Prime Computer, Inc.
Programmer’s Guide

PDR 3040-163P

FORMS
Programmer’s Guide

Rev. 16.3

FORMS PROGRAMMER'S GUIDE

PDR3040

This guide documents Prime's Forms Management System (FORMS) at Master
Disk Revision Level 16 (Rev. 16).

PRIME Computer, Inc.
500 0ld Connecticut Path
Framingham, Massachusetts 01760

All correspondence on suggested changes to this document should be
directed to:

Maxon L. Goudy, Technical Writer
Technical Publications Department
Prime Computer, Inc.

500 0ld Connecticut Path
Framingham, Massachusetts 01701

Acknowledgements:

We wish to thank the members of the FORMS team and also the non-team

members, both customer and Prime, who contributed to and reviewed this
PDR.

Copyright © 1979 by
Prime Computer, Incorporated
500 01d Connecticut Path
Framingham, Massachusetts #1701

The information in this document is subject to change without notice
and should not be construed as a commitment by Prime Computer
Corporation. Prime Computer Corporation assumes no responsibility for
any errors that may appear in this document.

The software described in this document is furnished under a license

any may be used or copied only in accordance with the terms of such
license.

PRIME and PRIMOS are registered trademarks of Prime Computer, Inc.
PRIMENET and THE PROGRAMMER'S COMPANION are trademarks of Prime
Computer, Inc.

First Printing November 1979

Section Title Page
SECTION 1 INTRODUCTION TO FORMS

INTRODUCTION 1-1
SCOPE OF DOCUMENT 1-1
PURPOSE OF FORMS 1-2
ADVANTAGES OF USING FORMS 1-2
FORMS INTERFACES TO PRIMOS 1-3
FORMS ADMINISTRATIVE PROCESSOR 1-6
REIATED DOCUMENTS 1-7

SECTION 2 WRITING APPLICATION PROGRAMS FOR USE

WITH FORMS
INTRODUCTION 2-1
PRINCIPLES OF OPERATION 2-1
USING FORMS 2-3
FORMS DIRECTIVES 2-3
PROGRAM EXAMPLES 2-4
SECTION 3 DESCRIBING DATA USED BY FORMS
PURPOSE OF DATA DESCRIPTION 3-1
FORM DEFINITION 3-1
SUMMARY OF FORM DEFINITION 3-3
MAPPING 3-4
FORM DESCRIPTOR PREPARATION 3-5
TRANSIATING STREAM AND FORMAT CODING 3-7

SECTION 4 FORMS RUN-TIME DIRECTIVES
REFERENCE INFORMATION

FUNCTION 4-1
USAGE 4-1
DESCRIPTION OF DIRECTIVES 4-3
ATTRIBUTE MODIFICATION DIRECTIVES 4-8
SECTION 5 FORMS DEFINITION LANGUAGE,
REFERENCE INFORMATION
SYNTAX OF FORMS DEFINITION LANGUAGE 5-1
FORM DEFINITION DELIMITER STATEMENTS 5-2
FIELD STATEMENTS WITHIN A STREAM DESCRIPTOR 5-6
FIELD DEFINITION EXAMPLES: STREAM DESCRIPTORS 5-13
FIELD STATEMENTS WITHIN A FORMAT DESCRIPTOR 5-14
FIELD DEFINITION EXAMPLES: FORMAT DESCRIPTOR 5-16
PROGRAMMING AIDS 5-16
MACRO DEFINITION 5-17
ITERATIVE FIELD GENERATION 5-17

i-3

RELATIVE POSITION PARAMETER 5-18

LISTING CONTROL STATEMENTS 5-19
ALTERNATE INPUT FILE (SINSERT) 5-19
FDL TRANSLATION, COMMAND FORMAT 5-20
RUN-TIME MESSAGES 5-22
FDL TEMPORARY FILES 5-22
FDL COMMAND LINE EXAMPLE 5-23
SECTION 6 FORMS ADMINISTRATIVE PROCESSOR (FAP)
REFERENCE INFORMATION
FUNCTION 6-1
COMMAND FORMAT 6-1
FAP COMMANDS 6-1
FAP EXAMPLES 6-9
SECTION 7 EXAMPLE FORTRAN PROGRAM
INTRODUCTION 7-1
WRITING THE PROGRAM 7-3
CREATING THE FORM DESCRIPIOR FILE 7-11
COMPILING THE APPLICATION PROGRAM 7-18
TRANSIATING THE FDL SOURCE 7-18
INSTALLING FORM DESCRIPTOR IN FORMS CATALOG 7-18
LOADING THE APPLICATION PROGRAM 7-18
RUNNING TEH PROGRAM 7-19

SECTION 8 EXAMPLE COBOL PROGRAM

INTRODUCTION 8-1
WRITING THE PROGRAM 8-3
CREATING THE FORM DESCRIPTOR FILE 8-9
COMPILING THE APPLICATION PROGRAM 8-13
TRANSLATING THE FDL SOURCE 8-13
INSTALLING FORM DESCRIPTOR IN FORMS LIBRARY 8-14
LOADING THE APPLICAITON PROGRAM 8-14
MIDAS FILE TEMPLATE 8-15
RUNNING THE PROGRAM 8-16
APPENDIX A INSTALLATION A-1
DIRECTORY INFORMATION aA-1
INSTALLING A NEW VERSION OF FORMS A-1
UPGRADING A CURRENT INSTALLATION A-2
REBUILDING FORMS A-3

APPENDIX B DEVICE I/0

DEVICE INPUT/OUTPUT SYSTEM
IOCS INTERLUDE

DEVICE I/O MECHANISM
PRIME-SUPPLIED DEVICE DRIVERS

APPENDIX C USER-WRITTEN DEVICE DRIVERS

INTRODUCTION
INSTALLING THE DEVICE DRIVER
APPENDIX D TROUBLE SHOOTING

APPENDIX E SAMPLE FORTRAN PROGRAM

APPENDIX F FORM DESCRIPTOR FOR FORTRAN
PROGRAM EXAMPLE

APPENDIX G SAMPLE COBOL PROGRAM LISTING

APPENDIX H FORM DESCRIPTOR FOR COBOL
PROGRAM EXAMPLE

APPENDIX I ADVANCED USE OF FORMS
APPENDIX J ERROR MESSAGES
ERROR MESSAGE FORMAT

FDL ERROR MESSAGES

INDEX

B-1
B-1
B-1

B-1
B-3

Cc-1
C-1
C-6

D-1

F-1

G-1

I-1

J-1

J-1
J-1

PDR3049 INTRODUCTION TO FORMS

SECTION 1

INTRODUCTION TO FORMS

INTRODUCTION

The Prime Forms Management System (FORMS) provides a convenient and
natural method ot defining a form with a language designed for such a
purpose. Defined forms may then be read pr written by any application
program that is capable of using Prime's Input-Output Control System
(IOCS). Application programs communicate with FORMS through
input/output statements native to the host language. (The host
language is the language in which the application programn source was
written.) Programs that currently run in an interactive mode may
easily be converted to use FORMS.

SCOPE OF DOCUMENT
This document is divided into four parts.

The first part, Sections 1 through 3, contains TUTORIAL INFORMATION.
These sections are intended to give the user a brief introduction to
forms and quickly show the user how to use FORMS.

The second portion of this document, Sections 4 through 6, contains
REFERENCE INFORYMATION. Some of the material discussed in Sections 1 -
3 is repeated, but these sections give more detail on each topic
relating to FORMS. Section 4 is a detailed discussion of the FORMS
run-time directives used in the coding of application programs.
Section 5 describes in detail how to create a form descriptor, which
describes to FORMS the complete format of a form both on the terminal
display screen and in the computer system data record. Section 6 tells
in more detail the features for storing and maintaining form
descriptors in the FORMS catalog.

The third portion of this document, Sections 7 and 8, are of particular
interest to the programmer. Section 7 describes an application program
written in FORTRAN, and Section 8 discusses an example program written
in COBOL.

The last part of the document 1is the appendices. The appendices
contain information that are needed less frequently by the FORMS user,
for instance "Installation". Appendices also contain information to
support material presented in earlier sections, such as program
listings and form descriptor listings. Advanced FORMS usage and error
messages are the final appendices.

1 - 1 November 1979

SECTION 1 PDR3%40

PURPOSE OF FORMS

FORMS simplifies and standardizes the transfer of data fields (or
groups ot data fields) between application programs and page-oriented
video terminals and hard-copy devices. FORMS provides easy-to-use
facilities tor defining how data fields are to be displayed at or
received from one or more block-mode terminal types, and FORMS uses the

data definitions at run-time to automatically control the data
transfer.

In addition, FORMS provides centralized administrative control and
simplified maintenance. Through commands to the FORMS Administrative
Processor, a user can add, delete, or change either the forms
themselves, or the terminal type.

Finally, FORMS provides the user with a set of run-time directives that
reside in a special subroutine library.

ADVANTAGES OF USING FORMS

Because the user-terminal screen can be formatted to resemble a source
document (i.e., the form on paper), FORMS is easy to use, and allows
user personnel to be trained quickly. Also, any input data errors may
be corrected before they are read by the application program since
visual verification of the data at the terminal, the ability to retype
data fields, and the ability to hignlight errors are all possible.

Some additional advantages are:

l. The user is more comfortable using a form displayed at the
terminal that looks the same as the printed form.

2. 'The user can enter information in any order, by moving the
terminal cursor to the correct data item location.

3. The user can see the information and can see what information, if
any, is missing.

4. It is possible for the user to make corrections to entries in the

form before transmitting them from the user terminal to the
computer.

5. Computer processing time is minimized while updating or entering

a form since FORMS "oft loads" the CPU, i.e., it is not
interacting with the user on a character by character basis.

REV. 2 1 - 2

PDR3040 INTRODUCTION TO FORMS

FORMS INTERFACES TO PRIMOS

Prime's Forms Management System consists of three major components:
the FORMS Description Language (FDL), the FORMS Administrative
Processor (FAP), and the FORMS Run-Time library. These components work
together to create, administrate, and run forms-oriented applications.
Figure 1-1 shows a functional overview of FORMS and its relation to
some PRIMOS system components. FORMS can be applied quickly in simple
logical steps since each component is independent.

rigure 1-1 illustrates the various steps that go into the creation and
use of a FORMS program.

Part A of the figure shows the development of the applications program.
First, the source code in created, using Prime's text editor (ED). The
source code is then translated by the appropriate compiler or assembler
(FTN, COBOL, RPG, PMA). The object code is then loaded using SEG or
LOAD, and the applications program is ready to run. (See the
appropriate language user's guide for details).

The program thus created contains FORMS directives (for example, in
FORTRAN, the directives are in FORMAT statements). Section 2 of this
guide explains how to write applications programs that include FORMS
directives. Section 7 illustrates this process with a sample FORTRAN
program; section 8 illustrates it with a sample COBOL program.

Part B of rigure 1-1 shows the dual nature of I/0 in the executing
program. Standard I/0 statements interface with the terminal through
Prime's Input/Output Control System (IOCS, see PRIMOS Subroutines
Reference Guide) . FORMS I/0 directives interface through the FORMS
run—time package.

part C of Figure 1-1 shows how the run-time package receives
information. Notice how closely the user's work here parallels the
user's creation of the applications program.
e The editor is used to create the form definition source: i.e.,
the STREAM and FORMAT descriptors. Section 3 of this guide
explains how to create these descriptors.

e The FDL translator is invoked to translate the source code into
binary. Use of FDL is explained in Section 5.

e The Forms Administrative Processor (FAP) loads the object code
into the FORMS directory, where it is available for run-time
use. Section 6 of this guide explains how to use FAP.

1 - 3 November 1979

EDITOR
(ED)

FDL
TRANSLATOR

TERMINAL
CONFIGURATION
BLOCK

FORMS
ADMINISTRATIVE
PROCESSOR (FAP)

FORMS
CATALOG

' { FORMS

SECTION 1 PDR3049
paRTA | PaRTC
EDITOR !
(ED) }
|
|
SOURCE |
PROGRAM |
TRANSLATOR |
(FTN, COBOL,
PMA., RPG 1) :
|
|
FDL
OBJECT Pfgﬂ:ﬁGM ' LISTING
CODE } FILE
[
LOADER |
(LOAD OR |
SEG) '
- - - !
APPLICATION |
PROGRAM |
_____ —— |
STANDARD I \
1/0 STATEMENT \
- —] |
______ - I
FORMS ORIENTED |
1/0 STATEMENT |
|
|
|
_________ 4
locs —»{ FoRms
- ————— - RUN-TIME
10cs - | PACKAGE
/ INTERLUDE
PERIPHERAL
OUTPUT
DEVICES i [
FORMS
LIBRARY
SEY\/IEE (VFORMS OR
RFORMS)

REV. 0

TERMINAL
SCREEN/
KEYBOARD

Figure 1-1.

DESCRIPTION

PART B

Functional Overview, FORMS and PRIMOS

PDR3040 INTRODUCTION TO FORMS

Programming Language Interface

The application program source may be written in COBOL, FORTRAN,
RPG-II, PMA, or any language capable of interaction with Prime's
Input-Output Control System (IOCS). For further information about
I0CS, reter to the Reference Guide, PRIMOS Subroutines. For
information on programming in the languages mentioned, refer to the
appropriate lLanguage reference guide. Application programs communicate
with FORMS by means of input/output statements specified within the
format of the source lLanguage (e.g., FORTRAN formatted READ and WRITE
statements) .

Terminal Software Interface

FORMS provides a means for displaying information on the screen. The
FORMS display on the screen shows what fields are available for the
user to type-in data to be transmitted to the application program. The
screen handiing allows the user to validate data because nothing is
transmitted to the application program until the transmit key is
pressed at the terminal. Thus, the user can enter data, visually
verify it, move the terminal cursor to any incorrect entry and enter
the correct data, and transmit each line of data.

Operating System Interface

FORMS operates under the control of PRIMOS, the Prime operating system.

Additionally, because the FORMS interface to application programs is
through standard read/write statements, existing batch-oriented
programs can be readily adapted to run using local and remote'terminals
without major re-programming.

FORMS keeps application programs, the forms they use, and terminals
they use separated until run-time so that changes can be made in one
area without necessarily affecting the other two. With this
flexibility, terminal types may be changed; the way a form is
organized at a particular terminal may be changed; or old forms may be
described for new terminals. These charnges, and many more, are all
possible without affecting operational programs.

1 - 5 November 1979

SECTION 1 PDR3040

FORMS ADMINISTRATIVE PROCESSOR

Pur pose

The Forms Administrative Processor (FAP) allows the user to maintain
the FORMS catalog. This catalog contains the object files created by
FDL. FAP also allows control of the terminal types and lines that are
associated with a form.

FORMS Definition Catalog

The FORMS definition catalog is a segment directory that contains the
binary representations, generated by FDL, of all the STREAM and FORMAT
descriptors (see Section 3) available within the system configuration.
After a form definition is translated by FDL, it is entered in the
FORMS definition catalog with the FAP (Forms Administrative Processor)
command. Refer to Section 6 for details of the FAP command. The FORMS
catalog is in the FORMS system UFD, FORMS*.

FAP Functions

FAP performs the following:

e CREATE the FORMS catalog UFD and the segment directory
associated with the specified form.

® ADD binary files translated by FDL to the FORMS directory.
® REPLACE binary files in the rORMS directory.

® PURGE (delete) binary files from the FORMS directory.

e LIST the binary files in the FORMS directory.

e Add, replace and remove user terminal types on the Terminal
Configuration Block.

GENERATE SINSERT files for the run-time device subroutine.

REV. 9 1 - 6

PDR3040 INTRODUCTION TO FORMS

RELATED DOCUMENTS

The following Prime documents contain additional supporting information
for the FORMS user.

Language Manuals

Document No. Title

PDR3031 RPG II Programmers Guide

PDR3056 COBOL Programmers Guide

FDR3057 FORTRAN Programmers Guide

FDR3104 New User's Guide to Editor and Runoff

Operating System and Utilities

Document No. Title

PIR3061 Reference Guide, MIDAS

FDR31048 Reference Guide, PRIMOS Commands
PIR3621 Reference Guide, Subroutines

1 - 7 November 1979

PDR3040 WRITING PROGRAMS

SECTION 2

WRITING APPLICATION PROGRAMS FOR USE WITH FORMS

INTRODUCTION

This section gives an overview of how to write application programs for
use with FORMS. A more detailed discussion of this task is provided in
the programming examples in Sections 7 and 8.

Figure 2-1 shows the flow of instructions and data in an application
using FORMS. The user must control that flow of data by special I1/0
statements that use FORMS run-time directives.

This section discusses how to write I/0 statements using the FORMS
run—-time directives. I/0 statements are the only interface to FORMS in
the application program. Sections 3 and 6 describe how to write a form
descriptor and install it in the KORMS catalog (a UFD named FORMS*).

PRINCIPLES OF OPERATION

Programs that are written in standard languages such as FORTRAN or
COBOL can interact with formatted (sometimes called "block mode")
terminals in either one of two ways. One solution is the user can
supply, in the application program, all of the control character
sequences to the terminal that are needed to output each field (data
area) . This usually requires several bytes of cursor positioning
information, plus field identifier and attribute bytes, plus the field
data, and the field temminator byte. The application program can
interpret the character input stream from the terminal, distinguish
input data from control data, and process each datum accordingly. This
is an awkward and somewhat difficult task to program in either FORTRAN
or COBOL.

Although there are short cuts (a subroutine package for example), the
application programmer becomes more concerned about device
characteristics than with the application to be accomplished.
Furthermore, once the application program is written, changing the
format of the terminal screen definition described within the
application program is difficult. The application program must often
be rewritten if another type of terminal device requires support. In
summary, program maintenance using this approach is time-consuming and
costly.

An alternative solution to temminal I/O being controlled by the
application program is the Prime KORMS management system. FORMS allows
the user to describe data formats in a forms description language
(refer to Section 3). This definition language is completely separate
from the application program. The form definition serves as an
interface between the application program and the page-oriented

2 - 1 November 1979

SECTION 2 PDR3040

AN
SHIP TO ~al—

NAME [/ FORMS

ADDRESS DEVICE

ATTENTION / \ DRIVER

<
qo‘“
S
>§3§<
YYvy
FORMS FORM
RUN-TIME DESCRIPTOR
PACKAGE (SEE SECTION 3)
C___ _f — T TIDATARECORD

. i

[]

9

WRITE (1.20)

20 FORMAT (‘##INVOKE ADMN377)]

[]

NAMADR (75)

[]

[
READ (1,100) NAMADR

100 FORI.VIAT (75A2) APPLICATIONS

PROGRAM
STORAGE AREA

X

APPLICATIONS
PROGRAM

Figure 2-1. Flow of Instructions and Data between
Terminal Screen, FORMS Descriptor, and Applications Program
Data Area.

REV. 0 2 - 2

PDR3049 WRITING PROGRAMS

terminal device in use. The forms definition describes each data field
transferred (input) to or (output) from the application program by its
position in the input or output data record and further relates this
description and position to the field's position on the terminal
screen. FORMS also relates other information such as the field's
length, display attributes (blink, reverse-video, write protected,
etc) , justification, validation - if any, etc. Data is transferred
between the application program and the terminal using standard input
and output statements (for example, READ and WRITE).

USING FORMS

FORMS consists of three components. A form definition language
translator (FDL) translates source form definitions into a usable form.
A catalog maintenance tool, the Forms Administrative Processor (FAP),
is used to update a system-wide FORMS directory that contains all torm
definitions available for wuse by application programs. Finally, the
FORMS Run—time System Library is a collection of subroutines that are
invoked by FORMS directives and interact with the application programs
and the terminals to provide I/0 handling at execution time.

FORMS is device independent. The user may define a form to be
displayed on any terminal and/or system (spooled) line printer. (FORMS
works with any page oriented device, hard or soft copy.) Multiple
terminal types may simultaneously run the same application program,
since physical device selection is deferred until execution time.

To use FORMS, the user must have a terminal that has field
write-enable/protect, absolute cursor positioning, and block-mode
transmission capabilities (reter to Appendix B). FORMS currently
supports the VISTAR3 and OWNL120@ devices and system line printer. If
the user wishes to use a nonstandard terminal, only a device driver
subroutine need be written following the gquidelines set forth in
Appendix B.

FORMS DIRECTIVES

The only difference between a "normal" program and a FORMS application
program is the inclusion of one or more FORMS directives. FORMS
directives consist of keywords preceded by a double pound sign, for
example, ##INVOKE. These directives are embedded in standard language
constructs. In FORTRAN, the directives are enclosed in quoted ASCII
strings in FORMAT statements. For example,

WRITE (6, 190)

109 FORMAT ('K FINVOKE SCREEN1')
As demonstrated 1in the previous example, FORMS operates on a single

file unit (default is 6) for screen device I/0. All I/O to the device
takes place on that unit.

2 - 3 November 1979

SECTION 2 PDR3040

In the FORMAT statement example, the FORMS directive causes a character
string to be passed to the I/0 processor. This string is intercepted
for special handling (the double pound sign is the token that prompts
this interpretation). The ##INVOKE directive, when intercepted, causes
acall to be made to the FORMS run-time subroutine library, and the
function of INVOKE is performed, namely the form descriptor named
SCREEN1 is opened and written to the user teminal. Thereafter, every
transaction of file unit 6 is controlled by the KORMS 1library file
known as SCREENI. Sections 3 and 6 discuss more about forms
descriptions and how to create and install them.

Run-time directives are the link between the application program, the
catalogued form descriptions, the terminal configuration, and the
terminal device drivers. For example, one directive selects a form for
a particular application (##INVOKE). Directives pass all data fields a
FIELD or FORMAT at a time, check validation status of input fields,
clear displayed data fields, and change data field attributes during
program execution. The available run-time directives and their
functions are discussed briefly in Table 2-1. For a detailed
discussion of the run-time package, refer to section 4.

PROGRAM EXAMPLES

Section 7 gives an example program written in FORTRAN and Section 8
gives an example program written in COBOL.

REV. ¢ 2 - 4

PDR3040 WRITING PROGRAMS

Table 2-1. Summary of FORMS Directives

##BLINK/##NOBLINK

##CLEAR

H##DISPLAY / # #NODISPLAY

##FKEYS

##FORCEREAD

##INVOKE

##PRINT

##POSITION

##PROTECT/ ##NOPROTECT

H#RELEASE

##RVIDEO/# INVIDEO

##SUBSTREAM

##VALIDATE

Blinks a designated field (##BLINK) or turns off
blinking (##NOSLINK) teature.

Clears unprotected (i.e., variable) data field
displayed on the user terminal. (##CLEAR ALL
clears all unprotected fields.)

Displays field when form is output (##DISPLAY)
or does not display field (}#NODISPLAY).

Enables (##FKEYS ON) or disables (##FKEYS OFF)
user function keys input at the terminal.

Forces FORMS to wait for and process user input
at the terminal.

Defines the form definition to be used (needed
at least once in every applications program) .

Allows output of current form and sends data to
a printer.

Specifies field to which the cursor at the
terminal will be positioned on the next read
operation.

Write-protects a designated field (##PROTECT) or
removes protection (##NOPROTECT) .

Specifies that the current form definition is no
longer to be used.

Displays field in reverse video (#§RVIDEO) or
normal video (##NVIDEO) .

Defines a substream to be processed by the next
read or write statement.

Causes the return of validation status for all
input data.

2 - 5 November 1979

PDR3040 DESCRIBING DATA

SECTION 3

DESCRIBING DATA USED BY FORMS

PURPOSE OF DATA DESCRIPTION

Video terminals have a great potential for simple, powerful data entry
and retrieval. Such features as page mode, cursor control, reverse
video, and blinking can improve the speed and convenience of data
terminal use. However, use of these features places a burden on the
application program.

The Prime FORMS software package makes a terminal with page mode and
cursor control 1look 1like any ASCII input—output device (as far as the
‘application program is concerned.) Terminal input-output data is
exchanged a record at a time by the nomal I/0 rules of the language in
which the application program is written. The input and output formats
of the data transferred to and from the terminal and the camputer
system must be indicated to FORMS (and the application program). With
FORMS, the templates of the form and the data do not have to be
specified internally in the application program. Instead, form and
data descriptions are specified externally by the user and translated
by the Forms Definition Language (FDL) command.

FORM DEFINITION

A form definition describes user and terminal data formats. ‘The form
definition is divided into two parts. The first part describes the
input/output data record. This descriptor gives the location of each
data item in the record as well as some information about each data
item in the record. The second part of the form definition describes
how each of the data items (or fields) are displayed at the terminal.
A typical form definition is discussed in the following paragraphs.

Consider the design of a simple inquiry program that uses FORMS to
display entries at the terminal from a keyed index file. Program
operations consist of entering an employee-id number at the terminal.
Using the given employee-id, the program performs a file look-up and
displays the information to which the employee-id pertains. If the
employee—-id entered 1is zero or spaces, the program will exit to PRIMOS
command level.

3 - 1 November 1979

SECTION 3 PIR3040

Columns item name data type

1-4 employee-id numeric

5-34 employee-name alphabetic

35-64 street-address alphanumeric
65-84 city alphabetic

85-86 state alphabetic

87-91 zip-code numeric

92-103 phone nuneric / special

Graphically, the above listed data would appear in the data record
definition as follows:

1—4 5—34 35———64 65--84 85---86 87-91 92—103
| id | name | address | city | state | zip | phone |

This information illustrates the first part of the form definition.
This part is known as the data stream descriptor. The data stream
descriptor contains STREAM descriptor fields that describe each item in
the user's input/output data record(s). ‘The data stream descriptor
must include the 1length of each item, and either implicitly or
explicitly include the position of each item within the data record
(i.e., the starting character position must be known or must be capable
of being determined). The field descriptor(s) may optionally include a
justify specification. FORMS provides for left-justification,
right-justification, or centering. FORMS also provides a zero-fill or
space-f1ll option when entering data with justification. FORMS
validates input data under a specified validation mask, or series of
masks, and allows the user to correct the data if it is incorrect.

The next task to be accomplished in the example inquiry program,
previously discussed, is to design the FORMAT of the data displayed at
the terminal. The display size (number of columns and lines available)
must be taken into consideration. Attributes like write-enabled,
blink, noblink, reverse video, or normal video that may be applied to
each data field must also be considered. Finally, the length of each
field displayed at the terminal must be specified. This parameter may
difter trom the Length of the corresponding field in the input or
output data record. In addition, when considering the length of fields
displayed at the terminal, any field proximity restrictions imposed by
the device must be taken into account, for example, some terminals
require fields be separated by one or more blanks.

While assigning physical device positions and attributes for each data
field in the data STREAM descriptor, the user may also specify titles
(i.e., literal data) in the form definition which is displayed at the
terminal alony with the application program data. This literal data
usually describes or identifies data fields that follow.

REV. @ 3 - 2

PDR 3040 DESCRIBING DATA

The information used to construct the secord part of the form
definition is known as the device format descriptor. An example of
this type of information is shown by the following table:

line column content length attributes

2 2 'EMPLOYEE ID' 11 write-protected
2 29 employee-id 4 write-enabled

4 2 'NAME' 4 write-protected
4 20 employee-name 30 write-protected
6 2 'ADDRESS' 3 write-protected
6 20 street-address 30 write-protected
7 20 city 20 write-protected
7 45 state 2 write-protected
7 50 zip 3 write-protected
9 2 'HUME PHONE' 12 write-protected

According to the information in the foregoing list, when the form is
written to the terminal at application program run-time, the
information should appear as follows:

Qooo*oo.oloooo*..oozooo0*.00.30000*000040-00*000.50.00*0000

1]

2 | EMPLOYEE ID

31

4 | NAME khkkkkkkkhkkkhhhhhkkkhhhhkhkkhkk

51

6 | ADDRESS *hkkkkkkkkkkkkkkkkkkhkkkkdhhkhkk

7 1 Kkkhkkhkkkkkkhkhkrhhk %k hkkdkk
8 |

9 | HOME PHONE kkkkkhhhkkkk

The line and column markers in the illustration have been provided for
ease of position identification. They do not appear when the form is
displayed at the terminal. The underline characters represent
write-enabled data. Write-enabled data may be modified at the terminal
by the user by typing new information in the appropriate field. The
asterisks in the illustration represent write-protected data, which may
not be modified by the user at the temminal.

SUMMARY OF FORM DEFINITION

This section gives information on how a form is specified and how to
use the FDL command to translate the FDL source input. With FORMS, the
data fields within a form are stored as a stream and must be converted
to some format to be displayed at the user's termminal device.

A format indicates the locations on a terminal screen where literal
text and variable data are to appear.

3 - 3 November 1979

SECTION 3 PDR3040

A stream indicates the mapping of the fields passed to and from the
data record (in the files maintained by the application program) and
those fields displayed on the temminal screen.

Together, the STREAM and the FORMAT are called the form definition.

MAPPING

Mapping establishes a correlation between a STREAM descriptor field and
a FORMAT descriptor field. Mapping binds the record position and item
(field) length information etc. contained in the STREAM field to the

terminal device position and display attribute information contained in
the FORMAT field.

Fields in the data STREAM descriptor are mapped by name to
corresponding fields in the FORMAT descriptor. These field names need
not match the data names used within the application program, but
common sense and good programning practice dictate that the user
should, where practical, keep names as closely matched as possible.
For example, a data item called EMPLOYEE-NAME in a COBOL program might
be represented by a FIEID called EMPINAME in a form definition. There
is an eight-character maximun for names within FORMS.

STREAM descriptor fields that are mapped (some are not, refer to
Section 5) contain the name of the FORMAT descriptor field to which
they map in the body of the FIELD definition. Therefore, FORMAT
descriptor FIELDs are mapped to STREAM descriptor FIELDs and are also
assigned a name by the associated STREAM descriptor FIELD. Two fields
are bound when the name specified in the STREAM descriptor KIELD and
the fieldname specified in the FORMAT descriptor FIELD are identical.
A bourd field contains all available information regarding the data
therein: 1i.e., its record and temminal device position and length,
justification, validation, and display attributes.

Because the two parts of the form definition are described separately
in The Form Definition Language (FDL), they must be in some way related
to each other. Since STREAM fields are mapped to FORMAT fields, so are
STREAM descriptors mapped to FORMAT descriptors. Each data STREAM
descriptor has an associated unique name. When the application program
uses a form definition, it is identified by this name. FORMAT

descriptors that correspond to a particular STREAM descriptor are
assigned an identical name.

Refer to the sample STREAM and FORMAT previously discussed. The STREAM
descriptor. name must be the same as the FORMAT descriptor name. For
example, the STREAM descriptor FIELD describing the employee-id must
map to the FORMAT descriptor FIELD containing the employee-id.
Likewise, the STREAM descriptor FIELD describing the employee-name must

map to the FORMAT descriptor FIELD describing the employee-name, and so
m.

REV. @ 3 - 4

PDR3040 DESCRIBING DATA

FORM DESCRIPTOR PREPARATION

The STREAM and FORMAT are coded in Forms Definition Language. This is
the source input to the FDL translator. The source input may be
prepared using the PRIMOS text editor (ED) and may be placed into a
file. For information on the editor (ED), refer to the New User's
Guide to Editor and Runoff. The STREAM and FORMAT descriptors are
translated by the FDL translator. When translated, the object output
is placed in the FORMS catalog using the FAP command. (For further
information, refer to Section 6.)

Coding a FORMAT

Figure 3-1 shows a simple screen layout, amd the associated FORMAT
coding needed to define the terminal screen layout that is illustrated.

From the example shown in Figure 3-1, it is possible to derive some
guidelines of how a FORMAT is defined.

e The input line is generally free-format.

e FORMAT descriptors and FIELD names must start in column
(character position) 1 and be followed by a space.

e FIELD and FORMAT names must be from 1 to 8 alphanumeric
characters (A-Z, 0-9).

e FIELD statements may start anywhere after colunn 1 and may
occupy columns 2-72.

® Columns 73-80 are ignored by FDL.

e Items in an FDL source input line may be separated by a space
or a comma.

Figure 3-1 also shows some of the fields specified as NOPROTECT. It is
a useful practice when specifying a field having the NOPROTECT
attribute, to allow two (2) screen positions either side of the
NOPROTECTed field for possible insertion of control characters.

The boundaries of a FORMAT descriptor are a FORMAT statement and an END
FORMAT statement. Within the FORMAT definition, there must be at least
one DEVICE statement and an associated END DEVICE statement. Within
the definition of a DEVICE, there may be as many FIELD statements as
are necessary to define the form. FIELD statements define both literal
and variable (NOPROTECTed) fields. Optionally, REPEAT and END REPEAT
statements may be included as desired within the boundaries of a DEVICE
definition to define similar fields which are repeated a number of
times on a form, for example, part numbers and part descriptions on a
parts list.

3 - 5 November 1979

SECTION 3 PDR30@40

INFILE FORMAT

DEVICE OWL1200
FIELD 'NAME' POSITION (21,8), REVERSE VIDEO
FIELD ': ' POSITION (25,8)
NAM FIELD LENGTH 16, POSITION (38,8), NOPROTECT
FIELD 'DATE' POSITION (21,10), REVERSE VIDEO
FIELD ': ' POSITION (25,10)
DAT FIELD LENGTH 6, POSITION (38,18), NOPROTECT
FIELD 'PROFESSION' POSITION (21,12), REVERSE VIDEO

FIELD ': ' POSITION (31,12)

PROF FIEID LENGTH 12, POSITION (38,12), NOPROTECT
END DEVICE
END FORMAT

Figure 3-1. Sample FORMAT Code and Screen Display.

PDR 3040 DESCRIBING DATA

Coding a STREAM

Figure 3-2 shows a simple data record layout and the associated STREAM
coding needed to define the data record used by the application program
to store the form within the record. From the example shown in Figure
3-2, it is possible to derive some guidelines about how a STREAM is
coded.

There is a slight alteration on the appearance of a FIELD statement in
a STREAM descriptor, campared to a FIELD in a FORMAT descriptor.
Examination of Figures 3-1 and 3-2 reveals the relationship that the
FIELD names used in the FORMAT must be the same as the identifiers in
the FIELD statements in the STREAM specification. Also, the FORMAT
name and the STREAM name are the same. This parallelism of names is
called mapping, and has been discussed in previous paragraphs. The
reason for mapping 1is to associate the data items in fields on the
screen with their counterparts in the fields stored in the data record
within the computer system.

The guidelines for coding a STREAM are essentially the same as for
coding a FORMAT. The same rules hold for STREAM descriptors as for
FORMAT descriptors. ’

A STREAM descriptor begins with a STREAM statement, and ends with an
END STREAM statement. The only other kind of statements needed within
the body of a simple STREAM are FIELD statements. However, these FIELD
statements need not have names - though they can - but must have an
identifier within the FIELD statement that maps to the same FIELD name
in an associated FORMAT descriptor. Optionally, REPEAT and END REPEAT
statements may be used as needed to lay out the description of fields
in the data record that are repeated a number of times.

When coded, the STREAM is translated by FDL. The next portion of this
section discusses translation.

TRANSIATING STREAM AND FORMAT CODING
To translate a source form definition, the command is:
FDL filename
filename is the name of the file that contains the source text of the

FORMAT and STREAM produced by the user. For example:

OK, FDL DATAS1

GO

(000 ERRORS (FDL, REV 16 - 16-FEB-79)
0093 ERRORS (FDL, REV 16 - 16-FEB-79)

OK,

3 - 7 November 1979

SECTION 3 PDR3040

NUMBER OF BYTES (CHARACTERS)

16 6 12
,/_/_,\MA—/\A
NAM ttf— D AT — 3t PROF T

DATA RECORD
DESCRIBED BY
STREAM FILE

INFILE STREAM
FIELD NAM LENGTH 16, NOPROTECT
FIELD DAT LENGTH 6, NOPROTECT
FIELD PROF LENGTH 12, NOPROTECT
END STREAM

Figure 3-2. Sample Data Record Layout and STREAM Coding.

REV. 0 3 - 8

PDR3040 DESCRIBING DATA

The FDL translation produces a binary-form object file and a listing
file named B filename and L filename, respectively. The above example
produces an object file named B _DATAS] and a listing named L_DATASI.

FDL Output Listing

The listing file for a FORMAT translation provides a 1listing of the
statements within the FORMAT descriptor and a diagram of the FORMAT
that is translated.

The listing file for a STREAM descriptor also provides a listing of the
statements within the STREAM descriptor. This listing always specifies
both an input STREAM descriptor listing and an output STREAM descriptor
listing. If not otherwise specified, all STREAM fields are considered
to be INPUT/OUTPUT.

Examples of the output listing from FDL will be found in Appendix F and
Appendix H.

Table 3-1 lists the options available for use with the FDL command.

Table 3-1. FDL OPTIONS

Option Meaning

-OBJLIST Produce listing with translated code represented in octal.

-MACLIST Lists macro expansions.

-ERRLIST List lines containing ERRORS only. If errors are present,
this option overrides all others.

-ERRTERM Display (or print) lines containing errors at the user
terminal.

-REPLIST Generate expanded REPEAT block listings.
-NOMACLIST Suppress expand macro listings.
~NOERRTERM Suppress error output to terminal.

~NOREPLIST Suppress expanded REPEAT block listings.

3 - 9 November 1979

PDR 3040 FORMS RUN-TIME PACKAGE

SECTION 4

FORMS RUN-TIME DIRECTIVES
REFERENCE INFORMATION

FUNCTION

The FORMS run—-time package provides a series of directives to perform
all form definition 1lookup, directive processing, data manipulation,
and device input/output (refer to Figure 4-1).

The directives available in the FORMS run-time package are listed
below. The following directives are generally concerned with form and
data input-output:

#H#CLEAR
##FKEYS
##FORCEREAD
##INVOKE
##POSITION
##PRINT
FHRELEASE

#SUBSTREAM
kFVALIDATE

In addition, there are a number of FORMS directives that control the
manner in which fields are displayed at the terminal. These are:

##BLINK/##NOBLINK
##DISPIAY /##NODISPLAY
##PROTECT/ # ¥NOPROTECT
##RVIDEO/ ##NVIDEO

USAGE

The application program passes to FORMS any statement that contains a
forms directive. A FORMS directive is written with two preceding hash
marks (##) in order to be identified by the program as a FORMS
directive. These directive are extensions of the source programming
languages in which the application program is written.

For example, to invoke form FD4199 on the terminal and protect fields
FIELDA, FIELDB, and FIELDC, a FORTRAN application program would execute
the following directives:

WRITE (1,400)

4090 FORMAT ('##INVOKE FD4199'/
+ 'H¥PROTECT FIELDA, FIELDB, FIELDC')

4 - 1 November 1979

SECTION 4

PIR3040

INVOKED
?

NO

DO NORMAL
TERMINAL
1/0

PROCESS
DATA

FIX/NOFIX

START
PROGRAM
APPLICATION
PROGRAM
LOGIC
| INVOKE
J RELEASE
FORMS TERMINAL OUTPUT
LOGIC 1/0 FUNCTION SUBSTREAM
?
CLEAR o
INPUT PROTECT/NOPROTECT _
CHECK -
FOR ‘##' PROCESS NVIDEOQ/RVIDEQ
' DIRECTIVE DIRECTIVE
NOBLINK/BLINK o
ExIT FO'%M DISPLAY/NODISPLAY
PROGRAM

FORCEREAD

POSITION

Figure 4-1. FORMS Run-time Package Functional Relationships.

REV. 0

PDR 3040 FORMS RUN-TIME PACKAGE

DESCRIPTION OF DIRECTIVES

The following paragraphs describe all directives available in the FORMS
run-time package. For clarity, they are depicted in upper-case
characters. Lower—-case characters in FORMS directives are mapped to
upper—case.

P> #iCcLEAR [ALL]

The ##CLEAR directive clears all unprotected data displayed on the user
terminal. It also causes all data items marked as NOPROTECTed ard
displayed in the input/output list to be reset to spaces. This is a
fast and convenient method to erase all user-input data. Alternately,
spaces may be written to all unprotected fields on the form. If the
#H#CLEAR directive is followed by the word ALL, the entire display is
erased. This should be done only prior to issuing a ##RELEASE
directive.

##CLEAR Examples

WRITE (1,4000)
400 'ORMAT ('##CLEAR')

C—- CLEAN UP BEFORE EXITING TO COMMAND LEVEL.
Cc

WRITE (1,5020)
5020 FORMAT ('##CLEAR ALL'/ '##RELEASE')

OFF
P> HIFKEYS |ON

The }BFKEYS directive enables, or disables, user function key input
fran the terminal. If ##FKEYS is followed by the parameter OFF, the
function keys at the terminal keyboard are disabled; if followed by
the parameter ON, function keys are enabled.

When function keys are disabled, they have no effect if entered. The
standard response is to place a warning message on the terminal and
wait for the user to press the transmit key. When a form is invoked,
an implicit #4FKEYS OFF directive occurs.

4 - 3 November 1979

SECTION 4 PDR3040

When function keys are enabled, a two-digit code is automatically
apperded to each input record following the right-most FIELD defined in
the STREAM or SUBSTREAM. This field contains the number of the
function key that was pressed when the data was transmitted from the
device. If the normal transmit key was pressed, this field contains
29.

If multiple substreams are described in the form definition, the
function key number is appended to each.

It is the user's responsibility to ensure that the two character
positions required for the function key field are available at the end

of each input record. If these two character positions are not
available, the function key number is not returned.

The application program may define each function key to perform some
special escape function, such as request a new form definition, exit
program, perform a database update with the new data entered on the
termminal, etc.

The user must not write an application program that makes use of
function keys unless all terminals that are to run the program are
equipped with function keys.

P> }#FORCEREAD

The FFFORCEREAD directive forces FORMS to wait for and to process user
input from the terminal, thus providing a facility to override the
normmal input protocol when processing a form definition with multiple
substreams. Normally, terminal input occurs when the application
program (1) executes the first read statement after the form is
invoked, (2) issues a read statement following a write statement, or
(3) attempts to read a substream that has already been read. The
FORCEREAD directive causes terminal input on the next read operation,
whether or not the next substream to be processed has already been
read.

#FORCEREAD Example

WRITE (1,200)

209 FORMAT ('KHFFORCEREAD')
READ (1,218) IREC

219 FORMAT (32A2)

REV, @ 4 - 4

PDR3049 FORMS RUN-TIME PACKAGE

P> ##INVOKE formname

The #HINVOKE directive defines the form definition to be used. It is
followed by the form (stream descriptor) name, frormname.

When the ##INVOKE directive is issued, FORMS searches the catalog for
the specified form definition. If found, it is read into memory and
initialized. If not found, an error message is printed and return is
made to PRIMOS command level. When a form is invoked on a device, all
input and output requests for that device are trapped and handled by
the run-time package. When the form definition is subsequently
released, all I/0 is handled by calls to IOCS subroutines. (Refer to
the Subroutine Reference Guide.

If a previous form definition was invoked and not released before
issuing the current }#INVOKE directive, an implied release of the
previous form definition occurs.

##INVOKE Example

WRITE (1,120)
120 FORMAT ('##INVOKE TAXD@L')

P> #POSITION

The BF#POSITION directive allows the specification of the field to which
the cursor will be positioned on the next read operation. This command
is only applicable to the next read operation; subsequent read
operations position the cursor to the first NOPROTECTed character
position on the terminal, unless subsequent ##POSITION commands are
issued.

##POSITION Example

C—- POSITION TO FIELD SPECIFIED BY CONTENTS OF 'FLDNAM'.
c

WRITE (1,250) FLDNAM
250 FORMAT ('##POSITION ', 4A2)

P> #EPRINT formname [LOCAL]

The ##PRINT directive allows the user to print the current form and
user—entered data tram the terminal to either the spooled line printer
or a local printer attached to the individual terminal. This pemmits
the program to print the current transaction on a hard-copy device
without defining a separate FORMAT descriptor for the line printer.

4 - 5 November 1979

SECTION 4 PDR3040

If the parameter LOCAL is included in the ##PRINT directive, the fom
is printed on whatever hardcopy device is attached to the terminal. If
the LOCAL parameter is not given, the copy is spooled for printing on

the line printer. If a special paper form is needed by the line
printer, it must be mounted by the operator.

##PRINT Examples

WRITE (1,200) /*WRITE TRANS. TO SYS PRINTER
200 F'ORMAT ('##PRINT')

P> HHRELEASE

The }HRELEASE directive specifies that the current form definition is

no longer to be used. All I/0 is processed via calls to IOCS until the
next F#INVOKE directive.

##RELEASE Example

WRITE (1,900)
900 FORMAT ('#H#RELEASE')

P> ##SUBSTREAM streamname

The #¥SUBSTREAM statement defines the substream to be processed on the
next READ or WRITE directive in the host language. The SUBSTREAM name
streamname must follow the directive and be separated from it by at
least one space. If the named SUBSTREAM does not exist in the STREAM
descriptor, an error message is generated and the program aborts.

##SUBSTREAM Example

WRITE (1,200)
209 FORM ('##SUBSTREAM NAMADIR')

P> HEVALIDATE

The ##VALIDATE directive causes the run-time package to return the

validation status of all input data on encountering the next READ
statement(s) .

REV. 0 4 - 6

PDR3049 FORMS RUN-TIME PACKAGE

The status 1is returned in the form of a two-digit number for each
input/empty-conditional (see Section 5) or direct field (see Section 5)
that is not declared as output-only. It is not returned for
input-literal fields. The two-digit number returned represents one of
the following conditions:

Number
Range Condition

<9 The data failed all validation tests. (Value usually -1,
in this case.

20 No validation specified for this field.

>0 This is the number of the first validation mask

that the data passed. Validation masks are numbered
in the order in which they appear in the FIELD
definition.

The validation status is returned in the same manner that data is
returned on a READ statement. If there are multiple SUBSTREAM
definitions, the user must do multiple READs to input the wvalidation
status for all fields. The ##VALIDATE directive causes the next READ
statement to input the validation status of the first SUBSTREAM in the
STREAM descriptor unless a ##SUBSTREAM directive is 1issued before
##VALIDATE. The HBVALIDATE function is disabled and normal data input
resuned when either the end of the STREAM descriptor is encountered or
a #ISUBSTREAM or KH#FORCEREAD directive is issued.

VALIDATE Example

C—- INPUT FIELD VALIDATION. FIRST SUBSTREAM CONTAINS 5 INPUT
C FIELDS, SECOND CONTAINS 4.
C
WRITE (1,300) /* POS TO FIRST SUBSTREAM
300 I'ORMAT ('H##SUBSTREAM ONE'/'##VALIDATE')
READ (1,319) (IVAL(I),I=1,9) /* READ VALIDATION
310 FORMAT (5I2/412)

4 - 7 November 1979

SECTION 4 PDR3040

ATTRIBUTE MODIFICATION DIRECTIVES

The application program may dynamically change the attributes of a
field by issuing one of the attribute directives. From one to twenty
stream descriptor field names may be placed as arguments, each
separated by at 1least one space. The modification occurs at the next

WRITE or READ in which data (as opposed to FORMS directives) is
transferred to or from the device.

The following table describes each of the eight attribute-modification
directives and three synonyms.

Statement/Synonym Description

k #PROTECT write-protects field

F#NOPROTECT/ENABLE write-enables field

##RVIDEO field displayed on reverse video

##NVIDEO field displayed in normal video

FIBLINK blinks field when displayed

##NOBLINK field is displayed when form is output

##DTISPLAY/FREE field is displayed when form is output

##NODISPLAY/HOLD field is not displayed when form is output
Example:

WRITE (1,300)
300 FORMAT ('#HPROTECT NAME, IDNUMBER, ADDRESS'/
+ ' ##NOPROTECT REMARK1 REMARK2 REMARK3')

PROGRAMMING CONSIDERATIONS

Run-time File Handling

FORMS usually requires only one file unit for all file I/0. This unit
nunber is assigned dynamically and is the first available file unit not
already open.

The only exception is for the system printer device driver. To copy
files into the spool queue, two file units are required. Units 15 and
16 are used by PRSIO. To allocate two other units, modify variables
FUNITC (=5), PRINFO(l) (=15), and PRINFO(2) (=16) in the file
FORMS>IOS>PROSIO. All are declared in DATA directives.

REV. @ 4 - 8

PDR 3040 FORMS RUN-TIME PACKAGE

Run-time Error Handling

Run-time error diagnostics generated by FORMS are self-explanatory.

Error message text is stored in the file FORYS*>RUN.ER. Each line in
the file is preceded by a numeric key, between 1 and 9999. If a
diagnostic requires more than one Lline (as do most), each following
line contains the same numeric key as the first. The end of the
diagnostic occurs when a 1line with a different numeric key is
encountered.

The procedure that calls the FORMS error handler may supply from @ to 3
arguments. An argument is inserted into the error diagnostic when a
percent sign (%) followed by a value (1-3) is encountered in the text
string.

The calling sequence for FORMS run-time error handler is:

CALL FMS$ERR (KEY, FSCODE, TEXT1, LEN1, TEXT2, LEN2, TEXT3, LEN3)

Parameter Memory
KEY Numeric key of the error diagnostic to be printed. If

this diagnostic is not included in the file, an error
message is printed containing the error number. All
errors generated by FORMS have corresponding text
messages in RUN.ER.

FSCODE The file system code associated with this error
condition. If this error is not a result of a file
system error, this value should be zero.

TEXTh Text argument n. If not referenced by the error
diagnostic, this need not be supplied.

LENn Length in characters of the corresponding text
argument. If this argument is not used, it may be
anitted.

Users who write their own device drivers may make use of this error
handling facility. Numeric error codes (keys) 1-999 are reserved.
Users may allocate any error code above, and including, 1000.

4 - 9 November 1979

SECTION 4 PIR3040

Loading the Shared Library

It is a system administration decision whether or not to support the
shared libraries. If shared ¥ORMS is supported, shared COBOL, MIDAS
(KI/DA on master disk) , and FORTRAN must be supported as well. If

shared libraries are in use, the FORMS shared library file will be
named VFORMS.

Configurable I/0 List

The FORMS run-time package contains a fixed length buffer, called the
I/0 list that holds the current form definition. The default I/0 list
size is 2507 words (decimal) . If the user runs a program which invokes
a form that exceeds this capacity, FORMS prints the error message:

REQUIRED= nnnn, AVAILABLE= 2500.
I/0 LIST OVERFLOW.

The user may allocate a larger I/0 list in his (FORTRAN) program by
inserting the following three statements:

PARMETER IOLSIZ=desired size
COMMON /IOBCMS/ IBUF(3), IOL (IOLSIZ)
DATA IBUF /IOLSIZ, @, 3/

All items are 16 bit integers.

The COBOL user may enlarge the I/0 line size used in his COBOL program
by writing a short FORTRAN subprogram (statements start in column 7):

SUBROUTINE name

PARAMETER IOLSIZ=desired size
COMMON /IOBCMS/IBUF (3) ,IOL (IOLSIZ)
DATA IBUF/IOLSI1Z, 0,8/

END

Compile this subprogram with the FORTRAN compiler. When loading the
main COBOL program, load this FORTRAN subprogram's binary module
(B_name) containing the redefinition of the I/0 list prior to loading
the FORMS library.

The user may also modify the default buffer pool size by changing the
'I0LSIZ' declaration in 'FORMS>RUN>IOLDEF' and re-campiling the
run—time system, using the appropriate tools provided on the master
disk. Retfer to the System Administrator's Guide. (This should be done

under the direction of a system administrator or senior systems
analyst.)

This feature is not available when using the 64V mode shared FORMS

library; however, the default size for the shared library is 7009
words.

REV. 0 4 - 10

PDR3049 FORMS DEFINITION LANGUAGE

SECTION 5

FORMS DEFINITION LANGUAGE,
REFERENCE INFORMATION

This section defines the data definition language (FDL) that is used to
describe to the FORMS system the data formats discussed in Sections 1
through 3.

SYNTAX OF FORMS DEFINITION LANGUAGE
Statements
FDL supports a free-FORMAT statement line.

All descriptor, substream, and field names start in the first character
position of the 1line and are followed by at least one space. Data
STREAM and device FORMAT descriptor statements may start anywhere after
column 1 and occupy columns 2 through 72. Columns 73 through 80 are
ignored. Items in the FDL input line must be separated by either a
space or a comma unless otherwise noted. [ILower-case characters are
mapped to upper-case, except characters in a literal string (enclosed
within single quotes).

If an input record contains too many characters to fit on one line,
source text may be continued by placing a semicolon (;) at the end of
the line. Input items (words, text strings, etc.) may not be split
across two lines. There is no 1limit to the number of continuation
lines in a source record. There is, however, a 240 character limit per
statement.

Comments

If the first character of a line is an asterisk, the line is treated as
a comment, listed in the output file and ignored. If the first
character is a single quote (') the line is treated as a comment, but
this line causes an eject page in the listing and becomes the new page
header.

In addition to full-line comments (lines beginning with an asterisk or
single quote), in-line comments are supported. In-line comments are
preceded by a fore-slash and asterisk (/*) and followed by an asterisk
and a fore-slash (*/). If the in-line comment is the last item on the
line, the terminating characters (*/) may be omitted. In-line comments
may not occur within an item (e.g., in the middle of a name or text
string) .

5 - 1 November 1979

SECTION 5 PIR3040

Examples of Comments are:
* THIS IS A COMMENT LINE
' THIS WILL CAUSE A PAGE-EJECT AND WILL BECOME THE NEW HEADER
LABEL FIELD ABC, LENGTH 6 /* THIS IS AN IN-LINE COYMENT
LABEL FIELD ABC, /*THIS TOO IS AN IN-LINE COMMENT*/ LENGTH 6

NAME FIELD 'FOUR SCORE AND SEVEN YEARS AGO... ' ;
POSITION (10,10) PROTECT /* CONTINUATION LINE

Naming Conventions

The rules for naming FORMS descriptors, fields, and substreams are:
e name lergth: 1-8 characters
e first character must be alphabetic
® permitted characters: A-Z, 9-9

Examples of form descriptor names are:

Example Comment

GAZCRKLEFORM name too long
SHIPFORM valid

5FORM bad first character (5)
FORMS5 valid

ONEDS 1llegal character (S)
AMTOWED valid

Descriptor Structure

Figure 5-1 represents various form definition structures for both the
STREAM descriptor and FORMAT descriptor (reter to Section 3 for an
overview of these descriptors).

Each statement illustrated in Figure 5-1 is detailed in the paragraphs
that follow.

FORM DEFINITION DELIMITER STATEMENTS

The FDL statements described in this section are used to specify the
beginning and end of a form definition or a section of a form
definition. These statements do not describe data formats but rather
are used to identify STREAM and FORMAT descriptors, SUBSTREAM
descriptions and DEVICE descriptions within a FORMAT descriptor.

REV. @ 5 - 2

PDR 3040 FORMS DEFINITION LANGUAGE

Stream Descriptor

STREAM statement STREAM statement

. SUBSTREAM statement
FIELD definitions -or- .

. FIELD definitions

. .

3

END STREAM statement .
END SUBSTREAM statement
SUBSTREAM statement

FIELD definitions

END SUBSTREAM statement
END STREAM statement

FORMAT Descriptor

FORMAT statement
DEVICE statement 1

FIELD definitions

END DEVICE statement
DEVICE statement 2

FIEID definitions

END DEVICE statement
END FORMAT statement

Figure 5-1. Form Definition Statements.

5 - 3 November 1979

SECTION 5 PDR3040

STREAM Definition Statements

> name STREAM

The STREAM statement defines the beginning of a STREAM descriptor. The
name field begins in column 1 and must contain a unique stream
descriptor name (i.e., one that does not conflict with any other stream
descriptor defined within the system). For example:

SHIPFORM STREAM
P> END STREAM
The END STREAM statement defines the end of a STREAM descriptor. For
example:

END STREAM

P> name SUBSTREAM

The SUBSTREAM statement defines the beginning of a substream
description. The application program transfers data to and from the
substream specified by name. (Refer to the introduction to substreams

in Sections 3 and 4, and the example using substreams in Section 7, For
example:

USERDATA SUBSTREAM

P> END SUBSTREAM

The END SUBSTREAM statement terminates a substream description. Each
SUBSTREAM statement must have an associated END SUBSTREAM statement.
For example:

END SUBSTREAM

REV. 0 5 - 4

PDR3040 FORMS DEFINITION LANGUAGE

FORMAT Definition Statements

» name FORMAT

The FORMAT statement defines the beginning of a FORMAT descriptor. The
contents of the name field defines the name of the format descriptor.
The name must be equivalent to that of the stream descriptor with which
this FORMAT descriptor will be used. For example:

USERDATA FORMAT

P> END FORMAT

The END FORMAT statement terminates the FORMAT descriptor and must be
the last statement in the FORMAT description. For example:

END FORMAT

DEVICE Definition Statements

P> DEVICE dev

The DEVICE statement specifies the name of the device that is defined
by the field definitions in the following FIELD statements. dev is the
specified device name. This statement is used in the FORMAT descriptor
immediately following a FORMAT or END DEVICE statement. For example:
ADMN377 FORMAT

DEVICE VISTAR3
P> END DEVICE

The END DEVICE statement defines the end of a device description within
a FORMAT descriptor. For example:

END DEVICE

5 - 5 November 1979

SECTION 5 PDR3040

FIELD STATEMENTS WITHIN A STREAM DESCRIPTOR

The fields defined within the STREAM descriptor by the FIELD statement
identify: first, the location of each data item within the input or

output record; second, its length; and third, optional justification
and validation information.

Stream fields may be defined to be INPUT only, OUTPUT only, or
INPUT-OUTPUT, which 1is the default value. INPUT fields are processed
on input operations only, they are ignored on output. The reverse is
true for OUTPUT fields. INPUT-OUTPUT fields are processed on both
input and output operations. Using INPUT and OUTPUT fields, the

programmer may describe separate input and output record tormats in a
single STREAM descriptor.

FIELD Types

There are six types of STREAM descriptor fields. Each type either
describes an item within the user's data record or describes a literal
string to be mapped to a field defined in the FORMAT descriptor. The
field types are described in the following paragraphs.

Direct: A direct field maps the data item in the input or output
record to the named FORMAT descriptor field. Its format is as follows:

FIELD fieldname

Input Literal: An input literal field returns a literal string to the

data record on an input operation. It is ignored on output operations.
Its format is as follows:

FIELD 'literal text string'

Output Literal: An output literal field defines a literal text string
to be mapped into a FORMAT field on output operations. It is ignored
on input operations. No data is transterred to or tram the
input/output record. Its format is as follows:

FIELD (fieldname,'literal text string') ,OUTPUT

REV. ¢ 5 -

&)}

PDR3040 FORMS DEFINITION LANGUAGE

Input Empty Conditional: An input empty conditional (IEC) field
functions the same as an input or an input-output direct field with one
exception - if the data field displayed on the device contains spaces,
the supplied literal string is returned instead of blanks. IEC fields
may not be output only. Also, IEC fields require an input-output
specification (the value of iospec may be INPUT or INPUT-OUTPUT). ts
tormat is as rollows:

FIELD (fieldname,'literal text string'), iospec

Filler: Fields defined as fillers pertorm no data transfer between the
application program and the device. They only define a gap in the
input or output record. On input and/or output operations, the number
of characters designated by the LENGTH parameter in the filler field
definition are skipped. A filler field's tormat is as follows:

FIELD FILLER, LENGTH n

System Information: A system information field (SIF) acts 1like an
output literal field. It is processed only on output operations and it
maps data into a selected FORMAT field. The mapped data, lowever, is
not a literal text string but a system related piece of information
like: current time, data, user name and number, or torm name. The
format of a SIF field is as follows:

FIELD (fieldname,SItname)

SIF names, contents, format, and length are described below:

DATE1: date, YY/MM/DD {8 characters}
DATE2: date, DD-MMM-YY {9 " }
DATE3: date, MM/DD/YY {8 " }
DATE4: date, DD.MM.YY {8 " }
TIME1: time, HH:MM {5 " }
TIME2: time, HH:MM xM {8 " }
USERNAME: user login name, XXXXXX {6 " }
USERNUM : user number, NN {2 " }
FORMNAME: form name, XXXXXXXX {8 " }

Each field with a direct, an output literal, an empty conditional, or a
system information field type is identified by a one-to-eight-character
name that must be unique within this STREAM definition. This name may
be supplied in the left margin of the field definition statement. If
not explicitly defined, the field name is assumed to be the name of the
tormat field to which the STREAM field is mapped. To modify any
attributes of this field, the field name is given as a parameter to a
FORMS run-time directive (reter to Section 4).

5 - 7 November 1979

SECTION 5 PDR 3040

FIELD Parameters (for STREAM)

The parameters discussed in the following paragraphs are position
independent. They may appear in the field definition after the mapping
or literal specification.

LENGTH Parameter: The LENGTH parameter defines the number of
characters contained in the field. The keyword LENGTH must be followed
by a positive non-zero integer.

LENGTH Usage: The LENGTH parameter when used with the various field
types has different eftects with respect to its usage being required,
optional, or assigned default values. ‘These are summarized in the
tollowing list.

field type remarks
direct required
input-literal optional - if omitted, defaults to text

string length; if supplied, text string
is padded/truncated as required to meet
given length

output-literal same as input-literal
empty-conditional same as input-literal
filler required

system-info ignored

JUSTIFY Parameter: The JUSTIFY parameter defines the justification to
occur when any data is logically moved to this field. It must be
tollowed by one of the rollowing key words:

NONE specifies no justification

LEFT the field is left justified, right padded
RIGHT the field is right justified, left padded
CENTER the field is centered

Note

'JUSTIFY NONE' has the same effect as not specifying the
JUSTIFY parameter.

If justification is specified on both the STREAM and FORMAT descriptor
fields, the data is justified according to the STREAM descriptor field

specification on input and according to the FORMAT descriptor field on
output.

REV. 0 5 - 8

PDR 30740 FORMS DEFINITION LANGUAGE

JUSTIFY Usage: The JUSTIFY parameter when used with the various field
types has different effects with respect to its usage being required,
optional, or assigned default wvalues. These are summarized in the
following 1list.

field type remarks
direct optional
input-literal optional
output-literal optional
empty-conditional optional
filler ignored
system-info ignored

SPACE-FILL and ZERO-FILL Parameters: SPACE-FILL and ZERO-FILL are
mutually exclusive parameters that define the fill character to be used
when pertoming 1left or right justification. For each character
position the data is shifted, either a space or zero is supplied on the
erd fram which the shift is taking place. If the user enters the field
with the data already right justified and right justification with
zero-fill is specified in the form definition, left-most spaces (if
any) will not be replaced with zeroes. If neither parameter is
specified, SPACE-FILL is assumed.

SPACE-FILL and ZERO-FILL Usage:
See JUSTIFY Usage.

INPUT, OUTPUT, and INPUT-OUTPUT Parameters: The INPUT, OUTPUT, and
INPUT-OUTPUT parameters, which are mutually exclusive, define the
direction of data transter in which the specified field is to be
processed.

INPUT/OUTPUT/INPUT-OUTPUT Usage: The INPUT, OUTPUT, and INPUT-OUTPUT
parameters, when used with the various field types, have difterent
effects with respect to their usage being required, optional, or being
assigned default values. These are summarized in the tollowing list.

field type remarks
direct optional; default is INPUT-OUTPUT
input-literal default to INPUT, if specified, must

be INPUT
output-literal must be specified as OUTPUT
empty-conditional must be specified as INPUT or INPUT-OUTPUT
filler optional; default in INPUT-OUTPUT
system-info ignored

5 - 9 November 1979

SECTION 5 PDR3240

VALIDATE Parameter: The VALIDATE parameter defines the validation to
take place on the field data when read from the device. The keyword
VALIDATE is tollowed by one or more validation masks enclosed in single
quotes and optionally separated by the word 'OR'.

when a field with a validation specification is transferred to the
input record at run-time, the data is checked against the validation
mask(s) suppiied by the user. If all of the wvalidation tests are
passed, the next field is transferred to the input record. If the data

fails all tests, FORMS pertomms one of two actions specified by the
FIX/NOFIX parameters.

A validation mask consists of a string of characters, each defining a
certain criterion tor the correspording character in the field. If the
length of the validation mask is less than that of the data field, the

last character of the validation mask is logically repeated until the
data field is exhausted.

The validation mask characters and their meanings are:

Mask Character Validation Criteria

numeric (9-9)

alphabetic (A-Z, a-2z)

alphanumeric (9-9, A-Z, a-2z)

period

fore—-slash

space (blank)

dollar sign

dash

any character

numeric character (-9, +, -, or blank)
tloating numeric (#-9, +, -, ., blank)
unsigned integer (@-9, blank)

personal name (A-Z, a-z, ., ', or blank)
alphabetic character or space

> >0

| Lo\

NOgcacmZ2

REV. @ 5 - 10

PDR3040 FORMS DEFINITION LANGUAGE

VALIDATE Usage: The VALIDATE parameter when used with the various
field types has different effects with respect to its usage being
required, optional, or assigned default values. These are summarized
in the following list.

field type remarks
direct optional
input-literal ignored
output-literal ignored
empty-conditional optional
filler 1gnored
system-info ignored

For example: VALIDATE '99.99' or '99AA'

FIX, NOFIX Parameters: When a field with one or more validation masks
fails to meet any validation criterion, the programmer has a choice of
torcing the FORMS user to correct the data before FORMS returns it to
the application program.

If FIX is specified, the data must pass one or more of the supplied
validation tests betore it is returned to the application program. If
the data fails all validation tests, FORMS prints an error message in
the lower right corner of the terminal display and positions the cursor
to the first character position of the field in error. The user at the
terminal may then correct the error amd re-transmit the intormation.

If the NOFIX parameter is specified, the data is returned to the
program whether or not it passes any of the validation tests. When the
input record 1is complete, FORMS returns to the error return location
instead of taking the standard return. BAn ERR= clause must be present
in a FORTRAN read statement if any fields in the form definition
contain a paragraph to do "error" processing. A validation error may
be identified by either a FORTRAN or COBOL program by inspecting the
two-character error code in the error vector by calling the GETERR
system subroutine. (Refer to Subroutine Reference Guide) . FRMS sets
this code to VA tor validation errors.

In most cases, it is convenient to require the data be in proper format
when it reaches the application program (i.e., wusing the FIX
parameter) , eliminating the task of inspecting multiple fields on a
character-by-character basis.

If FIX or NOFIX is not specified, FIX is assumed.
FIX/NOFIX Usage:“ The FIX or NOFIX parameter when used with the various
field types has different effects with respect to its usage being

required, optional, or assigned default values. These are summarized
in the following list.

5 - 11 November 1979

SECTION 5 PDR3040

field type remarks
direct optional
input-literal ignored
output-literal ignored
empty-conditional optional
filler ignored
system-info ignored

START Parameter: The START parameter allows the user to specify the
character position occupied by the first character of the data field
within the input or output record. The the START parameter function is
equivalent to that of the 'T' FORMAT descriptor in a FORTRAN FORMAT
Statement. START allows overlapping of input/output fields, a function
not available with the FILLER specification.

The word START must be tollowed by an integer number that represents
the absolute character position (within the user's data record) of the
first character of the field.

CAUTION

If START is specified in an input-only field, the
character pointer gets reset for the input record
but not tor the output record. The inverse is true
for output-only fields. This is reflected in the
input and output STREAM descriptor formats
generated by FDL, if the -IOFLIST option is
specified.

START Usage: The START parameter when used with the various field
types has different effects with respect to its usage being required,

optional, or assigned default values. These are summarized in the
tollowing list.

field type remarks

direct optional

input-literal optional

output-literal optional

empty-conditional optional

filler optional ‘
system-info ignored

REV. 0 5 - 12

PDR3040 FORMS DEFINITION LANGUAGE

FIELD DEFINITION EXAMPLES: STREAM DESCRIPTORS

The following FDL coding example shows how the types of STREAM
discussed in this section are defined. The lines ot code also show
usage of some field parameters discussed. Before each field
definition, a comment 1line has been inserted that identifies the type
of field being defined.

The following example code shows and example of definition of each
type of field discussed and use of some of the field parameters
that are significant when used with the particular field types.

* DIRECT FIELD TYPE.
*

FIELD IDNUM, LENGTH 5

* LITERAL INPUT FIELD, RETURN STARTING IN COLUMN 3@
FIELD 'LITERAL INPUT STRING', START 30

* QUTPUT LITERAL FIELD
FIELD (HEADER,'HEADER TEXT'), OUTPUT

* INPUT EMPTY CONDITIONAL FIELD TYPE
FIELD (EMPLNAME,'NO EMPLOYEE NAME SPECIFIED'), ;
INPUT-OUTPUT
* NOTE USE OF SEMICOLON FOR FDL CONTINUATION LINE

* FILLER FIELD
FIELD FILLER, LENGTH 12

* SYSTEM INFCRMATION FIELD
FIELD (OUTLATE,,DATE3)

* INPUT-ONLY FIELD, JUSTIFY AND VALIDATE

FIELD AGE, LENGTH 3, JUSTIFY RIGHT,, INPUT, ;
VALIDATE '999' OR 'B'

5 - 13 November 1979

SECTION 5 PDR3040

FIELD STATEMENTS WITHIN A FORMAT DESCRIPTOR

Fields defined within the FORMAT descriptor describe the appearance of
data on the page-oriented device. This definition includes (1) field
coordinates, (2) 1length, (3) Jjustification, and (4) any display
attributes to be associated with the data (e.g., write enable/protect,
blink, reverse video, etc.).

FIELD Types

There are two types of FORMAT descriptor field statements: mapped and
literal. These are described in the following paragraphs.

Mapped: A mapped field is actually mapped to by a field defined in the
STREAM descriptor. All mapped fields contain a 1-8 character name
starting in the left margin in the field definition statement. The
format of a mapped field is as follows:

name FIELD field-name

Any mapped field defined in the FORMAT descriptor and not mapped to by
a STREAM field is ignored. Any STREAM descriptor field that maps to a
nonexistent FORMAT descriptor field is also ignored.

Literal: A 1literal field contains a text string specified in the
FORMAT descriptor field definition. Literal fields are used to supply
tags (titles) for information displayed on the device and usually
identify mapped fields. The format of a literal field is as follows:

FIELD 'literal text string'
The literal data is specified immediately following the FIELD statement

and must be enclosed within single quotes. The name field (left

margin) must be blank (no mapping is done from a stream descriptor
field.)

FIELD Parameters (for FORMAT)

The following parameters may follow the FIELD statement in a mapped
field and the literal specification in a literal field. They are all
non-positional (i.e., they may occur anywhere in the field definition).
All parameters apply to both the mapped and literal device descriptor
field types. All parameters are optional unless otherwise noted.

REV. 0 5 - 14

PDR3040 FORMS DEFINITION LANGUAGE

LENGTH Parameter: The LENGTH parameter defines the length of the field
as it is to appear on the device. It must be followed by a positive
non-zero integer that represents the field length in characters. This
parameter is required on mapped fields and is optional on literal
fields. If amitted, the field length is assumed to be the length of
the literal string.

The length of a field in the STREAM descriptor may differ fram the
length of a field in the FORMAT descriptor. The STREAM field defines
the length in the input/output record of the application program and
the device format field length defines the length of the field on the
input/output device. If they differ, the data is truncated or padded
as required.

POSITION Parameter: The POSITION parameter defines the position
(column and 1ine) of the first character in the field. The keyword
POSITION is followed by the column and 1line (x,y) address, enclosed
within parentheses and separated by a comma. This parameter is
mandatory on both mapped and literal fields.

JUSTIFY Parameter: The JUSTIFY parameter defines the justification to
take place when data is logically moved to (through) this field. Refer
to the description of the STREAM descriptor field JUSTIFY parameter.
This parameter is optional on both mapped and literal fields, and its
default value is JUSTIFY NONE if JUSTIFY is not specified.

Display Attribute Parameters

The following eight parameters are used to describe the display
characteristics of the field data when it is written to the specified
device. If a device does not support a feature, such as reverse video
or blink, the attribute is ignored.

NOPROTECT (or ENABLE) Parameter: The NOPROTECT paraneter, which is
mutually exclusive with PROTECT, declares the associated field to be
write-enabled upon display at the user terminal. When displayed on the
line printer, the field is underlined (if underlining is available).

PROTECT Parameter: The PROTECT parameter declares that the field is to
be displayed write-protected when written to the user terminal. When
printed at the line printer, it is not underlined (displayed normally) .
If neither PROTECT nor NOPROTECT is specified, PROTECT is assumed.

BLINK Parameter: The BLINK parameter defines the field to be blinked
when displayed on the temminal. It has no effect in a device
descriptor for the printer.

5 - 15 November 1979

SECTION 5 PIR30340

NOBLINK Parameter: The NOBLINK parameter defines the field as not
blinked when displayed at the user terminal. If both BLINK and NOBLINK
are amitted, the default value is NOBLINK.

REVERSE VIDEO Parameter: The REVERSE VIDEO parameter causes the field
to be displayed in reverse video at the user terminal. It has no
effect when output is printed at the Line printer.

NORMAL VIDEO Parameter: The NORMAL VIDEO parameter declares the field
to be displayed in normal video at the terminal. If both the REVERSE

VIDEO and NORMAL VIDEO parameters are omitted, the default wvalue is
NORMAL VIDEO.

NODISPLAY (or HOLD) Parameter: The NODISPLAY parameter causes the
field not to be displayed when the form is output. It is valid on all
termminal and line printer device types.

DISPLAY (or FREE) Parameter: The DISPLAY attribute causes the field to
be displayed when the form is output to either the terminal or the line

printer. If both the DISPIAY and NODISPIAY parameters are omitted, the
default value is DISPLAY.

FIELD DEFINITION EXAMPLES: FORMAT DESCRIPTOR

The following FDL coding example shows how the types of FORMAT fields
discussed in this section are defined. The lines of code also show
usage of some field parameters discussed. Before each field

definition, a comment Lline has been inserted that identifies the type
of field being defined.

: MAPPED FIELD, NOT WRITE-PROTECTED
INVNUM FIELD POSITION (70,2), LENGTH 6, NO PROTECT
: LITERAL FIELD

FIELD 'Literal String Test', POSITION (1,4) ;

FROGRAMMING AIDS

The following paragraphs describe FDL statements to assist the
programmer designing a formm. They include a macro capability (the
DEFINE statement) and iterative field generation (the REPEAT
statement) .

REV. 0 5 - 16

PDR 3040 FORMS DEFINITION LANGUAGE

MACRO DEFINITION

Currently, a macro consists simply of one text item replacing another
item or text string (i.e., a synonym).

name DEFINE item
The DEFINE statement allows the definition of a macro.
A DEFINE statement must be preceded by the name of the macro, starting
in Column 1. The statement name must be tollowed by one or more spaces
and then by the macro text.
Whenever the macro name is encountered as a single item within an input
line (not in a literal text string), the macro name is replaced by the
given definition. All macros must be defined before they are used.

Macro definitions are not retained between form definitions. They are
erased after each END STREAM and END FCRMAT statement.

Examples
FLD DEFINE FIELD
LEN DEFINE LENGTH
POS DErINE POSITION
D1X DEFINE 5
D1y DEFINE 10
*
*
* FIELD DEFINITION USING ABOVE MACRO DEFINITIONS
DATA1 FLD, POS (D1X,D1lY), LEN 10

*

* NOTE THAT THIS HAS THE SAME FUNCTION AS:
DATAl FIELD, POSITION (5,10), LENGTH 10

ITERATIVE FIELD GENERATION

Iterative field generation allows generation of multiple blocks of
field statements with only one block definition. Fields to be
generated in this manner must be enclosed within REPEAT and END REPEAT
statements.

Iterative field generation is permitted in both STREAM descriptor and
FORMAT descriptor definitions. A two-digit iteration number is
appended to any field name found in either the 1left margin or
immediately tollowing a STREAM field statement. If the field name is
seven or eight characters, it is truncated to six characters to permit
the iteration number to be appended. The same is true for FORMAT
(mapped) field names encountered in direct, output-literal, and
input/empty-conditional STREAM descriptor fields.

5 - 17 November 1979

SECTION 5 PDR3040

P> REPEAT n

The REPEAT statement defines the beginning of an iterative field
generation (REPEAT) block. It must be rollowed by an integer (n)
greater than zero that represents the number of iterations to make
through the field definitions that follow in the FDL source text. The
iteration counter is initially set to one and is incremented by one at
each pass through the REPEAT block. When the counter exceeds the
specified repeat count, the statement immediately tollowing the
associated END REPEAT statement is processed.

Only FIELD statements are permitted within a REPEAT block.

P> END REPEAT

The END REPEAT statement terminates a REPEAT block. For each REPEAT

statement there must be a corresponding END REPEAT statement. Repeat
blocks may not be nested.

REIATIVE POSITION PARAMETER

A second form of the POSITION parameter is available to fields defined
within a repeat block. This permits the field coordinates to be
relative to the current iteration number instead of absolute line and
column.

Relative positioning 1is specified by placing a plus or minus sign
immediately preceding the lLine and/or column definition in the POSITION
parameter. The absolute line or column number is computed by adding or
subtracting the current iteration number to or tram the specified
offset.

An example of both iterative field generation and relative positioning
is shown in the tollowing Linew of FDL code:

* THIS BLOCK WILL BE REPEATED 3 TIMES
*

REPEAT 3
LASTNM FIELD LENGTH 2J, POSITION (10,+7)
FRSTNM FIELD LENGTH 14, POSITION (35,+7)
MIDDIN FIELD LENGTH 1, POSITION (5@,+7)
END REPEAT

REV. 0 5 - 18

PDR3040 FORMS DEFINITION LANGUAGE

The previously shown FDL code that used the relative position feature
and a repeat block accomplishes the same function as the following FDL
code that does not take advantage of these features:

[ASTNM@1 FIELD LENGTH 20, POSITION (14,8)
FRSTNM@1 FIELD LENGTH 19, POSITION (35,8)
MIDDINZl FIELD LENGTH 1, POSITION (50,8)
LASTNM@2 FIELD LENGTH 20, POSITION (14,9)
FRSTNM@2 FIELD LENGTH 10, POSITION (35,9)
MIDDING2 FIELD IENGTH 1, POSITION (58,9)
[ASTNM@3 FIELD LENGTH 29, POSITION (19,10)
FRSTNM@3 FIELD LENGTH 14, POSITION (35,10)
MIDDING3 FIELD LENGTH 1, POSITION (50,10)

LISTING CONTROL STATEMENTS
P> NOLIST

The NOLIST statement disables the listing of all FDL statements, macro
and repeat block expansions, except tor those containing errors. It is
overridden only by the -EXPLIST command line option.

P> EJECT

The EJECT statement causes the listing to eject to the top of a new
page when the listing file is output (spooled) to the lLine printer.
The old page header is retained. For a new page header, refer to the
section entitled 'General Syntax'. The EJECT statement has no effect
if the listing is turned off (via the ERRORS ONLY option or NOLIST
statement) .

ALTERNATE INPUT FILE ($INSERT)
P> SINSERT pathname

The contents of another FDL source file may be inserted into the
primary input file at translation time. This is accamplished by
placing the $INSERT directive in the left margin of the input line,
tollowed by at least one space, and then the pathname ot the file to be
inserted. Input is then obtained from the inserted (alternate) disk
file until the end of file (EOF) is encountered. When EOF is reached,
FDL resumes processing the primary input file at the line following the
SINSERT directive. No modification of the main input file is done.
This temporarily "switches" the input flow from the primary to the
alternate input file.

5 - 19 November 1979

SECTION 5 PDR3040

The SINSERT directive provides a convenient method of incorporating a
common macro definition file into an FDL source file. For example:

SINSERT <SOFTWR> FORMS> MACROS

FDL TRANSLATION, CWMAND FORMAT
P> FDL pathname -options

FDL is invoked by entering the external command FDL. The command may
be rollowed by an input file name and/or a list of translation options.

pathname specifies the input (source) text if it is to be obtained from

file specified by pathname. This parameter may only appear immediately
following the command (in the option -INPUT) name.

Option Definition

-INPUT pathname defines the source file, same as pathname, but
may appear anywhere on the command line

-INPUT TTY source text is to be obtained from the user
termminal

-LISTING listing file is to be generated

-LISTING lpath listing is to be written to file specified by the
pathname lpath

-LISTING NO no listing file is to be produced

-LISTING TTY listing is to be printed at user terminal

-LISTING SPOOL listing file is to be routed directly to spool

queue - the name of the spool file is printed on
the user terminal prior to start of translation

-BINARY binary file is to be generated

-BINARY bpath binary file output file is to be generated with
the name specified by bpath

—-BINARY NO no binary file is to be generated

REV. ¢ 5 - 20

PDR 3040 FORMS DEFINITION LANGUAGE

If a -BINARY or -LISTING option is not tollowed by a lpath or opath,
the binary file is written to either the file open on File Unit 3 or to
a file called B filename, if no file is open. Similarly, the listing
file is written to either the file open on File Unit 2 or to a file
called L filename, if no file is open.

The tollowing are the FDL-specific options (minimum abbreviations are
underlined) :

option definition

-OBJLIST list emitted object text

—MACLIST generate expanded macro listing

—ERRLIST generate errors-only listing

—EXPLIST override NOLIST pseudo-op

—ERRTERM list errors on user terminal

-IOFLIST list I/0 and device formats

-REPLIST expand and list repeat blocks
Each FDL-specific option except -EXPLIST may be preceded by a NO to
reverse the option's meaning. For example, -NQMACLIST specifies that
an expanded macro listing is to be suppressed. An optional parameter
may be abbreviated to the minimum number ot characters required to
distinguish it from other parameters. For example:

FDL FDEF15 -LISTING SPOOL -BINARY NO -(BJ -MAC
Default Option Values

Each installation may choose a set of default options for the FDL
translator. Currently, the tollowing options are standard:

-LISTING -BINARY -IOFLIST -ERRTERM

All other options are disabled. FDL defaults are set by the A-register
setting in the translator's memory-image file. The user may select his
own default options by RESTORE'ing a copy ot FDL and SAVE'ing it with
the desired bits set in the A-register. The following table shows the
A-register hit settings for FDL options and device codes:

5 - 21 November 1979

SECTION 5 PIR3040

options device codes

bit set for

@ > none

1 -BJLIST 1 > terminal

2 -MACLIST 2 > paper tape
3 -ERRLIST 3 > card reader
4 -EXPLIST 4 > printer

5 -ERRTERM 5 > magtape

6 -IOFLIST 6 > undefined

7 -REPLIST 7 > disk file

8-10 input device
11-13 listing device
14-16 binary device

The default A-register setting is '6777.

RUN-TIME MESSAGES

After each stream or format descriptor is translated, FDL prints a
message at the user terminal containing the number of errors
encountered in the source text and the FDL revision number.

FDL TEMPORARY FILES

While translating a source file, the FDL translator may produce one or
more of the tollowing files:

Name Format Contents

ER##uu ascii error definitions (*)

RP#fuu ascii current repeat block

IN##uu ascii input stream/substream definition

OUk%uu ascii/ output stream/substream tormat
binary device format map

All files are created and deleted by FDL. The only way that the user
can exanine them is to use CNTL-P to break out of the translator and/or
pertom a LISTF while another user is running FDL in the same UFD.

* The w in the filename denotes the current user number - this
permits multiple FDL translations simultaneously within the same
directory.

PDR3040 FORMS DEFINITION LANGUAGE

FDL CUMMAND LINE EXAMPLE
OK, FDL DS1
GO
0009 ERRCRS (FDL, REV 16 - 16-FEB-79)
0000 ERRORS (FDL, REV 16 - 16-FEB-79)

OK,

5 - 23 November 1979

PDR 3040 ADMINISTRATIVE PROCESSOR

SECTION 6

FORMS ADMINISTRATIVE PROCESSOR
(FAP) ,
REFERENCE INFORMATION

FUNCTION

The FORMS Administrative Processor (FAP) provides the commands to
create and maintain the forms definition catalog, configure new
terminals and new device drivers into the FORMS system, and obtain the
system status.

COMMAND FORMAT

FAP is invoked by typing the command: FAP. FAP prints a header 1line
tollowed by the current revision number.

FAP COMMANDS

The following paragraphs describe the commands supported by FAP. All
command names may be abbreviated to three characters.

Available FAP commands are:

ADD
CREATE
GENERATE
JOURNAL
LINK
LIST
PURGE
QUIT
REPLACE
TCB

[LIST]
P> ADD filename [LIST UPDATES

The ADD command enables the user to add form definitions to the FORMS
catalog. The name of the binary torm definition file (filename),
generated by the FDL translator, must immediately tollow the keyword
ADD. This filename usually starts with B . One binary file may
contain more than one form definition (e.g., if there was one stream
descriptor and one tormat descriptor with definitions tor three
devices, the binary file contains four form definitions). FAP
considers each DEVICE descriptor defined under a single FORMAT
descriptor to be a separate form.

6 - 1 November 1979

SECTION 6 PDR3040

The ADD command adds only new modules to the FORMS catalog. Any
attempt to replace a torm already residing in the FORMS catalog with
the ADD command causes the new form definition to be ignored and a
warning message to be printed at the user temminal.

The input (binary) file name may be followed by the parameter LIST or
LIST UPLATES. If this is specified, all torm definitions added to the
FRMS directory are listed by name on the terminal.

When the binary file has been processed, the number of modules added
and ignored (due to duplicate entries) is printed.

If any translation errors were generated by FDL, the message WARNING!
form-name CONTAINS ERRORS is printed or displayed at the terminal. A
binary form definition with translation errors will probably generate
undesirable results at run—time. The user must correct the source file
and retranslate it with FDL.

ADD Examples

ADD B@FM@3
@1 DEFINITION ADDED.
ADD B-FM@4 LIST

DEDUCT STR Vaa ADDED
DEDUCT T VISTAR3 voga ADDED
DEDUCT FMT PRINTER Voo ADDED

@3 DEFINITIONS ADLED.
*

P> CREATE [DIRECTORY]

The CREATE (or CREATE DIRECTORY) command allows creation of a skeleton
FORMS catalog.

If the FORMS directory does not exist, FAP requests a disk volume-id on
which the UFD named FORMS* is to be created. The user must then enter
the volume-id (DSKRAT name) of the pack/partition that will contain the
FORMS directory. FAP then asks tor the MFD owner password on this
volume. After this information has been entered, the FORMS UFD,
catalog, and terminal configuration files are created. The CREATE
command produces an error message if the FORMS catalog already exists.
To create a tresh copy, the old file must first be deleted using the
TREDEL command under FUTIL.

REV. @ 6 - 2

PDR 3040 ADMINISTRATIVE PROCESSCR

If the FORMS* UFD is created with FAP by the user, the tollowing files
must be copied to this directory before executing an application
program that uses FORMS:

DCF.AS RWN.ER IDCF.BN

These files may be found in the FORMS* UFD as released on the master
disk.

CREATE Example

The following is an example of CREATE command dialogue.

OK, FAP
GO

FAP REV 16 11 - FEB - 79

* CREATE

UFD "FORMS*" DOES NOT EXIST

SHALL I CREATE IT? YES

ENTER OWNER PASSWORD (LT WON'T ECHO): ABCDEF
THIS MFD IS FULL, TRY AGAIN.

ENTER DISK VOLUME-ID: SOFTWR
ENTER ONNER PASSNORD (IT WON'T ECHO) XXXXXX

TCB CREATED.
DIRECTORY CREATED.

*

On any input request within the CREATE dialogue, the user may input
CNTL-C to abort creation and return to the FAP command level.

P> GENERATE

The GENERATE command is issued when the device control file has been
modified; nommally, when a new device driver has been added to the
system or a device driver has been removed. The GENERATE command
creates three SINSERT files and one binary file in FORMS* directory.
The files generated are as follows:

6 - 3 November 1979

SECTION 6 PIR3040

. DEVEXT

external declaration statements for
run-time device drivers

. DEVDAC - 64R mode driver dispatch table

. [EVIP 64V mode driver dispatch table

. ICF.BN - binary representation of the new device
control file (DCF.AS)

The GENERATE command mast be issued and a new run-time I/0 package must
be assembled each time the device control file (DCF) is modified.

filename
P> JOURNAL |START ON filename
STOP

The JOURNAL command allows the logging of transactions with the FORMS
catalog in an ASCII file that can be printed. All ADD, REPLACE, PURGE

(described below) , and TCB (described below) transactions are recorded
in the JORMNAL file.

The JOURNAL command may be used to enable or disable the logging
function. To disable it, the command JOURNAL or JOURNAL STOP may be
issued. To enable it, the command line JOURNAL filename or JOURNAL
START ON <filename> may be issued.

JOURNAL Example

JOURNAL LOGO@20

ADD BF@1

7?8 DESCRIPTIONS ADDED.
JOURNAL STOP

* % % ¥ *

ALL
P LINK | formname

The LINK command allows users to upgrade to current software revisions
without having to rebuild each form definition. It may also be used to
recover from various form definition file inconsistencies when a
run-time error dictates such recovery is necessary.

There are two LINK command forms. LINK ALL specifies that all form
definitions contained in the FORMS directory are to be re-linked. If

the LINK command is followed by a formname, only the specified form
definition is linked.

Linking is the process that combines the STREAM and FORMAT descriptors
into one fomm definition. This torm definition is then stored in a
file in the directory named FORMS>LNK.FD, for faster access at
execution time. It is the 1linked form definition and not the
individual stream and format descriptor that is used when a form is
invoked at execution time (run—time).

REV. 0@ 6 - 4

PDR3040 ADMINISTRATIVE PROCESSOR

The linked form definitions are transparent to the user. They are
automatically created or updated by FAP when a form definition is added
to or replaced in the catalog. The corresponding link file is deleted
when a format descriptor is purged.

ON TERMINAL

P LIST [FILE filename]
ON FILE filename 2

The LIST command causes all or part of the FORMS catalog to be listed
by name and type. This may be followed by a form name specifier to
selectively list a part of the catalog. If the form name specifier is
omitted, the entire catalog is listed. If the phrase ON FILE filename
2 is included, the catalog listing is written to the specified file.
If the phrase ON TERMINAL is specified, or if the ON FILE specifier is
omitted, the listing is written to the user temminal.

The information in the catalog listing includes:

. formname, type, and device (if any)

. version number

. owner (login) name

. creation, last access, last modified dates
(file output only)

LIST Example

* LIST

FORMS DIRECTORY ON THURSDAY, FEBRUARY 2, 1978 AT 9:45 PM

NAME TYPE DEVICE VER ONNER
HDRFJ1 STR Vo2 JIMW
HDRFJ1 FMT VISTAR3 vog JIMW
HDRF@2 STR voa DAVEW
HDRF@2 FMT VISTAR3 Voo DAVEW

@4 ENTRIES.
*

P> PURGE (formname-specification) |[LIST UPDATES]

The PURGE command purges form definitions from the FORMS catalog. The
PURGE command must be followed by a form name specification that
designates which form definitions are to be purged. It may also be
followed by the word LIST or LIST UPDATES, which causes all purged
forms to be listed by name on the user terminal.

6 - 5 November 1979

SECTION 6 PIR3040

The formname-specification designates the form definitions to which the
invocation of the PURGE command applies. Both PURGE and LIST commands
use this option.

The formname-specification is enclosed in parentheses and has the
following formats:

formname
formname.type
tormname.type:device

type may be:

STR for stream descriptor, or
FMT for tommat descriptor

If only formname is specified, the PURGE command relates to all forms
with the given name, any type and any device. If the second
specification is used, the command relates to all forms of the given
name and type. If the type is FMT, it relates to all device
descriptors within the tommat definition. If the third type of
specification is wused, the command relates to the one definition that
contains the same name, type, and device. This letter construction
should only be used on format descriptors (there is no device
definition for a stream descriptor!).

If any item in the form name specifier (formname, type, or device) is
specified as an asterisk (*), or as the word ANY, no check will be made
on that item when scanning the FORMS catalog.

Up to 20 formnames may be specified within the parentheses, separated
by commas.

PURGE Examples

OK, FAP
GO

FAP REV 16 23-FEB-79

* PURGE (CRDER19)
2 ENTRIES PURGED.

* PURGE (ORDER20.STR)

1 ENTRY PURGED.

* PURGE (ORDER21.FMT:CONL1200)

1 ENTRY PURGED.

PDR 3040 ADMINISTRATIVE PROCESSCOR

> our

The QUIT command causes FAP to exit and return to Primos command level.
FAP may be re-entered by typing the START (S) command.

QUIT Example

* QUIT

OK,

> REPLACE filename

The REPLACE command functions the same as the ADD command, but causes
any form definitions in the FORMS catalog that are redefined in the
input (binary) file filename to be replaced with the new definition.
Any form definitions in the binary file that are not defined in the
catalog are added.

REPLACE Example

* REPLACE B-F@19
@2 DEFINITIONS REPLACED.
* REPLACE B-F020
@1 DEFINITION ADDED @3 DEFINITIONS REPLACED.

uu terminal

* terminal
p TCB LIST filename

LIST

The TCB command modifies the terminal configuration file. This file
contains a 64 by 4 word table that describes the temminal type for each
FORMS user on the (local) computer system. It is used in conjunction
with the device control file (DCF) at run-time to select the terminal
device driver for a given FORMS user. Both TCB and DCF files are
explained in detail in Appendix B.

To modify the terminal configuration file, the TCB command may
optionally be tollowed by parameters that retlect the type of operation
being performed. The parameter terminal specifies a type of terminal,
such as OWL120@ or VISTAR3. The user number, uu when specified
initiates an addition, a replacement, or a deletion tram the Teminal
Configuration file with regard to the user specified by uu.. When
specified alone, uu causes the user with that number to be removed
(deleted) from the block. If it is attempted to delete a nonexistant
entry, a warning message and returns to FAP command level. If the
value wu is not already in the terminal configuration file, and if

6 - 7 November 1979

SECTION 6 PIR3040

specified with a value for terminal, an addition is made to the file
for user uu with terminal type tennmal However, if an entry for uwu
already exists in the terminal configuration file, and if a value for
teminal is also specified, then a new entry replaces the existing
entry for uu in the file. The TCB command with the parameter * in
place of uu will cause the current values for uu to be placed in the
terminal configuration file. TCB with the « optional parameter LIST
lists all the files in the FORMS catalog (directory). TCB LIST
filename lists only those entries that pertain to filename. To add or
change the terminal type, the 1- to 8- character terminal name must be
input. If the spec1f1ed user uu already had a TCB entry, the name of
the old temminal type is printed on the temminal.

* TCB LIST

TERMINAL CONFIGURATION ON TUESDAY, JANUARY 9, 1979 AT 11:58 aM

USER TERMINAL

23 VISTAR3
24 ONL1200
25 OWL1200
g6 OWL1200
a7 OWL1200
08 ONL1200
29 OWL1200
10 ONL1200
11 OWL1200
12 OWL1200

LI

32 ENTRIES.

LI

REV. 0 6 - 8

FAP EXAMPLE

Having translated the example format and stream

PDR 3040

ADMINISTRATIVE PROCESSOR

in Section 3 thus

produwcing a binary file B DATAS] and a listing file L DATAS], the
binary representation may be placed in the catalog by using the FAP

command, as follows:

OK, FAP
GO

FAP REV 16

* ADD B.DATAS1

23-FEB-79

1 DEFINITION ADDED

* LIST

FORMS DIRECTORY LISTING ON FRIDAY, FEBRUARY 23, 1979 AT 2:12 PM

TYPE DEVICE

NAME
PHONMENU FMT
PHONMENU STR
PHONFM FMT
PHONEM STR
PHONFM FMT
PHONMENU FMT
DATAS1 FMT
DATAS1 STR
FINCERAl STR
FINCER@1 EMT

11 ENTRIES.
* QUIT
0K,

ONL1200
ONL1200
VISTAR3

VISTAR3
OWL1200

ONL1200

VER

Vo8
Vo8
Vo8
V@8
Voo
Voo
voa
Voo
vi8
V18

OWNNER

DONL
DONL
DONL
DONL
DONL
DONL
JDOAKS
JDQAKS
STEVE1
STEVE1

November 1979

PDR 3040 EXAMPLE FORTRAN PROGRAM

SECTION 7

EXAMPLE FORTRAN PROGRAM

INTRODUCTION

This section describes the development of a FORMS application program
trom source coding to loading and execution. It also describes how to
prepare the data that defines the form and how to place that data in
the FORMS catalog. The complete source listing tor the example is in

Appendix E.

This example is based on a practical use of FORMS to keep track of
customer orders, shipping intommation, and billable accounts. The
program allows the user to input information at the terminal and store
this information on a disk file. The application is typical of many
parts distribution and billing operations. An example of the screen
seen by the user is shown in Figure 7-1. Features that are essential
to every FORMS application program as well as some special features
unique to this application are discussed together with source code that
illustrate these features. They are:

e Setting up data areas through use of standard FORTRAN
statements (i.e., LOGICAL, INTEGER, EQUIVALANCE) .

e Extending terminal I/0 buffer size with calls to the Primos
subroutine ATTDEV.

e Initializing control and output files (named ATS.C and ATS.D)
with calls to the Primos subroutines SRCH$S and PRAFSS.

e Initializing the descriptor for the form to be used by means
of a formatted READ statement that transters the FORMS
directive H#INVOKE to the terminal device driver and causes
the form to be initialized at the terminal i.e., displayed on
the terminal screen).

e Reading the current control number from the control file,
ATS.C, and updating the control file with the next control
number.

e Identifying, to FORMS, the substream that is to be accessed
next. L4SUBSTREAM is used in this case since the data input
and output are contained in more than one logical record. If
there were only one record, then the STREAM statement would
be sufficient. When the header is written, the program sets
up a substream tor handling errror messages and two other
substreams: one for general name and address information,
and one for parts list intormation.

7 - 1 November 1979

SECTION 7 PDR3040

Figure 7-1. Screen Display Produced by Running
Example Program.

REV. ¢ 7 - 2

PDR 3040 EXAMPLE FORTRAN PROGRAM

e Accepting input data fram the temminal using formatted READs
and FORMS run—-time directives.

e Positioning the control file to the next control number to be
read, and clearing the terminal screen of the last block of
data written to the output file.

e Exiting from the application program when done.

WRITING THE PROGRAM

Setting Up Data Areas

The following code illustrates how some of the data areas for the
example program are defined.

INTEGER NAMADR (75), VIA, HOW, REPL, INTC, BILL, SONWM(4),
+ CHNNUM (4) , CPO (4) , ACOTHR (15), AIRSPR, INS(5),

+ TYPE, CODE, NWNIO, ATSNWM, B, I, J, MORE, FLD1(4,4),
+ YESNOB (4) , ACTBUF (4,3), FLD2(4,3)

NAMATR, for example, is intended to accomodate up to 75 words (or 150
ASCII characters) of name and address information.

Extending Size of Terminal I/0 Buffers

The number of characters handled by a single transaction by this
program (159) happens to be more than the default Line size of the
terminal read-write buffers (72). However, the size of the I/0
terminal buffers may be changed by calls to the Primos subroutine
ATTDEV. For example:

C -—- EXTEND TERMINAL, FILE I/O BUFFERS.
C

CALL ATTDEV(1,1,d,150)

CALL ATTDEV(6,7,2,158)

The first call to ATTDEV sets up an input buffer, open for reading,
tram the teminal on File Unit 1. The second call to ATTDEV sets up an
output buffer, open for writing on File Unit 6. In both cases, the
size of the puffer is specified to be 15@ characters.

Shared Library Initialization

In order to use the FORMS run-time directives with the shared
libraries, the tollowing call must be present in the application
program prior to the first FRINVOKE directive:

CALL FORMSI

7 - 3 November 1979

SECTION 7 PIR3040

This requirement is applicable to the 64V mode shared version of FORMS
and is ignored for 64R mode and non-shared 64V mode.

Selecting a Library

It is a system administration decision whether or not to support the
shared libraries. If shared FORMS is supported, shared COBOL, MIDAS,
and FORTRAN must be supported as well. If shared libraries are in use,
the FORMS shared library file is named VFORMS.

Initializing Control and OQutput Files

Calls to standard PRIMOS file system subroutines open, and read the
control file (ATS.C) and open ard position the output file (ATS.D) for
writing. This is shown in the following code:

C --- OPEN FILES, INVOKE FORM ON TERMINAL.
C
CALL SRCHS (K$CLOS,,4,1,8,CODE)
CALL SRCHSS (KSCLOS,9,9,2,0,CODE)
C

C —- READ CONTROL FILE, ATS.C .

CALL SRCHSS (KSRDWR, 'ATS.C',5,1,TYPE,CODE)
C —- CHECK F(R FILE READ/WRITE ERRORS>

IF (CODE.NE.@) CALL ERRPRS (KSNRTN,CODE,'ATS.C',5,9,9)
C —- OPEN AND POSITION DATR FILE, ATS.D .

CALL SRCHS$S (KSRDWR, 'ATS.D', 5, 2,TYPE,CODE)

IF (CODE.NE.@) CALL ERRPRS (KSNRTN,CODE,'ATS.D',5,8,0)

CALL PRWFSS (K$SPOSN+KS$PRER, 2, LOC(9) ,0, 18000080, NNIO, CODE)

The first two calls to the subroutine SRCH$S close any files that might
have been left open on File Units 1 and 2 before the execution of the
application program started. The third call to SRCH$S opens the file
ATS.C for reading and writing on File Unit 1. The program makes
provision tor a standard error return. The fourth call to SRCHSS
likewise opens the output data file ATS.D for reading and writing on
File Unit 2. Then, the call to PRAFS$S positions the output file to the
next record to be written.

Initializing Form Descriptor

Every FORMS application program must identify the name of the form
descriptor file installed in the FORMS catalog. This is accomplished
by an #FINVOKE run-time directive embedded in a formatted WRITE
statement. The keyword ##INVOKE has meaning to the FORMS subroutine
package and FORMS user to set up a function call to the run-time
directive ##INVOKE. The use of the ##INVOKE directive causes the fomm
to be accessed in the FORMS catalog and displayed at the terminal.
Data can then be entered into the unprotected fields at the temminal.
Use of the H#INVOKE directive is illustrated by the following code:

REV. @ 7 - 4

PDR 3040 EXAMPLE FORTRAN PROGRAM

C ——- IDENTIFY FORM F(R USE BY APPLICATION PROGRAM,
C —— AND WRITE FORM AT TERMINAL.
C

WRITE (1,20)

20 FORMAT (' ##INVOKE ADMN377"')

This coding identifies the formname to be used as ADMN377. When
executed, the code causes FORMS to search for AIMN377 in the fomms
catalog, which is contained in a UFD named FORMS* . Then, FORMS
displays the form at the temminal as previously described.

Reading and Resetting Control Number

This application program accesses a control file named ATS.C to assign
a nunber to identify the item to the data record currently being
prepared at the terminal. The next sequential control number must also
be assigned for later use in updating the control file. This is
accompl ished by the following standard I/O calls and calculation:

—— PROCEDURE TO ASSIGN NEXT ATS #.

a0 CALL PRWFS$S (K $POSN+KSPREA, 1, LOC(4) ,9, 800000 ,NNIO,CODE)
——— READ ATS.C TO GET ATSNUM
C

C
C
C —— POSITION TO NEXT DATA RECCRD.
C
1
C

READ (5,120,ERR=160,END=160) ATSNWM
129 FORMAT (I5)

GO TO 200
C
C —- HERE ON EOF, ETC.
C

160 ATSNWM=]
mn

C —— ASSIGN NEXT SEQUENTIAL ATS #.
180 ATSNUM=ATSNUM+1

Using Substreams

Figure 7-2 shows how a STREAM (i.e., the data record) typically may be
subdivided into SUBSTREAMs (i.e., logical records).

The use of substreams is not only a means for setting up logical
records within the data record. Nommally, FORMS expects the input and
output data record(s) to be only one line of information. Substreams
provide a way that the user may specify data records greater than
normally expected. Substreams each may contain up to a line's worth of
characters. As an aggregate, substreams make up a data record
(STREAM) . This program demonstrates the use of substreams with FORMS.
When the user desires to logically separate data into several records,
FORMS substreams are used. Each substream is transferred as an
individual data record when the application program is pertoming I/0
operations. For example, it is desirable to output any error messages

7 - 5 November 1979

SECTION 7

REV.

ADMN377
STREAM

-~

PIR3040

(FORMNAME,FORMNAME)

ATSNUM]

END SUBSTREAM

NAME

ADDRESS (LINE 1)

ADDRESS (LINE 2)

ADDRESS (LINE 3)

ATTN

END SUBSTREAM

SHIP VIA SHIP HOW REP1 INTC

BILL SO NUM CHGN CPO
ACCOTHER ATRSPARE INS

END SUBSTREAM

PART (LINE 1)]DESCR (LINE 1)[SN (LINE 1)[QTY (LINE 1) JRTN (LINE 1)
PART (LINE 2) [DESCR (LINE 2)|SN (LINE 2)[QTY (LINE 2) [RTN (LINE 2)
PART (LINE 3) [DESCR (LINE 3)|SN (LINE 3)|QTY (LINE 3) [RTN (LINE 3)
PART (LINE 4) [DESCR (LINE 4)[SN (LINE 4)|QTY (LINE 4) |RTN (LINE 4)
MORE | END SUBSTREAM :

END STREAM

Figure 7-2. SUBSTREAMS Within Data STREAM.

z
|
|
|

HEADER
SUBSTREAM

NAMADR
SUBSTREAM

GENERAL
SUBSTREAM

ITEMS
SUBSTREAM

PDR3040 EXAMPLE FORTRAN PROGRAM

in a separate substream (record). In the sample program, this is done
by:

C —- WRITE ATS#, CLEAR VARIABLE DATA, ERROR MESSAGE.
C
208 WRITE (1,210) ATSNWM
HDROUT=.FALSE. /*HEADER NOT OUTPUT TO DISK FILE
C ——- WRITE HEADER AND ERROR MESSAGE FIELD THEN
C —— UNPROTECTED DATA FIELDS,
C ——- USING FORMS ##SUBSTREAM AND ##CLEAR DIRECTIVES.
C
210 FORMAT('k#SUBSTREAM HEADER'/I6/'}#CLEAR'/'}#SUBSTREAM ERROR'/'')

Statement 210 writes the HEADER and ERROR substreams to the temminal.
It also writes the control number and clears the unprotected (variable)
data areas on the termminal screen.

Entering Data from the Terminal

The following lines of code read the various data items after the user
has entered them into the appropriate fields displayed at the terminal
and has pressed the "ENTER" key. Some of the accompanying validation
data is shown. For example, if a blank name and address (NAMAIR) is
entered, the program branches to code that updates the control file,
clears the screen, and exits. (See "exiting" later in this section.)
FORMS directives are not used during this phase of program operation.

C --- READ IN NAMES, ADDRESSES, AND ACCOUNTING INFORMATION.
C
220 READ (1,240) NAMADR, VIA, HOW, REPL, INTC, BILL, SONUM,
+ CHGNUM, CPO, ACOTHR, AIRSPR, INS
C
IF (NAMAIR (1) .EQ.' ') GO TO 5¢9@ /* BLANK NAME => EXIT
C —-—-- READ NAMADR. NOTE 75 WCORDS = 150 CHARACTERS, ALSO
C —- READ ACCOUNTING INFO (VARIABLES SUCH AS: VIA, HOW, ETC.)
240 FORMAT (75A2,211,3A1,12A2,15A2,A1,4A2,A1)

Writing Data to the OQutput File

The file header and account header are written to the disk file,
tollowed by individual data items. Standard FORTRAN I/0 is used as
follows:

7 - 7 November 1979

SECTION 7 PIR3040

C —- WRITE DATA TO DISK FILE.

C
DO 550 1I=1,4
IF (DESCR(1,I).EQ.' ') GO TO 558 /* IGNORE BLANK LINE
IF (HDROUT) GO TO 549

c

C —- WRITE ACCOUNT HEADER TO DISK FILE.

C

WRITE (6,525) ATSNUM, NAMADR, VIA, HON, REPL, INTC, BILL, SONWM,
+ CHGNUM, CPO, ACOTHR, AIRSPR, INS

525 FORMAT('*ATS',I6/5(15A2/),211,3A1,12A2/15A2/A1,4A2,A1)

C

HDROUT'=. TRUE.
C
C —- WRITE INDIVIDUAL ITEM LINE TO DISK FILE.
C
540 WRITE (6,545) (PART(J,I),J=1,8), (DESCR J,I1),3=1,15),
+ (N (J,1) ,J=1,4), QIY(I), RIN(I)

545 FORMAT(7A2,Al,15A2,4A2,14,Al)
C
550 CONTINUE

Data Checkirng

The application program checks if there are any more items to be
written, by checking tor nonzero data in the MORE field displayed at
the terminal. If the user has entered data other than zero in the MORE
field, it indicates that more information with respect to part numbers
etc is to be associated with the current order. Data items are written
using the ##SWBSTREAM directive. This is shown in the tollowing code,
along with the test for "more" data. As each data item is entered from
the teminal and written to the terminal, the temminal cursor is
positioned the the next field to be read or written through use of the

##POSITION directive. For example, see statement 587 of the tollowing
code.

—— CHECK FOR MORE ITEM LINES.
—= IF NO MORE ITEMS, THEN EXIT.
IF (MORE.EQ.' '.OR.MORE.EQ.'N'.OR.MORE.EQ.'n') GO TO 189
——— USE FORMS ##SUBSTREAM AND ##POSITION DIRECTIVES TO
—=— WRITE OUTPUT DATA RECCRD.

—— DATA ITEMS HAVE BEEN ENTERED AT THE TERMINAL BY USER.

OOO0O000 0nNan

WRITE (1,580)

580 FORMAT('##SUBSTREAM ITEMS'/' '/'##SUBSTREAM ITEMS'/
+ '##POSITION PARTO1')
GO TO 400 /* NEXT SET OF ITEM LINES

REV. 0 7 - 8

PDR3040 EXAMPLE FORTRAN PROGRAM

Response to Data Input Errors

Checks are made that the proper range or type of data values are
entered by the user at the terminal. If a data input error occurs, the
program usually branches to one of a number of internal routines that
print and error message in the error substream and position the
teminal cursor back to receive a correct value for the data item that
was in error. These routines uniformly employ the ##SUBSTREAM
directive to print the message at the terminal and the F#POSITION
directive to reposition the cursor. This is illustrated by the
following typical lines of code:

C ——- INCORRECT DATA IN ACCOUNTING FIELDS.
c

C ACTION TAKEN ON INCORRECT 'VIA' CODE:

c

1009 WRITE (1,1010)
1019 FORMAT ('##SUBSTREAM ERROR'/

+ 'via code must be 1-9'/

+ '$#POSITION SHIPVIA')

GO TO 220
C
C —- ACTION TAKEN ON INCORRECT 'HOW' CODE:
C

1020 WRITE (1,1030)
1030 FORMAT ('##SUBSTREAM ERRCR'/

+ 'how code must be 1-4'/
+ '##POSITION SHIPHOW')
GO TO 220

o]

C —- YES/NO ANSWER REQUIRED.

C

1949 WRITE (1,1050) (FLD1(J,I), J=1,4)
1950 FORMAT ('##SUBSTREAM ERROR'/

+ 'yves/no (Y or N) response required'/
+ '##POSITION ',4A2)
GO TO 220

7 - 9 November 1979

SECTION 7 PIR3040

Exiting

The exit code updates the control file, closes the control file and
output file, clears the terminal, and exits to PRIMOS. The exiting
code is initiated when the program encounters a NAMADR field that is
blank which will occur when the user enters a blank in the NAMADR
field. The test statement for a NAMAIR of blank as well as the exit
code statements are shown in the tollowing excerpts tram the
application program.

C —- HERE TO EXIT. UPDATE ATS # IN CONTROL FILE.
C
5008 CALL PRWFS$S (KSPOSN+KSPREA, 1,L0OC(9),0,990009,NNIO, CODE)
C ——— WRITE ATSNUM IN ATS.C .
WRITE (5,120) ATSNWM
CALL PRWFS (KSTRNC,1,LOC (@) ,d, 060000, NVIO, CODE)
o]
C —- CLOSE CONTROL FILE AND DATA FILE.
CALL SRCHSS$ (K$CLOS,9,9,1,9,CODE)
CALL SRCHSS$ (K$CLOS, 9,0,2,9, CODE)
o]
C —- USE F(RM ##CLEAR DIRECTIVE TO CLEAR TERMINAL DATA FIELDS, AND

C ——— RELEASE SCREEN AND RETURN IT F(R USE BY PRIMOS.
C

WRITE (1,5029)
5020 FORMAT ('##CLEAR ALL'/'##RELEASE')
C

CALL EXIT

END

REV. 0 7 - 10

PDR 3040 EXAMPLE FORTRAN PROGRAM

CREATING THE FORM DESCRIPTOR FILE

The foregoing example discussed how the example application program was
coded and reasons for using the various coding techniques. In
addition, the user must be concerned with describing the form to be
used with the program. The data contained with the form, both on the
terminal screen and in the data record must be described using the FDL
translator and placed on the FORMS catalog using the FAP command (see
Section 6). The form descriptor specified by the user.as a template
that describes both how the torm is to be displayed at the terminal and
how it is to be stored, in terms of: the attributes of the data items
ard the overall arrangement of the fomm.

As stated in Sections 3 and 5, the FDL forms descriptor language is
available to make a source language description of what the form looks
like both on the terminal and in the data record. The syntax of FDL is
summarized in Section 3 and described in Section 5. The tollowing
paragraphs discuss how the form used by the sample application program
is coded and translated. A complete listing of the sample form
description is given in Appendix F. Features that are essential in
every form description as well as some special teatures are discussed
in this section together with some excerpts of the FDL source code.
Features discussed in some detail are:

e setting up the FORMS descriptors

e defining the terminal devices used

e initializing the data record and terminal screen display

e defining data areas (fields)

o differentiating input data from output data

e differentiating literal data and variable data

e using substreams

e using the macro definition capability of FDL

e specifying listing details
The discussion is completed by a brief description of how to use the
FDL larguage translator command ard how the FDL checks for errors in
the source language input. This is followed by a discussion of how to

install a form description in the FORMS catalog using FAP.

Setting Up a Form Description

Every form description consists of two parts: one to describe the data
record, and the other to describe the torm itself. These are the
STREAM and the FORMAT descriptors respectively. The STREAM descriptor
is bounded (defined) by a STREAM statement and an END STREAM statement.

7 - 11 November 1979

SECTION 7 PDR3040

Likewise, a FORMAT descriptor is bounded by a FORMAT and END FORMAT
Statement. In each fom description, there need be only one STREAM
descriptor, since the internal data record need be only described once.
However, there must be one FORMAT descriptor tor each type of device
the user wishes to use with the application program. An example of FDL
code is given in the tollowing paragraphs.

Defining Device Types

For each terminal connected to the system that interfaces with the
application program, there must be a DEVICE descriptor. These
descriptors are bounded by DEVICE and END DEVICE and contained within
the body of the FORMAT descriptor, as illustrated in the tollowing FDL
coding:

ADMN377 STREAM

END STREAM
ADMN377 FORMAT
DEVICE OWL1200

END DEVICE
DEVICE VISTAR3

END DEVICE
END FORMAT

Using SUBSTREAMS

The discussion on the application program showed how the program took
advantage of the ##SUBSTREAM directive and the supbstream concept of
FORMS to effectively use logical records. Within FDL, SUBSTREAM and
END SUBSTREAM statements allow a user to define and delimit substreams.
The substreams are set up in the STREAM descriptor. The data items
(FIELDS) with a SUBSTREAM are mapped to fields in the FORVMAT
descriptor. In the example FDL coding, the substreams that have been
set up correspond to the substreams that are handled by the program,
i.e., there are: a header substream, a general substream, a data item
substream, and an error substream. The tollowing code excerpt shows
how one of the substreams is defined:

ADVMN377 STREAM

HEADER SUBSTREAM
FIELD (FORMNAME, FORMNAME)
FIELD ATSNWM, LENGTH 6, JUSTIFY RIGHT, ZERO-FILL, OUTPUT
END SUBSTREAM

END STREAM

The following code in the FORMAT descriptor is the mapped equivalent of
the sample SUBSTREAM:

REV. 0@ 7 - 12

PDR 3040 EXAMPLE FORTRAN PROGRAM

*——— HEADER LINE INFORMATION:
*
FIELD 'FORM' POSITION (2,1)
FORINAME FIELD LENGTH 8, POSITION (7,1)
FIELD 'ATS #' POSITION (20,1)

ATSNUM FIELD LENGTH 6, POSITION (26,1)
*

Setting Up Data Areas (FIELDS)

Data items are described by FIELD statements. FIELD statements may
describe a literal, some system wide information, or may describe a
variable. FIELD statements that describe a 1literal consist of the
keyword FIELD and the literal in single quotes, tor example:

FIELD 'CUSTOMER NAME'

Fields that give system information such as time and date are described
in Section 5. FIELD statements that describe variable (NOPROTECT) data
items give the 1length of the field and some of the attributes of the
data within the field, such as type, justification, validation, etc.
There are differences between the format of a FIELD statement in a
STREAM descriptor and a FIELD statement in a FORMAT descriptor. For
example, the field name in a STREAM-FIELD statement is contained within
the body of the statement tollowing the keyword STREAM, and the field
name of a FORMAT descriptor must appear in Column 1. However, there is
a one-for-one mapping between the variable fields in a STREAM
descriptor and the corresponding fields in the associated FORMAT
descriptor. All of these practices are illustrated in the tollowing
code:

7 - 13 November 1979

SECTION 7 PIR3040

ADMN377 STREAM

*——— SHIP TO NAME AND ADDRESS.
*
NAMADR SUBSTREAM
FIELD NAME, LENGTH 3¢, VALIDATE 'P' OR 'B'
REPEAT 3
FIELD ADDR, LENGTH 30
END REPEAT

FIELD ATTN, LENGTH 30

END SUBSTREAM
*

ADMN377 FORMAT

*——— SHIP TO INFCRMATION:
*

FIELD 'SHIP TO ' POSITION (2,3), RVIDEO
FIELD 'NAME' POSITION (12,3)

NAME FIELD LEN 3¢, POSITION (24,3), NOPROTECT
FIELD 'ADDRESS' POSITION (12,4)
REPEAT 3

ADDR FIELD LEN 3%, POSITION (24,+3), NOPROTECT
END REPEAT
FIELD 'ATTENTION' POSITION (12,7)

ATTIN FIELD LEN 3¢ POSITION (24,7) NOPROTECT

*

Input and OQutput Data

The listing generated by FDL separates the STREAM description into two
areas, one showing INPUT field data and one showing OUTPUT field data.
Refer to the listing in Appendix F. If the user does not specify
otherwise, all fields are both INPUT/OUTPUT. An example of an output
field is illustrated by the following line of code:

FIELD ATSNWM, LENGTH 6, JUSTIFY RIGHT, ZERO-FILL, OUTPUT
The listing in Appendix F shows how FDL separates INPUT and OUTPUT
fields. A check of this listing will reveal that the field ATSNUM is
present in the output description but not the input description.

The variable (ATSNUM) is not specified at the terminal by the user, it
is generated and used internally by the program.

Literal and Variable Data

Literal fields within a FORMAT are simply specified by the FIELD
statement containing the literal string. For example:

FIELD 'FORM' POSITION (2,1)

REV. 0 7 - 14

PDR 3040 EXAMPLE FORTRAN PROGRAM

Variable fields may be specified by using the NOPROTECT attribute. For
example:

NAME FIELD LENGTH 3¢, POSITION (24,3), NOPROTECT

PROTECTed fields may not be written into by the user. A NOPROTECTed
field may be written into by the user. For example:

ATSNUM FIELD LENGTH 6, POSITION (26,1), PROTECT

Using the Macro Definitions

To show the flexibility and convenience of coding in FDL, the DEFINE
statement is used in the sample coding to make up a series of macro
definitions that allow abbreviation of key words or often used names.
These definitions are:

MACRO DEFINITIONS FOR FCRMS DEFINITION LANGUAGE TRANSLATOR
COPYRIGHT 1979, PRIME COMPUTER, FRAMINGHAM MA

*

*

*

F DEF FIELD

\'4 DEF VALIDATE
LEN DEF LENGTH
POS DEF POSITION
IN DEF INPUT
our DEF OUTPUT
Jus DEF JUSTIFY
R DEF RIGHT

L DEF LEFT

Cc DEF CENTER

NP DEF NOPROTECT
RV DEF REVERSE VIDEO
BL DEF BLINK

*

*———END FORMS>MACROS
Heretofore, example FDL code in this section were all spelled out.
However, as Appendix F shows, the user may to take advantage of the
abbreviation macros. For example consider the line:
F NAME, LEN 30, V 'P' (R 'B'
as opposed to:
FIELD NAME, LENGTH 3¢, VALIDATE 'P' OR 'B'

This saves time in typing input when often-used words such as VALIDATE
are abbreviated to one letter (i.e., V).

7 - 15 November 1979

SECTION 7 PIR3040

CAUTION

Using abbreviations makes it difficult or impossible to
maintain the application program and its associated form
descriptors.

Macros may be written in-line —— in the FDL code as shown here or may
be inserted by the FDL statement $INSERT. The depth of a macro
definition is internal to the descriptor that contains it. Thus, in
the example FDL listing in Appendix F, the macro definition statements
in the STREAM are in-line. 1In the FORMAT, the same macro definitions
are referenced by a $INSERT statement.

Specifying FDL Listing details

FDL produces an output listing unless the user specifies otherwise.
The user can control listing teatures with control statements such as
SLIST and $NOLIST. One advantage of the listing is that the user can
check and be sure his data item in the STREAM portion of the
description map properly to the corresponding data item the FORMAT
portion. For example:

*-—— ITEM INFCRMATION.
*
REPEAT 4
FIELD PART, LENGTH 15, JUSTIFY RIGHT, SPACE-FILL
FIELD DESCR, LENGTH 3@, JUSTIFY LEFT
FIELD SN, LENGTH 8, JUSTIFY RIGHT, ZERO-FILL
FIELD QTY, LENGTH 4, JUSTIFY RIGHT, ZERO-FILL, VALIDATE '9' R 'B'
FIELD RTN, LENGTH 1, VALIDATE 'A' OR 'B'
END REPEAT

in the SUBSTREAM fields correspond (i.e., map) to the following items
in the FORMAT fields:

REPEAT 4
PART FIELD LENGTH 15, POSITION (2,+18), NOPROTECT
DESCR FIELD LENGTH 30, POSITION (19,+18), NOPROTECT
SN FIELD LENGTH 8, POSITION (51,+18), NOPROTECT
Qry FIELD LENGTH 4, POSITION (61,+18), NOPROTECT
RTN FIELD LENGTH 1, POSITION (67,+18), NOPROTECT
END REPEAT

Repeated Text

The code in the previous example shows the use of the REPEAT feature in
FDL which allows a user to specify the duplication of similar fields
over several lines on the temminal screen. In this case, the item
"PARTS" was repeated four times wusing REPEAT 4. The END REPEAT
statement delimits the domain of a REPEAT.

REV. 0 7 - 16

PIR 3040 EXAMPLE FORTRAN PROGRAM

Listing Features

Finally, the FDL output listing shows some additional useful
information about the form descriptor. First, as shown in Appendix F,
the items defined in the input stream and the output stream are 1listed
in a separate cross-index after the lListing of the translated STREAM
code. For example, the header substream is OUTPUT but not INPUT
information. Second, the listing provides a convenient chart of lines
and columns for each DEVICE specified in the FORMAT descriptor(See
Appendix F and Appendix H). For example, the last two pages of the
listing in Appendix F of the output listing (named ADMN377) show the
fields in their relative position location, show lLiteral fields as they
appear, and show the location of the variable (NOPROTECTed) fields by
the lines of dashes. Refer to the listing in Appendix F for further
information.

7 - 17 November 1979

SECTION 7 PIR3040

COMPILING THE APPLICATION PROGRAM
The example program is campiled using the FTN command as follows:
OK, FIN MAIN -64V -LIST

GO
7000 ERRORS [<.MAIN.>FTN-REV15. 3]

OK,
TRANSIATING THE FDL SOURCE

The source description of the form must be input to the FDL translator,
using the FDL command. The translation produces an output file in a
binary form which may be placed in the FORMS catalog. Files listed in
the FORMS catalog can be read and interpreted by the application
program at run-time. The following is an example of the FDL
translation for the sample form descriptor named ADMN377.

OK, FDL ADMN377

GO

0000 ERRORS (FDL, REV 16 - 16-FEB-79)
@020 ERRORS (FDL, REV 16 - 16-FEB-79)

OK,
INSTALLING FORM DESCRIPTOR IN FORMS CATALOG
The FAP command is used to install foms descriptors in the FORMS

catalog and otherwise maintain this library. The following is a sample
installation of the form descriptor ADMN377 in the FORMS catalog:

OK, FAP

GO

FAP REV 16 23-DEC-78
* ADD B ADMN377

3 DEFINITIONS ADDED
* QUIT

OK,
LOADING THE APPLICATION PROGRAM
Since the sample program is compiled in V-mode the SEG loader must be

used, and the appropriate V-mode 1libraries must be invoked. This
procedure is illustrated in the following example:

REV. 0 7 - 18

PCR3040 EXAMPLE FORTRAN PROGRAM

OK, SEG

o —

LOAD

SAVE FILE TREE NAME: KMAIN
$ LO B_MAIN

$ LIB VFORMS
$ LIB VSPOOS
$ LIB

LOAD COMPLETE
$ SAVE

$ QUIT

OK,

RUNNING THE PROGRAM

The program may be run by a simple invocation of the SEG command, as
follows:

SEG #MAIN

7 - 19 November 1979

PDR 3040 EXAMPLE COBOL PROGRAM

SECTION 8

EXAMPLE CCBOL PROGRAM

INTRODUCTION

This section describes the development of a FORMS application program
from source coding to loading and execution. One of the significant
differences between the program described in this section and the one
described in Section 7, besides its being written in CBOL, is the fact
that the program uses keyed-index files and interfaces with MIDAS as
well as with FORMS. This section also describes the data used with the
application program that defines the form and describes how to place
the form descriptor in the FORMS catalog.

The example program (named DEMOl) accepts a simple list of orders,
typed at the temminal, and writes the items on the order list to a
keyed-index file (named DS1). The data in the form is handled as a
simple STREAM (i.e., only one 1logical record). An example of the
screen, observed by the user, is shown in Figure 8-1. Features that
are essential to every FORMS application program, as well as some
special features unique to the application are discussed with source
code excerpts. Features discussed in this section are:

e Defining files.

® Setting up data areas through use of standard COBOL statements.

e Defining data screen.

e Initializing the descriptor for the form to be used to means of a
COBOL read statement that transters the FORMS directive ##INVOKE
to the terminal device driver and causes the form to be displayed

on the terminal screen.

e Writing the header and other data to the terminal using FORMS
directives.

e Accepting input data from the terminal using READ and FORMS
run—-time directives.

e Positioning the temminal cursor to the home position and clearing
the terminal screen of the last block of data written.

e Error handling by the application program.

8 - 1 November 1979

SECTION 8 PIR3040

ACCOUNT Ny
AND ROCPESS

STOCK HUMEEP
GURNTITY
DELIVERY DATE

ORDER REFERENCE 1S

Figure 8-1. Screen Display Produced by Running Example Program.

REV. 0 8 - 2

PDR3040 EXAMPLE COBOL PROGRAM

e Exiting from the application program.
WRITING THE PROGRAM

A complete listing of the program's source coding appears in Appendix
G.

Defining Files

The files to be used are defined with a standard COBOL programming
practice, i.e., by the FILE CONTROL SECTION as follows:

FILE-CONTROL.

SELECT INFILE ASSIGN TO TERMINAL.

SELECT CRDER-FILE ASSIGN TO PFMS
ORGANIZATION IS INDEXED
ACCESS IS DYNAMIC
RECRD KEY IS ORDER-KEY
ALTERNATE RECORD KEY IS ORDER-NAME WITH DUPLICATES
ALTERNATE RECORD KEY IS STOCK-NO WITH DUPLICATES
ALTERNATE RECORD KEY IS STOCK-DEL WITH DUPLICATES.

Setting-Up Data Areas

The example program sets up the data areas, first, by defining the
input and output data records in the FILE SECTION of the DATA DIVISION.
This is shown in the following code:

8 - 3 November 1979

SECTION 8 PILR3040

DATA DIVISION.
FILE SECTION.
FD INFILE LABEL RECORDS ARE OMITTED.
#1 SCR.

A2 FILLER PIC X(104).
FD ORDER-FILE LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS "ORDERS".

@1 ORDER-RECORD.

32 ORDER-KEY.

@3 ORDER-NO PIC 9(5).
#3 CRDER-ITEM PIC 99.
@32 ORDER-NAME PIC X(20).
@2 ORDER-ADD1 PIC X (20) .
@2 ORDER-ADD2 PIC X(20).
@2 CRDER-ADD3 PIC X (20).
@2 STOCK-NO PIC X(6).
@2 STOCK-DEL PIC X(8).
@2 STOCK-QTY PIC S9(5) SIGN TRAILING SEPARATE.
@1 ORDERC.
@2 FILLER PIC X(7).
@2 NEXT-CRDER PIC 9 (b).
@2 FILLER PIC X(94).

Extending Size of Terminal I/0 Buffers

The number of characters handled by a single transaction by this
program (150) happens to be more than the default line size of the
terminal read-write buffers (72). However, the size of the I/0

terminal buffers may be changed by calls to the Primos subroutine
ATTDEV. For example:

* EXTEND TERMINAL, FILE I/0 BUFFERS.
*

MOVE @ TO VAR@.
MOVE 1 TO VARI.
MOVE 2 TO VAR2.
MOVE 6 TO VARG.

MOVE 7 TO VAR7.

MOVE 150 TO VAR154.

CALL 'ATTDEV' USING VAR1, VAR1l, VAR@, VAR150.
CALL 'ATTDEV' USING VAR6, VAR7, VAR2, VAR15d.

The first call to ATTDEV sets up an input buffer, open for reading,
trom the terminal on File Unit 1. The second call to ATTILEV sets up an
output buffer, open for writing on File Unit 6. 1In both cases, the
size of the buffer is specified to be 150 characters.

REV. 0 8 - 4

PDR 3040 EXAMPLE CGBOL PROGRAM

Shared Library Initialization

In order to use the FORMS run-time directives with the shared
libraries, the tollowing call must be present in the application
program prior to the first ##INVOKE directive:

CALL 'FORMSI'.

This requirement is applicable to the 64V mode shared version of FORMS
and is ignored for 64R mode and non-shared 64V mode.

Selecting a Library

It is a system administration decision whether or not to support the
shared libraries. If shared FORMS is supported, shared COBOL, MIDAS,
and FORTRAN must be supported as well. If shared libraries are in use,
the FORMS shared library file is named VFORMS.

Defining FORMS Directives

FORM directives used by the application program are defined in the
WORKING STORAGE SECTION of the DATA DIVISION. This is one of the areas
in which the sample program differs from an "ordinary" COBOL program.
The definition of the FORM directives to be used appears as follows:

WORKING-STORAGE SECTION.

* DEFINITION OF FORMS DIRECTIVES

77 INV-C PIC X(12) VALUE '##INVOKE DS1'.

77 REL-C PIC X(29) VALUE '##RELEASE'.

77 PROT-C PIC X(25) VALUE '##PROTECT NAM AD1 AD2 AD3'.
77 ENAB-C PIC X(24) VALUE '##ENABLE NAM AD1 AD2 AD3'.
77 CLEAR-C PIC X(97) VALUE '#4CLEAR'.

77 CIAC PIC X(1L) VALUE '##CLEAR ALL'.

* CURRENT ORDER

77 CURR-ORD PIC 9(5).

Defining Terminal Screen

Also in the WORKING STORAGE SECTION, the program defines the individual
data items that appear on the terminal screen (DATA-SCREEN), as
follows:

8 - 5 November 1979

SECTION 8 PDR3040

@1 DATA-SCREEN.
* CUSTQMER AND ORDER INFORMATION
@2 DS-NAM.
@3 CUSIND PIC XX.
@3 FILLER PIC X(18).

@2 DS-AD1 PIC X(29).
#2 DS-AD2 PIC X (20) .
@2 DS-AD3 PIC X(29).
@2 DS-STK.

@3 STKR-ID PIC XX.

@3 FILLER PIC X (4).
g2 DS—QTY PIC 9(5).
@2 Ds-DATE PIC X(8).
@2 DS-ORDER PIC 9(5).

The items defined as part of the torm will be moved to the order record

defined previously in the FILE SECTION.

Opening Files

One of the first steps in the procedure is to open the input and output

files, as shown by the following:

PROCEDURE DIVISION.
START-POINT.
OPEN I-O ORDER-FILE.
OPEN I-O INFILE.

Invoking Fom

INV-C has been defined as the FORMS ##INVOKE directive, thus
WRITE SCR FROM INV-C
causes the form to be displayed.

Reading and Checking Input

After the data is entered at the terminal by the user, the
reads this data by the tollowing code:

B-POINT.
READ INFILE INTO DATA-SCREEN.
IF CUSIND EQUAL '**' GO TO END-IT.

If the user has input a double asterisk (**) for the variable
then the program exits to PRIMOS command level.

REV. @ 8 - 6

program

(USIND,

PDR 3040 EXAMPLE COBOL PROGRAM

Writing Data

The following code writes any existing data to the output file and
returns, ready to receive additional input traom the user terminal:

TRY-IT.
MOVE ZERCES TO ORDER-KEY.
READ ORDER-FILE KEY IS (RDER-KEY INVALID KEY
GO TO TRY-IT.
ADD 1 TO NEXT-CRDER.
MOVE NEXT-ORDER TO CURR-ORD.
REWRITE ORDER-RECCRD.

MOVE DS-NAM TO ORDER-NAME.

MOVE DS-AD1 TO ORDER-ADDI.

MOVE DS-AD2 TO ORDER-ADD2.

MOVE DS-AD3 TO ORDER-ADD3.

MOVE ZERO TO ORDER-ITEM.

A-POINT.

MOVE DS-STK TO STOCK-NO.

INSPECT DS-STK REPLACING LEADING SPACES BY ZEROES.
MOVE DS-(QTY TO STOCK-QTY.

MOVE DS-DATE TO STOCK-DEL.

ADD 1 TO ORDER-ITEM.
MOVE CURR-CRD TO ORDER-NO.
MOVE CURR-ORD TO DS-ORDER.

WRITE ORDER-RECCRD.

WRITE SCR FRQM PROT-C.

MOVE SPACES TO DS-STK, DS-QTY, DS-DATE.
WRITE SCR FROM DATA-SCREEN.

READ INFILE INTO DATA-SCREEN.

IF STK-ID NOT EQUAL '**' GO TO A-rOINT.

WRITE SCR FRQM ENAB-C.

WRITE SCR FROM CLEAR-C.
GO TO B—POINT.

8 - 7 November 1979

SECTION 8 PIR3040

Exiting

FORMS directives exist to clear and release the terminal screen. They
are called when the program exits, by invoking the working storage
variables CIA-C and REL-C. The exit code is as follows:

END-IT.
CLOSE ORDER-FILE.
WRITE SCR FROM CIA-C.
WRITE SCR FROM REL-C.
CLOSE INFILE.
STOP 'END OF CRDER ENTRY'.

REV. 0 8 - 8

PDR3040 EXAMPLE COBOL PROGRAM

CREATING THE FORM DESCRIPTOR FILE

The foregoing example shows how an application program might be coded
and discussed reasons for using various coding techniques. In
addition, the user must describe the form to be used with the program.
The data contained with the form, both on the terminal screen and in
the data record must be described using the FDL translator and placed
on the FORMS library (called the FORMS catalog) using the FAP command
(see Section 6). The form descriptor specified by the user as a
template that describes both how the form is to be displayed at the
terminal and how it is to be stored, in termms of the attributes of the
data items and the overall arrangement of the form.

As stated in Sections 3 and 5, the FDL translator forms descriptor
language is available to make a source language description of what the
form looks 1like both on the terminal and in the data record. The
syntax of FDL is summarized in Section 3 and described in Section 5.
The following paragraphs discuss how the form used by the sample
application program is coded and tanslated. A camplete Listing of the
sample form description is given in Appendix H. Features that are
essential in every form description as well as special features are
discussed in this section together with excerpts of the FDL source
code. Features discussed in detail are:

e Setting up the FORMS descriptors

e Defining the terminal devices used

Defining data areas (fields)

Differentiating input data trom output data

e Differentiating literal data and variable data

e Specifying listing details
The discussion is completed by a brief description of how to wuse the
FDL language translator command ard how the FDL checks for errors in
the source language input. This is followed by a discussion of how to
install a form description in the FORMS catalog using FAP.

Setting Up Form Description

Every form description consists of two parts: one to describe the data
record, and the other to describe the torm itself. These are the
STREAM and the FORMAT descriptors respectively. The STREAM descriptor
is bounded (defined) by a STREAM statement and an END STREAM statement.
Likewise, a FORMAT descriptor is bounded by a FORMAT and END FORMAT
statement. In each form description, there need by only one STREAM
descriptor, since the internal data record need be only described once.
However, there must be one FORMAT descriptor for each type of device
the user wishes to use with the application program. An example of FDL
code is shown in the tollowing paragraphs.

8 - 9 November 1979

SHCTION 8 PDR3040

Defining Device Types

For each terminal connected to the system that interfaces with the
application program, there must be a DEVICE descriptor. These
descriptors are bounded by DEVICE and END DEVICE statements and are
contained within the body of the FORMAT dscriptor, as illustrated in
the following FDL coding excerpts:

DSHI STREAM
END STREAM
D51 FORVMAT
DEVICE ONL1200

END DEVICE
DEVICE VISTAR3

END DEVICE
END FORMAT

Setting Up Data Areas (FIELDS)

Data items are described by FIELD statements. FIELD statements may
describe a literal, some system wide information, or may describe a
variable. FIELD statements that describe a 1literal consist of the
keyword FIELD and the literal in single quotes, for example:

FIELD 'CUSTOMER NAME'

Fields that give system information such as time and date are described
in Section 5. FIELD statements that describe variable (NOPROTECT) data
items give the length of the field and the attributes of the data
within the field, such as type, justification, validation, etc. There
are differences between the format of a FIELD statement in a STREAM
descriptor and a FIELD statement in a FORMAT descriptor. For example,
the field name in a STREAM-FIELD statement is contained within the body
of the statement tollowing the keyword STREAM, and the field name of a
FORMAT-FIELD statement must appear in Column 1. However, there is a
one-for-one mapping between the variable fields in a STREAM descriptor
and the corresponding fields in the associated FORMAT descriptor. All
of these practices are ilustrated in the tollowing code:

REV, 0@ 8 - 19

PDR3040 EXAMPLE COBOL PROGRAM

* DATA RECORD LAYOUT

*

S1 STREAM

* ACCOUNT NAME

*

AM FIELD NAM LENGTH 20

* ADDRESS

*

Dl FIELD ADl LENGTH 20

D2 FIELD AD2 LENGTH 20

D3 FIELD AD3 LENGTH 20

* STOCK - CRDER INFORVATION

*

TKNNO FIELD STKNO LENGTH 6

TKQTY FIELD STKQTY LENGTH 5 JUSTIFY RIGHT

TKDEL FIELD STKDEL LENGTH 8

* (RDER NUMBER - GENERATED BY PROGRAM AND OUTPUT

*

NO FIELD ONO LENGTH 5 OUTPUT
END STREAM

* END OF DATA RECORD DESCRIPTION

kkkkkkkkkk

* FORM DESCRIPTION

S1 FORVAT

* FIRST DEVICE DESCRIPTION

*
DEVICE VISTAR3

* HEADING INFORVATION OF FORM

*
FIELD 'ORDER ENTRY S YSTEM' POSITION (22,2)
FIELD "= = = = = = = === = = = = = ' POSITION (22,3)
FIELID 'ACCOUNT NAME ' POSITION (14,6)

* ACCOUNT NAME INFORMATION

AM FIELD LENGTH 20 POSITION (35,6) NOPROTECT
FIELD ' AND ADDRESS' POSITION (16,7)

* ACCOUNT ADDRESS

*

D1 FIELD LENGTH 20 POSITION (35,7) NOPROTECT

D2 FIELD LENGTH 20 POSITION (35,8) NOHROTECT

D3 FIELD LENGTH 26 POSITION (35,9) NOPROTECT
FIELD 'STOCK NUMBER' POSITION (10,12)

* STOCK — ORDER INFORMATION

*

TKNO FIELD LENGTH 6 POSITION (35,12) NOPROTECT
FIELD 'QUANTITY' pOSITION (1¢,14)

TKQTY FIELD LENGTH 5 POSITION (35,14) NOPROTECT
FIELD 'DELIVERY DATE' pOSITION (18,16)

TKDEL FIELD LENGTH 8 POSITION (35,16) NOPROTECT
FIELD 'ORDER REFERENCE IS' POSITION (10,20)

NO FIELD LENGFH 5 POSITION (35,20)
END DEVICE

* END OF FIRST DEVICE DESCRIPTION

8 - 11 November 1979

SECTION 8 PIR3040

In this case, mapping has been performed by the programmer, by giving
the STREAM fields the same label as the corresponding FORMAT fields.
However, this is not necessary if the STREAM variables are given the
same name as the FORMAT labels.

Input and Output Data

The listing generated by FDL separates the STREAM description into two
areas, one showingy INPUT field data and one showing OUTPUT field data.
Refer to the listing in Appendix H. If the user does not specify
otherwise, all fields are both INPUT/OUIPUL. An example of an OUTPUT
field is illustrated by the following line of code:

NO FIELD ONO, LENGTH 5, OUTPUT

The listing in Appendix H shows how FDL separates INPUT and OUTPUT
fields. A check of this listing will reveal that the field ONO is
present in the output description but not the input description.

The variable (ONO) is not specified at the terminal by the user, it is
generated and used internally by the program. Therefore, there is no
reason for it to be specified as input, it only need be written on
output.

Literal and Variable Data

Literal fields within a FORMAT are simply specified by the FIELD
statement containing the literal string. For example:

FIELD 'ACCOUNT NAME ' POSITION (10,6)

Variable fields may be specified by using the NOFROTECT attribute. For
example:

FIELD LENGTH 3¢, POSITION (35,6), NOPROTECT

Fields that may not be changed may prevent the user fram writing in
them by use of the PROTECT attribute. (Refer to Section 5.)

Specifying FDL Listing details

FDL produces an output listing unless the user specifies otherwise.
The user can control listing teatures with control statements such as
LIST and NOLIST. One advantage of the listing is that the user can
check and be sure the data items in the STREAM portion of the

description map properly to the corresponding data items the FORMAT
portion.

Finally, the FDL output listing shows additional wuseful information
about the form description. First the items defined in the input
stream and the output stream are listed in a separate cross-index after
the listing of the translated STREAM code. For example, the header
substream is output but not input information. Similarly, the listing

REV. 0 8 - 12

PDR 3040 EXAMPLE COBOL PROGRAM

provides a convenient chart of 1lines and columns for each DEVICE
specified in the FORMAT descriptor. For example, the last two pages of
the output listing (named DS1) in Appendix H show the fields in their
relative position location, show literal fields as they appear, and
show the 1location of the variable (NOPROTECTED) fields by the lines of
dashes.

COMPILING THE APPLICATION PROGRAM
The example program is compiled using the COBOL command, as follows:

OK, COBOL DEMOl -64V -LIST
GO

PHASE I

PHASE IT

PHASE III

PHASE IV

PHASE V

PHASE VI

NO ERRORS, 1 WARNINGS, P40@¢/509 COBOL REV 15.3 <MAIN >

OK,

TRANSIATING THE FDL SOURCE

The source description of the form must be input to the FDL translator,
using the FDL command. The translation produces an output file in a
binary form which may be placed in the FORMS catalog. Files listed in
the FORMS catalog can be read and interpreted by the application
program at run-time. The following is an example of the FDL
translation for the sample form descriptor named D51.

OK, FDL Dsl
GO

@098 ERRORS (FDL, REV 16 - 16-FEB-79)
g0@@ ERRORS (FDL, REV 16 - 16-FEB-79)

OK,

8 - 13 November 1979

SECTION 8 PIR3040

INSTALLING FORM DESCRIPTOR IN FORMS LIBRARY

The FAP command is used to install tomms descriptors in the FORMS
library and also maintain the FORMS catalog. The following is an
example installation of the form descriptor DS1 in the FORMS catalog:

OK, FAP
GO

FAP REV 16 23-DEC-78

* ADD B_DS1

3 DEFINITIONS ADDED
* QUIT

OK,

LOADING THE APPLICATION PROGRAM

Since the sample program is written and compiled in V-mode the SEG
loader must be used and the appropriate 1libraries invoked. This
procedure is illustrated in the following example:

OK, SEG

GO

LOAD

SAVE FILE TREE NAME: #DEMOl

S LO B.DEMO1

$ LIB VCOBIB /* V-MODE COBOL LIBRARY */

S LIB VKDAIB /* V-MODE MIDAS LIBRARY */

$ LIB VFORMS /* V-MODE FORMS LIBRARY AND SHARED LIBRARY */
$ LIB VSPOOS /* OFF-LINE PRINTING LIBRARY */

S LIB /* STANDARD SUBROUT'INE LIBRARY */
LOAD COMPLETE

$ SAVE

$ QUIT

OK,

REV. 0 8 - 14

PIR3040 EXAMPLE COBOL PROGRAM

MIDAS FILE TEMPLATE

Since the example program, DEMOl, uses the INDEXED feature of COBOL,
the Prime indexed file system, MIDAS, is automatically invoked. (That
is why the library VKDAIB was loaded.) Since MIDAS (indexed) files are
used, it is necessary to create a template using CREATK. The tollowing
code shows this procedure. For further information, refer to the MIDAS
Reference Guide.

OK, CREATK
GO
MINIMUM OPTIONS? YES

FILE NAME? ORDERS
NEN FILE? YES
DIRECT ACCESS? NO

DATA SUBKFILE QUESTIONS

KEY TYPE: A
KEY SIZE = : B 7
DATA SIZE = : 53

SECONDARY INDEX
INDEX NO.? 1

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A

KEY SIZE = : B 20

USER IATA SIZE = : @

INDEX NO.? 2

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A

KEY SIZE = : 6

USER DATA SIZE

;0

INDEX NO.? 3

DUPLICATE KEYS PERMITTED? YES
KEY TYPE: A
KEY SIZE = : B 8

USER DATA SIZE = : 0

INDEX NO.? @

OK,

8 - 15 November 1979

SECTION 8 PIR3040

RUNNING THE PROGRAM

The program may be run by a simple invocation of the SEG command, for
example:

SEG #DEM@1

REV. @ 8 - 16

PIR 3040 INSTALLATION

APPENDIX A

INSTALLATION

DIRECTORY INFORMATION

The Forms Management System is supplied in a single directory on the
master disk. Within this directory, named FORMS*, are subdirectories
that contain source text for the components of the system and contains
command files that are used to build the FORMS system.

The files in the UFD named FORMS* are:

File
Name Type Description
FDL subUFD sources for FDL translator
FAP SubUFD sources for FAP utility
RUN subUFD sources for run-time package
I0S subUFD sources for IOCS interface, device drivers
Doc SubUFD source for design specification
FORMS* subUFD skeleton FORMS catalog, system files
C_RLIB command creates 64R library from individual object files
C VLIB command cretess 64V library fram individual object files

RFORMS object-file 64R mode FORMS run-time system
WORMS object-file 64V mode FORMS run-time system
MACROS insert-file $INSERT file containing sample FDL macro

definitions
C_INST command installs new FORMS system
C_Rnn comard upgrades current FORMS system to Rev. nn

(where nn is the current revision number.)

INSTALLING A NEW VERSION OF FORMS

To install the current version of FORMS on a system on which there is
no existing copy (i.e., to create a new FORMS installation):

1) Use FUTIL to copy the FORMS* subUFD from the FORMS UFD to the MFD
on any started up local disk, thus making FORMS* a first-level
directory. FORMS will not work properly if the FORMS* directory
resides on a disk on a remote system accessed via PRIMENET.

2) Execute the C INST command file in the FORMS UFD to copy the FAP
and FDL programs to OMDNC# and to copy the RFORMS and VFORMS
object files to the library UFD, LIB. The FORMS system is now
ready for use.

The following is an example run; user input is underlined.

A - 1 November 1979

APPENDIX A
OK, MAGRST
READY TO RESTORE: PARTIAL
TREENAME: MFD>FORMS*

RESTORE CCOMPLETE

OK, FUTIL

>FROM FCRMS*

>TO MFD XXXXXX 0
>TRECPY FORMS
>FROM FORMS > FAP
>TO CMDNC@

>COPY *FAP > FAP
>FROM FORMS > FDL
>COPY *FDL > FDL
>FROMS FORMS*

>TO LIB

>COPY RFORMS, VFORMS, SFORMS
>QUIT

UPGRADING A CURRENT INSTALLATION

PIR3040

To upgrade an existing FORMS installation:

1) Execute the C INST command file to copy the new run
QMDNCA and libraries to LIB.

2) Execute the C Rnn command file.

files to

This will create the necessary

files in the FORMS* directory to support Rev. nn.

This procedure will not aftect existingy programs.

encouraged, however, to
The following is an example run;

OK, MAGRST
READY TO RESTORE: PARTIAL
TREENAME: MFD>FORMS*
RESTORE CQMPLETE

OK, CO C INST

OK, CO C RUN

REV. 0 A

The user is

reload his programs with the new libraries to
take advantage of the improvements and adaitional

teatures oftered.
user input is underlined.

PDR 3040 INSTALLATION

Note

The existing customer has the option of replacing the entire
FORMS* UFD using the procedure for a new FORMS customer
(previously described) and then adaing all the current FORM
definitions (from scratch). Speed improvement and size
reduction provided by a new library will only come to the
user that reloads the application progran with the new
library.

REBUILDING FORMS

The following command files are available to rebuild all or part of the
Foms Management System:

Treename Description

FORMS> FDL> C_SUBS compile FDL subroutines
C FDL compile FDL main, load and save
C LOAD Load and save FDL
FORMS> FAP> C_SUB compile FAP subroutines
C FAP compile, load and save FAP
C LOAD load and save FAP
FORMS> RUN> C_FMR compile 64R mode FORMS run-time package
C_FMV campile 64V mode FORMS run-time package
FORMS >I0S> C_IOR compile 64R mode I/0 system
C_IOV campile 64V mode I/0 system
FORMS> C_RLIB build 64R mode library from objects
C_VLIB build 64V mode library trom objects
CBLD build entire FORMS system.

All command files described above generate no listing of the compiled
source. For each command file which compiles source text, exists a
corresponding command file, which in adaition to generating a binary
(object) file, also produces a compilation listing. The names of these
command files may be determined by concatenating the standard command
file name with the character 'L'. For example, to compile the 54R mode
version of the run-time package and generate a listing, one would run
the command file C FMRL instead of C FMR.

A - 3 November 1979

PDR 3040 DEVICE I-O

APPENDIX B

DEVICE I-O

DEVICE INPUT/OUTPUT SYSTEM

This appendix describes the layout and operation of the device
input/output system. It is most useful to those desiring knowledge of
how FORMs works internally. Users who must write their own device
drivers will find information about writing device drivers in this
appendix.

The device (Input/Output) system is logically associated with the
run-time package and consists of two parts. The first is an IOCS
interlude to route all terminal and line printer I/0 requests through
FORMS. The second part perfomms all device mapping and input/output
with any formatted device.

I0CS INTERLUDE

The IOCS interlude interfaces the Prime Input/Output Control System
(I0CS) - refer to the Subroutine Reterence Guide, Software Library - to
FORMS through a series of input/output subroutines. Included in the
IOCS interlude, are replacements for the standard read and write ASCII
tables (RATBL and WATBL.) These tables cause FORMS subroutines ISFM{1,
O$fMMP1, and OSFMM@6 to be called to process terminal input, terminal
output, and line printer output, respectively. Input and output is
processed by ISFM@l, OSFM@1l and O$FM@6 as described in the following

paragraphs.

e If the first two character positions in an output record
contain two hash marks (#), the output record is passed to the
FORMS directive interpreter (FMS$CMD).

° If no form is invoked on the associated device, the FORMS
subroutine calls the standard IOCS subroutine for that device.
0$AAQ]l is used for terminal output, I$AA12 for input. Line
printer output is ignored, which 1is standard procedure in
PRIMOS; another method is used to write files to the spooler
line printer.

e If a form is in use on the associated device, the input/output
request is transferred to the FORMS subroutine FMSIN (input or
FMSOUT output.)
DEVICE I/0 MECHANISM
The device I/0 mechanism interfaces the body of the FORMS run-time

package to the formatted device(s) that are in use. This 1is

B - 1 November 1979

APPENDIX B PDR3040

accomplished through a mapping scheme, and a collection of device
driver subroutines, one tor each device supported in the installation.

Device Definition Database

Two files exist in the FORMS UFD (FORMS*) that describe the device
configuration of the installation: the device control file and the
terminal configuration file.

Device Control File: The device control file (called DCF.AS) describes
each device in terms of a unique logical device number (1ldn), device
name, device driver subroutine name, and page capacity in lines and
columns.

The logical device number (not to be confused with an IOCS logical wnit
number, used in conjunction with the device driver subroutine name) is
used to determine the execution time subroutine address for the device
driver for a given device name.

The device control file consists of a series of entries. The format
for the device control file entries, which may be modified with the
text editor, is as follows:

Each entry describes one device. It consists of a single line of
text with five items, each separated by commas as follows:

ldn, device-name, device-driver-name, lines, columns

ldn is the unique logical device number associated with the
device. It must be in the range 1<=1dn>=99. Iogical devices 1
to 9 are reserved for use by Prime. User-written device
drivers may use any ldn greater than 9.

device-name is the 1 to 8 character device name. It must
conform of the naming conventions set forth in the FDL
description.

device-driver-name is a two character abbreviation of the name
of the device driver subroutine. The full name of the device
driver subroutine is xxSIO; XX 1is the two-character
abbreviation.

lines, columns defines the physical device page size.

For example, the contents of the current device control file is:

1, PRINTER, PR, 66,132
3,VISTAR, V3, 24,80
4,0ONL1200,0W, 24,80

Terminal Configuration File: Another file exists that describes the
device name for each FORMS terminal on the system. Each user on the
PRIMOS system is assigned a unique user number based on the physical

REV. 0@ B - 2

PDR 3049 DEVICE I-O

line to which the terminal is connected. The terminal configuration
file, (TCB.BN), specifies the terminal name for each of the up 64 FORMS
user (terminals) connected to the system. The FAP utility is used to
modify and inspect this file.

Device Mapping Scheme

The following paragraphs describe the mapping scheme used by the
run-time package.

The FORMS run-time packages has a section of code to perform all
initialization. Among other functions, this obtains the device names
for the terminal and printer.

The terminal device name is obtained from the Terminal Configuration
File, based on the user number (assigned by PRIMOS). The printer name
is specified in FORMS as PRINTER.

When the device name is known, the logical device number 1is otained
trom the Device Control File. Two versions of the DCF exist. DCF.AS
is the ASCII (edit) version that may be changed at any time by the
user. DCF.BN is the binary version that is used by the run-time
package. DCF.BN file is generated by FAP upon execution of the
GENERATE command. Two versions of the file exist to ensure the active
copy (DCF.BN) is concurrent with the device address tables.

The logical device number is retained by FORMS and used to identify the
device to the device interlude subroutine. This routine dispatches to
appropriate device driver using a supplied unique locial device number
(LDN). The dispatch operation 1is performed using device address
tables. These tables are generated by FAP (using the GENERATE command)
and compiled into the I/0 system. Each table entry contains the
address of a device driver. Position within the table correspords to
the logical device number.

Two device address tables exist, one for the 64R mode version of the
run-time package (called DEVDAC) , the other for 64V (DEVIP). A third
file declares each device driver external name (DEVEXT). These tables
reside in the UFD named FORMS*,

The contents of the 64R device address table is:

DAC PRSIO LDN 1 = PRINTER
oCT /] NO ENTRY WITH LDN 2
DAC V3$I0 LDN 3 = VISTAR3
DacC ONSIO LDN 4 = OWL1200

PRIME-SUPPLIED DEVICE DRIVERS
At present, FORMS supports the following three device drivers:

e offline printer (PRINTER)

B - 3 November 1979

APPENDIX B PDR3040

e Infoton Vistar/3 (modified) (VISTAR3)
® Perkin-Elmer Owl (OWL12020)

Offline Printer Device Driver

The PRINTER device driver writes a form (or forms) to the line-printer
spool queuve. When the INVOKE command is issued to the line printer
(IOCS Logical Unit 4), a file called PREFuu (where uu represents the
user number) is opened. If it already exists, the file pointer is
positioned to the end of file, where the new form definition will be
written, If it does not exist, it is created after a record is written
containing the control code for the 1line printer to enter FORTRAN
forms-control mode.

When a form is output, one ASCII record is written for each 1line
defined in the form. The first line contains a 'l' in column 1, which
causes the printer to eject to the top of a new page. Any enabled
fields are underscored (with the _ character).

When the form 1is released, the file is copied into the spool queue,
with the appropriate spool file header and file name. It is then
closed and deleted fram the home UFD. The PR#kuu file must never
appear in the home UFD after the program has not been completed; if it
does, it means that the PRINTER form was not released.

Because of the new spool subsystem, two versions of PR$1IO are
supplied. Source file PRSIO contains the version of the printer driver
that is compatible with the spooler. This is the subroutine that is in
the RFORMS and VFORMS libraries as released on the master disk. Source
file OPRSIO contains the printer driver that is compatible with the
older version spooler. To rebuild the FORMS libraries to work with the
old spool subsystem, rename PRSIO to NPRSIO and then OPRSIO to PRSIO.
The I/0 system may then be rebuilt with C_IOR and C IOV, after which
the RFORMS and VFORMS libraries may be rebuilt with C RLIB and C_VLIB,
as outlined above.

VISTAR/3 Device Driver

The Infoton VISTAR/3 device driver (V3$I0) is designed around a
specially modified VISTAR/3 (with microcode and hardware updates)
available through Prime.

The device dimensions are 24 lines by 80 columns (1920 characters), all
of which except the 15 character positions in the lower right of the
screen are available for use by the application program. These
character positions contain one of the following prompt or error
messages from the device driver:

(spaces) :
input not allowed

ENTER
enter data into unprotected fields on form.

REV. @ B - 4

PR 3040 DEVICE I-O

press XMIT PAGE key when done

ERRCR, RE-ENTER (blinking)
a character was lost on the last transmission -
press XMIT PAGE key

DATA ERROR (reverse video)
a field (or fields) does not meet the specified
validation criteria. The cursor is positioned to
the first character position of the erroneous field
correct the data and depress the 'XMIT PAGE' key

All unprotected fields are displayed surrounded by square brackets
(i.e., [and]) and are displayed in full intensity. All protected
fields are displayed at half intensity. Care must be taken to allow
for the square brackets on unprotected fields when designing the fomm.
The square brackets may be suppressed as an installation option by
setting the variable ENCL in the device driver (FORMS>IOS>V3SIO) to
zero.

To operate the VISTAR/3 with a program using FORMS, the switches in the
rear of the display must be set as follows:

EOT character: CR

mode: block

line-speed (user-selectable)
sec channel: off

parity: none

fdux/hdux: (user-selectable)
stop bits: 2

roll/page: roll

Owl Device Driver

The Perkin-Elmer OWL120@ device driver is designed for a stock QWL
terminal which is capable of supporting function keys.

The device dimensions are 24 lines by 80 columns (1920) characters.
The first character position, (1,1) and the last six character
positions, (75,24) through (8@,24), are not available for use by the
form definition. Also, the character positions immediately preceding
and following a field with any attribute other than protect must be
vacant.

When an input operation occurs, the data on the screen may be
transmitted to the camputer by using any of the SEND keys on the right
hand keypad. If function keys are disabled, striking F1l will also
transmit the screen data. If function keys are enabled, striking any
of the function keys will send the data to the computer and make
available to the application program the number of the function key
depressed. The number of function keys may be expanded two fold by
using shift-Fn. This causes 16 to be added to the function key value.

B - 5 November 1979

APPENDIX B PLR3040

When user input 1is required, one of the following prompt messages is
printed in the lower right corner.

ENTER

Operator input is required - press one of the send or function
keys when done.

DATA?
The data in the field to which the cursor is positioned does not
contorm to any of the validation criteria specified in the fomm
definition. Re-enter the data and depress the SEND key.

SEQ?
The data was not transmitted from the terminal in the proper
sequence. This usually indicates that a character was lost

during transmission. Press the appropriate SEND or function key
again.

SIZE?
Too many characters were sent for a given field in the form
definition. This usually indicates that a character was lost

during transmission. Press the appropriate SEND or function key
again.

No special switch settings are required when a FORMS program is run on
the OWL.

REV. 0§ B - 6

PDR3040 USER-WRITTEN DEVICE DRIVERS

APPENDIX C

USER-WRITTEN DEVICE DRIVERS

INTRODUCTION

If the user desires to interface FORMS with a device or terminal that
is not provided for by the standard interfaces described in Section 6,
then it is necessary that the user write a device driver.

Techniques for this are discussed in the following paragraphs:

Terminal Requirements

Any terminal to be used with FORMS must have the following
capabilities:

e internally buffered (block transmission) mode

e protected fields

e absolute cursor positioning

e data modification once displayed

e clear entire screen/clear unprotected data commands

Other features that could be taken advantage of by the FORMS system or
device driver include:

e blink

e reverse video

e underlining

keyboard lock

input and/or output space compression

Device Driver Specification

Device drivers must be named xx$I10, where XX represents the
two-character abbreviation used in the device control file. They have
the following calling sequence:

CALL xxSIO (function, iolist)

Function is one on the following nine function codes:

Function
Number Meaning
1 Initialize device: Reset all device logic, clear the entire

screen, and enter block transmission mode (if this is a
software function).

2 Output initial form: Write the contents of the entire I/0

C - 1 November 1979

APPENDIX C PIR3040

REV.

2

data list (IOLIST) to the screen. The device driver should
reset bits 1, 2, 3, and 4 of the attribute word for each entry
and set bit 5 for each field displayed. It must not display
any fields with the NODISPIAY bit 'bit 14) set. The location
of the cursor following the output operation may be undefined.

Input form: First, the cursor must be positioned as follows:

e if DEVCMS variable XPOS is 2zero, the cursor must be
placed at the first character position of the first

unprotected field displayed on the terminal. The DEVCMS
common block is described later.

e if XPOS is non-zero, the cursor must be positioned to
location (XPOS, YPOS) on the device.

The device driver must wait for the user to fill in the
displayed form and process the input as it is transmitted from
the terminal. As it receives the data, the driver is
responsible for inserting it into data areas in each field in
the I/0 list. Only fields with the DISPLAYED and ENABLED bits
set in the attribute word must be input. On a fill duplex
line, the device driver must disable the echo and
auto-linefeed generation with a call to DUPLX$; this must be
restored after the data has been input. 1If possible, a brief
prampt message should be displayed in a convenient place on
screen, informing the user that there 1is an input request
pending.

If a function key was depressed, the device driver must check
the logical wvariable FKEYS in the DEVCM$ common block. If
OFF, refuse the function key request by waiting for the proper
transmit key to be typed. If FKEYS is ON, save the function
key number in the DEVCMS$ variable FKEYNO (integer) and process
the data as described above.

Modify existing form: The device driver must examine each
entry in the I/O list and update those fields with attribute
bits 1, 2, or 4 set. The recommended 1logic for the modify
processor is:

e if data changed, enable/protect changed, or field
attribute changed bits are all reset, process next
field; else save current attribute word in a temporary

storage area, and reset bits 1-4 (data/attributes
modified) of the attribute word in IOLIST

e extract field length, and x,y, coordinates from IOLIST
e if the field is currently displayed and 'NODISPLAY' bit

is set, erase this field from display, reset bit 5 in
IOLIST entry, and process next field; else if field is

PDR 3040 USER-WRITTEN DEVICE DRIVERS

not currently displayed and 'NODISPIAY' bit is reset,
display the field according to the supplied attributes
and X,y, coorainates anmd set bit 5 in IOLIST entry;
else if 'NODISPLAY' bit is set, ignore this field and
process next; else if enable/protect changed bit is set
and special handling 1is required to accomodate this
change, perform this special handling.

e if attribute changed bit is set, update the field using
the new attributes and process the next field; else
update the data and process the next field.

5 Clear entire screen. All information displayed on the screen
should be erased.

6 Clear unprotected data on screen. All unprotected information
on the screen should be erased.

7 Close device: This function code is used to terminate device
usage after a RELEASE command and is applicable primarily to
the line-printer driver; terminal device drivers should
switch the terminal back to conversational mode.

8 Correct data: The device driver must scan the I/0 1list for
the first field with the 'data-invalid' attribute bit set (see
below) , position the cursor to the first character position of
this field, and allow the operator to re-enter the data. It
is recommended that an error/prompt message be displayed,
informing the operator that the specified field has failed all
validation tests and that it must be re-entered. This message
should be displayed on a part of the screen that does not
interfere with the form.

9 Print local: Write the contents of the entire screen to the
local printer attached to the temminal; this feature must be
supported by the particular terminal hardware in use. The
device driver should return to the caller when the printer has
completed printing.

Iolist is an array that contains the control and data definitions for
each field in the form. It contains header words and at least 1 data
word for each entry. The array must be accessed by the device driver
using a pointer to the beginning of the field (supplied by the run-time
package) added to an offset. This offset should be specified in the
form of a PARAMETER'ed symbol, as defined below.

The rollowing PARAMETERs represent each of the control words, plus the
start of the data area. The device driver should be oblivious to their
actual values, as these may change when new control information is
added. The parameter declarations may be made thru a $INSERT file
called 'IOPARM' in the directory containing the source of the I/0

C - 3 November 1979

APPENDIX C

PIR3040

system (e.g., as released, FORMS>IOS>IOPARM) .

Parameter

REV.

IOLK

IOVP

IORP

105z

IOAT

Bit

Meaning
Link to next entry in chain by position; this is not used
by device drivers

stream definition field pointer for this entry; this is not
used by device drivers

format definition field pointer for this entry; this is not
used by device drivers

field length, in characters
field attributes, as tollows:

Definition

13

14

15

16

Set by FRMS if data has changed since last display; reset
be device driver when data has been updated on device.

Set by FORMS if enable/protect attribute has changed since

last display; reset by device driver when field has been
updated on device.

Set by FORMS if field has failed all supplied validation

tests; reset by device driver when field has been
re-entered from device.

Set by FORMS if any field attributes have been modified

since last display; reset by device driver when field has
been updated on device.

Set by device driver if field is currently displayed on
device; reset by device driver if field is currently not
displayed on device (initially reset).

Set by FORMS if field should be blinked when displayed;
reset by FORMS if field should not be blinked when
displayed.

Set by FORMS if field should not be displayed or should be

erased if currently displayed; reset by FORMS if field
should be displayed.

Set by FRMS if field should be displayed in reverse video;
reset by FORMS if field should be displayed in normmal video.

Set by F®RMS 1if field should be write—-enabled, (not
protected); reset by PFORMS if field should be
write-protected.

PDR 3040 USER-WRITTEN DEVICE DRIVERS

IOYX 1line and column coordinates:
. left byte = line #¥ (Y)
. right byte = colunn § (X)

IOPG physical page #; this is not used by device drivers

IODA start of text data; data is in ascii format, packed 2
characters per word, blank filled

The initialize, clear, close, and print functions (1, 5, 6, 7, and 9)
are all relatively straightforward. These operations do not have to
process data tram the I/O list and theretore should assume it to be
void.

The output, input, modify, and correct functions (2, 3, 4, and 8) all
need to traverse the I/0 list and process (or at least inspect) each
field therein. The device driver must depend on the run-time system to
provide a pointer for the start of each field definition in the I/0
list. The run-time package contains two subroutines callable by the
device driver for such a purpose. They are:

Subroutine Function

FMSSRE resets the internal (run-time package) field pointer to the
beginning of the current page. This routine must be called
at the beginning of the output, input, modify, and
correct-data function processors. It may be called again to
reset the pointer to the first field in the page when
necessary (e.g, on an input error).

Calling Sequence:
CALL FMSSRE

FMSSNF returns the pointer to the next field in the I/0 list to be
processed. If the pointer is @, the end of page or end of
I/0 list has been encountered. Fields are returned to the
caller in line/colunn sequence.

Calling Sequence:
CALL FMSSNF (pointer)

A common definition $INSERT file must be included in the device driver
by the directive "S$INSERT FORMS>RUN>DEVCMS". The common block contains
4 variables which are used by the input form (function 3) processor.
They are:

C - 5 November 1979

APPENDIX C PIR3040

Variable Function

FKEYS Logical variable set to true if function keys are enabled,

false if disabled. If a function key is struck and FKEYS is
false, the function key should be ignored; if true, the
function key number should be stored in FKEYNO.

FKEYNO 16 bit integer which is set by the device driver to the

number of the function key depressed. Should only be set if
FKEYS is true.

XPOS 16 bit integer column number which the cursor is to be

positioned prior to an input operation. If zero, position
the cursor to the first enabled character position on the
display.

YPOS 16 bit integer line number for cursor positioning prior to

input. It is only valid of XPOS is non-zero.

A template for a device driver is included with the FORMS system. It

is suggested that the user follow this template when writing a device
driver.

INSTALLING THE DEVICE DRIVER

To install a new device driver into the FORMS run-time library, the
user should tollow the steps outlined below:

e Obtain a listing of the device control file and choose a free

REV.

logical unit number above 10 (the first 10 are reserved by
Prime) . 2Append an entry to the DCF containing the selected
logical unit number, device name, first 2 characters of the
driver name (remember, the last 3 must be '$I0'), and the
dimensions of the device in accordance with the format described
in the section entitled "Device Mapping Scheme", above. For
example, the Vistar/3 entry, whose logical unit number is 3,
driver name is 'V3$I0', and dimensions are 24 by 87, would look
as follows:

3, VISTAR3, V3, 24, 80
Attach to the directory containing the source for the
Input/Output System and copy into it the source for the device
driver to be installed.
Edit the C IOR (64R mode) and C_IOV (64V mode) command files and
inset a line to compile the new device driver after the PRSIO
routine.

Run FAP and issue the GENERATE command to create the new device

/] c - 6

PDR 3040 USER-WRITTEN DEVICE DRIVERS

tables and DCF which will include the new driver.

e Execute the C IOR and/or C IOV command file(s) to create a new
input/output system.

e Attach to the first-level FORMS source directory ('FORMS') and
execute the command file 'C RLIB' to create a 64R mode library
and/or C VLIB to create a 64V mode library.

The user may now modify the TCB entries for the users that have the new
terminal and reload application programs with the new version of the
library. It 1is strongly recommended that the new 1library not be
installed in the UFD named LIB until the new device driver has been
tested.

C - 7 November 1979

PCR 3040

APPENDIX D

TROUBLE SHOOTING

PROBLEM: FAP: IOLSIZ Overflow Error (F@8)

SOLUTION: Change Default IOLSIZ To Necessary

1.

Size And Rebuild FAP.

In FORMS>FAP>IOBUFS:
Change IOLSIZ Parameter (Default = 2500)
To Necessary Size.

Repuild FAP:

Run Command Files In FORMS>FAP:
C_suBs
C FAP
C_LOAD

Copy *FAP Into CMDNC@ As FAP

Run FAP Again To Replace The FDL Binary

TROUBLE SHOOTING

November 1979

APPENDIX D PIR3040

PROBLFM: Runtime I/0 Error: IOLSIZ Overflow

SOLUTION: Change Default IOLSIZ To Necessary Size

And Rebuild FORMS Runtime Manager (RFORMS,
VFORMS, SFORMS)

STEPS:

l.

*2.

*3.

4.

In FORMS>RUN>IOLDEF:
Change IOLSIZ Parameter (Default = 2500)
To Necessary Size.

Rebuild Runtime Package:

In FORMS>RUN, RWN Command File:
C MMV
C_FMR

In FORMS, Run Command File:
C_VLIB
C RLIB

Copy VFORMS, RFORMS Into LIB.

Reload Your Program.

®WOTE: If Running R-Mode (nly Or

REV.

Run Appropriate Command Files

2 D - 2

PDR 3040 TROUBLE SHOOTING

PRBLEM: Adding A New Device Driver

SOLUTION: Add Driver Parameters To DCF.AS

And Rebuild IOS With New Driver.

STEPS:
1. In FORMS¥*:
Edit DCF.AS

2.

3.

7.

Add Parameters For New Driver:

For Example: To Add Logical Device Number 4,

Device Name XY123, Device Driver Name XY, With

24 Lines, 80 Colums; Insert The Line:
4,XY123, Xy, 24, 80

Run FAP Generate (Produces 3 S$INSERT Files Which
Contain Information About The New Driver Necessary
In Building Runtime Library)

IN FORMS>IOS
RUN C_IOR/C_IOV
To Change BIOR/BIOV

In FORMS
RUN C VLIB, C RLIB

Copy VFORMS/RrORMS To LIB

Execute Appropriate FAP TCB Command To Specify
New Terminal For Specific User Numbers.

(Refer To Section 4)

Reload Your Program With New Library.

November 1979

PDR 3040 SAMPLE FORTRAN PROGRAM

APPENDIX E

SAMPLE FORTRAN PROGRAM

This appendix is a camplete listing of the example program discussed in
Section 7.

E - 1 November 1979

APPENDIX E PDR3040

(091) C ATSINP, FORMS, JRW, 78/82/23

(9092) C REVISED 1979 MLG, 79/06/06

(0003) C FORMS DEMO PROGRAM - INPUT ATS INFO, STORE IN DISK FILE

(9004) C COPYRIGHT 1979, PRIME CQMPUTER INC, FRAMINGHAM

(60@5) C

(ogg6) C

(0097) C—- THIS PROGRAM INPUTS ATS INFORMATION FRQM THE TERMINAL AND

(9028) C STORES THE INFO IN A DISK FILE.

(8009) C

(9019) C TWO FILES ARE USED:

(#211) C

(8212) C ATS.C IS THE CONTROL FILE - IT CONTAINS THE NEXT ATS NUMBER TO BE
(0213) C ASSIGNED.

(#014) C ATS.D IS THE DATA FILE. AS EACH ATS FORM IS ENTERED, IT IS APPENDED
(#915) C TO THIS FILE IN THE FORVAT SHONN IN THE PROGRAM.

(8916) C

(e917) C

(0018) C—- TO TERMINATE THE PROGRAM, ENTER A NULL NAME FIELD.

(2919) C

(0020) C—— TO ENTER MORE THAN 4 ITEM LINES, ENTER A NON-SPACE CHARACTER (EXCEPT N)
(#221) C IN THE "MORE' FIELD.

(#022) C

(9023) C—- THIS PROGRAM MAY BE USED BY A SINGLE USER IN ANY GIVEN DIRECTORY AT
(00624) C ONE TIME. NO PROVISION IS MADE FOR CONCURRENT ACCESS TO THE DATA FILES.
(@25) C

(9026) C

(9927) C

(2928) CQMMON /FSIOBF/ B(150) /* EXTENDED I/O BUFFER
(9929) C

(9030) INTEGER NAMALR (75), VIA, HON, REPL, INTC, BILL, SONWM(4),

(8031) + CHGNUM (4) , CPO (4) , ACOTHR (15) , AIRSPR, INS(5),

(9932) + TYPE, CODE, NWIO, ATSNWM, B, I, J, MORE, FLD1(4,4),
(9033) + YESNOB (4) , ACTBUF(4,3), FLD2(4,3)

(9834) C

(0835) INTEGER PART(8,4), DESCR(15,4), SN(4,4), QTY(4), RTN(4)

(9236) C

(8837) LOGICAL HDROUT

(9938) C

(#839) C

(0040) EQUIVALENCE (YESNOB(1),REPL), (YESNOB(2),INTC),

(0941) + (YESNOB (3) ,BILL) , (YESNOB(4) ,AIRSFR),

(8942) + (ACTBUF(1,1) ,SONUM) , (ACTBUF(1,2),CHGNUM) ,

(4043) + (ACTBUF(1,3) ,CFO)

(9044) C

(#945) C

(0246) C SYSCOM>KEYS.F MNEMONIC KEYS FOR FILE SYSTBEM (FTIN) 31 MAY, 1977
(0046) NOLIST

(2947) C

(6048) C

(2949) DATA FLD1 /'REPL ', 'INTC ','BILL ' ,"AIRSPARE'/

(0259) DATA FLD2 /'SONWM ', 'CHGN ','CPO '/

(8851) C

(9952) C

REV. 0 E - 2

PDR 3040 SAMPLE FORTRAN PROGRAM

(#053) C—-EXTEND TERMINAL, FILE I/O BUFFERS.

(9g54) C

(8055) CALL ATTDEV(1,1,0,150)

(9056) CALL ATTDEV(6,7,2,158)

(8857) C

(0@58) C CALL TO SHARED LIBRARY

(9059) CALL FORMSI

(0060) C

(9961) C—-OPEN FILES, INVOKE FORM ON TERMINAL.

(2962) C

(0963) CALL SRCHS$S (K$CcLos,@,0,1,0,CODE)

(9064) CALL SRCHS$S (K$CLOS,4,9,2,0,CODE)

(2065) C

(9066) CALL SRCH$S (KSRDWR, 'ATS.C',5,1, TYPE,CODE)

(9967) IF (CODE.NE.@) CaLL ERRPRS (KSNRTN,CODE, 'ATS.C',5,0,0)

(9068) CALL SRCHSS (KSRDWR, 'ATS.D',5, 2, TYPE, CODE)

23329; IF (CODE.NE.J) CALL ERRPR$ (KSNRTN,CODE,'ATS.D',5,0,0)
g) C

(9071) CALL PRWFSS (K SPOSN+KSPRER, 2, L0C(4) ,0, 10000008, NNIO, CODE)

(8872) C

(9073) WRITE (1,20)

(0074) 20 [ORMAT (' ##INVOKE ADMN377"')

(8075) C

(8076) C

(#@77) C—-ASSIGN NEXT ATS #.

(9078) C

(8279) 100 CALL PRWFSS (K SPOSN+KSPREA, 1,L0C(0) ,0, 000000, NNIO, CODE)

(0989) READ (5,120,ERR=160,END=160) ATSNUM

(#081) 120 FORMAT (16)

(0082) GO TO 200

(9@83) C

(0284) C

(#985) C—-HERE ON EOF, EIC.

(098b) C

(0087) 160 ATSNUM=0

(p988) C

(6089) C

(9@98) C—-ASSIGN NEXT SEQUENTIAL ATS #.

(@991) C

(6992) 180 ATSNUM=ATSNUM+1

(8093) C

(894) C

(9095) C—-WRITE ATS#, CLEAR VARIABLE DATA, ERR(R MESSAGE.

(8996) C

(8897) 200 WRITE (1,210) ATSNWM

(9098) HDROUT=.FALSE. /* HEADER NOT OUTPUT TO DISK FILE

(9099) 210 FORMAT (' ##SUBSTREAM HEADER'/16/'#4CLEAR' /' #4#SUBSTREAM ERROR'/' ')
(2199) C

(9191) C

(#192) C—-READ IN NAMES, ADDRESSES, AND ACCOUNTING INFORMATION.
(9183) C

(7104) 220 READ (1,240) NAMADR, VIA, HON, REPL, INTC, BILL, SONWM,
(9195) + CHGNUM, CPO, ACOTHR, AIRSPR, INS

E - 3 November 1979

APPENDIX E PDR3740

(3196) C

(9197) IF (NAMAIR (1) .EQ.' ') GO TO 5000 /* BLANK NAME => EXIT
(9108) 249 FORMAT (75A2/2I1,3A1,12A2,15A2,A1,4A2,A1)

(2199) C

(9118) C

(4111) C—-VALIDATE INPUT DATA.

(9112) C

(#113) IF (VIA.LT.1.0R.VIA.GT.9) GO TO 1000

(9114) IF (HOWN.LT.1.0R.HOWN.GT.4) GO TO 1020

(2115) C

(2116) C

(3117) C—-CHECK YES/NO RESPONSES.

(A118) C

(#119) DO 250 1=1,4

(9120) IF (YESNOB(I).GE.'a' .AND.YESNOB(I).LE.'z') /* MAP => UPPER CASE
(9121) + YESNOB (I) =AND (YESNOB(I) ,:157777)

(9122) IF (YESNOB(I).NE.'Y'.AND.YESNOB(I).NE.'N') GO TO 1040
(9123) IF (I.EQ.4) GO TO 250

(124) IF (YESNOB(I).EQ.'Y'.AND.ACTBUF(1,I).EQ.' ') GO TO 1060
(9125) IF (YESNOB(I) .EQ.'N'.AND.ACTBUF(1,I).NE.' ') GO TO 1080
(126) 250 CONTINUE

(127) C

(7128) C

(d129) C—-GET ITEM DATA.

(9139) C

(3131) 400 READ (1,420) ((PART(J,I),J=1,8), (DESCR(J,I),J=1,15),
(9132) + (SN (J,I) ,J=1,4), QTY(I), RIN(I), I=1,4), MORE
(9133) 420 FORMAT(4 (7A2,A1,15A2,4A2,14,A1) ,Al)

(9134) C

(@135) C

(8136) C—-CHECK INPUT DATA VALIDITY.

(9137) C

(2138) 500 DO 520 1=1,4

(9139) IF (DESCR(1,I).EQ.' ') GO TO 529 /* IGNORE BIANK LINE
(9140) IF (RIN(I).GE.'a' .AND.RIN(I).LE.'z') /* MAP => UPPER CASE
(2141) + RTN (I)=AND (RTN(I),:157777)

(9142) IF (RIN(I) .NE.'Y' .AND.RIN(I) .NE.'N') GO TO 1109

(2143) 520 CONTINUE

(9144) C

(8145) C

(8146) C—-WRITE DATA TO DISK FILE.

(0147) C

(2148) DO 550 1=1,4

(9149) IF (DESCR(1,I).EQ.' ') GO TO 550 /* IGNORE BIANK LINE
(9159) IF (HDROUT) GO TO 540

(2151) cC

(9152) C

(8153) C—-WRITE ACCOUNT HEADER TO DISK FILE.

(9154) C

(3155) WRITE (6,525) ATSNWM, NAMADR, VIA, HON, REPL, INTC, BILL, SONUM,
(9156) + CHGNUM, CPO, ACOTHR, AIRSPR, INS

(8157) 525 FORMAT (' *ATS' ,16/5(15A2/) ,211,3A1,12A2/15A2/A1,4A2,A1)
(158) C

REV. @ E - 4

(9159)
(2160)
(9161)
(2162)
(9163)
(0164)
(9165)
(0166)
- (0167)
(9168)
(2169)
(8170)
(9171)
(9172)
(9173)
(8174)
(8175)
(8176)
(2177)
(2178)
(8179)
(2180)
(2181)
(2182)
(2183)
(#184)
(9185)
(#186)
(2187)
(2188)
(9189)
(3199)
(@191)
(2192)
(2193)
(3194)
(2195)
(8196)
(8197)
(2198)
(3199)
(0200)
(2201)
(0202)
(3203)
(0204)
(2205)
(9206)
(8207)
(2208)
(9209)
(2210)
(8211)

c
C

PDR 3040

HDROUT=. TRUE.

SAMPLE FORTRAN PROGRAM

C—-WRITE INDIVIDUAL ITEM LINE TO DISK FILE.

C
C
540

545
C
550
C
C

+

WRITE (6,545) (PART(J,I),J=1,8), (DESCR(J,I) J=1,15),
(SN (J,1) ,J=1,4), QTY(I), RIN(I)

FORMAT (7A2,A1,15A2,4A2,14,A1)

CONTINUE

C——-CHECK FCR MORE ITEM LINES.

C

C

580

C
C

+

IF (MORE.EQ.' '.OR.MORE.EQ.'N'.OR.MORE.EQ.'n') GO TO 180

WRITE (1,580)

FORMAT (' ##SUBSTREAM ITEMS'/' '/'##SUBSTREAM ITEMS'/

'##POSITION PARTAL')
GO TO 400

C—-INCORRECT DATA IN ACCOUNTING FIELDS.

C
1000
1910

C
1020
1030

c
C

+
+

+
+

WRITE (1,1019)

FORMAT ('##SUBSTREAM ERROR'/
'via code must be 1-9'/
"$#POSITION SHIPVIA')

GO TO 220

WRITE (1,1030)

FORMAT ('##SUBSTREAM ERR(R'/
'how code must be 1-4'/
'##POSITION SHIPHOW')

GO TO 220

C—-YES/NO ANSWER REQ'D.

C
10490
1050

C
c

+
+

WRITE (1,1050) (FLD1(J,I), J=1,4)
I'ORMAT (' # #SUBSTREAM ERRR'/

/* NEXT SET OF ITEM LINES

'ves/no (Y or N) response required'/

'$#POSITION ',4A2)
GO TO 220

C——-ACCUNT NUMBER FIELD BLANK.

C
1060
1970

+
+

WRITE (1,10708) (FLD2(J,I), J=1,4)
I'ORMAT (' ##SUBSTREAM ERR(R'/

'account } required for YES response'/

' BF#POSITION ',4A2)

November 1979

APPENDIX E PDR3040

(6212) GO TO 220

(9213) C

(@214) C

(#215) C—-SURPLUS ACCOUNT NUMBER.

(9216) C

(#217) 1080 WRITE (1,1099) (FLD2(J,I), J=1,4)
(0218) 1090 FORMAT ('##SUBSTREAM ERROR'/
(8219) + 'account # not permitted for NO response'/
(8220) + "$##POSITION ', 4A2)

(8221) GO TO 220

(8222) C

(8223) C

(#224) C—-RETURN CODE FIELD BIANK.

(8225) C

(#226) 1100 WRITE (1,1119) I

(0227) 1119 FORMAT ('##SUBSTREAM ERR(R'/

(9228) + 'yes/no (Y or N) response required'/
(6229) + '"##POSITION RIN' ,B'#4'/

(9238) + '##SUBSTREAM ITEMS')

(8231) GO TO 409

(8232) C

(»233) C

(3234) C—-HERE TO EXIT. UPDATE ATS # IN CONTROL FILE.

(#235) C

(0236) 5000 CALL PRWF$S (K $POSN+KSPREA, 1, LOC(8) ,8, 990003, NNIO, CODE)
(9237) WRITE (5,120) ATSNUM

(9238) CALL PRWFS$S (KSTRNC,1,LOC(9) ,@, 208003, NWIO, CODE)
(3239) C

(0240) CALL SRCHSS (K$CLOS,d,0,1,8,CODE)
(9241) CALL SRCH$S (K$CLOS, 9,0, 2,8,CODE)
(#242) C

(3243) WRITE (1,5029)

(0244) 5020 rORVAT ('##CLEAR ALL'/'##RELEASE')
(8245) cC

(8246) CALL EXIT

(0247) C

(0248) C

(9249) C

(9258) END

PROGRAM SIZE: PROCEDURE - 002564 LINKAGE - 000502 STACK - 000022
09000 ERRORS [<.MAIN.>FTN-REV15.3]

REV. 0 E - 6

PDR3040 FORM DESCRIPTOR NO. 1

APPENDIX F

FORM DESCRIPTOR FOR
FORTRAN PROGRAM EXAMPLE

This appendix is a complete listing of the example form descriptor
associated with the program discussed in Section 7.

F - 1 November 1979

APPENDIX F PIR3040

(9901)
(9002)
(2203)
(0004)
(29a5)
(2006)
(2007)
(0008)
(2029)
(7210)
(2011)
(0012)
(2013)
(9214)
(2915)
(9916)
(9017)
(2018)
(8919)
(0029)
(9021)
(2022)
(0923)
(0024)
(9925)
(9026)
(9927)
(0228)
(8029)
(0930)
(2031)
(9832)
(9933)
(2034)
(9835)
(9236)
(2@37)
(0238)
(2039)
(9049)
(2041)
(0042)
(2043)
(0044)
(2045)
(2046)
(2047)
(90948)
(#049)
(90509)
(2051)
(8852)

REV. 0

PRIMEATS, FORMS, XXX, 79/82/12
PRIMEATS, FORMS, XXX, 79/02/12
PRIME AUTHORIZATION TO SHIP FORM — FORMS DEMO
COPYRIGHT 1979, PRIME CQMPUTER, FRAMINGHAM MA

ADMN377 STREAM

* > ok % ¥ % %

LIST
*

*
*——— HEADER INFCRMATION.
*
HEADER SUBSTREAM
FIELD (FORMNAME,rORMNAME)
FIELD ATSNW, LENGTH 6, JUSTIFY RIGHT, ZERO-FILL, OUTPUT

END SUBSTREAM
*

*
*——— SHIP TO NAME AND ADDRESS.
*
NAMALR SUBSTREAM
FIELD NAME, LENGTH 3¢, VALIDATE 'P' OR 'B'
REPEAT 3
FIELD ADDR, LENGTH 30
END REPEAT

FIELD ATTN, LENGTH 39

END SUBSTREAM
*

*

*——— SHIP VIA / HOW, ACCOUNTING, MISC INFO.
*

GENERAL SUBSTREAM
FIELD SHIPVIA, LENGTH 1, VALIDATE '9' OR 'B'
FIELD SHIPHOW, LENGTH 1, VALIDATE '9' (R 'B'

FIELD REPL, LENGTH 1, VALIDATE 'A' OR 'B'

FIELD INTC, LENGTH 1, VALIDATE 'A' OR 'B'

FIELD BILL, LENGTH 1, VALIDATE 'A' OR 'B'

FIELD SONUM, LENGTH 8, VALIDATE '99-99999' OR 'B'
FIELD CHQN, LENGTH 8, VALIDATE '99-99999' OR 'B'
FIELD CPO, LENGTH 8, VALIDATE '99-99999' R 'B'
FIELD ACCOTHER, LENGTH 30

FIELD AIRSPARE, LENGTH 1, VALIDATE 'A' OR 'B'
FIELD INS, LENGTH 9, JUSTIFY RIGHT, ZERO-FILL, VALIDATE

END SUBSTREAM
*

*

*——— ITEM INFORMATION.
*

ITEMS SUBSTREAM

lF'

PCR 3040 FORM DESCRIPTOR NO. 1

(2953) REPEAT 4

(2054) FIELD PART, LENGTH 15, JUSTIFY RIGHT, SPACE-FILL
(9855) FIELD DESCR, LENGTH 3@, JUSTIFY LEFT

(#056) FIELD SN, LENGTH 8, JUSTIFY RIGHT, ZERO-FILL
(9057) FIELD QTY, LENGTH 4, JUSTIFY RIGHT, ZERO-FILL, VALIDATE '9' (R 'B'
(2058) FIELD RTN, LENGIH 1, VALIDATE 'A' OR 'B'

(2959) END REPEAT

(9060) FIELD MORE, LENGTH 1, VALIDATE 'A' OR 'B'

(9061) END SUBSTREAM

(2962) *

(8063) *

(0064) *——— ERROR / WARNING MESSAGE.

(2265) *

(3066) ERROR SUBSTREAM

(8067) FIELD ERR, LENGTH 40, OUTPUT

(#968) END SUBSTREAM

(2969) *

(2070) *

(2071) *

(2972) END STREAM

@990 ERRORS (FDL, REV 15 - 16-FEB-78)

INPUT STREAM DESCRIPTOR STREAM: ADMN377
SUBSTREAM SUBSTREAM COLWMN FIELD FIELD
NAME NUMBER BOUNDARIES NAME LENGTH
NAMAIR 2 1- 30 NAME 30
NAMAIR 2 31- 69 ADDRA1 30
NAMATR 2 61— 90 ADIR@2 30
NAMAIR 2 91-120 ADDROA3 30
NAMAIR 2 121-1508 ATIN 30
GENERAL 3 1 SHIPVIA 1
GENERAL 3 2 SHIPHON 1
GENERAL 3 3 REPL 1
GENERAL 3 4 INTC 1
GENERAL 3 5 BILL 1
GENERAL 3 6- 13 SONUM 8
GENERAL 3 14- 21 CHGN 8
GENERAL 3 22- 29 CPO 8
GENERAL 3 30- 59 ACCOTHER 30
GENERAL 3 60 ATRSPARE 1
GENERAL 3 61- 69 INS 9
ITEMS 4 1- 15 PART @1 15
ITEMS 4 16— 45 DESCRA1 30
ITEMS 4 46- 53 SNO1 8
ITEMS 4 54- 57 QTYA1 4
ITEMS 4 58 RINAL 1
ITEMS 4 59- 73 PART@2 15
ITEMS 4 74-103 DESCRA2 30
ITEMS 4 194-111 SN@2 8
ITEMS 4 112-115 Qryg2 4
F 3 November 1979

APPENDIX F

ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS
ITEMS

REV.

L S S L = -

PIR3040
116 RTN@2
117-131 PART@3
132-161 DESCR@3
162-169 SN@3
179-173 QTY@3
174 RTNG3
175-189 PART@4
199-219 DESCRO4
220-227 SN@4
228-231 QrYyo4d
232 RTNG4
233 MORE
F 4

H=dcoOouaumHH»OSIOTH

PDR 3040

OUTPUT STREAM
SUBSTREAM SUBSTREAM COLUMN
NAME NUMBER BOUNDARIES

HEADER 1 1- 6
NAMALR 2 1- 30
NAMATR 2 31- 60
NAMATR 2 61- 90
NAMALR 2 91-120
NAMATIR 2 121-159
GENERAL 3 1

GENERAL 3 2

GENERAL 3 3

GENERAL 3 4

GENERAL 3 5

GENERAL 3 6- 13
GENERAL 3 14- 21
GENERAL 3 22- 29
GENERAL 3 30- 59
GENERAL 3 60

GENERAL 3 61- 69
ITEMS 4 1- 15
ITEMS 4 16- 45
ITEMS 4 46- 53
ITEMS 4 54- 57
ITEMS 4 58

ITEMS 4 59- 73
ITEMS 4 74-103
ITEMS 4 194-111
ITEMS 4 112-115
ITEMS 4 116

ITEMS 4 117-131
ITEMS 4 132-161
ITEMS 4 162-169
ITEMS 4 170-173
ITEMS 4 174

ITEMS 4 175-189
ITEMS 4 199-219
ITEMS 4 220-227
ITEMS 4 228-231
ITEMS 4 232

ITEMS 4 233

ERR(R 5 1- 40

F

DESCRIPTOR
FIELD

FIELD
NAME

ATSNWM

NAME
ADDRO1
ADIR@2
ADDR@3
ATIN

SHIPVIA
SHIPHON
REPL
INTC
BILL
SONUM
CH&N

16320)
ACCOTHER
AIRSPARE
INS

PART@1
DESCRA1
SNg1
QTYA1
RING1
PART@2
DESCR@2
SN@2
QrYg2
RTN@2
PART@3
DESCR@3
SN@3
QTY@3
RING3
PART@4
DESCRO4
SNO4
Qryg4
RTN@4
MORE

ERR

FORM DESCRIPTOR NO. 1

STREAM: ADMN377

LENGTH

6

w W w w
HFE POV HLAORIUNHPORUIEFDOIU OHFHIJ WO O

w ~

o
(S

November 1979

APPENDIX F PIR3049

(9973)
(9074)
(8875)
(8076)
(8077)
(8078)
(2979)
(2089)
(9081)
(9982)
(2083)
(0084)
(2085)
(9986)
(2087)
(2088)
(2289)
(2299)
(8091)
(3092)
(3093)
(8994)
(8295)
(3296)
(8097)
(2298)
(2299)
(2100)
(9101)
(3102)
(9123)
(3104)
(9195)
(2106)
(2107)
(2128)
(2129)
(0110)
(4111)
(4112)
(2113)
(114)
(2115)
(0116)
(9117)
(2118)
(9119)
(0120)
(2121)
(2122)
(A123)
(0124)

REV. 0

PRIMEATS, FORMS XXX, 79/82/12

PRIMEATS, FORMS XXX, 79/02/12
PRIME AUTHORIZATION TO SHIP FORM — FORMS DEMO
COPYRIGHT 1979 PRIME COMPUTER, FRAMINGHAM MA

* ¥ ¥ * ¥

ADMN377 FORMAT

DEVICE OWL1209
*

*——— HEADER LINE INFCRMATION:
*

FIELD 'FORM' POSITION (2,1)

'ORMNAME FIELD LENGTH 8, POSITION (7,1)
FIELD 'ATS #' POSITION (20,1)
ATSNUM FIELD LENGTH 6, POSITION (26,1)

*

*

*——— SHIP TO INFORMATION:

*
FIELD 'SHIP TO ' POSITION (2,3), REVERSE VIDEO
FIELD 'NAME' POSITION (12,3)

NAME FIELD LENGTH 3¢, POSITION (24,3), NOPROTECT
FIELD 'ADDRESS' POSITION (12,4)
REPEAT 3

ADDR FIELD LENGTH 30, POSITION (24,+3), NOPROTECT
END REPEAT
FIELD 'ATTENTION' POSITION (12,7)

ATTN FIELD LENGTH 30 POSITION (24,7) NOPROTECT
*

*
*——— SHIP VIA INFORMATION:
*
FIELD 'SHIP VIA' POSITION (2,9), REVERSE VIDEO
SHIPVIA FIELD LENGTH 1, POSITION (12,9), NOPROTECT
FIELD '**VIA CODES**' POSITION (62,1)
FIELD 'l. PICKUP' POSITION (62,2)
FIELD '2. PARCEL POSITIONT' POSITION (52,3)
FIELD '3. UPS' POSITION (62,4)
FIELD '4. FIRST CLASS' POSITION (62,5)
FIELD '5. SPEC DELIV' POSITION (52,6)
FIELD '6. TRUCK' POSITION (62,7)
'IELD '7. PRI PARCEL' POSITION (62,8)
FIELD '8. AIR FREIGHT' POSITION (62,9)

FIELD '9. FEDR EXPR' POSITION (62,10)
*

*
*———SHIP HON INFORMATION:
*
FIELD 'SHIP HOW' POSITION (20,9), REVERSE VIDEO
SHIPHOWN FIELD LENGTH 1, POSITION (32,9), NOPROTECT
FIELD '**HON CODES**' POSITION (62,12)
FIELD 'l. PREPAID', POSITION (62,13)
FIELD '2. C.0.D.', POSITION (62,14)

(2125)
(2126)
(9127)
(9128)
(9129)
(9130)
(2131)
(2132)
(2133)
(9134)
(3135)
(2136)
(@137)
(2138)
(3139)
(9140)
(A141)
(9142)
(3143)
(2144)
(8145)
(91456)
(3147)
(7148)
(9149)
(2150)
(2151)
(2152)
(9153)
(#154)
(9155)
(3156)
(2157)
(9158)
(3159)
(9169)
(2161)
(9162)
(3163)
(2164)
(A165)
(9166)
(0167)
(9168)
(2169)
(2170)
(2171)
(9172)
(9173)
(9174)
(2175)
(A176)
(0177)

*
*

PDR 3040 FORM DESCRIPTOR NO. 1

FIELD '3. PREPAID/ADD', POSITION (62,15)
FIELD '4. COLLECT', POSITION (52,16)

*——— ACCOUNTING INFCRMATION:

*

REPL

SONUM

INTC

CHGN

BILL

CPO

ACCOTHER
*

*

FIELD 'ACCOUNT ' POSITION (2,11), REVERSE VIDEO
FIELD 'REPLACE/SHORT SHIP?' POSITION (12,11)
FIELD LENGTH 1, POSITION (33,11), NOPROTECT
FIELD 'S.0.', POSITION (37,11)
FIELD LENGTH 8, POSITION (50,11), NOPROTECT
FIELD 'INTERNAL CHARGE?' POSITION (12,12)
FIELD LENGTH 1, POSITION (33,12), NOPROTECT
FIELD 'CHARGE #' POSITION (37,12)
FIELD LENGTH 8, POSITION (54,12), NOPROTECT
FIELD 'BILIABLE?', POSITION (12,13)
FIELD LENGTH 1, POSITION (33,13), NOPROTECT
FIELD 'COST P.O. #', POSITION (37,13)
FIELD LENGTH 8, POSITION (50,13), NOPROTECT
FIELD 'OTHER:' POSITION (12,14)
FIELD LENGTH 30, POSITION (20,14) NOPROTECT

*——— MISCELLANEOUS INF(RMATION:

*

INS

AIRSPACE
*

*

*——— ITEM
*

PART
LESCR
SN
QTY
RTN

*

MORE
*

*

FIELD 'MISC ' POSITION (2,16), REVERSE VIDEO
FIELD 'INSURE FOR $' POSITION (12,16)
FIELD LENGTH 9, POSITION (28,16) ,NOPROTECT
FIELD 'AIR SPARE?' POSITION (40,16)
FIELD LENGTH 1, POSITION (52,16), NOPROTECT

DESCRIPTION.

FIELD 'PART NO' POSITION (5,18)

FIELD 'DESCRIPTION' PCSITION (29,18)

FIELD 'S/N' POSITION (53,18)

FIELD 'QTY' POSITION (61,18)

FIELD 'RTN' POSITION (66,18)

REPEAT 4
FIELD LENGTH 15, POSITION (2,+18), NOPROTECT

FIELD IENGTH 30, POSITION (19,+18), NOPROTECT

FIELD LENGTH 8, POSITION (51,+18), NOPROTECT
FIELD LENGTH 4, POSITION (61,+18), NOPROTECT
FIELD LENGTH 1, POSITION (67,+18), NOPROTECT

END REPEAT

FIELD 'MORE?' POSITION (72,22)
FIELD LENGTH 1, POSITION (79,22), NOPROTECT

*——— ERROR MESSAGE, ETC.

*

F - 7 November 1979

APPENDIX F PDR3040

(2178)
(2179)
(9189)
(0181)
(9182)
(9183)
(9184)
(8185)
(2186)
(0187)
(9188)
(3189)
(9199)
(@191)
(2192)
(3193)
(0194)
(3195)
(9196)
(3197)
(9198)
(3199)
(7200)
(9201)
(9202)
(8203)
(0204)
(9205)
(8206)
(9207)
(0208)
(8209)
(8219)
(9211)
(9212)
(9213)
(3214)
(9215)
(7216)
(9217)
(9218)
(8219)
(8220)
(8221)
(9222)
(8223)
(9224)
(9225)
(8226)
(9227)
(8228)
(9229)
(8230)

REV. 0

ERR FIELD LENGTH 404, POSITION (2,24)

END DEVICE
DEVICE VISTAR3
*

*——— HEADER LINE INFORMATION:
*

FIELD 'FORM' POSITION (2,1)

FORINAME FIELD LENGTH 8, POSITION (7,1)
FIELD 'ATS #' POSITION (20,1)
ATSNUM FIELD LENGTH 6, POSITION (26,1)

*

*

*-—— SHIP TO INFCRMATION:

*
FIELD 'SHIP TO ' POSITION (2,3), REVERSE VIDEO
FIELD 'NAME' POSITION (12,3)

NAME FIELD LENGTH 34, POSITION (24,3), NOPROTECT
FIELD 'ADDRESS' POSITION (12,4)
REPEAT 3

ADDR FIELD LENGTH 30, POSITION (24,+3), NOPROTECT
END REPEAT
FIELD 'ATTENTION' POSITION (12,7)

ATIN FIELD LENGTH 3¢ POSITION (24,7) NOPROTECT
*

*
*-—— SHIP VIA INFORMATION:
*
FIELD 'SHIP VIA' POSITION (2,9), REVERSE VIDEO
SHIPVIA FIELD LENGTH 1, POSITION (12,9), NOPROTECT
FIELD '**VIA CODES**' POSITION (62,1)
¥IELD 'l. PICKUP' POSITION (62,2)
FIELD '2. PARCEL POSITIONT' POSITION (62, 3)
FIELD '3. UPS' PGBITIN (62,4)
FIELD '4. FIRST CLASS' POSITION (52,5)
FIELD '5. SPEC DELIV' POSITION (62,6)
FIELD '6. TRUCK' POSITION (62,7)
FIELD '7. PRT PARCEL' POSITION (62,8)
FIELD '8. AIR FREIGHT' POSITION (62,9)

FIELD '9. FEDR EXPR' POSITION (62,10)
*

*
*-——SHIP HON INFCRMATION:
*
FIELD 'SHIP HOW' POSITION (20,9), REVERSE VIDEO
SHI PHOW FIELD LENGTH 1, POSITION (32,9), NOPROTECT
FIELD '**HON CODES**' POSITION (62,12)
FIELD 'l. PREPAID', POSITION (62,13)
FIELD '2. C.0.D.', POSITION (62,14)
FIELD '3. PREPAID/ADD', POSITION (62,15)
FIELD '4. COLLECT', POSITION (62,16)

(8231)
(3232)
(9233)
(9234)
(8235)
(9236)
(3237)
(9238)
(3239)
(9240)
(9241)
(0242)
(2243)
(9244)
(8245)
(9246)
(2247)
(0248)
(2249)
(0258)
(2251)
(9252)
(9253)
(2254)
(8255)
(2256)
(8257)
(2258)
(8259)
(7260)
(9261)
(0262)
(3263)
(2264)
(3265)
(2266)
(8267)
(9268)
(3269)
(9279)
(8271)
(9272)
(3273)
(9274)
(8275)
(8276)
(9277)
(8278)
(9279)
(2289)
(9281)
(9282)
(9283)

*
*

PCR 3040 FORM DESCRIPTOR NO. 1

*——— ACCOUNTING INFCRMATION:

*

REPL

SONWM

INTC

CHGN

BILL

CPO

ACCOTHER
*

*

FIELD 'ACCOUNT ' POSITION (2,11), REVERSE VIDEO
FIELD 'REPLACE/SHORT SHIP?' POSITION (12,11)

FIELD LENGTH 1, POSITION (33,11), NOPROTECT
FIELD 'S.0.', POSITION (37,11)

FIELD LENGTH 8, POSITION (50,11), NOPROTECT

t'IELD 'INTERNAL CHARGE?' POSITION (12,12)

FIELD LENGTH 1, POSITION (33,12), NOPROTECT
FIELD 'CHARGE #' POSITION (37,12)

FIELD LENGTH 8, POSITION (50,12), NOPROTECT
#IELD 'BILLABLE?', POSITION (12,13)

FIELD LENGTH 1, POSITION (33,13), NOPROTECT
FIELD 'COST r.O. #', POSITION (37,13)

FIELD LENGTH 8, POSITION (50,13), NOPROTECT
FIELD 'OTHER:' POSITION (12,14)

FIELD LENGTH 30, POSITION (20,14) NOPROTECT

*——— MISCELIANEOUS INFCRMATION:

*

INS

AIRSPACE
*

*

*—— ITEM
*

PART
DESCR
SN

QrY
RTN

*

MORE
*

*

FIELD 'MISC ' POSITION (2,16), REVERSE VIDEO
FIELD 'INSURE FOR $' POSITION (12,16)
FIELD LENGTH 9, POSITION (28,16) ,NOPROTECT
FIELD 'AIR SPARE?' POSITION (40,15)
FIELD LENGTH 1, POSITION (52,16), NOPROTECT

DESCRIPTION.

FIELD 'PART NO' POSITION (5,18)

FIELD 'DESCRIPTION' POSITION (29,18)

FIELD 'S/N' POSITION (53,18)

FIELD 'QTY' POSITION (61,18)

FIELD 'RTN' POSITION (66,18)

REPEAT 4
FIELD LENGTH 15, POSITION (2,+18), NOPROTECT

FIELD LENGTH 3¢, POSITION (19,+18), NOPROTECT

FIELD LENGIH 8, POSITION (51,+18), NOPROTECT
FIELD LENGTH 4, POSITION (61,+18), NOPROTECT
FIELD LENGTH 1, POSITION (67,+18), NOPROTECT

END REPEAT

FIELD 'MORE?' POSITION (72,22)
FIELD LENGTH 1, POSITION (79,22), NOPROTECT

*-—— ERRCR MESSAGE, ETC.

*

ERR
*

FIELD LENGTH 40, POSITION (2,24)

F - 9 November 1979

APPENDIX F PIR3040

(2284) *
(9285) *
(7286) END DEVICE
(2287) END FORMAT

000@ ERRORS (FDL, REV 15 - 16-FEB-78)

REV. @ F - 10

DE

(SRS}

N+ + O+ N+ AN+ O+ O+ N+ O+ O+ O+ OO+ REOD

S W

ul

VICE FORMAT MAP

PDR3040

FORMAT: ADMN377

DEVICE: OWL1200 SIZE: 24 BY 8¢

FORM DESCRIPTOR NO. 1

N FTTTY T P TR T O R TS T O O TR JAAPRL PO :}

10 |

11

12

13

14

15
16

17
18
19
20
21

22

23 |

24

FORM **kkkkkk ATS § *kkkkx

SHIP TO NAME
ADDRESS
ATTENTION

SHIP VIA SHIP HOW

ACCOUNT REPLACE/SHORT SHIP? S.0.
INTERMAL CHARGE? ~ CHARGE #
BILLABLE? COST P.O. #
OTHER: -

MISC INSURE FRR $ AIR SPARE?

PART NO DESCRIPTION

SN

KAAKRKKKRKKKK KK KK AAKRKAKKAKRARARRK KK AR A A A A kAK

VIA CODES

1.
2.

PICKUP
PARCEL POSITIONT

ups

FIRST CIASS
SPEC DELIV
TRUCK

PRI PARCEL
AIR FREIGHT

FEIR EXPR

HON CODES

1.
2.
3.
4.

Qry

PREPAID
C.0.D.

PREPAID/ADD
COLLECT

RN

MORE?

11

PAGE: 1

November 1979

APPENDIX F PIR3040
DEVICE FORMAT MAP FORVAT: AIMN37/ DEVICE: VISTAR3 SIZE: 24 BY 80
]
]

IR FTRN PO ZTTU0- T A A JUDOY SUL S ST ST SO S MU SR

@ 1 | FORM *kkkkkix ATS § *kkkkk *%\JTA COLES** |
g 2| 1. PICKUP |
@ 3| SHIPTO NAME 2. PARCEL POSITIONT |
+
g 4| ADDRESS 3. UpPs |
+
8 5| 4. FIRST CIASS |
+
g 6 | S. SPEC DELIV |
+
g 71 ATTENTION 6. TRUCK |
+
g 8| 7. PRI PARCEL |
@ 9 | SHIP VIA SHIP HOW 8. AIR FREIGHT I
+
219 | - - 9. FEIR EXPR |
@ 11 | ACCOUNT REPLACE/SHORT SHIP? S.0. |
+
912 | INTERNAL CHARGE? ~ CHARGE # **HON CODES** |
+
213 | BILIABLE? ~ COST p.O. # 1. PREPAID |
+
214 | OTHER: - 2. C.0.D. |
+
215 | 3. PREPAID/ADD |
@ 16 | MISC INSURE FIR § AIR SPARE? 4. COLLECT |
+
817 | - |
918 | PART NO DESQRIFTION SN OrY RIN |
219 | |
+ ——— —
g 20 | |
+ ———— —
g 21 | |
+ ——
822 | MORE? |
+
g 23 | - - |
g 24 | hhkhhkhkkhkkhkkhhkkhhkhhhkhhhkkhkkkhkhkhhkkhhkkiiih |
[

12

PAGE:

PDR 3040 SAMPLE COBOL PROGRAM LISTING

APPENDIX G

SAMPLE COBOL PROGRAM LISTING

This appendix is a camplete listing of the example program discussed in
Section 8.

G - 1 November 1979

APPENDIX G

_REV 15.3 COBOL

(9@71)
(0002)
(9903)
(0004)
(2005)
(0006)
(8007)
(A028)
(0009)
(6910)
(9011)
(A912)
(6913)
(9014)
(9915)
(0916)
(8017)
(7918)
(8019)
(0020)
(9021)
(0022)
(8023)
(0024)
(8225)
(9926)
(8627)
(0028)
(2029)
(2830)
(8231)
(9832)
(9A33)
(0034)
(3235)
(9836)
(2037)
(02383)
(30339)
(9040)
(9941)
(0942)
(3943)
(0044)
(3945)
(2945)
(2047)
(0043)
(2849)
(0250)
(8851)
(8052)

REV.

/]

REMARKS.

PDR3040

SOURCE FILE: DEMOl 28/13/79
IDENTIFICATION DIVISION.
FROGRAM-ID. MAIN.

A PROGRAM TO ACCEPT ORDERS FRQM THE VDU

AND WRITE OUT A MIDAS FILE.
ENVIRONMENT DIVISION.
INPUT-OUTPUT SBECTION.
FILE-CONTROL.
SELECT INFILE ASSIGN TO TERMINAL.
SELECT ORDER-FILE ASSIGN TO PFMS

CRGANIZATION

IS INDEXED

ACCESS IS DYNAMIC

RECCRD KEY IS CRDER-KEY

ALTERNATE RECORD KEY IS ORDER-NAME WITH DUPLICATES
ALTERMATE RECORD KEY IS STOCK-NO WITH DUPLICATES
ALTERNATE RECORD KEY IS STOCK-DEL WITH DUPLICATES.
LATA DIVISION.

FILE SECTION.
FD INFILE LABEL RECORDS ARE (MITTED.
A1 SCR.

g2 FILLER PIC X (104) .

FD ORDER-FILE LABEL RECORDS ARE STANDARD

VALUE OF FILE-ID IS "ORDERS".
@1 ORDER-RECORD.

21

02 ORDER-KEY.

#3 ORDER-NO PIC 9(5).
@3 ORDER-ITEM PIC 99.

@2 ORDER-NAME PIC X(20).

@2 ORDER-ADD1 PIC X (20) .

A2 ORDER-ADD2 PIC X(20).

@2 ORDER-ADD3 PIC X (20) .

g2 STOCK-NO PIC X(6).

#2 STOCK-LEL PIC X(8).

@32 STOCK-QTY PIC S9(5) SIGN TRAILING SEPARATE.

ORDERC.

@2 FILLER PIC X(7).

@2 NEXI'-CRDER PIC 9(5) .

@2 FILLER PIC X(94).

WORKING~-STORAGE SECTION.

77

INV-C PIC X(12)

VALUE 'H#INVOKE DS1'.

REL-C PIC X(09) VALUE '##RELEASE'

PROT-C PIC X(25) VALUE '#H#PROTECT NAM AD1 AD2 AD3'.
ENAB-C PIC X(24) VALUE 'K#ENABLE NAM AD1 AD2 AD3'.
CLEAR-C PIC X(47) VALUE 'hHCLEAR'.

CIA-C PIC X(11) VALUE '##CLEAR ALL'.

CURR-ORD PIC
DATA-SCREEN.
g2 DS-NAM.
#3 CUSIND
@3 FILLER
72 Ds-AD1
@2 DS-AD2
@2 Ds-AD3

9(5).

PIC XX.

PIC X(18).
PIC X (20) .
PIC X(20).
PIC X (20) .

13:52

PDR 3040 SAMPLE COBOL PROGRAM LISTING

(9853) @2 D5-STK.

(2054) @3 STK-ID PIC XX.
(9@55) @3 FILLER PIC X (4).
(2056) g2 DS-QTY PIC 9(5).
(9857) g2 DS-DATE PIC X(8).
(2258) ' B2 DS-ORDER PIC 9(5).
(2959) PRUCEDURE DIVISION.

(0060) START-POINT.

(2961) CALL 'FORMSI'.

(4962) OPEN I-O ORDER-FILE.

(9063) OPEN I-O INFILE.

(9064) WRITE SCR FROM INV-C.

(2965) B-POINT.

(7966) READ INFILE INTO DATA-SCREEN.
(2967) IF CUSIND EQUAL '**' GO TO END-IT.
(P068) *

(0069) *

(9070) TRY-IT.

(9971) MOVE ZEROES TO ORDER-KEY.
(0972) READ ORDER-FILE KEY IS ORDER-KEY INVALID KEY
(8973) GO TO TRY-IT.

(0074) ADD 1 TO NEXT-ORDER.

(2975) MOVE NEXT-CRDER TO CURR-CRD.
(2076) REWRITE ORDER-RECCRD.

(8077) *

(2078) *

(3079) MOVE DS-NAM TO ORDER-NAME.
(0089) MOVE DS-AD1 TO CRDER-ADDI.
(P081) MOVE DS-AD2 TO ORDER-ADD2.
(2982) MOVE DS-AD3 TO CRDER-ADD3.
(#283) MOVE ZERO TO ORDER-ITEM.
(P284) A-POINT.

(3285) MOVE DS-STK TO STOCK-NO.
(9986) INSPECT DS-STK REPLACING LEADING SPACES BY ZEROES.
(0087) MOVE DS—QTY TO STOCK—QTY.
(2088) MOVE DS-TATE TO STCCK-DEL.
(9089) *

(02999) *

(A991) ADD 1 TO ORDER-ITEM.

(9992) MOVE CURR-CRD TO ORDER-NO.
(2293) MOVE CURR-ORD TO DS-ORDER.
(0094) *

(9995) *

(8996) WRITE ORDER-RECRD.

(2997) WRITE SCR FRQM PROT-C.

(2098) MOVE SPACES TO DS-STK, DS-QTY, DS-DATE.
(9299) WRITE SCR FROM DATA-SCREEN.
(9100) READ INFILE INTO DATA-SCREEN.
(2101) IF STK-ID NOT kQUAL '**' GO TO A-POINT.
(9102) *

(9193) *

(9104) WRITE SCR FROM ENAB-C.

(8125) WRITE SCR FROM CLEAR-C.

G - 3 November 1979

APPENDIX G PDR3040

(0106) GO TO B-POINT.

(9107) *

(2108) *

(2129) END-IT.

(9119) CLOSE ORDER-FILE.

(9111) WRITE SCR FROM CLA-C.
(9112) WRITE SCR FRQM REL-C,
(9113) CLOSE INFILE.

(9114) STOP 'END OF ORDER ENTRY'.

9071 /W MOVE IS DONE WITHOUT CONVERSION.

_PROGRAM STATISTICS

EXECUTABLE CODE SIZE: 453 WORDS.
CONSTANT POOL SIZE: 35 WORDS.
TOTAL PURE PROCEDURE SIZE: 488 WORDS.

WORKING-STORAGE SIZE: 202 BYTES.
TOTAL LINKFRAME SIZE: 499 WORDS.

STACK SIZE: 29 WORDS.
TRACE MODE: OFF.
NO ARGUWMENTS EXPECTED.

114 SOURCE LINES.

NO ERRORS, 1 WARNINGS, P400/509 COBOL REV 15.3 <MAIN

REV. @ G - 4

PDR 3040 FORM DESCRIPTOR NO. 2

APPENDIX H

FORM DESCRIPTOR FOR
COBOL PROGRAM EXAMPLE

This appendix is a complete listing of the example form descriptor
associated with the program discussed in Section 8.

H - 1 November 1979

PIR3040

STREAM

FIELD NAM LENGTH 20
FIELD AD1 LENGTH 20
FIELD AD2 LENGTH 20
FIELD AD3 LENGTH 20

STKNNO FIELD STKNO LENGTH 6

STKRQTY FIELD STKQTY LENGIH 5 JUSTIFY RIGHT

STKDEL FIELD SI'KDEL LENGTH 8

APPENDIX H
(#001) DSl
(9022) NAM
(0093) AD1
(2004) AD2
(#005) AD3
(9006)

(89B7)

(90028)
(2009) ONO
(0919)

FIELD ONO LENGTH 5 OUTPUT

END STREAM

2009 ERRCRS (FDL, REV 16 - 16-FEB-79)

REV. #

PDR 3040 FORM DESCRIPTOR NO. 2

INPUT STREAM DESCRIPTOR STREAM: DSl

COLUMN FIELD FIELD
BOUNDARIES NAME LENGTH
1- 20 NAM 20
21- 490 ADL 20
41- 60 AD2 20
61- 80 AD3 20
81- 86 STRNO 6
87- 91 STKQTY 5
92- 99 STKDEL 8

H - 3 November 1979

APPENDIX H

oOouTPUT
COLWMN
BOUNDARIES

1- 20
21- 49
41- 69
61- 89
81- 86
87- 91
92- 99

100-104

PIR3040

STREAM DESCRIPTOR

FIELD
NAME

NAM
AD1
AD2
AD3
STKNO
STKQTY
SI'KDEL
ONO

FIELD
LENGTH

20
20
20
20

U1 0 U1 O

STREAM: DS1

PDR 3040 FORM DESCRIPTOR NO. 2

(9911) hkdhkkhkhkk
(8012) *kkkkkkkkkk
(8213) hhkkhkkhkkk

(2914) Dsl FCRMAT

(9215) DEVICE VISTAR3

(2016) FIELD 'ORDER ENTRY S YSTEM POSITIN (22,2)
(0917) FIED '- = === ——- - == = ==-=--- ' POSITION (22,3)
(2018) FIELD 'ACCOUNT NAME ' POSITION (14,6)

(0919) NAM FIELD LENGTH 2@ POSITION (35,6) NOPROTECT

(0920) FIELD ' AND ADDRESS' POSITION (14,7)

(0921) ADl1 FIELD LENGTH 20 POSITION (35,7) NOPROTECT
(0022) AD2 FIELD LENGTH 20 POSITION (35,8) NOPROTECT
(0023) AD3 FIELD LENGTH 20 POSITION (35,9) NOPROTECT

(2024) FIELD 'STOCK NUMBER' POSITION (10,12)

(#@25) STKNO FIELD LENGTH 6 POSITION (35,12) NOPROTECT

(2926) FIELD 'QUANTITY' POSITION (14,14)

(2027) STKQTY FIELD LENGTH 5 POSITION (35,14) NOPROTECT

(2028) FIELD 'DELIVERY DATE' POSITION (10,16)

(0029) STKDEL FIELD LENGTH 8 POSITION (35,16) NOPROTECT

(2030) FIELD 'ORDER REFERENCE IS' POSITION (18,20)

(9931L) ONO FIELD LENGTH 5 POSITION (35,20)

(2032) END DEVICE

(9033) DEVICE ONL1200

(9834) FIELD 'ORDER ENTRY S YSTEM POSITION (22,2)
(2935) FIELD '- = === — == == == —-=-- ' POSITION (22,3)
(8036) FIELD 'ACCOUNT NAME ' POSITION (19,6)

(9937) NAM FIELD LENGTH 20 POSITION (35,6) NOPROTECT

(2038) FIELD ' AND ADDRESS' POSITION (19,7)

(9039) AD1 FIELD LENGTH 20 POSITION (35,7) NOPROTECT
(0949) AD2 FIELD LENGIH 29 POSITION (35,8) NOPROTECT
(9041) AD3 FIELD LENGTH 20 pOSITION (35,9) NOHROTECT

(8042) FIELD 'STOCK NUMBER' POSITION (10,12)
(9043) STKNO FIELD LENGTH 6 POSITION (35,12) NOPROTECT
(8044) FIELD 'QUANTITY' POSITION (14,14)

(9945) STKQTY FIELD LENGTH 5 pOSITION (35,14) NOPROTECT
(9046) FIELD 'DELIVERY DATE' POSITION (14,16)
(9047) STKDEL FIELD LENGTH 8 pPOSITION (35,16) NOPROTECT
(30948) FIELD 'ORDER REFERENCE IS' POSITION (14,20)
(9@49) ONO FIELD LENGTH 5 pPOSITION (35,20)

(#050) END DEVICE

(P@51) END FORMAT

¢09@3 ERR(RS (FDL, REV 16 - 16-FEB-79)

H - 5 November 1979

APPENDIX H PIR3040

DEVICE FORMAT MAP FORMAT: DS1 DEVICE: VISTAR3 SIZE: 24 BY 8¢ PAGE: 1

[SES]

B T S T O O O T T N - T SOy S U

ORDER ENTRY SYSTEM |

ACCOUNT NAME |

~ YUV W N

| AND ADDRESS I

+e+ o+

10 | |
11 | |
12 | STCCK NUMBER |

13
14 | QUANTITY |

15 | |
16 | DELIVERY DATE |

17
18
19
20
21
22
23
24 |

ORDER REFERENCE IS Fkkkk

SRESESRSESESESESESIP SIS I S S IR S SIS I S

DE

[SESESESESRSESESES BRI S A S S S R R E I SR SRS RS SRS

YU W N

~

10
11
12

13
14

15
16

17
18
19
20
21
22
23
24

VICE FORMAT MAP

*

S TR T R R TR R

PDR 3040

FORMAT: DS1

*

DEVICE: OWL1200

FORM DESCRIPTOR NO.

SIZE:

24 BY 80 PAGE: 1

LT S T - P Y N T -

|

| ORDER ENTRY SYSTEM |
X

| |
| |
| ACCOUNT NAME |
| AND ADDRESS |
| |
| |
| |
| |
| STQCK NUMBER |
| |
| QUANTITY |
| |
| DELIVERY DATE |
| |
| |
| |
| ORLER REFERENCE IS *kkkk !
|

| |
| |
| |

H - 7

November 1979

2

PCR3040 USE OF FORMS

APPENDIX I

ADVANCED USE OF FORMS

This appendix gives an example of FORMS used in conjunction with an
external login program. (Refer to the Systems Administrator's Guide
PIR3109). This program should be installed 1locally under the
supervision of the system administrator. It is a good example of how
torms can be used to produce a menu-driven approach to operation, and
it is also a good example of how to use COBOL to produce an external

login program.
The program is listed on the following pages.

I - 1 November 1979

APPENDIX I PIR3040

IDENTIFICATION DIVISION.
PROGRAM-ID. DEMO.

'LOGIN'

THE R-MODE SEQUENCE IS TO R *C(B. FORM

THIS CGBOL PROGRAM WAS DEVELOPED WITH THE PRIME FORMS
PACKAGE TO DEMONSTRATE THE ABILITY TO FORMAT SCREENS
WITH A 'MENU' APPROACH TO OPERATOR INTERACTION.

THE SCREEN DEFINITIONS ARE CONTAINED IN THE FILES

LOGINO1 FIRST MENU
LOGINO2 SECOND MENU
LOGINO3 PASSNORD VALILATION SCREEN

THE ONLY 'TRICKY' CODE IN THE PROGRAM IS THE SPECIAL
PROGRAMMING NECESSARY TO ALLON THIS CODE TO BE SAVED
AS AN R-MODE VERSION IN CMDNCO KNOWN BY THE NAME

THE R-MODE CQMPILE OF THIS PROGRAM USES THE STOP LITERAL.
THE V-MODE VERSION USES THE 'EXIT PROGRAM' IN A DuMMY
PARAGRAPH TO FAKE THE COMPILER INTO THINKING THAT THIS

IS A COBOL SUBROUTINE - HENCE NO FILE ASSIGNMENTS - EVER.

* ¥ %k % ¥ F % 3 % % % H F % H H % % %k % ¥ % N % # % % F H * % * *

ENTER A SIASH FOR FILE ASSIGNMENTS
AND SAVE THE RESULT WITH 1/177777
THE V-MODE VERSION MUST BE SEG'ED AND THEN RUN THROUGH
THE SEG UFD CQYMAND PROCEDURE 'CO CMDSEG' THAT WILL MAKE IT
LOOK LIKE THE R-MODE COUNTERPART. THENCE OFF TO CMDNC@ AS 'LOGIN'.

THE PRIME SYSTEM SUBROUTINE 'TIMDAT' CAN BE CALLED
FROM THIS PROGRAM MODULE TO HAVE ACCESS TO LOGIN
SESSION RESOURCE CONSUMPTION DATA.

THIS USER DEPENLENT DATA MIGHT BE WRITTEN OUT TO A
DISK JOB ACCOUNTING FILE FOR FURTHER PROCESSING.

ENVIRONMENT DIVISION.

INPUT-OUTPUT SECTION.

FILE-CONTROL.

*
*
*

SELECT FCRM ASSIGN TO TERMINAL.

DATA DIVISION.
FILE SHECTION.

*
*

*
*

FD FORM [ABEL RECORDS ARE QMITTED.
@1 FORM-RECORD PIC X (40) .

WORKING-STORAGE SECTION.

REV.

g1 INVOKE-CUMMAND.

@5 INVOKE-LITERAL PIC X(9) VALUE 'B#INVOKE'.

2 I - 2

PDR 3040 USE OF FORMS

@5 INVOKE-FORM-NAME PIC X(8) VALUE SPACES.
g1 RELEASE-COMMAND PIC X(9) VALUE '4#RELEASE'.
@1 CLEAR-COQMMAND PIC X (7) VALUE 'H#CLEAR'.
@1 CLEAR-ALL-CQMMAND PIC X(11) VALUE '##CLEAR ALL'.
@1 FUNCTION-KEY-ENABIE PIC X(19) VALUE '##FKEYS ON'.
g1 FUNCTION-KEY-RETURN PIC X(3).
@1 ABSOLUTE-POSITION PIC X(17) VALUE '##rOSITION SELECT'.
@1 PASSNORD-RESPONSE PIC X(8) VALUE SPACES.
71 COVMMAND-LINE.

95 LOGOUT-CQMMAND PIC X(6).

@5 ABBREVIATED-LO REDErINES LOGOUT-COMMAND.

19 FILLER PIC X(2).

19 SHORT-LOGOUT PIC X(2).

19 FILLER PIC X(2).
@5 FILLER PIC X (39) .

*
*
*

PROCEDURE DIVISION.
PARAGRAFH-01.
STOP 'TEMPORARY HALT'.
THE STOP LITERAL IS USED FOR R-MODE PGMS
TO ALLON PROGRAM SAVING AFTER THE FILE ASSIGNMENTS

THE CMIREAD CALL IS USED TO ALLON THE USE OF THIS
PROGRAM AS A SYSTEM WIDE LOGIN ROUTINE
IT TRAPS THE LOGOUT COMMANDS TO INSURE THAT THE USER
DOESN'T GET A MENU AT LOGOUT TIME !!
CALL 'CMREAD' USING COMMAND-LINE.
IF LOGOUT-COMMAND EQUAL 'LOGOUT' OR
SHORT-LOGOUT EQUAL ' '
STOP RUN
ELSE
NEXT SENTENCE.

% ¥ % ¥ % F % F ¥ % % ¥ % * * *

OPEN I-O FORM.

*

* PREPARE FIRST SCREEN MENU
MOVE 'LOGIN@l ' TO INVOKE-FORM-NAME.
WRITE FORM-RECORD FRQM INVOKE-COMMAND.
WRITE FORM-RECCRD FROM FUNCTION-KEY-ENABLE.

WRITE FQRM-RECORD FRQM ABSOLUTE-POSITION.
*

*
*

PARAGRAPH-02.
READ FORM INTO FUNCTION-KEY-RETURN.
IF FUNCTION-KEY-RETURN EQUAL ' 06'
GO TO PARAGRAPH-03
ELSE
GO TO PARAGRAPH-99.

I - 3 November 1979

APHENDIX I PIR3049

*
*

PARAGRAPH-23

WRITE FORM-RECORD FRGM CLEAR-ALL-COMMAND.
WRITE FORM-RECORD FROM RELEASE-CQMMAND.

* PREPARE THE SECOND MENU SCREEN
MOVE 'LOGING2' TO INVOK:-FORM-NAME.,
WRITE FORM-RECORD FROM INVOKE-COMMAND.
WRITE FORM-RECCRD FROM FUNCTION-KEY-ENABLE.
WRITE FORM-RECORD FRQM ABSOLUTE-POSITION.

* OK..NON GET THE FUNCTION KEY RETURN
READ rORM INTO FUNCTION-KEY-RETURN.
IF FUNCTION-KEY-RETURN EQUAL ' 04'
GO TO PARAGRAPH-@4
ELSE

GO TO PARAGRAPH-99.
*

*
*

PARAGRAPH-04.

WRITE FORM-RECORD FR(M CLEAR-ALL-COMMAND.
WRITE FORM-RECORD FROM RELEASE-CUMMAND.
MOVE 'LOGIN@3' TO INVOKE-FORM-NAME,
WRITE FORM-RECORD FRQM INVOKE-COMMAND.
READ FORM INTO PASSNORD-RESPONSE.
IF PASSWORD-RESPONSE NOT EQUAL 'TB

GO TO PARAGRAPH-99
ELSE

GO TO PARAGRAPH-98.

PARAGRAPH-98.
* HOOK HERE FOR ACCOUNTING DATA
* (R PASSN(RD REC(RDS ETC..
WRITE FORM-RECORD FROM CLEAR-ALL-COMMAND.

WRITE FORM-RECORD FROQM RELEASE-CUMMAND.
CLOSE F(RM,

DISPLAY '**** TRIAL BALANCE APPLICATION INVOKED HERE ***%!
STOP RUN.

PARAGRAR-99.

* HOOK HERE FCR ACCOUNTING FILE INFO

* CALL 'TIMDAT' AND RECORD FUNCTION SEQUENCE AND PW
WRITE FORM-RECORD FROM CLEAR-ALL-COMMAND.

WRITE FORM-RECORD FROM RELEASE-COMMAND.
CLOSE F(RM.

DISPLAY 'FUNCTION ERRCR TRAP INVOKED'.
STOP RUN.
PARAGRAPH-DUMMY.

REV. @ I - 4

PDR3040 USE OF FORMS

EXIT PROGRAM.

I - 5 November 1979

APPENDIX I PIR3040

The forms descriptor associated with this program is as follows:

LOGING1 STREAM
FIELD SELECT LENGTH 1
FIELD (DATE 3,DATE3)
FIELD (TIME1l, TIME1)
END STREAM

*
*
*

LOGIN@1 FORMAT
DEVICE OWL1200
FIEID ' ICP P35 CONTROL CENTER";
POSITION (15,2) NOPROTECT
DATE3 FIEID LENGTH 8 POSITION (25,4) NOPROTECT

TIME1 FIELD LENGTH 5 POSITION (47,4) NOPROTECT
FIELD 'F1 ACCOUNTS RECEIVABLE' POSITION (25,7)
FIELD 'F2 ACCOUNTS PAYABIE' POSITION (25,9)
FIEID 'F3 WORD PROCESSING' POSITION (25,11)

FIELD 'F4 PROGRAM DEVELOPMENT' POSITION (25,13)

FIELD 'F5 SYSTEM ADMINISTRATOR' POSITION (25,15)

FIELD 'F6 GENERAL LEDGER' POSITION (25,17)

FIELD 'SELECT FUNCTION KEY ACTIVITY' POSITION (5,21);

NOHROTECT BLINK
SELECT FIELD LENGTH 1 POSITION (38,21) NOPROTECT

END DEVICE

END FORMAT

PDR 3040 USE OF FORMS

LOGIN@2 STREAM
FIELD SELECT LENGTH 1

END STREAM
*

*
*

LOGIN@2 FORMAT
DEVICE OWNL1209
FIEID 'GENERAL LEDGE R'POSITION (25,4);
NOPROTECT
FIELD 'F1 BUDGET RATIO ANALYSIS' POSITION (25,9)
FIELD 'F2 JOURNAL' POSITION (25,12)
FIELD 'F3 PROFIT LOSS STATEMENT' POSITION (25,15)
FIELD 'F4 TRIAL BALANCE' POSITION (25,18)
FIELD 'SELECT FUNCTION KEY ACTIVITY' POSITION (5,21);
NOHROTEC'T BLINK
SELECT FIELD LENGTH 1 POSITION (38,21) NOPROTECT
END DEVICE
END FRMAT

IOGING3 STREAM
FIELD PASSWD LENGTH 8

END STREAM
*

*

LOGIN@3 FORMAT
DEVICE OWL1209
FIELD 'VALIDATE YOUR TRIAL BALANCE ACCESS PASSWORD' ;
POSITION (19,12)
PASSWD FIELD LENGTH 8 POSITION (58,12) NOPROTECT NODISPLAY
END DEVICE
END FORMAT

I - 7 November 1979

PDR 3040 ERROR MESSAGES

APPENDIX J

ERROR MESSAGES

ERROR MESSAGE FORMAT

All errors generated by the FDL translator and FAP are of the form:
C#inn text message

Where nn represents a unique two-digit error code for each type of

error. The message printed is a one-line diagnostic of the cause of

the error and possibly what action has been taken by the translator.

The following paragraphs describe the error codes generated by FDL.

Unless otherwise indicated, the statement that caused an error is

ignored by FDL.

#DL ERROR MESSAGES

The following paragraphs list FDL error messages and explanations.

C#00 BAD STATEMENT FORMAT

The contents of the statement field is not an alphanumeric text
item.

C#J1 STATEMENT NOT RECOGNIZED.
The statement field does not contain a valid FDL statement.
C#02 ARGUMENT REQUIRED.
An argument is required following the statement name.
C#93 ARGUMENT TOO LONG.
A text item exceeds 80 characters in length.
C#24 MULTIPLY DEFINED MACRO.

A macro by the same name already exists. ‘This statement is
1ignored and the previous macro definition is retained.

C#35 BAD NAME FIELD.

The name field (starting in the left margin) contains an illegal
character.

J - 1 November 1979

APHENDIX J PIR3040

C#26

C#a7

C#o8

C#09

C#10

C#ll

C#l2

Ci#3

C#14

C#15

REV.

NAME REQUIRED.

A name must be present in the name field (starting in the 1left
margin). This error is generally issued because a mapped field
in the FORMAT descriptor is missing a name.

STATEMENT FIELD IS BLANK.

A name was present in the name field, but no statement followed.
NO END STATEMENT; END ASSUMED

An end-of-file was encountered while processing a STREAM or
FORMAT descriptor. An END STREAM or END FORMAT is assumed.

NOT PROCESSING STREAM DESCRIPTOR.

An END STREAM or SUBSTREAM statement was issued and a stream
descriptor is not being processed.

END SUBSTREAM MISSING. IT IS ASSUMED HERE,

An END STREAM statement was issued while a substream block was
being processed. = An END SUBSTREAM is assumed prior to the END
STREAM.

NOT PROCESSING SUBSTREAM

An END SUBSTREAM statement was issued while not processing a
substream block.

NOT PROCESSING FORMAT

An END FORMAT or a DEVICE statement was issued while not
processing a FORMAT descriptor.

END DEVICE MISSING. IT IS ASSUMED HERE.

An END FORMAT was encountered while still processing a device
description. An END DEVICE is generated prior to the END
FORMAT.

NOT PROCESSING DEVICE BLOCK.

A FIELD definition was issued after a FORMAT statement, but
betore a DuVICE block was started.

END STATEMENT MISSING; IT IS ASSUMED HERE.
A STREAM or FORMAT descriptor was not termminated before another

was started. An END STREAM or END FORMAT is generated prior to
this statement.

C#17

C#18

C#19

C#21

C#22

C#23

C#24

C#25

C#26

C#27

PDR 3040 ERROR MESSAGES

BAD PARAMETER.

This indicates that an unrecognizable parameter was present on a
FIELD statement.

INVALID FQRMAT NAME.

The name supplied following the FORMAT parameter in the STREAM
statement does not contorm to the naming conventions discussed
earlier in this document.

NAME NOT PERMITTED.

A name was present on a statement which does not permit one.
This usually means that a literal field in the FORMAT descriptor
contains a name.

AILREADY PRUCESSING SUBSTREAM,

A SUBSTREAM statement was issued while already processing a
substream block.

VALIDATION STRING MISSING.

The VALIDATE parameter is present on a STREAM descriptor field,
but is not tollowed by any validation masks.

BAD JUSTIFY PARAMETER.

The JUSTIFY parameter in the FIELD statement is not followed by
one of its four valid arguments.

MAPPING SPECIFICATION REQUIRED.

A STREAM descriptor FIEID is not followed by any mapping
specification.

BAD MAPPING SPECIFICATION.

A STREMM descriptor FIELD is not followed by a valid mapping
specification.

BAD LENGTH SPECIFICATION.

The LENGTH parameter in either STREAM or FORMAT descriptor is
not tollowed by a valid numeric argument.

BAD INPUT-OUTPUT SPECIFICATION.
An INPUT, OUTPUT, or INPUT-OUTPUT parameter has been misused.

This usually means that INPUT-OUTPUT or OUTPUT has been issued
when processing an input-literal field.

J - 3 November 1979

APPENDIX J PIR3040

C#28

C#29

C#30

C#31

C#32

C#33

Ci#34

C#35

C#36

C#37

REV,

MAP FIELD NAME TOO LONG.

The map to field name in a STREAM descriptor FIELD is longer
than eight characters.

ALREADY PROCESSING DEVICE BLOCK.

A DEVICE statement has been issued while already processing a
device block.

SYNTAX ERROR.

This general error message is issued whenever two items in a
field definition are separated by an 1llegal character.

BAD POSITION PARAMETER.

The POSITION parameter in a FORMAT descriptor FIELD is not
tollowed by a valid argument.

POSITION OUT OF RANGE.
One or more of the arguments in the POSITION parameter is zero.
LENGTH PARAMETER MISSING.

The length declaration for a STREAM or FORMAT descriptor FIELD
is required but not supplied.

POSITION PARAMETER MISSING.

The POSITION parameter in a FORMAT descriptor FIELD is not
supplied.

UNRECOGNIZED SYSTEM INFORMATION FIELD NAME.

The name specified in a System Information Field is
unrecognized.

INPUT/OUTPUT SPECIFICATION NOT PERMITTED.

An INPUT, OUIPUT, or INPUT-OUTPUT specification was included on
a system information field definition.

UNRECOGNIZED PARAMETER.

See Ci#17.

C#38

C#39

CHa0

C#41

C#42

Ci#43

C#a4

C#45

C#46

PDR 3040 ERROR MESSAGES

NOT PROCESSING STREAM/DEVICE FORMAT BLOCK.

A field definition has been issued outside of a STREAM or FORMAT
descriptor. This and all other FIELD declarations up to the
next STREAM, FORMAT, or DEVICE statement are ignored. This
error message is issued once per each violation.

MULTIPLY DEFINED SYMBOL.

A FIELD name has been redefined within the same STREAM or FORMAT
descriptor. This field is processed normally, but will produce
undesired results at run-time.

BAD START SPHCIFICATION.

The argument following the START specification in the FIELD
definition within a STREAM is not numeric and greater than zero.

ILLEGAL MACRO ARGUMENT SPECIFIER.

The item tollowing the argument reference symbol (}) is not
nuneric and greater than zero.

EQF ENCOUNTERED BEFORE END REPEAT.

An end-of-file was encountered on the input file before a repeat
block was temminated. This usually causes abortion of the
translation.

END REPEAT MISSING - REPEAT BLOCK IGNORED.

An END statement was encountered while processing a REPEAT
block. The entire REPEAT block is ignored and the END statement
processed.

STATEMENT NOT ALLOWNED WITHIN REPEAT BLOCK.

A statement other than a FIELD statement was found within a
REPEAT block. The statement 1is ignored; processing of the
REPEAT block continues.

INPUT/OUTPUT SPECIFICATION REQUIRED.

An input/empty-condition or output-literal field did not contain
a required INPUT or OUTPUT statement.

INCONSISTENT SUBSTREAM USAGE.

A FIELD definition appears outside of a SUBSTREAM block in a
multi-record stream definition -or- the user has attempted to
start a SUBSTREAM definition when previously defined FIELDS do
not reside within a SUBSTREAM. This error message is only
issued once per STREAM descriptor.

J - 5 November 1979

APPENDIX J PIR3040

FAP ERROR MESSAGES
Like FDL error messages, all FAP error messages are of the form:
t#nn text message

The t in the error code represents the error type. At present,
are three types:

o F - file system/input file/control block error
® S - syntax error
e T - TCB or ICF format error

there

nn represents a two-digit error number, unique for each error message

generated by FAP.

The following paragraphs list FAP error messages and explanations.

F#00 CONTROL BLOCK UFD DOES NOT EXIST.

An operation other than CREATE was attempted and the forms UFD

("FORMS*') does not exist on the system.

F#31 CONTROL BLOCK DIRECTORY DOES NOT EXIST.

An operation other than CREATE was attempted and the FORMS
segment directory ('FMS.**') does not exist within the FORMS

UFD.

F#04 INPUT FILE IS EMPTY.
The input file specified in an ADD or REPLACE command is
empty.

F#35 PREMATURE EOF.

An EOF was encountered on the input file in an ADD or REPLACE
command betore the end-of-data record. The module is deleted
from the control directory. This is usually caused by the
user pressing the BREAK key in the middle of an FDL

compilation.

F#06 FILE DOES NOT EXIST.

The input file specified in an ADD or REPLACE command does not

exist in the current UFD.

F#37 BAD INPUT FILE.

The input file specified in an ADD or REPLACE command is not a
valid FDL output binary file. No action is taken with this

file.

REV. ¢ J - 6

F#08

F#29

F#10

F#ll

F#12

S#20

S#71

S#02

S#03

PDR 3040 ERROR MESSAGES

I/0 LIST OVERFLON, LINK SUPPRESSED.

FAP ran out of room while attempting to 1link a STREAM
definition to a FORMAT an out of roam while attempting to link
a STREAM definition to a FORMAT definition. The internal I/0
buffer must be enlarged betore this formm definition may be
added. Increase the wvalue of IOLSIZ in the $INSERT file
FORMS>FAP>IMBUFS and repbuild FAP.

STREAM/FORMAT BUFFER OVERFLOW.

FAP ran out of room attempting to read a STREAM or FORMAT
descriptor binary ran out of roam attempting to read a STREAM
or FORMAT descriptor binary file. The buffer must be enlarged
and FAP rebuilt betore this form definition can be added.
Increase the wvalue of SFBSIZ in the $INSERT file
FORMS>FAP>IMBUFS and repuild FAP. SFAP>IMBUFS and rebuild
FAP.

ERROR READING STREAM / FORMAT DESCRIPTION.

A file system error occurred while attempting to load a STREAM
or FORMAT descriptor.

ERROR READING / DELETING LINK FILE.

A file system error occurred when FAP was trying to purge a
linked form definition file.

ERRCR RENAMING LINK FILE,

An error occurred when FAP attempted to rename a 1link file
tollowing a PURGE operation.

FILE NAME REQUIRED.

An ADD or REPLACE command was issued, but no file name
tollowed. The command is ignored.

BAD FORM NAME SPECIFIER.

The form name specifier contained a syntax error. This
command is ignored.

BAD ARGUMENT.

One of the parameters in the command line was not recognized.
The command is ignored.

BAD TYPE.
The form name specifier contained a type declaration other

than STR (stream) or FMT (format). This command is ignored.

J - 7 November 1979

APPENDIX J PIR3040

S#04

S#35

S#26

S#07

T#00

T#01

T#02

T#03

T#04

REV.,

NO FORM NAME SPECIFIED.

A PURGE command was issued without a required form name
specifier. The PURGE command is ignored.

MISSING ARGUMENT.

The TCB command was issued without any following user number.
The command is ignored.

BAD USER NUMBER.

The user number specified in the TCB command is not an integer
nunber greater than zero. The TCB command is ignored.

BAD TERMINAL NAME.

The user attempted to assign the name PRINTER as a temminal
type in a TCB command. This is not permitted and the TCB
command is ignored.

DCF DEVICE INTERLUDE FIELD ERROR.

The device interlude number field in the given DCF entry is
not numeric or greater than zero. The DCF must be edited and
corrected before continuing.

DCF LCEVICE NAME FIELD ERROR.

The device name field in the given DCF entry contains an
1llegal character or is empty. The DCF must be edited and
corrected before continuing

DCF DEVICE ABBREVIATION FIELD ERROR.

The device abbreviation field in the given ICF entry is empty

or contains a space or 1llegal character. The DCF must be
edited and corrected before continuing.

TCB LINE/COLUMN FIELD ERROR.

The line or column specification field in the given DCF entry
is empty, contains a non-numeric value, or is less than 1.
The ICF must be edited and corrected before continuing.

MAX DEVICE NUMBER EXCEELED IN DCF.

The ICF contains an entry with a device interlude number
greater than fifty (58). This error is issued tram the
GENERATE command only. Only fifty (50) (!) devices may be in
use at one time.

PDR 3040 ERROR MESSAGES

T#05 DEVICE CONTROL FILE EMPTY.

The ICF is empty and the user issued a TCB or GENERATE
cammand.

T#36 TERMINAL UNDEFINED,

The terminal type specified in the TCB command is not present
in DCF.

J - 9 November 1979

##, prefix for run-time
directives 3-1

SINSERT files 5-19

ADD command 6-1

Advanced use of FORMS I-1
Alternate input file 5-19

Application program, compiling
7-18, 8-13

Application program, loading
7-18, 8-14

Applications programs, FORMS, how
to write 2-1

Attribute modification directives
4-8

BLINK parameter 5-15
Bug chart D-1
CLEAR, run-time directive 4-3

COBOL program example, form
descriptor for H-1

COBOL program listing, sample
G-1

Compiling the application program
7-18, 8-13

Configurable I/0 list 4-19

Configuration file, terminal
B-2

Control file, device B-2
CREATE command 6-2

Creating the form descriptor file
7-11, 8-9

Data areas, setting up 7-13,
8-10

INDEX

Data description, purpose of
3-1

Data format 3-2

Data stream descriptor 3-2
Default options 5-21
DEFINE statement 5-17

Defining device types 7-12,
8-10

Descriptor structure 5-2
Descriptor, data stream 3-2
Descriptor, device format 3-3
Descriptor, field 3-2

Device control file B-2
Device definition database B-2

Device definition statements
5-5

Device driver, offline printer
B—4

Device driver, Owl B-5
Device driver, VISTAR/3 B-4
Device drivers, installing Cc-6

Device drivers, Prime supplied
B-3

Device drivers, user written
c-1

Device format descriptor 3-3
Device I/0 B-1
Device I/O mechanism B-1

Device input/output system B-1

Device mapping scheme B-3
DEVICE statement 5-5

Device types, defining 7-12,
8-10

Direct field 5-6

Directives, attribute
modification 4-8

Directory information A-1

Display atrtribute Parameters
5-15

DISPIAY parameter 5-16
EJECT statement 5-19

END DEVICE statement 5-5
END FORMAT statement 5-5
END REPEAT statement 5-18
END STREAM statement 5-4
END SUBSTREAM statement 5-4
Error handling, run-time 4-9
Error messages J-1

Example COBOL program 8-1
Example FORTRAN program 7-1
FAP command format 6-1

FAP example 6-9

FAP functions 1-6

FAP overview 1-6

FAP see also Forms Administrative

Processor

FAP, see FORMS Administrative
Processor

INDEX

FDL 5-1
FDL command 3-7
FDL listing 3-9

FDL listing details, specifying
7-16, 8-12

FDL options 3-9

FDL source, translating 7-18,
8-13

FDL syntax 5-1
FDL temporary files 5-22

FDL translation command format
5-20

Field definition 3-4
FIELD definition 3-4

Field definition examples
5-13, 5-16

Field descriptor 3-2

Field generation, iterative
5-17

FIELD parameter for FORMAT
5-14

FIELD parameters 5-8
Field statement differences
between FIELD and STREAM
descriptors 3-7

Field statements within a format
descriptor 5-14

Field statements within a stream
descriptor 5-6
FIELD types 5-6, 5-14

File Description Language command
3-7

File handling, run-time 4-8
Filler field 5-7

FIX parameter 5-11

FKEYS, run-time directive 4-1

FORCEREAD, run-time directive
4-4

Form definition delimiter
statements 5-2

Form definition overview 2-1
Form definition summary 3-3
Form definitions 3-1

Form description, setting up
7-11, 8-9

Form descriptor file, creating
7-11, 8-9

Form descriptor for COBOL program
example H-1

Form descriptor for FORTRAN
program example F-1

Form descriptor preparation
3-5

Form, how to define 3-1
Format coding 3-5
FCRMAT descriptor 3-2

Format descriptor boundaries
3-5

Format of data 3-2
FORMAT statement 5-5

Forms Administrative Processor
see also FAP

INDEX

FORMS Administrative Processor,
see FAP

FORMS Administrative Processor
6-1

Forms Catalog, installing form
descriptor 7-18, 8-14

FORMS Definition Catalog overview
1-6

Forms Definition Language 5-1
FORMS directives summary 2-5

FORMS directives, definitions
2-3

FORMS run-time directives 4-1
FORMS, advantages of 1-2
FORMS, components of 2-3
FORMS, purpose of 1-2

FORMS, using overview 2-3

FORTRAN program example form
descriptor F-1

FORTRAN program, sample E-1
FREE parameter 5-16

Functional overview, FORMS and
PRIMOS 14

GENERATE command 6-3
HOLD parameter 5-16

I/0 statement, FORMS, how to
write 2-1

1/0, list, configurable 4-19
Input data 7-14, 8-12

Input empty conditional field
5-7

Input literal field 5-6

INPUT parameter 5-9
INPUT-OUTPUT parameter 5-9
Installing FORMS A-1l

INVOKE, run-time directive 4-5
IOCS interlude B-1

Iterative field generation
5-17

JOURNAL command 6—4
JUSTIFY parameter 5-8, 5-15
Language manuals, related 1-7

Languages, application, for FORMS
1-5

LENGTH parameter 5-8, 5-15
LINK command 64
LIST command 6-5

Listing control statements
5-19

Listing details, FDL, specifying
7-16, 8-12

Listing features 7-17
Literal data 7-14, 8-12
Literal field 5-14

Loading the shared library
4-19

Macro definition 5-17
Macro definitions, using 7-15

Manual, using 1-1

INDEX

Manuals, related 1-7
Mapped field 5-14
Mapping scheme, device B-3

Mapping stream and format
descriptor fields 3-4

MIDAS file template 8-15
Naming conventions 5-2
NOBLINK parameter 5-16
NODISPIAY parameter 5-16
NOFIX parameter 5-11

NOLIST statement 5-19
NOPROTECT attribute, using 3-5
NOPROTECT parameter 5-15
NORMAL VIDEO parameter 5-16

Offline printer device driver
B4

Operating system and utilities
manuals, related 1-7

Qutput data 7-14, 8-12
Output literal field 5-6
OUTPUT parameter 5-9
Overview of FORMS 1-1
Overview, manual 1-1

Owl device driver B-5

POSITION parameter 5-15

Position parameter, relative
5-18

POSITION, run-time directive
4-5

PRIMOS interfaces 1-3

PRINT, run-time directive 4-5
Problem solving chart D-1
Program, running 7-19, 8-16
Programming aids 5-16
PROTECT parameter 5-15
PURGE command 6-5

QUIT command 6-7

Related manuals 1-7

Relative position parameter
5-18

RELEASE, run-time directive
4-6

REPEAT statement 5-18

Repeated text 7-16

REPLACE command 6-7

REVERSE VIDEO parameter 5-16
Run-time directives, FORMS 4-1
Run-time directives, using 4-1
Run—-time error handling 4-9
Run-time file handling 4-8
Run-time message 5-22

Running the pregram 7-19, 8-16

Sample COBOL program listing
G-1

Sample FORTRAN program E-1

Setting up a form description
7-11, 8-9

INDEX

Shared library, loading 4-190
SPACE-FILL parameter 5-9
START parameter 5-12

Stream coding 3-7

STREAM definition statements
5-4

STREAM descriptor 3-2
STREAM statement 5-4
SUBSTREAM statement 5-4

SWBSTREAM, run—-time directive
4-6

SUBSTREAMS, using 7-12

Syntax, FDL 5-1

System informational field 5-7
TCB command 6-7

Template, MIDAS file 8-15
Temporary files, FDL 5-22

Terminal configuration file
B-2

Text, repeated 7-16

Translating FDL source 7-18,
8-13

Trouble shooting D-1
Using the manual 1-1
VALIDATE parameter 5-10

VALIDATE, run-time directive
4-6

Variable data 7-14, 8-12

INDEX

VISTAR/3 device driver B-4

ZERO-FILL parameter 5-9

	Front Cover
	
	Title Page
	i-1
	i-2
	Table of Contents
	i-3
	i-4
	i-5
	i-6
	Section 1
	Introduction to FORMS
	1-1
	1-2
	1-3
	1-4
	1-5
	1-6
	1-7
	1-8
	Section 2
	Writing Application Programs for Use Wit FORMS
	2-1
	2-2
	2-3
	2-4
	2-5
	2-6
	Section 3
	Describing Data Used by FORMS
	3-1
	3-2
	3-3
	3-4
	3-5
	3-6
	3-7
	3-8
	3-9
	3-10
	Section 4
	FORMS Run-Time Directives
	4-1
	4-2
	4-3
	4-4
	4-5
	4-6
	4-7
	4-8
	4-9
	4-10
	Section 5
	FORMS Definition Language
	5-1
	5-2
	5-3
	5-4
	5-5
	5-6
	5-7
	5-8
	5-9
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	Section 6
	FORMS Administrative Processor (FAP)
	6-1
	6-2
	6-3
	6-4
	6-5
	6-6
	6-7
	6-8
	6-9
	6-10
	Section 7
	Example FORTRAN Program
	7-1
	7-2
	7-3
	7-4
	7-5
	7-6
	7-7
	7-8
	7-9
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	Section 8
	Sample COBOL Program
	8-1
	8-2
	8-3
	8-4
	8-5
	8-6
	8-7
	8-8
	8-9
	8-10
	8-11
	8-12
	8-13
	8-14
	8-15
	8-16
	Appendix A
	Installation
	A-1
	A-2
	A-3
	A-4
	Appendix B
	Device I/O
	B-1
	B-2
	B-3
	B-4
	B-5
	B-6
	Appendix C
	User-Written Device Drivers
	C-1
	C-2
	C-3
	C-4
	C-5
	C-6
	C-7
	C-8
	Appendix D
	Trouble Shooting
	D-1
	D-2
	D-3
	D-4
	Appendix E
	Sample FORTRAN Program
	E-1
	E-2
	E-3
	E-4
	E-5
	E-6
	Appendix F
	Form Descriptor for FORTRAN Program Example
	F-1
	F-2
	F-3
	F-4
	F-5
	F-6
	F-7
	F-8
	F-9
	F-10
	F-11
	F-12
	Appendix G
	Sample COBOL Program Listing
	G-1
	G-2
	G-3
	G-4
	Appendix H
	Form Descriptor for COBOL Program Example
	H-1
	H-2
	H-3
	H-4
	H-5
	H-6
	H-7
	H-8
	Appendix I
	Advanced Use of FORMS
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	Appendix J
	Error Messages
	J-1
	J-2
	J-3
	J-4
	J-5
	J-6
	J-7
	J-8
	J-9
	J-10
	Index
	X-1
	X-2
	X-3
	X-4
	X-5
	X-6
	Blank
	
	
	
	
	
	
	Back Cover

