
Programmers Reference
MICROSOFf
MODULAR
WINDOWS™

'"

SOFTWARE DEVELOPMENT KIT

Programmer's Reference

Microsoft® Modular Windows™
Software Development Kit

Microsoft Corporation

Information in this document is subject to change without notice. Companies, names, and data used in
examples herein are fictitious unless otherwise noted. No part of this document may be reproduced or
transmitted in any form or by any means, electronic or mechanical, for any purpose, without the
express written permission of Microsoft Corporation.

©1992 Microsoft Corporation. All rights reserved.

Microsoft, MS, MS-DOS, and the Microsoft logo are registered trademarks, and Windows is a
trademark of Microsoft Corporation in the USA and other countries.

IBM and OS/2 are registered trademarks of International Business Machines Corporation.
Tandy is a registered trademark, and Savell, Video Information System, and VIS are trademarks of

Tandy Corporation.
TrueType is a registered trademark of Apple Computer, Inc.

Document No. MM37744-1192
Printed in the United States of America.

Contents

Introduction .. xi
How to Use This Manual . xi
Document Conventions. xii

Chapter 1 User-Interface Controls...................................... 1-1
User-Interface Elements Not Available in Modular Windows. 1-1
Using the Hand Control as an Input Device 1-2

User Input with a Hand Control 1-3
Moving the Focus Using Tabbing and Roaming Modes 1-3

Compound Focus and Power-User Mode 1-4
Using the Mouse and Keyboard as Input Devices 1-5
TV User-Interface Controls . 1-5

TV Button Control (TVBUTTON). 1-6
TV Button Styles . 1-7

TV Scroll Bar and TV Gauge Control (TVSCROLLBAR) 1-8

TV Scroll-Bar Styles . 1-9
TV Scroll-Bar Sizing ... 1-10
Getting Input from TV Scroll Bars . 1-10

TV List-Box Control (TVLISTBOX) 1-10
TV List-Box Styles ... 1-12

TV List-Box Messages.. 1-13
Owner-Draw TV List Boxes 1-14

TV Scroll-Pad Control (TVSCROLLPAD) 1-15
TV Scroll-Pad Styles ... 1-15
Getting Input from a TV Scroll Pad 1-16

TV Spin-Button Control (TVSPINBUTTON) . 1-16
TV Spin-Button Styles .. 1-17
Getting Input from TV Spin Buttons 1-17

TV Static Control (TVST A TIC). 1-17
TV Static-Control Styles . 1-17

TV Show-Box Control (TVSHOWBOX) 1-19
TV Show-Box Control Styles 1-20
TV Show-Box Messages 1-20

iv Contents

TV Keyboard Control (TVKEYBOARD) 1-21
TV Keyboard Control with Prompt and Text Display 1-21
Basic TV Keyboard Control 1-23
TV Keyboard Controls and Input Focus 1-25

TV Edit-Box Control (TVEDITBOX) 1-25
Edit-Box Control Styles. 1-26
TV Edit-Box Control Messages 1-26

Predefined Control-Class Names 1-28
TV User-Interface Functions 1-29
Adding Bitmaps to Controls 1-29
Changing Control Colors. 1-30
Enabling and Disabling Controls 1-31

The Focus Manager .. 1-31
Focus-Manager Functions .. 1-31
Focus-Manager Messages .. 1-32
Constrained and Unconstrained Tabbing 1-32
Using the Focus Manager with Custom Controls 1-32

Adding Controls to the Focus Manager 1-33
Setting Focus-Direction Vectors 1-33
Passing WM_KEYDOWN Messages to the Focus Manager 1-33

Chapter 2 Hand-Control Services 2-1
The Hand Control. 2-1

Hand-Control Functions and Macros . 2-2
Getting Input from the Hand Control . 2-3
Tabbing and Roaming Modes . 2-4

Using Tabbing Mode .. 2-4
Using Roaming Mode. 2-4

Chapter 3 Video Services. 3-1
Display Drivers. 3-1

Choosing Display Driver Resolution . 3-1
Using the NEWTRANSPARENT Background Mode 3-2

About the Default Palette .. 3-3
Avoiding Color Matching Anomalies 3-3

The DisplayDib and DisplayDibEx Functions . 3-3
Supported File Formats and Resolutions . 3-4
TV-Based Player Pixel Aspect Ratios 3-4

Directly Accessing Video Memory 3-5
Direct-Video Access Macros 3-5

Contents v

Chapter 4 Core API and Extension
Libraries Support . 4-1
Core API Support . 4-1
Extension Libraries Support . 4-8

Registration Database (SHELL.DLL) . 4-8
Data Decompression (LZEXPAND.DLL) 4-9

Stress Testing (STRESS.DLL) . 4-9
MS-DOS Function Support ... 4-9

Unchanged INT 21H Functions 4-10
Redirected INT 21H Functions 4-11

MCI Error Codes .. 4-12

Chapter 5 Function Directory......... 5-1
DisplayDib. 5-2
DisplayDibEx. 5-4
EnterDV A. 5-8
fmAddWindow ... 5-9

fmDeleteWindow .. 5-10
fmGetLastCursorPos . 5-10
fmGetLastDirection. 5-11
fmGetWindowVectors .. 5-11
fmisFocusMessage .. 5-12
fmSetCursorPos . 5-13
fmSetWindowVectors .. 5-13
fmTranslateHCKey .. 5-14
HC_IS_HC. 5-14
HC_KEY_OFFSET .. 5-15

HC_PLA YER. 5-15
HC_ VKN2VK .. 5-16
hcControl . 5-16
hcGetCursorPos ... 5-20
hcSetCursorPos ... 5-20
LeaveDVA ... 5-21
tvGetHighlightFrame ... 5-21
tvGetStockObject. 5-22
tvGetUIFlags ... 5-22
tvSetHighlightFrame ... 5-23
tvSetUIFlags. 5-24

vi Contents

Chapter 6 Message Directory. 6-1
KM_CHAR .. 6-2

KM_GETDEFKEY ... 6-2

KM_GETPROMPT. 6-3

KM_GETPROMPTLENGTH. 6-3
KM_GETRECIPIENT ... 6-4
KM_GETTEXTLIMIT .. 6-4

KM_KEYDOWN ... 6-5

KM_KEYUP . 6-5

KM_MOVESKB ... 6-6

KM_SETDEFKEY . 6-6
KM_SETDEFTEXT . 6-7

KM_SETPROMPT . 6-8

KM_SETRECIPIENT . 6-8

KM_ WAKEUP .. 6-10

LB_GETPOPUPRECT ... 6-10

LB_GETSELAREA .. 6-10

LB_SETSELAREA .. 6-11

SBM_ENABLE_ARROWS . 6-11

SBM_GETCHANNELAREA. 6-12

SBM_SETCHANNELAREA. 6-12
SM_GETDISPLA YEXTENT. 6-13

SM_SETDISPLA YEXTENT 6-13

WM_GETBITMAP 6-14

WM_GETCOLOR ... 6-16

WM_QUERYFOCUS .. 6-17
WM_SETBITMAP . 6-18

WM_SETCOLOR . 6-19

Chapter 7 Data Structures 7-1
Data Structure Overview ... 7-1
Data Structure Reference. 7-1
DIRVECTORS ... 7-2

TV_CTLBITMAP .. 7-2
TV _CTLCOLOR ... 7-3
TV _FACEBITMAP. 7-4

Contents vii

Chapter 8 File Formats . 8-1
RGB DIB Formats. 8-2

BITMAPINFOHEADER Structure for RGB555 and RGB565 DIBs. 8-2
RGB555 and RGB565 Pixel Encoding . 8-3

Chapter 9 Tools . 9-1
Debugging Applications on a TV-Based Player 9-2

Hardware Requirements for Debugging 9-2
About the Transport Layer and File Redirection 9-2
Starting the Transport Layer. 9-3
Using the Transport Layer TSR Tool. 9-3

Command-Line Syntax .. 9-3
Using the Redirected File Server Tool. 9-4

Command-Line Syntax .. 9-4
Tips for Using File Redirection. 9-5

Using the NoEcho Utility to View Debug Messages 9-5
Command-Line Syntax .. 9-5

Using Modular Windows 80286 Debugger. 9-6

Starting 80286 Debugger. 9-6
Command-Line Syntax .. 9-6
Tips for Using 80286 Debugger 9-7

Using Modular Windows Heap Walker 9-7
Changes in Appearance. 9-8
Changes in Functionality. 9-8
Running Heap Walker on a TV-Based Player. 9-8

Using the MS-DOS Monitor. ... 9-9
Command-Line Syntax .. 9-9

Using the Color Table Converter 9-10
Command-Line Syntax 9-10
About the Reference Color-Table File . 9-11

The Conver24 Utility ... 9-12
About Digital Filtering .. 9-13
About Conver24. 9-13

Filtering Capabilities . 9-13
Image Scaling with Conver24. 9-14

Using Conver24 . 9-14
A Sample Low-Pass Filter 9-15
Writing Filter Scripts ... 9-16

viii Contents

Appendix A VIS Memory-Cartridge Services A-1
About Memory Cartridges .. A-1

Memory-Cartridge Function Overview A-1
Using the Memory-Cartridge Services A-2

Registering Memory-Cartridge Sections A-2
Naming Memory-Cartridge Sections A-2

Handling Missing and Unformatted Cartridges A-3

Handling Non-Existent Sections A-3
Handling Full Memory Cartridges A-4

About the MCMan Utility A-4
Running MCMan ... A-5

Using Memory-Cartridge Services with MS-DOS Applications A-5

Installing Applications on Memory Cartridges A-5
Memory-Cartridge Function Directory A-7

mcAlloc ... A-8

mcinit .. A-9

mcRead ... A-9

mcRegister ... A-10
mcStatus ... A-11

me Write .. A-12

Memory-Cartridge Data-Structure Directory A-13

MCSTATUS .. A-13

Appendix B VIS Programming Notes B-1
Developing Applications for VIS . B-1

Detecting if an Application is Running on a VIS Player B-2

Exiting an Application and Ejecting the CD-ROM Disc B-3

Setting Mixer Levels .. B-3
Authoring MIDI Files ... B-4

Setting General MIDI Mode B-4
Setting Microsoft Base-Level Mode B-5

Authoring Video Files ... B-5

Contents ix

YUV DIB Formats. B-6
BITMAPINFOHEADER Structure for TYUV8 and TYUV16 DIBs B-7
TYUV8 Pixel Encoding. B-8

Companding of Luminance and Chrominance Values B-9
TYUV8 Luminance Encoding B-10
TYUV8 Chrominance Encoding B-10

TYUV16 Pixel Encoding .. B-11
TYUV16 Chrominance Encoding B-12

Index

Introduction

This manual, Microsoft Modular Windows Programmer's Reference, describes
the application programming interface (API) supported by the Microsoft®
Modular Windows™ Operating System. It also shows how to use the
programming tools included in the Modular Windows Software Development Kit
(SDK).

How to Use This Manual
This manual provides both an overview of the Microsoft Modular Windows API
and an alphabetical directory of functions, messages, and data structures that are
new for Modular Windows. It also includes a directory of the Microsoft Windows
3.1 functions that have changed or are not supported in Modular Windows.

You should read the overview chapters first, and then use the directory chapters as
a reference when programming applications for Modular Windows. The following
is a summary of the chapters in this manual:

■ Chapter 1, "User-Interface Controls," gives an overview of the differences
between the Windows 3.1 user interface and the Modular Windows user
interface and describes the new API for user-interface controls.

■ Chapter 2, "Hand-Control Services," gives an overview of using a hand
control as an input device and describes the new API for the hand control.

■ Chapter 3, "Video Services," describes the Modular Windows display drivers
and gives an overview of the new API for displaying images and directly
accessing video memory.

■ Chapter 4, "Core API and Extension Libraries Support," is a list of the
Windows 3.1 functions that have changed or are not supported in Modular
Windows.

■ Chapter 5, "Function Directory," is an alphabetical reference to new Modular
Windows functions and macros.

■ Chapter 6, "Message Directory," is an alphabetical reference to new Modular
Windows messages.

■ Chapter 7, "Data Structures," is an alphabetical reference to new Modular
Windows data structures.

xii Microsoft Modular Windows Programmer's Reference

■ Chapter 8, "File Formats," provides details on new image file formats for
Modular Windows.

• Chapter 9, "Tools," is a guide to using the programming tools included in the
Modular Windows SDK.

■ Appendix A, "VIS Memory-Cartridge Services," describes the API for the
removable Save-It™ memory cartridge for the Tandy® Video Information
System TM (VIS™) players.

■ Appendix B, "VIS Programming Notes," provides details about programming
for VIS players.

Document Conventions
The following conventions are used throughout this reference to define syntax:

Convention

Bold text

Italic text

[]

Meaning

Denotes a term or character to be typed literally, such as a
function name (Create Window), data-structure name
(WNDCLASS), or resource-definition statement (ICON). You
must type these terms exactly as shown.

Denotes a placeholder or variable; you must provide the actual
value. For example, the statement SetCursorPos(X,Y) requires
you to substitute values for the X and Y parameters.

Encloses optional parameters.

Separates an either/or choice.

Specifies that the preceding item can be repeated.

Represents an omitted portion of sample code.

The following text conventions are also used in this reference:

Convention

SMALL CAPITALS

ALL CAPITALS

monos pace

Meaning

Indicates the names of keys, key sequences, and key
combinations-for example, ALT +SPACEBAR.

Indicates filenames and paths, most type and structure names
(which are also bold), and constants.

Indicates C- and assembly-language source-code statements.

CHAPTER 1

User-Interface Controls

The standard user-interface model of drop-down menus and multiple overlapping
windows was designed to be used with a mouse and a keyboard as input devices.
Much of this standard user-interface support is not available in Modular
Windows-it has been replaced with a simpler user interface optimized for use
with a hand control and designed to be displayed on a television.

This chapter discusses the Microsoft Modular Windows user interface and how it
differs from the standard menu-based user interface, introduces the TV user
interface controls, and shows how you can use these controls in an application for
TV-based players.

User-Interface Elements Not Available in
Modular Windows

The following list identifies elements of the standard Microsoft Windows 3.1 user
interface not available in Modular Windows:

■ Menus

■ System menu, sizing borders, minimize/maximize buttons, and non-client
scroll bars (WS_CAPTION, WS_MAXIMIZEBOX, WS_MINIMIZEBOX,
WS_SYSMENU, WS_THICKFRAME, WS_HSCROLL and WS_ VSCROLL
window styles)

■ Controls based on the COMBOBOX and MDICLIENT predefined window
control classes (BUTTON, COMBOBOX, EDIT, LISTBOX, SCROLLBAR,
and ST A TIC controls are translated to corresponding Modular Windows
controls)

■ Multiple Document Interface (MDI)

• Common dialog-box library (COMMDLG)

1-2 Microsoft Modular Windows Programmer's Reference

Applications written for TV-based multimedia players must be designed with a
different user interface than applications designed for personal computers.
Modular Windows provides a rich set of controls and user-interface elements
designed to provide both visual and tactile appeal on TV-based players.

Using the Hand Control as an Input Device
The TV user-interface controls are designed for use with a hand control. The
following illustration shows the layout of the ten buttons on a hand control:

Action buttons

Up
Player 1/Player 2

Right II a 111

111, 1111 rc=,1~====,,11
F4 F3

Direction buttons

Hand control for TV-based multimedia players

User-Interface Controls 1-3

User Input with a Hand Control
User input with the hand control is a two step process.

1. The user presses the direction buttons to move the cursor between controls, as
shown in the following illustration:

Using the direction buttons to move the focus between controls

2. The user then presses the primary action button to initiate an action associated
with the control.

Using the action button to actuate a control

Moving the Focus Using Tabbing and Roaming Modes
Modular Windows provides two modes for moving the cursor between controls:
roaming mode and tabbing mode. In roaming mode, the user positions the cursor
over a control by pressing the direction buttons to move the cursor in the
corresponding direction. Positioning the cursor in this manner is an iterative
process requiring several rounds of horizontal and ve1tical movement, but it
allows the cursor to be accurately positioned in any location on the screen. In
tabbing mode, the user discretely moves the focus between controls using the

1-4 Microsoft Modular Windows Programmer's Reference

direction buttons. The operation of tabbing mode is similar to using the TAB key
on a keyboard to tab between controls in a standard Windows dialog box. The
following illustration shows cursor movement using tabbing mode and roaming
mode:

Tabbing mode

Button A [
Roaming mode

Cursor movement using tabbing mode and roaming mode

Note The default mode is tabbing mode-applications must make a call to the
hcControl function to enable roaming mode.

Tabbing is the preferred input mode with the TV user-interface controls. It is
much easier for users to discretely move the cursor between controls than to
iteratively position the cursor. For details on using tabbing mode, see "The Focus
Manager," later in this chapter.

Compound Focus and Power-User Mode
Some of the TV user-interface controls have compound focus, or more than one
area that can have the focus. For example, each of the scroll arrows in a TV
scroll-bar control can have the focus. Controls with compound focus include the
TV scroll-bar, TV scroll-pad, TV list-box, and TV spin-button controls.

All of the controls with compound focus have a power-user mode that allows
faster input using the hand control. Power-user mode is initiated when the user
holds the action button down while pressing one of the direction buttons. As long
as the action button is pressed, pressing a direction button not only changes the
focus, but also simulates a button press on the action button. For example, with a
scroll-bar control, a scroll event occurs each time a direction button is pressed
while the action button is down.

User-Interface Controls 1-5

Using the Mouse and Keyboard as Input Devices
A mouse and standard PC keyboard are optional input devices for TV-based
players. The Modular Windows user-interface controls operate with both a mouse
and a keyboard as well as a hand control.

Operation of the user-interface controls with a mouse is identical to the way the
controls operate with the hand control in roaming mode-moving the mouse
moves the cursor and pressing the left mouse button chooses the control.

If a keyboard is present, it can be used to enter text in edit-box controls. In
addition, keyboard keys can be used to simulate hand-control button actions to
move the focus and choose controls. The following table lists the keyboard keys
that correspond to hand-control buttons:

Keyboard Key

UPARROW key

DOWN ARROW key

LEFT ARROW key

RIGHT ARROW key

SPACE BAR

TV User-Interface Controls

Corresponding Hand-Control Button

Up direction button

Down direction button

Left direction button

Right direction

Primary action button

Modular Windows provides the following user-interface controls:

Control

TV push button

TV check box

TV radio button

TV group box

TV scroll bar

TV gauge

TV list box

Purpose

Initiate an action.

Select or cancel the selection of an option.

Choose one of several options.

Visually associate related controls. TV group boxes
don't accept user input.

Position information displayed in a window or to select
a value from a range of values.

Display position or progress information. TV gauges
are display-only controls and don't accept user input.

Select an item from a list.

1-6 Microsoft Modular Windows Programmer's Reference

Continued

Control

TV scroll pad

TV spin button

TV static control

TV show box

TV keyboard and TV edit box

Purpose

Horizontally and vertically position information
displayed in a window.

Increment and decrement a value or selection.

Display text or icons. TV static controls don't accept
user input.

Display text and bitmaps within a 3-D frame. TV show
boxes don't accept user input.

Enter text using a hand control.

Applications can use these controls in a dialog box created by using either the
CreateDialog, CreateDialoglndirect, or DialogBox function, or as child window
controls created with the Create Window function.

Note Before creating a TV user-interface control or a dialog box that uses a TV
user-interface control, you must load the TVUI.DLL library to register the new
control classes. To load the library, call a function in the library, such as
tvGetUIFlags.

TV Button Control {TVBUTTON)
The TV button control is similar to the standard Windows button control with the
following changes:

• The appearance is optimized for display on televisions.

■ Applications can customize the appearance by changing colors and supplying
bitmaps for different button elements.

User-Interface Controls 1-7

The following illustration shows the appearance of four styles of TV button
controls, the group-box, check-box, radio-button, and push-button styles:

Group-=========-,
Check Box

Radio Button

Push Button

TV button controls: group-box, check-box, radio-button, and push-button

TV Button Styles
The fo llowing table lists the control styles for TV button controls. These styles
can be used in the dwStyle parameter of the Create Window function when
creating a child-window control or in the style field of the CONTROL resource
script statement when creating a dialog template.

Style

BS_pUSHBUTTON

BS_STICKYBUTTON

BS_CfIECKBOX

BS_RADIOBUTTON

BS_GROUPBOX

Description

Creates a push button.

Creates a push button that only changes state when the
hand-control act ion button is pressed. Regular push
buttons depress when the action button is pressed and
pop back up when the action button is released.

Creates a check box. The application must manage
selecting and clearing when the control is selected by
the user.

Creates a radio button. The application must manage
selecting and clearing when the control is selected by
the user.

Creates a group box.

1-8 Microsoft Modular Windows Programmer's Reference

Continued

Style

BS_AUTOCHECKBOX

BS_AUTORADIOBUTTON

BS_LEFITEXT

BS_OWNERDRA W

Description

Creates a check box that is automatically selected or
cleared when the control is selected by the user.

Creates a radio button that is automatically highlighted
or cleared when the control is selected by the user.

When combined with a radio-button or check-box
style, this style positions the text to the left of the
button.

Creates an owner-draw button. This style cannot be
combined with any other button styles.

The BS_DEFPUSHBUTTON style is not supported because there is no equivalent
to the ENTER key on a hand control. The BS_STICKYBUTTON style is the only
new button style for TV button controls.

TV Scroll Bar and TV Gauge Control (TVSCROLLBAR)
The TV scroll-bar control is similar to the standard Windows scroll-bar control
with the following changes:

" Non-client scroll bars are not supported. Scroll bars must be created and
managed by the application.

■ There is a new style of scroll bar called a gauge. Gauges don't accept user
input.

■ Applications can supply bitmaps and change colors to customize the
appearance of scroll bars and gauges.

User-Interface Controls 1-9

The following illustration shows the appearance of TV scroll-bar controls (only
horizontal controls are shown):

Gauge

Gauge (slider style)

Scroll bar

Scroll bar (slider style)

Thumb Channel Scroll arrows

TV scroll-bar controls

TV Scroll-Bar Styles
The following table lists the control styles for TV scroll-bar controls:

Style

SBS_HORZ

SBS_VERT

SBS_DISPLA YONL Y

SBS_SLIDER

SBS_SQUARE

SBS_ THUMBINSIDE

Description

Creates a horizontal scroll bar.

Creates a vertical scroll bar.

Creates a gauge. This style must be combined with
either the SBS_HORZ or SBS_ VERT style.

When combined with other scroll-bar styles, this style
creates a scroll bar or gauge with a thumb that is shaped
like a pointer (see the previous illustration).

Creates a scroll bar with square buttons and square
thumb (if SBS_SLIDER specified, the thumb is not
affected by SBS_SQUARE).

When combined with other scroll-bar styles, creates a
scroll bar or gauge with the thumb clipped to the inside
of the channel.

1-10 Microsoft Modular Windows Programmer's Reference

TV Scroll-Bar Sizing
Without the SBS_SQUARE style, scroll-bar buttons and the thumb have a fixed
length of 20 pixels. This means that scroll bars must be created using a length of
at least 60 pixels to operate properly. With the SBS_SQUARE style, scroll bars
can be less than 60 pixels long if the length of the scroll bar is at least three times
the width.

Getting Input from TV Scroll Bars
Getting input from TV scroll bars is similar to getting input from standard
Windows scroll bars. TV scroll bars send WM_ VSCROLL and WM_HSCROLL
messages with SB_LINEUP and SB_LINEDOWN identifiers in the wParam
parameter. They don't send messages with SB_THUMBTRACK,
SB_THUMBPOSITION, SB_PAGEUP, or SB_PAGEDOWN identifiers.

TV List-Box Control (TVLISTBOX)
The TV list-box control is similar to the standard Windows list-box control with
the following changes:

■ Instead of keeping list-box entries in a fixed location while moving the
highlight, the TV list box keeps the selection area fixed and moves the list-box
entries.

■ Selection of an entry is indicated by drawing the selected text or bitmap
slightly larger than the other entries.

■ One item is always selected.

■ Multiple-column and multiple-selection styles are not supported.

The following illustration shows the appearance of a standard TV list box (the
current selection is "Bananas"):

Apples
Oranges
Blueberries

Bananas
Strawberries
Grapefruits
Watermelons

User-Interface Controls 1-11

Standard TV list-box control (LBS_STANDARD style)

There are two variations of the standard TV list box: popup and spin field. The
popup list-box control displays only the current selection until it gets the focus
and is activated with the primary action button. Once activated, it expands to
appear like a standard Jjst box. The following illustration shows the appearance of
a popup list box before and after it is activated:

jBlueberries Ill[!]

Before activation

Oranges

Blueberries
Bananas

After activation

Popup TV list-box control (LBS_POPUP style)

1-12 Microsoft Modular Windows Programmer's Reference

The spin-field list-box control shows only the cunent selection--it does not
expand to show other entries like the popup list box. Spin-field list boxes should
be used when the list-box entries are obvious to the user, such as for days of the
week or months of the year. The following illustration shows a spin-field list box:

Wednesday

Spin field list-box control (LBS_SPINFIELD style)

TV List-Box Styles
The following table lists the available styles for TV list-box controls:

Style Description

LBS_HASSTRINGS Specifies that the list-box items are strings. By default,
all list boxes except owner-draw list boxes have this
style.

LBS_NOTIFY Specifies that the list box notify the owner when a
selection is made and when the list box gets or loses the
input focus.

LBS_NOINTEGRALHEIGHT Specifies that the list box be created such that it contains
no partially visible items. The height of the list box will
be adjusted from the specified height to accommodate
an integral number of items.

LBS_OWNERDRA WFIXED Creates an owner-draw list box. The owner of the list
box is responsible for drawing its items, which must all
be of the same height.

LBS_SORT

LBS_SPINFIELD

LBS_POPUP

LBS_ST AND ARD

Specifies that the list box sort items alphabetically.

Creates a list box that displays only the current
selection. Use this style for list boxes containing items
obvious or familiar to users, such as months of the year.

Creates a list box that displays only the current selection
until the list box receives the focus. Once it receives the
focus , it expands to appear like a standard list box.

Creates a standard TV list box that sorts strings
alphabetically and notifies the owner when a selection is
made.

User-Interface Controls 1-13

TV List-Box Messages
There are two types of messages associated with list-box controls:

■ Standard list-box messages are sent by applications to a list-box control to
initiate or request an action, such as adding a string to the list box or getting
the text of a given item in the list box.

■ Notification codes are sent to applications to notify the application of a user
action, such as selecting an item in the list box. Notification codes are received
in the high-order word of the !Param parameter of a WM_COMMAND
message.

Standard List-Box Messages
The following table lists the messages that applications can send to TV list boxes:

Message

LB_ADDSTRING

LB_DELETESTRING

LB_FINDSTRING

LB_GETCOUNT

LB_GETCURSEL

LB_GETITEMDATA

LB_GETITEMRECT

LB_GETPOPUPRECT

LB_GETSELAREA

LB_GETTEXT

LB_GETTEXTLEN

LB_INSERTSTRING

LB_RESETCONTENT

LB_SETCURSEL

LB_SETITEMDAT A

LB_SETITEMHEIGHT

LB_SETSELAREA

LB_SETT AB STOPS

Description

Adds a string to a list box.

Deletes a string from a list box.

Searches a list box for a given string.

Gets the number of items in a list box.

Gets the index of the currently selected item in a list
box.

Gets a value associated with a list-box item.

Gets the bounding rectangle for a list-box item.

Retrieves the bounding rectangle of a popup list box as
it appears when activated.

Retrieves the current selection area.

Gets the text of a list-box item.

Gets the length of the text in a list-box item.

Inserts a string into a list box.

Removes all items from a list box.

Changes the current selection in a list box.

Associates a value with a list-box item.

Changes the height of items in an owner-draw list box.

Sets the current selection area.

Sets tab stops for all items in a list box.

Standard Windows list-box messages other than those shown in the previous table
are not supported. The LB_GETSELAREA and LB_SETSELAREA messages are
new for TV list-box controls.

1-14 Microsoft Modular Windows Programmer's Reference

List-Box Notification Codes
The following table lists the notification codes applications can receive from a TV
list box:

Notification Code

LBN_SELCHANGE

LBN_ERRSPACE

LBN_SETFOCUS

LBN_KILLFOCUS

Description

Notifies the application that the current selection has
just changed.

Notifies the application that there is not enough memory
to satisfy the last request.

Notifies the application that a list-box control has just
received the focus.

Notifies the application that a list-box control has just
lost the focus.

Standard Windows list-box notification codes other than those shown in the
previous table are not supported. There are no new notification codes for TV list
box controls.

Owner-Draw TV List Boxes
Creating and managing owner-draw TV list boxes is a process similar to creating
and managing standard Windows owner-draw list boxes.

► To create and manage owner-draw list boxes:

1. Use the LBS_OWNERDRA W style when creating the list box.

2. Report the size of the items in the list box when the WM_MEASUREITEM
message is received.

3. Draw the appropriate list-box element when the WM_DRA WITEM message is
received.

User-Interface Controls 1-15

TV Scroll-Pad Control (TVSCROLLPAD)
The scroll-pad control is a new control that allows both horizontal and vertical
scrolling by using a single control. The following illustration shows the
appearance of the TV scroll-pad control along with horizontal and vertical gauge
controls:

TV scroll-pad control

TV scroll-pad control

The scroll pad has four focus areas indicating up, down, left, and right scroll
directions. Pressing the direction buttons on the hand control moves the focus
between these four areas. Pressing the action button initiates a scroll event in the
indicated direction.

TV Scroll-Pad Styles
There are two control styles for scroll-pad controls:

Style

SPDS_VERT

SPDS_HORZ

Description

Creates a scroll pad with only the vertical scroll arrows
enabled.

Creates a scroll pad with only the horizontal scroll
arrows enabled.

Applications should specify both the SPDS_ VERT and SPDS_HORZ styles to
create a scroll pad with all four scroll arrows enabled.

1-16 Microsoft Modular Windows Programmer's Reference

Getting Input from a TV Scroll Pad
When the user presses the action button while the focus is on a scroll-pad control,
the control sends its parent window a WM_COMMAND message to indicate the
scroll direction. The wParam parameter contains the ID of the control and the
lParam parameter contains a notification code specifying the scroll direction. The
following table lists the scroll-pad notification codes associated with the
WM_COMMAND message:

Notification Code

SPD_LEFf

SPD_RIGHT

SPD_UP

SPD_DOWN

Description

Notifies the application to scroll left.

Notifies the application to scroll right.

Notifies the application to scroll up.

Notifies the application to scroll down.

For scroll-pad controls, the lParam parameter of the WM_COMMAND message
is a bit field-two notification codes can be set in a single WM_COMMAND
message to indicate diagonal movement.

TV Spin-Button Control (TVSPINBUTTON)
The TV spin-button control is a new control that allows users to indicate an
incremental value or position change. The following illustration shows the
appearance of TV spin-button controls:

Gargoyles
TV spin-button controls

Griffins

TV spin-button controls

Generally, spin-button controls are used as a component of another control, such
as a scroll bar.

User-Interface Controls 1-17

TV SpinaButton Styles
There are two control styles for spin-button controls:

Style

SPINBS_ VERT

SPINBS_HORZ

Description

Creates a vertical spin-button control.

Creates a horizontal spin-button control.

Getting Input from TV Spin Buttons
Getting input from spin buttons is similar to getting input from scroll bars. Spin
buttons send applications WM_ VSCROLL and WM_HSCROLL messages with
SB_LINEUP and SB_LINEDOWN identifiers in the wParam parameter.

TV Static Control (TVST ATIC)
The TV static control provides simple text fields, icons, and rectangles that can be
used to label, box, group, or separate other controls. The TV static control is not
an active control-it does not accept input nor provide any output. It is identical
to the standard Windows static control, with the following exceptions:

• The appearance of a TV static control does not change when it is disabled.

• TV static controls ignore the SS_NOPREFIX style bit because keyboard
accelerators are not supported.

TV Static-Control Styles
The following table lists the control styles for TV static controls:

Style

SS_BLACKFRAME

SS_CENTER

SS_GRA YFRAME

Description

Specifies a box with a frame drawn in the same color as
window frames.

Designates a simple rectangle and displays the given
text, centered in the rectangle. The text is formatted
before it is displayed. Words that extend past the end of
a line automatically wrap to the beginning of the next
centered line.

Specifies a box with a frame drawn with the same color
as the screen background (desktop). This color is light
gray in the default Windows 3.1 and Modular Windows
color schemes.

1-18 Microsoft Modular Windows Programmer's Reference

Continued

Style

SS_GRAYRECT

SS_ICON

SS_LEFT

SS_LEFTNOWORDWRAP

SS_RIGHT

SS_SIMPLE

SS_ WHITEFRAME

SS_ WHITERECT

SS_BLACKRECT

Description

Specifies a rectangle filled with the color used to fill the
screen background. This color is light gray in the default
Windows 3.1 and Modular Windows color schemes.

Designates an icon displayed in the dialog box. The
given text is the name of an icon (not a filename)
defined elsewhere in the resource file. The nWidth and
nHeight parameters are ignored; the icon automatically
sizes itself.

Designates a simple rectangle and displays the given
text, left-aligned in the rectangle. The text is formatted
before it is displayed. Words that extend past the end of
a line automatically wrap to the beginning of the next
line.

Designates a simple rectangle and displays the given
text left-aligned in the rectangle. Tabs are expanded but
words are not wrapped. Text that extends past the end of
a line is clipped.

Designates a simple rectangle and displays the given
text, right-aligned in the rectangle. The text is formatted
before it is displayed. Words that extend past the end of
a line automatically wrap to the beginning of the next
line.

Designates a simple rectangle and displays a single line
of text left-aligned in the rectangle. The line of text
cannot be shortened or altered in any way. (The
control's parent window or dialog box must not process
the WM_CTLCOLOR message.)

Specifies a box with a frame drawn in the same color as
the window background. This color is white in the
default Windows 3.1 color scheme and light gray in the
default Modular Windows color scheme.

Specifies a rectangle filled with the color used to fill
window backgrounds. This color is white in the default
Windows 3.1 color scheme and light gray in the default
Modular Windows color scheme.

Specifies a rectangle filled with the color used to draw
window frames. This color is black in the default
Windows 3.1 and Modular Windows color schemes.

User-Interface Controls 1-19

TV Show-Box Control (TVSHOWBOX)
The TV show-box control provides a single line of text and a bitmap within a 3-D
frame. It is not an active control-it does not accept input nor provide any output.
The following illustration shows a TV show-box control containing a bitmap and
text:

Tv· ,ow box with vt and bitma

Edge Frame Display area

TV show-box control

As shown in the previous illustration, TV show-box controls have three
components: a frame, a 3-D edge, and a display area. The frame and edge areas
are optional, depending on the style given when the show box is created.

1-20 Microsoft Modular Windows Programmer's Reference

TV Show-Box Control Styles
The following table lists the control styles for TV show-box controls:

Style

SS_DOWNRECT

SS_UPRECT

SS_NOEDGE

SS_NOFRAME

SS_HCENTER

SS_VCENTER

SS_LEFf ALIGN

SS_RIGHT ALIGN

SS_TOPALIGN

SS_BOTTOMALIGN

SS_OWNERDRA W

Description

Creates a static control with a 3-D edge that appears to
recede into the screen.

Creates a static control with a 3-D edge that appears to
come out from the screen (similar to a push button).

Creates a show box with no 3-D edge area.

Creates a show-box control without a frame area.

Specifies that text and bitmaps in the show box should
be horizontally centered.

Specifies that text and bitmaps in the show box should
be vertically centered.

Specifies that text and bitmaps in the show box should
be aligned to the left edge of the control.

Specifies that text and bitmaps in the show box should
be aligned to the right edge of the control.

Specifies that text and bitmaps in the show box should
be aligned to the top edge of the control.

Specifies that text and bitmaps in the show box should
be aligned to the bottom edge of the control.

Creates an owner-draw show box.

TV Show-Box Messages
The following table lists messages applications can send to TV show-box
controls:

Style

SM_GETDISPLA YEXTENT

SM_SETDISPLA YEXTENT

Description

Retrieves the display rectangle of a show-box control.

Sets the display rectangle of a show-box control.

User-Interface Controls 1-21

TV Keyboard Control (TVKEYBOARD)
The TV keyboard control allows users to enter text using a hand control. The TV
keyboard control has two basic styles: with and without a prompt and text display
area. The following table lists the control styles for TV keyboard controls:

Style

KS_DONOTWRAP

KS_SYSMODAL

KS_ WITHTEXT

Description

Specifies that the soft-keyboard control allow focus
changes to other controls. This style should not be
combined with the KS_SYSMODAL style.

Specifies that the soft-keyboard control function like a
system-modal dialog box. With this style, the focus
cannot be changed to other windows until the soft
keyboard control is destroyed.

Specifies that the soft-keyboard control have a prompt
and text display area.

TV Keyboard Control with Prompt and Text Display
The TV keyboard control with a prompt and text display area allows a user to
edit a single line of text and then choose the Enter or Cancel button to notify the
application. The application can provide a line of text prompting or querying the
user. When notified, the application can then retrieve the text from the keyboard
control and either destroy the control or reactivate it and provide another prompt.
The following illustration shows the appearance of a TV keyboard control with a
prompt and text-display area:

Please enter your nan --- Prompt area
....... -----------------------n
r::::B:::i=II==================-~ -- Text-display

area

TV keyboard control with prompt and text display (KS_ WITHTEXT style)

1-22 Microsoft Modular Windows Programmer's Reference

The default style of the TV keyboard control does not have a prompt and text
display area-to create a TV keyboard control with a prompt and text-display
area, you must specify the KS_ WITHTEXT style when creating the control. TV
keyboard controls are not scalable-Create Window ignores the nWidth and
nHeight parameters when creating a TV keyboard control.

TV Keyboard (KS_ WITHTEXT Style) Messages
The following table lists messages used by TV keyboards with a prompt and text
display area:

Message

KM_GETDEFKEY

KM_GETPROMPT

KM_GETPROMPTLENGTH

KM_GETTEXTLIMIT

KM_MOVESKB

KM_SETDEFKEY

KM_SETDEFTEXT

KM_SETPROMPT

KM_SETRECIPIENT

KM_WAKEUP

Description

Sent by an application to retrieve the state of the Caps
Lock button and the button with the input focus.

Sent by an application to retrieve the contents of the
prompt.

Sent by an application to retrieve the number of
characters in the prompt.

Sent by an application to retrieve the number of
characters the user can enter.

Changes the location of a TV keyboard control.

Sets the state of the Caps Lock button and the button
with the initial focus.

Sets the text appearing in the text area of a TV keyboard
control.

Sets the text appearing in the prompt area of a TV
keyboard control.

Sent by an application to specify which window is to be
notified when the user chooses the Enter or Cancel
button.

Re-enables a TV keyboard control after the user chooses
Enter or Cancel.

Getting Input from a TV Keyboard (KS_WITHTEXT Style)
Applications must send a KM_SETRECIPIENT message to a TV keyboard
control before they can receive any input from the control. This message tells the
keyboard control which window should receive the input. The application does
not receive any input as the user "types" on the keyboard-it is only when the
user chooses the Enter or Cancel button that the application is notified.
Notification is done using a WM_COMMAND message containing either an
EN_ENTER or EN_CANCEL notification in the high-order word of the !Param
parameter. Applications can then use the GetWindowText function to get the text
entered by the user.

User-Interface Controls 1-23

After the TV keyboard control notifies the application of input, it remains on the
screen in an inactive state unless it is explicitly destroyed by the application. This
allows the application to prompt for additional input by changing the prompt and
reawakening the keyboard control. After receiving EN_ENTER or EN_CANCEL
notification, applications must either destroy the keyboard or reawaken it. The
following code fragment processes a WM_COMMAND message by destroying
the keyboard control if EN_CANCEL notification is received, and reawakening it
for additional input if EN_ENTER notification is received:

case WM_COMMAND:
switch (wParam)
(

case IDD_ KEYBOARD:
// Destroy the keyboard contro l on Cance l button
if (HIWORD(lParam) == EN_CANCEL)

PostMessage(hwndKeyboard, WM_CLOSE, 0, 0L);
// Get text and reawaken the keyboard on Enter button
else if (HIWORD(lP ara m) == EN_ENTER) (

GetWindowText(hwndKeyboard, textBuffer, 128);
PostMessage(hwndKeyboard, KM_WAKEUP, 0, 0L);

break;

break;

Basic TV Keyboard Control
The basic TV keyboard control does not have a text display area-characters are
sent to the application as they are entered. The application is responsible for
displaying the text as it is entered. The following illustration shows the
appearance of the basic TV keyboard control:

Basic TV keyboard control

1-24 Microsoft Modular Windows Programmer's Reference

Basic TV Keyboard Messages
The following table lists messages used by basic TV keyboards:

Message

KM_GETDEFKEY

KM_MOVESKB

KM_SETDEFKEY

KM_SETRECIPIENT

KM_KEYDOWN

KM_KEYUP

KM_CHAR

Description

Sent by an application to retrieve the state of the Caps
Lock button and the button with the focus.

Sent by an application to change the location of a TV
keyboard control.

Sent by an application to set the state of the Caps Lock
button and the button with the initial focus.

Sent by an application to specify the window where a
TV keyboard should send KM_KEYUP,
KM_KEYDOWN, and KM_CHAR messages.

Notifies the application that a button on a TV keyboard
has been pressed.

Notifies the application that a button on a TV keyboard
has been released.

Notifies the application that a button on a TV keyboard
has been pressed and released.

Getting Input from a Basic TV Keyboard
Applications must send a KM_SETRECIPIENT message to a TV keyboard
control before they can receive any input from the control. This message tells the
keyboard control which window should receive the input. Then, the TV keyboard
control notifies the application of input by using the KM_KEYDOWN,
KM_KEYUP, and KM_CHAR messages.

Unlike TV keyboard controls with a prompt and text display (KS_ WITHTEXT
style), basic TV keyboard controls don't notify the application when the user
chooses the Enter or Cancel buttons. Applications must look for KM_KEYUP
messages with a VK_ENTER or VK_CANCEL key code to detect when the user
is finished entering text.

User-Interface Controls 1-25

TV Keyboard Controls and Input Focus
TV keyboard controls created using the KS_SYSMODAL style function like
modal dialog boxes. When activated, they capture the mouse and all input from
the hand control. They don't release the mouse capture or the input focus until
they are destroyed. TV keyboard controls created without the KS_SYSMODAL
style allow focus changes to other controls. If tabbing mode is in effect, focus
changes to other controls can only occur if tabbing is unconstrained. See
"Constrained and Unconstrained Tabbing," later in this chapter for information
about unconstrained tabbing mode.

TV Edit-Box Control (TVEDITBOX)
The TV edit-box control appears as a single line of text and, when activated,
displays a TV keyboard control to allow the user to enter and edit text. The edit
box control is activated when the action button on a hand control is pressed while
the edit-box control has the focus. The following illustrations show an edit-box
control before and after it is activated:

This is an edit box. OK

TV edit-box control before activation

This is an edit box. OK

TV edit-box control after activation

To retrieve the text from an edit box, use the GetWindowText function or send
the control an EM_GETLINE message.

1-26 Microsoft Modular Windows Programmer's Reference

Edit-Box Control Styles
The following table lists the control styles for TV edit-box controls:

Style

ESYASSWORD

ES_READONL Y

KS_SYSMODAL

KS_ WITHTEXT

Description

Creates a password edit control that displays all
characters as an asterisk (*) as they are entered.

Creates an edit box that cannot be edited by the user.
The EM_SETREADONL Y message can be used to set
and clear the read-only flag of an edit-box control.

Specifies that the associated soft-keyboard control
functions like a system-modal dialog box. With this
style, the focus cannot be changed to other windows
until the soft-keyboard control is destroyed.

Specifies that the associated soft-keyboard control has a
prompt and text display area.

The KS_SYSMODAL and KS_ WITHTEXT styles determine the style of the TV
keyboard control displayed when the edit control is activated. Edit controls with
the KS_ WITHTEXT style set display a TV keyboard control with a prompt and
text-display area. The text in the edit-box control is not modified until the user
chooses the Enter button. If the user chooses the Cancel button, the text in the edit
box is not changed.

TV Edit-Box Control Messages
There are two types of messages associated with edit-box controls:

■ Edit-box messages sent by applications to an edit-box control to initiate or
request an action, such as getting the text in the edit box.

■ Notification codes sent to applications to notify the application of a user
action, such as entering a character in the edit box. Notification codes are
received in the high-order word of the /Param parameter of a
WM_COMMAND message.

User-Interface Controls 1-27

Edit-Box Messages
The following table lists messages applications can send to TV edit-box controls:

Message Description

EM_GETLINE Sent by an application to retrieve the text from an edit
box control.

EM_GETMODIFY Sent by an application to query if the text in the edit-box
control has been modified.

EM_GETRECT Sent by an application to get the rectangle of the text
area of the edit-box control.

EM_LINELENGTH Sent by an application to query the length (in bytes) of
an edit-box text buffer.

EM_SETREADONL Y Sent by an application to set the read-only flag for an
edit-box control.

EM_SETMODIFY Sent by an application to set the modify flag for an edit
box control.

EM_SETP ASSWORDCHAR Sent by an application to set the character displayed in
an edit-box control created using the ES_PASSWORD
style. The default display character is an asterisk (*).

KM_GETDEFKEY Sent by an application to retrieve the state of the Caps
Lock button and the button with the input focus on the
keyboard control associated with an edit box.

KM_GETPROMPT Sent by an application to retrieve the contents of the
prompt on the keyboard control associated with an edit
box.

KM_GETPROMPTLENGTH Sent by an application to retrieve the number of
characters in the prompt on the keyboard control
associated with an edit box.

KM_GETTEXTLIMIT Sent by an application to query the maximum number of
characters a user is allowed to enter in the keyboard
control associated with an edit box.

KM_MOVESKB Sent by an application to change the location of the
keyboard control associated with an edit box.

KM_SETDEFKEY Sent by an application to set the state of the Caps Lock
button and the button with the initial focus in the
keyboard control associated with an edit box.

KM_SETDEFTEXT Sent by an application to set the text appearing in the
text area of the keyboard control associated with an edit
box.

KM_SETPROMPT Sent by an application to set the text appearing in the
prompt area of the keyboard control associated with an
edit box.

1-28 Microsoft Modular Windows Programmer's Reference

Edit-Box Notification Codes
The following table lists the notification codes applications can receive from a TV
edit-box control:

Notification Code

EN_CHANGE

EN_ERRSPACE

EN_KILLFOCUS

EN_MAXTEXT

EN_SETFOCUS

EN_UPDATE

Description

Notifies the application that the user has changed the text
in the edit-box control. This message is sent after the
display is updated.

Notifies the application that the edit-box control is out of
memory.

Notifies the application that the edit-box control is losing
the input focus.

Notifies the application that the edit-box buffer is full and
text has been truncated.

Notifies the application that the edit-box control is
receiving the input focus.

Notifies the application that the user has changed the text
in the edit-box control. This message is sent before the
display is updated so that the application can resize the
edit box.

Predefined Control-Class Names
The following table lists the predefined control-class names for the TV user
interface controls. Applications can use these classes with the Create Window
function to create child-window controls.

Control-Class Name

TVBUTTON

TVEDITBOX

TVKEYBOARD

TVLISTBOX

TVSCROLLBAR

TVSCROLLPAD

TVSHOWBOX

TVSPINBUTTON

TVSTATIC

Description

Push button, radio button, check box, and group box

Edit-box control

TV keyboard

List box

Scroll bar and gauge

Scroll pad

Show box

Spin button

Static control

User-Interface Controls 1-29

TV User-Interface Functions
The following functions control settings that affect all TV user-interface controls,
such as how focus is indicated and how controls are drawn on the screen:

tvGetStockObject
Retrieves a handle to one of the predefined stock objects for user-interface
controls (SMALLFONT or BIGFONT).

tvSetHighlightFrame
Sets the highlight color and blinking rate used to indicate focus.

tvGetHighlightFrame
Retrieves the current highlight color and blinking rate used to indicate focus.

tvSetUIFlags
Allows applications to change internal TV user-interface flags. These flags
affect how controls are drawn and how the cursor moves on focus changes.

tvGetUIFlags
Retrieves the internal TV user-interface flags set using tvSetUIFiags.

For information about these functions, see Chapter 5, "Function Directory."

Adding Bitmaps to Controls
Some of the TV user-interface controls can be customized with bitmaps supplied
by applications. The following table lists the controls that can be customized:

Control

Push button, check box, and
radio button

Group box

Scroll bar and gauge

Show box

Customization

Add a bitmap to the face of button or supply a bitmap
for the entire button.

Add a bitmap to the face of the group box.

Supply a bitmap for the thumb.

Add a bitmap to the face of the control.

1-30 Microsoft Modular Windows Programmer's Reference

Messages for Getting and Setting Bitmaps in Controls
The following table lists messages used to retrieve and set bitmaps used in
controls:

Message

WM_SETBITMAP

WM_GETBITMAP

Description

Supplies a bitmap for a control.

Retrieves a bitmap used by a control.

•
Applications must create and delete bitmap objects passed to controls. Bitmaps
should not be deleted until after the controls using them have been destroyed.

Changing Control Colors
The TV user-interface controls allow applications to change the colors used in
rendering the controls. The following illustration identifies the elements of a
button control with colors that can be changed:

Highlight

Help
Shadow

Face

'-aariill.1111111111:lar.::c::lil\llllillllllll,- Frame

Text

Elements of a TV button control

Messages for Changing Control Colors
The following table lists messages used to retrieve and set the colors used in
controls:

Message

WM_SETCOLOR

WM_GETCOLOR

Description

Changes the color used to render a control element.

Retrieves the color used to render a control element.

User-Interface Controls 1-31

Enabling and Disabling Controls
You can use the Enable Window function to enable and disable Modular
Windows user-interface controls. Disabled controls can't receive the focus and
will not respond to user input. Disabled controls are drawn without their 3-D
appearance to distinguish them from enabled controls.

Note Don't disable a control if the control has the input focus-change the focus
to another control before disabling the control.

The Focus Manager
In tabbing mode, the focus manager is responsible for moving the focus between
controls when the user presses the direction buttons on a hand control. The TV
user-interface controls are automatically handled by the focus manager, although
applications can override the focus manager for individual controls or for all
controls.

Applications that create custom controls can use the focus manager to handle
focus changes between controls. Only applications using custom controls or
applications that override the actions of the focus manager need to make calls to
the focus-manager functions.

Note Controls must have the WS_TABSTOP style set to receive the focus.

Focus-Manager Functions
The following functions allow applications to interact with the focus manager:

fmAddWindow
Adds a control to the list of controls managed by the focus manager.

fmDelete Window
Deletes a control from the list of controls managed by the focus manager.

fmSetWindowVectors
Sets the focus vectors for a control. Focus vectors determine the next control
that gets the focus when the focus is moved.

fmGetWindowVectors
Gets the focus vectors for a control.

fmGetLastCursorPos
Retrieves the last cursor position set by fmSetCursorPos.

fmSetCursor Pos
Sets the position of the cursor indicating which control has the focus.

1-32 Microsoft Modular Windows Programmer's Reference

fmlsFocusMessage
Sends WM_KEYDOWN messages to the focus manager for processing.

fmGetLastDirection
Gets the direction of the last focus movement.

fmTranslateHCKey
Selectively translates WM_KEYDOWN and WM_KEYUP messages
generated by the hand control into unmapped virtual key codes.

For detailed information about these functions, see Chapter 5, "Function
Directory."

Focus-Manager Messages
Modular Windows provides a focus-manager message, WM_QUERYFOCUS, to
query which element of a compound control has the focus. For example, you can
use this message to determine which scroll arrow in a scroll-bar control has the
focus. For detailed information about this message, see Chapter 6, "Message
Directory."

Constrained and Unconstrained Tabbing
In tabbing mode, the focus manager handles focus changes between controls
when the user presses direction buttons on the hand control. Tabbing can either be
constrained or unconstrained, which is defined as follows:

■ Constrained tabbing limits focus changes to controls with the same parent
window as the control currently with the focus.

■ Unconstrained tabbing allows focus changes to controls with different parent
windows.

By default, tabbing is constrained. To enable unconstrained tabbing, applications
must call the tvSetUIFlags function to clear the TVFMCHECKP ARENT flag.

Using the Focus Manager with Custom Controls
To use the focus manager with custom controls, applications must follow these
steps:

1. Add controls to the focus manager (fmAddWindow).

2. Set the direction vectors for focus changes (fmSetWindowVectors). This step
is optional-the focus manager provides a default focus-movement algorithm.

3. Pass WM_KEYDOWN messages to the focus manager (fmlsFocusMessage).

User-Interface Controls 1-33

Adding Controls to the Focus Manager
Any custom control can choose to use the focus manager to handle focus changes.
To add a control to the focus manager, the application should call the
fmAddWindow function when the window procedure for the custom control
receives a WM_ CREATE message.

Setting Focus-Direction Vectors
The focus manager provides a default focus-movement algorithm which should be
sufficient for all but the most complex set of controls. Applications can provide
their own focus-direction vectors for any controls managed by the focus manager.

To set the focus-direction vectors for a control, applications pass a
DIRVECTORS structure to the focus manager using the fmSetWindowVectors
function. The DIRVECTORS structure specifies the control that gets the focus
when the focus is moved up, down, left, or right. The DIRVECTORS structure
uses window handles to identify controls.

Passing WM_KEYDOWN Messages to the Focus Manager
The window procedure for controls that have been added to the focus manager
using fmAddWindow must pass WM_KEYDOWN messages to the focus
manager so that the focus manager can determine if the key event is from a hand
control button, which changes the focus.

CHAPTER 2

Hand-Control Services

This chapter describes the Modular Windows hand-control services and shows
how applications can use these services to get input from the hand control. For
information about user-interface design for the hand control, see Chapter 1,
"User-Interface Controls."

The Hand Control
With TV-based multimedia players, the primary input device is a remote hand
control-a mouse and keyboard are optional. The hand control has ten buttons.
Four of these buttons make up a direction pad, two buttons are the primary and
secondary action buttons, and the remaining four buttons are function buttons.
The following illustration shows the layout of the ten buttons on a hand control:

Action buttons

Player 1 /Player 2

Direction buttons

Hand control for TV-based multimedia players

2-2 Microsoft Modular Windows Programmer's Reference

Hand-Control Functions and Macros
The following functions and macros allow applications to program the hand
control driver, get and set the cursor position, and work with the virtual key codes
generated by the hand-control driver:

hcControl
Changes hand-control settings such as the virtual key mapping, cursor
movement parameters, and the user-interface mode.

hcGetCursorPos
Gets the current cursor position.

hcSetCursorPos
Sets the current cursor position.

HC IS HC
Determines if a given virtual-key event is from the hand control.

HC KEY OFFSET
Calculates the offset in the hand-control key map for a given hand-control
button.

HC PLAYER
Determines if a given hand-control key event is from the first hand control or
the second hand control.

HC VKN2VK
Converts a virtual key code for the second hand control to the equivalent
virtual-key code for the first hand control.

For detailed information about these functions and macros, see Chapter 5,
"Function Directory."

Hand-Control Services 2-3

Getting Input from the Hand Control
When a user presses or releases a button on the hand control, the hand-control
driver sends WM_KEYDOWN, WM_KEYUP, and WM_CHAR messages to the
window procedure for the window with the input focus. The HC.H header file
defines the following constants for the virtual-key codes generated by the hand
control driver:

Constant

VK_HCl_UP

VK_HCl_DOWN

VK_HCl_LEFf

VK_HCl_RIGHT

VK_HCl_PRIMARY

VK_HCl_SECONDARY

VK_HCl_Fl

VK_HCl_F2

VK_HCl_F3 (VK_HCl_TOOLBAR)

VK_HCl_F4

Description

Up direction-control button

Down direction-control button

Left direction-control button

Right direction-control button

Primary action button

Secondary action button

Function button 1

Function button 2

Function button 3 (toolbar button)

Function button 4

The HC.H header file defines a similar set of constants (VK_HC2_UP, etc.) for
virtual-key codes generated by the buttons on a hand control, while set to "Player
2" mode.

Note Hand-control key events are tagged with an extra DWORD of information
accessible with the GetMessageExtralnfo function. This DWORD is set to the
four-character code "HKEY" (type FOURCC). Use the HC_IS_HC macro to
determine if a key event is from the hand control.

2-4 Microsoft Modular Windows Programmer's Reference

Tabbing and Roaming Modes
The hcControl function allows applications to choose how each hand control
(player 1 and player 2) affects focus and cursor movement. Two input modes are
available: tabbing and roaming modes.

Using Tabbing Mode
Tabbing mode is the preferred mode for applications using the TV user-interface
controls. In tabbing mode, the user presses the direction buttons on a hand control
to discretely move the focus between controls. See Chapter 1, "User-Interface
Controls," for details on using tabbing mode.

Tabbing mode can be disabled for either player 1 or for player 2 by calling the
tvSetUIFlags function and setting the TVFMNOT AB 1 or TVFMNOT AB2 bits in
the wNewFlags parameter. Two-player applications might want to use this feature
to allow one hand control to be the master control with access to user-interface
controls.

Using Roaming Mode
In roaming mode, the hand control operates similarly to a mouse; the user presses
the direction buttons to iteratively move the cursor to the desired location. The
primary action button can be remapped to simulate a mouse button, as shown in
the following example code fragment:

hcControl(HC_SET_ROAM, 1, (LPARAM)(HC_ROAMl I HC_ROAM2)):
hcControl(HC_SET_KEY, HC_KEY_OFFSET(VK_HCl_PRIMARY), VK_LBUTTON);

CHAPTER 3

Video Services

This chapter explains how to use the Modular Windows display drivers, display
images using the DisplayDib function, and directly access video memory.

Display Drivers
Modular Windows includes a display driver, TVVGA.DRV, a dual-mode 256-
color palettized driver that can operate in either high-resolution (640-by-400) or
low-resolution (320-by-200) mode. The TVVGA.DRV driver has the following
enhancements to improve performance with televisions:

■ The width of lines used to draw window borders is increased from one to two
pixels to reduce interlace flicker.

■ Dithering is disabled, which also reduces interlace flicker.

■ The intensity of the 20 reserved system colors is reduced to prevent color
smearing.

■ The size of the default cursor (the arrow cursor) is enlarged for better visibility
with the extended viewing range of televisions.

Choosing Display Driver Resolution
The TVVGA.DRV display driver can operate in either high-resolution (640-by-
400) or low-resolution (320-by-200) mode. The default mode is high resolution.
To use the low-resolution mode, add the following section to the SYSTEM.IN!
file:

[TVVGAJ
resolution=320x200x8

3-2 Microsoft Modular Windows Programmer's Reference

Use the following guidelines to help choose which display driver resolution to use
with your application:

■ Choose high-resolution mode for applications that use the TV user-interface
controls. The TV user-interface controls are optimized for high-resolution
mode.

■ Choose high-resolution mode for applications that present large amounts of
text. Text is more legible in high-resolution mode.

■ Choose low-resolution mode for applications that don't use the TV user
interface controls, but present a custom user interface using bitmaps, such as
an arcade game. Because low-resolution mode is not interlaced, interlace
flicker artifacts are eliminated. Also, performance is better in low-resolution
mode because the size of each bitmap is smaller by a factor of 4.

Using the NEWTRANSPARENT Background Mode
The TVVGA.DRV display driver supports a new background mode called
NEWTRANSP ARENT mode. This background mode allows bitmaps to have
transparent areas-when the bitmaps are drawn to the screen, the pixels
corresponding to the transparent areas remain unchanged.

► To use NEWTRANSPARENT mode to draw bitmaps with transparent areas:

1. Choose one of the default palette colors to represent transparency.

2. Create bitmaps using the chosen transparent color in the areas you want to be
transparent.

3. Before drawing the bitmap to the display, set the background mode to
NEWTRANSPARENT and the background color to the transparent color.

The following code fragment sets the background mode to
NEWTRANSP ARENT and the transparent color to 100% green:

// Set background mode and color
SetBkMode(hdc, NEWTRANSPARENT);
SetBkColor(hdc, PALETTERGB(0,255,0));

I I Bl it bitmap

To ensure that NEWTRANSP ARENT mode works properly with the Modular
Windows default palette, use the PALETTERGB macro to specify the
transparent color in the SetBkColor function.

Video Services 3-3

About the Default Palette
Modular Windows reserves 20 static colors in the system palette. These 20 colors,
called the default palette, are reserved and cannot be changed by applications.
The colors are used to draw icons and 16-color bitmaps, and to draw elements of
the Modular Windows user interface, such as window borders and controls.
Modular Windows uses the same colors in the default palette as Microsoft
Windows 3.1, however, to reduce the artifact of color smearing on televisions, the
intensity of some of the colors in the Modular Windows default palette is reduced.

Note Applications should not depend on the existence of specific RGB values in
the default palette.

Avoiding Color Matching Anomalies
The color tables of icons, 16-color bitmaps, and 256-color bitmaps with identity
palettes use RGB values from the Windows 3.1 default palette. When displayed
on Modular Windows, some of the RGB values of the low-intensity colors in the
color table will map to different default-palette indices. The result is that some of
the colors might appear to be incorrect. The Modular Windows SOK provides a
tool, Color Table Converter, you can use to convert the color table of bitmaps and
icons so that they are properly displayed under Modular Windows. See Chapter 9,
"Tools," for details on using the Color Table Converter tool.

For more information about using palettes and avoiding color-matching problems,
see the "Video Techniques" chapter in the Programmer's Reference, Volume I:
Overview manual in the Microsoft Windows SOK.

The DisplayDib and DisplayDibEx Functions
Modular Windows includes the following new versions of the DisplayDib
function originally included in the Microsoft Multimedia Development Kit:

DisplayDib
Displays a bitmap using the full display area. DisplayDib either centers the
image or places it in the lower-left corner of the display.

DisplayDibEx
Identical to DisplayDib except that it allows applications to specify the screen
location for placing the bitmap.

For detailed information about these functions, see Chapter 5, "Function
Directory."

3-4 Microsoft Modular Windows Programmer's Reference

Supported File Formats and Resolutions
The DisplayDib and DisplayDibEx functions can display images in the following
file formats:

■ 8-bit palettized DIB

■ RGB555 16-bit DIB

■ RGB565 16-bit DIB

■ YUV16

■ YUV8

DisplayDib and DisplayDibEx display each of these image formats, except 8-bit
palettized DIBs, in 320-by-200 resolution and in 320-by-400 resolution. Images in
8-bit palettized DIB format can only be displayed in 320-by-200 resolution. See
Chapter 8, "File Formats," for details on these file formats.

Note The 8-bit DIB format is supported by all TV-based players. RGB and YUV
formats are supported on VIS players and might be supported on future TV-based
players. The DisplayDib function allows applications to query to determine which
image formats DisplayDib supports.

TV-Based Player Pixel Aspect Ratios
The following table lists the pixel aspect ratios for TV -based players:

Resolution

640-by-400

320-by-400

320-by-200

Pixel Aspect Ratio (vertical:horizontal)

1.2: I

0.6: I

1.2: I

The 320-by-400 resolution is only available by using the DisplayDib and
DisplayDibEx functions.

Video Services 3·5

Directly Accessing Video Memory
You might want to directly access the video memory on a TV-based player to do
the following:

■ To use video modes not supported by Modular Windows. You can use the
EnterDV A function to disable Windows graphics services and take control of
the display. This allows you to change to any video mode supported by a TV
based player.

This approach is called direct video access (DV A).

■ To provide special video effects that cannot be accomplished using Modular
Windows GDI functions. You can use special programming techniques to
supplement the Windows graphics services by directly accessing the video
memory corresponding to the portion of the display within a window. You
cannot change the hardware video mode while using this approach.

This approach is called direct window access (DW A).

Note In deciding to use either method of directly accessing video memory, you
must introduce device dependence to your application-porting the application to
a multimedia PC or to another TV-based player will be more difficult. If your
application must use an unsupported video mode, you should consider writing a
device driver for Windows for that mode. Porting the device driver to a new
hardware platform might be easier than porting your application.

Direct-Video Access Macros
Modular Windows includes the following macros to support direct-video access:

Macro

EnterDVA

LeaveDVA

Description

Begins direct-video access.

Ends direct-video access.

CHAPTER 4

Core API and Extension
Libraries Support

Modular Windows supports many of the functions in the Windows 3.1 API and
many MS-DOS@ functions. This chapter describes the differences between the
Modular Windows API and the Windows 3.1 API, and describes the MS-DOS
functions supported by Modular Windows.

Core API Support
The Windows 3.1 core API is contained in three modules: KERNEL, GDI, and
USER. Many of these functions are fully supported in Modular Windows. Others
are partially supported; for example, the WS_MAXIMIZEBOX window style is
not available in the Create Window function. Some functions from Windows 3.1
are not supported in Modular Windows. For example, functions that result in a
write operation to a disk are not supported because TV-based players don't
presently support writable file devices.

The Modular Windows SOK provides two include files to help you locate
functions not supported in Modular Windows, or those supported with reduced
functionality. The include files are UNSUPP.H and CHANGED.H. The compiler
will generate warnings when it encounters changed or unsupported functions, and
errors when it encounters undefined constants, such as constants for messages that
are not supported.

The following is an alphabetical list of functions in the Windows 3.1 core API
the KERNEL, GDI, and USER modules--that have been changed or are not
available in Modular Windows:

AddFontResource
Attempts to load TrueType@ fonts will fail with a return value of 0. Bitmap
fonts can be loaded.

AppendMenu
Unsupported, returns FALSE. Menus are not supported on TV-based players.

4-2 Microsoft Modular Windows Programmer's Reference

Arrangelconic Windows
Unsupported because minimized windows are not supported. Returns 0,
indicating no icons.

CheckMenultem
Unsupported. Menus are not supported on TV-based players. Returns -1,
indicating the designated menu item does not exist.

CloseSound
Unsupported, returns NULL.

CopyMetaFile
This function fails with NULL. All storage devices in TV-based players are
read-only.

CountVoiceNotes
Unsupported, returns 0.

CreateFont, CreateFontlndirect
Attempts to create TrueType fonts, will select an alternate font.

CreateMenu
Unsupported, returns NULL.

CreatePopupMenu
Unsupported because menus are not supported on TV-based players. Returns
NULL, indicating menu could not be created.

CreateScalableFontResource
Unsupported, returns 0, indicating the specified TrueType font file could not
be created.

Create Window, Create Window Ex
Supports the following new control classes: TVBUTTON, TVEDITBOX,
TVKEYBOARD, TVLISTBOX, TVSCROLLBAR, TVSCROLLPAD,
TVSHOWBOX, and TVSTATIC.

The COMBOBOX and MDICLIENT classes are not supported-the function
will return NULL when you try to create these window classes. The BUTTON,
EDIT, LISTBOX, SCROLLBAR, and STATIC control classes will be
translated into corresponding Modular Windows control classes, as shown in
the following table:

Windows 3.1 Class

BUTTON

EDIT

LISTBOX

SCROLLBAR

STATIC

Modular Windows Class

TVBUTTON

TVEDITBOX

TVLISTBOX

TVSCROLLBAR

TVSTATIC

Core API and Extension Libraries Support 4-3

Some styles of Windows 3.1 controls, such as multiple-column list boxes, are
not supported in Modular Windows and will be ignored when the controls are
translated into corresponding Modular Windows controls.

Create Window and CreateWindowEx ignore the following window styles:

II WS_HSCROLL

II WS_ICONIC

B WS_MAXIMIZE

D WS_MAXIMIZEBOX

D WS_MINIMIZE

B WS_MINIMIZEBOX

II WS_SCROLL

B WS_SYSMENU

Modular Windows does not support sizing borders on windows-windows
created with the WS_THICKFRAME style will not include the lines which
visually separate areas where horizontal, vertical, or diagonal sizing is usually
performed.

DefFrameProc, DefMDIChildProc
Unsupported, returns 0L, indicating the message was not processed.

DeleteMenu
Unsupported, returns FALSE.

Destroy Menu
Unsupported, returns 0.

DlgDirList, DlgDirListComboBox, DlgDirSelect, DlgDirSelectComboBox,
DlgDirSelectComboBoxEx

Unsupported, these functions return 0L.

DrawMenuBar
Unsupported, no return value.

EnableMenultem
Unsupported, returns -1, indicating no menu item exists.

GetAsyncKeyState
This function works correctly for the virtual keys currently mapped to the hand
control, as well as for the virtual keys generated from the optional keyboard.

GetClasslnfo
This function will return FALSE for the following Microsoft Windows 3.1
control classes: BUTTON, COMBOBOX, EDIT, LISTBOX, MDICLIENT,
and SCROLLBAR.

4-4 Microsoft Modular Windows Programmer's Reference

GetDigltemlnt, GetDigltemText
Supported only for TVSTATIC and TVECHOBOX controls. These are the
only Modular Windows controls that support the WM_GETTEXTLENGTH
and WM_GETTEXT messages.

GetFontData, GetGlyphOutline
Unsupported, fails with -1 return value.

GetKeyboardState, GetKeyState
This function works correctly for the virtual keys currently mapped to the hand
control, as well as for the virtual keys generated from the optional keyboard.

GetKeyNameText
If the optional keyboard is not installed, this function returns 0.

GetMenu
Unsupported, returns NULL, indicating the window has no menu.

GetMenuCheckMarkDimensions
Unsupported, returns 0; no failure return value is defined for this function.

GetMenultemCount, GetMenultemID
Unsupported, returns -1, indicating the menu handle is invalid.

GetMenuState
Unsupported, returns -1.

GetMenuString
Unsupported, returns 0, indicating no bytes were copied to the supplied buffer.

GetModuleFileName
Attempts to retrieve the path for executable files in the ROM, will fail.

GetNextDlgGroupltem
This function is supported as documented in the Windows SDK. In Windows
3.1, the Dialog Manager handles the tabbing order of controls in a group. The
controls in a group are returned according to the tabbing order. However, in
Modular Windows, the focus manager determines the tabbing order.
Applications written for Modular Windows should not rely on the tabbing
order given by this function.

GetNextDigTabltem
Unsupported, returns NULL.

GetSubMenu
Unsupported, returns NULL, indicating no popup menu exists.

GetSystemMenu
Unsupported, returns NULL, indicating the system menu handle does not
exist.

Core API and Extension Libraries Support 4-5

GetSystemMetrics
When called with the nlndex parameter set to SM_CXHSCROLL,
SM_CYHSCROLL, SM_CXVSCROLL, or SM_CYVSCROLL, this function
returns a value of 1 because Modular Windows does not support non-client
scroll bars.

GetTempDrive
If there is no writable file device in the system, GetTempDrive returns drive
A as the temporary drive.

GetTempFileName
Unsupported on systems with no writable file devices, returns 0.

GetThresholdEvent, GetThresholdStatus
Unsupported; GetThresholdEvent returns NULL, GetThresholdStatus
returns 0.

GetWinDebuglnfo
Unsupported, returns 0.

Get Window Placement
Only the rcNormalPosition of the WINDOWPLACEMENT structure is
valid.

GetWindowsDirectory
Returns the Windows directory specified in the MODWIN command line at
start time.

hwrite
Returns HFILE_ERROR on systems with no writable file devices.

HiliteMenultem
Unsupported, returns 0.

InsertMenu
Unsupported, returns 0.

IsMenu
Unsupported, returns 0.

lcreat
Returns HFILE_ERROR on systems with no writable file devices.

_lopen
Returns HFILE_ERROR if the file is opened for writing on systems with no
writable file devices.

lwrite
Returns HFILE_ERROR.

LoadAccelerators
Unsupported, returns NULL.

LoadMenu, LoadMenulndirect
Unsupported, returns NULL.

4-6 Microsoft Modular Windows Programmer's Reference

mciGetErrorString
To save space in the Modular Windows ROM, this function fills the specified
buffer with the text "MCI Error: XXXXH" where XXXX is the hexadecimal
MCI error code. In Windows 3.1, this function fills the buffer with a textual
description of the error. The error descriptions returned by
mciGetErrorString should not be presented to users. See "MCI Error Codes,"
later in this chapter, for a list of MCI error codes.

MessageBox
Uses Modular Windows TVBUTTON class. Does not include the system
menu.

midiOutOpen
Because Modular Windows does not support the MIDI Mapper, this function
will fail if MIDI_MAPPER is specified for the wDevice/D parameter.

Modify Menu
Unsupported, returns 0, indicating the menu could not be modified.

NetBIOSCall
Unsupported, return value is undefined.

OpenFile
Supported if a file is opened as read-only. Fails and returns -1 is a file is
opened as anything other than read-only on a system that does not include
writable file devices.

OpenSound
Unsupported, returns NULL.

RemoveMenu
Unsupported, returns 0, indicating the menu was not removed.

SetMenu, SetMenultemBitmaps
Unsupported, returns 0.

SetSoundNoise
Unsupported, no return value.

SetTargetDevice
Unsupported, returns an error value.

SetVoiceAccent, SetVoiceEnvelope, SetVoiceNote, SetVoiceQueueSize,
SetVoiceSound, SetVoiceThreshold

Unsupported, no return value.

SetWinDebuglnfo
Unsupported, returns 0.

Set Window Placement

Core API and Extension Libraries Support 4-7

Modular Windows does not support minimized or maximized windows. The
SetWindowPlacement function only supports settings associated with the
normal window position and hiding and showing the window.

ShowWindow
Modular Windows does not support minimized or maximized windows. The
ShowWindow function does not support values associated with maximized or
minimized windows.

StartSound, StopSound
Unsupported, no return value.

SwapRecording
Unsupported, no return value.

SyncAIIVoices
Unsupported, no return value.

SystemParameterslnfo
On systems with no writable file devices, changes to system parameters will
not be saved and will only be valid for the current Modular Windows session.

TrackPopupMenu
Unsupported, returns 0.

TranslateAccelerator
Unsupported, returns 0.

TranslateMDISysAccel
Unsupported, returns 0.

ValidateCodeSegments
Unsupported, not available in ROM.

ValidateFreeSpaces
Unsupported, not available in ROM.

WaitSoundState
Unsupported, no return value.

WritePrivateProfileString, WriteProfileString
Unsupported on systems that don't include writable file devices.

4-8 Microsoft Modular Windows Programmer's Reference

Extension Libraries Support
Some of the Microsoft Windows 3 .1 extension libraries are directly supported in
Modular Windows. Others are supported with some restrictions. Some libraries,
such as the common dialog-box library (COMMDLG.DLL), are not available in
Modular Windows.

The following table summarizes Modular Windows support for various Windows
extension libraries:

Library

Common Dialog Boxes (COMMDLG.DLL)

DDE Management (DDEML.DLL)

OLE (OLECLI.DLL, OLESVR.DLL)

Registration Database (SHELL.DLL)

Toolhelp (TOOLHELP.DLL)

Data Decompression (LZEXPAND.DLL)

Stress Testing (STRESS.DLL)

32-Bit Memory Management (WINMEM32.DLL)

Floating Point Emulation (WIN87EM.DLL)

Registration Database (SHELL.DLL)

Support

No

No

No

Yes, with restrictions

Yes

Yes, with restrictions

Yes, with restrictions

No

Yes

The registration database stores information that defines associations between
applications and files. In Windows 3.1, this information is used by File Manager
during drag-and-drop operations, and by OLE server applications during
operations involving linked or embedded objects.

Modular Windows does not require the same functionality from a registration
database because:

■ Modular Windows does not have a File Manager, and so does not require
support for file associations.

■ The registration database (REG.DAT) cannot be modified on systems without
writable file devices.

Core API and Extension Libraries Support 4-9

Provided that SHELL.DLL, WIN.INI, and REG.DAT are in the Microsoft
Windows 3.1 directory, the following functions operate the same as under
Windows 3.1:

DragAcceptFiles

DragQueryFile

FindExecutable

RegEnumKey

RegQueryKey

ShellExecute

DragFinish

DragQueryPoint

RegCloseKey

RegOpenKey

RegQuery Value

The following functions will fail on systems without writable file devices:

RegCreateKey

RegSetValue

Data Decompression (LZEXPAND.DLL)

RegDeleteKey

Functions in LZEXPAND.DLL are supported with the following exceptions:

■ LZCopy is not supported on systems with no writable file devices.

■ CopyLZFile is not supported on systems with no writable file devices.

■ For LZOpenFile, the OF_ CREA TE, OF _DELETE, OF_ WRITE, and
OF _READWRITE styles are not supported on systems with no writable file
devices.

Stress Testing (STRESS.DLL)
Functions in STRESS.DLL are supported with the following exceptions:

■ AllocDiskSpace is not supported on systems with no writable file devices.

■ UnAllocDiskSpace is not supported on systems with no writable file devices.

MS-DOS Function Support
Modular Windows provides MS-DOS functions through the INT 20H and 21H
interrupts. Not all of the standard INT 21H functions are available-unsupported
functions will return with the carry flag (CY) set.

4-10 Microsoft Modular Windows Programmer's Reference

Unchanged INT 21 H Functions
The following INT 21H functions are supported without any changes:

Register AH Function

OOH Terminate Process

OEH Set Default Drive

19H Get Default Drive

lAH Set Disk Transfer Address

25H Set Interrupt Vector

26H Create New PSP

2FH Get Disk Transfer Address

30H Get MS-DOS Version Number

31H Terminate and Stay Resident

34H Get InDOS Flag Address

35H Get Interrupt Vector

45H Duplicate File Handle

46H Force Duplicate File Handle

47H Get Current Directory

48H Allocate Memory

49H Free Allocated Memory

4AH Set Memory Block Size

4BH Execute Program

4CH End Process

4DH Get Return Code of Process

58H Get or Set Allocation Strategy

62H Get PSP Address

Core API and Extension Libraries Support 4-11

Redirected INT 21 H Functions
Some INT 21H functions are redirected through the INT 2FH interface to external
file systems, such as MSCDEX (or the memory cartridge on VIS players), instead
of going to the internal FAT file system. These functions assume all devices in the
system are redirected. The following table lists the redirected INT 21H functions:

Register AH Function

39H Create Directory

3AH Delete Directory

3BH Set Current Directory

3CH Create File

3DH Open File

3EH Close File

3FH Read File or Device

40H Write File or Device

41H Delete File

42H Set File Pointer

43H Get or Set File Attributes

4EH Find First File

4FH Find Next File

4-12 Microsoft Modular Windows Programmer's Reference

MCI Error Codes
The following table describes each of the MCI error return codes and gives the
corresponding MMSYSTEM.H constant:

Error

0x0101

0x0103

0x0105

0x0106

0x0107

0x0108

0x0109

0x0lOA

0x010B

0x0lOC

0x0lOC

0x010D

0x0lOE

0x0110

0x0ll 1

0x0112

Corresponding Constant and Error Description

MCIERR_INV ALID_DEVICE_ID
Invalid device ID.

MCIERR_UNRECOGNIZED_KEYWORD
Unknown keyword.

MCIERR_UNRECOGNIZED_COMMAND
Unknown command.

MCIERR_HARDW ARE
Hardware error on media device.

MCIERR_INV ALID_DEVICE_NAME
The device is not open or is not known.

MCIERROR_OUT_OF _MEMORY
Not enough memory for requested operation.

MCIERR_DEVICE_OPEN
The device is already open and is not shareable.

MCIERR_CANNOT_LOAD_DRIVER
The requested driver is not specified in the SYSTEM.IN! file.

MCIERR_MISSING_COMMAND_STRING
A string command was found without the required p~eter.

MCIERR_PARAM_OVERFLOW
The output string is not long enough.

MCIERR_MISSING_STRING_ARGUMENT
A required string argument is not present.

MCIERR_BAD_INTEGER
A non-integral value was encountered when an integer was required.

MCIERROR_FARSER_INTERNAL
Internal parser error.

MCIERR_DRIVER_INTERNAL
Internal driver error.

MCIERR_MISSING_PARAMETER
A required parameter is not present.

MCIERR_UNSUPPORTED_FUNCTION
Action not available for this device.

Continued

Error

Ox0113

Ox0114

Ox0115

Ox0116

OxOl 17

Ox0118

Ox0119

OxOllA

OxOllC

OxOllE

OxOllF

Ox0120

Ox0121

Ox0122

Ox0123

Ox0124

Ox0125

Core API and Extension Libraries Support 4-13

Corresponding Constant and Error Description

MCIERR_FILE_NOT_FOUND
Requested file not found.

MCIERR_DEVICE_NOT_READY
Device not ready.

MCIERR_INTERNAL
Internal error.

MCIERR_DRIVER
Unspecified device error.

MCIERR_CANNOT_USE_ALL
The device name "all" is not allowed for this command.

MCIERR_MULTIPLE
Errors occurred in more than one device.

MCIERR_EXTENSION_NOT _FOUND
The specified extension was not found.

MCIERR_OUTOFRANGE
Parameter value out of range.

MCIERR_FLAGS_NOT_COMP ATIBLE
Incompatible parameters were specified.

MCIERR_FILE_NOT_SA VED
The file was not saved.

MCIERR_DEVICE_ TYPE_REQUIRED
The device name must be a valid device type.

MCIERR_DEVICE_LOCKED
The device is locked until it is closed automatically.

MCIERR_DUPLICATE_ALIAS
The specified alias is already in use.

MCIERR_BAD_CONSTANT

A variable was encountered where a constant was required.

MCIERR_MUST_USE_SHAREABLE
The specified device was not opened as a shareable device.

MCIERR_MISSING_DEVICE_NAME
Invalid device name, alias, or filename.

MCIERR_BAD_TIME_FORMAT
Illegal value for time format.

4-14 Microsoft Modular Windows Programmer's Reference

Continued

Error

0x0126

0x0127

0x0128

0x0129

0x012A

0x012B

0x012C

0x012D

0x012E

0x012F

0x0130

0x0131

0x0132

0x0133

0x0134

0x0135

0x0136

Corresponding Constant and Error Description

MCIERR_NO_CLOSING_QUOTE
No closing quote found for a previous opening quote.

MCIERR_DUPLICA TE_FLAGS
Specified flag already in use on a previous command.

MCIERR_INV ALID_FILE
Invalid file format.

MCIERR_NULL_PARAMETER_BLOCK
Parameter block pointer was NULL.

MCIERR_UNNAMED_RESOURCE
Attempt to save unnamed file.

MCIERR_NEW _REQUIRES_ALIAS
Attempt to create a new object without specifying either a filename or an
alias.

MCIERR_NOTIFY _ON_AUTO_OPEN
The notify flag is illegal on auto open.

MCIERR_NO_ELEMENT_ALLOWED
Cannot specify a filename with this type of device.

MCIERR_NONAPPLICABLE_FUNCTION
Invalid command sequence.

MCIERR_ILLEGAL_FOR_AUTO_OPEN
Generated an illegal message for an auto opened device.

MCIERR_FILENAME_REQUIRED
The specified filename is not valid.

MCIERR_EXTRA_CHARACTERS
Extraneous characters found following a closing quote.

MCIERR_DEVICE_NOT_INSTALLED
The driver for the requested device is not installed.

MCIERR_GET_CD
The requested directory name does not exist.

MCIERR_SET _ CD
Attempted to select a directory name that does not exist.

MCIERR_SET_DRIVE
Attempted to change to a drive name that does not exist.

MCIERR_DEVICE_LENGTH
Driver or device name is too long.

Continued

Error

Ox0137

Ox0138

Ox015A

Ox015B

Ox015C

Ox015D

Core API and Extension Libraries Support 4-15

Corresponding Constant and Error Description

MCIERR_DEVICE_ORD_LENGTH
Driver or device name is too long.

MCIERR_NO_INTEGER
Non-integer parameter specified where an integer is required.

MCIERR_NO_ WINDOW
There is no display window.

MCIERR_CREATEWINDOW
Could not create or use window.

MCIERR_FILE_READ
A read from the file failed.

MCIERR_FILE_ WRITE
A write to the file failed.

MIDI Sequencer Device Errors

Ox0150

Ox0151

Ox0152

Ox0153

Ox0154

Ox0155

Ox0156

Ox0157

MCIERR_SEQ_DIV _INCOMPATIBLE
Set Song Pointer incompatible with SMPTE files.

MCIERR_SEQ_PORT_INUSE
Specified port is in use.

MCIERR_SEQ_PORT_NONEXISTENT
Specified port does not exist.

MCIERR_SEQ_pORT_MAPNODEVICE
Current map uses non-existent device.

MCIERR_SEQ_PORT_MISCERROR
Miscellaneous error with specified port.

MCIERR_SEQ_ TIMER
Timer error.

MCIERR_SEQ_PORTUNSPECIFIED
No current MIDI port.

MCIERROR_NOMIDIPRESENT
No MIDI device found.

Waveform Audio Device Errors

Ox0140 MCIERR_ WA VE_OUTPUTSINUSE
No compatible waveform-playback device is free.

Ox0141 MCIERR_ WA VE_SETOUTPUTINUSE
Set waveform-playback device is in use.

Ox0142 MCIERR_ WA VE_INPUTSINUSE
No compatible waveform-recording device is free.

4-16 Microsoft Modular Windows Programmer's Reference

Continued

Error Corresponding Constant and Error Description

Ox0143 MCIERR_ WA VE_SETINPUTINUSE
Set waveform-recording device is in use.

Ox0144 MCIERR_ WA VE_OUTPUTUNSPECIFIED
Any compatible waveform-playback device can be used.

Ox0145 MCIERR_ WA VE_INPUTUNSPECIFIED
Any compatible waveform-recording device can be used.

Ox0146 MCIERR_ WA VE_OUTPUTSUNSUITABLE
No compatible waveform-playback devices.

Ox0147 MCIERR_ WA VE_SETOUTPUTUNSUITABLE
Set waveform-playback device is incompatible with set format.

Ox0148 MCIERR_ WAVE_INPUTSUNSUITABLE
No compatible waveform-recording devices.

Ox0149 MCIERR_ WA VE_SETINPUTUNSUIT ABLE
Set waveform-recording device is incompatible with set format.

CHAPTER 5

Function Directory

This chapter contains an alphabetical listing of the new Modular Windows
functions and macros. Each entry contains the following items:

■ The type, name, and description of input parameters

■ The syntax for the function or macro

■ The purpose of the function or macro

■ A description of the return value

■ Optional comments about using the function or macro

■ Optional examples showing how to use the function or macro

■ Optional cross references to other functions, macros, messages, and data
structures

5-2 DisplayDib

DisplayDib
Syntax

Parameters

WORD DisplayDib(/pbi, lpBits, wFlags)

The DisplayDib function displays a bitmap using the full screen, centering the
bitmap and clipping it if necessary. Normally, control does not return to the
application until the user initiates an action such as pressing a hand-control
button, keyboard key, or mouse button.

To call DisplayDib, an application must be the active application. All inactive
applications, GDI screen updates, and MCI streaming audio services (waveform
and MIDI sequencer) are suspended while DisplayDib has control of the display.

LPBITMAPINFO lpbi
Specifies a pointer to a BITMAPINFO structure describing the bitmap to be
displayed.

LPSTR lpBits
Specifies a pointer to the bitmap bits. If this parameter is NULL, the bits are
assumed to follow the BITMAPINFO structure pointed to by lpbi.

WORDwFlags
Specifies options for displaying the bitmap using a combination of the
following flags:

DISPLAYDIB_NOCENTER
Display the image without centering it. The image appears in the lower-left
corner of the screen.

DISPLAYDIB_NOWAIT
Return immediately after displaying the bitmap.

DISPLA YDIB_BEGIN
Prepare to display a series of bitmaps using the same video mode with
multiple calls to DisplayDib. Subsequent calls to DisplayDib will not set
the video mode, eliminating the screen flicker that occurs with video-mode
changes. If the DISPLAYDIB_MODE_DEFAULT flag is specified,
DisplayDib chooses the video mode based on the BITMAPINFO structure
specified by the lpbi parameter. The lpBits parameter is ignored.

Video memory is not cleared for subsequent DisplayDib calls. If the new
image does not completely cover the previous image, remnants of the
previous image will remain on the screen.

DISPLA YDIB_END
Indicates the end of multiple calls to DisplayDib. The lpbi and lpBits
parameters should be set to NULL when specifying this flag.

DISPLAYDIB_NOPALETTE
Displays the image without changing the palette. Use this flag to display a
series of DIBs that use a common palette.

Return Value

DisplayDib 5-3

DISPLA YDIB_ZOOM2
Stretches the bitmap by a factor of two before displaying it.
This option works only with 8-bit palettized DIBs
(DISPLA YDIB_MODE_320x200x8). RLE bitmaps should
not be stretched unless the entire stretched image will fit on screen.

DISPLA YDIB_TEST
Query to determine if DisplayDib supports the given video mode-does
not set the video mode or the palette and does not wait before returning.

DISPLA YDIB_MODE_DEFAUL T
Display the bitmap using the video mode appropriate for the given bitmap.
The video mode is determined from the BITMAPINFO structure specified
by the lpbi parameter.

DISPLA YDIB_MODE_320x200x8
Display an 8-bit palettized DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_555_320x200
Display an RGB555 DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_555_320x400
Display an RGB555 DIB using 320-by-400 resolution.

DISPLA YDIB_MODE_565_320x200
Display an RGB565 DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_565_320x400
Display an RGB565 DIB using 320-by-400 resolution.

DISPLAYDIB_MODE_ YlJV16_320x200
Display a YUV16 DIB using 320-by-200 resolution.

DISPLAYDIB_MODE_ YUV16_320x400
Display a YUV16 DIB using 320-by-400 resolution.

DISPLAYDIB_MODE_ YUV8_320x200
Display a YUV8 DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_ YlJV8_320x400
Display a YUV8 DIB using 320-by-400 resolution.

The return value is zero if successful; otherwise, it is one of the following error
codes:

DISPLA YDIB_NOTSUPPORTED
DisplayDib does not support the specified video mode.

DISPLA YDIB_INV ALIDDIB.
The bitmap specified by lpbi is not a valid bitmap.

DISPLAYDIB_INV ALIDFORMAT
The bitmap specified by lpbi specifies a type of bitmap that is not supported.

5-4 DisplayDibEx

Comments

See Also

DISPLAYDIB_INV ALIDTASK
The caller is an inactive application. DisplayDib can only be called by an
active application.

DISPLAYDIB_FEATURE_NOTSUPPORTED
The specified option is not supported. Currently, this error is returned only
when the DISPLAYDIB_ZOOM2 option is specified for a bitmap that is not
an 8-bit palettized DIB.

DISPLAYDIB_DIBMODEMISMATCH
The given DIB cannot be shown in the specified video mode.

DISPLAYDIB_ WIDEDIB
The given DIB is too wide to display. This includes the cases when a YUV8
DIB is to be displayed off the left edge of the screen and when a RLE8 DIB is
wider than 320 (or 160 when DISPLAYDIB_ZOOM2 is also specified).

The DisplayDib function displays bitmaps described with the Windows
BITMAPINFO data structure in either BI_RGB or BI_RLE8 format; it does not
support bitmaps described with the OS/2 BITMAPCOREHEADER data
structure.

Because DisplayDib changes the video mode and disables the display driver,
applications cannot call GDI functions while DisplayDib has control of the
display.

Due to the differential encoding used in the YUV8 format, YUV8 DIBs must be
displayed such that the left edge of the DIB is aligned with the left edge of the
screen, otherwise the image will not be displayed correctly.

For better performance, RLE8 DIBs are clipped only in they-direction.

DisplayDibEx, EnterDV A

DisplayDibEx
Syntax WORD DisplayDibEx(/pbi, lpBits, x, y, wFlags)

The DisplayDibEx function displays a bitmap using the full screen, centering the
bitmap and clipping it, if necessary, or placing it at a specified position on the
screen. Normally, control does not return to the application until the user initiates
an action such as pressing a hand-control button, keyboard key, or mouse button.

Parameters

DisplayDibEx 5-5

To call DisplayDibEx, an application must be the active application. All inactive
applications, GDI screen updates, and MCI streaming audio services (waveform
and MIDI sequencer) are suspended while DisplayDibEx has control of the
display.

LPBITMAPINFO lpbi
Specifies a pointer to a BITMAPINFO structure describing the bitmap to be
displayed.

LPSTR lpBits
Specifies a pointer to the bitmap bits. If this parameter is NULL, the bits are
assumed to follow the BITMAPINFO structure pointed to by lpbi.

intx
Specifies the x-coordinate of the screen location to place the origin of the
bitmap. The origin is the lower-left corner of the bitmap.

inty
Specifies the y-coordinate of the screen location to place the origin of the
bitmap. The origin is the lower-left corner of the bitmap.

WORDwFlags
Specifies options for displaying the bitmap using a combination of the
following flags:

DISPLA YDIB_NOW AIT
Return immediately after displaying the bitmap.

DISPLAYDIB_BEGIN
Prepare to display a series of bitmaps using the same video mode with
multiple calls to DisplayDibEx. Subsequent calls to DisplayDibEx will
not set the video mode, eliminating the screen flicker that occurs with
video mode changes. If the DISPLAYDIB_MODE_DEFAULT flag is
specified, DisplayDibEx chooses the video mode based on the
BITMAPINFO structure specified by the lpbi parameter. The lpBits
parameter is ignored.

Video memory is not cleared for subsequent DisplayDibEx calls. If the
new image does not completely cover the previous image, remnants of the
previous image will remain on the screen.

DISPLAYDIB_END
Indicates the end of multiple calls to DisplayDibEx. The lpbi and lpBits
parameters should be set to NULL when specifying this flag.

DISPLAYDIB_NOPALETTE
Displays the image without changing the palette. Use this flag to display a
series of DIBs that use a common palette.

5-6 DisplayDibEx

Return Value

DISPLAYDIB_ZOOM2
Stretch the bitmap by a factor of two before displaying it. This option
works only with 8-bit palettized DIBs
(DISPLAYDIB_MODE_320x200x8). RLE bitmaps should not be stretched
unless the entire stretched image will fit on the screen.

DISPLAYDIB_TEST
Query to determine if DisplayDibEx supports the given video mode-does
not set the video mode or the palette and does not wait before returning.

DISPLA YDIB_MODE_DEFAULT
Display the bitmap using the video mode appropriate for the given bitmap.
The video mode is determined from the BITMAPINFO structure specified
by the lpbi parameter.

DISPLA YDIB_MODE_320x200x8
Display an 8-bit palettized DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_555_320x200
Display an RGB555 DIB using 320-by-200 resolution.

DISPLAYDIB_MODE_555_320x400
Display an RGB555 DIB using 320-by-400 resolution.

DISPLA YDIB_MODE_565_320x200
Display an RGB565 DIB using 320-by-200 resolution.

DISPLAYDIB_MODE_565_320x400
Display an RGB565 DIB using 320-by-400 resolution.

DISPLA YDIB_MODE_ YlJV16_320x200
Display a YUV16 DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_ YUV16_320x400
Display a YUV16 DIB using 320-by-400 resolution.

DISPLA YDIB_MODE_ YUV8_320x200
Display a YUV8 DIB using 320-by-200 resolution.

DISPLA YDIB_MODE_ YUV8_320x400
Display a YlJV8 DIB using 320-by-400 resolution.

The return value is zero if successful; otherwise, it is one of the following error
codes:

DISPLAYDIB_NOTSUPPORTED
DisplayDibEx does not support the specified video mode.

DISPLA YDIB_INV ALIDDIB
The bitmap specified by lpbi is not a valid bitmap.

Comments

See Also

DisplayDibEx 5-7

DISPLAYDIB_INV ALIDFORMAT
The bitmap specified by lpbi specifies a type of bitmap that is not supported.

DISPLA YDIB_INV ALIDT ASK
The caller is an inactive application. DisplayDibEx can only be called by an
active application.

DISPLAYDIB_FEATURE_NOTSUPPORTED
The specified option is not supported. Currently, this error is returned only
when the DISPLAYDIB_ZOOM2 option is specified for a bitmap that is not
an 8-bit palettized DIB.

DISPLAYDIB_DIBMODEMISMATCH
The given DIB cannot be shown in the specified video mode.

DISPLA YDIB_ WIDEDIB
The given DIB is too wide to display. This includes the cases when a YUV8
DIB is to be displayed off the left edge of the screen and when a RLE8 DIB is
wider than 320 pixels (160 pixels when DISPLAYDIB_ZOOM2 is also
specified).

The DisplayDibEx function displays bitmaps described by the Windows
BITMAPINFO data structure in either BI_RGB or BI_RLE8 format; it does not
support bitmaps described with the OS/2 BITMAPCOREHEADER data
structure.

Because DisplayDibEx changes the video mode and disables the display driver,
applications cannot call GDI functions while DisplayDibEx has control of the
display.

With YUV16 DIBs, the x-coordinate specified in the x parameter will be rounded
to the nearest multiple of 2. With YUV8 DIBs, the x-coordinate will be rounded
to the nearest multiple of 4. Also, when the DISPLA YDIB_ZOOM2 flag is
specified, DisplayDibEx will truncate the x-coordinate of the origin to be even
aligned.

Due to the differential encoding used in the YUV8 format, YUV8 DIBs must be
displayed such that the left edge of the DIB is aligned with the left edge of the
screen, otherwise the image will not be displayed correctly.

For better performance, RLE8 DIBs are clipped only in the y-direction.

DisplayDib, EnterDV A

5-8 EnterDVA

EnterDVA
Syntax

Parameters

Return Value

WORD EnterDV A(wFlags)

The EnterDV A macro begins direct video access (DV A) by suspending GDI and
the currently running display driver and setting the video hardware to the
specified video mode.

WORDwFlags
Specifies options using a combination of the following flags:

DISPLA YDIB_NOW AIT
Return immediately after beginning direct video access.

DV A_MODE_320x200x8
Sets the video mode to TVVGA, 320-by-200 resolution.

DVA_MODE_555_320x200
Sets the video mode to RGB555, 320-by-200 resolution.

DV A_MODE_555_320x400
Sets the video mode to RGB555, 320-by-400 resolution.

DVA_MODE_565_320x200
Sets the video mode to RGB565, 320-by-200 resolution.

DVA_MODE_565_320x400
Sets the video mode to RGB565, 320-by-400 resolution.

DV A_MODE_ Y1JV16_320x200
Sets the video mode to YUV16, 320-by-200 resolution.

DVA_MODE_Y1JV16_320x400
Sets the video mode to Y1JV16, 320-by-400 resolution.

DV A_MODE_ YUV8_320x200
Sets the video mode to YUV8, 320-by-200 resolution.

DV A_MODE_ Y1JV8_320x400
Sets the video mode to YUV8, 320-by-400 resolution.

The return value is zero if the function is successful; otherwise, it is one of the
following error codes:

DISPLAYDIB_NOTSUPPORTED
EnterDV A does not support the specified video mode.

DISPLA YDIB_INV ALIDTASK
The caller is an inactive application. EnterDV A can only be called by an
active application.

Comments

Example

See Also

fmAddWindow 5-9

While in DV A mode, applications can call DisplayDib using the
DISPLA YDIB_CONTINUE flag to display DIBs without changing the video
mode.

The following code fragment shows how to get pointers to video memory:

// Pointers to base of video memory and base of video-overlay memory
LPVOID lpA000: // far pointer to base of video memory
LPVOID lpB000: // far pointer to base of video overlay

// External variables defined in the Windows Kernel module
extern WORD _A000h: // selector for video memory
extern WORD _B000h: // selector for video overlay

// Convert selectors into far pointers
lpA000 = (LPVOID) MAKELONG(0L, &_A000h):
lpB000 = (LPVOID) MAKELONG(0L, &_B000h);

LeaveDV A, DisplayDib, DisplayDibEx

fmAddWindow
Syntax

Parameters

Return Value

Comments

int fmAddWindow(hWnd)

The fmAddWindow function adds a control to the list of controls managed by the
focus manager.

HWNDhWnd
Specifies the window handle of the control to add.

If the function is successful, the return value is the number of windows currently
being managed by the focus manager; otherwise, the return value is the following
error code:

FM_ERR
The specified window is already in the focus-manager list or the focus
manager list is full (maximum of 255 entries).

Controls based on the predefined control classes (TVBUTION, TVLISTBOX,
TVSCROLLBAR,TVSCROLLPAD,TVSPINBUTION,TVKEYBOARD,and
TVEDITBOX) are automatically added to the focus manager when they are
created. The fmAddWindow function should only be used with custom controls.

5-10 fmDeleteWindow

See Also

Controls added to the focus manager must have the WS_ VISIBLE and
WS_TABSTOP window style bits set and the WS_DISABLE bit cleared to get
the focus. Controls without these bits set will be ignored when the focus manager
changes the focus.

fmDeleteWindow

fmDeleteWindow
Syntax

Parameters

Return Value

Comments

See Also

BOOL fmDeleteWindow(h Wnd)

The fmDeleteWindow function removes a control from the list of controls
managed by the focus manager.

HWNDhWnd
Specifies the window handle of the control to remove.

If the function is successful, the return value is the number of windows currently
being managed by the focus manager; otherwise, the return value is the following
error code:

FM_ERR
The specified window is not in the focus-manager list.

Applications can use fmDeleteWindow to remove controls based on the
predefined control classes (TVBUTTON, TVLISTBOX, TVSCROLLBAR,
TVSCROLLPAD, TVSPINBUTTON, TVKEYBOARD, and TVEDITBOX) from
the list of controls managed by the focus manager.

To temporarily prevent a control from getting the focus, applications can clear the
WS_TABSTOP window style bit by calling the SetWindowLong function with
the nOffset parameter set to GWL_STYLE.

fmAddWindow

fmGetlastCursorPos
Syntax void fmGetLastCursorPos(lppt)

The fmGetLastCursorPos function retrieves the last position of the cursor prior
to the focus change. This function relies on fmSetCursorPos being called to set
the current position.

Parameters

See Also

fmGetWindowVectors 5-11

LPPOINT lppt
Specifies a pointer to a POINT structure that will be filled with the last cursor
position.

fmSetCursorPos

fmGetlastDirection
Syntax

Return Value

WORD fmGetLastDirection()

The fmGetLastDirection function retrieves the direction of the last focus
movement. Custom controls with multiple focus areas can use this function to
determine which area to initially give the focus.

The return value is the direction of the last focus movement specified by one of
the hand-control virtual-key codes.

fmGetWindowVectors
Syntax

Parameters

Return Value

See Also

BOOL fmGetWindowVectors(h Wnd, lpDV)

The fmGetWindowVectors function retrieves the focus vectors for a control
managed by the focus manager. Focus vectors determine which control gets the
focus when the focus is moved from the given control.

HWNDhWnd
Specifies the window handle of the control for which to retrieve the focus
vectors.

LPDIRVECTORS lpDV
Specifies a far pointer to a DIRVECTORS structure that will be filled with
the focus vectors.

The return value is nonzero if the function is successful; otherwise, it is zero.

fmSetWindowVectors, DIRVECTORS

5-12 fmlsFocusMessage

fmlsFocusMessage
Syntax

Parameters

Return Value

Comments

See Also

BOOL fmlsFocusMessage(hWnd, uiMsg, wParam, lParam)

The fmlsFocusMessage function sends WM_KEYDOWN messages to the focus
manager for processing.

HWNDhWnd
Specifies the window handle of the control that received the
WM_KEYDOWN message.

VINT uiMsg
Specifies the message. This parameter should be set to WM_KEYDOWN.

WP ARAM wParam
Specifies the WORD parameter associated with the WM_KEYDOWN
message.

LP ARAM lParam
Specifies the LONG parameter associated with the WM_KEYDOWN
message.

The return value is TRUE if the focus manager processes the WM_KEYDOWN
message and sets the focus to a new window; otherwise, it is FALSE.

This function should only be used in the window procedures of custom controls
that have been added to the focus manager using fmAddWindow. Custom
controls can process WM_KEYDOWN messages without passing them to the
focus manager. For example, a control such as the TV list box can have several
areas within the control that can each have the focus. In this case, the control only
calls fmlsFocusMessage when it determines that the focus is being moved to
another control.

fmGetLastDirection

fmSetWindowVectors 5-13

fmSetCursorPos
Syntax

Parameters

See Also

void fmSetCursorPos(lppt)

The fmSetCursorPos function sets the position of the cursor on the screen to
indicate which window has the current keyboard or hand-control focus.

LPPOINT lppt
Specifies a pointer to a POINT structure containing the new cursor position.

fmGetLastCursorPos

fmSetWindowVectors
Syntax

Parameters

Return Value

Comments

See Also

BOOL fmSetWindowVectors(hWnd, lpDV)

The fmSetWindowVectors function sets the focus vectors for a control managed
by the focus manager. Focus vectors determine which control gets the focus when
the focus is moved from the given control.

HWNDhWnd
Specifies the window handle of the control for which to set the focus vectors.

LPDIRVECTORS lpDV
Specifies a far pointer to a DIRVECTORS structure containing the focus
vectors. The focus manager makes a copy of this structure-applications can
free this memory after calling fmSetWindowVectors.

The return value is nonzero if the function is successful; otherwise, it is zero.

The DIRVECTORS structure uses window handles to identify controls. If an
entry contains NULL, the focus manager does not tab to any other control when
the hand-control direction key corresponding to the entry is pressed. If the entry
contains FM_DEFAULT, the focus is changed to the next window based on the
default algorithm. This algorithm uses the screen rectangles of siblings of the
window that currently has the focus to determine the appropriate window to
receive the focus.

fmGetWindowVectors, DIRVECTORS

5-14 fmTranslateHCKey

fmTranslateHCKey
Syntax

Parameters

Return Value

Comments

See Also

HC IS HC
Syntax

Return Value

BOOL fmTranslateHCKey(/pw, l)

The fmTranslateHCKey function selectively translates WM_KEYDOWN and
WM_KEYUP messages that are generated by the hand control into raw,
unmapped virtual-key codes.

LPWORDlpw
Specifies the wParam parameter of the key message. This is the parameter that
can be changed by fmTranslateHCKey.

LONG/
Specifies the !Param parameter of the key message. This parameter contains
the scan-code information used by fmTranslateHCKey to determine whether
the key message was generated by the hand control or an actual keyboard.

The return value is TRUE if the scan code came from a hand control and the
virtual-key code was changed; otherwise, the return value is FALSE.

This function should only be used in the window procedure of custom controls
that have been added to the focus manager using fmAddWindow. It should be
called immediately before WM_KEYDOWN messages are processed and passed
to fmlsFocusMessage. The fmTranslateHCKey function translates hand-control
key messages into raw virtual-key codes to make them appear as if they came
from the keyboard. This is necessary because the hand-control might map the
various hand-control keys to arbitrary virtual-key codes. Child controls use this
function as a method for interpreting raw unmapped hand-control codes. If a scan
code is found that is not generated by the hand control, or if it is from a hand
control button that is not interpreted by the focus manager (buttons other than
direction or action buttons), or if random roam is enabled for the player that
generated the event, then the wParam parameter will not be changed.

fmlsFocusMessage

BOOL HC_IS_HC()

The HC _IS_ HC macro determines if the current key event was generated by the
hand control.

The return value is TRUE if the given key event is from the hand control;
otherwise, it is FALSE.

Comments

See Also

HC_PLAVER 5-15

This macro is only valid when called during processing of WM_KEYUP or
WM_KEYDOWN messages. WM_KEYDOWN messages always precede
WM_CHAR messages. To determine if a WM_CHAR event was generated by the
hand control, call HC _IS_ HC when the WM_KEYDOWN message is received
and save the result to use with the next WM_CHAR message.

HC PLAYER

HC KEY OFFSET
Syntax

Parameters

Return Value

Comments

See Also

WORD HC_KEY_OFFSET(wVkey)

The HC _KEY_ OFFSET macro returns the offset for a given hand-control
button. Use this offset to specify hand-control buttons when remapping buttons
using the hcControl function.

WORDwVkey
Specifies the unmapped virtual-key code identifying the hand-control button.

The return value is the offset corresponding to the given hand-control button.

Hand-control key offsets are identical to the scan codes associated with
WM_KEYUP and WM_KEYDOWN messages. Scan codes can be examined
when an application needs to know what physical button was pressed, regardless
of the key mapping.

hcControl

HC PLAYER
Syntax

Parameters

BOOL HC_PLAYER(wVkey, bScan)

The HC_PLAYER macro determines if a given hand-control key event is from
the first player or the second player.

WORDwVkey
Specifies the virtual-key code of the key event.

BYTEbScan
Specifies the scan code of the key event.

5-16 HC_VKN2VK

Return Value

Comments

See Also

The return value is zero if the key event is from the first player; one if the key
event is from the second player.

Use this macro only with hand-control key events.

HC IS HC

HC VKN2VK
Syntax

Parameters

Return Value

Comments

See Also

hcControl
Syntax

Parameters

WORD HC_ VKN2VK(wVkey, bScan)

The HC _ VKN2VK macro returns a virtual-key code for the first player given a
hand-control key event for the first or the second player.

WORDwVkey
Specifies the virtual-key code of the key event.

BYTEbScan
Specifies the scan code of the key event.

The return value is a virtual-key code for the first player.

Use this macro only with hand-control key events.

HC IS HC

DWORD hcControl(wF/ag, wParam, /Param)

The hcControl function changes settings for the hand-control driver.

WORDwFlag
Specifies the setting to change using one of the following flags:

HC_SET_ROAM
Enables and disables roaming mode. Set wParam to TRUE to enable
roaming mode, or FALSE to disable roaming mode. The default state is
disabled.

To enable roaming mode for both hand controls, set /Param to zero. To
enable roaming mode for individual players, set /Param to HC_ROAMl
for player 1 or HC_ROAM2 for player 2. If wParam is FALSE, roaming
mode is disabled for both players-the /Param parameter is ignored.

hcControl 5-17

HC_GET_ROAM
Retrieves the random-roam setting. Use the HC_ROAMl and HC_ROAM2
constants to test the bits corresponding to each hand control.

HC_SET_INIT
Sets the initial velocity of the cursor when roaming mode is enabled.
Specify the initial velocity in the wParam parameter. The default initial
velocity is 1. The maximum initial velocity is 50.

HC_GET_INIT
Retrieves the initial cursor-velocity setting. The setting is returned in the
low-order word of the return value.

HC_SET_MAX
Sets the maximum velocity of the cursor when roaming mode is enabled.
Specify the maximum velocity in the wParam parameter. The default
maximum velocity is 50. The maximum value is 50.

HC_GET_MAX
Retrieves the maximum cursor velocity setting. The setting is returned in
the low-order word of the return value.

HC_SET_RATE
Sets the cursor-update rate when roaming mode is enabled. On each cursor
update, a new position is calculated from the current cursor velocity and
acceleration. Use the wParam parameter to specify the update rate. The
default rate is 20 updates per second. The maximum rate is 30 updates per
second.

HC_GET_RATE
Retrieves the cursor-update rate setting. The setting is returned in the low
order word of the return value.

HC_SET_ACCEL
Sets the cursor acceleration when roaming mode is enabled. This value is
added to the cursor velocity on each update of the cursor position. Specify
the acceleration in the wParam parameter. The default acceleration is 1.
The maximum acceleration is 12.

HC_GET_ACCEL
Retrieves the cursor-acceleration setting. The setting is returned in the low
order word of the return value.

HC_SET_KEYMAP
Sets the key map for the hand-control buttons. Use the !Param parameter to
specify a far pointer to an array of 20 bytes containing the new key map.

HC_GET_KEYMAP
Retrieves the current key map for the hand-control buttons. Use the !Param
parameter to specify a far pointer to an array of 20 bytes that will be filled
with the virtual-key codes for the current key map.

5-18 hcControl

Return Value

Comments

Example

HC_SET_KEY
Sets a single entry in the key map for the hand-control buttons. Use the
wParam parameter to specify the offset for the entry you want to change
and the lParam parameter to specify the new virtual-key code.

HC_GET_KEY
Gets a single entry in the key map for the hand-control buttons. Specify the
offset for the entry to change in the wParam parameter. The low-order
word of the return value contains the virtual-key code for the given entry.

WPARAM wParam
Specifies a value dependent on the flag passed in the wFlags parameter.

LPARAM lParam
Specifies a value dependent on the flag passed in the wFlags parameter.

The return value is dependent on the flag specified in the wParam parameter. If
one of the parameters is invalid, the return value is HCERR_BADPARAMETER.

Use the HC_KEY_OFFSET macro to get key offset values to use when setting
and getting key-map entries. Out-of-range values are converted to a minimum or
maximum allowable value.

The following code fragment uses the hcControl function and the
HC _KEY_ OFFSET macro to set a new key map for the hand-control buttons:

hcControl 5-19

BYTE acKeymap[20];

//Setup player 1 key map
acKeymap[HC_KEY _OFFSET(VK_HCl_PRIMARY)] = VK_LBUTTON;
acKeymap[HC_KEY_OFFSET(VK_HCl_SECONDARY)] = VK_RBUTTON;
acKeymap[HC_KEY_OFFSET(VK_HCl_UP)] = VK_UP;
acKeymap[HC_KEY_OFFSET(VK_HCl_LEFT)] = VK_LEFT;
acKeymap[HC_KEY _OFFS ET(VK_HCl_RIGHT)J = VK_RIGHT;
acKeymap[HC_KEY_OFFSET(VK_HCl_DOWN)] = VK_DOWN;
acKeymap[HC_KEY _OFFSET(VK_HCl_Fl)] = VK_RETURN;
acKeymap[HC_KEY _OFFSET(VK_HCl_F2)] = VK_TAB;
acKeymap[HC_KEY _OFFSET(VK_HCl_TOOLBAR)] = VK_MENU;
acKeymap[HC_KEY_OFFSET(VK_HCl_F4)] = VK_ALPHANUM('Z');

//Setup player 2 key map
acKeymap[HC_KEY_OFFSET(VK_HC2_PRIMARY)] = VK_SPACE;
acKeymap[HCJEY_OFFSET(VK_HC2_SECONDARY)J = VK_ESCAPE;
acKeymap[HC_KEY _OFFSET(VK_HC2_UP)] = VK_ALPHANUM('A');
acKeymap[HC_KEY_OFFSET(VK_HC2_LEFT)] = VK_ALPHANUM('B');
acKeymap[HC_KEY_OFFSET(VK_HC2_RIGHT)] = VK_ALPHANUM('C');
acKeymap[HC_KEY _OFFSET(VK_HC2_DOWN)] = VK_ALPHANUM('D');
acKeymap[HC_KEY _OFFSET(VK_HC2_Fl)] = VK_ALPHANUM('E');
acKeymap[HC_KEY_OFFSET(VK_HC2_F2)] = VK_ALPHANUM('F');
acKeymap[HC_KEY _OFFSET(VK_HC2_F3)] = VK_ALPHANUM('G');
acKeymap[HC_KEY _OFFSET(VK_HC2_F4)] = VK_ALPHANUM('H');

// Set the new key map
hcControl(HC_SET_KEYMAP. 0, (DWORD)(LPSTR)acKeymap);

See Also HC KEY OFFSET - -

5-20 hcGetCursorPos

hcGetCursorPos
Syntax

Parameters

Comments

See Also

void hcGetCursorPos(lpp)

The hcGetCursorPos function returns the current cursor position.

LPPOINT lpp
Specifies a pointer to a POINT structure that will be filled with the cursor
location.

Applications written for the hand control should use this function instead of the
GetCursorPos function to ensure future compatibility.

hcControl, hcSetCursorPos

hcSetCursorPos
Syntax void hcSetCursorPos(x, y, bSmooth)

The hcSetCursorPos function moves the cursor to a given position. The cursor
can be moved instantly to the new position or moved smoothly from the current
position to the new position. Moving the cursor smoothly allows users to follow a
change of focus from one control to another.

Parameters int x

Comments

See Also

Specifies the new x-position of the cursor, in screen coordinates.

inty
Specifies the new y-position of the cursor, in screen coordinates.

BOOL bSmooth
Specifies whether to move the cursor instantly or smoothly from the current
position. Set bSmooth to TRUE to move the cursor smoothly; FALSE to move
the cursor instantly.

Applications written for the hand control should use this function instead of the
SetCursorPos function to ensure future compatibility.

hcControl, hcGetCursorPos

LeaveDVA
Syntax

Parameters

Return Value

Comments

See Also

tvGetHighlightFrame 5-21

WORD LeaveDV A(wFlags)

The LeaveDV A macro ends direct video access and enables GDI and the display
driver. The current task is unlocked and all windows are invalidated, causing them
to be repainted. Normally, control does not return to the application until the user
initiates an action such as pressing a hand-control button, keyboard key, or mouse
button.

WORDwFlags
Specifies options using the following flag:

DISPLA YDIB_NOW AIT
Return immediately after ending direct video access.

The return value is zero if the function is successful; otherwise, it is the following
error code:

DISPLA YDIB_INV ALIDTASK
The caller is an inactive application. The LeaveDV A macro can only be called
by an active application.

The LeaveDV A macro should only be called to balance a successful call to
EnterDVA.

EnterDVA

tvGetHighlightFrame
Syntax

Parameters

BOOL tvGetHighlightFrame(lpCo/or, wOnDuration, wOffDuration)

The tvGetHighlightFrame function retrieves the current highlight color and
blinking rate used for highlighting controls that have the input focus.

COLORREF FAR* lpColor
Specifies a pointer to a COLORREF to receive the highlight color value.

LPWORD wOnDuration
Specifies a pointer to a WORD to receive the highlight-on duration.

LPWORD wOffDuration
Specifies a pointer to a WORD to receive the highlight-off duration.

5·22 tvGetStockObject

Return Value

See Also

The return value is nonzero if the blinking highlight is turned on; it is zero if the
blinking is turned off.

tvSetHighlightFrame

tvGetStockObject
Syntax

Parameters

Return Value

Example

HGDIOBJ tvGetStockObject(nObject)

The tvGetStockObject function retrieves a handle to one of the predefined stock
objects.

int nObject
Specifies the stock object for which to retrieve a handle. This parameter can be
one of the following values:

SMALLFONT
Small system font (14 point sans serif).

BIGFONT
Large system font (18 point sans serif).

The return value is the handle of the requested stock object if the function is
successful; otherwise, the return value is NULL.

The following code fragment sets the font in a TV static control to the large
system font:

HWND hWndStatic;
HFONT hfont;

hfont = tvGetStockObject(BIGFONT);
SendMessage(hWndStatic, WM_SETFONT, hfont, 0);

tvGetUIFlags
Syntax

Return Value

WORD tvGetUIFlags()

The tvGetUIFlags function allows applications to get the current state of settings
used by the TV user-interface controls.

The return value is a bit field specifying the current settings of the TV user
interface controls. The following constants correspond to bits in the return value:

Comments

See Also

tvSetHighlightFrame 5-23

TVSMOOTHCURSOR-If set, the focus manager smoothly moves the cursor
when changing focus between controls. If cleared, the focus manager moves the
cursor with one discrete jump to its new location. The default is to smoothly move
the cursor.

TVFASTDRA W-If set, all controls will be drawn directly on the screen with
multiple blits. If cleared, controls will be drawn on an off-screen compatible DC,
then drawn on the screen with a single blit. The first method, while faster, causes
visible flickering while the control is being drawn. The latter method minimizes
these effects. The default is to draw to an off-screen DC, then blit the off-screen
DC to the screen.

TVFMCHECKPARENT-If set, the focus manager changes the focus only to
windows having the same parent as the window that currently has the focus. If
cleared, every window managed by the focus manager is eligible to receive the
focus. The default is to change the focus only to windows having the same parent
as the window that currently has the focus.

TVNOMOVECURSOR-If set, the focus manager won't move the mouse cursor
to the control that is receiving the focus. The focus ring will still be displayed to
indicate focus.

TVFMNOT AB 1-If set, the focus manager will not tab to another control in
response to a player 1 direction key.

TVFMNOT AB2-If set, the focus manager will not tab to another control in
response to a player 2 direction key.

The focus manager will not tab to a control if random roam has been enabled for
the player that generated the event.

tvSetUIFlags, hcControl

tvSetHighlightFrame
Syntax

Parameters

BOOL tvSetHighlightFrame(co/or, wOnDuration, wOffDuration)

The tvSetHighlightFrame function sets the highlight color and blinking rate used
for highlighting controls that have the input focus.

COLORREF color
Specifies the highlight color.

WORD wOnDuration
Specifies the highlight-on duration in milliseconds.

5-24 tvSetUIFlags

Return Value

Comments

See Also

WORD wOffDuration
Specifies the highlight-off duration in milliseconds.

The return value is nonzero if the function is successful; it is zero when an error is
detected.

To change only the blinking rate, set color to DEFAULT_COLOR. To change
only the color, set both wOnDuration and wOffDuration to zero.

When setting the blinking rate, wOnDuration must be nonzero. To turn off the
blinking effect, set wOffDuration to zero and wOnDuration to a nonzero value.
The default setting for the blinking effect is off.

tvGetHighlightFrame

tvSetUIFlags
Syntax

Parameters

void tvSetUIFlags(wNewFlags)

The tvSetUIFlags function allows applications to customize the operation of the
TV user-interface controls.

WORD wNewFlags
Specifies a bit field containing settings for the TV user-interface controls. The
following constants correspond to bits in the wNewFlags parameter:

TVSMOOTHCURSOR-If set, the focus manager smoothly moves the cursor
when changing focus between controls. If cleared, the focus manager moves
the cursor with one discrete jump to its new location. The default is to
smoothly move the cursor.

TVFASTDRA W-If set, all controls will be drawn directly on the screen with
multiple blits. If cleared, controls will be drawn on an off-screen compatible
DC, then drawn on the screen with a single blit. The first method, while faster,
causes visible flickering while the control is being drawn. The latter method
minimizes these effects. The default is to draw to an off-screen DC, then blit
from the off-screen DC to the screen.

TVFMCHECKP ARENT-If set, the focus manager changes the focus only to
windows having the same parent as the window that currently has the focus. If
cleared, every window managed by the focus manager is eligible for receiving
the focus. The default is to change the focus only to windows having the same
parent as the window that currently has the focus.

TVNOMOVECURSOR-If set, the focus manager will not move the cursor to
controls that receive the focus. The control will still be highlighted to indicate
focus. The default is to move the cursor.

Comments

See Also

tvSetUIFlags 5-25

TVFMNOT AB I-If set, the focus manager will not tab to another control in
response to a player 1 direction key.

TVFMNOT AB2-If set, the focus manager will not tab to another control in
response to a player 2 direction key.

Each of these settings can be changed individually by using tvGetUIFlags to
retrieve the current settings and then changing only the desired settings before
calling tvSetUIFlags. The focus manager will not tab to a control if random roam
has been enabled for the player that generated the event.

tvGetUIFlags, hcControl

CHAPTER 6

Message Directory

This chapter contains an alphabetical listing of the new Modular Windows
messages. Each entry contains the following items:

■ The name of the message

■ The purpose of the message

■ The type, name, and description of the parameters for each message

■ A description of the return value, if any

■ Optional comments about using the message

■ Optional examples showing how to use the message

■ Optional cross references to other functions, macros, messages, and data
structures

6-2 KM_CHAR

KM CHAR

Parameters

Comments

See Also

The KM_CHAR message notifies an application that a key on a soft-keyboard
control has been pressed.

WPARAMwParam
Specifies the virtual-key code of the key.

LPARAM /Param
Specifies the repeat count in the low-order word.

The virtual-key codes specified in wParam are identical to the standard Windows
virtual-key codes. The message sequence for soft-keyboard controls is similar to
the message sequence for IBM@-style keyboards with Windows.

This message will only be posted by soft-keyboard controls that don't have the
KS_ WITHTEXT style.

KM_KEYDOWN, KM_KEYUP, WM_CHAR

KM GETDEFKEV

Parameters

Return Value

See Also

The KM_GETDEFKEY message gets the current state of the Caps Lock button
on a soft-keyboard control or edit control. It also returns which button has the
focus.

WPARAMwParam
Is not used; must be zero.

LPARAM /Param
Is not used; must be zero.

If the request is successful, the return value is the index of the key with the focus
combined (logical OR) with either the SETDEFKEY _ CAPSLOCK or
SETDEFKEY_CAPSUNLOCK constant; otherwise, the return value is zero.

KM_SETPROMPT, KM_SETDEFKEY

KM_GETPROMPTLENGTH 6-3

KM GETPROMPT

Parameters

Return Value

Comments

See Also

The KM_GETPROMPT message is sent by applications to KS_ WITHTEXT style
soft-keyboard controls or edit boxes to get the text that is displayed in the prompt
area.

WPARAM wParam
Specifies the length of the buffer that receives the prompt text.

LPARAM !Param
Specifies a pointer (LPSTR) to a buffer that receives the prompt text as a null
terminated string.

The return value is the number of bytes copied, excluding the null terminator, if
the request is successful; otherwise, the return value is zero. The return value is
zero only when the length of the buffer is smaller than needed.

To display a prompt, a soft-keyboard control or an edit box must be
KS_ WITHTEXT style. The prompt of a KS_ WITHTEXT style edit box is shown
on its attached KS_ WITHTEXT style soft keyboard.

KM_SETDEFKEY, KM_SETPROMPT, KM_GETPROMPTLENGTH

KM GETPROMPTLENGTH

Parameters

Return Value

Comments

See Also

The KM_GETPROMPTLENGTH message is sent by applications to
KS_ WITHTEXT style soft-keyboard controls or edit boxes to get the length of
the prompt displayed in the prompt area.

WPARAM wParam
Is not used; must be zero.

LP ARAM !Param
Is not used; must be zero.

The return value is the length of the prompt in bytes.

To display a prompt, a soft-keyboard control or an edit box must be
KS_ WITHTEXT style. The prompt of a KS_ WITHTEXT style edit box is shown
on its attached KS_ WITHTEXT style soft keyboard.

KM_SETDEFKEY, KM_SETPROMPT, KM_GETPROMPT

6-4 KM_GETRECIPIENT

KM GETRECIPIENT

Parameters

Return Value

See Also

The KM_GETRECIPIENT message gets the handle of the recipient window of a
soft-keyboard control.

WPARAM wParam
Is not used; must be zero.

LP ARAM !Param
Is not used; must be zero.

The returned value is the handle of the recipient window.

KM_KEYDOWN, KM_KEYUP, KM_CHAR, KM_ WAKEUP,
KM_SETRECIPIENT

KM GETTEXTLIMIT

Parameters

Return Value

Comments

See Also

The KM_ GETTEXTLIMIT message retrieves the maximum number of characters
the user is allowed to enter into a KS_ WITHTEXT style soft-keyboard or edit-box
control.

WPARAM wParam
Is not used; must be zero.

LPARAM !Param
Is not used; must be zero.

The return value is the maximum number of characters the user is allowed to
enter.

This message is only valid for edit controls (TVEDITBOX) and soft-keyboard
controls (TVKEYBOARD) using the KS_ WITHTEXT style.

EM_LIMITTEXT

KM_KEYUP 6-5

KM KEYDOWN

Parameters

Comments

See Also

The KM_KEYDOWN message notifies an application that a button on a soft
keyboard control has been pressed.

WPARAM wParam
Specifies the virtual-key code of the button that was pressed.

LP ARAM lParam
Specifies the repeat count in the low-order word.

The virtual-key codes specified in wParam are identical to the standard Windows
virtual-key codes. The message sequence for soft keyboards is similar to the
message sequence for IBM-style keyboards with Windows.

This message will only be posted by soft keyboards that don't have the
KS_ WITHTEXT style.

KM_KEYUP, KM_CHAR, WM_KEYDOWN

KM KEYUP

Parameters

Comments

See Also

The KM_KEYUP message notifies an application that a button on a soft-keyboard
control has been released.

WPARAM wParam
Specifies the virtual-key code of the button that was released.

LPARAM lParam
Specifies the repeat count in the low-order word.

The virtual-key codes specified in wParam are identical to the standard Windows
virtual-key codes. The message sequence for soft keyboards is similar to the
message sequence for IBM-style keyboards with Windows.

KM_KEYDOWN, KM_CHAR, WM_KEYUP

6·6 KM_MOVESKB

KM MOVESKB

Parameters

Return Value

Comments

The KM_MOVESKB message changes the position of a soft-keyboard control or
a keyboard control associated with an edit control.

WPARAM wParam
Specifies one of the following flags to indicate whether to redraw the soft
keyboard control after moving it:

TRUE
Redraw the soft-keyboard control.

FALSE
Don't redraw the soft-keyboard control.

LPARAM lParam
Specifies a POINT structure containing the screen coordinates of the upper
left comer of the keyboard control.

The return value is always zero.

Applications cannot change the size of a soft-keyboard control.

KM SETDEFKEV

Parameters

The KM_SETDEFKEY message sets the state of the Caps Lock button on a soft
keyboard control or edit control. It also sets the button with the initial focus.

WPARAM wParam
Specifies the state of the Caps Lock button and the button with the initial focus
by using a combination of the following flags:

SETDEFKEY_CAPSLOCK
Tums Caps Lock on.

SETDEFKEY_CAPSUNLOCK
Tums Caps Lock off.

SKB_0 to SKB_9
Numeric and special-character buttons.

SKB_A to SKB_Z
Alpha buttons.

SKB_DELETE
Delete button.

Return Value

Comments

See Also

SKB_SPACE
Space button.

SKB_ENTER
Enter button.

SKB_ESC
Cancel button.

LPARAM !Param
Is not used; must be zero.

KM_SETDEFTEXT 6-7

The return value is nonzero if the request is successful; otherwise, the return value
is zero.

If neither the SETDEFKEY _ CAPS LOCK or SETDEFKEY _ CAPS UNLOCK
flags are specified, the state of the Caps Lock button is not changed. If no button
indexes are specified, the button with the focus remains unchanged.

When a soft-keyboard control is created, the Caps Lock button is on and the
ENTER button has the focus.

KM_SETPROMPT, KM_GETDEFKEY

KM SETDEFTEXT

Parameters

Return Value

The KM_SETDEFTEXT message sets the text that appears in the text-entry area
of a soft-keyboard or edit control. It also changes the size of the buffer used to
store text entered with the control.

WPARAM wParam
Specifies the maximum number of characters of text the soft
keyboard or edit box can accommodate. If wParam is set to
SETDEFTEXT_KEEPMAXLENGTH, the limit is not changed
and this parameter is ignored.

LP ARAM !Param
Specifies a pointer (LPSTR) to a null-terminated string that appears in the text
entry area of the control.

The return value is zero if the message is processed successfully; otherwise, it is
one of the following error codes:

SKB_ERR
The control is not an edit-box control or a soft-keyboard control using the
KW_ WITHTEXT style.

6-8 KM_SETPROMPT

Comments

See Also

SKB_ERRSPACE
There is not enough memory for the requested buffer size.

This message is valid only for edit-box controls (TVEDITBOX) and soft
keyboard controls (TVKEYBOARD) using the KS_ WITHTEXT style. The
maximum length of the buffer does not include space for the null terminator.

KM_SETPROMPT, KM_SETDEFKEY, EM_LIMITTEXT

KM SETPROMPT

Parameters

Return Value

Comments

See Also

The KM_SETPROMPT message is sent by applications to soft-keyboard controls
or edit boxes using the KS_ WITHTEXT style to set the text displayed in the
prompt area.

WPARAM wParam
Is not used; must be zero.

LPARAM lParam
Specifies a pointer (LPSTR) to a null-terminated string containing the prompt
text.

The return value is nonzero if the request is successful; otherwise, the return value
is zero.

To display a prompt, a soft-keyboard control or an edit box must use the
KS_ WITHTEXT style. The prompt of an edit box using the KS_ WITHTEXT
style is shown on its associated soft-keyboard control.

KM_SETDEFKEY, KM_GETPROMPT

KM SETRECIPIENT

Parameters

The KM_SETRECIPIENT message sets the window that will receive input from a
soft-keyboard control.

WPARAM wParam
Specifies the handle of the window to receive input from the soft keyboard.

LP ARAM lParam
Is not used; must be zero.

Return Value

Comments

Example

See Also

KM_SETRECIPIENT 6-9

If the request is successful, the return value is nonzero; otherwise, the return value
is zero.

Applications should not set the recipient to be another soft-keyboard control or an
edit-box control.

When the Enter button or the Cancel button is pressed on the soft keyboard
associated with an edit-box control or on a soft-keyboard control using the
KS_ WITHTEXT style, a WM_COMMAND message is sent to the recipient
window with an EN_ENTER or EN_CANCEL notification code.

After a soft-keyboard control notifies the application of input, it remains on the
screen unless it is destroyed by the application. This allows the application to
prompt for additional input by changing the prompt and reawakening the
keyboard. When applications receive a notification message, they must either
destroy the control or reawaken it by using a KM_ WAKEUP message.

The following code fragment processes a WM_COMMAND message by
destroying the keyboard if the Cancel button is pressed and reawakening it for
additional input if the Enter button is pressed:

case WM_COMMAND:
// Destroy the keyboard control on Cancel button
if(LOWORD(lParam) = hwndKeyboardl)
{

if(HIWORD(lParam) = EN_CANCEL)
PostMessage(hwndKeyboardl, WM_CLOSE, 0, 0L):

// Reawaken the keyboard control on Enter button
else if(HIWORD(lParam) = EN_ENTER)
{

GetWindowText(hwndKeyboardl, lpstrBuffer,
sizeof lpstrBuffer):

PostMessage(hwndKeyboardl, KM_WAKEUP, 0, 0L):
}

}

break:

KM_KEYDOWN, KM_KEYUP, KM_CHAR, KM_ WAKEUP,
KM_GETRECIPIENT

6-10 KM_WAKEUP

KM WAKEUP

Parameters

Return Value

Comments

The KM_ WAKEUP message reactivates a soft-keyboard control.

WPARAMwParam
Is not used; must be zero.

LP ARAM lParam
Is not used; must be zero.

The return value is always zero.

Soft-keyboard controls using the KS_SYSMODAL style function like system
modal dialog boxes when activated. After either the Enter or Cancel button is
pressed, the control remains inactive until it receives a KM_ WAKEUP message.

LB GETPOPUPRECT

Parameters

Return Value

The LB_GETPOPUPRECT message is sent by applications to a list-box control
to retrieve the window rectangle of a popup list box as it will be in the activated
state. This rectangle will contain screen coordinates.

WPARAM wParam
Is not used; must be zero.

LP ARAM lParam
Long pointer to the rectangle structure that will be filled with the popup
rectangle coordinates.

The return value is a FALSE if the pointer is not valid or the list box receiving
this message is not LBS_POPUP style; otherwise, the return value is TRUE.

LB GETSELAREA

Parameters

The LB_GETSELAREA message is sent by applications to a list-box control to
retrieve the offsets of the top and bottom of the selection area in the current
selection rectangle of a list box.

WPARAMwParam
Is not used; must be zero.

Return Value

See Also

SBM_ENABLE_ARROWS 6-11

LPARAM !Param
Is not used; must be zero.

The return value is a DWORD containing the top and bottom coordinates relative
to the top of the list-box client area. The low-order word is the top offset and the
high-order word is the bottom offset.

LB_SETSELAREA

LB SETSELAREA

Parameters

Return Value

See Also

The LB_SETSELAREA message is sent by applications to a list-box control to
set the current selection area for the list box.

WPARAM wParam
Is not used; must be zero.

LPARAM !Param
Specifies offsets of the top and bottom of the selection area. The low-order
word is the offset of the top and the high-order word is the offset of the
bottom. If this value is NULL the selection rectangle assumes the default
position.

The return value is TRUE if successful; otherwise, it is FALSE.

LB_GETSELAREA

SBM ENABLE ARROWS

Parameters

The SBM_ENABLE_ARROWS message is sent by applications to scroll-bar and
spin-button controls to independently enable or disable the control's arrow
buttons.

WP ARAM wParam
Specifies whether to enable or disable the arrow buttons. This parameter must
be one of the following values:

ESB_ENABLE_BOTH
Enables both arrow buttons.

ESB_DISABLE_LTUP
Enables the left (horizontal style) or top (vertical style) arrow button.

6-12 SBM_GETCHANNELAREA

Return Value

Comments

ESB_DISABLE_RTDN
Enables the right (horizontal style) or bottom (vertical style) arrow button.

ESB_DISABLE_BOTH
Disables both arrow buttons.

LPARAM lParam
Is not used; must be zero.

The return value is TRUE if the enabled state changed; otherwise, it is FALSE.

This message is provided for compatibility with standard Windows scroll-bar
controls. It can be used in place of the EnableScrollBar function.

SBM GETCHANNELAREA

Parameters

Return Value

See Also

The SBM_GETCHANNELAREA message is sent by applications to scroll-bar
controls to retrieve the width and position of the channel rectangle for the scroll
bar.

WPARAMwParam
Is not used; must be zero.

LPARAM lParam
Is not used; must be zero.

The return value is a DWORD specifying the width and position of the channel
relative to the client rectangle of the scroll-bar control. For vertical scroll bars, the
low-order word specifies the offset to the left edge of the channel and the high
order word specifies the offset to the right edge of the channel. For horizontal
scroll bars, the low-order word specifies the offset to the top edge of the channel
and the high-order word specifies the offset to the bottom edge of the channel.

SBM_SETCHANNELAREA

SBM SETCHANNELAREA

Parameters

The SBM_SETCHANNELAREA message is sent by applications to scroll-bar
controls to set the width and position of the channel rectangle for the scroll bar.

WPARAM wParam
Is not used; must be zero.

Return Value

See Also

SM_SETDISPLAYEXTENT 6-13

LPARAM /Param
Specifies a DWORD containing the width and position of the channel relative
to the client rectangle of the scroll bar. For vertical scroll bars, the low-order
word specifies the offset to the left edge of the channel and the high-order
word specifies the off set to the right edge of the channel. For horizontal scroll
bars, the low-order word specifies the offset to the top edge of the channel and
the high-order word specifies the offset to the bottom edge of the channel.

The return value is TRUE if successful; otherwise, it is FALSE.

SBM_GETCHANNELAREA

SM GETDISPLAYEXTENT

Parameters

Return Value

Comments

See Also

The SM_GETDISPLA YEXTENT message retrieves the display rectangle of a TV
show-box control.

WPARAMwParam
Is not used; must be zero.

LP ARAM /Param
Specifies a pointer (LPRECT) to a RECT structure that will be filled with the
extent of the display area, relative to the client area of the control.

The return value is nonzero if successful; otherwise, it is zero.

The client area of a TV show-box control consists of the display area, a 3-D edge
area, and a frame area. To ensure the display area is clipped before drawing,
applications can use IntersectClipRect to set the clipping region to the display
area returned by SM_GETDISPLA YEXTENT.

SM_SETDISPLAYEXTENT

SM SETDISPLA YEXTENT

Parameters

The SM_SETDISPLA YEXTENT message sets the display area of a TV show
box control. The control window is resized and repositioned to accommodate the
new display area.

WPARAMwParam
Specifies one of the following flags indicating whether or not to return the new
coordinates of the window rectangle for the control:

6-14 WM_GETBITMAP

Return Value

Comments

See Also

TRUE
The message returns the coordinates of the window rectangle of the TV
show-box control (relative to the parent window) in the RECT structure
specified by lParam.

FALSE
The message does not change the contents of the RECT structure specified
by lParam.

LPARAM lParam
Specifies a pointer (LPRECT) to a RECT structure containing the new
coordinates of the display area, relative to the client area of the control.

The return value is nonzero if successful; otherwise, it is zero.

The client area of a TV show-box control consists of the display area, a 3-D edge
area, and a frame area.

SM_GETDISPLA YEXTENT

WM GETBITMAP

Parameters

The WM_GETBITMAP message is sent by applications to retrieve information
about a custom bitmap for a given control.

WPARAMwParam
Specifies options for getting the bitmap information using a combination of
the following flags:

GETBITMAP _BTNUP
Get information about the bitmap associated with the up state of a button
control.

GETBITMAP _BTNDOWN
Get information about the bitmap associated with the down state of a
button control.

GETBITMAP _BTNFACE
Get information about the bitmap associated with the text area of a button
control.

GETBITMAP_SHOWBOX
Get information about the bitmap associated with the display area of a
show-box control.

Comments

See Also

WM_GETBITMAP 6-15

GETBITMAP _ALL
Get the bitmap, background mode, and background color. The lParam
parameter specifies a far pointer (LPTV _CTLBITMAP or
LPTV _FACEBITMAP) to an TV_ CTLBITMAP or TV_ F ACEBITMAP
structure.

GETBITMAP _HBMONL Y
Get only the bitmap. The lParam parameter specifies a far pointer to a
bitmap handle (HBITMAP FAR*).

GETBITMAP _BKMODEONL Y
Get only the background mode. The lParam parameter specifies a far
pointer to an integer (int FAR*).

GETBITMAP _COLORONL Y
Get only the background color. The lParam parameter specifies a far
pointer to a COLORREF (COLORREF FAR*).

LPARAM lParam
The value of lParam depends on the flags specified for wParam. See the
descriptions of the GETBITMAP _ALL, GETBITMAP _HBMONL Y,
GETBITMAP _BKMODEONLY, and GETBITMAP _COLORONL Y flags for
the value of lParam.

This message should only be sent to controls for which an application has already
set a custom bitmap using WM_GETBITMAP. The only controls that recognize
this message are the button, show-box, and scroll-bar controls.

For button controls, applications must specify either the GETBITMAP _BTNUP,
GETBITMAP _BTNDOWN, or GETBITMAP _BTNFACE flag to indicate which
of the control's bitmaps to retrieve.

For show-box controls, applications must specify the GETBITMAP _BTNF ACE
flag to retrieve the bitmap for the face of the control.

For scroll-bar controls, the retrieved bitmap is for the thumb of the scroll-bar.

In addition, applications must specify either the GETBITMAP _HBMONL Y,
GETBITMAP _BKMODEONL Y, GETBITMAP _COLORONL Y, or
GETBITMAP _ALL flag to indicate whether to retrieve the bitmap, the
background mode, the background color, or all of these attributes.

WM_SETBITMAP, TV_CTLBITMAP, TV_FACEBITMAP

6-16 WM_GETCOLOR

WM GETCOLOR

Parameters

Comments

The WM_ GETCOLOR message is sent by applications to retrieve information
about the colors used in drawing a given control.

WPARAM wParam
Specifies options for getting the color information using a combination of the
following flags:

GETCOLOR_ALL
Get the color of all parts of the control element. The !Param parameter
specifies a far pointer (LPTV _CTLCOLOR) to a TV_ CTLCOLOR
structure.

GETCOLOR_HIGHLIGHT
Get the highlight color. The !Param parameter specifies a far pointer to a
COLORREF (COLORREF FAR *).

GETCOLOR_FRAME
Get the frame color. The !Param parameter specifies a far pointer to a
COLORREF (COLORREF FAR*).

GETCOLOR_FACE
Get the face color. The !Param parameter specifies a far pointer to a
COLORREF (COLORREF FAR*).

GETCOLOR_SHADOW
Get the shadow color. The !Param parameter specifies a far pointer to a
COLORREF (COLORREF FAR*).

GETCOLOR_TEXT
Get the text color. The !Param parameter specifies a far pointer to a
COLORREF (COLORREF FAR*).

GETCOLOR_SBTHUMB
Get the color of the thumb element of a scroll-bar control.

GETCOLOR_SBCHANNEL
Get the color of the channel element of a scroll-bar control.

The GETCOLOR_ALL, GETCOLOR_HIGHLIGHT, GETCOLOR_FRAME,
GETCOLOR_FACE, GETCOLOR_SHADOW, and GETCOLOR_TEXT flags
are mutually exclusive-applications must specify one of these flags to indicate a
specific part of the control element.

See Also

WM_QUERYFOCUS 6-17

The GETCOLOR_SBTHUMB and GETCOLOR_SBCHANNEL flags are
mutually exclusive and should only be specified when retrieving colors for the
thumb or channel element of a scroll-bar control. Only the highlight, face, and
shadow colors of the thumb element can be retrieved. Only the highlight, face,
shadow, and scroll arrow colors of the channel element can be retrieved. To
retrieve the color of scroll arrows, specify the GETCOLOR_TEXT flag.

WM_SETCOLOR, TV_ CTLCOLOR

WM QUERYFOCUS

Parameters

Return Value

See Also

The WM_QUERYFOCUS message is sent by applications to retrieve information
about the sub-focus of a compound control other than a soft-keyboard control. To
retrieve the sub-focus information of a soft-keyboard control, use the
KM_GETDEFKEY message.

WPARAM wParam
Is not used; must be zero.

LPARAM lParam
Is not used; must be zero.

The return value is one of the following values:

QF_LEFT
The left button has the focus.

QF_RIGHT
The right button has the focus.

QF_UP
The up button has the focus.

QF_DOWN
The down button has the focus.

KM_SETDEFKEY, KM_GETDEFKEY

6-18 WM_SETBITMAP

WM SETBITMAP

Parameters

The WM_SETBITMAP message is sent by applications to specify custom
bitmaps for a given control. An application can set bitmaps for the up (or
unchecked) state, the down (or checked) state, or for the text area of a button. In
addition, an application can set the background mode and background color for a
custom bitmap.

WPARAMwParam
Specifies options for setting the bitmap using a combination of the following
flags:

SETBITMAP _BTNUP
The given bitmap, background mode, or background color is for the up
state of a button control.

SETBITMAP _BTNDOWN
The given bitmap, background mode, or background color is for the down
state of a button control.

SETBITMAP _BTNFACE
The given bitmap, background mode, or background color is for the text
area of a button control.

SETBITMAP _SHOWBOX
The given bitmap, background mode, or background color is for the display
area of a show-box control.

SETBITMAP _ALL
Set the bitmap, background mode, and background color. The lParam
parameter specifies a far pointer (LPTV _CTLBITMAP or
LPTV _FACEBITMAP) to an TV_ CTLBITMAP or TV_ F ACEBITMAP
structure.

SETBITMAP _HBMONLY
Set only the bitmap. The low-order word of the lParam parameter specifies
a handle (HBITMAP) to the bitmap.

SETBITMAP _BKMODEONL Y
Set only the background mode used in rendering the bitmap. The low-order
word of the lParam parameter specifies the background mode.

SETBITMAP _COLORONL Y
Set only the background color used in rendering the bitmap. The lParam
parameter specifies a COLORREF for the background color.

LPARAM lParam
The value of lParam depends on the flags specified for wParam. See the
descriptions of the SETBITMAP _ALL, SETBITMAP _HBMONL Y,
SETBITMAP _BKMODEONL Y, and SETBITMAP _COLORONL Y flags for
the value of lParam.

Comments

See Also

WM_SETCOLOR 6-19

The only controls that recognize this message are button, show-box, and scroll
bar controls.

For button controls, applications must specify either the SETBITMAP _BTNUP,
SETBITMAP _BTNDOWN, or SETBITMAP _BTNFACE flag to indicate which
of the control's bitmaps to set. The SETBITMAP _BTNUP and
SETBITMAP _BTNDOWN flags indicate the given bitmap is to be used to
represent the button in either the normal or pressed state. The
SETBITMAP _BTNFACE flag indicates the given bitmap is to be placed on the
face of the button.

For show-box controls, applications must specify the SETBITMAP _BTNFACE
flag to indicate the bitmap is for the face of the control.

For scroll-bar controls, the given bitmap is assumed to be for the thumb of the
scroll-bar.

In addition, applications must specify either the SETBITMAP _HBMONL Y,
SETBITMAP _BKMODEONL Y, SETBITMAP _COLORONL Y, or
SETBITMAP _ALL flag to indicate whether to set the bitmap, the background
mode, the background color, or all of these attributes.

Applications are responsible for deleting the bitmap objects that are set using
WM_SETBITMAP. A good time to do this is when a WM_DESTROY message
is received. Bitmaps must be 16-color device-independent bitmaps.

WM_GETBITMAP, TV_ CTLBITMAP, TV _FACEBITMAP

WM SETCOLOR

Parameters

The WM_SETCOLOR message is sent by applications to change the colors used
in drawing a control.

WPARAMwParam
Specifies options for setting the color using a combination of the following
flags:

SETCOLOR_ALL
Set the color of all parts of the control element. The /Param parameter
specifies a far pointer (LPTV _CTLCOLOR) to a TV_ CTLCOLOR
structure.

SETCOLOR_HIGHLIGHT
Set only the highlight color. The lParam parameter specifies a
COLORREF.

6-20 WM_ SETCOLOR

Comments

See Also

SETCOLOR_FRAME
Set only the frame color. The !Param parameter specifies a COLORREF.

SETCOLOR_FACE
Set only the face color. The !Param parameter specifies a COLORREF.

SETCOLOR_SHADOW
Set only the shadow color. The !Param parameter specifies a COLORREF.

SETCOLOR_TEXT
Set only the text color. The !Param parameter specifies a COLORREF.

SETCOLOR_SBTHUMB
Set the color of the thumb element of a scroll-bar control.

SETCOLOR_SBCHANNEL
Set the color of the channel element of a scroll-bar control.

LPARAM !Param
The value of !Param depends on the flags specified for wParam. See the
descriptions of the SETCOLOR_ALL, SETCOLOR_HIGHLIGHT,
SETCOLOR_FRAME, SETCOLOR_FACE, SETCOLOR_SHADOW, and
SETCOLOR_TEXT flags for the value of !Param.

The SETCOLOR_ALL, SETCOLOR_HIGHLIGHT, SETCOLOR_FRAME,
SETCOLOR_FACE, SETCOLOR_SHADOW, and SETCOLOR_TEXT flags are
mutually exclusive-applications must specify one of these flags to indicate
which part of the control element to change.

The SETCOLOR_SBTHUMB and SETCOLOR_SBCHANNEL flags are
mutually exclusive and should only be specified when setting colors for the thumb
or channel element of a scroll-bar control. Only the highlight, face, and shadow
parts of the thumb element can be changed. Only the highlight, face, shadow, and
scroll arrows of the channel element can be changed. To set the color of scroll
arrows, specify the SETCOLOR_TEXT flag.

WM_GETCOLOR,TV_CTLCOLOR

CHAPTER 7

Data Structures

This chapter describes data structures used in the Modular Windows APL It
contains the following sections:

■ An overview of new Modular Windows data structures. This overview
includes brief descriptions of the data structures.

■ Detailed descriptions of the new data structures, organized alphabetically.
These descriptions include the structure definition and the type and a
description of the contents of each of the fields in the structure.

Data Structure Overview
The following table lists the Modular Windows data structures along with a brief
description of each structure:

Data Structure

DIR VECTORS

TV CTLBITMAP

TV CTLCOLOR

TV FACEBITMAP

Data Structure Reference

Description

Contains focus vectors for the focus manager.

Contains information about a custom bitmap used in a control.

Contains color information for a control.

Contains information about a bitmap for the face of a TV
button control.

This section lists the Modular Windows data structures alphabetically. Each entry
includes a description of the structure, the type definition of the structure, a
description of each of the fields of the structure, and optional comments,
examples, and cross-references.

7-2 DIRVECTORS

DIRVECTORS

Fields

See Also

The DIRVECTORS structure specifies focus vectors. Focus vectors determine
which control gets the focus when the focus is moved.

typedef struct {
hwnd up:
hwnd down:
hwnd left:
hwnd right:

}DIRVECTORS:

up
Specifies the control that will get the focus if the focus is moved up.

down
Specifies the control that will get the focus if the focus is moved down.

left
Specifies the control that will get the focus if the focus is moved left.

right
Specifies the control that will get the focus if the focus is moved right.

fmSetWindowVectors, fmGetWindowVectors

TV CTLBITMAP

Fields

The TV_ CTLBITMAP structure contains information about a custom bitmap
associated with a control.

typedef struct {
HBITMAP hBmp:
int nBmpBkMode:
COLORREF crBmpBk:

}TV_CTLBITMAP;

hBmp
Specifies a handle to the bitmap.

nBmpBkMode
Specifies the background mode for rendering the bitmap using one of the
following flags:

OPAQUE
Background is filled with current background color before rendering the
bitmap.

See Also

TV_CTLCOLOR 7-3

TRAN SP ARENT
Background is not changed before rendering the bitmap.

NEWTRANSPARENT
Pixels in the bitmap that are the same color as the background color are not
drawn when rendering the bitmap.

crBmpBk
Specifies the bitmap background color.

WM_SETBITMAP, WM_GETBITMAP

TV CTLCOLOR

Fields

See Also

The TV CTLCOLOR structure contains information about the colors used to
render a control.

typedef struct {
COLORREF Face;
COLORREF Highlight;
COLORREF Shadow;
COLORREF Frame;
COLORREF Text;

}TV _CTLCO LOR;

Face
Specifies the face color.

Highlight
Specifies the highlight color.

Shadow
Specifies the shadow color.

Frame
Specifies the frame color.

Text
Specifies the text color (or scroll-arrow color for the channel element of a
scroll-bar control).

WM_SETCOLOR, WM_GETCOLOR

7-4 TV_FACEBITMAP

TV FACEBITMAP

Fields

The TV _FACEBITMAP structure contains information about a bitmap
associated with the face area of a TV button control or with a TV show-box
control.

typedef struct {
TV_CTLBITMAP tvBmpinfo;
int nBmpTextSeparation;
int nBmpAlignOffset;
BYTE byAlignStyle;

} TV _FAC EB IT MAP;

tvBmplnfo
Specifies information about the bitmap, including the background mode and
background color for rendering the bitmap.

nBmpTextSeparation
Specifies the separation in pixels between the text and the bitmap.

nBmpAlignOffset
Specifies the offset in pixels from the edge of the control face to the bitmap.
With button controls, this field is used only when the byAlignStyle field is set
to either BMS_LEFT ALIGNBITMAP or BMS_RIGHT ALIGNBITMAP.
With show-box controls, this field is used only when the byAlignStyle field is
set to either BMS_LEFTALIGNBITMAP, BMS_RIGHTALIGNBITMAP,
BMS_TOPBITMAP, or BMS_BOTTOMBITMAP.

by AlignStyle
Specifies the alignment of the bitmap and the text using one of the following
style flags:

BMS_LEFTBITMAP
Draw the bitmap to the left of the text. Center the text and bitmap in the
face of the control.

BMS_RIGHTBITMAP
Draw the bitmap to the right of the text. Center the text and bitmap in the
face of the control.

BMS_CENTERBITMAP
Draw the bitmap in the center of the control and overlay the text over the
top of the bitmap.

BMS_LEFT ALIGNBITMAP
Draw the bitmap to the left of the text and align it to the left of the control.

BMS_RIGHTALIGNBITMAP
Draw the bitmap to the right of the text and align it to the right of the
control.

See Also

TV_FACEBITMAP 7-5

BMS_TOPBITMAP
Align the bitmap with the top of the control. This alignment style is valid
only with show-box controls.

BMS_BOTTOMBITMAP
Align the bitmap with the bottom of the control. This alignment style is
valid only with show-box controls.

WM_SETBITMAP, WM_GETBITMAP, TV_ CTLBITMAP

CHAPTER 8

File Formats

This chapter provides details about new Modular Windows file formats required
for TV-based multimedia players. All of the new file formats are for device
independent bitmaps (DIBs). The formats detailed in this chapter are extensions to
the Windows DIB format documented in the Programmer's Reference, Volume 4:
Resources manual in the Windows Software Development Kit.

For details on DIB file formats specific to VIS players, see Appendix B, "VIS
Programming Notes."

8-2 Microsoft Modular Windows Programmer's Reference

RGB D18 Formats
Efficient utilization of the new video modes provided by TV-based players
requires a new format to accommodate 16-bit RGB DIBs. Standard 8-bit DIBs
(256 colors) use a color table to encode the color information. The new 16-bit
RGB DIBs don't have a color table, but encode the color information directly into
the 16 bits representing each pixel. There are two types of 16-bit RGB DIBs:

■ RGB555-32K colors using five bits each for red, green, and blue.

■ RGB565-64K colors using five bits each for red and blue, and six bits for
green.

BITMAPINFOHEADER Structure for RGB555 and RGB565 DIBs
The following table contains information on the fields of the
BITMAPINFOHEADER structure for RGB555 and RGB565 DIBs:

Field

biSize

biWidth

biHeight

biPlanes

biBitCount

biCompression

biSizelmage

biXPelsPerMeter

biYPelsPerMeter

biClrUsed

biClrlmportant

Description

Size in bytes of the BITMAPINFOHEADER structure.

Width of the bitmap in pixels.

Height of the bitmap in pixels.

Set to I.

Set to 16.

For RGB555, set to 0 (BI_RGB). For RGB565, set to the four
character code 'R565'.

Size in bytes of the image.

Horizontal resolution in pixels per meter.

Vertical resolution in pixels per meter.

Set to 0.

Set to 0.

File Formats 8-3

The following code fragment shows how to create the four-character code
required in the biCompression field for RGB565 DIBs:

#include <mmsystem.h>

bmih.biCompression = mmioFOURCC('R', '5', '6', '5');

RGB555 and RGB565 Pixel Encoding
The following illustrations show the pixel encoding for RGB555 and RGB565
DIBs:

15 0

Pixel encoding for RGB555 DIB

15 0

Pixel encoding for RGB565 DIB

CHAPTER 9

Tools

The Microsoft Modular Windows Software Developer's Kit (SDK) includes tools
to help you develop your application on PC-based development systems and
debug and test it on TV-based multimedia players. This chapter describes these
tools and provides information on using each one.

The Modular Windows SDK includes the following tools:

■ Microsoft Transport Layer TSR (TLTSR.EXE), a tool providing serial
communication between a PC and a TV-based player.

■ Microsoft Redirected File Server (RFSERVER.EXE), a tool that works in
conjunction with the Transport Layer TSR to provide redirected file services
on a TV-based player. Redirected file services let you use files residing on a
host PC's hard disk to replace or supplement files on the player's CD-ROM
disc.

■ Microsoft Modular Windows 80286 Debugger (WDEB286.EXE), a debugger
for applications running on TV-based players using the 80286 microprocessor.

■ NoEcho (NOECHO.EXE), a tool that works in conjunction with the Microsoft
Redirected File Server to display debugging messages generated by an
application running on a TV-based player.

■ Microsoft Modular Windows Heap Walker (MODWHEAP.EXE), a tool that
lets you examine the local and global heaps used by applications and dynamic
link libraries (DLLs) running under Modular Windows.

• Microsoft MS-DOS Monitor (DOSMON.COM), a tool that reports all calls to
unsupported MS-DOS functions.

■ Microsoft Color Table Converter (CLTCONV .EXE), a tool that converts
bitmap and icon color tables.

■ Conver24 (CONVER24.EXE), an application for Windows that converts
images to new file formats supported by Modular Windows.

9-2 Microsoft Modular Windows Programmer's Reference

Debugging Applications on a TV-Based Player
After testing and debugging your application on a development system, you can
use the tools provided in the Modular Windows SOK to test and debug the
application on a TV-based player. The SOK debugging tools let you perform the
following tasks:

■ Install breakpoints, view the contents of registers and variables, and perform
other debugging operations

■ View debugging messages generated by your application

■ Replace and supplement files on the CD-ROM disc with files residing on a PC

The following sections discuss how to use the debugging tools to debug
applications running on a TV-based player. For a discussion on overall debugging
strategy see Chapter 3, "Creating Applications for Modular Windows," in the
Getting Started manual.

Hardware Requirements for Debugging
To debug applications running on a TV-based player, you'll need the following
hardware:

■ A TV-based player (the target).

■ A PC running MS-DOS version 3.22 or later (the host).

■ Approximately 7K of free RAM on the TV-based player. An additional 80K of
free RAM is required to run the Modular Windows debugger.

■ A serial interface for the TV-based player. Consult the manufacturer of the
TV-based player for information about obtaining this serial interface.

■ A serial null-modem cable. The cable connects the COMl port on your host
PC to the serial interface on the TV-based player.

In addition, you '11 need a CD-ROM disc containing a current version of your
application.

About the Transport Layer and File Redirection
The debugging tools for applications running on TV-based players depend on a
transport layer that provides a serial communications link between the player and
the host PC. The transport layer is provided by ROM-based software in the player
and the Microsoft Transport Layer TSR utility (TL TSR.EXE) running on the host.
The serial link operates at a baud rate of 115K.

Tools 9-3

The transport layer, in conjunction with the Microsoft Redirected File Server
utility (RFSERVER.EXE), supports file redirection, diverting file operations from
the player's CD-ROM disc to a hard disk on the host PC. File redirection allows
you to test, debug, and expand your application without creating a new CD every
time a file is changed or added to the application. You can redirect executable
files as well as data files.

Starting the Transport Layer
You must start the transport layer before using file redirection, the Modular
Windows 80286 Debugger, or the NoEcho utility.

► To start the transport layer:

1. Run the Transport Layer TSR (TL TSR.EXE) on the host PC.

2. Run the Redirected File Server utility (RFSERVER.EXE) on the host PC.

3. Restart the target TV-based player using your application disc.

You must run the Transport Layer TSR before running the Redirected File Server
utility.

Using the Transport Layer TSR Tool
The Transport Layer TSR is a terminate-stay-resident (TSR) program that
activates the Modular Windows transport layer, allowing serial communication
between the TV-based player and the host PC. To start the Transport Layer TSR,
use the tltsr command.

Command-Line Syntax
The following line shows the tltsr command-line syntax:

tltsr

There are no arguments to the tltsr command.

Note Once started, the Transport Layer TSR remains active through the duration
of the MS-DOS session. Don't run it more than once in a single MS-DOS session.
To determine if the Transport Layer TSR is currently running, use the mem
command with the /c option.

9-4 Microsoft Modular Windows Programmer's Reference

Using the Redirected File Server Tool
The Redirected File Server tool works in conjunction with the Transport Layer
TSR to provide file-redirection services. To start the Redirected File Server, use
the rfserver command.

Command-Line Syntax
The following line shows the rfserver command-line syntax:

rfserver [options] directory

The directory argument identifies the directory on the host PC containing files
you want to redirect to the CD-ROM application.

Specifying Options
The rfserver command's options argument can include one or more of the
following options:

-n

-m

Runs the Redirected File Server in non-TSR mode. If this option is omitted,
the program runs as a TSR. The performance of file redirection is improved in
non-TSR mode.

Displays status messages when redirected files are opened, read, and closed.
These messages are useful for monitoring the use of redirected files and for
verifying that redirection is working correctly.

To view debug messages generated by your application or to run the Modular
Windows 80286 Debugger, you must run the Redirected File Server as a TSR. If
you are running as a TSR, you must restart the TV-based player if you change any
of the redirected files.

Note Once started as a TSR, the Redirected File Server remains active through
the duration of the MS-DOS session. Don't run it more than once in a single MS
DOS session. To determine if the Redirected File Server is currently running, use
the mem command with the /c option.

Tools 9-5

Tips for Using File Redirection
The following tips will help you get the most benefit from the Modular Windows
file-redirection tools:

■ Start with the current version of your application on a CD-ROM disc. Use file
redirection to update files that are already on the disc, or to add new files.

■ Because data transfer across a serial link is not as fast as data transfer from a
CD-ROM, you might notice a decrease in your application's performance
using file redirection. To minimize the performance degradation, don't redirect
files such as audio and video files that require high-speed data transfer.

■ Don't run protected-mode software, such as Windows or network software,
while you're using the transport layer for file redirection or debugging.

■ If the TV-based player hangs during file redirection, restart it. Redirection
should resume when the TV-based player has been restarted.

■ Always keep a disc in the CD-ROM drive, even if all of your files are
redirected. The CD-ROM device driver requires that a disc be in the drive.

Using the NoEcho Utility to View Debug Messages
The NoEcho utility (NOECHO.EXE) lets you view debug messages generated by
your application using the OutputDebugString function. To run the NoEcho
utility, use the noecho command. Before running NoEcho, you must start the
Transport Layer TSR. NoEcho will run in conjunction with the Redirected File
Server if the Redirected File Server is run as a TSR.

Command-Line Syntax
The following line shows the noecho command-line syntax:

noecho [options]

Specifying Options
The noecho command's options argument can include one or more of the
following options:

-ffilename

-a

-?

Enables logging; sends output to the file specified by filename.

If logging is enabled, logs all output from the Debugger as well as from the
OutputDebugString function.

Displays a list of the noecho command-line arguments.

To exit NoEcho, press the ESC key on the host PC's keyboard.

9-6 Microsoft Modular Windows Programmer's Reference

Using Modular Windows 80286 Debugger
The Modular Windows 80286 Debugger (WDEB286.EXE) lets you test and
debug applications and dynamic-link libraries running under Modular Windows
on a TV-based player. You can inspect and manipulate test code and environment
status, install breakpoints, and perform other debugging operations. Modular
Windows 80286 Debugger is similar to Windows 80386 Debugger. You should
be familiar with 80386 Debugger before using 80286 Debugger.

This chapter provides details about starting the debugger and suggestions about
using it with TV-based players, but does not cover all of the debugger's options
and commands. For complete information about all of the options and commands,
see the information on the 80386 Debugger in the Programming Tools manual in
the Microsoft Windows Software Development Kit.

Note Commands requiring an 80386 microprocessor, such as hardware
breakpoints, are not supported by 80286 Debugger.

Starting 80286 Debugger
Before starting 80286 Debugger, you must start the transport layer to allow
communications between the TV-based player and the host PC. See "Starting the
Transport Layer," earlier in this chapter, for details on starting the transport layer.

To start 80286 Debugger, you must edit the launch file and replace the line
containing the modwin command with a line containing the wdeb286 command.
See Chapter 3, "Creating Applications for Modular Windows," in the Getting
Started manual for details on the launch file.

Command-Line Syntax
The following line shows the command-line syntax for starting 80286 Debugger
on a TV-based player:

wdeb286.exe [options] gorom.com windir [environment], environment2, ...]

80286 Debugger runs the gorom command, which starts Modular Windows
running under the debugger. The windir and environment arguments for gorom
are identical to the arguments for modwin: windir specifies the directory
containing the SYSTEM.IN! file and environment specifies optional environment
variables that the application can use.

Tools 9-7

Specifying Options
The wdeb286 command's options argument can include any of the options for
80386 Debugger. In addition, the wdeb286 command accepts the following
option:

-i
Specifies the GOROM.COM program file is redirected. You should always
specify this option when running 80286 Debugger.

Tips for Using 80286 Debugger
The following are suggestions for using the 80286 Debugger to debug
applications running on a TV-based player:

■ You can use file redirection for all of the debugging tools by placing the
program files in your file-redirection directory (specified with the rfserver
command). You can also use file redirection for the launch file to change the
wdeb286 command line without making a new CD-ROM disc.

■ If you encounter INT 3 breakpoints while the debugger is starting Modular
Windows, use the g command to proceed.

■ You can enter the debugger by pressing CTRL+ALT+SYSRQ on the TV-based
player's keyboard (if installed) or CTRL+C on the host PC's keyboard. When
you see the debugging prompt, you can enter debugging commands.

Using Modular Windows Heap Walker
Modular Windows Heap Walker (MODWHEAP.EXE) lets you examine the local
and global heaps used by applications and dynamic-link libraries. Modular
Windows Heap Walker provides the same functionality as the version of
Heap Walker for Windows 3.1. For complete information about Heap Walker
for Windows 3.1, see the Programming Tools manual in the Microsoft
Windows SDK.

This section describes differences you'll encounter when starting, running, and
using Modular Windows Heap Walker.

9-8 Microsoft Modular Windows Programmer's Reference

Changes in Appearance
The appearance of Modular Windows Heap Walker differs from Heap Walker for
Windows 3.1. The changes include the following:

■ The menu bar has been replaced by a button bar. Menu items appear in the
same order as in Heap Walker for Windows. When you select a button,
Modular Windows displays a column of buttons, similar to the drop-down
menus in Microsoft Windows 3.1.

■ User-interface controls in the Heap Walker windows have been replaced by
Modular Windows user-interface controls. For example, list boxes in the Main
window, the Global window, and the Local Walk window have been changed
to TV list boxes.

Changes in Functionality
The functionality of Modular Windows Heap Walker is very similar to Heap
Walker for Microsoft Windows 3.1. The exceptions are as follows:

■ Set Output Destination has been added to the File menu. This command lets
you choose either the COM port or the hard disk as the destination when you
choose the Save command. Once you select COM port or hard disk, any future
saves in the same session are automatically made to the same location. The
default setting is Hard Disk.

■ Add Menu has been removed from the Main menu. It required multiple
selection list boxes, which are not available under Modular Windows.

Running Heap Walker on a TV-Based Player
Because Modular Windows doesn't provide a shell application such as Program
Manager, you must consider the following guidelines when running Heap Walker
with your application on a TV-based player:

■ Use the WinExec function in your application to launch Heap Walker.

■ If your application's window covers the Heap Walker menu, you must provide
a way to set the focus to Heap Walker. Using the optional mouse on the player
might be helpful in changing the focus between applications.

Tools 9-9

Using the MS-DOS Monitor
The MS-DOS Monitor utility (DOSMON.COM) can be used to determine if an
application makes calls to MS-DOS functions not available in the Modular
Windows ROM. If your application uses libraries such as a standard C-run-time
library, the library might be making calls to MS-DOS you are not aware of. The
MS-DOS Monitor utility will detect these unsupported calls.

MS-DOS Monitor is a TSR program that reports the function number of
unsupported MS-DOS functions and the filenames of files executed or opened.
MS-DOS Monitor sends output to the COMl port using the settings of 9600 baud,
no parity, 8 bits per character, and 1 stop bit. To use MS-DOS Monitor with
Modular Windows applications, start MS-DOS Monitor before starting Modular
Windows.

Command-Line Syntax
To run MS-DOS Monitor, use the dosmon command. The following line shows
the command-line syntax for dosmon:

dosmon [options]

Specifying Options
The dosmon command's options argument can include one or more of the
following options:

-?
Displays a list of dosmon command-line arguments.

Id
Exits MS-DOS Monitor and removes the TSR from memory.

Note Using a serial mouse on the COMl port will cause a conflict with MS-DOS
Monitor. Try changing your mouse to use COM2, or use a bus mouse.

9-10 Microsoft Modular Windows Programmer's Reference

Using the Color Table Converter
The Color Table Converter (CLTCONV.EXE) is an MS-DOS utility that changes
the RGB values in the color table of icons, 16-color bitmaps, and 256-color
bitmaps with identity palettes. It's designed to help solve color-matching
anomalies that can occur when icons and bitmaps created under Microsoft
Windows 3.1 are displayed by applications running under Modular Windows. For
more information on color-matching anomalies, see Chapter 3, "Video Services."

The Color Table Converter utility takes a reference color table and a bitmap as
input files. The reference color table contains RGB values for one or more color
tables. If one of the reference color tables matches the color table in the bitmap,
the color table in the bitmap is converted to use the RGB values for Modular
Windows. The following list summarizes how Color Table Converter operates
with various types of input files:

Input File Type

16-color bitmap

256-color bitmap

16-color icon

Command-Line Syntax

Color Table Converter Operation

Converts all 16 colors in the color table

Converts the first 10 and last 10 entries in the palette

Converts all 16 colors in the color table of each icon in
the icon resource

To run the Color Table Converter utility, use the cltconv command. The
following line shows the command-line syntax of cltconv:

cltconv [options] [-t referencejile] input-file [output-file]

If you don't specify an output file, the cltconv command will overwrite the input
file with the converted output file.

Tools 9-11

Specifying Options
The cltconv command's options argument can include one or more of the
following options:

-?
Displays a list of cltconv command-line arguments.

-v
Displays messages that report the progress of cltconv.

-t reference-file
Provides a reference color table. If no reference color table is provided, Color
Table Converter searches the current directory and the directories specified in
the PATH environment variable for a reference file named CLTCONV.TBL.

About the Reference Color-Table File
The reference color-table file is an ASCII text file containing one or more
reference color tables. There are two types of reference color tables: one with 16
entries for 16-color bitmaps and icons, and one with 20 entries for 256-color
bitmaps. The token 16-colors identifies a color table with 16 entries and the token
256-colors identifies a color table with 20 entries.

Example Color Table for 16-Color Bitmaps and Icons
The following is an example of a 16-color reference color table:

16-colors (MCGA256)
0, 0, 0 II black

128, 0, 0 II dark red
0, 128, 0 II dark green

128, 128, 0 II mustard
0, 0, 128 II dark blue

128, 0, 128 II purple
0, 128, 128 II dark turquoise

192, 192, 192 II gray
128, 128, 128 II dark gray
255, 0, 0 II red

0, 255, 0 II green
255, 255, 0 II yell ow

0, 0, 255 II blue
255, 0, 255 II magenta

0, 255, 255 II cyan
255, 255, 255 II white

Any text following the RGB values in each line is ignored. There can be no blank
lines in the reference color table.

9-12 Microsoft Modular Windows Programmer's Reference

Example Color Table for 256-Color Bitmaps
The color table for 256-color bitmaps has a total of 20 entries for the first 10 and
last 10 entries in the bitmap's palette. The following is an example of a reference
color table for a 256-color bitmap:

256-colors (MCGA256)
0, 0, 0 II black

128, 0, 0 II dark red
0, 128, 0 II dark green

128, 128, 0 II mustard
0, 0, 128 II dark blue

128, 0, 128 II purple
0, 128, 128 II dark turquoise

192, 192, 192 II gray
192, 220, 192 II money green
166, 202, 240 II new blue
255, 251, 240 II off-white
160, 160, 164 II med-gray
128, 128, 128 II dark gray
255, 0, 0 II red

0, 255, 0 II green
255, 255, 0 II yell ow

0, 0, 255 II blue
255, 0, 255 II magenta

0, 255, 255 II cyan
255, 255, 255 II white

The Conver24 Utility
Conver24 (CONVER24.EXE) is a Windows application that converts and scales
24-bit images to new file formats used by the DisplayDib and DisplayDibEx
functions.

Conver24 also has limited digital-filtering capabilities. There are several
applications available specifically designed for digital filtering. The Modular
Windows SOK includes a sample set of filter parameters. This section includes
information about the sample parameters and a general discussion of the filtering
capabilities of Conver24.

Tools 9-13

About Digital Filtering
This section does not attempt to explain digital filtering techniques or video
image technology. The following publications might be helpful for information on
these topics:

Elliott, Douglas F. Handbook of Digital Signal Processing. San Diego: Academic
Press, Inc., 1987.

Embree, Paul M., and Bruce Kimble. C Language Algorithms For Digital Signal
Processing. Englewood Cliffs: Prentice-Hall, Inc., 1991.

Gonzalez, Rafael C., and Paul Wintz. Digital Image Processing. Menlo Park:
Addison-Wesley Publishing Company, 1987.

Oppenheim, Alan V., and Ronald W. Schafer. Digital Signal Processing.
Englewood Cliffs: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R., and Bernard Gold. Theory and Application of Digital
Signal Processing. Englewood Cliffs: Prentice-Hall, Inc., 1975.

About Conver24
Conver24 is designed to reduce some of the annoying effects created when
images are displayed on televisions, such as flicker of thin horizontal lines and the
chroma-crawl phenomenon on the boundaries of vertical color bands. Conver24 is
script-driven and designed to batch process multiple images.

Filtering Capabilities
Conver24 performs one-dimensional, adaptive filtering of 24-bit RGB images in
the YIQ color space. Separate passes are made for the horizontal and vertical
dimensions. The adaptiveness of the filtering is realized by the use of a specified
threshold: convolutions are done on the color components of two adjacent pixels
only if their difference is greater than the threshold value. The program allows
one-dimensional convolution in the horizontal or vertical dimension with
specified convolution weights.

Adaptive low-pass filtering in the vertical direction reduces line flicker, while
adaptive low-pass filtering in the horizontal direction reduces chroma crawl.
Thresholding the filtering eliminates unnecessary filtering on regions of slow
transitions, which don't exhibit flicker or chroma crawl.

Note Conver24 can perform filtering only on 16-bit, 24-bit, and 32-bit images.

9-14 Microsoft Modular Windows Programmer's Reference

Image Scaling with Conver24
Conver24 is capable of scaling images using interpolation. The scaling routine
determines the RGB value for each pixel in the scaled image by taking the
weighted sum of the RGB values of the old pixels that overlap with the new
pixel-the weights are proportional to the area of overlap for each old pixel.
Scaling can be absolute with both x- and y-dimensions specified, or proportional
with one dimension specified and the other dimension calculated by Conver24 to
maintain the aspect ratio of the image.

Using Conver24
The following is the main window of Conver24:

.Eile .E. dit Applyfilter! .!::f elp

[ScaleParams]
x=165
y=400

[IO]

[Output]
OutputDir=.

[Operations]
Scale
rgb565

[Input]
\photodsc\original\tga32\004.tga

Conver24 lets you enter a new script or load an existing one. To run the filter
script, choose ApplyFilter! on the menu bar. The 1/0 section in the filter script is
required- Conver24 will not prompt for filenames.

Tools 9-15

A Sample Low-Pass Filter
The following is an example of a script for a low-pass filter for processing images
for display on televisions:

; NTSC filter parameter section (required only if filtering images)
[NTSCParams]

; Define filters
[filter 1]
xdim = 1
ydim = 3
weights

[filter 2]
xdim = 1
ydim = 5

.1 .8 .1

weights= .05 .15 .6 .15 .05

; Define chroma-crawl reduction filters
[ChromaCrawlReduction]
Y Filterindex = 1
Y FilterOption = CUMULATIVE
Y Threshold= 60
Y FilterMaxScan = 2

Filterindex = 2
FilterOption = CUMULATIVE
Threshold= 12
FilterMaxScan = 0

Q Filterindex = 2
Q FilterOption = CUMULATIVE
Q Threshold= 20
Q FilterMaxScan = 0

Define flicker-reduction filters
[FlickerReductionJ
Y Filterindex = 2
Y FilterOption = CUMULATIVE
Y Threshold= 70
Y FilterMaxScan = 1

Filterindex = 2
FilterOption = CUMULATIVE
Threshold= 20
FilterMaxScan = 1

9-16 Microsoft Modular Windows Programmer's Reference

Q Filterindex = 2
Q FilterOption = CUMULATIVE
Q Threshold= 20
Q FilterMaxScan = 1

[ApplyDirectiveJ
ApplyFirst = ChromaCrawlReduction
MaxCycles = 1

; Define scaling parameters (required only if scaling images)
[ScaleParamsJ
proportional
x=320

; Output section (required)
[IO]

[Output]
OutputDir = c:\dibs

[Operations]
Scale
NTSC
D1824

[Input]
c:\dibs\24bpp\refract.dib

Writing Filter Scripts
Filter scripts for Conver24 are ASCII text files. Each filter script consists of up to
three sections: optional filter parameters and image scaling sections, and a
required input/output section.

The Filter Parameters Section
The filter parameters section specifies the parameters of the filters used to process
images. It is optional and not required if you are only resizing images or
converting images to a different file format.

Note The numerous filter parameters provide maximum flexibility in processing
images. However, to avoid being overwhelmed by the number of possible filter
configurations, begin with the filter parameters provided in the SAMPLE.F24
filter script. These parameters provide a reasonable starting point for filtering
images for NTSC display.

Tools 9-17

The filter parameters section must begin with the following header:

[NTSCParams]

This section consists of four parts, identified by the following headers:

Part

Filter Definitions

Chroma Crawl Reduction

Flicker Reduction

Apply Directive

Header

[Filterl], [Filter2], ...

[ChromaCrawlReduction]

[Flicker Reduction]

[Apply Directive]

The filter definitions part ([Filterl], ...) should always be at the beginning of the
filtering-process section and the [ApplyDirective] part should always be at the
end.

Filter-Definitions Part
In the filter-definitions part, you can define up to six different filters, each
referenced by the index in the header of its definition section. Each definition
consists of 3 parameters: xdim, ydim, and weights. The weights parameter lists
the convolution weights, which determine the characteristics of a filter.

Chroma-Crawl Reduction Part
The chroma-crawl reduction part specifies horizontal filtering parameters for each
of the color components, Y, I, and Q. For each component, there are four filtering
parameters: Filterlndex, FilterOption, Threshold, and FilterMaxScan. A space
must separate the component name (Y, I, or Q) and each parameter name on each
line.

Filterlndex specifies which of the defined filters to use.

FilterOption specifies whether the filtering process is normal or cumulative. With
normal filtering, unaltered values of surrounding pixels are used in calculating a
filtered pixel value. With cumulative filtering, the altered values of surrounding
pixels are used. For normal filtering set FilterOption to NORMAL; for cumulative
filtering, set FilterOption to CUMULATIVE. For most images, cumulative
filtering provides better results.

For each of the 3 color components, there is a Threshold parameter. This
parameter must be set to an integer value. The range of the threshold is
recommended to be -1 to 307, inclusive. A threshold of -1 or lower is equivalent
to global, non-adaptive filtering, while a threshold of 307 or higher exceeds the
maximum possible difference of any two Y, I, or Q values, and is thus equivalent
to no filtering.

9-18 Microsoft Modular Windows Programmer's Reference

Filtering of a line of Y, I, or Q components is repeated until every pair of adjacent
components differs by an amount no greater than the specified threshold. The
parameter FilterMaxScan specifies a limit to the number of times the filter is
repeated. A value of zero for FilterMaxScan is equivalent to no filtering as in the
chroma-crawl reduction specifications for I and Q in the preceding example.

Flicker-Reduction Part
The flicker-reduction part is identical to the chroma-crawl reduction part, except
the filtering is done along the vertical direction instead of the horizontal direction.

Apply Directive Part
The apply directive part specifies the number of times to apply the cycle of
horizontal and vertical filtering, and which direction is to be applied first in each
cycle.

The Image-Scaling Section
The optional image-scaling section specifies the dimensions for resizing images.
It must begin with the following header:

[ScaleParams]

For proportional scaling, specify the proportional parameter and either the x or y
parameter as follows:

[ScaleParams]
proportional
X = 160

For scaling to absolute dimensions, specify the x and y parameters as follows:

[ScaleParams]
X = 320
y = 200

The Input/Output Section
The input/output section specifies the operations to perform and the input and
output filenames. This section consists of three parts identified by the following
headers:

Part

Input

Output

Operations

Header

[Input]

[Output]

[Operations]

Input Part
The input part specifies a list of the files to process as follows:

[Input]
c:\dibs\24bpp\mickey.dib
c:\dibs\24bpp\goofy.dib

Acceptable input image formats include the following:

■ 24-bit Windows DIB

■ 24-bit OS/2 DIB

■ 16-bit, 24-bit, and 32-bit TARGA

Wildcards are not allowed for input filenames.

Output Part

Tools 9-19

The output part uses the OutputDir parameter to specify where the output files are
to be written:

[Output]
OutputDir = c:\dibs

Operations Part
The operations part specifies the operations to be performed on each of the images
as well as the output format to use for the result. Use the NTSC parameter to
specify that the image be filtered and the Scale parameter to specify that the
image be scaled. Each of these parameters is optional-you can specify one or
both. If you just want to convert an image to a different format, don't specify
either of these parameters.

A third required parameter specifies the output format:

Parameter Output Format

TGA24 24-bit Targa

D1B24 24-bit DIB

RGB555 16-bit RGB555 DIB

RGB565 16-bit RGB565 DIB

TYUV8 8-bit YUV DIB

TYUV16 16-bit YUV DIB

9-20 Microsoft Modular Windows Programmer's Reference

For example, the following input/output section instructs Conver24 to scale an
image named REFRACT.DIB and write it as a RGB555 DIB to the C:\DIBS
directory:

[IO]

[Output]
OutputDir = c:\dibs

[Operations]
Scale
RGB555

[Input]
refract.dib

The [IO], [Output], [Operations], and [Input] parts must be listed in the order
shown in the example above.

APPENDIX A

VIS Memory-Cartridge Services

The Tandy Video Information System (VIS) uses a removable Save-It memory
cartridge to provide applications with a small amount of non-volatile storage.
Applications can use this storage for several purposes including saving user
preferences or application-state information. This appendix describes the Modular
Windows memory-cartridge services, provides a reference to the memory
cartridge API, and shows how applications can use this API to format, read, and
write to memory cartridges.

About Memory Cartridges
Compared to magnetic media, memory cartridges contain a very small amount of
memory (32K is a standard size). Memory cartridges can be either ROM (read
only), RAM (read/write), or a combination of ROM and RAM. Because the
overhead of a FAT file system would consume too much of the memory on a
memory cartridge, Modular Windows uses a binary file structure with one level of
directory information.

Memory-Cartridge Function Overview
The following memory-cartridge functions allow applications to format, register,
read, write, and retrieve the status of a memory cartridge:

mcAlloc
Allocates a given amount of memory on a memory cartridge.

mclnit
Initializes the MS-DOS@ memory-cartridge library. This function is available
only to MS-DOS applications-initialization occurs automatically with
Windows applications.

mcRead
Reads a given block of memory from the currently registered section on a
memory cartridge.

A-2 Microsoft Modular Windows Programmer's Reference

mcRegister
Registers a section on a memory cartridge as the current section for subsequent
read and write operations.

mcStatus
Retrieves status information about a memory cartridge.

mcWrite
Writes a given block of memory to the currently registered section on a
memory cartridge.

For detailed information about these functions, see "Memory-Cartridge Function
Directory," later in this appendix.

Using the Memory-Cartridge Services
Information on a memory cartridge can only be accessed by using the memory
cartridge services discussed in this appendix. MS-DOS and Windows file 1/0
functions cannot be used to access a memory cartridge.

Registering Memory-Cartridge Sections
The information on a memory cartridge is organized into sections. Before reading,
writing, or allocating memory on a memory cartridge, applications must register
the section to be referenced by calling the mcRegister function. Read, write, and
allocation requests are directed to the currently registered section. Only one
section can be registered at a time-no handles or identifiers are required to
reference a section. If mcRegister is called to register a section that doesn't
already exist, it creates a new section using the given section name.

To create a new section on a memory cartridge, first register the section using the
mcRegister function and then allocate space for the section using mcAlloc.

Naming Memory-Cartridge Sections
When an application registers a memory-cartridge section, it must provide a name
for the section. Applications should adhere to the following guidelines when
naming memory-cartridge sections:

■ All characters are valid for section names.

■ There is a limit of 64 characters for a section name (including the terminating
NULL character).

VIS Memory-Cartridge Services A-3

■ The percent sign (%) is a special character used by the memory cartridge
management utility (MCMan). This character is used to separate the
application name from the name of the section and does not appear as part of
the section name presented by MCMan. Use the format as shown in the
following example:

Application Name%sSection Name%

■ Use descriptive names when naming memory-cartridge sections. The
following are examples of descriptive section names:

Chess 3D%sHigh Scores%
Galactic Donuts%slast Game%

See "Handling Full Memory Cartridges," later in this appendix, for details on
using MCMan.

Handling Missing and Unformatted Cartridges
Because the memory cartridge is removable, it might not be present when
applications need to read or write to it. Use the following guidelines to prompt
users when a memory cartridge is not present or when one is present but not
formatted:

■ If the cartridge is not present, ask the user to insert it.

■ If the cartridge is present but not formatted, format it. It's not necessary to
query or notify the user before formatting the cartridge.

See the entry for the mcRegister function in the "Memory-Cartridge Function
Directory," later in this appendix, for more information about formatting memory
cartridges.

Handling Non-Existent Sections
If an application tries to register a section on a memory cartridge, there can be two
reasons the section does not exist: either the wrong memory cartridge is inserted
or the application has not yet written to the cartridge. There is no way for the
application to distinguish between these two situations other than to query the
user. There are two approaches for handling non-existent sections:

1. If the information on the memory cartridge is not critical to the operation of
the application (such as high scores in a game), the application should just
create the necessary sections on the memory cartridge, without querying the
user.

2. If the information is critical to the operation of the application, it can request
that the user insert the cartridge associated with the application.

A-4 Microsoft Modular Windows Programmer's Reference

Handling Full Memory Cartridges
If there is not enough free memory on a cartridge for an application to write to it,
the application should attempt to free some space by deleting or reducing sections
that are known to the application. If there is still not enough memory available on
the cartridge, the application can call the MCMan memory cartridge management
utility.

About the MCMan Utility
The MCMan utility allows users to delete sections on a memory cartridge when it
becomes full. The following illustration shows the appearance of the main
window of MCMan:

emo Cartridge Cont nts

Name % Size

Chess 3-D High Scores 1

Galactic Donuts Last Game 17
Fairytales Bookmark 1

r
I •••• I •••• I. I •• I. I •• I •••• I

0 10 20 30 40 5 60 70 80 90 100

MCMan memory cartridge management utility for Tandy VIS systems

MCMan allows users to erase the entire cartridge, remove selected sections, and
copy sections to other memory cartridges.

VIS Memory-Cartridge Services A-5

Running MCMan
To run MCMan, use the WinExec function, as shown in the following example:

WinExec("mcman", SW_SHOW);

MCMan accepts a single optional command-line argument to tell MCMan the
amount of memory the application needs. The argument has the following syntax:

\m:size

The size parameter is a decimal number specifying the amount of memory in
bytes that the application needs. MCMan uses this value to display a graph to aid
the user in determining when enough memory has been freed. For example, the
following statement runs MCMan to request that the user free 2K of memory:

WinExec("mcman \\m:2048", SW_SHOW);

Note MCMan is available in ROM for applications using the high-resolution
display driver. The Modular Windows SDK also includes a dual-mode version of
MCMan that runs in both low-resolution and high-resolution modes.

Using Memory-Cartridge Services with MS-DOS Applications
To use the memory-cartridge services with MS-DOS applications, applications
must link to the MCD.LIB library. Applications must also call the mclnit
function to initialize the library before calling any other memory-cartridge
functions.

Installing Applications on Memory Cartridges
In addition to sections registered by applications, a memory cartridge can have
one executable file that is loaded at startup. The MCLoadr utility is provided in
the SDK to write files on a memory cartridge using a PC-based memory-cartridge
unit. MCLoadr is a Windows 3.1 application (however, it is not designed to
operate on VIS players).

Note Only one executable file can be resident on a memory cartridge.
Applications cannot access dynamic-link libraries residing on a memory cartridge.

A-6 Microsoft Modular Windows Programmer's Reference

MCLoadr allows applications to load a single file (executable or data) onto a
memory cartridge. The following illustration shows the main window of
MCLoadr:

-~al
I 111 I - K

!luit !:,oad Exe

[Z] Warn if card has data [Z] Auto.!l,oot Exe

c:\ I
command.com

11- le: [MARKMCC) IL!J
LI batch ~ LI bin
LI c600 -;,;= u dev +

Enter file name ...

Main window of the MCLoadr utility

MCLoadr is automatically installed when you install the Modular Windows SDK.
Its icon label in the Modular Windows SDK Program Manager group says
"Memory Cartridge Utility."

Note Before you run MCLoadr, be sure to run GBIOS.COM. You must run
GBIOS.COM before starting Windows.

VIS Memory-Cartridge Services A-7

► To use the MCLoadr utility:

1. Double-click the icon in the Modular Windows SDK.

2. Insert a memory cartridge into the cartridge slot. You can use a blank,
unformatted cartridge or one that already contains information.

3. If you want the program to launch automatically when the cartridge is inserted
in the user's system, select the Autoboot Exe check box.

4. Use the directory list box at the right of the dialog box to select the location of
the file you want to copy to the memory cartridge.

5. Use the file list box at the left of the dialog box to select the file you want to
copy.

6. Choose the Load Exe button. As the system copies the file to the memory
cartridge, it displays a list of messages.

If the memory cartridge already contains information or has previously been
formatted, the system asks whether you want to overwrite the information on
the cartridge. If so, choose the OK button. If not, choose the Cancel button.

When you see the message "Done," the copy process is complete.

7. After the copy operation is complete, you can copy a file to another cartridge,
or exit the utility.

8. To exit, choose the Quit button.

Memory-Cartridge Function Directory
The following is an alphabetical list of memory cartridge functions. Each entry
contains the following items:

• The type, name, and description of input parameters

■ The syntax for the function

• The purpose of the function

• A description of the return value

■ Optional comments about using the function

• Optional examples showing how to use the function

• Optional cross references to other functions, macros, messages, and data
structures

A-8 mcAlloc

mcAlloc
Syntax

Parameters

Return Value

Comments

See Also

DWORD mcAlloc(dwSize)

The mcAlloc function allocates the given amount of memory to the currently
registered section on a memory cartridge. If memory is already allocated to the
currently registered section, it is reallocated to the given size. If the given size is
zero, the section is deleted from the cartridge, and the application will no longer
be registered to the deleted section.

DWORD dwSize
Specifies the amount of memory to allocate.

The return value is zero if the function is successful; otherwise, it is one of the
following error codes:

MCERR_BADCARD
The cartridge is corrupt.

MCERR_CARDCHANGED
The cartridge that is present is different than the cartridge that was present on
the last call to mcRegister.

MCERR_READONL Y
The current memory cartridge is a read-only cartridge.

MCERR_NOTREGISTERED
There is no currently registered section.

MCERR_NOCARD
There is no memory cartridge present.

MCERR_CARDFULL
There is not enough memory available on the memory cartridge.

You must call mcRegister to register a section before allocating memory. The
section is not actually created until mcAlloc is called with a non-zero value for
the dwSize parameter. If the amount of memory requested is smaller than the
amount currently allocated, memory is deallocated from the end (higher address)
of the currently allocated space. If the amount of memory requested is larger than
the amount currently allocated, additional memory is allocated at the end of the
currently allocated space. The content of the previously allocated memory is
preserved.

mcRegister

mclnit
Syntax

Parameters

Return Value

Comments

mcRead
Syntax

Parameters

Return Value

DWORD mclnit(wFlags)

The mclnit function initializes the memory-cartridge library.

WORDwFlags

me Read A-9

Specifies one of the following flags indicating whether the application is
initializing or terminating its use of the library:

MCINIT_START
Initialize the services of the memory-cartridge library.

MCINIT_END
Terminate the services of the memory-cartridge library.

The return value is zero if the function is successful; otherwise, it is the following
error value:

MCERR_NOCORE
There is not enough memory available in the system.

This function is available only to applications using the MS-DOS version of the
memory-cartridge library. MS-DOS applications must initialize the memory
cartridge library before using any memory-cartridge functions and terminate the
services of the library before exiting.

DWORD mcRead(dwStart, dwLen, hpBuj)

The mcRead function reads the given number of bytes from the currently
registered section on a memory cartridge into a given buffer.

DWORD dwStart
Specifies the location to begin reading as an offset into the currently registered
section.

DWORDdwLen
Specifies the number of bytes to read.

HPBYTE hpBuf
Specifies a huge pointer to a buffer of at least dwLen bytes.

The return value is zero if the function is successful; otherwise, it is one of the
following error values:

A-10 mcRegister

See Also

me Register
Syntax

Parameters

Return Value

MCERR_NOTREGISTERED
There is no currently registered section.

MCERR_CARDCHANGED
The cartridge that is present is different than the cartridge that was present on
the last call to mcRegister.

MCERR_NOCARD
There is no memory cartridge present.

MCERR_OUTOFRANGE
Attempted to read past end of section.

MCERR_BADCARD
The file system on the cartridge has been corrupted.

MCERR_BADDATA
The data in the currently registered section has been corrupted.

mcAlloc, mcRegister, mcWrite

DWORD mcRegister(lpszSection, wOptions)

The mcRegister function registers a section on a memory cartridge as the current
section for subsequent read and write operations. If the given section name does
not exist, the new section is created when space is allocated for the new section
using mcAlloc.

LPSTR lpszSection
Specifies the name of the section to register.

WORD wOptions
Specifies one option for registering the section:

MC_AUTOFORMAT
Formats unformatted or corrupted memory cartridges before registering the
section.

The return value is zero if the function is successful; otherwise, it is one of the
following error values:

MCERR_BADSECTIONNAME
The given section name is not valid.

MCERR_NOCARD
There is no memory cartridge present.

Comments

See Also

mcStatus
Syntax

Parameters

Return Value

mcStatus A-11

MCERR_CARDUNFORMA TIED
The cartridge is not formatted and the MC_AUTOFORMAT flag was not
specified.

MCERR_UNSUPPORTEDCARDVERSION
The cartridge is recognized but not supported.

MCERR_BADCARD
The cartridge is corrupt.

MCERR_NOCORE
A request to allocate system memory failed.

MCERR_CARDFULL
An attempt was made to register a new section and the cartridge is full.

If the registration is not successful, there is no currently registered section and
calls to other memory-cartridge functions will fail. New sections are not created
until the next mcAlloc call. To delete a section from a memory cartridge, register
the section using mcRegister and then call mcAlloc with a size of zero. To
unregister the currently registered section, call mcRegister with lpszSection set to
NULL. Applications are not required to unregister sections, but doing so prevents
other tasks from accessing the section.

mcAlloc, mcStatus, mcRead, mcWrite

DWORD mcStatus(lpMCS)

The mcStatus function retrieves information about a memory cartridge.

LPMCST ATUS lpMCS
Specifies a far pointer to an MCST A TUS structure. Set the wHdrSize field to
the size of the MCSTA TUS structure before calling mcStatus.

The return value is zero if the function is successful; otherwise, it is one of the
following error values:

MCERR_CARDUNFORMATTED
The memory cartridge is not formatted.

MCERR_BADCARD
The file system on the cartridge has been corrupted.

MCERR_BADPARAMETER
The lpMCS pointer is NULL.

A-12 mcWrite

Comments

See Also

mcWrite
Syntax

Parameters

Return Value

MCERR_NOCARD
There is no memory cartridge present.

MCERR_UNSUPPORTEDCARDVERSION
The cartridge is recognized but not supported.

Applications don't need to register a section before calling mcStatus. If there is
no section registered, the dwUsedRAM and the mcidReg fields will be zero. The
amount of memory reported in the dwUsedRAM field might be slightly larger
than the amount requested by mcAlloc.

mcRegister, MCSTATUS

DWORD mcWrite(dwStart, dwLen, hpBuf)

The me Write function writes the given number of bytes to the currently
registered section on a memory cartridge.

DWORD dwStart
Specifies the location to begin writing as an offset into the currently registered
section.

DWORDdwLen
Specifies the number of bytes to write.

HPBYTE hpBuf
Specifies a huge pointer to a buffer of at least dwLen bytes.

The return value is zero if the function is successful; otherwise, it is one of the
following error values:

MCERR_NOTREGISTERED
There is no currently registered section.

MCERR_NOCARD
There is no memory cartridge present.

MCERR_OUTOFRANGE
Attempted to write past end of section.

MCERR_READONL Y
The current memory cartridge is a read-only cartridge.

MCERR_BADCARD
The file system on the cartridge has been corrupted.

See Also

MCSTATUS A-13

MCERR_BADDATA
The data in the currently-registered section has been corrupted.

MCERR_CARDCHANGED
The cartridge that is present is different than the cartridge that was present on
the last call to mcRegister.

mcAlloc, mcRegister, mcRead

Memory-Cartridge Data-Structure Directory
The following is an alphabetical list of memory-card data structures. Each entry
gives the structure definition along with the type and a description of the contents
of each of the fields in the structure.

MCSTATUS

Fields

The MCST A TUS structure contains information about a memory cartridge.

typedef struct {
WORD wHdrSize;
WORD wStatus;
DWORD dwTotalROM;
DWORD dwTotalRAM;
DWORD dwFreeRAM;
DWORD dwUsedRAM;
MCID mci d;
MCID mcidReg;
WORD wCardVersion;
BYTE abReserved[8];

}MCSTATUS;

wHdrSize
Specifies the size of the MCST A TUS structure.

wStatus
Specifies one or more of the following flags indicating the status of the
memory cartridge:

MC_CARDPRESENT
A memory cartridge is present.

MC_CARDCHANGED
A new memory cartridge has been inserted since the last mcRegister call.

A-14 MCSTATUS

See Also

dwTotalROM
Specifies the total amount of ROM on the memory cartridge.

dwTotalRAM
Specifies the total amount of RAM on the memory cartridge.

dwFreeRAM
Specifies the amount of free RAM on the memory cartridge.

dwUsedRAM
Specifies the amount of RAM used by the currently registered section. The
amount of memory reported might be slightly larger than the amount requested
by mcAlloc.

mcid
Specifies the memory-cartridge ID of the cartridge.

mcidReg
Specifies the memory-cartridge ID of the cartridge present on the last
successful mcRegister call.

wCardVersion
Specifies the format and capabilities of the cartridge. Currently, all memory
cartridges are version OxOOOI.

abReserved[8]
Reserved for future use.

mcStatus

APPENDIX B

VIS Programming Notes

This appendix contains infonnation specific to programming applications for VIS
systems. It covers the following topics:

■ Detecting if an application is running on a VIS player

■ Exiting application and ejecting disc from CD-ROM drive

■ Setting mixer levels

■ Authoring MIDI files

■ Authoring video files

■ YUV file fonnats

Much of the sample code in this appendix is taken from the WinShell sample
application.

Developing Applications for VIS
To develop applications for VIS, you must obtain additional tools from the VIS
manufacturer. For infonnation about obtaining these tools, contact the following:

Dennis Tanner
Director of Strategic Software Marketing
Tandy Corporation
916 One Tandy Center
Ft. Worth, TX 76102
(817) 390-3477
(817) 878-6669 (FAX)

B-2 Microsoft Modular Windows Programmer's Reference

Detecting if an Application is Running on a VIS Player
Many of the examples in this appendix use function calls that are unique to the
VIS system. Some of these calls might fail on other TV-based players or on PCs.
Applications should detect what type of hardware they are running on before
making hardware-dependent function calls. The following code fragment is a
function that can be used to detect if an application is running on a VIS system:

I*
* DetectVIS
*
* Determines if host is a VIS player by looking for the presence of
* the VIS launcher
*
* Returns TRUE if the launcher exists; FALSE if not.
*I

#define TANDY_2F_HOOK 0x0081
#define OEM_PRESENCE 0x0000
DetectVIS(void)
{

}

BOOL bReturn=FALSE;

_asm
{

}

/* Check for VIS launch module*/
mov ah, TANDY_2F_HOOK
mov al, OEM_PRESENCE
int 2Fh

/* If the launcher exists, it will return 0xFF */
cmp al, 0ffh
jne NoVIS

mov bReturn, TRUE

NoVIS:

return bReturn;

VIS Programming Notes B-3

Exiting an Application and Ejecting the CD-ROM Disc
The following example is a function that can be used to exit an application and
eject the disc from the CD-ROM drive:

I*
* CleanVISExit
*
* Ejects the disc from the CD-ROM and returns control to the
* launch module
*
* Returns: You will not return from this function.
*
*I

#define TANDY_2F_HOOK
#define OEM_DOOR_OPEN_ACTION
void CleanVISExit(void)
{

asm
{

/* Open the door*/

0x0081
0x0011

mov ah, TANDY_2F_HOOK
mov al, OEM_DOOR_OPEN_ACTION
int 2Fh

/*Goodbye*/
int 19h

}

}

Setting Mixer Levels
VIS players have an audio mixer for the compact-disc, waveform, and MIDI
synthesizer audio signals. The default settings for the mixer are too low to be
useful-if your application uses audio, you should increase the mixer settings
corresponding to the type(s) of audio the application uses to provide a
comfortable listening level for users. To determine the right mixer-level settings,
test the application in a situation that allows the television to be switched between
broadcast reception and VIS, and test the application in comparison with other
VIS applications.

The WinShell sample application provides routines you can use to set VIS mixer
levels.

8-4 Microsoft Modular Windows Programmer's Reference

Authoring MIDI Files
The MIDI synthesizer in VIS systems can operate in either of the following two
modes:

■ General MIDI mode

■ Microsoft base-level mode

In Microsoft base-level mode, the synthesizer responds to MIDI channels 13
through 16, with percussion instruments on channel 16. In general MIDI mode,
the synthesizer responds to MIDI channels 1 through 16, with percussion
instruments on channel 10. For details on base-level synthesizers, see the
Multimedia Programmer's Guide in the Microsoft Windows 3.1 SOK. For details
on general MIDI synthesizers, see the General MIDI Mode specification. This
specification is available from the International MIDI Association (IMA) at the
following address:

International MIDI Association
5316 West 57th Street
Los Angeles, CA 90056

Applications can play MIDI files authored to use either base-level mode or
general MIDI mode. The default mode for the VIS MIDI synthesizer is base-level
mode-if applications use MIDI files authored for general MIDI mode, they must
set the synthesizer to general MIDI mode.

Setting General MIDI Mode
To set the synthesizer to general MIDI mode, applications must send the
synthesizer a GENERAL MIDI MODE ON message. This message is defined in
the General MIDI Mode specification as the following sequence of hexadecimal
bytes:

F0 7E 7F 09 01 F7

F0 7E = Universal Non-Real Time SysEx header
7F = Device ID (broadcast)
09 = Sub-ID fl, General MIDI Message
01 = Sub-ID #2, General MIDI On
F7 = EOX

The easiest way to send the synthesizer a GENERAL MIDI MODE ON message
is to embed the message in a MIDI file such that it is the first message sent to the
synthesizer (before any note, program change, or volume-control messages).
Applications can also use the midiOutLongMsg function to send the message to
the synthesizer.

VIS Programming Notes B-5

Setting Microsoft Base-Level Mode
To set the synthesizer to Microsoft base-level mode, applications must send the
synthesizer a GENERAL MIDI MODE OFF message. This message is defined in
the General MIDI Mode specification as the following sequence of hexadecimal
bytes:

F0 7E 7F 09 02 F7

F0 7E = Universal Non-Real Time SysEx header
7F = Device ID (broadcast)
09 = Sub- ID 1/1. General MIDI Message
02 = Sub-ID 1/2, General MIDI Off
F7 = EOX

The easiest way to send the synthesizer a GENERAL MIDI MODE OFF message
is to embed the message in a MIDI file such that it is the first message sent to the
synthesizer (before any note, program change, or volume control messages).
Applications can also use the midiOutLongMsg function to send the message to
the synthesizer.

Authoring Video Files
Use the following guidelines when authoring AVI files for VIS systems:

■ Compress the files using the Microsoft RLE compressor. Modular Windows
for VIS does not support playback of A VI files compressed using the
Microsoft Video 1 compressor.

■ Compress the files for CD-ROM (lS0K/sec) target with frames padded for
CD-ROM playback.

■ Ensure the files are not fragmented when placed on CD-ROM.

■ To improve performance, try using lower bandwidth audio, such as 8-bit
1 lkHz monophonic.

B-6 Microsoft Modular Windows Programmer's Reference

YUV D18 Formats
VIS players support 8- and 16-bit YUV video modes. Modular Windows does not
provide a display driver for these video modes, but does provide support for
displaying YUV images with the DisplayDib function. This section describes the
YUV file formats supported by Modular Windows on VIS players. The Convert24
utility will convert 24- and 32-bit Targa (TGA) files to these YUV file formats.

Note The YUV formats provide higher quality images on televisions than the
palettized RGB formats.

Pixel information in YUV images is encoded into luminance and chrominance
components. Luminance is the brightness of the image and is notated as the Y
element in YUV images. Chrominance is the color information and is notated as
the U (blue-green) and V (red-green) elements in YUV images. To take advantage
of the lower sensitivity of the human eye to color as compared to brightness, the
YUV DIB formats encode the Y information at high resolution and compress the
U and V information.

There are two YUV DIB formats used by VIS players:

■ TYUV8-uses five bits of Y for each pixel, with five bits of U and five bits of
V shared between each group of four pixels. The 5-bit values are compressed
from 8-bit values by using a companding table.

■ TYUVl 6--uses eight bits of Y for each pixel, with eight bits of U and eight
bits of V shared between each group of two pixels.

These YUV formats use compression and differential encoding techniques based
on Tandy video hardware, which use the "TYUV" designation to distinguish them
from other more generic YUV formats.

VIS Programming Notes 8-7

BITMAPINFOHEADER Structure for TVUV8 and TVUV16 DI8s
The following table contains information on the fields of the
BITMAPINFOHEADER structure for TYUV DIBs:

Field

biSize

biWidth

biHeight

biPlanes

biBitCount

biCompression

biSizelmage

biXPelsPerMeter

biYPelsPerMeter

biClrUsed

biClrlmportant

Description

Size in bytes of the BITMAPINFOHEADER structure.

Width of the bitmap in pixels.

Height of the bitmap in pixels.

Set to 1.

Set to 8 for TYUV8; 16 for TYUV16.

Set to the four-character code 'TYUV'.

Size in bytes of the image.

Horizontal resolution in pixels per meter.

Vertical resolution in pixels per meter.

Set to 0.

Set to 0.

B-8 Microsoft Modular Windows Programmer's Reference

TVUVS Pixel Encoding
The TYUV8 DIB format uses 32 bits to encode the pixel information for each
group of 4 pixels. There are 5 bits of Y for each pixel along with 5 bits of U and 5
bits of V shared between each group of 4 pixels. The following illustration shows
the pixel encoding for a group of four pixels in TYUV8 format:

ByteO

TCO U1 uo Y4 Y3 Y2 Y1 YO

PEL 1-4 PEL 1-4 PEL 1 PEL 1 PEL 1 PEL 1 PEL 1

7 0

Byte1

U4 U3 U2 Y4 Y3 Y2 Y1 YO

PEL 1-4 PEL 1-4 PEL 1-4 PEL2 PEL2 PEL2 PEL2 PEL2

7 0

Byte2

TC1 V1 VO Y4 Y3 Y2 Y1 YO

PEL 1-4 PEL 1-4 PEL3 PEL3 PEL3 PEL3 PEL3

7 0

Byte3

V4 V3 V2 Y4 Y3 Y2 Y1 YO

PEL 1-4 PEL 1-4 PEL 1-4 PEL4 PEL4 PEL4 PEL4 PEL4

7 0

Pixel encoding for TYUVS DIB

VIS Programming Notes B-9

Companding of Luminance and Chrominance Values
Luminance (Y) and chrominance (U and V) values are compressed from 8-bit
values to 5-bit values using the following companding table:

Original 8-Bit Value Compressed 5-Bit Value Expanded 5-Bit Value

0 0 0

1 (-255) 1 1

2 (-254) 2 2

3 (-253) 3 3

4 (-252) 4 4

5 (-251) 5 5

6 to 7 (-250 to -249) 6 6

8 to 10 (-248 to -246) 7 9

11 to 14 (-245 to -242) 8 12

15 to 19 (-241 to -237) 9 17

20 to 25 (-236 to -231) 10 22

26 to 33 (-230 to -223) 11 29

34 to 43 (-222 to -213) 12 38

44 to 56 (-212 to -200) 13 50

57 to 76 (-199 to -180) 14 66

77 to 106 (-179 to -150) 15 91

107 to 149 (-149 to-107) 16 128

150 to 179 (-106 to -77) 17 165

180 to 199 (-76 to -57) 18 190

200 to 212 (-56 to -44) 19 206

213 to 222 (-43 to -34) 20 218

223 to 230 (-33 to -26) 21 227

231 to 236 (-25 to -20) 22 234

237 to 241 (-19 to -15) 23 239

242 to 245 (-14 to -11) 24 244

246 to 248 (-10 to -8) 25 247

249 to 250 (-7 to -6) 26 250

B-10 Microsoft Modular Windows Programmer's Reference

Continued

Original 8-Bit Value Compressed 5-Bit Value Expanded 5-Bit Value

251 (-5) 27 251

252 (-4) 28 252

253 (-3) 29 253

254 (-2) 30 254

255 (-1) 31 255

TYUVS Luminance Encoding
The luminance (Y) information is differentially encoded-each 5-bit value (after
expansion to an 8-bit value) represents the difference in luminance from the
previous pixel. For the first pixel of each scan line, the 5-bit Y value represents
the upper 5 bits of an 8-bit initialization value for a running sum (the lower 3 bits
are zero). Each subsequent 5-bit value is expanded to 8 bits and added to the
running sum to generate the next 8-bit Y value.

TYUVS Chrominance Encoding
The chrominance (U and V) information is specified as a single 5-bit companded
value for each group of four pixels, representing the average color for those
pixels. In addition, two bits (TCO and TCl) supply a transition code specifying
where the transition from the present U and V values to the next values should
take place. This method allows the encoding software to absorb the burden of
determining the locations of significant color transitions. The following table
shows where the transitions occur for the different transition codes. In the table,
"A" represents U and V values for a given group of four pixels and "B" represents
U and V values for the next group of four pixels.

Pixel 1 Pixel 2 Pixel 3 Pixel 4

Transition Code: 00

(A+ B)/2 B B B

Transition Code: 01

A (A+ B)/2 B B

Transition Code: 10

A A (A+ B)/2 B

Transition Code: 11

A A A (A+ B)/2

VIS Programming Notes B-11

TVUV16 Pixel Encoding
The TYUV16 DIB format uses 32 bits to encode the pixel information for each
group of two pixels. There are 8 bits of Y for each pixel along with 8 bits of U
and 8 bits of V shared between each pair of pixels. The following illustration
shows the pixel encoding for a pair of pixels in YUV 16 format:

Byte 0

V7 V6 vs Y4 Y3 Y2 Y1 YO

PEL 1 PEL 1 PEL1 PEL 1 PEL 1 PEL 1 PEL 1 PEL 1

7

Byte 1

U7 U6 us U4 U2 U1 U1 uo
PEL 1,2 PEL 1,2 PEL 1,1 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2

7

Byte 2

Y7 V6 VS Y4 Y3 Y2 Y1 YO

PEL2 PEL2 PEL2 PEL2 PEL2 PEL2 PEL2 PEL2

7

Byte3

V7 V6 VS V4 V3 V2 V1 VO

PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2 PEL 1,2

7

Pixel encoding for TYUV16 DIB

0

0

0

0

B-12 Microsoft Modular Windows Programmer's Reference

TVUV16 Chrominance Encoding
The chrominance (U and V) information is interpolated for the second pixel in
each pair of pixels. The chrominance value for these pixels is equal to the average
of the chrominance of the previous and the next pixels. The following table
illustrates this averaging technique. In the table, "A" represents U and V values
for a given pair of pixels, and "B" represents U and V values for the next pair of
pixels.

Pixel 1 Pixel 2 Pixel 3 Pixel 4

A (A+B)/2 B (B+C)/2

Index

See also Microsoft Modular Windows Design Guide Index

Special Characters
[] (brackets), document convention xii
... (ellipsis), document convention xii
I (pipe), document convention xii
8-bit file formats

converting to, from 9-18 to 9-20
support 3-4
YUV video mode, VIS applications B-6 to B-10

16-bit file formats
converting to, from 9-18 to 9-20
support 3-4
YUV video mode, VIS applications B-6 to B-12

24-bit file formats, converting to, from 9-18 to 9-20
32-bit file formats, converting to, from 9-18 to 9-20
32-bit Memory Management extension library,

unsupported 4-8
320-by-200 resolution 3-1 to 3-2
320-by-400 resolution 3-4
640-by-400 resolution 3-1 to 3-2
80286 Debugger

A

386 support 9-6
command-line syntax 9-6 to 9-7
described 9-6
entering 9-7
INT 3 breakpoints 9-7
redirecting files 9-7
related tools listed 9-1
starting 9-6
transport layer prerequisite 9-3

Action buttons
See also Buttons
illustration 1-2, 2-1

Adaptive low-pass filtering See Digital filtering
AddFontResource function, support 4-1
AllocDiskSpace function, unsupported 4-9
API, Windows 3.1/Modular Windows differences 4-1 to 4-7
AppendMenu function, unsupported 4-1
Applications

debugging See Debugging
VIS See VIS applications

ArrangelconicWindows function, unsupported 4-2

Aspect ratios
listed 3-4
maintaining, changing 9-14, 9-18

Audio mixer levels, Tandy Video Information System B-3
A VI files See VIS applications

B
Background mode 3-2
BITMAPCOREHEADER data structure

DisplayDib function 5-4
DisplayDibEx function 5-7

BITMAPINFO data structure
DisplayDib function 5-2, 5-4
DisplayDibEx function 5-5, 5-7

BITMAPINFOHEADER data structure, TYUV DIBs B-7
Bitmaps

color anomalies
correcting 9-10 to 9-12
described 3-3

color-table conversion
command-line syntax 9-10 to 9-11
reference color tables 9-11 to 9-12
tool described 9-10

converting formats 9-18 to 9-20
customizing controls with 1-29 to 1-30
data structures 7-2 to 7-5
deleting 1-30
displaying 3-3 to 3-4
functions 3-3, 5-2 to 5-7
messages 6-14 to 6-15, 6-18 to 6-19
scaling 9-14, 9-18
transparent areas 3-2

Bold text, document convention xii
Boxes See Check boxes; Edit boxes; Group boxes; List

boxes; Show boxes
Brackets ([]), document convention xii
BS_ ... , button-control styles 1-7 to 1-8
Buttons

control styles 1-7 to 1-8
customizing

generally 1-6
with bitmaps 1-29 to 1-30

elements illustrated 1-30
illustration 1-7, 2-1
owner-draw, creating 1-8
Windows 3.1/Modular Windows differences 1-6

1-2 Index

C
Capitals, document convention xii
CD-ROMs

ejecting, Tandy Video Information System B-3
required for debugging 9-2

Channels, illustration 1-9
Check boxes

colors, changing 1-30
control-class name 1-28
creating 1-7, 1-8
customizing 1-29
illustration 1-7
purpose 1-5
text to left of 1-8

CheckMenultem function, unsupported 4-2
Child windows, using controls in 1-6
Chroma-crawl reduction

capability, Conver24 9-13
script elements, Conver24 9-17 to 9-18

Chrominance See VIS applications
CloseSound function, unsupported 4-2
CLTCONV.EXE

command-line syntax 9-10 to 9-11
described 9-10
reference color tables 9-11 to 9-12
related tools listed 9-1

Colors
background 3-2
changing in controls 1-30
data structures 7-3
default palette 3-3
matching anomalies

correcting 9-10 to 9-12
described 3-3

messages 6-16 to 6-17, 6-19 to 6-20
reserved 3-3
transparent areas 3-2

Color Table Converter
command-line syntax 9-10 to 9-11
described 9-10
reference color tables 9-11 to 9-12
related tools listed 9-1

COMMDLG.DLL, unsupported 1-1, 4-8
Common Dialog Boxes extension library,

unsupported 1-1, 4-8
Compound focus 1-4
Control-class names 1-28
CONTROL resource script, button styles in 1-7
Controls

activating library 1-6
adding bitmaps 1-29 to 1-30
boxing 1-17 to 1-18
buttons See Buttons

Controls (continued)
colors, changing 1-30
customizing

adding bitmaps 1-29 to 1-30
focus manager 1-31 to 1-33

data structures See Data structures
disabling 1-31
edit boxes See Edit boxes
enabling 1-31
functions affecting all controls 1-29, 5-21 to 5-25
grouping 1-17 to 1-18
hand control See Hand control
keyboard controls See Keyboard controls
labeling 1-17 to 1-18
library, activating 1-6
list boxes See List boxes
listed 1-5 to 1-6
owner-draw

buttons 1-8
list boxes 1-12, 1-14
show boxes 1-20

resolution mode, choosing 3-2
screen-appearance-related functions listed 1-29
scroll bars See Scroll bars
scroll pads See Scroll pads
separating 1-17 to 1-18
show boxes See Show boxes
spin-button See Spin buttons
static See Static controls

Control styles
buttons 1-7 to 1-8
edit boxes 1 ~26
keyboard controls 1-21
list boxes 1-12
scroll bars 1-9
scroll pads 1-15
show boxes 1-20
spin buttons 1-17
static controls 1-17 to 1-18

Conver24
adaptive low-pass filter, example 9-15 to 9-16
converting file formats, script elements 9-18 to 9-20
described 9-12
digital filtering

bibliography 9-13
example script 9-15 to 9-16
purpose, method 9-13
script section 9-16 to 9-18

low-pass filter, example 9-15 to 9-16
main window 9-14
scaling

capability 9-14
script elements 9-18

Conver24 (continued)
scripts

example 9-15 to 9-16
filter parameters section 9-16 to 9-18
image scaling section 9-18
input/output section 9-18 to 9-20
running 9-14
sections 9-16

Converting video formats See Conver24
CopyLZFile function, unsupported 4-9
CopyMetaFile function, support 4-2
Core API, Windows 3.1/Modular Windows differences 4-1 to

4-7
CountVoiceNotes function, unsupported 4-2
CreateDialog function, boxes created with, available controls

1-6
CreateDialoglndirect function, boxes created with, available

controls 1-6
CreateFont function, support 4-2
CreateFontlndirect function, support 4-2
CreateMenu function, unsupported 4-2
CreatePopupMenu function, unsupported 4-2
CreateScalableFontResource function, unsupported 4-2
CreateWindow function

boxes created with, available controls 1-6
button styles, using in 1-7
child windows, creating 1-28
keyboard controls 1-22
Windows 3.1/Modular Windows differences 4-2 to 4-3

CreateWindowEx function, Windows 3.1/Modular Windows
differences 4-2 to 4-3

Cursor
moving

See also Focus, manager
compound focus 1-4
constrained, unconstrained tabbing 1-32
different parent windows 1-32
power-user mode 1-4
related functions listed 1-29
roaming mode 1-3 to 1-4, 2-4
same parent window 1-32
tabbing mode 1-3, 2-4

position
getting 2-2
setting 2-2

Customizing
buttons 1-6
controls

adding bitmaps 1-29 to 1-30
adding to focus manager 1-32 to 1-33
focus management 1-31 to 1-32

gauges 1-8
scroll bars 1-8

D
Data Decompression extension library

support 4-8

Index 1-3

Windows 3.1/Modular Windows differences 4-9
Data structures

DIRVECTORS 7-2
memory cartridges A-13 to A-14
TV CTLBITMAP 7-2 to 7-3
TV CTLCOLOR 7-3
TV _FACEBITMAP 7-4 to 7-5

DOE Management extension library, unsupported 4-8
DDEML.DLL, unsupported 4-8
Debugger utility See 80286 Debugger
Debugging

80286 Debugger
command-line syntax 9-6 to 9-7
described 9-6
entering 9-7
INT 3 breakpoints 9-7
redirecting files 9-7
starting 9-6

capabilities 9-2
hardware required 9-2
Heap Walker

described 9-7
output destination 9-8
running 9-8
Windows 3.1/Modular Windows

differences 9-7 to 9-8
messages, viewing 9-5
redirecting files

application version 9-5
audio files 9-5
CD-ROM required 9-5
network software, running 9-5
procedure 9-3
protected-mode software, running 9-5
redirected file server 9-4
speed 9-5
transport layer 9-2 to 9-3
TV-based player, hanging 9-5
video files 9-5
Windows, running 9-5

tools, listed 9-1
Windows 3.1/Modular Windows differences

Debugger program 9-6
Heap Walker 9-7 to 9-8

Decompressing data See Data Decompression extension
library

Default palette 3-3
DefMDIChildProc function, unsupported 4-3
DeleteMenu function, unsupported 4-3
DelFrameProc function, unsupported 4-3

1-4 Index

DestroyMenu function, unsupported 4-3
Dialog boxes

common
library, unavailability 1-1
unsupported 4-8

using controls in 1-6
DialogBox function, boxes created with, available

controls 1-6
Digital filtering

bibliography 9-13
capability 9-13
scripts

components 9-16 to 9-18
example 9-15 to 9-16

Direct video access
described 3-5
macros 5-8 to 5-9, 5-21

Direct window access 3-5
Direction-control buttons

illustration 1-2, 2-1
moving cursor with 1-3 to 1-4

DIRVECTORS data structure
described 7-2
fmGetWindowVectors function 5-11
fmSetWindowVectors function 5-13
setting focus direction vectors 1-33

Disabling controls 1-31
Display area, show boxes 1-19
DisplayDib function

320-by-400 resolution 3-4
converting files for 9-12
described 3-3, 5-2 to 5-4
DV A mode, calls in 5-9
queries from titles 3-4
supported formats 3-4
YUV images B-6

DisplayDibEx function
320-by-400 resolution 3-4
converting files for 9-12
described 3-3, 5-4 to 5-7
supported formats 3-4

Display drivers
background mode 3-2
resolution 3-1 to 3-2, 3-4
TVGA.DRV described 3-1

DlgDirLst function, unsupported 4-3
DlgDirLstComboBox function, unsupported 4-3
DlgDirSelect function, unsupported 4-3
DlgDirSelectComboBox function, unsupported 4-3
DlgDirSelectComboBoxEx function, unsupported 4-3
Document conventions xii
DOS See MS-DOS

DOSMON.COM
command-line syntax 9-9
described 9-9
related tools listed 9-1
serial mouse, conflicts 9-9

Down direction-control button
illustration 1-2, 2-1
PC keyboard equivalent 1-5

DragAcceptFiles function, support 4-9
Drag-and-drop operations, registration database information

See Registration Database extension library
DragFinish function, support 4-9
DragQueryFile function, support 4-9
DragQueryPoint function, support 4-9
DrawMenuBar function, unsupported 4-3
DVA 3-5, 5-8 to 5-9, 5-21
DWA 3-5

E
Edge area, show boxes 1-19
Edit boxes

colors, changing 1-30
control-class name 1-28
control styles 1-26
creating 1-26
described 1-25
messages 1-26 to 1-27, 6-2 to 6-4, 6-6 to 6-8
modifying 1-26 to 1-27
notification codes 1-28
purpose 1-6
text, retrieving 1-25

Ellipsis (...), document convention xii
EM_GETLINE message, described 1-27
EM_GETMODIFY message, described 1-27
EM_GETRECT message, described 1-27
EM_LINELENGTH message, described 1-27
EM_SETMODIFY message, described 1-27
EM_SETPASSWORDCHAR message, described 1-27
EM_SETREADONL Y message, described 1-27
EN_ ... , edit box notification codes 1-28
EnableMenultem function, unsupported 4-3
EnableScrollBar function, substituting message 6-12
Enabling controls 1-31
EnterDV A function

described 5-8 to 5-9
enabling direct-video access 3-5

EnterDV A macro, described 3-5
ES_ ... , edit box styles 1-26
Extension libraries, support 4-8

F
Fl-F4 buttons, illustration 1-2, 2-1
Files, redirecting

application version 9-5
audio files 9-5
CD-ROM required 9-5
network software, running 9-5
procedure 9-3
protected-mode software, running 9-5
purpose 9-3
redirected file server 9-4
speed 9-5
tools listed 9-1
transport layer 9-2 to 9-3
TV-based player, hanging 9-5
video files 9-5
Windows, running during redirection 9-5

Filtering, digital See Digital filtering
FindExecutable function, support 4-9
Flicker reduction

capability, Conver24 9-13
script elements, Conver24 9-18

Floating Point Emulation extension library, support 4-8
fmAddWindow function

described 5-9 to 5-10
focus manager, adding controls 1-32 to 1-33
messages from added controls 1-33
related functions listed 1-31 to 1-32

fmDeleteWindow function
described 5-10
related functions listed 1-31 to 1-32

fmGetLastCursorPos function
described 5-10 to 5-11
related functions listed 1-31 to 1-32

fmGetLastDirection function
described 5-11
related functions listed 1-31 to 1-32

fmGetWindowVectors function
described 5-11
related functions listed 1-31 to 1-32

fmlsFocusMessage function
described 5-12
focus manager, adding controls 1-32
related functions listed 1-31 to 1-32

fmSetCursorPos function
described 5-13
related functions listed 1-31 to 1-32

fmSetWindowVectors function
described 5-13
focus manager, adding controls 1-32
related functions listed 1-31 to 1-32
setting focus-direction vectors 1-33

Index 1-5

fmTranslateHCKey function
described 5-14
related functions listed 1-31 to 1-32

Focus
compound 1-4
data structure 7-2
indicating, related functions listed 1-29
keyboard controls, restricting 1-25
manager

activation required when 1-31
constrained, unconstrained tabbing 1-32
described 1-31 to 1-32
functions 1-31 to 1-32, 5-9 to 5-14
messages 1-32, 6-17
using 1-32 to 1-33

moving
See also herein manager
constrained, unconstrained tabbing 1-32
different parent windows 1-32
power-user mode 1-4
roaming mode 1-3, 2-4
same parent window 1-32
tabbing mode 1-3, 2-4

position
getting 2-2
setting 2-2

Frame area, show boxes 1-19
Functions

G

bitmaps 3-3, 5-2 to 5-7
controls 5-21 to 5-25
core API, changed or unsupported functions 4-1 to 4-7
extension libraries, support 4-8 to 4-9
focus-manager 1-31 to 1-32, 5-9 to 5-14
hand-control 2-2, 5-16 to 5-20
memory cartridges

described A-8 to A-13
generally A-1 to A-2

MS-DOS
detecting calls for 9-9
support 4-9 to 4-11

user-interface
described 5-21 to 5-25
listed 1-29

VIS applications B-4 to B-5
Windows 3.1/Modular Windows differences 4-1 to 4-7

Games, resolution mode 3-2
Gauges

colors, changing 1-30
control-class name 1-28
creating 1-9
customizing 1-8, 1-29

1-6 Index

Gauges (continued)
described 1-8
illustration 1-9
purpose 1-5

GBIOS.COM A-6
GDI module, Windows 3.1/Modular Windows

differences 4-1 to 4-7
GetAsyncKeyState function, support 4-3
GetCiasslnfo function, support 4-3
GetDigltemlnt function, support 4-4
GetDlgltemText function, support 4-4
GetFontData function, unsupported 4-4
GetGiyphOutline function, unsupported 4-4
GetKeyboardState function, support 4-4
GetKeyNameText function, support 4-4
GetKeyState function, support 4-4
GetMenu function, unsupported 4-4
GetMenuCheckMarkDimensions function,

unsupported 4-4
GetMenultemCount function, unsupported 4-4
GetMenultemID function, unsupported 4-4
GetMenuState function, unsupported 4-4
GetMenuString function, unsupported 4-4
GetMessageExtralnfo function, HKEY DWORD 2-3
GetModuleFileName function, unsupported 4-4
GetNextDigGroupltem function, support 4-4
GetNextDlgTabltem function, unsupported 4-4
GetSubMenu function, unsupported 4-4
GetSystemMenu function, unsupported 4-4
GetSystemMetrics function, support 4-5
GetTempDrive function, support 4-5
GetTempFileName function, support 4-5
GetThresholdEvent function, unsupported 4-5
GetThresholdStatus function, unsupported 4-5
GetWinDebuglnfo function, unsupported 4-5
GetWindowPlacement function, support 4-5
GetWindowsDirectory function, support 4-5
GetWindowText function

keyboard input generally 1-22
retrieving text from edit boxes 1-25

GOROM.COM, redirecting 9-7
Group boxes

H

colors, changing 1-30
control-class name 1-28
creating 1-7
customizing 1-29
illustration 1-7
purpose 1-5

Hand control
button layout 1-2
described 2-1

Hand control (continued)
functions 2-2, 5-16 to 5-20
illustration 2-1
input from 2-3
macros 2-2, 5-14 to 5-16
moving cursor 1-3 to 1-4, 2-4
selecting items 1-3 to 1-4
virtual-key codes 2-3

HC_IS_HC macro
described 5-14 to 5-15
related functions, macros listed 2-2

HC _KEY_ OFFSET macro
described 5-15
related functions, macros listed 2-2
using with hcControl function 5-18 to 5-19

HC _PLAYER macro
described 5-15 to 5-16
related functions, macros listed 2-2

HC _ VKN2VK macro
described 5-16
related functions, macros listed 2-2

hcControl function
described 5-16 to 5-19
input-mode control 2-4
related functions, macros listed 2-2
roaming mode enabling 1-4, 2-4

hcGetCursorPos function
described 5-20
related functions, macros listed 2-2

hcSetCursorPos function
described 5-20
related functions, macros listed 2-2

Heap Walker
described 9-7
output destination 9-8
related tools listed 9-1
running 9-8
Windows 3.1/Modular Windows differences 9-7 to 9-8

High-resolution mode 3-1 to 3-2
HiliteMenultem function, unsupported 4-5
Horizontal scroll bars See Scroll bars
_ hwrite function, support 4-5

Icons, color anomalies
correcting

command-line syntax 9-10 to 9-11
reference color tables 9-11 to 9-12
tools described 9-10

described 3-3
Image scaling See Scaling
Input devices See Hand control; Keyboard controls
InsertMenu function, unsupported 4-5

INT 21H functions
redirected 4-11
support 4-9 to 4-10

IsMenu function, unsupported 4-5
Italic text, document convention xii

K
KERNEL module, Windows 3.1/Modular Windows

differences 4-1 to 4-7
Keyboard controls

basic
described 1-23
input from 1-24
messages 1-24, 6-2, 6-4 to 6-9

colors, changing 1-30
control-class name 1-28
control styles 1-21
described 1-21
focus changes 1-25
purpose 1-6
with prompt, text

creating 1-22
described 1-21
input from 1-22 to 1-23
messages 1-22, 6-2 to 6-4, 6-6 to 6-10

Keyboards, PC, using as input device 1-5
KM_CHAR message

described 6-2
related messages listed 1-24
sending 1-24

KM_GETDEFKEY message
described 6-2
edit boxes 1-27
related messages listed 1-24

KM_GETPROMPT message
described 6-3
edit boxes 1-27
related messages listed 1-22

KM_GETPROMPTLENGTH message
described 6-3
edit boxes 1-27
related messages listed 1-22

KM_GETRECIPIENT message, described 6-4
KM_GETIEXTLIMIT message

described 6-4
edit boxes 1-27
related messages listed 1-22

KM_KEYDOWN message
described 6-5
related messages listed 1-24
sending 1-24

KM_KEYUP message
described 6-5
detecting end of inputting 1-24
related messages listed 1-24
sending 1-24

KM_MOVESKB message
described 6-6
edit boxes 1-27
related messages listed 1-22, 1-24

KM_SETDEFKEY message
described 6-6 to 6-7
edit boxes 1-27
related messages listed 1-22, 1-24

KM_SETDEFTEXT message
described 6-7 to 6-8
edit boxes 1-27
related messages listed 1-22

KM_SETPROMPT message
described 6-8
edit boxes 1-27
related messages listed 1-22

KM_SETRECIPIENT message
described 6-8 to 6-9
related messages listed 1-22, 1-24
sending 1-22, 1-24

KM_ WAKEUP message
described 6-10
related messages listed 1-22

KS_ ... , keyboard-control styles 1-21, 1-26

L

Index 1-7

Launch file, modifying for debugging 9-6
LB_ADDSTRING message, described 1-13
LB_DELETESTRING message, described 1-13
LB_FINDSTRING message, described 1-13
LB_GETCOUNT message, described 1-13
LB_GETCURSEL message, described 1-13
LB_GETITEMDATA message, described 1-13
LB_GETITEMRECT message, described 1-13
LB_GETPOPUPRECT message

described 1-13, 6-10
related messages listed 1-13

LB_GETSELAREA message
described 1-13, 6-10 to 6-11
related messages listed 1-13

LB_GETIEXT message, described 1-13
LB_GETIEXTLEN message, described 1-13
LB_INSERTSTRING message, described 1-13
LBN_ ... , list-box notification codes 1-14
LB_RESETCONTENT message, described 1-13
LBS_ ... , list-box control styles 1-12

1-8 Index

LB _SETCURSEL message, described 1-13
LB_SETITEMDATA message, described 1-13
LB_SETITEMHEIGHT message, described 1-13
LB_SETSELAREA message

described 1-13, 6-11
related messages listed 1-13

LB_SETTABSTOPS message, described 1-13
_lcreat function, support 4-5
LeaveDV A macro, described 3-5, 5-21
Left direction-control button

illustration 1-2, 2-1
PC keyboard equivalent 1-5

Libraries See Extension libraries
List boxes

colors, changing 1-30
compound-focus 1-4
control-class name 1-28
control styles 1-12
creating 1-12
illustration 1-10
messages 1-13, 6-10 to 6-11
modifying 1-13
notification codes 1-14
owner-draw 1-12, 1-14
popup 1-11
power-user mode 1-4
purpose 1-5
spin-field 1-12
Windows 3.1/Modular Windows differences 1-10

LoadAccelerators function, unsupported 4-5
LoadMenu function, unsupported 4-5
LoadMenulndirect function, unsupported 4-5
_!open function, support 4-5
Low-pass filtering See Digital filtering
Low-resolution mode 3-1 to 3-2
Luminance, YUV format See VIS applications
_ !write function, support 4-5
LZCopy function, unsupported 4-9
LZEXPAND.DLL

support 4-8
Windows 3.1/Modular Windows differences 4-9

LZOpenFile function, unsupported 4-9

M
Macros

direct-video access 3-5, 5-8 to 5-9, 5-21
hand-control 2-2, 5-14 to 5-16

Maximize buttons, unavailability 1-1
MCI error codes 4-12
mciGetErrorString function, support 4-6
MCLoader See Memory cartridges
MCMan See Memory cartridges
MDI, unavailability 1-1

Memory cartridges
access generally A-2
data structures A-13 to A-14
described, file format A-1
formatting A-3
full, freeing memory on A-4 to A-5
functions

described A-8 to A-13
generally A-1 to A-2
mcAlloc A-8
mclnit A-5, A-9
mcRead A-9 to A-10
mcRegister A-2 to A-3, A-10 to A-11
mcStatus A-11 to A-12
mcWrite A-12 to A-13

inserting A-3
installing files on A-5 to A-7
MCLoader

described A-5 to A-6
GBIOS.COM A-6
running A-7

MCMan
purpose A-4
running A-5

MCSTATUS data structure A-13 to A-14
MS-DOS applications A-5
sections

naming A-2 to A-3
nonexistent A-3
registering A-2

Menus, unavailability 1-1
MessageBox function, support 4-6
Messages

bitmap-related 1-30, 6-14 to 6-15, 6-18 to 6-19
changing control colors 1-30
colors 6-16 to 6-17, 6-19 to 6-20
edit boxes 1-26 to 1-27
focus-manager 1-32, 6-17
keyboard controls 1-22, 1-24, 6-2 to 6-10
list boxes 1-13, 6-10 to 6-11
scroll bars 6-11 to 6-13
show boxes 1-20, 6-13 to 6-14
VIS applications B-4 to B-5

Microsoft Color Table Converter See Color Table Converter
Microsoft Modular Windows 80286 Debugger See 80286

Debugger
Microsoft Modular Windows Heap Walker See Heap Walker
Microsoft Redirected File Server See RFSERVER.EXE
Microsoft Transport Layer TSR See Transport layer
Microsoft Windows 3.1/Modular Windows differences

See Windows 3.1/Modular Windows differences
MIDI files, VIS applications See VIS applications
midiOutOpen function, support 4-6
Minimize buttons, unavailability 1-1

ModifyMenu function, unsupported 4-6
MODWHEAP.EXE

described 9-7
output destination 9-8
related tools listed 9-1
running 9-8
Windows 3.1/Modular Windows differences 9-7 to 9-8

Monospace, document convention xii
Mouse, using as input device 1-5
Moving cursor See Cursor, moving
MS-DOS

functions
detecting calls for 9-9
support 4-9 to 4-11

Monitor utility
command-line syntax 9-9
described 9-9
related tools listed 9-1
serial mouse conflicts 9-9

version required for debugging 9-2
Multiple Document Interface, unavailability 1-1

N
NetBIOSCall function, unsupported 4-6
NEWTRANSPARENT mode 3-2
NoEcho

command-line syntax 9-5
exiting 9-5
purpose 9-5
related tools listed 9-1
transport layer prerequisite 9-3
TSR status 9-5

NOECHO.EXE See NoEcho
Nonclient scroll bars, unsupported 1-1, 1-8
Notification codes

0

edit boxes 1-28
list boxes 1-14
scroll pads 1-16
WM_COMMAND message 1-16

OLE, unsupported 4-8
OLECLI.DLL, unsupported 4-8
OLESVR.DLL, unsupported 4-8
OpenFile function, support 4-6
OpenSound function, unsupported 4-6
OutputDebugString function, messages, viewing 9-5
Owner-draw

buttons 1-8
list boxes 1-12, 1-14
show boxes 1-20

Index 1-9

p
PALETTERGB macro, specifying transparent color 3-2
Palettes

correcting color tables 9-10 to 9-12
default

described 3-3
Windows 3.1/Modular Windows differences 3-3

Picture quality
aspect ratios

listed 3-4
maintaining, changing 9-14, 9-18

resolution 3-1 to 3-2, 3-4
Pipe (I), document convention xii
Pixels

aspect ratio See Aspect ratios; Resolution modes
encoding, VIS applications B-6 to B-12

Player I/Player 2 mode
switch, illustration 1-2, 2-1
virtual key codes 2-3

POINT data structure
fmGetLastCursorPos function 5-11
fmSetCursorPos function 5-13
hcGetCursorPos function 5-20

Popup list boxes 1-11
Power-user mode 1-4
Primary action button

illustration 1-2, 2-1
PC keyboard equivalent 1-5

Proportional scaling See Scaling
Push buttons

R

colors, changing 1-30
control-class name 1-28
creating 1-7
customizing 1-29
illustration 1-7
purpose 1-5

Radio buttons
colors, changing 1-30
control-class name 1-28
creating 1-7, 1-8
customizing 1-29
illustration 1-7
purpose 1-5
text to left of 1-8

Redirecting files
application version 9-5
audio files 9-5
CD-ROM required 9-5
network software, running 9-5
procedure 9-3

1-10 Index

Redirecting files (continued)
protected-mode software, running 9-5
purpose 9-3
rfserver 9-4
speed 9-5
tools listed 9-1
transport layer

command-line syntax 9-3
described 9-2 to 9-3
TSR status 9-3

TV-based player, hanging 9-5
video files 9-5
Windows, running during redirection 9-5

RegCloseKey function, support 4-9
RegCreateKey function, support 4-9
RegDeleteKey function, support 4-9
RegEm.umKey function, support 4-9
Registration database

support 4-8
Windows 3.1/Modular Windows differences 4-8

RegOpenKey function, support 4-9
RegQueryKey function, support 4-9
RegQueryValue function, support 4-9
RegSetValue function, support 4-9
RemoveMenu function, unsupported 4-6
Reserved colors 3-3
Resolution modes

320-by-400 3-4
aspect ratios 3-4
high 3-1 to 3-2
low 3-1 to 3-2

RFSERVER.EXE
command-line syntax 9-4
related tools listed 9-1
TSR status 9-4
using with transport layer 9-3

RGB DIB formats
color tables, converting

command-line syntax 9-10 to 9-11
reference color tables 9-11 to 9-12
tool described 9-10

converting to, from 9-18 to 9-20
support 3-4

Right direction-control button
illustration 1-2, 2-1
PC keyboard equivalent 1-5

Roaming mode

s

described 1-3 to 1-4
enabling, purpose 2-4

Save-It memory cartridges See Memory cartridges
SBM_ENABLE_ARROWS message, described 6-11 to 6-12

SBM_GETCHANNELAREA message, described 6-12
SBM_SETCHANNELAREA message, described 6-12 to

6-13
SBS_ ... , scroll bar control styles 1-9
Scaling

capability 9-14
script elements, Conver24 9-18

Scroll arrows, illustration 1-9
Scroll bars

colors, changing 1-30
compound-focus 1-4
control-class name 1-28
control styles 1-9
creating 1-9
customizing 1-8, 1-29
gauges See Gauges
horizontal, creating 1-9
illustration 1-9
input from 1-10
messages 6-11 to 6-13
nonclient, unavailability 1-1
power-user mode 1-4
purpose 1-5
sizing 1-10
vertical, creating 1-9
Windows 3.1/Modular Windows differences 1-8

Scroll gauges See Gauges
Scroll pads

colors, changing 1-30
compound-focus 1-4
control-class name 1-28
control styles 1-15
described 1-15
input from I -16
notification codes 1-16
power-user mode 1-4
purpose 1-6

Secondary action button, illustration 1-2, 2-1
Serial mouse, conflicts 9-9
SetBkColor function, specifying transparent color 3-2
SetMenu function, unsupported 4-6
SetMenultemBitmaps function, unsupported 4-6
SetSoundNoise function, unsupported 4-6
SetTargetDevice function, unsupported 4-6
SetVoiceAccent function, unsupported 4-6
SetVoiceEnvelope function, unsupported 4-6
SetVoiceNote function, unsupported 4-6
SetVoiceQueueSize function, unsupported 4-6
SetVoiceSound function, unsupported 4-6
SetVoiceThreshold function, unsupported 4-6
SetWinDebuglnfo function, unsupported 4-7
SetWindowLong function, temporary control

disabling 5- JO
Set Window Placement function, support 4-7

SHELL.DLL
support 4-8
Windows 3.1/Modular Windows differences 4-8

ShellExecute function, support 4-9
Show boxes

colors, changing 1-30
control-class name 1-28
control styles 1-20
customizing 1-29
illustration 1-19
messages 1-20, 6-13 to 6-14
owner-draw 1-20
parts 1-19
purpose 1-6

ShowWindow function, support 4-7
Sizing borders, unavailability 1-1
Slider-style gauges, illustration 1-9
Slider-style scroll bars, illustration 1-9
SM_GETDISPLA YEXTENT message

described 6-13
related messages listed 1-20

SM_SETDISPLA YEXTENT message
described 6-13 to 6-14
related messages listed 1-20

SPD_ ... , scroll-pad notification codes 1-16
SPDS_ ... , scroll-pad control styles 1-15
Spin-button controls

compound-focus 1-4
power-user mode 1-4

Spin buttons
colors, changing 1-30
control-class name 1-28
control styles 1-H
described 1-16
inputfrom 1-17
purpose 1-6

Spin-field list boxes 1-12
SS_ ... , show-box control styles 1-20
SS_ ... , static-control styles 1-17 to 1-18
StartSound function, unsupported 4-7
Static controls

colors, changing 1-30
control-class name 1-28
control styles 1-17
described 1-17
purpose 1-6
Windows 3.1/Modular Windows differences 1-17

StopSound function, unsupported 4-7
STRESS.DLL

support 4-8
Windows 3.1/Modular Windows differences 4-9

Stress Testing extension library
support 4-8
Windows 3.1/Modular Windows differences 4-9

Index 1-11

SwapRecording function, unsupported 4-7
SyncAIIVoices function, unsupported 4-7
SYSTEM.IN! file, resolution mode statement 3-1
System menu, unavailability 1-1
SystemParameterslnfo function, support 4-7

T
Tabbing mode

See also Focus, manager
constrained, unconstrained 1-32
described 1-3 to 1-4, 2-4
disabling 2-4

Tandy Video Information System
applications, developing See VIS applications
detecting hardware B-2
ejecting CD-ROMs B-3
memory cartridges See Memory cartridges

Text, resolution mode 3-2
Thumbs, illustration 1-9
TLTSR.EXE

command-line syntax 9-3
described 9-2
related tools listed 9-1
starting 9-3
TSR status 9-3

Toolbar button, illustration 1-2, 2-1
TOOLHELP.DLL, support 4-8
Toolhelp extension library, support 4-8
Tools, listed 9-1
TrackPopupMenu function, unsupported 4-7
TranslateAccelerator function, unsupported 4-7
TranslateMDISysAccel function, unsupported 4-7
Transparent areas, bitmaps 3-2
Transport layer

described 9-2 to 9-3
related tools listed 9-1
starting 9-3
tltsr command-line syntax 9-3
TSR status 9-3

Troubleshooting See Debugging
TVBUTTON

See also Check boxes; Group boxes; Push buttons; Radio
buttons

control-class name 1-28
supporting functions 4-2 to 4-3

TV CTLBITMAP data structure, described 7-2 to 7-3
TV= CTLCOLOR data structure, described 7-3
TVEDITBOX

See also Edit boxes
control-class name 1-28
supporting functions 4-2 to 4-3

TV _FACEBITMAP data structure, described 7-4 to 7-5

1-12 Index

TVGA.DRV
background mode 3-2
described 3-1
resolution 3-1 to 3-2

tvGetHighlightFrame function
described 5-21 to 5-22
related functions listed 1-29

tvGetStockObject function
described 5-22
related functions listed 1-29

tvGetUIFlags function
described 5-22 to 5-23
related functions listed 1-29

TVKEYBOARD
See also Keyboard controls
control-class name 1-28
supporting functions 4-2 to 4-3

TVLISTBOX
See also List boxes
control-class name 1-28
supporting functions 4-2 to 4-3

TVSCROLLBAR
See also Gauges; Scroll bars
control-class name 1-28
supporting functions 4-2 to 4-3

TVSCROLLPAD
See also Scroll pads
control-class name 1-28
supporting functions 4-2 to 4-3

tvSetHighlightFrame function
described 5-23 to 5-24
related functions listed 1-29

tvSetUIFlags function
described 5-24 to 5-25
disabling tagging mode 2-4
enabling tabbing 1-32
related functions listed 1-29

TVSHOWBOX
See also Show boxes
control-class name 1-28
supporting functions 4-2 to 4-3

TVSPINBUTTON
See also Spin buttons
control-class name 1-28

TVSTATIC
See also Static controls
control-class name 1-28
supporting functions 4-2 to 4-3

TVUI.DLL, loading to enable TV controls 1-6
TYUV formats

See also YUV8 video format; YUV16 video format
converting to, from 9-18 to 9-20

u
UnAllocDiskSpace function, unsupported 4-9
Unsupported functions

MS-DOS
CY set 4-9
detecting calls for 9-9

Windows 3.1 4-1 to 4-7
Up direction-control button

illustration 1-2, 2-1
PC keyboard equivalent 1-5

Uppercase, document convention xii
User interface

See also specific control
activating library 1-6
controls See Controls
functions affecting all controls 1-29, 5-21 to 5-25
library, activating 1-6
resolution mode, choosing 3-2
Windows 3.1/Modular Windows differences

generally 1-1
USER module, Windows 3.1/Modular Windows

differences 4-1 to 4-7
Utilities, listed 9-1

V
ValidateCodeSegments function, unsupported 4-7
ValidateFreeSpaces function, unsupported 4-7
Vertical scroll bars See Scroll bars
Video

aspect ratios
listed 3-4
maintaining, changing 9-14, 9-18

background mode 3-2
chroma-crawl reduction

capability, Conver24 9-13
script elements, Conver24 9-17 to 9-18

colors, default 3-3
drivers See Display drivers
flicker reduction

capability, Conver24 9-13
script elements, Conver24 9-18

formats
converting 9-18 to 9-20
support 3-4

memory, direct access 3-5
resolution 3-1 to 3-2, 3-4
scaling See Scaling
TYUV modes B-6
VIS See VIS applications
YUV modes B-6

Virtual-key codes 2-3
VIS applications

audio mixer levels B-3
A VI files, authoring guidelines B-5
chrominance, pixel encoding B-6, B-9 to B-12
detecting VIS hardware B-2
ejecting CD-ROMs B-3
exiting B-3
GENERAL MIDI MODE OFF message B-5
GENERAL MIDI MODE ON message B-4
luminance, pixel encoding B-6, B-9 to B-11
MIDI files

general MIDI mode B-4
generally B-4
Microsoft base-level mode B-5

midiOutLongMsg function B-4 to B-5
pixel encoding B-6 to B-12
tools, Tandy Corporation B-1
video files B-5
YUV video modes

BITMAPINFOHEADER data structure B-7
described B-6
TYUV8 encoding B-8 to B-10
TYUV16 encoding B-11 to B-12

VK_ ... , virtual-key codes 2-3

w
WaitSoundState function, unsupported 4-7
WDEB286.EXE

command-line syntax 9-6 to 9-7
described 9-6
entering 9-7
INT 3 breakpoints 9-7
redirecting files 9-7
related tools listed 9-1
starting 9-6
transport layer prerequisite 9-3

WIN87EM.DLL, support 4-8
Windows (screen)

child, using controls in 1-6
unavailable types 1-1

Windows 3.1/Modular Windows differences
buttons 1-6
color tables

correcting 9-10 to 9-12
described 3-3

core API, changed or unsupported functions 4-1 to 4-7
Create Window, CreateWindowEx functions 4-2 to 4-3
Data Compression extension library 4-9
debugging

debugger program 9-6
Heap Walker 9-7 to 9-8

default palette 3-3

Index 1-13

Windows 3.1/Modular Windows differences (continued)
extension libraries 4-8
functions 4-1 to 4-7
GDI module 4-1 to 4-7
identifying, compiler warnings 4-1
KERNEL module 4-1 to 4-7
list boxes 1-10
registration database 4-8
scroll bars 1-8
SHELL.DLL 4-8
static controls 1-17
Stress Testing extension library 4-9
user interface generally 1-1
USER module 4-1 to 4-7

WinExec function
launching Heap Walker 9-8
running MCMan A-5

WINMEM32.DLL, unsupported 4-8
WM_CHAR message

HC_IS_HC macro 5-15
sending 2-3

WM_COMMAND message
notification codes 1-16
processing 1-23
receiving messages 1-13
using 1-22, 1-26

WM_CREATE message, receiving 1-33
WM_GETBITMAP message

described 6-14 to 6-15
related messages listed 1-30

WM_GETCOLOR message
described 6-16 to 6-17
related messages listed 1-30

WM_HSCROLL message, sending
from scroll bars 1-10
from spin buttons 1-17

WM_KEYDOWN message
fmlsFocusMessage function 5-12
HC_IS_HC macro 5-15
HC_KEY_OFFSET macro 5-15
sending

generally 1-33
to focus manager 1-31 to 1-32, 2-3

translation by fmTranslateHCKey
function 1-31 to 1-32, 5-14

WM_KEYUP message
HC_IS_HC macro 5-15
HC_KEY_OFFSET macro 5-15
sending 2-3
translation by frnTranslateHCKey

function 1-31 to 1-32, 5-14
WM_QUERYFOCUS message

described 6-17
using 1-32

1-14 Index

WM_SETBITMAP message
described 6-18 to 6-19
related messages listed 1-30

WM_SETCOLOR message
described 6-19 to 6-20
related messages listed 1-30

WM_ VSCROLL message, sending
from scroll bars 1-10
from spin buttons 1-17

WritePrivateProfileString function, support 4-7
WriteProfileString function, support 4-7

V
YUV8 video format

converting to, from 9-18 to 9-20
support 3-4
VIS applications B-6 to B-10

YUV16 video format
converting to, from 9-18 to 9-20
support 3-4
VIS applications B-6 to B-12

Microsoft®

Microsoft Corporation
One Microsoft Way
Redmond , WA 98052-6399

1111 1111111111

	Contents
	Introduction
	How to Use This Manual
	Document Conventions
	Chapter 1 User-Interface Controls
	User-Interface Elements Not Available in Modular Windows
	Using the Hand Control as an Input Device
	User Input with a Hand Control
	Moving the Focus Using Tabbing and Roaming Modes
	Compound Focus and Power-User Mode

	Using the Mouse and Keyboard as Input Devices
	TV User-Interface Controls
	TV Button Control (TVBUTTON)
	TV Button Styles

	TV Scroll Bar and TV Gauge Control (TVSCROLLBAR)
	TV Scroll-Bar Styles
	TV Scroll-Bar Sizing
	Getting Input from TV Scroll Bars

	TV List-Box Control (TVLISTBOX)
	TV List-Box Styles
	TV List-Box Messages
	Owner-Draw TV List Boxes

	TV Scroll-Pad Control (TVSCROLLPAD)
	TV Scroll-Pad Styles
	Getting Input from a TV Scroll Pad

	TV Spin-Button Control (TVSPINBUTTON)
	TV Spin-Button Styles
	Getting Input from TV Spin Buttons

	TV Static Control (TVSTATIC)
	TV Static-Control Styles

	TV Show-Box Control (TVSHOWBOX)
	TV Show-Box Control Styles
	TV Show-Box Messages

	TV Keyboard Control (TVKEYBOARD)
	TV Keyboard Control with Prompt and Text Display
	Basic TV Keyboard Control
	TV Keyboard Controls and Input Focus

	TV Edit-Box Control (TVEDITBOX)
	Edit-Box Control Styles
	TV Edit-Box Control Messages

	Predefined Control-Class Names
	TV User-Interface Functions
	Adding Bitmaps to Controls
	Changing Control Colors
	Enabling and Disabling Controls

	The Focus Manager
	Focus-Manager Functions
	Focus-Manager Messages
	Constrained and Unconstrained Tabbing
	Using the Focus Manager with Custom Controls
	Adding Controls to the Focus Manager
	Setting Focus-Direction Vectors
	Passing WM_KEYDOWN Messages to the Focus Manager

	Chapter 2 Hand-Control Services
	The Hand Control
	Hand-Control Functions and Macros
	Getting Input from the Hand Control
	Tabbing and Roaming Modes
	Using Tabbing Mode
	Using Roaming Mode

	Chapter 3 Video Services
	Display Drivers
	Choosing Display Driver Resolution
	Using the NEWTRANSPARENT Background Mode
	About the Default Palette
	Avoiding Color Matching Anomalies

	The DisplayDib and DisplayDibEx Functions
	Supported File Formats and Resolutions
	TV-Based Player Pixel Aspect Ratios

	Directly Accessing Video Memory
	Direct-Video Access Macros

	Chapter 4 Core API and Extension Libraries Support
	Core API Support
	Extension Libraries Support
	Registration Database (SHELL.DLL)
	Data Decompressioqn (LZEXPAND.DLL)
	Stress Testing (STRESS.DLL)

	MS-DOS Function Support
	Unchanged INT 21H Functions
	Redirected INT 21H Functions

	MCI Error Codes
	Chapter 5 Function Directory
	DisplayDib
	DisplayDibEx
	EnterDVA
	fmAddWindow
	fmDeleteWindow
	fmGetLastCursorPos
	fmGetLastDirection
	fmGetWindowVectors
	fmIsFocusMessage
	fmSetCursorPos
	fmSetWindowVectors
	fmTranslateHCKey
	HC_IS_HC
	HC_KEY_OFFSET
	HC_PLAYER
	HC_VKN2VK
	hcControl
	hcGetCursorPos
	hcSetCursorPos
	LeaveDVA
	tvGetHighlightFrame
	tvGetStockObject
	tvGetUIFlags
	tvSetHighlightFrame
	tvSetUIFlags
	Chapter 6 Message Directory
	KM_CHAR
	KM_GETDEFKEY
	KM_GETPROMPT
	KM_GETPROMPTLENGTH
	KM_GETRECIPIENT
	KM_GETTEXTLIMIT
	KM_KEYDOWN
	KM_KEYUP
	KM_MOVESKB
	KM_SETDEFKEY
	KM_SETDEFTEXT
	KM_SETPROMPT
	KM_SETRECIPIENT
	KM_WAKEUP
	LB_GETPOPUPRECT
	LB_GETSELAREA
	LB_SETSELAREA
	SBM_ENABLE_ARROWS
	SBM_GETCHANNELAREA
	SBM_SETCHANNELAREA
	SM_GETDISPLAYEXTENT
	SM_SETDISPLAYEXTENT
	WM_GETBITMAP
	WM_GETCOLOR
	WM_QUERYFOCUS
	WM_SETBITMAP
	WM_SETCOLOR
	Chapter 7 Data Structures
	Data Structure Overview
	Data Structure Reference
	DIRVECTORS
	TV_CTLBITMAP
	TV_CTLCOLOR
	TV_FACEBITMAP
	Chapter 8 File Formats
	RGB DIB Formats
	BITMAPINFOHEARDER Structure for RGB555 and RGB565DIBs
	RGB555 and RGB565 Pixel Encoding

	Chapter 9 Tools
	Debugging Applications on a TV-Based Player
	Hardware Requirements for Debugging
	About the Transport Layer and File Redirection
	Starting the Transport Layer
	Using the Transport Layer TSR Tool
	Command-Line Syntax

	Using the Redirected File Server Tool
	Command-Line Syntax
	Tips for Using File Redirection

	Using the NoEcho Utility to View Debug Messages
	Command-Line Syntax

	Using Modular Windows 80286 Debugger
	Starting 80286 Debugger
	Command-Line Syntax
	Tips for Using 80286 Debugger

	Using Modular Windows Heap Walker
	Changes in Appearance
	Changes in Functionality
	Running Heap Walker on a TV-Based Player

	Using the MS-DOS Monitor
	Command-Line Syntax

	Using the Color Table Converter
	Command-Line Syntax
	About the Reference Color-Table File

	The Conver24 Utility
	About Digital Filtering
	About Conver24
	Filtering Capabilities
	Image Scaling with Conver24

	Using Conver24
	A Sample Low-Pass Filter
	Writing Filter Scripts

	Appendix A VIS Memory-Cartridge Systems
	About Memory Cartridges
	Memory-Cartridge Function Overview
	Using the Memory-Cartridge Services
	Registering Memory-Cartridge Sections
	Naming Memory-Cartridge Sections
	Handling Missing and Unformatted Cartridges
	Handling Non-Existent Sections
	Handling Full Memory Cartridges
	About the MCMan Utility
	Running MCMan

	Using Memory-Cartridge Services with MS-DOS Applications

	Installing Applications on Memory Cartridges
	Memory-Cartridge Function Directory
	mcAlloc
	mcInit
	mcRead
	mcRegister
	mcStatus
	mcWrite
	Memory-Cartridge Data-Structure Directory
	MCSTATUS
	Appendix B VIS Programming Notes
	Developing Applications for VIS
	Detecting if an Application is Running on a VIS Player
	Exiting an Application and Ejecting the CD-ROM Disc
	Setting Mixer Levels
	Authoring MIDI Files
	Setting General MIDI Mode
	Setting Microsoft Base-Level Mode

	Authoring Video Files
	YUV DIB Formats
	BITMAPINFOHEADER Structure for TYUV8 abnd TYUV16 DIBs
	TYUV8 Pixel Encoding
	Companding of Luminance and Chrominance Values
	TYUV8 Luminance Encoding
	TYUV8 Chrominance Encoding

	TYUV16 Pixel Encoding
	TYUV16 Chrominance Encoding

	Index

