

...,

PREFACE

The Altair BASIC lanquage is a high-level 9rogramming
language snecif ically designed for interactive com~utinq
systems. Its sim~le ·Enqlish-like instructions are easily
understood and quickly learned and its interactive nature
allows instant feedback of results and diagnostics. Despite
its sirn?licity, however, Altair BASIC has evolved into a
powerful language with nrov1s1ons for editinq and string
processing as well as numerical computation.

The Altair BASIC interpreter reads the instructions of
the BASIC language and directs the ALT~IR 8800 series
microcom?uter to execute them. ~ltair BASIC includes T.any
useful diagnostic and editing features in all versions. The
extended versions provide additional features including
com~rehensive file input/output orocedures in the. disk
version.

This manual will exnlain the features of the BASIC
language and the s~ecial ?revisions of the 4K, 8K, Extended
and Oisk Extended ~ltair BASIC interpreters, release 4.1. For

. quick reference, a table of Altair BASIC instructions,
diagnostics and functions are 9rovided in Section 6. A
corn~lete index is at the end of .the manual.

•

BASIC .t.l 1

April, 1977

2

CONTENTS

1. Some Introductory Remarks. 4

1-1 Introduction to this manual 4
a. Conventions
b. Definitions

1-2 Modes of Operation 5
1-3 Formats 6

a. Lines-AUTO and RENUM
b. REMarks
c. Error Messages

1-4 Editing - elementary ?rov1s1ons 9
a. Correcting Single Characters
b. Correcting Lines
c. Correcting Whole Programs

2. Expressions and Statements 10

2-1 Ex~ressions 10
a. Constants
b. Variables
c. ~rray Variables - the DIM Statement
d. Ooerators and Precedence
e. L~gical O~erations
f. The LET Statement

2-2 Branching and Loops 19
a. Branching

1) GOTO
2) IF •.• THEN [ELSE]
3) ON ... GOTO

b. Loops - FOR and NEXT Statements
c. Subroutines - GOSUB and RETURN Statements
d. Memory Limitations

2-3 Input/Output 23
a. INPUT
b. PRINT
c. DATA, READ, RESTORE
d. CSAVE, CLOAD
e. Miscellaneous

l) WAIT
2) PEEK,POKE
3) OUT, INP

BASIC 4,1

April, 19i7

3. Functions 28
3-1 Intrinsic Functions 28
3-2 User-Defined Functions - the DEF Statement 28
3-3 Errors 29
4. Strings 30
4-1 String Data 30
4-2 String OT;>erations 30

a. Comoarison Ol?erators
b. String Exl?ressions
c. Input/Output

4-3 String Functions 31

5. Extended Versions 32

5-1 Extended Statements 32
5-2 Extended Ot?erators 38
5-3 Extended Functions 39
5-4 The EDIT Command 41
5-5 PRINT USING Statement 46
5-6 Disk File Operations 51

6. Lists and Directories 69

6-1 Commands 69
6-2 Sta. te!':len ts 72
6-3 Intrinsic Functions 77
6-4 s?ecial Characters 82
6-5 Error Messages 84
6-6 Reserved words 91

Aopendices

A. ASCII Character Codes 93
B. Loading Altair BASIC 95
C. S9eed and Space Hints 106
D. Mathematical Functions 109
E. Altair BASIC and Machine Languaqe 112
F. Using the ACR Interface 114
G. Convertina BASIC Programs Not Written for the Altair Comt?uter 116
H. Disk Infor~ation 118
I. The PIP Utility Program 124
J. RSTLESS Versions of BASIC 128
K. Using Altair BASIC on the

Intellec* 8/Mod 80 and MDS Systems 129
L. Patchina Altair BASIC's I/O Routines 132
M. Usinq Disk Altair BASIC: An Example 137

Index 145

SAS IC .t .1 3

4

1. SOME INTRODUCTORY REMARKS

1-1 Introduction to this Manual~

a. Conventions. For the sake of simplicitv, some
conventions will be followed in discussing the features of the
Altair BASIC lanquaqe.
1. Words ?rinted in capital letters must be written exactly
as shown. These are mostly ·names of instructions and
commands.
2. Items enclosed in angle brackets (<>) must be su?plied as
ex?lained in the text. Items in square brackets ([]) are
optional. I terns in both kinds of brackets, [<W>] , for
example, are to be supplied if the ootional feature is used.
Items followed bv dots { •..) may be re~eated or deleted as
necessary ..
3. Shift/ or Control/ followed by a letter means the
character is typed by holding down the Shift or Control key
and ty~ing the indicated letter.
4. All indicated 9unctuation must be supplied.

b. Definitions. Some terms which will become important
are as follows:

Alphanumeric character: all letters and numerals taken
together are called al9hanurneric characters.

Carriage Return: Rafers both to the key on the terminal
which causes the carriage, print head or cursor to move to·. the
beginning of the next line and to the command that the
c·arriaqe return key issues which terminates a BASIC line.

Command Level:
the command level.

After Altair BASIC Prints OK, it is in
This means it is ready to accept commands.

Commands and Statements: Instructions in Altair BASIC
are loosely divided into two classes, Commands and Statements.
Commands are instructions normally used only in direct mode
(see Modes of Operation, section 1-2). Some commands, such as
CONT, may only be used in direct mode since thev have no
meaning as ?rograra statements. Some commands, such as DELETE,
ar~ not normally used as program statements because they cause
a r~turn to command level. But most co~rnands will find
occasional use as nrogran statements. Statements are
instructions that are norrnallv usea in indirect mode. Some
statements, such as DEF, mav only be used in indirect mode.

Edit: The process of deletinq, adding and substituting
lines in a orogram and that of preparing data for out?Ut
accordinq to a ?redetermined format will both be referred to
as "editing." The particular meaning in use will be clear from
the context.

BASIC J.l

April, 197i

Integer Expression: A.n ex9ression whose value is
truncated .to an integer. The comoonents of the expression
need not be of integer type.

Reserved Words: Some words are reserved by BASIC for use
as statements and commands. These are called reserved words
and they may not be used in variable or function names.

Soecial. Characters: Some characters a~pear. differently
on different terminal?. Some of the most imoortant of these
are the following:

(carat) appears on some terminals as t (up-arrow)
""-' (tilde) does not apoear on some terminals and orints

as a blank
(underline) a?9ears on some terminals as (back-arrow).

String Literal: A strinq of characters enclosed by
quotation marks (~) which is to be inout or out?ut exactly as
it appears. The quotation marks are not oart of the strinq
literal, nor ~av a strinq literal contain ouotation marks •

• (.... HI' THERE is not legal.)

Type: While the actual device used to enter information
into the computer differs from system to system, this manual
w i 11 use the WO rd II t Yl? e .• t 0 refer t 0 the ? r 0 c es s 0 f entry .
The user types, the computer ~rints. Tvne also refers to the
classifications of numbers and strings. The meaning will be
clear from the context.

1-2 ~odes of Operation.

Altair BASIC provides for ooeration of the coml?uter in
two different modes. In the direct mode, the stateMents or
commands are executed as they are entered into the computer.
Results of arithmetic and loqicol ooerations are disolayed and
stored for later use, but the instructions themselves are lost
after execution. This mode is useful for debugging and for
using Altair BA.SIC in a ''calculator'' mode for guick
computations which do not justify the design and codina of
co~?lete ?roqrams.

In the indirect ~ode, the cornnuter executes instructions
from a oroqram stored in memory. Program lines are entered
into memorv if they are oreceded by a line number. Execution
of the prooram is usually initiated bv the RUN command.

BASIC 4.1 5

April, 197"'."

1-3 Formats.

a. Lines - AUTO and RENUM. The line is the fundamental
unit of an Altair BASIC proqram. The format for an Altair
BASIC line is as follows:

nnnnn <BASIC statement>[:<BASIC statement> •••]

Each Altair BASIC line begins with a number. The number
corres?onds to the address of the line in memory and indicates
the order in which the statements in the line will be executed
in the program. It also provides for branching linkaqes and
for editing. Line numbers must be in the range 0 to 65529. A
good. orogramminq practice is to use an increment of 5 or 10
between successive line numbers to allow for insertions.

1) Line numbers may be generated automatically in the
Extended and Disk versions of Altair BASIC by use of the AUTO
and RENUM commands. The AUTO command provides for automatic
insertion of line numbers when entering program lines. The
format of the AUTO command is as follows:.

AUTO[<initial line>[, [<increment>]]
Exam9le;

~UTO 100,10
1~0 INPUi X,Y
110 PRINT SQR(X-2+Y-2)
120 -c
OK

AUTO will number every input line.until Control/C is typed.
If the <initial line> is omitted, it is assumed to be 10 and
an increment of 10 is assumed if <increment> is omitted. If
the <initial line> is followed by a comma but no increment is
specified, the increment last used in an AUTO statement is
assumed.

If AUTO generates a line number that already exists in
the 9rogram currently in memory, it prints the number followed
bv an asterisk. This is to warn the user that any in9ut will
replace the existing line.

2) The RENUM command allows program lines to be ''soread
out" so that a new line or lines mav be inserted between
existing lines. The format of the RENUM command is as
follows:

RENUM [<NN>[<MM>[,<II>]]]

where NN is the new number of the first line to be
resequenced. If omitted, NN is assumed to be 10. Lines less

6 3ASIC ~.l

April, 1977

than MM will not be renumbered. If MM is omitted, the whole
program will be resequenced. II is the increment between the
lines to be resequenced. If II is omitted,. it is assumed to
be 10. Exam~les:

RENUM Renumbers the whole program to start at line 10
with an increment of 10 between the new line numbers.

RENUM 100,,100 Renumbers the whole program to start
at line 100 with an increment of 100.

RENUM 6000,5000,1000 Renumbers the lines from 5000 up
so they start at 6000 with an increment of 1000.

NOTE

RENUM cannot be used to change the order of Program
lines (for exam9le, RENUM 15,30 when the ?rcgram has
three lines numbered 10, 20 and 30) nor to create line
numbers greater than 65529. An ILLEGAL FUNCTION CALL
error will result.

All line numbers a9pearing after a GOTO, GOSUB, THEN,
ON ••. GO'l::o, ON ••. GOSUB and ERL<relational O?erator> will be
properly .changed by RENUM to reference the new line numbers.
If a line number appears after one of the•statements above but
does not exist in the ?rogram, the messa0e "UNDEFINED LINE
XXXXX IN YYYYY'' will be Printed. This line reference (XXXXX}
will not be chanqed by RENUM, but line number YYYYY may be
c_hanged.

3} In the Extended and Disk versions, the current line
number may be designated by a period (.) anywhere a line
number reference is reauired. This is particularly useful in
the use of the EDIT command. See section 5-4.

4) Following the line number, one or more BASIC
statements are written. The first word of a statement
identifies the operations to be performed. The list of
arguments which follows the identifying word serves several
purposes. It can contain (or refer symbolically to) the data
which is to be 09erated u9on by the statement. In some
important instructions, the operation to be oerformed depends
upon conditions or options soecified in the iist.

Each tv~e of state~ent will be considered in detail in
sections 2, 3 and 4.

BASIC 4 .1 7

A-pri 1, l 9i7

8

More than one statement can be written on one line if
they are separated . by colons (:). Any number of statements
can be joined this way ?rovided that the line is no more than
72 characters long in the 4K and SK versions or 255 characters
in the Extended and Disk versions. In the Extended and Disk
versions, lines may be broken with the LINE FEED key.
Example:

100 IF X<Y+37<line feed>
THEN 5 <line feed>
ELSE PRINT(X)<carriaqe return>

The line is shown broken into three lines, but it is input as
one BASIC line.

b. REMarks. In many cases, a proryram can be more easily
understood if it contains remarks and ex~lanations as well as
the statements of the program oro?er. In Altair BASIC, the
REM statement allows such comments to be included without
affecting execution of the ?rogram. The format of the REM
statement is as follows:

REM <remarks>

A REM statement is not executed by BASIC, but branchinq
stQ.tements may lin-k into i·t. REM statements are terminated by
the carriage return or the €nd of .the line but not by a· colon:
Example:

100 REM DO THIS LOOP:FOR I=lT010 -the FOR statement
will not be executed

101 FOR I=l TO 10: REM DO THIS LOOP -this FOR state-
ment will be execu­
ted.

In Extended and Disk versions, remarks may be added to the end
of a oroaram line se?arated from the rest of the line by a
single auotation mark ('). Everything after the sinqle quote
will be ignored.

c .. Errors. When the 9~SIC interpreter detects an error
that will cause the orogram to be terminated, it prints an
error message. The error message formats in Altair BASIC are
as follows:

Direct statenent
Indirect statement

?XX ERROR
?XX ERROR IN nnnnn

XX is the error code or message (see section 5-5 for a list of
error codes and messages) and nnnnn is the line number where
the error occurred. Each statement has its own ?articular
?Ossible errors in addition to the general errors in syntax.

SASIC 4.1

April, 197i

These errors will be discussed in the description of the
individual statements.

1-4. Editing - Elementary 9rovisions.

Editing features are provided in Altair BASIC so that
mistakes can be corrected and features can be added and
deleted without affecting the remainder of the ~rogram. If
necessary, the whole ?rogram may be deleted. Extended and
Disk Altair BASIC have expanded editing facilities which will
be discussed in section S.

a. Correcting Single Characters. If an incorrect
character is detected in a line as it is being ty9ed, it can
be corrected immediately with the backarrow (, underline on
some terminals) or ,exce9t in 4K, the RUSOUT key. Each stroke
of the key deletes the immediately precedinq character. If
there is no 9receding character, a carriaqe return is issued
and a new line is begun. Once the unwanted characters are
removed, they can be replaced sim~ly by ty~ing the rest of the
line as desired.

When RUBOUT is ty~ed, a backslash (\) is µrinted and then
the character to be deleted. Each successive RUBOUT prints
the next character to be deleted. Typinq a new charact~r
prints another backslash and the new character. All
characters between the backslashe~ are deleted.

Example:

100 X=\=X\Y=l0 Typing two RUBOUTS deleted the '='
and 'X' which were subsequently
replaced by Y= •

b. Correcting Lines. A line being typed may be deleted
by typing an at-sign (@) instead of ty?ing a carriage return.
A carriage return is printed automatically after the line is
deleted. Exce?t in 4K, typing Control/U has the same effect.

In the Extended and Disk versions, ty?ing Control/A
instead of the carriaqe return will allow all the features of
the 8DIT .command (except the A command) to be used on the line
currently being tyDed. See section 5-4.

c. Correcting Whole Proqrams. The NEW command causes
the entire current ?rogra~ and all variables to be deleted.
NEW is generall9 used to clear ~emery snace 9reoaratory to
enterinq a new 9roqram.

3ASIC i.1 9

April, 1977

10

2. EXPRESSIONS AND STATEMENTS.

2-1. Expressions.

The simplest BASIC expressions are single constants,
variables and function calls.

a. Constants. Altair BASIC accepts integers or floating
point real numbers as cionstants. ~11 but the 4K version of·
Altair BASIC accept string constants as well. See section
4-1: Some exam~les of acce9table numeric constants follow:

123
3.141
0.0436
l.25E+05

Data inout from the terminal or numeric constants in a proqram
may have any number of digits up to the length of a line (see
section l-3a). In 4K and BK ~ltair B~SIC, however, only the
first 7 digits of a number are significant and the seventh
digit is rounded up. Therefore, the command

PRINT 1.234567890123

produces the following output:

1.23457
OK

In Extended and
precision format
digit rounded up.

Disk versions of Altair BASIC, double
allows 17 significant digits with the 17th

The format of a printed number is determined by the
following rules:

1. If the number is negative, a minus sign (-) is printed to
the left of the number. If the number is positive, a
s9ace is printed.

2. If the absolute value of the number is an integer in the
r3nqe 0 to 999999, it is printed as an inteqer.

3. If the absolute value of the number is qreater than or
equal to .01 and less than or equal to 999999, it is
printed in fixed point notation with no exoonent.

4. In Extended and Disk versions, fixed ooint values uo to
9999999999999999 are oossible.

BASIC 4.1

April, 1977

5. If the number does not fall into categories 2, 3 or 4,
scientific notation is used.

The formats of scientific notation are as follows:

SX.XXXXXESTT single ?recision

SX.XXXXXXXXXXXXXXXDSTT double ?recision

where S stands for the signs of the mantissa and the exponent
(they need not be the same, of course), X for the digits of
the mantissa and T for the digits of the ex~onent. E and D
may be read •• .•. times ten to the oower •••• ·· Non-sionif icant
zeros are su9pressed in the mantis~a, but two di~its are
always printed in the exponent. The sign convention in rule l
is followed for the mantissa. The exponent must be in the
range -38 to +38. The largest number that may be re~resented
in Altair BASIC is 1. 70141E38; the ·smallest nosi tive number
is 2.9387E-38. The following are examples of numbers as in9ut
and as output by Altair BASIC:

Number

+l
-1
6523
1E20
-12.34567E-10
l.234567E-7
HHHHJ00
.1
.01
.000123
-25.460

Altair BASIC Output

1
-1

6523
1E20

-l.23456E-09
1. 23457E-07
1E+06
.1
.01
1. 23E-04

-25.46

•

The Extended and Disk versions of Altair BASIC allow
numbers to be reoresented in integer, single Precision or
double precision form. The type of a number constant is
determined according to the following rules:

1. A constant with more than 7 digits or a 'D' instead of
in the exponent is double precision.

It:' I

2. A constant outside the range -32768 to 32767, with 7 or
fewer digits and a deci~al ooint or with an 'E' ex?onent
is single ~recisior.

3. ~ constant in the r3nae -32768 to 32767 and no decimal
?Oint is integer.

BASIC ..t .1 11

Apr::.l, 1977

12

4. A constant followed by an exclamation 9oint (!) is single
precision; a constant followed by a 9ound sign (*) is
double 9recision.

Two additional ty~es of constants are allowed in Extended
and Disk versions of Altair BASIC. Hexadecimal (base sixteen)
constants may be ex9licitly designated by the symbol &H
preceding the number. The constant may not contain any
characters other than the aigits 0 - 9 or letters A - F, or a
SYNTAX ERROR will occur. Octal constants may be designated
either by &O or just the & sign.

In.all for~ats, a soace is printed after the number. In
all but the 4K version, Altair BASIC checks to see if the
entire number will fit on the current line. If not, it issues
a carriage return and prints the whole number on the next
line.

b. Variables. A variable represents symbolicallv any
number which is assiryned to it. The value of a variable may
be assigned explicitly by the proqrarnmer or may be assigned as
the result of calculations in a 9rogram. Before a variable is
assigned a value, its value.is assumed to be zero. In 4K , a
variable name consists of one or two characters. The first
chara~ter is anv letter. The secGnd character must be a
numeral. In other versions of Altair BASIC, the variable name
may be any length, but any alphanumeric charac~ers after the
first two are ignored. The first character must be a letter.
No reserved words may appear as variable names or within
variable names. The following are examples of legal and
illegal Altair BASIC variables:

Legal
In 4K and BK Altair BASIC:

~

Zl

Other versions:
TP

PSTG$

COUNT

Illegal

%A (first character must
be alohabetic.)
ZlA ~variable name is too
long for 4K)

TO (variable names cannot
be reserved words)

RGOTO (variable names can­
not contain reserved
words.)

In all but 4K Altair BASIC, a variabl~ mav also reores~nt
a string. Use of this feature is discussed in section 4.

BASIC 4,1

April, 1977

l} Extended and Disk versions of Altair BASIC allow the
use of Integer and Double Precision variables as well as
Single Precision and Stringse The ty?e of a variable may be
explicitly declared in Extended and Disk versions of Altair
BASIC by using one of the symbols in the table below as the
last character of the variable name.

Type Symbol

Strings (0 to 255 characters} $
Integers (-32768 to 32767) %
Single Precision (up to 7 digits, exoonent between

-38 and +38)
Double Precision (up to 16 digits, exoonent between

-38 and +38) if

Internally, BASIC handles all numbers in binary. Therefore,
some 8 digit single ?recision and 17 digit double ?recision
numbers may be handled correctly. If no type is ex?licitly
declared, type is determined by the first letter of the
variable name according to the type table. The table of tvQes
may be modified with the following statements:

DEFINT r
DEFSTR r
DEFSNG r
DEFDBL r

·rnteger
String
Single Precision
Double Precision

where r is a letter or range of letters to be desiqnated.
Examt;)les:

15 DEFINT I-N

20 DEFDBL D

Variable names beqinning with the let­
ters I-N are to be of inteaer tv?e.
Variable names beginning with o are to
be of double orecision ty~e.

If no type definition statements are encountered, BASIC
proceeds as if it had executed a DEFSNG A-Z statement.

2) Integer variables should be
since they take the least amount
integer arithmetic is much faster
arithmetic.

used wherever oossible
of space in memory and
than sinqle ?recision

Care must be exercised when single 9rec1s1on and double
prec1s1on numbers are mixed. Since single ?recision numbers
can have more significant digits than will be ?rinted, a
double 9recision variable set to a single 9recision value may
not 9rint the same as the single Precision variable.

HJ A=l. 01
20 B*=A*l0:C~=CDBL(A)*l0#

BASIC 4,1

April, 197i

single 9recision value
convert to double orecision

13

14

30 PRINTA;B:ff:;C#;CDBL(A) in various ways
RUN

1.01 10.10000038146973 10.09999990463257 1.009999990463257
OK

In order to assure that double precision numbers will print
the same as sinqle precision, the VAL and STRS functions
should be used. For example:

HJ A=l. 01
20 Bf=V~L(STR$(A)) :C#=8#*10#
30 PRINT A;l3#;C*
RUN

1.01 1.01 10.l
OK

c. Arrav Variables - The DIM Statement. It is often
advantageous ·to refer to several variables by the same name.
In matrix calculations, for exam?le, the com~uter handles each
element of the matrix se9arately, but it is convenient for the
programmer to refer to the whole matrix as a unit. For this
purpose, Altair BASIC 9rovides subscripted variables, or
atrays. The form of an array variable is as. follows:

VV(<subscri9t>[,<subscri9t> ...])

·where vv is a variable name and the subscripts are integer
exoressions. Subscripts may be enclosed in parentheses or
square brackets. An array variable may have only one
di~ension in 4K, but in all other versions of Altair BASIC it
may have as many dimensions as will fit on a single line. The
smallest subscri9t is zero. Examoles:

A(5) The sixth element of array A. The first
element is A(0).

ARRAY(I,2*J) The address of this element in a two­
dimensional array is determined by
evaluating the ex~ressions in parenthe­
ses at the time of the reference to the
array and truncating to integers. If
I= 3 and J = 2 . 4 , th i s r e f e r s to ~RR A Y (3 , 4) .

The DIM statement allocates storage for
sets all array elements to zero.
statement is as follows:

array variables and
The form of the DIM

DIM VV(<subscriot>[,<subscriot> ...])

where VV is a leoal variable name. Subscrii?t is an integer
expression which specifies the largest ?Ossible subscript for
that di~ension. Each DIM statement mav a9nly to more than one
array variable. Some examples follow:

BASIC 4.1

April, 197i

113 DIM A{3), 0$(2,2,2)
114 DIM R2 % (4) I B (10)
115 DIM Ql (N), Z* (2+I) Arrays may be dimensioned dy­

namicall v durina proqram
execution. At fh~ time the
DIM is executed, the ex~ression
within the parentheses is e­
valuated and the results trun­
cated to integer.

If no DIM statement has been executed before an array variable
is found in a proqrarn, BASIC assumes the variable to have a
maxi~um subscript of 10 (11 elements) for each dimension in
the reference. A BS or SUBSCRIPT OUT OF RANGE error message
will be issued if an attempt is made to reference an array
element which is outside the s~ace allocated in its associated
DIM statement. This can occur when the wrong number of
dimensions is used in an array element reference. For
example:

30 LET A(l,2,3)=X when A has been dimensioned by
10 DIM A(2,2)

A DD or REDIMENSIONED ARRAY error occurs when a DIM statement
for an array is found after that array has been dimensioned.
This often occurs when a DIM statement ao9ears after an array
has been given its default dimension- of 10.

a·. Ot;>erators and Precedence. Altair BASIC provide.s a
full range of arithmetic and (exceot in 4K) logical o~erators.
The order -0f execution of 09erations in an expression is
always according to their precedence as shown in the table
below. The order can be s9ecified ex?licitly by the use of
parentheses in the normal algebraic fashion.

Table of Precedence

Operators are shown here in decreasing order of precedence.
O~erators listed in the same entrv in the table have the same
precedence and are executed in order from left to riqht in an
exoression.

1.

2.

3.

BASIC 4,1

April, 197i

Expressions enclosed in parentheses ()

~ exoonentiation (not in 4K). Any numb~r to the zero
9ower is 1. Zero to a negative ?Ower causes a /0 or
DIVISION BY ZERO error.

- negation, the unary minus 09erator

15

16

4. *,/multiplication and division

5. \ integer division (available in Extended and Disk
versions, see section 5-2)

6. MOD (available in Extended and Disk versions. See
section 5-2)

7. +,- addition and subtraction

8. relational operators
= equal
<> not equal
< less than
> greater than
<=,=< less than or equal to
>=,=> greater than or eaual to

(the logical operators below are not available in 4K)

9. NOT logical, bitwise negation

10. AND logical, bitwise disjunction

11. OR logical~ bitwise conjunction

(The logical operators below are availabl~ only in
Extended and Disk versions.)

12. XOR logical, bitwise exclusive OR

13. EQV logical, bitwise equivalence

14. IMP logical, bitwise implication

In 4K Altair BASIC, relational operators may be used only once
in an IF statement. In all other versions, relational
09erators may be used in any ex?ressions. Relational
exoressions have the value either of True (-1) or False (0).

e. Logical Operations. Logical operators may be used
for bit manipulation and Boolean algebraic functions. The
AND, OR, NOT, XOR, EQV and IMP operators convert their
arguments into sixteen bit, signed, two's com~lement integers
in the range -32768 to 32767. After the operations are
?erformed, the result is returned in the same form and range.
If the arguments are not in this range, an FC or ILLEGAL
~UNCTION CALt error messaqe will be printed and execution will
be terminated. Truth tables for the logical ooerators apoear
below. The ooerations· are performed bitwise, that is,

BASIC 4.1

April, 1977

corresponding bits of each argument are examined and the
result comouted one bit at a tine. In binary operations, bit
7 is the most significant bit of a byte and bit 0 is the least
significant.

A.ND
x y x AND y
1 l 1
1 0 0
0 1 0
0 0 0

OR
x y x OR y
1 1 1
1 0 1
0 1 l
0 0 0

NOT
x NOT x
1 0
0 1

XOR
x y x XOR y
1 1 0
1 0 1
0 1 1
0 0 0

EQV
x y x EQV y
1 1 1
1 0 0
0 1 0
0 0 1

IMP
x y x IMP y
1 1 1
1 0 0
0 1 1
0 0 1

Some examples will serve to show how the logical ooerations
work:

63 AND 16=16

15 AND 14=14

-1 AND 8=8

4 OR 2=6

10 OR 10=10

3ASIC d,l

. .\pril I 197:°

63=binary 111111 and 16=binary 10000,
so 63 AND 16=16
lS=binarv 1111 and 14=binary 1110,
so 15 AND 14=binary 1110=14.
-l=binary 1111111111111111 and 8=binarv
1000, so -1 AND 8=8.
4=binary 100 and 2=binary 10, so
4 OR 2=binarv 110=6.
binary 1010 bR'd with itself is 1010=

17

•

-1 OR -2=-l

NOT 0=-1

NOT X =- (X + 1)

HJ.
-l=binary 1111111111111111 and -2=
1111111111111110, so -1 OR -2=-l.
the bit comolement of sixteen zeros
is sixteen ones, which is the two's
complement re9resentation of -1.
the two's complement of any number is
the bit complement olus one.

A typical use of logical operations is •masking•, testing a
binary number for some ?redetermined pattern of bits. Such
numbers might come from the computer's inout ports and would
then reflect the condition of some external device. Further
applications of logical 09erations will be considered in the
discussion of the IF statement.

f. The LET statement. The LET statement is used to
assign a value to a variable. The form is as follows:

LET <VV>=<expression>

where VV is a variable name and the expression is any valid
Altair BASIC arithmetic or, exceot in 4K, 100ical or string
ex~ression. Examples:

HHHJ LET V=X
110 LET I=I+l the '=' sign her~ means 'is replaced

by • • • • I

The word LET in a LET statement is optional, so algebraic
equations such as:

120 V=.5*(X+2)

are legal assignment statements.

A SN or SYNTAX ERROR message is orinted when B~SIC
detects incorrect form, illegal characters in a line,
incorrect punctuation or ~issi~g parentheses. An ov or
OVERFLOW error occurs when the result of a calculation is too
large to be represented by Altair BASIC's number formats. All
numbers must be within the ranqe lE-38 to l.70141E38 or -lE-38
to -l.70141E38. An attem~t to divide by zero results in the
/0 or DIVISION BY ZERO error message.

For a discussion of strings, string variables and string
09erations, see section 4.

18 BASIC .! .1

April, 1977

2-2. Branching, Loot;)s ~ Subroutines.

a. Branching. In addition to the sequential execution
of program lines, BASIC provides for changing the order of
execution. This orovision is called branching and is the
basis of programmed decision making and loops. The statements
in Altair BASIC which provide for branchina are the GOTO,
IF ••• THEN and ON ••• GOTO statements.

1) GOTO is an unconditional branch.
follows:

Its form is as

GOTO<mrnmmm>

After the GOTO statement is execut~d, execution continues at
line number mrnmmm.

2) IF ••• THEN is a conditional branch.
follows:

Its form is as

IF<expression>THEN<mmmmm>

where the expression is a valid arithmetic, relational or,
except in 4K, logical ext?ression and mmmmm is a line number.
If the expression is evaluated as non-zero, BASIC continues at
line mmrnm111.. Otherwise, execution resumes at the next line
after the IB ••• THEN statement.

~n alternate form of the IF .•• THEN statement is as
follows:

IF<expression>THEN<statement>

where the statement is any Altair B~SIC statement. Examples:

BASIC 4.1

April, 1977

10 IF A=l0 THEN 40 If the expression A=l0 is
true, BASIC branches to line 40. Otherwise, execution
~roceeds at the next line.

15 IF A<B+C OR X THEN 100 The expression after IF is
evaluated and if the value ·of the exPression is
non-zero, the statement branches to line 100.
Otherwise, execution continues on the next line.

20 IF X THEN 25 If X is not zero, the statement
branches to line 25.

30 IF X=Y THEN PRINT X If the ex~ression X=Y is true
(its value is non-zero), the PRINT statement is
executed. Otherwise, the PRINT statement is not
executed. In either case, execution continues with
the line after the IF ... THEN statement.

35 ~F X=Y+3 GOTO 39 Equivalent to the cortes~onding
IF ... THEN statement, ~xcent that GOTO must be followed
by a line numper and not by another statement.

19

20

Extended and Disk versions of Altair BASIC 9rovide an exp~nded
IF .•• THEN statement of the form

IF<ex?ression>THEN<YY>ELSE<ZZ>

where YY and
statements.

ZZ are
Examy;:iles:

valid line numbers or Altair BASIC

IF X>Y THEN PRINT 11 GREATER 11 ELSE PRINT ''NOT GREATER 11

If the expression X>Y is true, the statement after THEN is
executed. Otherwise, the statement after ELSE is executed.

IF X=2*Y THEN 5 ELSE PRINT '1 ERROR''

If the ex~ression X=2*Y is true, BASIC branches to line 5.
Otherwise, the PRINT statement is executed. Extended and Disk
Altair BASIC allow a comma before THEN.

IF statements may be nested in the Extended and Disk
versions. Nesting is limited only by the length of the line.
Thus, for example:

IF X>Y THEN PRINT 11 GREATER 11 ELSE IF Y>X<line feed>
THEN PRINT i'LESS THAN'' ELSE PRINT ''EQUAL"

and

IF X=Y THEN IF Y>Z THEN PRINT ''X>Z'' ELSE PRINT 11 Y<=Z 11 <line feed>
ELSE PRINT ''X<>Y''

are legal statements. If a line does not contain the same
number of ELSE and THEN clauses, each ELSE is matched with the
closest unmatched THEN. Example:

IF A=B THEN IF B=C THEN PRINT '' A=C 11 ELSE PRINT '' A<>C"

will not print ".A<>C" when A<>S.

3) ON ... GOTO (not in 4K) provides for another tv~e of
conditional branch. Its form is as follows:

ON<expression>GOTO<list of line numbers>

After the value of the expression is truncated to an integer,
say I, the statement causes BA3IC to branch to the line whose
number is Ith in the list. The statement may be followed by
as many line numbers as will fit on one line. If I=0 or is
greater than the number of lines in the list, execution will
continue at the next line after the ON ... GOTO statement. I
must not be less than zero or greater than 255, or an FC or
ILLEGAL FUNCTION CALL error will result.

BASIC 4.1

April, 1977

b. Loops - FOR and NEXT. It is often desirable to
perform the same calculations on different data or
repetitively on the same data. For this ?Ur~ose, Altair BASIC
9rovides the FOR and NEXT statements. The form of the FOR
statement is as follows:

FOR<variable>=<X>TO<Y>[STEP <Z>]

where X,Y and z are expressions. When the FOR statement is
encountered for the first time, the expressions are evaluated.
The variable is set to the value of X which is called the
initial value. BASIC then executes the statements which
follow the FOR statement in the usual manner. When a NEXT
statement is encountered, the ste? Z is added to the variable
which is then tested against the final value Y. If Z, the
step, is positive and the variable is less than or eaual to
the.final value, or if the step is negative and the variable
is greater ·than or equal to the final value, then BASIC
branches back to the statement immediately following the FOR
statement. Otherwise, execution oroceeds with the statement
following the NEXT. If the step is not specified, it is
assumed to be 1. Examples:

10 FOR I=2 TO 11 The loop is executed 10 times with
the variable I takinq on each in­
tegral vaiue from 2 to 11~ •

20 FOR V=l TO 9.3 This loop will execute 9 times un­
til V is greater than 9.3

30 FOR V=l0*N TO 3.4/Z STEP SQR(R) The initial, final
and step expressions need not be
integral, but they will be eval­
uated only once before 1009-
ing begins.

40 FOR V=9 TO 1 STEP -1 This loop will be executed 9
times.

FOR ••. NEXT locos may be nested. That is, BASIC will execute a
FOR .•. NEXT 1009 within the context of another 1009. An
example of two nested loops follows:

100 FOR I=l TO 10
120 FOR J=l TO I
130 PRINT A(I,J)
140 NEXT J
150 NEXT I

Line 130 will ~rint 1 element of ~ for I=l, 2 for I=2 and so
on. If looos are nested, they must have differe~t 1009
variable names. The NEXT statement for the inside loop
variable (J in the exam9le) must apnear before that for the
outs id e var i ab 1 e (I) . . Any nu nb er of 1eve1 s o f nest in q is
allowed uo to the limit of available me~ory.

3A.SIC 4- .1
21

April, 1977

22

The NEXT statement is of the form:

NEXT[<variable>[,<variable> •••]]

where each variable is the loop variable of a FOR loo~ for
which the NEXT statement is the end 9oint. In the 4K version,
the only form allowed is NEXT with one variable. In all other
versions, NEXT without a variable will match the most recent
FOR statement. In the case of nested 1009s which have the
same end point, a single NEXT statement may be used for all of
them, except in 4K. The first variable in the list must be
that of the most recent loop, the second of the next most
recent, and so on. If BASIC encounters a NEXT statement
before its correspondinq FOR statement has been executed, an
NF or NEXT WITHOUT FOR error message is issued and execution
is terminated.

c. Subroutines - GOSUB and RETURN Statements. If the
same operation or series of 09erations are to be performed in
several places in a program, storage s~ace requirements and
programming time will be minimized by the use of subroutines.
A subroutine is a series of statements which are executed in
the normal fashion up9n being branched to by a GOSUB
statement. Execution of the subroutine is terminated by the
RETURN statement which branches back to the statement after
the most recent GOSUB. The format of the GOSUB statement is
as follows:

GOSOB<line number>

where the line number is that of the first line of the
subroutine. A subroutine may be called from more than one
place in a grogram, and a subroutine may contain a call to
another subroutine. Such subroutine nesting is limited only
by available memory.

Exceot in the 4K version, subroutines may be branched to
conditionally by use of the ON .•. GOSUB statement, whose form
is as follows:

ON <expression> GOSUS <list of line numbers>

The execution is the same as ON •.. GOTO exceot that the line
numbers are those of the first lines of subroutines.
Execution continues at the next statement after the ON ... GOSUB
upon return from one of the subroutines.

d. Memory Limitations. While nesting in loops,
subroutines and branching is not limited by BASIC, memory size
limitations restrict the size and complexity of orograms. The
OM or OUT OF MEMORY error message is issued when a 9rogram
requires more memory than is available. See A99endix C for an

SAS!C 4.1

April, 1977

explanation of the amount of memory required to run orograms.

2-3. In.put/Output

a. INPUT. The INPUT statement causes data input
requested from the terminal. The format of the
statement is as follows:

INPUT<list of variables>

to be
INPUT

The effect of the INPUT statement is to cause the values typed
on the terminal to be assigned to the variables in the list.
When an INPUT statement is executed, a question mark (?) is
printed on the terminal signallinq a request for informationc
The operator ty~es the required numbers or strings {or, in ~K,
ex~ressions) separated bv commas and types a carriage return.
If the data entered is invalid (strings were entered when
numbers were requested, etc.) BASIC prints 'REDO FROM START?'
and waits for the correct data to be entered. If more data
was requested by the INPUT statement than was typed, ?? is
printed on the terminal and execution awaits the needed data.
If more data was typed than w~s requested, the warning 'EXTRA
IGNORED' is printed and execution proceeds. After all the
requested data is inc~t, execution continues normally at the
statement following the INPUT. Exce9t in 4K, an optional
pr?mpt string rn~y be added to an INPUT statement.

INPUT(~<nrornpt string>";]<variable li~t>

Execution of the staternent~causes the prompt string to be
printed before the question mark. Then all operations oroceed
as above. The prompt string must be enclosed in double
quotation marks {'') and must be separated from the variable
list by a semicolon (;). Example:

100 INPUT "WHAT'S THE VALUE''; X, Y causes the following
output:

WHAT'S THE VALUE?

The requested values of X and Y are typed after the ? Exceot
in 4K, a carriage return in resnonse to an INPUT st?tement
will cause execution to continue with the values of the
variables in the variable list unchanged. In 4K, a SN error
results.

b. PRINT. The PPINT statement causes the terminal to
orint data. The simolest PRINT state~ent is:

PRnn

BASIC '1.1 23

Apr'!..l, 1977

24

which prints a carriage return. The effect is to ski9 a line.
The more usual PRINT statement has the following form:

PRINT<list of expressions>

which causes the values of the ex?ressions in the list to be
printed. String literals may be printed if they are enclosed
in quotation marks (").

The ?Osition of 9rinting is determined by the ounctuation
used to separate the entries in the list. Altair BASIC
divides the printing line into zones of 14 soaces each. A
comma causes printing of the value of the next expression to
begin at the beqinning of the next 14 column zone. A
semicolon (;) causes the next printing to begin immediately
after the last value printed. If a comma or semicolon
terminates the list of ex~ressions, th~ next PRINT statement
begins printing on the same line according to the conditions
above. Otherwise, a carriage return is printed.

c. DATA, READ, RESTORE

1) The DATA statement. Numerical or string data needed
in a program may be written into the ?rogram statements
themselves, input from perioheral devices or read from DATA
statements. The format of the DATA statem~nt is as follows:

D4ATA<list>

where the entries in the list are numerical or string
constants separated by commas. In 4K, ex~ressions may also
apoear in the list. The effect of the statement is to store
the list of values in memory in coded form for access by the
READ statement. Bxamples:

10 DATA l,2,-1E3,.04
20 DATA 11 Loo··, MITS Leading and trailing soaces in

string values are sup9ressed unless the string is
enclosed by double quotation marks.

2) The READ statement. The data stored by DATA
statements is accessed by READ statements which have the
following form:

READ<list of variables>

where the entries in the list are variable na~es separated by
co~rnas. The effect of the READ statement is to assiqn the
values in the DATA lists to the corresnondinq variables in the
READ statement list. This is done. one by one from left to
right until the READ list is exhausted. If there are Bore
names in the READ list than values in the DAT~ lists, an OD or

BASIC ..1. l

A1JTil, l 9ii

OUT OF DATA error message is issued. If there are more values
stor€d in DATA statements than are read by a READ statement,
the next READ statement to be execuied will begin with the
next unread DATA list entry. A single READ statement may
access more than one DATA statement, and more than one READ
statement may access the data in a single DATA statement.

An SN or SYNTAX ERROR message can result from an
improP.erly formatted DATA list. In 4K Altair BASIC, the error
message will refer to ~he READ statement which attempted . to
access the incorrect data. In other versions, the line number
'in the error message will refer to the actual line of the DATA
$tatement in which the error occurred.

3) The RESTORE statement. After the RESTORE statement is
executed, the next piece of data accessed by a READ statement
will be the first entry of the first DATA list in the ?togram.
This allows re-READing the data.

d. CSAVE and CLOAD (8K cassette, Extended and Disk
versions only). Numeric arrays may be saved on cassette or
loaded from cassette using CSAVE* ~nd CLOAD*. The formats of
the statements are:

CSAVE*<array name>

and

CLOAD*<array name>

The array is written out in binary with four octal 210 header
bytes to indicate the start of data. These bytes are searched
for when CLOADing the array. The number of bytes written is
four plus:

8*<number of elements> for a double precision array
4*<number of elements> for a single ?recision array
2*<number of elements> for an integer array

When an array is written out or read in, the elements of the
array are written out with the leftmost subscript varying most
quickly, the next leftmost second, etc:

DIM A.(10)
CSAVE*A

writes out ~(0) ,A(l), ... A(l0)

BASIC 4.1

.l.pr:l, ~977

DIM A(l0,10)
CSAVE*A

25

26

writes out A(0,0), A(l,0) ••• A(l0,0) ,A(HJ,l) •.. A(l0,HJ)

Using this fact, it is possible to write a two dimensional
array and read it back in as a single dimensional array, etc.

NOTE

Writing out a double precision array and reading it
back in as a single precision or integer array is not
recommended. Useless values will undoubtedly be
returned.

e. Miscellaneous Input/Output

1) WAIT (not in 4K). The status of in9ut ports can be
monitored by the WAIT command which has the following format:

WAIT<I,J>[,<K>]

where I is the number of the port being monitored and J and K
are integer ex9ressions. The port status is exclusive ORd
with Kand the result is ~~Ded with J. Execution is suspended
until a non-zero value results. J pi~ks the bits of port I to
be tested and execution is suspended until those bits differ
from the correspona1ng bits of K. Execution resumes at the
next statement after the WAIT. If K is omitted, it is assumed
to be zero. I, J and K must be in the range 0 to 255.
Examples:

WAIT 20,6 Execution stops until either bit 1 or bit
2 of ~ort 20 are eoual to 1. (Bit 0 is
least significant bit, 7 is the most sig­
nificant.) Execution resumes at the next
statement.

WAIT 10,255,7 Execution sto9s until any of the most
significant 5 bits of 9ort 10 are one or
any of the least significant 3 bits are
zero. Execution resu~es at the next statement.

2) POKE, PEEK (not in 4K). Data may be entered into
Qernory in binary form with the POKE statement whose format is
as follows:

POKE <I,J>

BASIC ~.l

where I and J are integer expressions. POKE stores the byte J
into the location specified by the value of I. In 8K, I must
be less than 32769. In Extended and Disk versions, I may be
in the ranqe 0 to 65535. J must be in the ran~e 0 to 255. In
8K, data may be POKEd into memory above location 32768 bv
making I a negative number. In that case, I is computed by
subtracting 65536 from the desired address. To POKE data into
location 45000, for example, I is 45000-65536=-20536. Care
must be taken not to POKE data into the storage area occupied
by Altair BASIC or the system may be FOKEd to death, and 9ASIC
will have to be loaded again.

The com9lementary function to POKE is PEEK.
for a PEEK call is as follows:

FEEK(<I>)

The format

where I is an integer expression specifying the address from
which a byte is read. I is chosen in the same way as in the
POKE statement. The value returned is an integer between 0
and 255. A major use of PEEK and POKE is to pass arguments
and results to and from machine languaoe subroutines.

3)0UT~ INF (not in 4K). The for~at of the OUT statement
is as follows:

OUT <I,J>

where I and J are integer ex?ressions. OUT sends the byte
signified by J to output port I. I and J must be in the range
0 to 255.

The INP function is called as follows:

INP (<I>)

INP reads a byte from oort I where I is an integer ex?ression
in the range 0 to 255. Example:

20 IF INP(J)=l6 THEN PRINT 11 0N 11

3ASIC ~.l 27

April, 19i7

28

3. FUNCTIONS.

Altair BASIC allows functions to be referenced in
mathematical function notation. The format of a function call
is as follows:

<name>(<argurnent>[,<argurnent> ••.])

where the name is that of a previouslv defined function and
the arguments are one or more expressions se9arated by commas.
Only one argument is allowed in 4K and 8K. Function calls may
be components of expressions, so statements like

10 LET T=(F*SIN(T))/P and
20 C•SQR(A~2+B~2+2*A*B*COS(T))

are legal.

3-1. Intrinsic Functions

Altair BASIC ?rovides several frequently used functions which
may be called from any program without further definition. A
procedure is ?rovided, however, whereby unneeded functions may
be deleted .to save memory space. See Appendix B. For·a list
of intrinsic.functi~ns, see section 6-3.

3-2. User-Defined Functions - the DEF St~ternent (not in 4K).

a. The DEF statement. The programmer may define
functions which are not included in the list of intrinsic
functions by means of the DE~ statement. The form of the DEF
statement is as follows:

DEF<function name>(<variable list>)=<ex~ression>

where the function name rnust be FN followed by a legal
variable name and the entries in the variable list are 'dummy'
variable names. The dummy variables represent the argument
variables or values in the function call. In 8K ~ltair ~ASIC,
only one argument is allowed for a user-defined function, but
in the Extended and Disk versions, any number of arauments.-is
allowed. Any expression may a?pear on the right side of the
equation, but it must be limited to one line. User-defined
functions rnav be of anv tyoe in Extended and Disk versions,
but user-defined string functions are not allowed in 8K. If a
tvoe is soecified for the function, the value of the
ex?ression is forced to that ty?e before it is returned to the
calling statement. Examples:

3ASIC ~.1

April, 1977

10 DEF FNAVE(V,W)={V+W)/2
11 DEF FNCON$(V$,W$)=RIGHT$(V$+W$,5) Returns the right

most 5 characters of the concat­
enation of V$ and W$.

12 DEF FNRAO(DEG)=3.14159/180*DEG When called with the
measure of an angle in degrees,
returns the radian equivalent.

A function may be redefined by executinq another DEF statement
with the same name. A DEF statement must be executed before
the function it defines may be called.

b. USR. The USR function allows
language subroutines. See ap~endix E.

3-3. Errors.

calls to assembly

a. An FC or ILLEGAL FUNCTION CALL error results when an
improper call is made to a function. Some places this might
occur are the following:

1. a negative array subscript. LET A(-1)=0, for example.

2. an array subscript that is too large (>32767)

3. negptive or zero argument for LOG

4. Negative argument for SQR

5. A~B with A negative and 3 not an integer

6. a call to USR with no address oatched for the machine
language subroutine.

7. improper arguments to MID$, LEFT$,RIGHT$, INP, OUT,
WAIT, PEEK, POKE, TAB, SPC, INSTR, STRING$, SPACE$ or
ON ••• GOTO.

b. An attern9t to call a user-defined function which has
not oreviously a?peared in a DEF statement will cause a OF or
UNDEFINED USER FUNCTION error.

c. ~ TM or TYPE MISMATCH error will occur if a function
which expects a string argument is given a numeric value or
vice-versa.

BASIC ~.l 29

April, 19i7

•

30

4. STRINGS

In all Altair BASIC versions except 4K, ex-pre.ssions may
either have numeric value or may be strings of characters.
Altair BASIC provides a complete com-plernent of statements and
functions for manipulating string data. Many of the
statements have already been discussed; so only their
particular a~T?lication to strings will be treated in this
section.

4-1. String Data.

A string is a list of characters which may be from 0 to
255 characters in length. Strings may be stated ex-plicitly as
constants or referred to svmbolically by variables. Strinq
constants are delimited by quotation marks at the beginning
and end. A string variable name ends with a dollar sign ($).
Examl?les:

A$=HABCD~ Sets the variable AS to the four character
str inq ·• ABCD''

B9$= 11 14A/56~ S~ts fhe variable 89$ to the six character
string "14A/56 1

•

FOOF00$= 11 E$ 11 Sets the variable FOOFOO$ to the two charac­
ter str inq "E$ ·•

Strings input to an INPUT statement need not be surrounded by
quotation marks.

String arrays may be dimensioned exactly as any other
kind of array by use of the DIM statement. Each element of a
string array is a string which may be up to 255 characters
long. The total number of string characters in use at any
point in the execution of a program must not exceed the total
allocation of string s~ace, or an OS or OUT OF STRING SPACE
error will result. String space is allocated by the CLEAR
command which is explained in section 6-2.

4-2. Strin? Operations.

a. Comparison Operators. The com?arison O?erators for
strings are the same as those for numbers:

= equal
<> not equal
< less than
> greater than
=<,<=less than or equal to
=>,>= greater than or equal to

Co~~arison is made character by character on the basis of

BASIC .!. l

April, 1977

ASCII codes until a difference is found. If, while comparison
is proceeding, the end of one string is reached, the shorter
string is considered to be smaller. ASCII codes may be found
in Appendix A. Examples:

A<Z ASCII A is 065, Z is 090
l<A ASCII 1 is 049
" A">"A~ Leadin9 and trailing blanks are significant

in string literals.

b. String Expressions. String ex~ressions are comoosed
of string literals, string variables and string function calls
connected by the concatenation ooerator (+). The effect of
the catenation 09erator is to add the strinq on the riqht side
of the operator to the end of the strino on the left. If the
result of concatenation is a string more than 255 characters
long, an LS or STRING TOO LONG error message will be issued
and execution will be terminated.

c. Input/Outnut. The same statements used for inout and
output of normal numeric data may also be usea· for strina
data.

1) INPUT, PRINT. The INPUT and PRINT state~ents read and
write strings on the terminal. ?trinqs need no~ be enclosed
in quotation marks, but if they are not, leading blanks will
be ignored and th~ string will be terminated when the first
comma or colon is encountered. Exam~les:

Reads two strings 10 INPUT ZOO$,FOO$
20 INPUT X$ Reads one strinq and assians

it to the variable X$. -
3 0 PRINT X$, II HI I THERE .• Prints two strings, including

all snaces and ounctuation
in the second.

2) DATA, READ. DATA and READ statements for string data
are the same as for numeric data. For format conventions, see
the explanation of INPUT and PRINT above.

4-3. String Functions.

The format for intrinsic string function calls
same as that for numeric functions. For the list of
functions, see .section 6-3. S~ecial user-defined
functions are allowed in Extended and Disk versions and
defined by the use of the DEF statement (see section
String function names must end with a dollar sign.

BASIC ·L 1

April, :9i~

is the
string
string
mav be

3-2) .

31

32

5. EXTENDED VERSIONS.

The Extended and Disk versions of Altair BASIC provide
several statements, OT?erators, functions and commands which
are not available either in the 4K or SK versions. For
clarity, these features are grouoed together in this section.
Some modifications to existing 4K and 8K features, such as the
IF ••• THEN ••• ELSE statement and number typing facilities, have
been discussed in conjunction with the other versions. Check
the index for references to those features.

5-1. Extended Statements

a. ERASE. The ERASE statement eliminates arrays from a
program and allows their S?ace in memory to be used for other
9ur?oses. The format of the ERASE statement is as follows:

ERASE<array variable list>

where the entries in the list are valid array variable names
separated by comrna.s. ERASE will only operate on arravs and
not array elements. If a name appears in the list which is
not used in the ?rograrn, an ILLEGAL FUNCTION CALL error will
occur. The arrays deleted in an ERASE statement may be
dimensioned again, but the old values are lost.
E~ample:

10 DIM A(5,5) etc.

60 ERASE A
70 DIM A(l00)

b. LINE INPUT. It is often desirable to inout a whole
line to a string variable without use of quotation marks and
other delimiters. LINE INPUT orovides this facility. The
format of the LINE INPUT statement is as follows:

0 .

LINE INPUT [·• <?rompt string>" 1 ~ < str inq variable name>

The orom9t strina is a string literal that is Printed on the
terminal before input is accepted. A question mark is not
printed unless it is contained in the cromot strina. ~11
input from the end of the orom~t strinq to the carriage return
is assi0ned to the string variable. A LINE INPUT may be
esca?ed by typing Control/C. At that ~oint, BASIC returns to
command level and orints OK. Execution mav be resumed at the
LINE INPUT by t~?ing CONT. LINE INPU~ destrovs the inout
buffer, so the command may not be edited by Control/A for

BASIC ~.1

-~pril, 1977

re-execution.

c. SWAP. The SWAP statement allows the values of two
variables to be exchanged. The format is as follows:

SWAP <variable,variable>

The value of the second variable is assigned to the first
variable and vice-versa. Either or both of the variables may
be.elements of arrays. If one or both of the variables are
non-array variables which have not had values assigned to
them, an ILLEGAL FUNCTION CALL error will result. Both
variables must be of the same tyoe or a TYPE MISMATCH error
will result. Example:

10 INPUT F$,L$
20 SWAP F$,L$
30 PRINT F$,L$
RUN

?FIRST,LAST
LAST FIRST

Data inout ·
computer prints

d. TRON, TROFF. As a debugging aid, two statements are
provided to trace the execution of program instructions. When
the trace flag is turned on by the TRON statement, the number
bf each line in the program is ?rinted as it is executed. The
numbers appear enclosed in square brackets ([]). The function
is disabled by execution of the TROFF statement. Example:

TRON executed in direct mode
OK ?tinted by computer
10 PRINT l:PRINT dAd typed by ?rogrammer
20 STOP
RUN
(10] 1 line numbers and out~ut ?rinted bv
A com~uter.

[20]
BREAK IN 20

The NEW command will also turn off the trace flaq.

e. IF ... THEN ... ELSE. See section 2-2.

f. DEFINT, DEFSNG, DEFDBL, DEFSTR. See section 2-1

g. CONSOLE, WIDTH. CONSOLE allows the console terminal
to be switched from one I/O ?Ort to another. The format of
the statement is:

CONSOLE <I/O port number>,<switch register setting>

BASIC ~.l 33

April, 1977

34

The <I/O port number> is the hardware ?Ort number of the low
order (status) port of the new I/O board. This value must be.
a numeric expression between 0 and 255 inclusive. If it is
not in this range, an ILLEGAL FUNCTION CALL error will occur.
The <switch register setting> is also a value between 0 and
255 inclusive which specifies the type of I/O port (SIO, PIO,
4PIO etc) being selected. Ap9ro9riate values of the <switch
re~ister setting> may be found in A9pendix B in the table of
sense switch settings or in the table below.

Table of values for <switch register setting>:

I/O Board

2SIO with 2 stO? bits
2SIO with 1 sto~ bit
SIO
ACR
4PIO
PIO
HSR
non-standard terminal
no terminal

Sense Switch
Setting

0
1
2
3
4
5
6

14
15

WIDTH Statement

The WIDTH statement sets
~rinting terminal line.
as follows:

the width in characters of the
The format of the WIDTH statement is

WIDTH <integer expression>

Example:

WIDTH 80
WIDTH 32

The <numeric formula> must have a value between 15 and 255
inclusive, or an ILLEGAL FUNCTION CALL error will occur.

h. Error Trao9inq. Extended and Disk Altair 3A3IC make
it possible for the user to write error detection and handling
routines which can attemDt to recover froM errors or orovide
more complete exolanation of the cause of errors than the
simple error messages. This facility has been added to Altair
BASIC through the use of the ON ERROR GOTO, RESUME and ERROR

BASIC ..t. l

.!..pril, 19i7

statements and with the ERR and ERL variables.

1) Enabling Error Tra?9ing. The ON ERROR GOTO statement
specifies the line of the Altair BASIC proqram on which the
error handling subroutine starts. The format.is as follows:

ON ERROR GOTO <line number>

The ON ERROR GOTO statement should be executed before the user
ex?ects any errors to occur. Once an ·ON ERROR GOTO statement
has been executed, all errors detected will cause BASIC to
start execution of the s9ecified error handling routine. If
the <line number> s9ecified in the ON ERROR GOTO statement
does not exist, an UNDEFINEO LINE error will occur.

Exam?le:

10 ON ERROR GOTO 1000

2) Dis.abling the Error Routine. ON ERROR GOTO 0 disables
trapping of er;ors so any subsequent error will cause BASIC to
print an error messaqe and stoo proqram execution. If an
ON ERROR GOTO 0 st~tement aopears in an error traooing
subroutine, it will cause BASIC-to sto9 and ~rint the error
message which caused the trap. It is recommended thae all
error trapping subrou.tines execute an ON ERROR GOTO 0
subroutine if an error is encountered for ·which they have no
recovery action.

NOTE

If an error occurs during the execution of an error
trap routine, the svstem error messaqe will be orinted
and execution will be terminated. Error tra?~ing does
not trap errors within the error trao routine.

3) The ERR and ERL Variables. When the error handling
subroutine is entered, the variable ERR contains the error
code for the error. The error codes and their meanings are
listed below. See section 6-5 for a detailed discussion of
each of the errors and error messages.

Code

1
2

BASIC J,l

Apr:l, 1977

Error

NEXT wITHOUT FOR
SY~TAX ERROR

35

36

3 RETURN WITHOUT GOSUB
4 OUT OF DATA
5 ILLEGAL FUNCTION CALL
6 OVERFLOW
7 OUT OF MEMORY
8 UNDEFINED LINE
9 SUBSCRIPT OUT OF RANGE
10 REDIMENSIONED ARRAY
11 DIVISION BY ZERO
12 ILLEGAL DIRECT
13 TYPE MISMATCH
14 OUT OF STRING SPACE
15 STRING TOO LONG .
16 STRING FORMULA TOO COMPLEX
17 CAN'T CONTINUE
18 UNDEFINED USER FUNCTION
19 NO RESUME
20 MISSING OPERAND
21 RESUME WITHOUT EPROR
22 UNPRINTABLE ERROR
23 LINE BUFFER OVERFLOW

Disk Errors

S0 FIELD OVERFLOW
51 INTERNAL· ERROR
52 ~AD FILE NUMBER
53 FILE NOT FOUND
54 BAD FILE MODE
55 FILE ALREADY OPEN
56 DISK NOT MOUNTED
57 DISK I/O ERROR
58 FILE ALREADY EXISTS
59 SET TO NON-DISK STRING
60 DISK ALREADY MOUNTED
61 DISK FULL
62 INPUT PAST END
63 BAD RECORD NUMBER
64 BAD FILE NAME
65 MODE-MISMATCH
66 DIRECT STATEMENT IN FILE
67 TOO MANY FILES
68 OUT OF RANDOM BLOCKS

The ERL variable contains the line number of the line
where the error was detected. For instance, if the error
occured in line 1000, ERL will be equal to 1000. If the
state~ent which caused the error was a direct ~ode statement,
ERL will be equal to 65535 decimal. To test if an error

i3ASIC -lo. 1

Apr:..l, 1977

occurred in a direct statement, use

IF 65535=ERL ~HEN ••.

In all other cases, use

IF ERL=<line number> THEN •••

If the line number is on the left of the equation, it cannot
be renumbered by RENUM (see section 1-la).

4) Disk Error Values The ERR function. The ERR
function returns the parameters of a DISK I/O ERROR. ERR(0)
returns the number of the disk, ERR(l) returns the track
number (0-76) and ERR(2) returns the sector number (0-31).
ERR(3) and ERR(4) contain the low and hiqh order bytes,
respectively, of the cumulative error count since BASIC was
loaded.

NOTE

Neither ERL nor ERR.may a9oear to the left of the =
siqn in a LET or assignment• statement.

5) Th~ RESUME statement. The RESUME statement is used to
continue execution of the BASIC program after the error
recovery ?rocedure has been performed. The user has three
O?tions. The user may RESUME execution at the statement that
caused the error, at the statement after the one that caused
the error or at some other line. To RESUME execution at the
statement which caused the error, the user should use:

RESUME

or

RESUME 0

To RESUME execution at the statement immediatelv after the one
which caused the error, the user should use:

RESUME NEXT

To RESUME execution at &line dfferent than the one where the
error occurred, use:

BASIC ~.l
37

April, 1977

38

RESUME <line number>

Where <line number> is not equal to zero.

6) Error Routine Exam9le. The following exa~9le shows
how a sim9le error trap~ing subroutine 09erates.

100 ON ERROR GOTO 500
200 INPUT ~WHAT ARE THE NUMBERS TO DIV~DE";X,Y
210 Z=X/Y
220 PRINT "QUOTIENT IS";Z
230 GOTO 200
500 IF ERR=ll AND ERL=210 THEN 520
510 ON ERROR GOTO 0
520 PRINT ·•you CANT HAVE A DIVISOR OF ZERO! ii

530 RESUME 200

7) The ERROR statement. In order to force branching to
an error tra9ping routine, an ERROR statement has been
9rovided. The orirnarv use of the ERROR statement is to allow
the user to define. his own error codes which can then
conveniently be handled by a centralized error tra9 routine as
described above. The format of the ERROR statement is:

EREOR <integer expression> - .
When defining error codes, values should be ~icked which are
greater than the- ones used by Altair BASIC. Since more e.rror
messages may be added to Altair BASIC, user-defined error
codes should be assigned the hi9hest available numbers to
assure future compatibility. If the <numeric ex~ression> used
in an ERROR statement is less than zero or greater than 255
decimal, an ILLEGAL FUNCTION CALL error will occur. Of
course, the ERROR statement may also be used to force SYNTAX
or other standard Altair BASIC errors. Use of an ERROR
statement to force ?rintout of an error message for which no
error text is defined will cause an UNPRINTABLE ERROR message
to be printed out.

5-2. Extended O~erators.

Two 09erators are provided that are exclusive to the
Extended and Disk versions.

a. Integer Division. Integer division, denoted by \
(backslash) , forces its arguments to integer form and
truncates the quotient to an integer. More nrecisely:

A\B= FIX(INT(A)/INT(S))

BAS:C ..i., 1

April, l9i'"."

Its precedence is just after multiplication and floating ooint
divison. Integer division is approximately eight times as
·fast as standard floating point division.

b. Modulus Arithmetic - the MOD operator. A MOD 8 gives
the 'remainder' as A is divided by B. More precisely:

A MOD B=INT(A)-(INT(B)*(A\B))

If 8=0, a DIVISION BY ZERO error occurs. The precedence of
MOD is just below that of integer division.

5-3. Extended Functions.

a. Intrinsic Functions. Extended and Disk Altair BASIC
provide several intrinsic functions which are not available in
the other versions. For a list of these functions and a
description of their use, see section 6-3.

b. The DEFUSR statement. U? to ten assembly language
subroutines may be defined bv means of the DEFUSR statement
whose form is as follows:

DEFUSR[<digit· 0 through 9>]=<inteqer exnression>

Example:

OEFUSR1=&100000
OEFUSR2=31096
DEFUSR9=ADR

, .

The <integer expression> is the starting address of the USR
routine S?ecified. When the USR subroutine is entered, the ~
reqister contains the type of the argument which was given to
the USR function. This is also the length of the descri9tor
for that argument type:

Value in A
2

Meaning
Two byte signed two's comolement inteqer.
String. 3

4
8

Single orecision four byte floating ooint number.
Double orecision floatinq ooint number.

When the USR subroutine is entered, the [H,t] reaister 9air
contains a pointer to the floating 9oint accumulator (FAC).
The [H,L] registers contain the address of FAC-3.
If the value in the FAC is a single precision floating point
number, it is stored as follows:

FAC-3:
FAC-2:

3ASIC ~.l

April, 1977

Lowest 8 bits of mantissa.
Middle 8 bits of mantissa.

39

40

FAC-1: Highest 7 bits of mantissa with hidden (implied)
leading one. Bit 7 is the sign of the number (0
positive, 1 negative).

FAC: Exoonent excess 200 octal. If the contents of FAC is 200,
the exponent is 0. If contents of FAC is 0,the number is
zero.

If the argument is double precision floating point, the FAC-7
to FAC-4 contain four more bytes of mantissa, low order byte.
in FAC-7, etc. If the argument is an integer, FAC-3 contains
the low order byte and FAC-2 contains the high order byte of
the signed two's complement value. If the arqument is a
string, [D,E] points to a string descri9tor of the arcrument,
whose form is:

Byte
0
1-2

Use
Length of string 0-255 decimal.
Sixteen bit address 9ointer to first byte of
strings text in memory (Caution - may 9oint into
program text if argument is a string literal).

The string returned by a call to USR with a strinq argument is
the string the user's routine sets up in the descriptor.
Modifying [D,E] does not affect the returned string. For .
example, C$=USR(A$) results in C$ and A$ being set to the same
strinq. The statement G_$=USR(A$+•• 11

) avoids modifyinq A$
since the user 1 s ·r:.outine modifies the· descriotor of the
temporary string A$+" ·•. -

A string returned by the user's routine should lie
withing the storage area occupied by the argument string.
Increasing the length of a string in a user's routine is
guaranteed to cause trouble.

Normally, the value returned by a USR function will be
the same ty?e (integer, string, single or double precision
floating point) as the argument which was ?assed to it.
However, calling the MAKINT routine whose address is stored in
location 6 will return the integer in [H,L] as the value of
the function, forcing the value returned by the function to be
integer. Execute the following sequence to return from the
function:

PUSH
LHLD
XTHL

RET

H
6

;SAVE VALUE TO BE RETURNED
;GET ADDRESS OF MAKINT ROUTINE
;SAVE RETURN ON STACK &
;GET BP. .. CK [H, L]
~RETURN

The argument of the function may be forced to an integer, no
matter what its type by calling the FRCINT routine whose

SASIC ..t, l

April, 19 77

address is located in location 4 to get the integer value of
the argument in [H,L]~

SUBl:

LXI

PUSH
LHLD
PCHL

H,SUBl

H
4

5-4. The EDIT Command. --- ---- ------~

;GET ADDRESS OF SUBROUTINE
;CONTINUATION
;PLACE ON STACK
;GET ADDRESS OF FRCINT
;CALL FRCINT

The EDIT command allows modifications and additions to be
made to existing ?rogram lines without having to rety?e the
entire line each time. Commands typed in the EDIT mode are,
as a rule, not echoed. That is, they usually do not appear on
the terminal screen or ~rintout as they are typed. Most
commands may be ~receded by an optional numeric re~etition
factor which may be used to re~eat the command a number of
times. This .repetition factor should be in the ranqe 0 to 255
(0 is equivalent to 1). If the repetition factor is omitted,
it is assumed to be 1. In the following examoles, a lower
case "n" before the command stands for the reoetition factor.

• In the following description o{ the EDIT comman~s, the
"cursor•• refers to a po~nter which is positioned at a
character in the line being edited.

To EDIT a line, type EDIT followed by the number of the
line and hit the carriage return. The line number of the line
beinq EDITed will be printed followed by a space. The cursor
will now be positioned to the left of the first character in
the line.

NOTE

The best way of getting the "feel" of the EDIT comroand
is to try EDITing a few lines yourself.

If a command not recognized as an EDIT command is entered, the
computer prints a bell (control/G) and the command is ionored.

In the following exam9les, the lines labelled "comouter
prints'' show the ap9earance of the line after each command.

a.
to the
printed.

3AS:C ~.l

.l.pril, 19"."7

Moving the Cursor. Typino a s~ace moves the cursor
right and causes the character 9assed over to be
A number preceding the soace (n<soace>) will cause

41

42

the cursor to 9ass over and print out n characters. Ty~ing a
Rubout causes the immediatelv ?revious character to be ?rinted
effectively backspacing the cursor.

b. Inserting Characters

WARNINGS:

Character insertion is stopped by ty9ing Esca?e
(or Altmode on some terminals) . Control/C will not
interru?t the EDIT command while it is in Insert mode,
but will be inserted into the edited line. Therefore,
Control/C should not be used in the EDIT command.

It is ?Ossible using EDIT to create a line which,
when listed with its line number, is longer than 72
characters. Punched 9aper tapes containing such lines
will not read prooerly. However, such lines may be
CSAVEd and CLOADed without error.

. . -I Inserts new characters into the line being edited.
Each character typed after the I is inserted at the
current cursor 9osition and printed on the terminal.
Typing Esca9e (or Altmode on some terminals) sto9s
character insertion. If an attempt is made to insert
a character that will make the line longer than 255
characters, a Control/G (bell) is sent to the terminal
and the character is not 9rinted.

~ backarrow (or Rubout) tvped during an insert command
(or-) will delete the character to the left of the cursor.
Characters up to the beginninq of the line ~ay be deleted in
this manner, and a backarrow will be echoed for each character
deleted. However, if there are no characters to the left of
the cursor, a bell is echoed instead of a backarrow. If a
carriage return is ty9ed during an insert command, it is as if
an escaoe and then carriage return were tvned. That is, all
characters to the right of the cursor will Se printed and the
EDITed line will raolace the original line.

x X is similar to I, exce?t that all characters to
the right of the cursor are ?tinted, and the cursor
moves to the end of the line. At this ooint, it will
automatically enter the insert mode (see I com~and).
X is most useful when new state~ents are to be added
to the end of an existing line. For exam9le:

BASIC 4.1

April, 1977

User tvpes
com1;mter prints
User types
Computer prints
User types
computer prints

EDIT 50 (carriage return)
50

x
50 X=X+l

:Y=Y+l (CR)
50 X=X+l:Y=Y+l

In the above example, the original line *50 was:

50 X=X+l

The new line ~50 now reads: .
50 X=X+l:Y=Y+l

H H is the same as X, except that all characters to
the right of the cursor are deleted (they will not be
printed). The insert mode (see I command) will then
automatically be entered. H is most useful when the
last statements on a line are to be raplaced with new
ones.

c. Deleting Characters

D nD deletes n characters to the right of the cursor.
If n is ommi tted, it defaults to 1. -If there are less
than n characters to ~he ri~ht of -the cursor,

1
characters will be deleted only to the end of the
line. The cursor is positioned to the right of the
last character deleted. The characters deleted are
enclosed in backslashes (\). For exam?le:

User types
User tvnes
computer ;;:>rints
User types
Com9uter prints

20 X=X+l:REM JUST INCREMENT X
EDIT 20 (carriage return)
20

60 (carriaqe return)
20 \X=X+l:\REM JUST INCREMENT X

The new line 20 will no lonqer contain the characters which
are enclosed by the backslashes.

d.

s

BASIC 4,1

April, 19ii

Searching.

The nSy command searches for the nth occurrence of
the character y in the line. N defaults to 1. The
search skips over the first character to the riaht of
the cursor and begins with the second character to the
riqht of the cursor. ~11 characters ?assed over
during the search are orinted. If the character is
not found, the cursor will be at the end of the line.
If it is found, the cursor will stoo to the right of
the character and all of the characters to its left

43

44

will have been printed.

User types
User types
Computer prints
User tyl;)es
Computer prints

For example:

50 REM INCREMENT ·X
EDIT 50
50

2SE
50 REM INCR

K nKy is equivalent to S except that all of the char-

c

acters passed over during the search are deleted. The
deleted characters are enclosed in backslashes. For
example:

User types
User tyl;)es
Computer -r;:irints
User types
Computer prints

10 TEST LINE
EDIT 10
10

KL
HJ \TEST \

e. Text Replacement.

A character in a line may be changed by the use of
the command Cy which chanqes the character to the
right of the cursor to the character y. Y is 9rinted
on the terminal and the cursor is advanced one

·.position. nCy may be used to change n characters i~ a:
line as they are typed in from the terminal. (See
example below.) If an attempt is made to change a
character which does not exist, the change mode will
be exi~ed. Example:

User types HJ FOR I=l TO 100
User types EDIT HJ
Computer -r;>rints 10
User types 281
Comp1Jter or in ts 10 FOR I=l TO
User ty-oes 3C256
Computer prints 10 FOR I=l TO 256

f. Ending and Restartinq

Carriage Return Terminates editing and prints the re-

E

Q

mainder of the line. The edited line reolaces the
original line.

E is the same as a carriage return exce?t the
remainder of the line is not ~rinted.

Q restores the original line and causes 3ASIC to
return to command level. Chanqes do not take effect
until an E or carriaqe return is typed, so Q allows
the user to restore the original line without any

3ASIC .+.l

--

changes which may have been made.

L L causes the remainder of the line to be ?rinted,

A

and then ?rints the line number and restarts editinq
at the beginning of the line. The cursor will be
positioned to the left of the first character in the
line. L allows monitoring the effect of changes on a
line. Example:

User types 50 REM INCREMENT x
User types EDIT 50
Coml?uter prints 50
User ty?es 2SM
Com9uter prints 50 REM INC RE
User tyl?eS L
Com?uter 9rints 50 REM INCREMENT x

50

A causes the original line to be restored
and editing to be restarted at the
line. For example:

User types H(TEST
User types EDIT 10
.computer Prints Hi
Qser tyPes HJD
Computer prints 10 \TEST
User types
Comr;mter prints HJ \TEST

10

Suppose in the above example, that
mistake when he deleted TEST LINE.
A command, the original line 10 is
ready for further editing.

IMPORTANT

beqinning of the

LINE

LINE\
A

~INE\

the user made a
As a result of the
reentered and is

Whenever a SYNTAX ERROR is discovered durina the execution of
a source oroqram , BASIC will automatically beqin EDITing the
line that caused the error as if an EDIT command had been
typed. Examl;)le:

10 APPLE
RUN
SYNT~X ERROR IN 10
10

Com?lete editing of a line causes the line edited to be
reinserted. R~inserting a line causes all variable values to
be deleted. To oreserve those values for examination, the
EDIT comwand mode may be exited with the Q command after the

BASIC -L 1 45

46

line number is printed. If this is done, BASIC will return to
command level and all variable values will be preserved.

The features of the EDIT command may be used ·on the line
currently being typed. To do this, type Control/A instead of
Carriage Return. The computer will respond with a carriaqe
return, an exclamation point (!) and a space. The cursor will
be ?OSitioned at the first character of the line. At this
point, anv of the EDIT subcommands except Control/A may be
used to correct the line. Example: .

User types
Computer prints
User types
Computer prints

10 IF X GOTO i~/A

S# 2Cl2
10 IF X GOTO 12

The current line number may be designated by a period (.)
in any command requiring a line number. Examples:

User types
User types
Computer prints

•

5-5. PRINT USING Statement.

10 FOR I= 1 TO 10
EDIT •
10

The PRINT USING statement can be employed in situations
where a specific output format is desired. This situation
might be encountered in such ap9lications as printing payroll
checks or accounting reports. The general format for the
PRINT USING statement is as follows:

PRINT USING <string>;<value list>

The <string> may be a string variable , string expression or a
string constant which is a precise copy of the line to be
printed. ~11 of the characters in the string will be ?rinted
just as they ~ppear with the exception of the formatting
characters. The <value list> is a list of the items to be
~rinted. The string will be re9eatedly scanned until: 1) the
string ends and there are no values in the value· list or, 2) a
field is scanned in the string, but the value list is
exhausted. The string is constructed according to the
following rules:

BASIC ~.l

47

a. String Fields.

specifies a single character string field. The string itself
is specified in the value list.

\n spaces\ specifies a string field consisting of 2+n char­
acters. Backslashes with no spaces between them
indicates a field 2 characters wide, one S?ace between
them indicates a field 3 characters wide, etc.

In both cases, if the string has more characters than the
field width, the extra characters will be iqnored. If the
string has fewer characters than the field width, extra spaces
will be printed to fill out the entire field. Trying to 9rint
a number in a string field will cause a TYPE MISMATCH error to
occur. Examl;)le:

HJ A$= 11 ABCDE'' :B$=''FGH"
20 PRINT USING "! 11 ;A$;8$
30 PRINT USING ''\ \": 8$; A$
RUN

(the above prints out)

AF
FGH ABCD

Note that where the "!" was used only the_ first letter of each
string was printed. Where the backslashes· enclosed two
S?aces, four letters from each strinq were printed (an extra
space was printed for 8$ which has only three characters).
The extra characters in the first case and for A$ in the
second case were ignored.

b. Numeric Fields. With the PRINT USING
numeric printouts may be altered to suit
application. Strings for formatting numeric
constructed from the following characters:

statement,
almost any

fields are

Numeric fields are specified by the * siqn, each of
which represents a digit position. These digit
positions are alwavs filled. The nu~eric field is
right justified~ that is, if the number ?rinted is
too small to fill all of the digit ?OSitions
specified, leading spaces are printed as necessary to
fill the entire field.

The decimal ooint may be s9ecified in any position
in the field. Roundin~ is ?erformed as necessary. If
the field forT-at specifies that a digit is to ?recede
the deci~al point, the digit is always printed (as 0
if necessary) .

BASIC ~.l

April, 1977

48

The following program will help illustrate these rules:

HJ INPUT A$,A
20 PRINT USING
30 GOTO Hf
RUN
? i#,12

12
? #:##,12

12
? #####,12

12
?i#.##,12
12.00

? **ilf.,12
12 •.

? *·##ff:,.02
0.020

?#L*,2.36
2.4

?#:4H, -12
-12

?#:.#.#,-.12
-.12

?## *# '-12.
-12

A$;A

•

+ The +.sign may be used at either the beginning or
end of the numeric field. If the number is positive,
the + sign is ?tinted at the specified. end of the
number. If the number is negative, a sign is
printed at the specified end of the number.

The - sign, when used to the ~ight of the numeric
field designation, forces the minus sign to be nrinted
to the right of the number if it is negative. If the
number is ?OSitive, a S?ace is printed.

** The ** placed at the beginning of a numeric field

$$

designation causes any unused S?aces in the leading
?Ortion of the number orinted out to be filled with
asterisks. The ** also s~ecifies oositions for 2 more
digits. (Termed ~asterisk fill")

When the $S is used at the
field desiqnation, a $ sign
immediately 9receding the
$$ also specifies positions
that the $ itself takes
Exponential for~at cannot
signs.

beginnino of a numeric
is 9rinted in the sDace
number 9rinted. Note that
for two more digits, but

uo one of these svaces.
be used with lead1na $

BASIC 4.1

April, 19T:'

**$ The **$ used at the beginning of a numeric field
designation causes both of the above (** and $$) to be
performed on the number being printed out. All of the
9revious conditions apply, except that **$ allows for
3 additional digit oositions, one of which is the $
sign.

A comma a?pearing to the left of the dectmal point
in a numeric field desianation causes a comma to be
printed to the left of every third digit to the left ·
of the decimal point in the number being Printed. The
comma also specifies another digit ?OSition. A comma
to the right of the decimal 9oint in a numeric field
d~signation is considered a part of the string itself
and is treated as a printing character.

<++++on some terminals) Ex~onential Format.
If exoonential format is desired in the nrintout, the
numeric field designation should be foilowed bv
(allows space for E+XX). Any decimal point
arrangement is allowed. The significant digits are
left justified and the ex~onent is adjusted. Unless a
leading + or a trailing + or - is used, one position
to the left of the depimal point is used to 9rint a
space or minus sign. Examples:

PRINT USING 1•[#=#]"; 13,17,-8.
[1E+01J [2E+0i'] [-8E+00]

OK
PRINT USING ••[·***#*#"'n"' ... _]; 12345,-123456
[.123450E+05] [.123456EH16-]
OK
p R IN.T us ING .• [+ • ~Hf"'] II ~ 12 3 , -12 6
[+.12E+03] [-.13E+03]
OK

% If the number to be 9rinted out is larger than the

BASIC 4.1

s9ecified numeric field, a % character is printed
followed by the number itself in standard Altair BASIC
format. (The entire number is printed.) If rounding a
number causes it to exceed the specified field, the %
character is ?rinted followed by the rounded number.
If, for exam9le, A=.999, then

p RI NT us ING .•• ~ * II ' A

prints

%1.00.

If the number of digits snecified exceeds 24, 3n
ILLEGAL FUNCTION CALL error will occur.

49

50

The following ?rogram will help illustrate the ?recedinq
rules.

Program: 10 INPUT A$,A
20 PRINT USING A$;A
30 GOTO 10
RUN

The computer will start
desiqnator and valu~ list
dis9layed as follows:

by typing a ?. The numeric field
are entered and the output is

? +*,9
+9
? +#,HJ
%+HJ
? #:If ,-2
-2
? +*,-2
-2
? #,-2
%-2
? +.##.ff:,.02
+.020
? i##i.if:,100
100.0

? ##+,2
2+

? THIS IS ~NUMBER #*,2
THIS IS A NUMBER 2
? BEFORE *# AFTER,12
BEFORE 12 AFTER
? #H=#,44444
%44444
? **##,1
***l
? **##,12
**12
? **#*,123
*123
? **#=*,1234
1234
? **:lf#,12345
%12345
? **,l
*l
? **,22
22
? **.H,12
12.00
? **i##:IF,l
*****l

BASIC ..l,1

.. :..pril, 1977

• •

(note: not floating $)

(note: floating $}

? #,6.9
7
? #:.#,6.99
7.0
? **-,2

.. 2
? #:#-,-2

2-
.? ##+,2·

2+
? ##+,-2-

2-
? iF# , 2

2E+00
? ##----,12

1E+01
? #####.###----,2.45678

2456.780E-03
? *·*** --,123
0.123E+03
? #.##----,-123
-.12E+03
? «ti#tt,###.1~,1234567.89

1,234,570.0

? $####.#*,12.34
$ 12.34
? $$###~.##,12.56

$-! 2. 56
? $$.. ##,1.23
$1. 23
? $$.##,12.34
%$12.34
? $$###,0.23

$0
? $$#U:4F.##,0

$0.00
? **$*#*- **, 1. 23
****$1.23
? **$.##,1.23
*$1. 23
? **$#i#,l
****$1

Ty9ing Control/C will stop the ?rogram.

5-6. Disk File Ooerations.

As ~any as sixteen flo99v disks may be connected to a
single ALTAIR disk controller. These disks have been assioned
the physical disk numbers 0 through 15. Users with one drive
should address the drive at zero, and users with two drives

BASIC ..t,l 51

April, 1977

52

should address them at zero and one, etc.

In· the following descriptions,- <disk number> is an
integer expression whose value is the ~hysical number of one
of the disks in the system. If the <disk number> is omitted
from a statement other than MOUNT or UNLOAD, the <disk number>
defaults to 0. If the <disk number> is omitted from a MOUNT
or UNLOAD statement, disks 0 through the highest disk number
specified at initialization are affected~

a. Opening, Closing and Naming Files. To initialize
disks for reading and writing, the the MOUNT command is issued
as- follows:

MOUNT [<disk number>[,<disk number> ...]]

Example:

MOUNT 0

mounts the disk on drive zero, and

MOUNT 0,1

mounts the disks on drives zero and one. If there is already
a disk MOUNTed on the s~ecified drive(s) a
DISK ALREADY MOUNTED message will be ?rinted. Before rem6ving
a disk which has been used for reading and writing by Disk
~ltair BASIC, the user should give an UNLOAD command:

UNLOAD [<dis~ number>[,<disk number> .•. l]

UNLOAD closes all the files open on a disk, and marks the disk
as not mounted. Before any further I/O is done on an UNLOADed
disk, a MOUNT command must be given.

NOTE

~OUNT, UNLOAD or any other disk command may be used as
a 9rogram statement.

All data and proqrarn files on the disk have an associated file
name. This name is the result of evaluating a string
ex~ression and must be one to eiqht characters in len~th. The
first character of the file name cannot be a null (0) ~vte or
a bvte of 255 decimal. An attemot to use a null file name
(ze~o chara6ters in lenryth) , a ~ile name over 8 characters in
length or containing a 0 or 255 in the first character

3ASIC ~.l

April, 1977

position will cause a BAD FILE NAME error. Any other sequence
of one to eiqht characters is acce?table.

Examples of valid file names:

~BC
abc
filename
file.ext
12345678
INVNTORY
FILE*#22

(Not the same as ABC}

NOTE

Commands that require a file name will use <file name>
in the a??rO?riate position. Remember that a <file
name> can be any string expression as long as the
resulting string follows the rules given above.

b. The FILES Command. The FILES command is used to
?rint out the names of the files residing on a particular
disk. The format of the FILES command is: •

FILES <disk number>

Examr;>le:

FILES (prints directorv of files on disk 0)

STRTRK PIP CURFIT CISASM

Execution of the FILES command may be interrupted bv ty~ing
Control/C. A more complete listing of the information stored
in a particular file may be obtained by runninq the PIP
utility program (see ~o~endix I).

c. SAVEing and LOADing proqrarns. Once a program has
been written, it is often desirable to save it on a disk for
use at a later time. This is accomplished bv issuing a SAVE
command:

SAVE <file name>[,<disk number>[,A]]

Example:

S.U. VE II TEST" I 0

BASIC 4.1 53

April, 1977

54

or

SAVE "TEST"

would save the oroqram TEST on disk zero. Whenever a program
is SAVEd, any existing copy of the program ?reviously. SAVEd
will be deleted, and the disk space used by the 9revious
program is made available. See section 5-6d for a discussion
of saving with the 'A' ootion.

The LOAD statement reads a file from disk and loads it
into memory. The syntax of the LOAD statement is:

LOAD <file name>[,<disk nurnber>[,R]]

Corres-pondingly:

LOAD '1 TEST" ,0 or LOAD "TEST"

loads the ?rogram TEST from disk zero. If the file does not
exist, a.FILE NOT FOUND error will occur.

LOAD ••TEST'', 0, R

OK

LOADs the program TEST from disk zer6 and runs it. The LOAD
command with the .. R" option may be used to chain or segment
9rograms into small pieces if the whole program is too large
to fit in the computer's memory. All variables and 9rogram
lines are deleted by LOAD, but all data files are kept
OPEN(see below) if the .. R.. option is used. Therefore,
information may be passed between programs through the use of
disk data files. If the 11 R" 09tion is not used, all files are
automatically CLOSEd (see below) by a LOAD.

Exam'J?le:

NEW
10 PRINT '1-FOOl '1 : LOAD .. F002 11

, 0 'R
SAVE "FOOl",0

OK
10 PRINT '1 F002'1 :LOAD '1 FOOl'1 ,0,R
SAVE "F002 .. ,0

OK
RUN
F002
2001
F002

3ASIC 4.1

April, 197"".'

FOOl
••• etc.

(Control/C may be used to stop execution at this ?Oint)

In this example, program F002 is RUN. F002 prints the
message "F002" and then calls the oroaram FOOl on disk. FOOl
prints "FOOl" and calls the program F002 which ?tints "F002"
and so on indefinitely.

RUN mav also be used with a file name to load and run a
program. The format of the command is as follows:

RUN<file name>[,<disk number>[,R]]

All files are closed unless ,R is specified after the disk
number.

d. SAVEin9 and LOADinq Program Files in ASCII. Often it
is desirable to save a program in a form that allows the
program text to be read as data by another program, such as a
text editor or resequencing program. Unless otherwise
specified, Altair BASIC saves its oroqra~s in a compressed
binary "format which takes a mini~um.of disk space an~ loads
very quickly. To save a program in ASCII, specify the "A"
option on the SAVE command:

OK

LOAD "TEST",0

OK

Information in the file tells the LOAD command the format
in which the file is to be loaded. The first character of an
ASCII file is never 255, and a binary program file always
starts with 255 (377 octal). Remember, loading an ASCII file
is much slower than loadinq a binary file.

e. The MERGE Command. Sometimes it is very useful to
out parts of two programs together to form a new 9ro0ra~
combining elements of both programs. The ~ERGE command is
provided for this pur?ose. As soon as the MERGE com~and has
been executed, 3ASIC returns to command level. Therefore, it
is more likely that ~ERGE would be used as a direct com~and
than as a statement in a crogram. The format of the MERGE

BASIC 4.1 55

April, 19~7

56

statement is as follows:

MERGE <file name>[,<disk number>]

Examr;>le:

MERGE "PRINTSUBu,l
OK

The <file name> specified is merged into the program already
in memory. The <file name> must s~ecify an ASCII format saved
program or a BAD FILE MODE errot will occur. If there are
lines in the program on disk which have the same line. numbers
as lines in the program in memory, the lines from the file on
disk will re~lace the corresponding program lines ±n memory.
It is as if the ?rogram lines of the file on disk were typed
on the user terminal.

f. Deleting Disk Files. The KILL statement deletes a
file from disk and returns disk S?ace used by the file to free
disk space. The format of t~e KILL statement is as follows:

KILL <file narne>[,<disk number>]

If the file does not exist, ~ FILE NOT FOUND error will occur . • If a~ILL statement is given for a file that is currently OPEN
(see below), a FILE ALREADY OPEN error ·occurs.

g. Renaming Files the NAME Statement. The NAME
statement is used to chanqe the name of a file:·

NAME <old file name> AS <new file name>[,<disk number>]

Exami;>le:

NAME ''OLDFILE'' AS "NEWFILE''

The <old file name> must exist, or a FILE NOT FOUND error will
occur. A file with the same name as <new file name> must not
exist or a FILE ALREADY EXISTS error will occur. After the
NAME statement is executed, the file exists on the same disk
in the same area of disk space. Only the name is changed.

h. OPENing Data Files. Before a ?roqram can read or
write data to a disk file, it must first OPEN the file on the
aporooriate disk in one of several ~odes. The general form of
the OPEN statement is:

OPEN <mode>, (#]<file number>,<fil~ nane>[,<disk nu~ber>]

BASIC -l.l

April, 19ii

<mode> is a string expression whose first character is one of
the following:

0
I
R

Specifies sequential output mode
Specifies sequential input mode
Specifies random Input/Output mode

A sequential file is a stream of characters that is read or
written in order much like INPUT and PRINT statements read
from and write to the terminal. Random files are divided into
groups of 128 characters called records. The nth record of a
file may be read or written at any time. Random files have
other attributes that will be discussed later in more detail.

<file number> is an integer expression between one and
fifteen. The number is associated with the file being OPENed
and is used to refer to the file in later I/O ooerations.

Examples:

OPEN "0",2,"0UTPUTu,0·
OPEN "I",l,"INPUT"

The above two st~tements 09en the file OUTPUT for s~quential
output and the file INPUT for sequential input on disk zero.
The following statement opens the file whose name is in the
string F$ in mode M$ as file number N on disk D.

· OPEN M$,N,F$,D

i. Sequential ASCII file I/O Sequential inout and output
files are the simclest form of disk inout and cutout since
they involve the use. of the INPUT and PRINT statements with a
file that has been oreviously OPENed.

1) INPUT is used to read data from a disk file as
follows:

INPUT #<file number>,<variable list>

where <file number> reoresents the number of the file that was
OPENed for input and <variable list> is a list of the
variables to ·be read, as in a normal INPUT statement. When
data is read from a sequential input file usin0 an INPUT
state~ent, no question mark (?) is orinted on the terminal.
The format of data in the file should appear exactly as it
would be typed to a standard INPUT statement to the terminal.

3AS!C ~.l 57

~pril, 1977

58

When reading numeric values, leading S?aces1 carriage returns
and line feeds are ignored. When a non-space, non-carriage
return, non-line-feed character is found, it is assumed to be
part of a number - in Altair BASIC format. The number
terminates on a space, a carriage return, line-feed or a
comma.

Leading blanks, carriage returns and line-feeds are also
ignored when scanning for string. items. When a character
which is not a leading blank, carriage return or line-feed is
found, it is assumed to be the start of a string item.If this
first character is a quotation mark ("), the item is taken as
being a quot~d string, and all characters between the first
quotation mark (") and a matching quotation mark are returned·
as characters in the ·string value. This means that a auoted
string in a file may contain any characters except double
auote. If the first character of a strinq item is not a
quotation mark, then it is assumed to be an unquoted string
constant. The string returned will terminate on a comma,
carriage return or line feed. The string is immediately
terminated after 255 characters have been read.

For both numeric and string items, if end of· file (EOF)
is reached when the item is being INPUT, the item is
terminated regardless of whether or not a closing quote was
seen.

Sequential I/O commands destroy the input buffer so they
may not be edited by Contr-ol/A for te-execution.

Exam?le of sequential I/O (numeric items}:

500 OPEN "O",l,"FILE",0
510 PRINT #1,X,Y,Z
520 CLOSE 1
5 3 0 0 p EN II I .• I 1 I II FILE If , 0
540 INPUT #1",X,Y,Z

Note that CLOSE is used so that a file which has just been
written may be read. When FILE is re-OPENed, the data oointer
for that file is set back to the beginning of the file so that
the first INPUT on the file will read data from the start of
the file.

2) PRINT and PRINT USING statements
data into a sequential output file.
follows:

are used to write
Their formats are as

PRINT #<file number>,<ex?ression list>

BASIC .+.l

April, 197-:r

or

PRINT *<file number>, <line feed>
USING <string expression>;<ex?ression list>

Example of sequential I/O (quoted string items):

500 OPEN "O",l,~FILE~

510 PRINT tl,CHR$(34);X$;CHR$(34);
515 PRINT il,CHR$(34) ;Y$;CHR$(34) ;CHR$(34) ;Z$;CHR$(34)
520 CLOSE 1
5 3 0 0 p EN II I II ' 1 ' •• FILE .• ' 0
540 INPUT #l,X$,Y$,Z$

In this example, the strings bein~ output (XS, YS, Z$) are
surrounded with double quotes through the use of the CHR$
function to generate the ASCII value for a double quote. This
technique must be used if a string which is being output to a
sequential data file contains commas, carriage returns,
line-feeds or leading blanks that are significant. When
leadinq blanks are not significant and there are no commas,
carriage returns or line-feeds in the strings to be out?ut, it
is sufficient to insert commas between the strings beinq

• output as in the following exarnr:>le: · · -

5 0 0 0 p EN II 0 ti , 1 ' .. FILE 1'

510 PRINT if l ,X$; ti, II ;Y$; II' .. i Z$
520 CLOSE 1
5 3 0 OP EN .• I If , 1 , I FI LE .. , 0
540 INPUT tl,X$,Y$,Z$

3) CLOSE. The format of the CLOSE statement is as
follows:

CLOSE [<file nurnber>[,<file number> •..]]

CLOSE is used to finish I/O to a 9articular Altair BASIC data
file. After CLOSE has been executed for a file, the file ~ay
be reOPENed for in~ut or out?ut on the same or different <file
number>. A CLOSE for a seauential out~ut file writes the
final buffer of output. A CLOSE to any OPEN file finishes the
connection b~tween the <file nurober> and the <file name> given
in the OPEN for that file. It allows the <file number> to be
used again in another OPEN statement.

A CLOSE with no argument CLOSEs all OPEN files.

BASIC 4,1 59

April, l9i7

•

60

NOTE

A FILE can be OPENed for sequential in?ut or random
access on more than one <file number> at a time but
may be OPEN for output on only one <file number> at a
time.

END and NEW always CLOSE all disk files automatically.
does not CLOSE disk files.

STOP

4) LINE INPUT. It is often desirable to read a .whole
line of a file into a string without using quotes, commas or
other characters as delimiters. Tpis is es~ecially true if
certain fields of each line are beinq used to contain data
items, or if a BASIC program saved ·in ASCII ~ode is being read
as data by another ?rograrn. The.facility provided to oerform
this function is the LINE INPUT statement:

LINE INPUT *<file nurnber>,<string variable>

A LINE INPUT from a data file will return all characters up to
a carriage return in <string variable>. LINE INPUT then skips
over the following carriage return/line-feed seauence so that
a subsequent LINE INPUT from the file will return the next
line.

5) End of File (EOF) Detection. When reading a
sequential data file with INPUT statements, it is usually
desirable to detect when there is no more data in the disk
file. The mechan~sm for detecting this condition is the EOF
function:

X=EOF(<file number>)

EOF returns TRUE (-1) when there is no more data in the file
and F~LSE (0) otherwise. If an attemot is made to INPUT ?ast
the end of a data file, an INPUT PAST END error will occur.

Example:

100
110
120
130
140
150
160

0 p EN Cf I II , 1 , .. DATA ii , 0
I=0
IF EOF(l) THEN 160
INPUT if:l,A(I)
I=I+l
GOTO 120

In this example, numeric data from the sequential innut file
D~TA is read into the array A. When end of file is detected,
the IF statement at line 120 branches to line 160, and the
variable I ''points'' one beyond the last ela1112nt of ~ that was
INPUT from the file-.

BASIC ~. l

April, 19i7

The following is a program that will calculate the number
of lines in a BASIC proqram file that has been SAVEd in ·ASCII
mode:

10 INPUT "WHAT IS THE NAME OF THE PROGRAM";P$
20 OPEN "I 11 ,l,P$,0
30 I=0
40 IF EOF(l) THEN 70
50 I=I+l:LINE INPUT *l,LS
60 GOTO 40
70 PRINT .• PROGRAM .. ; P$; II IS II; I; II LINES LONG"
80 END

This example uses the LINE INPUT statement to read each line
of the program into the 11 dummy 11 string LS which is used just
to INPUT and ignore that part of the file.

6) Finding the Amount of Free Disk Space (DSKF). It is
sometimes necessary to determine the amount of free disk soace
remaining on a ~articular disk before writing a file. ·The
DSKF function provides the user with the number of free groups
left on a qiven disk after the disk has been MOUNTed. ~ grou~
is the fundamental unit of file allocation. That is, files
are always allocated in groups of eight sectors at a time.
Each sector contains 128 characters (bytes). Therefore, the
minimum size for a file is 1~24 "bytes.

Syntax for the DSKF•function:

DSKF(<disk number>)

PRINT DSKF(0)
200

The above exarn~le shows that there are 200*1024=204800
characters (bytes) that can still be stored on disk zero.

j. RANDOM FILE I/O. Previously, we have discussed how
data may be PRINTed or INPUT from sequential data files.
However, it is often desirable to access data in a random
fashion, for instance, to retrieve information on a oarticular
part number or customer from a larqe data base stored on a
fl0?9Y disk. If sequential files were used, the whole file
would have to be scanned from the start until the narticular
item was found. Random files remove this restriction and
allow a ?roqrarn to access any record from the first to the
last in a s9eedy fashion. Also, randon files transfer dat3
from variable~ to the disk ouput records 3nd vice versa in a
much faster, more efficient fashion than sequential files.

BASIC ~.l 61

. .i..pril, !.9i7

62

Random file I/O is more complex than sequential I/O, and it is
recommended that beginners try sequential I/O first.

1) OPENing a FILE for Random I/O. Random I/O files are
OPENed just like sequential files.

0 PEN " R" , 1 , " RANDOM '1
, 0

When a file is OPENed for random I/O, it is always OPEN for
both input and output simultaneously.

2) CLOSING Random Files. Like sequential files, random
files must be closed when I/O o~erations are finished. To
CLOSE a random file, use the CLOSE command as described
previously.

CLOSE <file number>[,<file number> .•.]

3) Re9a d in g and w r it in q data to a r and om f i.l e
PUT. Each random file has associated with

" . buffer" of 128 bytes. When a GET or PUT
~erfor~ed, data is transferred directly from the
data file or from the data file to the buffer.
The syntax of GET and PUT is as follows:

PUT [*]<file number>[,<record number>]

GET [*]<file number>[,<record number>]

GET and
it a "random

Ol;)eration is
buffer to the

If <record number> is omitted from a GET or PUT statement, the
record number that is one higher than the orevious GET or PUT
is read into the random -buffer. Initially a GET or PUT
without a record number will read or write the first record.
The largest possible record number is 2046. If an attempt is
made to GET a record which has never been PUT, all zeroes are
read into the record, and no error occurs.

4) LOC and LOF. LOC is used to determine what the
current record number is for random files. In other words, it
returns the record number that will be used if a GET or PUT is
executed with the <record number> parameter omitted.

3ASIC 4.1

April, l 97':"

LOC(<file number>)

PRINT LOC(l)
15

LOC is also valid for sequential files, and gives the number
of sectors (128 byte blocks) read or written since the OPEN
statement was executed.

LOF is used to determine the last record number written to a
random file:

LOF(<file number>)

PRINT LOF(2)
200

An attem~t to use LOF on a seauential file will cause a BAD
FILE MODE error.

The value returned by LOF is always 5 MOD 8. That is" , when
the value LOF returns is divided by 8, the remainder is always
5. There~ore,th~ values•return~d by LOF are 5, 13, 21, 29
etc. This. is due to the way random files are allocated.

NOTE

It is important to note that the value returned by LOF
may be a record that has never been written in by a
user program. This is because of the way random files
are pre-extended.

5) Moving Data In and Out of the Random Buffer. So far
we have described techniques for writinq (PUT) and reading
(GET) data from a file into its associated random buffer. Now
we will describe how data from string variables is moved to
and from the random buffer itself. This is accomolished
through the use of the FIELD, LSET and RSET statements.

6) FIELD. The FIELD statement associates some or all of
a file 1 s rcndorn buffer with ~ particular string variable.
Then, when the file buffer is read with GET or written with
PUT, string variables which have been FIELDed into the buffer
will automatically have their contents read or written. The

3AS!C l,l 63

64

format of the FIELD statement is:

FIELD [*J <file number>,<field size> AS <string variable>[••.]

<file number> is used to specify the file number of the file
whose random buffer is being referenced. If the file is not a
random file, a BAD FILE MODE error will occur. <field size>
sets the length of the string in the random buffer. <string
variable> is the string variable which is associated with a
certain number of characters (bytes) in the buffer. Multiole
fields may be associated with string variables in a oiven
FIELD statement. Each successive string variable is assigned
a successive field in the random buffer. Exarnole:

FIELD 10 AS A$, 20 AS 8$, 30 AS C$

The statement above would assign the first 10 characters of
the random buffer to the string variable A$, the next 20
characters to 8$ and the next 30 characters to the variable
C$. It is important to note that the FIELD statement does not
cause any data to be transferred to or from the random buffer.
It only causes the string variables given as argu~ents to
""9oint'' into the random buffer.

Often, it is necessary to divide the random buffer into a
number of sub-records to m~ke more efficient use of disk
SQace. For instance, ii miqht be desirable to divide the 128
character record into two ide~tical subrecords. To accomolish
this a 11 dummy v a r i able 11 w o u 1 d be P 1 aced in the FIE Lo stat e·me n t
to reoresent one of the subrecords. One of the following
statements would be executed, deQending on whether the first
or second subrecord were needed:

or

FIELD 11,64 AS 0$, 20 AS NAME$,
20 AS ADDRESSES, 24 AS OCCUPATION$

FIELD #1,20 AS NAME$, 20 ~S ADDRESSE$,
24 AS OCCUP~TION$, 64 AS D$

where the dummy variable D$ is used to skio over one of the
subrecords. Another wav to do the same thing would be to set
a variable I that would select the first or second subrecord:

FIELD #l,64*(I-l) AS 0$,
20 AS NAME$, 20 AS ADDRESS$, 24 AS OCCUPATIONS

Here, if the variable I is ·one, I-1 *64 =0 characters will be
skipped over, selecting the first subrecord. If I is two, 64
characters will be ski??ed ov€r, selecting the second

Ap:-il, 1977

subrecord. ,Another useful technique is to use a FOR •.. NEXT
loop and an array· to set u9 subrecords in the random buffer:

1000 FOR I=l TO 16
1010 FIELD *l, (I-1) *8 AS 0$, 4 AS A$ (I),

4 AS B$ (I)
1020 NEXT I

In this example, we have divided-the random buffer into 16
subrecords composed of two fields each. The first 4-character
field is in A$(X) X is the subrecord number.

NOTE

The FIELD statement may be executed any number of
times on a given file. It does not cause any
allocation of string space. The only space allocation
that occurs is for the string variables mentioned in
the. FIELD statement. These string variables have a
one byte count and two byte oointer set up which
pofnts into the random buffer· for the S?ecified file .

•

7) Using Numeric Values in Random Files: MKI$, MKS$,
MKD$ and CVI, CVS, CVD. ~s we have seen, data is always
stored in the random buffer through the use of string
variables. In order to convert between strings and numbers
and vice versa, a number of special functions have been
9rovided.

To convert between numbers and strings:

MKI$(<integer value>)

~KS$(<single ?recision value>)
MKD$(<double ?recision value>)

Returns a two byte strinq
(FC error if value is not
>=-32768 and <=+32767.
Fractional ?art is lost)
Returns a four byte string
Returns an eight byte string

To convert between strings and numbers:

CVI(<two byte string>)
CVS(<four byte strinq>)
CVD(<eight byte string>)

CVI, CVS, and CVD all

3ASIC J. .1

Returns an integer value
Returns a single ?recision value
Returns a double ?recision value

give an ILLEGAL FUNCTION C~LL • .>= error l .i_

66

the string given as the argument is shorter t~an required. If
the string argument is longer than necessary, the extra
characters are ignored. These functions are extremely fast
since they convert between Altair BASIC's internal
representations ·of integers, single and double precision
values and strings. Conventional sequential I/O must oerform
time-consuming character scanning algorithms when converting
between numbers and strings.

8) LSET and RSET. When a GET operation is oerformed, all
string variables which have been FIELDed into the random
buffer for that file automatically have values assigned to
them. The CVI, CVS and CVD functions may be used to convert
any numeric fields in the record to their numeric values.
When going the other way, i.e. inserting strinqs into the
random buffer before oerforminq a PUT statement, a oroblem
arises. This is because of the way string assignments usually
take place. For example:

LET A$=B$

When ~ LET statement is executed, 3$ is copied into string
space, A$ is pointed to the new string and the string len9th
of A$ is modified. However, for as~ignrnents into the random
buffers we do oot want this to haopen. Instead, w~ want the
string being assigned to be stored where the strina variable
was FIELDed. In order to do this,· two special assiqnment
statements have been provided, LSET and RSET:

LSET <string variable>=<string expression>

RSET <string variable>=<string expression>

Examples:
LSET A$=MKS$(V)
RSET B$= 11 TEST 11

LSET C$(I)=MKD$(D#)

The difference between LSET and RSET concerns what ha9oens if
the strina value being assiqned is shorter than the lenqth
specified for the string variable in the FIELD statement.
LSET left justifies the string, adding blanks (octal 40,
decimal 32) to ?ad out the right side of the string if it is
too short. RSET right justifies the string, oaddi~g on the
left. If the string value is too long, the extra characters
at the end of the string are ignored.

3ASIC .+.l

April, 19ii

NOTE

Do not use LSET or RSET on string variables which have
not been mentioned in a FIELD statement, or a SET TO
NON DISK STRING error will occur.

k. The DSKI$ and DSK0$ Primitives. Often it is
necessary for the user to ?erform disk I/O operations directly
without using anv of the normal file structure features of
Altair BASIC. To allow this, two special functions have been
provided. These are the DSKIS function and the DSKO$
statement. First, examples will be ~rovided on how to perform
sim~le disk I/O commands using Altair BASIC statements.

To Enable disk 0:

OUT 8,0

To Enable disk N:

OUT 8,N

TO step the disk head out one track:

WAIT 8,2,2:0UT 9,2

To step the disk head in one track:

WAIT 8,2,2:0UT 9,1

To test for track 0:

IF (INP(8) AND 64)=0 THEN <statements or line number>

The above will execute the statements or branch to the line
number if the head is positioned at track 0. This is the
outermost track on the disk.

To read sector Y (Y may be any expression, minimum sector =0,
maximum = 31):

~$=DSKI$ (Y)

The statement

DSKOS <string exnression>,<sector exoression>

BASIC 4,1 67

April, 1977

68

writes the string expression on the sector soecified. The
high order bit. (most signifigant) of the ~irst character
output will always be set to one when the string is written on
the sector and will always be one when the sector is read back
in using OSKI$. A maximum of 137 ·characters are written;
giving a string whose length exceeds 137 characters will cause
an ILLEGAL FUNCTION CALL error. If the string argument is
less than 137 characters in length, the end of the string will
be padded with zeros to make a string of length 137.

3ASIC ~.l

April, 1977

6. LISTS AND DIRECTORIES
-~ ~~~-~ --- ~~~- ~-

6-1. Commands . .._.__._ _.._.._....._. _

Commands direct Altair BASIC to arrange memory and
input/output facilities, to list and edit programs and to
handle other housekeeping details in support of program
execution. Altair BASIC accepts commands after it prints 'OK'
and is at command level. The table below lists the commands
in alphabetical order. The notation to the right of the
command name indicates the versions to which it applies.

.Command Version(s)

CLEAR All

Sets all program variables to zero.

CLEAR[<expression>] 8K, Extended, Disk

Same as CLEAR but sets string space to the value of the
expression. .If no argument is given, string space will remain
unchanged. When Altair BASIC is loaded, string space is set
to 50 bytes in 8K and 200 bytes in Extended and Disk.

CLOAD<string expressiorr> - 8K(cassette): Extended, Disk

Causes the program on cagsette tape designated by the .first
character of STRING expression> to be loaded into memory. A
NEW command is issued before the program is loaded.

CLOAD~<array name> 8K(cassette), Disk

Loads the specified array from cassette tape. May be used as
a program statement.

CLOAD?<string expression> SK {cassette), Extended, Disk

Compares the program in memory with the corresponding file on
cassette tape. If the files are the same, CLOAD? prints OK.
If not, it prints NO GOOD. The <string expression> must be
given, but it is ignored.

.CONT 8K, Extended, Disk

Continues program execution after a ControlAC has been typed
or a STOP or END statement has been executed. Execution
resumes at the statement after the break occurred unless input
from the terminal was interrupted. In that case, execution
resumes with the reprinting of the prompt (? or prompt
string). CONT is useful in debugging, especially where an

BASIC .1,! 69

April, ~ 9ii

'infinite loop' is suspected. An infinite loop is a series of
statements from which there is no escape. Typing Control/C
causes a break in execution and puts BASIC in command .level.
Direct mode statements can then be used to print intermediate
values, change the values of variables, etc. Execution can be
restarted by typing the .CONT command, or by executing a direct
mode GOTO statement, which causes execution to resume at the
specified line number.

In 4K and SK Altair BASIC, execution cannot be continued
if a direct mode error has occured during the break. In all
versions,· execution cannot continue 1f the program was
modified during the break.

CSAVE<string expression> BK(cassette), Extended, Disk

.causes the program currently in memory to be saved on cassette
tape under the name specified by the first character of
<string expression>.

CSAVE~<array name> BK(cassette), Disk

,causes the array named to be saved on cassette tape.
used as a program statement.

DELETE~line number> Extended, D~sk

May be

Deletes the li.ne in the current program with the specified
number. !If no such line exists, an ILLEGAL FUNCTION CALL
error occurs.

70

DELETE-<line number> Extended, Disk

Deletes every line of the current program up to and including
the specified line. If there is no such line, an ILLEGAL
FUNCTION CALL error occurs.

DELETE<line number>-~line numoer> Extended, Disk

Deletes all lines of the current program from the first line
number to the second inclusive. ILLEGAL FUNCTION CALL -0ccurs
if no line has the second number.

DSKINI<drive number> Disk

Initializes diskettes on the specified drives by marking all
sectors in tracks 6 - 77 as free. If no disk number is given,
all disks are initialized beginning with the highest disk
number. CAUTION: DSKINI destroys all files on the disk. Use
with utmost caution.

EDIT<line number> Extended, Disk

3AS:i:C .l, l

April, 1977

Allows editing of the line specified without affecting any
other lines. The EDIT command has a powerful set of
sub-commands wbich are discu~sed in detail in section s~4.

LIST All

Lists the program currently in memory, starting with the
lowest numbered line. Listing is terminated either by the end
of the program or by typing Control/C.

The LIST command may be used to save programs on ~aper
tape. Simply type LIST and turn on the teletype's paper tape
punch before typing carriage return. Be sure the nulls have
been set (see NOLL command) to 3 before punching the program.
To load a program from paper tape, put· the tape in the
teletype's reader and turn it on. The program loads as if it
were being typed from the terminal. The NEW command may be
used to clear old program lines before loading the new
program.

LIST[<line number>] All

In 4K and 8K, prints the current program beginning at the
specified line. In Extended and Disk, prints the specified
line if it exists.

•LIST[<line number>] [-<line number>]. Extended, Disk

Allows several listing options.

1. If the second number is omitted, 1 is ts all 11 in es with
numbers greater than or equal to t~e number specified.

2. If the first number is omitted, lists all lines from the
beginning of the program to the specified line, inclusive.

3. If both line numbers are used, lists all lines from the
first number to the second, inclusive.

LLIST[<line number>] [-<line number>] Extended, Disk

Same as list with the same options, except prints on the line
printer.

NEW All

Deletes the current program and clears all variables.
before entering a new program.

NULL<integer expression> SK, Extended, Disk

BAS:C 4,1

.·\:pril, 19-:"i

Used

71

72

Sets the number of nu1ls to be printed at the end of each
line. For 10 or 30 character per second tape punches,
<integer expression> should b~ >=3. When tapes are not being
punched, <integer expression> should be 0 or 1 for Teletypesx
and Teletype compatible .CRT's. It should be 2 or 3 for 30 cps
hard ~opy printers. The default value is 0. In the 4K
version, the same affect may be achieved by patching location
46 octal to contain the number of nulls plus 1.

~ Teletype is a registered trademark of the Teletype
Corporation.

RUN[<line number>] All

Starts execution of the program currently in memory at the
line specified. If the line number is omitted, execution
begins at the lowest line number. Line number specification
is not allowed in 4K.

6-2. Statements.
~-~~ -~-~~~--

The following table of statements is listed in alpahabetical
order. The notation in the Version column designates the
v~rsions to which each statement applies. In the table, X and
Y stand for _any expressions ~llowed in the version under
consideration. I and J stand for expressions whose values are
truncated to· integers. V and W are any variable names. The
format for an Altair BASIC line is as follows:

<nnnnn> <statement>[:<staternent> ...]

where nnnnn is the line number.

Name Format Version

£0NSOLE £0NSOLE <I>,<J> Extended, Disk

Allows terminal console device to be switched. I is the I/O
port number . which is the address of the low order channel of
the new I/O board. J is the switch register setting (see
section 5-1 for the list of settings). 0<=I,J<=255.

DATA DATA~list> A11

Specifies data to be read by a READ statement. List elements
can be numbers or, except in 4K, strings. 4K allows

BASIC ~.l

April, ~9ii

expressions. List elements are separated by commas.

DEF DEF FNV(<w>)=<X> SK, Extended, Disk

Defines a user-defined function. Function name is FN fo1lowed
by a legal variable name. Extended and Disk versions allow
user-defined string functions. Definitions are restricted to
one line (72 characters in 4K and 8K, 255 characters in
extended versions) .

DEFUSR DEFUSR[<digit>]=<X> Extended, Disk

Defines starting address of assembly language subroutine. Up
to ten subroutines are allowed.

DIM DIM <V > (<I> [I J ...]) [, ...] A. All
'·

Allocates space for array variables. In 4K, only one
a1mension is allowed per variable. More than one variable may
be dimensioned by one DIM statement up to the limit of the
line. The value of each expression gives the maximum
subscript possible. The smallest subscript is 0. without a
DIM statement, an array i~ assumed to have maximum subscript
of 10 for each dimension referenced. For example, A(I,J) is
assumed to have 121 elements, from A(0,0) to A{l~,10) unless
otherwise dimensioned in a DIM statement.· ·

END END All

Terminates execution of a program. .Closes all files in the
Disk version.

ERASE ERASE<V>[,<W> ...] Extended, Disk

Eliminates the arrays specified. The arrays may be
redimensioned or the space made available for other uses.

ERROR ERROR< I> Extended, Disk

Forces error with code specified by the expression.
primarily for user-defined error codes.

BASIC .+,l

April, 197i

Used

73

f OR FOR<V>=<X>TO<Y>[STEP<Z>] All

Allows repeated execution of the same statements. First
execution sets V=X. Execution proceeds normally until NEXT is
encountered. z is added to v, then, IF Z<0 and V>=Y, or if
Z>0 and V<=Y, BASIC branches back to the statement after FOR.
Otherwise, execution continues with the statement after NEXT.

GOTO GOTO<nnnnn> All

Unconditional branch to line number.

GOSUB GOSUB<nnnnn> All

Unconditional branch to subroutine beginning at line nnnnn.

IF ... GOTO IF <X> GOTO<nnnnn> 8K, Extended, Disk

Same as IF ... THEN except GOTO can only be followed by a line
number and not another statement .

. IF ... THEN [ELSE] IF<X>THEN<Y>[ELSE<Z>] All

74

or IF<X>THEN<statement>[:statement ...]
[ELSE<statement>[:statement. -~]

If value of X<>0, branches to line number or statement after
THEN. Otherw1se, br~nches to ~he line number or statement(s)
after ELSE. I{ ELSE is omitted, and the value • of X=0,
execution -proceeds at the line after the 1IF ... THEN. -'In 4K, X
can only be a numeric expression. ~he ELSE clause is only
allowed in Extended and Disk Altair BASIC.

INPUT INPUT<V>[,<W> ...] All

Causes BASLC to request input from terminal. Values (or, in
4K, expressions) typed on the terminal are assigned to the
variables in the list.

LET LET <V>=<X> All

Assigns the value of the expression to the variable. The word
LET is optional.

LINE INPUT LINE !INJ?U·r[.prompt string;,;]<line feed>
<string variable name> Extended, Disk

LINE .INPU·r pr in ts the prompt string on the terminal and
assigns all input from the end of the prompt string to the
carriage return to the named string variable. No other prompt
is printed ~£ the prompt string is omitted. LINE INPUT may
not be edited by Control/A.

SAS IC -!.. l

April, 197i

LP RI NT LPRINT X [, Y ...] Extended, Disk

Same as PRINT, but prints on the line printer. Line feeds
within strings are ignored. A carriage return is printed
automatically after the 80th character on a line.

LPRINT USING LPRINT USING<string>;~list> Extended, Disk

Same as PRINT USING but prints on the line printer.
detailed description, see section 5-5.

For a

MID$ MID$(<X$>,<I>[,<J>])=Y.$ Extended, Disk

Part of the string X$ is replaced by ~$. Replacement
with the Ith character of XS and proceeds until
exhausted, the end of ~S is reached or J characters have
replaced, whichever comes first. If I is greater
LEN(XS), an ,ILLEGAL FUNCTION CALL error results.

starts
Y$ is

been
than

NEXT NEXT [<V>,<W> ...] All

Last statement of a ,FOR loop. V is the variable of the most
recent loop, w of the next most recent and so on. Only one
variable is allowed in 4K. Except in 4K, NEXT without a
variable terminates the most recent FOR loop.

ON ERROR GOTO ON ERROR GOTO<line number> Extended, Disk
•

~hen an error occurs, branches to line specified. Sets
variable ERR to error code and ERL to line number where the
error occured. See section 6-5 for a list of error codes. ON
ERROR GOTO 0 (or without number) disables error trapping.

ON GOTO ON<I>GOTO<list of line numbers> 8K, Ext., Disk

Branches to line whose number is Ith in the list. List
elements are separated by commas. .If ,I=0 or > number of
elements in the list, execution continues at next statement.
iif .!<0 or > 255, an error results.

ON ... GOSUB ON <I> GOSUB <list> 8K, Extended, Disk

Same as ON ... GOTO except list elements are initial line
numbers of subroutines.

OUT OUT<.I>,<J> 8K, Extended, Disk

Sends byte J to port I. 0<=I,J<=255.

POKE POKE<I>,<J> 8K, Extended, Disk

Stores byte J in memory location derived from I.

SASIC ..+.l 75

.l.pTil 1 .!.977

76

~<=J<=255;-32768<I<65536. If I is negative, address is
65536+!. If I is positive, address=I.

PRINT PRINT<X>[,<Y> ...] All

Causes values of expressions in the list to be printed on the
terminal. Spacing is determined by punctuation.

Punctuation Spacing - next printing begins:
at beginning of next 14 column zone

; immediately
other or none at beginning of next line

String literals may be printed if enclosed by quotation marks
(11). String expressions may be p~inted in all but 4K.

PRINT USING PRINT USING<string>;<list> Extended, Disk

Prints the values of the expressions in the list edited
according to the string. The string is an expression which
represents the line to be printed. The list contains the
constants, variable names or expressions to be printed. List
entries are separated by punctuation as in the PRINT
statement. For a list of string characters and their
functions, see section 5-5.

READ READ<V> [,_<W> ... ·] AlJ:

Assigns values in DATA statements to variables. Values are
assigned in sequence starting with the first value in the
first DATA statement.

REM REM [<remark>] All

Allows insertion of remarks. Not executed, but may be
branched into. In Extended and Disk versions, remarks may be
added to the end of a line preceded by a single quotation mark
(.) .
RESTORE RES·roRE All

Allows data from DATA statements to be reread. Next READ
statement after RESTORE begins with first data of first data
statement.

RESUME RESUME[<number>] Extended, Disk

Resumes program execution at the line specified after error
trapping routine. If ·number is omitted or zero, resumes at
statement where error occured. RESUME NEXT causes resumption
at the statement following the statement where the error was
made.

3ASIC 4.1

April, 197"'."

RETURN RETURN All

Terminates a subroutine. Branches to the statement after the
most recent GOSUB.

STOP STOP All

Stops program execution. BASIC enters command ·level and,
except in 4K, prints BREAK IN LINE nnnnn. Unlike END, STOP
does not close files.

SWAP SWAP <V >, <W>· Extended, Disk
.

Exchanges values of the variables named. Variables must be of
the same type.

TROFF TROFF Extended, Disk

Turns off trace flag. The trace flag is turned on by TRON
(see below). N~w also turns off the trace flag.

TRON Extended, Disk

Turns on trace flag. Prints number of each line in square
brackets as it is executed.

WAI·r WAIT<I>,<J>[,<~>] .. 8K, Extended, Disk

Status of port I is XOR'd with K and AND'ed with J. Continued
execution · awaits non-zero result.· K defaults to · 0.
0<=I,J,K<=255.

6-3. Intrinsic Functions. ------

Altair BASIC provides several commonly used algebraic and
string functions ·which may be called from any program without
further definition. If the functions are not required for a
program, they may be deleted when BASIC is loaded to conserve
memory space. The functions in the following table are listed
in alphabetical order. The notation to the right of the Call
Format is the version(s) in which the function is available.
As usual, X and Y stand for expressions, .I and J for integer
expressions and X$ and Y$ for string expressions.

Function Call Format Version

.U.BS ABS(X) All

3ASIC -l.. l 77

A!'ril, 19i"i'

Returns absolute value of expression x. ABS(X)=X if X>=0, -x
if X<0.

ASC ASC(X$) SK, Extended, Disk

Returns ·the ASCII code of the first character of the string
~$. ASCII codes are in appendix A.

ATN. ATN(X) 8K, Extended, Disk

Returns arctangent(X). Result is in radians in range -pi/2 to
pi/2.

The following functions are available in Extended and Disk:

CINT
CSNG
CDBL

CINT(X)
,CSNG (X)
CDBL(X)

Converts X to integer.
~onverts X to single precision.
Converts X to double precisio~.

If the argument
CIL'IT(X)=INT(X).
error.

is in the
Otherwise,

range -32768 to
CINT will produce

32 76 7, the
an OVERFLOW

·.CHR$.CHR$ (I) . SK, Extended, Disk

Returns a string whose one element has ASCII cod~ I.
codes are in Appendix A. •

ASCII

cos .COS (X) 8K, Extended, Disk

Returns cos(X). X is in radians.

ERL Extended, Disk

Returns the number of the line in which the last error
occur red.

ERR Extended, Disk

Returns the error code of the last error.

ERR ERR(I) Disk

Returns parameters of disk errors. After a DISK I/O ERROR,
ERR(0) returns number of the disk, ERR(l) returns the track
number (0-76) , ERR(2) returns the sector number, ERR(3) and
ERR(4) return the low and high order 8 bits of the cumulative
count of disk errors respectively.

EXP EXP(X) SK, Extended, Disk

Returns e to the power X. X must be <=87.3365.

78 SAS IC J. .1

FIX FIX(X) Extended, Disk

Returns the truncated integer part of X. FIX(X) is. equivalent
to SGN{X)~INT(ABS(X)). The major difference between FIX and
INT is that FIX does not return the next lower number for
negative x.

FRE FRE (0) SK, Extended, Disk

Returns number of bytes in memory not being used by BASIC. If
argument is a string, returns number of free bytes in string
space.

hEXr? HEX$(X) Extended, Disk

Returns a string which represents the hexadecimal of the
decimal argument.

INP INP (I) 8K, Extended, Disk

Reads a byte from port I.

INS'I·R INSTR ((I,] X$, Y:$) Extended, Disk

Searches for the first occurrence of string Y$ in X$ and
r~turns the position. Optiooal offset I sets ~osition for
·star ting the search-. 0<=I <=255 •. ,If I>!.iEN (X$) , if X$ is null
or if Y$ cannot be found, INS'l'R returns 0. ,If Y$ is null,
.INSTR returns I or 1. Strings may be string variable values,
string expressions or string literals.

INT INT (X) All

Returns the largest integer <=X

LEFT$ LEFT$ (~S ,iI) 8K, Extended, Disk

Returns leftmost I characters of string XS.

LEN LEN (X$) 3K, Extended, Disk

Returns length of string X$.
blanks are counted.

Non-pr in ting characters and

LOG LOG(X) BK, Extended, Disk

Returns natural log of x. X>0

LPCJS LPOS(X) Ex tended, Disk

Returns the current position of the line printer print head
within the line printer buffer. Does not necessarily give the

BASIC 4.1 79

.l:pril, 1977

physical position of the print head. The expression X must be
given, but the value is ignored.

MID$ MID$(X$,I[,J]) SK, Extended, Disk ·

Without J, returns rightmost characters from X$ beginning with
the Ith character. If I>LEN(X$), MID$ returns the null
string. 0<I<2SS. With 3 arguments, returns a string of
length J of characters from X$ beginning with the Ith
character. If J is greater than the number of characters in
X$ to the right of l, MIDS returns the rest of the string.
0<=J<=255.

80

OCT$ QCT$(X) 8K, Extended, Disk

Returns a string which represents the octal value of the
decimal argument.

RND RND(X) All

Returns a random number between 0 and 1. X<0 starts a new
sequence of random numbers. X>0 gives the next random number
in the sequence. X=0 gives the last number returned. In 8K,
Extended and Disk, sequences started with the same negative
numb.er will be the same.

POS POS(I) 8K, Extended, Disk

Returns present column position of terminal's print head.
Leftmost position =0.

RIGHT$ RIGHT$(X$,I) SK, Extended, Disk

Returns rightmost I characters of string X$.
returns X$.

If I=LEN(X$) I

SGN SGN(X) All

If X>0, returns 1, if X=0 returns 0, if X<0, returns -1. For
example, ON SGN(X)+2 GOTO 100,200,300 branches to 100 if X is
negative, 200 if X is 0 and 300 if X is positive.

SIN SIN(X)

Returns the sine of the
£0S(X)=SIN(X+3.14159/2).

SPACE$ SPACE$(I)

value

Returns a string of spaces of length I.

All

of x in radians.

Extended, Dis!<

BA.SIC .+. l

April, i.9ii

SPC SPC{I) SK, Extended, Disk

Prints I blanks on terminal. 0<=I<=255.

SQR SQR{X} All

Returns square root of x. X must be >=0

STR$ STR$(X) SK, Extended, Disk

Returns string representation of value of x.

STRING$ STRING$(I,J) Extended, Disk

Returns a string of length .I whose characters all have ASCII
code J. See Appendix A for ASCII codes.

TAB TAB (.I) All

Spaces to position I on the terminal. Space 0 is the leftmost
space, /l the rightmost. If the carriage is already beyond
space I, TAB has no effect. 0<=I<=255. May only be used in
PRINT and LPRINT statements.

· 'I'AN TAN(X) All

.Returns tangent{X). Xis in radians.

USR OSR (X) All

Calls the user's machine language subroutine with argument x.

VAL VAL {X$) 8K, Extended, Disk

Returns numerical value of string X$. If first character of
x~ is not +, - £r a digit, VAL(X$)=0.

VARPTR VARPTR (V) Extended, Disk

Returns the address of the variable given as the argument. If
the variable has not been assigned a value during the
execution of the program, an ILLEGAL FUNCTION CALL error will
occur. The main use of the VARPTR function is to obtain the
address of variable or array so it may be passed to an
assembly language subroutine. Arrays are usually passed by
specifying VARPTR(A[0]) so that the lowest addressed element
ot the array is returned.

3ASIC .! .1 81

April, :9i"'."

•

82

NOTE

All simple variables should be assigned values in a
program before calling VARPTR for any array.
Otherwise, allocation of a new simple variable will
cause the addresses of all arrays to change.

6-4. Special Characters

Altair BASIC recognizes several characters in the ASCII
font as having special functions in carriage control, editing
and program interruption. Characters such as Control/C,
Control/S, etc. are typed by holding down the £ontrol key and
typing the designated letter. The special characters in the
table are listed in the order of the versions to which they
apply, starting with those common to all versions and ending
with those that apply only to extended versions.

Printed as:

The following Special Characters are available
versions.

@ @

Erases current line and executes carriage return.

in ALL

Erases last character typed. If there is no last character
types a carriage return.

(underline)

same as backarrow.

Carriage Return

Returns print head or curser to beginning of the next line.

Control/C /\.C (in Extended and Disk)

Interrupts execution of current program or list command.
Takes effect after execution of the current statement or after
listing the current line. BASIC goes to command level and
types OK. CONT command resumes execution. See section 6-1.

Separates statements in a line.

3ASIC -1.,l

April, 197".'"

The following special characters are available in 8K, Extended
and Disk versions only.

Control/a .l"'-0 (in Extended and Disk)

Suppresses all output until· an .INPUT statement is encountered,
another Control/O is typed, an error occurs or BASIC returns
to command level.

? ?

Equivalent to PRINT statement.

Rubout see explanation

Deletes previous character on an input line. First Rubout
prints \ and the last character to be printed. Each
successive Rubout prints the next character to the left.
Typing a new character causes another \ and the new character
to be printed. All characters between the backslashes are
deleted.

Control/U ~u (in extended) •

Same as @.

Control/S

Causes program execution to pause until ~ontrol/Q or Control/C
is typed.

Control/Q

Causes execution to resume after Control/S. Control/S and
Control/Q have no effect if no program is being executed.

The following special characters are available in Extended and
Disk versions only.

Control/ A

Allows use of the EDIT command on the line currently being
typed. Cont~ol/A is typed instead of Carriage Return. See
section 5-4.

Control/I 1 to 8 spaces

Tab character. Causes print head or curser to move to the
beginning of the next 8 column field. Fields begin at columns

BAS'i:C J.. l 83

84

1, 9, 17, etc. The tab character is especially useful for
formatting lines broken with line feeds.

l00<tab>FOR I=l TO 10:<Iine feed> ~-
<tab><tab>FOR J=l TO 10:<line feed>
<tab><tab><tab>A(I,J)=0:~line feed>
<tab>NEXT J,I<carriage return>

lists as:

100 FOR .I=l TO 10:
FOR J=l TO 10:

A(I,J)=0:
NEXT J,I

Control/G bell

Rings terminal's bell.

LINE FEED

Breaks a long ,line into shorter parts. The result. is still
one BASIC line.

Denotes the number of the current line. May be used wherever
a line number is to be specified.

['] [,]

Brackets are interchangeable with parentheses as delimiters
for array subscripts.

Lower .Case Input

Lower case alphabetic characters are always echoed as lower
case, but LIST, LLIST, PRINT and LPRINT will translate lower
case to upper case if the lower case characters are not part
of string literals, REM statements or remarks delineated by
single quotation marks (').

6-5. Error Messages.

After an error occurs, BASIC returns to c.ornmand ;level and
types OK. Variable values and the program text remain intact,
but the program cannot be continued by the CONT command. In
4K and 8K versions, all GOSUB and FOR context is lost. The
program may be continued by direct mode GOTO, however. When

3ASIC -1.. l

•

an error occurs in a direct statement, no line number is
printed. Format of error messages:

?XX ERROR Direct Statement
.Indirect Statement ?XX ERROR IN YYYYY

where XX is the error code and YYYYY is the line number where
the error occurred. The following are the possible error
codes and their meaninga:

ERROR CODE EXTENDED ERROR MESSAGE NUMBER

The following error codes apply in ALL versions.

BS SUBSCRIPT OUT OF RANGE 9

An attempt was made to reference an array element which is
outside the dimensions of the array. In the SK and ilarger
versions, this error can occur if the wrong number of
dimensions are used in an array reference. For example:

LET A(l,l,l)=Z

when A has a·lready been dimensioned by DIM A(l0, 10)

DD REDIMENSIONED ARRAY HJ

After an array was dimensioned, another dimension statement
for the same array was encountered. This error often occurs
if an array has been given the default dimension of 10 and
later in the program a DIM statement is found for the same
array.

FC ILLEGAL FUNCTION .CALL 5

The parameter passed to a math or string function was out of
range. FC errors can occur due to:

1. a negative array subscript (LET A(-1)=0)

2. an unreasonably large array subscript (>32i6i)

3. LOG with negative or zero argument

4. SQR with negative argument

S. AwB with A negative and 8 not an integer

3ASIC .!,l 85

6. a call to USR before the address of a machine language
subroutine has been entered.

7. calls to MID$, LEFT$, RIGHT$, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRING$, SPACE$, INSTR or ON ... GOTO with an
improper argument.

ID ILLEGAL DIRE.CT 12

. INPUT and DEF are illegal in the direct mode . In extended

86

versions, however, INPUT is legal in direct.

NF NEXT WITHOUT FOR l

The variable in a NEXT statement corresponds to no previously
executed FOR statement.

OD OUT OF DATA 4

A READ statement was executed but all of the DATA statements
in the program have already been read. The program tried to
read too much data or insufficient data was included in the
program.

OM OUT OF MEMORY • 7

Program is too large, has too many variables, too many FOR
loops, to many GOSUBs or too complicated expressions. See
Appendix C.

ov OVERFLOW 6

The result of a calculation was too large to be represented in
Altair BASIC's number format. If an underflow occurs, zero is
given as the result and execution continues without any error
message being printed.

SN SYNTAX ERROR 3

Missing parenthesis in an expression, illegal character in a
line, incorrect punctuation, etc.

RG RETURN WITHOUT GOSOB 3

A RETURN statement was encountered before a previous GOSUB
statement was executed.

UNDEFINED LINE 8

The line reference in a GOTO, GOSUB, IF ... THEN ... ELSE or
DELETE was to a line which aoes not exist.

3AS!C .!,l

April, 1977

•

/0 DIVISION BY ZERO 11

Can occur with integer division and MOD as well as floating
point division. 0 to a negative power also causes a DIVISION
BY ZERO error.

CN

The following error messages apply to
BK, Extended ~ ~ versions only

CAN'T CONTINE li

Attempt to continue a program when none exists, an error
occurred or after a modification was made to the program.

LS S'I'RING TOO LONG 15

An attempt was made to create a string more than 255
characters long.

OS OUT OF STRING SPACE 14

String variables exceed amount of string space allocated for
them. Use the £LEAR command to·allocate more string space gr
use smaller strings or fewer'string variables .

•
-ST STRING FORMULA TOO .COMPLEX 16

A string expression was too long or too complex.
into two or more shorter ones.

TM TYPE MISMAl!CH 13

Break it

The left hand side of an assignment statement was a numeric
variable and the right hand side was a string, or vice-versa;
or a function which expected a string argument was given a
numeric one or vice-versa.

OF UNDEFINED USER FUNCTION 18

Reference was made to a user defined function which had never
been defined.

The following error messages are available in Extended and
Disk versions only.

MISSING OPERAND 20

During evaluation of an expression, an operator was found with

3ASIC .l,l 87

April, 1977

no operand following it.

NO RESUME 19

BASIC entered an error trapping routine~ but the program ended
before a RESUME statement was encountered.

RESUME WITHOUT ERROR 21

A RESUME statement was encountered, but no error trapping
routine had been entered.

UNPRINTABLE ERROR 22

An error condition exists for which there is no error message
available. Probably there is an ERROR statement with an
undefined error code.

LINE BUFFER OVERFLOW 23

An attempt was made to input a program or data line which has
too many characters to be held in the line buffer. Shorten
the line or divide it into two or more parts.

fl

Disk Altair BASIC Error Messages

FIELD OVERFLOW 50

An attempt was made to allocate more than 128 characters of
string variables in a single FIELD statement.

INTERNAL ERROR 51

:Internal error in Disk BASIC. Report conditions under which
error occurred and all relevant data to MITS software
department. This error can also be caused by certain kinds of
disk .r/o errors.

88

BAD FILE 52

An attempt was made to use a file number which specifies a
file that is not OPEN or that is greater than the number of
files entered during the Disk Altair BASIC initialization
dialog.

FILE J;.40T FGUND 53

SAS IC .J.. l

April, 19i7

FI LE NO'I1 FOUND 53

Reference was made in a LOAD, KILL or OPEN statement to a file
which did not exist on the disk specified.

BAD FILE MODE 54

An attempt was made to peoform a PRINT to a random file, to
OPEN a random file for sequential output, to perform a PUT or
GET. on a sequential file, to load a random file or to execute
an OPEN statement where the file mode is not I, O, or R.

EILE ALREADY OPEN 55

A sequential output mode OPEN for a file was issued for a file
that was already OPEN and had never been CLOSEd or a KILL
statement was given for an OPEN file.

DISK NOT MOUNTED 56

An I/O operation was issued for a file that was not MOUNTed.

DISK I/O ERR~R 57
•

• An I/O error occured on disk x. A sector read (checksum)
error occurred eighteen (18) consecutive times.

SET TO NON-DISK STRING 58

An LSET or RSET was given for a string variable which had not
previously been mentioned in a FIELD statement.

DISK ALREADY MOUNTED 59

A MOUNT was issued for a DISK that was already MOUNTed but
never UNLOADed.

DISK FULL 60

All disk storage is exhausted on the disk. Delete some old
disk files and t~y again.

INPUT PAST END 61

An INPUT statement was executed after all the data in a file
had been INPUT. This will happen immediately if an INPUT is
executed for a null (empty) file. Use of the EOF function to
detect End Of File will avoid this error.

3AS!C -1.. l 89

.l.pril, 1977

90

AD RECORD NUMBER 62

In a PUT or GET statement, the record number is either greater
than the allowable maximum (2046) or equal to zero.

BAD FILE NAME 63

A file name of 0 characters (null) or a file name whose first
byte was 0 or 377 octal {255 decimal) or a file name with more
than 8 characters was used as an argument to LOAD, SAVE, KILL
or OPEN.

MODE-MISMATCB 64

Sequential OPEN for output was executed for a file that
already existed on the disk as a random (R) mode file, or vice
versa.

DIRECT STATEMENT IN FILE 65

A direct statement was encountered during a LOAD of a program
in ASCLI format. The LOAD is terminated.

TOO MAN¥ FILES 66

A SAVE or OPEN (0 or R) was executed which would create a new
file on the disk, but all 255 directory entries were already
full. Delete some files and try again.

OUT OF RANDOM BLOCKS 67

An attempt was made to have more random files OPEN at once
than the number of random blocks that were allocated during
initialization by the response to the
"NUMBER OF RANDOM EILES? 11 question (see Appendix H).

FILE ALREADY EXISTS 68

The new file name specified in a NAME statement had the same
name as another file that already existed on the disk. Try a
different name.

FILE LINK ERROR 69

During the reading of a file, a sector was read which did not
belong to the tile.

SASIC 4.1

.l.pril, l 977

6-6. Reserved Words.

Some words are reserved by the Altair BASIC interpreter for
use as statements, commands, operators, etc. and thus~may not
be used for variable or function names. The reservea words
are listed below in order of the versions for which they are
reserved, starting with those reserved in all versions and
ending with those reserved only in Disk Altair BASIC. Words
reserved in larger versions may be used in smaller versions,
although one may want to avoid all reserved words in the
interest of compatibility. In addition to the words listed
below, intrinsic function names are reserved words in all
versions in which they are available.

RESERVED WORDS

Words reserved in all versions.

-.CLEAR
DATA
DIM
END
FOR
GOS OB
GOTO
IF
INPUT
LET
LIST

NEW
NEXT
PRINT
READ
REM
RETURN
RUN•
STOP
TO
TAB
'rHEN

USR

Words reserved in 8K, Extended and Disk versions. All the above
plus:

AND
,CONT
DEF
FN
NOT
NULL

ON
OR
OUT
POKE
SPC
WAIT

Words reserved in Extended and Disk versions. All the above plus:

AUTO
CONSOLE
DEFDBL
DEP.INT
DEf SNG
DEFSTR
DELETE
EDIT
ELS'E

3ASIC -l., l

.l.pril, 1977

LINE
LL I ST
LPRINT
MOD
RENUM
RESUME
SPACES
STRING$
SWAP

91

ERASE
ERL
ERR
IMP
INSTR

TROF1'.,
R:ON
VARPTR
WIDTH
XOR

Words reserved in Disk. All the above plus:

,CLOSE
DSKI$
DSKO$
FIELD
FILES
GET
KILL
LOAD

92

LSET
MERGE
MOUNT
NAME
OPEN
PUT
RSET
U.NLOAD

3ASIC -L l

. .\pril, 197'7

APPENDIX A
ASCII CHARACTER-CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 v
001 SOH 044 087 w
002 STX 045 088 x
003 ETX 046 . 089 y

004 EQT 047 I 090 z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093 l
008 BS 051 3 094 (or +)
009 HT 052 4 095 < {or)
010 LF 053 5 096
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 c
014 so 057 9 urn d
015 SI 058 101 e
016 OLE 059 102 f
017 DCl 060 < 103 g
018 DC2 061 = 104 h

• 019 DC3 062 > 105 . i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k .
022 SYN 065 ~ 108 1
023 ETB 066 B 109 m
024 C~N 067 c 110 n
025 EM 068 D 111 0

026 SUB 069 E 112 r;>
027 ESCAPE 070 F 113 er
028 FS 071 G 114 r
029 GS 072 H 115 s
030 RS 073 I 116 t
031 us 074 J 117 u
032 SPACE 075 K 118 v
033 076 L 119 w
034 II 077 M 120 x
035 * 078 N 121 y
036 $ 079 0 122 z
037 % 080 p 123 {
038 & 081 Q 124 I
039 082 R 125
040 (083 s 126
041) 084 T 127 DEL
042 * 085 u
LF=Line Feed FF=Form Feed CR=Carriage Return D'EL=Rubo u t

BASIC 4 .1 93

April, 1977

94

Using ASCII codes -- the CHR$ function.

CHR${X) returns a string whose one character is that with
ASCII code X. ASC(X$) converts the first character of a
string to its ASCII decimal value.

One of the most common uses of CHR$ is to send a special
character to the user's terminal. The most often used of
these characters is the BEL (ASCII 7). Printing this
character will cause a bell to ring on some terminals and a
beep on many CRT's. This may be used as a preface to an error
message, as a novelty, or just to wake U? the user if he has
fallen asleep. Example:

PRINT CHR$(7);

Another major use of CHR$ is on those CRT's that have
cursor positioning and other special functions (such as
turning on a hard copy orinter). For example, on most CRT's a
form feed (CHR$(12)) will cause the screen to erase and the
cursor to "home" or move to the upper left corner.

So~e CRT's give the user the capability of drawing gra9hs
and curves in ~ special point-plotter mode. This feature may
easily be taken advantage of through use of Altair BASIC's
CHR$ function.

·-

3AS:C J. .. 1

April, 1977

APPENDIX 8
LOADING AND INITIALIZING BASIC

A. Loading BASIC from paper tape or cassette.

This appendix details the orocedure for loading BASIC in
4K, BK and Extended versions from paper tape·or tape cassette.
For instructions on loading Disk BASIC, see appendix B.

The programs below are entered into memory through the
front panel switches. Rather than specify the switch
~ositions as "up" and ~down", it is convenient to denote the
up position as l and the down position as 0. Taken in aroups
of three the switches can represent octal digits. To save
space, the switch positions in the following loader program
listings are shown in octal notation. The leftmost two
switches in an 8 bit set are represented by the first digit,
the next three by the second digit and the low-order three
switches by the last digit.

For example, if we wish to enter octal 315 on
switch register, the switches would have the
posit-ions:

the data
following

7 6
-up up

3

5 4 3
down down ut;>

1

2
up

1
down - up

5

For data entry, only the rightmost 8 switches of the 16
switches on the ALTAIR 8800 front ?anel switch register are
used. All 16 switches would b~ used to enter a memory
address.

The following is the t;>rocedure for loadinq BASIC from
pa9er ta9e or cassette:

1.

2.

3.

4.

3ASIC ~.l

April, l9i7

Turn the power switch on

Raise the STOP switch and RESET switch simultaneously

Switch the terminal to LINE

Enter one of the following prograMs on the front oanel
switches. The 88-MBL Multi-Boot Loader PROM contains the
necessary loader 9rograrns, so it is not necessary to enter
a loader from the front ?anel if it is installed. Refer
to the 38-MBL manual for more infor~ation.

95

a. loading from paper tape with the SIO board (REV 1)

Octal Address Octal Data
000 041
001 302
002 0xx (17 for 4K, 37 for SK, 77 for
003 061 Extended & Disk)
004 022
005 000
006 333 I I../)- - -
007 000
010 017

:::. 1 /1 Lf7I

011 330 J e ,..
r

012 333
013 001
014 275
015 310 1< z
016 055
017 167 ~ ; -' l li
020 300 1)

021 351
022 003
023 000

.
b. loading from cassette

Octal Address Octal Data
000 [:I 041
0~1 c~ 302
002 3F 0xx (17 for 4K, 37 for 8K, 77 for
003 31 061 Extended and Disk)
004 I 2. 022
005 OCJ 000
006 D~ 333
007 06" 006
010 or- 017
011 og 330
012 DB 333
013 07 007
014 8D 275
015 C3 310
016 2D 055
017 77 167
020 co 300
021 £9 351
022 03 003
0 23 00 000

96 3AS~C ~.l

April, 1977

c. loading with the 88 PIO board
Oc-tal Address Octal Data
-000 041
001 302
002 0xx (17 for 4K, 37 for 8K, 77 for
003 061 Extended and Disk)
004 023
005 000
006 333
007 004
010 - 346
011 001
012 310
013 333
014 005
015 275
016 310
017 eJ 5 5
020 167
021 300
022 351
023 003
024 000

~

d. loading with the 2SIO board

"
Octal Address Octal Data

000 076
001 003
002 323
003 020
004 076
005 021 (=2 stop bits, 025=1 stoo bit)
006 323
007 020
010 041
011 302
012 0xx (17for 4K, 37 for 8 T<, 77 for
013 061 Extended and Disk)
014 032
015 000
016 333
017 020
020 017
eJ 21 320
022 333
0 23 021
024 275
025 310
025 055

3ASIC 4.1 97

April, 1977

027 167
030 300
031 351
032 013
033 000

e. loading with the 4PIO board

Octal Address Octal Data
000 257
001 323
002 040
003 323
004 041
005 076
006 054
007 323
010 040
011 041
012 302
013 0xx (17 for 4K, 37 for SK, 77 for
014 061 Extended and Disk)
015 033

·016. 000
·~17 33 3•
020 040
021 007
022 330
023 333
024 041
025 275
026 310
027 055
030 167
031 300
032 351
033 014
034 000

f. Loading with the High Speed Tat;>e Reader

Octal Address Octal Data
000 257
001 323
002 044
003 323
004 045
005 323
006 046
007 057
010 323

3.-1.SIC ..i .1

011
012
013
014:
ens
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
'044
045
046
047
050

047
076
014
323
044
076
004
323
046
3 23
047
041
302
0xx (17 for 4K, 37 for 8K, 77 for
061 Extended and Disk)
047
000
333
044
346
100
3HJ
333
045
275
3HJ
055
167
300
351
027
0-00

To enter these programs:

1. Put switches 0 to 15 in the down ?Ositions

2. Raise EXAMINE

3. Put the data for address zero in switches 0 throuqh 7

4.

5.

6.

Raise DEPOSIT

Put the data for the next address in the switches

Depress DEPOSIT NEXT

7. Re9eat ste9s 5 and 6 until the whole loader is toqgled in

3ASIC .!,.i. 99

Ap:-il, l9i7

8. Put switches 0 through 15 in the down position

9. Raise EXAMINE·

10. Check to see that the liqhts 00 through 07 show the data
that should be in location 000. Light on =l, light off =
0. If the correct value is there, go to step 13; if not,
go to 11.

11. Put the correct value 1n the switches

12. Raise DEPOSIT

13. Depress EXAMINE NEXT

14. Repeat steps 10 through 13 to check the entire loader

15. If there were any mistakes, check the entire loader again

16.

to make sure they were corrected.

If a ~aper tape is being loaded, put it into the r~ader
and make sure that it is positioned at the beginning of
the leader. The leader is the section of tape at the
beginning with 302 octal ounched in each column. If an
audio cassette is being. loafied, 9ut it in the cassette
recorder and make sure ~t i~ fu}ly rewound~

17. Lower switches 0 thrQugh ~5

18. Raise EXAMINE

19. Enter the sense switch settings. See the table in
section B.

20. If loading is through a SIOA, B or C or an 88PIO, turn on
the tape reader and then de~ress RUN. If a cassette is
being loaded, turn on the recorder, put it in PLAY mode
and wait 15 seconds. Then ?ress RUN on the com9uter. If
loading is through a 4PIO, 2SIO or High Speed Tape Reader,
depress RUN and then start the read device.

21. Wait for the tape to read. Paper tape takes about 25
minutes for Extended, 12 minutes for 8K and 6 minutes for
4K. Cassettes take about 8 minutes for Extended, 4
minutes for SK and 2 minutes for 4K. Do not move anv of
the switches while the tape is being read.

22. If a loading error occurs,
start over from step 1.
conditions.

the loading ?rocedure must
See section C below for 2rror

3ASIC -i.l

.l.p-:-il I 1977

23. When the tape is read, BASIC should start up and ~rint
MEMORY SIZE? See section D below for -what to do next.

24. If BASIC will not load from cassette, the ACR module may
need realignment. The Input Test Program described in the
ACR Manual, pages 22 and 28, may be used to test the ACR.

B. Sense Switch Settings

Sense switches (switches AS through AlS) must be set
before tape or cassette loading begins. The settings depend
on the terminal and input interface boards in use. The low
order (rightmost) four switches contain the load board
setting, and the high order four switches contain the terminal
board setting. In the table below, the setting is given for
each I/O board option. As above, the setting is an octal
number which signifies the switch positions. The Terminal
Switch and Load Switch columns show the switches that are
raised for each of the load and terminal device ootions.

Sense ·Switch Terminal Load
Device Setting Switches Switches Channels

25!0 0 none none 20, 21
(2 stop bits)

2SIO 1 Al2 A8 20, 21
(1 stop bit)

SIO 2 Al3 A9 0 I 1
ACR 3 Al3,A.12 A9,A8 . 6 I 7
4PIO 4 Al4 Al0 40, 41, 42,
PIO 5 Al4,Al2 AHJ ,A8 4 I 5
HSR 6 Al4,Al3 Al0,A9 46, 47
non-standard 14

terminal
no terminal 15

Examples:

Input from audio cassette through ACR and CRT terminal
through 2SIO with 1 stop bit.
Switch 15 14 13 12 11 10 9 8
Position 0 0 0 1 0 0 1 1

In~ut from high soeed 9aoer tape reader, terminal
through SIO.
Switch 15 14 13 12 11 10 9 8
P~sition 0 0 1 0 0 1 1 0

43

BASIC !,l 101

April, 197 ..

•

102

C. Error Detection

The checksum loader turns on the Interru?t Enable liqht
on the front panel when a loading error occurs. The ASCII
code of the error letter is stored in location 0. In
addition, the error letter is sent out over all the terminal
channels and aopears on whatever terminal is connected to the
terminal. The.error letters are as follows:

C checksum error. Bad tape data.
M memory error. Data won't store 9roperly.

The address of the bad memory location is stored
in locations 1 and 2.

O overlay error. Attem9t was made to load data on to9
of the loader.

I invalid load device. Invalid setting on the
sense switches.

D. Initialization Dialog

Upon starting, BASIC 9rints

MEMORY SIZE?

To this, the user responds by typing the number of bytes of
memory to be used by BASIC and BASIC programs: Remember that
the BASIC interpreter itself takes 3.4K in the 4K version,
6.2K in 8K and 14.6K in Extended. If the response is just a
carriage return, BASIC will use all the memory it can find,
starting at location zero up to the last byte of read/write
memory. Then BASIC asks,

TERMINAL WIDTH?

to which the user responds with the width of the 9rintinq line
of whatever output device is in use. Ty?ing a carriage return
sets the terminal width to 72. Extended and Disk Altair BASIC
set the terminal width throuqh the WIDTH command, so the
TERMINAL WIDTH question is not asked at initialization and an
initial width of 72 is assumed.

In 4K, the res9onse to MEMORY SIZE? and TERMIN~L WIDTH?
must be less than 6 digits.

The Extended and Disk versions now ask what kind of line
printer is in use.

LI~EPRINTER?

The user answers with O if the 80LP ?rinter is i~ use, C for

BASIC 4,1

April, 1977

the C700 and Q for the Q70. One of these letters must be
typed whether or not a lineprinter is connected to the system.

At this point BASIC asks several questions about
mathematical functions. The functions may be kept if needed
or deleted to save space. 4K asks,

SIN? Answer Y to save SIN, SQR and RND
Answer N to delete SIN and see the
next question

SQR? Y keeps SQR and RND

RND?
N deletes SQR, asks next question
Y kee9s RND
N deletes RND

BK and Extended BASIC ask,

WANT SIN-COS-TAN-ATN?

Now BASIC prints,

XXXX BYTES FREE

ALTAIR 8ASIC VERSION 4.0
(FOUR-K VERSION]

or
[EIGHT-K VERSION]

or
[EXTENDED VERSION]
COPYRIGHT 1977 BY MITS, INC.
OK

Y keeps all four
N deletes all four
A deletes only ATN
c (in extended) retains

CONSOLE and all other
functions. Other an­
swers delete CONSOLE.

BASIC is now in command level and is ready for use.

E. Echo Routines.

The Altair input/out?ut channels work in a full-duolex
~ode. This means that characters entered on an in9ut/out9ut
terminal will not, as a rule, be ?rinted as they are entered
unless the com?uter is programmed to return them. The
following echo 9roqrams may be used to test the in~ut/out9ut
devices. To test an input-only device, dumo the echoed
characters on an outnut device or store them in memory for
later examination. To test an outout-onlv device, send the
echo characters through the front ?anel switches or send a
constant character. Se sure to check the ready-to-receive bit

103
3AS!C ~.l

April, 19i7

104

of the output terminal before atternQting out9ut. If the echo
program works, but BASIC does not, make sure the load devic~ 1 s
I/O board is strapped for 8 data bits and that the
ready-to-recieve bit is set ?ro9erly on the terminal device.

88-PIO
OCTAL ADDRESS

001
002
003
004
005
006
007
0HJ
011
012
013
014
015

2SIO
OCTAL ADDRESS.

000

4PIO

001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024

•

OCTAL ADDRESS
000
001
002
003
004

OCTAL DATA
004
346
001
312
000
000
333
005
323
005
303
000
000

OCTAL DATA
/U17 076 Ir\

003
3 23 0

020 (flag
076

i 1::{ ,I ~

ch.)

021 (=2 sto9 bits,
323 025=1 stop bit)
020

W!irr'J, 333

01.fT

020
017
322 c
010
000
333 J I..)

021 (data
323
021
303]"I-',"

010
000

OCTAL DATA
257
323
040
323
041 .

I ·11

(Q j~

channel)

•
I I/'

aASIC .1.1

April, 19i7

fl

105

005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037
040
041
042
043
044

323
042
057
323
043
076
054
323
040
323
04 2
333
040
346
200
312
020
000
333
042
346
200
312
027
000
333
041
323
043
303
020
000

BASIC J. l

April, 19i7

106

APPENDIX C
SPACE AND SPEED-HINTS

A. Space Allocation

The memory s~ace required for a ?rogram depends, of
course, on the number and kind of elements in the ?rogram.
The following table contains information on the space required
for the various program elements.

Element

Variables
numeric

Space Required

integer 5 bytes
single precision 7 bytes in Extended and Disk

6 bytes in 4K and 8K

Arrays

double precision
string 6 bytes

11 bytes

integer (#of elements)* 2 + 6 +(*of dimensions)*2 bytes
single precision 4
double precision 8
st.ring 3
8K and 4K •
strings and floating pt. 6 + 5

Functions
intrinsic 1 byte for the call {2 bytes in Extended and Disk)
user-defined 6 bytes for the definition

Reserved Words 1 byte each
2 bytes for ELSE in Extended and Disk

Other Characters
1 byte each

Stack S9ace
active FOR

loop 17 bytes in Extended and Disk,
16 bytes in 4K and 8K

active GO SUB 5 bytes
?arentheses 6 bytes each set
tem9orary

result 12 bytes in Extended and Disk
10 bytes in 4K and SK

SASIC ~.l

ApTil, 19ii

BASIC itself takes about 3.4K in the 4K version, 6.2K in
8K, 14.6i in Extended and 20 K in Disk.

B. Space Hints

The s~ace required to run a ~rogram may be significantly
reduced without affecting execution by following a few of the
following hints:

1. Use multiple statements per line. Each line has a 5 byte
overhead for the line number, etc., so the fewer lines
there are, the less storage is required.

2. Delete unnecessary s~aces. Instead of writing

10 PRINT X, Y, Z

use

10 PRINTX,Y,Z

3. Delete &EM statements to save 1 byte for REM and 1 byte
for each character of the remark.

4. Use variables instead of constants, expecially when the
same value is used seYeral times. For example, using ~he
constant 3.14159 ten times in a program uses 40 bytes more
space than assigning

HJ P=3 .14159

once and using P ten times.

5. Using END as the last statement of a program is not
necessary and takes one extra byte.

6. Reuse unneeded variables instead of defining new
•1ar iables.

7. Use subroutines instead of writing the sa~e code several
times.

8. Use the smallest version of BASIC that will run the
program.

9. Use the zero elements of arrays. Remember the array
dimensioned by

100 DI~1 A(l0)

has eleven elements, A(0) through A.(10).

BASIC 4.1 107

April, 197".'

10. In Extended and Disk, use integer variables wherever
possible.

C. Speed Hints

1. Deleting spaces and REM statements gives a small but
significant decrease in execution time.

2. Variables are set uo in a table in the order of their
first appearance in the program. Later in the program,
BASIC searches the table for the variable at each
reference. Variables at the head of the table take less
time to search for than those at the end. Therefore,
reuse variable names and kee~ the list o~ variables as
short as possible.

3.

4.

5.

6.

In 8K, Extended and Disk use NEXT without the index
variable.

SK, Extended and Disk have faster floating point
arithmetic than 4K. If space is not a limitation, use the
larger versions.

•
The math functions in SK, Exte.nded and Disk are faster

than those in 4K.

In the 4K and BK versions,
constants, especially in FOR
must be executed repeatedly.

use variables instead of
loops and other code that

7. In Extended and Disk, use integer variables wherever
possible.

8. String variables set up a descriotor which contains the
length of the string and a pointer to the first memory
location of the string. ~s strings are manipulated,
string space fills up with intermediate results and
wextraneous material as well as the desired string
information. When this har;mens, BASIC' s ''garbage
collection" routine clears out the unwanted material. The
frequency of gargbage collection is inversely 9roportional
to the amount of string space. The more string space
there is, the longer it takes to fill with garbage. The
time garbage collection takes is 9roportional to the
square of the number of string variables. Therefore, to
minimize garbage·collection time, make string space as
largge as ?Ossible and use as few string variables as
possible.

108 gp,,S!C J.. l

April, 1977

APPENDIX D
MATHEMATICAL FUNCTIONS

1. Derived Functions.

The following functions, while not intrinsic to ALTAIR BASIC,
can be calculated using the existing BASIC !unctions:

Function:

SECANT
COSECANT
COTANGENT
IN.VERSE SINE
INVERSE COSINE

INVERSE SECANT

INVERSE COSECANT

INVERSE COTANGENT
HYPERBOLIC SINE
HYPERBOLIC COSINE
HYPERBOLIC TANGENT

HYPERBOLIC SECANT
HYPERBOLIC COSECANT
HYPERBOLIC COTANGENT

INVERSE HYPERBOLIC
SINE
INVERSE HYPERBOLIC
COSINE
INVERSE HYPERBOLIC
TANGENT
INVERSE HYPERBOLIC
SECANT
INVERSE HYPERBOLIC
CO SECANT

INVERSE HYPERBOLIC
COTANGENT

BASIC ecruivalent:

SEC(X) = l/COS(X)
CSC(X) = l/SIN(X)
COT(X) = l/TAN(X)
ARCSIN(X) = ATN(X/SQR(-X*X+l))
ARCCOS(X) =-AT~ X(X/SQR(-X*X+l))

+1.5708
ARCSEC(X) = ATN(XSOR(X*X-1))

+SGN{SGN(X)-l)*l.5708
ARCCSC(X) = ATN{l/SQR(X*X-1))

+(SGN(X)-l}*l.5708
ARCCOT(X) = ATN(X)+l.5708
SINH(X) = (EXP(X)-EXP(~X))/2
COSH(X) = (EXP(X)+EXP(-X))/2
TANH(X) = EXP,-X)JEXP(X)+EXP(-X))

*2+1
SECH(X) = 2/(EXP(X)+EXP(=X))
CSCH(X) = 2/(EXP(X)-EXP(-X))
COTH(X) = EXP(-X)/(EXP(X)-EXP(-X))

*2+1

ARCSINH(X) = LOG(X+SQR(X*X+l))

ARCCOSH(X) = LOG(X+SQR{X*X+-1))

ARCTANH(X) = LOG((l+X)/(1-X))/2

~RCSECH(X) = LOG((SQR(-X*X+l)+l)/X)

ARCCSCH(X) = LOG((SGN(X)*
SQR(X*X+l)+l)/X

ARCCOTH(X) = LOG((X+l)/(X-1))/2

2. Simulated Math Functions.

The followirig subroutines are intended for 4K 9ASIC users who
want to use the transcendental functions not built into 4K
BASIC. The corres~onding routines for these functions in th~

BASIC ..t.l 109

l.pri.l, 1977

110

8K version are much faster and more accurate. The REM
statements in these subroutines are given for documentation
pur?oses only, and should not be typed in because thev take un
a large amount of memory. The following are the subroutine
calls and their 8K equivalents:

8K EQUIVALENT 4K SUBROUTINE CALL

P9=X9"'Y9 GOSUB 60030
L9=LOG(X9) GOSUB 60090
E9=EXP(X9) GOSUB 60160
C9=COS(X9) GOSUB 60240
T9=TAN(X9) GOSUB 60280
A9=ATN(X9) GO SUB 60310

The unneeded subroutines should not be typed in. Please note
which variables are used by each subroutine. Also note that
TAN and COS require that the SIN function be retained when
BASIC is loaded and initialized.

60000 REM EXPONENTIATION: P9=X9~Y9
60010 REM NEED: EXP, LOG
60020 REM VARIABLES USED: ~9,89,C9,E9,L9,P9,X9,Y9
60030.REM P9 =l : E9=0 : IF Y9=0 THEN RETURN
60040 IF X9<0 THEN IF INT(Y9)=Y9 THEN P9=1-2~Y9+4*INT(Y9/2)

. : X9=-X9
~0050 IF X9<>0 THEN GOSUB 60090 : X9=Y9*L9 : GOSUB 60160
60060 P9=P9*E9 : RETURN
60070 REM NATURAL LOGARITHM: L9=LOG(X9)
60080 REM VARIABLES USED: A9,89,C9,E9,L9,X9
60090 E9=0 : IF X9<=0 -THEN PRINT "LOG FC ERROR"~ : STOP
60100 A9=1: 39=2: C9=.5: REM THIS WILL SPEED THE FOLLOWING
60110 IF X9>=A9 THEN X9=C9*X9 : E9=E9+A9 : GOTO 60100
60120 X9=(X9-.707107)/(X9+.7077107) : L9=X9*X9
60130 L9=(((.598979*L9+.96147l)*L9+2.88539)*X9+E9-.5)*

.693147
6 013 5 RETURJ."\I
60140 REM EXPONENTIAL : E9=EXP(X9)
60150 REM VARIABLES USED: A9,E9,L9,X9
60160 L9=INT(l.4427*X9)+1 : IF L9<127 THEN 60180
60170 IF X9>0 THEN PRINT '1 EXP OV ERROR"; : STOP
60175 E9=0 : RETURN
60180 E9=.693147*L9-X9 : A9=1.32988E-3-l.41315E-4*E9
60190 A9=((A9*E9-8.30136E-3)*E9+4.16574E-2)*E9
60195 E9=((A9-.166665)*E9-l)*S9+1 : A9=2
60197 IF L9<=0 THEN A.9=. 5 : L9=-L9 : IF L9=0 THEN. RETURN
60200 FOR X9=1 TO L9 : E9=~9*E9 : NEXT X9 : RETURN
60210 REM COSI~E: C9=COS(X9)
60220 REM N.8. SIN MUST 3E RETAINED AT LOAD-TIME
60230 REM VARIABLES OSED: C9,X9
6Vl240 C9=SIN(X9+1.5708) : RETURN
60250 REM TANGENT: T9=TAN(X9)

3ASIC .+ .1

April, 19i7

60260 REM NEEDS COS. (SIN MUST BE RETAINED AT LOAD-TIME)
60270 REM VARIABLES USED: C9,T9,X9
60280 GOSUB 60240 : T9~SIN(X9)/C9 : RETURN
60290 REM ARCTANGENT : A9=ATN(X9)
60300 REM VARIABLES USED: A9,B9,C9,T9,X9
60310 T9=SGN(X9): X9=AB~(X9) :C9=0: IF X>l THEN C9-l: X9=1/X9
60320 A9=X9*X9 : B9={(2.86623E-3*A9-l.61657E-2)*A9

+4.29096E-2)*A9
60330 B9={{((B9-7.5289E-2)*A9+.106563)*A9-.ll42089)*~9+.199936)*A9
60340 A9=((B9-.333332)*A9+l)*X9 : IF C9=1 THEN A9=1.5708-A9

•

BASIC ~.l
111

April, 1977

APPENDIX E
BASIC AND ASSEMBLY-LANGUAGE

All versions of Altair BASIC have provisions for
interfacing with assembly language routines. The USR function
allows Altair BASIC programs to call assembly language
subroutines in the same manner as BASIC functions.

The first step in setting up a machine language
subroutine for· an Altair BASIC 9rogram is to set aside memory
space. When BASIC asks, "MEMORY SIZE?~ during initialization,
the response should be the size of memory available minus the
amount needed for the assembly language routine. BASIC uses
all the bytes it can find from location zero up, so only the
topmost locations in memorv can be used for user suoolied
ro~tines. If the answer ~o the MEMORY SIZE? question i~ too
small, BASIC will ask the question again until it gets all the
memory it needs. See Appendix C for Altair BASIC's memory
requirements.

The assembly language routine may be loaded into memory
from the front ?anel switches or from a BASIC nrogram by means
of the POKE statementG

The starting address of the assembly language routine
· g6es in USRLOC, a two byte location in memory which varies

from version to version.. USRLOC for 4K and SK Altair BASIC
version 4.0 is 111 octal. In Extended and Disk, USRLOC need
not be known explicitly since it is defined automatically by
DEFUSR (section 5-3b) • The function USR calls the routine
whose address is in USRLOC. Initi~llv, USRLOC contains the
address of ILLFUN, the routine which gives the FC or ILLEGAL
FUNCTION CALL error. If USR is called without an address
loaded in USRLOC, an ILLEGAL FUNCTION CALL error results.

112

When USR is called, the stack oointer is set uo for 8
levels (16 bytes) of stack storage. If more stack~soace is
needed, BASIC's stack can be saved and a new stack set up for
use by the assembly languaqe routine. BASIC's stack must be
restored, however, before returning from the user routine.

All memory and all the registers can be changed by a
user's assembly languaqe routine. Of course, menorv locations
within BASIC ought not to be changed·, nor should more bytes be
?OP~ed off the stack than were put on it.

USR is called with a single argument. The assembly
language routine can retrieve this 2rgument bv callin? the
routine whose address is in locations a and 5 decimal. The
low-order bvte of the address is in 4 and the hiqh-order in 5.
In 4K and 8~, this routine (DEINT) stores the arburnent in the
register pair [D,E]. in Extended and Disk, the araument is

BASIC ~.l

April, 1977

•

?assed in pair [H,L]. The argument is truncated to inte9er in
4K and SK, and if it is not in the ran9e -32768 to 32767, an
FC error occurs. In Extended and Disk, the reqister 9air
[H,L] contains a pointer to the Floating Point Accumulator
where the argument is stored (see section 5-3b. for more
information about use of the Floating Point Accumulator).

To pass a result back from an assembly language routine,
load the value in register pair [A,B] in 4K and 8K, or [H,L]
in Extended. This value must be a signed, 16 bit integer as
defined above. Then call the routine whose address is in
locations 6 and 7. If this routine is not called, USR(X)
returns X. To return to BASIC, then, the asse~bly language
routine executes a RET instruction.

Assembly language routines can be written to handle
interrupts. Locations ·s6, 57 and 58 are used to hold a JMP
instruction to a user su9?lied interruot handlin~ routine.
Location 56 initially holds a RET, so it must be set up by the
user or an interru?t will have no effect.

All interru9t handling routines should save the stack,
registers A-L and the PSW. They should also reenable
interrupts before returning since an interrupt automatically
disables ·all further interrupts once it is received •

•
There is only one way to .call an .assembly language

routine in 4K and 8K, but this does not limit the oroqrammer
to only one assembly language routine. The arqument of USR
can be used to designate which routine is being called. In
8K, additional arguments can be passed through the use of POKE
and values may be passed back by PEEK.

In Extended and Disk BASIC, up to ten routines may be
called with the USR0 - USR9 functions. For more information
on this feature, see section 5-3b. p.

3ASIC J.l 113

114

APPENDIX F
USING THE ACR IN~ERFACE

NOTE

The cassette features , CLOAD and CSAVE , are only
present in SK Altair BASICs which are distributed on
cassette and in Extended and Disk versions. 8K BASIC
on paper tape will give the user about 250 additional
bytes of free memory, but it will not recognize the
CLOAD or CSAVE commands.

Programs may be saved on cassette ta~e by means of the
CSAVE command. CSAVE may be used in either direct or indirect
mode, and its format is as follows:

CSAVE <string expression>

The program currently in memory is saved on cassette under the
name specified by' the first character of the <strinq
ex?ression>. CSAVE writes throuqh channel 1 when the Write
Buffer Empty bit (bit 7) of channel 6 is low. After CSAVE is
completed, BASIC always returns to command level. Programs
are written on tape in BASIC's internal representation.
Variable values are not saved on tape, although an indirect
mode CSAVE does not affect the variable values of the oroqram
currently in memory. The number of nulls (see NULL command)
has no affect on the operation of CSAVE. Before using CSAVE,
turn on the cassette recorder. Make sure the tape is in the
?roper oosition then put the recorder in RECORD mode.

Programs may be loaded from cassette tape by means of the
CLOAD command, which has the same format as CSAVE. The effect
of CLOAD is to execute a NEW command, clearing memory and all
variable values and loadinq the specified file into memorv.
When done reading and loading~ BAS~C-returns to command levei.
CLOAD reads a byte from channel 7 when the Read Data Ready bit
(bit 0) in channel 6 is low. Reading continues until 3
consecutive zeros are read. BASIC will not return to command
level after a CLOAD if it could not find the requested file,
or if the file was found but did not end with 3 zeros. In
that case, the com?uter will continue to search until it is
stop~ed and restarted at location 0.

3ASIC ~.l

April, 1977

In the 8K cassette and Extended versions of ALTAIR BASIC,
data may be read and written with the CSAVE* and CLOAD*
commands. The formats are a.s follows:

CSAVE*<array variable name>

and

CLOAD*<array variable name>

See section 2-4d for a discussion of CSAVE* and CLOAD* for
array data.

CLOAD?<string ex~ression> compares the 9rogram currently
in memory with the specified file on cassettee If the two
files match, BASIC prints OK. If not, BASIC orints NO GOOD.

Data may also be read from and written on cassette in the
paper tape version of 8K Altair BASIC. To write data, execute
a WAIT 6,128 statement to check for the Write Buffer Em?tY bit
and then write with an OUT 7,<byte> statement. To read,
execute a WAIT 6,1 to check for Read Data Ready and then read
with an INP(7). The end of a block of data may be
conveniently designated by a special character. Data should
be. stored in array form since there is no ti~e during readinq
and writing for com?utation.

BASIC .t. l

April, 197i

(

)

l

115

116

APPENDIX G
CONVERTING BASIC ~ROGRAMS

NOT WRITTEN FOR THE ALTAIR COMPUTER

Though implementations of BASIC on different computers
are in many ways similar, there are some incomoatibilities
between ALTAiR BASIC a~d the BASIC used on other c6m?uters.

·1) Strings •
.
A number of BASICS require the length of strings to be
declared before they are used. All dimension statements of
this type should be remov~d from the orogram. In some of
these BASICs, a declaration of the form.DIM A$(I,J) declares a
string array of J elements each of which has a length I.
Convert DIM statements of this ty?e to equivalent ones in
Altair BASIC: DIM A$(J). Altair BASIC uses " + ~ for string
concatenation, not ·• , '' or ·• & • '1 ALT~IR BASIC uses LEFTS,
RIGHT$ and MID$ to take substrings of strings. Some other
BASICs use A$(I) to access the Ith ·character of the strinq A$,
and A$(I,J) to take a substring of A$ from character position
I to character ?OSition J. Convert as follows:

OLD
A$ (I)
A$ (I I J)

NEW
MID$ (.2\$, I, 1)
~ID$(A$,I,J-I+l)

This assumes that the reference to a subscriot of A$ is in an
expression or is on the right side of an assignment. If the
reference to A$ is on the left hand side of an assignment, and
X$ is the string expression used to replace characters in A$,
convert as follows:

In 4K and BK
OLD
A$(I)=X$
A$(I,J)=X$

Extended and Disk
OLD
?\$ (I) =X$
A$(I,J)=X$

2) ~ulti?le assignments.

NEW
A$=LEFT$(A$,I-l)+X$+MID$(A$,I+l)
A$=LEFT$(A$,I-l)+X$+MID$(A$,J+l)

NEW
MID$(A$,l,l)=X$
MID$(A$,I,J-I+l)=X$

Some BASICs allow statements of the form:

500 LET B=C=0

3ASIC -1,l

April, 1977

This statement would set the variables B and C to zero. In SK
Altair BASIC, this has an entirely different effect. All the
" = " signs to the right of the first one would be inter~reted
as logical comparison ooerators. This would set the variable
B to -1 if C equaled 0. If C did not equal 0, B would be set
to 0. The easiest way to convert statements like this one is
to rewrite them as follows.

500 C=0:B:=C

3) Some BASICs use .. \ 11

statements on a line.
program.

instead of ·• :
Change each

" to delimit multi9le
.. \ " to ·• : " in the

4) Pa~er tapes ?Unched bv other BASICS may have no nulls at
the end of each line instead of the three oer line recommended
for use with Altair BASIC. To get around this, try to use the
taoe feed control on the Teletvoe to stop the ta9e from
reading as soon as Altair BASIC ?rints a carriage return at
the end of the line. Wait a moment, and then continue feedinq
in the tape. When readinq has finished, be sure to punch a
new ta9e in Altair BASIC 1 s format.

A program for converti~q ta~es to Altair BASIC's
was published in MITS Computer Notes, November 1976, ?·

format
25.

5) Programs which use the MAT functions available in some
BASICs will have to be rewritten using FOR •.. NEXT loo?s to
perform the a?~ro9riate o~erations.

BASIC .1,l 117

.:.pril, 1977

118

APPENDIX H
DISK INFORMATION

Format of Altair Floppy Disk

Track Allocation:

Tracks
0-5
6-69
70
71-76

Use.
Disk BASIC memory image.
Space for either random or sequential files.
Directory track. See below.
Space for sequential files only.

Format of DISK BASIC Memory Image (Tracks 0-5}:

BASIC is loaded starting at track 0 sector 0 then track 0
sector 1, etc. Each sector contains 128 bytes of BASIC. The
first 128 bvtes are loaded first, second 128 second, etc.

Sector format (Tracks 0-5):

Byte
0
1-2

3-130
131
132

Use
Track Number+l28 decimal.
Sixteen bit address of the next
higher byte of memory than the highest memory location
saved on this sector.
128 bytes of BASIC.
255 decimal sto9 byte.
Checksum - sum of bytes 3-130 with no carry in 8 bits.

Sector format (Tracks 6-76):

Byte
g

1
2

3

Use
Most Significant Bit alwavs on.
Contains track number ?lus 200 octal.
Sector number * 17 MOD 32.
File number in directory. Zero file nu~ber ~eans
that the sector is not ?art of any file. If the
sector is the first file of a qroup of 3 sectors
0 means the whole qroup of 8 sectors is fr8e.
Number of data bytes written (0 to 128) . Alwavs
129 for randcm·files. (Sxceot for the randoD file
index blocks in which case this byte indicates how manv

BASIC J,l

April, 1977

4

5,6

grou9s are allocated to the file.)
Checksum. The sum of all the data on the sector
except for the track number, the sector
number and the terminating 255 byte.
Pointer to the next grou9 of data. This is set u9 for
random files and sequential files, and is even valid
in the middle of a grou9. If it is zero it means there
is no more data in the file. The track is the first byte
and tne sector number is the second byte.

7-134
135

Data ·
A 255 {octal 377) to make sure the right number
of data bytes were read.

13 6 Unused.

Directory Track (70) Format:

Each sector of the directorv {which is all of track 70)
is composed Of U? to 8 file name slots, 16 bytes 9er slot.
Each slot can contain a file name {8 bytes), a link to the
start of file data {2 bytes) and a byte which specifies the
mode of a file (Random=4, Sequential=2). The remaining 5
bytes are not currently used. Any slot which has the first
file name byte equal to zero contains a file which has been
deleted. If the first byte of a slot is a 255 , it is the
last slot currently in use in the directory. Slots beyond the
11 stop1;>er 11 ar#e qarbage. File ·numbers are calculated bv
mu!tiplying the sector number of the directory track the file
is in by 8 and adding the position of the slot in the sector
{0-7) plus 1.

NOTE

The ith logical sector on a track is actually ma?9ed
to the i*l7 MOD 32 ?hysical sector to shorten access
time in BASIC I/O operations.

Format of Random Files

Each random file starts with two random index blocks. The
~number of data bvtes~ field in the first block indicates how
many grou9s are currently allocated to this random file. The
next 256 bytes in the two random index blocks give the
location of each grou? in the random file in order of their
9osition in the file. The U??er two bits give the grou?
number , and the lower six hits give the track number - 6.

BASIC ·L l
119

Assembly Code to Read and Write a Sector

The following code has been provided to hel9 users write their
own assembly language subroutines to read and write data on
the floppy disk. It is assumed that the disk being used has
already been enabled and positioned to the correct track. Two
data bytes are always read or written at a time so that the
CPU can kee9 up with the data rate (32 microseconds/byte) of·
the floppy disk. After two bytes are read or written, the CPU
re-synchronizes with the next 'byte -ready' status from the
flop9y disk controller.

; CALL WITH NUMBER OF DATA BYTES TO WRITE IN [A]
; AND POINTER TO DATA BUFFER IN [H,L]
; ALL REGS DESTROYED.

DSKO: MOV
MVI
SUB
MOV
CALL
MVI
OUT

C,A
A, 136
c
B,A
SECGET
A,128
9

;SAVE i OF BYTES IN C
;CALCULATE NUMBER OF ZEROS TO WRITE
;SUBTRACT THE NUMBER OF DATA BYTES
;NUMBER OF ZEROS+!
;LATENCY
;ENABLE WRITE WITHOUT SPECIAL CURRENT

; -1 CALL WITH [B~ =NUMBER OF ZEROS _(C] =NUMBER OF DATA BYTES

120

AND [H,L] POINTING AT OUTPUT DATA
;
OHLDSK:

NOTYTD:

ZRLOP:

MVI
MVI
ORA
MOV
INX
IN
ANA
JHZ
ADD
OUT
MOV
INX
MOV
INX
OCR
JZ
DCR
OUT
JNZ
IN
ANA
JNZ
OUT
OCR

D,l
A,128
M
E,A
H
8
D
NOTYTD
E
10
A,M
H
E,M
H
c
ZRLOP
c
HJ
NOTYTD
8
D
ZRLOP
10
8

;SETUP A MASK (READY TO WRITE)
;HIGH BIT (D7) ALWAYS ON IN FIRST
;OR ON DATA BYTE
;SAVE FOR LATER
;INCREMENT BUFFER POINTER
;GET WRITE DATA READY STATUS
;TEST STATUS BIT
1NOT READY TO WRITE, W.AIT
;ADD BYTE WE WANT TO SEND TO ZERO
;SEND THE BYTE
;GET NEXT BYTE TO SEND
;MOVE BUFFER POINTER AHEAD
;GET NEXT D~TA BYTE
;MOVE BUFFER POINTER AHEAD AGAIN
;DECREMENT COUNT OF CHARS TO SEND
:IF DONE, QUIT & GO TO ZRLOP
;DECREMENT COUNT OF CHARS AGAIN
;SEND THIS BYTE
;STILL MORE CHARS, DO THEM.
;GET READY TO WRITE
; IS IT READY
;IF NOT, LOOP
;KEEP SENDING FD~A.L BYTE
;DECREMENT COUNT OF BYTES TO SEND

3ASIC .+.l

April, 19ii

BYTE

JNZ
EI
MVI
OUT
RET

ZRLOP

A,8
9

;KEEP WAITING
;RE-ENABLE INTERRUPTS
;UNLOAD HEAD
;SEND COMMAND
;DONE

; DISK INPUT ROUTINE. ENTER WITH POINTER
; OF 137 BYTE BUFFER IN [H,L]. ALL REGS DESTROYED.
DSKI: CALL SECGET ;POINT TO RIGHT SECTOR

MVI C,137 ;GET * OF CHARS TO READ
READOK: IN 8 ;GET DISK STATUS

ORA A ;READY TO READ BYTE
JM READOK
IN H1
MOV M,A
INX H
OCR C
JZ RETDO
OCR C

HJ
M,A

;READ THE STOFF
;SAVE IN BUFFER
;BUMP DESTINATION POINTER
;LESS CHARS
;IF OUT OF CHARS, RETURN
;DECREMENT COUNT OF CHARS
;DELAY INTO NEXT 9YTE
;GET NEXT BYTE
;SAVE BYTE IN BUFFER
;MOVE SOFFER POINTER

NOP
IN
MOV
INX
JNZ

RETDO: EI

H
READOK ;IF CHARS STILL LEFT, LOOP SACK

;RE-ENABLE INTERRUPTS

SECGET:

SECLP2:

MVI
OUT
RET

MVI
OUT
DI
IN
RAR
JC
ANI
CMP
JNZ
RET

A,8
9

A,4
9

9

SECLP2
31
E
SECLP2

; ONtOAO HEA.O
;SENT:> COMMAND

;LOAD THE BEAD

;DISABLE INTERRUPTS
;GET SECTOR INFO
;FIX UP SECTOR *
;IF NOT, KEEP WAITING
;GET SECTOR #
;IS IT THE ONE WE WANT· ED
;TRY TO FIND IT

The Disk PROM Bootstrap Loader

The Disk Sootstrao Loader PROM must be installed in the
highest oosition"on the PROM board and the PROM board must be
strap?ed at the ?roper address. The 9roper ~osition is the
PROM IC socket on the 09posite side of the board from the
black finned heat sink. The black dot or 'l' on the PROM
should be in the upper left corner. The address jumpers on
the PROM board mus~ .b~-in the 'l' position.

BA.SIC J. l
121

April, 19i7'

122

To use the Disk Bootstrap Loader, turn the computer's power
on. Raise RESET and STOP simultaneously. Lower RESET and
then STOP. EXAMINE location 177400 (address switches Al5-A8
up, rest down) and then set the sense switches for the
terminal I/O board as explained in Appendix B. Depress the
RUN switch. BASIC should print (or dis?lay):

MEMORY SIZE?

For the .rest of the initialization procedure, see below.

Using the Cassette and Paper Tape Bootstraps

If the Disk Bootstrap Loader PROM is not in use, a paper tape
or cassette program must be lo~ded which then reads in BASIC
from the disk. This is done by following the procedure below:

1. Key in the ap?licable paper tape or cassette bootstra9
loader from the listings in A9pendix B. Make
location 2=077 octal. Set the sense switches for the
terminal.

2. Start the paper taee or cassette (labeled DISK LOADER)
reading, ~nd then start the com9uter as. in the
instructions for loading BASIC from ppper tape from
cassette as given in Appendix B.

BASIC should respond:

MEMORY SIZE?

For the rest of the initialization procedure, see below.

Disk Initialization Dialog

The initialization dialog has been expanded to allow the user
to select the 9roper amount of memory needed to use the
disk(s) on the system. After the the MEMORY SIZE question is
answered, BASIC will ask:

HIGHEST DISK NUM3ER?

The user should answer with the highest physical disk address
in the system or with a carriage return. The default is 0.
Each additional disk uses 40 bytes of memory.

BASIC 4.1

.!_pril, 1977

Example:

HIGHEST DISK NUMBER? l

BASIC next asks how many files are to be OPEN at one time in
the program. This number includes both random and sequential
files. If the user types carriage return, the default is
zero. Each file allocated requires 138 bytes for buffer
SQace. Example:

HOW MANY FILES? 2

Finally, BASIC asks how many random files are to be OPEN at
one time. The amount of memory allocated is the answer*257.
This memory space is used to keep track of the location on the
floppy disk where groups of a random file reside. Thus, the
total ~emory required for each random file is 138+257=395
bytes. Example:

HOW MANY RANDOM FILES? l

A typical dialog might a?pear as follows:

BASIC ~.1

April, 1977

MEMORY SIZE? <carriaqe return>
HIGHEST DISK NUMBER? <carriaqe return>
HOW MANY FILES? 2 <carriage return>
HOW MANY RANDOM FILES? 1 <carriaqe return>

xxxxx BYTES FREE
ALTAIR BASIC REV. 4.0
[DISK EXTENDED VERSION]
COPYRIGHT 1976 BY MITS INC.

OK

123

124

APPENDIX I

THE PIP UTILITY PROGRAM

A BASIC Utility program has been provided to perform such such
common functions as printing directories, initializing disks,
copying disks etc.

NOTE

Some of the PIP commands (LIS, DIR) require that one
<file number> be configured during the Disk BASIC
initialization dialog. This is done by answering the
"HOW M..:c\NY FILES?" question with a value qreater than
zero. If an attem?t is made to perform a LIS or DIR
without following. this ?rocedure, a BAD FILE NUMBER
error will occur.

Once the BASIC disk has been mounted, type the followinq
command:

RUN 11 PIP'' <carriage return>
(PIP will type)
*

PIP is now ready to accept commands. To exit PIP, ty?e a
carriage return to the ?rompt asterisk. To initialize the
flo9~y disk in drive 0, type:

*INI0

PIP will tyQe "DONEil when it is finished. Any disk number may
be substituted for the 0 in the above command and PIP will
format the disk in that drive. Any previous files on the disk
initialized will be lost. If vou wish to use blank disks with
Disk BASIC,- they must be initialized in this fashion before
they can be MOUNTed.

NOTE

DO NOT INITIALIZE THE DISK WITH DISK EXTENDED BASIC ON
IT. THIS WILL WIPE OUT ALL THE FILES PROVIDED ON THE
DISK.

BASIC J.,l

April, 1977

Printing a Directory

Giving PIP the command:

*DIR<d'isk number>

9rints out a directory of the files on the s9ecified disk.
The name of each file· is printed along with the file's "mode"
(S for sequential, R for random) and the starting track and
sector number of the first block in the file.

SRT<disk number>

prints a sorted directory of the files on the specified disk.

LISti~g Sequential Files

The LIS command is used to list the contents of a sequential
data file on the terminal:

Syntax:

LIS<disk number>,<file name>

Example:

*LIS0,PIPA
7 CLEAR 1000

*

user tyt;>es
comt;mter prints

COPying Disks

The COP command is used to cony a disk ?laced in one drive to
a disk on another drive. Neither disk need be ~OUNTed for the
COP command to work ?roperly.

Syntax:

COP<old disk number>,<new disk number>

BASIC -1.l 125

April, ~9ii

•

•

126

Before the copy is done, PIP verifies the action by ?rinting
the following massage:

FROM<disk number>TO<disk number>

Ty?ing Y followed by a carriage return causes
?roceed. Any other response aborts the command.

*COP0,l
FROM 0 TO l? Y<carriage return>
DONE
*

The DAT command

execution
Examole:

to

The DAT command is used to dum? out a ?articular sector of the
disk in octal.

Syntax:

DAT<;disk number>

When the DAT command is issued, PIP asks for the numbers of
the track and sector to be dum?ed. Example: -·

*DAT0 (DAT is equivalent)
TRACK? 0
SECTOR? 0
000 000 000 000 000 000 000 000
000 000 000 000 000 etc.

The CNV command

CNV converts disks written under Altair BASIC version 3.4 and
3.3 to a format useable by version 4.0. The format of the
command is as follows:

CNV<disk number>

CNV makes sure that the next to last bvte of each sector is
255.

Other Programs Provided on the System Disk

3ASIC J..l

Apri!, 19i7

Program Name
ST AF.TREK

3ASIC ..i.1

April, :9i ..

Use
Plays game· based on TV series.

127

128

~PPENDIX J

RSTLESS VERSIONS OF BASIC

Altair BASIC uses the so-called RST locations (locations
0 through 100 octal) at the bottom of memorv. This saves
memory space, but precludes the use of the Vector Interrupt
board for real-time programminq ap9lications. Special.
versions of Altair BASIC are available which do not use the
RST locations, however. These versions leave the RST
locations free to be used for assembly language routines in
the same was as any other locations in high memory.

To restart the standard versions of Altair BASIC, it is
necessary simply to actuate the RESET switch on the com~uter's
front panel. This causes a jump to location 0. In the
RSTLESS version, BASIC is restarted by jum~ing to location 100
octal. The usual procedure for doing this is as follows:

1. Raise STOP and RESET simultaneously, then release them

2. Raise switch A6

3. Actuate EXAMINE

4. Push RUN

BASIC restarts and prints ''OK.·•

3ASIC 4.1

April, 19;'7

APPENDIX K

USING Altair BASIC ON THE
INTELLEC* 8/MOD ~ AND MDS-s?STEMS

This a~pendix covers procedures for loading and ooerating
Altair BASIC on Intellec and MDS develo?ment systems.

~. Loading BASIC.

To load Altair BASIC, out the hex oaper tape of 3ASIC in
the system reader device~ Enter the System.and assion the
CONSOLE I/O device as desired (see Secfion 4.2.1 o~ the
Intellec 8/Mod 80 Operator's Manual). Now read in BASIC with
the following R command .

• R(Cr)

.The BASIC tape will be loaded into memory, and the system
monitor will type a period on the CONSOLE device. If you are
only using contiguous RAM memory below the system monitor
(3800H) or are using BASIC on a MDS System, proceed to ste9 2.
If you have RAM:memo~y above the PROM Intellec monitor which
you w.ish BASIC to use for orogram and variable storage, .you
must oatch the two locations known as INTtOC to point to the
bottom (lowest address) of memory. The is- most easily
accomplished by using the System Monitor S command. INTLOC is
given below under "Memory Requirements.••

.SXXXX 00 40 {Cr)

The above S command would make INTLOC 9oint to RAM, starting
at 16K.

BA.S!C ..f. .14

April, 19Ti

NOTE

If you are using RAM above 16K for program and
variable storage and have patched INTLOC, retain all
the math functions at initialization time (see
A-ppendix 8). Essentially, this.means that the WANT
SIN-COS-TAN-~TN? questions asked by 8ASIC's
initialization dialog should be answered by a Y(Cr).
Also, you must answer the MEMORY SIZE? auestion with
the highest decimal or RAM address in your system.

129

130

Start BASIC by giving the monitor GOTO command •

• G0000<carriage return>

NOTE

Once BASIC has been started, it
restarted by depressing the RESET
Intellec 8 console.

may always
switch on

be
the

When BASIC types MEMORY SIZE?, ty?ing carriage return will
cause BASIC to use all the RAM memory it can find above the
end of BASIC. Otherwise, if you wish to S?ecify an exact
amount of memory, type the decimal address of the highest byte
of memory in the computer and type carriaqe return.

B. BASIC I/O.

The system devices used for terminal I/0 in BASIC are CI,
CO and CSTS.

c. Saving and Loading P~ograms:

To save a program on ?aper tape, re~enter the PROM
monitor and reassiqn the CO d~vice to the oaoer taoe punch or
other out~mt device: Then restart BASIC, by. using - the G0000
command and type LIST(Cr). The characters of the LIST command
will not be echoed, but the BASIC ~rogram currently saved in
memory will be put on the out9ut device.

To load a program, enter the system monitor, re-assiqn CI
to the input device where t~e program resides, and then start
BASIC with a G0000. When the orograrn has been com?letely read
in, reassign CI to the user console. Then re-enter BASIC with
a G0000, and start the I/O device. The program will be echoed
on CO as it is read in.

D. Memory Requirements

BASIC uses locations 0000H-0003H and 0010H-aporoximately
19DFH in the 8K version, and 0010H-2F0EH in the Extended
version. For Intellec SK and MDS 8K 9ASICs, INTLOC is 6520
decimal. For MDS Extended, INTLOC is 14257 decimal.

E. Calling Asse~bly Language Routines

USRLOC for SK BASIC is 0055H. AOR(DEINT) is stored in
locations 0043H. ADR(GIVACF) is stored in locatio~ 0045H. In
the Extended version, these locations contain the addresses of

FRCINT and MAKINT, respectively. Interru~t driven subroutines
using RST 7 are not allowed in the Intellec/MDS version· of
Altair BASIC. See Ap9endix C for fur~her information on
calling assembly language subroutines.

* Intellec is a registered trademark of the Intel
Corporation •

•

3ASIC \l 131

April, 197i

•

132

APPENDIX L
PATCHING BASIC'S I/O ROUTINES

BASIC's I/O routines may be changed to accommodate
non-standard terminal equipment. After BASIC is loaded and
before it has been initialized, location 71 contains a Pointer
to a· list of addresses. These addresses contain the I/O
routines of BASIC:

IOLST:

ORG
ow

DW
ow
ow
ow

ow

ow

ow

DW
ow
ow

7Ql
IOLST

TR YIN
TRYOUT
ISCNTC
NEWS TT

IN2SIO

IN4PIO

LPTPOS

LPT3CD
ENDLPT
IOCHNL

0
200
TRYOUT
PSW
1
PSW

PSW

;TWO BYTE ADDRESS OF ADDRESS LIST

;CHARACTER INPU~ ROUTINE
;ADDRESS OF OUTPUT ROUTINE
;POLL FOR CONTROL/C CHECK
;FAST POLL FOR CONTROL/C CHECK
;8K AND LARGER ONLY
;ADDRESS OF INITIALIZATION
;ROUTINE FOR 2SIO BOARDS
;ADDRESS OF INITIALIZATION ROUTINE
;4PIO BOARDS
;ADDRESS OF LPT·cotE FLAGS

;START OF LPT CODE
;END OF LPT CODE
;ADDRESS OF I/O RESET LOCATION
; (IN EXTENDED ~ND DISK ONLY)

;GET DEVICE STATUS
;AND OFF BIT 7
;WAIT UNTIL TERMINAL CAN OUTPUT
;GET CHARACTER TO OUTPUT OFF STACK
;TRANSMIT IT
;SAVE CHARACTER BACK ON STACK
; CHANGED TO '1 IN 41 '1 FOR 4PIO BOARDS

;GET CHARACTER BACK OFF STACK

FOR

TRYOUT: IN
ANI
JNZ
POP
OUT
PUSH
NOP
NOP
POP
RET ;ALL DONE WITH CHARACTER OUTPUT ROUTINE

TRY IN: IN
~NI
,JNZ
IN
A.i:H

0
1
TF.YIN
1
127

;GET TERMINAL STATUS
;CHARACTER READY?
;NO, KEEP WAITING
;READ IN THE CHARACTER
;GET RID OF PARITY BIT

a . .i.src .i .1

CPI
RNZ

ISCNTC·: IN

ANI

RNZ

CONTO

0

11

;CONTROL/O?
;RETURN IF NOT

;READ TERMINAL STATUS

;HAS THE TERMINAL A CHARACTER

;TO SEND?
;NO, RETURN

;FOLLOWING ROUTINE IS IN 8K AND LARGER VEPSIONS ONLY
;AND IS EXECUTED FOR EACH STATEMENT
NEWSTT: IN 0 ;READ TERMINAL STATUS

ANI 1 ;TEST SIT 0
CZ CNTCCN ;YES, SEE IF CHARACTER CONTROL/C

IN2SIO: CPI
RNC
ADI
PUSH
MVI
CALL
POP
JMP

IN4PIO: MVI
OCR
CALL

2*4

21
PSW
A,3
DOJ:020
PSW
DOI020

A,54Q
M
DOI020

;IS IT 2SIO
;NO, OTHER GO DIR£CTLY TO SETIO
;GET PROPER INITIALIZATION BYTE
;SAVE I'1'
;INITIALIZE TEE 2SIO

;GET BACK SECOND INITIALIZATION
;PROGRAM TO DATA AND STOP

;RESET FOR DATA TRANSFER
;CHANNEL=22

BITS

The pointers LPTPOS, LPTCD3 and ENDLPT refer to the
following sections of lineprinter code:

A. LPT code flags.

LPTLST: DB ;0 MEANS LAST LPT OPERATION
;WAS LINE FEED

BYTE

LPTPOS: DB
PRTFLG: - DB

0
0

;l MEANS LAST LPT O?'N WAS PRINT
;CURRENT LOGICAL POSITION OF LPT HEAD
;0 MEANS OUTPUT TO CONSOLE
;l ~E~NS OUTPUT TO LPT
;2 MEANS LLIST OUTPUT TO LPT

BASIC ~.l
133

.i.pril, 197'7

134

QPOS: DB
DB

QMOV: DB

LPTLEN: DB
NLPPOS: DB

0
0
0

0
0

;CURRENT Q700 PRINT HEAD POSITION
;IN 1/120 INCH INCREMENTS
;NUMBER OF INCREMENTS TO MOVE -Q70
;PRINT HEAD IN ADDITION TO CHARACTER
;MAX. NUMBER OF LPT COLUMNS
:COLUMN BEYOND WHICH THERE ARE NO MORE
;"COMMA FIELDS 0

A comma in a LPRINT statement causes the printhead to move to
the beginning of the next 14 column field. If LPTPOS is
greater than NLPPOS, a carriage return line feed sequence is
executed before printing. NLPPOS is calculated by the
following relation:

NLPPOS=INT(((LPTLEN/14)-1)*14)

LPTLST- is used only by the 80LP printer. QPOS and QMOV
are used only by the Q70. The user should not modify the
PRTFLG flag since it is modified and referred to in several
places in BASIC. Changing it in a USR routine has
unpredictable results.

B. Start of LPT code.

LPTJCD: JMP
JMP •

FINL~T
PRINTW

body of LPT code

The main body of LPT code is entered whenever PRTFLG is
determined to be non-zero. The character to be output must be
at the to'!;) of the stack. · Upon exit from LPT code, the
character must be removed from the stack and should be loaded
into the Accumulator. This is because BASIC checks the
Accumulator for the last character Printed.

FINLPT is entered
level. FINLPT calls
sequence, if necessary,

whenever BASIC returns to command
PRINTW for a carriage return/line feed
and resets PRTFLG to zero.

PRINTW does the carriage return/line feed.

FINLPT and PRINTW both return with zero loaded in the
Accumulator and all the condition codes set to zero.

3ASIC .1,l

April, 197-

C. End of LPT code

ENDLPT is the physical end of the line~rinter driver
cod·e.

The following routines are used in with all terminal
devices:

IOCHNL: 0. ;DEPOSIT BOARD TYPE HERE
0 ;CHANNEL GETS DEPOSITED HERE.

IOREST: LXI H,IOCHNL ;GRAB POINTER TO IT
CALL HELP IO ;SET UP THE NEW CONSOLE DEVICE
CALL STKINI ;MAKE STACK OK
JMP READY ;.AND TYPE ''OK" HOPEFULLY ON GOOD

To modify the I/O routines, stop the machine after
loading BASIC and insert the changes using the front ~anel
switches, or read in a tape containinq the patches. Restart
BASIC at location zero with all sense switches up. This will
prevent BASIC from modifying the I/O routines. In general,
these quidelines should be followed in writing I/O routines:

L

2.

3.

4.

s.

6.

BA.SIC 4,1

April, 197~

-Ins.ert a JMP at TRYOUT to the custom output routine. Be
sure the PSW that is saved on the stack when the routine
is entered is preserved. Make suLe all registers are left
unchanged when the routine is exited.

Insert a JMP at TRYIN to the custom input routine. Return
the input character in the A register and do not change
any of the other registers. The PSW may be changed.

To modify ISCNTC, insert a C~LL to the custom poll
routine. This routine returns a non-zero condition code
setting if no character is present and zero if a character
is present. The A register and the condition codes may be
changed.

To change the initialization of the 2SIO board, change the
'
1 ADI 23Q'' to "MVI A,XXX" where XXX is the new
initialization byte.

To change the initialization of the 4PIO board, change the
''MVI A,54Q'' to a ''MVI A,XXX'' where xxx is the new
initialization byte.

To patch in a new line 9rinter driver, chana~ the code at
LPTCOD. Note that PRINTW is also called by the routine
which prints a carriage return line feed. The code at
LPTCD2 and LPTCD3 must be chanqed if the line orinter is
not 80 characters wide. - -

135

CONSOL

136

7. To recover from an incorrect CONSOLE command, deposit the
board type in IOCHNL, the board ty~e in IOCHNL+l, and
start the machine at IOCHNL+2.

Patching Disk BASIC - the PTO program.

After Disk BASIC is loaded, deoosit the desired patches
in memory. Then examine and run PTD at location 54000 octal.
After two or three seconds, the patched version of BASIC will
be saved on disk. The save is.complete when the Disk Enable
light on disk drive zero goes out. ·

To save a patched version of BASIC on a disk which did
not previously cont~in release 4.0 Altair BASIC, track 0 must
be copied from a 4·.0 disk.

PTO may also be used to save programs other than BASIC on
tracks 0-4 of a diskette by loadinq the program after BASIC is
loaded and running PTO. All memory locations between 0 and
46000 octal will be saved on tracks 0-4 on diskette zero .

•

5ASIC ~.l

April, 197 7

APPENDIX M
USING ALTAIR DISK BASIC

An Exaffi'P!i

The following is a discussion of how to program a typical
apolication in BASIC. The example is
inventory system which is designed to run
hardware:

the MITS in-house
on the following

Altair 8800b computer with 32K memory, PROM memory board
with the Disk PROM Bootstrap loader and a 2SIO serial
I/O board

Two disk drives
24-line Lear-Sigler CRT terminal
Line printer

The most important part of the design for an
is setting u9 th~ files.- Files that are correctly
be easy to use and maintain. Poorly set up files
perpetual ·headache, causing either an eventual
more likely, abandonment of the system.

application
set up will
will be a
rewrite or,

The first listing at the end of the a~pendix, INVEN,
contains modules from the main oroaram in the inventory
system.· INVEN shows how the central.fife (a random file) in
the system is set up ana how it is handled. The INVEN listing
also shows the use of another random file and a sequential
file. The CALC listing shows how to read ?rograrns as data
files. CODEl is a partial listinq of a proqram that will be
read as a data file.

The INVEN modules listed were included to show the
following features:

1. l;)rogram startup initialization and comments about the
files used by the program (lines 1-35}

2. what the complete program does (lines 60-HHHJ)

3. an example of how to modify records in a rando:n file
(lines 900-1040)

4. an examnle of how sequential files are used (lines
1800-1868 and 2700-2820) -

5.

3ASIC ..1.1

.~pTil , 19 i7

one approach to the oroblem of handling a random file that
s~ans more than one disk (lines 2000-2030)

137

138

6. three subroutines (lines 300-340, 9000-9020 and 9200-9220) ~
that are called by the INVEN modules.

The function FNY (line 6) is used to round dollar
amounts to thousandths of a cent. FNQ (line 7) is used to
round quantities to thousandths and to convert single
precision amounts to double precision.

INV3 is fielded once in the program initialization, but
INVl and INV2 are repeatedly fielded by calls to the
subroutine at line 2000. The IF F>255 (line 60) avoids the
possibility that the ?rogram can be stopped by an illegal
function call at line 61.

PUT statements are the very last statements executed in
the Remove from Inventory module, the Add to Invento~y module,
etc. This prevents updating one file but not the other.
(This could happen if PUT z, Rl was at line 1010.)

Line 2000 sets Z to 1 and Rl
is less than 2001. It sets z
item wanted is greater than 2000.
pointers for the variables in
into either the buffer for INVl
depending on whether the item
greater than 2000.·

to N if the item wanted, N,
to 2 and Rl to N-2000 if the

Line 2020 then sets the
the field statement to ooint
or the buffer for INV2,
wanted.is less than.2001 or

The CALC listing is a program which· determines if there
are enough ?arts in inventory to meet projected demands. Line
60 waits while the disk comes. up to speed so the message
~ENABLE DISK l" will not be printed on the terminal. Lines
100-140 input up to fifty different product codes and the
number of each oroduct to be built. Line 170 ooens a file for
each product that contains the 9arts required for the product.
Lines 220-250 build up a report heading, extracting the
product description contained in line 10 of each file.

Lines 120-150 accumulate the number of parts required for
each product into the array Q. If more than 32767 of a part
is required, a pointer is set in the array Q and the number of
the 9art is accumulated in the array Q!. This maneuvering is
necessary since the system does not have enouqh memory to
dimension Q as single orecision i~stead of integer.

The 9arts lists for a product are programs saved with the
A option. Since they are programs, their maintenance is very
easy. For example, supoose that part 1071 in the 8800b is too
marginal and that from now on 9art 1173 should be used
instead. With the parts lists disk mounted on drive 0, the
following sequence will update the 8800b file:

3ASIC ~.l

April, 1977

LOAD 11 CODEl 11

160,1,1173
SAVE "CODEl",0,A

The programmer who is cramped for memory will find that
pro·grams can still be· documented adequately if comments are
set up as separate files. The memory used for variables when
a program runs can be used for comments if the comments are
merged in when the program is to be listed. Alternatively,
the program could be listed in two or more parts. Additional
memory can be obtained by bringing BASIC up without optional
functions and with no files.

The main inventory prog~am is set up so that a carriage
return typed in response to any ?romot causes the program to
dump the function descriptions on the CRT and to return to the
FUNCTION NUMBER prompt. If the ~rograrn were to be run on a
printing terminal, instead of a 9600 baud CRT, it would not be
set uo to Print the descriptions everv time the ooerator
wanted-to get-back to the FUNCTION NUMBER prompt. The iist of
function descriptions might be taped on the wall next to the
terminal instead.

Listing of INVEN

l DEFINT F-N
2 DEFINT R
3 D.EFINT Z
5 DEFDBL P
6 DEF FNY*(Q8#)=INT(Q8~*A#+.5#)/Ai
7 DEF FNQ*(Q9!)=INT(VAL(STR$(Q9!})*1000#+.5#)/1000*
8 A$=MKD$(0) :B$=MKS$(0) :A#=l00000I
10 DIM Q$ (2) ,P$ (2)
11 I

INVl ON DRIVE 0 HOLDS ITEMS 1-2000
INV2 ON DRIVE 1 HOLDS ITEMS 2001-4000
INV3 ON DRIVE 1 HOLDS SUMS LOGGED IN AND OUT BY DEPARTMENT
12 •
WEKLYRST AND MONTHRST ARE WRITTEN WHILE THE WEEKLY,
MONTHLY ACTIVB ITEMS LISTS ARE PRINTING;
CONTAIN THE ITEM *S THAT NEED TO BE RESET; AND ARE READ BY
THE WEEKLY,MONTHLY_ RESETS.
14 I

QS () <=> THREE ON HAND QTY FOR: P$ () <=> THREE PRICES
[P(0) OLDEST, P(l) NEXT OLDEST, Q(0)<>0 IF Q(l)<>0,
Q(l)<>0 IF Q(2)<>0]
0$ <=>DESCRIPTION LEFT$(D$,3)=j1 S 1

• <=> INACTVE ITEM#
15 I

Il$ <=> WEEKLY QTY IN
I2$ <=> MONTHLY QTY IN
01$ <=> WEEKLY QTY OUT

BA.SIC ~.l

April, 1977

139

140

02$ <=> MONTHLY QTY OUT
T$ <=> REORDER LEVEL
DI1$ <=> WEEKLY $ IN
ID2$ <=> MONTHLY $ IN
D01$ <=> WEEKLY $ OUT
002$ <=> MONTHLY $ OUT
17 I

DT1$ <=> WEEKLY DEPT $ TAKEN
DX2$ <=> MONTHLY DEPT $ TAKEN

.DG1$ <=>WEEKLY DEPT$ GIVEN
DY2$ <=> MONTHLY DEPT $ GIVEN

20 OPEN 11 R 11 ,~l 1
1•INVl'1

30 OPEN ''R" ,*2,"INV2" ,1
32 OPEN 11 R~ 1 t3, 11 INV3 11 ,l
35 FIELD #3,8 AS DT1$,8 AS DX2$,8 AS DGlS,8 AS DY2$
60 PRINT: F=0: INPUT'' FUNCTION NUMBER 11

; F: IFF> 25 5THEN63
61 ON F GOTO 210,350,350,1900,600,900,1700,

2700,2500,2300,2400,1880,2900'
2 3 4 5 6 7 8 9 10 11 12 13
14 15 16

63 PRINT 11 l - ENTER NEW ITEM"
6 4 PRINT'' 2 - LI ST ITEM ON CRT (SHORT FORM) 11

65 PRINT"3 - LIST ITEM ON CRT (LONG FORM) 11

66 PRINT'~4 - PRINT ITEMS ON LINE PRINTER
67 PRINT"5 - ADD TO INVENTORY"
68 PRINT"6 - REMOVE FROM INVENTORY 11

69 PRINT .. 7 - PRINT .WEEKLY DEPT DOLLAR RECORD ON LINE PRINTER
70 PRINT'' 8 PRINT WEEKLY ACTIVE ITEMS LIST ON LINE PRINTER
71 PRINT"9 - WEEKLY RESET
72 PRINT"l0- ~RINT MONTHLY DEPT DOLLAR RECORD ON LINE PRINTER
73 PRINT"ll- PRINT MONTHLY ACTIVE ITEMS LIST ON LINE PRINTER
74 PRINT'' 12- MONTHLY RESET
75 PRINT"l3- RESET ORDER LEVELS
76 PRINT"l4- PRINT LISTNG OF ITEMS NEEDING TO BE RE-ORDERED
77 PRINT"lS- DELETE OLD ITEM
78 PRINT"l6- ERRORS BACKOUT
100 GOT060
298 I

*
SUB - INPUT PART * & GET RECORD
*
300 PRINT:PRINT:N=0:INPUT"PART NUMBER":N:IFN<lTHENRETURN
310 IFN>4000THENPRINT:PRINT'' I I# TOO HIGH' I •• :GOTO 300
320 GOSUB2000:GETZ,Rl
330 IFLEFT$ (D$,3) =11 $$$'1 THENPRINT:

PRINT II I I NO INFOR~11ATION ON PA.RT I I II i N: GOT03 0 0
340 RETURN
890 I

*
F=6 - REMOVE FROM INVENTORY
*

BASIC -1. .1

900 GOSUB300:IFN=0GOT063
920 DN=-1: INPUT" NUMBER OF ITEMS REMOV·ED FROM INVENTORY";

DN:IFDN=-1THEN63
gs0 IFCVS(Q$(0))+CVS(Q$(l))+CVS(Q$(2})<DNTHENPRINT 11

ATTEMPT TO REMOVE MORE THAN ON HAND":PRINT:GOT063
960 D0=DN:P=0
970 IFD0<CVS(Q$(0))THEN

P=P+FNQ#(D0)*CVD(P$(0)) :LSETQ$(0)=MKS$(CVS(Q$(0))-D0):
GOT01000

980 P=P+FNQi (CVS (Q$ (0)}) *CVD {P$ {0)) :00=00-CVS {Q$ {0)):
LSETQ$(0)=Q$(1) :LSETQ$(l)=Q$(2) :LSETQ$(2)=B$:
LSETP$(0)=P$(1) :LSETP$(l)=P$(2) :LSETP${2)=A$:IFD0THEN

GOT0970
1000 LSET01$=MKS$(CVS(Ol$)+DN) :LSET02$=MKS$(CVS(02$}+DN):

LSETD01$=MKD${CVO{D01$)+P) :LSETOD2$=MKD${CVD{OD2$)+P)
1020 GOSUB9200:IFC%=-1GOT063
1030 LSETDT1$=MKD${CVD(DT1$)+P} :LSETDX2$=MKD$(CVD(DX2$)+P)
1040 PUT3,C%:PUTZ,Rl:GOT0900
1790 I

*
F=9 - WEEKLY RESET
*
1800 PRINTri7 - WEEKLY DEPARTMENT RECORD
1802 PRINT 11 8·- WEEKLY ACTIVE ITEMS
1804 Z$= 1111 :INPUT 11 HAVE THE ABOVE BEEN LISTED FOR TODAY 11 ;Z$
1810 IFLEFT$(Z$,l)<> 11 Y11 THENPRINT:PRINT

''WEEKLY RESE'l' NOT PER.FORMED": GOT063 ·
1843 OPEN 11 I 11 ,4, 11 WEKLYRST 11

1845 IFEOF(4)THENCLOSE4:KILL 11 WEKLYRST 11 :GOT01861
1850 INPUT#4,N:IF l<=NANDN<=4000 THENGOSUB2000:GETZ,Rl

ELSEPRINTN; 11 0UT OF BOUNDS. RESET ABORTED. 11 :END
1855 LSETI1$=B$:LSET01$=B$:LSETDI1$=~$:LSETD01$=A$:PUTZ,Rl
1860 GOT01845
1862 FORI=lT020
1864 GET3,I:LSETDT1$=A$:LSETDG1$=A$:PUT3,I
1866 NEXT
1868 GOT060
1999 I

*
SUB - GET Z,Rl FOR N AND FIELD TO INVl,2
*
2000 Z=l-{N>2000) :Rl=N+(Z=2)*2000
2020 FIELD Z,4 AS Q$(0),4 AS Q$(1),4 AS Q$(2), 8 AS P$(0),

8 AS P$(1) ,8 AS P$(2) ,40 AS D$,4 AS Il$,4 AS I2$,
4 AS 01$,4 AS 02$,8 AS OI1$,8 AS ID2$,8 AS 001$,8 AS OD2$

2030 RETURN
2690 I

*
F=8,ll - WEEKLY,MONTHLY ACTIVE ITEMS LIST
*
2700 N=l:GOSUB2000:GOSUB2855
2703 IFF=8THENOPEN"O", 4, '1 WEKf,JYRST'1 ELSEOPEN"O'~, 4, '' MONTHEST"

BASIC ~.l 141

ApTil, 1977

2705 IT#=0:0T#=0:TTi=0
2710 FORI=lT02000
2720 GETZ,I:IFLEFT$(D$,3)=h$$$ttTHEN2800
2723 Q0=CVS(Q$(0}) :Ql=CVS(Q$(1)) :Q2=CVS(Q$(2))
2725 IFF=8THENI!=CVS(Il$) :O!=CVS(Ol$) :I#=CVD(DI1$) :O#=CVD(D01$)

ELSEI!=CVS(I2$) :O!=CVS(02$) :I#=CVD(ID2$) :O#=CVD(OD2$)
2727 TT#=TT#+CVD(P$(0))*Q0+CVD(P$(l))*Ql+CVD{P$(2))*Q2
2730 IFI!+0!=0THEN2800
2733 PRINT#4,N+I-l
2735 IT#=IT#+I#:OT#=OT#+O#
2740 IFL9>59ANDKK=0THENGOSUB2850
2750 LPRINTUSINGdllilllh~99999!+N+I;
2770 LPRINTUSING 11 H:,ifl#,l##'1 ;I! ,O! ,Q0+Ql+Q2,Q0+Ql+Q2+0!-I!;
2780 LPRINTQSING"$$,###,#tt.##";I#,0#
2790 L9=L9+1
2795 KK=KK+l:IFKK=5THENLPRINT:L9=L9+l:KK=0
2800 NEXT
2810 IFN=lTHENN=200l:GOSUB2000:GOT02710
2811 CLOSE4
2813 LPRINT:LPRINTUSING"TOTAL INVENTORY COST =$$1#,#i#,###.##";TTi
2815 REM *GOT02820 IN F=7,10
2820 LPRINT :LPRINTUSING 11 TOTAL IN = $$H:, ##ii='***.##: II; IT#

• 2830 LPRINTUSING 11 TOTAL OUT =$$#4f, ###,*I#.#=*·•; OT#
2837 LPRINT:LPRINT
2840 GOT050
2850 FORJ=L9T066:LPRINT:NEXT
2855 IFF=8THENLPRINT"WEEKLY''; :ELSELPRINT'1 MONTHLYU;
2860 LPRINT" ACTIVE ITEMS LIST 11 ;:GOSUB9000
2 8 6 5 LPRINTTAB (3 9) ; H STARTED fj
2870 LPRINT 11 ITEM # QTY-IN QTY-OUT ON-HAND MO-WITH

DOLLARS-IN . DOLLARS-OUT"
2880 LPRINT:KK=0:L9=6:RETURN
8990 I

*
SUB - PRINT TODAY'S DATE
*
9000 IFTD$='111 THENLINEINPUT 11 TODAY 1 S DATE ? 1

' ;TD$: IFTD$=' ... THEN63
9010 LPRINT" ";TD$
9015 LPRINT
9020 RETURN
9190 I

INPUT DEPARTMENT # AND GET TOTALS
*
9200 C%=-l: INPUT'' ENTER DEPART~ENT CODE" ;C%: IFC%=-1THENRETURN
9210 IFl<=C%ANDC%<=20THENGET3,C%:RETURN
9220 PRINT" INVALID CODE'' :GOT09200

Listing of CODEl

5 CODEl

142 BASIC .+. 1

.\.pril, 1977

10 PARTS LIST FOR: 88008
20 OCT 30,1976
90 REM THIS IS THE START
100 ,11,1042
lHJ ,3,1134
120 ,4,1040
130 ,1,1020
140 ,l,HJ21
150 ,l,1024
160 ,l,1071
170 ,1,1074
180 ,1,2105
190 ,24,348
200 ,2,326

Listing of ~

10 CLEAR600
20 DEFINT A-Z

OF DATA

3 0 DIM CN (4 9) , NU (4 9) , Q (4 0 0 0) , Q ! (2 0 0)
40 CLOSE:UNLOADl
50 INPUT~PLACE DISK WITH PARTS LISTS IN DRIVE 1. HIT RETURN";G$
60 FORK!=lT05000:NEXT:MOUNTl
90 LINEINPUT"TODAY' s MO/DA/YR .• ;OT$:H$ (0) =DT$+ .. PARTS AVA.ILABLE FOR: If

95 I

• INPUT QUANTITY OF EACH PRODUCT REQUIRED

100 INPUT .. CODE NUMBER(0 WHEN FINISHED) 11 ;CN(I)
110 IF CN(I)=0 THEN 150 .
120 IF CN(I)<l OR 50<CN(I) THEN PRIN'.I'''INVALID CODE NUMBER":

GOTO 100
130 INPUT .. NUMBER OF UNITS TO BE MADE 11 ;NU(I)
140 I=I+l:IF I<50 THEN 100
145 I

ACCUMULATE QUANTITY OF EACH PART REQUIRED

150
160
170
180
190
200
210
220
230
240
250
260
270
280
290

BASIC -l,!.

.l.pTil, 197"7'

FOR K=0 TO I-1
ONERRORGOT0610
OPEN'' I'' ,~H, 11 CODE"+MID$ (STR$ (CN(K)) ,2) ,1
ONERRORGOT00
LINEINPUTl1,A$:IFA$=""THEN190
IF LEFT$ (A$, 3) =" 90 i'THEN260
IFLEFT$(A$,3)<>"10 "THEN190
IFKTHENH${HK)=H$(HK)+ .. ,"
HH$=STR$ (NU(K))+STR$ (CN(K)) + .. =(''+MID$ (_~$,20)+")"
IFLEN(HH$)+LEN(H$(HK))>72THENHK=HK+l
H$(HK)=H$(HK)+HH$:GOT0190
ONERRORGOT0630
IFEOF(l)THEN310
INPUT ifl , A, QN, PN
IFQ(PN)<0THENQ! (-Q(PN))=Q! (-Q(PN))+NU(K)*QN

143

144

ELSEQ(PN)=Q(PN)+NU(K)*QN
300 GOT0270
310 ONERRORGOT00:CLOSE l:NEXT K
315 I

GET SECOND HALF OF INVENTORY BACK ON LINE

320 CLOSE:UNLOADl
330 INPUT ..
PLACE.INVENTORY DISK #1 IN DRIVE 1. HIT RETURN TO START REPORT 11 ;G$
340 FORI!=lT05000:NEXT:MOUNTl
360 OPEN'1 R 11

, #2, .• INVl II

370 FIELD #2,4 AS Ql$,4 AS Q2$,(AS Q3$,24 AS G$,40 AS 0$
375 I

PRINT REPORT

380 GOSUB57el
390 FOR I=l TO 4000
400 IF Q(I)=0 THEN 530
410 QQ!=Q(I) :IFQ(I)<0THENQQ!=Q! (-Q(I))
420 IFL9>59ANDKK=0THENGOSUB560
430 L9=L9+1
440 RN=I
450 IFI<2000THEN46~ELSERN=RN-2000:IFFLAG=0THEN

CLOSE2 :OPEN 11 R11
, *2, •• INV2", 1: FLAG=l:

FIELD*2,4 AS Ql$,4 AS Q2$,4 AS Q3$,24 AS G$,40 AS 0$
460 GET if2,RN
4 70 IFLEFT$ (0$ '3) = .• $$$II THEN.LPRINTI+l00 0 0 0 ! ;

11 ********* NO INFORMATION ON PART *****~** 11 ;:
LPRINTTJSING"#:~,##*#*i'f'' ;QQ! :GOT0520

480 QH!=CVS(Ql$)~CVS(Q2$)+CVS(Q3$) :QD!=QH!-QQ!
500 LPRINTI+l00000!.;D$;'' 11

;

510 LPRINT USING 11 #l,#lii#~ 11 ;QQ!;QH!;QD!
520 KK=KK+l:IFKK=5THENKK=0:LPRINT:L9=L9+1
530 NEXTI:CLOSE:END
560 FORK=L9T066:LPRINT:NEXT
565 I

PRINT PAGE HEADING

570 FORK=0TOHK:LPRINTH$(K) :NEXT
580 LPRINT:LPRINTTAB(52) ~ 11 NEEDED ON HAND
590 KK=0:L9=5+HK:RETURN

EXCESS":LPRINT

605 I

TRAP ROUTINE: 6AD CODE NUMBER

610 IFERR=53THENPRINT:PRINT 11 NO COOE 11 ;MID$ (STR$ (CN (~)) ,2); '1 FILE"
620 ONERRORGOT00
625 I

TRAP ROOTD1E: ACCUMULATE INTO Q OVERFLOWED

630 IFERR<>60RERL<>290THENONERRORGOT00
640 NQ=NQ+l:Q! (NQ)=Q(PN)+NU(K)*QN:Q(PN)=-NQ
670 RESUME270

BASIC .t.l

.l.pril, 197".'

@

ABS • • . • •
A.CR interface
AND • • • • •
Array variables • . .•
ASC . • • • • •
ASCII character codes
ATN • • • •
AUTO • • • . . • • •

Backarrow
Boot loaders .
Branch~ conditional
Branch, unconditional
Branching . • . • . .

Carriage Retur~
Character, alphanumeric
CHR$. " - . . • . .

INDEX

CLEAR. • •......
CLOAD • . • • . .
CLOAD* for arrays
CLOAD? . . . •
CLOSE • . . • •

9

78
114
17
14
78
93
78
6

82
95
19
19
19

4' 83
4.,

78
6 9"
69
25
69
59
62 CLOSE, random files

Command Level
Commands List
CONSOLE

• • • • 4
69
34
10
70

Constants
CONT •••
Control/A
Control/C
Control/I
Control/O
Control/Q
Control/S
Control/U
Conversion
CSAVE.

• • • • • 9
• • • • 8 3

• • • • • 8 4
83
83
83

• • • 9
from non-Altair BASIC 116

cos •
CSAVE* for arrays
CVD
CVI
CVS

BASIC d,l

April, 1977

69
78
25
65

• • • • 6 5
65

145

DATA 24
DEF 28
DEFDBL 13
Definitions 4
DEFINT 13
DEFSNG 13
DEFSTR 13
DEFUSR 39
DELETE 70
DIM . . • 14
Dimensions 14
Dir-ect Mode 5
Disk format 118
Dis!< number 52
Disk Ot_)erations 51
Disk PROM Boots tr at_) Loader 121 .
Disk read and write, assembly code 120
Division,integer 39
Dou bl-: 9recision 11
DSKF 61
DSKI$ and DSKO$ 9rimitives 67

Echo routines 103
EDIT 39
Edit, definition 4
Editing, elementary 9rovisions 9
END 60 I 73
EOF . - 6~
EQV 17
ERASE 32
ERL 35
ERR 35, 78
Error codes 35
Error message format . . 8
Error messages, disk . 88
ERROR statement 38
Error traoping . . . 34
EXP 79
Exoression, integer 5
Expressions, string 31

FIELD f) 3
Fields, numeric 47
Fields, string . 47
File name 52
FILES command 53
FIX 79
FOR 21
FRCINT 40
FRE 79
Functions 28
Functions, derived 109
Functions, extended 39
Functions, intrinsic . 28
Functions, simulcited (for 4k) 109

146 3ASIC .i.,l

April, 1977

Functions, string 31
Functions, user-defined 28

GET 62
GOSTJB 22
GOTO . . 19

HEX$ 79
Hexadecimal constants 12

IF ••• GOTO 20
IF ••. THEN 19
IF' ••• THEN ... ELSE . . 20
IMP 17
Indirect Mode 5
Initialization dialog . . 102
Initialization dialog, disk 122
Initializing a disk 124
INP 27
INPUT 23
INPUT, disk 57
INSTR 79
INT 79
Intellec systems, Altair BASIC on.

KILL 56

LEFT$ • • • • . . 79
LEN • . • • 79
LET 18
Line • . • • • • . 6
LINE FEED 84
LINE INPUT . • • • • • • . 32
LINE INPUT, disk • . • . • 60
Line Length • • • . . 7
Line Number . • .. . 6
LIST • . • . . • • • • • • 71
Lists and Directories • . • . 69
LLIST • • . . • . • . . 71
LOAD . • • • . • • • . .. 54
Loader errors . • . • 102
Loading BASIC • • • • 95
Loading programs from oaoer tape 71
LOC • . . . 6 2
LOF 62
LOG 8 0
Loops . . • . 21
Lower case in9ut 84
LPOS 80
LPRINT 75
LPRINT USING 75
LSET • 66

3ASIC 4.1

April, 19i7

129

•

147

148

MAKINT • .
MERGE
MID$
MID$ function
MKD$
MKI$ • • . •
MKS$ • • • •
MOD Ol;)erator • .
MOUNT • . • . •

NAME •
NEW
NEW in
NEXT
NOT
NULL

disk

OCT$
Octal constants
ON ERROR GOTO
ON .•• GOSUB
ON .•• GOTO
OPEN . . .
OPEN, random files

e I a • e

Operators ••.•.
Operators, extended and disk .
Operators, logical ••.
09erators, Precedence of •
Operatots, relational
Ooerators, string
OR • • • • • •
OUT

PEEK . .
PIP utility ?rogram
PIP,
PIP,
PIP,
PI.? I
PIP,
PIP,
PIP,
POKE
PCS

CNV conmand
COP command .
DAT command . . .
DIR command . .
INI command
LIS COI7lmand
SRT command

Precedence, table of .
PRINT
PRINT USING
PRINT, disk
Promot string
PTD program
PUT

40
55
75
80
65
65
65
39
52

56
72
60
22
17
72

80
12
35
22
20
56
62
15
38 -
16
15
16
30
17
27

27
124
126
125
126
125
124
125
125
26
80
15
23
46
59
23
136
62

3AS'IC .1,l

April, 1977

Random buff er
Random File I/O
Random files
READ • • • • • • •
Remarks
REN UM
Reserved Words
RESTORE
RESUME . • • • •
RESUME NEXT
RETURN • •
RIGHT$ • • • • •
RND • • • • • • •
RSET • • • • • • • .
RSTLESS versions • .
Rubout • • • • • • •
RUN • • • • • •
RUN, disk files

SAVE
Saving programs on paper tape
Scientific notation
Sense switch settings . . .
Sequential File I/O
Sequential mode
SGN
SIN
Sing1e T;>recision . . .
S9ace allocation
St?ace hints
SPACE$
SPC
Special Characters
Speed hints
SQR
Statements
Statements, extended . .
STOP
STR$
String Literal
STRING$
Strings
Subroutines
Subroutines, machine language
SWAP

BASIC .i.1

April, 1977

.

. .

.

62
61
57
24
8
6
5, 91
25
37
37
22
80
80
66
128
9, 83
72
55

53
71
11
101
57
57
80
81
11
106
107
81
81
82
108
81
72
32
60, 77
81
5
81
30
22
112
33

149

•

150

TAB
TAN
TROFF
TRON •
Type of constants
Type of variables
Type,definition

UNLOAD .
USR

VAL
Variable types
Variables
VARPTR .

WAIT .
WIDTH

XOR

81
81
33
33
11
13
5

52
81, 112

81
13
12
81

26
34

17

82
82

·-

3ASIC ~.l

April, 197~

SOFTWARE AGREEMENT
This software is copyrighted and the
property of MITS, Inc., 2450 Alamo
SE, Albuquerque, New Mexico, and
has been supplied by MITS to you.
This software is furnished subject to
the following restrictions: It shall not
be reproduced or copied without
express written permission of MITS,
Inc.
To do any of the above without approval
by MITS, Inc., may subject you to
liability.
This agreement shall be considered
accepted and binding upon your receipt
of· this and any software.

