1 hasie
P ENGERNRANUR

-

PREFACE

The Altair BASIC language is a high-level ©orogramming
language specifically designed for interactive comouting
systems. Its simple English-like 1instructions are easily
understood and <auickly learned and 1its interactive nature
allows instant feedback of results and diagnostics. Despite
its simplicity, however, Altair BASIC has evolved into a
vowerful language with nrovisions for editing and string
processing as well as nuwerical computation.

The Altair BASIC interoreter reads the instructions of
the BASIC language and directs the ALTAIR 8888 series
microcomputer to execute them. dltair BASIC includes manv
useful diagnostic and editing features in all versions. The
extended versions vrovide additional features including
comprehensive file input/output oprocedures in the. disk

version.

This manual will exvlain the features of the BASIC
langusae 2and the special vrovisions of the 4K, 8K, Extended
and Disk Extended Altair BASIC intervreters, release 4.1. For
quick reference, a table of Altair BASIC instructions,
diagnostics and functions are orovided in Section 6. A
complete index is at the end of the manual.

BASIC 4.1

April, 1977

l.

2-3

CONTENTS

Some Introductory Remarks. 4
Introduction to this manual 4
a. Conventions
b. Definitions
Modes of Operation 5
Formats 6
a. Lines-AUTO and RENUM

b. REMarks
c. Error Messages
Editing - elementary provisions 9

a. Correcting Sinagle Characters
b. Correcting Lines

~

13

.

Correcting Whole Programs

Expressions and Statements 10
Expressions 10
a. Constants
b, Variables
c. Array Variables -~ the DIM Statement
d. Overators and Precedence
e. Logical Overations
f. The LET Statement . .
Branching and Loops 19
a. Branching
1) GOTO
2) IF...THEN...[ELSE]
3) ON...GOTO
b. Loops - FOR and NEXT Statements
Cc. Subroutines -~ GOSUB and RETURN Statements
d. Memory Limitations
Input/Output 23
a, INPUT
b. PRINT
¢. DATA, READ, RESTCRE
d. CSAVE, CLOAD
e. Miscellaneous
1) WAIT

2) PEEK,POKE
3) oUT, INP

BASIC 4.1

April, 1977

-

3. Functions : 28
3-1 Intrinsic Functions - 28
3-2 User-Defined Functions - the DEF Statement 28
3-3 Errors 29
4, Strings 30
4-1 String Data 30
4-2 String Overations 30

a. Comparison Overators

b. String Expressions

¢. Input/Output
4-3 String Functions 31
5. Extended Versions 32
5-1 Extended Statements 32
5-2 Extended Overators 38
5-3 Extended Functions 39
5-4 The EDIT Command 41
5-5 PRINT USING Statement 46
5-6 Disk File Operations 51
6. Lists and Directories 69
6-1 Commands 69
6-2 Statements 72
6-3 Intrinsic Functions 77
-4 Sovecial Characters T 82
6-5 Error Messadges 84
6-6 Reserved Words 91
Apmendices
A. ASCII Character Codes 93
8. Loading Altair BASIC 95
C. 3Sveed and Space Hints 106
D. Mathematical Functions 109
E. Altair BASIC and Machine Language 112
F. Using the ACR Interface 114
G. Convertina BASIC Programs Not Written for the Altair Comouter 116
H. Disk Information 118
I. The PIP Utility Program 124
J. RSTLESS Versions of BASIC 128
K. Using Altair BASIC on the

Intellec* 8/Mod 84 and MDS Systems 129
L. Patching Altair BASIC's I/0 Routines 132
M. Using Disk Altair BASIC: An Exampls 137
Index 145

3ASIC 4.1

April, 1977

l. SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual.

a. Conventions. For the sake of simplicity, some
conventions will be followed in discussing the features of the
Altair BASIC language.

1. Words printed in capital letters must be written exactly
as shown. These are mostly -names of instructions and
commands. '

2. Items enclosed in angle brackets (<>) must be supplied as
explained in the text. Items 1in square brackets ([]) are
optional. Items in both kinds of brackets, [<W>], for
example, are to be supplied if the ootional feature is used.
Items followed bv dots (...) may be repmeated or deleted as
necessary.

3. shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and tyving the indicated letter.

4, All indicated ounctuation must be supplied.

b. Definitions. Some terms which will become important
are as follows: i

Alphanuméric character: all letters and numerals taken
together are called alphanumeric characters.

Carriage Return: Refers both to the key on the terminal
which causes the carriage, print head or cursor to move to.the
beginning of the next 1line and to the command that the
carriage return key issues which terminates a BASIC line.

Command Level: After Altair BASIC orints 0K, it 1is in
the command level. This means it is ready to accent commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and Statements.
Commands are instructions normally used only in direct mode
(see Modes of Operation, section 1-2). Some commands, such as
CONT, may only be used in direct mode since thev have no
meaning as program statements. Some commands, such as DELETE,
are not normally used as program statements because they cause
a return to command level. But most commands will find
occasional use as orogranm statements. Stataments are
instructions that are normallv used in indirect mode. Some
statements, such as DEF, mav onlv be used in indirect mode.

Edit: The process of deleting, adding and substituting
lines in a ©orogram and that of preparing data for output
according to a »nredetermined format will both be referred to
as "editing.* The varticular meaning in use will be clear from
the context.

BASIC 4.1

April, 1977

Integer Expression: An expression whose value is
truncated .to an integer. The comoonents of the expression
need not be of integer tyve.

Reserved Words: Some words are reserved by BASIC for use
as statements and commands. These are called reserved words
and they may not be used in variable or function names.

Special Characters: Some characters arpear. differently
on different terminals. Some of the most important of these
are the following: A

(carat) appears on some terminals as f (up—-arrow)
~ (tilde) does not appear on some terminals and orints
as a blank
(underline) avvears on some terminals as -—(back-arrow)

String Literal: A string of characters enclosed by
guotation marks (") which is to be inout or output exactly as
it avpears. The quotation marks are not part of the string
literal, nor mav a string literal contain guotation marks.
(*“"HI, THERE""is not legal.)

Type: While the actual device used to enter information
into the computer differs from system to system, this manual
will use the word “tyve" to refer to the oprocess of entry.
The wuser types, the computer prints. Tvpe also refers to thé
classifications of numbers and strinas. The meaning will be
clear from the context.

1-2 Modes gg-Opetatidn.

Altair BASIC provides for overation of the computer in
two different modes. In the direct mode, the statements or
commands are executed as they are entered into the computar.
Results of arithmetic and logical overations are disvlayed and
stored for later use, but the instructions themselves are lost
after execution. This mode is useful for debugging and for
using Altair RASIC in a *“calculator"” mode for guick
computations which do not Jjustify the desian and codina of
complete orograms.

In the indirect mode, the computer executes instructions
from a orogram stored in memory. Program lines are enterad
into memorv if they are oreceded bv a line number. Execution
of the proaram is usually initiasted bv the RUN command.

BASIC 4.1 , 5

April, 1977

1-3 Formats.

‘a, Lines - AUTO and RENUM. The line is the '~ fundamental
unit of an Altair BASIC program. The format for an Altair
BASIC line is as follows:

nnnnn <BASIC statement>[:<BASIC statement>...]

Each Altair BASIC line begins with a number. The number
corresponds to the address of the line in memory and indicates
the order in which the statements in the line will be executed
in the ©program. It also provides for branching linkages and
for editing. Line numbers must be in the range # to 65529. A
good. ovrogramming practice 1is to use an increment of 5 or 160
between successive line numbers to allow for insertions.

1) Line numbers mav be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the AUTO
and RENUM commands. The AUTO command provides £for automatic
insertion of 1line numbers when entering program lines. The
format of the AUTO command is as follows:

AUTO [<initial line>[, [<increment>]]
Example;

AUTO 106,10

106 INPUT X,Y

113 PRINT SQR(X"2+Y"2) .
128 °C
OK

AUTO will number every input line.until Control/C 1is tyved.
If the <initial line> is omitted, it is assumed to be 1§ and
an increment of 18 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment is
specified, the increment -last used in an AUTO statement is
assumed.

If AUTO generates a line number that alreadv exists 1in
the orogram-currently in memory, it orints the number followed
by an asterisk. This is to warn the user that any input will
replace the existing line.

2) The RENUM command allows program lines to be ‘“soread
cut"® so that a new line or lines mav be inserted between
existing lines. The format of the RENUM command 1is as
follows: ‘

RENUM [<HN> [<MM>[,<II>]]]

where NN 1is the new number of the first 1line ¢to be
resequenced. If omitted, NN is assumed to be 16. Lines less

3ASIC 4.1

April, 1977

BASIC 4.1

than MM will not be renumbered. If MM is omitted, the whole
program will be reseguenced. 1II is the increment between the
lines to be reseguenced. If II is omitted, it is assumed to
be 1. Examples:

RENUM Renumbers the whole program to start at line 16
with an increment of 14 between the new line numbers.

RENUM 146,,109 Renumbers the whole program to start
at line 100 with an increment of 160.

RENUM 6600,5000,10600 Renumbers the lines from 5066 up
so they start at 60640 with an increment of 19494,

NOTE

RENUM cannot be used to change the order o¢f program
lines (for examole, RENUM 15,39 when the orogram has
three lines numbered 16, 29 and 36) nor to create line
numbers greater than 65529. An ILLEGAL FUNCTION CALL
error will result.

All 1line numbers appearing after a GOTO, GOSURB, THEN,
ON...GOTO, ON...GOSUB and ERL<relational operator> will be
properly changed by RENUM to reference the new 1line numbers.
If a line number appears after one of the’statements above but
does not exist in the orogram, the message "“UNDEFINED LINE
LXXXX IN YYYYY" will be printed. This line reference (XXXXX)
will not be changed bv RENUM, but line number YYYYY may be
changed.

3) In the Extended and Disk versions, the current line
number may be designated by a period (.) anywherz a line
number reference is reaquired. This is particularly uszsful in
the use of the EDIT command. See section 5-4.

4) Following the 1line number, one or more BASIC
statements are written. The first word of a statement
identifies the overations to be performed. The 1list of
arguments which follows the identifving word serves several
purposes. It can contain (or refer symbolically to) the datsa
which 1is to be operated unon by the statement. In some
important instructions, the operation to be performed depends
upon conditions or ooticns specified in the list.

Each type of statement will be considerad in detail 1in
sections 2, 3 and 4.

Aoril, 1977

More than one statement can be written on one 1line |if
they are separated by colons (:). Anvy number of statements
can be joined this way provided that the line is no more than
72 characters long in the 4K and 8K versions or 255 characters
in the Extended and Disk versions. In the Extended and Disk
versions, lines may be broken with the LINE FEED Kkey.
Example:

144 IF X<Y¥+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriage return>

The line is shown broken into three lines, but it is input as
one BASIC 1line.

b. REMarks. In many cases, a proqgram can be more easily
understood if it contains remarks and explanations as well as
the statements of the program vrover. In Altair BASIC, the
REM statement allows such comments to be included without
affecting execution of the program. The format of the REM
statement is as follows:

REM <remarks>

A REM statement is not executed by BASIC, but branching
statements may link into it. REM statements are terminated by
the carriage return or the end of the line but not bv a colon.
Example:

198 REM DO THIS LOOP:FOR I=1TO1ld ~-the FOR statement
will not be executed

181 FOR I=1 TO 1@: REM DO THIS LOOP -this FOR state-
ment will be execu-
ted.

In Extended and Disk versions, remarks mav be added to the end
of a orogram line sevarated from the rest of the line bv a
single cuotation mark ('). Evervthing after the single guote
will be ignored.

c. .Errors. When the BASIC interpreter detects an error
that will cause the ©orogram to be terminated, it prints an
error messade. The error message formats in Altair RBASIC are
as follows:

Direct statement ?2¥X ERROR
Indirect statement ?XX ERROR IN nnnnn

XX 1is the error code or message (see section 5-5 for a list of
error codes and messadges) and nnnnn is the line number where
‘the error occurred. Each statement has its own varticular
oossible errors in addition to the general errors in svntax.

8ASIC 4.1

April, 1977

3ASIC

April,

These errors will be discussed in the description of the
individual statements.

1-4, Editing - Elementary provisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the program. If
necessary, the whole program may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which will
be discussed in section 5.

a. Correcting Single Characters. If an incorrect
character 1is detected in a line as it is being tvvmed, it can
be corrected immediately with the backarrow (, underline on
some terminals) or ,excepnt in 4K, the RURBOUT key. Each stroke
of the key deletes the immediately ©ovreceding character. If
there 1is no preceding character, a carriage return is issued
and a new line is begun. Once the unwanted characters are
removed, they can be revlaced simply bv typing the rest of the
line as desired.

When RUBOUT is typed, a backslash (\) is printed and then
the character to be deleted. Each successive RUBOUT orints
the next character to be deleted. Typina a new character
prints another backslash and the new character. All
characters between the backslashed are deletad.

Examole:

186 ¥X=\=X\Y=10 Tyving two RUBOUTS deleted the '='
and 'X' which were subseqguently
replaced by Y= .

b. Correcting Lines. A line being tyoed may be deleted
by tyring an at-sign (@) instead of typing a carriage return.
A carriage return is printed automatically after the 1line 1is
deleted. Except in 4K, tvoing Control/U has the same effect.

In the Extended and Disk versions, typing Control/A
instead of the carriage return will allow all the features of
the EDIT command (except the A command) to be used on the line
currently being tvoed. See section 5-4.

c. Correctinag Whole Programs. The NEW command causes
the entire current orogram and all variables to be deleted.
NEW is generally used to clear memnory svace nrepvaratory to
entering a new grodram.

1.1

1377

10

2. EXPRESSIONS AND STATEMENTS.

2-1. Expressions.

The simplest BASIC excressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers or floating
point real numbers as constants. All but the 4K version of -
Altair BASIC accevt string ccnstants as well. See section
4-1, Some examples of acceotable numeric constants follow:

[

123
3.141
d.d436
1.25E+85

Data input from the terminal or numeric constants in a proqram
may have any number of digits up to the length of a line (see
section 1-3a). In 4K and 8K Altair BASIC, however, only the
first 7 digits of a number are significant and the seventh
digit is rounded up. Therefore, the cdémmand

PRINT 1.2345678906123
'produces the following output:

1.23457
OK

In Extended and Disk versions of Altair BASIC, double
orecision format allows 17 significant digits with the 17th
digit rounded up. ‘

The format of a printed number 1is determined by the
following rules:

1. If the number is negative, a minus sign (=) is porinted to
the 1left of the number. If the number is oositive, a
space is printed.

2. If the absolute value of the number is an integer 1in the
range # to 999999, it is vrinted as an integer.

3. If the absolute value of the number is greater _thén or
equal to .91 and 1less than or equal to 999999, it is
printed in fixed point notation with no exponent.

4, In Extended and Disk versions, fixed ooint values uo to
9999999999999999 are vossible.

BASIC 4.1

April, 1977

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:
SX.XXXXXESTT single precision
SX . XXXXXXXXXXXXXXXDSTT double precision

where S stands for the signs of the mantissa and the exponent
(they need not be the same, of course), X for the digits of
the mantissa and T for the digits of the exvonent. E and D
may be read "...times ten to the vower...." Non-significant
zeros are suppressed in the mantissa, but two digits are
always printed in the exponent. The sign convention in rule 1
is followed for the mantissa. The exponent must be in the
range =38 to +38. The largest number that may be reoresented
in Altair BASIC is 1.70141E38; the smallest positive number
is 2.9387E-38. The following are examples of numbers as inout
and as output by Altair BASIC:

Number Altair BASIC Output
+1 1
"l C "l ®
6523 6523

¢ 1220 1E29
-12.34567E-12 -1.23456E-09
1.234567E-7 1.23457E-07
1046200 1E+856
.1 .1
.01 -
.006123 . 1.23E~-04
-25.460 -25.46

The Extended and Disk versions of Altair BASIC azallow
numbers to be represented in integer, sinale vrecision or
double precision form. The type of a number constant 1is
determined according to the following rules:

1. A constant with more than 7 digits or a 'D' instead of 'E'
in the exponent is double precision.

2. A constant outside the range -32768 to 32757, with 7 or
fewer digits and a decimal voint or with an 'E' exoonant
is single precision.

3. A constant in the range -32768 to 32767 and no decimal
point 1s integer.

BASIC 4.1 11

April, 1977

12

4. A constant followed by an exclamation point (!) is singles
precision; a constant followed by a pound sign (#) is
double precision.

Two additional tyves of constants are allowed in Extended
and Disk versions of Altair BASIC. Hexadecimal (base sixteen)
constants may be explicitly designated by the symbol &H
preceding the number. The constant may not contain any
characters other than the digits @ - 9 or letters A - F, or a
SYNTAX ERROR will occur. Octal constants mav be designated
either by &0 or just the & sign.

In all formats, a svace is printed after the number. In
all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it issues
a carriage return and prints the whole number on the next
line.

b. Variables. & variable represents symbolically any
number which 1is assigned to it. The value of a variable may
be assigned explicitly by the proarammer or may be assiqgned as
the result of calculations in a program. Before a variable is
assigned a value, its value.is assumed to be zero. 1In 4¥X , a
variable name consists of one or two characters. The first
charagter is any letter. The secend character must be a
numeral. In other versions of Altair BASIC, the variable namé
may be any length, but anv alphanumeric characters after the
first two are ignored. The first character must be a letter.
No reserved words may appear as variable names or within
variable names. The following are examples of legal and
illegal Altair BASIC variables:

Legal Illegal
In 4K and 8X Altair BASIC:
A $A (first character must
be alphabetic,)
Z1 ' ZzlA (variable name is too

long for 4K)
Other versions:
TP TO0 (variable names cannot
be reserved words)

PSTGS

COUNT RGOTO (variable names can-
not contain reserved
words.)

In all but 4K Altair BASIC, a variable may alsc represent
a string. Use of this feature is discussed in saction 4.

3ASIC 4.1

April, 1877

1) Extended and Disk versions of Altair BASIC allow the
use of 1Integer and Double Precision variables as well as
Single Precision and Strings. The type of a variable may be
explicitly declared 1in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol
Strings (@ to 255 characters) .S
Integers (=32768 to 327%67) %
Single Precision (up to 7 digits, exvmonent between
-38 and +38) !
Double Precision (up to 16 digits, exvonent between
-38 and +38) #

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single precision and 17 digit double orecision
numbers may be handled correctly. If no type 1is explicitly
declared, type 1is determined by the £first 1letter of the
variable name according to the type table. The table of tvwves
may be modified with the following statements:

DEFINT ¢ ‘Integer
DEFSTR String

. DEFSNG ¢ Single Precision
DEFDBL r

Double Precision -

where r is a letter or range of letters to be designated.
Examples:

15 DEFINT I-NW Variable names beginning with the let-
ters I-N are to be of integer type.

20 DEFDBL D Variable names beginning with D are to
be of double vrecision type.

If no typve definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

2) Integer variables should be wused wherever ©vossible
since they take the 1least amount of space in memory and
integer oarithmetic is much faster than single ovrecision
arithmetic.

Care must be exercised when single orecision and double
precision numbers are mixed. Since single precision numbers
can have more significant digits than will be ©ovrinted, a
double ©oprecision variable set to a single vnrecision value may
not orint the same as the single precision variable.

19 a=1.41 single pnrecision value
20 B4=A*10:C4=CDBL(A)*10# convert to double precision

BASIC 4.1 13

April, 1977

30 PRINTA;B#;C#;CDBL(A) in various ways
RUN

1.91 10.10000038146973 10.09999990463257 1.409999990463257
OK

In order to assure that double precision numbers will orint
the same as single ovrecision, the VAL and STRS functions
should be used. For example:

16 A=1.401
20 B#=VAL(STRS (A)) :C#=8B#*10%
39 PRINT A;B#;C#
RUN
1.61 1.1 10.1
CK

C. Array Variables - The DIM Statement. It 1s often
advantageous to refer to several variables by the same name.
In matrix calculations, for example, the computer handles each
element of the matrix separately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC provides subscripnted variables, or
arrays. The form of an array variable is as. follows:

VV (<subscript>{,<subscripot>...])

-where VV is a variable name and the subscriots are integer
exoressions. Subscripts may be enclosed in parentheses or
sguare brackets. An array variable may have only one
dimension 1in 4K, but in all other versions of Altair BASIC it
may have as many dimensions as will fit on a single line. The
smallest subscript is zero. Examples:

A(5) The sixth element of arrav A. The first
element is A(9).

ARRAY(I,2*J) The address of this element in a two-
dimensional array is determined by ,
evaluating the expressions in parenthe~
ses at the time of the reference to the
array and truncating to integers. 1If
I=3 and J=2.4, this refers to ARRAY(3,4).

The DIM statement allocates storage for array variables and
sets all array elements to =zero. The form of the DIM
statement is as follows:

DIM VV(<subscriot>[,<subscript>...])

where VV is a legal variable name. Subscript is an integer
expression which specifies the largest vossiblz subscript for
that dimension. Each DIM statement mzay aovply to more than one
array variable. Some examples follow:

14 BASIC 4.1

April, 1977

113 DIM A(3), DS$(2,2,2)
114 DIM R2%(4), B(19)
115 DIM Q1(N), Z2#(2+I) Arrays may be dimensioned dy-

namically durinag program
execution. At the time the

DIM is executed, the expression
within the parentheses is e-
valuated and the results trun-
cated to integer.

If no DIM statement has been executed before an arrav variable
is found in a program, BASIC assumes the variable to have a
maximum subscript of 18 (ll elements) for each dimension in
the reference. A 38 or SUBSCRIPT QUT OF RANGE error message
will be issued if an attempt is made to reference an array
element which is outside the space allocated in its associated
DIM statement. This can occur when the wrong number of
dimensions is wused in an array element reference. For
example:

3¢ LET A(l,2,3)=X when A has been dimensioned by
19 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM statement
for an array is found after that arrav has been dimensioned.
This often occurs when a DIM statement appears after an array
has been given its default dimension- of 14. -

d. Overators and Precedence. Altair BASIC provides a
full range of arithmetic and (exceot in 4X) logical overators.
The order of execution of owperations in an expression is
always according to their precedence as shown in the table
below. The order can be specified explicitlv bv the wuse of
parentheses in the normal algebraic fashion.

Table g£ Precedence

Operators are shown here in decreasing order of ©vprecedence.
Overators listed in the same entrv in the table have the same
precedence and are executed in order from left to right in an
expression.

1. Expressions enclosed in parentheses ()
2. " exponentiation (not in 4K). Any number to the =zero
power is 1. Zero to a negative power causes a /§ or

DIVISION BY ZERO error.,

3. -~ negation, the unary minus overator

BASIC 4.1 15

April, 1977

16

4, *,/ multiplication and division

5. \ integer division (available in Extended and Disk
versions, see section 5-2)

6. MOD (available in Extended and Disk versions. See
section 5-2)

7. +,- addition and subtraction

8. relational operators
= equal
<> not equal .
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or equal to

(the logical operators below are not available in 4K)

9. NOT logical, bitwise negation
1d. AND logical, bitwise disjunction
11. OR logical, bitwise conjunction

(The logical operators below are available only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR
13, EQV logical, bitwise equivalence
14. IMP logical, bitwise implication

In 4K Altair BASIC, relational operators may be used only once
in an IF statement. In all other versions, relational
cverators may be used 1in any expressions. Relational
expressions have the value either of True (-1) or False (9).

e. Logical Operations. Loagical operators may be used
for bit manipulation and Roolean algebraic functions. The
AND, OR, NOT, XOR, EQV and 1IMP operators convert their
arguments into sixteen bit, signed, two's comolement integers
in the rangs -32768 to 327547, After the operations are
verformed, the result is returned in the same form and range.
If the arguments are not in this range, an FC or ILLEGAL
FUNCTION CALTL error message will be printed and execution will
be terminated. Truth tables for the logical overators apvear
oelow. The overations are verformed bitwise, that 1is,

3ASIC 4.1

April, 1977

corresponding bits of each argument are examined and the
result computed one bit at a time. 1In binary operations, bit

7 is the most significant bit of a bvte and bit @ is the least

significant.
AND
X Y X AND Y
1 1 1
1 g @
@ 1]
g g 7]
OR
X Y X OR Y
1 1 1
1 @ 1
g 1 1
(]] 2
NOT
X NOT X
1]
a 1
X0OR
X Y X XOR Y
1 1]
1] 1
2 1 1
) @ -9 ’ })
EQV
X Y X EQV Y .
1 1 1
1 g]
@ 1 2
]] 1
IMP
X Y X IMP Y
1 1 1
1]]
g 1 1
]] 1
Some examples will serve to show how the loagical operations
work:
63 AND 16=16 63=binary 111111 z2nd lé=binary 19000,
so 63 AND 15=16
15 AND 1l4=14 15=binary 1111 and l4=binarv 1119,
so 15 AND ld=binary 1119=14.
-1 AND 8=8 -l=binary 1111111111111111 and 8=binarvy
1000, so -1 AND 8=8,
4 OR 2=6 4=binary 196 and 2=binaryvy 19, so
4 OR 2=binarvy 1180=6.
19 OR 10=18 binary 1618 OR'd with itself is 1d149=
BASIC 4.1 17

April, 1277

18

19.

-1 OR =-2=-1 -l=binary 1111111111111111 and =2=
1111111111111110, so -1 OR =-2=-1,
NOT f=-1 the bit complement of sixteen zeros

is sixteen ones, which is the two's
complement revresentation of -1.

NOT X=-(X+1) the two's complement of any number is
the bit complement plus one.

A typical use of logical operations is 'masking', testing a
binary number for some predetermined vattesrn of bits. Such
numbers might come from the computer's input ports and would
then reflect the condition of some external device. Further
applications of logical overations will be considered in the
discussion of the IF statement. :

f. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression 1is any valid
Altair BASIC arithmetic or, exceot in 4X, loqgical or string
expression. Examples:

1004 LET V=X ’ . - .
11¢ LET I=I+1 =~ the '=' sign here means 'is revlaced
by

The word LET in a LET statement 1s optional, so algebraic
equations such as:

128 V=.5%(X+2)
are legal assignment statements.

A SN or SYNTAX ERROR message 1is orinted whan BASIC
detects incorrect form, 1illegal characters in a line,
incorrect punctuation or missing parentheses. An OV or
OVERFLOW error occurs when the result of a calculation is too
large to be represented by Altair BASIC's number formats. All
numbers must be within the range 1E-38 to 1.79141E38 or -1E-38
to =-1.78141E38. An attemnt to divide by zero results in the
/@ or DIVISION BY ZERO error message.

For a discussion of strings, string variables and string
overations, see section 4.

BASIC 4.1

spril, 1977

2-2. Branching, Looos and Subroutines.

a. Branching. 1In addition to the sequential execution
of program 1lines, BASIC provides for changing the order of
execution. This orovision is called branching and 1is the
basis of programmed decision making and loops. The statements
in Altair BASIC which provide for branchina are the GOTO,
IF...THEN and ON...GOTO statements.

1) GOTO is an unconditional branch. Its form 1is as
follows:

GOTO <mmmmm>
After the COTO statement is executed, execution continues at
line number mmmmm.

2) IF...THEN is a conditional branch. Its form 1s as
follows:

IF<expression>THEN<mmmmm>

where the expression is a wvalid arithmetic, relational or,
except in 4X, logical exoression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues at
line mmmmm. Otherwise, execution resumes at the next line
after the IR...THEN statement. -

An alternate form of the 1IF...THEN statement 1is as
follows: '

IF<expreséion>THEN<statement>
where the statement is any Altair BASIC statement. Examples:

19 IF A=10 THEN 49 If the expression A=19 is
true, BASIC branches to line 40. Otherwise, execution
vroceeds at the next line.

15 IF A<B+C OR X THEN 1808 The expression after IF is
evaluated and if the wvalue of the expression is
non-zero, the statement branches to 1line 144.
Otherwise, execution continues on the next line.

280 IF X THEN 25 If ¥ is not zero, the statement
oranches to line 25.

39 IF X=Y THEN PRINT & 1If the exvression X=Y is true
(its wvalue 1is non-zero), the PRINT statement 1is
executed. Otherwise, the PRINT statement 1is not
executad. In either case, execution <continues with
the line after the IF...THEN statement.

35 IF X=Y+3 GOTO 39 Equivalent to the correspvonding
IF...THEN statement, excert that GOTD must be followed
bv a line number and not by another statement.

BASIC 4.1 19

April, 1977

Extended and Disk versions of Altair BASIC orovide an expanded
IF...THEN statement of the form

IF<expression>THENKYY>ELSE<ZZ>

where YY and Z2Z are valid 1line numbers or Altair BASIC
statements. Examples:

IF X>Y THEN PRINT “GREATER" ELSE PRINT "“NOT GREATER"

If the expression X>Y is true, the statement after THEN is
executed. Otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT "“ERROR"

If the expression X=2*Y is true, BASIC branches to 1line 5.
Otherwise, the PRINT statement is executed. Extended and Disk
Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is limited only by the length of the line.
Thus, for example:

IF X>Y THEN PRINT "GREATER" ELSE IF ¥>X<line feed>
THEN PRINT “LESS THAN" ELSE PRINT "EQUAL"

and - -

IF X=Y THEN IF Y>Z THEN PRINT “X>2" ELSE PRINT "¥<=2" <line feed>
ELSE PRINT "X<>Y* :

are legal statements. If a line does not <c¢ontain the same
number of ELSE and THEN clauses, each ELSE is matched with the
closest unmatched THEN. Example:

IF A=8 THEN IF B=C THEN PRINT "A=C" ELSE PRINT "“A<>C"
will not orint "A<>C" when A<>B,

3) ON...GOTO (not in 4K) provides for another tvoe of
cenditional branch. 1Its form is as follows:

ON<expression>GOTO<list of line numbers>

After the value of the expression is truncated to an integer,
say I, the statement causes BASIC to branch to the line whose
number is Ith in the list. The statement may be followed by
as many line numbers as will fit on one line. If I=0 or is
greater than the number of lines in the list, execution will
continue at the next line after the ON...GOTO statement. I
must not be less than zero or greater than 255, or 2n FC or
ILLEGAL FUNCTION CALL error will result. '

BASIC 4.1

April, 1977

b. Loops - FOR and NEXT. It 1is often desirable to
perform the same calculations on different data or
repetitivelv on the same data. For this ourvose, Altair BASIC
provides the FOR and NEXT statements. The form of the FOR
statement is as follows:

FOR<variable>=<X>TO<KY> [STEP <2>]

where X,Y and Z are expressions. When the FOR statement |is
encountered for the first time, the expressions are evaluated.
The variable is set to the value of X which 1is <called the
initial wvalue. BASIC then executes the statements which
follow the FOR statement in the usual manner. When a NEXT
statement 1s encountered, the step Z is added to the variable
which is then tested against the final value Y. If 2, the
step, 1is positive and the variable is less than or equal to
the final value, or if the step is negative and the wvariable
is greater ‘than or egqual to the final value, then BASIC
branches back to the statement immediately following the FOR
statement. Otherwise, execution proceeds with the statement
following the NEXT. If the step 1is not specified, it 1is
assumed to be 1. Examples:

14 FOR I=2 TO 11 The loop is executed 10 times with

the variable I takinag on each in-
’ tegral value from 2 to 11.

20 FOR V=1 TO 9.3 This loop will execute 9 times un-
til V is greater than 9.3

38 FOR V=1@*N TO 3.4/Z STEP SQR(R) The initial, final
and steo expressions need not be
integral, but thev will be eval-
uated only once before loop-
ing begins.

49 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR...NMEXT loops may be nested. That is, BASIC will execute a
FOR...NEXT 1loop within the context of another 1loon. An
example of two nested loopos follows: .

1¢8 FOR I=1 TO 19
129 FOR J=1 TO I

13¢ PRINT A(I,Jd)

148 NEXT J

154 NEXT I

Line 130 will orint 1 =lement of A for I=1, 2 for I=2 and so
on. If 1loops are nested, they must have different looo
variable names. The NEXT statement for the inside 1locp
variable (J 1in the example) must avnear dbefore that for the
outside variable (I).. Anvy number of 1levels of nesting 1is
allowed uo to the limit of available memorvy.

21

3ASIC 4.1

April, 1977

22

The NEXT statement is of the form:

NEXT[<variable>[,<variable>...}]

‘where each variable is the loop variable of a FOR 1loop for

which the NEXT statement is the end voint. In the 4K version,
the only form allowed is NEXT with one variable. In all other
versions, NEXT without a variable will match the most recent
FOR statement. In the case of nested 1loowms which have the
same end point, a single NEXT statement may be used for all of
them, except in 4K. The first variable in the 1list must be
that of the most recent 1loop, the second of the next most
recent, and so on. If BASIC encounters a NEXT statement
before its corresponding FOR statement has been executed, an
MF or NEXT WITHOUT FOR error message is issued and execution
is terminated.

C. Subroutines - GOSUB and RETURN Statements. If the
same operation or series of onerations are to be performed in
several places in a program, storage space regquirements and
programming time will be minimized by the use of subroutines.
A subroutine is a series of statements which are executed in
the normal fashion wupon being branched to by a GOSUB
statement. Execution of the subroutine is terminated by the
RETURN statement which branches back to the statement after
the most recent GOSUB. The format of the GOSUB statement is
as follows:

GOSUBKline number>

where the line number 1is that of the first 1line of the
subroutine, A subroutine may be called from more than one
place in a program, and a subroutine may contain a c¢all to
another subroutine. Such subroutine nesting is limited only
by available memory.

Except in the 4K version, subroutines may be branched to
conditionally by use of the ON...GOSUB statement, whose form
is as follows:

ON <expression> GOSUR <list of line numbers>

The execution is the same as ON...GOTO except that the 1line
numbers are those of the £first 1lines of subroutines.
Execution continues at the next statement after the ON...GOSUB
upon return from one of the subroutines.

4. Memory Limitations. While nesting in loows,
subroutines and branching is not limited by BASIC, memory size
limitations restrict the size and complexity of orograms. The
OM or OUT OF MEMORY error message is issued when a oroaram
requires more memorv than is available. . See Aopendix C for an

BASIC 4.1

April, 1977

explanation of the amount of memorv required to run programs.

2=3. Input/Output

a. INPUT. The INPUT statement causes data input to be
requested from the terminal. The format of the INPUT
statement is as follows:

INPUT<1list of variables>

The effect of the INPUT statement is to cause the values tvped
on the terminal to be assigned to the variables in the list.
When an INPUT statement is executed, a question mark (?) is
printed on the terminal signalling a request for information.
The operator types the reguired numbers or strings (or, in 4K,
expressions) separated by commas and types a carriage return.
If the data entered is invalid (strings were entered when
numbers were requested, etc.) BASIC prints 'REDO FROM START?'
and waits for the correct data to be entered. If more data
was requested by the INPUT statement than was typed, ?? is
printed on the terminal and execution awaits the needed data.
If more data was typed than was requested, the warning 'EXTRA
IGNORED' is printed and execution proceeds. After all the
requested data is input, execution continues normally at the
statement following the INPUT. Except in 4K, an optional
prompt string may be added to an INPUT statement.

INPUT["“<prompt string>";l<variable list>

Execution of the statement causes the prompt string to be
printed before the guestion mark. Then 3ll operations vproceed
as above. The prompt string must be enclosed in double
quotation marks (") and must be separated from the variable
list by a semicolon {(;). Example:

100 INPUT “WHAT'S THE VALUE";X,Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are tyved after the ? Excent
in 4X, a carriage return in resvmonse to an INPUT statement
will cause execution to continue with the wvalues of the
variables in the variable list unchanged. 1In 4X, a SN error
results.

5. PRINT. The PRINT statement causes the terminal to
print data. The simplest PRINT statement is:

PRINT

BASIC 4.1 23

April, 1977

24

which prints a carriage return. The effect is to skip a line.
The more usual PRINT statement has the following form:

PRINT<K1list of expressions>

which causes the values of the expressions in the list to be
printed. String literals may be orinted if they are enclosed
in quotation marks (").

The position of orinting is determined by the punctuation
used to separate the entries in +the 1list. Altair BASIC
divides the printing line into zones of 14 spaces each. A
comma causes printing of the value of the next expression to
begin at the beginning of the next 14 column zone. -
semicolon (;) <causes the next printing to begin immediately
after the 1last wvalue printed. If a comma or semicolon
terminates the list of expressions, the next PRINT statement
begins printing on the same line according to the conditions
above. Otherwise, a carriage return is printed.

c. DATA, READ, RESTORE

1) The DATA statement. Numerical or string data needed
in a program may be written into the program-statements
themselves, input from peripheral devices or read £from DATA
statements. Thé format of the DATA statement is as follows:

DATA<list>

where the entries 1in the 1list are numerical or string
constants separated by commas. In 4K, expressions may also
appear in the list. The effect of the statement is to store
the 1list of values in memory in coded form for access by the
READ statement. Examples:

19 paTa 1,2,-1E3,.04

29 DATA " LOO", MITS Leading and trailing spaces in
string values are suporessed unless the string is
enclosad by double quotation marks,.

2) The READ statement. The data stored by DATA
statements 1is accessed by READ statements which have the
following form:

READ<K1list of variables>

where the entries in the list are variable names separated by
commas. The effect of the READ statement is to assian the
values in the DATA lists to the corresvonding variables in the
READ statement list. This 1is done one by one from left to
right until the READ list is exhausted. If there are more
names in the READ list than values in the DATA lists, an OD or

BASIC 4.1

April, 1977

QUT OF DATA error message is issued. If there are more values
stored in DATA statements than are read by a READ statement,
the next READ statement to be executed will begin with the
next wunread DATA 1list entry. A single READ statement may
access more than one DATA statement, and more than one READ
statement may access the data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improperly formatted DATA list. In 4K Altair BASIC, the error
message will refer to the READ statement which attempted. to
access the incorrect data. In other versions, the line number

‘in the error message will refer to the actual line of the DATA

statement in which the error occurred.

3) The RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ statement
will be the first entry of the first DATA list in the »nrogram.
This allows re-READing the data.

d. CSAVE and CLOAD (8K cassette, Extended and Disk
versions only). Numeric arrays may be saved on cassette or
loaded from cassette using CSAVE* &nd CLOAD*, The formats of
the statements are: -

CSAVE*¥<array name> ..

and
CLOAD*<array name>

The array is written out in binarv with fcur octal 218 header
bytes to indicate the start of data. These bytes are searched
for when CLOADing the array. The number of bytes written is
four plus:

8*<number of elements> for a double vprecision arrav
4*<{number of elements> for a single precision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying most
guickly, the next leftmost second, etc:

DIM A(19)
CSAVE*A

writes out A(@d),A(l),...A(1ld)

DIM A(l1@,19)
CSAVE*A

BASIC 4.1 25

April, 1977

writes out aA(96,0), A(1,0)...A(18,0),A(10,1)...A(10,10)

Using this fact, it is vossible to write a two dimensional
array and read it back in as a single dimensional array, etc.

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is not
recommended. Useless vwvalues will undoubtedlv be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K). The status of input ports can be
monitored by the WAIT command which has the following format:

WAITLI,JI>[,<K>]

where I is the number of the port being monitored and J and KX
are 1integer exoressions. The ©ovort status is exclusive ORA4
with K and the result is ANDed with J. Execution is suspended
until a non-zero value results. J pidks the bits of port I to
be tested and execution is suspended until those bits differ
from the corresvonding bits of K. Execution resumes at the
next statement after the WAIT. If K is omitted, it is assumed
tc be zero. I, J and X must be in the range 4 to 255.
Examples:

WAIT 29,6 Execution stops until either bit 1 or bit
2 of vort 29 are ecqual to 1. (Bit @ 1is
least significant bit, 7 is the most sig-
nificant.) Execution resumes at the next
statement.

WAIT 14,255,7 Execution stoos until any of the most
significant 5 bits of cort 14 are one or
any of the least significant 3 bits are

Zero. Execution resumes at the next statement.

2) POXE, PEEX (not in 4K). Data may be entered into
nemory in binary form with the POKE statement whose format is
as follows:

POKE <I,J>

BASIC 4.1

.-

April, 197

where I and J are integer expressions. POKE stores the byte J
into the location specified by the wvalue of I. 1In 8K, I must
be less than 32769. In Extended and Disk versions, I may be
in the range @ to 65535. J must be in the ranage 8 to 255. 1In
8K, data may be POKEd into memory above location 32768 by
making I a negative number. In that case, I is computed by
subtracting 65536 from the desired address. To POKE data into
location 454964, for example, I is 45000-65536=-20536. Care
must be taken not to POKE data into the storage area occupied
by Altair BASIC or the svstem may be POKEd to death, and BASIC
will have to be loaded again.

The complementary function to POKE is PEEK. The format
for a PEEK call is as follows:

PEEK (KI>)

where I is an integer expression svecifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between @
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine language subroutines.

3)00T, INP (not in 4K). The format of the OUT statement
is as follows:

ouT <I,J>

where I and J are integer expressions. OUT sends the Dbyvte
signified by J to output port I. I and J must be in the range
f to 255.

The INP function is called as follows:
INP (KI>)

INP reads a byte from vort I where I is an integer expression
in the range 4 to 255. Example:

2¢ IF INP(J)=16 THEN PRINT "ON"

3ASIC 4.1 27

April, 1977

28

3. FUNCTIONS.

Altair BASIC allows functions to be 'referenqed in
mathematical function notation. The format of a function call
is as follows:

<name> (<argument>|,<argument>...])
where the name is that of a previously defined function and
the arguments are one or more expressions separated by commas.
Only one argument is allowed in 4K and 8K. Function calls may
be components of expressions, so statements like

19 LET T=(F*SIN(T))/P and
2@ C=SQR(A"2+B"2+2*A*B*COS (T))

are legal.

3=-1. Intrinsic Functions

Altair BASIC provides several frequently used functions which
may be called from any program without further definition. A
procedure is provided, however, whereby unneeded functions may
be deleted .to save memory space. See Appendix B. For-'a list
of intrinsic.functidns, see section 6-3.

3~2. User-Defined Functions - the DEF Statement (not in 4K).

a. The DEF statement. The programmer mway define
functions which are not 1included in the list of intrinsic
functions by means of the DEF statement. The form of the DEF

‘statement is as follows:

DEF<function name> (<variable list>)=<expression>

where the function name must be FN followed by a leqgal
variable name and the entries in the variable list are 'dummv’
variable names. The dummy variables represent the argument
variables or values in the function call. 1In 8K Altair RASIC,
only one argument is allowed for a user-defined function, but
in the Extended and Disk versions, any number of arcuments. is
allowed. Anv expression may appear on the right side of the
aquation, but it must be limited to one line. User-defined
functions mav be of anv tyve in Extended and Dnisk versions,
but user-defined string functions are not allowed in 38K. 1If a
tyoe 1is specified for the function, the wvalue of the
exoression is forced to that tyme before it is returned to the
calling statement. Examples:

3ASIC 4.1

April, 1977

19 DEF FNAVE(V,W)=(V+W)/2
11 DEF FNCONS (VS,WS)=RIGHTS (VS+WS$,5) Returns the right
: most 5 characters of the concat-
enation of V$ and WS.
12 DEF FNRAD(DEG)=3.14159/184*DEG When called with the
measure of an anale in degrees,
returns the radian equivalent.

A function may be redefined by executing another DEF statement
with the same name. A DEF statement must be executed before
the function it defines may be called.

b. USR. The USR function allows <calls to assembly
language subroutines. See apvendix E.

3-3. Errors.

a. An FC or ILLEGAL FUNCTION CALL error results when an
improper call 1is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(-1)=0, for example.

2. an array subscript that is too large (>32767)

3. negative or zero arqgument for LOG

4, Negative argument for SQR .

5. A"3 with A negative and 3B not an integer

6. a call to USR with no address nvpatched £for the machine

language subroutine.

7. improper arguments to MIDS, LEFT$,RIGHTS, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRINGS, SPACES or
ON...GOTO.

b. An attemot to call a user-defined function which has
nct previously avpeared in a DEF statement will cause a IJF or
UNDEFINED USER FUNCTION error.

c. A TM or TYPE MISMATCH error will occur if a function
which expects a string argument is agiven a numeric value or
vice-versa.

BASIC 4.1 ’ 29

April, 1977

4. STRINGS

In all Altair BASIC versions except 4K, expressions may
either have numeric wvalue or may be strings of characters.
Altair BASIC provides a complete complement of statements and
functions for manipulating strinag data. Many of the
statements have already been discussed; so only their
vparticular apvlication to strings will be treated in this
section. .

4-1. String Data.

A string is a list of characters which may be from 8 to
255 characters in length. Strings mav be stated explicitly as
constants or referred to symbolically by wvariables. String
constants are delimited by quotation marks at the beginning
and end. A string variable name ends with a dollar sign ($).
Examples: V

AS="ABCD" Sets the variable AS$ to the four character
string "“ABCD"
° B9$S="14A/56" Sets the variable B9S to the six character
s string “14A/56"
FOOFOO$="ES" Sets the variable FOOFO0S to the two charac-
. ter string "ES$*"

Strings input to an INPUT statement need not be surrounded by
quotation marks. '

tring arrays mdy be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of a
string array is a string which may be up to 255 characters
long. The total number of string characters in use at anvy
point in the execution of a program must not exceed the total
allocation of string space, or an 0S or OUT OF STRING SPACE
error will result. String svace is allocated by the CLEAR
command which is explained in section 6-2.

4-2, String Operations.

a. Comparison Overators. The comparison operators for
strings are the same as those for numbers:

= eqgual

<> not equal

< less than

> areater than

=< ,<= less than or equal to
=>,>= greater than or equal to

Comvarison is made character by character on the basis of

BASIC 2.1

April, 1977

ASCII codes until a difference is found. If, while comparison
is proceeding, the end of one string is reached, the shorter
string 1is considered to be smaller. ASCII codes may be found
in Appendix A. Examples:

A<LZ ASCII A is 665, Z is 894

1<a ASCII 1 is 049

“ A">"A" Leadinag and trailing blanks are significant
in string literals.

b. String Expressions. String expressions are composed
of string literals, string variables and string function calls
connected by the concatenation operator (+). The <effect of
the catenation operator is to add the string on the right side
of the operator to the end of the strina on the left. If the
result of concatenation is a string more than 255 characters
long, an LS or STRING TOO LONG error message will ©be issued
and execution will be terminatead.

c. Input/Output. The same statements used for inout and
output of normal numeric data may also be used for strina
data. . .

1) INPUT, PRINT. The INPUT and PRINT statements read and
write strings on the terminal. Strings need not be enclosed
in gquotation marks, but if they are not, leading blanks will
be ignored and the string will be terwminated when the flrst
comma or colon is encountered. Examples:

1¢ INPUT ZOO0S,FO0S Reads two strings

29 INPUT XS Reads one string and assiagns
it to the variable XS.

33 PRINT XS$,"HI, THERE" Prints two strings, including

all spaces and ounctuation
in the second.

2) DATA, READ. DATA and READ statements for string data
are the same as for numeric data. For format conventions, sce
the explanation of INPUT and PRINT above.

4-3, String Functions.

The format for intrinsic string £function <calls 1is the
same as that for numeric functions. For the list of string
functions, see . section 6-3. Soecial wuser-defined string
functions are 2llowed in Extended and Disk versions and mavy be
defined by the use of the DEF statement (see section 3-2).
String function names wmust end with a dollar sian.

BASIC 4.1 31

April, 1877

32

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC ©vrovide
several statements, operators, functions and commands which
are not available either in the 4K or 8K versions. For
clarity, these features are grouped together in this section.
Some modifications to existing 4K and 8K features, such as the
IF...THEN...ELSE statement and number typing facilities, have
been discussed in conjunction with the other versions. Check
the index for references to those features.

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from a
program and allows their space in memory to be used for other
ourposes. The format of the ERASE statement is as follows:

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by commas. ERASE will only operate on arravs and
not arrav elements. If a name apvears in the list which 1is
not used 1in the program, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted 1in an ERASE statement may be
dimensioned again, but the o0ld values are lost.

Example:

19 DIM A(5,5) etc.

60 ERASE A
78 DIM A(199)

b. LINE INPUT. It is often desirable to inout a whole
line to a string variable without use of gquotation marks and
other delimiters. LINE INPUT worovides this facilitv. The
format of the LINE INP%E statement is as follows:

LINE INPUT [“<vrompt string>"];<string variable name>

The orompt string is a string literal that is orinted on the
terminal before inout 1is acceotad. A guestion mark is not

printed unless it is contained 1in the vcrompot strina. All
input from the end of the ovrompt strinag to the carviage return
is assianed to the string variable. A LINME INWNPUT may be

escaped by tyvoing Control/C. At that opoint, BASIC returns to
command level and orints OK. Execution may bhe resumed at - the
LINE INPUT by typing CONT. LINE INPUT destrovs the inout
buffer, so the command may not be edited by Control/A for

3ASIC 4.1

9

-
~1
=1

April,

re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables may
be elements of arrays. If one or both of the wvariables are
non-array variables which have not had values assigned to
them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same type or a TYPE MISMATCH error
will result. Example:

19 INPUT FS$,LS
26 SWAP FS3,LS
3¢ PRINT FS,LS

RUN
?FIRST,LAST Data input

LAST FIRST Computer prints

d. TRON, TROFF. As a debugging aid, two statements are
provided to trace the execution of program instructions. When
the trace flag is turned on by the TRON statement, the number
bf each line in the vroaram is printed as it is executed. The
numbers avpear enclosed in sguare brackets ([{]). The function
is disabled bv execution of the TROFF statement. Example:

TRON executed in direct mode

OK printed by computer

19 PRINT 1:PRINT "A" typed bv programmer

29 STOP

RUN

[1g] 1 , line numbers and outout printed bv
A comouter.

(28]

BREAK IN 24
The NEW command will also turn off the trace flag.

e, IF...THEN...ELSE. See section 2-2.

f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console terminal
to be switched from one I/0 port to another. The format of

the statement is:

CONSOLE <I/O port number>,<{switch register setting>

BASIC 4.1 33

April, 1977

34

The <I/0 port number> is the hardware port number of the low
order (status) port of the new I/0 board. This value must be.
a numeric expression between 8 and 255 inclusive. If it is
not in this range, an ILLEGAL FUNCTION CALL error will occur.
The <switch register setting> is also a value between § and
255 inclusive which specifies the type of I/0 port (SIO, PIO,
4PI0 etc) being selected. Avpvrovriate values of the <switch
register setting> may be found in Appendix B in the table of
sense switch settings or in the table below.

Table of values for <switch register setting>:

I/0 Board Sense Switch
Setting

2SI0 with 2 stop bits
2S8I0 with 1 stoo bit
SIO

ACR

4PIO

PIO

HSR .
non-standard terminal
no terminal

MW S

=

WIDTH Statement

The WIDTH statement sets the width 1in characters of the
printing terminal line. The format of the WIDTH statement is
as follows:

WIDTH <integer expression>
Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h., Error Trapoing. Extended and Disk Altair BASIC make
it possible for the user to write error detection and handling
routines which can attemot to recover from errors or ©provide
more complete exvlanation of the cause of errors than the
simple error messages. This facilityv has been added to Altair
BASIC through the use of the OMN ERROR GOTO, RESUME and ERROR

.BASIC 4.1

April, 1977

statements and with the ERR and ERL variables.

1) Enabling Error Trapping. The ON ERROR GOTO statement .
specifies the 1line of the Altair BASIC program on which the
error handling subroutine starts. The format is as follows:

ON ERROR GOTO <line number>

The ON ERROR GOTO statement should be executed before the user
expects any errors to cccur., Once an -ON ERROR GOTO statement
has been executed, all errors detected will cause BASIC to
start execution of the svecified error handling routine. If
the <line number> specified in the ON ERROR GOTO statement
does not exist, an UNDEFINED LINE error will occur.

Example:

19 ON ERROR GOTO 10040

2) Disabling the Error Routine. ON ERROR GOTO g disables
trapping of errors so any subseguent error will cause BASIC to
print an error message and stoo proqram execution. If an
ON ERROR GOTO @ statement appears in an error trapoing
subroutine, it will cause BASIC to stoo and ©Pprint the error
message which <causeé the trap. It is recommended that® all
error trapping subroutines execute an OM ERROR GOTO 4
subroutine if an error is encountered for which they have no
recovery action. '

NOTE

If an error occurs during the execution of an error
trap routine, the system error messadqe will be printed
and execution will be terminated. Error trapoing does
not trap errors within the error trav routine.

3) The ERR and ERL Variables. When the error handling
subroutine 1is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section &-5 for a detailed discussion of
each of the errors and error messaqges.

Code Error
1 NEXT WITHOUT FOR
2 SYNTAX ERROR
35

BASIC 4.1]

April, 1977

36

RETURN WITHOUT GOSUB
OUT OF DATA

ILLEGAL FUNCTION CALL
OVERFLOW

OUT OF MEMORY
UNDEFINED LINE
SUBSCRIPT QUT OF RANGE

WO 0~ & W

10 REDIMENSIONED ARRAY

11 DIVISION BY ZERO

12 ILLEGAL DIRECT

13 TYPE MISMATCH

14 OUT OF STRING SPACE

15 STRING TOO LONG .

16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE

18 UNDEFINED USER FUNCTION
19 NO RESUME

20 MISSING OPERAND

21 RESUME WITHOUT EFROR

22 UNPRINTABLE ERROR

23 LINE BUFFER OVERFLOW

Disk Errors

39 FIELD OVERFLOW

51 INTERNAL ERROR -
52 BAD FILE NUMBER

53 FILE NOT FOUND

54 BAD FILE MODE

55 FILE ALREADY OPEN

56 DISK NQT MOUNTED

57 DISK I/O ERROR

58 FILE ALREADY EXISTS

59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED

61 DISK FULL

62 INPUT PAST END

63 ; BAD RECORD NUMEER

64 BAD FILE NAME

65 MODE-MISMATCH

66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES

68 QUT OF RANDOM BLOCKS

The ERL variable contains the line number of the 1line

where the error was detected. For inst2nce, if the error
occured in line 1068, ERL will be ecual to 1364. If the
statement which caused the error was a direct mode statement,
ERL will be egqual to 65535 decimal. To test 1f an error

BASIC 4.1

April, 1977

occurred in a direct statement, use
IF 65535=ERL THEN ...

In all other cases, use
IF ERL=<line number> THEN...

If the line number is on the left of the equation, it c¢annot
be renumbered by RENUM (see section l1l-la).

4) Disk Error Values - The ERR function. The ERR
function returns the parameters of a DISK I/0 ERROR. ERR(%)
returns the number of the disk, ERR(1l) returns the track
number (9-76) and ERR(2) returns the sector number (9-31).
ERR(3) and ERR(4) contain the 1low and high order bytes,
resvectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR.may apovear to the left of the =
sign in a LET or assignment’ statement.

5) The RESUME statement. The RESUME statement is used to
continue execution of the BASIC oprogram after the error
recovery procedure has been performed. The user has three
options. The user may RESUME execution at the statement that
caused the error, at the statament after the one that caused
the error or at some other line. To RESUME execution at the
statement which caused the error, the user should use:

RESUME
or
RESUME @

To RESUME execution at the statement immediately after the one
which caused the error, the user should use:

RESUME NEXT

To RESUME execution at asline dffarent than the one where the
error occurred, use:

37

38

RESU

Where <1i

6) E
how a sim

100
200
218
220
230
509
5149
520
5360

7) T
an error
provided.
the wuser
convenien
described

ERRO
When def
greater t
messages
codes sho
assure fu
in an ERR
decimal,
course, t
or other
statement
error te
to be pri

ME <line number>
ne number> is not egual to zero.

rror Routine Example. The following example shows
ple error trapping subroutine overates.

ON ERROR GOTO 5849

INPUT “WHAT ARE THE NUMBERS TO DIVIDE";X,Y
Z2=X/Y .
PRINT "QUOTIENT IS";2

GOTO 209

IF ERR=11 AND ERL=210 THEN 520

ON ERROR GOTO @ ,

PRINT “YOU CANT HAVE A DIVISOR OF ZERO!*“
RESUME 200

he ERROR statement. In order to force branching ¢to
trapping routine, an ERROR statement has been
The primary use of the ERROR statement is to allow
to define his own error codes which can then
tly be handled by a centralized error trap routine as
above. The format of the ERROR statement is:

R <integer expresgion>

ining error codes, values should be micked which are
han the ones used by Altair BASIC. Since more error
may be added to Altair BASIC, user-defined error
uld be assigned the highest available numbers ¢to
ture compatibility. If the <numeric expression> used
OR statement is less than gzero or areater than 255
an ILLEGAL FUNCTION CALL -error will occur. Of
he ERROR statement may also be used to force SYNTAX
standard Altair BASIC errors. Use of an ERROR
to force printout of an srror message for which no
xt i1s defined will cause an UNPRINTABLE ERROR message
nted out. o

5-2., Extended Overators.

Two
Extended

2.
(backeslas
truncates

A\B=

overators are provided that are exclusive to the
and Disk versions.

Integer Division. 1Integer division, denoted by \
h), forces its arguments to integer form and
the gquotient to an integer. More nreciselv:

FIX(INT(A)/INT(3))

BASIC 4.1

\pril, 1877

Its precedence is just after multiplication and floating point
divison. Integer division is approximately eight times as
‘fast as standard floating point division.

b. Modulus Arithmetic - the MOD operator. A MOD B gives
the ‘'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)~-(IWT(B)* (A\B))
If B=@, a DIVISION BY ZERO error occurs. The pvprecedence of

MOD is just below that of integer division.

5-3. Extended Functions.

a. Intrinsic Functions. Extended and Disk Altair BASIC
orovide several intrinsic functions which are not available in
the other versions. For a 1list of these functions and a
description of their use, see section 6-3.

b. The DEFUSR statement. Up to ten assembly language
subroutines may be defined by means of the DEFUSR statement
whose form is as follows:

o DEFUSR[<digit- @ through 9>]=<integer 2xvression>
i :)

Example: ..
DEFUSR1=&100000

DEFUSR2=31096

DEFUSR9=ADR

The <integer expression> is the starting address of the USR
routine svecified. When the USR subroutine is entered, the A
register contains the type of the argqument which was given to
the USR function. This is also the length of the descriptor
for that argument type:

Value in A Meaning)

2 Two bvte signed two's complement integer.

3 String.

4 Single vprecision four byte floating voint number.
8 Double precision floating point number.

When the USR subroutine is entered, the [H,L] reagister pair
contains a vointer to the floating point accumulator (FAC).
The [H,L] registers contain the address of FaAC-3.

If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3: Lowest 8 bits of mantissa.
£ FAC=2: Middle 8§ bits of mantissa.

3ASIC 4.1 39

April, 1977

FAC=1: Highest 7 bits of mantissa with hidden (implied)
leading one. Bit 7 is the sign of the number (9@
positive, 1 negative).

FAC: Exponent excess 200 octal. If the contents of FAC is 204,
the exponent is 9. If contents of FAC is 8,the number is
Zero.

If the argument is double precision floating point, the FAC=-7
to FAC-4 contain four more bytes of mantissa, low order byte.
in FAC-7, etc. 1If the argument is an integer, FAC-3 contains
the 1low order byte and FAC-2 contains the high order byte of
the signed two's complement value. If the argument 1is a
string, [D,E] ©points to a string descripmtor of the araument,
whose form is: «

Byte Use
g Length of string 8-255 decimal.
1-2 Sixteen bit address pointer to first byte of

strings text in memory (Caution - may point into
program text if argument is a string literal).

The string returned by a call to USR with a string argqument is
the string the user's routine sets up in the descriptor.
Modifying [D,E] does not affect the returned string. For
example, C$=USR(AS) results in C§$ and AS$ being set to the same
string. The statement CS$=USR(AS+" ") avoids modifying AS
since the wuser's routine modifies the descriptor of the
temporary string AS+" “.

4 string returned by the wuser's routine should lie
withing the =storage area occupied by the argument string.
Increasing the length of a string in a user's routine 1is
guaranteed to cause trouble.

Normally, the value returned by a USR function will be
the same tyve (integer, string, single or double precision
floating point) as the argument which was ©passed to it.
However, calling the MAKINT routine whose address is stored in
location 6 will return the integer in [H,L] as the wvalue of
the function, forcing the value returned by the function to be
integer. Execute the following sequence to return from the
function:

PUSH H ; SAVE VALUE TO BE RETURNED
LHLD 6 ;GET ADDRESS OF MAKINT ROUTINE
XTHL ; SAVE RETURN ON STACK &

;GET BACK [H,L]
RET ; RETURN

The argument of the function mav be forced to an integer, no
matter what its type by <c¢calling the FRCINT routine whose

3ASIC 4.1

April, 1977

address is located in location 4 to get the integer wvalue of
the argument in [H,L]:

LXI H,SUBl ;GET ADDRESS OF SUBROUTINE
; CONTINUATION

PUSH H ;PLACE ON STACK

LHLD 4 ;GET ADDRESS OF FRCINT

PCHL ;CALL FRCINT

SUB1: cevos

5-4, The EDIT Command.

The EDIT command allows modifications and additions to be
made to existing program lines without having to retype the
entire line each time. Commands typed in the EDIT mode are,
as a rule, not echoed. That is, thev usually do not appear on
the terminal screen or printout as they are typed. Most
commands may be preceded by an optional numeric repetition
factor which may be used to reveat the command a number of
times. This repetition factor should be in the range @ to 255
(0 is eguivalent to 1l). TIf the revetition factor is omitted,
it is assumed to be 1. 1In the following examples, a lower
case “n" before the command stands for the repetition factor.

* In the following description of the EDIT commands, the
“cursor* refers to a pointer which is positioned at a
character in the line being edited.

To EDIT a line, tyve EDIT followed by the number of the
line and hit the carriage return. The line number of the line
being EDITed will be printed followed by a space. The cursor
will now be vositioned to the left of the first character in
the line.)

NOTE

The best way of gettinag the "feel" of the EDIT command
is to try EDITing a few lines yourself.

If a command not recognized as .an EDIT command is entered, the
computer orints a bell (control/G) and the command is ignored.

In the following examvles, the lines 1labelled *“computer
orints" show the aovearance of the line after each command.

a. Moving the Cursor. Tvpina a space moves the cursor
to the right and causes the character passed over to be
printed. A number preceding the space (n<space>) will cause

3ASIC 4.1 4l

April, 1o7T

42

the cursor to pass over and print out n characters. Typing a
Rubout causes the immediatelv previous character to be printed
effectively backsvacing the cursor.

b. 1Inserting Characters

WARNINGS:

Character insertion is stopped by tvoing Escape
(or Altmode on some terminals). Control/C will not
interrupt the EDIT command while it is in Insert mode,
but will be inserted into the edited line. Therefore,
Control/C should not be used in the EDIT command.

It is possible using EDIT to create a line which,
when 1listed with its line number, is longer than 72
characters. Punched vaper tapes containing such lines
will not read proverly. However, such lines may be
CSAVEd and CLOADed without error.

I Inserts new characters into the line being edited.
: Each character typed after the I is 1inserted at the
current cursor ©vosition and orinted on the terminal.
Typing Escave (or Altmode on some terminals) stoops
character insertion. 1If an attempt is made to insert
a character that will make the line lonager than 255
characters, a Control/G (bell) is sent to the terminal

and the character is not vrinted.

A backarrow (or Rubout) tvoed during an insert command
(or=) will delete the character to the left of the cursor.
Characters up to the beginning of the line mav be deleted in

- this manner, and a backarrow will be echoed for each character

deleted. However, if there are no characters to the 1left of
the <cursor, a bell 1is echoed instead of a backarrow. TIf a
carriage return is tyved during an insert command, it is as if
an escape and then carriage return were tvoed. That is, 2all
characters to the right of the cursor will be printed and the
EDITed line will revlace the original line.

X X is similar to I, excevt that all characters to
the right of the cursor are vrinted, and the cursor
moves to the end of the line. At this point, it will
automatically enter the insert mode (see I command).
X 1is most useful when new statements are to be added
to the end of an existing line. For example:

BASIC 4.1

April, 1977

C.

User types EDIT 50 (éarriage return)

Computer prints 5@

User types X

Computer prints 50 X=X+1

User types :Y¥=Y+1 (CR)
Computer prints 50 X=X+1l:Y¥=Y+1

In the above example, the original line #50 was:
50 X=X+1

The new line #50 now reads:

50 X=X+1l:¥=v+l

is the same as X, except that all characters to

the right of the cursor are deleted (they will not be
printed). The 1insert mode (see I command) will then
automaticallv be entered. H is most useful when the
last statements on a line are to be revlaced with new
ones.

Deleting Characters .

nD deletes n characters to the right of the cursor.
If n is ommitted, it defaults to 1. .If there are less
than n characters to _the right of “the cursor,
.characters will be deleted only to the end of the
line. The cursor is positioned to the right of the
last character deleted. The characters deleted are
enclosed in backslashes (\). For example:

User types 29 X=X+1:REM JUST INCREMENT X
User tyves EDIT 20 (carriaqge return)
Computer prints 20

User types 60 (carriage return)

Computer orints 20 \X=X+1:\REM JUST INCREMENT X

The new line 28 will no longer contain the <characters which
are enclosed by the backslashes.

[0)]

BASIC 4.1

April, 1877

d-‘

Searching.

The nSy command searches for the nth occurrence of
the character v in the line. N defaults to 1. The
search skips over the first character to the riaght of
the cursor and begins with the second character to the
right of the cursor. 311 <characters npassed over
during the search are vrinted. If the character |is
not found, the cursor will be at the end of the line.
If it is found, the cursor will stoo to the right of
the character and all of the characters to its left

43

44

will have been printed. For example:

User types 5¢ REM INCREMENT X
User types EDIT 549 :
Computer prints ‘ 50

User types 2SE

Computer prints 56 REM INCR

nKy is equivalent to S except that all of the char-
acters passed over during the search are deleted. The
deleted characters are enclosed in backslashes. For
example:

User types 16 TEST LINE
User types EDIT 14
Computer prints 19

User tyvoes KL
Computer prints 13 \TEST \

Text Replacement.

A character in a line may be changed by the use of
the command Cy which changes the character to the
right of the cursor to the character yv. Y is printed
on the terminal and the cursor 1is advanced one .
position. nCy may be used to change n characters in a“
line as they are tyved in from the terminzl. (See
example below.) If an attemot is made to change 3
character which does not exist, the change mode will
be exited. Example:

User types 10 FOR I=1 TO 130
User types EDIT 19
Computer orints 10
User types 281
Computer orints 1@ FOR I=1 TO
User tyves 3C256
Computer prints 18 FOR I=1 TO 256
f. Ending and Restarting
Carriage Return Terminates editing and orints the re-

mainder of the line. The edited 1line revlaces the
original line. :

E is the same as a carriage return except the
remainder of the line is not printed.

Q restores the original line and causes 3BASIC to
return to commend lsvel. Changes do not take effect
until an E or carriage return is typed, so Q allows

the user to restore the original 1line without any

changes which may have been made.

L 4 L causes the remainder of the line to be printed,
and then prints the line number and restarts editing
at the beginning of the 1line. The cursor will be
positioned to the left of the first character in the
line. L allows monitoring the effect of changes on a
line. Example: :

User types 58 REM INCREMENT X
User types EDIT 54
Computer prints 50
: User types 28M .
Computer prints 58 REM INCRE
User tvves L
Computer orints 54 REM INCREMENT X
5@
A A causes the original line to be restored

and editing to be restarted at the beginninga of the
line. For example: ‘

User types 14" TEST LINE
User tvpes EDIT 19
Computer nrints 19

Yser types 18D .

- Computer prints 13 \TEST LINE\
User types . A
Computer prints 19 \TEST LINE\

192

Suppose in the above example, that the user made a
mistake when he deleted TEST LINE. As a result of the
A command, the original line 19 is reentered and is
ready for further editing.

IMPORTANT
Whenever a SYNTAX ERROR is discovered during the execution of
a source orogram , BASIC will automatically begin EDITing the
line that caused the error as if an EDIT command had been
typed. Example: .

14 APPLE

RUN

SYNTAX ERROR IN 140
19

Complete editing of a 1line causes the 1line edited to be
reinserted. Reinserting a line causes all variable values to
be deleted. To ©oreserve those values for examination, the
EDIT command mode may be exited with the { command after the

BASIC 4.1 45

April, 1977

46

line number is printed. 1If this is done, BASIC will return to
command level and all variable values will be preserved.

The features of the EDIT command may be used on the 1line
currently being typed. To do this, tyvpe Control/A instead of
Carriage Return. The computer will respond with a carriage
return, an exclamation point (!) and a space. The cursor will
be positioned at the first character of the 1line. At this
point, any of the EDIT subcommands except Control/A may be
used to correct the line. Example:

User types 19 IF X GOTO #"/A
Computer prints !
User types S# 2C12

Computer prints ! 19 IF X GOTO 12

The current line number mavy be designated bv a period (.)
in any command regquiring a line number. Examples:

Jser tvyves 19 FOR I= 1 TO 19

User tyves EDIT .
Computer prints 19

L

5-«5. PRINT USING Statement.

The PRINT USING statement can be employed in situations
where a specific output format is desired. This situation
might be encountered in such applications as printing payroll
checks or accounting reports. The general format for the
PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or a
string constant which 1is a ©precise copy of the line to be
orinted. All of the characters in the string will be ©orinted
just as thev appear with the excevtion of the formatting
characters. The <value list> is a list of the items to be
orinted. The string will be reveatedlvy scanned until: 1) the

" string ends and there are no values in the value list or, 2) a

field 1is scanned in the string, but the wvalue 1list is
exhausted. The string 1is constructed according to the
following rules:

BASIC 4.1

April, 1977

47

a. String Fields.

! specifies a single character string field. The string itself

is svecified in the value list.

\n spaces\ specifies a string field consisting of 2+n char-
acters. Backslashes with no spaces between them
indicates a field 2 characters wide, one space between
them indicates a field 3 characters wide, etc.

In both cases, if the string has more characters than the
field width, the extra characters will be ignored. TIf the
string has fewer characters than the field width, extra spaces
will be printed to fill out the entire field. Trying to print
a number in a string field will causs a TYPE MISMATCH error to
occur. Example:

10 AS="ABCDE":B$="FGH"

20 PRINT USING "!";AS$;BS
30 PRINT USING "\ \":B$;AS
RUN

(the above prints out)

AF
FGH ABCD -

Note that where the "!" was used only the first letter of each
string was printed. Where the backslashes enclosed two
spaces, four letters from each string were orinted (an extra
space was wprinted for BS which has only three characters).
The extra characters in the first case and for A$ in the
second case were ignored.

b. Numeric Fields. With the PRINT USING statement,
numeric printouts may be altered to suit almost any
application. Strings for formatting numeric fields are
constructed from the following characters:

Numeric fields are specified by the % sian, each of
which represents a digit position. These digit
positions are always filled. The numeric field is
right justified; that is, if the number orinted is
too small to fill all of the digit positions
specified, leading svaces are printed as necessary to
£ill the entire field.

. The decimal voint may be svecified in any position
in the field. Rounding is performed as necessary. If
the field formwat svecifies that a digit is to precede
the decimal point, the digit is always orinted (as 0
if necessarv).

BASIC 4.1

April, 1877

The following program will help illustrate these rules:

* %

$$

48

19 INPUT AS,A

29 PRINT USING AS;A
38 GOTO 19

RUN

? ##,12

? #dw#d,1l2
12
2HF.H#,12

12.90
? ###o 112
12.
? R E%4,.02
9.020
H#.#,2.36
2.4
?###1"12
-12
?#-## r"ol2
-.12
4nEE,-12
-12

The +,sign may be used at either the beginning or

end of the numeric field.
the + sign 1is printed
number. If the number 1is

If the number is
at the svecified end of the

vositive,

negative, a - sign 1is

printed at the specified end of the number.

The - sign,

when-used to the right

of the numeric

field designation, forces the minus sign to be printed

to the right of the number
number is vositive, a space

The ** placed at the

designation causes any unused spaces in the
number printed out to be filled with
The ** also specifies positions for 2 more
(Termed "asterisk £fill")

portion of the
asterisks.
digits.

When the $S is used at the
field designation, a $ sign
immediately ©vpreceding the
$S also specifies positions
that the §$ itself takes
Exvonential format cannot
signs.

if it is negative. 1If the

is printed.

beginning of a numeric field

leading

beginning of a numeric

is orinted in the space

number vrinted. Note that
for two more digits, but
uo one of these svaces.
be wused with 1leadina §

BASIC 4.1

april, 1977

*lks

~Aann

BASIC 4.1

-3 aTT
April, 1877

The **$ used at the beginning of a numeric field

designation causes both of the above (** and $3)

to be

performed on the number being printed out. All of the
orevious conditions apply, except that **$ allows
3 additional digit positions, one of which is the S

sign.

for

A comma avrpearing to the left of the decimal point

in a numeric field desianation causes a comma

to

be

printed to the left of every third digit to the left:
of the decimal point in the number being printed.
A comma

comma also specifies another digit position.

to the right of the decimal voint in a numeric

The

field

designation 1is considered a part of the string itself

and is treated as a printing character.

(4444 on some terminals) Exvonential Format.

If exponential format is desired in the printout,
numeric field designation should be followed bv

(allows space for E+X¥X) . - Any decimal

left justified and the exovonent is adjusted.

the

~ e~

point
arrangement is allowed. The significant digits are

Unle

ss a

leading + or a trailing + or - is used, one position

to the left of the degimal point is used to
space or minus sign. Examples:

PRINT USING “[##°"""1“; 13,17,-8.
[1E+81]([2E+081] [-8E+00]
OK

orin

PRINT USING “[.##4%44"°"""=1; 12345,-123456

[.123458E+05S][.123456E+36-]

OK

PRINT USING “[+.##""""1"; 123,-126
{+.12E+@83] [-.13E+03]

OK

t a

If the number to be printed out is larger than the
printed
followed by the number itself in standard Altair BASIC
format. (The entire number is printed.) If rounding a
number causes it to exceed the specified field, the %
character is printed followed by the rounded number.

spvecified numeric field, a % character |is

If, for example, A=.999, then
PRINT USING ".##",A
vrints
%$1.00.

If the number of digits swecified exceeds
ILLEGAL FUNCTION CALL error will occur.

24,

an

49

50

The following vrogram will help illustrate the

rules.

Program: 1§ INPUT AS,A

The computer will start by typing a ?.

20 PRINT USING AS;A
30 GOTO 19
RUN

designator and value 1list are entered
disvlayed as follows:

? +%,9
+9
? +#,16
$+10
? ## 7‘2
-2
? +4,-2
2
#'1-2
-2
? +.HR%,.02
+.628
? #%%4.%#,100
100.9
? #4+,2
2+
? THIS IS A NUMBER #%,2
THIS IS A NUMBER 2
? BEFORE ##% AFTER,12
BEFORE 12 AFTER
? #44%4%,44444
%44444
? k*GE L]
***1
? FEEg,12
**12.
? k44,123
*123
? kx44 1234
1234
? **4g,12345
212345
? k%]
*1
? *kx ,22
22
?OR* 44 12
12.060

? o kxgddd,l
kkkkx]

a0 w0 |

and the output

preceding

The numeric field

is

(note: not floating $) ? SH##EF.EE,12.34
S 12.34
(note: floating §) ? SSHEFH.EE,12.56
$12.56
? $S.#%,1.23
$1.23
? $S.#%#,12.34
$$12.34
? SSH##4,0.23
$0
? SSHEHH.HE,0
’ $0.00
' ? ORRSERE 44 ,1.23
**x%51.23
? **3 #4,1.23
*¥$1.23
? FFSEF#,1
****sl
? #,6.9
3
? $.%4,6.99
7.0
? ##_12 °
2
? ##-,-2 .
2- .
7 ##+,2 -
2+
? ##+I-2-
2-
?OEETTTT,2
2E+400
? #4777 ,12
1E+91
? REERE.EF47777,2.45678
2456.786E-93
? E.4%47777,123
3.123E+83
? #.4%7777,-123
-.12E+03
? O“HEddd 44,4 ,1234567.89
1,234,570.0

Tyeing Control/C will stop the program.

5-6. Disk File Overations.

As many as sixteen flooov disks may be connected to a
single ALTAIR disk controller. These disks have been assigned
the ohysical disk numbers @ through 15. Users with one drive
should address the drive at zero, and users with two drives

BASIC 4.1 51

April, 1977

52

should address them at zero and one, etc.

In - the following descriptions, <disk number> 1is an
integer expression whose value is the vhysical number of one
of the disks in the system. 1If the <disk number> 1is omitted
from a statement other than MOUNT or UNLOAD, the <disk number>
defaults to 8. If the <disk number> is omitted from a MOUNT
or UNLOAD statement, disks 9 through the highest disk number
specified at initialization are affected.

a. Opening, Closing and Naming Files. To 1initialize
disks for reading and writing, the the MOUNT command is issued
as- follows:

MOUNT [<disk number>[,<disk number>...]]

Example:
MOUNT 8
mounts the disk on drive zero, and

MOUNT 6,1

mounts the disks on drives zero and one. If there is already
a disk MOUNTed on the specified drive(s) a
DISK ALREADY MOUNTED message will be orinted. Before reméving
a disk which has been used for reading and writing by Disk
Altair BASIC, the user should give an UNLOAD command:

UNLOAD [<disk number>[,<disk number>...]]

UNLOAD closes all the files open on a disk, and marks the disk
as not mounted. Before anv further I/0 is done on an UNLOADed
disk, a MOUNT command must be given.

NOTE

MOUNT, UNLOAD or anv other disk command may be used as
a program statement.

All data and program files on the disk have an associated file
name, This name 1is the result of evaluating a string
expression and must be one to eight characters in lenath. The
first character of the file name cannot be a null (9) bvte or
a byte of 255 decimal. An attempt to use a null file name
(zero characters in lenqgth) , a file name over 8 characters in
length or containing a @9 or 255 in the first character

3ASIC 4.1

April, 1977

position will cause a BAD FILE NAME error. Any other sequence
of one to eight characters is acceptable.

Examples of valid file names:

ABC

abe (Not the same as ABC)
filename

file.ext

12345678

INVNTORY

FILE##22

NOTE

Commands that require a file name will use <file name>
in the approvriate position. Remember that a <file

name> can be any string expression as long as the
resulting string follows the rules given above.

b. The FILES Command. The FILES command 1is wused ¢to
print out the names of the files residing on a particular
disk. The format of the FILES command is: . *

-

FILES <disk number>
Example:
FILES (prints directorv of files on disk 9)
STRTRK PIP CURFIT CISASM
Execution of the FILES command may be interrupted bv tvyvoing
Control/C. A more complete listing of the information stored

in a8 particular file may be obtazined by running the PIP
utility orogram (see Appendix I).

c. SAVEing and LOADing programs. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished by issuing a SAVE
command:

SAVE <file name>[,<disk number>[,A]]
Example:

SAVE “TEST",0

BASIC 4.1 53

-
t

April, 197

or
SAVE "“TEST"

would save the program TEST on disk zero. Whenever a program
is 5AVEd, any existing copy of the program oreviously SAVEd
will be deleted, and the disk space used by the previous
program is made available. See section 5-6d4 for a discussion
of saving with the 'A' option.

The LOAD statement reads a file from disk and 1loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk number>[,R]]
Correspondingly{
LOAD "TEST",9 or LOAD “TEST"

loads the ©orogram TEST from disk zero. If the file does not
exist, a FILE NOT FOUND error will occur.

LOAD “TEST",%3,R

OK -

LOADs the program TEST from disk zero and runs it. The LOAD
command with the “R" option mav be used to <chain or segment
orograms into small vieces if the whole vprogram is too large
to fit in the computer's memory. All variables and orogram
lines are deleted by LOAD, but all data files are kept
OPEN(see below) if the "“R" ovtion 1is used. Therefore,
information may be passed between programs through the use of
disk data files. 1If the "“R" ootion is not used, all files are
automatically CLOSEd (see below) by a LOAD.

Example:

NEW
14 PRINT “FOOl1":LOAD "FOO2",%,R
SAVE "FOO1",0 ‘

CK .
1¢ PRINT "“FOO2":LOAD "FOO1",4,R
SAVE "“FOO2",4d

OK
RUN
FOO2
7001
FOO2

3ASIC 4.1

April, 1977

FOO1
...etc.

(Control/C may be used to stop execution at this point)

In this example, program FOO2 is RUN. FOO2 vprints the
message “F002" and then calls the proaram FOOl on disk. FOOl1
prints "FOOl" and calls the program FO02 which orints “FOO2*
and so on indefinitely.

RUN may also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<Kfile name>[,<disk number>[,R]]

All files are closed unless ,R is swvecified after the disk
number.

d. SAVEinag and LOADing Program Files in ASCII. Often it
is desirable to save a program 1in a form that allows the
vroaram text to be read as data by another »rogram, such as a
text editor or resequencing vprogram. Unless otherwise
specified, Altair BASIC saves its wprograms in a compressed
binary format which takes a minifum of disk space and loads
very quickly. To save a program in ASCII, svecifv the "A*
option on the SAVE command:

SAVE “TEST",d,A
OK
LOAD “TEST",0

OK

Information in the file tells the LOAD command the format
in which the file is to be loaded. The first character of an
ASCII file is never 255, and a binarvy ©vrogram £file alwavs
starts with 255 (377 octal). Remember, loading an ASCII file
is much slower than loading a binarv file.

e. The MERGE Command. Sometimes it is wvery useful to
put parts of two programs together to form a new prodgaram
combining elements of both vrograms. The MERGE command 1is
provided for this puroose. As soon as the MERGE command has
been executed, BASIC returns to command level. Therefore, it
is more 1likely that MERGE would be used as a direct command
than as a statement in a cvrogram. The format of the MERGE

wn
(81)

8ASIC 4.1

April, 1977

56

statement is as follows:
MERGE <file name>[,<disk number>]
Example:

MERGE "PRINTSUB",1
OK

The <file name> specified is merged into the ©proaram already
in memory. The <file name> must svecify an ASCII format saved
program or a BAD FILE MODE error will occur. If there are
lines in the program on disk which have the same line, numbers
as lines in the program in memory, the lines from the file on
disk will revlace the corresvonding program lines in memory.
It is as if the program lines of the file on disk were typed
on the user terminal.

f. Deleting Disk Files. The XILL statement deletes a
file from disk and returns disk space used by the file to free
disk space. The format of the KILL statement is as follows:

KILL <file name>[,<disk number>]

If the file does not exist, a FILE NOT FOUND error will occur.
If a 'KILL statement is given for a file that is currently OPEN
(see below), a FILE ALREADY OPEN error -occurs.

9. Renaming Files - the NaME Statement. The NAME
statement is used to change the name of a file:’

NAME <0ld file name> AS <new file name>[,<disk number>]
Example:
NAME “OLDFILE" AS "“NEWFILE"

The <0ld file name> must exist, or a FILE NOT FOUND error will
occur. A file with the same name as <new file name> must not
exist or a FILE ALREADY EXISTS error will occur. After the
NAME statement is exascuted, the file exists on the same disk
in the same area of disk space. Only the name is changed.

h. CPENing Data Files. Refore a ©program can read or
write data to a disk file, it must first OPEN the file on the
avprooriate disk in one of several modes. The general form of
the OPEN statement is:

OPEN <mode>, [#]<file number>,<files nane>[,<disk number>]

BASIC 4.1

April, 1977

<mode> 1is a string expression whose first character is one of
the following:

0 Specifies sequential output mode
I Svecifies sequential input mode
R Specifies random Input/Output mode

A sequential file is a stream of characters that 1is read or
written in order much 1like INPUT and PRINT statements read
from and write to the terminal. Random files are divided into
groups of 128 characters called records. The nth record of a
file may be read or written at any time. Random files have
other attributes that will be discussed later in more detail.

<file number> 1is an integer expression between one and
fifteen. The number is associated with the file being OPENed
and is used to refer to the file in later I/0 operations.

" Examples:

OPEN "“O",2,"OUTPUT",@
OPEN "I",1,"INPUT"

The above two sttements oven the file OUTPUT £for seéquential
output and the file INPUT for sequential inout on disk zero.
The following statement opens the file whose name is in the
string F$ in mode M$ as file number N on disk D.

OPEN MS$,N,FS$,D

i. Seguential ASCII file I/O Segquentizl input and outvput
files are the simplest form of disk input and output since
they involve the use of the INPUT and PRINT statements with a
file that has been previouslyv OPENed.

1) INPUT is used to read data from a disk file as
follows:

INPUT #<file number>,<variable list>

where <file number> represents the number of the file that was
OPENed for 1input and <variable 1list> is a 1list of the
variables to be read, as in a normal INPUT statement. When
data is read from a seguential input file wusina an INPUT
statement, no gquestion mark (?) is orinted on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the terminal,

(8]
~3

3ASIC «.1

spril, 1977

When reading numeric values, leading spaces, cartriage returns
and line feeds are ignored. When a non-space, non-carriage
return, non-line-feed character is found, it is assumed to be
part of a number -in Altair BASIC format. The number
terminates on a space, a carriage return, line~feed or a
comma.

Leading blanks, carriage returns and line-feeds are also
ignored when scanning for string. items. When a character
which is not a leading blank, carriage return or line-feed 1is
found, it is assumed to be the start of a string item.If this
first character is a quotation mark ("), the item is taken as
being a quotéd string, and all characters between the first
guotation mark (") and a matching guotation mark are returned-
as characters 1in the string value. This means that a guoted
string in a file may contain anvy characters except double

guote. If the first character of a string item is not a
guotation mark, then it is assumed to be an unquoted string
constant. The string returned will terminate on a comma,

carriage return or line feed. The string is immediately
terminated after 255 characters have been read..

For both numeric and string items, if end of file (EOF)
is reached when the item 1is being INPUT, the item 1is
terminated regardless of whether or not a closing aqguote was
seen, . .

* - °
-

Sequential I/0 commands destroy the input buffer so they
may not be edited by Control/A for Ete-execution. ;

Example of sequential I/0 (numeric items):

50¢ OPEN "“O",1,"FILE",0
519 PRINT #1,X,Y,2

5280 CLOSE 1

53¢ OPEN "“I",1,"FILE",O
549 INPUT #1",X,Y,2

Note that CLOSE is used so that a file which has Jjust been
written may be read. When FILE is re-OPENed, the data pointer
for that file is set back to the beginning of the file so that
the first INPUT on the file will read data from the start of
the file.

2) PRINT and PRINT USING statements are used to write
data 1into a sequential output £file. Their formats are as
follows:

PRINT #<file number>,<expression list>

or

PRINT #<file number>, <line feed>
USING <string expression>;<expression list>

Example of sequential I/0 (quoted string items):

50@¢ OPEN "O",1,“FILE"
- 5149 PRINMT #1,CHR$(34);X$;CHRS (34);
515 PRINT #1,CHRS (34);YS$S;CHRS (34) ;CHRS (34);Z2$;CHRS (34)
5286 CLOSE 1
538 OPEN "I",1,"FILE",®
540 INPUT #1,X$,¥$,2S

In this example, the strinags beina output (X$, ¥$, 12$) are
surrounded with double guotes through the use of the CHRS
function to generate the ASCII value for a double cquote. This
technigue must be used if a string which is being output to a
sequential data file contains commas, carriage returns,
line-feeds or leading &tlanks that are significant. When
leading blanks are not significant and there are no commas,
carriage returns or line-feeds in the strings to be output, it °
is sufficient to 1insert commas between the strings being
output as in the following exammnle: . . -

5S¢4 OPEN "O“,1,"FILE"“ . .
51 PRINT #1,XS$;:;",":;Y¥$;",";2$

529 CLOSE 1

534 OPEN "I",1,'FILE",0

549 INPUT #1,%S$,YS$,Z$

3) CLOSE. The format of the CLOSE statement 1is as
follows:

CLOSE {<file number>[,<file number>...]]

CLOSE 1is used to finish I/0C to a varticular Altair BASIC data
file. After CLOSE has been executed for a file, the file may
be reOPENed for inout or output on the same or different <file
number>., A CLOSE for a secquential outnut £file writes the
final buffer cf output. A CLOSE to any OPEN file finishes the
connection bétween the <file number> and the <file name> given
in the OPEN for that file. It allows the <file number> to be
used again in another OPEN statement.

A CLOSE with no argument CLOSEs all OPEN files.

BASIC 4.1

April, 1977

60

NOTE

A FILE can be OPENed for sequential input or random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at a
time.

END and NEW always CLOSE z2ll disk files automatically. STOP
does not CLOSE disk files.

4) LINE INPUT. It is often desirable to read a .whole
line of a file into a string without using quotes, commas or
other characters as delimiters. This is esvecially true 1if
certain fields of each line are being used to contain data
items, or if a BASIC program saved *in ASCII mode is being read
as data by another vrogram. The facility provided to verform
this function is the LINE INPUT statement:

LINE INPUT #<file number>,<string variable>

A LINE INPUT from a data file will return all characters up to
a carriage return in <string variable>. LINE INPUT then skips
over the following carriage return/line-feed sequence so that
a subsequent LINE INPUT from the file will return the next
line.

5) End of File (EOF) Detection. When reading a
sequential data file with INPUT statements, it is usually
desirable to detect when there is no more data 4n the disk
file. The mechanism for detecting this condition is the EOF
function:

X=EOF (<file number>)

EOF returns TRUE (-1) when there is no more data in the file
and FALSE (0) otherwise. If an attempt is made to INPUT past

the end of a data file, an INPUT PAST END error will occur.

Example:

169 OPEN "I",1,"DATA",0
116 I=9

120 IF EOF(l) THEN 160
139 INPUT #%1,A(I)

149 I=I+1

150 GOTO 120

160 vvu...

In this -example, numeric data from the secuential innut file
DATA is read into the array A. When end of file is detected,
the IF statement at line 120 branches to line 168, 2and the
variable I "“points” one beyond the last elsment of A that was
INPUT from the file.

BASIC 4.1

ipril, 1977

The following is a program that will calculate the number
of 1lines in a BASIC program file that has been SAVEd in ‘ASCII
mode: .)

190 INPUT “WHAT IS THE NAME OF THE PROGRAM";PS$
2¢ OPEN "I“,1,P$,0

30 I=9

49 IF EOF(1l) THEN 70

5@ I=I+1:LINE INPUT #1,LS$

680 GOTO 449

78 PRINT “PROGRAM ";P$;" IS ";I;" LINES LONG"
80 END

This example uses the LINE INPUT statement to read -each line
of the program into the “dummy" string L$ which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessarv to determine the amount of free disk space
remaining on a varticular disk before writing a file. The
DSKF function provides the user with the number of free groups
left on a given disk after the disk has been MOUNTed. A groum
is the fundamental wunit of file allocation. That is, files
are always allocated in groups of eight sectors at a time.
Each sector contains 128 characters (bvtes). Therefore, the
minimum size for a file is 1624 ‘bytes. .

Syntax for the DSKF *function:
DSKF (<disk number>)
Example:

PRINT DSKF (8)
200

The above example shows that there are 200*1924=204864
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from seguential data files.
However, it is often desirable to access data in a random
fashion, for instances, to retrieve information on a varticular
part number or customer from a large data base storad on a

flopoy disk. If seguential files were usesd, the wholzs file
would have to be scanned from the start until the mwnarticular
item was found. Random files remove this restriction and

allow a proagram to access any record from the first to the
last in & sveedy fashion. Also, random files transfer data
from variables to the disk ounut records and vice versa in a
much faster, more efficient fashion than seguential files.

BASIC 4.1 61

April, 1977

62

Random file I/0 is more complex than seaquential I/0, and it is
recommended that beginners try sequential I/0 first.

1) OPENing a FILE for Random I/0O. Random I/0 files are
OPENed just like seguential files.

OPEN “R",1,"RANDOM",@

When a file 1is OPENed for random I/0, it is always OPEN for
both input and output simultaneously.

®

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/0 overations are finished. To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number>...]

3) Refading and writing data to a random file - GET and
PUT. Each random file has associated with it a "random
buffer" of 128 bytes. When a GET or' PUT operation is
performed, data is transferred directly from the buffer to the
data file or from the data file to the buffer.
The syntax of GET and PUT is as follows:

PUT [#]1<file number>[,<record number>]

GET [#]<file number>[,<record number>]

If <record number> is omittad from a GET or PUT statement, the
record number that is one higher than the oprevious GET or PUT
is read 1into the random buffer. Initiallv a GET or PUT
without a record number will read or write the first record.
The largest possible record number is 2846. If an attempt is
made to GET a record which has never been PUT, all zeroes are
read into the record, and no error occurs.

4) LOC and LOF,. LOC is wused to determine what the
current record number is for random files. 1In other words, it
returns the record number that will be used if a GET or PUT is
executed with the <record number> parameter omitted.

LOC(<file number>)

PRINT LOC(1)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 Dbvyte blocks) read or written since the OPEN
statement was executed. :

LOF is used to determine the last record number written to a
random file:

LOF (<file number>)

PRINT LOF (2)
200

An attempt to use LOF on a sequential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is’ , when
the value LOF returns is divided by 8, the remainder is always
5. Therafore,the valuesereturnad bv LOF are 5, 13, 21, 29
etc. This is due to the way random files are allocated.

NOTE

It is important to note that the value returned by LOF
may be a record that has never been written in by a
user program. This is because of the way random files
are pre-extended.

5) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writing (PUT) and reading
(GET) data from a file into its associated random buffer. Now
we will describe how data from string variables is moved to
and from the random buffer itself. This 1is accomplished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all of
a8 file's random buffer with a particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the buffer
will automatically have their contents read or written. The

3ASIC 4.1 63

64

format of the FIELD statement is:
FIELD (#] <file number>,<field size> AS <string variable>[...]

<file number> 1is used to specify the file number of the file
whose random buffer is being referenced. If the file is not a
random filea, a BAD FILE MODE error will occur. <field size>
sets the length of the string in the random buffer. <string
variable> 1s the string variable which is associated with a
certain number of characters (bytes) in the buffer. Multiple
fields may be associated with string variables in a agiven
FIELD statement. Each successive string variable is assigned
a successive field in the random buffer. Examole:

FIELD 19 AS AS§, 20 AS B§, 30 AS C§

The statement above would assign the first 18 characters of
the random buffer to the string wvariable AS$, the next 20
characters to B$ and the next 34 characters to the variable
C$. It is important to note that the FIELD statement does not
cause any data to be transferred to or from the random buffer.
It only causes the string variables given as arguments to
“point" into the random buffer.

Often, it is necessary to divide the random buffer into a
number of sub=-records to meke more efficient use of disk
space. For instance, it might be desirable to divide the 128
character record into two identical subrecords. To accomplish
this a "dummy variable" would be placed in the FIELD statement
to represent one of the subrecords. One of the following
statements would be executed, devending on whether the £first
or second subrecord were needed:

FIELD #1,64 AS D$, 20 AS NAMES,
29 AS ADDRESSES§, 24 A5 OCCUPATIONS

or

FIELD #1,20 AS NAMES, 24 AS ADDRESSES,
24 AS OCCUPATIONS, 64 AS DS

where the dummy variable DS is used to skip over one of the
subrecords. Another wav to do the same thing would be to set
a variable I that would select the first or second subreacord:

FIELD #1,64*(I-1) AS DS,
29 AS NAMES, 20 AS ADDRESSS, 24 AS OCCUPATIONS
Here, if the wvariable I is one, I-1 *64 =0 characters will be

skipped over, selecting the first subrecord. If I is two, 64
characters will be skipved over, selecting the second

3ASIC 4.1

~1

Apzil, 197

subrecord. .Another useful technique is to use a FOR...NEXT
loop and an array to set up subrecords in the random buffer:

19060 FOR I=1 TO 1% ;

1019 FIELD #1, (I-1)*8 AS DS, 4 AS AS(I),
4 AS BS(I)

1020 NEXT I

In this example, we have divided.the random buffer into 16
subrecords composed of two fields each. The first 4-character
field is in AS(X) X is the subrecord number.

NOTE

The FIELD statement may be executed any number of

times on a given file. It does not cause any

allocation of string space. The only space allocation

that occurs 1is for the string variables mentioned in

the. FIELD statement. These string variables have a

one byte count and two Dbyte ovointer set up which
" points into the random buffer-for the specified file.

7) Usinag Numeric Values in Random Files: MKIS$, MKSS,
MKDS and CVI, Cvs, CVD. As we have seen, data 1is alwavys
stored in the random buffer through the wuse o¢f string

variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
provided.

To convert between numbers and strings:

MKIS (<integer value>) Returns a two byte string
(FC error if value is not
>==32768 and <=+32757.
Fractional vart is lost)

MKSS$ (<singla precision wvalue>) Returns a four byte string

MKDS (<double vrecision value>) Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte string>) Returns an integer value
CVS (<four bvte strina>) Returns a single precision value
CVD (<=2ight byte string>) Returns a double precision value

Cvi, CvVs, and CVD all give an ILLEGAL FUNCTICN CALL error if

o)
w

3ASIC 4.1

Agril, 1977

66

the string given as the argument is shorter than required. If
the string argument 1is longer than necessary, the extra
characters are ignored. These functions are extremely fast
since they convert between Altair BASIC's internal
representations " 0of integers, single and double precision
values and strings. Conventional sequential I/0 must verform
time-consuming character scanning algorithms when converting
between numbers and strings.

8) LSET and RSET. When a GET operation is verformed, all
string variables which have been FIELDed into the random
buffer for that file automatically have wvalues assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. inserting strings into the
random buffer before performing a PUT statement, a oroblem
arises. This is because of the way string assignments usually
take place. For example:

LET AS$=3S

When & LET statement is executed, B$ is copied into string
space, AS$ is pointed to the new string and the string 1length
of A$ 1is modified. However, for asgignments into the random
buffers we do not want this to happen. Instead, we want the
string being assigned to be stored where the strina variable
was FIELDed. In order to do this, two special assignment
statements have been provided, LSET and RSET: -

LSET <string variable>=<string expression>
RSET <string variable>=<string expression>

Examples:
LSET AS=MKSS (V)
RSET BS$="TEST"
LSET CS$ (I)=MXDS$ (D#%)

The difference between LSET and RSET concerns what hapoens 1if
the strina value being assigned is shorter than the length
svecified for the string variable 1in the FIELD statement.
LSET 1left Jjustifies the string, 2adding blanks (octal 49,
decimal 32) to pad out the right side of the string if it 1is
too short. RSET right justifies the string, padding on the
left. If the string value is too long, the extra characters
at the end of the string are ignored.

3ASIC 4.1

April, 1977

NOTE
Do not use LSET or RSET on string variables which have

not been mentioned in a FIELD statement, or a SET TO
NON DISK STRING error will occur.

k. The DSKIS and DSKO$S Primitives. Often it is
necessary for the user to perform disk I/0 operations directly
without using anv of the normal file structure features of
Altair BASIC. To allow this, two special functions have been
provided. These are the DSKI$ function and the DSKOS
statement. First, examples will be orovided on how to verform
simple disk I/0 commands using Altair BASIC statements.

To Enable disk 8:
ouT 8,0
To Enable disk N:
ouT 8,N
TO step the disk head out one track:
WAiT 8,2,2:00T 9,2
To step the disk head in one track:
WaIT 8,2,2:00T 9,1
To test for track 8: i
IF (INP(8) AND 64)=03 THEN <statements or line number>
The above will execute the statements or branch to the line

number if the head is positioned at track 4@. This is the
outermost track on the disk.

To read sector Y (Y may be any =expression, minimum sector =@,
maximum = 31):

AS=DSKIS (Y)
The statement

DSKOS <string exwmression>,<sector expression>

BASIC 4.1

April, 1977

68

~less than 137 characters in length, the end of the string will

writes the string expression on the sector specified. The
high order bit (most signifigant) of the first character
output will always be set to cone when the string is written on
the sector and will always be one when the sector is read back
in using DSKIS. A maximum of 137 <characters are written;
giving a string whose length exceeds 137 characters will cause
an ILLEGAL FUNCTION CALL error. If the string argument 1is

be padded with zeros to make a string of length 137.

3ASIC 4.1

April, 1977

6. LISTS AND DIRECTORIES

6-1. Commands.

Commands direct Altair BASIC to arrange memory and
input/output facilities, to 1list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints 'OK'
and is at command level. The table below lists the commands
in alphabetical order. The notation to the right of the
command name indicates the versions to which it applies.

Command Version(s)

CLEAR All

Sets all program variables to zero.

CLEAR([<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the wvalue of the
expression. .If no argument is given, string space will remain
unchanged. When Altair BASIC is loaded, string space 1is set
to 50 bytes in 8K and 26d bytes in Extended and Disk.
CLOAD<string expressiom> *~ 8K(cassette), Extended, Disk
Causes the program on cagsette tape designated by the first

character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is lcaded.

CLOAD=*<array name> 8K (cassette), Disk

Loads the specified array from cassette tape. May be used as

a program statement. S
CLOAD?<string expression> 8K (cassette), Extended, Cisk

Compares the program in memory with the corresponding file on
cassette tape. If the files are the same, CLOAD? prints OK.
If not, it prints NG GOOD. The <string expression> must be
given, but it is ignored.

.CONT 8K, Extended, Disk
Continues program execution after a Control/C has been typed

or a 8STOP or END statement has been executed. Execution
resumes at the statement atter the break occurred unless input

from the terminal was interrupted. In that case, execution
resumes with the reprinting of the oprompt (? or prompt
string) . CONT 1i1s useful 1in debugging, especially where an
3ASIC 4.1 : 69

70

"infinite loop' is suspected. An infinite loop is a series of
statements from which there is no escape. Typing Control/C
causes a break in execution and puts BASIC in command .level.
Direct mode statements can then be used to print intermediate
values, change the values of variables, etc. Execution can be
restarted by typing the .CONT command, or by executing a direct
mode GOTO statement, which causes execution to resume at the
specified line number.

In 4K and 8K Altair BASIC, execution cannot be continued
if a direct mode error has occured during the break. In all
versions, execution cannot continue ¥f the program was
modified during the break. :

CSAVE<string expression> 8K (cassette), Extended, Disk

Lauses the program currently in memory to be saved on cassette
tape under the name specified by the first character of
{string expression>.

CSAVE™<array name> 8K (cassette), Disk

Lauses the array named to be saved on cassette tape May Dbe
used as a program statement.

DELETE<line number> Extended, Disk

Deletes the line in the current program with the specified

number. If no such 1line exists, an ILLEGAL FUNCTION CALL
error occurs.

DELETE-<line number> Extended, Disk

Deletes every line of the current program up to and including
the specified 1line. If there 1is no such line, an ILLEGAL
FUNCTION CALL error occurs.

DELETE<line number>-<line number> Extended, Disk

Deletes all lines of the current program from the £first 1line
number to the second inclusive. ILLEGAL FUNCTION CALL occurs
if no line has the second number.

DSKINI<Kdrive number> Disk

Initializes diskettes on the specified drives by marking all
sectors in tracks 6 - 77 as free. If no disk number is given,
all disks are initialized beginning with the highest disk
number. CAUTION: DSKINI destroys all files on the disk. Use
with utmost caution.

EDIT<line number> Extended, Disk

Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub-commands which are discussed in detail in section 5-4.

LIST All

Lists the program currently in memory, starting with the
lowest numbered line. Listing is terminated either by the end
of the program or by typing Control/C.

The LIST command may be used to save programs on paper
tape. Simply type LIST and turn on the teletype’'s paper tape
punch before typing carriage return. Be sure the nulls have
been set (see NULL command) to 3 before punching the program.
To load a program from paper tape, put the tape in the
teletype’'s reader and turn it on. The program loads as if it
were being typed from the terminal. The NEW command may be
used to <clear old program lines before 1loading the new
program.

LIST[{<line number>] all
In 4K and 8K, prints the <current program beginning at the

specified 1line. 'In Extended and Disk, prints the specified
line if it exists.

L d

LIST[<line number>] [-<line number>] Extended, Disk
Allows several listing options.

1. If the second number is omitted, 1lists all .lines with
numbers greater than or equal to the number specified.

2. If the first number is omitted, lists all lines from the
beginning of the program to the specified line, inclusive.

3. If both line numbers are used, lists all lines £from the
first number to the second, inclusive.
LLIST[<line number>] [~-<line number>] Extended, Disk

Same as list with the same options, except prints on the 1line
printer.

NEW All

Deletes the current program and clears all wvariables. Used
before entering a new program.

WULL<integer expression> 8K, Extended, Disk

BASIC 4.1 . 71

i

April, 197

72

Sets the number of nulls to be printed at the end of each
line. For 14 or 30 character per second tape punches,
<integer expression> should be >=3. When tapes are not being
punched, <integer expression> should be @ or 1 for Teletypes~*
and Teletype compatible CRT's. It should be 2 or 3 for 30 cps
hard copy printers. The default value 1is 6. In the 4K
version, the same affect may be achieved by patching 1loc¢ation
46 octal to contain the number of nulls plus 1.

= Teletype is a registered trademark of the Teletype
Corpcration.

RUN[<line number>] , All

Starts execution of the program currently in memory at the
line specified. If the 1line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6=-2. Statements.

The following table of statements is listed 1in alpahabetical
order. The notation in the Version column designates the
versions to which each statement applies. 1In the table, X and
Y stand for .any expressions allowed 1in the version under
consideration. I and J stand for expressions whose values are
truncated to integers. V and W are any variable names. The
format for an Altair BASIC line is as follows:

<nnnnn> <statement>[:<statement>...]
where nnnnn is the line number.

Name Format Version

.CONSOLE LCONSOLE <I>,<J> Extended, Disk

Allows terminal console device to be switched. I is the 1I/O
port number - which is the address of the low order channel of
the new I/0 board. J is the switch register setting (see

section 5-1 for the list of settings). 6<=I1,J<=255.

DATA DATA<Llist> All

Specifies data to be read by a READ statement. List elements

can be numbers or, except in 4K, strings. 4K allows
3ASIC 4.1

April, 1977

expressions. List elements are separated by commas.
DEF ‘ DEF FNV(<W>)=<X> 8K, Extended, Disk

Defines a user-defined function. Function name is FN followed
by a 1legal variable name. Extended and Disk versions allow
user-defined string functions. Definitions are restricted to
one 1line (72 characters in 4K and 8K, 255 characters in
extended versions). :

DEFUSR DEFUSR([<digit>]=<X> Extended, Disk

Defines starting address of assembly language subroutine. Up
to ten subroutines are allowed.

DIM DIM <V>(KI>(,J...])[,...1~ All

Allocates space for array variables. In 4K, only one
dimension is allowed per variable. More than one variable may
be dimensioned by one DIM statement up to the 1limit of the
line. The value of each expression gives the maximum
subscript possible. The smallest subscript is @. Without a
DIM statement, an array is assumed to have maximum subscript
of 19 for each dimension referenced. For example, A(I,J) 1is
assumed to have 121 elements, from A(4,8) to A(l4,18) unless
otherwise dimensioned in a DIM statement.- ’

END END All

Terminates execution of a program. Closes all files in the
Disk version.

- ERASE ERASEKV> [,<W>...] Extended, Disk
Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.
ERROR ERRORKI> Extended, Disk
Forces error with code specified by the -expression. Used

primarily for user-defined error codes.

BASIC 4.1 . 73

April, 1977

FOR FORKV>=<KX>TO<KY> [STEP<Z>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT is
encountered. % is added to V, then, IF Z<§ and V>=Y¥, or if
Z2>3 and V<=Y, BASIC branches back to the statement after FOR.
Otherwise, execution continues with the statement after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number.

GOSUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.
IF...GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF...THEN except GOTO can only be followed by a line
number and not another statement.

IF...THEN [ELSE] IF<KX>THENKY> [ELSE<Z>] All
or IF<KX>THEN<statement>[:statement...]
[ELSE<statement> [:statement...]

If value of X<>@, branches to line number or statement after
THEN. Otherwise, branches to the line number or statement(s)
after ELSE. If ELSE is omitted, and the value ,0f X=4,
execution proceeds at the line after the .IF...THEN. .In 4K, X
can only be a numeric expression. The ELSE clause 1s only
allowed in Extended and Disk Altair BASIC.

INPUT INPUTKV> [,<W>. ..] All

Causes BASIC to regqguest input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<KX> All

Assigns the value of the expression to the variable. The word
LET is optional.

LINE INPUT LINE .INPUT [eprompt strings;]<line feed>

<string variable name> Extended, Disk

LINE .INPUT prints the prompt string on the terminal and
assigns all input from the end of the prompt string to the
carriage return to the named string variable. No other prompt
is printed if the prompt string is omitted. LINE INPUT may
not be edited by Control/A.

3ASIC 4.1

April, 1977

LPRINT LPRINT X[,Y...] Extended, Disk

Same as PRINT, but prints on the 1line printer. Line feeds -
within strings are ignored. A carriage return is printed
automatically after the 8dth character on a line.

LPRINT USING LPRINT USING<string>;<list> Extended, Disk

Same as PRINT USING but prints on the 1line printer. For a
detailed description, see section 5-5.

MIDS MIDS (<%$>,<I>[,43>])=¥$ Extended, Disk

Part of the string X$ is replaced by ¥S. Replacement starts

with the Ith character of X$ and proceeds until ¥Y¥$ is
exhausted, the end of %$ is reached or J characters have Dbeen
replaced, whichever comes £first. If I is greater than
LEN(XS$), an .ILLEGAL FUNCTION CALL error results.

NEXT NEXT [<V>,<W>...] All

Last statement of a .FOR loop. V is the variable of the most
recent loop, W of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<line number> Extended, Disk
When an error occurs, branches to 1line specified. Sets
variable ERR to error code and ERL to line number where the
error occured. See section 6-5 for a list of error codes. ON
ERROR GOTC @ (or without number) disables error trapping.

" ON...GOTO ONKI>GOTO<list of line numbers> 38K, Ext., Disk
Branches to line whose number is 1Ith in the 1list. List
elements are separated by commas. If I=@ or > number of

elements in the list, execution continues at next statement.
.If \IK@ or >255, an error results.

ON...GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON...GOTO except 1list elements are initial 1line
numbers of subroutines.

ouT OUTKI> , KJ> 8K, Extended, Disk
Sends byte J to port I. @<=I,J<=255.
POKE ' POKEKI> , <J> 8K, Extended, Disk

Stores byte J in memory location derived from I.

BASIC 4.1 75

April, 1977

76

B<=J<=255;=-32768<I<65536. - If I 1is negative, address 1is
65536+I. If I is positive, address=I.

PRINT PRINTKX>[,<¥>...] All

Causes values of expressions in the list to be printed on the
terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
’ at beginning of next 14 column zone
; immediately
other or none at beginning of next line

String literals may be printed if enclosed by quotation marks
(). String expressions may be printed in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions 1in the 1list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed. List
entries are separated by punctuation as in the PRINT
statement. For a 1list of string characters and their
functions, see section 5-5.

READ READSVY> [,<W>..<] ALl

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the
first DATA statement.

REHM REM[<remark>] All

Allows insertion of remarks. Not executed, but may be
branched 1into. 1In Extended and Disk versions, remarks may be
added to the end of a line preceded by a single quotation mark
(*).

RESTORE RESTORE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.

RESUME RESUME [<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes resumption
at the statement following the statement where the error was
made.

3ASIC 4.1

ipril, 1977

RETURN RETURN . All

Terminates a subroutine. Branches to the statement after the
most recent GOSUB.

STOP STOP ’ All

Stops program execution. BASIC enters command -level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files. '

SWAP SWAP <V>,<W> Extended, Disk

Exchanges values of the variables named. Variables must be of
the same type. ‘

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON
(see below). NEW also turns off the trace flag.

TRON TRON Extended, Disk
Turns on trace flag. Prints number of each 1line in square
brackets as it is executed. .

WAIT WAIT<SI> ,<JI>[,<KR>] _ 8K, Extended, Disk
_Status of port I is XOR'd with K and AND'ed with J. Continued

execution - awaits non-zero result.’ K defaults to 8.
#<=1,J,K<=255.

6-3. Intrinsic Functions.

Altair BASIC provides several commonly used algebraic and
string functions which may be called from any program without
further definition. 1If tne functions are not required for a
program, they may be deleted when BASIC is loaded to conserve
memory space. The functions in the following table are listed
in alchabetical order. The notation to the right of the Call
Format is the version(s) in which the function is available.
As usual, X and Y stand for expressions, .I and J for integer
expressions and X$ and ¥$ for string expressions.

function Call Format Version
ABS ABS (X) All

3ASIC 4.1 77

April, 1877

Returns absolute value of expression X. ABS(X)=X 1if X>=0, =X
if x<8@.

ASC ASC (XS) 8K, Extended, Disk

Returns the ASCII code of the first character of the string
%$. ASCII codes are in appendix A.

ATN . ATN (X) 8K, Extended, Disk
Returns arctangent(X). Result is in radians in range -pi/2 to
pi/2.

The following functions are available in Extended and Disk:

CINT CINT(X) Converts X to integer.

CSNG CSNG(X) Converts X to single precision.

CDBL CDBL(X) Converts X to double precision.

If the argument 1is in the range -32768 to 32767, the
CINT(X)=INT(X). Otherwise, CINT will produce an OVERFLOW
error.

.CHRS LHR$ (I) - 8K, Extended, Disk
Returns a string whose one element has ASFII code I. ASCII

codes are in Appendix A.

cos . LOS (X) 8K, Extended, Disk
Returns cos(X). X is in radians.

ERL Extended, Disk

Returns the number of the 1line in which the 1last error
occurred.

ERR Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/0 ERROR,
ERR(9) returns number of the disk, ERR(1l) returns the track
number (#-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the cumulative
count of disk errors respectively.

EXP EXP (X) © 8K, Extended, Disk

Returns e to the power X. X must be <=87.3365.

3ASIC 4.1

Aprii, 1977

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is equivalent
to SGN(X)*INT(ABS(X)). The major difference between FIX and
INT is that FIX does not return the next lower number for
negative X.

FRE FRE(9) 8K, Extended, LCisk

Returns number of bytes in memory not being used by BASIC. If
argument 1is a string, returns number of free bytes in string
space.

HEXS : HEXS (X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INP INP(I) 8K, Extended, Disk
Reads-a byte from port I.

INSTR INSTR([I,]XS,¥S) Extended, Disk
Searches for the first occurrence of string ¥$ in X$ and
returns the ©position. Optional offset I sets position for
starting the search. ©0<=I<=255.. .If I>LEN(XS), if X$§ is null
or 1f Y¥Y$ «cannot be found, INSTK returns 9. .If ¥$ is null,
JINSTR returns I or 1. Strings may be string variable values,
string expressions or string literals. :

INT INT (X) All

Returns the largest integer <=X

LEFTS LEFTS (X5 ,1) 8K, Extended, Disk
Returns leftmost I characters of string Xx$.

LEN LEN (X3) 3K, Extended, Disk

Returns length of string XS$. Non-printing characters and -
blanks are counted.

LOG LOG (X) 8K, Extended, Disk

Returns natural lcg of X. X>¢

LPOS LPOS (X) Extended, Disk

Returns the current position of the line ©printer print head

within the line printer buffer. Does not necessarily give the
BASIC 4.1 79

dpril, 1977

50

physical position of the print head. The expression X must be
given, but the value is ignored.

MIDS MIDS (X$,I[,J]) 8K, Extended, Disk

Without J, returns rightmost characters from X$ beginning with
the 1Ith character. If I>LEN(XS), MIDS returns the null
string. ©<I<255. With 3 arguments, returns a string of
length J of characters from X$ beginning with the 1Ith
character. 1If J is greater than the number of characters in
X$ to the right of I, MIDS returns the rest of the string.

p<=J<=255.
QcTs QCTS (X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND (X) All

Returns a random number between 9§ and 1. X<@ starts a new
seguence of random numbers. X>0 gives the next random number
in the sequence. X=0 gives the last number returned. In 8K,

Extended and Disk, sequences started with the same negative
number will be the same.

FOS * poS(I) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =@. '

RIGHTS RIGHTS (X$,1I) 8K, Extended, Disk

Returns rightmost I characters of string X§$. If I=LEN(XS),
returns XS. ’

SGN SGN (X) All

If X>0, returns 1, if X=0 returns ¢, if X<8, returns =-1l. For
example, ON SGN(X)+2 GOTO 100,206,308 branches to 108 if X is
negative, 206 if X is © and 386 if X is positive.

SIN SIN(X) All

Returns the sine of the value of X in radians.

COS (X)=3IN(X+3.14159/2).

SPACES SPACES (I) Extended, Disk

Returns a string of spaces of length I.

BASIC 4.1

April, 1977

SPC . SPC(I) 8K, Extended, Disk
Prints I blanks on terminal. @<=I<=255.

SQR SQR (X) All

Returns sguare root of X. X must be >=0

STRS STRS (X) 8K, Extended, Disk
Returns string representation of value of X.

STRINGS STRINGS (I,J) . Extended, Disk

Returns a string of length .I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB TAB(I) All
Spaces to position I on the terminal. Space @ is the leftmost
space, *1 the rightmost. 1If the carriage is already beyond
space I, TAB has no effect. @<=I<=255. May only be wused in
PRINT and LPRINT statements. -

- TAN TAN (X) - All

.Returns tangent(X). X is in radians.
USR USR(X) All
Calls the user's machine language subroutine with argument X.

VAL VAL (X$) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
%$ is not +, -, or a digit, VAL(XS$)=0.

VARPTR VARPTR (V) Extended, Disk
Returns the address of the variable given as the argument. If

the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error will

occur., The main use of the VARPTR function is toc obtain the
address of variable or array so it may be passed to an
assembly language subroutine. Arrays are usually passed by

specifying VARPTR(A[Q]) so that the lowest addressed element
of the array is returned.

3ASTC L1 81

‘0
-1
|

April,

NOTE

All simple variables should be assigned values in a
program before calling VARPTR for any array.
Otherwise, allocation ¢f a new simple variable will
cause the addresses of all arrays to change. .

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control, editing
and program interruption. Characters such as Control/C,
Control/S, etc. are typed by holding down the .Control key and
typing the designated letter. The special characters 1in the
table are 1listed in the order of the versions to which they
apply, starting with those common to all versions and ending
with those that apply only to extended versions.

Typed as: Printed as:

The following Special Characters are available in ALL
versions.

@ . @
Erases current line and executes carriage return.

B e

Erases last character typed. If there is no 1last character
types a carriage return.

_ _f(underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.
Control/C /NC (in Extended and Disk)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or after

listing the current line. BASIC goes to command level and
types OK. CONT command resumes execution. See section 6-1.

Separates statements in a line.

3ASIC 4.1

April, 1977

The following special characters are available in 8K, Extended
and Disk versions only.

Control/0 /N0 (in Extended and Disk)

Suppresses all output until- an .INPUT statement is encountered,
another Control/O 1is typed, an error occurs or BASIC returns
to command level.

? o2
Equivalent to PRINT statement.
Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the 1last character to be printed. Each
successive Rubout prints the next <character to the left.
Typing a new character causes another \ and the new character
to be printed. All characters between the Dbackslashes are
deleted. -

Control/U ’ /AU (in extended)'
Same as @.
Control/S

Causes program execution to pause until Control/Q or Control/C
is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended and
Disk versions only.

Control/A

Allows use of the EDIT command on the 1line <currently being
tvped. Control/A 1is typed instead of Carriage Return. See
section 5-4.

Control/1 1l to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at columns

BASIC 4.1 83

April, 1977

84

1, 9, 17, etc. The tab character 1is especially useful for
formatting lines broken with line feeds.

100<tab>FOR I=1 TO 10:<Iline feed> o
<tab><tab>FOR J=1 TO 1l@:<line feed>
<tab><tab><tab>A(I,J)=0:<1line feed>
<tab>NEXT J,I<carriage return>

lists as:
166 FOR .I=1 TO 18:
FOR J=1 TO 14:
A(I,J)=0:
NEXT J,1I
Control/G bell

Rings terminal's bell.
LINE FEED

Breaks a long .line into shorter parts. The result 1is still
one BASIC line.

Denotes the number of the current line. May be used wherever
a line number is to be specified.

(/] (/]

Brackets are interchangeable with parentheses as delimiters
for array subscripts.

Lower Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of string 1literals, REM statements or remarks delineated by
single quotation marks (').

6-5. Error Messages.

After an error occurs, BASIC returns to command :level and
types OK. Variable values and the program text remain intact,

but the program cannot be continued by the CONT command. In
4k and 8K versions, all GOSUB and FOR context is lost. The
program may be continued by direct mode GOTO, however. When

BASIC 4.1

April, 1977

an error occurs in a direct statement, no line number 1is
printed. Format of error messages:

Direct Statement - ?XX ERROR
Indirect Statement ?XX ERROR IN YYYYY

where XX 1s the error code and YYYYY is the line number where
the error occurred. The following are the possible error
codes and their meanings: '

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

The following error codes apply in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which |is
outside the dimensions of the array. 1In the 8K and.larger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(1,1,1)=2
when A has already been dimensioned by DIM A(19,19)

DD REDIMENSIONED ARRAY 14
After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 19 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION .CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LET A(-1)=0)
2. an unreasonably large array subscript (>32%67)
3. LOG with negative or zero argument
4. SQR with negative argument
5. AuB with A negative and B not an integer
BASIC 4.1 85

April, 1877

6. a call to USR before the address of a machine 1language
subroutine has been entered.

7. calls to MIDS$, LEFTS, RIGHTS, INP, OUT, WAIT, PEEK, POKE,

TAB, SPC, STRINGS, SPACE$S, 1INSTR or ON...GOTO with an
improper argument.

ID ILLEGAL DIRECT 12

JINPUT and DEF are illegal in the direct mode. In extended

86

versions, however, INPUT is legal in direct.
NF NEXT WITHOUT FOR 1

The variable in a NEXT statement corresponds to no previously
executed FOR statement.

oD QUT OF DATA 4
A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the
program. - :

oM OUT OF MEMOCRY ¢ 7
Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

ov OVERFLOW 6_

The result of a calculation was too large to be represented in
Altair BASIC's number format. If an underflow occurs, zero is
given as the result and execution continues without any error
message being printed.

SN SYNTAX ERROR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHCUT GOSUB 3

A RETURN statement was encountered ©Dpefore a previous GOSUB
statement was executed.

UL UNDEFINED LINE 8

The line reference 1in a GOTO, GOSUB, IF...THEN...ELSE or
DELETE was to a line which aoes not exist.

3ASIC +.1

April, 1677

/0 : DIVISION BY ZERO 11

Can occur with integer division and MOD as well . as floating
point division. @ to a negative power also causes a DIVISION
BY ZERO error.

The following error messages apply to
8K, Extended and Disk versions only

CN CAN'T CONTINE 17

Attempt to continue a program when none exists, an error
occurred or after a modification was made to the program.

LS STRING TOO LONG 15

An attempt was made to create a string more than 255
characters long.

(015 OUT OF STRING SPACE 14

String variables exceed amount of string space allocated for
them. Use the CLEAR command to-allocate more string space or
use smaller strings or fewer string variables.

L

ST STRING FORMULA TOO COMPLEX : 16

A string expression was too long or too complex. Break it
into two or more shorter ones.

™ TYPE MISMATCH) 13

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice-versa;
or a function which expected a string argument was given a
numeric one or vice-versa.

gr UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had never
been defined.

The follow1ng error messages are available in Extended and
Disk versions only.

T —

MISSING OPERAND 29
During evaluation of an expression, an operator was found with

BASIC 4.1 87

April, 1377

no operand following it.

NO RESUME 19

BASIC entered an error trapping routine, but the program ended
before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 22
An error condition exists for which there is no error message
available. Probably there is an ERROR statement with an
undefined error code. .

LINE BUFFER OVERFLOW 23
An attempt was made to input a program or data line which has

too many characters to be held in the line buffer. Shorten
the line or divide it into two or more parts. :

Disk Altair BASIC Error Messages

FIELD OVERFLOW 50

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR 51

:Internal error in Disk BASIC. Report conditions under which

88

error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds of
disk .I/0 errors.

BAD FILE 52

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.

FILE NOT FGUND

Ut
(98]

b

3ASIC 4.

0
~1
~4

o

April,

FILE NOT FOUND 53

Reference was made in a LOAD, KILL or OPEN statement to a file
which did not exist on the disk specified.

BAD FILE MODE 54

An attempt was made to pepform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT or
GET - on a sequential file, to load a random file or to execute
an OPEN statement where the file mode is not I, O, or R.

EILE ALREADY OPEN ' 55

A segquential output mode OPEN for a file was issued for a file
that was already OPEN and had never been CLOSEd or a KILL
statement was given for an OPEN file.

DISK NOT MOUNTED 56
An I/0 operation was issued for a file that was not MOUNTed.

DISK I/O ERROR 57

L

An I/b error occured on disk X. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING 58

An LSET or RSET was given for a string variable which had not
previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was 1issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage 1is exhausted on the disk. Delete some old
disk files and try again.

INPUT PAST END €1

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT 1is
executed for a null (empty) file. Use of the EOF function to
detect End Of File will avoid this error.

-

April, 1977

AD RECORD NUMBER . 62

In a PUT or GET statement, the record number is either greater
than the allowable maximum (2046) or egual to zero.

BAD FILE NAME 63

A file name of 8 characters (null) or a file name whose first
byte was @ or 377 octal (255 decimal) or a file name with more

- than 8 characters was used as an argument to LOAD, SAVE, KILL

90

or OPEN.
MODE-MISMATCR 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or vice
versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LCAD of a program
in ASCII format. The LOAD is terminated.

TOO MANY FILES . 66

A SAVE or OPEN (O or R) was executed thch would create a new
file on the disk, but all 255 directory entries were already
full. Delete some files and try again.

GUT OF RANDOM BLQCKS : 67

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by ~the response to the
"NUMBER OF RANDOM FILES?" question (see Appendix H).

FILE ALREADY EXISTS 68

The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try a
different name.

FILE LINK ERROR 69

During the reading of a file, a sector was read which did not
belong to the tile.

3ASIC 4.1

April, 1977

6-6. Reserved Words.

Some words are reserved by the Altair

use as statements, commands, operators, etc.

be used for variable or function names.
are listed below in order of the versions for which they are
reserved, starting with those reserved
ending with those reserved only in Disk Altair BASIC. Words

reserved in larger versions may be used in

although one

interest of compatibility.

interpreter for
and thus may not
reserved words

versions and

smaller versions,

may want to avoid all reserved words in the

below, intrinsic function names are
versions in which they are available.

RESERVED WORDS

Words reserved

{CLEAR
DATA
DIM
END
FOR
GOSUB
GOTGC
IF
INPUT
LET
LIST

in all versions.

NEW
NEXT
PRINT
READ
REM
RETURN
RUN »
STOP
TO
TAB
THEN
USR

Words reserved in 8K, Extended and Disk

plus:

AND
CONT
DEF
FN
NOT
NULL

Words reserved

AUTO
CONSOLE
DEFDBL
DEFINT
DEFSNG
DEFSTR
DELETE
EDIT
ELSE

3ASIC 4.1

April, 1977

ON
OR
our
POKE
SPC
WAIT

in Extended and Disk versions.

LINE
LLIST
LPRINT
MOD
RENUM
RESUME
SPACES
STRINGS
SWAP

In addition to
reserved words in all

words listed

versions. All the above

All the above plus:

91

ERASE
ERL
ERR
IMP
INSTR

Words

CLOSE

92

DSKIS
DSKOS
FIELD
FILES
GET
KILL
LOAD

TROFF
TR:ON
VARPTR
WIDTH
XOR

reserved in Disk.

LSET
MERGE
MOUNT
NAME
OPEN
. PUT
RSET
UNLOAD

s

All the above plus:

3ASIC 4.1

April, 1377

APPENDIX A
ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 843 + 986 v
901 SOH 044 , 687 W
602 STX 045 - 888 X
003 ETX 046 . 89 Y
004 EOT - 047 / 090 Z
005 ENQ 9438 g 991 [
006 ACK 849 1 592 \
007 BEL 850 2 593]
208 BS 651 3 694 © (or })
009 HT 952 4 395 < (or =)
010 LF @53 5 096 '
g11 VT 354 6 697 a
612 FF 855 7 98 b
613 CR 0656 8 399 c
al4 ote) 857 9 169 d
815 SI 958 : 161 e
016 DLE 959 ; 102 £
917 DCl 660 < 103 g
918 DC2 61 = 184 h
* 619 DC3 962 > 185 i
220 DC4 . @63 ? 106 j
921 NAK 864 @ 107 k.
822 SYN 865 A 198 1
323 ETB 066 B 149 m
924 CAN 867 c 110 n
825 EM 868 D 111 o
626 SuB 969 E 112 D
027 ESCAPE 870 F 113 a
928 FS 871 G 114 r
029 GS 872 B 115 s
630 RS 373 I 116 £
931 us 674 J 117 u
032 SPACE 875 K 118 v
33 ! 876 L 119 W
934 " 677 M 120 X
835 4 378 N 121 %
836 $ 879 0 122 z
937 3 380 P 123 {
338 & @81 Q 124 x
839 ' 82 R 125
940 (983 s 126
g4l) 784 T 127 DEL
942 * 985 u

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

3ASIC 4.1

. Tae-
spril, 1977

Using ASCII codes =-- the CHRS function.

CHRS (X) returns a string whose one character is that with
ASCII code XK. ASC(XS$) converts the first character of a
string to its ASCII decimal value.

One of the most common uses of CHRS is to send a special
character to the user's terminal. The most often used of
these characters is the BEL (ASCII 7). Printing this
character will cause a bell to ring on some terminals and a
beep on many CRT's. This may be used as a preface to an error
message, as a novelty, or just to wake up the user if he has
fallen asleep. Example:

PRINT CHRS$ (7):

Another major use of CHRS$ is on those CRT's that have
cursor nositicning and other special functions (such as
turning on a hard cooy vrinter). For example, on most CRT's a
form feed (CHRS$S(12)) will cause the screen to erase and the
cursor to "home" or move to the upper left corner.

Some CRT's give the user the capability of drawing gravhs
and curves in & special point-plotter mode. This feature may
easilv be taken advantage of through wuse of Altair BASIC's
CHRS function.

3ASIC 4.1

April, 1977

APPENDIX B
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the procedure for loading BASIC in
4K, 8K and Extended versions from paper tape-or tape cassette.
For instructions on loading Disk BASIC, see appendix H.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
positions as "“up" and “down", it is convenient to denote the
up pPosition as 1 and the down position as #. Taken in agroups
of three the switches can represent octal digits. To save
space, the switch positions in the following loader program
listings are shown 1in octal notation. The leftmost two
switches in an 8 bit set are represented by the first digit,
the next three by the second digit and the low-order three
switches by the last digit.

For example, if we wish to enter octal 315 on the data
switch register, the switches would have the following
positions: :

. - L]

7 6 5 4 3 .2 1 a
up up - down down up up down =~ up
3 1 5

For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8804 front panel switch register are
used. All 16 switches would be used ¢to enter a memory
address.

The following is the procedure for 1loading BASIC from
paver tave or cassette:

1. Turn the power switch on

2. Raise the STOP switch and RESET switch simultaneously

3. Switch the terminal to LINE

4. Enter one of the following programs on the front opanel
switches. The 88-MBL Multi-Boot Loader PROM contains the
necessary loader programs, so it is not necessary to enter

a loader from the front vanel if it is installed. Refer
to the 88-MBL manual for more information.

3ASTIC 4.1

ipril, 1977

96

loading from paper tape with the SIO board (REV 1)

Octal Address Octal
800 741
201 392
082 gxx
263 g6l
304 822 -
285 339
0d6 333
ga7 8349
819 317
g1l - 339
812 333
213 ga1
g1l4 275
315 319
716 @55
817 167
329 3089
g21 351
22 . 03
323 900

loéding from cassette

Data

(17 for 4K, 37 for 8K,
Extended & Disk)

Octal Address Octal Data
6080 ol 941

pa1 C2 302

002 xF 8xx (17 for 4K, 37 for 8K,
283 31 061 Extended and Disk)
394 ; jp 822

305 cg 000

pade6 pp 333

6a7 o6 0486

018 oF 817

211 pg 330

312 DR 333

213 o7 887

g14 Bp 275

a15 C3 310

3ls op 055

817 77 167

820 co 3069

721 Fg 351

922 03 9983

23 oo 0800

77 for

A R
ki 2 -

77 for

BASIC 4.1

April, 1877

loading with the 88 PIO board

Octal Address

000

pal
pg2
203
604
@8as
0066
267
019
11
212
813
pl4
g1s
816
917
029
221
g22
23
g24

loading with the 2SIO board .

Octal Address

ae9
a1l
202
203
004
685
pae6
ag7
010
a11
@12
213
014
@15
816
817
028
921
g22
923
024
625
2%

Octal Data

941

392

gxx (17 for 4K, 37 for 8K, 77 for
g6l Extended and Disk)

823

209

333

gd4

- 346

091

"319

333
ge5
275
310
855
167
300
351
683 -
000 .

Octal Data.

g76

393

323

329

876

821 (=2 stop bits, 825=1 stop bit)
323

820

241

392

gxx (1l7for 4K, 37 for 8X, 77 for
61 Extended and Disk)
832

780

333

829

817

329

333

021

275

319

355

97

€.

f.

827
230
831
32
833

167
300
351
A13
200

loading with the 4PIO board

Octal Address
209
261
202
203
ga4
aas
gae6
aa7
310
g11
312
313
gl4
g15
‘gle
917 -
329
g21
822
323
g24
225
@26
827
238
331
832
333
334

Loading with the High Speed Tape

Octal Address
200
701
082
293
034
335
006
007
610

Octal Data
257
323
349
323
g41
g76
354
323
249
341
392

@xx (17 for 4K, 37 for 8K,
@61 Extended and Disk)

633
a0
333
049
007
339
333
g4l
275
319
855
167
300
351
pl4
029

Qctal Data
257
323
g44
323
g45
323
346
657
323

Reader

77 for

g11 - 947

312 g76
213 g14
gl4 323
815 g44
gle 876
817 A4
g2a 323
§21 g46
322 323
323 g47
324 gal
325 : 392
326 @xx (17 for 4K, 37 for 8K, 77 for
327 361 Extended and Disk)
938 g47
231 208
@32 333
933 ga4
g34 3456
335 190
836 319
@37 333
244a : 845
241 . 275
242 - 310
#43 55
v44 167
345 ’ 399
gde6 351
947 327
Y] 089

To enter these programs:

3ASIC .1

april, 1977

Put switches @ to 15 in the down vositions

Raise EXAMINE

Put the data for address zero in switches 4 through 7
Raise DEPOSIT

Put the data for the next address in the switches
Depress DEPOSIT NEXT

Reveat stevs 5 and % until the whole loader is toggled in

89

o i

8.
9.
lﬂ'

11.
12.
13.
l4.
15.

l6.

17.
18.
19.

20.

21.

22.

Put switches § through 15 in the down position
Raise EXAMINE:

Check to see that the lights D@ through D7 show the data
that should be in location 808. Light on =1, light off =
0. 1If the correct value is there, go to stepm 13; if not,
go to 11.

Put the correct value in the switches

Raise DEPOSIT

Depress EXAMINE NEXT

Repeat steps 1@ through 13 to check the entire loader

If there were any mistakes, check the entire loader again
to make sure thev were corrected.

If a vaper tape is being loaded, out it into the reader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 382 octal punched in each column. If an
audio cassette is being, loaded, put it in the <cassette
recorder and make sure it is fully rewound- .

Lower switches 8 thraqugh 15
Raise EXAMINE

Enter the sense switch settings. See the table in
section B. - :

If loading is through a SIOA, B or C or an 88PIO, turn on
the tape reader and then depress RUN. If a cassette is
being loaded, turn on the recorder, put it in PLAY mode
and wait 15 seconds. Then press RUN on the computer. If
loading is through a 4PIO, 2SI0O cr High Speed Tape Reader,
depress RUN and then start the read device.

Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes for
4K. Cassettes take about 8 minutes for Extended, 4
minutes for 8K and 2 minutes for 4K. Do not move anv of
the switches while the tape is being read.

If a loading error occurs, the 1loading ©procedure must
start over from step 1. See section C below for error
conditions. .

3ASIC 4.1

April, 1977

23, When the tape 1is read, BASIC should start up and ovrint
MEMORY SIZE? See section D below for what to do next.

24. If BASIC will not load from cassette, the ACR module may
need realignment. The Input Test Program described in the
ACR Manual, pages 22 and 28, may be used to test the ACR.

B. Sense Switch Settings

Sense switches (switches A8 through AlS) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the 1load board
setting, and the high order four switches contain the terminal
board setting. In the table below, the setting is given for
each I/O board option. As above, the setting 1is an octal
number which signifies the switch positions. The Terminal
Switch and Load Switch columns show the switches that are
raised for each of the load and terminal device options.

Sense -Switch Terminal Load

Device Setting Switches Switches Channels
2SIO] none ~ none 29, 21

(2 stop bits)
2810 1 alz A8 2, 21

(1 stop bhit)
SIO 2 Al3 a9 g, 1
ACR 3 Al3,Al2 A9,AS8 6, 7
4PIO0 4 al4 Ald 44, 41, 42, 43
PIO 5 al4,Al2 Ald,A8 4, 5
HSR 6 Al4,Al3 Ald,A9 46, 47
non-standard 14

terminal

no terminal 15
Examples:

Input from audio cassette through ACR and CRT terminal
through 2SI0O with 1 stop bit.

Switch 15 14 13 12 11 1@ 9 8

Positicn @ 7 0 1]] 1 1

Input from high sveed vaper tape reader, terminal
through SIO.

Switch 15 14 13 12 11 14 9 8
Position @ 2 1] @ 1 1]

8ASIC 2.1 101

April, 1977

102

C. Error Detection

The checksum loader turns on the Interrupt Enable liaht
on the front panel when a loading error occurs. The ASCII
code of the error 1letter 1is stored in 1location @. In
addition, the error letter is sent out over all the terminal
channels and appears on whatever terminal is connected to the

terminal. The error letters are as follows:

C <checksum error. Bad tape data.

M memory error. Data won't store properly.
The address of the bad memory location is stored
in locations 1 and 2.

O overlay error. Attempt was made to load data on too
of the loader.

I invalid load device. 1Invalid setting on the
sense switches.

D. Initialization Dialog
Upon starting, BASIC prints

MEMORY SIZE?

. -

To this, the user responds by typving the numkbter of bytes of
memory to be used by BASIC and BASIC programs. Remember that
the BASIC interpreter itself takes 3.4K in the 4K version,
6.2K in 8K and 14.6K in Extended. 1If the response is just a
carriage return, BASIC will use all the memory it can £ind,
starting at 1location =zero up to the last byte of read/write
memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user resoonds with the width of the printing line
of whatever output device is in use. Typing a carriage return
sets the terminal width to 72. Extended and Disk Altair BASIC
set the terminal width through the WIDTH command, so the
TERMINAL WIDTH guestion is not asked at initialization and an
initial width of 72 is assumed.

In 4K, the resoonse to MEMORY SIZE? and TERMINAL WIDTH?
must be less than 6 digits.

The Extended and Disk versions now ask what kind of 1line
orinter is in use.

LINEPRINTER?

The user answers with O if the 8@LP orinter is in use, C for

the C786 and Q for the Q70. One of these letters must be
typed whether or not a lineprinter is connected to the svstem.

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the
next guestion

SQR? Y keeps SQR and RND
N deletes SQR, asks next guestion
RND? Y keeops RND

N deletes RND
8K and Extended BASIC ask,

WANT SIN-COS-TAN-ATN? Y keeps all four
N deletes all four
A deletes only ATN
C (in extended) retains
- CONSOLE and all other
functions. Other an-
- swers delete CONSOLE.

Now BASIC prints,
XXXX BYTES FREE

ALTAIR BASIC VERSION 4.9
[FOUR-K VERSION]

or
[EIGHT-K VERSION]

or
[EXTENDED VERSION]
COPYRIGHT 1977 BY MITS, INC.
OK

BASIC is now in command level and is readv £or use.
E. Echo Routines,

The Altair input/output channels work in a full-duplex
mode. This means that characters entered on an input/output
terminal will not, as a rule, be nrinted as they are entered
unless the computer 1is ©programmed to return them. The
following echo programs may be used to test the inout/outout
devices. To test an input-only device, dumo the echoed
characters on an output device or store them in memory for
later examination. To test an output-only device, send the
echo characters through the front panel switches or send a
constant character. Be sure to check the ready-to-receive bit

3ASIC 4.1 103

-

,‘.
w0

April,

104

of the output terminal before attempting output. If the echo
program works, but BASIC does not, make sure the load device's
I/0 board 1is strapped for 8 data bits and that the
ready-to-recieve bit is set properly on the terminal device.

88-PIO
OCTAL ADDRESS OCTAL DATA
gol PG4
202 346
a3 281
g4 312
405 200
gaeé 009
297 333
019 gas
811 . 323
g12 295
813 3483
pl4 200
g15 g0o
2510
OCTAL ADDRESS. OCTAL DATA , .
000 JUrr @76 VI AL EE
801 . a03 ; o .
82 323 g T Jaokr .
263 920 (flag ch.) .
a04 276 prae
aes @21 (=2 stop bits, N
goe6 323 @§25=1 stop bit))
207 820
g1a Wi Tl 333 PV
a1l 029 o
812 : 617 ST
g13 322 Jwe wALTH
214 819
15 000 o 23
015 333 (W P
817 @21 (data channel)
620 our Dorr 323 guT RS
621 621
322 ' 363 Jaes
23 819
824 000
4PI0
OCTAL ADDRESS OCTAL DATA
000 257
201 323
ga2 _ 349
gg3 323
gaa gal -

BASIC 4.1

April, 1977

105

205

pae

a7
219
611
12
013
g14
15
16
a17
229
g21
22
23
p24
@25
826
827
B33
031
932
233
834
635
036
037
2490
041
242
g43
044

323
042
@57
323
943
876
854
323
249
323
042
333
049
346
200
312
020
089
333
842
346
290
312
927
pag
333
g41
323
043
303
229
paa

BASIC 4.1

April, 1977

APPENDIX C
SPACE AND SPEED HINTS

A. Space Allocation

The memory svrace reguired for a program depends, of
course, on the number and kind of elements in the program.
The following table contains information on the space reguired
for the various program elements,

Element Space Required

Variables
numeric integer 5 bytes
single precision 7 bytes in Extended and Disk
" 6 bvtes in 4K and 8K
double precision 11 bytes
string 6 bytes

Arrays
integer (# of elements)*|2
single oprecision 4
double precision 8
string : 3
8K and 4K °
strings and floating ot. |6]+|5

+(6|+(# of dimensions)*2 bytes

Functions
intrinsic
user-defined

byte for the call (2 bytes in Extended and Disk)
bytes for the definition

o

Reserved Words 1 byte each
] 2 bytes for ELSE in Extended and Disk

Other Characters
1 byte each

Stack Space
active FOR
loop 17 bytes in Extended and Disk,
. 16 bytes in 4K and 3K
active GOSUB 5 bytes
parentheses 6 bytes each set
temoorary
result 12 bytes in Extended and Disk
19 bytes in 4K and 8K

106 SASIC 4.1

0
~1
~t

April, 1

BASIC itself takes about 3.4K in the 4K version, 6.2K in
8K, 14.6K in Extended and 29 K in Disk.

B. Space Hints

The space required to run a program may be significantly
reduced without affecting execution by following a few of the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the 1line number, etc., so the fewer lines
there are, the less storage is required.

2. Delete unnecessary spaces. Instead of writing

18 PRINT X, Y, 2
use
13 PRINTX,Y,Z

3. Delete REM statements to save 1 byte for REM and. 1 byte
for each character of the remark.

4. Use variables instead of constants, exvecially when the
same value is used several times. For example, using the

constant 3.14159 ten times in a program uses 49 bytes more
space than assigning

19 P=3.14159
once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
variables.

7. Use subroutines instead of writing the same code several
times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

199 DIM A(19)

has eleven elements, A(9) through A(l13).

107

BASIC 4.1

April, 1977

108

19.

In Extended and Disk, use 1integer variables ‘wherever

. possible.

Speed Hints

Deleting svaces and REM statements gives a small but
significant decrease in execution time.

Variables are set up in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. Therefore,
reuse variable names and keep the list of variables as
short as possible.

In 8%, Extended and Disk use NEXT without the index
variable.

8K, Extended and Disk have faster floating roint
arithmetic than 4K. If space is not a limitation, use the
larger versions. :
The math functions in 8K, Extended and Disk are faster
than those in 4K. .

In the 4K and 8K versions, use variables instead of
constants, especially in FOR 1loovs and other code that
must be executed repeatedly.

In Extended and Disk, use integer variables wherever
possible.

String variables set up a descriotor which contains the
length of the string and a pointer to the first memory
location of the string. As strings are manipulated,
string space £fills up with intermediate results and
wextraneous material as well as the desired string
information. When this hapoens, BASIC's ‘“garbage
collection” routine clears out the unwanted material. The
frequency of gargbage collection is inversely proportional
to the amount of string space. The more string space
there 1is, the longer it takes to fill with garbage. The
time garbage collection takes 1is ©proporticnal to the
square of the number of string variables. Therefore, to
minimize garbage-collection time, make string svace as
largge as vpossible and use as few string variables as
poscsible.

BASIC 4.1

April, 1977

APPENDIX D
MATHEMBTICAL FUNCTIONS

1. Derived Functions.

The following functions, while not intrinsic to ALTAIR

BASIC,

can be calculated using the existing BASIC functions:

Function:

SECANT
COSECANT
COTANGENT
INVERSE SINE
INVERSE COSINE

INVERSE SECANT
INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBCLIC
SINE

INVERSE HYPERBOLIC
COSINE

INVERSE HYPERBOLIC
TANGENT

INVERSE HYPERBOLIC
SECANT

INVERSE HYPERBOLIC
COSECANT

INVERSE HYPERBOLIC
COTANGENT

BASIC ecuivalent:

SEC(X) = 1/COS(X)
CSC(X) = 1/SIN(X)
COT (X) = 1/TAN(X)

ARCSIN (X)
ARCCOS (X)

= ATN (X/SQR (-X*X+1))
= -ATN X (X/SQR(-X*X+1))

+1.57@8

ARCSEC (X)

= ATN(XSQR(X*X-1))

+SGN (SGN (X)=-1) *1.5708

ARCCEC (X)

= ATN(1/SQR(X*X-1))

+(SGN (X)-1)*1.57@8

ARCCOT (X)
SINH(X)
COSH (X)
TANH (X)

*
3%
+

SECH (X)

CSCH (X)

COTH (X)
*2+

[T T IO O e O I 1

ARCSINH (X)
ARCCOSH (X)
ARCTANH (X)
ARCSECH (X)

ARCCSCH (X)

= ATN(X)+1.5708

(EXP (X) -EXP (=X)) /2

(EXP (X)+EXP (-X)) /2
EXP{-X) /EXP (X) +EXP (=X))

2/ (EXP (X) +EXP (=X))
2/ (EXP (X) -EXP (-X))
EXP (-X)/ (EXP (X) -EXP (-X))

LOG (X+SQR(X*X+1))

LOG(X+SQR(X*X+-1))

LOG((1+X)/(1-%))/2

LOG ((SQR({=X*X+1)+1) /X)

LOG ((SGN(X) *

SOR(X*X+1)+1) /X

ARCCOTH (X)

2. Simulated Math Functions.

= LOG((X+1)/(xX-1))/2

The following subroutines are intended for 4K 3ASIC users who

want to use the
BASIC.

BASIC 4.1

Aprii, 1977

transcendental
The corresvonding routines

functions not built into 4K
for these functions in the

109

110

8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
purposes only, and should not be typed in because thevy take up
a large amount of memory. The following are the subroutine
calls and their 8K egquivalents:

8K EQUIVALENT 4K SUBROUTINE CALL
P9=X97Y9 GOSUB 60030
L9=L0OG (X9) : GOSUB 60@94@
E9=EXP (X9) GOSUB 64164
C9=C0S (X9) GOSUB 602446
T9=TAN (X9) GOSUB 60289
A9=ATN (X9) GOSUB 64319

The unneeded subroutines should not be tvped in. Please note
which wvariables are used by each subroutine. Also note that
TAN and COS require that the SIN function be retained when
BASIC is loaded and initialized.

6A3033 REM EXPONENTIATION: P9=X97Y9

66019 REM NEED: EXP, LOG

60020 REM VARIABLES USED: A9,B9,C9,E9,L9,P9,X9,Y9
60930 .-REM P9 =1 : E9=@ : IF Y9=0¢ THEN RETURN

60049 IF X9<@ THEN IF INT(Y9)=Y9 THEN P9=l—2*Y9+4*INT(Y9/2f

. 3 X9=-¥9
56058 IF X9<>@ THEN GOSUB 60894 : X9=YS*L9 : GOSUB 68150
60063 P9=P9*E9 : RETURN ’
60379 REM NATURAL LOGARITHM: L9=LOG(X9)
60980 REM VARIABLES USED: A9,B9,C9,E9,L9,X9
60099 E9=0 : IF X9<=¢ THEN PRINT "LOG FC ERROR"; : STOP
60190 A9=1: 39=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
68118 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 64140
60120 X9=(X9-.707197)/(X9+.7977187) : L9=X9*X9 '
60130 L9=(((.598979*L9+.961471)*L9+2.88539) *X9+E9-,5)*
.693147
60135 RETURN
60140 REM EXPONENTIAL : =9=EXP (X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60160 L9=INT(1.4427*X9)+1 : IF L9<127 THEN 60130
69179 IF X9>@ THEN PRINT "EXP OV ERRCR";: : STOP
60175 E9=3 : RETURN
60180 E9=.693147%L9-X9 : A9=1.32988E-3-1.41316E-4*E9
60190 A9=((A9*E9-8.30136AE-3)*E9+4.16574E~-2) *E9
68195 E9=((A9-.1666A5)*E9-1)*E9+]1 : A9=2
06197 IF L9<=@ THEN A9=.5 : L%9=-19 : IF L9=3 THEN. RETURN
603293 FOR X9=1 TO L9 : E9=A9*E9 : NEXT X9 : RETURN
50210 REM COSINE: C9=COS(X9)
60220 REM N.B. SIN MUST RE RETAINED AT LOAD-TIME
60239 REM VARIARLES USED: C9,XS
5A24¢0 C9=SIN(X9+1.5738) : RETURN
60258 REM TANGENT: T9=TAN (X9)

3ASIC 4.1

April, 1977

60260
60270
60280
60290
60300
603192
66329

60330
60349

BASIC 4.1

April, 1977

REM MNEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
REM VARIABLES USED: C9,T9,X9
GOSUB 60249 : T9=SIN(X9)/C9 : RETURN
REM ARCTANGENT : A9=ATN (X9)
REM VARIABLES USED: A9,89,C9,T9,X9
T9=SGN (X9) : X9=ABS(X9) :C9=4: IF X>1 THEN C9-1l: ¥X9=1/XS
A9=X9*X9 : B9=((2.86623E-3*A9-1.61657E-2) *A9

+4.29096E-2) *A9
B9=((((B9-7.5289E-2) *A9+.106563) *A9-.1142089) *29+.199936) *A9
A9=((B9-.333332)*A9+1)*X9 : IF C9=1 THEN A9=1.5708-A9

111

112

APPENDIX E
BASIC AND ASSEMBLY LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR function
allows Altair BASIC orograms to call assembly language
subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for an Altair BASIC program is to set aside memorv
space. When BASIC asks, "MEMORY SIZE?" during initialization,
the response should be the size of memory available minus the
amount needed for the assembly language routine. BASIC uses
all - the Dbytes it can find from location zero up, so only the
tovmost locations in memory can be used for user supplied
routines. If the answer to the MEMORY SIZE? question is too
small, BASIC will ask the gquestion again until it gets all the
memory it needs. See Appendix C for Altair BASIC's memory
reguirements. -

The assembly language routine may be loaded 1into wmemory
from the front vpanel switches or from a BASIC mrogram by means
of the POKE statement.

The starting address of the assembly language routine
gées in USRLOC, a two bvte location in memory which varies
from version to version.. USRLOC for 4K and 8K Altair BASIC
version 4.8 1is 111 octal. 1In Extended and Disk, USRLOC need
not be known explicitly since it is defined automatically by
DEFUSR (section 5-3b). The function USR calls the routine
whose address is in USRLOC. Initiallv, USRLOC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL
FUNCTION CALL error. If USR 1is <called without an address
loaded in USRLOC, an ILLEGAL FUNCTION CALL error results.

When USR is called, the stack vointer is set wup for 8
levels (16 bvtes) of stack storage. If more stack space is
needed, BASIC's stack can be saved and a new stack set up for
use bv the assembly language routine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed bv a2
user's assembly language routine. Of course, memory locations
within BASIC ought not to be changed, nor should more bvtes be
pooved off the stack than wers put on it.

JSR is called with a <single argument. The assemblv
language routine can retrieve this argument by callinag the
routine whose address is in locations 4 and 5 decimal. The

low-order bvte of the address is in 4 and the high-order in 3.
In 4X and 8K, this routine (DEINT) stores the argument in the
ragister mpair ([D,E]. In Extended and Disk, the araument is

BASIC 4.1

April, 1977

passed in pair ([H,L]. The argument is truncated to integer in
4K and 8K, and if it is not in the range -32768 to 32767, an
FC error occurs. In Extended and Disk, the register ©pair
[H,L] contains a pointer to the Floating Point Accumulator
where the argument is stored (see section 5-3b. for more
information about use of the Floating Point Accumulator).

To pass a result back from an assembly language routine,
load the value in register pair [A,B] in 4X and 8K, or [H,L]
in Extended. This value must be a signed, 16 bit integer as
defined above. Then call the routine whose address is in
locations 6 and 7. If this routine 1is not called, USR(X)
returns X. To return to BASIC, then, the assémbly lanquage
routine executes a RET instruction. :

Assembly language routines <c¢an be written to handle
interrupts. Locations 56, 57 and 58 are used to hold a JMP
instruction to a user suvplied interrupt handlina routine.
Location 56 initially holds a RET, so it must be set up by the
user or an interrupt will have no effect.

All interrupt handling routines should save the stack,
registers A-L and the PSW. They should also reenable
interrupts before returning since an interrupt automatically
disables -all further interrupts once it is received.

°

There is onlv one way to ,call an .assembly language
routine in 4K and 8K, but this does not limit the programmer
to only one assembly language routine. The argument of USR
can be used to designate which routine is being called. 1In
8K, additional arguments can be passed through the use of POKE
and values may be passed back by PEEK.

L)

In Extended and Disk BASIC, up to ten routines may be
called with the USRY - USR9 functions. For more information
on this feature, see section 5-3b. F<° 7 :

.
BASIC 4.1 113

April, 19077

114

APPENDIX F
USING THE ACR INTERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in 8K Altair BASICs which are distributed on
cassette and in Extended and Disk versions. 8K BASIC
on paper tape will give the user about 250 additional
byvtes of free memory, but it will not recognize the
CLOAD or CSAVE commands.

Programs may be saved on cassette tane by means of the
CSAVE command. CSAVE may be used in either direct or indirect
mode, and its format is as follows:

CSAVE <string expression>
The program currently in memory is saved on cassette under the
name specified by" the first character of the <string
expression>. CSAVE writes through channel 7 when the Write
Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE is
completed, BASIC always returns to command level, Proqgrams
are written on tape in BASIC's internal representation.
Variable values are not saved on tape, although an indirect
mode CSAVE does not affect the variable values of the program
currently in memory. The number of nulls (see ©NULL command)
has no affect on the operation of CSAVE. Before usinag CSAVE,
turn on the cassette recorder. Make sure the tape is in the
orover vosition then out the recorder in RECORD mode.

Programs may be loaded from cassette tape by means of the
CLOAD command, which has the same format as CSAVE. The effect
of CLOAD is to execute a NEW command, clearing memorv and all
variable wvalues and 1loading the specified file into memory.
Wwhen done reading and loading, BASIC returns to command level.
CLOAD reads a byte from channel 7 when the Read Data Ready bit
(bit @) in channel 6 1is low. Reading continues until 3
consecutive zeros are read. BASIC will not return to command
level after a CLOAD if it could not find the regquested £ile,
or 1f the file was found but did not end with 3 zeros. In
that case, the computer will continue to search until it is
stooved and restarted at location 4.

3ASIC 4.1

April, 1977

In the 8K cassette and Extended versions of ALTAIR BASIC,
data may be read and written with the CSAVE* and CLOAD*
commands. The formats are as follows:

CSAVE*<array variable name>
and
CLOAD*<array variable name>

See section 2-44d for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string expression> compares the program currently
in memory with the specified file on cassette. If the two
files match, BASIC prints OK. 1If not, BASIC prints NO GOOD.

Data may also be read from and written on cassette in the
paper tape version of 8K Altair BASIC. To write data, execute
a WAIT 6,128 statement to check for the Write Buffer Empty bit
and then write with an OUT 7,<bvte> statement. To read,
execute a WAIT 6,1 to check for Read Data Ready and then read
with an INP (7). The end of a block of data may be
conveniently designated by a special character. Data should
be stored in array form since there is no time durinag reading

and writing for computation. -

gy TR 2 [‘ V/; Al
SV 1 (ik>,/ P3In LET i
L5 b L2 A -
l i " ~
- I3 v Qﬁt

»‘: { € - A/ Sl /.'.:1 :'/
115

BASIC 4.1

April, 1977

APPENDIX G
CONVERTING BASIC PROGRAMS
NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers

are in many ways similar, there are some incompatibilities
between ALTAIR BASIC and the BASIC used on other computers. -

"1l) Strings.

A number of BASICs require the 1length o0f strings to be

~declared before they are used. All dimension statements of
this type should be removed from the program. In some of
these BASICs, a declaration of the form DIM A$(I,J) declares a
string array of J elzsments each of which has a lenath 1I.
Convert DIM statements of this type to eguivalent ones in
Altair BASIC: DIM AS$(J). Altair BASIC uses " + " for string
concatenation, not * , “ or " & ." ALTAIR BASIC uses LEFTS,
RIGHTS and MIDS to take substrings of strings. Some other
BASICs use AS(I) to access the Ith -character of the string AS,
and AS$(I,J) to take a substring of AS$ from character ©pvosition
I to character position J. Convert as follows:

oD . . NEW .
AS (I) MIDS (A$,I,1)
A$ (I,J) MIDS (AS,I,J-I+1)

This assumes that the reference to a subscrint of a5 is in an
expression or is on the right side of an assignment. If the
reference to AS$S is on the left hand side of an assignment, and
X$ 1is the string exvression used to replace characters in Aa$,
convert as follows:

In 4K and 8K

OLD NEW

AS(I)=XS AS=LEFTS (AS,I-1)+XS$S+MIDS (AS,I+1)
AS(I,J)=X$ AS=LEFTS (AS$,I-1)+XS+MIDS (AS,J+1)
Extended and Disk

OLD NEW

AS (I)=XS MIDS (AS,1,1)=Xs

AS(I,J)=¥S MIDS(AS,I,J-I+1)=¥S

2) Multiple assignments.
Some BASICs allow statements of the form:

509 LET B=C=0

116 3ASIC 4.1

This statement would set the variables B and C to zero. In 8K
-Altair BASIC, this has an entirely different effect. all the
" = " gigns to the right of the first one would be intervreted
as logical comparison operators. This would set the variable
B to -1 if C equaled 8. If C did not equal 8, B would be set
to @. The easiest way to convert statements like this one is
to rewrite them as follows.

5008 C=@:B=C
3) Some BASICs use "“ \ " instead of " : " to delimit multiole
statements on a line. Change each " \ " to " : " in the
program.

4) Paper tapes punched by other BASICs may have no nulls at
the end of each line instead of the three per line recommended
for use with Altair BASIC. To get around this, trv to use the
tape feed control on the Teletvype to stop the tave from
reading as soon as Altair BASIC prints a carrisge return at
the end of the line. Wait a moment, and then continue feeding
in the tape. When reading has finished, be sure to punch a
new tape in Altair BASIC's format.

A program for converting taves to Altair BASIC's format
was published in MITS Computer Notes, November 1976, o. 25.

5) Programs which use the MAT functions available 1in some
BASICs will have to be rewritten using FOR...NEXT loovs to
perform the avoropriate overations.

3ASIC 1.1 117

ipril, 1977

118

APPENDIX H
DISK INFORMATION

Format of Altair Flopopy Disk

Track Allocation: .

Tracks Use.

g-5 Disk BASIC memory image.
6-69 Svace for either random or sequential files.
79 Directory track. Sez below.

71-76 Space for segquential files only.

Format of DISK BASIC Memory Image (Tracks 4-5):

»

BASIC is loaded starting at track @ sector 9 then track @
sector 1, etc. Each sector contains 128 bytes of BASIC. The
first 128 bvtes are loaded first, second 128 second, etc.

-
-

Sector format (Tracks 9-5):

Byte Use
a Track Number+128 decimal. |
1-2 Sixteen bit address of the next

higher byte of memory than the highest memorvy location
saved on this sector.

3-130 128 bytes of BASIC.

131 255 decimal stopo byte.

132 Checksum - sum of bytes 3-13¢ with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte Use

2 Most Significant Bit alwavs on.
Contains track number plus 20¢ octal.

1 Sector number * 17 MOD 32,

2 File number in directorv. Zero file number means
that the sector is not zart of any file. If the
sector is the first f£ile of a groun of 8 sectors
g means the whole group of 8 sectors is free,

3 Number of data bytes written (9 to 128) . Alwavs
128 for randcm files. (Except for the random filse
index blocks in which case this bvte indicates how many

groups are allocated to the file,)

4 Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 bvte.

5,6 Pointer to the next group of data. This is set up for
random files and sequential files, and is even wvalid
in the middle of a group. If it is zero it means there
is no more data in the file. The track is the first byte
and the sector number is the second bvyte.

7-134 Data :

135 A 255 (octal 377) to make sure the right number

of data bytes were read.
136 Unused.

Directory Track (78) Format:

Each sector of the directory (which is all of track 78)
is composed of up to 8 file name slots, 16 bvtes per slot.
Each slot can contain a file name (8 bytes), a 1link to the
start of file data (2 bytes) and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
bytes are not currently used. Any slot which has the first
file name byte egual to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
.last slot currently in use in the directory. Slots bevond the
"stopper" are garbage. File -numbers are calculated by
multiplying the sector number of the directory track the file
is in by 8 and adding the position of the slot in the sector
(8-7) plus 1.

NOTE

The ith logical sector on a track is actually mapped
to the 1i*17 MOD 32 ohysical sector to shorten access
time in BASIC I/0 operations.

Format of Random Files

Each random file starts with two random index blocks. The
“number of data bytes" field in the first block indicates how
many groups are currently allocated to this random file. The
next 256 Dbytes 1in the two random index blocks give the
location of each group in the random file in order of their

position in the file. The upper two bits give the group
number , and the lower six bits give the track number - 6.
BASIC 4.1 119

April, 1977

Assembly Code to Read and Write a Sector

The following code has been provided to help users write their
own assembly language subroutines to read and write data on
the floppy disk. It is assumed that the disk being wused has
already been enabled and positioned to the correct track. Two
data byvtes are always read or written at a time so that the
CPU can keep up with the data rate (32 microseconds/bvyte) of-
the flopoy disk. After two bytes are read or written, the CPU
re-synchronizes with the next ‘'byte ready' status from the
floopy disk controller. .

; CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]

; AND POINTER TO DATA BUFFER IN [H,L]

; ALL REGS DESTROYED.

DSKO: MOV C,A ;SAVE # OF BYTES IN C
MVI a,136 ;CALCULATE NUMBER OF ZEROS TO WRITE
SUB C ; SUBTRACT THE NUMBER OF DATA BYTES
MOV B,A ; NUMBER OF ZEROS+1
CALL SECGET ; LATENCY
MVI A,128 ; ENABLE WRITE WITHOUT SPECIAL CURRENT
ouT 9 :

-+ CALL WITH [B{=NUMBER OF ZEROS [C]=NUMBER OF DATA BYTES
; AND [H,L] POINTING AT OUTPUT DATA :

: N
OHLDSK: MVI D,1 . :SETUP A MASK (READY TO WRITE)
MVI a,l2s8 ;HIGH BIT (D7) ALWAYS ON IN FIRST BYTE
ORA M ;:OR ON DATA BYTE
MOV E,A ; SAVE FOR LATER
INX H : : INCREMENT BUFFER POINTER
NOTYTD: IN 8 ;GET WRITE DATA READY STATUS
ANA D s TEST STATUS BIT
JNZ NOTYTD :NOT READY TO WRITE, WAIT
ADD E ;ADD BYTE WE WANT TO SEND TO ZERO
ouT 19 ;SEND THE BYTE
MOV A, M :GET NEXT BYTE TO SEND
INX H sMOVE BUFFER POQINTER AHEAD
MOV E,M sGET NEXT DATA BYTE
INX H :MOVE BUFFER POINTER AHEAD AGAIN
DCR C : DECREMENT COUNT OF CHARS TO SEND
JZ ZRLOP :IF DONE, QUIT & GO TO ZRLOP
DCR C +DECREMENT COUMT OF CHARS AGAIN
OoUuT 18 :SEND THIS BYTE
JNZ NOTYTD ;STILL MORE CHARS, DO THEM.
ZRLOP: IN 8 s GET READY TO WRITE
ANA D : IS IT READY
JNZ ZRLOP ;s IFP NOT, LOOP
ourT 14 s KEEP SENDING FINAL BVTE
DCR B ;:DECREMENT COUNT OF BYTES TO SEND
120 BASIC 4.1

April, 19

JNZ ZRLOP ;KEEP WAITING

EI ; RE-ENABLE INTERRUPTS

MVI a,8 ; UNLOAD HEAD

ouT 9 ; SEND COMMAND

RET ; DONE
; DISK INPUT ROUTINE. ENTER WITH POINTER
; OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.
DSKI: CALL SECGET sPOINT TO RIGHT SECTOR

MVI C,137 ;GET # OF CHARS TO READ
READOK: IN 8 ;GET DISK STATUS

ORA A ;READY TO READ BYTE

JM READCK

IN 19 ;READ THE STUFF

MOV M,A ; SAVE IN BUFFER

INX H ;BUMP DESTINATION POINTER

DCR C ; LESS CHARS

Jz RETDO .3;IF OUT OF CHARS, RETURN

DCR c ;s DECREMENT COUNT OF CHARS

NOP ;DELAY INTO NEXT BYTE

IN 19 ;GET NEXT BYTE

MOV M,A ;SAVE BYTE IN BUFFER

INX H ;MOVE BUFFER POINTER

JdNZ READOK ;IF CHARS STILL LEFT, LOOP BACK
RETDO: EI ; RE-ENABLE INTERRUPTS

- MVI A,8 ~ s UNLOAD HEAD -

ouT 9 ; SEND COMMAND

RET
SECGET: MVI A,d ; LOAD THE HEAD

ouT 9

DI ;DISABLE INTERRUPTS
SECLP2: IN 9 ;GET SECTOR INFO

RAR ;FIX UP SECTOR #

JC SECLP2 :IF NOT, KEEP WAITING

ANTI 31 ;GET SECTOR #

CMP E ;IS IT THE ONE WE WANTED

JNZ SECLP2 +sTRY TO FIND IT

RET

The Disk PROM BRootstrap Loader

The Disk Bootstrap Loader PROM must be installed 1in the
highest ovosition on the PROM board and the PRCM board must be
strapved at the oropver address. The proper position 1is the
PROM IC socket on the ooposite side of the board from the
black finned heat sink. The black dot or '1' on the PROM
should be in the upper left corner. The address jumpers on
the PROM board must .-be in the 'l' position.

BASIC 4.1

April, 1977

121

122

To use the Disk Bootstrap Loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177400 (address switches Al5-aAS8
up, rest down) and then set the sense switches for the
terminal I/O board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or display):

MEMORY SIZE?

For the rest of the initialization procedure, see below.
Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap Loader PROM is not in use, a vaper tape
or cassette program must be loaded which then reads in BASIC
from the disk. This is done by following the procedure below:

1., Key in the apolicable paper tape or cassette bootstrao

loader from the listings in Aocpendix B. Make
location 2=877 octal. ; Set the sense switches for the
terminal. :

2. Start the paper tape or cassette (labeled DISK LOADER)
reading, &nd then start the computer as. in the
instructions for loading BASIC from paver tape from
cassette as given in Appendix B. .

BASIC should respond:
MEMORY SIZE?

For the rest of the initialization procedure, see below.
Disk Initialization Dialoag.

The initialization dialog has been expanded to allow the user
to select the oprover amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE gquestion 1is
answered, BASIC will ask:

HIGHEST DISK NUMBER?
The user should answer with the highest physical disk address

in the system or with a carriage return., The default 1is @.
Each additional disk uses 40 bytes of memory.

Example:

HIGHEST DISK NUMBER? 1

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and sequential
files. If the wuser types carriage return, the default is
zero. Each file allocated requires 138 Dbytes for buffer
space. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on the
floppy disk where groups of a random file reside. Thus, the
total memory required for each random file is 138+257=395
bytes. Example:

HOW MANY RANDOM FILES? 1
A typical dialog miéht avpear as follows:

MEMORY SIZE? <carriage return>

HIGHEST DISK NUMBER? <carriadge return>

HOW MANY FILES? 2 <carriage return> .
HOW MANY RANDOM FILES? 1 <carriage return>

XXXxX BYTES FREE

ALTAIR BASIC REV. 4.9

[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

3ASIC 4.1 : 123

April, 1977

124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such such
common functions as printing directories, initializing disks,
copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) reguire that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering the
“HOW MANY FILES?" gquestion with a value greater than
zero. If an attempt is made to perform a LIS or DIR
without following this ovrocedurs, a BAD FILE NUMBER
error will occur.

Once the BASIC disk has been mounted, type the following
command : :

RUN "PIP“<carriage return>
(PIP will type) :

*

PIP is now ready to accept commands. To exit PIP, tyve a
carriage return to the prompt asterisk. To 1initialize the
floopy disk in drive 8, type:

*INIO

PIP will tyve "DONE" when it is finished. Any disk number may
be substituted for the @ in the above command and PIP will
format the disk in that drive. Anv orevious files on the disk
initialized will be lost. If vou wish to use blank disks with
Disk BASIC,. they must be initialized in this fashion before
they can be MOUNTed.

NOTE
DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC ON

IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON THE
DISK.

BASIC 4.1

April, 1977

Printing a Directory

Giving PIP the command:

*DIR<disk number>
prints out a directory of the files on the specified disk.
The name of each file is printed along with the file's “"mode"
(S for sequential, R for random) and the starting track and
sector number of the first block in the file.

SRT<disk number>

prints a sorted directory of the files on the svecified disk.
LISting Sequential Files

The LIS command is used to list the contents of a seguential
data file on the terminal:

Syntax:
LIS<disk number>,<file name>
Example:

*[LLIS@,PIPA user types
7 CLEAR 10409 comouter prints

COPying Disks

The COP command is used to cooy a disk placed in one drive to
a disk on another drive. Neither disk need be MOUNTed for the
COP command to work properly.

Syntax:

COP<o0ld disk number>,<new disk number>

3ASIC 4.1

April, 1

W
~}
~1

126

Before the copy is done, PIP verifies the action by prihting
the following massage:

FROM<disk number>TO<disk number>

Typing Y followed by a carriage return causes execution to
proceed. Any other response aborts the command. Example:

*COPd,1

FROM 8 TO 1? Y<carriage return>
DONE
*

The DAT command
The DAT command is used to dump out a particular sector of the
disk in octal.
Syntax:
DAT<disk number>

When the DAT command is issued, PIP asks for the numbers of

the track and sector to be dumped. Example: . -*
*DATO (DAT is eguivalent)
TRACK? @
SECTOR? @

00¢ P00 00C 006 000 000 000 900
600 920 000 009 000 etc.

The CNV command

CNV converts disks written under Altair BASIC version 3.4 and
3.3 to a format useable bv version 4.8. The format of the
command 1is as follows:

CNV<disk number>
CNV makes sure that the next to last bvte of each sector is

255.

Other Programs Provided on the Svstem Disk

Program Name Use
STARTREK Plays game- based on TV series.

BASIC 4.1 127

April, 1977

128

APPENDIX J

RSTLESS VERSIONS OF BASIC

Altair BASIC uses the so-called RST locations (locations
8 through 108 octal) at the bottom of memory. This saves
memory space, but precludes the use of the Vector Interrupt
board for real-time programming applications. Special .
versions of Altair BASIC are available which do not wuse the
RST locations, however. These versions leave the RST
locations free to be used for assembly language routines 1in
the same was as any other locations in high memory.

To restart the standard versions of Altair BASIC, it is
necessary simply to actuate the RESET switch on the computer's
front panel. This causes a Jjump to location @. In the
RSTLESS version, BASIC is restarted by jumping to location 168
octal. The usual procedure for doing this is as follows:

l. Raise STOP and RESET simuitaneously, then release them

2. Raise switch a6

" 3. Actuate EXAMINE

4. Push RUN

BASIC restarts and prints "OK."

BASIC 4.1

April, 1977

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 3/MOD 80 AND MDS SYSTEMS

This appendix covers procedures for loading and overating
Altair BASIC on Intellec and MDS development systems.

A, Loading BASIC.

To load Altair BASIC, put the hex vaper tape of 3ASIC in
the system reader device. Enter the System and assign the
CONSOLE I/0 device as desired (see Section 4.2.1 of the
Intellec 8/Mod 8@ Overator's Manual). Now read in BASIC with
the following R command.

.R(Cr)

The BASIC tape will be loaded into memory, and the system
monitor will type a period on the CONSOLE device. If you are
only using contiquous RAM memory below the system monitor
(38098) or are using BASIC on a MDS System, vroceed to step 2.
If you have RAM- memory above the PROM Intellec monitor which
vou wish BASIC to use for vrogram and variable storage, ,you
must patch the two locations known as INTLOC to point to the
bottom (lowest address) of memory. The 1is most easily
accomplished by using the System Monitor S command. INTLOC is
given below under “Memory Requirements."”

.SXXXX 00 40 (Cr)

The above S command would make INTLOC point to RAM, starting
at 16K.

NOTE

If you are wusing RAM above 16K for orogram and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
Appendix B). Essentiallv, this means that the WANT
SIN-COS-TAN-ATN? Jquestions asked by BASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? question with
the highest decimal or RAM address in yvour svstem.

129

130

Start BASIC by giving the monitor GOTO command.

.GAdB0<carriage return>

NOTE

Once BASIC has been started, it may always be
restarted by depressing the RESET switch on the
Intellec 8 console.

When BASIC types MEMORY SIZE?, typing carriage return will
cause BASIC to wuse all the RAM memory it can f£ind above the
end of BASIC. Otherwise, if you wish to specify an exact
amount of memory, type the decimal address of the highest byte
of memory in the computer and type carriage return.

B. BASIC I/0.

The system devices used for terminal I/0 in BASIC are CI,
CO and CSTS.

C. Saving and Loading Programs,

To save a program on paper tape, re-enter the PROM
monitor and reassign the CO device to the paper tape punch or
other output device. Then restart BASIC bv wusing the G@00@9
command and type LIST(Cr). The characters of the LIST command
will not be echoed, but the BASIC vrogram currently saved in

memory will be put on the output device.

To load a program, enter the system monitor, re-assign CI
to the input device where the program resides, and then start
BASIC with a G0@@8. When the program has been completely read
in, reassign CI to the user consocle. Then re-enter BASIC with
a GOgOd9, and start the I/0 device. The program will be echoed
on CO as it is read in.

D. Memory Requirements

BASIC uses locations 00006H-0003H and d@0ldH-approximately
19DFH in the 8K version, and 0@010H-2FOEH in the Extended
version. For Intellec 3K and MDS 8K BASICs, INTLOC is 6529
decimal. For MDS Extended, INTLOC is 14257 decimal.

E. Calling Assembly Language Routines
USRLOC for 8K BASIC is @955H. ADR(DEINT) is stored 1in

locations 0@43H. ADR(GIVACF) is stored in location 9845H. In
the Extended version, these locations contain the addresses of

FRCINT and MAKINT, respectively. Interrupt driven subroutines
using RST 7 are not allowed in the 1Intellec/MDS version- of
Altair BASIC. See Apvendix C for further information on
calling assembly language subroutines.

* Intellec 1is a registered trademark of the Intel
Corporation.

131

BASIC 41+

AprTil, 1977

LR d
k 4

APPENDIX L
PATCHING BASIC'S I/0 ROUTINES

BASIC's 1I/O routines may be <changed to accommodate
non-standard terminal equipment. After BASIC is loaded and
before it has been initialized, location 71 contains a pointer
to a list of addresses. These addresses contain the I/0
routines of BASIC:

ORG 701
DW IOLST :TWO BYTE ADDRESS OF ADDRESS LIST
IOLST: DW TRYIN :CHARACTER INPUT ROUTINE
DW TRYOUT sADDRESS OF OQUTPUT ROUTINE
DW ISCNTC ; POLL FOR CONTROL/C CHECK
DW NEWSTT : FAST POLL FOR CONTROL/C CHECK
; 8K AND LARGER ONLY
DW IN25I0 +ADDRESS CF INITIALIZATION
: ROUTINE FOR 2SIO BOARDS
DW IN4PIO - yADDRESS OF INITIALIZATION ROUTINE FOR
. ;:4PI0 BOARDS
DW LPTPOS :ADDRESS OF LP“'CODE FLAGS o,
DW LPT3CD : ; START OF LPT CODE
DW ENDLPT ; END OF LPT CODE
DW TOCHNL :ADDRESS OF I/0O RESET LOCATION
,(IV EXTENDED AND DISX ONLY)
TRYQOUT: IN] :GET DEVICE STATUS
ANI 200 sAND OFF 3IT 7
JINZ TRYOUT +WAIT UNTIL TERMINAL CAN OUTPUT
POP PSW :GET CHARACTER TO OUTPUT OFF STACK
ouT 1 ;s TRANSMIT IT
PUSH PSW s SAVE CHARACTER BACK ON STACK
NOP ;CHANGED TO "IN 41“ FOR 4PIO BOARDS
NOP :
POP PSW ;GET CHARACTER BACK OFF STACK
RET sALL DONE WITH CHARACTER OUTPUT ROUTINE
TRYIN: IN 9 sGET TERMINAL STATUS
ANTI 1 ; CHARACTER READY?
JINZ TRYIN :NO, KEEP WAITING
IN 1 s READ IN THE CHARACTER
ANT 127 ¢:GET RID OF PARITY RIT
132 BASIC 4.1

april, 1377

19F9

BASIC 4.1

CPI CONTO ;CONTROL/0?

RNZ ;RETURN IF NOT
ISCNTC: iN] ; READ TERMINAL STATUS
ANI 11 ;HAS THE TERMINAL A CHARACTER
;TO SEND?
RNZ :NO, RETURN

; FOLLOWING ROUTINE IS IN 2K AND LARGER VEPSIONS ONLY
;AND IS EXECUTED FOR EACH STATEMENT

NEWSTT: IN g ; READ TERMINAL STATUS

ANT 1 ;TEST BIT 9

C2 CNTCCN ;YES, SEE IF CHARACTER CONTROL/C
IN2SIO: CPI 2*%4 ;IS IT 2SI0

RNC ;NO, OTHER GO DIRECTLY TO SETIO

ADI 21 ;GET PROPER INITIALIZATION BYTE

PUSH PSW ;SAVE IT

MVI A,3 ; INITIALIZE THE 2SIO

CaLL DOI028 7 : .

POP PSY ;GET BACK SECOND INITIALIZATION BYTE

JMP DOIO29 ; PROGRAM TO DATA AND STOP BITS '
IN4PIO: MVI A,54Q ;RESET FOR DATA TRANSFER

DCR M ; CHANNEL=22

CALL DOIO02%

The pointers LPTPOS, LPTCD3 and ENDLPT refer to the
following sections of lineprinter code:

A. LPT code flags.

LPTLST: DB] ;9 MEANS LAST LPT OPERATION

;WAS LINE FEED

;1 MEANS LAST LPT OP'N WAS PRINT
LPTPOS: DB g s CURRENT LCGICAL POSITION OF LPT HEAD
PRTFLG: DB a ;3 MEANS OUTPUT TO CONSOLE

;1 MEANS OUTPUT TO LPT

;2 MEANS LLIST QUTPUT TO LPT

133

April, 1977

QPOS: DB] ;CURRENT Q70@¢ PRINT HEAD POSITION
DB 2 ;IN 1/120 INCH INCREMENTS
QMOV: DB] ; NUMBER OF INCREMENTS TO MOVE Q749
;PRINT HEAD IN ADDITION TO CHARACTER
LPTLEN: DB g ;MAX. NUMBER OF LPT COLUMNS
NLPPOS: DB g ; COLUMN BEYOND WHICH THERE ARE NO MORE

; "COMMA FIELDS®

A comma in a LPRINT statement causes the printhead to move to
the beginning of the next 14 column field. TIf LPTPOS is
greater than NLPPOS, a carriage return line feed sequence 1is
executed before printing. NLPPOS 1is calculated by the
following relation:

NLPPOS=INT(((LPTLEN/14)-1)*14)
o
LPTLST - is used onlv by the 8fLP printer. QP0OS and QMOV
are used only by the 2Q79. The user should not modify the
PRTFLG flag since it is modified and referred to in several
places in BASIC. Changing it in a USR routine has
unpredictable results. ’

B, Start of LPT code.

LPT3CD: JMP FINLPT
JMP * PRINTW

body of LPT code

e

The main body of LPT <code 1is entered whenever PRTFLG |is
determined to be non-~zero. The character to be output must be
at the top of the stack. ' Upon exit from LPT code, the
character must be removed from the stack and should be loaded
into the Accumulator. This 1s because BASIC checks the
Accumulator for the last character printed.

FINLPT is entered whenever BASIC returns to command
level. FINLPT calls PRINTW for a carriage return/line feed
sequence, if necessary, and resets PRTFLG to zero.

PRINTW does the carriage return/line f=ed.

FINLPT and PRINTW both return with zero loaded in the
Accumulator and all the condition codes set to zero.

134 BASIC 4,1

April, 1977

C. End of LPT code

ENDLPT is the physical end of the 1lineorinter driver
code.

The following routines are wused in with all terminal

devices:
IOCHNL: @ ;DEPOSIT BOARD TYPE HERE
@ +CHANNEL GETS DEPOSITED HERE.
IOREST: LXI H, IOCHENL +GRAB POINTER TO IT
CALL HELPIO +SET UP THE NEW CONSOLE DEVICE
CALL STKINI +MAKE STACX OK ,
JMP READY ;AND TYPE "OK" HOPEFULLY ON GOOD CONSOL

To modify the 1I/0 routines, stoo the machine after
loading BASIC and 1insert the changes using the front panel
switches, or read in a tape containing the patches. Restart
BASIC at location zero with all sense switches up. This will
prevent BASIC from modifying the I/0 routines. In general,
these guidelines should be followed in writing I/0 routines:

1. 1Insert a JMP at TRYOUT to the custom output routine. Be

sure the PSW that is saved on the stack when the routine

. is entered is preserved. Make sure all registers are left
Lo unchanged when the routine is exited.

2. Insert a JMP at TRYIN to the custom input routine. Return
the 1input character in the A register and do not change
any of the other registers. The PSW may be changed.

3. To modify ISCNTC, insert a CALL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present and zero if a character
is present. The A register and the condition codes may be
changed.

4, To change the initialization of the 2SIO board, change the
“ADI 23Q" to “MVI A,XXX" where XXX 1is the new
initialization byte.

5. To change the initialization of the 4PIO board, change the
"MVI A,54Q0" to a "MVI A,XXX" where ¥XX 1is the new
initialization bvte.

6. To patch in a new line orinter driver, chanas the code at
LPTCOD. Note that PRINTW is also called by the routine
which prints a carriage return line feed. The <code at
LPTCD2 and LPTCD3 must be changed if the line printer is
not 86 characters wide.

3ASIC 4.1 135

April, 1977

136

7. To recover from an incorrect CONSOLE command, deposit the
board type in IOCHNL, the board tyve in IOCHNL+1l, and
start the machine at IOCHNL+2.

Patching Disk BASIC - the PTD program.

After Disk BASIC is loaded, devosit the desired patches
in memory. Then examine and run PTD at location 54868 octal.
After two or three seconds, the patched version of BASIC will
be saved on disk. The save is complete when the Disk Enable
light on disk drive zero goes out.

To save a patched version of BASIC on a disk which did
not previously contain release 4.0 Altair BASIC, track ¢ must
be copiad from a 4.0 disk.

PTD may also be used to save programs other than BASIC on
tracks 0-4 of a diskette by loading the program after BASIC is
loaded and running PTD. All memory locations between @ and
46308 octal will be saved on tracks #-4 on diskette zero.

APPENDIX M
USING ALTAIR DISK BASIC
“An Example

The following is a discussion of how to program a typical
aprlication in BASIC. The example 1is the MITS in-house
inventory system which is designed to run on the following
hardware: ’

Altair 8800b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SI0 serial
I/0 board

Two disk drives

24-line Lear-Sigler CRT terminal

Line printer -

The most important part of the design for an application
is setting uo the files. Files that are correctly set up will
be easy to use and maintain. Poorly set up files will be a
perpetual ®headache, <causing either an eventual rewrite or,
more likely, abandonment of the system.

The first listing at the end of the appendix, INVEN,
contains modules from the main program in the inventory
system.’ INVEN shows how the central file (a random file) in
the system is set up and how it is handled. The INVEN listing
also shows the use of another random file and a sequential
file, The CALC 1listing shows how to read programs as data
files. CODEl is a vartial listing of a program that will be
read as a data file.

The INVEN modules 1listed were ’included to show the
following features: -

1. program startup initialization and comments about the
files used bv the program (lines 1-35)

2. what the complete program does (lines 60-1809)

3. an example of how to modify records in a random file
(lines 900-1848)

4. an example of how sequential files are used (lines
1800-1868 and 2790-2829)

one apvroach to the problem of handling a random file that
svans more than cone disk (lines 29209-2039)

wm
.

3ASIC 4.1 137

-

April, 1977

138

6. three subroutines (lines 300-340, 90408-9028 and 9208-9220)
that are called by the INVEN modules.

The function FNY (line 6) is wused to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round gquantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INV1 and INV2 are repeatedly fielded by <calls to the
subroutine at line 20@%4. The IF F>255 (line 68) avoids the
possibility that the program can be stopped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Inventory module,
etc. This prevents updating one £file but not the other.
(This could hapven if PUT 2, Rl was at line 1914.)

Line 2000 sets 2 to 1 and Rl to N if the item wanted, N,
is less than 2041l. It sets Z to 2 and Rl to N-28006 if the
item wanted is greater than 206@6. Line 2028 then sets the
pointers for the variables in the field statement to point
into either the buffer for 1INV or the buffer for INV2,
devending on whether the 1tem wanted is less than.28661 or
greater than 2000.-

The CALC listing is a program which determines if there
are enough parts in inventory to meet projected demands. Line
60 waits while the disk comes up to sveed so the message
"ENABLE DISK 1" will not be printed on the terminal. Lines
106-140 input up to fifty different oroduct codes and the
number of each product to be built. ULine 178 opens a file for
each product that contains the varts required for the product.
Lines 22@-25@ build up a rewport heading, extracting the
oroduct description contained in line 10 of each file.

Lines 120-150 accumulate the number of parts required for
each product into the array Q. If more than 32767 of a part
is required, a pointer is set in the array Q and the number of
the wopart is accumulated in the array Q!. This maneuvering is
necessary since the system does not have enough memory to
dimension Q as single precision instead of integer.

The parts lists for a product are programs saved with the
A option. Since they are programs, their maintenance is verv
easy. For example, supvose that part 1971 in the 88@db is too
marginal and that from now on wpart 1173 should be used

instead. With the parts lists disk mounted on drive @, the
following secguence will update the 8880b file:

3ASIC 4.1

“April, 1877

LOAD "“CODE1l"“
160,1,1173
SAVE “CODEl",9,A

The programmer who is cramped for memorv will £ind that
programs can still be documented adequately if comments are
set up as separate files. The memory used for variables when
a program runs can be used for comments if the comments are
merged in when the program is to be 1listed. Alternatively,
the program could be listed in two or more varts. Additional
memory can be obtained by bringing BASIC up without optional
functions and with no files.

The main inventory program is set up so that a carriage
return typed 1in response to any crompt causes the program to
dump the function descriptions on the CRT and to return to the
FUNCTION NUMBER prompt. If the program were to be run on a
printing terminal, instead of a 9608 baud CRT, it would not be
set up to print the descriptions every time the overator
wanted to get back to the FUNCTION NUMBER prompt. The list of
function descriptions might be taped on the wall next to the
terminal instead.

Listing of INVEN

DEFINT F-N .
DEFINT R _ ®

DEFINT 7%

DEFDBL P

DEF FNY#(Q8#)-IVT(Q8#*A&+ 5#)/2a#

DEF FNQ# (Q9!)=INT (VAL (STRS(Q9!))*10004+.54%)/10004
AS=MKDS (9) :BS$S=MKSS (8) :24=100000%

16 DIM QS$(2),PS$(2) :

11 ¢!

W~JaanWwpN -

INV1 ON DRIVE ¢ HOLDS ITEMS 1-2000

INV2 ON DRIVE 1 HOLDS ITEMS 2201-4000 :
INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 ¢

WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVE ITEMS LISTS ARE PRINTING;

CONTAIN THE ITEM #S THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY RESETS.

14 !
$() <=> THREE ON HAND QTY FOR: P$() <=> THREE PRICES

[(3) OLDEST, P(l1) NEXT OLDEST, Q(9)<>@ IF Q(l)<>@,

Q(1)<>@ IF Q(2)<>0]

?S {=> DESCRIPTION LEFTS (DS$,3)="$8$" <=> INACTVE ITEM #
5 I

I1$ <=> WEEKLY QTY IN

I28 <=> MONTHLY QTY IN

0l$ <=> WEEXLY QTY OUT

BASIC 4.1 139

April, 1977

140

02$ <=> MONTHLY QTY OUT

35
66
61

TS <=> REORDER LEVEL

DI1$ <=> WEEKLY §$ IN

ID2$ <=> MONTHLY §$ IN

DO1$ <=> WEEKLY § OUT

0D2$ <=> MONTHLY $ OUT

17 ¢

DT1$ <=> WEEKLY DEPT $ TAKEN
DX2$ <=> MONTHLY DEPT $ TAKEN
.DGl$ <=> WEEKLY DEPT § GIVEN
DY2$ <=> MONTHLY DEPT § GIVEN
29 OPEN "R",#1,"INV1"

30 OPEN "R",#2,"INV2",1

32 OPEN "R",#3,"INV3",1

FIELD #3,8 AS DT1§,8 AS DX2$,8 A5 DGLlsS,8 AS DY2S$
PRINT:F=0: INPUT"FUNCTION NUMBER";F:IFF>255THENG3

ON F GOTO 2146,356,350,1900,600,900,17649,
2709,2509,2300,2400,1880,2900"

2 3 4 5 6 7 8 9 19 11 12 13

14 15 16

PRINT"1 - ENTER NEW ITEM"

PRINT"2 - LIST ITEM ON CRT (SHORT FORM)"

PRINT"3 - LIST ITEM ON CRT (LONG FORM)"

PRINT"4 - PRINT ITEMS ON LINE PRINTER

PRINT"S - ADD TO INVENTORY"

PRINT"6 - REMOVE FROM INVENTORY"

PRINT“7 - PRINT WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
PRINT"“8 - PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
PRINT"S - WEEKLY RESET

PRINT"10- PRINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
PRINT"11- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
PRINT"12- MONTHLY RESET

PRINT"13- RESET ORDER LEVELS

PRINT"14- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED

77 PRINT"15~ DELETE OLD ITEM
78 PRINT"16- ERRORS BACKOUT
190 GOTO64

298 !

*

SUB - INPUT PART # & GET RECORD
*

300 PRINT:PRINT:N=0:INPUT"PART NUMBER";N:IFN<K1THENRETURN
319 IFN>4QQGOTHENPRINT:PRINT"''# TOO HIGH''":GOTO 3449

320 GOSUB2009:GETZ,R1

330 IFLEFTS(DS,3)="$SS“THENPRINT:

PRINT"''NO INFORMATION ON PART''";N:GOTO340

349 RETURN
g89g
*

F=6 - REMOVE FROM INVENTORY

*

BASIC 4.1

tpril, 1377

908 GOSUB340:IFN=8GOTO63 .
920 DN=-1:INPUT"NUMBER OF ITEMS REMOVED FROM INVENTORY";
DN : IFDN=-1THENG63
958 IFCVS(Q$(8))+CVS(QS(1l))+CVS(QS(2))<DNTHENPRINT"
ATTEMPT TO REMOVE MORE THAN ON HAND":PRINT:GOTO063
960 D@=DN:P=9
978 IFDOKCVS(Q$(9))THEN
P=P+FNQ# (D@) *CVD (P$ (0)) :LSETQS (9) =MKSS (CVS(Qs (8))-D2) :
GOTO10464
980 P=P+FNQ# (CVS(Q$(8)))*CVD(PS(0)) :DI=DA-CVS(QS$S (D)) :
LSETQS (8) =Q$ (1) :LSETQS (1) =Q$ (2) :LSETQS (2) =BS$:
LSETPS (8)=P$ (1) :LSETPS (1) =PS$S(2) :LSETPS (2) =AS : IFD@THEN
GOT0978
1780 LSETOl$=MKS$ (CVS(01l$)+DN) :LSETO2$=MKSS (CVS(02$)+DN) :
LSETDO1$=MKDS (CVD (DO1$) +P) : LSETOD2$=MKDS$ (CVD (OD2S) +P)
1928 GOSUB92040:IFC%=-1GOTO63
1930 LSETDT1$=MKDS (CVD (DTL1S$)+P) :LSETDX2$=MKDS (CVD (DX2$) +P)
1649 PUT3,C%:PUTZ,R1:GOTO9440
179¢
*

F=9 - WEEKLY RESET
*

1868 PRINT"7 - WEEKLY DEPARTMENT RECORD

1892 PRINT"8 - WEEKLY ACTIVE ITEMS

1804 zZ$="":INPUT"HAVE THE ABOVE BEEN LISTED FOR TODAY";Z$

1818 IFLEFTS (2$,1)<>"Y"THENPRINT:PRINT
“WEEKLY RESET NOT PERFORMED" :GOTO63

1843 OPEN"I",4,"WEKLYRST"

1845 IFEOF (4) THENCLOSE4:KILL"WEKLYRST":GOT01862

1850 INPUT#4,N:IF 1<=NANDN<=4080¢ THENGOSUB2009:GETZ,Rl
ELSEPRINTN; "OUT OF BOUNDS. RESET ABORTED.":END

1855 LSETI1$=BS$:LSETO1$=B$:LSETDI1$=AS:LSETDO1$=A$:PUTZ,R1

1869 GOTO1845

1862 FORI=1TO2¢

1864 GET3,I:LSETDT1S$=AS:LSETDG1$=A$:PUT3,I

1866 NEXT

1868 GOTO64

1999

*

SUB - GET Z,Rl1 FOR N AND FIELD TO INV1,2
*
2000 Z=1-(N>2000) :R1=N+(2=2) %2000
2029 FIELD Z,4 AS QS$(9),4 AS Q9$(1),4 AS Q$(2), 38 AS PS(9),
8 AS PS$(1l),8 AS PS(2),40 AS DS$,4 AS Il$,4 AS 128,
4 AS O1$,4 AS 023,8 AS DI1S$,8 AS ID2$,8 AS DOlS$,8 AS OD2S
20390 RETURN
2694 !
*

F=8,11 - WEEKLY,MONTHLY ACTIVE ITEMS LIST

* °

2708 N=1:GOSUB28d9:GOSUB2855
2793 IFF=8THENOPEN"O",4,"WEKLYRST"ELSEOPEN"O",4,"MONTHRST"

BASIC 4.1 141

April, 1977

2705 IT#=0:0T%#=0:TT#=0
2718 FORI=1TO2000
2720 GETZ,I:IFLEFTS$ (D$,3)="$SS"THEN280J
2723 QB=CVS(Q$(9)) :Q1l=CVS(QS$ (1)) :Q2=CVS(QS$(2))
2725 IFF=8THENI!=CVS(I1$):0!=CVS(0l$):I4#=CVD(DIL1S) :04=CVD(DO1S)
ELSEI!=CVS(I2S$):0!=CVS(02$):I4#=CVD(ID2$) :04=CVD(0OD2$)
2727 TT#=TT#+CVD (P$ (@)) *QB+CVD (P$ (1)) *QL+CVD (PS (2)) *Q2
2730 IFI!+0!=@THEN2800
2733 PRINT#4,N+I-1
2735 IT#=IT#+I#:0T4=0T#+0%
2740 IFL9>59ANDKK=0THENGOSUR2850
2750 LPRINTUSING“###4##":99999!+N+1I; '
2770 LPRINTUSING"##, ##4% ,##4";I!,0!,00+Q01+0Q2,00+Q1+Q2+0!~-TI1!;
2780 LPRINTUSING"SS,%##,### #4";I1%,0%
2790 L9=L9+1 : :
2795 KK=KK+1:IFKK=S5THENLPRINT:L9=L9+1:KK=0
2800 NEXT
2819 IFN=1THENN=2001:GOSUB2848:G0T02719
2811 CLOSE4
2813 LPRINT:LPRINTUSING“TOTAL INVENTORY COST =S$$4#, 444,444, 44", TT%
2815 REM *GOT02820 IN F=7,10
© 2820 LPRINT:LPRINTUSING"TOTAL IN = $S44#,#4% 444 44",IT¢
- 2830 LPRINTUSING"TOTAL OUT =S$S4#, 444 444 44,074
2837 LPRINT:LPRINT
284@ GOTOS?
2850 FORJ=L9TO66:LPRINT:NEXT
2855 IFF=8THENLPRINT"WEEKLY"; :ELSELPRINT"“MONTHLY":
2868 LPRINT“ ACTIVE ITEMS LIST";:GOSUB94G0
2865 LPRINTTAB(39);"“STARTED" ,
2873 LPRINT"ITEM # QTY-IN QTY-OUT ON-HAND MO-WITH
DOLLARS-IN . DOLLARS-OQUT“
2880 LPRINT:XKX=0:L9=6:RETURN
8999
*

SUB - PRINT TODAY'S DATE
*

9009 IFTDS=""THENLINEINPUT"TODAY'S DATE ?2";TDS$:IFTDS=""“THENG63
9010 LPRINT" ";TD$

9015 LPRINT

5929 RETURN

919%¢g

x

INPUT DEPARTMENT # AND GET TOTALS

*

92909 C%=~1:INPUT"ENTER DEPARTMENT CODE";C%:IFC%=-1THENRETURN
9210 IF1<=C%ANDC%<=20THENGET3,C%:RETURN

9220 PRINT“INVALID CODE":GOT09200

Listing of CODEl

5 CODEl

142 3ASIC 4.1

April, 1977

10 PARTS LIST FOR: 88008
20 OCT 36,1976

9@ REM THIS IS THE START OF DATA
100 ,11,1642

119 ,3,1134

120 ,4,1046

130 ,1,1020

149 ,1,1821

156 ,1,1024

1660 ,1,1071

176 ,1,1074

186 ,1,2105

196 ,24,348

200 ,2,326

Listing of CALC

19 CLEAR62S
20 DEFINT A-3
30 DIM CN(49),NU(49),Q(4a08),Q!(260)
40 CLOSE:UNLOADI
5¢ INPUT“PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";G$
60 FORK!=1TO50@% :NEXT:MOUNT1
9¢ LINEINPUT“TODAY'S MO/DA/YR “;DT$:HS$ (0)=DT$+" PARTS AVAILABLE FOR:"
.95
» INPUT QUANTITY OF EACH PRODUCT REQUIRED
kkkkk : -
160 INPUT"CODE NUMBER (9 WHEN FINISHED)";CN(I)
11¢ IF CN(I)=@ THEN 150 :
128 IF CN(I)<1 OR 5@<CN(I) THEN PRINT"INVALID CODE NUMBER":
GOTO 100
13¢ INPUT“NUMBER OF UNITS TO BE MADE";NU(I)
149 I=I+1:IF I<50 THEN 100
145 !
ACCUMULATE QUANTITY OF EACH PART REQUIRED
* % k% %
150 FOR K=@ TO I-1
160 ONERRORGOTO610
170 OPEN"I",#1,"CODE"+MIDS (STR$ (CN(X)),2),1
186 ONERRORGOTO@
19¢ LINEINPUT#1,A$:IFA$S=""THEN190
20@ IFLEFTS (A$,3)="90 "THEN260
219 IFLEFT$ (A$,3)<>"1§ “THEN190
220 IFKTHENHS (HK) =HS (HK) +","
230 HHS$=STRS$ (NU(X))+STRS (CN (X)) +"=("+MIDS (A$,20)+")"
240 IFLEN (HHS)+LEN (HS (HK))>72THENHK=HK+1
250 HS (HK) =HS$ (HK) +HHS : GOT0190
260 ONERRORGOT0630
27@ IFEOF (1) THEN314
288 INPUT #1,A,QN,PN
290 IFQ(PN)<@THENQ! (-Q(PN))=Q! (-Q(PN))+NU (X) *ON

3ASIC 4.1 143

aprii, 1977

ELSEQ (PN) =Q (PN) +NU (K) *QN
300 GOTO279
316 ONERRORGOTO@:CLOSE 1:NEXT X
]

315

GET SECOND HALF OF INVENTORY BACK ON LINE
ko k ok k

3280 CLOSE:UNLOAD1

336 INPUT"

PLACE INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT";G$

34¢ FORI!=1TO503@:NEXT:MOUNT1 : .

360 OPEN"R",#2,"INVL"

370 FIELD 42,4 AS Ql$,4 AS Q25,4 AS Q3$,24 AS GS$,40 AS DS

375 !

PRINT REPORT

kkkk*k

380 GOSUB570

399 FOR I=1 TO 4000

469 IF Q(I)=0 THEN 534

410 QQ!=Q(I):IFQ(I)<@THENQQ!=Q! (-Q(I))

420 IFL9>S59ANDKK=0THENGOSUBS6

43¢ L9=L9+1

449 RN=I

450 IFI<20@0THEN468ELSERN=RN-2000: IFFLAG=0THEN
CLOSE2:0PEN"R",#2,"INV2",1:FLAG=1:
FIELD#2,4 AS Q13,4 AS Q2S,4 AS Q3$,24 AS G$,4@ AS DS

460 GET #2,RN

479 IFLEFTS (DS, 3)="$$$“THENLPRINTI+140000!;
“kxkxxkxkk NO INFORMATION ON DART ***x*%k*u; .
LPRINTUSING"##%,#####4";QQ! :GOT0529

480 QH!=CVS (Q1$)+CVS (02$) +CVS (03$) :QD!=0H1-0Q!

5¢0 LPRINTI+14€000!;D$;" “;

518 LPRINT USING “##%, ###“##",QQI,QH!,QN

520 KK=KK+1:IFKK=STHENKX=@:LPRINT:L9=L9+1

530 NEXTI:CLOSE:END

560 FORK=L9TO66:LPRINT:NEXT

565

PRINT PAGE HEADING

kkk k%

570 FORK=@TOHK:LPRINTHS (K) :NEXT

58¢ LPRINT:LPRINTTAB(52);“NEEDED ON HAND EXCESS":LPRINT

590 KK=0:L9=5+HK :RETURN

605

TRAP ROUTINE: BAD CODE NUMBER

kkkkk

610 IFERR=53THENPRINT:PRINT"NO CODE";MIDS (STRS (CN(X)),2):" FILE"

620 ONERRORGOTOO

625

TRAP ROUTINE: ACCUMULATE INTO Q OVERFLOWED

kk ke k Kk

630 IFERR<>SORERL<>290THENONERRORGOTO®

640 NQ=NQ+1:0! (NQ)=Q (PN) +NU (X) *QN:Q (PN) =-NQ

670 RESUME270

144 BASIC 1.1

tpril, 1977

INDEX

@ ¢ v o s e e e e e e s e e s 9

ABS . . . e e o o 4 e« o . 18
ACR interface . . . e e . 114
AND & ¢ 4 ¢ o o o o o « » « o 17
Array variables 14
ASC « « « « o . 78
ASCII character code e« o o« 93
ATN . 4 ¢« o« o o o o o« s« « « « 18
AUTO v ¢ ¢ &« ¢ o o o o s« » s » 6

Backarrow . .« . « « « +« o o« o« 82
Boot loaders . « « « 4+ « « +» o« 95
3ranch, cenditional 19
Branch, unconditional 19
Branching + « « « . . 19

Carriage Return 4, 83

Character, alphanumeric . . 4
CHRS . v . v v v v o « & 78
CLEAR. . « « « « . 69

CLOAD .«
CLOAD* for arrays
CLOAD? « . . .
CLOSE .« « ¢ « o =
CLOSE, random files
Command Level . .
Commands List
CONSOLE .« v o &+ o «

*® e e o o
e e e & s » @

e s * & o & e s
w
o

*» e ® o a2 & & s s e
.
e & o & s 0o o

34
Constants .« .+« « « « . . 10
CONT v v ¢ v « o o o« o e « .« 78
Control/a . . . e « ¢ « « 9
Control/C . &« & ¢« ¢« &« « « « « 83
Control/I e e e 84
Control/0 « « « « 83
Control/Q¢ 83
Control/S . . . 83

Control/U v ¢« ¢ ¢ « o o o « « 9
Conversion from non-Altair BASIC 116
CSAVE. v v ¢ & @« o« +« o « o« « « 69
COS v v v & v « o o o o +« + . 18
CSAVE* fOor arrays .« « « « » - 25
CVD e e s e e e s e e e e e s 65
CV1I e e e e e e e e e e e e 65
CVs e e e e e s e e e e e e 65

BASIC 4.1

April, 1977

l4e

DEFSNG

DATA o ¢ o ¢ o o o o o =
DEF e o o & o
DEFDBL . « « « o
Definitions . .
DEFINT. . « . « &

°
®
.

DEFSTR . « « «
DEFUSR &
DELETE
DIM . ¢« ¢ o « &
Dimensions . . .
Direct Mode
Disk format

Disk number
Disk overations
Disk PROM Bootstrap Load

e o o o o
®
°
®

2 6 s
e

. . e
e ° .

°

er . .

118
52
51
121

Disk read and write, assembly code 120

Division,integer
Double precision
DSKF « ¢« & o o o o « o &
DSKIS and DSKOS nrimitiv

Echo routines
EDIT L] - L] L) L] ° 2 L ° Ll
Edit, definition . . .

Editing, elementary provisions

END . & & o 4 s o o o &
EOF . « &« & o704 o & o
EQV v ¢ ¢ 4 ¢ o o o o
ERASE . . . e o o . .
ERL . ¢ ¢ ¢ o o & o o &
ERR v ¢« &+ & o & o« o o o
Error codes
Error message format
Error messages, disk .
ERROR statement
Error traoping . . .
EXP . ¢« ¢« o« « ¢« o o &
Expression, integer
Expressions, string .

FIELD ¢ ¢« ¢ o o « s o &
Fields, numeric .
Fields, string . .
File name . . . « . . .
FILES command . . .

FIX « o o o« o« o &

FOR ¢ 6 v« o o o o
FRCINT & v ¢« o v « o« .
FRE e e e e e e e e
Functions
Functions, derived
Functions, extended
Functions, intrinsic .
Functions, simulated (fo

°

es . .

°

april, 1977

Functions, string 31
Functions, user-defined . . . 28

GET v & v 4 v o o o o o « « + 62
GOSUB e e o o o o e o o s o s 22
GOTO v v v o & « o« o « o o « « 19

HEXS ¢ & ¢ ¢ ¢ o ¢ o o o « o« « 79
Hexadecimal constants 12

IF...GOTO v ¢ & & o & . .« . 20
IF...THEN . . + « « 19
IF...THEN...ELSE 23
IMP v v v v s e v o . . . 17

Indirect Mode

o o e » o