
ZDT -A Debugging Program for the Z80

il
•

I ,,

1651 Third Ave .. New York, N.Y. 10028 (212) 860-o300 lnt'l Telex 220501

ZOT - A DEBUGGING PROGRAM FOR THE ZAO

Distributed by:

Lifeboat Associates
1651 Third Avenue

~ew York
N.Y. 10029

212-960-030()

c

c

ZOT ZBO Debugging Utility

ZM'

The Micronics, Inc. Z-Sn Disassembler (ZDT) is a flexible
operating aid for use in documenting and debugging programs,
as well as assisting in machine language programming. ZDT has
25 separate commands, all consisting of one letter of the
alphabet, and followed optionally with address and data, according to the format of each command. The Disassembler
runs under any memory size and it and it automatically
,relocates itself to the upper end of memory, 190nh bytes
below the base of the CP/M or eqivalent operating system.

INITIALIZATION

The only change needed is to set the number of 12A byte
sectors per track for disk reads and writes (W and R
commands)~ The standard version of ZDT is set for 26 sectors.
If you are using it with a system with other than 26 sectors
per track, load ZDT.COM with the L command and program 074AH
{494AH for versions loading at 4300H) to the correct value with the P command. Then return to the operating system (B
command), and SAVE 24 ZDT.COM, as follows:

A>ZDT

ZDT Version 1.40 (C) Micronics, Inc. 1980

M>L ZDT.COM
M>P 074A
074A lA 40
074B BA "'C
M>B

(Enter correct number of sectors in hex)
(Enter control -C)

A>SAVE 24 ZDT.COM
A>

All functions of ZDT will correctly operate except for R and
W of more than the number of sector for one track until this
change is made. (Please note however that these changes have
already been implemented for the ZENITH-HEATH H-89, TRS-80
Model 1, and Intertec SUPERBRAIN.)

ZBO is a registered trademark of Zilog, Inc. of Cupertino, CA.
CP/M is a trademark of Digital Research of Pacific Grove, CA.

1

c

(
v

ZDT zeo Debugging Utility

USING Zr>tr

Upon loading the system,'by typing ZDT CR after the system (A>) prompt the prompt M> will signify command status. Typing any character will enter a command or will result in M>?, signifying a bad command or character other than A through z being typed. CTRL-~ is ignored and passed to the operating system for printer on-off switch, and CTRL-S will stop the display. Entering CTRL-C will term1nate the current operation and return to the M> prompt. Upon typing a command, the program will execute the command, or insert a space, and accept address or data. If the command requires more than address or data, another space will be added between each separate entry, then execution begins immediately upon entering the final data keystroke. If an error is made on entry, a delete or rub will delete the character and backspace the display, ready to accept a correct entry. nn entry of address and byte data, characters other than n-q or A-F are edited out. At any time before data entry is compl,ete , the command can be aborted by typing CR or CTRL-C , returning to the H> prompt. During the display of data, such as a disassembler listing or dump, the display can halted by hitting the space bar. Any character will then continue the display, or CTRL-C will terminate it.

Reentering ZDT can be accomplished by jumping to the address computed by adding 04~ to the address at noo6h

BREAKPOINT ROUTINE

The breakpoint routine consists of commands G, U, V and X (see below). Using this module allows running a machine language program with up to six halts or breakpoints. The points must be chosen to fall at the beginning of an instruction. Use the S (symbolic dump) to verify the address, and use U to set the breakpoint. UP to six breakpoints may be set at any one time, and V will display the ones currently set. The purpose of the routine is to allow controled execution of a program in memory, with debugging each instruction or module by setting the breakpoint, and observing the register dump wich occurs as each breakpoint is executed. When the register dump occurs, the contents of memory may be examined with the D command, and execution of the program continued ·with the G command, automatically restoring the old instruction and register contents. Type X to see the contents of the registers displayed as they were upon encountering the breakpoint. After the last breakpoint

2
Revis ion 1 • 4? - a............ ,

c

ZDT ZRn Debugging Utility

has been encountered , the G command prints a message: NO
BREAKPOINT SET, CONTINUE (Y/N). Answer Y to continue. If G is
accidently typed in other circumstances and a Y is given, the
registers are loaded with whatever junk is in the usual
register storage area and the system jumps to a random
address. This is not going to give good results.

DISASM.TST

DISASM.TST is a file containing Z-Rn instructions. Load with
the L command (L OISASM.TST). With no address specified, the
file will be loaded at ~1nnH (43nOH for relocated versions),
so disassemble this test program by : 's n1nn 04f'lf!;. { s 4300
4606.). This is just a sample of code to show the format of
the S symbolic dump.

ZDT COMMANDS

The following is a summary of commands in the ZOT debugger.
Use the CP/M DDT manual supplemented by these notes

A bbbb

Enters an ASCII character into memory from the 'keyboard,
beginning with address bbbb. Echos the entry to the 'keyboard.
Delete is not supported in this mode, and will enter any
keystroke into the next memory location and continue until
terminated by fCTRL-C), then prints the next available
address before returning toM>.

.:

B

Warm Boot (returns to CP/M). B does not disturb the programs
in the TPA (0100 to the bottom of CP/M 430n for the relocated
version) so that programs may be saved with the modifications
made by the disassembler. Type SAVE (etc. see CP/M
information for correct syntax).

3

c

ZDT ZR~ Debugging Utility

C bbbb eeee nnnn

Memory compare. Compares byte by byte a memory block starting
at bbbb and ending at eeee-1 with the block starting at nnnn.
Useful in verifying prom programming, or other data supposed
to be the same. Prints address and data in first block then
data in other block when compare fails, or nothing at all if
compare succeeds.

D bbbb eeee

Dumps hex and ASCII value of memory between addresses bbbb
and eeee. Does not include byte at eeee if another line would
be generated. Fills all of last line, even if greater than
eeee.

E bbbb eeee rASCII STRING.,

Search for A.SC!J string (limit l6 characters) printing
occurrences of string from address bbhb to eeee, not
including eeee. Requires carriage return at end of string
entry.

F bbbb eeee rHEX STRING,

Search for hex string (limit 1~ bytes) printing addresses of
all occurrences of the specified combination from address
bbbb to and not including eeee. Requires carriage return to
signify end of string of hex bytes.

G

c~ to next breakpoint. Loads registers as they were upon
encountering the breakpoint, restores the instruction at the
old breakpoint, and will continue execution to the next
breakpoint. If G is used without a breakpoint, the message NO
BREA¥POINTS SET,C~NTINUE (Y,N) will display.

4

(~

(_,.

(
_.;

ZDT ZBO ~ebugging Utility

H aaaa nnnn

Hex add and subtract. Prints + and the sum, - and the
difference in hex on the console.

I nn

Input. Prints the hex value at the input port nn.

J nnnn

Jump to and execute location nnnn. Puts the M> entry point on
the stack, so the routine at nnnn can end in a return, if so
desired. This is convenient when testing subroutines or
modules of ·a larger program.

K.

Keyboard echo. tnputs from keyboard, and puts out to console.
Memory not affected.

L filename.ext nnnn

Loads a disk file to location nnnn so it can be dissambled or
dumped (default is to 0100 Hex, 4300 Hex for the .relocated
version). For instance, L B:DISASM.COM will load the
disassembler for disassembly. B: is th~ drive number, and
can be omitted for drive A. It is possible to load a file
which is too big to fit under the disassembler, and will
write over it, causing a halt to the proceedings.

M bbbb eeee nnnn

Move a block of data beginning at bbbb and ending at eeee -1
to nnnn. Moves files up and down in memory, one byte or Many.
Does not get confused and write over itself.

5

Revision 1.42, August l9Rn

- -- -·-=- 21!..3!¥&;;5 ' ~.w.!-
f t w

ZDT ZAO Debugging Utility

N aaaa

Fnters offset aaaa. This allows loading a program for disassembling at an address other than the run address, and subtracting the offset from all addresses printed on Dump, Symbolic Dump, etc. Use the H command if necessary to determine the correct offset. Enter N followed by a carriage return to reenter the default value of 0000. (normal)

0 nn dd

output. Puts byte dd out to port nn.

p bbbb

Program. Keyboard progranming, input hex from keyboard, ann insert into memory. Space bar advances without changing memory, and rub or delete backs up the pointer to previous byte or bytes to make corrections. Prints location and current value, a space, and accepts data, which is printed on the console as it is put into memory.

Q bbbb eeee

Prints ASCII, of any, from memory location bbbb to eeee-1.

R n 11 tt ss bbbb

Read block of data from disk n of length 11 (pages-256 bytesl starting at track tt and sector ss, placing the data at bbbb. The numbering is hexadecimal, values for tt from nn to 4C, ss from 01 to lA for standard ~~~ IPM diskette formats. These values will vary depending on the size of your disk. Refer to your hardware manual for details.

Revision 1.4'-, August lOAO

,/
•J
d

0
e

s

•
ZDT z~n Debugging Utility

s bbbb eeee

Symbolic dump. 'Prints addresses, the hex code located there,
and the Zilog/Mostec mnemonic for the instruction represented
from address bbbb to eeee -1. The last instruction will be
printed entirely if the end address falls within a two-or
more-byte opcode.

T bbbb eeee

Destructive memory test from location bbbb to eeee-1. If this
core includes the stack (at n~nH) or the disassembler,
results will not be as expected. 'Prints memory addresses, the
byte which was written, and the byte fetched, when errors
occur .

. u bbbb

Set breakpoint at address bbbb. TJp to six breakpoints may be
set at one time. More than six will generate an error
message. Breakpoint will be reset to the original byte when
found and the G command used to continue execution.

v

Displays all currently set breakpoints.

w n 11 tt ss bbbb

Write on disk n the data at bbbb for a length of 11 starting
at track tt, sector ss. Writes sequentially until the length
(in pages) is written to disk. See above under R (read).

7

Revision 1.42, Aug~st 19~n

c

(_;

mwnr ·· :::

ZDT zen Debugging Utility

X

Registers display. Current contents of all the ZRn registers.

y

Not used.

z bbbb eeee dd

Zero or set memory. Places in memory locations starting with
bbbb and endinq with eeee -1 the byte dd.

Revision 1.4,. Auau~+ 1QRn

. ..

th

LIFEBOAT ASSOCIATES
SOFTWARE PROBLEM REPORT

Please use this form to report errors or problems in software supplied by Lifeboat Associates. This form is designed to act as a transmittal sheet, and problem details can be described on additional pages.

Date: ----------------
software Product Name: Version No. --------------------Disk Format: Serial Number: ------ ----------------Computer Type: ______________________ __ CPU Type: _....._ __ _

Serial Number: Version: --------- ------
Operating System: ________ _

Memory Si2e: Number of Disk Drives: ----- -----
Please describe the problem you have encountered. Include references to the manual if appropriate. Try to reduce the problem to a simple test case. Enclose any appropriate listings. If you have discovered a patch or interim solution' please describe it.

This form may also be used to .suggest enhancement~ to our software products.

Information on product changes and current version numbers are published in Lifelines, our software newsletter.

PROBLEM DESCRIPTION:

Name: Phone: --------------------------------------- -------
Address:

---City:

Return to: Lifeboat Associates
1651 Third Avenue

State: ___ __

New York, New York 10028

Zip: ____ _

lspr-08/01/80

