VALUE '##INVOKE mi‘.

77 REL-C PIC X(09) VALUE '##RELEASE'.

77 PROT=C PIC x(25) VALUE '##PROTECT NAM ADl AD2 AD3'.

77 ENAB—C PTO x(24) VALUE '##ENABLE NAM ADl AD2 AD3'.

77 CLEARrC PIC X(07) VALUE '##CLEAR'.

77 CIA-C PIC X(ll) VALUE '##CLElAR ALL'.
* CURRENT ORDER

77 CURR-CRD PIC 9(5).

Defining Terminal Screen

Also in the WORKING STORAGE SECTION, the program defines the individual

data items that appear on the terminal screen (DATA—SCREEN) , as

follows:

8 - 5 November 1979

SECTION 8 PIR3@4Q

Z1 DATA-SCREEN.
* CUSTGVIER AND CRDER INFORVIATION

O2 DS-NAM.

Z3 CUSIND PIC XX.

03 FILLER PIC X(l8) .

02 DS-ADI PIC X(2■) .

02 IE-AD2 PIC X(2{0) .

Q2 DS-AD3 PIC X(2@) .

02 IE-STK.

03 STK-ID PIC XX.

03 FILLER PIC X(4) .

02 DS-QTY PIC 9(5) .

O2 [B-DATE PIC X(8) .

O2 DS-ORDER PIC 9(5) .

The itens defined as part of the form will be moved to the order record
defined previously in the FILE SECTION.

Opening Files

One of the first steps in the procedure is to open the input and output
files, as skbwn by the following:

PRCXIEDURE DIVISION.

START-POINT.

OPEN I-O ORDER-FILE.

OPEN I-O INFILE.

Invoking Form

INV—C has been defined as the FORMS ##INVOKE directive, thus

WRITE SCR FROM INV—C

causes the form to be displayed.

Reading and Checking Input

After the data is entered at the terminal by the user,
reads this data by the following code:

the

B-POINT.

READ INFILE INTO DATA-SCREEN.

IF CUSIND EQUAL '**' GO TO END-IT.

If the user has input a double asterisk (**) for the variable
then the program exits to IRIMOS corrmand level.

REV. 0 8 - 6

prog ram

(US IND,

PDR3340 EXAMPLE CCBOL PROGRAM

Writing Data

The following code writes any existing data to the output file and

returns, ready to receive additional input trom the user terminal:

TRY-IT.

MOVE ZEROES TO ORDER-KEY.

READ CRDER-FILE KEY IS CRDER-KEY INVALID KEY

GO TO TRY-IT.

ADD 1 TO NEXT-(RDER.

MOVE NEXT-ORDER TO CURR-ORD.

REWRITE (RDER-RECGRD.

MOVE D3-NAM TO ORDER-NAME.

MOVE IE-ADI TO CRDER-ADDI.

MOVE]B'1Z\D2 TO ORDER-ADD2.

MOVE IE-AD3 TO ORDER-ADD3.

MOVE ZERO TO ORDER-ITEN.

A-POINT.

MOVE DS-STK TO STOCK-NO.

INSPECT IE-STK REPLACING LEADING SPACES BY ZEROES.

MOVE [B-QI‘Y TO ST(I3K-QTY.

MOVE DS-DATE TO STOCK-DEL.

ADD 1 TO ORDER-ITEM.

MOVE CURR-OQD TO ORDER-NO.

MOVE CIRR-ORD TO DS-ORDER.

WRITE ORDER—RECCRD.

WRITE SCR FRGVI PROI‘-C.

MOVE SPACES TO IE-STK, [B-QTY, IE-DATE.

WRITE SCR FROVI DATA-SCREEN.

READ INF ILE INTO DATA-SCREEN.

IF STK-ID NOT EQUAL
'**' GO TO A-POINT.

WRITE SCR FRCM ENAB-C.

WRITE SCR FROVI CLEAR-C.

GO TO B-POINT.

8 - 7 November 1979

SECTIQ\I 8 P1IR3■40

Exiting

FORMS directives exist to clear and release the terminal screen. They
are called when the program exits, by invoking the working storage
variables CI.A—C and REL-C. The exit code is as follows:

END-IT.

CLOSE ORDER-FILE.

WRITE SCR FROVI CJ'.A—C.

WRITE SCR FRO‘/1 REL-C.

CLOSE INFILE.

STOP ‘END OF CRDER ENTRY’ .

REV. @ 8 - 8

PI]?3046 EXAMPLE CCBOL PRCERAM

CREATING THE FOHVI DESCRI P'I'OR FILE

The foregoing example shows how an application program might be coded

and discussed reasons for using var ious coding techniques. In

addition, the user must describe the form to be used with the program.

The data contained with the form, both on the terminal screen and in

the data record must be described using the FDL translator and placed

on the FORMS library (called the FORMS catalog) using the FAP command

(see Section 6). The form descriptor specified by the user as a

template that describes both how the form is to be displayed at the

terminal and how it is to be stored, in terms of the attributes of the

data items and the overall arrangement of the form.

As stated in Sections 3 and 5, the FDL translator forms descriptor

language is available to make a source language description of what the

form looks like both on the terminal and in the data record. The

syntax of FDL is summarized in Section 3 and described in Section 5.

The following paragraphs discuss how the form used by the sample

application program is coded and tanslated. A complete listing of the

sample form description is given in Appendix H. Features that are

essential in every form description as well as special features are

discussed in this section together with excerpts of the FDL source

code. Features discussed in detail are:

0 Setting up the FORMS descriptors

0 Defining the terminal devices used

0 Defining data areas (fields)

0 Differentiating input data from output data

0 Differentiating literal data and variable data

0 Specifying listing details

The discussion is completed by a brief description of how to use the

FDL language translator command and how the FDL checks for errors in

the source language input. This is followed by a discussion of how to

install a form description in the FORMS catalog using FAP.

Setting Up Form Description

Every form description consists of two parts: one to describe the data

record, and the other to describe the form itself. These are the

STREAM and the FORMAT descriptors respectively. The STREAM descriptor

is bounded (defined) by a STREAM statement and an END STREAM statement.

Likewise, a FORMAT descriptor is bounded by a FORMAT and END F(P.MAT

statement. In each form description, there need by only one STREAM

descriptor, since the internal data record need be only described once.

Ibwever, there must be one FORMAT descriptor for each type of device

the user wishes to use with the application program. An example of FDL

code is shown in the following paragraphs.

8 — 9 November l979

SECTION 8 P1113040

Defining Dev ice Types

For each terminal connected to the system that interfaces with the

application program, there must be a DEVICE descriptor. These

descriptors are bounded by DEVICE and END DEVICE statements and are
contained within the body of the FORMAT dscriptor, as illustrated in

the following FDL coding excerpts:

IE1 STREAM

.

END STREAM

IB 1 FORVIAT

DEVICE O/\ILl200

END DEVICE

EVICE VISTAR3

END DEVICE

END FORVIAT

Setting Up Data Areas (FIELDS)

Data items are described by FIELD statements. FIELD statements may
describe a literal, some system wide information, or may describe a

variable. FIELD statements that describe a literal consist of the

keyword FIELD and the literal in single quotes, for example:

FIELD 'ClBTO."IER NAME‘

Fields that give system information such as time and date are described
in Section 5. FIELD statements that describe variable (NOPROTECT) data
items give the length of the field and the attributes of the data
within the field, such as type, justification, validation, etc. There
are differences between the format of a FIELD statement in a STREAM

descriptor and a FIELD statement in a FORMAT descriptor. For example,
the field name in a STREAM—FIELD statement is contained within the body
of the statement following the keyword STREAM, and the field name of a
FORMAT-FIELD statement must appear in Column 1. However, there is a
one-for—one mapping between the variable fields in a STREAM descriptor
and the corresponding fields in the associated FORVIAT descriptor. All
of these practices are ilustrated in the following code:

REV. 0 8 - 1&3

P1123040 EXAMPLE CO3OL PROGRAM

* DATA RECORD LAYOUT
st-

Sl STREAM
* ACCOUNT NAME
*

AM FIELD NAM LENGTH 20
* ADDRESS
it

D1 FIELD ADI LENGTH 2%

D2 FIELD AD2 LENGTH 20

D3 FIELD AD3 LENGTH 20
* STCIIK - CRDER INFORVIATION
*

TKNNO FIELD STKNO LENGTH 6

TKQTY FIELD STKQTY LENGTH 5 JUSTIFY RIGHT

TKDEL FIELD STKDEL LENGTH 8
* CRDER NUMBER - UENERATED BY PROGRAM AND OUTPUT
*

NO FIELD ONO LENGTH 5 OUTPUT

END STREAM
* END OF DATA RECCRD DESCRIPTION

* FORM DESCRIPTION

S1 FORVIAT
* FIRST DEVICE DESCRIPTION
9:

DEVICE VISTAR3
* HEADING INFORVIATION OF FORVI
1:

FIELD 'ORDE R ENTRY S YS TEM' POSITION‘ (22,2)

FIELD ' - - - - - - - - - - - - - - - -' PCBITION (22,3)

FIELD ‘ACCOUNT NAME ' POSITION (l(7J,6)
* ACCOUNT NAME INFORMATION

AM FIELD LENGTH 20 POSITION (35,6) NOPROTECT

FIELD
' AND ADDRESS‘ PCBITION (l0,7)

* ACCOUNT ADDRESS
9:

D1 FIELD LENGTH 20 POSITION (35,7) NOPROTECT

D2 FIELD LENGTH 20 P(BITION (35,8) NOPROTECT

D3 FIELD LENGTH 20 POSITION (35,9) NOPROTECT

FIELD 'ST(IIK NUMBER‘ POSITION (l@,l2)
* STOCK - ORER INFCRMATION
*

TKNO FIELD LENGTH 6 POSITION (35,l2) NOPROTECT

FIELD ‘QUANTITY’ P$ITI(I\I (l■,l4)

TKQTY FIELD LENGTH 5 POSITION (35, 14) NOPROTECT

FIELD ‘DELIVERY DATE‘ POSITION (10,216)

TKDEL FIELD LENGTH 8 POSITION (35,l6) NOPROTECT

FIELD 'CRDER REFEREDCE IS‘ P$ITICl\I (l@,2@)

NO FIELD LENGTH 5 POSITION (35,293)
END IIIVICE

* END OF FIRST DEVICE DESCRIPTION

8 - 11 November 1979

SECTION 8 PDR3@4■

In this case, mapping has been performed by the programmer, by giving
the STREAM fields the same label as the corresponding FORMAT fields.

However, this is not necessary if the STREAM variables are given the

same name as the FORMAT labels.

Input and Output Data

The listing generated by FDL separates the STREAM description into two

areas, one showing DNPUT field data and one showing OUTPUT field data.

Refer to the listing in Appendix H. If the user does not specify
otherwise, all fields are both INPUT/OUTPUT. An exanple of an OUTPUT
field is illustrated by the following line of code:

NO FIELD ONO, LENGTH 5, OUTPUT

The listing in Appendix H shows how FDL separates INPUT and OUTPUT

fields. A check of this listing will reveal that the field ONO is

present in the output description but not the input description.

The variable (ONO) is not specified at the terminal by the user, it is

generated and used internally by the program. Therefore, there is no
reason for it to be specified as input, it only need be written on

output.

Literal and Variable Data

Literal fields within a FORMAT are shnply specified by the FIELD
statement containing the literal string. For example:

FIELD ‘ACCOUNT NAME '
POSITION (l@,6)

Variable fields may be specified by using the NOPROTECT attribute. For

exaple:

FIELD LENGTH 30, POSITION (35,6), NOPROTECT

Fields that may not be changed may prevent the user from writing in
them by use of the PROTECT attribute. (Refer to Section 5.)

Specifying FDL Listing details

FDL produces an output listing uless the user specifies otherwise.
The user can control listing features with control statements suh as

LIST and NOLIST. One advantage of the listing is that the user can
check and be sure the data items in the STREAM portion of the

description map properly to the corresponding data items the FORMAT

portion.

Finally, the FDL output listing shows additional useful information
about the form description. First the items defined in the input
strea and the output stream are listed in a separate cross-index after
the listing of the translated STREAM code. For example, the header
substream is output but not input information. Similarly, the listing

PIR3040 EXAMPLE COBOL PROGRAM

provides a convenient chart of lines and colunns for each DEVICE

specified in the FORMAT descriptor. For example, the last two pages of

the output listing (named H31) in Appendix H show the fields in their

relative position location, show literal fields as they appear, and

show the location of the variable (NOPROTECTED) fields by the lines of

 dashes.

COVIPILING THE APPLICATION PROGRAM

The example program is compiled using the COBOL command, as follows:

OK, COSOL DEMOI -64V -LIST

GO

PHASE I

PHASE II

PHASE III

PHASE IV

PHASE V

PHASE VI

NO ERRORS, l WARNINGS, P400/50$ CCBOL REV 15.3 <MAIN >

OK,

TRANSLATING THE FDL SOURCE

The source description of the form must be input to the FDL translator,

using the FDL command. The translation produces an output file in a

binary form which may be placed in the FORMS catalog. Files listed in

the FORMS catalog can be read and interpreted by the application

program at run—time. The following is an example of the FDL

translation for the sample form descriptor named I131.

OK, FDL DSl

GO

0090 ERRCRS (FDL, REV 16 - l6—FEB-79)

C5000 ERRORS (FDL, REV 16 - 16-FEB-79)

OK,

8 - 13 November 1979

SECTION 8 P1113340

INSTALLING FCRM DESCRIPTOR IN FCRMS LIBRARY

The EAP command is used to install torms descriptors in the FOR■S

library and also maintain the FOHHS catalog. The following is an

example installation of the form descriptor DB1 in the FORMS catalog:

OK, FAP

GO

FAP REV 1 6 2 3-DEC-78

* ADD B...IBl

3 DEFINITIONS ADDED
*
QUIT

OK,

LOADING THE APPLICATION PROGRAM

Since the smnple program is written and compiled in V=mode the SEC
loader must be used and the appnopriate libraries invoked. This

procedure is illustrated in the following example:

OK: §_1'=3S.3_
GO

LOAD

SAVE FILE TREE NAME: #DEMOl

5 L0 B..DEMOl

S LIB VCCBIB /* V-MODE COBOL LIBRARY */
S LIB VKDALB /* V-MODE MIDAS LIBRARY */
S LIB VFORMS /* V-MODE FORMS LIBRARY AND SHARED LIBRARY */
$ LIB VSPOOS /* OFF-LINE PRINTING LIBRARY */
$ LIB /* STANDARD SUBROUTINE LIBRARY */
LOAD CO‘/IPLETE

$ SAVE

$ QJIT

REV. 0 8 - 14

P1133049 EXAMPLE COBOL PROGRAM

MIDAS FILE TEMPLATE

Since the example program, DEMO1, uses the INDEXED feature of COBOL,

the Prime indexed file system, MIDAS, is automatically invoked. (That

is why the library VKDALB was loaded.) Since MIDAS (indexed) files are

used, it is necessary to create a template using CREATK. The tollowing

code shows this procedure. For further information, refer to the MIDAS

Reference Guide.

OK, CREATK

GO

MINIMLM OPTIONS? YES

FILE NAME? ORDERS

NEW FILE? YES

DIRECT ACCESS? _Ng

DATA SUBEILE QUESTIONS

KEY TYPE: A
KEY SIZE = : B 7

DATA SIZE = : _5_§_

SECONDARY INDEX

INDEX No. ? _I_

DUPLICATE KEYS PERMITTED? _Y;-3_s_3_
KEY TYPE: A
KEY SIZE = : B 20

USER DATA SIZE = : 0

INDEX NO.? _2_

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A

KEY SIZE = : 6

USER DATA 8 IZE : 0

INDEX No.? §_

DUPLICATE KEYS PERMITTED? YES

KEY TYPE: A

KEY SIZE = : 8-1-1-1--n
USER DATA SIZE = : Q

INDEX No.? _(_a_

OK,

8 - 15 November 1979

SECTION 8 PIR3040

RUNNING THE PROGRAM

The program may be run by a simple invocation of the SEG command, for
example:

SEG #DEM■l

REV. 9 8 - 16

P1113040 INSTALLATION

APPENDIX A

-INSTALLATION

DIRECTORY INFORMATION

The Fo

master

that c

rms Management System is supplied in a single directory on the

disk. Within this directory, named FORMS*, are subdirectories

ontain source text for the components of the system and contains

command files that are used to build the FORMS system.

The files in the UFD named FORMS* are:

File

Name Type Description

FDL subUFD sources for FDL translator

FAP subUFD sources for FAP utility
RLN subUFD sources for run—time package
IOS subUFD sources for IOCS interface, device drivers

DOC subUFD source for design specification
FORVIS* subUFD skeleton FORMS catalog, system files

C_RLIB command creates 64R library from individual object files

C_VLIB command cretess 64V library from individual object files

RFCRMS object—file 64R mode FORMS run-time system
VFORVIS object—file 64V mode FORMS run-time system
MACRCB insert-file $INSERT file containing sample FDL macro

definitions

C_INST command installs new FCRMS system

C_Rnn comand upgrades current FORMS system to Rev. nn

(where n2 is the current revision number.)

INSTALLING A NEW VERSION OF FORMS

'I‘o install the current version of FCRMS on a system on which there is

no exi

1)

2)

The fo

sting copy (i.e., to create a new FORVIS installation):

Use FUTIL to copy the FORMS* subUFD from the FORMS UFD to the MFD

on any started up local disk, thus making FORMS* a first-level

directory. FCRMS will not mrk properly if the FORMS* directory
resides on a disk on a remote system accessed via PRIMENET.

Execute the C INST command file in the FORMS UFD to copy the FAP

and FDL programs to CMDNCO and to copy the RFORVIS and VFORMS

object files to the library UFD, LIB. The FORMS system is now

ready for use.

llowing is an example run; user input is underlined.

November 1979

APPENDIX A PER304@

OK, MAGRST

READY TO RESTORE: PARTIAL

TREENAVIE: MFD>FORVIS*

RESTORE CGVIPLETE

OK, FUTIL

>FRO"I F(RMS*

>TO MFD XXXXXX Q

>TRECPY FORMS

>FRO"I FCRMS > FAP

>TO CMDNCE

>COPY *FAP > FAP

>FRClVl FCRMS > FDL

>COPY *FDL > FDL

>FRQVIS FCRMS*

>TO LIB

>COPY RFCRMS, VFORMS, SFGIMS

>QUIT

UPGRADING A CURRENT INSTALLATION

Tb upgrade an existing FORMS installation:

1) Execute the Q_lNST command file to copy the new ru files to
CMDNCQ and libraries to LIB.

2) Execute the CLBnn_command file. This will create the necessary
files in the FOHMS* directory to support Rev. ‘nn.

This procedure will not aftect existing programs. The user is

encouraged, however, to reload his programs with the new libraries to
take advantage of the improveents and additional teatures oftered.
The following is an example run; user input is underlined.

OK, MAGRST

READY TO RESTORE: PARTIAL

TREENPME: MFD>FORVlS*

RESTORE CCMPLETE

OK, CO C INST

OK, CO C RUN

REV. 0 A - 2

PH? 32540 INSTALLATION

Note

The existing customer has the option of replacing the entire
FG?MS* UFD using the procedure for a new FCRMS customer
(previously described) and then adding all the current FORM
definitions (from scratch). Speed improvement and size
reduction provided by a new library will only come to the
user that reloads the application program with the new
library.

REBUILDING FCRMS

The following command files are available to rebuild all or part of the
Forms Management System:

Treename Description

FORMS> FDL) C_SUBS compile FDL subroutines
C FDL compile FDL main, load and save
C_LOAD Load and save FDL

FOR-’VlS> FAP> C_SUB compile FAP subroutines
C_FAP compile, load and save FAP
C:LOAD load and save FAP

FORMS) RUN) C_FMR compile 64R mode FORMS run—time package
C FMV compile 64V mode FORVIS run—time package

FORMS >IOS> C:IOR cornpile 64R mode I/O system
C IOV ccmpile 64V mode I/O system

FORMS> C_RLIB_ build 64R mode library from objects
C VLIB build 64N mode library trom objects
C:BLD build entire FORMS systan.

All cortmarri files described above generate no listing of the ccmpiled
source. For each command file which compiles source text, exists a
corresponding corrmand file, which in addition to generating a binary
(object) file, also produces a compilation listing. The names of these
corrmand files may be determined by concatenatirg the standard command
file name with the character 'L'. For example, to compile the 64R mode
version of the run—time package and generate a listing, one would run
the command file C_FMRL instead of C_FMR.

A - 3 November l979

PIR304(?J DEVICE I-O

APPENDIX B

DEVICE I-O

DEVICE INPU'I‘/OUI‘PUI‘ SYSTEM

'Ihis appendix describes the layout and operation of the device

input/output system. It is most useful to those desiring knowledge of

how F(RMs works internally. Users who must write their om device

drivers will find information about writing device drivers in this

appendix.

The device (Input/Output) system is logically associated with the

run—time package and consists of two parts. The first is an IOCS

interlude to route all terminal and line printer I/O requests through
FOHVIS. The second part performs all device mapping and input/output
with any formatted device.

ICIIS INTERLUDE

The IOCS interlude interfaces the Prime Input/Output Control System

(IOCS) — refer to the Subroutine Reference Guide, Software Library
- to

FORMS through a series of input/output subroutines- Included in the

IOCS interlude, are replacements for the standard read and write ASCII

tables (RATBL and wA'IBL.) These tables cause FORMS subroutines I$FMt?Jl,

O$FM(/)1, and O$FM■6 to be called to process terminal input, terminal

output, and line printer output, respectively. Input and output is

processed by I$FM@l, OSEMBI and OSFMO6 as described in the following

parag raphs .

0 If the first two character positions in an output record

contain two hash marks (1%) , the output record is passed to the

FORMS directive interpreter (FMSCMD) .

o If no form is invoked on the associated device, the FORMS

subroutine calls the standard IOCS subroutine for that device.

O$AA@l is used for terminal output, I$AAl2 for input. Line

printer output is hgnored, which is standard procedure in

PRIMOS; another method is used to write files to the spooler
line printer.

0 If a form is in use on the associated device, the input/output

request is transferred to the FORMS subroutine FMSIN (input or

EMSOUT output.)
a

EVICE I/O MEEHANISVI

The device I/O mechanism interfaces the body of the FORMS run—time

package to the formatted device(s) that are in use. This is

B - 1 November 1979

APPENDIX B PDR3@40

accomp■ished through ainapping scheme, and a collection of device
driver subroutines, one for each device supported in the installation.

Device Definition Database

Two files exist in the FORMS UFD (FORMS*) that describe the device

configuration of the installation: the device control file and the
terminal configuration file.

Device Control File: The device control file (called DCF.AS) describes
each device in terms of a unique logical device number (ldn) , device

name, device driver subroutine name, and page capacity in lines and
columns.

The logical device number (not to be confused with an IOCS logical unit

number, used in conjunction with the device driver subroutine name) is
used to detennine the execution thne subroutine address for the device
driver for a given device name.

The device control file consists of a series of entries. The format
for the device control file entries, whichlnay be modified with the
text editor, is as follows:

Each entry describes one device. It consists of a single line of
text with five items, each separated by commas as follows:

ldn, device—name, device—driver—name, lines, columns

_l_d_r_1 is the unique logical device number associated with the

device. It must be in the range l<=ldn>=99. Logical devices 1
to 9 are reserved for use by Prime. User-written device

driversinay use any_ydn<greater than 9.

device—name is the 1 to 8 character device nane. It must
conform of the naming conventions set forth in the FDL

description.

device—driver—name is a two character abbreviation of the name
of the device driver subroutine. The full name of the device
driver subroutine is xx$IO; ‘xx is the two-character
abbreviation.

lines, colmns defines the physical device page size.

For example, the contents of the current device control file is:

l,PRINTER,PR,66,l32

3,VISTAR,V3,24,80

4,0WLl2D0,0W,24,80

Terminal Configuration File: Another file exists that describes the
device name for each FDRMS terminal on the system. Each user on the
PRIMOS system is assigned a unique user number based on the physical

REV. E B - 2

PDR3@4Q3 DEVICE I-0

line to which the terminal isconnected. The terminal configuration

file, (TCB.BN) , specifies the terminal name for each of the up 64 FORMS

user (terminals) connected to the system. The FAP utility is used to

modify and inspect this file.

Device Mapping Scheme

The following paragraphs describe the mapping scheme used by the

run-time package.

The FORMS run-time packages has a section of code to perform all

initialization. Among other functions, this obtains the device names

for the terminal and printer.

The terminal device name is obtained from the Terminal Configuration

File, based on the user number (assigned by PRIMOS) . The printer name

is specified in FORMS as PRINTER.

when the device name is known, the logical device mmber is otained

from the Device Control File. Two versions of the DCF exist. DCF.AS

is the ASCII (edit) version that may be changed at any time by the

user. DCF.BN is the binary version that is used by the run-time

package. II2F.BN file is generated by FAP upon execution of the

GENERATE command. Two versions of the file exist to ensure the active

copy (DCF.BN) is concurrent with the device address tables.

The logical device number is retained by FORMS and used to identify the

device to the device interlude subroutine. This routine dispatches to

appnopriate device driver using a supplied unique locial device nuber

(LDN). The dispatch operation is performed using device address

tables. These tables are generated by FAP (using the GENERATE command)

and compiled into the I/O systen. Each table entry contains the

address of a device driver. Position within the table correspods to

the logical device nunber.

'I'wo device address tables exist, one for the 64R mode version of the

run—time package (called IIIVDAC) , the other for 64V (EVIP) . A third

file declares each device driver external name (DEVEX'I'). These tables

reside in the UFD named FORVlS*.

The contents of the 64R device address table is:

DAC PR$IO LDN I = PRINTER

OCT 0 NO ENTRY WITH LDN 2

DAC V3$IO LDN 3 = VISTAR3

DAC ON$IO LDN 4 = OWLIZQM

PRIME-SUPPLIED EVICE DRIVERS

At present, FCRMS supports the following three device drivers:

0 offline printer (PRINTER)

B -— 3 November 1979

APPENDIX B PDR3■4@

0 Infoton Vistar/3 (modified) (VISTAR3)

o Perkin-Elmer Owl (OWLIZZO)

Offline Printer Device Driver

The PRINTER device driver writes a form (or forms) to the line—printer

spool queue. when the INVOKE command is issued to the line printer

(IOCS Logical Unit 4), a file called PR##uu (where uu represents the

user nunber) is opened. If it already exists, the file pointer is

positioned to the end of file, where the new form definition will be

written. If it does not exist, it is created after a record is written

containing the control code for the line printer to enter FORTRAN

fonns—control mode.

when a form is output, one ASCII record is written for each line

defined in the form. The first line contains a 'l' in column 1, which

causes the printer to eject to the top of a new page. Any’ enabled

fields are underscored (with the__ character).

when the form is released, the file is copied into the spool queue,
with the appnopriate spool file header and file name. It is then

closed and deleted fran the nmne UFD. Te PR##uu file must never

appear in the home UFD after the program has not been completed; if it

does, it means that the PRINTER form was not released.

Because of the new spool subsystem, two versions of PR$lIO are

supplied. Source file PR$IO contains the version of the printer driver

that is canpatible with the spooler. This is the subroutine that is in

the RFORMS and‘VFORMS libraries as released on the master disk. Source

file OPRSIO contains the printer driver that is compatible with the

older version spooler. Tb rebuild the FORMS libraries to work with the

old spool subsystem, rename PRSIO to NPR$IO and then OPR$IO to PR$IO.
The I/O system may then be rebuilt with C_IOR and C_IOV, after which

the RFORMS and VFORMS libraries may be rebuilt with C_RLIB and C_VLIB,
as outlined above.

‘VISTAR/3 Device Driver

The Infoton VISTAR/3 device driver (V3$IO) is designed around a

specially modified 'VISTAR/3 (with microcode and hardware updates)
available through Prime.

The device dhnensions are 24 lines by 80 colunns (l920 characters), all

of which except the 15 character positions in the lower right of the

screen are available for use by the application program. These

character positions contain one of the following prompt or error

messages from the device driver:

(spaces):

input not allowed

ENTER

enter data into unprotected fields on form.

REV. 0 B - 4

PlR3@4{ZJ DEVICE I-O

press XMIT PAGE key when done

ERRG2, RE—ENTER (blinking)
a character was lost on the last transmission -

press)6‘/IIT PAGE key

DATA ERROR (reverse video)

a field (or fields) does not meet the specified
validation criteria. The cursor is positioned to

the first character position of the erroneous field

correct the data and depress the 'XMIT PAGE‘ key

All unprotected fields are displayed surrounded by square brackets

(i.e., [and]) and are displayed in full intensity. All protected
fields are displayed at half intensity. Care must be taken to allow

for the square brackets on unprotected fields when designing the form.

The square brackets may be suppressed as an installation option by

setting the variable ENCL in the device driver (FORMS>IOS>V3$IO) to

zero.

To operate the VISTAR/3 with a program using FORMS, the switches in the

rear of the display must be set as follows:

EOT character: CR

mode: block

1 ine—speed (user-selectable)
sec channel : off

parity: none

fdux/hdux: (user—selectab1e)

stop bits: 2

rol 1/page : roll

Owl Device Driver

The Perkin—Elmer O/~ILl200 device driver is designed for a stock ONL

terminal which is capable of supporting function keys.

The device dimensions are 24 lines by 80 columns (1920) characters.

The first character position, (1,1) and the last six character

positions, (75,24) through (80,24), are not available for use by the

form definition. Also, the character positions immediately preceding
and following a field with any attribute other than protect. must be

vacant.

3/«hen an input operation occurs, the data on the screen may be

transmitted to the computer by using any of the SEND keys on the right
hand keypad. If function keys are disabled, striking Fl will also

transnit the screen data. If function keys are enabled, striking any
of the function keys will send the data to the computer and make

available to the application program the number of the function key

depressed. The number of function keys may be expanded two fold by

using shift-Eh. This causes 16 to be added to the function key value.

B — 5 November 1979

APPENDIX B PER3040

when user input is required, one of the following prdnptnnessages is

printed in the lower right corner.

ENTER

Operator input is required
-

press one of the send or function

keys when done.

DATA?

The data in the field to which the cursor is positioned does not

conform to any of the validation criteria specified in the fonn

definition. Re-enter the data and depress the SEND key.

SEQ?

The data was not transnitted fran the tenminal in the proper

sequence. This usually indicates that a character was lost

during transmission. Press the appropriate SEND or function key

again.

SIZE?

Too many characters were sent for a given field in the form

definition. This usually indicates that a character was lost

during transnission. Press the apropriate SEND<or function key

again.

No special switch settings are required when a FORMS program is run on

the ONL.

REV. 0 B — 6

PDR3■4@ USERJWRITTEN DEVICE DRIVERS

APPENDIX C

USER-WRITTEN DEVICE DRIVERS

INTRODUCTION

If the user desires to interface FORMS with a device or tenninal that

is not provided for by the standard interfaces described in Section 6,

then it is necessary that the user write a device driver.

Techniques for this are discussed in the following paragraphs:

Terminal Requirements

Any terminal to be used wdth FORMS must have the following

capabilities:

o internally buffered (block transnission) mode

9 pnotected fields

0 absolute cursor positioning

0 data modification once displayed
0 clear entire screen/clear unprotected data commands

Cmher features that could be taken advantage of by the FORMS system or

device driver include:

0 blink

0 reverse video

0 underlining

0 keyboard lock

0 input and/or output space compression

Device Driver Specification

Device drivers must be named xx$IO, where _§§ represents the

two—character abbreviation used in the device control file. They have

the following calling sequence:

CALL xx$IO (function, iolist)

Function is one on the following nine function codes:

Function

Number Meaning

1 Initialize device: Reset all device logic, clear the entire

screen, and enter block transmission mode (if this is a

software function).

2 Output initial form: ‘write the contents of the entire I/O

C - 1 November 1979

APPENDIX C

REV.

P11513049}

data list (IOLIST) to the screen. The device driver should

reset bits 1, 2, 3, and 4 of the attribute word for each entry
and set bit 5 for each field displayed. It must not display

any fields with the NODISPLAY bit ‘bit 14) set. The location

of the cursor following the output operation may be undefined.

Input form: First, the cursor must be positioned as follows:

0 if DEVCMS variable XPOS is zero, the cursor must be

placed at the first character position of the first

unprotected field displayed on the terminal. The DEVCMS
common block is described later.

0 if XPOS is non-zero, the cursor must be positioned to

location (XPOS, YPOS) on the device.

The device driver must wait for the user to fill in the

displayed form and process the input as it is transmitted from

the terminal. As it receives the data, the driver is

responsible for inserting it into data areas in each field in

the I/O list. Only fields with the DISPLAYED and ENABLED bits

set in the attribute word must be input. On a fill duplex

line, the device driver must disable the echo and

auto—linefeed generation with a call to DUPLX$; this must be

restored after the data has been input. If possible, a brief

prompt message should be displayed in a convenient place on

screen, informing the user that there is an input request

pending.

If a function key was depressed, the device driver must check

the logical variable FKEYS in the EVGVIS common block. If

WF, refuse the function key request by waiting for the proper
transmit key to be typed. If FKEYS is ON, save the function

key number in the DEVCM$ variable FKEYNO (integer) and process
the data as descrlbed above.

Modify existing form: The device driver must examine each

entry in the I/O list and update those fields with attribute

bits 1, 2, or 4 set. The recommended logic for the modify

processor is:

0 if data changed, enable/protect changed, or field

attribute changed bits are all reset, process next

field; else save current attribute word in a temporary

storage area, and reset bits 1-4 (data/attributes

modified) of the attribute word in IOLIST

0 extract field length, and x,y, coordinates from IOLIST

o if the field is currently displayed and 'NODISPLAY' bit

is set, erase this field from display, reset bit 5 in

IOLIST entry, and process next field; else if field is

P1123040 USER-WRITTEN DEVICE [RIVERS

not currently displayed and 'NODISPLAY' bit is reset,

display the field according to the supplied attributes

and x,y, coordinates and set bit 5 in IOLIST entry;
else if 'NODISPLAY' bit is set, ignore this field and

process next; else if enable/protect changed bit is set

and special handling is required to accomodate this

change, perform this special handling.

0 if attribute changed bit is set, update the field using
the new attributes and process the next field; else

update the data and process the next field.

5 Clear entire screen. All information displayed on the screen

should be erased.

6 Clear unprotected data on screen. All unprotected information

on the screen should be erased.

7 Close device: This function code is used to terminate device

usage after a RELEASE command and is applicable primarily to

the line-printer driver; terminal device drivers should

switch the terminal back to conversational mode.

8 Correct data: The device driver must scan the I/O list for

the first field with the ‘data-—invalid' attribute bit set (see

below), position the cursor to the first character position of

this field, and allow the operator to re—enter the data. It

is recommended that an error/prompt message be displayed,

informing the operator that the specified field has failed all

val idation tests and that it must be re-entered. This message

should be displayed on a part of the screen that does not

interfere with the form.

9 Print local: Write the contents of the entire screen to the

local printer attached to the terminal; this feature must be

supported by the particular terminal hardware in use. The

device driver should return to the caller when the printer has

completed printing.

Iolist is an array that contains the control and data definitions for

each field in the form. It contains header words and at least 1 data

word for each entry. The array must be accessed by the device driver

using a pointer to the beginning of the field (supplied by the run-time

package) added to an offset. This offset should be specified in the

form of a PARAMETER'ed symbol, as defined below.

The following PARAMETERS represent each of the control words, plus the

start of the data area. The device driver should be oblivious to their

actual values, as these may change when new control information is

added. The parameter declarations may be made thru a $INSERT file

called 'IOPARVl' in the directory containing the source of the I/O

C - 3 November 1979

APPENDIX.C PDR3040

system (e.g., as released, FURMS>IOS>IOPARM).

Parameter

REV.

IOLK

IOVP

IORP

IOSZ

IOAT

Bit

Meaning

Link to next entry in chain by position; this is not used

by device drivers

stream definition field pointer for this entry;
used by device drivers

this is not

format definition field pointer for this entry;
used by device drivers

this is not

field length, in characters

field attributes, as follows:

Definition

13

14

15

16

Set by FORMS if data has changed since last display; reset
be device driver when data has been updated on device.

Set by FGWWS if enable/protect attribute has changed since
last display; reset by’ dev1ce driver when field has been

updated on deice.

Set by FGWHS if field has failed all supplied validation

tests; reset by’ device driver when field has been
re-entered from device.

Set by FOWWS if any field attributes have been modified
since last display; reset by device driver when field has
been updated on device.

Set by device driver if field is currently displayed on

device; reset by’ device driver if field is currently not

displayed on device (initially reset).

Set by FORMS if field should be blinked when displayed;
reset by FGWWS if field should not be blinked when

displayed.

Set by FGWWS if field should not be displayed or
erased if currently displayed;
should be displayed.

should be

reset by FORHS if fiend

Set by Fomws if field should be displayed in reverse video;
reset by FORMS if field should be displayed in normal video.

Set by FORMS if field should be

protected) ; re set by FORMS i f

write—protected.

write—enabled,
field should

(not
be

P133640 USER-WRITTEN DEVICE IRIVERS

IOYX line and column coordinates:

. left byte = line # (Y)

. right byte
= colunn it (X)

IOPG physical page #; this is not used by device drivers

IODA start of text data; data is in ascii format, packed 2

characters per word, blank filled

The initialize, clear, close, and print functions (1, 5, 6, 7, and 9)

are all relatively straightforward. These operations do not have to

process data from the I/O list and therefore should assume it to be

void.

The output, input, modify, and correct functions (2, 3, 4, and 8) all

need to traverse the I/O list and process (or at least inspect) each

field therein. The device driver must depend on the run—time systen to

provide a pointer for the start of each field definition in the I/O

list. The run—time package contains two subroutines callable by the

device driver for such a purpose. They are:

Subroutine Function

FMSSRE resets the internal (run—time package) field pointer to the

beginning of the current page. This routine must be called

at the beginning of the output, input, modify, and

correct-data function processors. It may be called again to

reset the pointer to the first field in the page when

necessary (e.g, on an input error).

Calling Sequence:

CALL FMS$RE

FMS$NF returns the pointer to the next field in the I/O list to be

processed. If the pointer is 0, the end of page or end of

I/O list has been encountered. Fields are returned to the

caller in line/colunn sequence.

Calling Sequence:

CALL FMSSNF (pointer)

A common definition SINSERT file must be included in the device driver

by the directive "$INSERT E‘ORMS>RUN>mVCM$". The common block contains

4 variables which are used by the input form (function 3) processor.

They are:

C - 5 Novanber 1979

APPENDIX C P1143040

Variable Function

FKEYS Logical variable set to true if function keys are enabled,
false if disabled. If a function key is struck and FKEYS is

false, the function key should be ignored; if true, the
function key number should be stored in FKEYNO.

FKEYNO 16 bit integer which is set by the device driver to the

number of the function key depressed. Should only be set if

FKEYS is true.

XPOS 16 bit integer column number which the cursor is to be

positioned prior to an input operation. If zero, position
the cursor to the first enabled character position on the

display.

YPOS 16 bit integer line number for cursor positioning prior to

input. It is only val id of XPOS is non—zero.

A template for a device driver is included with the FORMS system. It
is suggested that the user follow this template when writing a device
driver.

INSTALLING THE DEVICE DRIVER

To install a new device driver into the FORMS run-time library, the
user should follow the steps outlined below:

0 Obtain a listing of the device control file and choose a free

REV.

logical unit number above 10

Prime). Append an entry to
(the first 10 are reserved by

the IIZF containing the selected

logical unit number, device name, first 2 characters of the
driver name (remember, the last 3 must be '$IO') , and the
dimensions of the device in accordance with the format described
in the section entitled "Device Mapping Scheme", above. For

example, the Vistar/3 entry, whose logical unit number is 3,
driver name is 'V3$IO', and dimensions are 24 by 80, would look
as follows:

3, VISTAR3, V3, 24, 80

Attach to the directory containing the source for the

Input/Output System and copy into it the source for the device
driver to be installed.

Edit the C_IOR (64R mode) and C_IOV (64V mode) command files and
inset a line to compile the new device driver after the PRSIO
routine.

Run FAP and issue the GENERATE command to create the new device

P1113040 USER-WRITTEN DEVICE [RIVERS

tables and DCF which will include the new driver.

0 Execute the C__IOR and/or C_IOV command fi1e(s) to create a new

input/output system.

0 Attach to the first-—1evel FORMS source directory (‘FORMS’) and

execute the command file 'C__RLIB' to create a 64R mode library

and/or C_VLIB to create a 64V mode library.

The user may now modify the TCB entries for the users that have the new

terminal and reload application programs with the new’ version of the

library. It is strongly recommended that the new library not be

installed in the UFD named LIB until the new’ device driver has been

tested.

C —- 7 November 1979

P1113040 TROUBLE SHOOTING

APPENDIX D

TROUBLE SHOOTING

PROBLEM: FAP: IOLSIZ Overflow Error (F98)

SOLUTION: Change Default IOLSIZ To Necessary
Size And Rebuild FAP.

1. In FORMS>FAP>IOBUF$:

Change IOLSIZ Parameter (Default = 25%)

Tb Necessary Size.

2. Rebuild FAP:

Run Command Files In FORMS>FAP:

C__SUBS

C__FAP

C___LOAD

3. Copy *FAP Into CMDNCQ As FAP

4. Run FAP Again Tb Replace The FDL Binary

D — 1 November 1979

APPENDIX D

PROBLEM:

P1123343

Runtime I/O Error: IOLSIZ Overflow

SOLUTION: Change Default IOLSIZ 'Ib Necessary Size

And Rebuild FORMS Runtime Manager (RFORMS,

VFORMS, SFORVIS)

STEPS:

1. In FORMS>RUN>IOLDEF:

*2.

*3O

40

*NOTE:

REV.

Change IOLSIZ Parameter (Default = 25%)
To Necessary Size.

Rebuild Runtime Package:
In FORMS>RUN, RIN Command File:

C_FMV

C_FMR
In FORMS, Run Command File:

C_VLIB

C_RLIB

Copy VFORVIS, RFCRMS Into LIB.

Reload Your Program.

If Running R—Mode Cnly Or

V-Mode Only,
Run Appropriate Command Files

PROBLEM:

SOLUTION:

PDR3040 TROUBLE SHOOTING

Adding A New Device Driver

Add Driver Parameters 'Ib lI3F.AS

And Rebuild IOS With New Driver.

STEPS :

10 In FORMS*:

Edit DCF.AS

Add Parameters For New Driver:

For Example: 'Ib Add Logical Device Nunber 4,

Device Name XYl23, Device Driver Name XY, with

24 Lines, 8% Coluns; Insert The Line:

4,XYl23, XY, 24, 80

Run FAP Generate (Produces 3 $INSERT Files which

Contain Information About The New Driver Necessary
In Buildirg Runtime Library)

IN FCRMS>IOS

RUN C_IOR/C_IOV
To Change BIOR/BIOV

In FORVIS

RUN C_VLIB, C___RLIB

Copy VFORVIS/Rt-'ORMS To LIB

Execute Appropriate FAP TCB Command To Specify

New Terminal For Specific User Nunbers.

(Refer 'Ib Section 4)

Reload Your Program with New Library.

November 1979

PIR3340 SAMPLE FORTRAN PROGRAM

APPENDIX E

SAMPLE FORTRAN PROGRAM

This appendix is a complete listing of the example program discussed in

Section 7.

E —- 1 November 1979

APPENDIX E PDR304@

(@001) C ATSINP, FORMS, JRW, 78/02/23

(0002) C REVISED 1979 MLG, 79/Z6/06
(0003) C FORMS DEMO PROGRAM - INPUT ATS INFO, STORE IN DISK FILE

(00014) C COPYRIGHT 1979, PRIME COVIPUTER INC, FRAMINGHAM

(09305) C

(0006) C

(0007) C--- THIS PROGRAM INPUTS ATS INFORMATION FRCM THE TERVIINAL AND

(■0■8) C STORES THE INFO IN A DISK FILE.

(@0959) C

(0010) C ‘IWO FILES ARE USED:

(W311) C

(@012) C ATS.C IS THE CONTROL FILE - IT CONTAINS THE NEXT ATS NUVIBER TO BE

(9013) C ASSIGNED.

(0014) C ATS.D IS THE DATA FILE. AS EACH ATS FQKM IS ENTERED, IT IS APPENIED
(QMIS) C TO THIS FILE IN THE FORVIAT SHG/‘IN IN THE HROGRAM.
(@016) C

(QZI7) C

(0018) C-- TO TERMINATE THE PROGRAM, ENTER A NULL NAME FIELD.
(@019) C

(@020) C-- TO ENTER MORE THAN 4 ITEM LINES, ENTER A NON-SPACE CHARACTER (EXCEPT N)
(0021) C IN THE ‘MORE’ FIELD.

(@022) C

(@023) C-- THIS PROGRAM MAY BE USED BY A SINGLE USER IN ANY GIVEN DIRECTORY AT
(0024) C ONE TIME. NO PROVISION IS MADE FOR COMIURRENT ACCESS TO THE DATA FILES.
(0025) C

(@026) C

(0027) C

(@028) CQVIMON /F$IOBF/ B(l50) /* EXTENDED I/O BUFFER

(0029) C

(093%) INTEGER NAMAIR (75), VIA, HON, REPL, INTC, BILL, SONUVl(4),
(W531) ‘+ CHGNUM (4) , CPO (4) , ACO'I‘HR(l5) , AIRSPR, INS (5) ,
(@032) + TYPE, CODE, NNIO, ATSNUVI, B, I, J, MORE, FLDl(4,4),
(@033) + YESNOB(4) , AC'I'BUF(4,3) , FLD2(4,3)
(@034) C

(0035) INTEGER PART(8,4) , DESCR(l5,4) , SN(4,4) , QTY(4) , RTN(4)
(0036) C

(@037) LOGICAL HIROUI‘

(0038) C

((5039) C

(@049) EQUIVALEMIE (YESNOB(l) ,REPL) , (YESNOB(2) ,IN'I‘C) ,
(0041) + (YESNOB (3) ,BILL) , (YESNOB(4) ,AIRSPR) ,
(0042) + (ACTBUF(l,l) ,SONUM) , (AC’IBUF(l,2) ,CHGNUM) ,
(0043) + (AC’IBUF(l,3) ,CPO)
(@344) C

(0045) C

(0046) C SYSCOVl>KEYS.F MNEMONIC KEYS FOR FILE SYSTEM (FTN) 31 MAY, 1977
(@046) NOLIST

(0047) C

(W348) C

(0949) DATA FLDI /'REPL '
,' INTC

'
,'BILL

'
,'AIRSPARE'/

(056) DATA FLD2 /'SONU"l '
, 'CHGN

'
, ‘CPO '/

((3051) C

(@052) C

(@053)

(0■54)
(@055)
(0056)

(@057)
(GEES)
(0059)
(0060)
(@061)
(@062)
(0663)
(0964)
(0065)

(0966)

(0067)
(0@68)
(0@69)
(0@7@)
(@071)
(0072)
(@673)

(@074)

(0075)
(0976)
(0077)

(0078)
(0079)
(0089)

(0081)
(0■82)
(@Z83)
(@084)
(0085)
(0■8b)

($687)
(0088)
(0089)
(0090)
(@091)
(@092)
(0093)
(0094)
(@095)

(@096)
(0097)
(@098)
(0699)
(0190)
(@101)
(0102)
(@103)
(0104)

(@105)

P1123040 SAMPLE FORTRAN PRCBRAM

C--EXTEND TERMINAL, FILE I/D BUFFERS.

C
CALL ATTDEv(1,1,E,15E)
CALL ATTDEv(6,7,2,15E)

C
C CALL TO SHARED LIBRARY

CALL FORWSI
C
C—-OPEN FILES, INVOKE FORM DN TERMINAL.
C

CALL SRCH$$(K$CLoS,E,E,1,E,CODE)
CALL SRCHSS(K$CLoS,E,E,2,E,CoDE)

C

CALL SRCH$$(K$RDWR,'ATS.C',5,l,TYPE,CODE)
IF (CoDE.NE.E) CALL ERRPR$(K$NRTN,coDE,'ATS.C',5,E,E)
CALL SRCH$$(K$RDWR,'ATS.D',5,2,TYPE,CODE)
IF (CoDE.NE.E) CALL ERRPRS (KsNRTN,CoDE,'ATS.D',5,E,E)

C
CALL RmNF$$(K$RoSN+K$PRER,2,LoC(E),E,1E0EDEEE,NwIo,CoDE)

C
WRITE (1,295)

20 EORMAT('##INvOKE ADMN377')
C
C
C-—-ASSIGN NEXT ATS #.
C
IEO CALL PRWF$$(K$POSNHK$PREA,l,LOC(@),■,000■00,NWIO,CODE)

READ (5,12E,ERR=16E,END=I6E) ATSNUM

12E FORMAT(I6)
GO TO 20¢

C
C
C--HERE ON EOF, EDS.
C

160 ATSNU.Vl=0
C
C

C—-<ASSIGN NEXT SEQuENTIAL.ATS #.
C
180 ATSNUM=ATSNUM+1
C
C
C——-wRITE ATS#, CLEAR VARIABLE DATA, ERRG2 MESSAGE.

C
290 WRITE (1,210) ATSNUW

HDROUT=.FALSE. /* HEADER NOT OUTPUT TO DISK FILE

210 EORMAT('##SUBSTREAM HEADER’/I6/'##CLEAR'/'##SUBSTREAM ERROR‘/' ')
C
C
C—-+READ IN NAMES, ADDRESSES, AND ACCOUNTING INFCRMATION.

C
220 READ (1,24E):NAMADR, VIA, How, REPL, INTC, BILL, SONUW,

+ CHGNUM, CPO, ACOTHR, AIRSPR, INS

November 1979

APPENDIX E

(0106)

(0107)

(0108)

(0109)

(0110)

(0111)

(0112)

(0113)

(0114)

(0115)

(0116)

(0117)

(0118)

(0119)

(0120)

(0121)

(0122)

(0123)

(0124)

(0125)

(0126)

(0127)

(0128)

(0129)

(0130)

(0131)

(0132)

(0133)

(0134)

(0135)

(0136)

(0137)

(0138)

(0139)

(0140)

(0141)

(0142)

(0143)

(0144)

(0145)

(0146)

(0147)

(0148)

(0149)

(0150)

(0151)

(0152)

(0153)

(0154)

(0155)

(0156)

(0157)

(0158)

REV. 0

PDR3040

C

IF(NAMA]ZR (1) .EQ.' ') GO TO 5000 /* BLANK NAME => EXIT
240 FORMAT(75A2/2Il,3A1,12A2,15A2,A1,4A2,A1)
C

C

C-4VALIDATE INPUT DATA.
C

IF (VIA.LT.l.OR.VIA.GT.9) GO TO 1000

IF (HOW.LT.1.0R.HOW.GT.4) GO TO 1020

C

C

C--CHECK YES/NO RESPONSES.

C

DO 250 I=l,4
IF (YESNOB(I).GE.'a'.AND.YESNOB(I).LE.'z') /* MAP => UPPER CASE

+ YESNOB(I)=AND(YESNOB(I),:l57777)
IF (YESNOB(I).NE.'Y'.AND.YESNOB(I).NE.'N') GO TO 1040
IF (I.EQ.4) GO TO 250

IF (YESNOB(I).EQ.'Y'.AND.AC'IBUF(1,I).EQ.' ') GO TO 1060
IF (YESNOB(I).EQ.VN'.AND.ACTBUF(1,I).NE.‘ ') GO TO 1080

250 CONTINUE

C

C

C-AGET ITEM DATA.

C

400 READ (1,420) ((PART(J,I),J=1,8), (DESCR(J,I),J=1,15),
+ (SN (J,I) ,J=l,4) , QI'Y(I) , RTN (I) , I=l,4) , MORE

420 FORMAT(4(7A2,A1,15A2,4A2,I4,A1),Al)
C

C

C--CHECK INPUT DATA VALIDITY.

C

500 D0 520 I=l,4
IF (DESCR(1,I).EQ.' ') GO TO 520 /* IGNORE BLANK LINE
IF (RTN(I).GE.'a'.AND.R■N(I).LE.'z') /* MAP => UPPER CASE

+ RTN(I)=AND(RTN(I),:l57777)
IF (RTN (I) .NE. ‘Y’ .AND.R'IN (I) .NE. 'N') GO TO 1100

520 COTINUE

C

C

C-‘WRITE DATA TO DISK FILE.
C

DO 550 I=l,4
IF (DESCR(1,I).EQ.' ') GO TO 550 /* IGNORE BLANK LINE
IF (HDROUT) GO TO 540

C

C

C—-WRITE ACCOUNT HEADER TO DISK FILE.
C

WRITE (6,525) ATSNUW, NNHADR, VIA, HOW, REPL, INTC, BILL, SONUM,
+ CHGNUM, CPO, ACOTHR, AIRSPR, INS

525 FORMAT('*ATS',I6/5(l5A2/),2Il,3A1,12A2/I5A2/A1,4A2,A1)
C

(0159)

(0160)

(0161)

(0162)

(0163)

(0164)

(0165)

(0166)

\(0l67)

(0168)

(0169)

(0170)

(0171)

(0172)

(0173)

(0174)

(0175)

(0176)

(0177)

(0178)

(0179)

(0180)

(0181)

(0182)

(0183)

(0184)

(0185)

(0186)

(0187)

(0188)

(0189)

(0190)

(0191)

(0192)

(0193)

(0194)

(0195)

(0196)

(0197)

(0198)

(0199)

(0200)

(0201)

(0202)

(0203)

(0204)

(0205)

(0206)

(0207)

(0208)

(0209)

(0210)

(0211)

P1113040 SAMPLE FCRTRAN PROGRAM

HDROUI'=. TRUE.

C

C

C-%NRITE INDIVIDUAL ITEM LINE T0 DISK FILE.

C

C .
540 WRITE (6,545)

§g§RTcJ;I),g=l;8), (DESCRQJ,I);J=l,l5),+ J I J= 4 QTY I R'IN (I
545 FORMAT (7A2,Al, l5A2, :1A2:I4,A1)

' I

C

550 CONTINUE

C

C

C--CHECK FOR MORE ITEM LINES.

C

IF (MORE.EQ.' '.OR.MRE.EQ.'N'.OR.MORE.EQ.'n') GO TO 180

C

WRITE (1,580)
580 FORMAT('##SUBSTREAM ITEWS'/' '/'##SUBSTREAM IT■■S'/

+ '##POSITION PARTOI')
GO TO 400 /* NEXT SET OF ITEM LINES

C

C

C--INCORRECT DATA IN ACCOUNTING FIELDS.

C

1000 WRITE (l,l0l0)
1010 FORMAT('##SUBSTREAM ERROR'/

+ ‘via code must be l-9'/
+ '##PCBI‘I‘ION SHIPVIA')

GO TO 220

C

1020 ‘WRITE (l,l030)
1030 r'ORMAT('##SUBSTREAM ERRCR'/

+ ‘how code must be 1-4 '/
+ '##POSITION SHIPHOW')

GO TO 220

C

C

C—--YES/NO ABBWER REQ'D.
C

1040 WRITE (1,l050) (FLDlcJ,I), J=1,4)
1050 I:‘ORMAT('##SlBSTREPM ERRCR'/

+ ‘yes/no (Y or N) response required'/
+ '##POSITION

'
4A2)

GO TO 220

'

C

C

C--ACCUNT NLMBER FIELD BLANK.

C

1060 WRITE (l,I070) (FLD2¢J,I), J=l,4)
1070 r'ORMAT('##SLBSTREAM ERRCR'/

+ ‘account # required for YES response'/
+ '##POSITION

'
,4A2)

E — 5 November 1979

APPENDIX E PDR3O4O

(@212) GO TO 220

(@213) C

(0214) C

(0215) C-——SURPLUS ACCOUNT NUMBER.

(0216) C

(@217) 1080 WRITE (1,IO90) (FLD2LJ,I), J=I,4)
(0218) 1392 FORMAT('##SUBSTREAM ERRR'/

(0219) + ‘account # not permitted for NO response'/
(@229) + '##POSITION ',4A2)

(@221) GO TO 220

(@222) C

(@223) C

(@224) C-+RETURN'CODE FIELD BLANK.

(@225) C

(0226) IIOO ‘WRITE (1,lll0) I

(@227) 1110 EORMAT('##sBsTREAM ERROR'/

(@228) + ‘yes/no (Y or N) response required'/
(0229) + '##POEITION R'IN' ,B'##'/

(D230) + '##suBsTREAM ITEMS‘)
(@231) GO TO 400

(0232) C

(@233) C

(@234) C--HERE TO EXIT. UPDATE ATS # IN COTROL FILE.

(@235) C

(@236) 5000 CALL PRwF$$(K$POsN+K$PREA,1,LOC(O),O,OOOOOO,NwIO,CODE)
(@237) wRI'IE(5,120) ATSNUM

(0238) CALL PRwT$$(K$TRNC,1,LOC(O),O,OOOO0D,NwIO,CODE)
(0239) C

(@240) CALL SRCH$$(K$CLOS,@,■,l,0,CODE)

(0221)

CALL SRCH$$(K$CLOS,0,0,2,0,CODE)
(O2 2) C

(@243) wRITE (1,5020)

(0244) 5020 rORMAT('##CLEAR.ALL'/'##RELEAsE')
(@245) C

(@246) CALL EXIT

(@247) C

(@248) C

(@249) C

(@250) END

PROGRAM SIZE: PROCEDURE - OO2564 LINKAGE - OOOSO2 STACK — OOOO22
■■■■ ERRORS [< .MAIN. >F'I'N-REVl5.3]

REV. (J

P1123340 FORM DESCRIPTOR NO. 1

APPENDIX F

FORM MSCRIPTOR FOR

FORTRAN PROGRAM EXAMPLE

This appendix is a complete listing of the example form descriptor

associated with the program discussed in Section 7.

F — 1 November 1979

APPENDIX F

(0001)

(0002)

(0903)

(GEG4)

(GEES)

(0006)

(0007)

(EGGS)

(GGQ9)

(0010)

(@011)

(@012)

(G013)

(QZI4)

(0915)

(@916)

(@017)

(0018)

(@019)

(0020)

(0021)

(@022)

(0023)

(@024)

($925)

(@026)

(0627)

(0028)

(@029)

(0030)

(@031)

(0032)

(0033)

(0034)

(@935)

(@036)

(@637)

(0038)

(0039)

(0040)

(0@4l)

(@342)

(@043)

(QE44)

(@045)

(0646)

(@047)

(@048)

(@049)

(0056)

(0051)

(@■52)

REV. 0

»

»

»

»

»;>

»

w

»

»

»

PDR3040

PRIMEATS, FORMS, XXX, 79/$2/12

PRIMEATS, FORMS, XXX, 79/G2/12
PRIME AUTHORIZATION TO SHIP FORM —- FORMS DEMO

COPYRIGHT 1979, PRIME COMPUTER, FRAMINGHAMIWA

DMN377 STREAM

LIST

--- HEADER INFORMATION.

HEADER SUBSTREAM

*

*

FIELD (FORMNAME,FORMNAME)
FIELD ATSNUW, LENGTH 6, JUSTIFY RIGHT, ZERO~FILL, OUTPUT

END SUBSTREAM

*--- SHIP‘TO NAME AND ADDRESS.
*

NAMADR SUBSTRENW

*

it

FIELD NAME, LENGTH 3%, VALIDATE 'P' OR 'B'

REPEAT 3

FIELD ADDR, LENGTH 30

END REPEAT

FIELD ATTN, LENGTH 3%

END SIBSTREAM

*--- SHIP VIA / HOW, ACCOUNTING, MISC INFO.
‘I:

GENERAL SUBSTREAM

*

‘k

FIELD SHIPVIA, LENGTH l, VALIDATE '9' OR 'B'

FIELD SHIPHOAI, LENGTH 1, VALIDATE '9' G? 'B'

FIELD REPL, LENGTH l, VALIDATE 'A' OR 'B'

FIELD INTC, LENGTH 1, VALIDATE ‘A’ OR 'B'

FIELD BILL, LENGTH 1, VALIDATE 'A' OR 'B'

FIELD SONUM, LENGH 8, VALIDATE '99-99999’ OR 'B'

FIELD CHGN, LENGTH 8, VALIDATE '99-99999‘ OR 'B'

FIELD CPO, LENGTH 8, VALIDATE '99-99999‘ OR 'B'

FIELD ACCOTHER, LENGTH 30

FIELD AIRSPARE, LENGTH 1, VALIDATE 'A' OR 'B'

FIELD INS, LENGTH 9, JUSTIFY RIGHT, ZERO-FILL, VALIDATE 'F'

END SSTREAM

*--- ITEM INFORMATION.
*

ITEMS SUBSTREAM

P1113040 FORM DESCRIPTOR NO. 1

(0053) REPEAT 4

(@054) FIELD PART, LENGTH 15, JUSTIFY RIGHT, SPACE-FILL

(W355) FIELD DESCR, LENGTH 30, JUSTIFY LEFT

(0056) FIELD SN, LENGTH 8, JUSTIFY RIGHT, ZERO-FILL

(0057) FIELD QTY, LENGTH 4, JUSTIFY RIGHT, ZERO-FILL, VALIDATE '9' OR 'B'

(@058) FIELD RTN, LENGTH 1, VALIDATE 'A' OR 'B'

(@959) END REPEAT

((5960) FIELD MCRE, LENGTH 1, VALIDATE ‘A’ OR ‘B’

(@■6l) END SUBSTREAM

(0062)
*

(@063)
*

(0064)
*--- ERRCR / WARNING MESSAGE.

(■@65)
*

(@966) ERRCR SUBSTREAM

(0067) FIELD ERR, LENGTH 40, OUTPUT

((3068) END SLBSTREAM

(0969)
*

(0070)
*

(@071)
*

(@972) END STREAM

Z■■■ ERRORS (FDL, REV 15 - 16-FEB-78)

INPUT STREAM DESCRIPTOR STREAM:ADVlN377

SLBSTREAM SIBSTREAM COLUVIN FIELD FIELD

NAME NLMBER BOUNDARIES NAME LENGTH

NAMALR 2 1- 3@ NAME 30

NAMAIR 2 31- 66 ADDRDI 3%

NAMAIR 2 61- 9% ADIRGZ 30

NAMALR 2 91 -120 ADDR03 30

NAMAIR 2 121-158 AT'IN 30

GENERAL 3 1 SHIPVIA 1

GENERAL 3 2 SHIPHON 1

GENERAL 3 3 REPL 1

GENERAL 3 4 IN'IC 1

GENERAL 3 5 BILL 1

GENERAL 3 6- 13 SONLM 8

GENERAL 3 14- 21 CHGN 8

GENERAL 3 22- 29 CPO 8

GENERAL 3 30- 59 ACCOTHER 30

GENERAL 3 66 AIRSPARE 1

GENERAL 3 61- 69 INS 9

ITEMS 4 1- 15 PARTEI 15

ITEMS 4 16- 45 DESCRQI 30

ITEMS 4 46- 53 SN01 8

ITEMS 4 54- 57 QTY01 4

ITEMS 4 58 R'IN@1 1

ITEMS 4 59- 73 PART02 15

ITEMS 4 74-103 DESCRZZ 30

ITEMS 4 134-111 SN■2 8

ITEMS 4 112-115 QTYQZ 4

November 1979

APPENDIX F

ITEWS

ITEMS

ITEWS

ITEWS

ITEMS

ITEMS

ITE■S

ITEMS

ITEWS

ITEMS

ITB■S

ITEMS

REV.

Dbobubrbobbb■bbsb

116

117-131

132-161

162-169

176-173

174

175-189

190-219

226-227

228-231

232

233

PDR3040

RTN02

PARTE3

DESCR03

SN03

QTYD3

RENG3

PART04

UESCR04

SN04

QTYE4

RTNE4

MORE

DUI--'

I-41-—‘n>OO®U1l-‘o->®®U‘ll-‘

LAJI--'

P1123040 FORM DESCRIPTOR NO. 1

OUTPUT STREAM DESCRIPTOR STREAM:AIJVIN377

SUBSTREAM SLBSTREAM COLIMN FIELD FIELD

NAME NUMBER BOUNDARIES NAME LENGTH

HEADER 1 1- 6 ATSNLM 6

NAMAIR 2 1- 30 NAME 30

NAMAIR 2 31- 60 ADDR01 30

NAMAIR 2 61- 9 ADER02 30

NAMAH2 2 91-120 ADDR03 30

NAMALR 2 121-150 AT'IN 30

GENERAL 3 1 SHIPVIA 1

GENERAL 3 2 SHIPHGN 1

GENERAL 3 3 REPL 1

GENERAL 3 4 INTC 1

GENERAL 3 5 BILL 1

GENERAL 3 6- 13 SONLM 8

GENERAL 3 14- 21 CHGN 8

GENERAL 3 22- 29 CPO 8

GENERAL 3 30- 59 ACCOTHER 30

GENERAL 3 60 AIRSPARE 1

GENERAL 3 61- 69 INS 9

ITEMS 4 1- 15 PART01 15

ITEMS 4 16- 45 DESCR01 30

ITEMS 4 46- 53 SN01 8

ITEMS 4 54- 57 QTY01 4

ITEMS 4 58 RTN01 1

ITEMS 4 59- 73 PART02 15

ITEMS 4 74-103 DESCR02 30

ITEMS 4 104-111 SN02 8

ITEMS 4 112-115 QTY02 4

ITEMS 4 116 RTN02 1

ITEMS 4 11 7-13 1 PART03 1 5

ITEMS 4 132-161 DESCR03 30

ITE'MS 4 162-169 SN03 8

ITEMS 4 170-173 QTY03 4

ITEMS 4 174 RTN03 1

ITEMS 4 175-189 PART04 15

ITEMS 4 190-219 DESCR04 30

ITEMS 4 220-227 SN04 8

ITEVIS 4 228-231 QTY04 4

ITEMS 4 232 RTN04 1

ITEMS 4 233 MORE 1

ERROR 5 1- 40 ERR 40

E‘ 5 November 1979

APPENDIX F

(0073)

(0074)

(@075)

(0076)

(@077)

(@078)

(0079)

(908%)

(@081)

(@082)

(0083)

(@084)

($085)

(0086)

(0087)

(0088)

(@089)

(EZQQ)

(0091)

(0092)

(0093)

(@094)

(@@95)

(@096)

(@097)

(@098)

(0099)

(0100)

(@101)

(0102)

(0103)

(0104)

(@165)

(@106)

(@107)

(0108)

(QIQ9)

(@110)

(0111)

(0112)

(0113)

(0114)

(0115)

(@116)

(0117)

($118)

(0119)

(0120)

(0121)

(@122)

(@123)

(0124)

REV. 0

P1113040

PRIMEATS, FCRMS XXX, 79/Q2/12
‘k

*

‘I:

*

*

ADVIN377

*

PRIMEATS, FORMS XXX, 79/02/12
PRIME AUTHORIZATION TO SHIP FCRM — FORMS DEMO

COPYRIGHT I979 PRIME CCMPUTER, FRPMINGHAM MA

FORMAT

IEVICE O/\ILl 2% Z

*--- HEADER LINE INFORMATION:
'1:

FOHVINAME

FIELD ‘FORM’ POSITION (2,1)
FIELD LENGTH 8, PCBITICN (7,1)

FIELD ‘ATS #' POSITION (20,l)
FIELD LENGTH 6, PCISITICN (26,1.)ATSNUM

*

it

*--- SHIP TO INFCRMATION:
'1:

NAME

ADLR

AT‘T'N
9:

*

*--- SHIP
*

SHIPVIA

*

*

FIELD

FIELD

‘SHIP TO ‘ POSITION (2,3), REVERSE VIDEO

‘NAME’ P(BITION (l2,3)
FIELD LENGTH 3%, POSITION (24,3) , DDPROTECT

FIELD ‘ADDRESS’ POSITION (l2,4)
REPEAT 3

FIELD LENGTH 30, POSITION (24,+3) , NOPROTECT

END REPEAT"

FIELD ‘ATTENTION‘ POSI‘TION (l2,7)
FIELD LENGTH 30 PCBITION (24,7) NOPROTECT

VIA INFCRMATION :

FIELD ‘SHIP VIA‘ POSITION (2,9) , REVERSE VIDEO

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD LENGTH 1, PCBITION (l2,9) , NOPROTECT

‘**VIA CODES**‘ POSITION (62,1)
'1. PICKUP‘ PCBITION (62,2)
'2. PARCEL POSITIONT‘ POSITION (62,3)
'3. UPS‘ PCBITION (62,4)

'4. FIRST CLASS‘ POSITION (62, 5)
'5. SPEC DELIV‘ P(BITIO.\J (62,6)
'6. TRUCK‘ POSITION (62,7)
'7. RI PARCEL‘ POSITION (62,8)
'8. AIR FREIGHT‘ POSITION (62,9)

'9. FEDR EXPR‘ PCEITION (62,l@)

*----SHIP HON INFCRMATION:
*

SHIPHON

FIELD

FIELD

FIELD

FIELD

‘SHIP HON‘ POSITION (2D,9), REVERSE VIDEO

FIELD LENGTH 1, PCBITION (32,9) , NOPROTECT

‘**HCM CODES**‘ POSITION (62, 12)
'1. PREPAID‘, P(BI'TI(1\I (62,l3)
‘2. C.O.D.‘, POSITION (62,l4)

(@125)

(@126)

(@127)

(@128)

(0129)

(@130)

(@131)

(@132)

(@133)

(0134)

($135)

(0136)

(0137)

(@138)

(0139)

(@140)

(@141)

(@142)

(0143)

(0144)

(@145)

(@146)

(0147)

(0148)

(0149)

(@150)

(0151)

(0152)

(@153)

(@154)

(0155)

(@156)

(@157)

(0158)

(0159)

(0160)

($161)

(@162)

(0163)

(@164)

(@165)

(@166)

(0167)

(@168)

(0169)

(0170)

(0171)

(@172)

(@173)

($174)

(0175)

(0176)

(@177)

*

*

PDR304O FORM DESCRIPTOR NO. 1

FIELD '3. PREPAID/ADD‘, POSITION (62,l5)

FIELD '4. COLLECT‘, POSITION (62,16)

*--- ACCOUNTING INFORMATION:
'1:

REPL

SONUW

INTC

CHGN

BILL

CPO

ACCOTHER
*

*

FIELD ‘ACCOUNT ' POSITION (2,11) , REVERSE VIDEO

FIELD ‘REPLACE/SHORT SHIP?‘ POSITION (12,11)
FIELD LENGTH 1, POSITION (33,11), NOPROTECT

FIELD 'S.O.', POSITION (37,l1)

FIELD LENGTH 8, POSITION (50,11) , NOPROTECT

FIELD ‘INTERNAL CHARGE?‘ POSITION (12,12)
FIELD LENGTH 1, POSITION (33,12), NOPROTECT

FIELD ‘CHARGE ■t‘ POSITION (37,12)
FIELD LENGTH 8, POSI'I‘ION (50,12) , NOPROTECT

FIELD 'BILLASLE?', POSITION (12,13)
FIELD LENGTH 1, POSITION (33,13), NOPROTECT

FIELD 'COSI' P.0. #', POSITION (37,13)
FIELD LENGTH 8, POSITION (50,13) , NOPROTECT

FIELD 'OTHER:' POSITION (12,14)
FIELD LENGTH 30, POSITION (20,14) NOPROTECT

*--- MISCELLANEOUS INFORMATION:
"k

INS

AIRSPACE
‘k

‘k

*--- ITEH
it

PART

DESCR

SN

QTY
RTN

*

MORE
*

‘I:

FIELD ‘MISC ' POSITION (2,l6), REVERSE VIDEO

FIELD 'INSURE F02 $' POSITION (l2,l6)
FIELD LENGTH 9, POSITION (28,16),NOPROI‘ECT

FIELD ‘AIR SPARE?‘ POSITION (4O,I6)
FIELD LENGTH 1, POSITION (52,16), NOPROTECT

DESCRIPTION.

FIELD ‘PART NO’ POSITION (5,l8)
FIELD ‘DESCRIPTION’ POSITI (29,18)

FIELD 'S/N’ POSITION (53,l8)
FIELD ‘QTY’ POSITION (6l,18)
FIELD 'RTN' POSITION (66,18)
REPEAT 4

FIELD LENGTH 15, POSITION (2,+l8), NOHROTECT

FIELD LENGTH 30, POSITION (19,+l8), NOPROTECT

FIELD LENGTH 8, POSITION (51,+18), NOPROTECT

FIELD LENGTH 4, PCBITICN (6l,+18) , NOHROTECT

FIELD LENGTH 1, POSITION (67,+18), NOPROTECT

END REPEAT

FIEUD WHORE?‘ POSITION (72,22)
FIELD LENGTH 1, POSITION (79,22), NOPROTECT

*—-- ERRCR MESSAGE, ETC.
*

November 1979

(@178)

($179)

(0180)

(@181)

(0182)

(@183)

(0184)

(0185)

(@186)

(@187)

(0188)

(@189)

(0196)

(@191)

(0192)

(0193)

(@194)

(@195)

(0196)

(0197)

(@198)

(@199)

(320%)

(02@1)

(@202)

(@2@3)

(@204)

(0205)

(@206)

(0207)

(0208)

(0209)

(921%)

(0211)

(@212)

(0213)

(@214)

(0215)

(@216)

(0217)

(@218)

(0219)

(@220)

(0221)

(0222)

(@223)

(@224)

(@225)

(0226)

(0227)

(0228)

(0229)

(@230)

REV. 0

APPENDIX F

*

PD-'{3@4■

FIELD LENGTH 40, POSITION (2,24)

END DEVICE

IEVICE VISTAR3

*--- HEAER LINE INFORMATION:
*

FORVINAME

FIELD 'FORM‘ POSITION (2,1)
FIELD LENG'TI-I 8, P(BITI(1\I (7,1)

FIELD ‘ATS #' POSITION (2@,l)
FIELD LENGTH 6, PCBITICN (26,l)ATSNUM

9:

*

*--- SHIP TO INFGMATION:
*

NAME

ADDR

A'I'I'N
9:

*

*--- SHIP
it

SHIPVIA

it

*

FIELD

FIELD

‘SHIP TO ‘ POSITION (2,3), REVERSE VIDEO

'NAME' PCBITION (l2,3)

FIELD LENGTH 3%, POSITION (24, 3) , NOPROTECT

FIELD ‘ADDRESS ' PCBITION (l2,4)
REPEAT 3

FIELD LENGTH 30, POSI'TION (24,+3), NOPROTECT
END REPEAT

FIELD ‘ATTENTION’ POSITION (l2,7)
FIELD LENGTH 3% POSITION (24,7) NOPROTECT

VIA INFCRMATION :

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

‘SHIP VIA‘ POSITION (2,9), REVERSE VIDEO

FIELD LENG'I'H l, PCBITICN (l2,9) , NOPROTECT

‘**VIA CODES**‘ POSITION (62,l)
'1. PICKUP’ POSITION (62,2)
'2. PARCEL POSI'TIONT‘ POSITION (62,3)
'3. UPS‘ PCBITION (62,4)

'4. FIRST CLASS‘ POSITION (62,5)
'5. SPEC DELIV' P$I’TI(1\I (62,6)
'6. TRUCK‘ POSITION (62,7)
'7. PRI PARCEL‘ PCBITICN (62,8)
'8. AIR FREIGHT‘ POSITION (62,9)
'9. FEDR EXPR' PCBITION (62,l@)

*---SHIP HON INFCRMATION:
*

SHI PHON

FIELD

FIELD

FIELD

FIELD

FIELD

FIELD

‘SHIP HON‘ POSITION (20,9) , REVERSE VIDEO
FIELD LENGTH 1, PCBITICN (32,9) , NOPROTECT

‘**HON CODES**‘ POSITION (62,l2)
'1. PREPAID‘, P(BITIO.\I (62,l3)
'2. C.O.D.', POSITION (62,l4)
'3. PREPAID/ADD‘, P(BI'TION (62,l5)
'4. COLLECT‘, POSITION (62,l6)

(0231)

(@232)

(0233)

(0234)

(@235)

(@236)

(0237)

(0238)

(@239)

($240)

(@241)

(@242)

(@243)

(@244)

(@245)

(0246)

(0247)

(@248)

(0249)

(@259)

(@251)

(0252)

(@253)

(@254)

(0255)

(0256)

(0257)

(0258)

(@259)

(026%)

(0261)

(@262)

(0263)

(@264)

(0265)

(0266)

(@267)

(0268)

(@269)

(@270)

(@271)

(0272)

(@273)

(0274)

(@275)

(0276)

(0277)

(@278)

(0279)

(0280)

(0281)

(0282)

(0283)

PDR3@40 FORM DESCRIPTOR NO. 1

*

*

*--- ACCOUNTING INFCRMATION:
*

FIELD ‘ACCOUNT ’ POSITION (2,ll) , REVERSE VIDEO

FIELD ‘REPLACE/SHORT SHIP?‘ PCBITION (l2,ll)
REPL FIELD LENGTH 1, POSITION (33,ll), NOPROTECT

FIELD ‘S.O.‘, POSITION (37,ll)
SONUH FIELD LENGTH 8, POSITIO (50,ll), NOPROTECT

FIELD ‘INTERNAL.CHARGE?‘ POSITION (l2,l2)

INTC FIELD LENGTH 1, POSITION (33,l2), NOPROTECT

FIELD ‘CHARGE #’ POSITIO (37,l2)

CHGN FIELD LENGTH 8, R)SITION (50,l2) , NOPROTECT

FIELD ’BILLABLE?‘, POSITION (l2,l3)
BILL FIEUD LENGTH l, POSTTION (33,13), NOPROTECT

FIELD ‘COST P.O. #’, POSITION (37,l3)

CPO FIELD LENGTH 8, POSITION (50,l3), NOPROTECT

FIELD 'OTHER:' POSITION (l2,l4)
ACCOTHER FIELD LENGTH 30, POSITION (20,l4) NOPROTECT
*

*

*--- MISCELLABEOIB INFCRMATION:
*

FIELD ‘MISC ' POSITION (2,l,6) , REVERSE VIDEO

FIELD 'INSURE FOR $' POSITION (l2,l6)

INS FIELD LENGTH 9, POSITION (28,l6),NOPROI'ECT

FIELD ‘AIR SPARE?‘ POSITION (4@,l6)

AIRSPACE FIELD LENGTH 1, POSITION (52,l6), NOPROTECT
*

*

*--- ITEM DESCRIPTION.
*

FIELD ‘PART NO’ POSITION (5,l8)

FIELD ‘DESCRIPTION’ POSITION (29,l8)

FIELD ‘S/N’ POSITION (53,l8)
FIELD ‘QTY’ POSITION (6l,l8)

FIELD ‘RTN’ POSTTION (66,l8)
REPEAT 4

PART FIELD LENGTH 15, POSTTION (2,+l8), NOPROTECT

DESCR FIELD LENGTH 30, PCBITICN (l9,+l8) , NOPROTECT

SN FIELD LENGTH 8, POSITION (5l,+l8), NOPROTECT

QTY FIELD LENGTH 4, POSITION (6l,+l8), NOPROTECT

RTN FIELD LENGTH 1, POSITION (67,+l8) , NOPROTECT

END REPEAT
*

FIELD ‘MORE?’ POSITION (72,22)

MORE FIELD LENGTH l, POSITIO (79,22), NOPROTECT
7k

*

*--- ERROR MESSAGE, EEC.
*

ERR FIELD LENGTH 40, POSITION (2,24)
*

November 1979

APPENDIX F PDR3040

(0284)
*

(0285) *

(0286) END DEVICE

(0287) END FORWNT

@900 ERRORS (FDL, REV 15 -
l6~FEB-78)

REV; G F - 10

D E

$8

ss&+&+&+&+&s&+s&+&+&+&+aa+&&+&+&+&+&+&&&

huh}!-'

KOW

V I C E

*

F O R M A T

PDR3@40

M A P FORMAT: ADMN377 DEVICE: ONLIZEG

FORM DESCRIPTOR NO. 1

* 2000O*OOOO3000l*OOOO4OIOO*OOOO5000O*OOOO6000O*OOOO70lOO*OOOO8

SIZE: 24 BY 8%

ml
11

12

13

14

15
16

17
18
19

20

21

22

23
24

'k*** ATS # ******

SHIP TO NAME

ADDRESS

ATTENTION

SHIP VIA SHIP HON

ACIJOUNT REPLACE/SHORT SHIP? s.o.

INIERNAL CHARGE? CHARGE #

BILLABLE? cosr P.o. #

OTHER:
"

MISC INSURE FCR $ AIR SPARE?

PART NO DESCRIPTION S/N

'k***********'k************'k********'k**'k**

VIA CODES
1. PICKUP
2. PARCEL POSITIONT

3. UPS

4. FIRST CLASS

5. SPEC DELIV

6. TRUCK

7. PRI PARCEL
8. AIR FREIGHT

9. FEIR EXPR

Hcw CODES

1. PREPAID

2. C.O.D.

3. PREPAID/ADD
4. COLLECT

QTY RIN

MORE?

PAGE: 1

November 1979

APPENDIX F

D E

SIS!

&&s+a+&+Q+&s&+&s+s+&+&+a&+&&+&+&+&+&+&&G

REV.

V I C E

*

F 0 R M A T M A P

lOOOO*OOOO2000O*OOOO3000O*OOOO4000O*OOOO5

PIIR3040

FOMAT: ADMN37Y

*

DEVICE: VISTAR3

* 7000l*6....

SIZE: 24 BY 80

00008

1 I Fggm ******** ATS # ****** **VIA C0DE5** I
2 I 1. PICKUP I
3 I SHIP To NAME 2. PARCEL POSITIONT I

4 I ADDRESS 3. UPS I

5 I 4. FIRST CLASS I

I 5. SPEC DELIV I

7 I ATTENTION 6. TRUCK I

8 I 7. PRI PARCEL I
9 I SHIP VIA SHIP HON 8. AIR FREIGHT I

10 I
‘ ‘

9. FEIIR EXPR I
11 I ACCOUNT REPLACE/SHIRT SHIP? S.o. I

12 I INTERNAL CHARGE? CHARGE II **HO/I CODES** I

13 I BILLABLE? COSI‘ P.o. # 1. PREPAID I

14 I OTHER:
"‘

2. C.O.D. I

15 I 3. PREPAID/ADD I
16 I MISC INSURE Pen 5 AIR SPARE? 4. COLLECT I

I7 I
"

I
18 I PART NO UESCRIPTION S/N QTY R'IN I
19 I I

2:3 I
"

I

21 I
' "

I

22 I MORE? I

23 I
‘ ‘

I
24 I ** I

I3 F — 12

PAGE:

PIR3@40 SAMPLE CCBOL PROGRAM LISTING

APPENDIX G

SAMPLE CCBOL PROGRAM LISTING

This appendix is a complete listing of the example program discussed in

Section 8.

G - 1 November 1979

APPENDIX G

_REV 15.5 COBOL

(0001)
(0002)
(0003)

(0004)
(0005)
(0006)

(0007)
(0008)
(0009)

(0010)
(0011)
(0012)
(0013)
(0014)
(0015)
(0016)
(0017)
(0018)

(0019)
(0020)

(0021)

(0022)
(0023)
(0024)

(0025)
(0026)
(0027)

(0028)
(0029)
(0030)
(0031)
(0032)
(0033)
(0034)
(0035)
(0036)
(0037)
(0038)
(0039)
(0040)
(0041)
(0042)
(0043)
(0044)
(0045)
(0046)
(0047)
(0048)

(0049)
(0050)
(0051)

(0052)

REV.

PDR3040

SOURCE FILE: DEmO1
IDENTIFICATION DIVISION.
FROGRAM—ID. MAIN.
REMARKS. A PROGRAM TO ACCEPT ORDERS FROM THE VDU

AND wRITE OUT A MIDAS FILE.
ENVIRONMENT DIVISION.
INPUI'-OUI‘PUI‘ SECTION.

FILE—CONTROL.
SELECT INFILE ASSIGN TO TERMINAL.
SELECT ORDER—FILE ASSICN”TO“PFMS

ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECORD KEY IS (RDER-KEY
ALTERNATE RECORD KEY IS ORDER-NAME WITH DUPLICATES
ALTERNATE RECIRD KEY IS STOCK-NO WITH DUPLICATES
ALTERNATE RECORD KEY IS STOCK-DEIpwITH DUPLICATES.

DATA DIVISION.
FILE SECTION.
FD INFILE LABEL RECORDS ARE CMI'I'I‘ED.
01 SCR.

02 FILLER PIC X(l04).
FD ORDERrFILE LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS "ORDERS".
01 ORDER-RECORD.

0 2 (FDER-KEY .

08/13/79 13:52

03 ORDER4NO PIC 9(5).
03 ORDER-ITEH PIC 99.

02 ORDER-NAME PIC X(20) .
02 ORDER-ADDI PIC X(20) .
02 ORDERnADD2 PIC X(20).
02 ORDER-ADD3 PIC X(20).
02 STOCK4NO PIC X(6).
02 STOCK-UEL PIC X(8).
02 STOCK43PY PIC S9(5) SIGN TRAILING SEPARATE.

01 ORDERC.
02 FILLER PIC XC7).
02 NEX1'-CRDER PIC 9 (5) .
02 FILLER PIC X(94).

WORKIM3-STORAGE SECTION.
77 INV-C PIC X(l2) VALUE '##INVOKE 131'.
77 REL-C PIC X(09) VALE '##RELEASE'
77 PROT-C PIC X(25) VALUE '##PROTECT NAM ADI AD2 AD3' .
77 ENAB-C PIC X(24) VALUE '##ENABLE NAM ADI AD2 AD3'.
77 CLEAR~C PIC X(07) VALUE '##CLEAR'.
77 CIA-C PIC X(ll) VALUE '##CLEAR ALL‘ .
77 CURR-ORD PIC 9(5) .
01 DATA-SCREEN.

02 DS-NAM.
03 CLBIND PIC XX.
03 FILLER PIC X(l8).

02 EB-ADI PIC X(20).
02 DS-AD2 PIC X(20).
02 IE-AD3 PIC X (20) .

(0053)

(0354)

(0055)

(0356)

(0057)

(0058)

(0059)

(0060)

(0061)

(@062)

(@063)

($964)
I

(@065)

(@066)

(0667)

(0068)

(0069)

(Q@70)

(@071)

(0072)

(0073)

(@074)

(0375)

(OM76)

(0977)

(0078)

(@079)

(@083)

(0081)

(0082)

(@083)

(0@84)

(@085)

(0086)

(@087)

(0088)

(@089)

(■$9@)

(@091)

(@092)

(@093)

(0094)

(0095)

(GE96)

(0097)

(QQ98)

(@099)

(@100)

($101)

(@102)

(0103)

(@104)

(@105)

PIR3VJ4@ SAMPLE COBOL PROGRAM LISTING

O2 Os—sTK.

O3 STK—ID PIC xx.

03 FILLER PIC x(4) .

O2 DS—QTY PIC 9(5).

02 lB—D1\TE PIC X(8).
O2 DS-ORDER PIC 9(5).

PROCEDURE DIVISION.

START-POINT.

CALL 'FORVl$I' .

OPEN I-O ORDER—FILE.

OPEN I-O INFILE.

WRITE SCR FRCM INV-C.

B-POINT.

READ INFILE INTO DATA-SCREEN.

IF CUSIND EQUAL '**' GO TO END-IT.
*

*

TRY-IT.

MOVE ZEROES TO ORDER-KEY.

READ ORDER-FILE KEY IS ORDER-KEY INVALID KEY

GO TO TRY-IT.

ADD 1 TO NEXT-ORDER.

MOVE NEXT-ORDER TO CURR-(RD.

REWRITE ORDER-RECCRD.

MOVE [B-NAM TO ORER-NAME.

MOVE IE-ADI TO CRDER-ADDI.

MOVE DS-AD2 TO ORER-ADD2.

MOVE [B-AD3 TO GIDER-ADD3.

MOVE ZERO TO ORDER-ITEM.

A-POINT.

MOVE IE-STK TO STOCK-NO.

II\BPECT IB-STK REPLACING LEADING SPACES BY ZEROES.

MOVE IE-QTY ‘I‘O STCIIK-QTY.
MOVE IE-DATE TO STCIIK-DEL.

ADD 1 TO ORDER-ITEM.

MOVE CURR-(RD TO (RDER-NO.

MOVE CIRR-ORD TO $-ORDER.

WRITE ORDER-RECORD.

WRITE SCR FROVI PROT-C.

MOVE SPACES TO IE-STK, DS-QTY, IE-DATE.

WRITE SCR FRCM DATA-SCREEN.

READ INFILE INTO DATA-SCREEN.

IF S'I‘K-ID NOT EQUAL '**' GO TO A-POINT.

WRITE SCR FROVI ENAB-C.

WRITE SCR FROVI CLEAR-C.

G - 3 November 1979

APPENDIX G

(0106)

(@107)

(@198)

(@109)

(011%)

(@111)

(0112)

(@113)

(@114)

PDRBB/40

GO TO B-POINT.
*

*

END-IT.

CLOSE ORDER-FILE.

WRITE SCR FRCM CIA-C.

WRITE SCR FROVI REL-C.

CLOSE INFILE.

STOP ‘END OF (RDER ENTRY‘ .

0071 /W/ MOVE IS DONE WITHOUT CCNVERSION.

_PROGRAM STATISTICS

EXECUPABLE CODE SIZE: 453 WORIB.

CONSTANT POOL SIZE: 35 WCRDS.

TOTAL PLRE PRCIIEDURE SIZE: 488 WORDS.

WORKING-STORAGE SIZE: 202 BYTES.

TOTAL LINKFRAME SIZE: 499 WORIB.

STACK SIZE:

TRACE MODE :

29 WORDS.

NO ARGLMENTS EXPECTED.

114 SOIRCE LINES.

NO ERRORS ,

REV. 0

l WARNINGS, P40@/590 COBOL REV 15.3 <MAIN >

PIR304@ FORM DESCRIPTOR NO. 2

APPENDIX H

FORM DESCRIPTOR FOR

COBOL PROGRAM EXAMPLE

'Ihis appendix is a cornplete listing of the example form descriptor

associated with the program discussed in Section 8.

H - 1 November 1979

PLR3040

STREAM

FIELD NAM LENGIH 29

FIELD ADI LENGTH 20

FIELD AD2 LENGTH 29

FIELD AD3 LENGTH 2%

SI‘KNNO FIELD STKNO LENGTH 6

STKQTY FIELD STKQTY LENGPH 5 JUS'I'IFY RIGHT

STKDEL FIELD STKDEL LENGTH 8

APPENDIX H

(0001) DSl

(WW2) NAM

(0003) ADI

(95004) AD2

(@005) AD3

(@006)

(0007)

(0608)

(0099) ONO

(@010)

FIELD ONO LENGTH 5 OUTPUT

END STREAM

0000 ERRCRS (FDL, REV 16 -
I6-FEB-79)

 O E

P1113040 FORM ESCRIPTOR NO. 2

INPUT STREAM DESCRIPTOR STREAM:lB1

COLUVIN FIELD FIELD

BOUNDARIES NAME LENGTH

1- 20 NAM 2%

21- 40 » AD1 29

41- 60 AD2 20

61- 80 AD3 20

81- 86 STKNO 6

87- 91 STKQTY 5

92- 99 STKDEL 8

H — 3 November 1979

APPENDIX H PIR3■4■

OUTPUT STREAM DESCRIPTOR STREAM:DS1
COLLMN FIELD FIELD

BOUNDARIES NAME LENGI‘H

1- 20 NAM 26

21- 4% AD1 20

41- 60 AD2 28

61- 83 AD3 20

81- 86 STKNO 6

87- 91 STKQTY 5

92- 99 STKDEL 8

198-194 ONO 5

PDR3@40 FORVI ESCRIPTOR NO. 2

(gall)

(gglz)

(gg13)

(ZQI4) DSl FCPLMAT

(6615) IEVICE VIS’I'AR3

(6616) FIELD '0 R D E R E N T R Y S Y s T E M‘ POSITION (22.2)

(6617) FIELD ' — - - — - — - — — - — — - - - -' POSITION (22.3)

(6618) FIELD ‘ACCOUNT NAME ' POSITION (16.6)

(6619) NAM FIELD LENGTH 26 POSITION (35.6) NOPROTECT

(6626) FIELD ' AND ADDRESS‘ POSITION (16.7)

(0021) ADl FIELD LENGTH 2% P(BITI(1\l (35.7) NOPROTECT

(@022) AD2 FIELD LENGTH 20 POSITION (35.8) NOPROTECT

(EMZ3) AD3 FIELD LENGTH 20 PCBITION (35.9) NOPROTECT

(6624) FIELD ‘STOCK Nuv1EER' POSITION (16.12)

(6625) STKNO FIELD LENGTH 6 POSITION (35.12) NOPROTECT

(6626) FIELD ‘QUANTITY’ POSITION (16.14)

(6627) STKOTY FIELD LENGTH 5 POSITION (35.14) NOPROTECT

(6628) FIELD ‘DELIVERY DATE' POSITION (16.16)

(6629) STKDEL FIELD LENGTH 8 PCBITICN (35.16) NOPROTECT

(6636) FIELD ‘ORDER REFERENCE IS‘ POSITION (16.26)

(6631) ONO FIELD LENGTH 5 POSITION (35.26)

(6632) END DEVICE

(6633) mvLcE GAILIZEG

(6634) FIELD '0 R D E R E N T R Y S Y s T E M‘ POSITION (22.2)

(6635) FIELD ' - — - - — — - — — - — — — — — -' POSITION (22.3)

(6636) FIELD 'AccOuNT NAME ' POSITION (16.6)

(6637) NAM FIELD LENGTH 26 POSITION (35.6) NOPROTECT

(6638) FIELD ' AND ADDRESS‘ POSITION (16.7)

(0039) ADI FIELD LENGTH 2Q PCBITION (35,7) NOHROTECT

(@043) AD2 FIELD LENGTH 2G POSITION (35.8) NOPROTECT

(0941) AD3 FIELD LENGTH 29 PCBITION (35.9) NOLROTECT

(@042) FIELD ‘STOCK NU.VlBER' POSITION (l■,l2)

(0943) STKNO FIELD LENGTH 6 P$ITION (35.12) NOHROTECT

(3044) FIELD ‘QUANTITY’ POSITION (10.14)

(0945) STKQTY FIELD LENGTH 5 POSITION (35.14) NOPROTECI‘

(0■46) FIELD ‘DELIVERY DATE‘ POSITION (1■,l6)

(@047) STKDEL FIELD LENGTH 8 PCBI'I‘I(1\I (35.16) NOPROTECI‘

(0848) FIELD ‘ORDER REFEREMIE IS‘ POSITION (l■.2■)

(0049) ONO FIELD LENGTH 5 PCBITION (35.20)

(@050) END DEVICE

(@051) END FORVIAT

GOOD ERRCRS (FDL, REV 16 - 16-FEB-79)

H - 5 November 1979

APPENDIX H

DE

SE

&&&s&&&sa+&&+&&+&s&+®+&+&+&&®G®&

REV.

\l

O\U'|vbUJf\JI--‘

1%
11
12

13
14

15
16

17
18
19
2%
21
22
23
24

VICE FORMAT MAP

OOOClOCOO*OOU.200.0* OOOO3IOOI

P1113040

FORMAT: DS1

*OIO.4OIOO*OOOO500.0*

DEVICE : VISTAR3

OOOO6C0.0

SIZE:

*OOOI7OOIO*lOO08

24 BY 80

I
I ORDER ENTRY SYSTEM I
I — - - — - - — - — - - - — - - -
I I
I I
I ACCOUNT NAME I

I AND ADDRESS I

I I

I I

I I
I I
I STOCK NUMBER I

I I
I QUANTITY I

I I
I DELIVERY DATE I

I I
I I
I I
I ORDER REEEREN:E IS ***** I
I I I
I I
I I
I I

H — 6

PAGE : 1

SS

SSSSQSSGS-v|-$8-f-QS-I-ESS-Q-S+8-|-S-f-QSSSQS

DE

xi

0\U'|J>UJl\JI--4

10
1 1
12

13
14

15
16

17
18
19
2%
21
22
23
24

PDR3@40 FORM DESCRIPTOR NO. 2

v I c E F o R M A T M A P FORMAT: D81 DEVICE: owL12aE SIZE: 24 BY 80 PAGE: 1

OOOO*IOOO OOOO*OOOO2lOIO*OOOO3000I*OOOI4000O*OOOO5IIOO*OOOO6000O*OOOO7000O*IOOI8

I I
I ORDER ENTRY SYSTEM I
I — - — - - - — - — — - - - - -- I
I I
I I
I MrmNrwmE I

I mmzmmm&3 I

I I

I I

I I
I I
I snnxuwmmz I

I I
I QUANTITY I

I I
I DELIVERY DATE I

I I
I I
I I
I ORDER REFEREICE IS ***** I
I I
I I
I I
I I

H - 7 November 1979

P1113040 USE OF FORMS

APPENDIX I

ADVANCED USE (F FORMS

This appendix gives an example of FORVIS used in conjunction with an

external login program. (Refer to the Systems Administrator's Guide

P£R3l■9) . This program should be installed locally under the

supervision of the system administrator. It is a good exanple of how

torms can be used to produce a menu—driven approach to operation, and

it is also a good example of how to use COBOL to produce an external

login program.

The program is listed on the following pages.

I — 1 November 1979

APPENDIX I PER3040

IDENTIF ICATION DIVISION .

PROGRAVI-ID . DEMO.

THIS COBOL PROG'RAM WAS DEVELOPED WITH THE PRIME FCRMS

PACKAGE TO DEMONSTRATE THE ABILITY TO FORVIAT SCREENS

WITH A 'MENU' APPROACH TO OPERATOR INTERACTION.

THE SCREEN DEFINITIONS ARE CGVTAINED IN THE FILES

IOGINOI FIRST MENU

LOGINO2 SECCND MENU

IOGINO3 PASSNCRD VALIDATION SCREEN

THE ONLY 'TRICKY' CODE IN THE PROGRAVI IS THE SPECIAL

IROGRAMVIING NECESSARY TO ALLON THIS CODE TO BE SAVED

AS AN R-MODE VERSION IN CMINCO KNGNN BY THE NAME

'L(I3IN'

THE R-MODE CCMPILE OF THIS PROGRAM USES THE STOP LITERAL.
THE V-MOE VERSION USES THE ‘EXIT PROGRAM’ IN A DUMVIY

PARAGRAPH TO FAKE THE COVIPILER INTO THINKING THAT THIS

IS A CCBOL SLBROUTINE - HENCE NO FILE ASSIGI\MENTS - EVER.

THE R-MODE SEQUEMIE IS TO R *CCB. FORM

ENTER A SLASH FOR FILE ASSIGNVIENTS

AND SAVE THE RESULT WITH l/177777
THE V-MOLE VERSION MUST BE SEG'ED AND THEN RUN THROUGH

THE SEG UFD COVIMAND PRJIEUJRE 'CO CMIBEG' THAT WILL MAKE I'T
LCDK LIKE THE R-MODE COUNTERPART. THE1\CE OFF TO CMDNCE AS 'LOGIN' .

THE PRIME SYSTEM SLBROUTINE 'TIMDAT' CAN BE CALLED

FROVI THIS HQOGRAM MODULE TO HAVE ACCESS TO LOGIN

SESSION RESOURCE C(]\ISLMPTION DATA.

THIS USER DEPENLENT DATA MIGHT BE WRITTEN OUT TO A
DISK JOB ACCOUNTING FILE FCR FLRTHER PRCIIESSING.

SI-X-39393l->l-3(-3l-3l-X-3I-3l-3i-3(-X-3(-3l-3(-3l-3I-3l-3l-3G-3I-3(->i-3i-3(-3l-3i'3(->I-3!-

ENVIRONVIENT DIVISION.

INPUI‘-OUTPUT SEIITION.

FILE-CON'I'ROL.

SELECT FORM ASSIGN TO TERMINAL.
*

*

*

DATA DIVISION.

FILE SECTION.
4:

*

FD FCRM LABEL RECORDS ARE O"II‘I'TED.

01 FORV1-RECORD PIC X(40) .
4:

*

WORKING-STCRAGE SECTION.

Q1 INVOKE-COMMAND.

$5 INVOKE-LITERAL PIC X(9) VALUE '##INVOKE'.

01

Z1

G1

G1

01

$1

01

01

‘k

*

*

8-

>I->i-3(->(->l-3I-3l-3(->l->I-3l->l-3i->(-3(-X-

3(-

*

*

PIR3(J40 USE OF FCRMS

U5 INVOKI::-FORVI-NAME PIC X(8) VALUE SPACES.

RELEASE-CGVIMAND PIC x(9) VALUE '##RELE2ASE'.

CLEAR—CoMMAND PIC x(7) VALUE ‘H-CLEAR‘.

CLEAR—ALL—Co.v1MAND PIC x(11) VALUE '##CLEAR ALL‘.

FU1\CTION-KEY-ENABLE PIC x(1U) VALUE '##FKEYS ON‘.

FUNCTION—KEY—RETURN PIC x(3) .

ABSOLUTE-POSITION PIC x(17) vALUE '##PoSITIoN SELECT‘ .

PASSWORD—RESPONSE PIC X(8) VALUE SPACES.

COVIMAND-LINE.

05 LOGOUI‘—COVlMAND PIC X(6).

05 ABBREVIATED-LO REDEFINES LOGOUI‘—C(]VIMAND.

10 FILLER PIC x(2).

10 SHORT-LOGOUT PIC x(2) .

10 FILLER PIC x(2).

Us FILLER PIC x(30).

PRCIIEDJRE DIVISION.

PARAGRAH-I-Q51.

STOP ‘TEMPORARY HALT' .

THE STOP LITERAL IS USED FOR R-MODE PGMS

TO ALLON PROQAM SAVING AFTER THE FILE ASSIGNMENTS

THE CMIREAD CALL IS USED TO ALLON THE USE OF THIS

PROGRAM AS A SYSTEM WIDE LOGIN ROUTINE

IT TRAPS THE LOGOUI‘ COVIMANDS TO INSURE THAT THE USER

DOESN'T GET A MENU AT DOGOUI‘ TIME ll

CALL 'CMREAD' USING COVIMAND-LINE.

IF LOGOUI‘-COMMAND EQUAL 'LOGOUI" OR

SHORT-LOGOUI‘ EQUAL
' '

STOP RUN

ELSE

NEXI‘ SENTEBCE.

OPEN I-O FORM.

PREPARE FIRST SCREEN MENU

MOVE 'LDGIN0l ' TO INVOKE-FORVI-NAME.

WRITE FCRM-RECCRD FRO4 INVOKE-CCIVIMAND.

WRITE FORVI-REXICRD FROVI FUDCTION-KEY-ENABLE.

WRITE FCRM-REC(RD FRCM ABSOLUTE-POSITION.

PARAGRAPH-O 2 .

READ FCRM INTO FUNCTION-KEY-RETLRN.

IF FUDCTION-KEY-RETURN EQUAL
' U6’

GO TO PARAGRAPH-B3

ELSE

GO TO PARAGRAH-I-99.

November 1979

APEENDIX I PIIR304■

it

*

PARAGRAPH-$3

WRITE FCRM-RECCRD FRCM CLEAR-ALL-CQVIMAND.

WRITE FORVI-RECCRD FRO"! RELEASE-COVIMAND.
* PREPARE THE SECCND MENU SCREEN

MOVE 'LOGIN■2' TO INVOKE-FORVI-NAME.

WRITE FCRM-RECCRD FRGVI INVOKE-COVIMAND.
WRITE FORVI-REXICRD FRGVI FUDCTION-KEY-ENABLE.

WRITE FCRM-RECCRD FRCM ABSOLUTE-POSITION.

* OK. .NC]N GET THE FUNCTION KEY RETLRN

READ FORVI INTO FUDCTION-KEY-RETLRN.

IF FUNCTION-KEY-RETLRN EQUAL
' U4‘

GO ‘ID PARAGRAH-I-U4

ELSE

GO TO PARAGRAPH-99.
*

*

it

PARACRAPH-Q4.

WRITE FORM-RECORD FRCM CLEAR-ALL-COVIMAND.
WRITE FORVI-RECORD FRGVI RELEASE-CUVIMAND.
MOVE 'LOGIN@3' TO INVOKE-FORM-NAME.
WRITE FORVI-REJCRD FROVI INVOKE-CGVIMAND.
READ FORM INTO PASS/VORD-RESPONSE.

IF PASS/WORD-RESPONSE NOT EQUAL ‘TB

GO TO PARAGRAPH-99
ELSE

GO TO PARAGRAPH-98.
*

‘I:

9:

PARAQAPH-98.
* HOOK HERE FOR ACCOUNTING DATA
* CR PASSWCRD REIJCRDS ETC..

WRITE FCRM-RECORD FROVI CLEAR-ALL-CQVIMAND.
WRITE FORVI-RECORD FROVI RELEASE-CLMMAND.
CLOSE FCRM.

DISPLAY '**** TRIAL BAIAMIE APPLICATION INVOKED HERE ****' .
STOP RUN.

PARAGRAHI-99.
* HOOK HERE FCR ACCOUNTING FILE INFO
* CALL 'TIMDAT' AND RECCRD FUNCTION SEQUENZE AND PW

WRITE FCRM-RECORD FROVI CLEAR-ALL-CCMMAND.
WRITE FORVI-RECCRD FROVI RELEASE-CCMMAND.
CLOSE F(RM.

DISPLAY 'FUI\CTION ERRCR TRAP INVOKED' .
STOP RUN.

PARAGRAPH-DUMMY.

PH-130425 USE OF FORMS

EXIT PROGRAM.

1 — 5 November 1979

APPENDIX I PIZR3@4■

The forms descriptor associated with this program is as follows:

LOGINIZI

*

it

*

LOGINGI

DATE3

TIME 1

 SELECT

REVO M

STREAM

FIELD SELECT LENGTH l

FIELD (DATE 3, DATE3)
FIE LD (TIMEI , TIMEI)

END STREAM

FORMAT

DEVICE ONLIZQG

FIELD ‘ ICP P35■ CONTROL CENTER‘;
PCBITIQQ (l5,2) NOIROTECT

FIELD LENGTH 8 POSITION (25,4) NOPROTECT

FIELD LENGTH 5 PCBITION (47,4) NOPROTECT

FIELD ‘Fl ACCOUNTS RECEIVABLE‘ POSITION (25, 7)
FIELD ‘F2 ACLOUNTS PAYABLE‘ PCBITION (25,9)
FIELD ‘F3 WORD PRCIIESSING‘ POSITION (25,ll)
FIELD ‘F4 PROGRAM EEVELOPMENT‘ PCBITION (25,13)
FIELD ‘F5 SYSTEM AD.‘/IINISTRATOR‘ POSITION (25,l5)
FIELD ‘F6 GENERAL LEDGHR‘ POSITION (25,l7)
FIELD ‘SELECT FUNCTION KEY ACTIVITY‘ POSITION (5, 21);

NOPROTECT BLINK

FIELD LENGTH 1

END IIIVICE

END FORMAT

POSITION (38,2l) NOPROTECT

PDR3@40 USE OF FORMS

LCISINZZ STREAM

FIELD SELECT LENGTH 1

END STREAM
*

*

*

LCEIN02 FORMAT

DEVICE ONLIZQE

FIELD ‘G E N E R A L L E DG E R‘ POSITION (25,4);
NOPROTECT

FIELD ‘Fl BUIISET RATIO A1\F\LYSIS' POSITION (25,9)

FIELD ‘F2 JOURNAL‘ P(BITION (25,l2)

FIELD ‘F3 PROFI'I' LOSS STATEMENT‘ POSITION (25,l5)

FIELD ‘F4 TRIAL BALANCE‘ PCBITION (25,l8)
FIELD ‘SELECT FUNCTION KEY ACTIVITY‘ POSITION (5,2l);

NOPROTECT BLINK

SELECT FIELD LENGTH 1 POSITION (38, 21) NOPROTECT

END IIJVICE

END FCRMAT

LOGINZ3 STREAM

FIELD PASSWD LENGTH 8

END STREAM
*

*

LOGINO3 FORMAT

DEVICE GNLIZVM

FIELD 'VALIDATE YOLR TRIAL BALABCE ACCESS PASSNORD' ;

POSITION (l@,l2)
PASSWD FIELD LENGTH 8 POSITION (58,l2) NOPROTECT NODISPLAY

END EVICE

END FORMAT

I - 7 November 1979

PDR304@ ERROR MESSAGES

APPENDIX J

ERROR MESSAGES

ERROR MESSAGE FORMAT

All errors generated by the FDL translator and FAP are of the form:

C#nn text message

where 23 represents a unique two—digit error code for each type of

error. The message printed is a one-line diagnostic of the cause of

the error and possibly what action has been taken by the translator.

The following paragraphs describe the error codes generated by FDL.

Unless otherwise indicated, the statement that caused an error is

ignored by FDL.

FDL ERROR MESSAGES

The following paragraphs list FDL error messages and explanations.

C#@0 BAD STATEMENT FORMAT

‘Doe contents of the statenent field is not an alphanumeric text

iten.

C#@l STATEEENT NOT RECOGNIZED.

The statement field does not contain a valid FDL statement.

C#@2 ARGUMENT REQUIRED.

An argument is required following the statenent name.

C#■3 ARGLMENT TOO LONG.

A text item exceeds 80 characters in length.

C#04 MULTI PLY DEFINED MACRO.

A.macro by the sane nane already exists. This statenent is

lgnored and the previous macro definition is retained.

CW5 BAD NAME FIELD.

The name field (starting in the left margin) contains an illegal
character.

J - 1 November 1979

APPENDIX J

C#@6

C#07

CW8

CW9

C#l■

C#ll

C#l 2

C#l 3

C#l4

C#15

REV.

P1123540}

NAME REQUIRED.

A name must be present in the name field (starting in the left

margin). This error is generally issued because a mapped field

in the FORMAT descriptor is missing a name.

STATEVIENT FIELD IS BLANK.

A name was present in the name field, but no statement followed.

NO END STATEMENT; END ASSIMED

An end—of—-file was encountered while processing a STREAM or

FORMAT descriptor. An END STREAM or END FORMAT is assumed.

NOT PRCXIESSING STREAM DESCRIPTOR.

An END STREAM or SUBSTREAM statanent was

descriptor is not being processed.

issued and a stream

END SLBSTREAM MISSING. IT IS ASSUVIED HERE.

An END STREAM statement was issued while a substream block was

being processed.
» An END SUBSTREAM is assuned prior to the END

STREAM.

NOT PROCESSING SLBSTREAM

An END SUBS'I‘REAM statement was issued while not processing a

substream block.

NOT PRCXIESSING FCRMAT

An ENDFCRMAT or a DEVICE statement was

processing a FORMAT descriptor.

issued while not

END DEVICE MISSING. I'I‘ IS ASSUVIED HERE.

An END FORMAT was encountered while still processing a device

description. An END DEVICE is generated prior to the END

FORMAT.

NOT PROCESSING DEVICE BLCEK.

A FIELD definition was issued after a FORMAT statement,
before a DEVICE block was started.

but

END STATEMENT MISSING; IT IS ASSUMED HERE.

A STREAM or FORMAT descriptor was not terminated before another

was started. An END STREAM or END F(RMAT is generated prior to
this statement.

C#l7

C#l8

C#l9

C#2l

C#22

C#23

C#24

C#25

C#26

C#27

PIR304$ RROR MESSAGES

BAD PARAMETER.

This indicates that an unrecognizable parameter was present on a
FIELD statement.

INVALID FCRMAT NAME.

The namesuppl ied following the FORMAT parameter in the STREAM

statement does not conform to the naming conventions discussed

earlier in this document.

NAME NOT PEHVIITTED.

A name was present on a statement which does not permit one.
This usually means that a literal field in the FORMAT descriptor
contains a name.

ALREADY PR(L'ESSING SLBSTREAM.

A SLBSTREAM statement was

substream block.

issued while already processing a

VALIDATION STRING MISSING.

The VALIDATE parameter is present on a STREAM descriptor
but is not followed by any val idation masks.

field,

BAD JUS'I‘IFY PARAMETER.

The JUSTIFY parameter in the FIELD statement is not followed by
one of its four val id arguments.

MAPPING SPECIFICATION REQUIRED.

A STREAM descriptor FIELD

specification.

is not followed by any mapping

BAD MAPPING SPECIFICATION.

A STREAM descriptor FIELD is not followed by a val id mapping

specification.

BAD LENGTH SPEC IFICATION .

The LENGTH parameter in either STREAM or

not followed by a val id numeric argument.

FORMAT descr iptor is

BAD INPUT-OUTPUT SPECIFICATION.

An INPUT‘, OUI‘PUT, or INPUT—OUI'PUT parameter has been misused.

This usually means that INPUT‘-OUTPUT or OUTPUT has been issued

when processing an input—literal field.

November 1979

APPENDIX J

C#28

C#29

C4130

C1131

C#32

C#33

CH3 4

C#35

C#36

C#37

REV.

PIR3040

MAP FIELD NAME TOO LONG.

The map to field name in a STREAM descriptor
than eight characters.

FIELD is longer

ALREADY PRCIIESSING DEVICE BLOCK.

A EVICE statement has been issued while already processing a

device block.

SYNTAX ERROR.

This general error message is issued whenever two items in a

field definition are separated by an illegal character.

BAD POSITION PARAMETER.

The POSITION parameter in a FORMAT

followed by a val id argument.

descriptor FIELD is not

POSITION OUI‘ OF RANGE.

One or more of the arguments in the POSITION parameter is zero.

I.ENG'I‘H PARAMETER MISSING.

The length declaration for a STREAM or FORMAT descriptor FIELD
is required but not supplied.

POSITION PARAMETER MISSING.

The POSITION parameter in a FORMAT descriptor FIELD is not

supplied.

UNREC£\JIZED SYSTEM INFORMATION FIELD NAME.

The name specified in a System Information Field is

unrecogni zed .

INPUT/OUI‘PUT SPEC IFICATION NOT PERMITTED.

An INPUT, OU1'PUI‘, or INPUI‘-OUTPUT specification was included on
a system information field definition.

UNREEOGNIZED PARAMETER.

See C#l7.

C#38

C#39

C#4@

CM 1

C#42

C#43

C#44

C#45

C#46

P13330421 ERROR MESSAGES

NOT ERCEESSING STREAM/WVICE FORMAT BLmK.

A field definition has been issued outside of a STREAM or FORMAT

descriptor. This and all other FIELD declarations up to the

next STREAM, FCRMAT, or DEVICE statement are ignored. This

error message is issued once per each violation.

MULTIPLY DEFINED SYMBOL.

A FIELD name has been redefined within the same STREAM or FORMAT

descriptor. This field is processed normally, but will produce
undesired results at run-time.

BAD START S PEI? IF ICATION .

The argument following the START specification in the FIELD

definition within a STREAM is not nuneric and greater than zero.

ILLEGAL MACRO ARGUMENT SPEC IFIER.

The item following the argunent reference symbol (#) is not

nuneric and greater than zero.

ECI‘ EBCOUNTERED BEFORE END REPEAT.

An end-of-file was encountered on the input file before a repeat

block was terminated. This usually causes abortion of the

translat ion .

END REPEAT MISSING - REPEAT BLOCK ICNORED.

An END statement was encountered while processing a REPEAT

block. ‘me entire REPEAT block is ignored and the BID statement

processed.

STATEMENT NOT ALLONED WITHIN REPEAT BLCIIK.

A statement other than a FIELD statement was found within a

REPEAT block. The statement is ignored; processing of the

REPEAT block continues.

INPU’I'/OUTPUT SPECIFICATION REQUIRED.

An input/empty—condition or output—literal field did not contain

a required INPUT or OUTPUT statement.

IMIONS ISTENT SUBSTREAM USAGE.

A FIELD definition appears outside of a SUBSTREAM block in a

multi—record stream definition —or- the user has attempted to

start a SUBSTREAM definition when previously defined FIELDS do

not reslde within a SUBSTREAM. This error message is only

issued once per STREAM descriptor.

November 1.979

APPENDIX J PDR3040

EAP ERROR MESSAGES

Like FDL error messages, all RAP error messages are of the form:

t#nn text message

The t_in the error code represents the error type. At present,
are three types:

0 F - file system/input file/control block error

0 S -
syntax error

0 T - TCB or DCF format error

there

.nn_represents a two—digit error number, unique for each error message

generated by EAP.

The following paragraphs list FAP error messages and explanations.

F#00 CONTROL BLOCK UFD DOES NOT EXIST.

An operation other than CREAIE was attempted and the ■onns UFD

('FORMS*') does not exist on the systen.

F#Zl CONTROL BLOCK DIRECTORY DOES NOT EXIST.

An operation other than CREATE was attempted and the FORMS

segment.directory ('FMS.**') does not exist within the FOHES

UFDO

F#$4 INPUT FILE IS EMPTY.

The input file specified in an ADD or REPLACE command is

enpty.

F#@5 PREMATLRE EOF.

An EOF was encountered on the input file in an ADD or REPLACE

corrmand before the end—of—data record. The module is deleted
from the control directory; This is usually caused by the

user pressing the BREAK key in the middle of an FDL

compilation.

F#ra6 FILE DOES NOT EXIST.

The input file specified in an ADD or REPLACE command does not
exist in the current UFD.

F#07 BAD INPUT FILE.

The input file specified in an ADD or REPLACE command is not a
valid FDL output binary file.

file.

REV. 0 J - 6

No action is taken with this

F#08

F#@9

F#l@

F#ll

F#l2

S#■0

SW1

S#@2

S#@3

PER3040 ERROR MESSAGES

I/O LIST OVERFLON, LINK SUPPRESSED.

EAP ran out of room while attenpting to link a STREAM

definition to a FORMAT an out.of room while attempting to link

a STREAM definition to a FORMAT'definition. The internal I/O
buffer must be enlarged before this form definition. may’ be

added. Increase the value of IOLSIZ in the $INSERT file

FORVlS>FAP>ICBUF$ and rebuild FAP.

STREAMS/FORMAT BUFFER OVERFLON.

EAP ran out of room attempting to read a STREAM or FORMAT

descriptor binary ran out of room attempting to read a STREAM

or FORMAT<descriptor binary file. The buffer must be enlarged
an RAP rebuilt before this form definition can be added.

Increase the value of SFBSIZ in the SINSERT file

FORMS>FAP>IQ3UF$ and rebuild FAP. >FAP>I(BUF$ and rebuild

FAP.

ERRCR READING STREAM / FORMAT DESCRIPTION.

A file system error occurred while attenpting to load a STREAM

or FORMAT descriptor .

ERROR READIM3 / ELETING LINK FILE.

A file systen error occurred when EAP was trying to purge a

linked form definition file.

ERRCR RENAMING LINK FILE.

An error occurred when FAP attenpted to rename a link file

following a PURGE operation.

FILE NAME REQUIRED.

An ADD or REPLACE command was issued, but no file name

followed. The command is ignored.

BAD FCRM NAME SPECIFIER.

The form name specifier contained a syntax error. This

coman is ignored.

BAD ARGUMENT.

One of the parameters in the command line was not recognized.

The command is ignored.

BAD TYPE .

The form name specifier contained a type declaration other

than STR (stream) or EWT (fonmat). This command is ignored.

November 1979

APPENDIX J

SW4

SW5

SW6

S#07

T#■■

T#@l

T#02

T#■3

T#@4

REV.

PIR3040

NO FCRM NAME SPECIFIED.

A PURGE command was issued without a required form name

specifier. The PLRGE conmand is ignored.

MISSING ARGUMENT.

The T'CB command was issued without any following user number.
The command is ignored.

BAD USER NLMBER.

The user nunber specified in the T'CB command is not an integer
number greater than zero. The TCB command is ignored.

BAD TERMINAL NAME.

The user attempted to assign the name PRINTER as a terminal

type in a T'CB conmand. This is not permitted and the TCB

command is ignored.

IIIF DEVICE INTERLUDE FIELD ERROR.

The device interlude number field in the given IIZF entry is

not nuneric or greater than zero. The DCF must be edited and

corrected before continuing.

IIIF DEVICE NAME FIELD ERROR.

The device name field in the given IIZF entry contains an

illegal character or is empty. The DCF must be edited and

corrected before continuing

IIZF IEVICE ABBREVIATION FIELD ERROR.

The device abbreviation field in the given IIZF entry is empty
or contains a space or illegal character. The DC]? must be
edited and corrected before continuing.

TCB LINE/COLUVIN FIELD ERROR.

The line or column specification field in the given [BF entry
is empty, contains a non—nuneric value, or is less than 1.
The IIZF must be edited and corrected before continuing.

MAX IIIVICE NUIVBER EXCEEIED IN DCF.

The IIEF contains an entry with a device interlude nunber

greater than fifty (50). This error is issued from the
GENERATE command only. Chly fifty (56) (l) devices may be in
use at one time.

PnR3@4@ ERROR MESSAGES

'I‘#@5 EVICE CON'I'ROL FILE EMPTY.

The DCF is empty’ and the user issued a TCB or GENERATE

command.

T#06 TERMINAL.UNDEFINED.

The terminal type specified in the TCB command is not present
in DCF.

J - 9 November 1979

##, prefix for run-time

directives 3-1

$INSERT files 5-19

ADD command 6-1

Advanced use of FORMS I-1

Alternate input file 5-19

Application program, compiling

7-18, 8-13

Application program, loading

Applications programs, FORMS, how

to write 2-1

Attribute modification directives

4-8

BLINK parameter 5-15

Bug chart D—l

CLEAR, run-time directive 4-3

COBOL program example, form

descriptor for H-1

COBOL program listing, sample

G-1

Compiling the application program

Configurable I/O list 4-10

Configuration file, terminal

B-2

Control file, device B-2

CREATE command 6-2

Creating the form descriptor file

7-11, 8-9

Data areas, setting up 7-13,

8-10

INDEX

Data description, purpose of

3-1

Data format 3-2

Data stream descriptor 3-2

Default options 5-21

DEFINE statement 5-17

Defining device types 7-12,

8-19}

Descriptor structure 5-2

Descriptor, data stream 3-2

Descriptor, device format 3-3

Descriptor, field 3-2

Device control file B-2

Device definition database B-2

Device definition statements

5-5

Device driver, offline printer

B-4

Device driver, (M1 B-5

Device driver, VISTAR/3 B-4

Device drivers, installing C-6

Dev ice dr ivers , Pr ime suppl ied

B-3

Device drivers, user written

C-1

Device format descriptor 3-3

Device I/O B-1

Device I/O mechanism B-1

Dev ice input/o utput system B-1

Device mapping scheme B-3

DEVICE statement 5-5

Device types, defining 7-12,

8-19

Direct field 5-6

Directives , attr ibute

modi fication 4-8

Directory info rmat ion A-1

Display atrtr ibute Parameters

5-15

DISPLAY parameter 5-16

EJEKZT statement 5-19

END DEVICE statement 5-5

END FORMAT statement 5-5

END REPEAT statement 5-18

END STREAM statement 5-4

END SLBSTREAM statement 5-4

Error handling, run-time 4-9

Error messages J-1

Example COBOL program 8-1

Example FORTRAN program 7-1

FAP command format 6-1

FAP example 6-9

FAP functions 1-6

FAP overview 1-6

FAP see also Forms Administrative

Processor

FAP, see FORMS Administrative

Processor

INDEX

FDL 5-1

FDL command 3-7

FDL listing 3-9

FDL listing details, specifying

7-16, 8-12

FDL options 3-9

FDL source, translating 7-18,

8-13

FDL syntax 5-1

FDL temporary files 5-22

FDL translation command format

5-20

Field definition 3-4

FIELD definition 3-4

Field definition examples

5-13, 5-16

Field descr iptor 3-2

Field generation, iterative

5-17

FIELD parameter for FORMAT

5-14

FIELD parameters 5-8

Field statement differences

between FIELD and STREAM

descriptors 3-7

Field statements within a format

descriptor 5-14

Field statements within a stream

descriptor 5-6

FIELD types 5-6, 5-14

File Description Language command

3-7

File handling, run-time 4-8

Filler
field 5-7

FIX parameter 5-11

FKEYS, run-time directive 4-1

FORCEREAD, run-time directive

4-4

Form definition delimiter

statements 5-2

Form definition overview 2-1

Form definition summary 3-3

Form definitions 3-1

Form description, setting up

Form descriptor file, creating

7-11, 8-9

Fonm descriptor for COBOL program

example H-1

Form descriptor for FORTRAN

program example F-1

Form descriptor preparation
3-5

Form, how to define 3-1

Format coding 3-5

FCRMAT descriptor 3-2

Format descriptor boundaries

3-5

Format of data 3-2

FGZMAT statement 5-5

Forms Administrative Processor

see also FAP

INDEX

FORMS Administrative Processor,
see FAP

FORMS Administrative Processor

6-1

Forms Catalog, installing form

descriptor 7-18, 8-14

FORMS Definition Catalog overview

1-6

Forms Definition Language 5-1

FORMS directives summary 2-5

FORMS d irectives, definitions

2-3

FORMS run-time directives 4-1

FORMS, advantages of 1-2

FORMS, components of 2-3

FORMS, purpose of 1-2

FORMS, using overview 2-3

FORTRAN program example form

descriptor F-1

FORTRAN program, sample E-1

FREE parameter 5-16

Functional overview, FORMS and

PRIMOS 1-4

GENERATE command 6-3

HOLD parameter 5-16

I/O statement, FORMS, how to

write 2-1

1/0, list, configurable 4-10

Input data 7-14, 8-12

Input empty conditional field

5-7

Input literal field 5-6

INPUT parameter 5-9

INPUI‘—OUI‘PUI‘ parameter 5-9

Installing FORMS A-l

INVOKE, run-time directive 4-5

IOCS interlude B-l

Iterative field generation
5-17

JOURNAL command 6-4

JUSTIFY paraneter 5-8, 5-15

Language manuals, related 1-7

Languages, application, for FORMS

l-5

LENGTH parameter 5-8, 5-15

LINK command 6-4

LIST command 6-5

Listing control statements

5-19

Listing details, FDL, specifying

7-16, 8-12

Listing features 7-17

Literal data 7-14, 8-12

Literal field 5-l4

Loading the shared library
4-l■

Macro definition 5-l7

Macro definitions, using 7-15

Manual , using l-l

INDEX

Manuals, related 1-7

Mapped field 5-14

Mapping scheme, device B-3

Mapping stream and format

descriptor fields 3-4

MIDAS file template 8-15

Naming conventions 5-2

NOBLINK parameter 5-16

NODISPLAY parameter 5-16

A

NOFIX parameter 5-ll

NOLIST statement 5-19

NOPROTECT attribute, using 3-5

NOPROTECT parameter 5-l5

NORMAL VIDEO parameter 5-l6

Offline printer device driver

B-4

Operating system and utilities

manuals, related l-7

Output data 7-14, 8-12

Output literal field 5-6

OUI'PUI' parameter 5-9

Overview of FORMS l-l

Overview, manual 1-1

ml device driver B-5

P(BITION parameter 5-15

Position parameter , relative

5-l8

POSITION, run-time directive

4-5

PRIMOS interfaces 1-3

PRINT, run-time directive 4-5

Problem solving chart D-l

Program, running 7-19, 8-16

Programming aids 5-16

PROTECT parameter 5-15

PURGE command 6-5

QUIT command 6-7

Related manuals 1-7

Relative position parameter

5-18

RELEASE, run-time directive

4-6

REPEAT statement 5-18

Repeated text 7-16

REPLACE command 6-7

REVERSE VIDEO parameter 5-l6

Run-time directives, FORMS 4-1

Run-time directives, using 4-1

Run-time error handling 4-9

Run-time file handling 4-8

Run-time message 5-22

Running the program 7-19, 8-16

Sample COBOL program listing

G-1

Sample FORTRAN program E-1

Setting up a form description

INDEX

Shared library, loading 4-l■

SPACE-FILL parameter 5-9

START parameter 5-12

Stream coding 3-7

STREAM de finit ion statements

5-4

STREAM descriptor 3-2

STREAM statement 5-4

SIBSTREAM statement 5-4

SLBSTREAM, run-time directive

4-6

SLBSTREAMS, using 7-12

Syntax, FDL 5-1

System informational field 5-7

'I'CB command 6-7

Template, MIDAS file 8-15

Temporary files, FDL 5-22

Terminal config urat ion file

B-2

Text, repeated 7-16

Translating FDL source 7-18,
8-13

Trouble shooting D-1

Using the manual 1-1

VALIDATE parameter 5-10

VALIDATE, run-time directive

4-6

Variable data 7-14, 8-12

INDEX

A VISTAR/3 device driver B-4

ZERO-FILL parameter 5-9

	Front Cover
	
	Title Page
	i-1
	i-2
	Table of Contents
	i-3
	i-4
	i-5
	i-6
	Section 1
	Introduction to FORMS
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Section 2
	Writing Application Programs for Use Wit FORMS
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	Section 3
	Describing Data Used by FORMS
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	Section 4
	FORMS Run-Time Directives
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	Section 5
	FORMS Definition Language
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	Section 6
	FORMS Administrative Processor (FAP)
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	Section 7
	Example FORTRAN Program
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	Section 8
	Sample COBOL Program
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	Appendix A
	Installation
	A-1
	A-2
	A-3
	A-4
	Appendix B
	Device I/O
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	User-Written Device Drivers
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Appendix D
	Trouble Shooting
	D-1
	D-2
	D-3
	D-4
	Appendix E
	Sample FORTRAN Program
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Appendix F
	Form Descriptor for FORTRAN Program Example
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	Appendix G
	Sample COBOL Program Listing
	G-1
	G-2
	G-3
	G-4
	Appendix H
	Form Descriptor for COBOL Program Example
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	Appendix I
	Advanced Use of FORMS
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	Appendix J
	Error Messages
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	J-7
	J-8
	J-9
	J-10
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	Blank
	
	
	
	
	
	
	Back Cover

