
)

)

"

ACS-586 Computer System (Xenix Version)
MBASIC Interpreter Version 5.28

Release Notes Revision B
October 10, 1983

tnstallation Procedure

This version of MicroSoft BASIC (MBASIC) requires Xenix
Version 2.3 or later.

To properly install MBASIC onto your system, please do
the following:

1. Login as root
2. Enter: cd /tmp <cr>
3. Enter: umask 0 <cr>
4. Insert diskette into the floppy drive
5. Enter: tar xv <cr>
6. Enter: chmod 755 install <cr>

The next step is to run the installation shell script,
"install". This places all MBASIC files into the
appropriate directories with correct permission and
owner modes. To issue "install" please do the follow
ing:

install <s:r>
~, .

A test program has been supplied on your distribution
diskette. To run this p~ogram please de the following:

mbasic test.bas.:~~r>

For further information, please refer to the README
file supplied on your distribution diskette.

~.

Notes

Memory Specifications

The MBASIC Interpreter Version 5.28 pas a maxmimum
58,279 ~bytes of memory' available for user pro
grams. The default is 20,478 bytes.

mbasic <cr>

XENIX BASIC-86 V.5.28
[XENIX-86 REV. 1.00l
Copyright 1977~1983 (c) Microsoft
Created June 13, 1983
20478 B~ites free

PART NUMBER: 690-14628-002
(1 of 2)

)

)

- 2 -

To obtain the maximum available memory for user
programs, the "-m" option must be specified on the
command line.

mbasic -m 65000

XENIX BASIC-86 V.5.28
[XENIX-86 REV. 1.00]
Copyright 1977-1983 (c) Microsoft
Created' June 13, 1983
58279 Bytes free

Known Problems

The statement OPTION~ is not implemented at
this time.

(2 of 2)

)

)

Microsoft BASIC
User's Guide
for 8086/8088
Microprocessors
and the XENIX
Operating System

Information in this document is subject to change without
notice and does not represent a commitment on the part of
Microsoft Corporation. The software described in this
document is furnished under a license agreement or
non-disclosure agreement. The software may be used or
copied only in accordance with the terms of the agreement.
It is against the law to copy Microsoft BASIC on magnetic
tape, disk, or any other medium for any purpose other than
the purchaser's personal use.

(C) Microsoft Corporation, 1981, 1983

LIMITED WARRANTY

Microsoft Corporation shall have no liability or
responsibility to purchaser or any other person or
entity with respect to any liability, loss or
damage caused or alleged to be caused directly or
indirectly by this product, including but not
limited to any interruption of service, loss of
business or anticipatory profits or consequential
damages resulting from the use or operation of
this product. This product will be exchanged
within twelve months from date of purchase if
defective in manufacture, labeling or packaging,
but except for such replacement the sale or
subsequent use of this program is without warranty
or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY
BY MicrosOft- Corporation. ANY AND ALL WARRANTIES
MERCHANTABILITY AND/OR FITNESS FOR ~ PARTICULAR PURPOSE
EXPRESSLY EXCLUDED.

Please send any comments about this documentation to:

Microsoft Corporation
Microsoft Building
10700 Northup Way
Bellevue, Washington 98004

MADE
FOR
ARE

MICROSOFT
NON·DISCLOSURE AGREEMENT AND REGISTRATION FORM

The party below agrees that it is receiving a copy of (COMPANY's trade name for licensed software) for use on a single
computer only, as designated on this non·disclosure agreement. The party agrees that all copies will be strictly safeguard
ed against disclosure to or use by persons not authorized by (COMPANy) to use (COMPANY's trade name for licensed
software), and that the location of all copies will be reported to (COMPANY) at (COMPANY's) request. The party agrees
that copying or unauthorized disclosure will cause great damage to (COMPANy) and this damage is far greater than the
value of the copies involved. The party agrees that this agreement shall inure to the benefit of any third party holding any
right, title or interest in (COMPANY's trade name for iicensed software) or any software from which it was derived.

Purchased From:

Company

Address

City, Slate, Zip

Phone

For Use On:

Model

Serial I

Software Product

Purchased By: (Dealer)

Name

Company

Address

City, State. lip

Phone

Date

Purchased By: (Distributor)

Name

Company

Address

City. State, Zip

Phone

Date

Purchased By: (End·User)

Name

Company

Address

City, State, Zip

Phone

Date

)
NOTE: This Non·Disclosure Agreement MUST be signed by Party purchasing Product directly from (COMPANY). No Pro·
duct will be shipped without signed agreement. It is the responsibility of Distributor andlor Dealer to transfer ownership to
appropriate party.

Microsoft is
Corporation.

a registered trademark of Microsoft
MS is a trademark of Microsoft Corporation.

)

XENIX is a trademark of Microsoft Corporation.

Document No. 8l08N-528-0l
Part No.
Catalog No.

)

PACKAGE CONTENTS

Your Microsoft BASIC package contains:

One disk containing several files. One of these
files is named "install.doc." The install.doc file
describes the contents and use of each of the other
files on the disk.

One binder containing the following documentation:

Microsoft BASIC User's Guide

The User's Guide contains all the information about
Microsoft BASIC that is specific to your particular
implementation or operating system. This includes
a description of the features, statements, and
functions affected by your implementation of
Microsoft BASIC, information about disk file
handling, and instructions on the use of assembly
language subroutines.

Microsoft BASIC Reference Manual

The Reference Manual contains descriptions of all
Microsoft BASIC features, statements, and
functions. With the exceptions noted in the User's
Guide, this information applies to all
implementations of Microsoft BASIC.

Microsoft BASIC Quick Reference Guide

)

The Quick Reference Guide
features and command syntax.

outlines MS-BASIC

CONTENTS

Introduction

Major Features
System Requirements
How to Use This Manual
Syntax Notation
Learning More About BASIC

Chapter 1 Microsoft BASIC with the XENIX
Operating System

1.1 How to Start-Up MS-BASIC
1.2 How to Exit MS-BASIC
1.3 Creating and Editing MS-BASIC Files
1.4 Language Differences
1.5 Device-Independent I/O

)
'.

)

Chapter 2

2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30

Language Differences for MS-BASIC
with XENIX

BLOAD Statement
BSAVE Statement
CALL Statement
CLEAR Statement
CLOAD/CSAVE Statements
DATE$ Function
DATE$ Statement
DEF USR Statement
EOF Function
FIELD Statement
FILES Command
INP Function
LIST Statement
LLIST Statement
LaC Function
LOCK Statement
LOF Function
LPOS Function
LPRINT Statement
OPEN Statement
OUT Statement
PEEK Function
POKE Statement
pas Function
SHELL Function
SHELL Statement
SYSTEM Command
TIME$ Function
TIME$ Statement
UNLOCK Statement

2.31 USR Function
2.32 VARPTR Function
2.33 WIDTH Statement

Chapter 3

3.1
3.2
3.3
3.4

Chapter 4

4.1
4.2
4.3

Converting Programs to Microsoft
BASIC

String Dimensions
Multiple Assignments
Multiple Statements
MAT Functions

Microsoft BASIC Disk I/O

Program File Commands
Protected Files
Disk Data Files - Sequential and
Random I/O

4.3.1
4.3.2

Sequential Files
Random Files

Chapter 5 MS-BASIC Assembly Language
Subroutines

5.1 Loading Assembly Language
Subroutines

5.2 Calling Assembly Language
Subroutines

Index

5.2.1
5.2.2

CALL Statement
CALLS Statement

)

)

INTRODUCTION

Microsoft BASIC eMS-BASIC) is the most extensive BASIC
language available for microprocessors. It meets the
requirements for the ANSI subset standard for BASIC, and
supports many unique features rarely found in other BASICs.
In addition, Microsoft BASIC eMS-BASIC) has sophisticated
string handling and structured programming features that are
especially suited for applications development. And, the
Microsoft BASIC language is compatible with the Microsoft
BASIC Compiler. Microsoft BASIC gives users what they want
from a BASIC--ease of use plus the features that make a
micro perform like a minicomputer or large mainframe.

In 1975, Microsoft wrote the first BASIC interpreter for the
microcomputer. Today Microsoft BASIC, with over 1.5 million
installations in over 20 operating environments, is
recognized as the industry standard. It's the BASI~you'll

find on all the largest-selling microcomputers. Many users,
manufacturers, and software houses have written application
programs in Microsoft BASIC.

)
.>

Page 4

MAJOR FEATURES

1. Four variable types: Integer (-32768 through
+32767), String (up to 255 characters), Single
Precision Floating Point (7 digits) , Double
Precision Floating Point (16 digits)

2. Extensive programming development features,
including trace facilities (TRON/TROFF) for easier
debugging; automatic line number generation and
renumbering, including referenced line numbers
(AUTO and RENUM); and program editing facilities
(EDIT command and subcommands).

3. Error trapping using the ON ERROR GOTO statement

4. Device-independent I/O so that the syntax used to
access disk files can also be used to access other
devices

5. Lock facility (LOCK/UNLOCK), which allows you to
restrict access to portions of a file or an entire
file)

'.
6. PEEK and POKE statements to

locations associated with
data areas.

read and write memory
the user's program and

7. Arrays with multiple dimensions

8. Boolean operators OR, AND, NOT, XOR, EQV, IMP

9. Formatted output using the complete PRINT
facility, including asterisk fill, floating
sign, scientific notation, trailing sign,
insertion

USING
dollar

comma

10. Assembly language subroutine calls are supported.

11. IF/THEN/ELSE and nested IF/THEN/ELSE constructs

)

12. MS-BASIC supports variable length
sequential disk files with a complete
manipulation statements: OPEN, CLOSE,
KILL, NAME, MERGE

random
set of

GET,

and
file
PUT,

NOTE

Features vary from one
implementation of Microsoft
BASIC to the next. See
Chapters land 2 of this
manual for an exact
description of the features in
your implementation of
Microsoft BASIC.

Page 5

)

)

)

Page 6

SYSTEM REQUIREMENTS

Your implementation of Microsoft BASIC requires:

48K bytes of user memory minimum:
32K for Microsoft BASIC
16K for a Data Segment (BASIC will make use of
up to 64K for a Data Segment, if available)

1 disk drive

Note: Systems running on the XENIX operating system must
have a total of at least 196K.

If your system does not meet these m1n1mum requirements, ask
your computer dealer how to expand your system.

Page 7

HOW TO USE THIS MANUAL

The "Introduction" to this User's Guide tells you about the
major features of Microsoft BASIC, lists the system
requirements, describes the syntax notation used in your
MS-BASIC documentation, and provides references for learning
BASIC programming.

Chapter I describes Microsoft BASIC as it is used with the
XENIX operating system. This chapter tells you how to
start-up and exit MS-BASIC, explains some conventions about
filenaming and about writing programs for XENIX, and
describes device-independent input/output under XENIX.

Chapter 2 describes all the statements and functions that
are supported by this implementation of MS-BASIC but are not
part of standard MS-BASIC. This includes statements and
functions that are used only with the XENIX operating
system. and statements and functions that are tlsed
differently in this implementation than in standard
MS-BASIC.

Chapter 3 lists the changes that are necessary when you
convert programs to Microsoft BASIC.

Chapter 4 explains disk file handling procedures.

Chapter
provides
language

5. "Assembly
information

subroutines.

Language Subroutines and Files."
about loading and calling assembly

)

Page 8

SYNTAX NOTATION

The following notation is used throughout this manual in
descriptions of command and statement syntax:

)

[1

< >

{)

Square brackets indicate that the enclosed entry is
optional.

Angle brackets indicate user entered data. When
the angle brackets enclose lower case text, the
user must type in an entry defined by the text;
for example, <filename>. When the angle brackets
enclose upper case text, the user must press the
key named by the text; for example, <RETURN>.

Braces indicate that the user has a choice between
two or more entries. At least one of the entries
enclosed in braces must be chosen unless the
entries are also enclosed in square brackets.

A vertical bar means the same thing as braces;
i.e., it indicates a choice between two or more
entries. At least one of the entries separated by
a bar must be chosen unless the entries are also
enclosed in square brackets.

Ellipses indicate that an entry may be repeated as
many times as needed or desired.

)

CAPS Capital letters indicate portions of statements or
commands that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks,
and equal signs, must be entered exactly as shown.

Page 9

LEARNING MORE ABOUT BASIC

The manuals in this package provide complete reference
information for your implementation of Microsoft BASIC.
They do not, however, contain tutorial information on how to
write programs in BASIC. If you are new to BASIC or need
help in learning to program, we suggest you read one of the
following books:

Are You Computer Literate? by Billings and Moursund,
(Dilithium Press).

BASIC, by Robert L. Albrecht, LeRoy Finkel, Jerry Brown,
(John Wiley and Sons, 1973).

Basic BASIC, by James Coan (Hayden Book Co.).

BASIC and the Personal Computer, by Thomas A. Dwyer and
Margot Critchfield (Addison Wesley Publishing Co.,
1978) •

BASIC From the Ground ~, by David E. Simon
(Hayden Book Co., 1978).

)

CHAPTER 1

MICROSOFT BASIC WITH THE XENIX OPERATING SYSTEM

This chapter presents general information you will need when
you use MS-BASIC with the XENIX operating system. Included
are the command lines for start-up and exit from MS-BASIC,
information about writing programs for this implementation,
and description of the input/output devices that are
typically supported.

See Chapter 2 for a list of the language differences between
this implementation and the standard MS-BASIC as described
in the Microsoft BASIC Reference Manual.

1.1 HOW TO START-UP MS-BASIC

To run MS-BASIC, bring up XENIX and enter the following
command:

mbasic [-~ NN] [-f NN] [-~ NN] [-! file] [-e] [file]

-s NN sets the maximum logical record size. The
default is 128. NN must be an integer.

-f NN sets the maximum
allowed. The default
integer.

number
is 3.

of
NN

data
must

files
be an

-m NN sets BASIC's data space to this value. The
default is 63470. NN must be an integer.

-1 file causes assembly language programs to be
loaded with MS-BASIC. Note that this option is
the letter Bel," not the number "one.")
-e suppresses echo of
option may be useful
output are redirected.

MS-BASIC commands. This
when standard input and

MICROSOFT BASIC WITH THE XENIX OPERATING SYSTEM Page 1-2

file is the name of the MS-BASIC program to be
run.

Once the start-up command line has been entered, the
following sign-on banner will be displayed:

<product identification>
version x.xx Copyright Microsoft Corporation 1983
xxxxxx Bytes free

If the <file> is specified in the command line, the sign-on
banner will not be shown.

1.2 HOW TO EXIT MS-BASIC

-To exit MS-BASIC and return to the XENIX operating system
level, enter the command

SYSTEM

which closes all files and then returns control to XENIX.

1.3 CREATING AND EDITING MS-BASIC FILES

All files containing programs to run on MS-BASIC must be
created using the MS-BASIC SAVE statement or must contain
carriage returns and linefeeds (newlines) placed manually at
the end of each logical line. This can be done with ed or
tr (see XENIX documentation).

Filenames may be as long as the largest legal string
variable. An example of a valid filename is:

!usr!inventory!june1980!generalstock

However, the operating system may impose a limit to filename
length.

The line terminator for ASCII files under the XENIX
operating system is the linefeed (newline) character. All
carriage returns are mapped to the linefeed character.
Either the linefeed or a carriage return will terminate an
MS-BASIC line.

)

MICROSOFT BASIC WITH THE XENIX OPERATING SYSTEM Page 1-3

Continuing a single logical line across several physical
lines is done by preceding the line terminator with the
backslash (\> character. For example:

IF (I<O> THEN \
PRINT "TRUE" \

ELSE \
PRINT "FALSE"

The backslashes, typed before the carriage returns, cause
these lines to be interpreted as a single line.

The backslash placed in any other position will re~ain its
normal meaning as an integer divide.

The internal representation for line continuation used in
binary files remains the same for all versions of MS-BASIC.

1.4 LANGUAGE DIFFERENCES

) MS-BASIC for XENIX supports the following
functions which are not a part of standard
therefore not listed in the Microsoft
Manual:

BLOAD
BSAVE
DATE$
FILES
LOCK
LOF
SHELL
SYSTE14
TIME$
UNLOCK

statements and
MS-BASIC and are
BASIC Reference

)

In addition, the following statements
in this implementation from the
Microsoft BASIC Reference Manual:

CALL
CLEAR
CLOAD!CSAVE
DEF USR
EOF
FIELD
INP
LIST
LLIST
LOC

and functions
descriptions

differ
in the

MICROSOFT BASIC WITH THE XENIX OPERATING SYSTEM

LPOS
LPRINT
OPEN
OUT
PEEK
POKE
POS
USR
VARPTR
WIDTH

Page 1-4

All these statements and functions are
are implemented for MS-BASIC for XENIX,
User's Guide.

1.5 DEVICE-INDEPENDENT I/O

described, as they
in Chapter 2 of this

MS-BASIC for XENIX supports device-independent input/output.
This means that the syntax used to access disk files may
also be used to access other devices. The devices that are
supported depend upon the individual implementation of
MS-BASIC. Typically, the devices that are supported are:

)

SCRN:

KYBD:

Files may be opened to this device for output. All
data written to a file which is opened to SCRN: is
directed to the standard output device (i.e., the
screen).

Files may be opened to this device for input. All
data read from a file which is opened to KYBD:
comes from the standard input device (i.e., the
keyboard) •

LPT1: Files may be opened to this device for output.
data written to a file which is opened to LPT1:
directed to the line printer.

All
is

PIPE: Opening a file
and executes
example:

to device PIPE:
the specified

opens a pipe, forks,
child process. For

LIST "pipe:lpr"

would generate a listing to the lpr spooler.

OPEN "pipe:dir" FOR INPUT AS 11

MICROSOFT BASIC WITH THE XENIX OPERATING SYSTEM Page 1-5

)

would allow the directory to be read via file number
1.

LIST 50,"PIPE:write davidt"

uses the XENIX write program to list line 50 on
davidt's terminal.

For files opened to PIPE:, the LOC function returns
1 if any characters are ready to be read from the
pipe. Otherwise, it returns O.

For files opened to PIPE:, the LOF function always
returns O.

For files opened to PIPE:, the EOF function returns
-1 (true) if no processes have the pipe opened for
output and no data is available to be read from the
pipe. Otherwise, it returns 0 (false).

)
'. '

)

CHAPTER 2

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

Some of the statements and functions listed below do not
appear in the Microsoft BASIC Reference Manual, because they
are not part of all implementations of MS-BASIC. Others are
listed in the Reference Manual but are used differently
under this implementation. In all cases except the FIELD
statement, where only a minor difference exists, a complete
description is given here so that you do not have to go to
the Reference Manual for additional information.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.1 BLOAD STATEMENT

Page 2-2

Because the BLOAD statement is not included in all versions
of MS-BASIC, it is not listed in the Reference Manual.

The BLOAD statement allows a program or data that has been
saved as a memory image file to be loaded in memory. A
memory image file is a byte-for-byte copy of what was
originally in memory. (See BSAVE for information about
saving memory image files.)

A CLEAR statement must be performed before a BLOAD statement
can be executed. Then the memory image file can be loaded
into the portion of the Data Segment between the areas
specified in <expressionl> and <expression3> of the CLEAR
statement.

BLOAD is often used for, but is
assembly language programs.
compiled Microsoft (r) Pascal
routines, for example.

not
It
or

restricted
may also be
Microsoft

to,
used
(r)

loading
to load
FORTRAN

Format: BLOAD <filename> [,<offset>]

where <filename> is a string expression
containing the device designation and filename.
(The device designation is optional) .

<offset> is a numeric expression returning an
unsigned integer in the range 0 to 65535.

Purpose

Remarks

To load the specified memory image file into
memory.

BLOAD observes the following rules:

1. If the device is omitted, the current drive
is assumed.

2. If the offset is omitted, the offset
contained in the file (i.e., the address
specified by the BSAVE statement when the
file was created) is used. Therefore, the
file is loaded into the same location from
which it was saved.

Examples 10 'Load subroutine at FOOO
30 BLOAD"PROG1",&HFOOO 'Load PROGl

This example loads PROGl at address FOOO.

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.2 BSAVE STATEMENT

Page 2-3

Because the
versions of
Manual.

BSAVE statement
MS-BASIC, it is

is not included with all
not listed in the Reference

The BSAVE statement allows data or programs
memory image files on disk. A memory
byte-for-byte copy of what is in memory.

to be saved as
image file is a

A CLEAR statement
executed. Then
portion of the
<expression3> as

must be performed before a BSAVE can
the memory image file can be saved in
Data Segment between <expressionl>

specified in the CLEAR statement.

be
the
and

)

Format:

Purpose:

BSAVE <filename>,<offset>,<length>

where <filename> is a string expression
containing the device designation and filename.
(The device designation is optional).

<offset> is a numeric expression returning an
unsigned integer in the range a. to 65535.

<length> is a numeric expression returning an
unsigned integer in the range 1 to 65535. This
is the length in bytes of the memory image file
to be saved.

To save the contents of the specified area of
memory as a disk file.

Remarks:

Example:

The <filename>, <offset>, and <length>
required in the syntax.

10 'Save PROGI
30 BSAVE"PROGl",&HFOOO,256

are

)

This example saves 256 bytes starting at FOOO in
the file PROGI.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.3 CALL STATEMENT

Page 2-4

The CALL statement is used to interface machine language
programs with MS-BASIC. This explanation supplements the
one in the Reference Manual.

Format:

Purpose:

Remarks:

Example:

CALL <variable name># [«argument list»]

<variable name> is the name of the subroutine
being called. On the first call, MS-BASIC
obtains the address of the routine from the
XENIX namelist of the executing version of
MS-BASIC. MS-BASIC will place the segment and
offset of the routine in the double precision
variable <variable name>. On subsequent calls,
the address will be obtained from this double
precision variable.

Note that the double precision variable must-not
exist before the first call to the routine.

<variable name> may not be an array variable
name.

<argument list> contains the variables or
constants, separated by commas, that are to be
passed to the routine.

To call an assembly language subroutine.

The CALL statement is the recommended way of
calling 8086 machine language programs with
Microsoft BASIC. See Chapter 5 for a complete
description of how assembly language routines
are called.

When a CALL statement is executed, control is
transferred to the user's routine. Values are
returned to MS-BASIC by including the variable
name which will receive the result in the
<argument list>.

100 CALL FOOi(A,B$,C)

Line 100 calls routine Faa. Faa was linked with
MS-BASIC using the -1 option. MS-BASIC will
find the address of routine Faa by examining the
appropriate namelist when Faa is first called.
This address will then be stored in the double
precision variable FOOi. On subsequent calls to
Faa, MS-BASIC will retrieve the address of Faa
from double precision variable FOOi.

)

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.4 CLEAR STATEMENT

Page 2-5

For MS-BASIC with XENIX, a third expression has been added
to the syntax and the meanings of expressions 1 and 2 have
been changed:

)

Format:

Examples:

CLEAR [,[<expressionl>] [,<expression2>]]
[,<expression3>]

<expressionl> indicates how many bytes are to be
allocated for MS-BASIC variables, user program
variables, user variables, and BLOAD/BSAVE
space. This number may be as large as 64K. The
default is the current allocated space.

<exEression2> is the number of bytes to reserve
for stack space. This number may be as large as
1024. The default is the currently allocated
space. Upon entry into MS-BASIC, 1024 bytes are
allocated.

<expression3> is the number of bytes to be used
by MS-BASIC for program and variable space.
<expression3> must be less than or equal to
<expressionl>. The default is <expressionl>.
Users may access the space between the data
segment addresses given in <expressionl> and
<expression2> by using PEEK, POKE, BLOAD, or
BSAVE.

CLEAR
CLEAR ,32768
CLEAR ,,516
CLEAR ,32768,1024,32768

The first example accepts defaults for all three
parameters. The second example sets the number
of bytes to be allocated at 32768 and accepts
the defaults for the other two parameters. The
third example accepts the defaults for
expressions 1 and 3, setting expression 2 at 516
bytes. The final example sets all three
parameters.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.5 CLOAD/CSAVE STATEMENTS

Page 2-6

The CLOAD and CSAVE statements are not included in this
implementation of MS-BASIC.

.'

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.6 DATE$ FUNCTION

Page 2-7

The DATE$ function retrieves the current date.
function is not included in the Reference Manual.

This

Format:

Purpose

DATE$

To retrieve the current date.
use the DATE$ statement.)

(To set the date,

)

)

Remarks:

Example:

The DATE$ function returns a ten-character
string in the form mm-dd-yyyy, where mID is the
month (01 through 12), dd is the day (01 through
31), and yyyy is the year (1980 through 2099).

10 PRINT DATE$

The DATE$ function prints the date, calculated
from the date set with the DATE$ statement.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.7 DATE$ STATEMENT

The DATE$ statement sets the current date.
is not included in the Reference Manual.

Page 2-8

This statem~nt

Format:

Purpose:

Example:

DATE$=<string expression>

where <string expression> returns a string in
one of the following forms:

mm-dd-yy
mm-dd-yyyy
mm/dd/yy
mm/dd/yyyy

To set the date for the DATE$ function.

·10 DATE$="01-01-1981"

The current date is set at January 1, 1981.

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.8 DEF USR STATEMENT

Page 2-9

)

)

The DEF USR statement is
implementation of MS-BASIC.

not included with this

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.9 EOF FUNCTION

Page 2-10

This description of the EOF function contains more detail
than the one in the Reference Manual; otherwise, no changes
have been made for this implementation.

Format:

Purpose:

Remarks:

Example:

EOF«file number»

Returns -1 (true if the end of a sequential file
has been reached.

For random access files, EOF returns -1 (true)
if the last GET attempted to read beyond the end
of file.

Use EOF to test for end of file while inputting,
to avoid "Input past end" errors.

This function is valid for any file which' is
opened for input. A file opened to KYBD: is at
its end when <Control-D> is pressed.

130 IF EOF(2) THEN 50

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.10 FIELD STATEMENT

Page 2-11

)

The FIELD statement is described in detail in the Microsoft
BASIC Reference Manual. The only difference for this
implementation is that field definitions are ignored after a
file is closed.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.11 FILES COMMAND

Page 2-12

The FILES
specified
Reference

command
disk.

Manual.

lists the names
This command is

of
not

the files on a
included in the

Format: FILES [<filename>]

where <filename> includes a
optional device designation.

filename and

Purpose: To print the names of files residing on the
specified disk.

Remarks: If <filename> is omitted, all the files
currently selected directory will be
<filename> is a string formula which may
wildcard characters as defined by XENIX.

in the
listed.
contain

Note: The FILES statement is
statement:

SHELL "ls-l

identical to the

Examples:

FILES statement parameters are concatenated to
this SHELL command. For example:

FILES "*.BAS

is identical to SHELL "ls-l *.BAS

FILES
FILES "*.BAS"
FILES "B:*.*"
FILES "B:" (equivalent to "B:*.*")
FILES "TEST?BAS"

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.12 INP FUNCTION

Page 2-13

)

)

The INP function is not supported by this implementation of
MS-BASIC.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.13 LIST STATEMENT

Page 2-14

A <filename> parameter has been added to the LIST statement
for this implementation of MS-BASIC.

Format:

Remarks:

LIST [[<line number> [-[<line number>]]]
[,<filename>]]

<line number> is in the range 0 to 65529.

<filename> is the name of the file where the
listing will be placed.

If the optional filename specification is
omitted, the specified lines are listed to the
screen. If the line range is omitted, the
entire program is listed.

When the dash (-) is used in the line range,
three options are available:

1. If only the first number is given, that line
and all higher numbered lines are listed.)

2. If only the
lines from
through the

second number is given, all
the beginning of the program

given line are listed.

Examples:

3. If both numbers are given, the inclusive
range is listed.

LIST ,"LPT1:·

lists the program to the line printer.

LIST 10-20

lists lines 10 through 20 to the screen.

LIST 10- ,"SCRN:·

lists lines 10 through last to the screen.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.14 LLIST STATEMENT

Page 2-15

With most implementations of MS-BASIC, LLIST sends output to
the lineprinter. Under XENIX,
lineprinter's spooler, and the
printed until an END, SYSTEM,
parameters is executed.

LLIST sends output to the
output is not actually
or CLEAR statement with

Format:

Purpose:

LLIST [<line number> [-[<line number>]]]

To send all or part of the program currently in
memory to the lineprinter's spooler.

Remarks: Output will not be printed until an END,
or CLEAR with parameters is executed.
with no parameters does not release
output.)

SYSTEM,
(CLEAR

spooled

)

)

Examples:

If two files are opened to LPT1:, their output
is not intermixed, but is spooled separately.
Their output is not intermixed with LPRINT
output.

LLIST assumes a l32-character printer.

The options for LLIST are the same as for LIST.

See LIST.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.15 LOC FUNCTION

Page 2-16

With MS-BASIC for XENIX, the LOC function performs
differently than described in the Reference Manual.

Format:

Purpose:

Example:

LOC«file number»

where <file number> is the number under which
the file was opened.

With random access files, LOC returns the number
of the last record read or written to the file.

With sequential files, LOC returns the number of
records read from or written to the file since
it was opened.

For files opened to KYBD:, LOC returns 1 if any
characters are ready to be read from -the
standard input device. Otherwise, it returns o.

200 IF LOC(l»50 THEN STOP

If the file is sequential, this
program execution if more than
been written to or read from the
was opened.

statement ends
50 sectors have
file since it

If the file is random access, this statement
ends program execution if the current record
number is higher than 50.

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.16 LOCK STATEMENT

Page 2-17

The LOCK statement is not included in some versions of
MS-BASIC, and therefore is not listed in the Microsoft BASIC
Reference Manual.

Format:

Purpose:

Remarks:

LOCK [jlJn [,READ] [,WAIT] [, [<record number>]
[TO <record number>]]

See "Remarks" for discussion of parameters.

To restrict access to specified portions of a
file.

LOCK will restrict access by other programs to
file number n in the <record number> range or
for the entire file. If file number n has been
opened for sequential input or output, the
entire file is locked and any range is ignored.

)

If the file is opened in random mode, the
specifies the records to be locked.
starting record number is not specified,
number I is used. A terminating record
must be specified when a range is used.

range
If a

record
number

Locks can be partial or total. A total lock
will prevent any access by another program to
the locked portion of the file. A partial lock
will allow reading by another program but will
prevent any modification of the locked region of
the file. A partial lock is applied to the file
by specifying the READ option. A total lock is
the default; it is specified by not specifying
READ.

If another program has locked a portion of the
requested file, two options are available:

)

1. The first option is to return control to the
program immediately with an accompanying
error message. All the standard MS-BASIC
error handling facilities can be used to
trap and examine this error. If error
trapping is not active, the error message
will be "Permission denied."

This is the default option. It is chosen if
the WAIT option is not specified in the LOCK
statement.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX Page 2-18

2. The second option is to wait until the
program that issued the original lock
unlocks the requested region of the file.
The presence of the WAIT option in the LOCK
statement will force this action. It is
possible to interrupt this wait by pressing
<Control-C> and then resume waiting by
typing CaNT.

It is possible to get into a deadlock
situation when waiting for a lock request.
For example, assume that a program has
opened file A and has locked and executed a
LOCK request with the WAIT option on file B.
A deadlock will occur if another program has
already locked file B and has executed a
LOCK statement with the WAIT option against
file A.

XENIX will attempt
situations. If
"Deadlock" error
MS-BASIC.

to detect
one is

message is

any deadlock
detected, a

returned by

Multiple LOCK statements have a cumulative
effect. Locking records 1 through 3 and
then locking 10 through 100 will leave 1
through 3 and 10 through 100 locked.

Locking a record that is already locked will
have no effect; the record will remain
locked, and no error will be generated.

If a record is locked
different locking
specified in the last
apply.

more than once with
options, the options

LOCK statement will

Note: We recommend that you do not open a single
file on multiple channels simultaneously.
If it becomes necessary to open a single
file more than once, be aware that: Locks
against the same file using different
channels will act the same as multiple LOCK
statements issued against a single file.
For example:

10 OPEN "r",l,"foobar"
20 OPEN "r",2,"foobar"
30 LOCK U, 1-3
40 LOCK *2,READ,2-5

will leave record 1 through 5 of foobar
locked. In addition, records 2 through 5

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

will be locked in READ mode.

Page 2-19

)

)

Example:

Locking is always done on a per file basis,
not on a channel number basis. Therefore,
the first channel that is closed will
release all locks against the file,
including locks made using another channel
number. If file t2 is closed in the above
example, all locks are released, including
records 1 through 3 that were locked for
file tl.

Records are locked based upon their
positions and sizes in the file. The unit
of measure is the byte. If a file is opened
more than once with different record sizes
and if locks are then applied due to
cumulative locking, portions of a record can
inadvertently become locked.

10 LOCK t2,WAIT,3-50

Lines 3 through 50 of file t2 are locked;
if another program has already locked this
area of the file, MS-BASIC will wait until
the original lock has been removed.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.17 LOF FUNCTION

Page 2-20

Since this function is not included with all versions of
MS-BASIC, it is not listed in the Reference Manual.

Format:

Purpose:

LOF{<file number»

<file number> is the number of the file to be
searched.

To return the number of bytes in the file.

Remarks:

Example:

LOF is valid for any file.
LPT1:, KYBD:, SCRN:, or PIPE:

20 PRINT LOF (3)

Files opened to
always return O.

Returns the number of bytes in file number 3.

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.18 LPOS FUNCTION

Page 2-21

The action performed by this function differs from that
described in the Microsoft BASIC Reference Manual.

Format:

Purpose:

Example:

LPOS(X)

x is a dummy argument.

To return the column position for device LPTl:.

100 IF LPOS(X»60 THEN PRINT CHR$(13)

)

)

If the column position is
character represented
printed.

higher than
by CHR$ (13)

60,
will

the
be

LANGUAGE nlFFERENCES FOR MS-BASIC WITH XENIX

2.19 LPRINT STATEMENT

Page 2-22

Under MS-BASIC for XENIX, output sent
the LPRINT statement is spooled,
immediately.

to the
rather

printer with
than printed

Format: LPRINT [<list of expressions>]

<list of expressions> is a
string expressions that
separated by semicolons.

string of numeric or
are to be printed,

Purpose:

Remarks:

To print data at the line printer.

LPRINT is the same as PRINT except that the
output goes to the line printer.

Example:

Output will not actually be printed
END, SYSTEM, or CLEAR statement with
is executed (CLEAR with no parameters
release spooled output).

30 PRINT X "SQUARED IS" X~2

where X=9, prints "9"SQUARED IS 81".

until an
parameters

does not

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.20 OPEN STATEMENT

Page 2-23

Although the OPEN statement described in the Reference
Manual remains valid, a new format makes the statement more
readable and more comprehensive. In the new format, the
<filename> is moved forward, the LEN keyword is added, and
the APPEND option is added.

Format: OPEN <filename> [FOR <mode>] AS
[t]<file number> [LEN=<record length>]

<filename> and <file number> identify the file
that is to be opened. The <file number> must be
in the range 1 to 15. This number is associated
with the file as long as it is open and refers
other disk I/O statements to the file.

<mode> can be one of the following:

)

INPUT

OUTPUT

APPEND

Specifies sequential input mode.

Specifies sequential output mode.

Specifies sequential output mode and
sets the file pointer at the end of
the file and the record number as the
last record of the file. A PRINT# or
WRITE# statement will then extend the
file. -

The <mode> can be abbreviated by the- first
letter: I, 0, or A.

If <mode> is omitted, the default random access
mode is assumed.

<record length> sets
random access files.
with sequential files.

the
Do

record length for
not use this option

Purpose:

The record length cannot exceed the maximum set
with IS: at start-up (the default for IS: is
128 bytes). If the <record length> is omitted,
the default length of 128 bytes is assumed.

To allow I/O to a disk file.

)

Remarks: A disk file must be opened before any disk
operation can be performed on it.
allocates a buffer for I/O to the file
determines the mode of access that will be
wi th the buffer.

I/O
OPEN

and
used

L~~GUAGE DIFFERENCES FOR MS-BASIC WITH XENIX Page 2-24

Example:

A file can be opened for sequential input or
random access on more than one file number at a
time. A file may be opened for output, however,
on only one file number at a time.

10 OPEN "MAIL.DAT" FOR APPEND AS il

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.21 OUT STATEMENT

Page 2-25

)

)

The OUT statement is not supported by this implementation of
MS-BASIC.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.22 PEEK FUNCTION

Page 2-26

The following explanation of the PEEK function is more
detailed than the one in the Reference Manual.

Format:

Purpose:

Remarks:

Example:

PEEK(I)

I specifies the memory location to be read. For
the interpretation of a negative value of I, see
Section 2.32, "VARPTR."

You can PEEK into the portion of the Data
Segment from the beginning of the user's program
to the last byte managed by MS-BASIC. You are
not allowed to PEEK into the area reserved for
the Code Segment or MS-BASIC control variables.
An attempt to do so will result in a "Permission
denied" error.

To return the byte (decimal integer in the range
o to 255) read from memory location I.

PEEK is the complementary function of the POKE
statement.

10 A = PEEK (&H5AOO)

Returns the byte stored in location &H5AOO and
assigns it to variable A.

.)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.23 POKE STATEMENT

Page 2-27

This description of the POKE statement is more detailed than
the one in the Reference Manual.

)

)

Format:

Purpose:

Remarks:

Example:

POKE I,J

I is the memory location where the byte is to be
placed. For information about the
interpretation of negatives values, see VARPTR.

J is the byte that is to be stored. It must be
a decimal integer in the range 0 to 255.

To store byte J in memory location I.

MS-BASIC generates a "Permission denied" error
if the memory location is outside the
user-writable data space (which includes the
user variables, strings, BLOAD/BSAVE area, and
File Data Blocks). I.e., you are not allowed to
POKE into the area reserved for the code segment
or MS-BASIC control variables.

10 POKE &H5AOO,&HFF

Data byte &HFF is placed in memory location
&H5AOO.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.24 pas FUNCTION

Page 2-28

The explanation of pas in the Reference Manual is valid
except that in this implementation the device is always the
screen.

Format: pas (I)

I is a dummy argument.

Purpose: To return the current
cursor on the screen.
1.

column position of the
The leftmost position is

Example: 20 IF POS(I»60 THEN PRINT CHR$(13)

If the cursor is at a column number higher than
60, the character represented by CHR$(13) will
be printed.

)

,)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.25 SHELL FUNCTION

Page 2-29

The SHELL
MS-BASIC
Manual.

function is not
and therefore is

included in
not listed

all
in

versions of
the Reference

Format:

Purpose:

SHELL«string expression»

<string expression> is a command that is to be
executed by sh.

To start an asynchronous (child) process and
return the process id.

Remarks: The child process executes sh, which
executes the command passed in
expression>. MS-BASIC resumes
immediately, without waiting for
process to terminate.

in turn
<string

execution
the child

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.26 SHELL STATEMENT

Page 2-30

The SHELL
MS-BASIC
Manual.

Format:

statement is not included with
and therefore is not listed

SHELL[<string expression»

all
in

versions of
the Reference

Purpose:

Remarks:

<string expression> is an instruction to be
executed by sh.

To start a child process which executes sh.

MS-BASIC does not resume execution until the
child process terminates. If an argument is
included, sh then executes the argument. If no
argument is included, sh waits for commands from
standard input.

)

LANGUAGE DIFFERENCES FORO MS-BASIC WITH XENIX

2.27 SYSTEM COMMAND

Page 2-31

The SYSTEM
MS-BASIC,
Manual.

Format:

Purpose:

Remarks:

command is not used with all implementations of
and therefore is not described in the Reference

SYSTEM

To close all files and reload the operating
'system into memory.

SYSTEM closes all files and returns control to
XENIX.

LANGUAGE DIFFERENCES FOR MS-B~SIC WITH XENIX

2.28 TIME$ FUNCTION

Page 2-32

Because this function is not included in all
implementations, it is not included in the Reference Manual.

Syntax:

Purpose:

TIME$

To retrieve the current time.
use the TIME$ statement.)

(To set the time,

Remarks:

Example:

The TIME$ function returns an eight-character
string in the form hh:mm:ss, where hh is the
hour (00 through 23), mm is minutes (00 through
59), and ss is seconds (00 through 59). A
24-hour clock is used; 8:00 p.m., therefore,
would be shown as 20:00.

10 PRINT TIME$

Prints the time, calculated from the time set
with the TIME$ statement.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.29 TIME$ STATEMENT

The TIME$ statement sets the current time.
is not included in the Reference Manual.

Page 2-33

This statement

)

Format:

Purpose:

Remarks:

Example:

TIME$=<string expression>

where <string expression> returns a string in
one of the following forms:

hh (sets the hour, minutes and
seconds default to 00)

hh:mm (sets the hour and minutes,
seconds default to 00)

hh:mm:ss (sets the hour, minutes,
and seconds)

To set the time for the TIME$ function.

A 24-hour clock is used; 8: 00 p.m., therefore,
would be entered as 20:00:00.

10 TIME$="08:00:00"

The current time is set at 8:00 a.m.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.30 UNLOCK STATEMENT

Page 2-34

Because the UNLOCK
implementations of
Reference Manual.

statement
MS-BASIC,

is
it

not included in all
is not described in the

Format:

Purpose:

Remarks:

Example:

UNLOCK [t]<file number> [<record number>]
[TO <record number>]

<file number> is the number of the file to be
unlocked.

The <record number> options set the range of
records to be unlocked.

To release access restrictions placed on a file
by the LOCK statement.

If a record number or range is specified and. the
file is opened in random mode, only those
records in the range are unlocked.

30 UNLOCK *1,3 TO 50

Releases a previous LOCK on records 3 through 50
in file number 1.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.31 USR FUNCTION

Page 2-35

The USR function is not supported under this implementation
of MS-BASIC.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.32 VARPTR FUNCTION

Page 2-36

The only difference between the desription given here for
VARPTR and the one in the Reference Manual is the addition
of the "Note" in the portion on Format 2.

Format 1:

Format 2:

Purpose:

Note:

Note:

VARPTR«variable name»

VARPTR(*<file number»

Format 1

Returns the address of the first byte of data
identified with <variable name>. A value must
be assigned to <variable name> prior to
execution of VARPTR. Otherwise, an "Illegal
function call" error results. Any type variable
name may be used (numeric, string, array). For
string variables, the address of the first byte
of the string descriptor is returned. (See
Chapter 5, "Assembly Language Subroutines," ,for
discussion of the string descriptor.) The
address returned will be an integer in the range
-32768 to 32767. If a negative address is
returned, add it to 65536 to obtain the actual
address.

VARPTR is usually used to obtain the address of
a variable or array so it may be passed to an
assembly language subroutine. A function call
of the form VARPTR(A(O» is usually specified
when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a new
simple variable is assigned.

Format 2

For sequential files, returns the starting
address of the disk I/O buffer assigned to <file
number>. For random files, returns the address
of the FIELD buffer assigned to <file number>.

If this function is used within an MS-BASIC
program, it should always be used immediately
before its value is used. This is necessary
because closing another file may cause the file
data buffer for this file to be moved in memory.

)

)

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX Page 2-37

)

)

Example: 20 X = USR(VARPTR(Y»

Returns the address of the first byte of data
identified with variable Y.

LANGUAGE DIFFERENCES FOR MS-BASIC WITH XENIX

2.33 WIDTH STATEMENT

Page 2-38

The format and comments in the Reference Manual remain
valid. Note that Format 2 below is equivalent to the format

WIDTH[LPRINT]<integer expression>

(the format given in the Reference Manual) when the <device>
is the lineprinter.

Format 1:

Format 2:

Purpose:

WIDTH <file number>,<size>

WIDTH <device>,<size>

<file number> is the number of the MS-BASIC file
that-is being output.

<size> is the desired line width, in characters.
The <size> must be a valid numeric expression
returning an integer in the range 1 to 255.

<device> identifies the device where the output
is sent.

Format 1

Changes the line width of file <file number> to
<size>. This means that if more than <size>
bytes are output on one line to the file, a
newline will be forced.

Format 2

Has no effect on files currently opened to that
device. A subsequent OPEN <device> FOR OUTPUT
AS <file number> will use this value for width
while the file is open.

Remarks: Valid width for all devices is
value outside these ranges
"Illegal function call" error,
value will be retained.

1 to 255. Any
will result in an
and the previous

Examples:

Specifying WIDTH 255 disables line folding, thus
giving the effect of infinite width.

10 WIDTH 3,132
10 WIDTH "LPT1:",132

CHAPTER 3

CONVERTING PROGRAMS TO MICROSOFT BASIC

If you have programs written in a BASIC other than Microsoft
BASIC, some minor adjustments may be necessary before
running them with MS-BASIC. This chapter lists some
specific things to look for.

3.1 STRING DIMENSIONS

) Delete all statements that are used to declare the length of
strings. A statement such as DIM A$(I,J), which dimensions
a string array for J elements of length I, should be
converted to the Microsoft BASIC statement DIM A$(J).

string
a plus
string

a comma or ampersand for
Each of these must be changed to

the operator for Microsoft BASIC

Some BASICs use
concatenation.
sign, which is
concatenation.

In Microsoft BASIC, the MID$, RIGHT$, and LEFT$ functions
are used to take substrings of strings. Forms such as A$(I)
to access the Ith character in A$, or A$(I,J) to take a
substring of A$ from position I to position J, must be
changed as follows:

Other BASIC Microsoft BASIC

X$=A$(I)
X$=A$(I,J)

X$=MID$(A$,I,l)
X$=MID$(A$,I,J-I+l)

on the left side of an
replace characters in A$,

If the substring reference is
assignment and X$ is used to
convert as follows:

)
Other BASIC

A$(I)=X$
A$(I,J)=X$

Microsoft BASIC

MID$(A$,I,l)=X$
MID$(A$,I,J-I+l)=X$

CONVERTING PROGRAMS TO MICROSOFT BASIC

3.2 MULTIPLE ASSIGNMENTS

Some BASICs allow statements of the form:

10 LET B=C=O

Page 3-2

to set Band C equal to zero. Microsoft BASIC would
interpret the second equals sign as a logical operator and
set B equal to -1 if C equalled O. Instead, convert this
statement to two assignment statements:

10 C=O:B=O

3.3 MULTIPLE STATEMENTS

Some BASICs use a backslash (\) to separate
statements on a line. With Microsoft BASIC, be
statements on a line are separated by a colon (:).

3.4 MAT FUNCTIONS

multiple
sure"all

Programs using the MAT
must be rewritten
properly.

functions available in
using FOR...NEXT loops

some
to

BASICs
execute

)

CHAPTER 4

MICROSOFT BASIC DISK I/O

Disk I/O procedures for the beginning MS-BASIC user are
examined in this chapter. If you are new to MS-BASIC or if
you're getting disk related errors, read through these
procedures and program examples to make sure you're using
all the disk statements correctly.

)
Wherever a filename is
statement, use a name
system's requirements for

4.1 PROGRAM FILE COMMANDS

required in a
that conforms
filenames.

disk command or
to your operating

The following list reviews the commands and statements used
in program file manipulation.

SAVE <filename>[,A]

LOAD <filename>[,R]

Writes to disk the program that is
currently residing in memory.
Optional A writes the program as a
series of ASCII characters.
(Otherwise, MS-BASIC uses a compressed
binary format.)

(See Section 4.2 below for discussion
of how to save protected files.)

Loads the program from disk into
memory. Optional R runs the program
immediately. LOAD always deletes the
current contents of memory and closes
all files before loading. If R is
included, however, open data files are
kept open. Thus programs can be
chained or loaded in sections and
access the same data files. (LOAD
<filename>,R and RUN <filename>,R are
equivalent.)

MICROSOFT BASIC DISK I/O Page 4-2

RUN <filename>[,R]

MERGE <filename>

RUN <filename> loads the program from
disk into memory and runs it. RUN
deletes the current contents of memory
and closes all files before loading
the program. If the R option is
included, however, all open data files
are kept open. (RUN <filename> ,R and
LOAD <filename>,R are equivalent.)

Loads the program from disk into
memory but does not delete the current
contents of memory. The program line
numbers on disk are merged with the
line numbers in memory. If two lines
have the same number, only the line
from the disk program is saved. After
a MERGE command, the "merged" program
resides in memory, and MS-BASIC
returns to command level.

the disk.
file, or a
data file.

KILL <filename>

NAME <oldfilename>
AS <new filename>

4.2 PROTECTED FILES

Deletes the file from
<filename> may be a program
sequential or random access

To change the name of a disk
execute the NAME statement,
<oldfile> AS <newfile>. NAME
used with program files, random
or sequential files.

file,
NAME

may be
files,

)

If you wish to save
use the "Protect"
example:

a program in an encoded
option with the SAVE

binary format,
command. For

SAVE "MYPROG" ,P

A program saved this way cannot be listed or edited. You
may also want to save an unprotected copy of the program for
listing and editing purposes.

MICROSOFT BASIC DISK I/O

4.3 DISK DATA FILES - SEQUENTIAL AND RANDOM I/O

Page 4-3

There are two
and accessed
random access

types of disk
by a BASIC

files.

data files that may be created
program: sequential files and

)

4.3.1 Sequential Files

Sequential files are easier to create than random files but
are limited in flexibility and speed when it comes to
accessing the- data. The data written to a sequential file
are ASCII characters. They are stored, one item after
another (sequentially), in the order they are sent. They
are read back in the same way •

.
The statements and functions that are used with sequential
files are:

CLOSE
EOF
INPUTjI
LINE INPUT#
LOC
LOCK
OPEN
PRINTjI
PRINTji USING
UNLOCK
WRITEjI

See the Microsoft BASIC Reference Manual for detailed
descriptions of these statements and functions.

Creating ~ Sequential File

The following program steps are required to create a
sequential file and access the data in the file:

)

1. OPEN the file in "0" mode.

2. Write data to the file
using the PRINT# statement.
(WRITEi may be used instead.)

3. To access the data in the
file, you must CLOSE the file
and reopen it in "I" mode.

4. Use the INPUTi statement to
read data from the sequential
file into the program.

OPEN "DATA" FOR "0" AS #1

PRINTil,A$;B$;C$

CLOSE U
OPEN "DATA" FOR "I" AS #1

INPUTjil,X$,Y$,Z$

MICROSOFT BASIC DISK I/O

A program that creates a sequential
formatted data to the disk with the
For example, the statem~nt

PRINT#l,USING"####.##,";A,B,C,D

Page 4-4

file can also write
PRINT# USING statement.

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string
serves to separate the items in the dis~ file.

The LOC function, when used with a sequential file, returns
the number of sectors that have been written to or read from
the file since it was opened. For example,

100 IF LOC(1»50 THEN STOP

would end program execution if more than 50 sectors had been
written to or read from file #1 since it was opened.

MICROSOFT BASIC DISK I/O Page 4-5

)

)

Program 1 is a short program that creates a sequential file,
"DATA", from information you input at the terminal:

Program 1 - Create a Sequential File

10 OPEN "DATA" FOR "0" AS 11
20 INPUT "NAME":N$
25 IF N$="DONE" THEN END
30 INPUT "DEPARTMENT" :D$
40 INPUT "DATE HIRED":H$
50 PRINTjl,N$:",":D$:",":H$
60 PRINT:GOTO 20
RUN
NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

NAME? SHERLOCK HOLMES
DEPARTMENT? RESEARCH
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT? ACCOUNTING
DATE HIRED? 04/27/78

NAME? SUPER MANN
DEPARTMENT? MAINTENANCE
DATE HIRED? 08/16/78

NAME? etc.

MICROSOFT BASIC DISK I/O Page 4-6

Program 2 accesses the file "DATA" that was created in
Program 1 and displays the name of everyone hired in 1978:

Program 2 - Access a Sequential File

10 OPEN "DATA" FOR "I" AS 111
20 INPUT1Il,N$,D$,H$
30 IF RIGHT$(H$,2)="78" THEN PRINT N$
40 GOTO 20
RUN
EBENEEZER SCROOGE
SUPER MANN
Input past end in 20
Ok

Program 2 reads, sequentially, every item in the file. When
all the data has been read, line 20 causes an "Input past
end" error. To avoid getting this error, insert line 15
which uses the EOF function to test for end-of-file:

15 IF EOF(l) THEN END

and change line 40 to GOTO 15.

Adding Data to ~ Sequential File

If you have a sequential file residing on disk and later
want to add more data to the end of it, you cannot simply
open the file in "0" mode and start writing data. As soon
as you open a sequential file in "0" mode, you destroy its
current contents. Instead, use the OPEN statement wi.th the
APPEND mode, as described in Section 2.20.

)

MICROSOFT BASIC DISK I/O

4.3.2 Random Files

Page 4-7

)

Creating and accessing random files requires more program
steps than sequential files, but there are advantages to
using random files. One advantage is that random files
require less room on the disk, because MS-BASIC stores them
in a packed binary format. (A sequential file is stored as
a series of ASCII characters.)

The biggest advantage to random files is that data can be
accessed randomly, i.e., anywhere on the disk -- it is not
necessary to read through all the information, as with
sequential files. This is possible because the information
is stored and accessed in distinct units called records and
each record is numbered.

The statements and functions that are 4sed with random files
are:

CLOSE
CVD/CVI/CVS
FIELD
GET
LOC
LOCK
LSET/RSET
MKD$/MKI$/MKS$
OPEN
PUT
UNLOCK

See the Microsoft BASIC Reference Manual for detailed
discussion of these statements and functions.

Creating ~ Random File

The following program steps are required to create a random
file.

1. OPEN the file for random
access ("R" mode). This example
specifies a record length of 32
bytes. If the record length is
omitted, the default is 128
bytes.

OPEN "FILE" FOR "R" AS *1
LEN=3

)
2. Use the FIELD statement to

allocate space in the random
buffer for the variables that
will be written to the random
file.

3. Use LSET to move the data

FIELD iI, 20 AS N$,
4 AS A$, 8 AS P$

LSET N$=X$

MICROSOFT BASIC DISK I/O

into the random buffer.
Numeric values must be made
into strings when placed in
the buffer. To do this, use the
"make" functions: MKI$ to
make an integer value into a
string, MKS$ for a single
precision value, and MKD$ for
a double precision value.

4. Write the data from
the buffer to the disk
using the PUT statement.

Page 4-8

LSET A$=MKS$(AMT)
LSET P$=TEL$

PUT *l,CODE%

The LOC function with random files returns the current
record number. For example, the statement

IF LOC(1»50 THEN END

ends program execution if the current record number in file
*1 is higher than 50.

MICROSOFT BASIC DISK I/O Page 4-9

Do not use a
variable in
statement.
pointer for
point into
instead of
buffer.

)

Program 3 writes information that is input at the terminal
to a random file. Each time the PUT statement is executed,
a record is written to the file. The two-digit code that is
input in line 30 becomes the record number.

NOTE

fielded string
an INPUT or LET

This causes the
that variable to
string space

the random file

Program 3 - Create a Random File

10 OPEN "FILE" FOR "R" AS #1 LEN=32
20 FIELD #1,20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 INPUT ."NAME" ; X$
50 INPUT "AMOUNT";AMT
60 INPUT "PHONE";TEL$:PRINT
70 LSET N$=X$
80 LSET A$=MKS$(AMT)
90 LSET P$=TEL$
100 PUT U,CODE%
110 GOTO 30

Accessing ~ Random File

The following program steps are required to access a random
file:

1. OPEN the file in "R" mode.

2. Use the FIELD statement to
allocate space in the random
buffer for the variables that
will be read from the file.

OPEN "FILE" FOR "R" AS #1
LEN=32

FIELD #1 20 AS N$,
4 AS A$, 8 AS P$

MICROSOFT BASIC DISK I/O

NOTE

In a program that performs
both input and output on the
same random file, you can
often use just one OPEN
statement and one FIELD
statement.

Page 4-10

3. Use the GET statement to move
the desired record into the
random buffer.

4. The data in the buffer may
now be accessed by the program.
Numeric values must be converted
back to numbers using the
"convert" functions: CVI for
integers, CVS for single
precision values, and CVD
for double precision values.

GET #l,CODE%

PRINT N$
PRINT CVS(A$)

Program 4 accesses the random file "FILE" that was created
in Program 3. When the three-digit code is input at the
terminal, the information associated with that code is read
from the file and displayed:

Program 4 - Access a Random File

10 OPEN "FILE" FOR "R" AS #1 LEN=32
20 FIELD #1, 20 AS N$, 4 AS A$, 8 AS P$
30 INPUT "2-DIGIT CODE";CODE%
40 GET #1, CODE%
50 PRINT N$
60 PRINT USING "$$###.##";CVS(A$)
70 PRINT P$:PRINT
80 GOTO 30

MICROSOFT BASIC DISK I/O Page 4-11

)

)

Program 5 is an inventory program that illustrates random
file access. In this program, the record number is used as
the part number, and it is assumed the inventory will
contain no more than 100 different part numbers. Lines
900-960 initialize the data file by writing CHR$(255) as the
first character of each record. This is used later (line
270 and line 500) to determine whether an entry already
exists for that part number.

Lines 130-220 display the different inventory functions that
the program performs. When you type in the desired function
number, line 230 branches to the appropriate subroutine.

Program 5 - Inventory

120 OPEN "INVEN.DAT" FOR "R" AS 11 LEN=39
125 FIELDI1,1 AS F$,30 AS D$, 2 AS Q$,2 AS R$,4 AS P$
130 PRINT:PRINT "FUNCTIONS:":PRINT
135 PRINT 1,"INITIALIZE FILE"
140 PRINT 2,"CREATE A NEW ENTRY"
150 PRINT 3,"DISPLAY INVENTORY FOR ONE PART"
160 PRINT 4,"ADD TO STOCK"
170 PRINT 5,"SUBTRACT FROM STOCK"
180 PRINT 6,"DISPLAY ALL ITEMS BELOW REORDER LEVEL"
220 PRINT:PRINT:INPUT"FUNCTION";FUNCTION
225 IF (FUNCTION<l) OR (FUNCTION>6) THEN PRINT

"BAD FUNCTION NUMBER":GO TO 130
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 220
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(F$)<>255 THEN INPUT"OVERWRITE";A$:

IF A$<>"Y" THEN RETURN
280 LSET F$=CHR$(O)
290 INPUT "DESCRIPTION";DESC$
300 LSET D$=DESC$
310 INPUT "QUANTITY IN STOCK";Q%
320 LSET Q$=MKI$(Q%)
330 INPUT "REORDER LEVEL";R%
340 LSET R$=MKI$(R%)
350 INPUT "UNIT PRICE";P
360 LSET P$=MKS$(P)
370 PUTU,PART%
380 RETURN
390 REM DISPLAY ENTRY
400 GOSUB 840
410 IF ASC(F$)=255 THEN PRINT "NULL ENTRY":RETURN
420 PRINT USING "PART NUMBER #i1";PART%
430 PRINT D$
440 PRINT USING "QUANTITY ON HAND ###i#" ;CVI (Q$)
450 PRINT USING "REORDER LEVEL #i##i" ;CVI (R$)
460 PRINT USING "UNIT PRICE $$##.##";CVS(P$)
470 RETURN

MICROSOFT BASIC DISK I/O Page 4-12

480 REM ADD TO STOCK
490 GOSUB 840
500 IF ASC(F$}=255 THEN PRINT "NULL ENTRY":RETURN
510 PRINT D$:INPUT "QUANTITY TO ADD ";A%
520 Q%=CVI(Q$}+A%
530 LSET Q$=MKI$(Q%}
540 PUTU,PART%
550 RETURN
560 REM REMOVE FROM STOCK
570 GOSUB 840
580 IF ASC(F$}=255 THEN PRINT "NULL ENTRY":RETURN
590 PRINT D$
600 INPUT "QUANTITY TO SUBTRACT";S%
610 Q%=CVI(Q$)
620 IF (Q%-S%)<O THEN PRINT "ONLY";Q%;" IN STOCK":GOTO 600
630 Q%=Q%-S%
640 IF Q%=<CVI(R$) THEN PRINT "QUANTITY NOW";Q%;

" REORDER LEVEL";CVI(R$)
650 LSET Q$=MKI$(Q%}
660 PUTU,PART%
670 RETURN
680 REM DISPLAY ITEMS BELOW REORDER LEVEL
690 FOR I=l TO 100
710 GETU,I
720 IF CVI (Q$) <CVI (R$) THEN PRINT D$;" QUANTITY";

CVI(Q$) TAB(50} "REORDER LEVEL";CVI(R$)
730 NEXT I
740 RETURN
840 INPUT "PART NUMBER";PART%
850 IF(PART%<l)OR(PART%>lOO) THEN PRINT "BAD PART NUMBER":

GOTO 840 ELSE GET#l,PART%:RETURN
890 END
900 REM INITIALIZE FILE
910 INPUT "ARE YOU SURE";B$:IF B$<>"Y" THEN RETURN
920 LSET F$=CHR$(255)
930 FOR I=l TO 100
940 PUTU,I
950 NEXT I
960 RETURN

)

CHAPTER 5

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES

This chapter explains how to
subroutines and how to call
statements.

load assembly language
them with the CALL or CALLS

)

5.1 LOADING ASSEMBLY LANGUAGE SUBROUTINES

Under the XENIX operating system, memory space for MS-BASIC
is separated into instruction and data space. Any assembly
language subroutine will reside in the instruction space and
will use the data space. If you use self-modifying code,
note that this separation may prevent self-modification.

To link and load
subroutines with
option with the
language file must

files that contain assembly
MS-BASIC, start by using the
MS-BASIC command line. The
be a relocatable file.

language
-1 ("el")

assembly

)

Only one assembly language file can be loaded per -1 option.
If more than one file is needed, use additional -1 options.
For example, the following syntax would assemble and run
MS-BASIC with the assembly language files asml.s and asm2.s:

as -0 asml.o asml.s
as -0 asm2.0 asm2.s
mbasic -1 asml.o -1 asm2.0

When the -1 option is used, the relocatable MS-BASIC library
is linked and loaded with all the specified assembly
language files and the "C" library; and a local file named
"basic" is produced and executed. This means that a linked
version of the assembly language file plus MS-BASIC resides
in the user's current directory.

A new copy of this linked file is created in the current
directory each time MS-BASIC is executed with the -1 option.
However, if you do not need to re-link the file when you

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-2

want to run it again, you can use the already-existing file
(the one created by the most recent link) by invoking

MS-BASIC using the name of the local file rather than
"mbasic." In this case, do not include -1 in the command
line. The local filename will be /usr/current
directory/basic: Often the user profile is set to search
for local cop1es of a file first. If this is the case,
specifying basic will suffice.

If no -1 option appears in the command line, the assembly
language file will not be linked with MS-BASIC, and the copy
of MS-BASIC that resides in /usr/bin will be executed.

In summary, MS-BASIC with XENIX creates a local version of
MS-BASIC when assembly language subroutines are to be
interfaced with MS-BASIC. If these routines are to be
called during MS-BASIC program execution, the local version
of MS-BASIC must be executing. It will execute as a result
of the -1 option being included with the command line, or if
a local version of MS-BASIC is executed after having
originally been created by the command line.

5.2 CALLING ASSEMBLY LANGUAGE SUBROUTINES

Assembly language subroutines are called from within a
program by using the CALL or CALLS statement. Most calls
are made with the CALL statement; CALLS works much the same
way but is used to access MS-FORTRAN routines.

5.2.1 CALL STATEMENT

Format: CALL <variable name># [«argument list»]

<variable name> is a double-precision variable
that names the subroutine being called.

Note that certain language processors create
names beginning with the underline character
(_l. This is not a legal MS-BASIC variable
name. Therefore, MS-BASIC searches for two
entry points. The preferred entry point is the
same as the <variable name>. If this entry
point is not found, MS-BASIC will search for the
entry point constructed by using the underline
character.

MS-BASIC does not preserve case. Therefore, all

)

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES

entry point names must be capitalized.

Page 5-3

On the first invocation of the CALL <variable
name>* statement, MS-BASIC will obtain the
32-bit entry point address from the name list of
the executing MS-BASIC (see XENIX documentation
for "nlist(3)"). MS-BASIC will then store the
32-bit address in <variable name>. Since
32-bits of precision requires a double precision
variable, "Type mismatch error" will be
displayed for any other variable type.

Note that the
<variable name>
first call to the

double-precision
must not be defined
routine.

variable
before the

)

<argument list> contains the variables that are
passed to the external subroutine.

No previously unreferenced scalar variable may
follow an array element in the <argument list>.
If this is attempted, an "Illegal function call"
error will result.

Invoking the CALL statement causes the following to occur:

1. For each argument in the argument list, the 2 byte
offset of the argument's location within the data
segment (DS) is pushed onto the stack.

2. MS-BASIC's return address code segment (CS), and
offset (IP) are pushed onto the stack.

3. Control is transferred to the user's routine.

These actions are illustrated by the two following diagrams,
which illustrate first, the state of the stack at the time
of the CALL statement, and second, the condition of the
stack during execution of the called subroutine.

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-4

argument n

+-----------------------+
I return segment address I
+-----------------------+
I return offset I
+-----------------------+ <--Stack pointer

(SP reg. contents)

high
addresses

C
S 0
t u
a n
c t
k e

r

V
low

addresses

argument 0
argument 1

Each argument is a 2-byte
POINTER into memory

===
Stack layout when CALL statement

is activated

The
by
and

subroutine now has control. Arguments may be referenced
moving the Stack pointer (SP) to the Base Pointer (BP)
adding a positive offset to (BP).

)

)

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-5

Stack pointer may change
during procedure execu

\
\

}<--Absent if any argumen'
/ referenced wi thin a :

/ procedure
argument n

argument a
argument I

+-----------------------+I return segment addressl}<--Absent in local procedu
+-----------------------+I return offset I
+-----------------------+ <--Stack pointer
I old stack marker I (SP reg. contents)
+-----------------------+ <--New stack marker

local variables \
\

}<--Only in reentrant pro
/

/+-----------------------+
This space may be
used during pro
cedure execution

C
S 0
t u
a n
c t
k e

r

high
addresses

)

v
low

addresses

==
Stack layout during execution of

of a CALL statement

You must observe the following rules when
subroutine:

coding a

2. The called subroutine must know the number and
length of the arguments passed. References to
arguments are positive offsets added to (BP)
(assuming the called routine moved the current
stack pointer into BP; i.e., MOV BP,SP). That is,

)

1. ,The called subroutine
and DX registers.
preserved.

may destroy the AX, BX, CX,
All other registers must be

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-6

the location of pI is at 8 (BP) , p2 is at 6 (BP), p3
is at 4 (BP), ... etc.

3. The called subroutine must perform an inter segment
return. On exit from the subroutine, arguments may
be left on the stack. If arguments are left on the
stack, MS-BASIC will detect and remove them.

4. Values are returned to MS-BASIC by including in the
argument list the variable name which will receive
the result.

5. If the argument is a string, its offset points to 3
bytes called the "String Descriptor." Byte 0 of the
string descriptor contains the length of the string
(0 to 255). Bytes I and 2, respectively, are the
lower and upper 8 bits of the string starting
address in string space.

IMPORTANT

If the argument is a string literal in the
program, the string descriptor will point
to program text. Be careful not to alter
or destroy your program this way. To avoid
unpredictable results, add +"" to the
string literal in the program. Example:

20 A$ = "BASIC"+""

This will force the string
copied into string space.
may be modified without
program.

literal to be
Now the string

affecting the

6. Strings may be altered by user routines, but the
length MUST NOT be changed. MS-BASIC cannot
correctly-manipulate strings if their lengths are
modified by external routines.

The following sequence
demonstrates access of the
return result in the variable

of 8086
arguments
'e I.

assembly language
passed and storing a

MOV
MOV
MOV
MOV

BP,SP ;Get current Stack posn in BP.
BX,6[BP] ;Get address of B$ dope.
CL, [BX] ;Get length of B$ in CL.
DX,I[BX] ;Get addr of B$ text in DX.

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES Page 5-7

MOV
MOV
MOVS
RET

SI,8[BP] ;Get addr.ess of 'A' in SI.
DI,4[BP];Get pointer to 'C' in DI.
WORD ;Store variable 'A' in 'C'.
6 ;Restore Stack, return.

IMPORTANT

The called subroutine
know the variable type
numeric arguments passed.
the above example,
instruction

MOVS WORD

must
for
In

the

value which
The value in

)

will copy only 2 bytes. This
is fine if variables A and C
are integers. We would have
to copy 4 bytes if they were
Single Precision and copy 8
bytes if they were Double
Precision.

When the call is made, register [AL] contains a
specifies the type of argument that was given.
[AL] may be one of the following:

2 Two-byte integer (two's complement)

3 String

4 Single precision floating point number

8 Double precision floating point number

If the argument is a number, the [BX] register
to the Floating Point Accumulator (FAC) where
is stored:

pair points
the argument

FAC is the exponent minus 128, and the binary point is
to the left of the most significant bit of the
mantissa.

)

FAC-l contains the highest 7 bits of mantissa with
leading 1 suppressed (implied). Bit 7 is the sign
of the number (O=positive, l=negative).

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES

If the argument is an integer:

Page 5-8

FAC-2
FAC-3

contains the upper 8 bits of the argument.
contains the lower 8 bits of the argument.

If the argument is a single precision floating point number:

FAC-2
FAC-3

contains the middle 8 bits of mantissa.
contains the lowest 8 bits of mantissa.

the [OX] register pair
"string descriptor."
descriptor contains the
255) • Bytes 1 and 2,
and upper 8 bits. of the
BASIC's Data Segment.

If the argument is a double precision floating point number:

FAC-7 - FAC-4 contain four more bytes of mantissa (FAC-7
contains the lowest-8 bits).

If the argument is a string:

points to 3 bytes called the
Byte 0 of the string

length of the string (0 to
respectively, are the lower
string starting address in

IMPORTANT

If the argument is a string
literal in the program, the
string descriptor will point
to program text. Be careful
not to alter or destroy your
program this way. See the
CALL statement above.

MS-BASIC ASSEMBLY LANGUAGE SUBROUTINES

5.2.2 CALLS Statement

Page 5-9

The CALLS statement should be
subroutines. CALLS works just
CALLS, each of the arguments on
pointer into memory, rather than a

used to access FORTRAN
like CALL except that with

the stack is a 4-byte
2-byte pointer.

)

The CALLS statement is
implementations of MS-BASIC
in the Reference Manual.

not available with all
and therefore is not discussed

INDEX

Appending data to sequential file 4-6
Assembly language subroutines 5-1

calling ... 5-2
loading ••. 5-1

Page Index-l

BASIC references
BLOAD statement
BSAVE statement

9
2-2
2-3

)

CALL statement. 2-4, 5-2
Calling assembly language subroutines 5-2
CALLS statement 5-9
CLEAR statement 2-5
CLOAD statement 2-6
CLOSE statement 4-3, 4-7
Converting programs to MS-BASIC 3-1
Copyright information 2
Creating files • 1-2
CSAVE statement 2-6
CVD function 4-7
CVI function 4-7
CVS function • . 4-7

Data memory space 5-1
DATE $ function · · 2-7
DATE$ statement 2-8
DEF USR statement 2-9
Device-independent I/O 1-4
Documentation 4

Editing files 1-2
EOF function · 2-10, 4-3, 4-6
Exit from MS-BASIC 1-2

FIELD statement 2-11, 4-7
Filenaming conventions 1-2
FILES command · · · · .. 2-12
Files on disk · · · · 4
Floating point accumulator 5-7

GET statement 4-7

Initialization 1-1
INP function · 2-13
INPUT statement 4-9

) INPUT# statement 4-3
Instruction memory space 5-1

KILL command · · · · · . 4-2

Page Index-2

Language differences. '. 1-3, 2-1
Learning more about BASIC 9
LET statement • . . . 4-9
LINE INPUTi statement 4-3
LIST statement . . • • 2-14
LLIST statement • . . 2-15
LOAD command 4-1
Loading assembly language subroutines 5-1
LOC function. 2-16, 4-3 to 4-4, 4-7
LOCK statement 2-17
LOF function . . 2-20
LPOS function 2-21
LPRINT statement .2-22
LSET statement 4-7

Major features of MS-BASIC
MAT functions . • • • • .
Memory image file • • • .
MERGE command . • • • • .
Microsoft FORTRAN compiler
Microsoft Pascal compiler
MID$ • . • • •
MKD$ function
MKI$ function
MKS$ function
MUltiple assignments
Multiple statements

NAME command .

OPEN statement
OUT statement

Package contents
PEEK function
POKE statement •
POS function • .
PRINTi statement
PRINTi USING statement
Protected files
PUT statement

Random files •
RSET statement
RUN command

SAVE command .
SAVE statement •
Sequential files
SHELL function .
SHELL statement
Star t-up . • • •
String dimensions
String functions
String literal

4
3-2
2-2 to 2-3
4-2
2-2
2-2
3-1
4-7
4-7
4-7
3-2
3-2

4-2

2-23, 4-3, 4-7
2-25

4
2-26
2-27
2-28
4-3
4-3 to 4-4
4-2
4-7

4-7
4-7
4-2

4-1
1-2
4-3
2-29
2-30
1-1
3-1
3-1
5-6, 5-8

)

)

)

String space . · 4-9
Syntax notation 8
SYSTEM command · 2-31
System requirements 6

TIME$ function · 2-32
TIME$ statement 2-33

UNLOCK statement 2-34
USR function . · 2-35

VARPTR function 2-36

WIDTH statement 2-38
WRITE# statement 4-3

Page Index-3

	Table of Contents
	1. MS BASIC With the XENIX Operating System
	2. Language Differences
	3. Converting Programs to MS BASIC
	4. MS BASIC Disk I/O
	5. MS-BASIC Assembly Subroutines
	Index

