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0 INTRODUCTION TO CHAPTER I 

This chapter serves as the foundation upon which subsequent chapters are 

based. The basic structure of computer systems is described, principles 

of the binary number system are developed, the functional organization 

of memory and the central processing unit is introduced and the 

execution of several computer instructions is presented in some detail. 

By writing and loading simple programs of your own, yott will learn to 

use the Microcomputer Training System keyboard and display. You will 

observe first-hand the dynamics of program execution by watching, 

step-by-step, the results of executing individual instructions on your 

own computer. 

0 If you are familiar with some of the topics covered here, skim but do 

not skip the material. The basic concepts are related to the structure 

and operation of the Microcomputer Training System. 

0 

After completing this chapter you will have a clear comprehension of the 

b~sic fundamentals of computer hardware and software. 

your knowledge will be rooted in hands-on usage of 

system. 

Most importantly, 

your MTS computer 

. 
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1.1 BASIC CONCEPTS 

1.1.1 Definition of a Computer 

A computer is an electronic system which performs arithmetic and logical 

operations on data according to a sequence of instructions. The system 

consists of both hardware (physical devices) ang software (sequences of 

instructions} • 

HARDWARE: The electromechanical components of a 

compute.r system. 

1.1.2 Basic Hardware Structure of a Computer 

A computer has three principle hardware subsystems: a Central Processing 

Unit (~), a memorx, and Input/Output (I/O) devices. 

CPU: The central processing unit, a set of elements 

which perform the actual arithmetic and logical 

operations. The CPU also s~rves the central 

control function of the computer system. 

MEMORY: A physical device in which data and instructions 

are stored for subsequent processing. 
~ 

""" 
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I/O DEVICES: Electro-mechanical devices which provide 

input of data and instructions to the 

system and output of results, for 

example keyboards for input and displays 

for output. 

These three subsystems are interconnected such that each one can 

communicate with the other two: 

-- -

CPU 

, I 

~ -

MEMORY I/O DEVICES 
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The model for computer operation is as follows: 

1. Instructions are input via an I/O device and 

stored in memory. 

2. Data are input via an I/O device and stored 

in memory. 

3. The data are processed in a sequence and manner 

specified by the instructions. 

4. The results of the data processing are output via 

an I/O device. 

In-Figure 1-1, showing the layout of the MTS computer, the principal 

subsystems have been · ioentified: The CPU, Memory, and Keyboard and 

Display. We will look at these in more detail later in the chapter. 

• . 

0) 
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MEMORY 
Space for 1024 bytes 
of CMOS RAM 
memory - 512 bytes 
provided with system 

PROCESSOR 
HARDWARE 
8080 microprocessor 
plus 8228 system 
controller and 
clock circuit 

SWITCH (A) 
provides the option 
to switch power 
supply mode to 
two user-supplied 
1.5 volt dry cells. 
This permits re­
tention of data 
in CMOS RAM 
memory. 

SWITCH (B) 
provides the option 
of operating the 
system in a hard­
ware-generated 
single-step mode 
or in a free-run­
ning mode. 

POWER SUPPL V 
CONNECTION 
the system requires 
a simple external 
supply of +5 volts 
(at 1 amp) and 
+12 volts Cat 0.2 
amp) -user supplied 

MEMORY OMA 
1024 bytes of ElectricaHy 
Eraseable PROM memory 
containing ICS Educational 
Monitor 

Direct Memory Access COMAi 
and timing circuits 

EDGE CONNECTOR 
permits interfacmg to 
external devices and 
expansion of memory 
(CPU address, data control 
buses are made available 
at board-edge pinsl 

PROGRAMMABLE 
PERIPHERAL INTERFACE 
provides 3 programmable 8-bit 
1/0 ports (can be programmed to 
provide two serial 1/0 ports for 
asynchronous transmit and 
receive - ICS Monitor handles 
all transmit/receive functions) 

FREE AREA 
provided for hardware 
additions by user 

DISPLAY 
8-<ligit, 7-segment 
LED display 

KEYBOARD 
25-key keyboard 
116 hex keys and 
9 function keys) 
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1.1.3 Basic Software Concepts • The computer performs its functions under the control of a sequence of 

instructions. As an illustration, consider using a computer to convert 

miles to kilometers using the approximation that there are eight . 

kilometers in five miles. The rule, as it might appear in a textbook, 

would say "Multiply the number of miles by eight and divide by five to 

obtain the answer in kilometers." The computer will need more detailed 

instructions than this, and the sequence might appear as follows: 

START 

INPUT NUMBER OF MILES TO BE CONVERTED 

STORE IN MEMORY UNDER (MILES) 

RETRIEVE (MILES) FROM MEMORY 

RETRIEVE (8) FROM MEMORY 

MULTIPLY (MILES) ~IMES (8) 

STORE IN MEMORY UNDER (TEMPORARY) 

RETRIEVE (TEMPORARY) FROM MEMORY 

RETRIEVE (5) FROM MEMORY 

DIVIDE (TEMPORARY) BY (5) 

STORE IN MEMORY UNDER (RESULT) 

OUTPUT (RESULT) 

STOP 

01 
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A sequence of instructions which performs such a calculation (or 

computation) is called a program. 

PROGRAM: A sequence of instructions which performs a 

specific calculation, computation or set of 

logical operations. 

Programs may be specified which perform a vast and varied number of 

functions, including mathematical calculations, symbol manipulation, 

word processing and the detailed control and sequencing of I/O devices. 

~ A collection of such programs is referred to as software. 

0 

SOFTWARE: 1) A collection of programs which perform 

many different functions~ 2) The program 

component of a computer system in general, 

as distinguished from the hardware or 

physical component. 

• 
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1.1.4 The ICS Self-Study Microcomputer Training Course 

This course is designed to provide you with the basic knowledge and 

practical experience which will give you the capability to: 

-Specify and write programs for performing a wide 

variety of different functions, 

-Enter programs and data into the Training Computer. 

-Verify that your programs operate correctly and, 

when they do not, modify them until they do so. 

-Learn design techniques by actually connecting 

I/O devices to the Training Computer and controlling 

them with your own programs. 

-Explore the many hardware/software interrelationships, 

lear~ the cost-effective use of each, and design 

.complete systems of your .own. 

In the succeeding chapters of this book you will be given, in 

step-by-step fashion, a sound foundation in both software and hardware 

techniques. You will progress from the simplified concepts of this 

introduction to a thorough understanding of these techniques as you 

"learn by doing", implementing each new concept yourself on your own 

computer. 

0 
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1.2 NUMBER SYSTEMS AND REPRESENTATIONS -
1.2.1 The Representation of Numbers 

To physically represent a decimal number requires an element with ten 

possible states, one for each of the decimal digits 0-9. Such a 

representation is found, f.or example, in the cog wheels of mechanical 

calculators. Elements with more than ten states are also common, for 

example in clocks. 

For reasons of reliability and cost, such multi-state representations 

are impractical in the various types of electronic circuitry required by 

computer systems. A reliable and practical representation is a 

two-valued state, which may be realized by the use of two dif fere.nt 

• voltage levels, by the state of a gate or flip-flop which is either open 

or closed, or by the positive or negative polarity of a magnetic 

element. In all cases, however, the· computer operates on these two 

states logically as representing ones and zeros. Computers, therefore, 

use a two-state binary number system to represent numbers. 

• 

BINARY NUMBER SYSTEM: A two-valued number system 

using only the digits 0 and 1. 

To understand the basic principles of computer operation, it is 

essential to know something about number systems in general, and about 

binary numbers in particular • 
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1.2.2 The Decimal Number System 

Consider the following four ways of representing the decimal number 

8192: 

1) 2) 3) 4) 

8000 8 x 1000 8 x 10 x 10 x 10 8 x 103 

100 1 x 100 1 x 10 x 10 1 x 102 

90 9 x 10 9 x 10 9 x 101 . 

2 2 x 1 2 x 1 2 x 10° 

8192 8192 8192 8192 

All of these representations are familiar. Column (1) indicates that 

the number 8192 can be represented as the sum of four different numbers. 

Columns (2) (4) go further by illustrating that 8192 can be 

represented as the sum of four products. Column (4), however, 

exemplifies the basic principle of all number systems: each product can 

be obtained by multiplying a digit (in decimal the symbols 0-9) times a 

base (in decimal the number 10) raised to a power (see column 4 above). 

DIGIT: One of the symbols used in a number system. 

•••• 

' ' 
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BASE: The number of different symbols used in a 

number system. 

POWER: The number of times that a base is multiplied 

by itself to form a product. 

The deciinal number system has ten digits or symbols; therefore the 

decimal number system has a base of ten, and in the example each product 

is obtained by multiplying a digit times the base ten raised to a power. 

The power to which the base is raised can be seen to be a natural 

progression from the least significant digit (rightmost) to the most 

significant (leftmost). The value of a base raised to a power is thus a 

function of its position in a string of digits, where position is 

counted from right to left starting with zero. In the following table we 

call the quantity of a base raised to its positional power a 

"multiplier". This number is multiplied by a digit to provide the final 

product: 



• 
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POSITION 3 2 1 0 

MULTI- 103 102 101 10° 

PLIER {1000) {100) {10) ( 1) 

DIGI'r 8 1 9 2 
-

PRODUCT 8000 100 90 2 
. 

Tables such as the above can be used to express the magnitude of a 

number in a system with any arbitrary base. The binary number system 

will be considered next. 

1.2.3 The Binary Number System 

The choice of base for a number system may be accidental or deliberate. G 
The decimal system doubtless became widespread because of the ease of 

counting on ten fingers; Nonetheless, the Babylonians used a base of 

sixty and the Mayans, a base of twenty. The binary number system, which 

is most appropriate for computers, uses a base of two, and the digits 0 

and 1. 

Consider the £ollowing binary number: 

11011 
I 

Had we lived from birth with a binary number system, we would 

immediately grasp its magnitude. 

convert it to its decimal equivalent. 

As we have not, it is useful to 
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Knowing that binary numbers have a base of two, we can construct a table 

similar to that for decimal numbers. The ~able converts binary numbers 

to their decimal equivalent in the following fashion: 

POSITION 4 3 2 1 0 

MULTI- 24 23 22 i1 20 

PLIER (16) (8) (4) (2) (1) 

DIGIT 1 l 0 1 1 

PRODUCT 16 8 0 2 1 

Thus 11011 (bi~ary) • (16 x 1) + (8 x 1) + (4 x 0) + (2 x 1) + (1 x 1) = 

27 {decimal). Larger tables may be constructed for converting longer 

strings of binary _!Jumb~rs~ 

Looking at the table again, it can be seen that the multiplier of each 

.digit position is exactly twice the value of the position preceding it. 

Using this property, it is easy to quickly jot down the products which 

are to be summed. 

Conversion from decimal to binary could also be accomplished by using a 

table, but it is much easier to use a process which we may call 

"rem.ainder ing". .Dividing an even decimal number by two will produce a 

quotient with a remainder of zero; dividing an odd decimal number by two 

will produce a quotient with a remainder of one. The remainders are 

used to construct the binary number, in the following example for 

decimal 57: 
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Quotient Remainder • 
57/2 = 28 1 position 0 

28/2 = 14 0 1 

14/2 = 7 0 2 

7/2 = 3 1 3 

3/2 = l 1 41 1/2 = 0 1-5--i 

1 1 1 0 0 1 

Decimal 57 is the equivalent of binary 111001. We may check this by 

quickly jotting down the products, counting from position 0: (1 x 1) + 

(2 x 0) + (4 x 0) + (8 x 1) + (16 x 1) + (32 x 1), which sum to 57. -·') 
1.2.4 Binary Addition 

The rules for binary addition are very simple: 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 10 

In performing the final addition, we would say to ourselves "One plus 

one equals zero and carry one". The rule for carries in binary is 

similar to that in decimal but much simpler, as there are only two 

symbols to worry about instead of ten. In both systems, symbols cycle ()/ 
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(are successively incremented by 1) thru a digit position until all have 

been used. 

is repeated. 

The next higher position is then incremented and the cycle 

The following addition tables illustrate addition (counting) rules for 

binary and decimal numbers: 

0 + 0 = 0 0 + 0 = 0 

0 + 1 = 1 0 + 1 = 1 

1 + 1 = 10 1 + 1 = 2 

10 + 1 = 11 2 + 1 = 3 

11 + 1 = 100 3 + 1 = 4 

100 + 1 = 101 4 + 1 = 5 

101 + 1 = 110 5 + 1 = 6 

110 + 1 = 111 6 + 1 = 7 

111 + 1 = 1000 7 + 1 = 8 

1000 + 1 = 1001 8 + 1 = 9 

1001 + 1 = 1010 9 + 1 = 10 

The binary portion of this table provides a graphic illustration of the 

relationship between a digit's position in a string and the power to 

which the base is raised at that position. In the "zero" position, note 

that O's and l's cycle. In the "one" position, two O's cycle with two 

l's. In the "two" position, four O's will cycle with four l's. Each 

cycle is twice (base ~) the length of the previous cycle. For decimal 

numbers each cycle will be ten times (base ~) the length of the 
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previous cycle. 

Subtraction, multiplication, division and the representation of negative 

binary numbers will be discussed in a·subsequent chapter, but keep in 

mind that these operations are all derivatives of the basic operation of 

addition - which in turn is really nothing mo.re than counting. 

When using more than one number system, their representations can often 

become confusing. To avoid this problem, a number m~y be subscripted to 

indicate its base: 

112 

11 
iO 

(three) 

(Eleven) 

In this manual whenever a number is not apparent from context, it will 

be subscripted appropriately. 

A number of nomenclature conventions are important to introduce at this 

time: bit, string, bit eosition, most significant bit, and least 

significant bit. 

BIT: An abbreviation for binary digit. 

BIT STRING: A string of bits 

~ ..,, 

~ 

"" 

\ 

0 
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BIT POSITION: The location of a bit in a bit string. 

MOST SIGNIFICANT BIT: The leftmost bit of a bit string. 
-------------

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string. 

1.2.5 Hexadecimal Representation 

We have seen that binary numbers are ideally suited to machine 

representation, and that they are easily added. Subtraction, 

multiplication and division are also simple operations in binary. There 

is in fact only one drawback to the use of binary numbers: they are 

difficult to perceive and describe if there are more than a few bits in 

a number. Consider, for example, the binary number: 

1011000100001001 

It is almost impossible to look at such a number and remember the digit 

in each bit position. There needs to be a way of encoding and naming 

such numbers so that they may be more easily comprehended, while at the 

same time preserving the underlying binary notion. In the decimal 

system, digits are often grouped by threes, separated by commas (e.g. 

862,249,101). Consider some possible groupings of the bits in our 

• example: 
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10110001 00001001 (grouped by 8 bits) 

1011 0001 0000 1001 (grouped by 4 bits) 

10 11 00 01 00 00 10 01 (grouped by 2 bits) 

A group of eight bits can represent one of 256 numbers ranging from 

000000002 to 111111112 , or from O to 255 (the reader is asked to 
10 10 

verify that this is so by converting 11111111 to a decimal number). 
. 2 

This is considerably less than the 65,536 numbers which can be 
10 

repre~ented by a group of sixteen bits, but is still too large (256 

different names?) to be useful. A two bit group, on the other hand, can 

represent only four numbers, and is too small to be useful. A four bit 

grouping, representing sixteen possible numbers, seems both visually 

satisfactory (look at the groupings again) and reasonable. What we need 

is a set of sixteen symbols to represent each of the different numbers, 

and these are given in the following table: 

~ 

0000 0 1000 8 

0001 1 1001 9 

0010 2 1010 A 

0011 3 1011 a 

0100 4 1100 c 

0101 5 1101 0 

0110 6 1110 E 

0111. 7 1111 F 

0 

d 



0 
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By adding the first six letters of the alphabet to the ten existing 

decimal symbols we are able to unambiguously name each unique group of 

four bits. Returning to the original sixteen bit example, 

011 001 0001001 

B 1 0 9 

it can be seen that this notation is much easier to read and remember. 

The introduction of a sixteen-symbol convention to represent groups of 

four binary digits is for the convenience of the user only. It can be 

seen, however, that we have in fact introduced a new number system with 

a base of 16 •, and which is called the hexadecimal · number system 
10 

(abbreviated hex) • 

HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system 

using the symbols 0 - 9, A - F. 

While it is possible to add hex numbers and construct tables for 

converting hex to decimal and decimal to hex, we will not consider these 

operations in any detail. The use of hex notation will be limited 

solely to the representation of four-bit groups of binary numbers, and 

is used only to facilitate describing them. The use of numbers such as 

3C 
16 

82FF etc. 
16 

binary numbers • 

will always be understood as a simple encoding of 
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1.3 THE ORGANIZATION OF MEMORY 

l.J.l Memory Words 

Data and instructions, represented as binary numbers, are stored in the 

computer's memory. The fundamental units of memory are words, each of 

which has a word size. --
WORD: The basic unit of storage in a computer memory. 

WORD SIZE: The number of bits which. are contained in a word. 

bit(N-1) .............. bit 0 I A memory word with 

word size N. 

The word size of memory varies with the size of the computer system. 

Very large computers have word sizes from 32 to 64 bits. Mini-computers 

typically have word sizes of 16 or 24 bits. Micro-computers usually 

have a word size of 8 bits, which is the size of the MTS memory word. 

One factor is common to most - the word size is divisible by eight. 

This has lead to the adoption of a special term for an 8-bit word or 

string, the byte. 

l 

BYTE: An B-bit word. More generally, an B-bit string. 

1 0 1 1 0 l 0 A byte representing the number 181 
10 

(or as16 ) • 

0 

0 
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Each word in a memory has a location which is identified by a memory 

address. 

MEMORY LOCATION: The location of a word in a memory. 

MEMORY ADDRESS: A number specifying the exact location 

of a memory word. 

A memorx's size is equal to the number of words in a memory. 

MEMORY SIZE: The total number of words in a memory. 

An address size is the number of bits used to specify a memory 

address. 

ADDRESS SIZE: The total number of bits which may be 

used to specify a memory address. 
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1.3.2 Memory Module 

At first glance it might appear that memory size and address size are 

directly related. For example, a computer ~ith an address size of eight 

bits can address 256 words;. with an address size of sixteen bits, 65,536 

words can be addressed. aowever, the capability of addressing words 

does not imply that the memory must contain that many words. Most 

computers, in fact, have far fewer memory words available than they are 

capable of addressing. This is possible because memory is usually 

available in modules, with each module containing a few hundred or a few 

thousand words. The same CP.U can thus be· used in a variety of 

configurations, with the size of memory used dictated by the application 

for which the system has been designed. 

MEMORY MODULE: A unit of memory containing a fixed number 

of words. 

Memory modules contain a number of words or bytes which is generally 
10 

expressed as some factor of the quantity 1U24 10 (2 ). This is such a 

convenient unit for describing memory size that the number 1024 has been 

given the symbol K. A memory module containing 4096 bytes is referred 

to as a 4K memory; one with 512 bytes, a .SK memory. These concepts may 

be illustrated by the diagram on the following page: 

• 
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The diagram describes the memory structure of a system with a word size 

of eight bits, an address size of sixteen bits (Why are sixteen bits 

required?), and a memory size of l.SK words. It is in fact the memory 

structure of your own MTS computer system. Two important properties of 

memory organization are illustrated here. l} Within a memory module, 

addresses are numbered sequeQtially: 2) If two or more modules are used, 

the first address of the second module is independent of the last 

address of the first module (although for ease of implementation it is 

usually some multiple of lK}. This independence is made possible by the 

fact that the two modules are "wired in": the addresses of available 

words are determined by the hardware of the system. 
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1.3.3 Memory Access 

DECODER: A device containing a switching matrix which 

looks at the pattern of a set of input signals 

and selects an output signal determined by­

that pattern. 

The diagram on the following page illustrates the process: 

0 

0 
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DATA 
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The memory select lines are essentially internal to the memory itself. 

The address lines and data lines serve as the communication channels 

between the CPU and its memories and I/O devices, and they have special 

names: address bus and data bus. 

ADDRESS BUS: The set of lines carrying address information. 

The number of lines in the bus will be equal 

to the address size of the system. 
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DATA BUS: The set of lines carrying data. The number of 

lines will be equal to the word size of the 

system. 

l.3.4'Varieties of Memory 

There are two types of memory in your MTS computer system: Random Access 

Memory (RAM), which may be read or written, anG Read Only Memory (ROM), 

from which data may be read but not written into. To read data from 

·memory, the address bus is used to select a word whose contents can then 

be read out onto the data bus. To.write data into memory, the address 

bus is used to select a word whose contents are then changed to that 

which is being sent on the data bus. Reading the contents of a word 

leaves the word unchanged. 

RAM: Random Access Memory which may be both read and written. 

ROM: Read Only Memory which may be read but not written. 

Read and write operations are illustrated in the following diagram: 

• 

•• 
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Read operations put the contents 
O'f-a word onto the data bus. 

Write operations put the information 
on the data bus into a word. 

In Figure 1-2 the RAM and ROM memories of your MTS system are indicated. 

There are 512 words of RAM and 1024 words of ROM memory. Your ROM 
10 1.0 

contains a set of programs called the MONITOR, designed to assist you in 

learning the system. The functions of the MONITOR will be defined step 

by step as you progress through this manual. The RAM memory will be 

used to store the different programs which you will write yourself. ROM 

memories are used for programs which do not need to be changed, and are 

protected against inadvertent modification. RAM memories are used for 

program development (these programs can then be placed in a ROM memory, 

but special equipment is required) and for storage of transient data in 

~ actual applications. 



~ INTEffiTIID 
d.§ <DV1FUER 
~· SYSIFfl/LS, lf\C. 

! 
MEMORY 
Space for 1024 bytes 
of CMOS RAM 
memory - 512 bytes 
provided with system 

PROCESSOR 
HARDWARE 
8080 microprocessor 
plus 8228 system 
controller and 
clock circuit 

SWITCH (A) 
provides the option 
to switch power 
supply mode to 
two user-supplied 
1. 5 volt dry cells. 
This permits re­
tention of data 
in CMOS RAM 
memory. 

SWITCH (B) 
provides the option 
of operating the 
system in a hard­
ware-generated 
single-step mode 
or in a free-run­
ning mode. 

POWER SUPPLY 
CONNECTION 
the system requires 
a simple external 
supply of +6 volts 
let 1 emp) end 
+12 volts (at 0.2 
amp) -user supplied 

MEMORY 
1024 bytes of Electrically 
Erueable PROM memory 
containing ICS Educational 
Monitor 

OMA 
Direct Memory Access CDMA) 
end timing circuits 

DISPLAY 
8-digit, 7-segment 
LED display 

MPUTER TRAINING SYSTEM 

EDGE CONNECTOR 
permits Interfacing to 
external devices and 
expansion of memory 
{CPU address, data control 
buses are made available 
at board-edge pins) 

PROGRAMMABLE 
PERIPHERAL INTERFACE 
provides 3 programmable 8-bit 
1/0 ports (can be programmed to 
provide two serial 1/0 ports for 
asynchronous transmit and 
receive - ICS Monitor handles 
all transmit/receive functions) 

FREE AREA 
provided for hardware 
additions by user 

KEYBOARD 
25-key keyboard 
{16 hex keysand 
9 function keys) 

• . 

"' 00 



0 
1 - 29 

1.4 STRUCTURE OF THE CPU 

On the first page of this chapter, the CPU was described as a set of 

elements which perform the arithmetical and logical operations and also 

serve as the ce.ntral controlling elements of a computer system. We will 

look at some of these operations in more detail in this chapter, but 

first we may review the structure of the system including the data bus 

and address bus: 

DATA BUS 

CPU MEMORY 

0-
\ 

ADDRESS BUS 

• 

The CPU may send or receive data along the . data bus (it is 

bidirectional), but no memory address is sent to the CPU along the 

address bus. 

1.4.1 Functional Units 

Internally, the CPU consists of four functional units. One is concerned 

·principally with addressing functions, selecting addresses which will be 

sent out on the address bus. A second unit is concerned with 

interpreting and decoding the instructions which are stored in memory. 

The third is the Arithmetic and Logic Unit (ALU), in which all 

arithmetic and logical functions are performed. These units are able to 
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communicate with each other over an internal data bus, which is the 

fourth functional component of the CPU. The following diagram 

schematically outlines this organization: 

(internal data bus) 

c; ARITHMETIC AND LOGIC ·1 
UNIT 

INSTRUCTION UNIT I 

ADDRESSING UNIT 
i---

CPU ORGANIZATION 

DATA BUS 

1---AO_D_R_tE_s_s_B_u_s ___ ) 

• 

o· 
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The internal data bus is illustrated here only to indicate that there is 

a physical pathway between the various internal units of the CPU. The 

term data bus will always refer to the main (external) data bus, to 

avoid confusion. 

Each of the internal units of the CPU has one or more registers, one or 

two byte storage elements which are similar to memory words but which 

are used for temporary storage, for holding the results of a 

calculation, or for other dynamic purposes. The nature and function of 

each register will be described as its use is first encountered. 

REGISTER: A one or two byte storage register used by 

the CPU for temporary storage or other dynamic 

purposes. 

1.4.2 The Execution of Instructions 

A computer is a system which performs operations on data according to a 

sequence of instructions called a program. A program is created by a 

user (programmer) to cause the computer to fulfill a particular task. 

An instruction is the smallest element of the program that conveys a 

complete meaning; it is similar to (and often represented by) a command 

in human language such as ADD B to A. To be stored in the computer's 

memory and handled by its electronic circuits, the instruction must be 

~ represented as a binary number •. This representation is called a code, 



l - 32 

and a program in binary code ready for use by the computer is said to be 

in machine language. 

INSTRUCTION: The smallest element of a computer 

language that instructs the computer 

to perform a specific operation. 

Each execution of an instruction will perform one small step in the 

calculation or process which the program is designed to accomplish. In 

turn, the execution of each instruction is broken up into a number of 

• 

steps which are performed one after another. • 

1.4.3 Instruction Cycles 

The program will be stored in memory~ therefore the execution of each 

instruction will have to start with the transfer of an instruction from 

memory to one of the registers of the CPU. Then the instruction will be 

decoded (interpreted) and the operations specified will be carried out. 

The total time taken to fetch and execute an instruction is called an 

instruction cycle. The length of an 

considerably, depending upon the operations 

instruction 

which must 

cycle varies 

be performed. 

Every instruction cycle, however, begins with an instruction fetch. 
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INSTRUCTION CYCLE: The total time taken to fetch and 

execute an instruction. 

The basic sequence of events during an instruction cycle is: 

FETCH INSTRUCTION FROM MEMORY 

~ 

DECODE INSTRUCTION 

EXECUTE SPECIFIED OPERATIONS 

1.4.4 The Program Counter 

To fetch an instruction from memory requires a memory address. The 

address from which an instruction is to be fetched is always contained 

in a CPU register called the Program Counter (PC). There are two strong 

imprications in this statement: there must be a way to initialize the PC 

with the address of the first instruction in a program, and there must 

be a way to modify the PC after each instruction cycle so that it will 

contain the proper address for the next instruction to be fetched • 
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PROGRAM COUNTER: A register in the CPU which contains 

the address of the next instruction 

to be fetched. 

Use of the PC is illustrated below: 

CPU 

Pc jis-~--- ----o J 

'-· '( ;. ADDRESS BUS 

1.4.5 The Instruction Register 

MEMORY 

7 0 
Word 
Next 

Q 

Containing()' 
Instruction 

When a memory word has been selected by the PC, its contents will be 

gated onto the data bus and placed in a CPU register called the 

Instruction Register {I). 
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INSTRUCTION REGISTER: A register in the CPU containing 

the.instruction currently being 

executed. 

CPU MEMORY 

(internal bus) DATA BUS 

I 7 0 

Pc ~s ---------oJ ._ ______ , ..-----. 
'V'~i---A-DD_RE_s_s_B_u_s_, Word Containing 

Next Instruction 

After the instruction has been loaded in I it is fed to the instruction 

decoder. The instruction decoder works much like the address decoder 

described earlier, looking at a pattern of input binary signals and 

outputing a pattern of signals which will sequence and control all of 

the steps required to execute the instruction. 
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{"control and Sequencing 
lSignals 

The program counter is one of the registers contained in the addresaing 

unit. The instruction register is in the instruction unit. The final 

register which we will define at this point is called the •ccumulator 

(A), an eight bit register in the arithmetic and logic unit. It is the 

register most actively used by programs because it contains the results 

of most arithmetic and logical instructions executed by the system. 

We will shortly begin active use of the Microcomputer Training System, 

but before doing so the system monitor provided with the MTS must be 

described briefly. 

1.5 THE MTS MONITOR 

1.5.1 Monitor Software 

The Microcomputer Training System has a CPU, memory (.SK of RAM, lK of 

ROM) and two I/O devices, a keyboard and a display (see Figure 1-3). In 

addition to its hardware, the MTS also has a set of programs which are 

stored in read-only memory. This software is provided to assist you in 

0 
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learning to use the MTS system, and is stored in ROM so that you will 

not inadvertently modify any of its instructions. While it would be 

possible for you to learn microprocessor principles without any software 

assistance at all, the learning process would take considerably longer. 

These programs are placed in the ROM memory at the factory and are ready 

to run as soon as power is supplied to the system. 

The programs are collectively called the monitor. The monitor controls 

your input and output devices (keyboard and display), allows you to 

inspect and change the contents of memory, and performs other functions 

which will be described in detail as you progress through the course • 

MONITOR: A collection of programs which control I/O 

devices and provide various other functions 

for the user. 

While the monitor provides these facilities to enab~e you to use the MTS 

immediately, in later chapters you will learn to write programs for 

controlling the keyboard and display yourself • 
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0 
·1.5.2 The MTS Keyboard and Display 

The MTS keyboard and display are shown in Figure 1-3. The display, 

located in the upper-right corner of the MTS, consists of two sets of 

four characters each. The characters are formed by sets of 

light-emitting diodes (LEDs). In each character position, there are 

seven LED elements arranged in the following fashion: 

By activating one or more of the LEDs in a character position a 

:0 character is for med, for example "A": -

0 

We will use initially a character set consisting of 0-9, A-F, and R. 

With a seven segment display, however~ there are several ambiguities. 

The ten decimal digits are easily created, but "B" would be the same as 

"8", and "b" the same as "6". Also "O" would be the same as "0" and "R" 

the same as "A". These characters are thus represented by: 



l - 40 

. B = I . I D = R = 

The keyboard is a five by five array. The upper row and right column of 

this array are command keys, each of which requests the monitor to 

perform a particular function. The remaining keys constitute the hex 

characters 0-9, A-F. For the moment we will ignore the alpha characters 

which appear on the 1, 2, 8 and 9 keys. 

Using the keyboard and display, you will be able to: 

-Inspect the contents of ~ memory word 

-Change the contents of a memory word 

-Inspect the contents of the program counter (PC) 

-Change the contents of the program counter 

-Inspect the contents of a register (e.g. A) 

-Change the contents of a register 

-Execute an instruction contained in a memory word 

-Execute a program contained in memory 

1.5.3 Using the MTS 

The monitor is the silent and unseen servant that helps you accomplish 

all of the above functions. As it is a program, however, it uses all of 

the registers of the CPU, and you may be asking how your program and the () 
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monitor programs can use the same registers without confusion. The 

answer is that the monitor "remembers" the contents of these registers 

(stores them in memory). This is possible because your program and the 

monitor programs are never being executed at the same time. 

When the power is turned on, the monitor will set the contents of your 

PC to 8200 lG which is the first address of your RAM memory. This 

number will be.displayed in the left four digits of the display. The 

contents of location 8200 will be displayed in the rightmost two digits 

of your display. The monitor will then wait for you to depress one of 

the keys on the keyboard. Initially, the contents of 8200 will be 

undefined - whatever is contained there is not a number which you put 

there. For convenience in writing, whenever a number is undefined we 
. - ~. __ 

shall represent it with question marks. When power is turned on, then, 

your display will read: 

820011 ??l 

Remember, the display will not actually contain ques.tion mar.ks; it will 

simply be a number which the author of this manual cannot predict! 

1.5.4 Inspecting Memory Contents 

Having turned on the MTS, take a piece of paper and make two columns 

labeled ADDRESS and CONTENTS. Enter 8200 in the first column, and its 

contents (the two rightmost digits) in the second column. We will now 

continue to examine the contents of the first ten words of memory. To 

look at the contents of 8201, press the command key labeled .INEXTI 
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The display should now read: ( 820111 ?? I 

~~~01 in the first column, and its contents in the second. Press 

'NEXT again, and write down 8202 and its contents. Continue in 
I 

this ashion until the display reads 8209. You should now know the 

contents of the first ten words of your memory, in whatever random 

condition they may be. 

The command key ~ (for RESTART) has the same effect as turning 

power on: the user's PC will be set to 8200, memory address 82UU will 

appear in the left four digits of the display and the contents of 82UU 

will be displayed in the rightmost two digits. 

error, press ~ 
If you have made an 

and start over. 

l. 5. 5 Changing Memory Co1iten ts 

We will now consider changing the contents of a memory word. 

Press B . The display will read: 

·t 02001 t ?? I 

-
By pressing the MEM (for MEMORY) key, the monitor is commanded to accept 

keyboard and store it in the displayed address. 

hex key ~ ' the display will read: 

Press 

l s2ool [ 01 I 
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Press hex key [~~]' the display will read: 

L~~.QO] I 12 I 

Press hex key Q 1 the display will read: 

l .S.2_Q_QJ t 23 l 

Each time a hex key is pressed, .the right digit is shifted to the left, 

displacing whatever was there, and the new digit is entered in the 

rightmost position. Remember, a memory word can store only two hex 

characters (one byte). The monitor will allow you to press as many hex 

keys as you desire, but only the last two will be stored. This 

capability allows you to correct keying errors without the necessity of 

pressing another command key. To see what all of the hex characters 

look like on the display, continue pressing the keys until you have seen 

the entire set. Finally, press hex keys D ana ~ so that the 

display reads: L_I 

Now press I NEXTI 

display will read: 

followed by hex keys and 

Laiµ_oJI 011 

[]. The 

( 82UlJ I 23) 

Pressing NEXT allows you to enter data in consecutive memory addresses. 
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1.6 · PREPARING A PROGRAM 

You are now ready to prepare your first simple program. First, we will 

define the instructions which will be used. ~ext, we will write the 

program dQwn on paper. Then the program will be entered at the keyboard 

and verified. Finally, the program will be executed one instruction at 

a time, and the sequence of operations within the system will be 

detailed for each instruction. 

Instruction codes are one-byte, 8-bit binary words represented by two 

• 

hex characters. Neither the binary word nor its hex equivalent has an 

intrinsic meaning, so for each instruction"-a short two, three or four • 

character mnemonic has been assigned. The mnemonic is a shorthand 

representation of the meaning or functional description of the 

instruction. 

• 
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1.6.1 Instructions to be Used 

The first instruction we will use is defined as follows: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANlNG: 

00000000 

00 

NOP 

No Operation. This is an instruction which 

does nothing at all. Its execution has no 

effect on any memory location or CPU register. 

The chief purpose of NOP is to leave a space open in case you have to 

fix something like leaving a spare pin on the edge connector of a 

printed circuit board. This instruction appears in the instruction set 

of almost every computer on the market, from huge IBM installations to 

microprocessors such as the one in your MTS. It is in effect a 

non-instruction; when a pattern of all zeroes is presented to the 

instruction decoder, no operation is specified. 

The A register (accumulator) is the most important register in the CPU 

from the programmer's point of view, and there are a number of 

instructions which manipulate its contents. It is logical to consider 

next the instruction which sets the contents of the A register to zero: 
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BINARY CODE: 10101111 

HEX CODE: AF 

MNEMONIC: XRA A 

MEANING: Clear the contents of the A register 

(Set to zero) 

The mnemonic for this instruction will appear a bit strange. This is 

actually one of a set of logical instructions operating on the A 

re·gister. The full significance of the mnemonic will become apparent 

when the other instructions are considered. · The third instruction which 

will be used in your first program is one which. increments (adds one) to 

the contents of the A register: 
. 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

00111100 

3C 

INR A 

Increment the A register (add one 

to the contents of the A register) 

With these three instructions, you can write a program which initializes 

the A register with a value of zero and then successively adds one to A 

until it contains a specified value. Although a very simple routine, it 

\ ()) 

will introduce and clarify some of the basic concepts of instruction and Q 
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program execution. 

1.6.2 Program Specification 

Writing a program is a very structured exercise, and from the beginning 

you are urged to be methodical and precise about it. All programs 

should originate in a program specification, a written definition of 

what the program should accomplish. The specification for your first 

program is: 

"Write a program which sets the A register to an initial value of zero 

and then, by successive increments of one, ends with the number seven in 

the A register." 

1.6.3 Writing (Coding) the Progr_am 

The next step is to write the program down on paper, using the same 

notation which was used when you inspected the contents of the first ten 

locations of your memory. An important addition to that format, 

·however, will be a column for comments. Programming· mnemonics are so 

terse th~t simply looking at a sequence of hex codes or mnemonics will 

not convey the function, goal or intent of the program. Comments are 

used to convey this information. Writing a program is often called 

'coding', as it is a translation from a natural language to computer 

code. 

Your first program, written in the recommended format, should look like 

this: 
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ADDRESS HEX MNEMONIC COMMENTS -

8200 00 NOP Start with dummy operation 

8201. AF XR~ A Clear the A register 
-

8202 JC INR A Increment the A register 

8203 JC INR .A 

8204 JC INR A - continue to increment -

8205 JC INR A 

8206 3C INR A 

8207 3C INR A 

8208 3C INR A .. until A = 1 ... 

Remember, comments are used so that you will be able to look at 

program you wrote weeks 

a 0) 
or months ago and understand what it is your 

program is doing. Even more important, when you are working as part of 

a team, they help someone else understand what your program is doing. 

1.6.4 Loading Your Program in the MTS 

Now that your program is committed to pap·er, it is time to · load it in 

the MTS memory. First, initialize the system by pressing EJ , 
which will establi~h the first entry point at 8200. The scenario should 

be as follows: 

s2oor f ?? I 
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0 Set in write mode to enter data: 

El 82001 ??I 

Enter first instruction: 

Q Q 82001 ool 

· Advance to next instruction: 

I NEXTI ( 82011 ?? I 

0 
Enter second instruction. 

[] [] 8201) AFI 

Advance to next memory address. 

I NEXTI 8202) ?? I 

[] GJ ( 8202) 3Cj 

I NEXT! 82031 ( _____ ff] 

[] GJ 8203) 3Cl 

0 
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82041 

DD 82U4) 3C I 

OIQsJ ??] 

82051 . 3 I ~-- ___ c .~ 

[ _8206 I · ___ ?? J 

[][] '. ~-2V7J [ 3C; 

(_ 820@ L_3£] 

a209l ?? I 

Your rogram has now been entered i~ memory. Note that . the final 

NEXT command is given to terminate' your input string of 

charac ers. 

1.6.5 Verifying and Correcting the Stored Program 

Now that you have loaded your prpgram, it will be helpful to you to 

verify it. It is easy to make a mistake at the keyboard, and the 

computer is absolutely intolerant of mistakes in the sense that it will 

·o 
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0 
do exactly what you tell it to do. It is trite but powerfully true that 

"garbage input, garage j°utput ·. To be sure t6our entries are 

correct, press RST and then, using the NEXT command, check 

the contents of memory against your written coding s eet. If you detect 

an incorrect code in a word, it can be easily corrected, e.g. 

I a205l 3D I 

The entry at 8205 should have been 3C. To correct it, 

3C) 

Corrects the error. 

82061 3cl 

Inspect next register, then continue. 

When you are satisfied that the program is correct according to your. 

coding sheet, you are ready to execute the program. 

1.6.6 Executing Your Program 

To execute your program and follow the results of its operation on a 

s1e:-b1-step basis, three new commands 
mu~ introduced. These are 

I ADDR I REG . r~T~P 1 and The command causes the 
rig t four ig1ts of 8 display to present a register name and· its 

0 contents. To us·e the command, therefore, it is necessary to 
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follow it by pressing a hex key which is the name of the register you 

wish to see. For the current program, we are interested only in the A 

register. Using the protocol developed above: 

8200JIA-?? 

The comman4 REG rollowed by the hex character A leaves the address at 

8200, but in the right four digits identifies the register (A) and its 

contents (undefined at this point). All of the registers will be 

represented in · the right four digits according to the format: register 

~ame/dash/ register contents. 

The !STEP' command executes the instruction contained in the) 

lTatior designated by the left fOur-digit display (the PC). After each ()' 

STEP command, the display will present the address of the next 

instruction. If the command ~ ~ has been given putting the 

system in the "display register" mode, the contents of A will also be 

displayed after each instruction has been executed. 

Follow this scenario on your MTS. Use your coding sheet as a guide: 

00 J 

Set PC to 8200 and display contents (NOP) 

8200) iA-?? 
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Before going on, be sure that the toggle switch at the lower left 

corner of the MTS is set to STEP. Now press the STEP key. 

( 8201 ( A-?? J 

The NOP instruction has been executed and the PC has been incremented. 

Nothing has been done, so the content of A is still undefined. 

( 8201 ( AF 

ADDR displays the current program counter and the instruction at that 
location. 8201 contains the instruction XRA A, clear the A register. 

8202 A-00 

The A register has now been cleared (it may have been empty before). 

B 8203 ] A-01 

The A register has been incremented. Look at your coding sheet. The 
instruction at 8203 is INR A. · 
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Press STEP to execute it: 

I 8204 llA-02 ) 

Continue s~epping through your program in this fashion until the PC is 

set at 8209. At this point, the A register should contain the number 7. 

If it does not, you have made a mistake either in entering your program 

or in pressing the command keys to execute it. If you have finished 

with the wrong value, inspect the memory to make sure it agrees with 

your coding sheet, then go through the above procedure again. 

1.6.7 Instruction Execution: A Detailed Examination 

We will now look at the three different instructions used in your 

program, describing what happens to the PC, the A register and the I 

register at each stage of instruction execution. Initialize the system: 

EJ 
I STEPI 

82001 

When the command STEP is issued, the following operations will occur: 

00 J 

1) The processor sends the contents of (PC) to memory, selecting address 

8200. 
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I 

PC 

!. 
A 

I 

PC 
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I ??I 00 8200 

I ??f AF 8201 
3C 8202 
3C 8203 

8200 3C 8204 

The contents of A and I are not yet defined. 

2) Next, the memory sends the contents of address 82UU to the I register 

and (PC) is incremented by 1. 

00 8200 

AF 8201 

3C 8202 

* 3C 8203 

f 82011--( (PC)- (PC) +1) 3C 8204 

The contents of A are still undefined. The instruction is executed 

and as it is a NOP, the instruction cycle is completed. 

* The backward arrow (<-) in an expression should be read as 

"is replaced by". Thus this expression reads: "The contents of PC 

are replaced by the contents of PC added to one" • 
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The next instruction will clear the A register: 

1) The processor sends the contents of (PC) to the memory, selecting 

addr.ess 8201: 

A [lil 00 8200 

I ~ 8201 

8202 

8203 
PC 8201 8304 



0 
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2) The memory sends the contents of address 8201 to the I register, and 

the (PC) is incremented. 

A 

I 

PC 

1??1 oo 
lAFl1__..------------------~i---AF~ 

8200 

8201 

3C 8202 

3C 8203 

I 0202 I- ((PC)- (PC) +v 3C 8204 

The next instruction will increment the A register: 

1) The processor sends the contents of (PC) to the memory, selecting 

address 8202 • 
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A ~ 00 8200 

I @] AF 8201 

3C 8202 

3C 8203 
PC 8202 3C 8204 

2) The memory sends the contents of address 82U2 to the I register, 

and the (PC) is incremented. 

A· ~ 
I~ 

Pc I 0203 I- ( CPc>_,_CPc> +1) 

3) The instruction is executed and 

A ~- ( (A)....,_(A) +1 ) 
I ~ 

PC I s203I 

00 8200 

AF 8201 

3C 8202 

3C 8203 

3C 8204 

the A register is incremented by 1. 

00 8200 
AF 8201 

3C 8202 

3C 8203 

3C 8204 

0 

d 



0 
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1.7 SUMMARY 

This chapter has covered some very important basic concepts, both of 

hardware organization and function and software preparation, loading and 

executing. If you feel uncomfortable with any of the materials 

presented, go back over the relevant sections • 
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• 2. 1 PROGRAM EXERCISE #2 

In your first program, all of the instructions used (NOP, XRA A, INR A) 

were one byte instructions, fetched from memory and executed with no 

further memory accesses required. Many instructions comprise 

two or three bytes and require more than one memory access. In your 

next program two such instructions will be considered. Additional 

memory accesses are required whenever an instruction operates on data 

which is stored in memory, or when the results of an operation must be 

stored in memory. 

2.1.1 The ADI instruction 

A number of instructions have the effect of adding a number to the o content$ of_ the accumulator (A). One of thesf! is "Add _Immediate", which 

translates to: "Add to the accumulator the contents of the second byte 

of the instruction". Thus if the instruction is contained in address 

(m), the contents of Cm+ 1) would be added to A. 

0 

BINARY CODE: 

HEX CODE: 

SECOND BYTE: 

MNEMONIC: 

MEANING: 

11000110 

C6 

Data 

ADI 

Add to the accumulator the contents of the 

next memory address. 

The ADI instruction requires two memory fetches, the first to get the 
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instruction and the second to get the contents of the following word. 

Each memory access which is required during an instruction cycle is 

called a machine cycle. The instruction INR A takes one machine cycle; 

the instruction ADI takes two machine cycles. 

MACHINE ~YCLE: The operation of accessing an address, 

either for reading from or writing to 

that address. 

2.1.2 The STA Instruction 

To transfer data from the accumulator to an 

machine cycles (before reading further, 

address takes even more 

close the manual and try to 

determine by yourself how many cycles are required). The instruction to 

store the accumulator is a three byte instruction. Bytes two and three 

contain the address in which the data is to be stored: 

BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

00110010 

32 

Low-order part of storage address 

High-order part of storage address 

STA 

Store the contents of the accumulator (A) 

in the address which is contained in 

the following two memory addresses. 
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ADI is a two-byte instruction, STA is a three byte instruction. Their 

execution is more complex than the execution of the single byte 

instructions used in the previous program, so we will look at them in 

detail before using them. 

2.1.3 Instruction Execution Details 

Whjn the ADI code is fetched from memory and decoded, the logic 

determines that a second memory read operation is required, and that the 

data read· is to be placed in the A register. The operation looks like 

this: 

1) The processor sends the contents of "(PC) to 

memory, selecting address 8200 (for this example) 

p c 8200 

A 

p c 

2) The memory sends the contents of address 8200 

to the I register and (PC) is incremented by 1. 

C6 

0 07 

?? 

C6 

8201 
,_ 

-((PC) --- (PC)+l ) 

8 2 0 0 

8 2 0 1 

8 2 0 2 



A, 

p. c 

A 

p c 

3) The logic is decoded, and the processor again 

sends the contents of (PC) to memory, selecting 

address 8201 • 

C6 

~ 07 

?? 

@] 

8201 

8 

8 

8 
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2 0 .0 

2 0 1 

2 0 2 

4) The memory sends the contents of ~ddress 8201, which is added 

to the contents of th~ A register, and (PC) is incremented 

by 1. 

C6 8 2 

~ (A) ,.. (A)+ (8201) 07 8 2 

?? 8 2 

[£U 

8202 1--( (PC) - (PC) +1 ) 

5) The instruction is completed. The memory has been 

accessed twice (two machine cycles) , and (PC) has 
been incremented twice. 

0 0 

0 1 

0 2 

·--
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When the STA instruction is decoded, the logic 'recognizes' that an 

address must be obtained from memory before the instruction can be 

completed, as the operation commanded is to store the contents of A in 

that address. The contents of the two memory words following the 

instruction STA must be read and stored temporarily in the processor so 

that they may be used. This is accomplished by the use of two registers 

which are called W and z. The high-order bits of the address (most 

significant eight bits) are stored in W and the low order bits (least 

significant eight bits) are stored in Z. The sixteen bit quantity W, Z 

is then the address in which the contents of A will be stored. Like the 

I register, the W and Z registers are for internal use by the processor 

and no instruction explicitly refers to them. 

W,Z REGISTERS: A temporary register pair in the address logic 

used during internal execution of instructions . 



2 - 6 

The details of execution are: 

A 

w z 
p c 

A 

w z 
p c 

A 

1) The processor sends the contents of (PC) to memory, 

selecting address 8200 (for this .example): , 

32 

[ill 00 
83 

G ?? 

?? ?? 

8200 

2) The memory sends the contents of 8200 to the 

I register and (PC) is incremented by 1. 

0 
32 

?? ?? 
8201 .. ( (PC} .... (PC) +1 

.. ~ 
) 

32 

00 

83 

?? 

3) The instruction is decoded, and the processor 

sends th~ contents of .(PC) to memory, selecting 

address 8201. 

8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 0 

8 2 . 0 1 

8 2 0 2 

8 2 0 3 

1 

32 8 2 0 0 

00 8 2 0 1 

82 8 2 0 2 

?? 8 2 0 3 

w z ?? ?? 

p c 820·1 
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A, 

I . 
w z 

• p. c 

A 

w z 
p c 

0 
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4) The memory sends the contents of 8201 to the Z 

register and (PC) is incremented by 1. Now Z 

contains the low order part of the address in which 

the contents of A will be stored. The design of 

the processor requires that the low order part of 

the address be stored immediately after the instruction 

code, followed by the high order portion. 

32 8 2 0 0 

0 00 8 2 0 1 

83 8 2 0 2 

0 ?? 8 2 0 3 

?? 00 

8202 (PC) - · (PC)+l ) 

5) Again the processor sends the contents of _(PC) to 

memory, sele9tin~ address 8202 .. 

?? .. 00 

8202 

32 8· 2 0 0 

00 
83 

?? 

8 2 0 1 

8 2 0 2 

8 2 0 3 



A 

w z 
p c 

A 

w z 
p c 
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6) The memory sends the contents of 8202 to the W 

register, and (PC) is incremented by 1. The complete 

address in which the contents of A are to be stored is 

now available. 

U2J 

I 83 00 

8203 ... (<PC) ----- (PC) +l ) 

7) The contents of W, Z are sent to memory, 

selecting_ address 8300: 

U!J 
[ii] 

83 00 

8203. 

32 8 2 

00 8 2 

83 8 2 

?? 8 2 

32 8 2 

00 8 1-
83 8 2 

?? 8 2 

8 3 

0 0 

0 1 

0 2 

0 3 

0 0 

0 1 

0 2 

0 3 

0 0 
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8) The processor sends the contents of the 

A register to address 8300 and the instruction 

is completed. 

32 8 2 0 0 
07 8 2 0 1 

8 2 0 2 

8 2 0 3 

8 3 0 0 

.The execution ~f STA has required four machine cycles: an instruction 

~ fetch, two memory reads, and one memory write. Do not be confused by 

the fact that the high and low order parts of the address in this 

• 

three-byte instruction (and all similar instructions) are reversed. The 

arrangement was adopted by the microprocessor's designers to simplify 

parts of the internal circuitry • 
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2.1.4 Writing the Program 

You are now ready to observe the behavior of these instructions in a 

program. As before, we start with a program specification: 

"Write a program which sets the accumulator to an initial value of 

seven and then, by successive increments of one, doubles the 

initial value. Store the r~sult in location 8300." 

Before looking closely at the model coding sheet ~hich follows, 

try to write the program by yourself. 

ADDRESS HEX MNEMONIC COMMENTS 

8200 00 NOP Dummy operation 

8201 AF XRA A Clear A 

8202 C6 ADI Add immediate to A the number--

8203 07 -- contained in this location 
• 8204 3C INR A Increment the A register 

8205 3C INR A 

8206 3C INR A 

8207 3C INR A contihue to increment 

8208 3C INR A 

8209 3C INR A 

820A 3C INR A Until (A) = 1\o = E 
16 

8208 32 STA Store result in 

820C 00 location 

8200 83 8300 

820E 00 Dummy operation. 
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Note that the instruction in location 8201 clears A. This is required 

because ADI adds the contents of the next memory byte to A. STA 

operates to replace the contents of 8300 with the new value. Adding and 

replacing are both common operations, and the beginning programmer must 

be careful to distinguish them. 

2.1.5 Loading and Executing the Program 

Review the directions for loading a program, then enter your new program 

in the MTS memory. Do not forget to verify it! Before executing your 

program, 

command 

display 

Since 

see: 

18200 00 

If IADDRI is followed by four hex keys, the address specified 

by those keys will be displayed with its contents: 

?? 
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If this sequence is now 

addr~ss and data may 

followed b~ the address is now a memory 

be entered. As.this is the address which your 

program will use to store a result, it would be instructive to set some 

~rbitrary initial value, so: 

! 

i 

LJ 18300 t 77 

Mem~ry location 8 00 now . 
prog·ram. If ADDR had 

would have been c anged. 

contains 77 , and w are ready to execute your 

been followed by STEP instead of~he (PC) 

However, (PC) shou s ill be set--at"tr2oo, so 

your program can be executed as follows: 

[8200 00 

(PC) and contents of 820~ 

I , 

I I 

LJ (820Qu .l iA-?? ] 

Contents of A are undefined here. 

··~ 

0/ 
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The instruction in 8200 was NOP; only (PC) changes. 

~82Q2-) r.:;:: ----- - La.::YQ..i 

Looking at the coding sheet, we see that XRA A has cleared the A 

register. 

.-·-1 iA-07 ) .8.~04 - -- . 

The (PC) has abeen stepped by two, and A contains the results of the ADI 

instruction. 

lllii5 J IA-os 

First of the INR A instructions adds 1 to the contents of A • 
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' 
.......,. __ 

I STEP' 

I smJ 

I smJ 

I smJ 

2 - 14 

8206 :A-09 

.8207 IA-QA 

18208 .A-OB 

la209 J IA-oc 

.820A I IA-Qll 

la2os.J IA-OE 

Now A contains OE = 14 : the next instruction will store this result in 
16 10 

8300: 

!82QE lA-QE 

The (PC) has been stepped by three and the program has been executed. 

• ) 

·-'/ 

0 



• 
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Now take a look at location 8300: 

·oE 

If at any point your program execution did not produce the results 

described above, correct the bad instruction in your memory (if there's 

an error, there's a bad instruction!) and start over. 

2.2 DATA STORAGE CONVENTIONS 

You may have wondered why 8300 was selected as the storage location for 

this. result. While it is somewhat arbitrary, the basic requirement is 

to k~ep programs and data separated. It would have been quite possible, 

for example, to store the results in iocation 820F. The program would 

execute exactly as before, except that the results would be placed in a 

different memory word. Suppose, however, that you wished to modify the 

program, to add instructions to achieve some different purpose? The 

program could not utilize additional consecutive addresses without 

changing the initial storage address. In the example, only one such 

address was used, but in a complex program with many storage addresses, 

the problem becomes acute. Data addresses are therefore chosen to leave 

lots of space between program and data areas. You should satisfy 

yourself that 8300 is the first word of the top half of your .5K RAM 

memory . 
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N.B. As the monitor is stored in read-only memory, it requires part 

of the RAM for temporary storage of data. The top 96 bytes of RAM, 

addresses 83AO through 83FF, are allocated to the monitor; care should 

be taken not to modify these memory locations. 

2.3 PROGRAM EXERCISE 13 

2.3.1 The LOA Instructions 

An instruction similar to STA has the effect of transferring data from . · 

memory to the accumulator: 

BINA.RY CODE: 

HEX CODE: 

BYTE .TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

00111010 

3A 

Low-order part of address. 

High-order part of address. 

LOA 

Load the accumulator with the 

contents of the word whose 

address is contained in the 

following two memory addresses. 

The detailed instruction cycle for LOA is shown in Figures 2-1, 2-2 

and 2-3. 



• 
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0 
0 

A 

w 
z 

p c 

LDA INSTRUCTION CYCLE 

PROCESSOR 

AF 

8204 I 
Processor sends PC 

Memory selects 8204 and 
returns its contents on 
data bus 

A 

w 

z 
p c 

3A 

0 -----8205 

Processor loads .data to I 
register and increments PC 

A 

w 
z 

p c 

-

3A 

8205 

© 

I 

ADDRESS 

Processor interprets 3A as a three 
byte instruction 

Figure 2 - 1 
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MEMORY 

a 2 0 0 

a 2 0 1 

a 2 0 2 

AF 8 2 0 3 

3A 8 2 0 4 

00 8 2 0 5 

83 8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

a 2 0 B 

8 2 0 c 
8 2 0 D 

8 2 F F 

14 8 3 0 0 

8 3 0 1 



® 
© 

G) 

© 

A 

w 
z 

PROCESSOR 

3A 

p c 8205 

Processor sends PC 

Memory selects 8205 and 
returns its contents 
on data bus 

A ~ 
3A 

w 
z 00 

p c 8206 

Processor loads data to 
register and increments 

Processor sends PC 

A 

32 

w 83 

z 00 
..,_ ____ _ 

p c 8207 

z 
PC 

Memory selects 8206 and returns 
its contents on data bus 

Processor loads data to W register 
and increments PC 

Figure 2 - 2 

2 - 18 

0 
MEMORY 

8 2 0 0 

8 2 0 1 

8 2 0 2 

AF 8 2 0 3 

3A' a 2 0 4 

00 8 2 0 5 

83 8 2· 0 6 

8 2 0 7 

a 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 c 
8 2 0 D 

d 

FF 82FF 

14 8 3 0 0 

FF. B 3 0 1 
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PROCESSOR 

A ~ 
3A 

w 83 } z 00 
p c 8207 

Processo.r sends contents 
of W and z on address bus 

w 

z 00 1-------
p c 8207 

Memory selects 8300 and returns 
contents on data.bus 
Processor loads data from data 
bus into A register 

Figure 2 - 3 
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MEMORY 

AF 

3A 

00 
83 

8 2 0 0 

,,8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 c 
8 2 0 D 

8 2 F F 

8 3 0 0 

8 3 0 1 
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2.3.2 The JMP Instruction 

To this point we have used instructions which perform an operation and 

advance the program counter so that it points to the address of the 

next sequential instruction. A very important class of instructions 

allows a program to branch or 'jump' to an instruction at an arbitrary 

address. One of these instructions is JMP: 

BINARY CODE: 11000011 

HEX CODE: C3 

BYTE TWO: Low-order part 0.f address. 

BYTE THREE: High-order part of address. 

MNEMONIC: JMP 

MEANING: Load the PC with address contained 

in the following two words. 

The Execution cycle of the JMP instruction is shown in Figures 2-4 and 

2-5. 

·~ 

0 

0) 
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• JMP INSTRUCTION CYCLE 

PROCESSOR MEMORY 

8 2 0 0 

A [IQ 8 2 0 1 

8 2 0 2 

I 32 AF 8 2 0 3 

w 83 3A 8 2 0 4 

z 00 00 8 2 0 5 

p c 820B 83 8 2 0 6 

3C 8 2 0 7 

0 Processor sends PC 32 8 2 0 8 

0 Memory selects 820B 00 8 2 0 9 
and returns its content 

83 8 2 0 A 

8 2 0 B 

8 2 0 c 

A 8 2 0 0 

• C3 
w 83 
z OQ 

p c 820C 

0 Processor loads data to I register 
and increments PC 

© Processor interprets C3 as three 
byte instruction 

© FF 8 2 F F 
Processor sends PC 

15 8 3 0 0 

A QQ 8 3 0 , 

C3 
w 83 
z 03 

p c 8200 

• © Memory selects B20C' and returns its 

G) 
content on data bus 
Processor loads data to Z register and 
increments PC 

Figure 2 - 4 



©· 
0 

PROCESSOR 

A b&Q 
CJ 

w 8J 
z OJ 

p c 8200 © 
Processor sends PC 

Memory selects 8200 
and returns content 

Processor loads data into W 
register. Processor trans£ers 
data from W and Z into Program 
Counter 

Figure 2 - 5 
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MEMORY 

AF 

JA 

00 

8J 

JC 
J2 
00 

8J 
CJ 

OJ 
82 
~ 

FF 

15 
FF 

8 2 0 0 

,8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 B 

8 2 0 c 
8 2 0 0 

8 2 F F 

8 3 0 0 

8 3 0 1 

ri 

0 



0 

(. 
I. 
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2.3.3 Writing the Program 

Program specification: 

"Write a program which will clear the accumulator, load it with 

the contents of 8300, increment this number by one, .and store 

the result in 8300. Loop through this sequence repeatedly." 

The program below starts with three consecutive NOPs, a convention 

which would permit entering a three-byte instruction here should one 

wish to change the program later: 

ADDR HEX MNEMONIC COMMENTS 

8200 00 NOP Dummy 

01 00 NOP 

02 00 NOP 

03 AF XRA A Clear A 

04 3A LOA 8300 Load A from 

05 00 8300 

06 83 

07 3C INR A Increment A 

08 32 STA 8300 Store A in 

09 00 8300 

OA 83 

OB C3 JMP 8203 Jump back to 

OC 03 start 

OD 82 

8300 14 Arbitrary .Data 
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Load and verify the program, press RST to set (PC) to 8200, then press 

STEP: 

la2_Q_l .J OQ ) 

STEP executes the first NOP instruction and displays the next one • 

I smJ 
. 0) 

l~Q.£.:J 00 

I sml !a203 I AF 

Two more STEP's get us to the Clear A instruction. 



• We have executed Clear A. 

location 8204) 
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The next instruction is LDA. 

!82-07. : 

(3A at 

3c 

We cannot see the internal steps. The three byte instruction LOA 

occupies addresses 8204, 8205 and 8206. It has been executed and now 

the INR A instruction at 8207 is displayed. 

• Execute the INR A instruction. 

.8208 32 

This is STA, another three byte instruction 

!820B L C3 

We have come to the JMP inst.rue tion • 

• 
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!8203 AF 

And now we are back to the start. Examine the A register. 

\82031 lA-15) 

The program loaded 14 from 8300, incremented it and stored the new 

value. Register A still holds that value. 

Execute the Clear A instruction at 8203. 

:a204 IA-QQ __ ; 

Now the A register has been cleared. 

Now the LOA has reloaded from 8300. 

() . 
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(8207 

ADDR displays the instruction 

(829L IA-16 

Step executes it and again displays the register we last examined. 

Let's examin~ the memory location. 
<~ -~· 

(8300 15 I 

The new value has not been stored yet. DO NOT PRESS STEP NOW The 

computer would execute from location 8300. Use ADDR to recall the 

current program counter. 

32 

• Then STEP. 
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IB20B IA-16 

And look again at 8300: 

18300 16 

Now the new value has been stored. 

I 8300 l 161 

MEM tells the monitor you did not in'tend to change the program 

counter, but only the memory address. Therefore you can now use STEP. 

The PC contained 820B, addressing the Jump instruction. 

So we jumped. Using ttie MEM key disposed of the A register display. 

The memory address we last requested is still there, so pressing MEM 

will fetch it back again. 

0 

• 



0 

• 

• 
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EJ 18300 16 

We have.introduced four new instructions and looked at the details of 

their execution cycles. In Chapter 3 we will begin to develop some 

fundamental concepts of programming . 



2.4 SUMMARY OF INSTRUCTIONS 

3C 

AF 

C6 

xx 

32 

xx 

xx 

3A 

xx 

xx 

C3 

xx 

xx 

INR A 

XRA A 

ADI 

data 

STA 

low address 

high address 

LDA 

low address 

high address 

JMP 

low address 

high addres~-
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Increment A register 

One byte 

One machine cycle 

Clear the A register 

One byte 

One machine cycle 

Add immediate 

Two bytes 

Two machine cycles 

Store the A register 

Three bytes 

Four machine cycles 

Load the A register 

Three bytes 

Four machine cycles 

Jump 

Three bytes . 

Three machine cycles 

0 

oi 
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3. 1 PROGRAM LOOPS AND FLOW CHARTS 

The program we used in Chapter 2 was a loop: 

XRA A 

LDA 8300 

INR A 

STA 8300 

JMP 8203 

I 
Short loops of this kind are very common in computer programs, but they 

always include some means of exit from the loop. Otherwise the program 

would simply recycle through the loop forever, doing nothing useful. 

3.1.1 The Monitor Run Command 

To this poi~ have used thel::EP\command to execute your programs. 

Each time STEP is pressed, e instruction pointed to by y.our PC is 

executed, a er which the monitor is re-entered so that it may activate 

the display and wait for your next command. 

When th~ommand 
your in~tion is 

is issued, the monitor is also re-entered after 

executed. However, instead of waiting for your 

command, it immediately allows your next instruction to be executed. To 

demonstrate this, make sure that your program loop is still in memory. 

If you presBo execute this loop, the display will disappear and 

nothing more will happen. Internally, the count at location 8300 is 

being incremented again and again, but you have no way of knowing what 
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is happening. The keyboard is dead. Only the RESET key (or the power 

cord) can interfere. There must be some means of leaving such a closed 

loop. 

In a sense, all computer programs are loops: they must somehow return 

and repeat the same instructions, but operating on different data, 

producing different outputs, and sometimes executing different sections 

of the program depending on the d~ta. 

This chapter presents the conditional jump, an instruction that alters 

the program flow as a function of the data. This is the most common way 

of exiting from a short loop. The flow chart is introducted, which 

describes the program flow and is the principal design tool for 

programming. Finally, another method of entering the monitor for input 

and output will be provided. 

3.1.2 The Conditional Jump 

In the program loop shown at 3.1, the content of the A register is 

repeatedly incremented. Once every 256 times the program loops, the 

contents become FF and then 00. This change can be detected and acted 

upon by the instruction "Jump if Not Zero." 
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BINARY CODE: 

HEX CODE: 

BYTE TWO: 

BYTE THREE: 

MNEMONIC: 

MEANING: 

We will-now modify 

instruction with the 

3 - 3 

11000010 

C2 

Low-order part of address. 

High-order part of address. 

JNZ 

Jump to the address contained 

in the following two words if 

the result of the last counting, 

arithmetic or logical operation was 

not zero. 

the program loop above by replacing 

conditional jump, as follows: 

8203 AF · XRA A 

8204 3A LOA 8300 

8205 00 

8206 83 

8207 3C INR A 

8208 32 STA 8300 

8209 00 

820A 83 

8208 C2 JNZ 8203 

820C 03 

8200 82 

the jump 
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Change this instruction by pressing 

l820B C3 

·82Qs ) ( C2 

l820C I: 03 

Since the jump address for the JNZ instruction is the same as for the 

old JMP, it need not be reentered. To avoid going through the loop many 

ti~es, set a high value, say FC, into address 8300. Then step through 

the program: 

ls300 l t ?? I 

18300 FC 

Now go back to the beginning and step. 

~8_£.Q_QJ L_o_Q __I 

L8201 00 

Request display of register A, 

18201 IA-?? 

A 

"' 
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• and step through the program, watching register A. 

\8202 ] )A-?? 

18203 I. IA-?? 

l820lf IA-00 l 

The XRA A instruction at 8203 has cleared A. 

lA-FC 

The LDA instruction at 8204 has loaded_ A with the data from 8300. 

(8208 IA-FD 

(INR A done) 

l820B IA-FD 

(STA done) 

18203 IA-FD I 

{JNZ done) 

• 
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Continue stepping until you see: 

I smJ l8207 

(LDA done) 

la208 I IA-66 I 

(!NR A done) 

Register A has now been incremented ~rom FF to 00. 

I sml 18208 IA-00 

(STA done) 

I sml l820E IA-00 

Since the INR A instruction at 8~07 has incremented the ~alue to 00, the 

JNZ instruction at 8208 did not result in a jump.- The three machine 

cycles were stili performed, loading I, Z and W with the three bytes of 

the instruction and incrementing the program counter three times. At 

the final step, however, the logic unit tests for zero and sees that the 

condition for jumping is not met - the result was zero - and so does not 

transfer W and Z into the program counter. Execution continues from the 

previously incremented contents of the program counter to the next 

~----

oi 

.) 

O' 
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sequential instruction. 

3.1.3 Flow Charts 

A flow chart shows this operation in the following fashion: 

Clear A 

Load A from 8300 

Increment A 

Store A at 8300 

No 

Yes 

-
The diamond shape represents a program branch conditioned by data. The 

branch to be followed depends on the results of the previous operat~ons. 

Flow charts represent the design of computer programs; they may be 

considered the equivalent of schematics in electronic design. Writing 

the final program is akin to the circuit board layout - the function is 

fully defined but there is still some degree of freedo~ for the 

·~ designer. From here on, each exercise will either include a flow chart 
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or ask you to prepare one. 

FLOW CHART: A symbolic representation of the logical 

steps of a program, detailing cont~ol and 

sequencing of the flow of data, procedures 

to be followed, computations to be 

performed, and input/output operations. 

The flow chart above shows an incomplete program. If you continue to 

step after passing the JNZ instruction, you will execute an unintended 

instruction at location 820E. A closed loop such as we started with has 

no value since it accomplishes nothing but merely repeats itself. An 

open loop is intolerable because it will have unintended results. 

The purpose of the computer is to provide outputs depending on inputs. 

We have been obtaining outputs by looking at the A register contents 

after each step. You provided one input by loading data to address 

8300. You could also change the data in the A register by a monitor 

command, but this is only effective at certain points in the program, 

since Clear A and Load A will.destroy anything you enter. What we need 

is a means of entering data only at a-certain position in the program. 

3.2 PROGRAMMED MONITOR ENTRY 

It is possible to activate the monitor from your program, instead ot 

from the keyboard. Eight such instructions are available, but the one 

we shall introduce here is: 
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1.0 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

11100111 

E7 

RST4 

3 - 9 

Restart the monitor at entry 

point four. 

When this command is executed, all of the monitor functions become 

available to you. This allows you to use the RUN command, but permits 

your program to enter the monitor where you wish it to do so. Now you 

can. modify your program to provide additional inputs. Consider the 

revised flow chart in Figure 3-1. 



CLEAR A 

LOAD A FROM 8300 

INCREMENT A 

STORE A AT 8300 

NO 

ENTER MONITOR 

PUT NEW VALUE IN A 

Figure 3-1 
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0. 
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To implement the program, make the following changes to your code: 

820E 

820F 

8210 

E7 

C3 

07 

8211 82 

RST4 

JMP 

Enter the monitor 

Jump to the "INR A" 

instruction. 

Once again load a large value at 8300, then set the address to 8200 and 

step through the program. 

When the address display shows: I 00201 F31 

(or i 0020 J I A-?? ) ) 

you have entered the monitor. Step again and your jump instruction will 

appear. Now try ~ . Each time you press RUN the display will go 

blank briefly while the computer counts to FF and 00, and then it will 

reenter the monitor. Now press 

L~ ~ ( S20Fl I A-O]I 

(Your jump instruction address) 
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A-FOi 

You have entered a large value to the A register. 

820FJ A•OOl 

This time the display should barely blink, because the program only 

looped 16 times instead of 256. 

This. exercise illustrates the way in which timed delays may be 

implemented using program loops, a feature which is common in many 

process control operations. 

3.3 ADDITION BY COUNTING 

The next program exercise will demonstrate finding the sum of two 

numbers by the basic principle of counting.. The program specification 

is: 

"Write a program which will form the sum of two numbers by 

succesively incrementing the first number and decrementing the 

second, until the second reaches a value of zero." 

To implement this program a new instruction will be required: 

BINARY CODE: 00111101 

HEX CODE: 30 

MNEMONIC: OCR A 

MEANING: Decrement the A register 
,_ ~-

0 
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A flow ·chart for the program will be helpful and one is presented in 

. Figure 3-2. Before looking at the coding sheet (Figure 3-3) try to 

write this program all by yourself, then match it against the one 

provided. 



NO 

Pigure 3 ~ 2 

ENTER MONITOR 
TO OBTAIN A VALUE 

STORE IT AT 8300 

ENTER MONITOR FOR 
ANOTHER VALUE 

STORE IT AT 8301 

LOAD, INCREMENT AND 
STORE THE VALUE 

AT 8300 

LOAD, DECREME~ AND 
STORE THE VALUE 

at 8301 

LOAD THE VALUE FROM 
8300 
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Go back to the monitor 
to display the result 
and obtain another value 

0) 
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<( 
a: 
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Q. 

:E 
0 
u 
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a: 
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:e 
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:e 
w 
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a: 
w 
I­
::> 
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:E 
0 
u 
0 
w 
~ 
a: 
C) 
w 
1-z 

A 0 0 R COOE 

8 2 0 0 0 0 

0 1 0 0 
0 2 0 0 
0 3 E 7 

0 4 3 2 
' 
0 5 0 0 
0 6 8 3 

0 7 E 7 

0 8 3 2 

0 9 0 1 

0 A 8 3 
0 B 3 A 

0 c 0 0 

0 D 8 3 

0 E 3 c 
0 F 3 2 

8 2 1 0 0 0 

1 1 8 3 

1 2 3 A 

1 3 0 1 

1 4 8 3 
1 5 3 D 
1 6 3 2 

1 7 0 1 

1 8 8 3 

1 9 c 2 

1 A 0 B 

1 B 8 2 

1 c 3 A 

1 D 0 0 
1 E 8 3 

1 F c 3 
8 2 2 0 0 3 

2 1 8 2 

2 2 

2 3 

2 4 

2 5 

2 6 

2 7 

2 8 

N 0 

N 0 

N 0 

R s 
s T 

R s 
s T 

L D 

I N 

s T 

L D 

D c 
s T 

J N 

L D 

J M 
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p Save three bytes for a 
p future change 
p 

T 4 Enter monitor 

A 8 3 0 0 and save the value 
returned in A at 8300 

T 4 Enter monitor 
A 8 3 0 1 and save the value 

returned in A at ~301 

A 8 3 0 0 Begin loop 
Load first value 

R A Increment and 
A 8 3 0 0 store the first 

value 

A 8 3 0 1 Load the second 
value 

R A Decrement and 

A 8 3 0 1 store the 

second value 

z 8 2 0 B Loop until second 
value is zero 

A 8 3 0 0 Exit from loop 
Load the first 

Y-alue and 
p 8 2 0 3 go back to 

monitor to 

display it 
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Before stepping through your program, press RST and then enter a Small ~ 
value in A: 

~ [] G 
I STEP I 

Now press STEP repeatedly. 

You have just entered the monitor. 

-· - -- -- ------------

You have entered the monitor again 

Continue to STEP. 

This is the beginning 

of the loop. Continue 

to step~ 

8200} ( A-02 

8201} f A-02 .>) 

~ 

8202) (A-02 ) 

8203 I (A-02 , I 

0020) . (A-02 

820!1) (A-02 -i· 0) 

8207} (1.;.02 

0020) (A-02 

8208) (A-02 

8208) . (A-02 

820E J fA-02 
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You have done the 820F) (A-03 ] 

first INR A. 

The first value 8212 J (A-03 

has been stored. 

The second value, also 2, 8215J. (A-02 

has been loaded 

Decremented 8216) jA-01 

And stored. The program 8219) (A-01 

e i_s now at JNZ 

and the jump occurs. 820BJ (A-01 

The first value is loaded 820EJ (A-03 

Incremented 820F) {A-04 J 

Stored. 8212) (A-04 

The second value is loaded 8215) (A-01 

Decremented 8216) (A-00 -) 



Stored. The program is 

again at JNZ but 

the jump does not occur. 

The first value is loaded 

and now the jump 

back to the beginning occurs. 

The monitor again. 

Step again. Back to your 

program with A unchanged. 

3 - 18 

8219) (A-00 

821CJ (A-00 

821F} (A-04 

8203) I A-04 

0020 J (A-04 

8204) I A-04 

As the initial value placed in A (2) became the value of both the first 

and second numbers, we can verify that the result (4) is in fact their 

sum. 

Now press RST and run your program for various pairs of numbers. 

Remember each instruction takes only a few microseconds; the display 

will not even blink. Press RUN, then REG A (PC will be 8204) and enter 

the first number. Press RUN, REG A (PC will be 8208) and enter the 

second number. Press RUN again. The result will be displayed, and you 

can key in a new pair. Any two numbers whose sum is less than or equal 

to 255 (FF ) can be added in the two-byte A register. 
10 16 . 

0 



3 - 19 

3.4 SUMMARY 

In.this chapter several new instructions have been introduced, the use 

of RUN and programmed monitor entry has been shown, and the important 

concept of flow charts has been presented. All of the instructions used 

so far are summarized in Section 3.5. You may wish to write a program 

of your own at this point, for practic~. If you do, follow the rules: 

a) Specify the program 

b) Draw the flow chart 

c) Write the code, with comments {do not use 

locations 83A0-83FF) 

d) Key in the code and verify it 

e) Step through the program to check it, then 

.~ run it. 



3.5 SUMMARY OF INSTRUCTIONS 

00 

AF 

3C 

30 

3A 

xx 
xx 

32 

xx 
xx 

C3 

xx 
xx 

NOP 

XRA A 

INR A 

DCR A 

LDA 

low address. 

high address 

STA 

low address 

high address 

.JMP 

low address 

high address 
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Do nothing 

Clear the A register 

Increment the A register 

Decrement the A register 

Load the A. register 

with the data stored 

in the memory location 

whose address is in 

the second and third bytes. 

Store the contents of 

the A register in 

the memory location 

whose address is in 

the second and third bytes. 

Jump to the location 

whose address is in 

the second and third bytes. 

OJ 
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e C2 JNZ Jump if the result of 

xx low address the last arithmetic 

xx high address operation was not zero; 

otherwise continue to 

the next sequential instruction. 

E7 RST4 Enter the monitor .. 

0 
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4.1 THE OTHER REGISTERS 

In this section we introduce the general purpose registers B, C, D, E, H 

and L. These registers are used. for: 

1) Temporary data storage 

2) Storing operands for arithmetic and logical operations 

3) Counting 

4) Memory addressing 

For temporary data storage and counting, the general purpose registers 

are equivalent to the A register. There are instructions for all seven 

registers permitting data to be moved among them, moving data into them 

from memory, moving data from them into memory, incrementing and 

dicrementing their contents. They are not identical in all functions, 

however, and each has certain unique features. The A register, or 

accumulator, is very different in that the results of most 

and logical operations are stored in the A register. 

input/output instructions use the A register. 

arithmetic 

Similarly, 
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4.1.1 The MOV Instructions 

, It is often necessary to move data into one register from another. The 
\ 
instructior. to do this has the form 'MOV destination, source'. Such an 

instructior. exists for each possible pairing of registers. For 

instance: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

01001111 

4F 

MOV C,A 

Move into C the contents of A 

The data remain unchanged in the source register and are copied into the 

destination register, .. whose· old content is lost. Note that in the 9L. 
mnemonic the destination is listed first, then the source register. 

Interchanging these is a common source of error, so be careful. Think 

of the instruction as 'move into C from A'. The table below contains a 

summary of the MOV instructions. Note that the table is complete, 

including the useless MOV A,A; MOV B,B; etc. These are totally 

valueless to the user, but because of internal ~rocedures in· the 

microprocessor it would have added complexity to omit them or to use the 

wasted instruction codes for other purposes. 
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Inter-Register MOV Instructions: 

Source Register 

A B c D E H L 

MOV A,s 7F 78 79 7A 7B 7C 7D 

MOV B,s 47 401 41 42 43 44 45 

MOV C,s 4F 48 49 4A 4B 4C 40 

MOV D,s 57 50 51 52 53 54 55 

MOV E,s 5F 58 59 5A 5B 5C 5D 

MOV H,s 67 60 61 62 63 64 65 

MOV L,s 6F i 68 69 6A 6B I 6C 6D 
I ·-

0 
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4.1.2 The ADD Instruction 

The program of Chapter 3 performed addition by counting. This is 

i~efficient in terms of both program space and execution time. A single 

instruction will perform this function, now that we have a way to put 

one operand into another register: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

10000001 

81 

ADD C 

Add to A the content 

of C 

Any register content may be added to A: 

HEX -
ADD A 87 

ADD B 80 

ADD c 81 

ADD D 82 

ADD E 83 

ADD H 84 

ADD L 8.5 

0 

"\ 

0 
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Replace the loop in the addition program of Chapter 3 (addresses 820B to 

8221) with the following code, then step through it as before: 

820B 3A LDA 8300 

820C 00 

8200 83 

820E 4F MOV C,A 

820F 3A LOA 8301 

8210 01 

8211 83 

8212 81 ADD c 

8213 C3 JMP 8203 

8214 03 

8215• 82 

4.1.3 Multiplication By Addition 

By applying the techniques used for addition in Chapter 3 we can perform 

a multiplication, since ir.teger multiplicatior. can be viewed as 

repetitive addition. Once again we will use the monitor functions to 

obtain input values, but instead of adding one to the other, we will 

repeatedly add one value (the multiplicand) to a partial product while 

we decrement the second value (the multiplier) until it reaches zero. 

Multiplication can result in a product with as many digits as the sum of 

the numbers of digits in the multiplier and multiplicand, so this 

program is very likely to generate carries. The flow chart shown in 

Figure 4-1 will lose these. We will not solve the proble~ here: for the 
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moment use this program for single digit values of multiplicand and 

multiplier. In this flow chart note the use of circle symbols to label 

the destination of branching instructions. This permits flow charts to 

occupy more than one page while still° depicting program flow. The 

program is given in Figure 4-2 • 

-~ 

0 
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-- ) c STARr 

1 r 

Enter the monitor to display I 

I register A and obtain I 

·a new multiplicand I 

1 
Store the multiplicand 

at memory location 8300 
--·--··· ... -.. 

[- Enter the monitor to 

obtain a new multiplier 
. ----------·- ... \- Store the multiplier 

at memory location 83"01 

Clear the A register 

Move data into C from A 

to form the initial value 

of the product 

0 



Load the multiplicand to" · 

the A register. 
'-----------ir--------······ -- -. - . 

Add to the partial product 

Move th.e result to C ----------+--·-·------ -. --· ·-

Load, decrement and 

store the multiplier 

.No 

·--Yes. 

Move the product into 

register A from register C 

START 

Figure 4-1 
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··~. 

l 
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Load the program shown in Figure 4-2 and step through it: 

~ 
GEJ 

We will be entering data to A. 

l STEP] 

[ STEP l 
The next STEP kJ pu you in the 

! sml 
Ente~ a two-digit number: 

GJGJ 
I sml 
I smj 
I STEPI 

monitor: 

Back ir. the monitor. Enter two more digits: 

EJEJ 

I 8200 1 oo I 

I 8200 I [A-?? I 

( 8201 ) l A-?? I 

[ 8202 } (A-?? I 

[ 8203 ) {A-?? I 

j 0020) ( A-EF) 

( 0020 ) ( A-02 I 

I 8204 J ( A~02 I 

( 8207) l A-02 I 

·( 0020 } ( A-QZ) 

I 0020 J ( A-0 3 I 

-0) 
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Continue stepping (from here on we will not show STEP each time - it 

implied by a new PC value): 

I 82oa) I A-03 l 

I a2oB) ( A-03 l 
l 820C ) ( A-00 I 

'8200 J ( A-00 I 
l 821 o I I A-02 I 
( 8211 ) ( A-02) 

( 8212) [ A-02 I 

( a212 I ( A-0~ I 
( a216 I ( A-02 I 

(· a' 12 l ( A-02 I 

( 8200 ) ( A~02 ) 

is 

A has not reached zero, so the program looped. Continue stepping until 

PC is 821C: 

I 821 c I . ( A-00 J. 

Exit from the loop. Now pick up result: 

[ 8210 I I A-06 I 

And return to start: 

I 8203 I I A-06 I 

I 0020 I I A-06 I 



4 - 12 

You are back in the monitor, displaying the result and waiting for new 
input data. Turn the toggle switch to AUTO, press RUN, and try the 

program for various pairs of digits. (Press RUN after entering each 

pair of number~). When STEPping through your program, the monitor 

displayed its own address (0020~ when RST4 was executed. In RUN mode, 

the calling address is displayed (8204 or 8208). 

4 • 2 ~ THE CARRY AND ZERO FLAGS 

In Chapter 3 we defined the instruction JNZ, jump if the result of the 

last operation was not zero. While it might appear as though the jump 

was conditioned by the content of A, this is. not actually the case. 

When certain operatior.s leave zero in A., a 'flag' is set in the CPU. 
The flag may be both set and cleared, and JNZ is one of several 

instructions which detect the state .of the zero flag. Not -a-il -

instructions affect the flag. For example, data transfer instructions 

never set any flags: these instructions include LOA, STA, HOV, and 

others. 

e)· 

0 



0 

0 

4 - 13 

4.2.1. Carry 

If two numbers are added whose sum is greater than FF 

be a carry from the addition, e.g.: 

75 

94 

109 
16 

there should 

This carry is generated by the ADD instruction, and sets a condition 

flag called the carry flag (CY}. Like the zero flag which is set when 

the result of an operation is zero, this flag can be tested to cause a 

conditional jump to occur. 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

SECOND BYTE: 

THIRD BYTE: 

MEANING: 

11010010 

02 

JNC 

Low-order part of address 

High-order part of address 

Jump if the carry flag is not set. 

The instruction cycle of this instruction is the same as that for JMP, 

except that no jump occurs if the carry flag is set. 

Single register counting instructions (INR and OCR) affect the zero flag 

but not the carry flag. If the result of the count is zero, the zero 

flag is set, otherwise it is cleared. 
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Arithmetic and logical instructions affect both zero and carry. If the 

result of the operation is a zero in the accumulator, the zero flag is 

set; otherwise it is cleared. If the operation generates a carry out of 

the highest bit the carry flag is s~t, otherwis$ it is cleared. 

Conditional jumps can be made with tests for the set or clear state of 

each flag: 

Hex Code Mnemonic Meaning 

C2 JNZ Jump if not zero 

CA JZ Jump if zero 

02 JNC Jump if not carry 

DA JC Jum_p if carry · 

4.1.5 Comparison Instructions 

In the add and count instructions the flag setting is a result of the 

operation performed. There is a set of compare instructions whose only 

function is to set the flags. These instructions permit a program to 

determine whether the contents of the A register are greater than, equal 

to, or less than the contents of any specified ger.eral purpose register. 
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For comparing the·C register with the A register the instruction is: 

BINARY CODE: 

HEX CODE: 

MNEMONIC: 

MEANING: 

This sets or clears the 

A greater than 

A equal to C 

A less than c 

10111001 

B9 

CMP C 

Compare the contents 

of A and C and set 

the flags accordingly. 

zero and carry flags as 

Zero 

c Cleared 

Set 

Cleared 

follows: 

Carry 

Cleared 

Cleared 

Set 
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IMMEDIATE INSTRUCTIONS 

Although we have distinguished program memory from data 

common to include some data in the program memory. 
memory, it is 

Tables of fixed 

values such as arguments of functions (e.g. trigonometric) or 

calibration data are often' stored at the end of a program. Some 

instructions include data in the second or second and third bytes of the 

instruction. This is referred to as 'immediate data' and the 

instructions are called 'immediate instructions'. Such an instruction 

(ADI) was presented in the first chapter. 

4.3.1 Move Immediate Instructions (MVI r) 

The MOV instruction has a complete set of MVI counterparts. 

MVI instruction looks like this: 

MNEMONIC: 

SECOND BYTE: 

MEANING: 

MVI r 

Data 

Move the content of the following 

address into register r. 

The general 
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0 Following is the complete set of MVI instructions: 

MNEMONIC: HEX CODE: -

MVI A 3E 

MVI B 06 

MVI c OE 

MVI D 16 

MVI E 1E 

MVI H 26 

MVI L 2E 

. 
The MVI instruction is often used to initialize a counter. For example, 

in serial data communiqations it is necessary to transmit the eight bits 

of one byte sequentially. A counter is initialized at 8 and 

successively decremented (using DCR) to detect completion of the 

transmission. 

The instruction cycle for MVI is shown in Figure 4-3· 
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4.3.2 Compare Immediate 

Immediate instructions also provide data for compare and 

arithmetic and logical instructions: 

HEX·CODE: FE 

SECOND BYTE: Data 

MNEMONIC: CPI 

MEANING: Subtract the c.ontent of the following address 

from the A register and set all flags to reflect 

the result. Do not modify the content of A. 

other 

From this point on, we will generally omit the practice of showing the 

binary code for instructions. The purpose of doing so initially was to 

(- stress the fact that binary numbers, not hex characters, are what the 

computer 6perates on. The instruction cycle for CPI is shown in Figure 

4-4. 
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For all of the arithmetic and logical instructions that operate on data 

in the A register and one general purpose register, there are 

corresponding immediate instructions. These may be thought of as 

referring to a phantom register, created just to provide a desired data 

byte. 

4.3.3 Division by Addition 

Integer division, with no fractional result, answers the question "how 

many times can the divisor be added into a product before the product is 

greater than the dividend?" If the dividend is 7 and the divisor is 2, 

the quotient is 3, not 3.5, because this is integer division . 
• 

We will modify the binary multiplication program to perform integer 

division. Instead of counting a multiplier down, we will count a 

quotient up, and stop when the product is greater than the dividend. 

Figures 4-5 and 4-6 show the process. The initial steps of obtaining 

two numbers and storing them, and clearing the product in register C, 

are retained from the multiplication program. 

We initialize the quotient, in register B, to FF rather than zero, 

because we will increment the quotient at least once, even if the 

divisor is greater than the dividend. In the loop, we add the divisor 

into the product, just as in multiplication; increment the quotient, and 

compare the dividend with the product. Care is needed here to make the 

correct decision. Since we load the dividend to A and compare it with 

the product, carry will be set when the product is greater than the 

dividend, and cleared when the product is equal to or less than the 
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dividend. Be sure that you get the right answers both when the integer 

division is exact and when there is a remainder. 

0 
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0 
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Product > Dividend 
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4.4 TRANSFER NOTATION 

A number of new instructions have been introduc•d. Most of these are 

members of sets that perform similar functions using different registers 

as a source and destination for data. 

In this s~ction the term 'tran~fer notation' is introduced. A· capital 

letter designates a specific register or a flag; a lower case letter 

refers to a register which will be identified in the instruction. 

Parentheses imply 'the content of'. Thus: 

ADD r (A) <~ (A) + (r} 

states that the content of register r is added 

register A and the result is placed in register A. 
to the content of 
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4.4.1 Instruction Effects on Flags 

The following register reference instructions and imme~iate data 

instructions have been introduced thus far. The list below indicates 

their effects on the zero (Z) and carry (CY) flags. 

INR r 

OCR r 

MOV d,s 

MVI r,data 

ADD r 

Increment register r 
( r ) < - ( r ) +· 1 
If (r) becomes 0 then (Z) <- 1 

else ( Z) <- O 
The carry flag is not affected. 

Decrement register r 
( r) <- ( r) - 1 
If (r) becomes 0 then (Z) <- 1 

else ( Z) <- 0 
The carry flag is not affected. 

Move data into destination 
register d from source register s. 
(d) <- (s) 
The flags are not affected. 
The content of s is not affected. 

Move immediate data into 
register r. Byte 2 of the 
instruction contains the data. 
(r) <- (byte 2) 
The flags are not affected. 

Add register to accumulator 
(A) <- (A) + ( r) 
The content of register r is 
added to the content of register A 
and the result is placed in the 
accumulator. The content of 
register r is not affected. 
If (A) becomes 0 then ( Z) <- 1 

else (Z) <- 0 
If the result of the addition is 
greater than FF ( ie a carry occurs) 

then (CY) <- 1 
else (CY) <- 0 



ADI data 

CMP r 

CPI data 

XRA A 
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Add immediate data t6 accumulator 
(A) <- {A) + (byte 2) 
The content of bytel 2 of the 
instruction is added to the 
content of register A and 
the result is placed in the 
accumulator. Flags are 
affected as for ADD. 

Compare accumulator with register 
If (A) :. (r) then (Z) <- 1 

else CZ) <- o 
If (A) < (r) then (CY) <- 1 

else (CY) <- O 
The content. of A is not affeted. 

Compare accumulator with immediate data. 
If (A) = {byte 2) then (Z) <- 1 

If (A) < (byte 2) 

'1h! cxntent of A 
is nOt affected. 

Clear register A 
(A) <--0--_ - --
(Z) <- 1 

(CY) <- 0 

else CZ) <- O 
then (CY) <- 1 
else (CY) <- 0 

Note XRA r is a logical instruction which operates on the contents of 

registers r and A and places the result in A. Only when the register 

specified in the instruction is A CXRA A) does it have the effect of 

clearing A. 

CMP A 

ORA A 

Compare reqister A with itself. Sets 
the zero flaq and clears the carry flaq. 

(Z) ..._ l 
(CY)...;_0 

Test register A to set condition flags. 
clear carry·. 
If (A) = 0 then (Z) .,._l 

else (Z) 4-0 
always (CY)~ 0 

d 
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4.5 REGISTER PAIRS 

In the foregoing instructions the six general purpose registers CB, C, 

D, E, H, L) are equivalent to each other. They store data, provide 

operands for arithmetic and logical instructions, and count. Any one of 

them will serve as well as another. The general purpose registers are 

pa ired: 

B c 

D E 

H L 

Their arrangement is like that of the W and Z registers, and for the 

same reason: a pair of eight bit registers is able to store a 16-bit 

memory address. 

A number of instructions use register pairs for addressing the data 

memory. There are several reasons for addressing the memory this way. 

The least important {but not trivial) reason is efficiency. If the same 

address· is to be accessed repeatedly, it takes less program space and 

runni~g time to load the address into a register pair than to repeatedly 

load the memory address f:--om the program memory into W, Z. More 

importantly, if the same operation is to be performed on data in a 

series of adjacent memory locations, that operation can be performed in 

a repetitive loop, with the address being modified by incrementing (or 
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decrementing) the register pair. In many applications a memory address 

is calculated from variable data. 

4.5.1 The LOAX and STAX Instructions 

Register pairs B,C and O,E are used for addressing by the LOAX and STAX 

instructions. These correspond to the LOA arrd STA instructions, 

differing only in the source of address information. As is the case in 

all instructions using register pairs, the name of the first register is 

used to identify the pair, as in LOAX B: 

HEX CODE: 

MNEMONIC: 

MEANING: 

OA 

LOAX B 

Load the ·A register with the content of the 

memory location whose address is contained· 

in register pair B,C. 

This is called an indirect instruction, and. is expressed as: 'Load A 

indirect from 8 1
• The term 'indirect• means simply that the content of 

the designated _register is not to be loaded; rather, its content is the 

address of a location to be loaded. The address is obtained indirectly, 

rather than by directly specifying it as the LOA instruction would have 

done. 

The other instructions in this set are: 

1A LOAX 0 Load A indirect from O 

(A) <- ((0),(E)) 

. ) 
0 
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The STAX instructions similarly provide for storing data: 

. 02 STAX B Store A indirect at B 

((B),(C)) <-(A) 

12 STAX D Store A indirect at D 

((D) ,(E)) <- (A) 

The content of A is stored in the memory location whose address is 

contatned in the named register pair. Note that double parentheses such 

as ((B),(C)) imply the content of the memory locatio~ whose address is 

contained in register pair B,C. 

Figure 4-7 illustrates the instruction cycle for STAX D, which typifies 

·this usage of register pairs •. 
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4.6 SENSOR CORRECTION EXERCISE, VERSION I 

4.6.1 Sensor Characteristics 

A sensor is a device for measuring a physical variable such as 

temperature, pressure, sound, etc. A thermometer, f6r exampl~, is a 

device for measuring temperature. Temperature can vary over a 

tremendous ~ange, of course, and no thermometer can accurately measure 

all temperatures. Sensors are designed to operate over a limited range 

of the physical variable they measure. 

Even in this range they are not accurate (linear) over the entire scale. 

A sensor may be calibrat~d, however, to determine the magnitude of its 

deviation from linearity for each value that it does measure. This can 

be shown on a calibiation curve, a hypothetical example of which is 

shown in Figure 4-8. 

Notice that each of the calibration curves in Figure 4-8 provides an 

output lower than the actual value it is meant to measure for low values 

of the variable, but that both reach a point where they become linear. 

From these curves we may construct correction tables, which are shown in 

Table 4-1. 

Sensors are often designed to provide readings which differ from their 

measurement by some factor. An automobile tachometer, for example, 

measuring the engine's revolutions per minute, gives a reading on a 

scale of 0 to 8 (generally). This must be multiplied by a scaling 

factor of 1000 to obtain actual rpms. For our two hypothetical sensors, 

a scaling factor is also shown in Table 4-1. 
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Sensor 111 Scaling Factor 02 
-

Corrected Value 

0 
3 
4 
5 
6 

-7 
8 
9 
9 
A 
B 
B 

Linear 

Sensor 112 Scaling Factor 03 

Corrected Value 

0 
2 
4 
4 
5 
6 
7 
7 

Linear 

Table 4-1 
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4.6.2 Organizing the Data Structure 

We will develop a program to correct a non-linear sensor input value and 

multiply the result by a scaling factor. In the program the corrected 

values will be listed in tables. Since the sensors become linear well 

before full scale, we will store in the table only data· for the 

non-linear area. This gives different table lengths . for the two 
sensors. We will assume that the programmer does not know the table 

• 
lengths when he designs the program. Since the tables are contiguous, 

he also does not know the starting· address for the second table. 

Therefore for each sensor we will store the following information: 

a) The starting address for its table 

b) The sensor input value at which the sensor has become linear 

(the linear point) 

c} The scaling factor for the sensor 

d} The list of corrected values 

The starting address for each sensor's table must be accessed knowing 

only which of the sensors is being read. The remaining data can be 

included with the correction table. Table 4-2 shows the organization 

and locations for these data in our data.memory. 

0 
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4.6.3 Organizing the Program 

This exercise will be more complete than previous exercises. The basic 

program specification is simple: Obtain a s.ensor value input from one of 

two sensors, retrieve a corrected value from a table if necessary, 

multiply the value by a scaling factor, and display the result. 

In organizing the program, the assumption is made that all data is 

stored in tables, and that only the address of the first table is known. 

A further assumption is that the input data will alternate back and 

forth between sensors #1 and #2, starting with #1. 

We will use the multiplication ~ode developed for the last program, and 

use the monitor for input and display of results. The procedures for 

accessing tabular· data, however, are new. The design of the data o) 
structure in Table 4-2 will dictate the principal organization of the 

program. Before turning to the flow chart of Figure 4-9, sketch one of 

your own, then compare it. A program solution is given in Figures 4-10 

and 4-11. 

-·-- 0 
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Figure 4-9 
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Load the program and data tables and verify carefully. Use the solution 

given first, then try your own solution if it is different. Start at 

8203 and press REG A. We will step though the program and describe 

the operations in some detail. Follow the coding sheet and flow chart 

as we go: 

Move immediate to A 

places 02 in A, 

which is stored in the 

data table as the current sensor 

number. This is the Initializing procedure. 

From the monitor, we may 

Input a Sensor Value: 

The value 1 will be stored 

in register C. Next we will 

Update the Sensor #, 

putting 83 in D 

and 80 in E. · 

Look at register pair D,E 

EJEJEJ 

I 8203 I (·A-?? I 

I 8205 I ( A-02 I 

f 8208 I I A-02 I 

I 0020 I I A-02 J 

10020 I IA-01 I 

( 8209 J I A-01 I 

I 820A I I A-01 I 

I 82 oc I I A-01 I 

1820E I IA-01 I 

( 8380 I ( DE02 I 
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This is a new sequence of keys for inspecting the content of a 

register pair: 

The content of the register pair appears at the left. The right four 

locations display the name of the register pair and the content of the 

memory location addresses by the pair. The display format is not 

preserved, and must be keyed in each time. 

Now we will load (D,E) l820F I 3C 

GD (820F I I A-02 I 

This part of the code (820a to 8217) updates the current sensor 

which must alternate between 1 ·and 2 each time. 
number, 

I 
The sensor number has been 

incremented from 2 to 3. Now we 

will test its magnitude with CPI, 

And jump if it is less than 3. 

It is not, so (A) <- 1 

and will be stored in 8380. 

(8210 I IA-03 I 

· ( 8212 

I 82 i 5 I 

18217 I 

(A-03 

(A-d3 I 

(A-01 I 

Satisfy yourself that each time we pass through-these instructions, the 

sensor number will-alternate between 1 and 2. 
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By putting the sensor number in E, ( 8218 I (A-01 

we form address 8301 in D,E; 18219 I (X-01 

I AOORI GJ [;] 18301 (bEo8 J 

EJ D I STEPI ( 821 A I ll-08 J 

and load its content. The number 08 i~ an offset (from 8300) which 

gives us the low-order byte of the address of the first entry of the 

table for sensor 11 (8308), thus selecting the correct Sensor Table. 

EJEJEJ 
Now we Fetch the Scaling Factor for sensor 11, 

BOB 
and store it in B. 

(S21B I IA-08 I 

(8308 I IDE01 I 

l821c J IA-02 J 

(8210 J (A-02 I 

Register pair B,C now contains the scaling factor and input value: 

I NEXT I (8210 I (B-02 I 

I NEXT I (8210 I [C-01 I 

I STEP I l821E I (c-01 I 

Register pair D,E, whi~h holds our table pointer (current address in the 

table), has been incremented to point to the next entry: 

EJDEJ I 83 0 9 I ( DE 0 B I 
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We will load it~ content, the Linear Point, and 

EJEJB ~821F (A-OB 

compare it with the input value. (8220 (A-OB 

We are now poised at a decision point. If the sensor value is eq~al to 

or greater than the linear point, we do not need to access the 

correction table. 

In this case it is less. 

To Fetch the Corrected Value, 

we increment the table pointer,. 

move the low byte to A a~nd 

~dd .. J~be sensor input. 

f 822 3 ) (A-OB 

(8224 (A-OA 

(8224 (A-OA 

(8226 IA-OB 

We have computed the value of a table pointer by adding the sensor value 

to the address of the first correction entry. 

Now we return the pointer to E, (8227 J IA-OB 

EJEJEJ (S30B J (DE03 I 

load the corrected value, 

EJ D lsml· (8228 J (A-03 I 

and substitute it for the input value in (C). ( 8229 J (A-03 I 

We multiply by the Scaling Factor, just as we did in sectio~ 4.2. 

d 

e ·1 



0 The A register is cleared; 

add corrected input, 

decrement the counter {B), 

loop, 

add input again, 

decrement counter 

and jump out of the loop 

And so back to the beginning, 

to display the results and 

·get a value for sensor 112. 

Now RUN the program: 

{Sensor #1) 1 

{Sensor #2) 2 

{Sensor 111) 2 

{Sensor 112) 2 

RUN 

RUN 

RUN 

RUN 
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( 822A I I A-oo l 

l 8220 I [ A-03 ) 

f 822c J I A-03 ) 

( 822A I l A-03 f 

( B22B ) · ( A-06 ) 

( 822c ) ( A-Oo J 

( B22F ) f A-06 I 

( 820~ ) I A-06 I 

I 0020 I I A-06 I 

I 8202 I I A-?? I 

( 8209 ' I A-06 J 

I 8209 I ( A-06 I 

( 8209 J I A-08 ) 

( 8209 I ( A-OC) 

This STEP through of your program is keyed to both the flow chart and 

the coding sheet. If you are at all confused by it, STEP through it 

again, following both documents carefully. In addition to illustrating 

the use of new instructions, this program demonstrates two important 
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co~cepts: incrementing an address in a register pair to 

successive entries in a table, and the computation of addresses. 

access 



'.-
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4.7 ADDITIONAL INSTRUCTIONS FOR REGISTER PAIRS 

4.7.1 Load Immediate, Increment and Decrement 

Several additional instructions useful for dealing with register pairs 

are defined here. They could have been used in the foregoing exercise, 

although there was no difficulty in programming the problem without 

them. They are: 

LXI rp (rp refers to a register pair.) 

INX rp 

DCX rp 

Example: 

LXI rp Load immediate data to register pair: 

xx (rl) <- (byte 2) 

yy ( rh) <- (byte 3) 

The content of byte 2 of the instruction is loaded to the low order 

register (C, E, or L) of the register pair. The content of byte 3 is 

loaded to the high order register(B, D, or H). The flags are not 

affected. The LXI instructions-are: 

01 LXI B 

1 1 LXI D 

21 LXI H 
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These instructions are most commonly used to load an address pair, but 

they can equally be used to initialize counters or otherwise enter data 

into a pair of registers. 

Increment and Decrement Instructions are: 

03 

13 

23 

OB 

18 

28 

INX rp 

INX B 

INX D 

INX H 

DCX rp 

OCX B 

DCX D 

DCX H 

Increment Register Pair 

(rl) <- (rl) + 1 

If (rl) becomes O then 

(rh) <- (rh) + 1 

Flags are not affected 

Decrement Register Pair 

(rl) <- (rl) - 1 

If (rl) becomes FF then 

(rh) <- (rh) - 1 

Flags are not affected. 

These instructions are used almost exclusively to change an address held 

in a register pair. In the foregoing exercise .we could have used INX B 

instead of INR C, and INX D inst~ad of INR E, with no change in the 

program's operation. Since all of the table addresses were within 8300, 

there was no need to alter the high byte of the address, but if the 

table had started within the 82xx region and ended in the 83xx region, 

the INX B and INX D instructions would have to be used. 

Note that INX and OCX do not affect the flags, whereas INR and OCR 

affect all flags except carry. This difference is important. In some 
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applications it is desirable that the flags resulting from a previous 

operation be retained while a memory address is changed. On the other 

hand if a loop is to be repeated until a counter reaches zero, the INR 

or DCR instruction must be used to set or clear the zero flag. 

4.7.2 Use of a Memory Location as a Register 

Register pair H,L is primarily intended for addressing memory, and the 

memory location addressed by (H,L) is available to the CPU as though it 

were another register. All of the register reference instructions (MOV, 

MVI, INR, DCR, ADD, XRA, ORA, CHP, and others not yet presented) have 

counterparts that perform the same function using the memory location 

addressed by (H,L). The flags are affected as though the memory 

location were a general purpose reg~ster. 

Before carrying out 

addressing, we will 

an exercise involving . this type of memory 

formally define the instructions involving memory 

reference, and also several instructions specific to register pair H,L. 
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4.7.3 Memory Reference Instructions 

INR M 

OCR M 

HOV M,s 

HOV d,M 

MVI M ,data. 

Increment Memory 
((H)(L)) <- ((H)(L)) + 1 
Increment the content of the 
memory location addressed 
by the content of register 
pair H,L. 
If ((H)(L)) becomes 0 then (Z) <- 1 

else (Z) <- O 
The carry flag is not affected. 

Decremer. t Memory 
((H )(L)) <- ({H )(L)) - 1 
Decrement the content of the 
memory location addressed 
by the content of register 
pair H,L. 
If ((H)(L)) becomes 0 then (Z) <- 1 

else CZ) <- O 
The carry flag is not affected. 

Move data into memory 
( (H)(L)) <- (s) 
The memory location addressed 
by the register pair H,L is 
loaded with the content of 
source register s. 
The flags are not affected. 
The content of s is not affected. 

Move data from memory 
(d) <- ((H)(L)) 
Destination register d is 
loaded with the content 
of the memory location 
addressed by register pair H,L 
The flags are not affected. 
The content of the memory 
location is not affected. 

Move immediate data into memory 
((H)(L)) <- (byte 2) 
The memory location addressed 
by register pair H,L is 
loaded with the content of 
byte 2 of the instruction. 
The flags are not affected. 
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CMP M 
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Add memory to accumulator 
(A) <- (A) + ((H)(L)) 
The content of the memory 
location addressed by register 
pair H,L is added·to the 
content of register A and the 
result is placed in register A. 
The content of the memory 
location is not affected. 
If (A) becomes 0 then (Z) <- 1 
else ( Z) <- 0 

If the result of the addition 
is greater than FF (ie a 
carry occurs) then (CY) <- 1 

else (CY) <- O 

Compare accumulator with memory 
If (A) = {{H)(L)) then {Z) <- 1 

else { Z) <- O 
If (A) < ((H){L)) then (CY) <- 1 

else {CY) <- O 
The contents of A and 
({H){L)) are not affected. 

-4.7.4 Additional Instructions for H,L 

The following instructions specifically involve register pair H,L. 

Their pri~ary function is for use in addressing memory, although the DAD 

instruction is also very useful in arithmetic. 

DAD rp Add the content of register pair 
rp to the content of H,L. 

(H),-(L) <- (H),(L) + (rh) (rl) 
If the result of the addition is 
greater than FFFF, then (CY) <- 1 

else (Cl) <- 0 

The HEX codes for DAD instructions are: 

09 DAD B 

19 DAD D 

29 DAD H 
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In the sensor correction exercise this instruction could have been used 
to add the table address (in pair D,E).to the input value (in register 

L), but the scaling factor would have to be held elsewhere and register 

H set to zero. This will be used in the revised version of the sensor 

correction problem at the end of this chapter. 

The DAD instruction performs a 'double precision' add: two bytes or 16 

bits are involved. DAD H adds the content of H,L to itself - that is, 

the content is doubled. Another useful instruction is: 

EB XCHG Exchange H,L with D,E 

~5~ ~=~ ~h~ 
The cont~nts of registers H 
and L are exchanged with 
the contents of D and E. 
The flags are not affected. 

This is one of or.ly two exchange instructions in the 8080. All other 

data transfer instructions are one-way: the content of the source 

register or memory location is duplicated while the previous content of 

the destination is lost. In the XCHG instruction the previous content 

of all four registers are preserved but in different registers. It is 

especially useful when two different memory pages are successively 

accessed. 

The content of (H,L) may be loaded and stored using LHLD and SHLD: 

2A LHLD 
xx 
YY 

Load H and L Direct 
(L) <- ((byte 3)(byte 2)) 
(H) <- ((byte 3)(byte 2) + 1) 
The content of the location addressed by 
byte 3 and byte 2 of the 
instruction is moved to 
register L.The content 
of the memory location at o' 
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22 SHLD 
~x 

yy 
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the succeeding address is 
moved to register H. 

Store H and L Direct 
{(byte 3 )(byte 2)) ~<- CL) 
((byte 3)(byte 2) + 1) <- (H) 
The content of register L 
is moved to the memory 
location addressed by byte 3 
and byte 2 of the instruction. 
The content of register H 
is moved to the memory 
location at· the succeeding address. 
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4.8 SENSOR CORRECTION, VERSION 2 

I~ the following exercise we will duplicate the sensor correction 

program of Table 4-9 with three exceptions. The data table (Table 4-2) 

will store the number of sensors which will be used, so that it need not 

be part of the program. We will address the data table with register 

pair H,L instead of D,E and.use memory reference instruction such as MOV 

A,M, and do a double precision multiply for the scaling. 

4.8.1 Double Precision 

Double precision means that a number is stored ·in two bytes, giving a 

prec~sion of 16 bits (one part in 65,536}. It is often the case that 

one byte Corle part in 256) of precision is ~ufficient, but in 

multiplication or division we ean use double pr~Ci$10~_in the operation 

and then discard the less significant part of the result. In our 

earlier scaling, having only a single precision multiply forced us to 

restrict the input and scaling factors to single digit values. With a 

double precision multiply we can use full bytes for both input and 

scaling factor, multiply to obtain a four byte result, and output the 

high order byte. 

The revised flow chart and coding are presented in Figures 4-12 through 

4-14. 

• 

d 
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Initialize # of Sensors 

Input Sensor Value 

Decrement Sensor H 

YES 

NO 

Initialize Sensor H 

Fetch Scaling Factor 
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Fetch Corrected Value 

Multiply by Scaling Factor 

Go Display Result and 

Input New Sensor Value 

Figure 4-12 
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4.8.2 Running the Program 

Load the new program. You must also load the data table (Table 4-2) if 

it is not still in your memory. Enter 02 at location 8300, for the 

highest sensor number. 

Now reset and press REG, A, RUN to arrive at the data input point. From 

here we will trace the data in the processor. 

EJEJEJEJ I 820A I I A-02 I 

Leave 02 as the input value. We are about to move the input value into 

C, clear B, and load registers H and L with an LXI H instruction. 

Step three times and observe the registers: 

I NEXT I 
I NEXT I 

I 8200 I 

I 8200 I 

( 8210 I 

( 821 o I 

( 8210 J 

( A-02 I 

I A-02 I 

( 1-02 I 

l s-60 I 

( C-02 I 

The content of register pair H,L addresses the memory location where the 

old sensor number is stored: 

[ ADDRI EJ EJ [ 8380 I ( HL02 I 

I 8211 I C2) 
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BEJEJ (8380 I (HL01 

Since the content of 8380 did not reach zero, the JNZ instruction (C2) 

will cause a jump: 

(8219 6E 

The instruction at 8219 is MOV L, M. The content of memory loca.tion 8380 

will be moved into L, so the memory address will become 8301, pointing 

to the table address for sensor number 1: 

(821A 6E 

8EJEJ · 18301 I· . (HL08·1 

Another MOV L,M will put the table address into H,L, and point to the 
scaling factor: 

(B21B SE 

(8308 I (HL02 

At 821B we have MOV E,M to save the scaling factor in register E, and 

then INX H to address the linear point: 

(821c ( 23 

(8210 ( BE 

BEJEJ (8309 I (HLOB 

The next instruction (BE at 8210) compares the linear point (OB at !309) 

with the content of register A. Before executing it, review th11 e/ 
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registers: 

88 (sensor input) ( 821 D I (A-02 

EJ ( B cleared) l 821 D I (B-00 I 

~ (sensor input) I 8210 I I C-02 I 

B (not used) ( 821 D I CD-?? I 

EJ (scaling factor) ( 821 D I (E-02 I 

EJ C flags - ignore) (8210 I I F-2A I 

·~ (high address) (8210 J (H-83 I 

r NEXT] (low address) ( 821 D I (L-09 ·I 

The following instructions compa~e the sensor input. with the linear 

point, and finding the input not gr~ater the jump to 8224 is not taken: 

(821 E (L-09 I 

(8221 (L-09 

At 8221 register pair H is incremented to address the first point in the 

table of corrected values:· 

f 8222 I lL-OA I 

0 
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'""" At 8222 register pair B, C (containing 0002) is added to register pair HL 0 
(containing 830A): 

(8223 I [L-OC I 

This addresses the linearized value for a sensor input of 02: 

BGJEJ [83oc I lHL04 

The following three ir.structions move that value to C and clear H and L. 

We are finished with H and L for addressing and now need them for the 

double precision multiply: 

l8224 I 60 

(8225 I 68 I 

l 8226 I 09 I 

Before starting the multiplication review the registers again. 

B GJ (8226 (A-02 

I NEXTI (8226 IB-00 

I NEXTI [8226 (C-04 

! NEXT' 
18226 (D-?? 

e 
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- I NEXT I l 8226 I I E-02 J 

I NEXT I f 8226 I ( F-8A I 

I NEXT I I 8226 t r H-oo·J 

I NEXT I I s226 I I L-00 I 

In the multiplication we will add (BC) = 0004 into (HL) = 0000 as we 

count down in register E from 02 to 00. You can watch this in register 

L. 

, 8227 l I L-04 J 

( 8228) ( L-04) 

82261 L-041 

f S227 I ( L-08 I 

I 82~8 I f L-08 l 

I 8228 I ( L-08 J 

0 
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Register E has been counted down to zero and the program has exited from 

the loop. At 8228 the single precision result is moved into A from L, 

and then the jump back to the monitor entry occurs: 

(822c I IL-OS J 

BD ( 822C I ( A-08 I 

( 8209 I ( A-08 J 

I 0020 I ( A-08 J 

By using DAD B in the multiplication loop we have computed a double 

precision product, but have only looked at the low-order part (L). 

Change the scaling factors at 8308 and 8316 to CO (making both the same 

will produce identical results for each sensor except in their 

non-linear regions). Run the program for various inputs. Each time the 

program returns to the monitor, display the contents of H,L to see the 

complete multiple precision result. 

(S20A I (A-02 I 

( 820A I lA-16 I 

I 820A I (A-80 J 

0 

0 
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I 1080 I I HLCE I 

For sensors give the same result: 

f 82 OA I I A-16 J 

I 820A J I A-80 I 

f 1080) (HLCE I 
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4.9 SUMMARY 

In this exercise we have seen register pair H,L used as a store for a 

memory address, which we modified in four ways: 

a) Loading it initially with LXI H 

b) Copying data from an addressed memory location into L, 

with MOV L,M. 

c) Incrementing it, with INX H. 

d) Adding a variable to the address, with DAD B. 

We have also seen the memory location addressed by H,L used as a counter 

(DCR M) and for a comparison (CMP M), in each case affecting the flags. 

We have seen it as a source register (HOV L,M; HOV E,M; MOV C,M) and as 

a destination register (MOV M,A). 

Finally we observed regist~r pair H,L used for addition with DAD B, in 

the multiplication loop as well as in addressing. 

4.10 INSTRUCTION CARD 

The instruction card shows all of the 8080 instructions. Most of the 
data.transfer and counting instructions have now been introduced, as well 
as a few of the arithmetic and branch instructions. Study the 
organization of this chart so that you can readily find an instruction 
when you need it. 

0 
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HEX CODES FOR 8080 INSTRUCTIONS 

SOURCE REGISTER 
DATA IMMEDIATE 

TRANSFER A B c 0 E H L M SP (DATA FROM PROGRAM) 

MOV A,s 7F 78 79 7A 78 7C 70 7E MVIA 3E 
MOV B,s 47 40 41 42 43 44 45 46 MVIB 06 
MOV C,s 4F 48 49 4A 48 4C 4D 4E MVIC OE 
MOV D,s 57 50 51 52 53 54 55 66 MVID 16 
MOV E,s SF 58 59 SA SB SC 5D SE MVI E 1E 
MOV H,s 67 60 61 62 63 64 6S 

' 
-66 MVIH 26 

MOV L,s 6F 68 69 6A 68 6C 60 6E MVI L 2E 
MOV M,s 77 70 71 72 73 74 75 - MVIM 36 

LXI rp 01 11 21 31 2 DATA BYTES 
FROM PROGRAM 

LOA addr 3A ADDRESS FROM 
STA addr 32 PROGRAM (2 BYTES) 

LDAX rp OA 1A ADDRESS FROM 
STAX rp 02 12 REGISTER PAIR 

LHLO addr 2A ADDRESS FROM 
SHLD addr 22 PROGRAM (2 BYTES) 

SPHL F9 SP+-HL 
PCHL E9 PC+-Hl (BRANCH) 
XCHG EB DE......+il 
XTHL E3 ST ACK TOP+.H l 

PUSH rp C5 DS ES PUSH PSW FS SP+-SP-2 
POP rp C1 01 E1 POP PSW F1 SP+-SP + 2 

COUNTING A B c 0 E H l M SP FLAGS AFFECTED 

INR d 3C 04 oc 14 1C 24 2C 34 Z, S, P, AC 
OCR d 30 OS OD 1S 10 2S 2D 35 Z,S, P, AC 
INX rp 03 13 23 

·-
33 NONE 

ocx rp OB 18 28 38 NONE 

ARITH/LOGIC A B c 0 E H l M SP IMMEDIATE 
DAO rp w 19 ;.!:~ ~~ . (DATA FROM PROGRAM). 
ADO s 87 80 S1 S2 83 S4 SS 86 ADI C6 
ADC s SF S8 S9 SA 88 SC SD SE ACI CE 
SUB s 97 90 91 92 93 94 95 96 SUI 06 
see s 9F 98 99 9A 98 9C 90 9E SBI OE 
ANA s A7 AO A1 A2. A3 A4 A5 A6 ANI E6 
XRA s AF AS A9 AA AB AC AO AE XRI EE 
ORA s 87 BO B1 82 83 B4 BS B6 ORI F6 
CMP s BF BS 89 BA BB BC BO BE CPI FE 

INSTRUCTION FLAGS 

ACCUMULATOR RLC RRC RAL RAR OAA CMA STC CMC ONLY THE CY FLAG IS AFFECTED EXCEPT: 

ANO CARRY 07 OF 17 1F 27 2F 37 3F CMA NO FLAGS 
DAA ALL FLAGS 

BRANCH JMP CALL RET PCHL HLT NOP 
BRANCH AND IN/OUT INSTRUCTIONS 
DO NOT AFFECT ANY FLAGS 

UNCOND C3 co C9 E9 76 00 DATA TRANSFER INSTRUCTIONS DO NOT 
CONO NZ C2 C4 co AFFECT ANY FLAGS EXCEPT: 

z CA cc cs POP PSW AFFECTS ALL FLAGS 

NC 02 04 00 ARITHMETIC/LOGIC INSTRUCTIONS 

c DA DC 08 AFFECT ALL FLAGS EXCEPT: 
DAD AFFECTS CY ONLY 

PO E2 E4 EO INR AND OCR AFFECT ALL FLAGS 
PE EA EC ES EXCEPT: 
PLUS f 2 F4 FO CY 

MINUS FA FC FS INX AND OCX 00 NOT AFFECT ANY FLAGS 

INPUT /OUTPUT IN OUT El DI IN AND OUT ARE TWO BYTE 
&INTERRUPT DB 03 FB F3 INSTRUCTIONS WITH PORT ADDRESS 

RESTART RSTO RST 1 RST2 RST3 RST4 RST5 RST6 RST7 
(CALL TO) 0000 0008 0010 0018 0020 0028 0030 0038 
HEX CODE C7 CF 07 OF E7 EF f 7 FF 

INTEGOOED C0111RJrER SYS1F/V1S, lf\C. 
4445 Overland Avenue/ Culver City, California 90230 USA I Tel: (213) SS9-9265 I TWX: 910-340-6350 
European office: Boulevard Louis Schmidt 84, Bte 6 / 1040 Brussels, Belgium I Tel: (02) 735 6003 /Telex: 62473 



0 

MICROCOMPUTER TRAINING WORKBOOK 

CHAPTER 5 

MEMORY HARDWARE 

c 



- 5. 

0 

INTRODUCTION TO CHAPTER 5 

Having explored (in Chapters 2 and 4) the ways that programs address the 

memory, we will now examine the physical addressing of the memory. This 

chapter discusses the following subjects: 

Memory Technology - ROM and RAM 

Memory Addressing and Address Decoding 

Data Bus Connections and Tri-State Circuits 

Direct Memory Access and Interrupt Inputs 

Memory Signals and Timing 

LIBRARY 
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5.1 MEMORY TECHNOLOGY 

A memory device includes semiconductor circuits or elements to serve 

four functions: 

a) Store data in an o~dered array 

b) Decode the address inputs to select a certain location 

c) Alter the stored data at the selected location upon command 

d_) Output the data from the selected location upon command · 

The memory devices used in the MTS each hav~ 256 locations, addressed by 

the low-order eight bits of the system address bus. The ROM and RAM 

memories of your MTS system are shown in the schematic diagram, Figure 

5-i. -The ROM devices store eight bits at each ·1ocation. The RAM 

·devices store four bits at each location, so two devices are used for 

the eight bits that must be stored for each address. This convention is 

illustrated in Figure 5-2. 
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5.1.1 Storage Techniques 

The electronic means of storing data depends on the kind of memory 

device used. Permanent (mask) Read Only Memory CROM) has, for each bit, 

a transistor ~hat is eith&r created or destroyed during the 

semiconductor manufacturing process. In ~lectrically eraseable and 

Programmable Read only Memory (PROM) devices, such as the MTS' 1154, a 

physical quality of the semiconductor material at each bit position is 

altered by a relatively high voltage pulse during programming. The 

change is reversible but non-volatile: it will remain indefinitely until 

a new programming operation is performed. The microcomputer has no 

facility for applying such high energy signals, so the PROM cannot be 

altered while it is in the circuit. Other types of PROMs are erased by 

exposure to an intense ultraviolet light, and may then be reprogrammed 

electrically. 

In read-write memory the data are stored in the form of current or 

charge in transistors. Static RAMs, such as the MTS' 5101, include a 

flip flop circuit for each bit. Such a circuit ha~ two stable states; 

one transistor conducts while a second is cut off. Dynamic RAMs store 

data in the form of a charge, which gradually leaks away and must be 

refreshed at approximately one millisecond intervals. Refreshing 

requires additional external circuits, which is not appropriate in small 

systems. However, many more bi ts c·an be stored in one dynamic device, 

which is desirable in large systems. 
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The MTS memory devices have an array of 256 storage 

arranged as a square 16 cells high and 16 cells wide. 

locations, each 

The eight address 

lines received by the device are divided into two groups of four lines. 

Each group is decoded to select one of 16 lines, as shown in Figure 5-3. 

The intersection of the two lines is the selected location. Gates at 

that location connect the input and output of the storage circuit to the 

control circuitry within the device. This array is replicated four 

times at each address to provide the four bits stored by the RAM 

device.,. or eight times in the ROM. 
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5.1.2 Chip Select Logic 

Every memory device in the system receives the eight low order lines 

from the address bus, decodes the bit patterns, selects one location and 

connects it internal~y. The high order eight bits of the address bus 

are decoded externally to select one ROM or two RAMs. In an 8080 

computer system with 65,536 bytes of memory, the high order address 

would have to be fully decoded to select among 256 separate memory 

devices (or pairs of devices). 

The MTS is equipped with four ROM chips (1024 bytes) and two pairs of 

RAM chips (512 bytes), with provision for two additional pairs of RAM 

chips. It is therefore necessary to decode only eight of the possible 

256 high order addresses. This is accomplished by a single 2155 address 

decoder, which has three address inputs and eight decoded outputs. Each 

output is connected to one ROM chip or to one pair of RAM chips. 

The decoding is thus incomplete: three of the high 

enter the 2155 and the other five are ignored. 

the physical memory appears to be replicated 32 

this with your microcomputer. Press ADDR 

order address bits 

In this configuration 

times. You can test 

and enter any of these 

addresses: 

0000, o4oo, oaoo, ocoo, 1000, 1400, ••• 1coo 

The same data (31) will be seen at each address because the same monitor 

(ROM) location has been selected in each case. 

In your own program memory CRAM) you may also substitute addresses at 

0 
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intervals of 400
16 

for example: 

8600 instead of 8200 

9A01 instead of 8201 

FE02 instead of 8202 
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The address bits decoded for chip selection are the highest bit (A15), 

which distinguishes ROM (high bit= 0) from RAM (high bit= 1), and the 

two low order bits CAB and A9). The following diagram will clarify: 

Address 820016 

This bit selects 

ROM or RAM 

memory: 

These five bits are 

ignored by the decoder. 

These two bits select the 

target ROM or RAM device: 

the less significant 

bits are deooded by 

the nsrmy device : _ 

Provision is made on the circuit board for an additional input to the 

2155 address decoder to disable all of its chip select lines so that 

external memory can be added using a different decoder, b~t it is hard. 

to imagine this being appropriate. Programs needing more than 1024 

bytes of RAM generally belong in expensive development systems with text 

editors, assemblers, compilers, and floppy disks. 
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5.2 MEMORY PAGES 

All 256 bytes of an MTS memory device have the same high address (e.g. 

82) and all possible low addresses (i.e. 00 through FF). This is 

called a page of memory. With small memo·ry devices it corresponds to a 

physical separation: a single 454 ROM chip or a pair of 5101 RAM chips 

is one page. This affects addtessing, since only the low-order bytes of 

addresses change within a given page. 

For example, you could clear data memory (8300 through 839F) with this 

program: 

8203 LXI H,83AO Load address 83AO in H,L 

8204 AO 

8205 83 

8206 DCR L Decrement L 

8207 MVI M,00 Store zero in address (H,L) 

8208 00 

8209 JNZ 8206 Loop until L = zero 

820A 06 

8208 82 

.J e 
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There may be occasion to use addresses with the same low-order byte in 

two separate pages for data, e.g. for storing argument pairs. This 

involves a violation of the division suggested above between program and 

memory. That division is not sacred, however, and memory should be used 

as efficiently as possibile. It is often useful to make a memory map 

for any program that is divided into modules, or if large areas of 

memory are used for variable data. Figure 5-4 illustrates such a map. 



8200 - 820F 

8210 - 82ll' 

8220 - 822!' 

8230 - 823F 

8240 - 824F 

82SO - 826F 

8260 - 82EF 

8270· - 827F 

8280 - 828!' 
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82BO - 82!!F 

82CO - 82CF 
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8300 - 830F 

8310 - 831? 

8320 - 832F 

8330" - 833F 

8340 - 834F 

8350 - 83SF 

8360 - 836F 

8370 - S37F 

8380 - 838F 

8390 - 839F 

83AO - 83AF 

83SO - 83BF 

83CO - 83CF 

8300 - 830!' 

83EO - SJEF 

83FO - 83FF 

Figure 5 - 4 
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(PIC>GRAM) 

256 Bytes 
Generally used for 

Program Memory 

160 Bytes 
Generally used for 

var:l.able Data 

(DATA SEG£NT 2) 

32 Bytes for Stack 
(Chapter 6 ) 

56 Bytes :reserved 

for M:>nitor 

,, 

f Display ( 8 Bytes) 
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- 5.3 DATA BUS CONNECTIONS 

i•.·, \-

0 

Figure 5-1 shows that the inputs and outputs of all the memory devices 

are connected to a common data bus. Only the chip (or pair of RAM 

chips) that has been enabled by the high address decoder is allowed to 

use the data bus: when the bus is active it is drive~ by one device 

(memory, CPU, or input) and it drives one device -cmemory, CPU, or 

output). 

5.3.1 Tri-State Circuits 

The device that is to receive data from the bus expects each line of the 

bus to be in a clearly defined state - one or zero. To achieve this the 

driving device either pulls the bus down to a volta·ge level close to 0 

volts or pulls it up to a voltage level well above 0 volts - between 

about 2.5 and 5 volts. Other devices that are capable of driving the 

bus must not interfere with this operation. A se~iconductor circuit for 

this purpose is called a Tri-State circuit: it has three output states, 

high, low, and off, and is analogous to a three-way cm-off-on toggle 

switch. 
+s volts 

No COnnection 
---- Dita Bus COnnection 

low 
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Clearly we could connect many such switches to a data bus line and if 0 · 
exactly one switch is high or low the line will be in a well defined 

state. The circuit used in the memory uses MOS transistors. If the 

high transistor is turned on, the circuit delivers current to the line 

from the 5 volt supply. If the low transistor is turned on, the circuit 

sinks current to ground. If both are off, the circuit exhibits a high 

impedance to the line. 

Tri-state circuits are us~d for all connections capable of driving the 

address bus or the data bus. This includes the 8080 CPU, the 8228 

System Controller, each 454 ROM and 5101 RAM (on the data bus only), and 

the 8255 Peripheral Interface. 

5.3.2 Read-Write Control 

In addition to a~lowing many devices to share the data bus,·. the.). 

tri-state circuit allows the individual device to use the same pins for 

input and output. When a device has been selected by the address bus 

decoder it observes the control lines from the 8228 system controller 

(the control bus), signals which are derived from the CPU. 

A memory read operation causes the selected memory device to connect the 

outputs of the selected memory ~ocation to the system data bus by 

enabling the tri-state output to enter its high or low state. 

When its tri-state circuits are in the high impedance state the device 

can sense data that the CPU has placed on the data bus. When a signal 

from the CPU (via the 8228 and the control bus) commands a memory write 

operation, the selected device copies data from the bus to the inputs of-) 
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the storage flip flops addressed by its internal decoder. 

A similar operation occurs in the 8255 Peripheral Interface device when 

the CPU commands an input or output operation. On input the 8255 copies 

data from its external ports (from the keyboard, for instance) onto the 

data bus. On output the 8255 senses the data bus and copies the data to 

the output ports. 

5.3.3 DMA and Interrupts - Introduction 

The 8255 provides for programmed input and output. It sends data to the 

CPU from the external world when the program requests it, and it sends 

data to the external world when the program so specifies. There are two 

a program; These subjects are discussed in detail in a later chap.t~r; 

at the moment we are concerned with their relationship to memory and the 

buses. 

Direct memory access permits an external device to read or write to the 

computer's memory without program control or CPU intervention. When the 

device needs access to the memory it generates a signal to the CPU 

requesting a HOLD state. When the CPU finishes the current machine 

cycle it acknowledges the hold and relinquishes control of the memory, 

placing its address and data bus drivers into the high impedance 

condition. The external device- the DMA channel- now drives the address 

lines and the . read and write control lines. If memory read is being 

i 

. ! 
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requested, the selected memory device drives the data bus just as if the 
CPU had commanded a memory read the memory does not know the 

difference. The DMA channel accepts the data from th_e bus, then returns 

control to the CPU by dropping the hold request. 

The Interrupt method of externally controlled input and output involves 

only the data bus. An interrupt request is delivered to the CPU, which 

finishes the current instruction and relinquishes control of the buses. 

The interrupting device proceeds to place an instruction on the data 

bus, and the CPU treats this as though it were an instruction read from 

the program memory. Eight RST instructions are provided for this 

purpose. As you have seen, RST4 as an instruction in yo·ur program 

causes an entry to the monitor program. If it were entered by means of 

an external interrupt, exactly the same process would occur. Usually 

the interrupt initiates a programmed input or output operation; this is 

treated in chapter 8. 

d 
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I -- 5.4 MEMORY SIGNALS AND TIMING 

/• •. · .. " \-

5.·4.1 Machine States and Transitions 

Figure 5-5 shows the signals involved in memory access during the MOV 

M,A instruction cycle. The system clock is driven by the 8224 clock 

generator, which includes an oscillator controlled by a~ external 

crystalr The oscillator is counted down and divided into a two phase 

clock: the ¢ 1 and ~ 2 clocks, as shown. SYNC is generated by the CPU 

at the beginning of each machine cycle. The ~ 1 clock period marks 

"states" of the processor. Each machine cycle has three or more states 

(clock periods). Each instruction cycle has one or more machine cycles. 

We will proceed along the time axis and explain the states as we meet 

them. 

5.4.2 First State (T1) 

During the last half of state T1 and the first half of state T2, the CPU 

generates a SYNC signal, and outputs on the data bus an eight-bit status 

word designating the kind of machine cycle that is being performed. In 

the first machine cycle of any instruction this is always an instruction 

FETCH. 
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The clock generator receives the SYNC signal and generates a status 

strobe in response: this is a narrow pulse which the system controller 

uses to latch the status data. 

The CPU also connects its program counter outputs onto the address bus 

during the instruction FETCH machine cycle. This connection is retained 

through most of the machine cycle. All of the memory devices 

receive the address (8 low-order bits) and decode it, and the external 

decoder selects one of the memory devices. 

The system controller recognizes that this is an instruction FETCH cycle 

and generates the MEMORY READ signal. This is an active low signal; the 

near O volts condition tells the memory to read. Because the controller 

also isolates the CPU data bus from the system . data bus, it is 

permissible for the memory read to overlap the status output from the 

CPU. 

5.4.3 Second State (T2) and Wait State (TW) 

During state T2 a signal (OBIN) is raised to indicate that the processor 

is ready to receive data. The DBIN signal is terminated during state 

T3. CMOS RAM is relatively slow: it may not have data ready and on the 

data bus by the time the CPU is ready for it at the end of T2. To 

provide for this, if the 8080 READY signal is low at the end of T2 the 

CPU enters a WAIT state, Tw. If the READY signal is generated 

externally the WAIT state lasts indefinitely (but always an integral 

number of clock periods) until the READY signal becomes high. When it 

enters this state the CPU outputs a WAIT signal. 
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In the MTS the READY signal is not generated externally. It simply~ 

connects the CPU's WAIT output to its READY input. Therefore the CPU 

always finds READY low (i.e. not ready) at the end of T2, enters the 

WAI'T state Tw, raises th~ WAIT signal, and a·t the end of one clock 

period finds the READY signal high. It then enters T3, drops the WAIT 

output, and proceeds to read data from the data bus. Even though the 

ROM is fast enough to need no waiting period this system always provides 

it' since it does not know the source of the instruction: RAM or ROM. 

S.4.4 States T3, T4 and TS 

During T3 the data bus is read by the CPU,· and since this is an 

instruction FETCH it is loaded to the I register. The instruction is 

interpreted during T4, at the end of which a new machine cycle begins. 

The TS state is available for certain instructions, but if not required 

'r1 follows T4. 

Since the instruction in Figure S-S is MOV M,A a MEMORY WRITE cycle is 

required. The CPU again outputs SYNC, Status and an address, but now 

the address is the content of (H,L). During T2 the CPU places the 

content of· register A on its data bus and the 8228 passes it on to the 

system data bus. The CPU generates a WRITE command and the 8228 copies 

it to the memory devices. Once again a WAIT state is entered. After Tw 

the standard T3 state occurs. With a fast memory the T3 state would 

provide time enough for writing. The Tw state doubles that time, while 

reducing the processor's speed by about 25%. 
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The reason for using CMOS memory is that it can retain its data with a 

single low voltage power source and extremely low current. This makes 

it practical to provide battery backup for the memory of the MTS with 

two small dry cells {AA or AAA cells will do). The MTS includes 

connection points, two diodes and a toggle switch as shown below.· When 

the toggle switch is open, the diodes isolate one power source or the 

other. When the external power supply delivers 5 volts, the 3 volt 

battery is isolated by the back biased diode CR2. When the external 

supply is off or disconnected. the· battery delivers about 2.~ volts to 

the memory alone, the other loads being isolated by CR1. When the 

memory is to be used by the microprocessor, the switch must be closed to 
• avoid a diode drop from. reducing the voltage delivered to the memory. 

When the power is to be disconnected the switch should be opened to 

minimize the load on the battery. It is recommended that the RST key be 

depressed while the switch is being toggled, to protect data in the 

memory from possible transient voltage pulses. If you choose to rewire 

the circuit and use a rechargeable Ni-Cad battery, the reprint from 

Electronics magazine on the following page may be of interest. 
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2.4-V battery backup protects 
microprocessor memory_ 
by Raymond N. Bennett 
Aclvanctld Technology L.abaratonr.J Inc .. s.l/tww, Wasn. 

a, FROM 
+SVOLT__,...,.__-.l' 
POWER 
SUPPLY 

R, 8200 

R2 5600 

2N4919 

+ 

TO Vee OF MEMORIES 

+4.9VAT100 mA 
INORMALl 

+2.3 VAT 50 mA 
llACKUPl 

a, 
2N4036 

)

-2.4 v 
(2) NICKEL· 
CADMIUM 
"C" CELLS 
tN SERIES 
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Using diodes to isolate a backup battery from the power 
supply of microprocessor memories works fine-if the 
0. 1· to 1.0-volt drop across each diode can be tolerated .. 
A more efficient circuit (see 1igure) substitutes saturable 
switching transistors that have a drop of less than 100 
millivolts, which minimizes current drain and therefore 
extends battery life. 

Moreover, the voltage of the nickel-cadmium battery 
supply need only be 2.4 volts, since , during a power 
failure a saturated transistor then delivers all of 2.3 v to 
the memories. That is more than enough for such metal· 
oxide·semiconductor devices as the 2102 static random· 
access memory, which begins to lose data if its supply 
drops below about 2 v. 

The circuit shown in the figure is connected between 
the + 5· v power-supply line and the supply input of the 
memories. When the 5-v supply is functioning normally. 
transistor Q, is biased heavily into conduction by the 
difference between. the supply voltage and that of the Ni· 
Cad batteries: 5 v - 2.4 v • 2.6 v. The voltage delivered 
to the memories is then about 4.9 v, since the drop across 
Q, is at most 100 millivolts. During this time, the R1·R2 
voltage divider bolds transistor Q2 off, and the batteries 
receive a charge of about 20 milliamperes through RJ 

, and the base-emitter junction of Q,. 
i When power failure occurs and the 5-v supply drops 

below about 3.1 V (which is 2.4 V + V BE), Q, begins tO CUt 
off, isolating the dying 5-v supply from the load. At.the 
same time, Q2, biased by the R1·R2 voltage divider, 
begins to conduct. connecting the backup batteries to the 
load. The reverse bias on transistor Q, prevents the Ni· 
Cads from discharging through the supply circuit. 

Both Q, and Q2 were chosen for their very low 
saturation characteristics. Although their current ratings 
seem far in excess of what is needed, the result is that 
they exhibit a V cE<SAT> of less than 100 millivolts. But any 

1 pnp power transistors of the same general qualifications 
as those specified, such as the 0£ Powertab series, should 
suffice. 

........., ..... A series pair of nickek:admlum ··c·· cetts. each 
nominally rated at 1.25 votts. puts out abOut 2.4 votts and can deliver 
2. 3 volts to microprocessor memories to prevent toss of data in the 
ewnt of supply failure. Transistors saturate to less than 100 mv. 

leprinted with pemission of: 
Electronica/February 3. 1977 

The standby switch has been included to ·permit 
defeating of the battery .backup feature. 0 

Oeligner'I ClllboOk il 1 regular teenn In ~ We irwite ,..,.,. to IUbmlt original 
Md unpublill'led ClrCUit Idea ano tOIUtiOnl to Cllligl1 protller/ll. E4*in brillly blA thoroughly 
the creuit's operating prlnClple Sid purJDe. We'I P9Y S50 for MCh Item l)Ublilhld. 
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MICROCOMPUTER TRAINING WORKBOOK 

CHAPTER 6 

-
MODULES, SUB-ROUTINES AND THE STACK 



6.1 PROGRAM MODULES 

The design and hardware of a complex machine are always divided into 

modules, each having a limited function and a limited set of inputs and 

outputs. The purpose is to make each module comprehensible to the 

designer and to make it fit within a physically realizable structure 

(such as a circuit board). Often modules operate in parallel because 

their functions are separable but must or can overlap in time. 

The design of a machine that uses a microprocessor is handled the same 

way. The microprocessor is part of a solution; it is surrounded by 

other hardware modules that relate to it. The program of the 

microprocessor is similarly divided into modules, which relate to each 

other and to ~he ___ surrounding hard~ar-e. __ Your microcomputer train.ing 

system and its monitor program include a clear example of this: when you 

press numeric keys they are displa~e~, but in the hardware there is no 

physical connection between the keyboard and display. There is a 

program module which services the keyboard and a program module which 

services the display. These operate independently, and other program 

modules determine their interactions, which vary with time and history. 

When you press a hexadecimal key it may be displayed in any of six 

positions depending on what command key and other hexadecimal keys you 

pressed before. In a later chapter we will examine the design of the 

MTS and its input and output electronics and programming. 
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6.1.1. IN-LINE PROGRAMMING 

Consider the sensor correction program: 

If the input and output functio~s were part of your program you might 

program them all 'in-line', with a series of instructions to accept 

hexadecimal keys ~nd display them (possibly with a loop for input of two 

or more keys), followed by the instructions f.or the table lookup for a 

linearized value, followed by the multiplication for scaling, then the 

commands to output the result, and finally a jump back to the beginning. 

Obtain the Input 

Table Lookup · . 

.-------·------:=:J Multiply 
---.-------~ . 

Display Result 

6.1.2 Creating Program Modules 

As these procedures become sufficiently complex, it is desirable to 

distinguish each of them ~s separate modules and develop them 

independently. This could be done with a subsequent integration of the 

several modules into an in-line program. Alternatively we could put 

them into separate places in the program memory and write a control 

program that would jump into each of them. Consider a very simple 0/ 
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linear procedure comprising input, process, and output. 

--
u 

Demand Input 
-Input Program -

Hardware 
Module ~ -

Input Data 

Input 

Data 

u 

Process Data 

Program Module 

Result 

1 

Command Output 
- • Output -

Hardware 
Module -Program . 

Result Data 

The input may involve several data items (as for instance in the 

addition and multiplication problems), and ~he input program module 

retains control until the requisite data items have been obtained. 

There may be loops and decision points within the module, but control 

stays there until the task has been completed. Then some data 

processing occurs, which may involve loops, table lookup, and perhaps 
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use of previous data. Again, contrQl remains with this program module 

until its task is done. Finally results are passed to an output module 

which sends out the data. Such a procedure is exemplified by the sensor 

correction problem in Chapter 4, except that we used only one entry to 

the monitor both for output of a result and input of new data. B~ the 

end of this chapter you will have learned ways to call upon the monitor 

. for input and output as separate functions. 

Why would we do this? In Chapter 4 we started with a multiplication that 

was valid only for single digit inputs. Then we improved it to handle 

two digit inputs. If the program had been organized as in Figure 6-1 we 

could ~ave rewritten the multiplication module with no effect on the 

table lookup module. If we decided to reorganize the data tables the 

table lookup module 

multiplication module. 

could be revised with. no effect on -the 

If we decided to take sensor identification as 

an inpu~, instead of processing the sensors sequentially, we could add 

another input module and modify the main program. 

0 

0 
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0 CONTROL PROGRAM I MODULES I 
START 

~ 

JMP to Inpu·t INPUT 

Process - JMP back 

JMP to Display DISPLAY INPUT 

Process - JMP back 
. 

JMP to Table Lookup TABLE LOOKUP 

Process - JMP back -

JMP to Multiply - MULTIPLY 

Process - JMP back 

JMP to Display - DISPLAY RESULT 

JMP back ' -
i _ _... 

JMP to Start 

Figure 6-1 
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As long as the overall function remains unchanged and no new modules are 

added, the main program retains the same jumps - one to the start of 

ea~h module. Each module jumps_ back to the main program following the 

instruction that jumped to the module. When each jump occurs, there 

usually is some information to be passed to the module or back to the 

main program: at least the inputs and results. These data may be in 

registers ( the inputs and outputs, for instance) while other data might 

be in a specified memory address. 

6.1.3 Module Specification 

Now consider the program specification for each module. Suppose each 

were to be desi~ned independently; what must its designer be given? Here 

are some of the important considerations: 

Function: 

Specify the "black box" algorithm for the module. 

Call: 

The address of the module. 

Extent: 

The range of program memory allotted to the module (starting and 

ending addresses or number of memory words used). 

Inputs: 

Identify the inputs to be given to the module. What are they, and 

() 

0 
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where wi11 they be? In what register or memory location? How many 

bytes? 

Outputs: 

Identify the results the module is to generate. 

and where must the module·place them? 

wh·at are they, 

Registers: 

What registers are used or preserved? 

Constraints: 

What memory areas may the module use for data storage, either 

temporary or permanent? Is the module permitted to use. all of the 

registers, or must certain ones be preserved? How much time is 

permitted for the module's function? 

N.B. A calling program should not have to worry about protecting the 

content of its registers when.it calls a subroutine. The subroutine 

specifications should state which registers will be used to return 

results. All others should be returned without modification. 

It·may appear that the need to specify all of this (and often much more} 

makes the use of program modules a nuisance. In fact it is one of the 

best reasons for modular design: it forces a discipline that may 

otherwise be neglected. When such items are well-defined, many 

programming errors may be avoided. 
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Suppose that one module serves a function that is needed several times 

in the program displaying data, for instance. In the sensor 

correction program we want to display the input, and also the result . 

. If we jumped to the display module with an additional variable (perhaps 

in an unused register)° indicating whether the entry is for input or 

result, the display module could test that variable and decide where to 

return. This demands that the specification include two return 

addresses and a definition of the new control variable. 



0 

6 - 9 

A much better procedure is for the main program to pass the return 

address as a variable. Then we need a jump instruction that can use a 

variable address. We have such an instruction: 

HEX CODE: 

MNEMONIC: 

MEANING: 

E9 

PCHL 

Move the contents of register pair H,L 

into the program counter and continue 

program execution from that address. 

To experiment with this we will write a trivial program that does 

nothing except load a variable return address and jump to a module, 

which does nothing except jump back. Figur~ 6-2 is a flow cha~t of the 

program shown in Figure 6-3. The return address to be load~d must be 

the address of the instruction following the jump into the module. 



Do nothing 

Load immediate 

return address 

to HL 

Jump to module 

.Do nothing 

Load immediate 

return address 

to HL 

Jump to module 

Do nothing 

Jump to start 

Do Nothing Program with Do Nothing Module 

Figure 6-2 
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Do nothing 

Jump back 

to main 

(PCHL) 



t­
w 
w 
:::c 
(/) 

C!) 
z 
0 
0 
CJ 

:e 
w 
t­
(/) 

>­
(/) 

C!) 
z -z 
< a: 
t-

\,9 ~ 
::::> 
a.. 
2 
0 
CJ 
0 
a: 
~ 
:E 

(/) 

:E 
w 
t­
(/) 

>­(/) 

a: 
w 
t­
:::> 
~ 
0 
CJ 
0 
w 
~ 
cc 
C!) 
w 
t­z -

.J)o 
A 0 0 R CODE 

8 2 0 0 t:') 0 

0 1 0 0 

0 2 0 0 

0 3 2... I 

0 4 0 '1 
.... 

8 '"2-0 5 

0 6 c_ 3 
0 7 2- 0 

0 8 g- 2-

0 9 0 0 

0 A 2- I 
0 B I 0 

0 c ~ -i-

0 D c_ 3 
0 E :2- 0 

0 F ~ 2. 

8 2 1 0 0 0 

1 1 c.. 3 
1 2 0 0 

1 3 &" ~:;.. 
1 4 

1 5 

1 6 

1 7 

1 8 

1 9 

1 A 

1 B 

1 c 

1 D 

1 E 

1 F 

a 2 2 0 /:') 0 

2 1 £ !'t 
2 2 

2 3 

2 4 

2 5 

2 6 

. 2 7 

2 8 

/1..) 0 '/ 1-i I IV G· 6 - ll 

A/ 0 p 

'- x r. 1-1- "\ ~ :3.... (.) q AJJ r~ss o+-. ,Ai1 'C. ·~:t-
No~ I 111 .s fr"' c.. +, o II\. 

J /l-1 p ~ ;.. ;i_ 0 ..J~p fg Mod""'le... 
-

N 0 p 

'- ;x r I+ \ 8" 2. I 0 AJJr~J~ ,.,.J_ A-1 -ext 
Iv' t'J r1 I 1-1 $ t r u. c. f', ""'-

J M p ~ z. 2- 0 J~p 1-o Mod..tle. 
I 

/\/ C) p 
..J M (;; c;- 1- 0 Q J·u 1.'U./ f c.; ..s fc.. ,~. 1-

-~ 

. -- --·-

IV 0 (J M"tiwl~ 
~ c. JI. 1.- J IA.AM. . .11 To A-dJ res.J , 

' 
~ H '-

Figure 6-3 



6 - 12 

' 

When you have loaded the program, step though it. The program counter 0 
should show this sequence: 

NOP 8200 00 

NOP 8201 00 

NOP 8202 00 

LXI H 8203 21 

· JMP 8206 C3 

NOP 8220 00 

PCHL 8221 E9 

NOP 8209 00 

LXI H 820A 21 

JMP 8200 C3 
NOP 8220 00 

PCHL 8221 E9 
.NOP 8210 00 

JMP 8211 C3 · 

NOP 8200 00 

NOP 8201 00 

etc 

Of course if H,L were needed for other purposes we could have stored the 

return address in memory.. In fact, the use of a variable return address 

is so common that the microprocessor has special jump instructions that 

-, 

. ) 

0 
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6.2 SUBROUTINES 

6.2.1 Subroutine Access 

The entry to a subroutine is made by a special kind· of jump instruction, 

CALL, which includes the address of the subroutine just as an ordinary 

jump instructi-ori ·includes an address. The microprocessor automatically 
. 

generates and saves an address for a subs~quent jump back to the calling 

program, executed at a RETurn instruction. 

SUBROUTINE: A program module which is entered 

by means of a CALL instruction and which normally 

returns to the calling program by means of a 

RETurn instruction. 

CALLING PROGRAM: The program module which has called 

a subroutine. The calling p~ogram may b~ 

the main program or another subroutine. 
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The CALL instruction is fundamental to program architecture: 

HEX CODE: 

MNEMONIC: 

SECOND BYTE: 

THIRD BYTE: 

MEANING: 

.. 

CD 

CALL 

Low address 

High address 

Call the subroutine whose first 

instruction is located at the 

address given in bytes 2 and 3. 

The CALL instruction executes a jump, but inst.ead of discarding the 

present ·content of the program counter it stores (PC) in an assigned 

memory area called the stack. 

STACK: An area of memory assigned by the programmer 

for the temporari storage of return addresses 

or other data. It is addressed by a dedicated 

16-bit counter called the Stack Pointer. 

The jump back to the calling program is made by the Return 

instruction: 

HEX CODE: C9 

MNEMONIC: RET 

MEANING: Recover the address stored by 

CALL and jump to that location. 

eJ 

-/ -/ 
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6.2.2 Tracing the Program 

Revise the Do Nothing program (Figure 6-3) by replacing the following 

op-codes: 

Address 

8206 

820D 

8221 

Was 

C3 JMP 

C3 JMP 

E9 PCHL 

Change To 

CD CALL 

CD CALL 

C9 RET 

Again trace the program flow and observe that the program counter 

sequence is the same; only the instructions change. The two LXI H 

~nstructions could be changed or removed with no effect. Now we will 

examine and define the CALL and RET instructions more thoroughly, and 

discuss the stack. 

Now use the program we have in the MTS to follow this. Step though your 

program to 8206, the CALL: 

I STEP I 18206 I CD 

The monitor can display the stack pointer as a register pair: 

I ADDR I B B (8303 I (SP?? 

Now st~p to execute the CALL instruction: 

I STEP I (8220 J ( 00 

Display the stack pointer again: 
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IADDRI EJ EJ 18301 (SP09 ) 

The next memory location contains the high byte of the return address: 

I NEXT I f 8302 I 82 I 

Any time that you display a register pair you can see the following 

sequential memory pairs by pressing NEXT. In debugging programs you 

will more often be interested in the retu~n address than the value of 

the stack pointer: 

I ADDRI EJ EJ (8209 I (STOO I 

Now step twice· to return to the main program: 

(8221 C9 

· (8209 I 00 

The return address has been placed in the program counter. 

6.2.3 CALL Execution 

Figure 6-4 shows the program counter addressing 8206 and the CALL 

instruction being loaded into the instruction register. The program 

counter is incremented twice as the following two bytes are loaded into 

registers Z and W respectiv~ly. So far the process is identical to that 

of a JMP instruction, as described in Chapter 2. We see that the 

program counter now addresses the next instruction following CALL, which 

is to, be the return address. Registers W and Z contain the jump 

address. The stack pointer addresses a location (8303) near the top of 

memory: this was loaded by the monitor program when power was turned on. ~ 
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8 2 0 0 

8. 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 0 0 

8 2 2 0 

8 3 C D 

8 3 C E 

8 3 C F 

8 3 D 0 

8 3 D 1 

8 3 D 2 

8 3 0 3 

8 3 D 4 

As in a jump instruction, the PC is used to address 
the inst.ruction code· and the tw:> following bytes, which are loaded into 

I, Z and W respectively 

Figure 6-4 
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~ 
Figure 6-5 shows the stack writing operation in a CALL instruction. The <:» 
content of the stack pointer is decremented and sent out on the address 

bus. The high byte of the program counter is sent out on the data bus 

to be written to. the selected location in the stack area of the memory. 

Now the stack pointer is decremented again and the low byte of the 

program counter is written to the memory at the next location below the 

high byte. Any 8080 instruction that stores an address places it in the 

same position sequence - low byte at the lower mem~ry location. 

Finally the subroutine address is moved from registers W and Z into the 

program counter, as ·in a normal jump, and program execution continues 

with the instruction there. 

0 
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PROCESSOR 

CD 

82 

20 

8209 
83D3 

CD 

82 

CD 

82 

CD 

CALL INSTRUCTION 

0 

Address 
/ 

MEMORY 

21 

09 

82 

CD 

20 

82 

00 

00 

C9 

09 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 2 

8 3 

8 3 

8 3 

8 3 

8 3 

w 82 82 8 3 

z 20 8 3 

p c 8220 8 3 

s p 83Dl 

The stack pointer is decremented (7) and sent out as in 
address (8). The high byte of the program counter is 
sent on the data bus (9) and written to the addressed 
neno:cy location. This is repeated for the low byte of the program 
counter (10, 11, 12) • Then the oontent of W, z, is noved to PC. 

Figure 6-5 
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The N~P instruction at 8220 is 
fetched and executed and the 
return instruction at 8221 is 
fetched. 

Figure 6-6 
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8 2 0 0 

8 2 0 1 

8 2 0 2 

8 2 0 3 

a 2 o 4 

a 2 o s 
8 2 0 6 

8 2 0 7 

8 2 0 8 

8 2 0 9 

8 2 0 A 

8 2 2 0 
8 2 2 1 

8 3 c D 

8 3 c E 

a 3 c F 

8 3 D 0 

8 3 D 1 

a 3 D 2 

a 3 D 3 

I 3 D 4 
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The RET instruction recovers the last address entered in the stack 

and executes a jump to that address. Note that although RET is a 

jump it only requires one byte in the program (like PCHL) 

because the address to which it jumps is a variable stored by the 

CALL. The RET instruction cycle is .shown in Figures Q-~ and f,-7. 

HEX CODE: C9 

MNEMONIC: RET 

MEANING : Return to the calling program 

Figure 6-6 shows the fetch and execution of the NOP instruction 

at 8220 and fetch of the RET instruction (C9) at 8221. Execution 

of the return is shown in the next two pages.· 
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6.2.4. Execution of Return 

In Figure 6-6 we saw the RET instruction loaded to the I 

r~gister. Its execution appears in Figure 6-7. The stack 

pointer provides a memory address, and the low byte of the 

return address is moved into z. The stack pointer is incremented 

to address the high byte, which is moved into w. The stack 

pointer is incremented again and the content of W and Z is moved 

to the program counter to accomplish the jump. Notice that this 

process is identical to a normal jump except that after the 

instruction fetch, the stack pointer is used instead of the program 

counter to read the jump address; 

·~ 

0 

0 
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·s 2 o o 

8 2 0 1 

8 2 0 2 

8 2 0 3 

8 2 0 4 

8 2 0 5 

CD 8 2 O 6 

20 . 8 2 0 7 

82 

00 

8 2 0 8 

8 2 0 9 

8 2 0 A 

s p 8302 

"p 
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w 
z 
c 
p 

w 

z 
p c 

s p 

C9 

82 
09 

8222 

8303 

------ ----

00 8 2. 2 0 
C9 8 2 2 1 

09 8 3 C D 

82 8 3 C E 

8 3 C F 

8 3 0 0 

09 8 3 0 1 

82 8 3 D 2 

8 3 D 3 

8 3 0 4 

The stack pointer addresses the low byte 
of the return addrP.ss which is loaded 
to Z (7,8). The stack pointer is incremented 
(9) and the high byte is loaded to W (10,11)·. 
The stack pointer is incremented again (12) 
and the program counter is loaded from W and z. 

Figure 6-7 
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6.2.5 Subroutine Nestir.g 

Why is the return address stored in memory? Since a 16 bit register 

exists (the stack pointer), why not simply place the return address in 

that register? In fact this scheme was used in early computers, and 

still appears in such small microprocessors as the 4004 and 4040. The 

problem is that if only one register exists there can be only one level 

of subroutine: one subroutine cannot call another subroutine. The 4004 

and 4040 have four return address regist~rs, so that four levels of 

subroutines can be used. 

This is.still a noticeable limitation. Using a memory stack permits 

unlimited subroutine nesting. Figure 6-8 shows some nested subroutines. 

Note that there is no iiherent 'level' to a subroutine - any subroutine 

can be called from the main program or from any other subroutin~. Load 

the program (Figure 6-9) and trace the program flow. Display the stack 

pointer and then up through the stack (using NEXT) when the program 

counter is at 821C. 

, 

0
, 
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CALL SUB11---~ SUB1 

CALL SUB21-----... SUB2 

RET CALL SUB3 

RET 

Figure 6-8 

SUB3 

RET 
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0 
Trace the Program flow through the dummy subroutines of Figure 6-9: 

RST 18200 00 

STEP -----B la21c 00 

I ADDRI D B fS3CD (SP1A 

EJ (83CE ) 82 ) 

I NEXT I (83CF ) 14 I 

I NEXT I l83DO I 82 

EJ l83D 1 ] Q!l 

,8 I NEXT I (83D2 l 82 
'·· 

I STEP I (821D cg 

l821A I oo I 

I ADDRI~ EJ (83CF I {SP 14 I 

I STEP I I 8213 I cg I 

18214 I oo I 

I ADDRI D 6 l83D1 ) ISP04 I 

I STEP I l 8215 I c2 I 

18204 I cc J 

G 
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(s2os I cp I 0 
l821C ) CTcO 

I ADDRI ~ 6 (8301 l (SP08 I 

I sml { 8210 ) C9; 

I azoa l Ccfo I 

·, 

0) 
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6.3 SUBROUTINE SPECIFICATION 

Figure 6-10 shows a flow chart for the sensor correction problem written 

as a series of subroutines and a main program. We will develop these 

modules separately and then integrate the complete program. 

6.3.1 Subroutine Development 

The chief reason for writing modules as subroutines is to permit the 

same module to be called from various program locations. There are two 

extra advantages: the single byte RET saves progr~ space, and it avoids 

the need to specify the return address during program design. Therefore 

most progr~ modules are written as subroutines even if they are to be 

·used only once. 

We commonly give a name to a subroutine (INPUT, DISPLAY, TABLELOOKUP, 

MULTIPLY). This is a convenience for the programmer, like the mnemonic 

names of instructions. It is much easier to remember- a name than an 

address, and the name conveys some meaning. However, a subroutine has 

an address, the address of its first instruction. When you write the 

CALL instruction you must, of course, use the hexadecimal apdress of the 

subroutine, just as you would use an address in a jump instruction. 
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CONTROL PROGRAM SUBROUTINES 

START 

CALL INPUT - INPUT 
~ 

Process - RET 

CALL DISPLAY INPUT - DISPLAY INPUT 

- RET 

CALL TABLE LOOKUP TABLE LOOKUP 

Process 1- RET 

CALL MULTIPLY - MULTIPLY 
~ 

---- -

Process - RET -

CALL DISPLAY RESULT - DISPLAY RESULT 

Process RET 

JMP START 

Figure 6-1 O 

0 
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Developing a program generally involves these steps: 

a) Define the problem 

b) Conceive a program solution 

c) Divide the solution into comprehensible and realizable. 

program modules 

d) Specify the modular functions 

e) Specify the interfaces 

f) Develop and test the modules 

g) Integrate and test the system. 

In Chapter 4 we defined the sensor correction problem and conceived a 

solution. Now we have divided·the program into modules. It remains to 

specify the functions and interfaces of the. modules, to q~_yel~p and 

integrate them •. First we will give brief functional specifications. 

These will be developed more fully later. 

Input: 

Accept two keys as a one byte sensor input. 

Display Input: 

Display the input in the third and fourth 
locations of the display. 

Table Lookup: 

Obtain the scaling factor and linearized 
value of the input from a data table 

Multiply: 

Generate the product of the scaling factor and the 
linearized value of the input as a double 
precision result. 

~ Display Result: 



Display the double precision result in the 
four right hand digits or the display. 

6.3.2 Two Monitor Subroutines, GETKY and DBY2 
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Section 6.10 of this chapter presents the specifications for a number of 

monitor subroutines which are available to the user. We will use two or 

the subroutines described there: GETKY (6.10.2) and 08?2 (6.10.6). Read 

the specifications carefully. These routines should be tested, both to 

be sure that they fit the needs of the sensor correction program and to 

gain faniliarity with them. The test is simple: 

8200 CD CALL GETKY - Get a key 
01 3D 
02 02 

8a 1 1 LXI D,86FB - Address for display 
FB (Why? C ange it and see what happens) 

05 83 
06' CD CALL DBY2 
07 98 
08 02 
09 C3 JMP 8200 
OA 00. 
OB 82 

You cannot step through this program because the monitor will not know 

that a key you press is intended for your programmed call to GETKY. It 

supposes you are giving commands or data to the monitor program. After 

loading the program, operate it with RUN, but with the STEP/AUTO toggle 

switch still in STEP position. Then try it in AUTO (return to STEP 

position when done). 

The output will appear in the 'third and fourth locations of your 

display. You can now see the hex value that is assigned to the command 

keys. Note that RST is not a key that can be detected by GETKY; 

0 
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serves a hardware function much like a power on/off switch. 
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6.4 MONITOR BREAKPOINTS 

It is often desirable to trace program flow without the tedious task of 

stepping through lengthy loops, or through previously tested and proven 

program modules. Breakpoints permit you to use the RUN key (but only 

with the toggle switch in STEP position) to cause your program to run 

without apparent interference until you reach a specific instruction. 

Breakpoints also permit you to call GETKY and other monitor input 

subroutines, but still step through you own program instructions. 

6.4.1 Using Breakpoints 

With the above program loaded, do this: 

I ADDRI 182061 

EJ 
I ADDRI 

EJ 

(8206 J . CD 

(8206 I (BP. 

18200 CD 

Now your program is running, with control in the GETKY subroutine, 

waiting for a key. Press a hex key: 

f8206 I CD J 

GETKY has accepted your input and returned to 8203. The LXI D 

instruction was executed, and the program counter reached 8206. Since 



0 
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the toggle switch is at STEP, the monitor is constantly monitoring your 

program execution (hence its name) and it finds that you have entered a 

breakpoint at 8206. It now behaves as though you had stepped to this 

point. Display register A and you will see the key you entered: 

(8206 J IA-03 

Now press RUN again and your program calls DBY2 to display the input. 

o3 

Press another hex key: 

18206 J IA-05 

Just as if you had used STEP, the monitor retains your request to 

display A. 

You can enter up to eight breakpoints: 

. j ADDRI .I s203j · B 
and you can look at the list of breakpoints: 

I KEXT I 
I KEXT I 

18203 IBP', 

(8206 I fBPOO J 

18203 I IBPOO I 

Now program execution will stop at each o°f these points. 

EJ OS I 

Your program has called DBY2 and GETKY, so press another key: 



There are two ways of clearing breakpoints. 

6 
EJ 
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18203 I lA-09 I 

8203 BPOO 

8206 BPOO 

The breakpoint at 8203 has been cleared; the one at 8206 remains. 

A reset clears all breakpoints: 

BEJ loooo i lsPoo I 

Now enter a break at 8206 again. 

l ADDRI j a206I EJ 18206 D3P 

The right hand digits are blank; you can enter a number here: 

(82Q6 .... , (8P03 

Now program execution will stop after the instruction at 8206 has been 

executed three times and is about to be executed again: 

01 

02 

o3 I 

la206 I co J 

0 
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I 8206 I JBPOO I 

The count you entered has been decremented to zero; now program 

execution will stop here every time, before executing the instruction. 

04. J 

I 8206 I J CD I 

You c~n easily restore a count by pressing BRK and the count you want. 

G I 8206 f (BPOO I 

D I s206 I IBP03 I 

·Each breakpoint has a separate count so you can manipulate them to stop 

0 at one location each time it is reached, at another location after 5 

repetitions, etc. 

0 

Remember that if you are using breakpoints you must avoid using RST to 

go back to starting address 8200; use ADDR 8200 instead. RST clears all 

breakpoints. 

You will want to use breakpoints if you have trouble with your 

development of the sensor correction program because of the use of GETKY 

for input. We now proceed to develop the input subroutine module. 

Practice the use of breakpoints here even if you have no trouble. 
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6.S SENSOR PROGRAM SUBROUTINES 

6.S. 1 The INPUT Subroutine 

Since GETKY only gets one key - one hex digit - we must call it twice. 

But we want the two keys combined into one byte, not treated as two 

separate bytes. 

Let us review the relationship between two hexadecimal nibbles (a nibble 

is half a byte, or one four bit hex character) and a byte. 

3 2 1 0 Value of Nibble = B3 x 2 + B2 x 2 + B x 2 + BO x 2 1 
7 6 5 4 Value of Byte = B x 2 + B x 2 + B x 2 + B x 2 7 3 6 2 5 1 4 0 ·+ B x 2 + B x 2 + B x 2 + B x 2 3 2 1 0 
3 2 

x 2
1 0 

x 24 Value of Byte = {B x 2 + B x 2 + B + B x. 2 ) 3 3 2 2 1 1 0 0 + (B x ·2 + B x 2 + B x 2 + B x 2 ) 3 2 1 0 

~herefore we can say: 

4 Value of Byte = (Nibble 1) x 2 + Nibble 0 

By convention nibble 1 is the first key entered and nibble 0 is the 

4 second. What we must do is read two keys; multiply the first by 2 = 
16 = 10 and add the second. 

10 16 

9J 
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0 

The procedure for input will be this: 

Call GETKY for nibble 1 

Multiply by 10 
16 

Save result in a register 

Call GETKY for nibble 0 

Add it to previous result. 
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Since we will have a multiplication subroutine we can call it for the 

multiplication. What will that require? If we are able to spe~ify MULT 

so that no extra moving of data between registers is necessary, the 

procedure will be: 

CALL GETKY 

(C)-<- Key (done by GETKY) 

MVI E,10 (multiplier) 

- CALL MULT 

(L) <- 10 X Key (done by MULT) 
16 

(H) <- 0 (since the product cannot exceed FO) 
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The result is in L, which is preserved during subsequent calls to GETKY. 

We should recognize, though, that multiplication by 10 in a ·binary 

computer is just about as easy as manual multiplication by 10 

Remember that the set of ADD instructions includes: 

ADD A (A) <- (A) + (A) 

or 

A) <- 2 x {A) 

If we do this repeatedly, we get the following results: 

ADD A 2 x (A) 

ADD A 4 x (A) 

ADD A 8 x (A) 

ADD A_ t6 x (A) 

Now MOV L,A will place the result in L just as MULT would have done. 

This procedure takes the same program space (five bytes) as: 

MVI E, 10 

CALL MULT 

{two bytes) 

(three bytes) 

Therefore we will use the ADD A procedure instead of a call to MULT. 

9) 
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Now we can specify the INPUT Subroutine: 

Function 

Accept two keys and form a one byte sensor input value, using the 
first key as the high order digit. 

Call 

CD 
.FO 
82 

Inputs 

From keyboard 

Outputs 

CALL INPUT 

Sensor input in register A 

Extent 

82FO through 82FD 
Calls GETKY 

Registers Used 

A, B, C, D, L 
Registers E and H are preserved. 

Constraints 

GETKY retains control until a key has been pressed and released, 
and for 20 milliseconds thereafter. The delay is exaggerated in 
STEP mode. 

Try writing an INPUT subroutine on your own,. and test it with a CALL to 

DBY2. Then look at the coding· presented in Figure 6-11. 
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6.5.2 Display Result Subroutine - DRES 

We have programmed a double precision multiplication in Chapter 4. Its 

result appears in registers (H,L) and since the specification for DBY2 

states that those registers are preserved, it seems appropriate to 

specify that the double precision result to be displayed by DRES will be 

placed in (H,L) at input. 

Function 

Call 

Display a four digit number in the right hand four digits 
of the display, using DBY2 as a subroutine. 

CD 
EO 
82 

CALL DRES 

Inputs 

Four digit number in H,L 

Outputs 

Seven segment codes for four digits are stored at 83FC-83FF 

Extent 

82EO through 82EB 
Calls DBY2 

Registers 

A, B, D, E are used 
Registers H and L are preserved. 

Write a DRES subroutine (check the specs again) and test it. Then look 

at Fig 6-12. 



1-
w 
w 
u; 
c.::> 
z 
a 
0 
u 

-z 
< a: 
l-
a: 
w ,_ 
::> 
a. 
:e 
0 
CJ 
0 
a: 
2 
~ 

:.n 
:e 
w ... 
CIJ 
> 
CIJ 
a: 
w ,_ 
:::> c.. 
~ 
0 
CJ 
Q 
w 

~ 
:CC: 
CJ 
'UJ 
1-z -

. 

A 

8 

8 

8 

0 ~ A 
_, 

!-:-:' 0 
"""'" 

. .. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
D 

E 

F 

;LO 0 

1 

2 

3 

4 

5 

& 

7 

8 

9 

A 

B 

c 
D 

E 

F 

0 

1 

2 

3 

4 

5 

6 

7 

8 

CCOE . 

I I L. x 
r- f. 
'?" 3 

7 j) M 0 

c... .D ~ A-
q r 
0 2-
7 (!. /\1 0 

c.. J) c: ,4 

1 ?' 
. 

0 2-

c q re. £ 
I 

. -(€ s r 
~ :0 c rt 
r- 0 

8 ~2 

t.· "{. /\,( 0 

L. p c. A 
,-: C-1 

'1 1--
/ ,::. JL-t 0 {.,.~· 

c... .P ~ A-
~ 0 

~ ~ 2--

c. 3 J M 
._:.; 0 

~-· ]. .. 

I 

I I 
I 

rJ...· .. _ .• , .. r ... ... - . ""' ... 

r. j) ..... $' 3 F 
-

v A '\ L 
/,,.... 1.-- D C3 'I 2.. 

v A- ~ ft 
L L J) (J '( 2 

,~ 

I· 

u s I N Cr 

'- L. r lV /-' l) 

v H '\ f1 
L. (_ 7 l1V p u 

v LI~ A 
L- '- !j) f<-- E' ...s 

p ? ., 0 t) 
"' . 

I 

I I 
I I 
I 

I I I 
I 

-·· ~ 
_L,i f. . ; ' 6 - 44 -.. • .. J __ • ..,..,., 

,:- A Jd r-€.s.:> r-1 c?lc -/ 

Jl Q..-H .,/ -J~-~·,· F 
·It ...... --

P 1 -' F / i.H--u /o'-V 6wfL 
I' -~ , 

'I> , .$ ,, Io.... 1.1 ht<!.~ """ t, . " 
.. ' 

.I f1v' PU I i ])fe£"..S 

I r; '1. t LI I '~ :i l) {, f "~ 
.... I 

--
r 6~ l Io"-·) b.,fE 

I 

]) l >#lo-.,,, 
... v 

' 

Figure 6-12 

~ "') 



6 - 45 

6.5.3 Table Lookup Subroutine (TABLU) 

The Table Lookup Subroutine Specification is: 

Function 

Given a s•nsor number and a one byte input, obtain a scaling 
factor and. a linear point for the sensor. If the input -is in the 
non~linear region, obt~in a linearized value. 

Call 

CD 
BO 
82 

Inputs 

Regi•ster c 
Pair H,L 
{(H),{L)) 

1.0 Outputs 

Register E 
Register C 

Extent 

CALL TABLU 

Input value 
Memory Address 

Sensor Number 

Scaling Factor 
Linearized Input 

8280 through 82CO 

Registers Used 

A, B, C, E, H, L 
Register D is preserved 

Constraints 

A table of scaling factors, ·1inear points and 
must be in memory within locations 8301 to 83BF. 
be in accordance with figure 4-17. 

corrected values 
The fo.rma t is to 

Look at the code in the final program of Chapter 4, extract the table 

look-up portion, and write it in the form of a subroutine, originating 

at 8280. A solution is shown in Figure 6-13. We will test this ·with 

C) the calling program after integration, 
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6.5.4 Double Precision Multiply Subroutine (MULT) 

Function 

Multiply two input bytes a~d return the double precision product. 

Call 

CD 
DO 
82 

Inputs 

Register ( E )' 
Register ( C) 

Outputs 

CALL MULT 

Multiplier 
Multiplicand 

Registers (H,L) Product 

Extent 

82DO through 82DA 

Registers Used 

B, C, E, H, L 
·Registers A and D are preserved 

You have used this routine often enough to know it by heart. But what 

happens if one of the inputs is zero? Write a MULT subroutine which 

checks for this. Then compare it with Figure 6-14. 
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6.5.5 The Integrated Program 

We now have all of the modules needed to integrate the final sensor 

correction program. We did not specify a routine for displaying the 

input, as DBY2 will do that and is fully defined. Draw a flow chart and 

write the main calling program. Make sure before each call that you are 

passing the proper arguments to the subroutine, i.e. that all required 

values are in the proper registers. Then compare your work with Figures 

6-15 and 6-16. 



SENSOR CORRECTION - MAIN 
FLOW DIAGRAM 

Initialize 
Load highest sensor # 

CALL INPUT-

Set Display Address 

CALL DBY2 

Addr~ss Previous Sensor 
Decrement Sensor # 

Load Highest Sensor I 
Store as new sensor I 

CALL HULT 

CALL ORES 

Figure 6-15 
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Enter the code, verify it, then verify that all your subroutines are 

still loaded and intact. As we have already STEPed through much of the 

code on these pages, you understand the dynamics of all of the 

instructio•s. If your program fails, d~bug it using breakpoints, or 

recheck your memory locations. 

When you press RUN, the display will go blank. Enter two numbers. The 

entered numbers and the results will appear (to the eye) simultaneously, 

and will remain until the next two numbers are pressed. Remember that 

you are toggling back and forth between sensor 111 and sensor 112. If you 

lose track of which is which, restart. Place oc in the scaling factor 

for sensor 111 (8208), and OB for the factor in sensor 112 (8316). Then 

try some of the following inputs: 

Input Sensor 111 Sensor #2 

01 24 16 

05 54 42 

OB 84 79 

12 DB C6 

4B 384 339 

D6 A08 932 

FF AF5 BF4 

Try various calibration factors. You.can select values vhich will allow 

you to construct the entire hexadecimal multiplication table. Do this 

for an exercise. (Hint: change the linear point, and use different 

calibration factors). 

0\ 

0) 

0 
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6.5.6 Alternate Subroutine Entries 

It is often very useful to design a subroutine to permit several entry 

points. As an example, consider the multiplication subroutine. Suppose 

we wish to generate the function: 

z = ax + by 

This can be done by the following procedure: 

( C) <- a 

(E) <- x 

CALL 82DO 

( C) <- b 

CE) <- y 

CALL 82D3 

The second call enters the subroutine beyond the instruction that clears 

the product, so the partial product from the first multiplication .is 

preserved, and the ·second product is added to it. 

---
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We have been using the monitor subroutine DBY2, and loading an address 0 
for the digits to be displayed. In fact the subroutine has two 

preceding entry points, as you saw from the specifications: 

0294 

0295 

0298 

02A9 

7E 

1 1 

FF 

83 

E5 

C9 

MOV A,M (DMEM) 

LXI D, 83FF (DBYTE) 

(save H,L) (DBY2) 

RET 

Entering at DMEM (by CALL 0294) will display the content of the memory 

location addressed by (HL), in the right hand two digits of the display. 

Entering at DBYTE (by CALL 0295) will display the content of register A 

in the right hand two digits. Entering at DBY2 (by CALL 0298) will 

display the content of register A in the digits addressed by (DE). 



0 

6 - 55 

6.5.7 Conditional Call and Return 

We have been using five jump instructions: JMP, JNZ, JZ, JNC, JC. Four 

more will be introduced later. Since CALL and RET instructions are 

special jumps, they also have corresponding conditional versions: 

CD CALL Call (unconditional) 
C4 CNZ Call if not zero 
cc CZ Call if zero 
D4 CNC Call if not carry 
DC cc Call if carry set 

C9 RET Return (unconditional) 
co RNZ Return if not zero 
cs RZ Return if zero 
DO RNC Return not carry 
D8 RC Return if carry set 

The conditi~nal calls are infrequently used. Conditional returns more 

often have some value. Both in TABLU and MULT given as solutions to the 

preceding exercise, there are conditional jumps to the return 

instruction which could be replaced by the corresponding conditional 

returns. A version of the multiplication subroutine using two 

conditional returns is shown in Figure 6-17. At 82D5 the program tests 

register E; the conditional return RZ at 8206 returns if E is zero. 

Then the double precision ADD is performed at 8207, and if a carry 

occurs the conditional return RC at 8208 terminates the multiplication. 

The calling program can also test the carry flag at return, either by a 

conditional jump or a conditional call to an error processing 

subroutine. An interesting feature is that the RZ instruction serves 

double duty here; it returns either if the multiplier is zero initially, 

or when it has been decremented to zero. 
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6.6 USING THE STACK FOR DATA 

The stack can provide temporary storage of data as well as storage of 

return addresses. You have probably seen a spring loaded stack of 

dishes in a restaurant. The busboy puts clean dishes on top and their 

weight pushes them down. 

spring pops the next one up. 

instructions to place data 

stack exists mainly to hold 

recovered two bytes at a time, 

C5 PUSH B 

D5 PUSH D 

E5 PUSH -·H 

.C1 ·POP B 

01 POP D 

E1 POP H 

When one is taken down from the top, the 

The microprocessor has PUSH and POP 

into the stack, and remove it. Since the 

addresses, the data are entered and 

from and to register pairs: 

Push data into the stack from 

register pair (B,C), (D,E), or (H,L). 

Pop data into register pair (B,C), (D,E) 

or CH, L) from the stack. 

Suppose that a program needs to call MULT, then ORES, but also needs to 

retain the content of (H,L). Since each of the registers is used in at 

least one of these sub~outines, we must save the address in memory. We 

could do this with SHLD and LHLD, but at the expense of three bytes for 

each instruction and two bytes in data memory at least partially 

dedicated to this purpose. PUSH H before the call to MULT and POP H 

after return from ORES will save and recover the data. The content of 

any of the three ~egister pairs can be saved in this manner. 
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The program listed in Figure 6_-18 uses the data table, MULT and ORES 

from the preceeding exercise. Regi~ter pair H,L addresses the table of 

linearized values for sensor number 1 and B,C addresses the table for 

sensor number 2. These addresses are saved while MULT, ORES and GETKY 

are called, then restored after the call (GETKY is used merely to signal 

that you are ready for the next data pair). Load the program and check 

for the following results; then we will trace the stack: 

Table Entries (hex). ·Result 

03 x 02 = 0006 

04 x 04 = 0010 

05 x 04 = 0014 

06 x 05 = 001E 

07 x 06 = 002A 

08 x 07 = 0038 

09 x 07 = 003F 

0) 
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Enter a breakpoint at 8211, just before the first PUSH is executed; and 

another at 82EO, the start of ORES. Press RUN, and at 8211 observe the 

stack pointer: 

BOB 18303 I (SP??J 

The stack is empty. Now execute the PUSH H, and check it again. 

(8212 J 05 J 

BOB (8301 I (~_!OB J 

The stack top contains the address from H,L and points to the data 

entry, 03: 

.. I ADDRI EJ B 16-308 ) tSTOl J 

Now execute PUSH B: 

(8213 I ( !IE I 

1 ADDa)GJ ~ l83CF I ISP 19 I 

EJGJ ~ I 8319 I lsro2 I 

Step into subroutine MULT. 

(82111 I ( CD I 

I 82DO I 21 J 

I ADDR I EJ B l83CD I lSPlZ] 

-) 
0 

e 
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The stack now contains the following, which you can check by pressing 

NEXT: 

Stack Address Data 

83CD SP.17 } Return Address for HULT 

83CE 82 

83CF 19 } Address from B,C 

8300 83 

8301 OB } Address from H,L 

8302 83 

Now press RUN to reach your breakpoint at 82EO, and review the stack 

(e · again. 

} 83CO SP.1A Return 

83CE 82 address 

83CF 19 } 8300 83 

8301 OB } 8302 83 

The top of the stack has been replaced with the return address for ORES. 

0 ' 



/. 

6 - 62 

Another RUN will display the result, and wait for any key to command 

continue. 

18211 ES 

(8303 I ISP?? 

The stack is empty again: that is, the poihter is at the top. If you 

review the empty part of the stack (starting at 83CF) you will see the 

present contents of L, H, C and B, but this is not because you placed 

them there; it happens that the monitor pushes data into them in the 

same sequence that you used. The monitor shares your stack, so you will 

find various other data at lower addresses, even though your RET and POP 

instructions do not themselves alter the stack contents, but onlt the 
pointer. 

\ 

. 0 / 
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6.7 PROCESSOR STATUS WORD (PSW) 

For the PUSH and POP instructions only, register A and the flags are 

treated as a register pair, with A the high order member. This permits 

register A and the flags to be saved and recovered despite intervening 

steps that affect them. Consider this program segment: 

8200 ADD D (A) <- CA) + (D) 

01 PUSH PSW Save A,F 

02 INR E Count 

03 HOV A,E Move counter to A 

04 CPI 06 Te.st for end 

05 JZ 8209 Jump if end (zero) to POP and exit 

06 POP PSW Restore A,F 

07 JNC 8200 Jump if no ADD carry to start of loop 

08 · JMP 820B Else go to carry handling· section. 

·09 POP PSW Restore A,F 

OA RET (exit from loop) 

OB (process carry from ADD) 

The A register and flags are affected in testing for the end of the 

loop, and that test is to take precedence over the test for a carry from 

the ADD. PUSH PSW saves the flags for the test; it also saves register 

A fQr the next addition. Note that we have one PUSH and two POP 

instructions, but only one POP will be executed. The instructions are: 

F5 PUSH PSW Push A and F 

into the stack. 



F1 POP PSW Pop A and F 

from the stack. 

6 - 64 



0 

6 - 65 

6.8 STACK POINTER INSTRUCTIONS 

These instructions are defined for completeness. You are urged not to 

use them when working with MTS until you fully understand the monitor 

program. The first, however, is a vital part of any ~eal pro~ram: 

31 

xx 

yy 

LXI SP 

low address 

high address 

Load an initial 

value to the 

stack pointer. 

This instruction must be executed before the stack can be used for data 

storage or for subroutine calls. Address 0000 to see it: it is the 

first instruction in the monitor, and initializes the stack at power-on 

or restart. Other instructions incl~de: 

33 

3B 

39 

F9 

INX SP 

DCX SP 

DAD SP 

SPHL 

Increment stack pointer· 

Decrement stack pointer 

((H,),(L)) <- ((H),(L)) +(SP) 

(SP) <- ((H),(L)) 

.These manipulate the stack pointer. It may be incremented (with INX SP) 

to discard data or a return address that has been pushed into the stack~ 

or decremented (with DCX SP) to recover data that has been pushed and 

popped. You can maintain two separate stacks by using SPHL. 

6.8.1 Exchange Stack Top with H,L 

The 'Stack Top' refers to two bytes: the byte addressed by the stack 

pointer and th~ byte at the next higher address. On a RET instruction 

these provide the return address; a POP instruction brings them to the 
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designated register pair. Either of those instructions increments the 

stack pointer twice, so a new stack top is addressed. We have another 

way of accessing the stack top: 

E3 XTHL Exchange stack top with H and L. 

CSP) <-> CL) 

CSP) + 1 <-> CH) 

The stack pointer content is unchanged~ 

No flags are affected. 

This is often used to provide two more bytes of readily available 

storage when a program requires more than six general purpose registers. 

For instance if four different memory locations must be accessed we can 

use BC for- one addr-ess, DE for- a second, · and HL for- two mor-e by use of ~ 
XTHL. 

6.8.2 Using the Stack 

There are some restrictions on use of the stack. 

a) For every CALL there must be a RETURN. You must not jump into 

or out of a subroutine except by CALL and RETURN. 

b) For every PUSH there must be a POP. You must not repeatedly 

push data onto the stack, or you will write into your program 

memory. 

c) To restore registers saved by PUSH, the POP instructions must 

be iri reverse order from. the PUSH instructions, because the last 
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data entered is the first data returned. 

d) PUSH and POP must be in the same program module. If a 

subroutine executes a POP with no preceeding PUSH, the data 

recovered will be the return address. 

These rules are not absolute: if you understand what you are doing you 

may use violations of the rules to good purpose. For instance, one 

program module might push data into the stack for retrieval by another 

module. This is referred to as unbalanced usage .2f ~ stack. However, 

it is a poor general practice, and should be used only when trying to 

save space and squeeze the last instruction of a program, developed in 

RAM, into a ROM production_ model. 

It may be desirable to jump from any of several subroutines to a 

special location in the main program when an error is detected.· This is 

called an abnormal return. The error handling module may then return to 

the calling program, it may POP the return address to a register pair 

and discard it, or it may initialize the stack. Avoid such procedures 

until ·you are reasonably expert. 
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6.9 SUBROUTINE CLASSIFICATION 

We will define four kinds of subroutines, which are not mutually 

exclusive. 

Global Subroutines 

Local Subroutines 

Reentrant Subroutines 

Interrupt Service Routines 

6.9.1 Global Subroutines 

Q 

A global subroutine is one which is available to be called from any (j) 
other program module. Typically 1 t serves a general purpose ·function , ·. 

such as multiplication, exponentiation, etc. It must be fully specified 

so that other programmers may use it. A number of restrictions are 

usually applied, although none are absolute: 

a) It always returns to the calling program - it does not 

make abnormal returns. 

b) Any use of the stack is balanced. 

c) No data are preserved· from one call to the next, 

except in memory locations specified by the calling program. 

d) Global subroutines are almost always transparent to the user, 

i.e. all registers returned with their content unchanged, • 

except as they are used to return results. 
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6.9.2 Local Subroutines 

A local subroutine has restrictions that limit its use by other 

modules. Typically it is a small or special purpose procedure. 

program 

It may 

have restrictions on entry, abnormal returns, unbalanced stack usage, or 

it may preserve·variable data.in permanently assigned memory locations. 

Of the subroutines used in the sensor correction problem, clearly INPUT, 

MULT and DRES could be treated as global subroutines. In fact, you will 

use them again in a later exercise. TABLU is too specialized: it 

demands a particular data table organization. 

6.9~3 Re-Entrant Subroutines 

:0 A reentrant subroutine is one that can be called even though it is 

already in use. A n~mber of the monitor subroutines exemplify this. 

Any subroutine that is subject to interrupts ar.d which is called . by an 

0 

interrupt service routine must be reentrant. Full discussion of this 

type of subroutine is beyond the scope of this text. 

6.9.4 Interrupt Service Routine 

An interrupt service routine is executed when an external interrupt 

occurs. There are very special requirements for interrupt servicing, 

which we will present in chapter 8 with other input and output 

functions. 
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6.10 MONITOR SUBROUTINES 

The remainder of this chapter describes monitor subroutines that are 

available to you. 

6.10.1 Monitor Keyboard Scan Subroutine (SCAN) 

Function 

Scan the keyboard once, and if a key is pressed decode it and 
return with the key value in register A, and the CY flag set. If 
r.-o key is pressed return with CY clear. 

CALL -
CD 
57 
02 

Extent 

CALL SCAN 

0257 through 0281 

Inputs 

Keyboard 

Outputs 

No key pressed: CY clear 
Key pressed: Key value in A; CY set 

Registers: 

A and B 

Constraints 

Uses output port C and input port A. Interface adaptor must be 
programmed for these port assignments, which is done by the 
monitor at power on or Reset. 

Leaves output port C loaded with different data depending on which 
key was pressed. 
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6.10.2 Monitor Key Entry Subroutine (GETKY} 

Function 

Call 

Obtain one key input from the keyboard. Return when a key has 
been pressed and released. 

CD 
3D 
02 

CALL GETKY 

Extent 

023D through 0256. 
Calls SCAN and DELAY 

Inputs 

Keyboard 

Outputs 

a) Value of the key entered, duplicated in registers A and C. A 
hexadecimal key returns the hexadecimal value as the low four 
bits. Command keys return the following: 

MEM 10 
REG 11 
ADDR 12 
STEP 13 
RUN 14 
NEXT 15 
BRK 16 
CLR 17 

RST causes a general reset to the processor and is not handled by 

the subroutine. 

b} The carry flag is cleared if a command key is entered; it is 
set if a hexadecimal key is entered. 

Regist~rs 

Registers A, B, C and D are used. The content~ of registers E, H 
and L are preserved. 

Constraints 
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a) Input port A and output port C are used. 

b) GETKY retains control until a key has been pressed and 
released. It delays until release has been continuously detected 
for 20 milliseconds (debouncing). 

Note: If GETKY is called by a user program while the AUTO/STEP 
toggle switch is in STEP mode, the delay is exaggerated to about 
two sec,onds. 

. -~ OJ 
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6.10.3 Monitor Data Byte Input Subroutine CENTBY) 

Function 

Call 

Accepts hexadecimal keys and one command key. Successive 
hexadecimal keys are combined into a bfte and the last two keys 
pressed are displayed and returned in register L. The preceding 
two keys (if any) are returned in register H. Returns when a 
command key has been pressed, released and ·debounced, with the 
command key value in register A. 

CD 
36 
03 

CALL ENTBY 

Extent 

0336 through 0374, including local subroutines. 
Also calls DBYTE and GETKY 

Inputs 

Keyboard 

Outputs 

Command key in register A and B. .Last two hexadecimal keys 
combined as a byte in L. Two preceding hexadecimal keys combined 
as a byte in H. Number of hexadecimal -keys pressed in register D. 

Registers 

A, B, C, D, H, L 
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6.10.4 Monitor Data Word Input Subroutine CENTWD) 

Function 

Accepts -~exadecimal keys and one command key. Successive 
hexadecimal keys are combined into two bytes, and the last four 
keys pressed are displayed and returned in registers H and L. 
When four or more keys. h'ave been_ pr.essed the content of the memory 
location addressed by those keys is displayed. Returns when a 
~ommand key has been pressed, rel~ased and debounced~ with the 
command key value in register A. 

Call -
CD 
46 
03 

Extent 

CALL ENTWD 

0346 through 0374 
Ir.eluding local subroutine. Also calls DWORD, DMEM, and GETKY 

-- Inputs 

Keyboard 

Outputs 

Command key in registers A and B. Last four hexadecimal keys in 
registers H and L. Number of hexadecimal keys presaed in register 
D. 

Registers 

A, B, C, D, H, L 

0 
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6.10.5 Monitor Display Digit Subrou~ine (OFFSET) 

Function 

Display one hexadecimal digit at a specified display position. 
The input is a hexadecimal value; the output to the display is 
encoded in the seven segment format. 

Call 

CD CALL OFFSET 
A9 
02 

Extent 

02A9 through 02C1 

Inputs 

a) Hexadecimal value in register A. (Note: a value greater than 
OF· will result in an erroneous display.) 

b) Display digit address stored in register pair D,E as follows: 

Outputs 

CD, E) 

83F8 
83F9 
83FA 
83FB 
83FC 
83FD 
83FE 
83FF 

Left digit 
Second digit 
Third digit 
Fourth digit 
Fifth digit 
Sixth digit 
Seventh digit 
Right digit 

a) The seven segment code for the hexadecimal input value is 
placed in the address provided. If the address is one of those 
listed above the value will be displayed by the DMA channel, 
provided that the channel has been turned on. (Note: the monitor 
leaves the OMA channel turned on, so unless you use other outputs 
this need not concern you.) If a different address is specified, 
the seven segment value will be stored there. 

b) The seven segment code is also returned in register A. 

C) The address in register D, E is decremented by one. 
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Registers 

a} Register pair H,L is used, in addition to D,E and A. 

b) Only the memory location addressed by D,E is affected. 
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6.10.6 Monitor Display Byte Subroutine - DMEM, DBYTE, DBY2 

Function . 

Display a byte of data as two hexadecimal digits. The display is 
coded in seven segment format; decimal points are off. 

Calls 

CD 
94 
02 

·CD 
95 
02 
CD 
98 
02 

Extent 

CALL DMEM 
Display ((H),(L)) in right hand digits 

CALL DBYTE 
Display (A) in right hand digits 

Call DBY2 
Display CA) at location ((D),(E)) 

0294 through 02A8 
Calls SPLIT and OFFSET 

Inputs 

DMEM 
DBYTE 
DBY2 

Memory address in H,L 
Byte in A 
Byte in A and memory address for display in D,E. 

DMEM and DBYTE initialize register pair DE to 83FF to display the 
byte in the right hand positions. 

Outputs 

Register C contains byte displayed. 

Register pair D,.E is de·cremented by two. 

Memory location addressed.by contents of register pair DE (at 
entry) is loaded with the seven segment code for the low order 
four bits of the input byte. 

The next lower memory location (DE) - 1 is loaded with the seven 
segment code for: the high order four bits of the input byte. 

Registers 

Registers A, B, C, D, E are used 

Registers H, L are preserved 
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Constraints 

Successive calls to DBY2 will display bytes in successive pairs of 
digits. DBY2 does not test the address, so the codes ~ay be 
stored in other memory locations. If data are stored in locations 
between 83CO and 83F8 the monitor operation may be disrupted. 

Output port C~is loaded with 80, to turn on the display and 
energize all keyboard input lines. Register A contains 80 
at return. 

0' 

I 

- I 
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6.10.7 Monitor Display Word Subroutine - DYPC, DWORD, DWD2 

Function 

Display two bytes of data as four hexadecimal digits. 

Calls 

CD 
CE 
02 

CD 
D1 
02 

CD 
04 
02 

Extent 

CALL DYPC 
Displays content of program 
counter at last RST4 or RST7 

CALL DWORD 
Displays content of 
register pair H,L 
in four left digits. 

CALL DWD2 
Displays content of 
register pair H,L 
in specif~ed digits 

02CE through 02DC 
Calls DBY2 

Inputs 

Data 

a) 
b) 
c) 

outeuts 

to 

for 
for 
for 

be displayed (two bytes): 

DYPC: stored at 83DA, 83DB 
DWORD and DWD2: in HL 
DWD2 only: display address in register pair DE 

Register C contains more significant byte of display. Register 
pair DE is decremented by 4 ·from the initial value provided by 
DYPC or DWORD or at entry to DWD2. 

Registers 

All registers are used. 
Registers H,L are preserved. 

Constraints 

Successive calls to DWD2 may be made without re-initializing 
CD,E), provided the first call addressed 83FF. The address 
supplied in DE is not tested, so the seven ~egment codes may be 
stored in other memory locations. If data are stored in locations 
between 83CO and 83F8 the monitor operation may be disrupted. 
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6.10.8 Monitor Subroutine CLRGT, CLEAR, CLRLP 

Function 

Clear part or all of the display or memory. 

Calls 

CD 
82 
02 

CD 
87 
02 

CD 
SC 
02 

Extent 

CALL CLRGT 
Clears four right hand 
display digits 

CALL CLEAR 
Clears entire display 

CALL CLRLP 
Enter with number of 
digits to be cleared in B 

0282 through_ 0293 

Inputs 

CLEAR, CLRGT - none 
CLRLP - number of digits in B 

hig~est address in CH,L) 

Output 

Contents of display memory area starting at right are set to O. 

Registers 

B, H, L 

-v 
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6.10.9 Monitor Subroutine Display Enable (DYEN) 

Function 

Enable the DHA channel for display. ·Also causes all keys to be 
enabled for input test. 

Call· 

CD 
A4 
02 

Extent 

CALL DYEN 

02A4 through 02A8 

In2ut 

None 

Output 

Outputs 80 to.port C. 
Returns 80 in register A 

Re1isters 

A is used 

Comment 

If output port ~ is used for other purposes! the most significant 
bit must be set high to enable the disp ay. DYEN accomplishes 
this. After a call to DYEN the input instruction IN PORTA CDBOO) 
will load FF to---the A register if no key is pressed; if any key is 
pressed at least one bit will be zero. 
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-
6.10.10 Monitor Subroutine SPLIT 

Function 

Separate a byte into two hexadecimal digits, each right justified. 

Call 

CD CALL SPLIT 
C2 
02 

Extent 

02C2 through 02CD 

Input 

Data byte in register A 

Outputs 

Data byte in register C. More significant digit in register 
Least significant digit in register A. 

Registers 

A, B, C 



6.10.11 Monitor Subroutine DELAY, DEL1 

Function 

Wait in a loop for a defined time. 

Call 

CD 
36 
02 

. CD 
38 
02 

Extent 

CALL DELAY 
Wait 1.3 milliseconds 

CALL DEL 1 
Wait for a time 
set in register A 

0236 through 023C 

Input 

DELAY - None 

6 - 83 

DEL1 - Enter with a value in register A, proportional 
to the del~y desired. 

Output 

None 

Registers Used 

A 
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I e LOGIC AND BIT MANIPULATION 

It is often necessary to perform functions that depend on individual 

bits in a byte. This is common, for example, in control problems, where 

data bits may represent discrete signals rather than numeric values. 

In this chater two sets of instructions will be introduced:· rotate 

commands, which work on the accumulator and carry flag only; and logical 

functions, which generally involve the accumulator and another register. 

7.1 ROTATE COMMANDS 

Rotate is a command to move each bit in the accumulator to an adjacent 

position. 

RAL Rotate Accumulator Left Through Carry 

Move each bit in register A to the next higher position: 

Move the mo"\t significant bit into the carry flag. Move 

the contents of the carry flag into the least 

significa~t bit~ Carry is the only flag affected. 

0 
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Rotate Accumulator Right Through .Carry 

Move each bit in register A to the next lower positio~. 

Move the least significant bit into the carry flag. 

Move the content of the carry flag into the most 

significant bit. Carry is the only flag affected. 

These two rotate commands are sometimes called 'arithmetic shift' 

because they can be used to double or halve the value of the A register 

content, and are used in multiplication and division. Th~y can also be 

used to obtair. access to an individual• bit. To illustrate the 
• 

arithmetic properties of rotate, consider the following simple binary 

numbers: 

0111 1110 

. 
They are identical, except that the second r.umber has been shifted left 

one bit, ar.d as a result has beer. doubled ir. magnitude. 
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~.1.1 Rotate Exercise 

Q··· 

A byte can be doubled by moving it into register A, cleari~g the carry, 

and rotating· left. This places its most significant bit (MSB) in the 

carry. To double a two byte value, perform this operation on the less 

significant byte (register L), move the result back ~o L, and repeat o~ 

the more significant byte Cregist~r H), but without clearing the carry~ 

FIRST STEP 

F 8 SECOND STEP 

The result is that each bit in the sixteen bit word has bee~ shifted 

left one position. 

The word can be halved by the reverse process. It must start with the 

more significant byte and shift right: 

FIRSI STEP 

SECOND STEP 
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We will use the monitor subroutine ENTWD to obtain two data bytes and a 

command key, and act on the data word according to the command key 

entered. If LSB is 1, we will double the value. If LSB is o, we will 

halve the value. Place the result in H ,L and use DWD2 to displa.y the 

result at the right side of the display (set (D,E): 83FF). 

The calls to ENTWD and DWD2 are: 

CD 

46 

03 

CD 

04 

02 

You can use 

CALL ENTWD 

CALL DWD2 

REG and MEM as the two command keys for double 

and halve. (When you enter four or more hexadecimal keys, using ENTWD, 

you will see two digits appear in the right hand position of the 

display. These show the content of the memory location you have 

addressed, which is not of interest here but is part of the function of 

ENTWD). Flow chart and code this exercise yourself, then look at the 

solution given. If there are differences, try both programs. You will 

soon realize that a problem solution can be implemented with a variety 

of programs. A flow chart is shown in Figure 7-1, and a coding sheet in 

Figure 7-2. -, 
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~7.1.2 Multiplication and Division by Two 

Now we will modify the program to allow repeated multiplication or 

division by 2. At the •nd of your program replace the final jump with 

SHLD, to store the content of CH,L) in two memory locations (SHLD 8300). 

Now call ENTWD by placing another call at the next location in your 

program, 8223. Test the second least significant bit in the command. 

If it is zero, use the new value ·of H,L. If it is one, recover the old 

value, using LHLD. 

To test the second least significant bit in the command requires two 

right shift commands. Now restore the least significant bit to the 

carry flag by a left shift command, and jump back to decide whether to 

- multiply or divide by 2. 

0 



7 - 8 

Now we will define command key functions, ·as follows: 

REG (or NEXT) New Data x 2 

MEM (or RUN) New Data I 2 

CLR (or STEP) Old Data x 2 

BRK (or ADDR) Old Data I 2 

After enter"ing data once using REG or MEM, ~epeated depressions of CLR 

or BRK will successively multiply (or divide) the entry number. Note 

that this type of division is by truncation, e.g. 5/2 = 2, not 2.5, and 

1 /2 = 0. 

An extension of the fl6w chart of Figure 7-1, to follow the CALL DWD2 

(instead of returning to start) is shown in Figure 7-3, and the code in 

Figure 7-4. 
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Old Data ( (CY) = 1 ) 

(L) <- (8300) 

CH) <- (8301) 
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~7.1.3 Logical Rotate 

07 

·_o·-_:. ! .. 

'--· 

Two other rotate commands are provided in the 8080, which are similar to 

RAL and RAR · except for their handling 6f the carry and the most and 

least significant bits. 

RLC Rotate Left 

Move each bit in register A to the next higher positio~. 

Move MSB into the carry flag and i~to LSB. Only the 

carry flag is affected. 

OF RRC Rotate Right 

Move each bit in register A to the next lower positiot. 

Move LSB into the carry flag~ into MSB. or~ly the 

carry flag is affected. 

These two instructions are called logical rotate because they treat the 

accumulator as an eight bit ring in which MSB and LSB are conceptually 

juxtaposed. The operation does not have an arithmetic equivalent. 
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The l~gical shifts discard the old value of the carry flag. If in the 

Double and Halve parts of the program you replace both RAL commands (17) 

with RLC (07) and both RAR commands (1F) with RRC (OF) you will see that 

the two bytes are now indepe_ndent of each other. If you enter two new 

bytes, using REG to shift left, and then BRK to shift the 

same data right, the input val.ue will be restored. Now if you use 

either BRK or CLR eight times each byte will be shifted back 

to its original value. After four shifts in one direction the digits of 

each byte are interchanged: 

1 2 3 4 REG 1234 2468 

·cLR 1234 4800 

CLR 1234 90A1 

CLR 1234 -- -- -------21 4 3 

7.1.4 Other Shift Functions 

A left shift of the accumulator, since it doubles the value of its 

content, can be duplicated by adding it to itself using the ADD A 

instruction.· This differs from the rotate left command in that it 

always leaves zero in the least significant bit. It also sets or clears 

all flags, while the rotate instructions affect only the carry flag. 

The double precision add instruction DAD H can be used to duplicate 

shifting left in the H,L register pair. 

-
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The addition with carry instructions will be covered in another chapter, 

out one of them is similar to ADD A and so we introduce it here: 

HEX CODE: -BF 

MNEMONIC: 

MEANING: 

ADC A 

Add the content of regi~ter A and the content 

of the carry flag to the content of register 

A and place the result in register A •. All flags 

are affected. 

The result is identical to RAL except that all flags are affected, · 

because the old carry is added in. 

7.1.5 Carry Flag Controls 

o-." The commands RAR, RAL and ADC A all enter the carry flag into register 

A. It is often necessary to operate on th~ carry flag before using oce 

of these. The carry flag can be cleared, set, or complemented, by the 

following instructions: 

B7 ORA A 

'' 37 STC 

3F CMC 

Clears the carry flag. 

Sets or clears other flags 

according to the content of register A. 

(CY) <- O (see Section 7.3.3 for more detail) 

Set the carry flag. 

(CY) <- 1 

Complement the carry flag. 

If (CY) = 1 , (CY) <- 0 

if (C!l) = o, (C!) <- 1 
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7.2 PROGRAM EXERCISE I 

We will plan a program which will display the cor.tent of a register in 

binary form. Instead of calling a monitor subroutine to display a byte 

as two hexadecimal digits, we will assign a digit to represent each bit. 

Then according to whether that bit is 1 or O we will store a symbol i~ 

the memory location that is accessed by the OMA channel for the 

corresponding digit. 

7.2.1 Display Segments 

In order to choose symbols for 0 and 1 you need to know how the 

individual segments of the display are controlled. Each of the eight 

display locations on your MTS has seven line segments and a decimal 

point, a total of eight elements. The OMA and display hardware are 
-----·- --·----·-···--

des-igned so that each location is controlled by one byte of memory and 

each element by one bit. 

First we will write a program to find out how the bits are assigned, and 

which memory location controls which display location. You will need 

this monitor input subroutine: 

CD 

36 

03 

CALL ENTBY 

" .. 

ENTBY accepts data from the keyboard, displaying the value of the 

hexadecimal key(s) depressed in the rightmost two locations of the HTS 

\ -
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display. This is the subroutine used by the monitor to enter data using 

the MEM command, so you are familiar with its operation. ENTBY exits 

whenever_·a command key is depressed, with the values entered in register 

L. 

The eight display locations are controlled by the contents of memory 

addresses 83F8 83FF. Loading a byt~ (two hex keys) in one.of these 

locations will turn on. each display element whose controlling bit is set 

to 1. Write a simple program to test the assignment of display elements 

of each bit. A simple solution is shown in Figure 7-5. Load the 

program and experiment, then try displaying in different locations. 

After you have experimented look at Figure 7-6 and try some of the 

examples presented. 
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DISPLAY ADDRESS ASSIGNMENTS 

o B 8 B 8 B B B B 
83F8 83F9 83FA 83FB 83FC 83FD 83FE 83FF 

Bytes to Generate Various Symbols Byte value for each Seqment 

D 3F Cl 63 r COU .1 
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~ ~ (40) 

2 SB I I 22 
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·Figure 7 - 6 
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1.2.2 Binary Display ~: 

Now with some suitable symbols we can create the display of a byte in 

its eight-bit binary form, with a symbol for one or zero shown in each 

display location. What we need are symbols to represent Os and 1s, and 

a program which will display the symbols in the eight display locations. 

In preparing a flow chart and coding your program, use these hints: 

a) Use ENTBY to fetch a byte 

b) Initialize addresses and counters 

c) Write a loop to store the appropriate symbol in the display 

location corresponding to each bit in the byte. 

It is tricky, but try to devise a solution of your own. Figure 7-7 

-,_ ~~ s·hows a - ·r1ow diagram for the program and a coding solution is given in 

Figure 7-8. The program can run equally well run from most significant 

bit to least sig~ificant or vice versa. This will determine the first 

display address, whether it is to be incremented or decremented, and 

whether the shifting is to be left or right. For this program it does 

not matter which of the six methods of shifting register A we choose, 

except that there may be some reason to want the original byte restored 

at the end. 

Load and test your program. If you have problems, you may meet a 

difficulty in using the monitor with a program that operates the 

display. Each time you step, or reach a breakpoint, the monitor will 

destroy your display data, since it writes to the same locatio~s. This 
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becomes a nuisance if a program executes several instructions, stores 

data in a display position, and repeats a loop with conditional jumps. 

It is often wiser to place your display data in some different memory 

area (say 83A8 to 83AF), so that you can inspect those memory locations 

to ~ee what your display data was. Then change that address to 83F8 

when the program is successful. 

You may wish to exercise the program using different symbols for 0 and 

1. Look again at Figure 7-6, or use your imaginatio~. Save this 

program - we will use it in the next exercise. 

~-
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INITIALIZE AIDRESSFS, BIT CDtNr 

'JEST BIT 

~BITOXNI' 

FIGURE 7-7 
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1.3 LOGICAL FUNCTIONS 

Logical functions operate on individual bits or pairs of bits. The 

defined functions are: 

Complement • 

AND 

Inclusive OR 

Exclusive OR 

7. 3. f Complement ( CMA) 

If a bit is O, its complement is 1; if a bit is 1, its complement is O. 

The complement is often symbolized-by a,, bar, read- as NOT. Thus:· 

-If X: 1, X: 0 

If X :: O, X :: 1 

(If X equals one, NOT X equals zero) 

(If X equals zero, NOT X equals one) 

The complement of a byt-e is the byte comprising the complements of each 

of the bi ts of the origir.al byte. For example: 

01101100 = 10010011 

or 6C = 93 



0 
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This function is generated in the 8080 by the instruction: 

2F CMA Complement Accumulator 

-(A) <- (A) 

No flags are affected. 

The complement function is also involved in ar·ithmetic, as you will see 

in later chapters. 

7.3.2 AND (ANA) 

The AND of two.bits is 1 if and only if both bits are 1. The AND is 

symbolized by a dot, or by the intersection symbol 0 , or simply by 

placing two ~ymbolic characters next to each other. Since we will be 

dealing with bytes for which multiplication is also defined, we will use 

fl . 

.x {'\ y (X) AND CY) 

The operation of a logical function is often shown by a truth table. 

• x y (X) r\ CY) 

0 0 0 

0 1 .o 

1 0 0 

1 1 1 
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The AND of two bytes is .the byte comprising the bits generated 
-~ 

by the -

AND of corresponding bits in the two origir.al bytes. For instar.ce: 

01101100· (l 11101001 = 01101000 

or 6E ~ E9 = 68 

A logical fur.ction of two bytes expressed ir. hexadecimal is not obvious 

at a glar.ce one usually has to expand the bytes to binary 

represerl tatior •• 

The AND of the bytes in r~gister A and any other register (or M, the 

memory location addressed by the cor.ter.t of register pair H,L} is 

generated, and the result.placed in register A, by: 

ANA r AND (r} with (A); 

place the result in A. 

(A) <- (A) fl (r) 

The carry flag is cleared. 

Other flags are set or cleared 

according to the result. 

.) -
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~ 7.3.3 Inclusive Or CORA) 

Th~ inclusive OR of two bits is 1 if either of the bits is 1. The OR is 

symbolized by a + sign or the union symbol U 

is defined for bytes, we use V : 

x 
0 

0 

1 

1 

y 

0 

1 

0 

1 

(X) U (Y) 

0 

1 

1 

1 

Again, since addition 

C) , The OR of two bytes is the OR of corresponding bits: 

01101100, u 11101001 =~11101101 

or 6C U E9 = · ED 
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-~ 

The OR of the bytes in register A and any other register (or M) is ~ 
generated, and the result placed in register A, by: 

ORA r OR ( r) with CA); 

pla~e the result in A. 

(A) <- (A) V ( r) 
The carry flag is cleared. 

Other flags are set or cleared 

according to the result. 

Since 1 \...) 1 = 1 and 0 V 0 = O, the functior. ORA A does not change 

the content of register A, but sets the zero flag if (A) = O, and clears 

it otherwise. It simil~rly sets or clears the other flags which have 

not yet been defined. We have used it to clear the carry flag. 

7.3.4 Exclusive Or CXRA) 

The Exclusive OR of two bits is 1 if one but not both of the bits is 1. 

The Exclusive OR, commonly referred to as XOR (sometimes EXOR), is 

symbolized by 0 . 
x y ex> 0 CY) 

0 0 0 

0 1 1 

1 0 1 

1 0 

-~. ·-· 

\ 
! 

fl 
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~ The XOR of two bytes is the XOR of corresponding bits: 

01101100 0 11101001 = 10000101 

or 6E 0 E9 = 85 

The XOR of the byte in register A and any other register (or M) is 

0 

generated, and the result placed in register A, by: 

XRA r XOR (r) with (A); 

place the result in A. 

(A) <- (A) 0 (r) 

The carry flag is clea~ed. 

Other flags are set· or cleared 

according to the result. 

Recognize that since 1 0 1 = 0, and 0 0 0 == 0, then (A) 

0 (A) = O. Therefore XRA A is used to clear register A. 
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7.3.5 Immediate Logical Functions 

For each of the logical functions except complement, there is a set of 

instructions using each of the registers (or the referenced memory 

location) as a source for the data byte. These instructions are: 

E6 

xx 

F6 

xx 

EE 

xx 

ANI 

ORI 

XRI 

AND Immediate data 

with register A. 

OR Immediate data 

with register A. 

XOR Immediate data 

-with register A. 

These generate the indicated logical function of the content of register 

A with the content of byte 2 of the instruction and place the result in 

register A •. The carry flag is cleared and other flags are set or 

cleared according to the result of the operation. 
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<::) The instruction AN! is especially useful in masking unwanted data from 

.the result of an input operation. For instance, if you are concerned 

0 

with bit 4 of an input byte and want to jump if it is one, it is more 

efficient to write: 

ANI 

JNZ 

10 (00010000) 

than to shift the data bit to the carry flag and jump if carry. 
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7.4 PROGRAM EXERCISE II 

Now we will plan an exercise using bit shifting and display techniques 

to demonstrate logical functions. We will accept eight bits as a 

sequence of zeros and ones from the keyboard and display them as they 

are rec•1ved, using blank for zero and lower right segment for one. A 
f . • decimal point will appear in the- location where the next bit is to be 

entered. As the eight bits are entered we will also display a 

previously entered data byte, using blank for zero and lower ~ 

segment for one. The appearance of the display as it will appear is 

shown in Figure 7-9. 

7.4.1 Keyboard Utilization 

Command keys will be used to generate logical functions of Old and New 

Bytes, and the Result Byte will be displayed along with the Old and New 

Bytes. This is also shown in Figure 7-9. Other command keys will be 

used to control the data entry sequence. 



0 

0 

0 

1 0 1 0 0 0 0 0 

1 1 0 1 1 0 0 1 

Display During binary data entry 

Display showing result of OR 

EIBBBB 

lNEXTj· 

Keyboard Functions 

LOGICAL FUHCTIONS - KEYBOARD AND DISPLAY 
FIGURE 7 - 9 
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New Byte 

Old Byte 



KEY -
CLEAR CLR 

NEXT NXT 

ENTER STEP 

STORE RUN 

COMP ADDR 

OR REG 

AND MEM 

XOR BRK 

Control and Function Keys 

FUNCTION 

Clear all bits of New Byte to 0. Place the bit 

position marker at the most significant bit. 

Move the bit position marker one bit to the right 

without changing the data 

Replace Old ~yte with New Byte. Do not 

change New Byte. Place the bit position marker . 
at the most significant bit. 

Replace Old Byte with Result Byte, if a result is 

~isplayed. Otherwise treat as ENTER. 

Complement New Byte. 

Form the logical OR of Old and New Bytes and place 

it in Result Byte. 

Form the logical AND of Old and New Bytes and place 

it in· Result Byte •. 

Form the Exclusive OR of Old and New Bytes and place 

it in Result Byte. 

7 - 32 
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7.4.2 Outlining the Program 

This exercise is sufficiently complicated that we will build .it up as a 

set of subroutines that can be tested individually. First we will 

prepare broad-brush descriptions of the major modules. A detailed 

specification will be presented for each module as it is ~evel~ped: 

BININ: Binary input subroutine to accept binary and command keys, and 

assemble a byte of data. 

MBIDY: Multiple Binary Display subroutine to display New Byte, Old 

Byte, Result Byte, and the bit marker (decimal point) showing the 

present bit position. 

CONTROL: Command Processing module to interpret and execute the 

commands. 

We will be concerned with four data bytes that must · be accessed by 

different modules. This is too many to conveniently keep in registers, 

so we will assign a fixed memory location for each. Assignment of 

memory locations will influence program efficiency. New Byte and the 

bit position marker will be refer~nced repeatedly. These can be loaded 

and stored with the LHLD and SHLD commands if they are in adjacent 

locations. 



These considerations lead to the following assignments: 

(8301) 

(8302) 

(8303) 

(8304) 

Result Byte 

Old Byte 

New Byte 

Bit Marker 

Program memory assignments will be: 

8200 - 866F CXNl'.RlL 

8270 - 828F BININ 

82AO - 82EF MBIDY 

82FO - 82FF Table of Symbols 

7 - 34 

During the development of BININ we will use the binary display program 

you have already developed; later we will replace it with MBIDY. 

.. ::'\ e 
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.:::>r.4.3 Binary Display Subroutine (BINDY) 

This is a formal description of the display program used in section 7.2, 

converted into ·a subroutine: 

Functior~ 

Call 

Display the content of regist~r L-in binary format, using a pair 
of symbols addressed by the content of register pair BC. 

-

/ 

CD CALL BINDY 
06 
82 

Extent 

8206 through 822F 
(including symbol table) 

Input .E!!! 
Register L Data Byte 

Output Data 

Symbols are stored in DMA locations 83F8 through 
83FF according to content of L. 

Registers 

Registers A, B, C, D, E, H, L used 
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T. 4. 4 Binary Input Subroutine (BI NIN) e 
In the preceding exercise we used ·the monitor subroutine ENTBY to get a 

byte and display it in binary. Now we will create a binary input 

subroutine BININ, which will call the monitor subroutine GETKY. 

Fur}ction 

Call 

Fetch a key using monitor subroutine GETKY. If a command key is 
received, return with carry clear. If a binary key (0 or 1) is 
received, enter it into the data byte in the p~sition indicated by 
the bit marker, and shift the bit marker right. If a hexadecimal 
key other than 0 or 1 is received, use its least significant bit 
as a· binary input. Data and bit markers are kept in memory. 

-
Call BININ 
A3 
82 

Extent 

82A3 through 82BF 

Input J2!1! 
Bit Position Ma~ker 
Data Byte 

·output J2!!! 

Carry . O if commands; 1 if binary 
Register A Command Key if any 
Register H Bit Position Marker 
R~gister L Data Byte 

Registers 

All registers used 

Constraints 

At the first entry for a new byte: 

a) Bit Marker should be 1000 0000 

b) New Byte should be 0000 0000 
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~Note that when a command key is pressed, BININ is to behave exactly as 

GETKY does: return with carry clear. This is readily accomplished with 

the conditional return. 

DO RNC Return if no carry 

Since any hexadecimal key is to be treated as bin~ry according to its 

least significant bit, we ~an either shift that bit into the carry and 

ignore the other bits, or we can mask the other bits with the immediate 

AND instruction, ANI 01. 

7.4.5 Modifying Single Bits in a Data Byte 

We have defined a bit marker to keep track of which bit is to be 

entered, and we will use it to modify individual bits. For example: 

Bit Marker 00100000 

Data Byte 01100111 

Replace this bit~ 

0 
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"::'\ 
There are several ways of entering the new bit. One obvious way is to 0 
test the key (in the carry after a shift right) and jump to one of two 

separate procedures: 

Key is zero: 

Complement the 11011111 

bit marker 

Data byte 01100111 

AND result 01000111 

Bit set to o__t 
', Key is one: 

• Bit marker 00100000 

Data byte 
• 01100111 

OR result 
1 _:}00111 

Bit set to 



0 

!-'-·· 

0 
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A possibly more efficient procedure is to force the bit to 1 by an OR, 

and then complement that bit by XOR with the bit marker if the key is 

zero (leaving the OR result if the key was one): 

Bit marker 

Data byte 

OR result 

Bit set 

Bit marker 

XOR if key 0 

Bit set 

to 

to 

1 

00100000 

01100111 

01100111 

t 

00100000 

01000111 

0 ._j 
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The followins technique can be used without any conditional ·jump e 
instructions whatever. First, mask any unwanted high order bits to 

ensure that the value is 0 or 1.· Then decrement the accumulator so that 

the key is represented thus: 

Key 0 

Key 1 

1111 1111 

0000 0000 

Now AND this result with the bit marker: 

BIT MARKER 

Key 0 

Key 1 

0010 0000 

0010 0000 

0000 0000 

Now we have the complement of the desired bit. Save this in another 

register, move the data byte to A and force the marked bit to 1 by an OR 

with the marker. 

Data byte 

Bit Marker 

OR Result 

0110 0111 

0010 0000 

0110 0111 
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~ Now XOR this result with the complemented key. The result will be: 

0 

Key 0 

Key 1 

0100 0111 

0110 0111 

Bit set----'t 

XOR with 0 preserves each bit; XOR with 1 complements. the bit. After 

the result is generated and saved in register L, you must shift the bit 

marker right and store it. 

A flow chart for BININ is shown in Figure 7-10, and coding for this 

routine in Figure 7-11. Figure 7-12 shows a revision of the binary 

display.code developed in section 7.2. Figure 7-13 presents the code 

for a calling routine which initializes New Byte and the bit· marker. 

The calling program is stored at 8230 ~o preserve the code you entered 

previously at 8200, ·so enter JMP 8230 at address 8200, and convert the 

binary display program into the subroutine SINDY. 

Two sets of symbols are provided. Locations 8221 and 8222 are the 

symbols for zero and one used by the monitor for hex displays, and the 

program starts with these values. When the first key is pressed, the 

first location will show the value of the depressed key, and all others 

will display zeroes. 

The symbols at 8223 and 8224 are a blank f,or zero and lower right 

segment for one. Location 8207 determines which symbols are to be used. 
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Load the programs and try both sets of symbols. Remember that only the 

least significant bit of the pressed key is tested, so each will have an 

effect. 



0 

BIN IN 

CALL GETKY 

CY = 0 

CY = 1 
(Hex Key) 

Set Bit in New Byte 

Update Bit Marker 

Return 

Figure 7-1 O 
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Returr1 
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7.4.6 Multiple Binary Display Subroutine (MBIDY) 

The next step in program development will be a subroutine to permit the 

display of Old Byte, New Byte, Result Byte, and bit position marker, all 

at once. We will call the subroutine once for each of the bytes to be 

displayed, using a different pair of symbols for each of Old Byte, New 

Byte and Result Byte. During the first call we will clear the display, 

and as the subroutine builds the display it will OR the 0 or 1 symbol of 

the data byte to be displayed with the pre-existing display. Store the 

display data at another location, 83A8 through 83AF, while debugging. 

Then if you need to step through your program or use breakpoints the 

display data will be available for observation at 83A8 - 83AF, even 
• 

though the monitor has used the content of the display locations. 
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Function 

Display the data byte addressed by (H,L) in binary format, using a 
pair of symbols (to represent O and 1) addressed by the content of 
register pair CB,C). Pre-existing data in the display is cleared 
i~ (A) = 00 at entry. It is preserved if (A) = FF. 

Call -
CD 

.AO· 
82 

Extent 

CALL 

82AO through 82FF 

MB I DY 

(including symbol table, 82FO - 82FF) 

Input B!.!! 
((H ,L)) Data Byte 

Symbol Address: ( B,C) 
((B,C)) 
((B,C) - 1) 
(A) 

Output B!.!! 

_Symbol for 1 
Symbol for O 
MasR to retain or clear old display 

Symbols are OR'ed into display locations 83F8 through 83FF 
according to the content or data byte, after old display is 
masked. 

CBC) decremented by 2 
(A) set to FF 

Registers 

All registers are used 



0 

7 - 49 

In order to selectively clear or retain the display, MB I DY is entered 

with either 00 or FF in register A. The subroutine will form the AND of 

this initial mask with the complement of all segments used for the 

symbols displayed. This mask is AND'ed with the pre-existing bit 

patterns in each display location. Then the appropriate symbol for a 

bit of the current data byte is OR' ed into the display to create· the new 

display for that bit position. 

The efficient way to handle this is to create the final mask only once, 

early in the subroutine, and keep it for use as each bit of the data 

byte is processed. The mask is in register A. The symbols are 

addressed by B,C and the data byte by H,L. Once we have obtained the 

data byte, the symbols for 0 and 1, and created the final mask, we can 

- "G- keep.all of these in registers and push the original contents of BC and 

HL onto the stack to get them out of the way. We will still find the 

registers fully used. Possible re~ister assignments are: 

B Data Byte 

c Mask 

D Symbol for 1 

E Symbol for 0 

H Display 

L Address 
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With this arrangement we are left with no place for a bit counter, which 

is a nuisance because we must then use a memory location (or the stack). 

Moreover, with this set of assignments we must move the data byte into A 

to shift, at the same time that we need A .for masking the old <Hsplay. 

This is a good place to ·use the XTHL instruction, with register 

assignments like this: 

B Bit Counter 

c Mask 

D Symbol for 1 

E Symbol for 0 

H Display or Data Byte 

L Address or Not Used 

Stack Data Byte .or Display 

Not Used or Address 

-
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These assignments are used in the solution given for this problem. 

Recall the storage assignments that have been made for the Bytes and bit 

marker: 

8301 Result Byte 

8302 Old Byte 

8303 New Byte 

8304 Bit Harker 

We will store symbols for the displays at successive locations: 

82F8 Result 0 symbol 

82F9 Result 1 symbol 

82FA Old Byte 0 symbol 

82FB Old Byte 1 ----------Symbol 

82FC New Byte 0 symbol 

82FD New Byte 1 symbol 

82FE Bit Marker 0 symbol 

82FF Bit Marker 1 symbol 

These sequences make it possible for the calling program initially to 

load an address for its firs~ call, thereaftet decrementing the address 

in a loop. We could put this loop inside the subroutine, but this would 

make it very specialized. With an external loop we can make MBIDY very 

general in function. A flow chart and coding s':leets for MBIDY appear in 

Figures 7-14 through 7-17. 
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MBlDY 

Fetch Data from Register Addresses 

Create Preserve or Clear Mask 

Initialize Bit Counter 

Clear or Set Symbol Bits 

Shift Dat~ Byte Left 

Decrement Bit Counter 

No 

Transfer Results to Display Locations 

Restore Input Registers 

Return 

Figure 7-14 



0 
. 1-

w 
w 
::c: 
en 
0 
~ 
Q 
0 
(,.) 

:E w 
t; 
> en 
0 z z 
< a: 
l-
a: 
w 
~ 
a.. 
:E 
0 
(..) 
0 
a: 
S:! 
:E 

en 
:E 
w 
t; 
> 
(I) 

a: 
w .... 
:::> a.. 
:E 
0 
(..) 

0 
w 
~ 
a: 
0 
w 
1-z 

. 

1L·( tA..I+ 1( /'t.. 
A D D R CODE 

8 2- fl 0 ~ ~ 

1 ~ I~ 
2 IR ~ 
3 0 ,4 
4 ~ 7 
5 (]) Jl 
6 e;; 1-1--
7 f r-
8 c:;. l3 
9 c. u 
A $ ~ 
B :< r .. 
C· 11 

,,. 
.6 

D '/ r-
e· 0 " F ~o ~-v 

8 :z_ B, 0 t5 ~,,--

1 ,_ f 

2 A ~ 
.,J 

3 'i ~ 
4 7 ~ 
5 A I 

.6 B 3 
7 £ 3 

.. . . 

8 :J.. ~j 

9 ',., <: 3 
A JI 2. 

B .£ F 
c 8' :L 

D /I I 
E JS 2-
F 7 7 

8 0 

1 

2 

3 

4 

5. 

6 

7 

8 

p u 
M 0 

/IA 0 

L ;p 

M 0 

p C!.-

.L- ]) 

M 0 

D c.. 
p t.) 

0 fJ... 

C- /VI 
A N 

M (') 

M v 

p u 
L )( 

M c> 
A Al 
-~ (<_ 

}{ -,-
j) A-
)( ,-

1J tV 

IA- Iv 

<.':) ~ 

"'1 0 

M BIPY' 
7 - 53 

s t../ ,,., s~..,,t! dA>f ~ °'cl d ,.-~u 
[\ 

v /../- "'Jo M .. ( H) c!:-- d a.+o.. b -t fe. , 

v L.. ~ A r '-) '-' ~o...s /c (re....~~ .. ) .' . . \ 

A x LlJ 
v lI'- ...... A (])) ... $~~o/ ~ l ·~ 

.. 
)( ·5 

:; 

A x i3 
v .£ ~ A (E") ~·_s~'·'~ 0 . 
>< E 
s I+ u:? i . 
A Ll> C.. Y'"e..""-f e .;,.,..J lflk..0.. J k .: 

A "1/ I ft.._ 0 , ,.... ~ ~c-L.. !} 
' 

A l- A 4 .£ I -1·1 01rf -lo L. 
' v ~ "\ A LI e .,.,.,,.e..c:J , I -1-o r-t..f-c.. '""" 

J:. 
.. g 0 y ft>)~ 8,r ~~1~ ['1 

' 

s /-l # ~-/.;~ck ~ ::P-7· ~If tt' 

z H .... 'B" 3 A ~ {HL-) ~ J) I ~y/ ~ ,-o./dJ ..- ', . 
i 

v A '\ f \..i ( ,4) ~Old ]) I $1. 1 lc•_.1 . 
I 

~ c_. /f.1 ..... Jk 
A ~ £ &.t -f'"e ,.-- 0 .St.'/!•·~ n/ 

-, ,., 
L- (/-/) ff-· :V~-L btt f c 

( ~..,,,) ~- µ,._£,._ .. 
j) 1-1 b1f-

(1+1- ~ ~ "' /-1- L _:;, i-:;[J -.., A JJ.r i 

F ~ J LL,u,, n J ./ ' I·' c..jooo '5" 2- JS b.·f ::=-0 I: , 
I' 

(''. 

A ·(!_ C../e~ 0 S "1 ..... M- Lo I 
A j) J: 111 f e.r-

(I 

I .S "-·-...be/ 
v M A YI $f:J/ ~! ~ ~s ,,,._ / t 

I;. 

' f 

' 
I· 

: 
(; 

FIGURE 7-15 



.... w 
w 
Qi 
CJ z 
Q 
0 
(J 

:E w 
t; 
t;; 
~ z -z 
< cc .... 
a: 
w 
~ a. :e 
0 
(J 
0 
a: 
2 
:e 

en :e 
w 
t; 
> en 
a: 
w .... 
::> a. :e 
0 
(J 

c 
w 
~ 
a: 
(.!J 
w 
1-z 

. 

A D D .. 
8 :z. e.. 0 

1 

2 
3 

4 

5 

·I 

1 

8 

•• 
A 

B 

c 
D 

E 

F 

a ,A 1' 0 

1 

2 

3-

4 

5 

8 

1 

8 

9 

A 

B 

c 
D 

E 

F 

8 0 

1 

2 

3 

4 

5 

6 

7 

8 

Ctl oc 

L ~ r N 
CJ .5 ]) ~ 

~ z.. ..J N' 
B '-( . 

8" z. 
€1 (> " 2.. I L )( 

.4 r 
'i" ~ 
l I L )C 

r- ~ 
f" 3 
7 ~ M " I 2.. s Ir 
;2. l I N 

t- / (!. I. l\J 

~ 2... ~ N 

e <:. .,,. 2. 

C- I fJ 0 

<E I ~ 0 
J ~ ~ v 
F f-
~ '1 I< t: 

. 

7 - 54 

~ '- ,4J.J.ress ~ -.~ d,4,r -- . re. a. ~~+ ,, .,.~ 
e r .2.. B " . 

(" ll 'j) I $C.A..-J. d-..-ro.... b11+e. 
H r A-J.clv-e•S 

" z.· 
' 
, .3 ,4 .,._ A - _....., 

- ., 

~ 
,. 

L 13' " f" '!» r- f"' A-J.J. V-t!!. s;;; .$ d I S Jfll / "'-1 
-

' 

v A ' M ~~1&J . d1.$ll/~ d. .r ... 
D 

. .. • v . 1,q... x .':~+~ ~-MA- ~~.4.... 

x H. 
~· ·~ 
~~ ·~ "2 ,_/!. <:. 

p 13' ~ $-fo.,,.o(L s ~ "o I aJ J.,uJ 
(J # l&J.5~ j~4- o..JJ,,,.~.$.f 

L A ' F F Lo o.-d A- WI °f"t. AM IU k 
-

-1-o ,...12 + ... ,""'" J 1:--f "-
~ 

~, 

FIGURE 7-16 



0 

0 

t­
w 
w 
:c 
ti) 

Cl z 
c 
0 
(.) 

:E 
w 
t­
tl) 

>­
(/) 

Cl z 
z 
< a: 
t-
a: ·- w 

--t­
·=> a. 
:E 
0 
(.) 
0 
a: 
2 
~ 

CJ) 

:E 
w 
t; 
> 
CJ) 

a: 
w .... 
::> 
a. 
:E 
0 
(.) 

Q 
w 
~ 
a: 
Cl 
w 
t­z 

. 

A D D R 'CODE 

8 .2- c 0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

A 

B 

c 
0 

E 

F 
'"' .s ..,, l/v'/ 

8 :;.._ ,:=. 0 0 LJ 

1 t:> 2. 
2 IS> (.;) 

3 I 0 . 
4 (J (.,) 

5 0 ~ 
6 0 0 

7 c 0 

8 (!) 0 

9 0 0 
A 0 0 
B I 0 

c 0 0 
0 &:> " E 0 0 

F ~ ~ 
8 0 

1 

2 

3 

4 

5 

6 

7 

8 

~\\.J S ' f t i . .. i 1· . ,;..,,. I ... _ .. r· 1-H-· · ~ 
7 - SS 

13 C.1 ~ ·7 ff·· 13 { € 
12.t. ;; ;..( i1 _ .. _~ ~ .' ; t l ~-· .... ' l' ..:..; 

/ r " I ''-" .s ~ ~ I ~ ~ .: , t ~ ~ I 

OtJ } f I~ "' . l- ~.1;. 1 ,1,,,rf /,) 

o/J' 
I 

(3_, fft:: .!;1-1.1-·:.-" l·; / I 
I , 

Nrt "v tJ. ,, f .. . .;4-1,,,i,~1 0 
J ' . 

, 
I /\/ .J. /':>'tit. ..:.:'°'. ~--"' : I I !_. • . / 

~ . """ 

(J·i 
, I 

.;;· {-t-
• '' c ..1. rk:c..4-· 

t,.;) (-ft... /~ ~·"ii s 

re.a .s w I t $ Ot-+ 
dur1HJ J~t.L e-t-,+r •/ 
Old 

\I I 

bv~.e_ (.;) 

Old I. I .J 
!) L/ , ( I 

/\/~ J./11 h~ 0 

Jv'e,'-: l.;i, fr I 
13 ,-r /kA..~.,,.~ 0 

~ ,'/ ~'-A--l*C.-r I 

FIGURE 7-17 



7 - 56 

7 .4. 7 Test Program for MBIDY 

MBIDY is really more powerful than is needed if we want zeroes to appear 

as blanks, or if we will always clear the display. However, it 

demonstrates some important ideas in logical functions, and will be 

I· useful in future work. To de~onstrate its capability, try it initially 

with the symbols you have been using for O and 1 (blank and lower right 

segment), and do not clear the display. We will implement the NEXT, 

CLEAR, and ENTER functions only at this point, so that you can see two 

bytes (Old and New) and the bit marker. Any other key will simply 

address the second set of symbols. The flow chart and coding sheets 

(Figures 7-18 through 7-21) show a program which calls both MBIDY and 

BININ. Enter the code and run the program using the NEXT, CLEAR and 

ENTER commands a~ defined in 7.4~1. 

There are a lot of instructions in these programs. Before running, be 

sure to verify very carefully that you have entered all of them 

correctly. If the program fails to execute properly, trace the program 

flow with breakpoints to try to find the cause of the problem. 

Keep in mind that when using breakpoints and inspecting memory contents 

it is very easy to make a simple mistake that can have disastrous 

consequences. For example, if you are inspecting consecutive data 

addresses using. NEXT and accidentally depress the STEP key, almost 

anything can happen. After a re~sonable amount of time spent in 

fruitless debugging, always re-verify the contents of memory. 
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Initialize Bytes (Old, New, Result) 
and Bit Marker 

A~---------~ 

Set Symbol and Byte Address Pointers 

BJ-----------------~ 
Set Mask 

Yes 

CALL BININ 
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Bit Marker 
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YFS 
""-----1- (Q.ld Byte) <- (New Byte) 
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7.4.8 Final Program Implementation 

Having tested the modules, we will implement the remaining command keys. 

Yo.u will have observed that determining the value of a command key by 

repeated use of 

CPI xx 

JNZ yyzz 

is very inefficient. We will improve on that by placing a table of 

addresses in memory, using the value of the command key to addre$s an 

entry in that table. 

KEY HEX VALUE CONTROL FUNCTION 

MEM 10 Address for AND procedure 

REG 11 Address for OR procedure 

ADDR 12 Address for COMPLEMENT procedure 

STEP 13 Address for ENTER procedure 

RUN 14 Address for STORE procedure 

NEXT 15 Address for NEXT procedure 

BRK 16 Address for XOR procedure 

CLR 17 Address for CLEAR procedure 

0 

• 

I e 
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~ A complete address requires two bytes, but since the entire program is 

in memory page 8200 we can use just the low-order byte of the address in 

the table. Assume that we have the command key value in register A. 

0 

The process could be: 

LXI 

ADD 

MOV 

MOV 

PCHL 

H,82xx 

L 

L,A 

L,M 

Address of a table containing addresses of the 

various procedures. (Dispatch Table) 

Add value of command key 

Put new low-order address byte in L 

Move content of that address into L. 
' This is the low address of the procedure. 

Jump to the address for the procedure. 

Sin~e tfie smallest value for a command key is 10 
16 

we will start with 

an address 10
16 

ADDRESS 

823A 

823B 

823C 

less than the first table entry. 

DISPATCH TABLE 

CONTENTS 

Address of AND procedure 

Address of OR procedure 

•ddress of COMPLEMENT procedure 

We will load H,L with 822A. If the value of the command key is 10, 

adding it to (H,L) will ·atve 823A, the address which contains the 
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address of the AND proce~ure. If the value is 11, the computed address 
-

will be 823B, the pointer to the OR procedure. This type of table is 

called a dispatch table, as it dispatches the program to the correct 

proces~ing module. 

However, we often need to use ~,L to transmit an argument (e.g .. a data 

byte or address) to the function being called or accessed. This 

conflicts with the use of H,L for a jump, but there is an easy solution. 

Find the jump address, as indicated above, and push it into the stack 

with PUSH H. Then do the other preparations and use the return 

instruction (RET) to jump to the address you have pushed. 

Now examine the definitions of the keys given below, and design 

procedures for each function. If you arrange the sequence of the 

procedures you will find that they have much in common, and one can 

simply feed into another. As an example, CLEAR and COMPLEMENT both 

place data into the memory address for the New Byte. If you preload H,L 

with the address of the New Byte (8303) the procedu~e could be: 

CLEAR 

COMP 

MVI M,FF 

HOV A,M 

CMA 

MOV M,A 

When the program enters at CLEAR, it will exit with (M) = O; when it 

~ 
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0 enters at COMP, -it will exit with (M) = (M). Flow charts and coding 

0 

sheets for the revised control program are presented in Figures 7-22 

through 7-25. MBIDY and BININ will not require any modification. When 

you run the program do not forget all of the caveats expressed above! 

Exercise all of the function keys thoroughly, to insure that your 

program is fully debugged. Above all, make certain that you understand 

the purpo.se of all of the instructions in each segment of the program. 
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A ,__------------------------~-

CALL BINit-1 

FictmE 7-22 

\ 

- ) 
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0 Load Dispatch Table Address 

Add Key Value, PUSH on Stack 

Set Address Pointers 

NEXT 

Shift Bit Marker 
.,_ ___ ~_.A 

CLEAR 

Set up 

COMP 

ENTE_R 

STORE 

'0 
FIGURE 7-22 (Cont'd) 
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OR 

OR Old Bytet----------------.... 

AND · 

AND Old Byte 

XOR 

XOR Old, New 

c t-------------------t~ 
Store Result 

Initialize Address t-------........... 8 

FIGURE 7-22 (Cont'd) 
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7.5 SUMMARY 

The code presented in this text is only one of many possible solutions 

to the original problem. After studying it to learn more about various 

ways of manipulating the data, you may wish to program the exercise by 

your~elf from scratch. Some solutions will be more inefficient, some 

will be more elegant. You can challenge yourself by counting the number 

of memory locations used in our version, then trying· to make yours more 

compact. 

This chapter has int·roduced shift commands and logical functions. There 

are many variations of logical functions, of course, since they can use 

registers.as sources. We have not yet encountered one accumulator 

command, DAA, one carry command, CMC. These will be used in the 

arith~etic sections of chapter 10. 

In addition to using logical functions you hav~ had practice using the 

stack, with PUSH, POP and XTHL as well as CALL and RET. You have 

calculated an address (as you did in the sensor correction exercise) and 

used it to find another address. These are all tools that are used 

constantly in program design •. In programming with higher level 

languages (Fortran, for instance) all of this is hidden from you • 

• 
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0 

INPUT/OUTPUT TECHNIQUES 

Various techniques and peripheral devices may be used with the 8080 to 

provide input and output capabilities. This chapter describes the 

common methods of implementing I/O and provides exercises in the use of 

those that are readily carried out with the MTS. 

The techniques differ from each other in three major respects: how the 

input or output device is addressed; what event initiates the transfer 

of information; and what form the data are in. 

treated in Chapter 9). 

Addressing 

Isolated Input/Output 

Memory Mapped Input/Output 

Direct Memory Access 

Initiation 

Programmed Input/Output 

Interrupt Driven Input/Output 

Timed Input/Output 

Repetitive Direct Memory Access 

(The latter will be 

The MTS includes facilities for all of these in one form or another, so 

you can learn each of the processes. For some, however, you must add 

external hardware. 
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8. 1 ISOLATED INPUT/OUTPUT 

The address and data busses are used to address input and output devices 

and transfer data between them and the CPU. The control bus from the 

8228 controller includes I/.O Read and I/O Write commands in addition to 

the Memory Read and' Memory Write commands. It is. the use of these 

command signalst and the instructions that generate them, that isolate 

I/O usage from memory usage of the busses. 

8·. 1. 1 I/O Ports 

Any device with suitable electrical characteristics can be attached to 

the busses. In general such devices should have high impedance inputs 

from the bus and tri-state outputs to drive the bus. Intel,' NEC, and 

otti~rs ___ _p_r_ovide the 8212 Input/Output Port for this purpose. The MTS 

includes one in the LED display circuit. A functional description is 

given in Figure 8-1; more detail is provided in the Intel 8080 

Microcomputer System User's Manuai. The principal ·features are low 

leakage currents of the inputs and outputs when the device is ~ot 

selected, data latches, and control gating. 

0 

61 
\I 
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SCHOTTKY BIPOLAR 8212 

Functional Description 
Data Latch 
The 8 flip-flops that make up the data latch are of a 
"D" type design. The output (Q) of the flip-flop will 
follow the data input (D) while the clock input (C) is 
high. Latching will occur when the clock (C) returns 
low. 
The data latch is cleared by an asynchronous reset 
input (CLR). (Note: Clock (C) Overides Reset (CLR).) 

Output Buffer 
The outputs of the data latch (Q) are connected to 
3-state, non-inverting output buffers. These buffers 
have a common control line (EN); this control line 
either enables the buffer to transmit the data from 
the outputs of the data latch (Q) or disables the 
buffer, forcing the output into a high impedance 
state. (3-state) 
This high-impedance state allows the designer to 
connect the 8212 directly onto the microprocessor 
bi-directional data bus. 

Control Logic 
The- 8212 has control inputs DS1, DS2, MD and 
STB. These inputs are used to control device selec­
tion, data latching, output buffer state ~nd service 
request flip-flop. 

DS1, DS2 (DeVice Select) 
These 2 inputs are used for device selection. When 
OS1 is low and OS2 is high (DS1 • OS2) the device is 
selected. In the selected ~tate the output buffer is 
enabled and the service request flip-flop (SR) is 
asynchronously set. 

MD(Mode) 
This input is used to control the state of the output 
buffer and to determine the source of the dock input 
(C) to the data latch. 
When MD is high (output mode) the output buffers 
are enabled and the source of clock (C) to the data 
latch is from the device selection logic (DS1 • DS2)-. 
When MD is low (input mode) the output buffer state 
is determined by the device selection logic (DS1 • 
DS2) and the source of clock (C) to the data latch is 
the STB (Strobe) input. 

STB (Strobe) 
This input is used as the clock (C) to the data latch 
for the input mode MD = 0) and to synchronously 
reset the service request flip-flop (SR). 
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Service Request Flip-Flop 
The (SR) flip-flop is used to generate and control 
interrupts in microcomputer systems. It is asyn­
chronously set by the C'CR input (active low). When 
the (SR) flip-flop is set it is in the non-interrupting 
state. 
The output of the (SR) flip-flop (Q) is connected to 
an inverting input of a "NOR" gate. The other input 
to .the "NOR" gate is non-inverting and is connected 
to the device selection logic (0.S1 • DS2). The output 
of the "NOR" gate (iNT} is active low (interrupting 
state) for connection to active low input priority 
generating circuits. 

SERVICE REQUEST FF 

DEVICE SELECTION 

- '\.. £i>os1 
Ii!> 0$2 

(I>MD--~-L.~ 

li!>sTe---... 

DATA LATCH 

---IE>o 12--------....-t--t 

ff§> 015--------+-+-1 

~Ola--------:_... ........ 
RESET DRIVER 

"" (E> CLA-----a ">o-4--......_-' 
(ACTIVE LOW) 

OUTPUT 
BUFFER 

STI MO ] 1'151;-Dl21 OATAOUTEOUALS INT CLR a511·Dl21 STI I "SR 

-· ~ 1 : t - g - -Hmt----- i-;....-.+--;<---+-~-+--,i.-4-....:;.,.-l 
0 1 I 0 DAfA LATCH - ~-+-~---+-~......___,;.-.+.~0-1 

0 0 ft l ' 0 , 11 T 1 

1 1 ' q DATA t.ATCH 0 
II 0 , - --, ·- DATA I.AT..., .~ 

, , ""\.., t 0 
1 , ft I 1 , I 

, 0 i , DATA IN 0 

·~ ! : +- I g:~: :: --- .___.__ _ __. _ _.____._---I 
0 0 1 

1 1 '""- T 1 

CLR - RESETS DATA LATCH 
SETS SR FLIP-FLOP 
lNO EFFECT ON OUTPUT IUFFERI 

•INTERNAL.IA FLIP-FLOP 

Note that the SR flip-flop is negative edge triggered. 

5-86 

FIGURE 8-1 
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A suitable arrangement for using several 8212's as input and output 

ports is shown in Figure 8-2. Each is selected by a single bit of the 

hign address bus to the non-inverting select input DS2, so no additional 

decoding is necessary. The input ports are enabled by the I/O READ bar 

command and the outputs by the I/O WRITE command, to the inverting 

select input DS1. Output data from the CPU enters an output port when 

the device is selected by DSl and DS2, and latched by the 8212 when it 

is de-selected; the 8212 outputs are always enabled. This behavior is 

set by the MODE input being pulled high. 

The STROBE input is unused for output ports 4 ind 5. Output port 6 

receives a strobe from some external hardware to indicate a need for new 

data. With the MODE input high this has no effect on the data outputs, 

but it sets the INT output low, indicating a need for service. The 

diagram shows that signal being input to the processor through input 

port 3. When the CPU loads new data to port 6 INT will. be set high 

again to indicate that the requested data are ready. 
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Input ports 1 and 3 are direct paths from their inputs onto the data bus 

when they are selected, because their strobe inputs are pulled high. 

This makes them suitable for stable data. Input port 2 is designed to 

receive a fleeting input, which may be gone before the proce~sor can 

service it. An external strobe is provided to latch the data in the 

8212 and set IKT low, requesting service from the CPU when it reads port 

3. 

The CPU accesses these ports with the co~mands: 

DB IN 

xx port address 

D3 OUT 

xx port address 

I 

Input from port 

to register A 

High address <- (byte 2) 

Low address <- (byte 2) 

{A) <- {Data bus) 

No flags are affected 

Output to por·t 

from register A 

High Address <- {byte 2) 

Low Address <- (byte 2) 

(A) <- {Data Bus) 

No flags are affected 

These are the only instructions for isolated input and output. They 

alone create the I/O Read and I/O Write commands to the ports. 

0 

.. 

• 
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,c. 
\, 

0 
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Note that the port address is only one byte, not two. In response to 

one of these instructions the CPU places that byte on the low eight bits 

of the address bus, and duplicates. it on the high eight bi ts. 

This duplication permits the I/O devices to be selected from the high 

address bus, which is typically less heavily loaded by memory devic~s 

than the low address bus. 

j 

The addressing shown here, where a single bit on the address bus selects 

a device, is called linear select. It is· economical of hardware but 

restricts the system size. Port addresses for the devices in figure 8-2 

are: 

Input port 1 01 00000001 

Input port. 2 02 ---000000, 0 ~-:-_-:-=::::--:··-.--:-:_·:--:::··:-.;:: __ 
.,-----·----·-----·~-- ---

Input port 3 03 00000100 

Output port 4 08 00001000 

Output port 5 10 00010000 

Output port 6 20 00100000 

·For a larger system some decoding of the address is necessary. 
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8.1.2 MTS Input/Output 

The MTS includes an 8255 Programmable Peripheral Interface Adaptor 

( Figur·e 8-3). It has 24 external connections, which can be programmed 

as inputs or outputs in various combinations. It connects internally to 

the system data bus and the three low bits of the address bus, and to 

the I/O Read and I/O Write commands from the 8228. When the 8255 is 

selected by a low signal on AB2 (i~e. any port address of the form 

xxxxxOxx), the 8255 will respond to the I/O Read or I/O Write commands. 

These are generated by the 8228 when the CPU executes one of the 

instructions: 

DB IN Input to register A 

xx port address (A) <- (Port) 

------ --·--

03 OUT Output from register A 

xx port address (Port) <- (A) 
• 
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The 8255 is selected if bit ·2 is 0. Bits 0 and 1 select one of the 

three eight-bit ports. If the OUT instruction is used the 8080 places 

the content of the A register on the data bus and the 8255 copies it 

into the selected port, provided that is p~ogrammed for output. If the 

IN instruction is used the 8255 places its present input or the content 

of its data latch onto the data bus, and the 8080 copies the data into 

register A. 

The port address can theoretically address 256 input or output. devices. 

Each 8255 occupies four address; in the MTS the address is not fully 

decoded. , The coding of the address is: 

OO-F8 xx xx xOOO 8255 Port A 

01-F9 xx xx x001 8255 Port B 

-----02:..FA -- -xxxx x010 8255 Port c 
03-FB xx xx x011 8255 Control 

xx xx x1xx 8255 Not Selected 

Although 00, 01' 02 and 03 or any other bytes with the same three low 

bits will select ports, it is often desirable to hold the 'don't care' 

bits high if any $ystem expans~on is planned. Up to six 8255's can then 

be select.eel-· with no ad·ditional decoding, as sho.wn in. Figure 8-!1. 

• 

I 

-
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In addition to the three external ports, the 8255 has a 'control port' 

addressed by 11 in the low bits of the address. This is used to program 

the external ports for input or output, and to select the mode of 

operation. The monitor programs the 8255 with the instructions: 

3E MVI A,92 Write 1001001'0 

92 to the control port. 

03 OUT CNTPT 

FB 

This sets ports A and B for input and port C for output. Ports A and B 

are each eight bit ports and can be program~ed independently of each 

other. In the basic mode of operation (mode O) port C is divided· into 

two four-bit ports which can be independently programed for input or 
- --·----------··- - ----·----------....,.- --- . 

output. Thus 16 different combinations of input and output assignments 

are available in mode O. 

The bits in the control byte are defined as follows: 

0 

l!ort c Bits 0-3 

Port B 
'- ... ., i 

a 0 H • l a· T 
.~ ----

Port c Bits 4-7 

Port A 

·Mode 0 in Port B 

Mode 0 in Port A 

Set Mode 

0 

e, 
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Notes Control Byte Port A Port c Port c Port B 

Hex Binary Bits 4-7 Bits 0-3 

(3) 80 1000 0000 Out Out Out Out 

(3) 81 1000 0001 ·Out Out In Out 

(3) 82 1000 0010 Out Out Out In 

( 3) 83 1000 0011 Out Out· In In 

88 1000 1000 Out In Out Out 

89 1000 1001 Out ln In Out 

8A 1000 1010 Out In Out In 

8B 1000 1011 Out In In In 

( 1) 90 1001 0000 In Out Out Out 

( 1 ) 91 1001 0001 In Out In Out 

( 1 '2) 92 1001 0010 In Out --· Out In 

( 1) 93 1001 0011 In Out In In 

98 1001 1000 In In Out Out 

99 1001 1001 In In In · Out 

9A 1001 1010 In In Out In 

9B 1001 10·11 In In In In 
·- ...... -

l l c Port c Bits 0-3 

Port B 

Port c Bits 4-7 

Port A 

Table 8-1 8255 Mode O Combinations 

Notes to Table 8-1: ---
(1) Only the four combinations marked are suitable for use with 

the MTS if the keyboard is to be used. 
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(2) This combination is set by the. monitor whenever it controls 

the keyboard and display. 

(3) Port A and Port C (bits 4-7) should not both be programmed for 

output, since the keyboard would then short them together. 
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The 8255 provides a second mode of operation for port A or port B or 

both, in which certain bits of port C are µsed for 'handshaking' with 

external devices. For input in this mode the external device places its 

data at the input port and gives a strobe pulse to one bit of port C. 

This stores the data in an eight bit latch associated with the eight bit 

input port, and generates other status bits in port C which are 

accessible both to the CPU (by reading port C) and to the external world 

at the port C outputs. This allows transient signals to be input and 

read subsequently by the program at its convenience. For details the 

student is referred to the Intel 8080 Microcomputer System User's Manual 

(September 1975 page 5-113). 

In ·the basic input mode which ·we have been discussing, the data latches 

follow their inputs whenever the port is addressed. If a port is 

programmed for input the IN instruction will read the current state of 

the input. Wheri a port is programmed for output the data lat~h is 

loaded by an OUT instruction, and the data remain stable until the next 

OUT. These data can be read back by the processor; IN will always read 

the content of the data latch. This does not apply to the control port, 

for which the IN instruction is not effective. 

A third mode of operation is available for port A only, in which it is 

both · an ·input and an output port suitable for connection to a 

bi-directional data bus. 
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8.1.3 Keyboard Input 

To acquire familiarity with the 8255 we will develop a keyboard input 

program. You have been using the MTS monitor subroutines for this 

purpose. The subroutines to be developed here will be different in 

design. 

Figure 8-5 shows the connections between the 8255 and the keyboard. The 

keyboard is a 3 x 8 matrix. Reset is not in the matrix but is directly 

connected to the reset input. The other keys form three columns: keys O 

through 7; 8 through F; and the command keys. Each row has three keys 

and a pullup resistor and is connected to an input bit of port A. If no 

key in the row is pressed that bit of port A will be 1 because of the 

resistor. If a key is pressed the input bit of port A is connected 

through the key to one of three output bi·ts of port C. If that output 

is high the input to port A will still be 1 , but if it is low the input 

will be O. Thus by setting one bit of port C low and reading port.A we 

can tell which, if any, key is pressed. We can make a quick test to see 

whether any key in the keyboard is pressed if we set all three outputs 

(C4, CS and C6) low and read port A; if the result is 1111 1111 no key 

is pressed. 

There may be a circumstance where we are interested only in a particular 

key. This can be tested by setting the corresponding column low, 

reading the input, and masking to exclude all keys except the desired 

one. 

Subroutine KYIN is specified to permit any of these functions. 
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8.1.4 Subroutine KYIN 

Function: 

Test the keyboard for any desired key or keys being pressed. Set one or 
more of output bits C4, CS, C6 low (without affecting any other bits of 
.port C) according to a parameter passed in the call. Read the keyboard 
and mask with anot~er byte passed as a parameter. Return with the zero 
flag set if no desired key is pressed; otherwise with zero cleared and 
the binary input data' in register C. Restore the column select bit (C4, 
CS, or C6) to 1 before returning. 

Two alternate entries provide for setting t1le inpl:Jt parameters to test 
for any key, and for programming the 8255. 

Call 

CD CALL KPRG 
40 Program the 8255 
82 and continue to KTST 

CD 
44 
82 

CD 
48 
82 

CALL KTST. 
Test for any key 

CALL KYiN 
Test for spe·cified key 
or keys in specified 
column or columns . · 

Inputs 

KPRG: None 
I<TST: None 
KYIN: 
a) Key column select in register B 

contains 0 for each desired column. 
Bits O, 1, 2, 3 and 7 must be 1 

b) Key mask in register C 
contains 1 for each desired key 

Outputs 

Zero flag set if no desired key. 
Zero flag clear if desired key is pressed 
Keyboard input (00 if no keys) in register C. 
Key column select in register B is preserved 
(8F for KTST). 
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Registers 

A, B, C, D are used. 

Constraints 

If KPRG is called, 8255 will be programmed as follows: 
CO - C3 Output 
Port B Output, mode 0 
C4 - C7 Output , 
Port A Iftput, mode 0 

Outputs of all ports are cleared by KPRG. 
If KTST or KYIN is called, C4 - C7 and port A must 
be programmed as shown above. 

. . 
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We have discussed programming the 8255 by writing to the control port. ~ 

There is another function in the control port: you can set or reset any 

individual bit of- port C. This is done by writing a byte from register 

A to the control port: 

3E MVI A 

xx 

03 OUT CNTPT 

03 

(A) <- Selected command 

This sequence applies to both programming the 8255 ~nd setting bits in 

port C. The command bytes are distinguished by the high order bit as 

shown below: 

Command Bytes to Cont~ol Port 

90 1 0 0 1 
~ 

0 0 0 0 

11 t,____t 

Program the ·8255 

Set CO - C3 for output 
Set Port B for output 
Set Port B to mode 0 
Set C4 - C7 for output 
Set Port A for input 
Set Port A for mode 0 
Mode set flag 

08 0 0 0 0 
~ 

1 0 0 0 Reset C4 to 0 

OA 

oc 

I T t_______Bit reset 
Bit 4 
Don't Care 
Bit set/reset flag 

0 0 0 0 1 0 1 0 Reset CS to 0 

0 0 0 0 1 1 0 0 Reset C6 to O 

• I 
! 
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This provides a technique for altering one output bit without changing 

others. 

latch: 

DB 

02 

Another technique is to read the content of the output data 

IN PORTC 

will read the data latch of the port into register A even th9ugh the 
• 

port is programmed for output. Then you can use "ORA r" or "ORI data" 

to set desired bits to 1; nANA r" or "ANI data" to set desired bits to 

O. For instance, to set C7, C6 and CS to 1 and C4 to zerot use this 

program segment: 

06 MVI B,11101111 Set up for C4 iow 

EF 

DB IN PORTC Read old output data 

02 

F6 ORI 11110000 Set C7, C6, cs, C4 to 1 

FO 

AO ANA B Set selected bit to O 

D3 OUT PORTC Write to port C 

02 

Wherever sever~l bits must be controlled this takes less program space 

than the individual bit set and r~set instructions. Caution: Reading 

from an output port is not included in the manufacturer's specification 

for the 82SS. That it will work is predictable from the design of the 

8212, and proven by experiment with the 82SS, but conceivably a future 
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redesign 0£ the 8255 might not allow it. 

Programs that write to the display or to port C, or that program the 

8255, are always difficult to debug because whenever the monitor 

actuates the keyboard and display it destroys whatever your program has 

done. Suggestio~: at each point in the program when an output is 

written, first store the data. in memory. When you read an input, 

immediately store the data. Being able to recover the data at a 

subsequent breakpoint makes debugging immensely easi~r. The STA 

instructions can be deleted when the program works. 

Keyboard reading introduces another problem: at return from the monitor 

the keys are always released. You can simulate a key input by placing a 

breakpoint just after the IN instruction. When it is executed you can 

·1oad · some value other thari Fr Tri···1.-i-1e A register to make sure that the 

rest of your program functions correctly. 

If any peculiar condition arises while you have a key pressed, you can 

press RST while the other key is held down. Although the contents 

of your program counter, stack, and display are lost, the registers and 

memory locations are preserved. 

0 
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Draw the flow chart and write the program for KYIN. Test it initially 

with a very simple calling program. To ease debugging, call KYIN, not 

KTST. The monitor leaves the 8255 programmed with port C for output and 

port A for mode 0 input. 

-~LXI 

CALL 

JZ 

RST 4 

.....,_JMP 

B,8FFF 

KYIN 

Enable all keys 

Read keys 

Repeat until 

key is found 

Then call monitor 

This will return to the monitor as soon as you press a key. Then you 

can look in the storage locations where you have saved the inputs and 

outputs to see if they are what you expect. 

When you call the monitor with a key pressed, hold the key down until 

you see what you have. If you are qispl a.ying PC .and the instruction, a 

numeric key will give the Err display as soon as you release it. If you 

a·re displaying a register, a numeric key will be entered into the 

register when you release it. You can retrieve the old value by 

pressing CLR, however. 

Figures 8-6 to 8-9 provide a flow chart, test program, and two versions 

of KYIN, one with debugging code included. 
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8. L 5 Using KYIN 

No~ we can make more interesting use of KYIN. The following program 

takes any key from O - 7 (which appears as a single bit = 1 in register 

C) and OR's it into a display location at the corresponding display 

segment bit. By pressing succesive keys, you may 'paint' a character. 

It also tests for CLR and NXT, either clearing the presently addressed 

display location or moving to the next location. If children are 

accessible they will ~njoy writing their names in the display - if their 

names lack K, M, Q, W and X! This demonstrates one requirement of 

keyboard input: you must distinguish between a·key being held down for a 

long time versus repetitive depressions of the same key. The numeric 

keys and CLR don't care in this program, but if you do not test for 

release of NXT it will st~p across the display many times before you can 

let go of the key. 

Keyboard input programs normally provide for 'debouncing'. Many 

electrical switches do not change from closed to open perfectly, but 

'bounce' between the two states for some milliseconds .. This can occur 

in the switch contact itself, or it can be created by a TTL circuit 

sensing the contact. To avoid seeing a single closure as multiple 

operations there is usually a time delay circuit or program used to 

require that the key be open for 10 to 30 milliseconds before it is 

accepted again. Such a provision is included in the MTS monitor 

subroutine GETKY, even though the MTS keys seem to be completely free of 

bounce. 

\ 
i 
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This program design illustrates restriction of the MTS: you must not 

alternately disable and enable the display in a loop that is fast 

compared to the OMA timer. This is discussed later in this chapter. To 

avoid it, do not call KPRG except in response to some human action or 

after a .substantial delay. Try writing the flow chart and program, then 

check Figures 8-10 through 8-12. 
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KE!Blt\RD DISPIAY PRJGRAM 

AIDRESS DISPIAY 
(HL) ..._ 83F8 

CALL KPIG 

.---------'C 

SET 'ID RF.AD 0-8 
(a::) ..,._...; EFFF 

CALL KYIN 

ENlER IN DISPIAY 
(M)...- (M) t (C) 

NFS!' DISPIAY ADDRESS 
(L)..,....(L) + 1 

A-----------------~ 
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SET '10 READ a..R 
(BC)...,_BF80 
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FIGlJE 8-10 (Cont'd) 
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8.1.6 Other I/O Interfaces 

Isolated input/output is by no means restricted to the 8255; it is 

defined by the use of the IN and OUT instructions and the I/O Read and 

I/O Write commands. The necessary interface to the data bus, address 

bus and the command signals can be built with TTL and Tri-State 

circuits. Also, Intel, NEC and others offer several other devices made 

for this interface. 

Many computer terminals use the 8251 Programmable Commun ic atior1 

Interface for serial data communications. This has an interface to the 

8080 system quite similar to that of the 8255, except that it needs the 

system clock. The ·student is again referred to the Intel 8080 User's 

Manual for detailed descriptions of these devices. Figure 8-13 shows 

how a number df devices can be connected to the system busses. 
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8.2 MEMORY MAPPED INPUT/OUTPUT 

An alternative to isolated input/output is 'memory mapped I/0'. The 

input or output device is connected to the Memory Read and/or Memory 

Write command signals from the 8228, instead of the I/O Read and I/O 

write commands. Figure 8-14 shows such a connection. Here the IN and 

OUT instructions are not used, since the device is not connected to the 

command signals they generate. Instea9 any memory read or write command 

can be used. LDA may be used in place of IN, STA i~ place of OUT. All 

the convenience of register addressing and transfer becomes·available. 

If port A and port B are both programmed for input they could be read 

by: 

LXI H,FFF8 Address port· A 

MOV E,M (E) <- (port A) 
---·----~-----.-----·· .. 

INX H Address port B 

MOV D,M (D) <- (port B) 

--:) o· 
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... :.\ 

The arithmetic and logic instructions become available for direct use 9' 
with the input port. If you want to wait for a change in the input data 

you could use this: 

LXI H,FFF8 Address port A 

MOV A,M {A) <- {port A) 

CCMP M (A) = (port A)? 

JZ Wait while equal 

Exit at change 

Or you can test for an input of 1111 1111: 

LXI· 

INR 

rJZ 
H,FFF8 

M 

The INR M command is only partially effective. If port A is programmed 

for input, you cannot effectiveiy write to it. Nevertheless the flags 

will be set as though you incremented the data. 

While memory mapped I/O has some definite advantages, it sacrifices the 

two byte IN and OUT instructions. LOA and STA are three byte 

instructions; only by maintaining the I/O address in a register pair do 

you reduce the program length. 

Note in Figure 8-11 that the chip enable of the 8255 now receives a 

decoded signal from the address bus. Clearly it must have a unique 

address, or at least an address for which no memory location exists. A 

typical scheme in small systems is to use all addresses from 8000 to 
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FFFF for input/output and 0000 to 7FFF for memory. The MTS does not do 

this. In fact the partial decoding of the memory address precludes 

memory mapped I/O if the empty memory sockets are filled. If they are 

left empty, then the chip select for one pair could be used for an I/O 

device. 

Memory mapped I/O is probably overused in hardware design. For most 

applications isolated I/O is more efficient in both hardware and program 

space - but the difference is very small. 
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DIRECT MEMORY ACCESS 

The third method of input and output is direct memory access, in which 

data are written to the processor's memory, or read from it, by external 

hardware as well .as by. the CPU. This is very efficient for the program, 

but typically it demands more external hardware than input and output 

ports require. We will describe in detail the OMA system used in the 

MTS for its display. 

Let us suppose for a moment that we did r.ot have memory devices at 

addresses 8300 - 83FF in the MTS, but a set of output latches, as shown 

in Figure 8-15. Now to display a digit we would use memory mapped I/O, 

addressing 83F8, 83F9, etc and write to those apparent memory locations. 

The data would be stored in the 8212 latches and would drive the· LED 
displays. This demands eight latches and eight current drivers. Direct 

Memory Access provides an alternative which in this case takes less 

external hardware and appears almost identical to the program. 

., 
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8.3.1 Repetitive Direct Memory Access 

In using the seven segment displays of the MTS you have been operating a 

repetitive direct memory access system. Data are written into a fixed 

set of addresses, and the DMA hardware periodically obtains data from 

these addresses and displays it. This is a very attractive scheme for 

displays of the kind used here, and also for video displays and some 

kinds of control systems. In each case the same data need to be 

accessed repetitively because very little external storage is provided. 

For the seven segment displays of the MTS only one digit is stored 

externally, while that digit is illuminated. 

obtains the next digit and displays it. 

Then the DMA channel 

Figure 8-16 shows the circuit connections to the 8080 that are involved 

in the D.MA operation. The DMA channel periodically issues. HOLD Request. 

The 8080 suspends its use of the address, data, and control busses as 

soon as possible (i.e. ·when any memory read or write process is 

finished). It then issues Hold Acknowledge (HLDA) to the 8228 system 

controller and to the OMA channel, and floats the address busses. In 

response to HLDA the 8228 floats the data and control busses. (By float 

we mean place the device connections to the busses in the high impedance 

state so that other devices can drive the busses). 

\ 

0 

\ 
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HLDA is OR gated with the memory read command MEHR (which is floated by 

8228 but pulled up by a resistor) and with RESET, so that the read write 

memory outputs.are enabled in response to any of these signals. Thus 

during HLDA the selected RAM will drive the data bus. Another OR gate 

delivers HLDA to the DMA channel to permit it to control the address 

bus. 

RESET is OR'ed into both of these signals so that the DMA circuit will 

function whenever the RESET key is pressed. This is a valuable trouble 

shooting tool, because if a failure results in a blank display it can 

immediately be isolated between the DMA channel and the microprocessor. 

The low address lines, which go directly to the memory chips, are 

floated by the 8080, pulled up by resistors, and the lowest three bits 

are controlled by the DMA qhannel. The ·high address lines are also 

floated. These do not have external resistors so they are actually in 

the high impedance. state. Only three of these lirleS are u·sed - in the 

MTS: A15, A9 and AS. The low power Schottky inverters (75LS04) have 

internal pullup resistors, so their outputs go low as if an address of 

1xxxxx11 had been output by the 8080. This address selects the RAM 

chips for page 8300~ This pair of chtps therefore is selected, its 

outputs are enabled, and the MEMW signal is_ pulled up by a resistor to 

indicate a read operation. 
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Figure 8-17 shows the circuit of the DMA channel. The timing source is 

a linear integrated circuit Single Shot (555) that generates a narrow 

pulse at a fairly long interval, provided that the enable signal from 

the output port is high. caeset forces all ports to the input mode, 

which allows the single shot to run). The ENABLE also controls the 2155 

Decoder that selects one digit, so that when DMA is disabled no digit 

will be driven. 

The pulse from the 555 provides the HOLD request to the 8080 and 

increments the 223 Binary Counter. When the HLDA is received from the 

8080 the open collector AND gates place the new content of the counter 

onto address bus bits O, 1 and 2, thereby addressing the desired digit 

position in memory {all other bits of the low address bus being held 

high by resistors). The selected memory location is read onto the data 

bus and received by the 8212 data latch, and at the trailing edge of the 

HOLD pulse the data are latched into the 8212 and delivered to the 

segment drivers. The timing relationship is shown in Figure 8-18. 

The digit address from the counter also addresses the 2155 Decoder to 

select one of the eight drive transistors for the eight digits. This 

remains stable until the next HOLD request pulse. 

It was mentioned earlier in this chapter that you should not alternately 

enable and disable the display at time intervals short compared to the 

DMA time interval. Disabling inhibits the 555 Single Shot, so the 

address will not change until 0.5 milliseconds after it is enabled 

again. If the enable signal is given soon after the disable, and the 

~ two are alternated, the 555 will not produce any pulses. Nevertheless 
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the display driver is enabled for part of the time period. This results 

in one digit being repeatedly driven at a higher duty cycle than is 

intended. 

If you operate the MTS in a darkened- room and cover the illuminated 

d_1gits, you will see a faint ghost in a blank digit. This is because 

for the 2 to 5 microsecond duration of the HOLD request, the decoder has 

selected a new .digit but the 8212 still holds data from a preceding 

digit. In a critical application the ghost could b~ eliminated by 

gating the HOLD pulse with the enable signal to the decoder. · 

We have described the DMA channel of the MTS in some detail. In the 

next section we will discuss DMA for purposes other than- display, but in 

more general terms. 
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8.3.2 DMA Input and Output 

Direct memory access is commonly used in computer systems for both input 

and output if a high data rate is required. Reading or writing to 

magnetic disc memory is a typical example; Intel's Microcomputer 

Development System/Diskette Operating System operates at 250,000 bits 

per second or about 30 microseconds per byte. The 8080 could not keep 

up with such a data rate on a programmed or interrupt driven input 

system. In fact Intel uses their series 3000 Bipolar Microprocessor for 

.the disc controller. 

The disadvantage of_ DMA is the significant amount of external hardware 

required. It should seldom be used unless high data rates are 

mandatory, or in_ specialized situations such as repetitive DMA where the 

hardware is minimized. The hardware always includes the following: 

a) Address counter to store and alter the memory address to be read 

or written. (represented by the 223 Three Bit Counter in the MTS) 

b) Address B~s buffer to isolate the DMA address from the system bus 

(the open collector AND gates) 

c) Data-Bus buffer to isolate the DMA data from the system bus (the 

8212) 

d) Gating circuits to _appropriately command memory read or memory 

write. 

e) Timing or signal input to initiate the hold request (the 555). 
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In any OMA system other than a repetitive OMA there must be some means 

for the processor to inform the OMA channel that output data are ready, 

and for the OMA channel to inform the processor that input data have 

been stored or output data accepted. This.can be handled as a separate 

programmed I/O, with the processor and channel exchanging discrete 

If OMA input and output are both provided it can be done by 

writing a control byte into a specified memory location as the last 

operation in the OMA sequence; then the processor and channel both 

sample that location periodically. The most common practice, however, 

is to use a discrete output from the processor to initiate output and 

enable input, and an interrupt from the channel when data t~ansfer is 

complete. 

Sophisticated OMA systems generally pr~vide for read:ing and writing to 

variable areas of memory. For output the processor will send a memory 

address and a byt~ count to the.channel, which thereafter takes data 

from the given and succeeding addresses until the designated number of 

bytes have been read. For input the channel may interrupt to request a 

·memory address where data are to be stored. 

The OMA facility of the MTS is dedicated to its ·display; it is not 

practical to modify the .system for external DHA. 
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8.4 I/O INITIATION 

8.4.1 Programmed I/O 

Because a computer operates in sequential fashion, it is not always 

ready to receive an input or produce an output~ If it is fast in 

comparison to the· input device or the output requirement, which it often 

is, the computer can sample the input or prod~ce the output at its own 

convenience. This is called 'Programmed I/0'. It is used in the MTS 

for the keyboard input. When the computer is slow compared to the input 

or output requirement, as in a magnetic disc system, we use direct 

memory access, but typically with either ~rogrammed or interrupt I/O to 

initiate and/or terminate the DMA operation. 

mainly concerned with the subject ~f interrupts. 

This section will be 

Consider the MTS keyboard input. When the monitor is in control 

{running), ·almost all of its time is spent waiting for keyboafd input 

{See Figure 8-19). The program has nothing better to do with its time. 

It can process any command you give it and get back to reading the 

keyboard long before you can press another key. 
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The processor can tell whether you have pressed a key because a unique 

state exists (all inputs high) when no key is pressed. It tests for 

, this state after each new key input_ before processing the key, to avoid 

processing a single key stroke repetitively, and yet be able to react to 

multiple operations of the same key. In many input applications there 

is no special state which has a significance different from all others, 

and the processor must know by other means whether a particular input 

has been processed. There are, of course, applications where it does 

not matter; a digital voltmeter will process the input as fast as it can 

update its display whether the data has changed or not. 

In some systems the processo~ has lengthy functions to perform, which 

must· be interrupted to handle input or output. This can be done by 

repeatedly calling an input subroutine during the main processing, as 

suggested in Figure 8-20.· This tends to be time wasting; and .it demands 

that the programmer conside·r how long his processing will take in 

comparison to the input require~ent. 
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Another method is offered by the strobed input feature of the 8255; the 

input can be fleeting and asynchronotis, but will be stored in the data 

latch of the 8255 until the program is ready to handle it. This is very 

suitable for infrequent inputs such as may exist in control systems. 

Sometimes, however, the system may demand a very prompt response to its 

occasional inputs, or it may give many inputs during the course of the 

processor's other calculations, each demanding some degree of processing 

or at least storage before the next input is delivered. It is for this 

kind of requirement that interrupt driven systems were invented. 

8.4.2 Interrupt Driven I/O 

When an external event occurs that demands the processor's immediate 

attention, hardware is used to cause a branch in the program. Instead 

of repeated calls to an input (or output) subroutine at ~redetermined 

intervals, as suggested. , in Figure 8-20, that call is created when and 

only when it is needed. The 8080 and most other microprocessors include 

interrupt handling capability. 

We will discuss the internal and external logic required to create an 

interrupt; the MTS interrupt system; and the design of interrupt service 

subroutines. 
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8.4.2.1 Interrupt Log~c 

The following signals of the 8080/8228 system are involved in the logic 

handling an interrupt: 

INT Interrupt. Request input to- the 8080. It is driven high by 

external hardware to request service. 

INTE Interrupt Enable. A flip flop in the 8080 and also an 

external output, signifying that an interrupt will be accepted. 

INT F/F Interrupt Accept. A flip flop in the 8080 signifying that 

an interrupt has been.accepted. 

INTA Interrupt Acknowledge. A signal passed in the status byte to 

the 8228, and also an output-·s1gnal from the 8228 available to 

external hardware. 

To create an interrupt the external logic must (in general) perform two 

functions: request an interrupt by raising INT, and respond to INTA by 

giving the 8080 an instruction. The instruction is usually one of the 

special one-byte restart calls: RSTO, RST1, etc. These are essentially 

identical to the CALL instruction except that the address is i_mplied by 
.. 

the op-code~ Thereafter the processor executes an interrupt service 

subroutine just as it would any other subroutine. 

0 
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Some systems have a requirement to test INTE to be sure that an 

interrupt will be accepted. In other systems it can be used as an 

indication that an interrupt has been accepted. It is not generally 

necessary to use this signal externally. It is internally gated with 

the interrupt request, so that interrupts will not be honored unless the 

interrupt system is enabled. 

The interrupt system is enabled by a RESET, or by the instruction: 

FB EI Enable Interrupt 

This instruction sets the INTE flag high, but it is carefully arranged 

.to be too late for the next• instruction to be interrupted. It is 

guaranteed that ~ne instruction (usually a RETurn from the interrupt 

service subroutine} will be executed before another interrupt is 

accepted. 

The interrupt system is disabled by execution of an internupt. This 

ensures that the interrupt service subroutine can accomplish its 

functions without itself being interrupted. It can also be disabled by 

the instruction: 

F3 DI Disable Interrupt 

This is commonly used when some time dependent task is to be executed 

and must not be delay~d by interrupts, or when a process is being 

performed that will affect the results of the next interrupt. 
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Provided that INTE is set, the INT inpu-t sets the internal INT Flip Flop 

at the end of the current instruction, which is completed before any 

other action occurs. 

When the next instruction cycle starts with INT F/F set, some special 

events occur. The CPU starts its normal cycle, sending out the PC 

content and status data. The status includes INTA, a bit on the data 

bus during status strobe time, which commands the 8228 to issue the INTA 

command instead of the MEHR command. Then an instruction is placed on 

the data bus, either by external logic or by the 8228 itself, so that 

this is loaded into the instruction register in place of the next 

programmed instruction. During this cycle the 8080 does ~ increment 

the program ·count~r, so· the address·of the instruction that has been 

interrupted is preserved. The 8080 Clears the INT F/F. and .. the Interrupt • 

Enable Flag, so that the next instruction will not be interrupted. 

8.4.2.2 Restart Instructions 

It is usual (but not necessary) that the instruction placed on the data 

bus in response to INTA is . one of the special one-byte call 

instructions, RSTO to RST7. These are equivalent to normal CALL's 

except that the call address is implied by the op-code, as shown in 

Figure 8-21. The diagrams of Figures 8-22. through .8-24 show the 

proc~ss, and Figure 8-25 (From the Intel 8080 User's Manual) shows the 

timing. 
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INTERRUPT SEQUENCES 

The 8080 has the built-in capacity to handle external 
interrupt requests. A peripheral device can initiate an inter­
rupt simply by driving the processor's interrupt (INT) line 
high. 

The interrupt (INT) input is asynchronous, and a 
request may therefore originate at any time during any 
instruction cycle. Internal logic re-clocks the external re­
quest, so that a proper correspondence with the driving 
clock is established. As Figure 2-8 shows, an interrupt 
request (INT) arriving during the time that the interrupt 
enable line ( INTE) is high, acts in coincidence with the ¢2 
clock to set the internal interrupt latch. This event takes 
place during the last state of the instruction cycle in which 
the request occurs, thus ensuring _that any instruction in 
progress is completed before the interrupt can be processed. 

The INTERRUPT machine cycle which follows the 
arrival of an enabled interrupt request resembles an ordinary 
FETCH machine cycle in most respects. The M 1 status bit 
is transmitted as usual during the SYNC interval. It is 
accompanied, however, by an INTA status bit (Do) which 
acknowledges the external request. The. contents of the 
program counter are latched onto the CPU's address lines 
during T 1. but .the counter itself is not incremented during 
the INTERRUPT machine cycle, as it otherwise would be. 
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In ·this way, the pre-interrupt statuLof the program counter 
is preserved, so that data in the counter may be restored by 
the interrupted program after the interrupt request has been 
processed. 

The interrupt cycle is otherwise indistinguishable from 
an ordinary FETCH machine cycle. The processor itself 
takes no further special action. It is the responsibility of the 
peripheral logic to see that an eight-bit interrupt instruction 
is "jammed" onto the processor's data bus during state TJ. 
In a typical system, this means that the data-in bus from 
memory must be temporarily disconnected from the pro­
cessor's main data bus, so that the interrupting device can 
command the· main bus without interference. 

The 8080's instruction set provides a special one-byte • 
call which facilitates the processing of interrupts (the ordi­
nary program Call takes three bytes). This is the RESTART 
instruction ( RST). A variable three-bit field embedded in 
the eight-bit field of the RST enables the interrupting device 
to direct a Call to one of eight fixed memory locations. The 
decimal addresses of these dedicated locations are: 0, 8, 16, 
24, 32, 40, 48, and 56. Any of these addresses may be used 
to store the first instruction(s) of a routine designed to 
service the requirements of an interrupting device. Since 
the (AST) is a call, completion of the instruction also 
stores the old program counter contents on the ST ACK. 

07.0 Oo --Rs;.-·--
-------..------..-- UNTA) 

SYNC ______ ..... __ ,._ __ ,.__ 

OBIN 
______ ..,. __ ...,_ __ ...,. ____ ..., ____ _ 

RETURNM1 
(INTERNAL) 

INTE ! 

INT FIF 
llNTERNALl ___ _, 

tNHl81T STORE OF 
PC+1 CINTERNALI 

STATUS 
INFORMATION © 

NOTE: @) Refer to Status Word Chart on Page 2-6. 

Figure 2·8. Interrupt Timing FIGURE 8-25 

© 
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8.4.2.3 Interfaces for RST Instruction 

The restart (or other) instruction that is to be placed on the data bus 

during INTA must not interfere with the data bus at other times. It is 

best to buffer the data bus with a tri-state device such as the Intel or 

NEC 8212, or two 74125 Quad Buffers. Figure 8-26 shows an 8212 

generating RST6 in response to an external interrupt. 

When more than one device is to interrupt the 8080, it is often useful 

to use vectored interrupts. Each device Qreates a ·different RST 

instruction, thereby calling a different service routine. Figure 8-27 

shows an arrangement with which two independent interrupts can create 

three differen~ restarts: RST5 for INT1, RST6 for INT2, and RST4 for 

both at once. 

In ~ small system, the data bus can tolerate some resistive pullup, and 

tri-state or open collector inverters or gates can be used to pull down 

specific bits. Figure 8-28 shows such a configuration. 
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8.4.2.4 The 8228 Generated RST7 

For systems that need only one kind of interrupt the 8228 can by itself 

create an RST7 instruction (CALL 0038) without external logic. If its 

INTA output is pulled up to +12 volts (through a 1K resistor), the 8228 

recognizes this as an input {instead of an output) that commands it to 

place FF on the data bus in response to INTA from the 8080. This avoids 

any need for external logic to provide that instruction. 

8.4.2.5 HALT instruction 

Many microprocessor based systems have no function to perform while they 

are waiting for input. The program can be made to cycle indefinitely· in 

one place with: 

8200 C3 

00 

82 

JMP8200 
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Now an interrupt with an RST instruction will call an interrupt service 

routine which handles all of the processing, and the return will go back 

to 8200. An alternative is the instruction: 

76 HLT Halt at this address until 

an interrupt occurs. 

When this instruction is executed the processor enters a WAIT state 

until an interrupt occurs. Now if INTA is OR'ed with MEMR, the next 

instruction in the program will be read and program execution will 

continue: 

Program Flow: 

Enable interrupt 
,---·-··--------

Wait for iri~terrupt 

Next instruction Proc·ess interrupt· 

Go wait for next interrupt 
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.. ~ 

This avoids the need for placing a special instruction on the data bus. ~ 
Note, however, that the byte following HLT will be read twice, because 

the program counter is not incremented during INTA. Therefore this 

instruction should be NOP. Alternatively, a NOP instruction may be 

placed on the data bus through diodes during INTA. 

Vee 

~ BUS 

-INTA 

This scheme places all the capacitance of the diodes on the data bus at 

all times, so it must be used with care. 

8.4.3 The MTS Interrupt System· 

When the MTS executes your program in STEP mode (whether it was started 

with the STEP or RUN key) an interrupt is generated by the MTS hardware 

as each of your instructions· is executed, causing an RST7 that calls the 

monitor program. The monitor then operates as an interrupt service 
\ 

) e 
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subroutine, which we will describe later. The hardware involved will 

show something of the timing relationship of an interrupt system. 

MTS uses the 8228 generated RST7, so there is no external logic to place 

an instruction on the data bus. R62, located between the 8080 and the 

8224, pulis INTA up to +12 volts to cause the 6ST7 in response to INTA. 

Figure 8-29 shows the interrupt circuit and timing. Recall that an 8080 

instruction cycle comprises one to five machine cycles. Each machine 

cycle includes three to five clock periods, or states. The first state 

of ~ach machine cycle is identified by a status strobe signal from the 

8224; this is shown in the timing diagram as STSTB. During the first 

state of every ~achine cycle the 8080 sends out signals on the data bus 

to identify the operations to be carried out. These are latched by the------

8228 and provide the intormation to generate all the control signals -

MEMR, MEMW, I/O READ, I/O WRITE and INTA. Status strobe identifies the 

tim~ at which the status data can be latched, both by the 8228 and any 

other device that needs it - such as the MTS interrupt system. 
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One of the data bits in the status byte is M1. This identifies the 

first (or only) machine cycle in each instruction cycle. In the timing 

diagram of Figure 8-29 we show four instructions: EI, RET, an 

unidentified instruction of the user's program, and RST7. EI is a 

single cycle instruction; RET and RST7 are three cycle instructions, and 

we have chosen a two cycle instruction (MVI A, for instance) .as the user 

instruction. M1 is seen as a high signal during status strobe at the 

start of each instruction cycle. 

Our timing diagram starts with the monitor in control; INTE has been set 

low at entry to the monitor. Just before returning to the user's 

program, the monitor includes an EI instruction which sets INTE high, 

just as the next instruction begins. 

Th~ MTS hardware includes a dual D flip flop (7474, or NEC 214). This 

device has four inputs to each flip flop: Set, Clear, Data, and Clock. 

The Set and Clear inputs force the flip flo~ to 1 or 0 independent of 

the clock. They are active low signals and all but one are unused in 

this circuit. In the absence of Set and Clear, the flip flop stores the 

data input at the moment when the clock input changes from low to high. 

It ignores the state of these inputs except at that transition. Thus 

FF1, high .at the start of the timing diagram, copies the inverted M1 

signal at the start of the EI instruction. It stays low when M1 occurs 

again with status strobe at the start of RET, but when the second 

machine cycle of R£T begins M1 stays low, so the inverted M1 is clocked 

into FF1 and sets it high. Thus FF1 will be low continuously for single 

instructions but will always become high at the start of a second 
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machine cycle. It follows this sequence whether the interrupts are 

enabled or not. 

INTE is taken into the set input of FF2. Since this is an active low 

input that overrides- the clock, FF2 is high as long as INTE is low. 

When INTE is set high by the EI instruction, FF2 comes under control of 

its data and clock inputs. The D input is tied to ground, so the rising 

edge of the clock will set it low. FF2 receives its clock from the 

inverted output of FF1, so when FF1 goes low with INTE high, FF2 goes 

low. When the MTS is operating in AUTO mode, with interrupts enabled,· 

FF2 will always be low; but in STEP mode FF2 will almost always be high. 

Just at the end of the return from the monitor, when the first machine 

cycle of your instruction resetj FF1, FF2 goes low to create another 
''\ •. ;.,)· interrupt. If you watch this with an oscilloscope you can see why ~ 

operating in STEP mode slows your program so much: most of the time is 

spent in the monitor. The AUTO/STEP toggle . switch simply disconnects 

FF2 from the INT input. 

\ 

• 
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The gate permits you to enter a separate interrupt for your ow~ 

purposes. This is in the 7400 or NEC 201 chip below the 8228, a~d the 

right hand side of R55 is connected to it. When the mode switch is at 

AUTO, either input to the gate can be used as an external input. To 

experiment with an external interrupt, connect a test ·clip to R55, set 

the mode switch· to AUTO, and either use a program you have loaded or 

enter a trivial program such as: 

8200 

01 

02 

C3 JMP 8200 

00 

82 

and start the program with STEP (not with RUN). Now an external 

interrupt will return to the monitor. Touch your test lead to groun<l to 

generate the interrupt. 

Also experiment with the DI and EI instructions. Enter this: 

8200 F3 

01 3C 

02 C2 

03 01 

OLI 82 

05 FB 

06 00 

07 C3 

08 00 

09 82 

DI. 

INR A 

JNZ 8201 

EI 

NOP 

JMP 8200 
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The DI instruction prevents the external interrupt from being effective 

until the EI at 8205 enables interrupts again. When you operate this, 

again using STEP to initiate it but in AUTO mode, your external 

interrupt with the test lead will always return you to the monitor at 

address 8207. The interrupt cannot affect the instruction immediately 

following the EI. 

You will find that if you try to operate this program in STEP mode, the 

monitor will not interrupt it. It is a requirement of the MTS interrupt 

logic (not of the 8080) that the interrupt is not generated until a 

multi-cycle instruction has been completed and the next instruction has 

started. In normal operation this allows the monitor's return and one 

user instruction to be executed before the monitor is called again. 

With this test program the single-cycle NOP does not create an • 

interrupt. The JMP is executed, the monitor initiates the interrupt, 

but the instruction being processed at that time is Disable Interrupt, 

which makes the interrupt ineffective even though it had already been 

received. If you change the instruction at 8206 from NOP to: 

8206 77 MOV M,A 

or any other instruction requiring two memory cycles, then the interrupt 

will occur as the JMP is executed and the monitor will be called before 

DI is executed at 8200. 

-
i 
I 
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8.5 INTERRUPT SERVICE ROUTINES 

When an interrupt occurs the interrupt instruction generally calls an 

interrupt service routine. This is a subroutine, but it has two special 

requirements. It must: 

a) Preserve the environment. 

b) Find out why it was called. 

8.5.1 Preserving the Environment 

An interrupt service routine does not use the registers to exchange data 

with a calling program. On. the contrary, it must preserve the contents 

of all registers and flags, and restore those contents before returning 

to the instruction that was interrupted. The interrupted ~rogram module 

makes no special provisions for the interrupt, and except for the time 

taken by the interrupt service its functions must not be interfered 

with. It may be interrupted but not disrupted, and the service routine 

must be transparent. 

The first several instructions in any interrupt service routine are 

almost invariable PUSH instructions to save the registers: 

PUSH 

PUSH 

PUSH 

PUSH 

PSW 

B 

D 

H 

Save A and flags 

Save B,C 

Save D,E 

Save H,L 
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The routine can now use all of the registers to perform its functions 

typically input and/or output. When finished it restores the 

environment that existed before the interrupt by popping the registers 

in reverse order: 

POP H 

POP D 

POP B 

POP PSW 

EI 

RET. 

Remember that the interrupt itself disabled the interrupt system, so to 

restore the environment, allowing for another interrupt, there must be 

an EI in the service routine.· If this is placed immediately before the 

return, it is guaranteed that the return will be executed. Placing it 

earlier in the interrupt routine will allow another interrupt to 

interrupt the interrupt routine! This is sometimes done, but usually 

with priority interrupt systems (which are discussed below), and 

requires special consideration. ·Many interrupt service routines cannot 

tolerate being interrupted. This is the case with the MTS monitor, for 

instance. Other program modules may also be intolerant of interrupts. 

They must be protected by a DI instructions, and at some point must also 

include EI. 
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8.5.2 Identifying the Source of the Interrupt 

Commonly a system will have only one generalized interrupt service 

routine to handle a variety of interrupts. For instance an 

'intelligent' communications terminal might be interrupted by a transmit 

next character signal, or by an operator's keystroke. Hardware can be 

provided to call different interrupt service routines, as we showed 

earlier. This adds cost and introduces the problem of simultaneous 

interrup.ts from different sources. If there is not a severe time 

constraint it is usually less costly to use programmed 1/0 rather than 

providing for vectored priority interrupts. We will define these terms 

but otherwise.in this course will not be concerned with them. 

8.5.2.1 Vectored Interr_up~ Systems 

This is a combination of hardware ahd software such that each different 

source of interrupt calls a service routin~ specific to the device that 

created the interrupt. 

The prior discussion of RST instructions showed how vectored interrupts 

can be created by placing different instructions on the data bus in 

response to INTA. Other schemes are possible, For instance the program 

may store the address of a module to process the next interrupt, if a 

particular sequence is expected. 
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8.5.3 Priority Interrupt Systems 

A combination of hardware and software guaranteeing that an interrupt 

from one source is given priority over another; the higher priority can 

interrupt the lower, or, if they arrive simultaneously, will be handled 

first. This can be extended to many levels if "necessary. 

Specific hardware devices (LSI chips) are available to perform this 

function •. In combination with software the 8255 can also create a 

priority interrupt system. 

8.5.4 Timed Interrupt Systems 

Systems that need to know the time of day often use a hardware counter, 

operating on the computer's crystal clock, to generate an interrupt once 

every millisecond (or any other desirable interval). An interrupt 

service routine increments a 'clock' address in memory. The service 

routine may also conduct I/O operations at this time, checking each 

input port to see if any service is needed. This scheme provides 

frequent service to all I/O ports without requiring each I/O device to 

create interrupts, and is called 'polling'. 

•• 
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8.6 USING INTERRUPTS WITH MTS 

The MTS can readily be modified to accept two vectored interrupts, RST5 

and RST6. The actual interrupts call 0028 and 0030, but the monitor was 

programmed to contain jump instructions to your program area: 

0028 JMP 8228 

0030 JMP 8230 

Thus you can place interrupt service routines at those locations and 

provide hardware to enter the restart instructions required. To do this 

you must disable the RST7 insertion feature of the 8228 by remov~ng the 

1K pullup resistor from INTA, and inserting the desired RST by one of 

the schemes described earlier. Note that having done this, you must 

also provide the RSt7 (FF) for MTS generated interrupts. 

You can avoid the hardware requ~rement altogether by entering a jump 

address in the monitor's memory area. This will cause a jump to your 

interrupt service routine wh~n an RST7 is received. There are 

significant restraints on the use of this system. Nevertheless it gives 

valuable experience with interrupt handling with no hardware except a 

clip lead. In the following exercise we will develop an interrupt 

service routine that uses the RST7. 



8 - 81 

8.6.1 Interrupt Service Routine Exercise 

The program to be developed represents a timed interrupt system. The 

interrupt service routine has two tasks: 

a) Increment a multi-byte counter in memory. 

b) Read the keyboard. When a key is pressed convert it to 

hexadecimal and store in memory; when the key is released set an 

indicator in memory. 

The control program will do the following: 

a) Display the contents of the counter that is being updated by 

the interrupt service routin~. 

b) Test the service routine's indicator for a ne~ input, and when 

one is found clear the indicator and process the input. 

c) In response to a hex key input shift the digit into a four byte 

store in memory. Display the input data instead of the counter. 

·o 

•• 
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0 
d) In response to a command, process the data as follows: 

CLR Clear the input 

MEM Replace the contents of the counter with the input data 

and clear the input. 

REG Add the input data to the contents of the counter and 

clear the input. 

BRK Call the monitor 

!!!! Display the input 

.RUN Display the counter 

~ After any command key except NEXT has been processed the counter display 

will be resumed. 

Address 

8280 - 8285 
8286 
8287 
8288 - 828F 
8290 - 8293 

We will define ·the data memory area as follows: 

Contents 

Counter 
Key indicator 
Key value 
Not assigned 
Key input data 
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The solution given to this problem uses the following program memory 

assignments: 

Address 

8200 
8220 
8230 
8250 
8260 
8288 
82AO 
8200 
82FO 

- 821F 
822F 

- 824F 
- 825F 
- 828A 
- 829F 
- 82CF 

82EF 
- 82FF 

~d~e 

Main Control Program 
Display subroutine 
Interrupt service 
Copy and Clear subroutine 
Keyboard subroutine 
KTST and KYIN 
Key data processing 
Command processing 
Addition subroutine 

The key indicator will be set to FF when the key is released; keyboard 

scanning will be inhibited until the control program clears the 

indicator to 00. Other states of the indicator may be used by the 

interrupt routine for its own purposes and must not be altered by the 

control program. The key value is available to the program only while 

the indicator is set to FF. 

We will initially develop the counter function in the interrupt service 

routine, reserving space for a call-to a keyboard input subroutine. In 

the control program we will provide for initialization of all the 

storage (including the counter and keyboard memory), for display of the 

counter, and for loading the monitor jump address. Again, the keyboard 

functions will be omitted initially. 

} 

-
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When we use RST7, there are two constraints which must be observed to 

make the new interrupt service routine function with the monitor. 

First, the control program (or some subroutine) must store the low byte 

of the jump address at memory location 8304. (Only the low byte is 

stored; the jump is always to page 82xx.) This is dictated by the fact 

that the monitor loads 8304 with a jump address after normal servicing 

of an RST7 interrupt. As the monitor· lives in ROM memory, it must put 

all of its computed address and data in RAM, hence the 8304 usage. We 

want the entry from the monitor to be 8238, so this program segment is 

needed: 

3E MVI A,~8 

38 

32 

04 

83 

STA 8304 
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This must be executed each time the program is started with the RUN or ~ 
STEP key. During program debugging it is generally most convenient to 

have it inside a repetitive loop. Note that storing the jump address 

disables the STEP and breakpoint functions.of the monitor. When you 

first try the programt instead of the STA instruction use a call to the 

interrupt service r~utine: 

Final 

32 STA 83D4 

D4 

83 

Debug 

CD CALL 8230 

30 

82 

This will -allbw you to step through to check program flow. Write the 

main programt a subroutine to clear part of memory, and a display 

·routine. ·coding solutions are given in Figures 10-30 through 10-32. ·-
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8.6.2 Writing the Interrupt Service Routine 

The monitor jumps into your interrupt service routine 1with the registers 

and return address already saved. You must provide two-entries: one for 

a CALL dur.ing debugging and one for the monitor entry, , and both must 

result in ·the registe~s being saved in exactly the same way. Your entry 

at 8230 should have the same instructions that the monitor has. 

Your program counter, as displayed by the monitor, is actually the 

return address stored by .RST7. To make it readily accessible the 

monitor extracts it from the stack and stores it in a fixed address. 
.. 

0038 F3 DI Disable Interrupt- to permit entry 

by CALL or programmed -RST7. 

0039 E3 XTHL (ST) <-> (HL) 

Place (HL) in the stack and return 

address in HL. 

003A 22 SHLD PCADDR 

0038 DA (83DA) <- low return address 

003C 83 (83DB) <- high return address 

003D cs PUSH B Save registers 

003E D5 PUSH D 

003F F5 PUSH PSW 
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After this sequence the stack contains: 

83CB Flags 

cc (A) 

CD (E) 

CE (D) 

CF ( C) 

DO ( B) 

01 (L) 

02 (H) 

The return address is at 83DA and 830~, not in the stack. The addresses 

will be different if you enter the monitor from a subroutine ·because 

83D2 and 8301 will contain a return address, but the sequence of storage 

will be the same. 
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You should duplicate the instructions shown above at 8230 through 8237. 

This will allow three ways of using the subroutine: by an RST6, which 

will enter the monitor and jump to 8230; by CALL 8230; or by placing the 

jump address 38 in memory location 83D4 and allowing monitor interrupts 

with RST7 to jump ther~. You cannot yet step through the subroutine 

because your return address is stored in 83DA and 8308, and will be 

destroyed by the monitor. For debugging it is wise to overcome this by 

recovering the return address and pushing it into the stack: 

8230 

31 

32. 

33 

34 

35 

36 

37 

38 

39 

3A 

38 

3C 

F3 

E3 

22 

DA 

83 

C5 

05 

F5 

2A 

DA 

83 

E5 

FB 

DI 

XTHL 

SHLD PCADDR 

PUSH B 

PUSH D 

PUSH PSW 

LHLD PCADDR 

PUSH H 

EI 

Now the EI at 823C enables monitor interrupts, and you can step through 

the subroutine. Insert any multi-byte instruction after EI; leave some 

space (NOP's) and then create the return segment of the interrupt 

service routine, starting at 8248. The complete coding is shown in 

Figure 10-33. 

·~ ~ e 
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0 9. DATA FORMAT 

.. 

In Chap.ter a· you used only discrete inp:uts :a,nd outpu·ts·, ·each .. bit being 
) . . . "-· I :·· .·., . , . 

esseniialiy i~d~~end~nt · 6t all others.· 

. ~ . ··: ,., ._,·:., ·; 

':" 

,·· .... -

from one k~y. The timing 

sequence, ha~ no ·me~ning. We will now consider parail~i· 'tJo, where a 

data byte representing a number is transferred, and serial I/O, where 

the timing of signals carries information. 

) -.•' 



9 - 2 

9. 1 PARALLEL INPUT/OUTPUT 

Clearly the 8?55 data ~or~s are principally intended for 8-bit, parallel 

data transfer. Such data might come from a paper ~ape reader, an .~nalog 

to digital converter, another computer, a .key.board that includes 

built-in scanning and decoding, or a communications device that includes 

serial to parallel conversion. A usual characteristic of such devices 

is that they generate a strobe signal indicating that an input byte is 

ready for the computer. When port A or port B of the 8255 is programmed 

to input mode 1, it uses some bits of port C to handle the strobe and 

give an interrupt to the 8080., and responds with an acknowledgement to 

the input device when the computer has accepied the data. Some input 

devices are designed to demand such an acknowledgement before entering 

the next byte, or to recognize an error condition if it is not received.~· 

9.1.1 Paper Tape Reader Example 

Figure 9-1 shows bit assignments and timing for mode 1 input through an 

8255. Consider how this .would be used with a high-speed paper tape 

reader. 

-----
a/ -
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SILICON GATE MOS 8255 

Input Control Signal Definition 

STB (Strobe Input) 

A "low" on this input loads data into the input latch. 

IBF (Input Buffer Full F/F) 

A "high" on this output indicates that the data has been 
loaded into the input latch; in essence, an acknowledgement 
IBF is set by the falling edge of the STB input and is reset 
by the rising edge of the AD input. 

INTR (Interrupt Reque5t) 
A "high" on this· output can be used to interrupt the CPU 
when an input device is requesting service. INTR is set by 
the rising edge of STB if IBF is a "one'' and INTE is a 
"one". It is reset by the falling edge of RD. This procedure 
allows an input device to request service from the CPU by 
simply strobing its data into the port. 

INTE A 

Controlled by bit se~/reset of PC 4• 

INTEB 

Controlled by bit set/reset of PC 2· 

IBF 
ltNPUT BUFFER FULL) 

Basic Timing Input 

DATA 
INPUT 

INTERNAL 
INPUT LATCH 

INTR 

MODE 1 (STROBED INPUT) 

BASIC TIMING 

9 - 3 

MODE 1 !PORT Al 

CONTROL WORD 

D7 D, 05 D,. D3 Dz D, Do 

I 1 I o , , I , l1'°fXIXJZI 
L ~·i~PUT 

0 •OUTPUT 

R'D-

MODE 1 f PORT Bl 

CONTROL WORD 

D7 o, D5 D,. 0, Dz D, Do 

l1~1l11XJ 

Mode 1 Input 

"""""'--~ 
NO PROTECTION 
FOR THIS OHRATION 

\ \.------------

FIGURE 9-1 
6-105 
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The photoelectric reader senses holei in the paper tape. The sprocket fl 
hole (which is present at every char icter position even though there may 

be no other holes) is sensed to indi~ate that the data holes are in 

position to be read. The sprocket hole signal provides the strobe to 

latch data into the 8255. The logic and timing diagram of Figure 9-2 

shows the sprocket hole signal clocking a D flip-flop. 1he IBF signal 

is taken into the D input. Since it is (presumably) low, indicating 

that the buffer is ready to take data, the flip-flop is reset. Its 

output is the strobe signal; this enters the data into the 8255 data 

latch and sets !BF . high. !BF high sets the D flip-flop through the 

asynchronous set input, ending the strobe pulse and latching the data. 

The end of strobe sets the 8255's interrupt request output. The 8080 

acknowledges the interrupt, calls the interrupt service routine, and 

reads the data from the 8255. 

The act of reading (I/O RD) ·.resets IBF, indicating that the buffer is 

again available. All of this is normally accomplished while the 

sprocket hole is still visible to the reader. (At 1000 characters per 
• second it lasts for about 200 microseconds, time enough for a reasonable 

interrupt service routine). While the !BF signal is high the reader's 

motor is allowed to coast; when IB~ is reset it runs again. 

-·---
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In the second segment of the timing diagram the CPU is not available to _ -

read the data promptly. Either it has disabled the 8255 interrupt, or 

its program has disabled all interrupts. The !BF signal stays high 

beyond the sprocket hole signal. This signals the paper taper reader 

that, although the 8255 has accepted ahd latched the present character, 

it may not be ready in time for the next. The mechanism now applies a 

brake to stop paper motion before the next character. When the data are 

finally ac·cepted by the CPU by an I/O Read, the motor can run again. 

The final segment of the timing diagram shows a failure: !BF is not set 

by the strobe (perhaps the 8255 has been reprogrammed). Strobe goes low 

but fails to rise again. · This can generate a visible alarm signal to 

indicate a loss of data .. 

9. 1.2 Computer to Computer Interface • 

Some applications overburden a microprocessor, particularly when two or 

more tasks require fast interrupt service response. One solution, of 

course, is to use a faster or more powerful computer such as a bipolar 

bit-slice machine, whose instruction time may be a small fraction of the 

8080's. Often it is more economical to divide the task between two 

microprocessors. They will then need to communicate with each other. 

This can be handled- in three ways: 

a) Through input/output ports 

b) Direct memory access 

c) Memory sharing 
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9.1.2.1 I/O Port Interface 

One computer can write an output to a data latch (such as the 8212) and 

create an interrupt to another, which can then read the data through a 

similar port or through a tri-state buffer. The 8255 has the ability to 

operate port A as a tri-state, bi-directional bus interface. This 

avoids the need for a second deviqe between the systems. The· 8255 is 

connected as an I/O port to one 8080 (the master) and port A is 

connected to the data bus of the other 8080 (the slave). Six bits of 

port. C are used for handshaking between the processors; the slave needs 

additional gating to enable port A to interact with its bus. 

Figure 9-3 defines mode 2 of the 8255, and Figure 9-4 shows the 

connection between two processors through the 8255. The master writes 

and reads ports A and B as in ·any other use of the device. The slave is 

connected to port A. It can address the 8255 through an I/O Read or 

Write· with a port address that gives it a select signal. I/O.Vrite and 

select generate an STB input to C4, latching the slave's data bus 

content into the port A data latch. This much of its behavior is 

similar to mode 1 input. I/O Read and select generate an ACK input to 

C6, which places the data latch content onto the port A outputs and so 

onto the slave's data bus. Otherwise port A is in the high impedance 
\ . ·-state. IBF (port CS) goes low when the input buffer is. empty. OBF 

(port C7) goes low when the output buffer is ·full. Either of the·se will 

generate an interrupt to the slave CPU to indicate t~at the 8255 needs 

service. These two signals may also be taken to other 1-nput ports of 

the slave, so that ·1t can determine which kind of service is needed. 
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CONTROL WORD 

Pei. 
1 •INPUT 
O•OUTPUT 

PORTB 
1•1NPUT 
O•OUTPUT 

_ GROUP 8 MODE 
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.. 1•M00£1• • 

Mode 2 Control Word. 

Operating Mod• 

Mode 2 (Strobed Bi-Directional Bus.1/0) 

This functional configuration ~ovides a means for com­
municating with a peripheral device or structure on a single 
8-bit bus for both transmitting and receiving data (bi-direc­
tional bus 1/0). '6Handshaking" signals are provided to main­
tain proper bus flow discipline in a similar manner to Mode 
1. Interrupt generation and. enable/disable functions are 
also available. 

Mode 2 Basic Functional Definitions: 
• Used in Group A only. . 
• One 8-bit, bi-directional bus Port.(Port A) and a 5-bit 

control Port (Port C) ~ 
• Both inputs and. Outputs are latched. 
• The S.bit control port (Port C) is used for control 

and status for the 8-bit, bi-directional bus ·port (Port 
A). 

Bi-Directional Bus 1/0 Control Signal Definition 

INTR (Interrupt· Request) 

A high on this output can be used to interrupt the CPU for 
both input or ootput operations. 

r--1 
INTE I 

L-2-.J 

• 

Mode2 

Output Operations 
Oif (Output Buffer Full) 

PCs 

Pei. 

9 - 8 

ODA 

ACKA 

fl'IA 

IBFA 

3 
1/0 

The OBF output will go "low" to indicate that the CPU has 
written data out to Port A. 

ACK (Acknowledge) 

A "low" on this input enables the tri-state output buffer of 
Port A to send out the data. Otherwise, the output buffer 
will be in the high-impedance state. 

INTE 1 (The INTE Flip-Flop associated with OBF) 

Controlled ~Y bit set/reset of PC6• 

Input Operations 

STB (Strobe Input) 

A 11low'' on this input loads data into the input latch. 

IBF (Input Buffer Full F/F) 

A ''high" on this output indicates that data has been loaded 
into the input latch. 

INTE 2 (The INTE Flip-Flop associated with IBF) 

Controlled by bit set/reset of PC4• 

5-107 

FIGURE 9-3 
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9.1.2.2 Direct Memory Access Interface 

Clearly a DMA channel can be established between two processors. It may 

be handled by I/O ports with one processor given direct memory access to 

the other processor, or there may be separate hardware to operate DMA to 

both processors. This subject will not be covered further since DMA has 

been extensively discussed •. 

9.1.2.3 Shared Memory 

A powerful but somewhat expensive technique for interfacing two 

processors is shown in F~gure ~-5. Some· part of memory i~ fully 

accessible to both processors, and e~t~er can addres~ it at any time. 

As the figure shows, ten logic chi~s are nee~ed to share 512 bytes (four 

chips) of RAM. The interesting point is the ready access each processor 

has to the data: it is simply addressed like any other part pf memory. 

The timing diagram in Figuie 9-5 shows what.happens if both processors 

address the memory at the same time. Whoever gets there first has 

immediate access, while the other must enter a WAIT state for one clock 

period. If the first processor uses the memory for two consecutive 

reads or writes (with an INR Mor .SHLD instruction, for instance), the 

other must wait for two cl6ck periods. It is guaranteed access within 
.. 

one full instruction cycle, however, unless the other processor is 

executing a ·program store~ in the shared memory. (That operation is not 

unreasonable. A master CPU might pass some lengthy t~sk to a slave by 

loading a program into the shared memory). 
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9.2 SERIAL INPUT/OUTPUT 

We can at~ach a meaning to the time of arrival of a data bit, just as we 

attach a meaning to its position in a binary number. To communicate an 

eight bit number from one machine to another, the sender outputs a 

discrete signal on one bit of a data port, thereafter sending successive 

bits at fixed time intervals. In the early days of ~omputers it was 

common to send a data signal and two timing signals as discrete ~utputs. 

~RDMARKj __ 

DATA '-- 0 1 1 1 0 

9.2.1 Signal Coding 

These signals are easy to generate and interpret. The 

the clock signal at some convenient time interval. 

sender switches 

Each time it is 

switched low, a new data bit is sent on a separate line~ The receiver 

observes· the clock and reads the data bit when the clock switches high. 

The first bit of each word is accompanied by a word mark. This 

delineates characters so that if an occasional bit is lost the entire 

message will not be garbled. 
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This scheme is simple, but transmitting it over long distances is 

extravagant as the timing signals carry very little information. If 

both transmitter and receiver have accurate timing sources, the bit 

clock is unnecessary. The receiver can recreate it, starting from the 

edge of the word mark. There are several ways of transmitting the word 

mark on the same wires with the data, thereby greatly reducing the cost. 

LI 
LJ u LJ 

o_ 1 1 o 1 1 1 o 

L 
Lfl_I 

1 1 1 1 0 1 0 0 

We can put time intervals between words on the data line and fit the. 

word marks into the intervals. If they can be distinguished from the 

data bits {by a narrower or wider pulse, or a different frequency, for 

instance) they will still serve the same function. 
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9.2.2 Synchronous Communication 

A technique which is in common use is to send word marks only 

infrequently, maintaining a well sync~ronized clock over a long message. 

The word mark is now transmitted not as a single pulse for each word, 

but as a special, recognizabl~ pattern called an Idle character. 

IDLElllllllll ffflffffr 

m~_JJ lllllllflllllfllllllllllllllllJll 

This is merged into the normaf-dataStream as though it were part of the 

me~sage. It fulfills the role of a word mark in controlling 

synchronization of the bit clock and in marking the boundary of a 

character. When the receiver is seeking synchronization, it collects 

eight bits and compares the pattern with that of the known idle. If the 

pattern is wrong it discards the oldest bit and shifts in the next. 

This continues until the idle pattern is recognized, indicating that 

synchronization has been achieved and communication can begin. It is 

common in such systems to have at least some degree of reverse 

communication or feedback from the receiver to the sender, which is used 

to say 'OK' or 'HELP'. This is called a supervisory channel and is only 

used to operate the communication system, not to transmit messages. 
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This method is referred to as 'synchronous communication' because of the 

requirement for continuously synchronized send and receive signals. 

After the initial period of seeking synchronization, the receiver stays 

synchronized by observing signal transitions in the data stream. Its 

crystal clock is able to maintain sync even if long strings of data are 

all ones or all zeros, of if the signal is temporarily lost. Thus all 

the signals on the communications line are part of the message being 

sent. If there is a break in the message, the sender must fill the 

spaces with idle characters so that the time from the beginning of one 

word to the beginning of the next is always exactly one word time. 

9.2.3 Asynchronous Communication 

An alternative method is especially suited to devices such as the 

teletype, whose characters are transmitted and received asynchronously. 

There may be -long pauses between characters, but occasionally one 

character will quickly· follow another. 

the transmission rate for a teletype is usually 10 characters per second 

or approximately 120 words per minute ( a very fast typing speed)~ The 

same signal format has been adopted for faster electronic communication 

devices. 
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In asynchronous communication each cnaracter is independent and carries 

its own word mark. The adopted convention is for each data character to 

be preceded by a zero, followed by one or more bit-times (intervals) of 

the 'one' signal. 

LJ 

1 1 1 0 0 0 0 1 1 1 1 

After some period of time with no data, (i.e. constant 'one' sign~ls) 

the. rece~ver will see a transition to zero. This ~-~$.n~_!_~_the start of a 

character, and the receiver synchronizes its clock. 

( nwm~ IECrEDED 

~ .ST 0 1 1 0 1 1 1 0 S'roP 

I __ _ 

One half bit-time later the receiver checks the start bit. If it is not 

zero, an error has been made. Thereafter the receiver accepts eight 

bits, reading them at one bit-time intervals, then tests the stop bit to 

--;J e 
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see that it is a 'one'. Now the receiver waits until another transition 

to zero marks the start of next character. 

This data format has been adopted for asynchronous communication by the 

American National Standards Institute and by CCITT. The data content is 

also coded in a standardized form. These standards were promulgated by 

the American Standards Committee on Information Interchange (ASCII). 
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9.3 TRANSMITTING AND RECEIVING ASCII CHARACTERS 

A special purpose communications device, the 8251, is available as a 

peripheral to the 8080. This is a 'Universal Synchronous - Asynchronous 

Receiver - Transmitter' (UART). It is a very capable device, and in any 

busy system its use is well justified. Often, however, the 

mic~oprocessor has little enough to do that it can readily handle serial 

communications by 'bit banging' - processing and timing each bit under 

program control. In this exercise we will program the MTS to send and 

receive ASCII characters. 

The receiving.process has been generally described •• We will extend 

this definition to include 'echoi9g' and sh6w that the bit banging task 

is common to both transmitting and receiving. 

9 • -3 ; 1 Echo i ng 

Echoing is a common procedure when a teletype or other keyboard input 

terminal is used with a computer. The computer receives data from the 

keyboard and returns the same data to the printer. It appears to the 

user that he is typing directly to the printer. In fact; the printer 

mechanism is actua.ted by the signal returned from the computer, 

and not by the· keyboard. This also provides confirmation of correct 

receipt of the input by the computer. If it is done over telephone 

lines it requires 'full. duplex' communication simultaneous 

transmission in both direction. The computer terminal commonly includes 

a 'full duplex/half duplex' switch. In full duplex it only prints what 

it receives from the telephone line·, while in half duplex it prints 

··-"' e 



0 

1---~.·~ 

9 - 19 

directly from the keyboard. 

Echoing may also be used in communication between computers or between 

computers and 'intelligent' terminals. It is a simple means of error 

detection, although extravagant in communication bandwidth. 

Figure 9-6 shows t·wo forms of echoing. Bit echoing implies that when 

each bit is read by the receiver, in the middle of its time period, it 

is immediately transmitted back to the sender. It is very easy to 

accomplish with the.procedure called bit banging: each time the receiver 

samples a bit it copies that bit onto its output port. If the 

transmitter is local, so no significant transmission delay is involved, 

the transmitter can check the echo just before sending the next bit. 

The latter technique is of limited value, however, because any telephone 

connection is likely to introduce intolerable transmission delay. 
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~Character echoing is more commonly used over a communication link. The 

receiver echoes only when it has received the full character. An echo 

implies not only that the character reached the receiver, but that it 

entered a program that will process it and has been appropriately 

stored. Character echoing, moreover, is demanded by some· communication 

facilities such as the current loop, which we will discuss later. Full 

duplex character echoing demands that the receive and send processes 

within the terminal be independent of each other. Each must keep track 

of time independently of the other. This implies all the complexities 

of full duplex communication, which we shall not treat here. This 

exercise provides for bit echoing on receive, but only half duplex 

operation otherwise. 

~Figure 9-7 shows a bit handler subroutine, used either in -~~ransmitting 

- or receiving, with or without bit echoing or bit echo checking. Each 

time it ·~S called it transmits a bit, waits one bit-time, then receives 

a bit. Alternate entries allow the calling program to preload a half 

bit-time to the time counter or to avoid the delay altogether. 

Figure 9-8 shows a subroutine for receiving. It repeatedly calls the 

bit handler-for input with no delay until it receives a start bit, then 

it calls the bit handler for a half bit-time delay and tests to be sure 

that it still has a start bit. Thereafter it calls the bit handler for 

full bit-times 1 each time shifting the received bit into a character and 

also returning the bit to be echoed. 

Figure 9-9 sho~s. a subroutine for sending a character. After sending a 

~half bit-time of stop bit it shifts the character out one bit at a time, 
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and shifts the recei iled echo bit in to the character. It returns with e 
the echo in A, ready to be compared with the original value by the 

calling program. 

In either sending or receiving, the bit handler's timing loop ties up 

the processor so that no other activities can occur. In some systems 

this is perfectly acceptable. This program is suitable, for instance, 

for connecting the MTS to a teletype or other terminal. In many 

systems, however, sending and receiving and other functions must 

overlap. Then bit banging can only be done on a timed interrupt basis, 

and an 8251 or other.peripheral becomes much more attractive. You may 

wan~ to try to deyelop a program that can send and receive independently 

at the same time. It is possible at a low data rate. 



0 BIT HANDIER 

(IE)--00 

SJH> BIT 'JD 001'Pl1l' 
(PORl' Cl) 

SEND .a:J.l'IDl!NT 
'JD 'l'E'l' PORl' C2 

SEND BIT PORl'. C2 

<XUll' JXJti . (1 +L) · 
AND .'l!m R>R ZEH) . 

BE'AD INPt1l' FR>1 . 
PORl' A BIT 0 
(C!l) . INPU1' 

Figure 9-7 

USE BIT SET/NtSEtI• 
FEATORB OF 8255 
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(ST)4-(HL) 

CALL INPUT CllECK 
ENl'RY OF BIT HANDLER 

a:Nl'INllE '10 Eal) 

STOP BIT tN1'IL 
MillltE OF STARr 
<cr>-t--~ S'roP 

CALL HALF BIT 

l=STOP BIT 

l=STOP BIT 

-·--·-·------··--·--· , - ----~--:~·.· ;~:0,~S~ BIT 

(B) ~Ea> afAR :a 0 
(C)--Bl'l' CXXNI' 

SBIP.r ·RfXE.tVED BIT 
mm H:XZIVm atAR 
SHIP1' lBZIVED BIT 

'10 <::I !QR Eal) 
CALL FCI.l. BIT 

(A).._~ 

alARAC1ER 
ReS10RE H,L 

Figure 9-8 
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(B)4- aww:TER 
(ST).,..(HL) 

(C-Y)4- S'lOP Bl'l' 
CAIL HALF BIT 

cr = 1 

(C-Y).,_ STAR!' BIT 
(C)4- B1'l' CXXNl' 

CALL FULL BIT 

SHIP'1' 18E1VED ECHO 
BIT mm· afARACJER, 
NEXT mm BIT 'lt) cr 

(B)--aww:TER 
~BIT CXXNl' 

(C-Y)..-S'lOP BIT 
CAtiL FULL BIT 

(A)...,_mDOIAR 
RES!ORE (BL) 

FICIJl'E ·g..9 
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amRACmR IN A 

ml) IN A 
S'ltl? ECHO IN C! 
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Figures 9-10 and 9-11 show test programs for the send and receive 

programs. The sending program transmits a message from memory location 

8300 up, until it has sent an FF character. The ASCII code defines this 

as 'Break', and it is found on all full keyboard terminals. The send 

test program can operate by itself repeatedly sending data stored in RAM 

by monitor commands. It provides word ~arks and a message mark useful 

for triggering an oscilloscope. If you have a teletype or other 

terminal available the receive progra~ will take data from the teletype, 

and when you send Break the send program will transmit back whatever you 

sent. 

·~·· 
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TFS!' PR:>GRAM FOR SEND 

STAR!' 

DISABLE DISPIAY 
AND· SET UM BITS 

(POR:r C>--OF 
SET --~:Brr 'l'IME 

SET ~· AmBESS 

CA>---( (SL)) 
CALL SEND 

a:MPAR! .. IDD wr.m 
~\C'JBR IN RAM 

SR> 1llll> .Mt\RK . 
(CXNl'K>L PORl')....,_ 00 
(CXNJ.'K>L PORr).-Ol. 
CA>---IAST <llARAC'lER 

AIDR&$ NEXr 
'mSl' IAST POR BREl(K 

SEND H?SSACE !mRK 
(CXNrR:>L PORI')..,._ 07 
JEAY 10 Brr TIMES 

FIWRE 9-10 
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'ms!' IDR RECEIVE 
(ENrER AFI'ER BRFAK CiARM:'lER SEN!') 

CALL RECEIVE 

C=O - NO STOP.BIT 

... STOP BIT 

S'IDRE~· 
( (HL) )..-(A) 

'lFST POR BREAK 
CHAPAC1ER (FF) 

CALL K!n'JDR EUR 
ME'M)I« 0\1ER FUJi 

OR ·?I:) sroP BIT 

FIQJRE 9-11 
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.. 9' :··---·--- - ·-··. .. 1-"- . __ • 
I 

9' 
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~ Calculating the timing loop is rather difficult because of the variable 

0 

length of the instructions. There are ten different execution times 

ranging from 2.5 to 11.5 microseconds. Table 9-1 shows the timing for 

various instructions. Note that the MTS takes one extra clock cycle for 

each memory access because of the slow CMOS memory; thus the five 

machine cycles of an XTHL instruction take 18 clock periods with fast 

memory but 23 in MTS. Table 9-2 shows the timing calculations used to 

derive the delay times used. The coding solutions for this exercise are 

presented in Figures 9-12 through 9-17. 



INSTRUCTION TIMING 

MOV r,r 
MOV r,M; HOV M,r 
MVI r 
MVI M 
LXI rp 
LDA; STA 
LDAX; STAX 
LHLD; SHLD 
SPHL; PCHL 
XCHG 
XTHL 
POP 
PUSH 
INR r; OCR r 
INR M; OCR M 
INX rp; DCX rp 
DAD rp 
ADD r; ADC r; SUB r; SBB 
ANA r; XRA r; ORA r; CMP r 
ADD M,etc 
ADI etc 
RLC; R.RC; RAL; RAR} 
DAA; CMA; STC; CMC 
JMP·; JNZ; etc 
CALL 
CNZ etc - executed 

- not executed 
RET 
RNZ etc - executed 

- not executed 
HLT (if interrupted immediately) 
NOP 
IN; OUT 
EI; DI 
RST 

Table 9•1 

9 - 30 

Clock Periods 
8080 MTS 

5 6 
7 9 
7 9 

10 13 
10 13 
13 17 

7 9 
16 21 

5 6 
4 5 

18 23 
10 13 
11 14 
5 6 

10 13 
5 6 

10 11 
4 5 

7 9· 
7 9 
4 5 

10 13 
17 22 
17 22 
11 14 
10 13 
11 14 
5 6 
7 9 
4 5 

10 13 
4 5 

11 14 

\ 

• 
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TIMING 
Counting Clock Periods for Program Segments 

Bit Handler Timing Loop: 

82F5 DCX H 6 
F6 MOV A,H 6 
F7 ORA L 5 
F8 JNZ 13 

30 

Remainder of Bit handler with full bit-time call: 

82E3 MVI A 
E5 RAL 
E6 OUT 
ES XRI 
EA OUT 
EC XRI 
EE OUT 
FO LHLD 
F3 XCHG 
F4 DAD 

(Timing 
FB IN 
FD RAR 
FE RET 

9 
5 

13 
9 

13 
9 

13 
21 

5 
11 

Loop) 
13 

5 
13 

139 

For half bit-time call: 

82EO LXI D 13 
152 

Send (Bit Loop Only) 

82AC CALL 22 
AF NOP 5 
BO MOV A,B 6 
B1 RAR 5 
B2 MOV B,A 6 
B3 DCR c 6 
B4 JNZ 13 

63 
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Receive (Bit Loop Only) 

8201 MOV A,B 6 
02 RAR 5 
03 MOV B,A 6 
04 NOP 5 
05 CALL 22 
DB OCR c 6 
09 JNZ .13 

0"3 
Alternate timing loop: 

OCR L 6 
JNZ 13 

-,-q-

Clocks/Bit = (Send or Receive) + (Bit Handler) + 2N (Timing Loop) 

where N is the half bit-time count 

Time/Bit 

= 63 + 139 + 2N(30) 
= 202 + 60N 

T = 0.5 (202 + 60N) microseconds 
N - CT - 101) I 30 

Baud Rate Time/Bit N 
(microseconds) Decimal 

75 
110 
150 
300 
600 

1200 

300 
600 

1200 

13333.3 441 
9090.9 300 
6666.7 219 
3333.3 108 
1666.7 52 
833.3 Not 

N = (T - 101) I 19 
(Using shorter timing loop) 

3333.3 170 
1666.7 82 
833.3 38 

Table 9-2 

Use able 

N 
Hex 

01B9 
012C 
OODB 
006C 
0032 

AA 
52 
26 
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Parity and LRC 

The most common, and easiest, forms of error detection are 'parity' and 

'longitudinal redundancy check', LRC. If a communication character has 

eight bits available and only seven bits are needed to define all of the 

characters, as in the ASCII code, the eighth.bit can be used for error 

detection. Count the ones in the character to be sent. If the number 

is even make the eighth bit. zero, but if the number is odd make the 

eighth bit one. Every character sent will have an even number of ones; 

this .is 'even parity•. The receiver checks to be sure that every 

character has even parity; any exception is an erroi. 

The 8080 includes an automatic test for parity. The parity flag is set 

if the result of an arithmetic or logical operation has even parity. 

_ i~ Like the zero and carry- flags, this can cause a conditional jump, --~;ii-
or return. The instructions are: 

E2 JPO Jump if Parity Odd 

xx low address 

yy high address 

EA JPE Jump if Parity Even 

xx low address 

yy high address 

E4 CPO Call if Parity Odd 

xx low address 

yy high address 

' . . (0 · .. > 
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EC CPE Call if Parity Even 

xx· low address 

yy high address 

EO RPO Return if Parity Odd 

ES RPE Return if Parity Even 

To assign even parity to a character you can use a ~rogram segment like 

this: 

MOV A,M Load the character 

ORA A Set/Clear flags 

[JPE Jump if p~rity even 

ORI 80 Set parity even 

MOV M,A Return character 
---------·-···----

LRC is a similar scheme in which ~11 of the ones in each bit position of 

many characters are counted and forced to be even (or odd) by adding one 

extra character. 

Bit 

Message 

LRC 

7 6 5 4 3 2 1 0 

.1 1 0 0 1 1 0 0 

0 0 1 1 0 0 1 1 

1 1 1 1 1 1 0 0 

1 0 0 0 0 0 0 1 

0 1 1 0 1 0 0 1 

1 1 1 0 1 0 1 1 

L Parity Bit 



9 - 41 

4:>r-:e LRC is the exclusive OR of all the message characters. 

formed, along with parity, by: 

It can be 

HOV A,M Load the character 

ORA A Set/Clear flags 

[JPE Jump if parity even 

ORI 80 Set parity even 

MOV H,A Return character 

XRA B Generate LRC 

HOV B,A Return LRC 

The same procedure is used to check the LRC. When it is executed on a 

message that includes~an LRC the final result must be 00 if the message 

(
0
, is error-free. 

- \ 

, 9. 4 EQUIPMENT INTERFACING 

Connecting the MTS to a teletype or other co.mputer terminal generally 

requires an interface circuit~ Many teletypes are set up for a current 

loop interface, described below. Teletypes and other terminals used 

with computers or modems typically have RS232C interface that swings 

positive (+5 to +25 volts) for a one and· negative "(-5 to -2·5 volt-s) for zero. 

The easiest way to generate an RS232C interface is with a specialized 

interface circuit such as the Fairchild 9616~ A negative voltage is 

required. 
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9.4.1 Current Loop Interface 

Many teletypes communicate by a 'current loop' interface using 

a single pair of wires. The loop is powered by a current source 

that will drive 20 milliamperes (sometimes 62.5 ma). Each device 

connected to it can sense the presence or absence of current in 

the loop .for receiving, and can open or close the circuit for 

transmitting. This is a half-duplex system. It can be used for­

communication in both directions, but not simultaneously; the 

r~ceiving station must keep the circuit closed. Echoing is not 

used. Figure 9-18 shows two suitable circuits. Note that the 

first circuit has inverted input and output; so your program 

must complement the data. 

9.4.2 MaqneticTape Cassette Modem 

Figure 9-19 shows a digital modem (modulator-deinodulator) suit­

able for recording and reading data with a consumer cassette 

recorder. In conjunction with monitor programs SEROT and SERIN, 

it will copy your programs onto cassettes and reload them. This 

circuit is included on the hardware interface circuit board sup­

plied with the Integrated Computer Systems Course 536. Refer to 

appendix A, paqeA-3 for instructions on the use of SEROT and 

SERIN~ 
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NOTE: 

Early versions of the Microcomputer Training System included the 

NEC 8080A as the central processing unit. This is different from 

the Intel 8080A in its handling of decimal subtraction; these 

differences are described in the text of this chapter. More re­

cent Microcomputer Training System's utilize the NEC 8080AF~ this 

proce~sor is logically identical to the Intel device. If the 

unit delivered includes the NEC 8080AF, the decimal subtraction 

operations in Section 10.4 will yield erroneous results; and in 

Section 10.6.2 you must use the subroutine of Figure 10-33 rather 

than 10-32. 



Oa. BINARY AND DECIMAL ARITHMETIC 

0 

A number of the exercises presented in earlier chapters have included 

some arithmetic functions, including (in Chapter ~) addition, 

subtraction and multiplication. In this chapter we introduce decimal 

arithmetic, the subtract instructions, multiple precision addition and 

multiplication, negative numbers, fractions, and division, and review 

the basic concepts of binary arithmetic. 
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10. 1 BINARY ADDITION 

The rules for binary addition were presented in Chapter 1, section 

1.2.4, and a quick review of that material is suggested. The complete 

addition table for binary arithmetic is: 

0 + 0 = 0 

0 + 1 = 1 

1 + 0 = 1 

1 + 1 = 10 

Addition of two bit numbers produces carries into the third position. 

This extends to full eight bit addition: 

1111 1 1 1 1 

+ 1 1 1 1 1111 
.~-. -- ·-·- -----

= 1 1 1 1 1 1110 

Eight bit addition can generate a carry into the ninth position. The 

addition of two numbers of any size may produce a carry into the next 

bit position~ When a carry is generated, however, the sum never has 

ones in all positions. The example above shows the addition of the two 

largest possible eight bit numbers. A carry is generated but the least 

significant bit is zero. This is of fundamental importance for multiple 

precision addition. 

10.1.1 Multiple Precision: 

The use of more than one wo~d to represent a number is termed multiple 

precision. If the number is an integer, this permits a greater value 

• 
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~than can be represented in a single word. If the number is a fraction 

it permits greater precision than can be represented in a single word. 

The number of words used is often used to describe the operation. Thus 

double precision refers to arithmetic operations using two words, triple 

precision to three words, etc. 

Consider a. double precision addition in which each number is represented 

.by two memory words (or bytes in an eight bit machine): 

More Significant Byte 

01100110 

+ 1 1 0 1 0 0 1 0 

Less Significant Byte 

1 1 1 0 0 0 1 0 

1 0 0 0 ,. 1 0 1 

1 o o 1 1 1 o o 1 \::o 1 1 o 1 1 1 1 

We add the two less significant bytes, and if a carry is generated, as 

above, it must be added in with the more significant bytes. Even if 

every bit in all four bytes was one, only a single carry bit. is 
generated from the complete ad di ti on. This permits a multiple prec.ision 

addition to proceed as follows: 

a) Add the two less signific~nt byt~s. 

b) Add the next two bytes, and if a carry resulted fro~ the 

preceding addition add it into the sum. 

c) Repeat (b) for as many bytes as are required. 

The ADC instruction was introduced in Chapter 7 as a means of shifting. 

Now it appears as an arithmetic instruction to be used for multiple 

'0 precision arithmetic. As with. the other arithmetic and logical 
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instructions there is a version of ADC using each of the regist.ers as a • 

source: 

SF ADC 

ss· ADC 

S9 ADC 

SA ADC 

SB ADC 

sc ADC 

SD ADC 

SE ADC 

A 

B 

c 

D 

E 

H 

L 

M 

Add the content of the 

named register and the 

carry flag to the content 

of register A, and· place 

the result in register A. 

All flags are set or reset 

according to the result. 

A double precision add of the content of register pairs B,C and D,E 

could be done by: 

. MOV A,C (A) <- Less significant byte 

ADD E Ignore previous carry on first addition 

MOV E,A Store less significant byte 

MOV A,B (A) <- More significant byte 

ADC D Add with carry 

HOV D,A Store more significant b_yte 

The 8080 includes a separate double precision add function, however, 

allowing two register pairs to be added directly. The above could have 

been performed by: 

XCHG 

DAD 

XCHG 

B 

Move (D,E) into (H,L) 

Add CB,C) to CH,L) 

Put the result in (D,E) 

~·· 
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~ Of course if one addend had been in HL originally and we wanted the 

'C> 

result in HL, a single DAD instruction would do the job. Therefore 

double precision is usually done with DAD rather than ADC. 

For convenience in discussing these functions we will refer to the 

augend (a number to which another will be added to generate a ·Sum) and 

the addend (a number to be added to an augend to generate a sum). 
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10.2 FOUR BYTE ADDITION 

We will use the following specification for this exercise: 

a) To a four byte number in memory locations 8380 - 8383 add the 

four byte number in 8390 - 8393. 

b) Place the result in 8380 - 8383 and clear 8390 - 8393. 

c) Display the result. 

Write a subroutine for the addition, to be called with addresses and 

byte count already loaded. Note that you can modify addresses and count 

bytes without affecting the carry flag, because INR and OCR affect all 

flags except carry; INX and DCX af~ect no fla&s at all • 

. Figures_ 10-1 through. 10-4 present flow charts and coding shee.ts for this 9) 
exercise. 
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~ The calling program uses a feature that is seldom convenient with the 

monitor - the HLT instruction. After displaying the result your task is 

finished until you load new data, so it is reasonable to HLT until an 

interrupt occurs. As long as the STEP/AUTO toggle switch is in the STEP 

position, however, the monitor interrupts at every instruction, so you 

cannot really halt. You will be interrupted, go back to the start and 

do the addition and display again. Since the augenQ now contains the 

result and the addend is cleared, the result will be the same and The 

display will be fixed, as though the halt had been effective. Now if 

you turn the switch to AUTO, the processor will indeed halt until you 

press RST or introduce an interrupt some other way. The difference is 

not visible unless you watch with an oscilloscQpe. The modification 

shown in Figure 10-5 uses a trick to make it visible. We turn on the 

decimal point at the right hand digit just·before the halt, and tuin it 

off immediately afterward, so it is only illuminated during the halt. 

Try it in both STEP and AUTO modes. 
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Oo.3 BINARY SUBTRACTION 

0 

The process of subtraction is defined by these equations: 

If A = B + C 

then 

and 

A 

A 

B = C 

C = B 

This can be expressed in terms of 8080 instructions: 

MOV A,B 

ADD 

SUB 

c 

B 

(A) <• (B) + (C) 

(A) <- (A) - CB). result is equal to C 

Successive ADD and SUB of the -same values cancel each other,. except __ J;,hat; 

flags may be affected. The subtract instruction is ag~in one of a set 

which includes one for each ~egister: 

97 SUB A Subtract the content of the named 

90 SUB B register from the content of the 

91 SUB c A register. If the content of the 

92 SUB D named register was less than the 

93 SUB E A register set the carry flag. Set 

94 SUB H or clear the other flags according 

95 SUB· L to the results of the subtraction. 

96 SUB M 
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Like ADD, SUB ignores and destroys the previous content of the carry tlli 
flag. Another set of ·instructions SBB r, includes the carry flag: 

SBB (A)..- (A) 

(A)~(A) 

(r) - {CY) 

(B) - (CY) 

The result of SUB or SBB sets or clears the carry flag, 

which is meant to be passed to the next more significant byt~. In 

subtraction, it becomes a borrow flag. It is set if the subtrahend (B, 

in the example) is greater than the minuend (A), and in multi-byte 

subtraction the borrow is subtracted from A when the· next byte is 

processed. This is done by the subtract with borrow instruction: 

9F SBB A Subtract from" the content 

98 SBB B of the A register the 

99 SBB · c content of the CARRY 

9A SBB D flag and the content 

98 SBB E of the named register. 

9C SBB H Place the result in 

90 SBB L register A. Set or clear 

9E SBB M all flags according to the result. 

• -
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double precision subtraction can be done by: 

MOV A,C 

SUB L 

MOV E,A 

MOV A,B 

SBB H 

MOV D,A 

CE) <- CC) - (L) 

(D) <- (B) - (H) - (CY) 

The result in (DE) is CBC) - (HL). Multiple precision subtraction would 

use the SBB M instruction: 

LDAX B 

SBB M 

STAX D ((DE)) <- ((BC)} - ((HL)) - (CY) 

INX B 

l INX D 

INX H 

next addresses 
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Note that we have used three registe~ pairs for addresses, and register 

A for the subtraction, leaving no reiister available to count bytes. We 

can keep a byte counter in a fixed memory location and use LOA, OCR A, 

STA to count, or we can use the stack. But be careful: POP PSW to bring 

a counter into register A will destroy the carry flag, which is needed. 

This is a place where the XTHL instruction is very useful. Write a 

subroutine for a general purpose multi-byte subtraction, entering with: 

(A) 

(B,C) 

(0,E) 

(H,L) 

= number of bytes 

= address for minuend 

= address for difference 

= address for subtrahend 

We can use the same calling program as for the additicin, except that we 

must load an address to (B,C) and initialize a byte counter i~ A, and 

the call will be to the subtract subroutine at 8200. Place the minuend 

(from which the su~trahend will be subtracted) at 8370 - 73; the 

difference at 8380 - 83, and the subtrahend at 8390 - 93. Since they 

are to be kept separate, do not clear any of these areas during the 

operation. For convenience in an exercise of the following section, 

leave a NOP immediately after the SBB M instruction. 
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~The subroutine can be changed from subtraction to addition 

one instruction {at 8204): 

9E 

SE 

SBB M 

ADC M 

to subtract 

to add 

by altering 

We now introduce a scheme that is not available to programs stored in 

ROM but can be very convenient for programs in RAM. The program can 

modify itself by altering the instruction in response to an input. 

After the display, and before jumping back to the start, take a key 

input for a command to add or subtract. Use NEXT (:15) for add; STEP 

{=13) for subtract. For any undefined key enter NOP instead of either 

ADC or SBB. Use the monitor subroutine GETKY, which waits for a key to 

be entered. Figures 10-10 through 10-12 show a coding example. 
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AFTER DISPIAY 

CALL GETKY 

SE1' AOC M a----

SET SBB M 

SET RJP 

FIGURE 10-10 
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10 - 25 oo.4 DECIMAL ADDITION AND SUBTRACTION 

Often the microprocessor will have a human interface for its arithmetic 

results, and decimal input and output will be required. The 8080 

provides an instruction to convert a binary result to a decimal result: 

27 DAA Decimal Adjust Accumulator 

This tests the result of an arithmetic instruction and corrects the 

content of ·the accumulator to create a 'packed decimal' result, in the 

form of two decimal digits. Before exploring the operation in detail we 

will insert the insttuction into the subroutine of the previous 

exercise. To compare result~ of decimal versus binary arithmetic, we 

will provide for inserting o~ deleting this instruction under keyboard 

,0 control as we did the ADC and SBB ins true tions. Use the key RUN to -- \ 
... , __ 

0 

invoke binary and ADDR to invoke decimal results, and interpret the~ as 

you did NEXT or STEP • Insert NOP .after ADC or SBB for binary, DAA for 

decimal. As before, any undefined key should place a NOP in place of 

the ADC or SBB • 

. If the numbers used generate no carries, the binary and decimal results 

are alike. Try putting 33 33 33 33 at 8370 - 73 for the augend or 

minuend and 22 22 22 22 at 8390~93 for the addend or subtrahend. Then 

addition will produce 55 55 55 55; subtraction, 11 11 11 11. Try your 

program with those numbers to make sure it works. Coding examples are 

shown in Figures 10-13 and 10-14. 
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Now compare the binary and decimal operations. Enter these data: 

8370 43 low byte 

71 65 Augend or 

72 87 Minuend 

73 09 high byte 

8390 78 low b.yte 

91 77 Addend or 

92 77 Subtrahend 

93 07 high byte 

Run your program using the steps shown below: 

RUN,NEXT 

. (binary add) 

Aug end 

Addend 

Sum 

0 9 8 7 6 5 4 3 

0 1 7 7 1 7 7 8 
--

1 0 F E D C B B 

No carries have occured except for 09.+ 07. 

ADDR,NEXT Aug end 0 9 8 1 6 5 4 3 

(decimal add) Addend 0 7 7 7 7 7 7 8 

Sum 1 1 6 5 4 3 2 1 

Carries- hav-e occured from all digits. 

RUN, STEP Minuend 0 <J 8 7 6 5 4 

(binary subtract) Subtrahend 0 7 7 7 1 7 7 -8 

Difference 0 2 0 F E D C B 

Borrows have occured from the first and second bytes. 

3 

" 
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OADDR, STEP Minuend 0 9 8 7 6 5 4 3 

(decimal subtract) Subtrahend 0 7 7 7 7 7 7 8 

Difference 0 2 0 9 8 7 6 5 

Borrows have occured from the first five digits. 

The binary to decimal correction process for addition works as follows: 

the addition is performed, and a flag called Auxiliary Carry is set if a 

carry occurs from bit 3 to bit 4 - that is, from the first digit to the 

second. When DAA is executed, the content of the accumulator and both 

Carry (CY) and -Auxiliary Carry (AC) flags are tested. (Auxiliary carry 

is a flag which is set if a carry or borrow occurs from bit 3 to bit 4 

as a result of add or subtract operations). Then the following is done: 
.. 

,_elf the value of the low four bits exceeds 9, or if AC is set, add 06 to. 
·:......._ . 

the accumulator. These corrections occur: 
' . -

ADC 07 + 08 -> OF no carry 

DAA OF + 06 -> 15 

ADC 08 + 08 -> 10 AC set 

DAA 10 + 06 -> 16 

0 
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After this correction to the low digit, if the value of the high four 41, 
bits exceeds 9 or if CY is set, add 60 to the accumulator. These 

corrections are made: 

ADC 70 + 80 -> FO 

DAA FO + 60 -> 50 

ADC 

DAA 

80 + 80 -> 00 

00 + 60 -> 60 

no carry 

CY set 

CY still set 

Not.e that wh-en 60 is added it may set the CY but will not clear it. The 

following examples taken from the experiment with the program show the 

correcti.on pro-cess in operation: 

ADC 

DAA 

ADC 

o·AA 

ADC 

DAA 

ll3 + 78 -> BB 

BB + 06 _.> C-1 

C1 + 60 -> 21 

65 + 77 + CY -> DD 

DD + 06 -> E3 

E3 + 60 -> 43 

87 + 77 + CY -> FF 

FF + 06 -> 05 

05 + 60 .;.) 65 

no carry 

sets CY 

no carry 

sets CY 

no carry 

sets CY 

CY still set 

ADC 09 + 07 +CY ~> .11- sets AC 

DAA 11 + 06 -> 17 



0 

10 - 31 

Caution: The OAA instruction only works correctly while the CY ar,d AC 

flags are still set or cleared in response ~o the arithmetic instruction 

that produced ~he binary result. Any intervening arithmetic or logical 

instruction, or INR or OCR, affects its ope~ation.· The safe procedure is 

always to.place OAA immediately after the instruction whose result is to 

be corrected .. 

The OAA correction is also effective in subtraction in the NEC 8080 but 

not in other versions of the 8080. The NEC 8080 contains another flag 

indicating that a subtract instruction has been executed. This modifies 

the action of the OAA instruction, so that carry and auxiliary carry are 

recognized as borrows, and OAA subtracts 06 and/or 60 as required by the 

content of the accumulator and carry flags. 

\C> DAA is also er-fective in~counting uP (~1th INR A) but not in counting 

down (with OCR A). To count down in decimal you must do a subtraction. 

You may use the subtract immediate command: 

D6 

xx 

SUI 

data 

Subtract the content 

of byte 2 from the accumulator. 

If you want to investigate the DAA command further, the program shown in 

Figure 10-15 will let you· try different .instructions and view the 

results. 
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BINARY MULTIPLICATION 

Multiplication of integers is a process of repeated addition, or a 

substitute process that gives the same result. 

3 + 3 + 3 + 3 = 12 

4 x 3 = 12 

We have previously performed multiplication by repetitive addition. 

This is the·easiest way, and the required program can be very short and 

easy to write, but it is very slow when the multiplier is large. The 

usual computer multiplication process is ·similar to what we do by hand. 

Multiplicand 36~. 

_ ,e Mui t1puer x 426 ---~-·----

\ 

"-
1972 = 6 x 362 

7240 = 20 x 362 

144800 = 400 x 362 

Product 154012 = 426 x 362 

In our familiar multiplication process we simply multiply the 

multiplicand by each component of the multiplier and add the individual 

products. Multiplic~tion becomes trivially easy if the multiplier 

happens to comprise only ones and zeros: 

- - ·- ---
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362 
x 101 

362 1 x 362 

0 0 x 362 

36200 100 x 362 

36562 

With binary numbers, of course, multiplication is that easy. According 

to whether each bit in the multiplier is zero or one, the multiplicand, 

appropriately shifted, is added into a partial product. Figure 10-16 

shows the process, with an example of two 8-bit numbers. At most the 

multiplication, including any carry from the last position, will fill a 

16-bit number. The flow chart shows one appropriate procedure. Write a 

program to implement the process. A solution is provided in Figure 

l0-17. 

·-~ -
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There is an alternate scheme, sometimes more convenient, in which the 

multiplication is done backwards: 

DAD H Double Product 

ADD A Next MSB to CY 

[JNC Skip add if bit = 0 

DAD D Add multiplicand 

DCR c Count bits 

JNZ 

The product is developed from most significant position toward least 

significant, and instead of shifting the multiplicand we shift the 

product. The result is. identical. This requires a bit counter, since 

1
A_ ;, the . product must be shifted ~ight times, whereas the previous program 

.. ,. 
'- · can stop as soon as the multiplier reaches value of Figure a zero. 

10-17 shows the process. 

0 
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Q 0. 6 DECIMAL MULTIPLICATION 

Basically the same procedure is used for decimal multiplication, but it 

must be done digit by dig~t instead of a byte at a time, and since 

decimal adjustment is necessary the additions must take place in the 

accumulator. It is common, but not necessary, to use unpacked decimal 

arithmetic {one decimal digit per byte) if multiplication and divisio~ 

are to be done, because it is more efficient. The decimal 

multiplication subroutine developed here is for packed decimal, with two 

digit multiplier and multiplicand and four digit result. This i~ the 

largest value that can be handled without storing data in the memory. 

Figure 10-18 shows a flowchart of the subroutine, and Figures 10-19 

A through 10-21 the code. Like the first binary mul tiplicatiorl method, 

-~this shifts the multiplier right and doubles the multiplicand for each 

bit, stopping when the multiplier reches zero. It also requires a bit 

counter,. initialized to.four bits, because after the first digit of the 

multiplier has been handled the original multiplicand must be recovered 

and _multiplied by ten for the second digit. 

The program used for the binary multiplication prov ides the 'input and 

display functions, calling this subroutine instead of doing the 

arithmetic itself. 

'0 



1ECIMAL MILTIPLY SUB:rouTINE 

CLFAR CARRY 
'1ESl' MILTIPLIER EUR ZER:> 

(ST).._ MJili'D?I.JCAND 
(C)..,_BIT CXXN1' = 4 

SHIF1' MOLTIPLIER RIGffl' 
(B) • MULTIPLIER 

SET 

MULTIPLie:"l 
BIT= 0 

KJLTIPLU.R BIT = 1 

ADD Ml.!Ill'IPLICAND 
'!U· Piau:T Wl':.H 
~.AOOUST 

('ltD BYTE AIDITIOO) 

AID MJLTIPLICAND 
'IO ITSELF WI'1H 
oa::nw:, AOOUST 

('.M:> BYm ADDITICE) 

CLFAR CARRY 
(A) MILTIPLIER 

NO 

DFAEllial!' BIT axNI' 

coo>--- ORIGINAL 
MULTIPLICAND 

(IE)~ .,.(HL) 
DAD H FOOR TIMES 
'IO MULTIPLY BY 10 
(DE)• .. (HL) 

FIGURE 10-18 

(HL) = 0000 
(D) = 00 

10 - 40 

(E) = Mll. tiplicand 
(A) = Mttltiplier 
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10.7 OTHER REPRESENTATIONS OF NUMBERS 

There are many ways of storing numeric values in a computer, and we have 

used only two: binary unsigned integer and packed decimal unsigned 

integer. There are numerous others, including: 

Binary Number Representations 

Unsigned integer 

Twos complement (signed binary) 

Fractional, fixed binary point 

Floating point 

Decimal Number Representation 

Packed, unsigned integer 

Unpacked, unsigned integer 

Hundreds Complement (signed decimal) 

Tens complement (signed, unpacked) 

Fractional, fixed decimal point 

Floating Point 

We will discuss the representation of signed numbers using twos or 

hundreds complement, and both fixed and floating point fractions. 

10.6.1 Negative Binary Numbers 

Positive integers ( 1, 2, 3 •.• ) are called natural n.umber.s. They are 

abstractions, created for the purpose of counting objects, but they may 

be used to represent a physical reality. Negative numbers are a higher 

-) 
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level of abstraction. There are no negative quantities in the physical 

world. 

Negative numbers are represented by convention, and are usually 

distinguished from positive numbers by a sign. In ordinary decimal 

arithmetic the minus sign is used: -10, -133 etc. To represent a 

negative binary number in machine form, where only two symbols (0 and 1) 

are available, requires a convention. 

The convention that has been adopte~ is that of a .sign bit. In 

arithmetic operations involving negative binary numbers, the sign bit is 

the most significant bit of the byte or word or set of words used to 

represent a number. If the bit is zero, the number is positive; if the 

"~bit is one, the number is negative: 

'-._ 

0 x x x x x x x A posit~ve binary number 

1 x x· x x x x x A negative binary number 

If we wish to deal only with positive numbers, we do not need a sign 

bit. 
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In decimal arithmetic we may have the sequence --~) -2 ' -1 ' 0 , + 1 ' -

+2' ••• The negative representation ·of a number is simply the number 

with a sign in front of it. Conversion from positive to negative simply 

involves changing the sign. We can do this simply with binary numbers 

by complementing: 

+2 0 0 0 0 0 0 1 0 

+1 0 0 0 0 0 0 0 1 

0 0 0 0 0 0 0 0 0 

-0 1 1 1 1 1 1 1 1 

_, 
1 1 1 1 1 1 1 0 

-2 1 1 1 1 1 1 0 1 

This is called a ones complement notation but unfortunately it does not 

meet the requirements of the basic laws of arithmetic. For example, 

adding +2 and -1: 

0 0 0 0 0 0 1 0 

1 1 1 1 1 1 1 0 

(discar~1 0 0 0 0 0 0 0 0 

carry) 

produces a false result Czerot). The problem lies in the quantity 

called minus. zero, which is undefined. We must represent negative 

binary numbers such that the basic laws of arithmetic (addition and 

multiplication) are valid. 

• 
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0 
This is accomplished by using a twos complement representation. The 

twos complement of a number is formed by complementing and adding one: 

1 0 0 0 0 0 0 0 1 

1 1 1 1 1 1 1 1 0 

+1 0 0 0 0 0 0 0 1 

=-1 1 1 1 1 1 1 1 1 

2 0 0 0 0 0 0 1 0 
._,,.. 

2 1 1 1 1 1 1 0 1 

+1 0 0 0 0 0 0 0 1 

=·~ 1 1 1 1 1 1 1 0 

Now we can add +2 and -1 and obtain the correct result: 

0 \ 

I 

+2 0 0 0 0 0 0 1 0 \ 
' .......... 

-1 1 1 1 1 1 1 1 1 

(discard~ 1 0 0 0 0 0 0 0 1 

carry) 

0 
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Since in twos complement notation the high bit of the binary number -indicates its sign, positive numbers range from 00 to 7F (0 to +127) and 

negative numbers from FF to 80 (-1 to -128). Consider these examples: 

SA 0 1 0 1 1 0 1 0 

twos complement -SA 1 0 1 0 0 1 1 0 

24 0 0 1 0 0 1 0 0 

twos complement -24 1 1 0 1 1 1 0 0 

Now consider addition and subtraction: 

SA 0 1 0 1 1 0 1 0 

Subtract 24 .0 0 1 0 0 1 0 0 

36 0 0 1 1 0 1 1 0 

SA 0 1 0 1 1 0 1 0 
.ft) 

· Add (-24) 1 1 0 1 1 1 0 0 

36 0 0 1 1 0 1 1 0 

24 0 0 1 0 0 1 0 0 

Subtract SA 0 1 0 1 1 0 1 0 

-36 1 1 0 0 1 0 1 0 
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~sing twos complement representation, negative and positive numbers can 

be added and subtracted to obtain a signed result in twos complement 

notation. The sign of the result is also available in the sign flag. 

This is set if the high bit of the result of an arithmetic, logical or 

counting operation is 1, reset if the result is zero. Like the zero 

flag and the carry flag, it will control the action of several 

conditional instructions. 

F2 JP Jump if Plus 

xx low address (if high bit is 0) 

yy high address 

FA JM Jump if Minus 

xx low address (if high bit is 1) 

C) yy high address 

F4 CP Call if Plus 

xx low address 

yy high address 

FC CM Call if Minus 
. 

xx low address 

yy. high address 

FO RP Return if Plus 

F8 RM Return if Minus 

Like the other conditional instructions, these respond to a flag set by 

~one of the arithmetic or logical instructions (also DAA, INR and DCR), 
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not to the present content of the accumulator. 

Two's complement representation permits addition, sub-traction, 

multiplication and division of signed numbers, giving correct results in 

two's complement form, correctly signed, provided that the magnitude of 

the result does not exceed the allowed range for the number of bits used 

(-128 to +127 for one byte). In many applications the programmer can be 

certain that the limits will not be exceeded. If results reach the 

limits, however, an 'arithmetic overflow' will occur. 

40 

+ 40 

-128 

0 1 0 0 

0 1 0 0 

0 0 0 0 

0 0 0 0 

.1 0 0 0 0 0 0 0 

L negative. 

There are two ways of treating this problem. One is simply to provide 

additional capacity. If two byte numbers are used, only the highest bit 

of the high byte represents the sign, and values from 0 to + 32767 and -

1 to - 32768 can be represented. 

40 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

+ 40 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

80 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

t____, still positive 

With multiple precision arithmetic this can be carried to as many bytes 

as are necessary. 
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Another way of handling arithmetic overflow is to test for it. If two 

positive numbers are added and the result is negative, an overflow 

occurs. If two negative numbers are added producing a positive result, 

an overflow occurs. Subtraction of numbers with the same sign or 

addition of numbers with different signs cannot produce overflow. In 

most cases where only addition and subtraction are required, it is 

easier to provide additional storage capacity so that overflow cannot 

occur, but for multiplication and division the test for overflow is 

likely to be necessary. 

10.6.2 Exercise 

Write a program that will accept a binary number of two bytes, and on 

~command do one of the following: 

NEXT key: Store the number as entered. 

STEP key: Change the sign of the number and store it. 

RUN key: Subtract the number from the previously 

stored value. 

ADDR key: Add the number to the previously stored value. 

CLR key: Clear the stored value. 

After each entry display the result. If the result is negative, display 

its twos complement with a minus sign. A flow chart and coding sheets 

are presented in Figure 10-22 through 10-26. Avoid destroying the 

decimal multiplication subroutine - it will be used again. 
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c:>0.6.2 Signed Decimal Numbers 

Packed decimal numbers can be represented with signs in hundreds 

complement form. In this notation -1 is represented by 99, -2 by 98 

etc. To change the sign of a decimal number, the least significant. byte 

is subtracted from 100 and succeeding bytes are subtracted from 99. In 

packed decimal form the range of a single byte becomes -19 to +79 

+ 79 0 1 1 1 1 0 0 1 

- 19 1 0 0 0 0 0 0 1 

Thus signed decimal numb~rs must generally occupy more than one byte in 

order to be useful. 

- Hundreds complement notation applies equally well to packed or 

'"- .' decimal representation. · 

unpacked 

P·acked 

+ 7999 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 

- 1~99 10 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

un2acked 

+ 99 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 ,. 
99 1 0 0 1 0 0 0 0 1 0 0 1 0 0 0 1 

In unpacked form the high byte is 0 if the number is positive, 9 if the 

number is negative. Decimal arithmetic with signed numbers in hundreds 

complement form works correctly for all operations. 

0 
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For unpacked decimal numbers the tens domplement can also be used: 

24 = 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 

- 24 = 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 

With unpacked decimal arithmetic the DAA in~truction is not ~ufficient 

to' adjust arithmetic results~ If you add the two numbers above you get: 

DAA gives: 

0 0 0 0 1 0 0 1 0 0 0 0 1 0 1 0 

0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 

It is necessary to test separately for a carry into the high digit of 

each byte and change it into a carry to the next byte. This would have 

corrected the result above. For this reason packed decimal arithmetic 

is more convenient when only addition and subtraction are involved. 

Modify the calculator program that was done for binary twos complement e) 
numbers to perform the same functions for packed decimal numbers, using 

hundreds complement. 

We can also do decimal multiplication using the packed decimal multiply 

subroutine developed earlier. Use the MEM key to command multiply. 

Copy the low multiplier byte to A, clear the product (H,L), and call 

DECMU. This program will only give valid results if the sum or product 

lies within - 2000 to + 8000, and only for a two digit multiplier, but 

you will ·see that it works for negative numbers, giving a hundreds 

complement result. There are limitations on this, however negative 

numbers must be represented as hundreds complement to as many bytes as 

the result is to be taken. Here we have a four digit multiplicand and a 

two digit multiplier. The correct result appears in the low four digits 
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0 of the product. If we generated higher digits they would be wrong ·for a 

negative multiplicand. A better procedure for multiplication is to 

convert negative numbers to sign and magnitude before multiplying, and 

handle the sign separately. Figures 10-27 through 10-33 illustrate the 

coding. 

• 
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Q 
0.6.3 Fractional Numbers 

0 

A fractional value in the decimal number system is expressed by digits 

to the right of a decimal point. 

0.1 = 1/10 

0. 01 = 1/100 

0.11 = 1/10 + 1/100 = 11/100 

In the binary number system fractional values are also expressed by 

digits to the right of a binary point. 

0.1 = 1/2 = 1/102· 

0.01 = 1 /4 = 1 /100 
2 

0.11 = 1 /2 + 1/4 = 3/4 = 1 1 /100 
2 2 

The beauty of this representation is that all the arithmetic 

of integer numbers apply equally to fractional numbers 

numbers. 

3 10/16 

+ 4 7/16 

= 8 1/16 

0 0 1 1 • 1 0 1 0 

+ 0 1 0 0 • 0 i·1 1 

= 1 0 0 0 0 0 0 1 

operations 

and mixed 

Twos complement, tens complement, and hundreds complement still work 

with fractional values. 



• 

- 3 10/16 1 1 0 0 

+ 4 7/16 - 0 1 0 0 

= 0 13/16 0 0 0 0 

10 

0 1 1 0 

0 1 1 1 

1 1 0 1 

68 

Computers use two binary point systems: fixed point and floating point. 

The examples above are fixed point. Each number has its binary point in 

the same place. Generally multi-byte precision is needed in real 

problems, and the binary point lies between two of the bytes. A four 

byte number can represent any value from - 32768.0 to + 32767.9999847 

with a precision of .0000152 (one part in 65536). 

For many purposes floating point numbers are much more satisfactory. 

This is equivalent to scientific notation with the number represented as 

a fraction times the number system base raised to a power. 

4 
0.9876 x 10 = 9876 

To avoid the difficulties of showing exponents in print this is often 

shown as: 

0.9876E04 

where E represents '10 with exponent'. 

Scientific notation is very convenient for multiplication and division. 

The two fractions are multiplied (or divided) and the exponents are 

added (or subtracted). 

0.9000 E04 

x 0.2000 E02 

= 0.1800 E06 



0 

0 
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For addition and subtraction, however, the numbers must be converted 

to fixed point format. 

0.9000 E04 = 9000.0000 

+ 0.2000 E02 = 0020.0000 

= 0.9020 E04 = 9020.0000 

In a computer as on paper, the fraction (or mantissa) must be stored 

separately from the exponent. Each can be positive or negative, and 

expressed in twos, tens or hundreds complement form. Generally a 

computing system that is doing floating point arithmetic will operate 

in binary form, converting from decimal at input and to decimal at 

output. 

Decimal/binary/decim~l conversions are treated in Appendix D. 

c/12/77 
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NOTE: 

Your Microcomputer Training System may include the NEC 8080AF, which 

is logically identical to the Intel 8080A. Conunents in this chapter 

regarding the Intel device should be understood to ref er also to the 

NEC SOBOAF. Suc:h comments occur on page 11-6, 11-8, 11-10 and 11-11. 

The Intel 8080A and the NEC 8080AF do not have a subtract flag. 
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1 • REVIEW OF INSTRUCTIONS 

You have now met all of the instructions of the 8080, and actually used 

most of them. We will review the instruction set and look at the code 

structure and flags. The instructions can be divided into several 

categories: 

a) Data Transfer Instructions 

b) counting Instructions 

c) Accumulator/Carry Instructions 

d) Arithmetic and Logical Instructions 

e) Branch Instructions 

f) Input/Output Instructions 
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11. 1 DATA TRANSFER 

Data transfer instructions include HOV, HVI, STA, etc. All register 

reference instructions in the 8080 comform to a pattern in which three 

bits identify a source, or else a different three bits identify a 

destination, or both. 

0 1 0 1 1 1 0 1 50 HOV E,L ........,.__ 
~ ....-.,.,,_,., l Lource Register L 

Destination Register E 

00 011 110 lE _MVI E,data ..._,_, ~ ~ 

1 
t t Destination Register E 

._ ______ -6._ HVI Instruction · 

Other data transfer instructions are the eight instructions that load 

and store the accumulator and register pair H,L: 

3A LDA yyxx 32 STA yyxx 

OA LDAX B 02 STAX B 

1A LDAX D 12 STAX D 

2A LHLD yyxx 22 STHL yyxx 
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Orhe four LXI instructions: 

01 LXI B 

11 LXI D 

21 LXI H 

31 LXI SP 

The stack instructions: 

cs PUSH B C1 POP B 

DS PUSH D 01 POP D 

ES PUSH H E1 POP H 

FS PUSH PSW F1 POP PSW 

() The register pair transfer instructions: 

...... __ 

EB XCHG {DE) <-> CHL) 

E3 XTHL {ST) <-> {HL) 

F9 SPHL CSP) <- {HL) 

E9 PCHL {PC) <- (HL) 
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The 8080 has an abundance of data transfer instructions, yet is lacking 

three needed functions that therefore require multiple instructions: 

a} Exchange BC with HL 

PUSH. B (BC} <-> (HL) 

PUSH H 

POP B 

POP H 

b) Initialize the stack to a new location and push the old stack 

pointer in~o the new stack. 

LXI H,0000 

DAD SP 

LXI 

PUSH 

SP,new location 

H 

It is easier to restore the old value: 

POP H 

SPHL 

c) Save all registers and flags. 

Some microprocessors have ~ single command that pushes all registers 

into the stack; others, such as the Intel 4040, have a duplicate set of 

registers. In the 8080 four instructions are needed. 

Data transfer instructions do not affect any flags (Except POP PSW, which 

restores the flags to the state when PUSH PSW was executed). 
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0.2 COUNTING INSTRUCTIONS 

The INR and DCR instructions use the same register identification that 

appears in MOV. 

0 0 0 1 1 1 () 0 1C INR E --...-. 
,_ 

, 
~ .., 

t 

t 
t . INR 

Destination Register E 

0 0 ,. 0 1 1 0 1 20 OCR L ......,.,_... 
~ .. ~ 

t 
t 

t OCR 

Destination Register L 

0 0 0 0 0 1 0 0 04' INR B ..._,,...., ... ._._., .. ,..,_.., 

+ t t INR 

~ Destination Register B 

The structure is modified for register pair instruction 

0 0 0 0 0 0 1 1 03 INX B ..._,_. ............... .. ...__. 
t 

t 
t .. INX 

Destination Pair BC 

0 0 0 0 1 0 1 1 DCX B .._,__.. ~ ...,_,.,, '-·-' t 
I 

t DCX 

Destination Pair BC 
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The counting instructions affect flags as follows: 

INX: 

DCX: 

INR: 

OCR: 

No flags 

No flags 

Set or cl~ar zero, sign, parity 

Does not affect carry 

* Does not affect auxilliary carry 

* Clears subtract 

Set or clear zero, sign, parity 

Does not affect carry 

* Does not affect auxilliary carry 

* Sets subtract 

* Tpese statements apply to the NEC 8080,not to the Intel 8080. 

Zero, sign and parity flags may be used to cause a conditional branch as 

a result of INR or OCR. IHR or OCR may be used in a loop with ADC 

or SBB instructions, since carry is preserved. 

-! 



11 - 7 

Q 
1. 3 ACCUMULATOR/CARRY INSTRUCTIONS 

These instructions affect only the accumulator and flags. The 

instruction format is: 

0 0 x x x 1 1 1 
~ .. ,._... 

l l Accumulator/Carry Group . 

0 0 0 0 0 1 1 1 07 RLC 

0 0 0 0 1 1 1 1 OF RRC 

0 0 0 1 0 1 1 1 17 RAL 

0 0 0 1 1 1 1 1 1F RAR ·. 

~ 
0 0 1 0 0 1 1 1 27 DAA 

0 0 1 0 1 1 1 1 2F CMA 

0 0 1 1 0 1 1 1 37 STC 

0 0 1 1 1 1 1 1 3F CMC 
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The rotate instructions shift the accumulator left or right. 

RLC Copies bit 7 to bit 0 and CY and shifts other bits left. 

RRC Copies bit 0 to bit 7 and CY and shifts other bits right. 

Previous carry is lost: 

RAL Copies bit 7 to CY, CY to bit o· and shifts other bits left 

RAR . Copies bit 0 to CY, CY to bit 7 and shifts other bits right 

STC Sets carry 

CMC Complements carry 

These instructions do not affect any flags except carry, even though 

execution may result in the accumulator containing zero or having a 

different sign or.parity condition. To set or clear the flags to 

correspond to the content of the accumulator you must execute a.logical 

or arithmetic instruction. 

CMA complements the accumulator but affects no flags. 

DAA corrects the result of an add or subtract (NEC 8080 only) to 

decimal; It affects sign, zero, parity and carry flags. It does not 

affect subtract or auxiliary carry flags, in the NEC -8080. 

e 
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ARITHMETIC AND LOGICAL INSTRUCTIONS 

There are eight types of instructions and each has nine possible 

sources: the _seven registers, the memory location addressed by CHL), and 

the program memory (the immediate instructions). As in the MOY 

instructions the three low bits designate the source, the next three 

bits specify which of the instructions is intended: 

The 

1 0 y y y x x x 

.._L~ ...... L.-, L Source register 

Operation 

Arithmetic/Logic group 

1 1 y y y 1 1 0 
~ ..._,.._. .---

t Operation t f Immediate Arithmetic/Logic 

operati.ons designated by bits 5, 4, 3, are: 

1 0 0 0 0 x x x ADD (A) <- (A) + (r) 

1 0 0 0 1 x x x ADC (A) <- (A) + (r) + (CY) 

1 0 0 1 0 x x x SUB (A) <- (A) - (r) 

1 0 0 1 1 x x x SBB (A) <- (A) - Cr) - (CY) 

1 0 1 0 0 x x x ANA (A) <- (A) AND (r) 

1 0 1 0 1 x x x XRA (A) <- (A) XOR (r) 

1 0 1 1 0 x x x ORA CSA) <- CA) OR (r) 

1 0 1 1 1 x x x CMP (see below) 

c:::::> The same coding for the operation applies to the immediate instructions. 



11 - 10 

CMP r (or CMP M) performs a subtract operation and sets . or clears the 

flags appropriately, but discards the result instead of storing it in 

the accumulator. 

The four DAD instructions are also included in the arithmetic group. 

They are: 

09 

19 

29 

39 

DAD B 

DAD D 

DAD H 

DAD SP 

(HL) <- CHL) + (BC) 

(HL) <- CHL) + (DE) 

(HL) <- (HL) + (HL) 

(HL) <- (HL) + (SP) 

These instructions affect only the carry flag (and in the NEC 8080 they 

clear the subtract flag) •. They_ can be used both for double precision 

arithmetic and to index a memory address. The latter is especially 

useful when operations are to be performed on bytes that are spaced from 

each other by some fixed or variable distance. 

11.4.1 The Flags 

The flag register (Program Status Word, PSW) contains 6 bits in the NEC 

8080 (5 bits in the Intel 8080). These are arranged as indicated below. 

Bit 7 6 5 4 3 2 1 0 

NEC Sign Zero Sub AC 1 Par 1 CY 

Intel Sign Zero 0 AC 0 Par 1 CY 

The following list summarizes how thase are affected by the various 

instructions: 
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Sign: Set if the high bit of the result is 1, cleared 

following instructions: 

INR, OCR, DAA 

Any arithmetic or logic~l instruction. 

Zero: Set if the ·result is zero, cleared if not, by: 

INR, OCR, DAA 

Any arithmetic or logical instruction 

if o, 

Parity: Set if parity of the reslt is even, cleared if odd, by: 

INR, DCR, OAA • 

Any arithmetic or logical instruction 

by the 

(() 
"-- Subtract: (NEC 8080 only): 

Set by SUB, SBB, SUI, SBI, CMP, OCR 

Cleared by ADD, ADC, ADI, ACI, DAD, INR 

Auxiliary carry: Set if a carry or borrow occurs from bit 3 to bit 4 

as a result of: ADD, ADC, ADI, ACI, SUB, SBB, SUI, SBI,.CMP. The 

same instructions clear it if the digit carry does not occur. It 

is not affected by shifts or logical or count instructions. 

Carry Set or cleared by any shift or arithmetic operation, including 

CMP, DAD and DAA. Cleared by any of the logical in~tructions ANA, 

ORA, XRA. Set by STC; complemented by CMC. Not affected by count 

instructions. 
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11.5 BRANCH INSTRUCTIONS 

.. 
Jump, Call Return, Restart and PCHL are the branch instructions. 

1 1 0 0 0 0 1 1 

1 1 0 0 1 0 0 1 

1 1 0 0 1 1 0 1 

1 1 1 0 1 0 0 l 

C3 JMP 

C9 RET 

CD CALL 

E9 PCHL 

All of the branch instructions include 11 as the two high bits 
(bits 7 and 6) of the instruction. The three low bits 

distinguish among the branch and conditional branch and various 

non-branching instructions. The conditional branches use bits 

5 and 4 to determine which flag is to be tested and bit 3 to 

indicate whether the jump is to be executed when the flag is set 

or when it is clear. 

--·---·---

1 1 xx x 0 1 0 Conditional Jump 

1 1 x x x 1 0 0 Conditional Call 

1 1 x xx 0 0 0 Conditional Return 

0 0 0 If not Zero 

0 0 1 If Zero 

0 1 0 If not Carry 

0 1 1 If Carry 

1 0 0 If Parity Odd 

1 0 1 If Parity Even 

1 1 0 If Plus 

1 1 1 If Minus 

/ 

-
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The Restart instructions use the three bits 5, ij and 3 as part of 

the address for the single byte CALL. They are copied into the 

corresponding three bits of the program counter while the 

remaining bits are all set to zero. For instance, RST 5 jumps to 

0028: 

EF RST 5 1 1 1 0 1 1 1 1 

l l t 
0 0 l 0 1 0 0 0 
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11. 6 INPUT/OUTPUT 

DB IN 

xx port address 

03 OUT 

xx port address 

The port address is copied to both the high eight bits and the low 

eight bits of the address bus. I/O Read or I/O Write is 

activated. The CPU copies the data bus to (A) on input; copies 

(A) to the data bus on output. 

FB Enable Interrupt 

F3 Disable Interrupt 

-------~--

Set· or clear the internal interrupt enabled flip-flop. EI is not 

effective until one instruction following EI has been executed. 

i 

e 
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0 ICS MICROCOMPUTER TRAINING SYSTEM DESCRIPTION 

1.1 The ICS Microcomputer Training System uses the NEC 8080A 

microprocessor. 

1.2 There are 1024 bytes of . Eraseable ROM (NEC 454) located at 

addresses 0000 to 03FF and 512 bytes of CMOS RAM at addresses 8200 

to 83FF. RAM is expandable by another 512 bytes at .aooo to SlFF. · 

1.3 An 8255 Programmable Peripheral Interface chip is provided for 

Input/Output. 

1.4 Ram is switched to battery power when the PROTECT/ENABLE switch is 

set to protect. 

~-5 
. '--·-· 

A Keyboard is provided with 25 keys. The top right key gives a 

reset signal to the 8080A. The other switches provide input to 

the 8255. 

1.6 A display is provided with eight digit positions. This is driven 

by DMA using the contents of addresses 83F8 through 83FF for digit 

positions l through 8. 

1. 7 The complete instruction set for the 8080A is given in the ao·ao 

Microcomputer Systems User 1 s Manual, t~gether with detailed 

specifications of the machine's internal state during instruction 

execution and a description of all registers. 

1.8 The MTS board layout is shown in Figure A-1. A block diagram is 

(f:) presented in Figtire·A~2. The complete circuit diagram appears in 

Appendix c. 
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2. GE.NERAL MONITOR FUNCTIONS 

The monitor provid~s five general functions: 

Load memory from keyboard 

Store program on tape 

Load program from tape 

Operator program in debug mode 

Run user program 

A - 2 

2.1 Load Memory-from keyboard. 

2.1.1 To select a memory address, press 

I 

(where nnnn is the address: eg ADDR 8200 MEM) 

The address will appear in the left four digits, 

and its present contents will appear in the right 

two digits. 

EJ 

2.1.2 To enter data to memory, (after pressing Bl key in two 

digits. They will replace the two digits at the right. 

2.1.3 To confirm those data and proceed to the next memory address, 

press I NEXT] 
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· 02.1.3 it an error is 

press El. made and detected before pressing any command 

This will restore the old data. 

key, 

0 

2.1.4 Pressing· any other command key will conf.irm the new data. The 

command will then be processed. 

2.2 Store program on tape. 

The program SEROT copies binary data from memory· to a serial 

recording medium. An external oscillator and modulator are 

required for recording on an audio tape cassette recorder. Data 

are output with 12 bits per memory byte: start bit (0)1 least 

significant data bit1 successive data bits (8 data bits total)1 

and three bit periods of stop signal (1). 

The procedure is to use monitor commands to load the starting 

address in register pair B,L and the number of bytes to be 

transmitted in register pair D,E. Then the program starting 

address is entered by use of the address setting and run 

procedure. For example, to record 8300 - 83C9: 

EJ ~ G G ·8200·) D-00 ) 

'NEXT I [] G ( 8200} { E-CA_J 
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rml [] [3 I a2·00 1 I H-83 l -
I NEXT l [3 [] 18200 I IL-00 I 

I ADDR·1 8 D D [] 10375 F3 I 

Turn recorder on 

(The display will 90 off) 

. At end of transmission the display will show: 

I 039E' J F3 I 

Turn recorder off. 
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Load Program from Tape 

The program SERIN loads binary data from a serial recording medium 

into memory. It is complementary to SEROT: it receiv~s data in 

the format described above. An external demodulator is req~ired 

for reading from an audio tape cassette. 

The procedure is to load a starting address into register pair 

B,L; enter the program starting address; start tape; RUN 

I e2ool I e-a2I 

18200 IL-00 

I03a1 PJ 

Turn Recorder on, and wait for about 10 seconds. 

EJ (Display goes blank.) 

· When the display reappears, turn tape off. 
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A reliable cassette modem using frequency shift keying is shown on 

paqe 9-44. 

2.4 Operating in Debug Mode 

The monitor provides ~or tracing the flow and results of a user's 

program. The STEP/AUTO toggle switch must be set to STEP; after 

each user instruction is executed a hardware interrupt is 

generated. This causes an entry to the moni~or. 

Operation of the user's program is initiated by the STEP command 

or the RUN command. A flag byte (SFLAG) is stored by the monitor 

when.the STEP or RUN key is pressed. This flag determines the 

procedure to be followed at the next entry to the monitor. With 

either command the user's program is interrupted at each 

instruction, but in RUN the return to user is automatic unless a 

breakpoint is encountered. 

If the initiating command was STEP, the monitor activates the 

keyboard after each user instruction is executed. 

If the initiating command was RUN, the monitor tests whether the 

user's program counter is equal to any of up to eight breakpoints 

entered by the the user. If not it returns control to the user's 

program immediately. When a breakpoint is encountered the monitor 

tests a counter associated with the breakpoint: if non zero it 

decrements the counter and returns, but if the counter is zero the 

keyboard and display are activated. 

- I 
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When the display is active under monitor control, it shows an 

address in display positions 1-4 (the left four digits) and a data 

byte in positions 7 and 8 (the right two digits). At entry to the 

monitor the address displayed is the program counter, and the data 

are either the next instruction or the contents of a register. 

The latter is identified in digits 5 and 6~ 

The user may request many other displays, such as another 

register, another address in memory, a register pair and the 

contents of the addressed location, the stack pointer, or the 

user's subroutine return address. These are described in detail 

in section 3. 
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MONITOR COMMANDS 

The major sections of the monitor operate as an interrupt service 

routine entered by a hardware interrupt automatically generated as 

each user instruction is executed, provided that the AUTO/STEP 

switch is in the STEP position. 

The user may program entry to the monitor by including the RST4 

instruction (E7) in his program. He may alter addresses and flags 

used by the monitor through his own program, thereby affecting 

monitor functions. Various monitor subroutines are accessible to 

the user by normal subroutine calls. 

3.1 Monitor Entry 

When the monitor is entered by interrupt (RST7 L_Qr _ by_ pr;()':lrjlmmed • 

call (RST4) the user's registers, program counter, and stack 

pointer are saved in memory and may be accessed by monitor 

commands. 

The RESET key causes a hardware reset to the 8080. The user's 

program counter and stack are lost, but his registers are saved. 

The stack pointer is initialized to 83D3; the memory address and 

user's program counter are initialized to 8200 •. 

3.2 Monitor Data Storage 

At entry to the monitor the user's program counter is popped from 

the stack and stored at PCADDR. The 8080 registers are pushed 

onto the stack. If the conditions are met for activating the 

- I 

I 
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keyboard and display the user's stack pointer is stored at SPADDR. 

In addition, the monitor stores two addresses and two indicator 

bytes, as follows: 

Memory Address (MADOR): the last memory location accessed via the 

MEM command (or NEXT, following MEM). 

Break Point Address (BKAOOR): the location in the breakpoint· table 

of the last breakpoint encountered during user p.rogram execution 

or the last breakpoint displayed by monitor command BRK (or NEXT, 

following BRK). 

Register Name (RGADOR): the name of the last.register displayed by 

REG command, or zero if MEM command has been used since the last 

REG command. 

Step Flag (SFLAG): a control byte that determines the monitor's 

actions at entry. 

When the monitor is awaiting a command or data, register pair B,L 

generally contains a display address, which points to either the 

memory address, the user's program counter, a breakpoint, or an 

address just keyed in by the· user following the ADDR command. 

Operation of the monitor commands can be described in large part 

by reference to these addresses: 

PCADDR 

MADOR 

BKADDR 
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RGADDR 

·SFLAG 

and the display address in H,L. 

3.3 Monitor Commands 

Monitor commands are issued by pressing one of· the eight command 

keys: ADDR, MEM, NEXT, CLR, REG, STEP, BRK, RUN. 

These are discussed below in the order listed. 

3.3.1 ADDR 

Recalls the user's program counter and makes it the display 

addres:;. The PC is displ.ayed in the left hand four digits, and 

the content. of memory at that address in the right hand two 

digits. 

If ADDR is followed by hexadecimal keys, the display address is 

cleared and the hex characters are entered as the display address. 

In general four characters must be entered, but this depends on 

the command which follows ADDR. A count of the number of keys is 

complemented and stored in register D for use by the monitor in 

executing the next command. 

Contents of D: 

00 ADDR not used 

FF ADDR used, no hex keys 

FE one hex key 

FD two hex keys 

• 
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FC three hex keys 

FB four hex keys 

The address, ·either the user's program counter or the keyed 

address, is passed to another command section when a command key 

is pressed. See the sections describing the commands MEM, BRK, 

STEP and RUN for details of the effects. 

3.3.2 MEM 

Calls for display of a memory address and its contents. If the 

preceeding command was not ADDR, the previously stored memory 

address is used. If ADDR was used, the address in H,L becomes the 

memory address. This may be the user's program counter or a newly 

keyed address. If exactly one hex key followed ADDR, that . is 

taken as the name of a register pair, the stack pointer, or the 

stack top, and the two bytes referred to thereby become the memory 

address. 

Key Register Pair 

l/SP Stack pointer 

2/ST Stack Top 

8/H H,L 

8 B,C 

D O,E 

Other single key entries are errors. 

With a memory address determined it is displayed in the four left 

hand digits and the contents of that location are displayed in the 
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right hand two digits. If the address was derived from a register 
.. 

pair, a label identifying that pair is displayed. 

After the MEM command has been issued, the contents of the 
\ 

displayed location can be altered by keying in one or two (or 

more) hex digits. 

The NEXT command increments the memory address and displays the 

new address and contents. Again, the contents can be altered. 

Note that ADDR causes display of a memory address, but the 

contents cannot be altered until the MEM command has been given. 

Examples: 

8300l- L AF] 

44 ) 

Recalls and displays previous memory address and 

contents. Contents can be altered by hex keys. 

8200) 011 
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0 Recalls and displays user's PC and instruction. Content$ 

cannot be altered. 

~DDR I EJ I 8200-I 

.. 
Now contents can be altered. 8200 is now the stored 

memory address. 

82011 

Displays the next byte in memory. 8201 is the stored 

memory address. Contents can be altered. 

I 8380 I 

Displays 83HO again, but contents are protected until1 

I 8380 I 

011 

sol 

44 I 

441 
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Now 8380 is the stored memory address and its contents 

can be altered. 

DD 18380 32 

Register pair display 

BGG 
BC contains 

8381 

Label BC 

Contents of 8381 

3.3.3 NEXT 

This increments the memo.ry address if a memory location is being 

displayed. 

When a register is displayed NEXT selects the next register in 

sequence: A, B, C, D, E, F, H, L. 
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c:::> When a breakpoint is displayed NEXT calls for display of the next 

breakpoint in the list. If there is only one breakpoint in the 

table, NEXT has no effect. 

'0 

3.3.4 CLR 

CLR removes hexadecimal data keyed in after the last command key. 

If an address is being entered, the program counter again becomes 

the displayed address. If data are being entered to a register or 

memory address, the previous contents are restored. 

In the breakpoint system, CLR deletes the displayed breakpoint 

from the list. 

3.3.S REG 

F1 fon· d by a hex key naming the register desired. 

~ . Displays the current contents of the user's 

program coun er and the contents of register n, with a label. 

User's PC-

Label H ______ __, 

Contents of B __ _, 
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If followed by any hexadecimal key or keys the contents of the displayed 

register are altered. 

EJBGG 8224) H-321 

If followed by NEXT, the next register (alphabetically) is displayed. 

I 82241 I L-131 

The name of the register selected for display is retained, and at 

subsequent entry to the monitor the selected register will be 

displayed. When the MEM key is used, the register name is 

cleared. Further entries to the monitor will display the contents 

If REG follows an ADDR command the effect of the ADDR command is 

lost. REG always shows the program counter in the left hand four 

digits. 

3.3.6 STEP 

91 
I 
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c::J ~STEP I sets SFLAG = 1 to indicate that the monitor keyboard and 

display functions are to be activated at the next entry to the 

monitor. All user registers are restored, the interrupt system is 

enabled, and control is returned to the user's program at the 

location stored in PCADDR. The user's program is interrupted upon 

execution of the next instruction and the monito~ is reactivated. 

If the STEP ( or RUN) command immediately follows an ADDR command 

with four (or more) hexadecimal keys, then the address entered 

becomes the user's program counter, and control is passed to that 

location. 

3.3.7 RUN 

EJ sets SFLAG = O to indicate that the RUN command was issued 

an then returns to the user's program exactly as in STEP. The 

user's program is int~rrupted-at each instruction to· test for 

breakpoints, but the keyboard and display a~e not activated unless 

a breakpoint is encountered and its count reaches zero. When this 

occurs the monitor behaves as though a STEP had been used. 

3.3.8 Breakpoints 

BRK Displays the address of the current breakpoint., which is the 

last breakpoint encountered. In the usual case it is equal to the 

program counter, unless the step key was used· or a programmed 

entry to the monitor was made. If the program has not yet 

encountered any breakpoint, then it will be the last breakpoint . 

displayed. Along with the address, a label 

for that breakpoint are displayed. 

BP ) and the count 
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If no breakpoint has been entered the display will show: 

t 0000 l I BP .ool 

A breakpoint is entered by: 

When RUN is pressed, this address will be encountered and ex.ecuted four 

times, stopping on the fifth. Then the display shows the program 

counter and instruction: 

I s210 I io ·1 



0 

A - 19 

(8210 l IBPOO I 

reak shows the breakpoint, now counted down to zero • 

. new count may now be keyed in: 

GD f 8210 I I BP24 I 

r the breakpoint may be removed: 

I 0000 I I BPOO J 

The display of address 0000 shows that no breakpoints· exist. If 

other breakpoints are still stored, the most recently used or 

displayed would now be displayed. Ia than one breakpoint is stored (and eight are permitted) 

NEXT will display each in turn. Whenever a breakpoint is 

dijp. axjd it may have a new count entered or it may be cleared. 

RST . clears all break points. 
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4. 

4.1 

or 

MONITOR SUBROUTINES AND DISPLAY 

Display 

A - 20 

Data stored in locations 83F8 - 83FF are displayed by the OMA 

channel. This is normally enabled by the monitor: it can be 

controlled as follows: 

3E MVI A,80 Set high bit = 1 

80 to enable display. 

03 OUT PORTC 

FA 

AF 

03 

FA 

XRA A 

OUT PORTC 

Set high bit = 0 

to kill display 

~he display is refreshed at approximately one millisecond 

intervals by OMA. The contents of 83F8 drive the leftmost digit, 

83FF the rightmost digit. Each bit controls a segment: the high 

bit is the decimal point (see Figure A-3). The RAM Memory Map is 

shown in Figure A-4. 

4.2 Display Subroutines 

The following subroutines are available to. the user. 

SPLIT (ADDRESS 02C2) 

Enter with a byte in register A. Return with the original value 

in C: the high order digit in register B (shifted to the right): 

and the low order digit in register A. This is used by DBYTE. 
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DIGIT 
POSITION 

A - 21 

1 2 3 4 5 6· 7 8 

DODD DODD 
ADDRESS 

83F8 83F9 83FA 83FB 83FC 83FD 83FE 83FF 

10 4 

Ls_J .(;;:\··. 
~ 

HEXADECIMAL CODES FOR LED SEGMENTS 

FIGURE A3 



6200 - 820!' 

8210 - 82ll' 

8220 - 822!' 

8230 - 823!' 

8240 - 824!' 

8250 - 8261' 
8260 - 82Er 

8270 - 827!' 

8280 • 82SF' 

8290 - 829!' 

82AO - 82U' 

8290 - 82!3!' 

82CO - S2a' 

8200 - 820!' 

830 - 82!!' 

82!'0 - 82!!' 

8300 - 830F 

8310 - 8Jll' 

8320 - 832F 

8330" - 833!' 

8340 - 834F 

83Sc) - 835!' 

8360 - 836F ' 

8370 - 837F 

8380 - 83SF 

8390,- 839F 

aJAO - a~ 
SJBO - 83BE' 

SJCO - SX!' 

8300 - 830!' 

83EO - 83!:!' 

83!'0 - 83!' 

FIGURE A4 

-
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ii 

256 Bytes 

Generally used for 

Pl:OCJ%am Mellm:y 

I 

a 

160 Bytes 

Generally used for 

Variable Data 

I 

32 Bytes·for Stack 
(Olapter 6 ) 

56 Bytes a!served 

for M:nitor 

J Displel'/ (8 Bytes) 
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OFFSET (Address 02A9) 

Enter with a digit in A and a display location in D,E. Generates 

the seven segment equivalent and stores in the display location. 

Decrements D,E to point to the next higher digit. 

DMEM (Address 0294) 

DBYTE (Address 0295) 

DBY2 (Address 0298) 

These are three alternate entries to the same subroutine, which 

calls SPLIT once and OFFSET twice, to display a byte as two 

digits. 

C) 
~-- Enter DMEM with a memory address in e,L; its contents will be 

0 

displayed at tbe right. 

Enter DBYTE with a byte in A; it will be displayed at the right. 

Enter DBY2 with a byte· in A and one of the digit display addresses 

·in D,E. The byte in A will be displayed at the digit addressed 

and the next leftward digit. 

DWORD (Address 0201) 

DWD2 (Address 0204) 

These two entries call DBY2 twice to display the contents of H and 

L as four digits. DWORD displays at.the left1 DWD2 permits entry 
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with a location in D,E. 

4.3 Monitor Input Subroutines 

The monitor has four useful subroutines for keyboard data entry, 

which your program can call. They are: 

SCA~ (Address 0257) 

This scans the keyboard once. If no key is pressed it returns 

with carry cleared. If a key is pressed it returns with carry set 

and the value of the key in the A register. It uses register B; 

all other registers are preserved. This subroutine is also called 

by GETKY. 

GETKY (Address 0230) 

This calls SCAN repeatedly until a key is pressed, and then waits 

until the key has been released for long enough to ensure that 

contact bounce will not make the key appear to have been pressed 

twice. It returns with the key val~e duplica~ed in registers A 

and C1 and t~e carry set for hex keys~ cleared for command keys. 

SCAN and GETKY return _the hex value for hex keys and the following 

for command keys: 

MBM 10 

REG 11 

ADDR 12 

STEP 13 

RUN 14 

-~ 

0 

1 

-
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NEXT 15 

BRK 16 

CLR 17 

The following routines also display the data entered: 

ENTBY (Address 0336) 

ENTWD (Address 0346) 

Each of these calls GETKY to obtain one or more keys. As they are 

entered, hex keys are shifted into registers H and L and counted 

in register D. They return to the calling program when a command 

key is pressed: that key is duplicated in registers A, B and CJ 

,.() register D contains a· count of the number of hex keys entered~ · B 
\ 
"- and L contain the last four digits entered. 

The two subroutines are identical in accepting key input, but they 

also display the input, and here they differ. ENTBY displays only 

the last two digits, in the two right hand digit positions. ENTWD 

displays the last four digits in the leftmost positions. 

N.B. These subroutines (~xcept for SCAN) involve delays because 

of the debouncing requirement, and run very slowly in debug mode. 

4.4 Subroutine Specifications and Listings 

The above subroutines are fully specified in Chapter 6.10, and 

() listings appear in Appendix B. 
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THE ICS MONITOR PROGRAM LISTING 



l~LILL · EDMS. LST 

0 
ISI s e:0s0 MACRO ASSEMBLER, V1. 0 PAGE 1 

MTS MOHITOR F•ROC*-AM WRITTEN 1/77 B'T' ED"-FIRD LAF·F·I H 

· TITLE MTS ~NITOR PROGF.:AM WRITTEN 1177 B'T' EDWAF.:D LAPPI;." 

0000 ~G0 
j 

i 1'£SET: RESET EN~' TO MOHI TOR 

00~ 31.0383 
00m: E5 · 
0004 C5 
0005 D5 
0006 F5 
0007 211>E83 
00€A 22taC8l 
00£0 061R 
tl0F RF 
0018 32DSS3 
0013 77 
0014 05 
0015 23 

ft~16 C21.l00 
·~19 210082 
~ ... o01C C?.6800 

0020 

j 

1'£SET: LXI Sf',TOS 
PUSH H 
PllSH B 
F'lJSH D 
PUSH PSW 
LX I H, '3KTBL 
SHLD BKAOOR 
M'Y'I B, 26 
);RA fl 
ST A F.:GADCtR 

1\1..P: ftDV M. A 
DCR B 
INX H 
JHZ ~p 

j . 

LXI H, 8200H 
JMP B'r'PASS 

0020 ·Fl l'ST4: 
CF.:G 20H· 
Di 

0021 0 
0822 C5 
0023 D5 
0024 F5 
00~ C36EOO 

0028 
002e: C..;::2882 ~TS: 

i 

XTHL 
PUSH B 
PUSH D 
PUSH PSW 
JMP :.ftVEP 

~G 28H 
.. TMP ~29H 

0030 CRG J:eH 
0030 Cll082 .RST6: JMP S230H 

i 

003S 
£1038 F3: RST7: 
0019 0 
003A 22t• R83: 
00'3t• C5 
00~ C•S 
003f' FS 
E'.1040 lflt• 483: 

.cl .. ·_.~£14!. A7 
044 Cffil00 

· 047 FE02 
£1049 C•A7100 
004C Cfi6200 

Cf.:G 3SH 
C•I 
>--:THL 
SHLD PCACCtF~ 
F'LISH B 
PUSH 0 
PUSH PSW 
LDA :FLAG 
AHA A 
JZ ·et{TST 
C:f' I 2 
.. TC ~D RUN 
.. TZ K'r'TST 

;LOAD NEW SP 
;SAVE HL 
; SAVE OTHER F.:EGISTERS 

;LOAD BKPT TABLE POINTER 

; CLEAR OUT OLD 8F.£RKF'O I HTS 

; MAKE DI SPLA'T' f'IOOE I NSTRLC TI ON 
; CL.EAR 24 PL.ACES FOF.: BKF'TS 

; LOAD PC ANO t1 POI NTER 
; GO AROUND F.ST EHTRY 

; RST 4 LOCATION 
;ENTRY INTO MONITOR VIA SOFTWARE 
; SA'f'E PC, RE~ 

>~:ST 5 LCICRTION 

; RST 6 LOCATION 

;RST 7 START LOCATION 
; t« I SABLE INTERRUPT 
; SWITCH Cl..D PC WITH 1-L 
; SAVE PC 
; SAVE REGS 

; SEE IF SI NGU: STEF· MODE 

; I F 0 L.AST CCt1t1AHD WAS F.~Lt~ 
j ~.C:I TEST FOT'~ e~F.£AK POI•rr 
; I F 1 LAST Cc:t1t1flt.l:t WRS STEP 
; IF 2 USEF.: HAS F.:EQUE..c::TED I HT OH KEY 



ISIS E:0E:E1 MAC~~O ASSEME:LEF.:, V1. £1 Pf1GE ~:: 
MTS··MCtNITOR PROC-RAM WRITTEN 1./'?7' E:'T' ET1~.flR() LAf'F'I N 

004F 6F 
00~ 2€.82 
00~52 E9 

0053: CCcDD02 
00~.f. D25D01. 
0E'.159 E:7 
00~.fl CA7100 
00~4>" ?.C• 
0E1~ 12 
005F C!St•01 

00€'.2 CD5702 
0065 D25D01 
006E: Cl7100 

00€B "t•88l 
006E 22DA83: 
0071 3E92 
0073: DlFB 
007'5 210000 
0078 39 
0079 22D68l 
0 07C: CCE: 202 
00# COCE02 
00E2 3:AC•SE:3: 
00E5 E:7 
0095 C~'9:::~01. 
00E:9 CC•9402 
E:10E(:, C3:9B00 

; 

l"'DV L A 
M\.'l H, 82H 
f'C:HL 

a<:TST: CALL BKLCC: 
JlA C F.£ RUN 
C~'.A A 
JZ NC:IRLIN 
CCF.~ A 
STA>f. D 
.JM P F.£ F.:UtJ 

K'r'TST: CALL SCAN 

j 

BYPASS'._ 
SAVEP: 
HORLIN: 

; 

. JlAC F.'.EF.'.LIN 
... TMP NORLl~J 

9-ILD MAC•~ 
9-ILD PCAC:OR 
MVI A, 92H 
CUT o.ITPT 
LXI H, 0 
CtAD SP 
9-ILD SPAOOR 
CftLL CLRGT 
CftL L C• 'T'PC 
LC:• A F.'.G AC•C~ 
Cll'~A A 
... TNZ CtREG2 
CALL DMEM 
.Jtt1p C:MD 

; I F (~'. EATE ~: .Jll ~1f' I ~~TO USEF.'. PF~Cl GF.:Af'1 
.; AT 82X>~ WI TH ~~FLAG FOP >=~:-1, 

,; SEE IF E:KF'T SET 
; I F NC:t NE F OiJt-(:• ,i r;.1.1 t~ 

; IF FCtlltm, ~~EE IF f:OtJtff =~~1 
; IF t.CtT.. (:a(:p C:C•LINT ANt:• SR\.·'E 

; F.~LIN AGAIN 

; TEST FC1F.~ AN'T' KE'T' F'F.'.ESSEC:1 

; IF SFIAG SET=2 BY USER, 
7 00 Rtl~. IF 'A?.rl ~ DEPRESSED 

; E tffF.:'r' FF.f1t1 F.~E: ~~ET 
·.;SAVE PC 

; HHTIALIZE PIA 

; GET SF' LO CATI m' 

;CLEAR RIGHT SIDE OF DISP 
; DI SF'LA'r' C:URF.f:tff PC: 
; IS A· f.:EG TO E~E C:1I SF·Lfi"r'Er:i ·:.· 

.i IF NOT CJI SF·LA'T' INSTF.'ltC:TION Atm · 
; WAIT FC1F~ CCIMMAtm 

; E~:F:: EF.~F.f1R CllTPUT SECTICfJ 
PUTS F.RF.'. ON [:e I SF'LA'T' 

; 

E10EF CC'8 702 ER F.: : 
0092 2l 
0093 3679 
0095 23: 
0096 3650 
0098· 23: 
0099 3650 

; 

CALL CLE~: 
n'x H 
MV I M, ECCO E 

· IHX H 
MV I M, RCCC:• E 
UA)( H 
MV I M, RC:CC:• E 

; CL FFF.: DISPL.Ffr' 
;ADDRESS HIGH DTGTT 
; LORD CODE FC~'. E 
; GO TO HEXT C•I G 
; L OAC:• C:1JC€ FCF.'. F.: 

; C:MC:•: CCtft't1ANC:• ENTF.:'r'. DEroDES C0t"t1Atl:• KE'T' At~C~· ROUTES 

; 

0 0SE! CD3: C:•02 Ctl C:• : 
00SE: DASF00 · 
00A1. 2ADAe:::;: 

I 00A4 1€.€10 Ct'l[:t2: 
0 0f6 E:7 Ctl C• 3:: 

ACCORD IN GL 'T' . 

CALL G ETK:'T' 
.,,TC FF"F.:· 
LH L. C• P CAC:(:a F.~ 
MVI (:., 0 
FC:tC:• A 

; GET A KEY 
; IF NOT C:C•MMftU:... EF.:F.:Cf.'. 
; F.:ESTOF.:E PC TC1 HL. 
.; CLEFF.'. Fl.AG FCtF.: Ft•C•R C:.ATA 
; C•CllJEt. E VAL CF C0f"U1A~(:· KE'r' 
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0 
~ 

() 

ISIS 8080 MAC:F.'0 ASSEME:LEF.:, Vj. f1 f'AGF 3: 
MTS .. M (IN IT OF.'. F' F.'01.:iF.'. AM ~JP ITT E.N j /77 F:1T

1 FC:•~.fl F.' [:a l.. AF'F'I N 

00A7 E5 
00AE: C:D82E:1;:· 
00Fe 019B0f1 
0(1FE e:1 
00Ff' 4F. 
E10E(1 0R 
00E.1.. 6F 
00~'. f1-:• .. 
0£1E:3: €1fi 
t10B4 ,;;;· 
0t1E:5 t11.['.t 5 c:~: 
E1t1E~: AF 
00E:9 E-=· :,:. 

f10EFI C:9· 

E10E;E; t:•€100 
'-i~iEf• e:~2t11 
0£1Ef° 6€f11 
00Ct 4401 
00(:~: 4~it1i 
00(5 Cc~"t1 
00C:7 E:f-'£11 
00(:9 9F.:00 

00(~: i;1:;:· 
E1E1C:C ,..-:. 

ie.:. 

00•~-L·· C3:1 (10t 

€1(i(:(1 €1;:: 
f.1E1C1. E:2 
0t1[:12 C:A1~;:0:1. 
£1f1[:t5 FEFE 
0€.: .. 7 C-21.€1£11 
f1 E:1 ["tfi ('(:1 

0i:1r.ie: ~j.35€11. 
E1~~r:-e. t1E'0~i 
E1t1E0 E:E 
0£1E1. 2~:. 
0E1E::~'. CAEE00 
00E~' ~-:· c:. :.~. 
0(1E6 z:;: 
(1(1E:7' €1['.I 

00EE: C2E:0€1f1 
£1f1EB C3:E:F0f.1 
£1E:1E:E 7E 
E.1f1EF ~,-;. ,.::. 
00F€1 6€; 
00F1 E'F 

i 

FtlSH H 
CALL C: LF.~GT 
U=: I E:, F'TF.'.- :::·;.: 
FOC:• C 
ftCiV (:,A 
Lt•A:!. F: 
ftrt\.' L., H 
IN>:: f: 
L[:.Ft>< f-: 
MOV H, H 
U:: I E:J F'Cif{.1 [·•F.: 
~:;F.:A F! 
>::THL 
RET 

F·T P · Ctt.J t1EM CH 
r:+.i F.'F.G C 
f:.W GOT"CIC 
C:al·J STE Pt=· 
f:+~ ~'.UMF' 
(:"'~ NE>:: lC 
[:1W f:F:·;::" f'T 
t:iW t~:r-·~. 

t·E >::TC: : ST A>=: F.: 
IN>:: H 
.JM F· f.ft VF.H... 

J 

fi£ MCH: Sl fi>:: t:: 
ri.•C:• r:. 
.Jz ou:. Ar:• 
Cf' I ~;'f FH. 
.Jl~ Z' :;.A VEt-1 .. 
,.;nv """ L. 
U~ I H ['.t~'.1'E!L 
r1vI c .. 5 

Ci..f' CMF' M 
H~~: H 
.JZ'. r f'f.'. 
nn·: H 
HJ>~ H 
f:(:F.: (: 
.JNZ Cil f" 
.JM F' F.F.~ F' 

FD F.· : M:) \.' Fh M 
lW-:: H 
MOV H. M 
f'I:«\/ L., A 

; SAVC: Hl. 
.iCL.F.AF.· F.·It:=iH1 SH:•F. OF [:1 ISPLfi ... 
.i l. OAr:• STAf': T OF T ff: Lt. 

.. A [:t[:. OFF££. T 

.i F.:ERr:s',' FOF.: £'.fJ'"T I C4·~ 

.i SWITCH t.H TH Hl. 
, Ci 0 TC• SF.C. r I C~·~ 

. I MF·- MUST Nf:T CF.~nss p e:1CiE f;~~t ~ .j C•S 
• F F.:OM STfiF.'. r OF Ct·t·· TO FN(:1 nr· F "i"p 

: CL.EHf.'.' i;,·Gr·L" r.p 
.. GO TO NF>n ~£.:·~ : .. oc;q 1 (lj: 
; .J iJ t1F' I NTO P'tfltl (: H 

;i ~~Er (:. J :-~PL A'r' Mm:iE Foi;.: J NS,. ~'.ucr r :~i?·~ 
_; GE: 1 L:.J G ~: ~·UNl 
.. r F tmr AC1F.:::... u::;t OL• :c ~tE-.h F.·£r 
.. IF NO KF'r'S Cf' r'1.)F.:t' TdritJ ONE: 
.i HL cn~~'AJN::: r .. ;:sr RFi.• ANf'FSS 
.. E L SF GFT [:•t)Lf:LF F.'.El;ISTF.f: 
·.GET T'At:Lr 5TR~'.T . 
.• # OF [:sF.~ 

; SF.f. r F m· GHT r:•f' 

: r F ~-·:r 01-n, LFF; \.rt' LOOP 
'.; EL£.F St:·rp i:-:·T'Mf:rti. 

.; SUEff~:ACl' 1 uif' f':Cl_it.tT 

.: J F NO f ~:l·~.·1:;. GO e::AC:t::' 
; f.LS[ fF'F.~·;f.· t•l1[:•F 
, GE 1· ~. VMf:CtL 
. H ~·Jf :a [:1 I SPL. t111: 



lSI S 80E:0 MACRCI ASSEME:LER.- V1 .. t1 PAGE 4 
MTS MONITOR PRCtc:RAM WRITTEN :1./77 B'T1 f (:al•.flF.~C:a LAPF'U~ 

E10F2 2~'FC83: 
(1~1~i 2At•683: 
E1~1FE: '•:a ( .. 
0~1F9 87 
t:1(1FA FE£19 
t:10FC C•A0101. 
t1~1FF 1:E£1B 
t1H.i1 -.-:. c:..::. 
t11tl2 ::c:• 
(11.0? C:~'.(11. 01. 
(11€1€: -::e·::. 

I -· 

01€17' FE(1!5 
01€19 CA1 ~1(~l. 
(11('(: 5E. 
f11.€'(:i 23: 
0H:IE 56 
01ef' EE: 
t11J.0 ~·2·r:. ::~ ~: 3: 
f1t1]: :?At• E:~!:;: 
t1 1.16 (:[:i(:i 1 l.~2 
C'.111. St C(:t(1::~C 

f11.1.C r :r:i?: .::.~1:: 
e11.1.F FE1.? 
ti 1.~:t CA1. 3:(11. 
t1l24 1.'5 
01:;::5 7"'[:• 
(lj :;:~: 2AC:it:~:J: 
(I 1 .. :=-·~! FFC1(1l. 
(11~i~: 77 
t11~f.· E:E: 
t11.2E: C2f:F~1f.1 
€1 l:?"l 

...,,., 
.. t:• 

€11?;:'. c:·fi4;.:u::, 

01.::~. ~:1t 
(11.:·E: 6[•F3~ 
ti 1~:t:: (126 (:1 E:1. 
ft 1.7::[: ~187-'E:E:~: 

t11::E ~1E:~i C•E::~ 
t1141. 0v:;EF9 

€1144 ::::c 
\(11.4~~ J:2[:• 4 !:::: 
~'.11.4~; 7R 
t11.4:: p-::w .. 
t114A CA!:iAf11 
t11.~ft 2F 
~' 1.4E B7 

VOK: 

~HVEMfl: 
SAVEHL: 
Ct. [:ifi[) · 

·' 

SHLC:• LOWC:GT-3: 
LHL C• S PAC(:i fi'. 
f'"(I\.' A, (: 
FC•C• A 
a:·I 9 
.JC VOK 
~1VI A. 8 
INK H 
[:C:F.'. A 
.JNZ VOK 
MO\.' A, C 
CPI 5 
,JZ SAV F.Hl .. 
MOV E, M 
HU:: H 
~'Cl\J Ct, M 
>::C:HCi 
SH LC• M AC.·C•F.· 
LH L [:i t1 AN:+: 
Cfi LL M·Klf~f· 
CAL L (:c F.:E"Ci 
CALL Et·fff::;.,, 
CF' I Cl..E 
..rz. . ou:i AC· 
f:(:F.: f:t 
MOV A. L 
L.H LC• M A(:{'.tf;.· 
••11'1 NClJ PC• 
MOV M .• A 
CMP M 
.JN Z EF.: F.' 
MOV ft, P 
. TM f· CM t• .:.": 

_; CiEl SP 
.i Ci F. T COUNT VA... UE 
; C• OUBl.. E 
;SfE IF TOO HIGH 
;SKIF' IF OK 
.i ELSE MAKE =f: 
; AC•[) TO SP 
; VALUE OF OFFSET E:'r' LOOPING UtHIL 
;fl=0 
_; :::F.E IF =:F· 

.i I F SO.. (:(1 NOT MEM FETCH 

.i CiET C:•E F~'.OM MEMOF.:•,• 

.i F'UT t1Et1 ADC:•F.'ESS IN Hl 
; MAKE NE~~ MEM AC:•C:f'. E :-~:::: 
; GET A [:a(:.PE. SS 
; [:• I .~;rt. A'T' 
.• () I SFt. A1

T
1 C• ATA 

_; EN TE~F.~ NB~ N:1,·· A F~T' r E 
.i SFf IF Cl .t.AF· USFt:• 
.: IF 1..ic:Eo.. Cl.fAf:'. ANr:i [:fl AGA T ~~ 
.; SEE: l F COUNT =1!:1 
; Cif T' (:iATA 
.i L OA(:i HL W 1 TH FW•C:tf.::FS·~~ TO f:E C:HW3 
; C1 C1 NOT UPC•AH.. IF ?F.F'O 
; SAVE 
; SET IF EG!UFlL. 
.i I F t·f.) T .• f. F.'. ~'.OF.'. 
; CiEl COMr•1AUf:t 

[:f: 0:1..H ,; TAE:LF FOF:' (•F.: ;-·, r:::J·\~f·i'.' Ar·m FEl:.::H 
[:f: t-~[:tH . 0r ~ .. H 
(:IE! f1~:H I €:(:..,.: I '- tP: .... 
(:f: oc-:H . ~-1,.,t: H. ~:if ta-1 
(:f: 0E}-( .· ~(:tt I f1f;·~H 
(:lf-: ~:":f('.iH, 5EH I tlf9H 

.i :. TEF-' ~~: F.tlN FftUT H~F.S 
; 

STEF'P: 
F.ttt·JF'. 

INF: A 
·~:TA SF LF:C · 
t·'[IV A, [:i 

CF.:A A 
.JZ C'L.F ST 
CMA 
OF.~A .A 

.i ~:Er SH-.F' FLF1G T(1 l 
, ::; RV f. ~1 OF:: 1 A ~. ~F l. fu.J 
.i GF.T Fr-ff P'T1 

.: SET r F ?F f:'Ci 
,i IF ::::c1' usr Cl(:; F'C 
: F.· f VET· ":.F C 0 I .It· ff 
.• IF ZE F'.fl.. O~::· 



E114F CA57''.:11 .Jz ACtF.~OK 
(11~'~ FE04 Cf'I 4 .. SEE: IF L.r.ss: THAN 4 
t11S4 C•Af.: ~ f.1~1 .Jc f.RF.• .: IF so. EF.: t;,: OF' 
01~i;' ;~~:r-1 F1t:3: t=t:i~:OK: SHL[:• f' C:A[:(:. J;.: .iSAVE r·c 
01SA (:[it:('~~~'. (1 f=:·:::r: CALL C:LF.AF' ; CLEff.• [:t I Sf'LFl'r' FCf.: U5°.ER 
0~_':{:1 f"1 'f"~'UN. POP F·~:t·J I F.'P.·~TOPf ~.T"HCK 
01~ [:C1. POf' ["1 
01~ Cl. f'OF' f: 
01.t.0 2Al>fitC LHL[:, F' C:Af)[:•~.: 
t11 fa.::: E:: ;.:rHL ; PUT f'(: ON STAfl:-· GET Hl.. 
01t4 FE: EI j HLLC•~ I t·ITERF:1&PTS 
0:1.65 C:St F.f.T ; STAF.:T USE~:S f' F.~OGF'HM 

; 
; GOTOC:: Ff• C'• RF..5 S SF:rrnm COMMFt~[:s 
; 

01E'C. (:[:(:E0~: GOTOC:· CAL l.. c:,;.•pc ; c;r:r F·C ANC• r.1I SPLA'T' 
(1169 C:t .. 9402 (fill. (:tMf.M .o [:1 J SF1. F1'T1 I HSTI\'. ucrr ON 
(11€.C: CC•4f.(13: C:AL.l . F. HHl:i .• E NTF:F.: AC:t• F.:E$ 
(11Ef' FE17 Cf' I Ct.E ;SEE IF C:LEFF.· 
0171 CA66t'1 .JZ GOlC•C ;IF CLEAR· Get AGAIN 

() 0174 7A 
·--

MC•V A, ['1 .i Sf:E IF CCIU~ff=(1 
0175 · e~7---- - tF.~R ___ -fl_--

·~ £117£. w:7c:f:11 ... ll'Z NCt T PC: ;IF ENTR'r' t1f'{:£. !.KIF' 
0179 ,ff, ftf::3: LHL(:· F (:Ar:(:.f.~ i l. (.tfi[:1 F'C: 
017'C 2F NC:tTPC· (.flfi ; COl't\rl. I ME=~NT ((IU~Jr 
017D 57 t·'D V · [:•, A ; ::::HVE At·ilt1 PASS fl) C:H:. 
017'E 7E: f'[I\.' A, f; .i f'LIT CCtMMANC:1 KfV IN A 
017F C3:FI 6(1i:1 ... TMP Ct1D! .i GCI TCI C:Cflt1ANf:. F.!C11 l1TP 

' 
.• t:~EGC: ~~f:G 1 STEF.~ MO,.:aIF'T' SEGt1E~.rT 
; 

0tEt2 C[:a(: E E:12 F.£GC: (:fill [:1'r'F•C i C;Er A~m [:•I SF'l.AT' F'C 
E:11ES (:[:•3: 00;;: CALL GETK'T' ;GET A KE'r' 
l11EE: [:1;;~A400 Jt-~C: CtlD~· .i IF C:O MMAt-U:. .• F' f.~C•C:E 55 
01EE: C:-Ef18 C:f' ! 

, ... , 
r.·· ; ~~E.E IF LES=; THAN 8 

01Et• t:•F'.lE:F £1£1 .Jt~ EF.'F.~ ; l F-" LESS THAt-~ €:, tWT LEGAL 
015(1 3:Gt.1583: t:f.'.SAV. STA RGA[)[:f.'. J SAVE: Hf:l•J [:.ISF· MCC:•E 
0193' C:t:af1?03: . £:.F.~EG2 C:ALL [:·~~F.Ci .i [:1 I SF'L fl'r' ~~E:GIS1-Ef:: 
019€: E~· Ftt~.H H i SAVF: At:.t:f.:F.SS 
01.97 CD3:603: ffiLL ENTF~' ;GET NE~J C:•ATA 
01~ 4['.4 ~'[I\.' (:, L. ;GET C~•fffA SAVF.[) 
01SE: E1 PC1F· H i RE s1·o~~r. 5Tftf1( 
01.SC FE17' C:f' I a .. E ;Sf'E TF C:LEAF.: KEV 
015€ C:A93:01 J'~ r,F.£G~: .. IF so .. Re:r:. I Sf'lA'T' 
01A1. 7A MOV A, L• ,Gf.T CC•UUT 
01~~ B7 (IF.:A A 

0 01FG: CFtAi'0~. J2 ~t.f: NCI Cl-lfiNf2L JF COU·~T =:fl 
(11Af. 71. tt(t'•,•1 tt , .. .• 
01A7 7E: F.~UF. : t•'(IV fi, f: , GEl- C OMMfiU(:1 
01FE~ FE1.~ Cf'T r.f.:'.x'T ; SF.f. IF NF.XT 



. ISIS 8080 MACRCI ASSEMBLEF.~ \.'1. 0 F'AGE 6 
MTS MCINITOR PRCl~~AM WRITTEN 1/77 E:'r' Et•\..flRC:• LAPPH~ 

01Ffl C2A40£1 .mz CMD2 
01FC 3AD58!. LDA F.!i AC:•C:f.'. 
01E€1 C6F9 Ff.•I ef'9H ; IHCREMENT F.:C:ft (:a[:•F.: 
01E:2 F60S C~I E1E:H ; CHANGE 1.f. TO 8 
01E'4 C!.9001. .JHP [:aRSAV 

; 

; E:RKPT: E~: E' A~P Ct I NT MFtJAGEMENT SECiMF.NT 
; 

01e:7 ES Ef:.'.KPT: PUSH H _; (:a I SF1. f1'T' f:f' T(I T NC:1 I C:Fff r. f:VPT 
01E:E: 21.5DF3: L.>::I H.. E:f'COC•E 
01E:E: 2~'FC:83: SHLC• L OL-J[:(; T - 3: 
01EE E1 POP H 
0iEF 7A f•"(I\.' A, Ct ;SEE' TF f=t[:i[)F' E ~JTf.f.'.E[:i 
E:11C0 E:7 OF.:A A 
t11C1 C:AE180~: ,JZ [:aEt.:PT ;IF uor·, [:a I :::;PL A'11 C LI F.:F.'.F. t·J T BP 
01C4 2F C:MA 
01C~:i E'"' t' C~:A A ;SEf. IF GOTO ENTF.''T1 MAC:·E 
01Cf. C:AC:E0:1. J' I '- OKVAL ·;IF ~1 OF.'. f'10~~:E THFlN 4, OK 
01C9 FE04 Cf' I 4 
01C:B DA€:F€1~1 .J(: EF.:R .: ELSE EF.:F.f1F.· 
01CE CC•C:1D£12 OK VAL: CALL E:KLCC· . i LOCfiTE F:F.:FAKPO JNl . 
E1H:iL C•A16~12 .Jc OLC,E:P ; IF Fnu~m .. USE m.D 
E:1.1(:4 05 (:(:F.: E' I ;SEF IF F.:OOM FOF.'. t·JF}1 

(11[:'5 FA~:F€1€1 ·™ EF.:F.: ; IF t·(IT .. EF.'PCF.'. 
t11C:tE: 1E: [:(:;;:: (:1 .; LOA[:a IF POOM 
t11['.t9 1E: [:(:~:: (:C 

t11[:f\ EE: ::-:)::HCi .i L.OA[:c t-JE. l·~ F: t<At) f:•J;.: 
01cae: 22[:aC:t:3: SHL[:. F:KA[:(:•F.' 
E:11[:€ .,--... 

( .::,. MO\.' t1 .. E .i l·~P rrE NE~! Af:f1 F.·F.SS INTn TAE:LF 
E1U:iF ~.-:. c:...::. ' nn:: H 
E11Ef1 -:-.... 

' c:. MOV M, [:a 
~11E1 C:D3:603: BKLflP: CALL ct·ffE~1' _; CiET f:'r'TE 
E11E4 FE17 Cf' r CLF ;SEE IF C:LrAF.: 
t11E6 CA1. 1::0;;:~ .JZ C:LF.:E:K .i TF Ci ft=,p .. CLF.~IP F:KF'T 
01E9 7'('.t MO\·' A, L ;GET ENTFF.:E[:• f:q"ffFt 
t11EA 2At•CE:3: LHLC:• E: KA[:(:• F.: .i f:iET HL F'OSJTI (1U 
E11Et:1 23: HA>:: H ; I tK: ro COUUT 
01.EE .,...-:. 

c:..::. •. ItJ>=: H 
(11EF 15 [:(:F.: [:• ;SEE IF COUNT=· (1 
01F(1 FFf"401. ,JM NCf~KC ;IF aF.'.O .. ['.it) NOr CHAt.iGE 
01F3: 

..,., 
' ' MOV . f't A .. SAVE NEl~~ C:Ott·~ T 

01F4 23: NOE:KC: IN>:: H ; GO TO ~JE>::T F:~::Pr 

t11F5 7E MOV Ft, M ;GET E:KF'T 
~H.Ff. .-.-:. IN>:~ H .iGOTO ~~E::·::T ONE UP c:.·· -· 
E11F7' E:6 OF.:Ft t1. ,; ~~:r.e: IF ZtF.:O ron 
01FE: 2E: (:(:>:: H .. C OF.:F.:E CT F'CiHff fF.· 
E11F9 C~'FF01. .JNZ E(tK .·IF NOT .. OK 
E:11.FC: 21C:-E83: U::I H, E:KTE:L .. LOA[:. STRF'T OF Tt=1f:LF. Ft GA JN 
01FF , ....... 

' (:1 E:C1K: MCIV H· E: .i CiET C OMMFI t·~ [:~ 
t12(10 FE1S CPI r-.IF. >ff . i SFE r .... r NE>::T 



0 

(0 
\, 

!o 

ISIS 8080 MACRO ASSEMBLE~~ V1. £1 PAGE 7 
MTS MONITOR PROGRAM WRITTEN 1/77 B'T1 EDl-.FIRO LAPPIN 

0202 C2A400 
0205 2"c:.t-C83 
0208 2ADC83 
02eE: 5E 
e2ec 23 
02£0 56 
020E ES 
c12~:1F EE: 
e21~ ct:it:,1:z1-;:: 
£1213: E1 
0214 23 
0215 7E 
0216 'CD9502 
0219 CJ:E101 
021C 2ADCS3 
021.F 54 
0220 50 
0221 1' .;:. 

0222 13: 
0223 13 . 
0224 1A 
0225 77 
0226 23 
0227 1l 
0228 7B 
0229 FEFS 
02'9 ,C22402 
024 2ADCS3 

·02l1 0615 
0233 C3:F501 

0236 3£81 
0238 lD 
8239 C23802 
023C C9 

023tt CC'5702 
0240 D2!.D02 
0243: 4F 
0244 1614 

JNZ 01D2 ; IF '"1DT, PROCESS COMftftND 
9-ILD BKAOC:•R ;SAVE NEW BKPT ACOR 

DBKPT: LHLD BKAOOR ;GET BKPT A~ 
11:1\I E, t1 ; GET ENTR'r' OUT OF TAEl.E 
INX H 
mv D, M 
PUSH H ; SAVE f•CtSI TI C•N 
:'.o:t:HG 
CF! LL C, ~·~~: i:;f:1 ,; ('.! I :::F'L A'T' F! ~· :·;t=:· 
PCIP H ; GET f'OSITI Ot~ BAO< 
INX H ; GET C ClltNT 
ft[IV A, t1 

Cl.DBP: CALL D B'r'TE ; DI :oPL A'r' 
Jl'IP B<LOP ; GO EACK 

ct.RBK: LHLD EKAOOR ; GET ADDR 
11:1Y D,H ; GET ADDJ:~+l 
rov E, L 
INX D 
INX D 
INX D 

O..P: LDAX D · i LOOP UNTlL END CF TAE:LE F.!£ftCHED -
rov M, A ; TF~AtE. FEF~ t•ATA 
INX H 
INX D ; CHANGE F'OINTERS 
fWC•V A, E ; SEE IF AT Etl:t 
CPI <BKTEl.+26) At[:t 0FFH 
Jl.IZ C.t.P ; IF t.DT, CONTINUE 
LHLD BKAOOR ; GET BKPT RC«! 
MVI B, NEXT ; MAKE KE'T' LOC" LIKE t£XT 
'"TMP t.CtBKC:+ 1 ; GO BACK TO SEE IF AT Etm OF TABLE 

i 
; DELA'r': SLBROUTINE FOF~ 1 MS DELA'r1 IF t.D 
; _ t-FIL TS OR HOLttS 
; USES REG A FIHD FLAGS 
; 
tE:LRY: MY I .fl, 131 
C£L1: CCR A 

'"l'HZ t"E:L1 
~T 
C£TKE'r': GETS FIHD DEEO..INCES A KE'r' FRCIM THE 

; KE'r'BCARD SCFt•AER 
;USES REGISTERS B AND D 
; REG Fl A~.D C COHTRitA THE KE'r' VALLE 
; CALLS DELR'r' AND SCAN 
; RB'l'Ollg W1'l'B 0C-0 FOR CXJIWI>; c:t-1 FOR BEX 
r£Tk'Ti: CflLL SCAN ; GET Fl KE'r' 

me GETK'r1 i IF tl'.I t(E\-' FC:llNt•.. TR'T1 RGAI N 
ftD\.' C .. A. 

FSTCI\-': ""'1'I D, 20 i DEBa.mcE C'r'Ct.ES 



!£:IS gt18~1 MACRO ASSEME!L.E~\ Vt. (1 PAC;F. 8 
MTS MOt·HTOF.'. PJ;.:O"-:AM ~JF.:J'TTEN :t/77 f:'T' E:N.fH~:t: LAPF'H~ 

(1246 Ct:•3602 
0249 (:[:•5702 
024(: C•A4402 
t124F 15 
t125(1 C246€1:;~ 
02~;3: '0:. ' -· 
t1254 FE1.0 
t12~6 C9 

t1257 ES 
0258 2EEE 
02~eA 06(10 
02~(: 7t:• 
02~~) F601 
E12SF C•3:FA 
0261 DE:FE: 
0263: 2F 
02€4 A7 
f12f.5 (:273:02 
02E:E: ~14 
(1269 ....... 

( C• 

E12tfl FEE13: 
E12t.C 0~'8002 
E126F ':•Q c.-· 

027t1 C3:SCE12 
(1~·73: 2EFF 
(1275 2C 
t127f. 0F 
(1277 [:•275(12 
f127A 78 
(1278 8" ,, 
027(: 87 
t127t• ,,.," 

r.•' 
(127E gs 
f127F 37 
02€{1 E1 
0281 (:9 

Cl.OOP: CALL C:iELA'r' .• (:i F:LFl\-1 

CALL SC:AN :. (if"T ~' ····E'r' 
,J(: RSTC•'r' .: TF OUE .. STAF.'.T OVf.F.'. 
t:C(.;: (:t 

... ll,L: t:•LOOF' ; T F C:'r'CLE c:.or·E, H~C) 
~"(JV A, (" .. I F'l.H l<E'T' HJ A 
Cf' I 1.6 .~COMPARE FOF. C:OMMAtm KE'T1 

F.'.E T ; CARRY SET IF HEX 

:enN: l<F.'t'E!(IAf:fJ ~.(:flNNF~'. 
.. r£TS Fl ~'.'.'£'T1 E:1

T
1 SCAWHNCi THf' •·::E'r'E'OAP() 

. i LI SES F.:EG P. 
.i KE:T' VALi£ F.:ElLIF'.~.F(:i IN F.:F.G A . 
; USES THE STf"iCK FIJF.: j LF.VEL 
; F.:ETUF.:NS A SET (:f'F.'R'T1 IF •·:"E'r' PF.~fSSErJ 

INF·ur: 

KSCAU: 

KP: 
FK· 

' 

F1JSH H 
MVI L 1.11€1t1.1.0E: 
MV I E:, (1 
t·f.'IV A, L 
ORI 1 
CUT F'C1F.~TC 
ItA F'O~:TA 
C:fttR 
ANA A 
.JNZ •~P 
JNF.: E: 
MOV A, B. 
Cf' I 3: 
,JNC SC F.'ET 
C:eAD H 
,JM F' IN PLIT 
MVI L (1FFH 
INF.: L 
~:f;.:C 
.JNC FK 
t·t:•V A, E: 
Ff.•C• A 
FC•C:a A 
ft1[:1 A. 
Ft•C:• L 
::.re 
Fi)F' H 
F.'.ET 

; SAf...'E HL 
.i SCAN MASK-f1 MEANS THAT F.'.OW 
.i CCIUtff =(1 

; MAKE SUF.:E TF.fttA~MI SSIOU E:IT SET 
.i CtLITf'llT SC:AH C:aATA 
.i F.:EAC:. IN COLUMNS 
; HAVEF.:T 

.i IF t-:E 1
T

1 f'F.:ESSE[), tKIT ZERO 
; I tK: C OUNTEF.: 

; SEE IF t:•CIUE 
; I F [:(1 NE.. F.:ETUR tJ 
.i SH J"FT MASK ONF. Ctv'ER 

; L Oft[:t L i·JI TH -1. 
.i I w:: L Utff r L. 1 FOUNC• I u n~F'UT 
.t E:'r'TF. 

.i TAKE F.:Ol-J C:Oltff Ffm MLIL T E:'T' E: 

; AC">O COLUt1N COUNT IN L 
· ; SET C:AF.:F.:~· 

; RESTOF.:E STACK 

CLF.'GT: CLEARS RICiHT SI C•E OF C:•I SF'LA'T' 
CL.EAF.:: CLEARS ALL OF CHSF'LA'T' 
Ct.F.:LF''. Cl..EA~:s e: [:aI GITS STAF.:TIUC; AT LOW [:.GT IU 

1-l.. F.:EG I STE F.'.S 
j USES E:, H, L 



0 

,0 
\ .. 

0 

ISIS 8E1E~0 MAC:F.:CI ASSEME:LEF.J \.':I .. Et F'AGF. St 
MTS ·MONITC1F.: f'F.:OGF.:AM ~JPlTTEN 1./77' B'r' £.f)~·.f1F.:C:1 LAF•PJt~ 

02~ 0E'.£44 
02E:4 C~-:8902 
02e:7 0608 
0289 21.FF83: 
02EC 3600 
02EE 2E: 
02Ef'" 05 
025€1 C~:SC02 
0293: C9 

0294 7E 
0295 1.1.FFE:~: 
02SE: ES 
0299 (:[:(·20~: 

02SC CC:tFt9E12 
02Sf' 7E: 
02A0 cttfl902 
02fl3: E1 
02~- 3EE:0 
02A6 t•3:FA 
0~:AE: (:9 

02A9 21.E:202 
02FC 85 
02f(:• 6F 
02F£ 7E 
02Ff' 1--· ' 0280 1E: 
02E:1 C9 

E12E:2 :::::F 
0283: 065B4F 
02~ 666[:•7[:• 
02E:9 077F6F77 
02Et1 5Dl95E 
02C0 7$171 

; 

Ct.~:GT: MVJ E:, 4 ; '1· r:·IGIT BLHUt:' 
... TMF' Ct. 

Ct.EAF.: '. MVI B, f: i E: C>JGIT f:LAr·I::: 
Ct.: u::J H, LO~iGT ; LOW r.1 JGIT Ctf c:a1g;· 
CLRLf': tr-.·' l M, 0 ; CLEf-f;.: 

r.<:>:: H ; C:HAt.GE F'OIHTEF.: 
r.cfi: e: ; LOOP CCILtff OC:R 
'"llAZ Ct.F.:Lf• 
F.:ET 

C:-E:'r'TE: [:•JSPLfl'T' E:'t'Tf. Cf' [)ATA IH A ON LOW OOTS 
C:E:'rr~:: DI :PLA'r' E:'r'TE OH AH'r' DIGJ TS SPEC: E:'T1 t:aE 
DMEM: C•I SF·LA'r' f:YTE REFEREHCEl'.:t BY HL 

;USES REG A,B,D,E 
; ~:EG C: = OL[:a REG A 
; C:RLLS SF1... IT .. OFFSET 
; USES 1. LEVEL CtF 5TAC:K 
; 
C+1EM: 
[."{: 'r' TE . 
[:f: .,. ~· : 

t1C1V A, M 
l.X J t•, LC1~(:1 GT 
F1JSH H 

; GF.T DI SF-'LA1
T

1 [)ATA FRCt1 HL IN MEM 
.a LC•W 2~ DIGITS 

D'T'EN: 

1:11LL 5F'L TT 
CftLL OFFSET 
te1V ·FL E; 
CALL orF=c:r 
POP H 
MVI FL c:0H 
Ct.IT PORTC: 
F.£T 

;SAVE HL 
.• Sf'LIT f:'·r'TE 
; GET RtJC:t DISPLA'r' f:•IGIT LEGnm 
; GET CtTH5~ Hfl.F 

; f.•ESTORE HL 
; MAKE SLIF.£ C•ISPLA'r' IS C••~ 

Cf='FSET : GETS A 4 BIT VALLIE· A•.t· Fnms THE S'r'Mf:OL 
; FOF.: THE [)I CiJT A~~[) [:c ISF'LA'T'S IT 
; t.t5ES REG A, H, L 
; l':EG f•AIR D, F. AF.:F. r:1EC$~EMF.JffEC:• f:'r' 1.· 
i 
Cf"FSET: LXI H, TAR.E ; TAP.LE OF [:•IGI l5 0 TO F 

f(:•[> L ; OFFg:.:T PCt I UTF. F.~ B't' DIGIT IH A 
MC1V L,A 
t'D\.' FL.M .i GET C:ODE FCIF.: CHGIT 
STA>:: C• ;SAVE IH r.eISF' 
CCX D it10VE TO HEXT DIGIT 
~£T 

i 
TABLE: DE: 3FH ; MUST HOT C:F.~Cl55 PAGE E:OUNDS! ! ! 

DE: 6, SBH, 4FH ; CCIDES F~: n£ NLt1BEF.S 0 TO F 
[:E: 6€.H, 6CaH, 7t+I 
r:-e: 7, 7FH, 6FH, 77H 
Cf; :.c+t .. 3~, 5El-l 
CE: 754-1, 7j .. H 



ISIS E~08~ MACRO ASSEME:LEF.:, Vt 0 PAGE. l. f1 
MTS MONITOJ;.: P~:OGRAM l·4fHTTEt·~ j /77 F.:.,_. EC:.\.JAF:(:a LAPF'U~ 

02(2 4F 
02(:3: E6F0 
02C:5 1F 
02C:6 1F 
02C7 1F 
t12(:8 1F 
E'.12(:9 47 
02C~ -:tQ 

i -· 
02c:e: E60F 
02Ct:• (:9 

02~ 2ADAS3 
0 2D1 11F 883: 
02C'4 7C• 
02Ct5 CC•9802 
02C'8 7C 
02C•9 CC'9802 
02[.-C: C:9 

0200 
02E0 
02E2 
02E3 
02E4 
02E5 
02E6 
02E7 
02ES 
02EE: 

'02EC 
02EF 

11C•E83:. 
0608 
1A 
4F 
BC• 
1-::· .:.· 
1A 
13: 
C~-EF02 
BC 
CAF702 
Bi 

; Sf•LIT: SF.F'AF.:ATES A B'T1rE INlO ~'. 4 E:IT './AU..lfS 
; f;.:EG A=LaJ Hfl.F 
; REG B=HIGH I-ALF · 
; ~:EG C=OF.:I G VALUE OF A 

~LIT: tot:1V· (:,A· ;SAVE P.YTE 
ANI f.1Ff1H ; GET UPPER HFt..F 
F.:AF.: ; M Cr\.'F:: TO LEFT SI[:€ 
F.~F.: 
F.~f;.: 
f;.f\F.: 
~'Cl\" B,A ; SAVE 
t1CtV A, (: ; GF.T OTHER HALF 
AHI 0FH 
F.:ET 

C+.IOF.~C•: rJJSf'Lf=t'T' HL IN LEFT 5JC€ OF [:1JSPLA'r1 

[:tWC•2: DISPLA'T' HL I tA F'OSITI (IN Gr vaJ f:'T' c:ir. 
; D'r'PC: -DISPLA'T' AND GET PC 
; USES A, B, C 
; REG C'.1, E C•C:F.: B'T' 4 FOR C•\.m2, t.C1T USEFll. FCIR L.•l•JORC-.1 
; C: ALLS DE:\-' 2 

0\-'f'C: 
[:+.I (I F.:C• : 
r:+m2.: 

LHL D PC:ACC•F.: 
L>:: I (:•, LC11,..tt GT-4 
MC:tV A, L 
CALL C• E:~·~: 
MOV A, H 
CftLL DE:'T'~: 
F.:ET 

.i GET fiC: FF.:CIM MEMOF.~'r' 
; SETLP FC~~ TCf' F'AF.~T OF C•ISP 
.i (:e I SPL A'T' LOW E: 'r'TE 

Et-:.LOC: LOCATES A E:REf-f(PCIHff JN THF. lAE:L.F 
ADOR T Ct E:E FCll tm I N. t-L 
F.:ETUF.t~S Ci-'=1 IF FOUND--A=COUUT OF f:KPT 
E:=0 IF tm ROCt1 I u TAEl. E ftm NCI T FOlltm 

; CE:=CCILHT ADrJF.~ OF POS TO E:E USEC• 
; 

B<LOC:: 

El.: 

NCtMAT: 

LXI C•, E:KTBL 
MVI e:, e 
LDA>:: r.a 
f'CIV C:, A 
C:MF' L 
n~>:: t• 
LC•A>~ C• . 
It~>:: C:e 
.Jl-~Z NOMfiT 
CMF· H 
.JZ MATCH 
OF.:A C 

; L OAC:• E:Kf'T TFE: LE f' 0 I NT EF.: 
; MAX # E:Kf'TS 
; GET LO~J AC•C•F.: 
;SAVE 
.i SEE IF EQUAL TO L GIVEN 
.i GC1 TO HIGH FC•C•F.: 

; F· Ct I NT TO C:Ol.t~ T 
.i SEE IF EG!LIAL 
.i IF =.. COMF'AF.:F. H VALUE 5 
.i IF =, MATC:H 
; SEE IF Etm OF TAF:LF. 



0 

:O 

ISIS E:00(1 MAC:RC1 ASSEMBLEF.:, V~l.. 0 PACiE 1.1 
MTS MONITOF.: PF.:OGRAM WF.:ITTEN 1/77 E:'T' EC:•la.FIF.:C:• LAf'f'HA 

02F0 ca 
02F1. 05 
02F2 CE: 
028 !..3 
02F4 C3:E20;:: 
02F7 18 
02FE: 1e: 
02F9 EE: 
02FA 22[:• (:<::3: 
02Ft• EE: 
02FE" 13: 
02FF 13: 
0300 1.A 
0301 3:7 
03:~~ C~9 

E13:(1s 3:AC• 5E:J: 
03:E:'lf, , .. ,.., 

C•1• 

(13€17 C:A94(1~~ 
e:::~OR ;;::11 t.~G 
0:::~£(:1 85 
03:££. 6F. 
0:::~f1F 7E 
0$.j. (1 3:~~F C E:J· 
0317:: =~E'4€1 
03:15 ::;.:F C• g ;J: 
03:1e: .-,-:;. 

~ . .::. 
03:19 7E 
03:1A 2AC:•6E:]: 
03:1[:. e:s 
03:1E 6F 
0:::::1F 7C: 
03~'0 C:E0£1 
0322 67 
0323: c:3:94e2 

03:~'6 76 
03:~'7 07 
0:::~2E: :::~e:E16 

0l2R 7701 
01,·c: 5[:•£15 

ftflTCH: 

~'Z 
[:(:~· f: 
F.:7 
nm C:• 
"TMP Bi... 
r.c:x r:. 
. c:c: >:: r:• 
>::CHG 
SHLr:c fa:.A[:(:aF.: 
:;::C:HG 
JN>:: f:• 
JN~·~ [:• 
UJA~:: C:• 

STC: 
RFT 

; F. •m r F HI CiH=l. OW=-.:0 
; 5EF J F PH\.'5TCAL F.HD CtF fAE:LF. 

; C;O TO NEXT EKf'T EtffF.:'r' 

; I F r'f1 TC:H, SAVE F'O I NTE F.~ 

.~ GE"T C:OiJN1. 

.i PUr I U A 
; S FT (: AF.·F.~t· 

C--F.:E-:G. [:al :-f'LA'T'S F'EG I STF.F.: l.JT TH F1 L f.GF.t·Ar:i 
FINDS LOC IN MEM AN~ PUTS JN ~L 
H.. =f'C: FCtF.: ?EF.!1 F.~F.C; 

; F.£ G VALUE F Ctl.tU:. TN f:C.fl C:c()f.' 
.•USES .A .. F.:. C'>~ F. 
;R~G C=OU:• REG A 
; CAL.LS (:LF.:GT.. f:aBVTF. 

[:af;.:EG: L[)A ~'G AC) [:tF.· , (-iF.T F.'. F.C;T STFP VftU.JE 
f(:.t• A .• C:tOUBLF AUC'• TEST F CtF.' ZEf;.'.(I 

..tZ f.cMF:M IF ?F:~·(1 .. [.• r Sf'l f!''!'' ! t·~ST f ff .-::PC> 
u~r H, F.'.G1'"fa -·j.f. ,; LOAC• F·ort·JTr:P OF S 'r' MF:lt l . S ~~~(;1 

f{:. (:· L .• OFFSF T 
MOV l.. .. A 
MOV A.f'1 .i CiET S'r'Mf:C1L 
·;rA l. .Ctl•J[:•(ff - ::: .i [:i I Sf'L AV 
t·1VI n. [:.ASH .tGFT A r.1FtSl-1 !:\·1 MF:Ol_ 
STA Lo ~mcff - ~: .• [·1 l SPL f l'r' 
JN>:: H · i C.F.T C:FFSFT ;{I SF· 
MOV A.M 
LHLf:• SF'Af:(:•P •CiFT SP 
A[:.[:. L .• ,)f-'FSf'T 
MOV L· A 
MC1V fi,H 
ACJ 0 
M(IV H.. A 
Jt'IP C:+1FM .iGO f :t I Sf'l.A \-' f:ftl"fi 

; F.~ ETLf.~ N TO CH" LFF.· FF.'CtM M1F:M 

J;.:C;TBL.: r:f: 7f:H ; MUST NOT CRCES PAGE f~O!JtJDARIES ~ ! I 
[:f: 7 
f:f: :?:~:H .. 6 .~ ~'T'MF:C'IL c:1rrrrr FF.'C•M 5 f' f:[:l[:a F.~ 
[:f: 77H,1 .i Ct F.~ [:aF.F: T:, H .. t... Ft .• E:, c:. r:·, t. .. F 
[:E: !,=°.f'.+i. 5 



ISIS E:0E:£1 MA~O ASSEME:LEF.:, \.'1 .. f1 F'ACiE 1. 2 
MTS MOt-HTOF.: PRO~:AM i..HUTTEN 1./77 E:1

T
1 EC:t~.flF.:D LAf'F'I N 

03'.a: 3:904 CE: 3:9H .. 4 
03:3{1 ·SE03: CE: SEH .. 3: 
E133:2 7902 c:e 79H .. 2 
03:3:4 71.00 C:E: 71H .. 0 

Et-HE:'t': ~}ITEF.: E:'T'TE. [:el SF'L.A'r'S ENTt:.~T' IN FAF.: F.:IGHT 

t1:3:3:6 
c..-·~· ~· .:: . .:;~::-
t1 ::r3:c 
03:3t1 

.:13:40 
(13:41 
t13:42 
~·::43: 

(13:46 
f13:49 
~' '3:4(: 
~13:4F 

tG~-ft 
€•2:51. 
€1352 
03:53: 
(13'.~55 

03:~.c: 

Ct:a5E:£13: 
(:[:16403: 
7Ci 
CC195E12 
C•1. 
1.4 
t•5 
(:3:3:9€13: 

CC:•5 E;f1J: 
(:[:1€; 4 (f~: 
Ct:•(:i 1tt~: 
(:il. 

14 
['.15 
7A 
FEf.14 
C1494(1~: 
C.3:49(13: 

i F.:l GHT PCISI TI Ct~ 
.i USES REG E:, C:, H 
; F.:EG A AN[:i E: E:CITH cm.rrAIN C~1(:s ~:E1t' TEF.11INATING EHTF.:'t' 
; REG C•=tf: OF r:ar GI TS ftJTF.F.'ff.1 
; F.'.EG L=VALLIE ENTEl:.:E[:· 
.i CALLS ENT .. ENT~:~ C:iE~'r'lF 
.i 

Et·~ T E:'r' : 
E:'-r1 LP: 

CALL ENT 
CALL ENT2: 

; HHTI ALIZE 
.; CiET C:1 lGIT ANC:1 SHI FT 
; (:1 I SF'L A'r' E:'r'TE MO\.' Ft .. L 

CALL. (:1 E:1T1TE 
POP C• .i I UC [:. AND F.:ESTO~:E TO STACK 
INF.: (:i 
PUSH () 
.JM P B'r1 l. P 

F.NH~[:·: ENTEF.' i=nm [:1 ISPLAY l·~flF!'.[) OF (:iAlH IN LEFT 
SI C•E OF r:iI SPl..A'T' 

.i USES P.EG E: .• C 
; REG A=C:Mr:i KE'r' THAr TF.F'MH~ATEr.1 ENTF.:'t' 
; F.:EG C:1=# f:.I GITS Et·ffF.PF.[· 
; REG HL=l•.lOF.~C:s ENTEF.:E[:i 
; CALL. C:LEAR .. ENT .. E.t·JT:;:'. 

Eunm: CALL Et·ff ; I NIT! ALIZE 
l·l:i LP: CALL ENT:;:: ;GET A [HG IT 

CALL. c:a~mF.:C:• .i C:• I SPL A'T' 
F'OP [:i ;CiET F1W:r I~K: 
INF.: [:1 

PUSH [:a 

Ar·m St-'IFT IN 

[" .. 

MCIV A, (:r ~SEE JF HT LEAST 4 t:• I Ci E~ff EJ;.:Er.1 

.• 

CPI .4 
CNC (:it1EM .• f:i I ::::F'l A1

T
1 E:'T'TF fKCFSSEf:• 

.JMP WC:tLP 

E.lff: I NI n ALr Z'E::: FOP E~ffc'.• 
ENT2: GETS AN[:• ::::~·II FTS IN A KE:'r' ENTF.'. 1

T
1 

[:~:I VEU E:'t' ENTE:'i', ENT~.(:i ONL. 1r 1 

f:'T' HL IF 

(12 5E: E1 ENT: POP H 
MV I C• .. ~1 
PUSH [:. 
F'USH H 
U::I H, 0 

.. f'USH [:i AHEAC• OF CALL 
€1]:!{: 16(1 (1 
t:1::::5E ('.15 
(13:5F E5 
(13:€{1 21 (1 ~)0€1 .: HHT HL TO f1 

~:·]: 
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0 

.MTS MOt-HTOJ;.: PF.:Cl~:AM WRITrF.N 1./77 E:',' Er:.~.ftF.~[:a L.Af'PI N 

03:6]: C:9 
03:€4 c:c:. 3: N:1';:: 
03t7 ()~:7t0'3: 
0?.E.fl 29 
03:6E: 29 
03€.(: 25' 
0lEt• 29 
036E' 8~1 

03:9=" 6F 
0?.70 C9 
E;13:7j, 47 
03:72 Di 
0!~7! [:t1 
037'4 C9 

037'5 F-:-.:;. 

0s7E~ t:•5 
0377 AF 
02:78 t•3:Ffi 
0?.7R 0601 
037(: 0E18 
037E Ct•A00!:: 
01:91 CC•9E03: 
0?.E~ 46 
f13:E:S 160E: 
0:::E:7 CD9E03: 
03:Efl 1.5 
£13EE: w~e:703: 
0lEE 23: 
03Ef' t•1. 
(13:90 1e: 
0!.91. D5 
0392 7E: 
0?.93: e:.-io· ., 
0?.94· C:27A03: 
E1!.97 0EFF 
0]:9SI (:[:•A003: 
0~::5(. C•i 
03:9t• E" ' 

~T 
B-'T~'.: CALL CiETt:::'r' 

JHC: C:t1.C)K'T' 
[:fl[) H 
[)f\[:t H 
[:flt:• H 
[.'fl[) H 
Ff.•t:• L. 
rt:tV L., A 
F.:E T 

Cl·1M::"T1

• MCI\.' f:, A 
F'(lf' [:i 

POF' (:e 

; C;ET A KE'r' 
; IF C:CtMMftU), TEF.:MI NATE 
; ELSE t1LIL.T OLC• E:.,.• j;6 Atm 
.: A[:.[:. ., fl.J 

.i CiO TCI C•F.:I VHL; F.:Cll.ITIHF.: 

.i Sf-tVF COtt1ft~'r:1 KEV 
.i F.•f:STORE ~.TftC:K At() [:• 

f.:ET ; RETURN TCI C:Fl..LEF.: OF CALLE~ OF ENT 

; SEF.:OT: SEF.'TAL OUTPUT F.~C•UTHU:: 
, f'lLLClloJS r.f\lA. ro r-£. n~:AUSFF.F.·F.r:• to TAf"F. ( c:ASSCTTF. oF.: ~;1t11 LAF.'.) 
; l'F.:AN5t1IS5ION IS AT i1.0 FftUC:e. 
i srAF:TING AC•[:tf;,~E5S IS f'LIT Hff(I Hl 
; LENCiTH Cf' E:LOC:K TO -E:E TF.f-tHSFEREt:a IS f•UT I UTO C•F. 
; PROC:i~:flM Is Sf ~~TED ~:C•M l'HE KE'r'E:OARC:•' e:v A Rlt~ 

; 

SEF.:OT: DI ; C:eISAE:LE I tffa:::RUPT~ 
f'liSH t:• 1 SAVE r>E 
~·::RR A· :~ CLt:Af: I NTERF.1lPT ENfif:LE FOR··t:tMA 
CtllT POF.: re: 

CllTB'r': MVI E:, 1.. ; ~.ETUP FOR OUTPUT car STAF.:T EIT 
MVI c:, C:•L 'r'?. ; C•UTPUT -::· C->ELA'r'S FC•F~ 5EF·AF.~A1 'Cf.: .,;• 

CALL C:•EL 
C~LL ()j, ; OUTPUT STAF.:T BIT 
MOV E:, M ;GET C•ATFt TC~ P.E OUTF'LITTE[) 
M\.'I [), f: ; C:C1UNT: f: f:ITS r1N[) 1.. STCf' E:JT 

CltTEff: C:Al '- [:•1. ; OLITPLIT F:JT ANr:e SHIFT 
[:(:~: [:. ;SEE IF f:tC••AE 
JN7 OLITBT 
n~>:: H I (.;(I TO Nf:>(T MEt1 LOC:ATION 
F'OP [:t ; GEl CC.nJNT 
cc:x [:• ; C:eEC:REMEHT C:CUHT 
F1.lSH C• 
n:1v A,E .• ~:e:E. IF C!tl1NT=0 
Cf.:A [:t 
.nJZ CllJTE:'r' 
MVI C, 0FFH ; [:• ELft'r1 Mn>::. Ft•f:i Cf' Tf.f\HSMI S5IC1t~ 
CftLL t>EL 
PCIP [:• ; RE:SE1" STAC:K 
•~ST 4 .i (i(I BfiC:K 

[)j . C:E:LA'r' AH[:. C•UTPLIT PClUTl .,r FOF:: F.F.~·ClT ANf~· 

,, 
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; SERHt 

03:5€ 0E08 [:'1.: MVI C:, C•L 'r'1 ; DELA'r' 1. E:IT TIME 
0lA0 7E: DEL: r1lV A, E: ;GET OllTf'llT E:'r'TE 
0lA1 E601 FtU 1 ; GET LS E:IT 
0lA!. D3:FA OIJT F'C1F.~TC ; OLITF'LIT 
0lA5 7E: MO\.' ft,. e: 
0lft6 "':•.., 

.;. .. ' STC ; F.:OTATE Atm LOAf:' C A F.:F.:'t' <'.SHIFT 
0lA7 1r F.:AF.'. ; j,'' s FF.:OM LEFT) 
0J:AE: 47 MOV D, A 
0lA9 cca:~:6E12 C:l. F': CALL C•Elffr' ; ACTUAL C1ELA'T1 

03:F(: E:1C• [:(:F.: (: . ;SEE IF [:.ONE 
03:AC:• C:2A903: .. mz C:aLF' 
03:E:(1 (:9 RET 

; SEF!.IN: SEF.:IAL INF1JT k:CtUTINF THt=1T C: 0 MF'l. EMF.NT S 
; SEF.:OT. F.:ECiJSTEF.S HL CONTAIN STF1F.: T I NG Ft[:t(:• P ESS 
; 

E13:E:i. F-:· .;;. SEF.~IN: [:tI _;STOP I U TF. F.: F.:tf· T ::: 
03:E:2 AF ·:·::i;.'.A A .i CLEAF.'. C1MA f:IT 
03:e:3: [:(~:FA OUT F'OF.:TC • 0lE:S C1E:F9 Sl.J T : n~ F'OF.:TE:. ;GET [)ATFI FPOM F'Of:· T f: 
03:87 1F F.:AF.' .i SHIFT JNf'UT INTO (: RF.:F.· ITI 

t13:E:B L.•AE:503 ,J(: Si·ff ;IF THF.F-.. E, SiflF.:T ~JOT HIT i-'f.,.. 
03:e:e: 0E04 STFNC:t: MVT (:, [)F.LHF ; (:iELFl'r' 5 EHT TIMES 
03:E:[) CDA003: CRLL C:•El. 
03(:£1 C:•E:F9 IN f'OF.:TE: .iMAKF SUF.·F rmr A CiL r TCH 
03:~ 1F F.:AF.: 
E13:C3: C:•AB503: .JC: S~JT ;IF OU AFTEF.'. -1. /~: E: IT .. (:j(I F:AC:l:::-
03:(:6 1Ec:E1 MVI E, C:t1H ; INITIALIZE COUNT 
E13:c:c: C:C19EfG SI LOP: CALL .. r:.1. ; C:.ELA'r' :1 EH T TI~1E 
03:c:t: C:•E:F9 H~ F'OF.'. TE: .i GF.T I NPl.IT 
(13:(:[) 1F F.:AF.: ; F'UT INTO C AF.:F.: 'r' 
E1J:CE 7E: MCI\•' Fl, E ;GET P F.:F.VI OUS E:ITS 
03:CF 1F F.:AF.· ; SHIFT IN CAF.:F.~'t' ANC:i MOVE OLr-. f:ITS 
E:13:Ct0 SF MCtV E, A ; OVEF.: F1t·m STCIF.:r. 
(1 :::~C•1 r.·~:ce:03: .JNC SI LOP 
t13:(:e4 77 MOV M.· A .; SAVE Nf}~ E: 1

1
1TE 

t13:C•5 C:C:i9E03: CALL ()j_ ; [:iELA1
T' j F:I T TIMF 

t13:(:-t: C•E:F9 HJ PClk'TE: .:GET C:•ff!A 
t13:CiA 1F F.'AR 
t1J:[::E: (:•;::~: Ft1t1 .JlJC EF.:F.: ; IF NOT THEF.'.E.. un STOP E:IT 
(13:C:•E 2:::: - I t-J :,· l I ; IF THFF.:F, GOTO t-Jf >ff MF.M LDC ri 

E13:(:tF 1E64 M\·' r ,... 
1 f~O .i L.Oci.-:· F·:tF· LONG STOP TO t::• 

03:E1. CC13:6~1~: FNC:eST: CALL f.•ELF,'r' ;SFE IF F.NC:• CF TF.'.R~JSMI ssrou 
E13:E4 [:iE:F9 TU PO~: fE: .: SEF: IF ST. I LL i:rop 
03:E6 1F F.·f,k'. e E1J:E7 (:i;;'.:E: E:03: .J~JC STFt·m .i IF NOT, F Ct!..lt·.if.• SH1F.'.T 
0~-:C:-fl 1(:. (:i(:~ E .i SEF: JF l..ONC; FHOl .. fiH 
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() 

0 

MTS MmHTOF.'. f'F.:Ot:r.:AM WF.:JTTE':N 1./77' E:'T' n~·~·.fl~:[) LAF'PltA 

0lEE: C2E103: 
03EE E7 

Fl&:i 
0079 
0050 
0015 
00U 
0013: 
0014. 
0010 
0012 
001£ 
0817 
00FB 
00F8 
00FA 
00F9 
0008 
0010 
0004 
0040 

C:3CB 
83~: 
Slet: 
s·3ro 
SlCE 
830: 
8300 
SlD1 
83D2 
83Dl 
E•lt-4 
E:lD5 
8306 
8308 
83DA 
8lOC 
83DE 
83F8 
83FF 
0000 

i 

.JNZ FlH:•ST 
F:ST 4 > Jf· LOUG F.UOLCiH.. F.H{:a 

; MEMCIR'r' MAP At-fft Et::H.lfffE LISTS 

Ef'C(l[:•E EQU t.'f' l5C:iH 
ECOC•E E&!U ('S:H 
f't:C1C:aE EQLI ~t0H 

f·EXT E''ll 1.SH 
f.~G EQLI 1j.H 
STEP EG.! LI 1.3: H 
F.1••~ EQU 1.4H 
t'Et1 EQU 1.£1H 
G:ll"(l EQ LI 1.;·: H. 
E$:•{. EQU H:H 
ct.E E&~ll j.7'H 
Ofrf'T EQLI 0FEiH 
f'Cl~!TA EQU ef"E:H 
f'O~:TC. EC!ll e.FAH 
PClRTE: EC! LI Ci=' 9H 
()L 'r'1 E&~U E: 
l)l.. 'r'l EQLI 24 
DELt-F EQLI 4 
DASH EQU 40H 

i 
; MEMOf.~'r' ASSIGUIENTS 

ORG E'J:CEiH 
E(l5: r..s 1 

C>S 1. 
D5 j. 

D5 1 
D5 1. 
D5 1. 
r:.s !I. 
D5 !I. 

TOS: [:tS 1. 
SF LAG: D5 1. 
P.GRDt>R. [:-$ 1 
SPRDDR: r:.s 2 
l'RDDR: D5 ""• 

' PC: RDDR : [:'5 2 
Et<ADDR: DS 2 
E*:TBL: D5 26 

CtS 7 
LC•WOOT: [>5 1. 

am f'~SET 

IH 

; (:(\[)E f"OR BP I H E:f~f.Aff(f'OH~ T 
.i C:: C•N:'. FCt~'. F. I U F.F.:R · 
.i (':(l[)f FOF.~ f.· H~ r:f.f.• 
.i c:or>E FOF.1 Kf:i,.S--r'.d5T AL Sf. (:HfitJC;F. 
.i C:OMt'ftHf:• LI ST IF ASSIGUMFN TS 
. fl PF. C: HftUGEC:a 

i (:(l~ffF~C•L POF.'l or F· I A 
; PORT ft Cf" PI f1 
; f' Ctf:'.T C: Cf" F' I Ft 
.if' I A f'OFff f: 
; [:tELAY FC~ 1. f: I r 
; r.a ELA\-' FClf.: SEP AP.AT OF.~ 
.i HALF E:I T t.tELA 'r' 
i c:or .. E FOf'~ CtAS"~i 

F.~ft1 

, BOTTClt1 CF STAL:K PSl·~ 
;A 
;E 
.it• 
i (: 
,;B 
;L 
;H 
;TOf' OF STACK 
;STEP FLFG i=STEP, 0=RL1N 
; F.~EG C> I SF1...A'r' CCttrrROL 
; ncr.tf\: t.tt- ~p 

;LAST F.Xft1 I HEC:• MartORV ros 
; llSEF.S F·C: 
; f•OIHTER TC• BKPT TAE:LE 
; E: F.~EAK f•O I HT TABLE 

; LC•W [)IGIT CtF r>ISF'LAa,.• 
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FC•R 01<: 01.57 
BKTBL SlC•E . 
EOS 83CB 
B'T'LP 0119 
Cl.EAR 0287 
ct.RGT 02E:2 
CMDl 00A6 
DASH 0040 
DEL 0lA0 
Ct..OOP 0246 
DMEM 0294 
~~TBL 01.~ 
D'T'PC 02CE 
9-ff B'r' 0116 
·FK 0275 
GC•TO 0012 
KSCAN 02€'.F 
l'FtT CH 02F7 
t£XTC 00CB 
N:tTPC 017C 
Ct.DAD 0113 
PCROD 83DA 
PTR 0088 
RERLI•' 0150 
RLF· 0013 
RST6 0030 
Rlt•'P 0145 
9::AN 0257 
SFLAG 8lD4 
STEP 001.3 
TABLE 0282 

.----

BKADD 8lDC 
B<TST 0053: 
Ef'COO Fl~ 
9r'PAS 0069 
Ct. FST 01e"tFI 
Ct. RLP 02EC 
OW1 DK'-f 0371 
OBKPT 0208 
C€L1 0232 
Csl.P 0lFe 
C•REG 0303 
DWD2 02D4 
ECODE 0079 
EN TWC• 0346 
FNOST 0lE1 
oo roe 01€'.e: 
KYTST 0062 
MEM 0010 
tllBKC 01F4 
NOUPD 0111 
OLDBP 0216 
PORTA 00FS · 
RCOOE 0030 
RESET 0000 
~E 01A7 
RST7 0032 
SAVEH 0110 
SCRET 02E:0 
SILOP 03C8 
STEPP 0144 
TOS SlDl 

a< LCIC: 02CO 
EL 02E2 
ERK 0016 
Ct. 02E:9 
Ct.P 0224 
Ct1C• 0098 
CNTPT 00FB 
[;'8\.'2 0298 
C•EL..A'T' 0216 
Cl. 'T'1 0£1£18 
C1F:. EG2 019?. 
C•WORD 02D1 
ENT 0l5E: 
ERR 00Ef' 
C£TK'T' 023t• 
INPUT 02~C 
LOWC•G S3:FF 
MEMCH 0000 
~llMAT 02EF 
Cf'FSE 02A9 
CU TBT 03:87 
F'ORTB 00F9 
REG 0011 
F.~AC•C• 83C6 
F.ST4 0£1~'0 
F.STC•'T' 0244 
:ftVEM 01~1F 
SERIN 0?.81 
SP AC•C• S3:C'6 
ST Ft,C• 03:ES 
\.'OK 0101 

E:KLOP 01E1 
E(JK 01FF 
E~: KPT 01E:7 
Ct.E 0017 
1:t. F.:SK (121C 
C:f1Ct2 00A4 
D1 03:9E 
CiB'T'TE 0295 
CiELHF 0€104 
Ctl 'r'!. 0£118 
C•F.:SAV 0190 
Ci'r' EN £12A4 
aff2 0!.64 
FDF.: t10EE 
GLP 0E:1E0 
Kf'. 0273: 
MADC•F.: 8lC:E: 
tolE)c:T _ 0015 
t.IOF.:Ut~ 0071 
CIKVAL 01CE 
Cll.ITB'T' 0l7A 
PC1RTC 00FA 
REGC 0182 
F.!GTSL 0326 
RSTS 00~: 
F.:Ut' £1f.114 
:.A VEP 0£16E 
SEROT 03:75 
SPLIT 02C2 
SWT 036'5 
~~l:-.SLP 0?.49 
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ICS MICllOCOMPUTEB. TRAINING SYS'r!M POWER UQtTIR!MENTS 

The. Microcomputer training System is deliwred aa a ready-co-use 
unit requiring only cosmec.tion of power supplies for operad.cm., 
The MTS is desi.ped. t.o oper&1:• with. cmly .1:WO DC powu SllPPliU, 
+UV and +BV. ...._, th• ·Part• used iJl ehe ms. oal.y Qe 8080.A 
requires another supply voltage (-SV), which is geurataci 
intema.Uy. 

Both DC power supplies shoul.ci have suf fic:iat c:u:rent margin 
over the fallowing power c:l:.lsa~:pad.ou apeciHcad.cms 

1.0 AJtaa. 

150 .. Ila. 

Extaul. powe: npp1y line• ahoul.d be coaectecl :o· tD• board edge 
finger piml markad: +sv. +~ ad: c:DD. 

+5V 

c - l 



c - 2 

--~ :C/6/78 
,, ' . ..... 

~·..,.__._ 

~ ..• , 
ASSIGNMENT OF BOARD EDGE FINGER PINS ·~ 

. -·' -. ~ ... 

Pin II Pin Name Pin fl Pin Name 

A 1 GND B 1 GND 
2 GND 2 GND 
3 +SV 3- +SV 
4 4 
5 +12V 5 +12V 
6 6 
7 7. 
8 8 
9 9 

10 AB15 10 AB 7 
11 AB14 11 AB 6 
12 AB13 12 AB 5 
13 AB12 13 AB 4 
14 ABll 14 AB 3 
15 ABlO 15 AB 2 
16 AB 9 16 AB 1 
17 AB 8 17 AB 0 
18 18 
19 19 
20 20 .. J 21 21 
22 22 e 23 23 
24 24 
25 25 
26 26 DB 7 
27 27 DB 6. 
28 28 DB 5 
29 29 DB 4 
30 )0 DB 3 
31 31 DB 2 
32 32 DB 1 
33 33 DB 0 
34 34 
35 35 
36 36 
37 37 
38 38 
39 39 
40 40 
41 41 
42 42 
43 43 
44 44 
45 45 
46 46 
47 47 -48 48 
49 49 
50 GND 50 GND 
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C/6/78 

0 BO BOA 8255 

CENTRAL PROCESSOR UNIT PROGRAMMABLE PERIPHERAL 
INTERFACE 

A10 1 40 A,, PA:J PA4 
(OV)Vss 2 31 A14 p~ '~· 

D4 3 38 A13 PA1 'Ae 
D5 4 -s/ At2 Mo PA, 

De & • ~ RO Wi 
,., ~ 

0., 8 31 At cs RESET 
; : . .; .... 

o, 1 34 ~. GND Do,. 

02 8 33 A-, A1 o, 
I o, 9 32 Ae Ao D2 
I -

Do 10 31 As PC, D3 

c-sv>vaa 11 30 A4 Pee D4 

RESET 12 29 Ai PCs. D5._ 
HOLD 13 - 21 ·vool+12VJ PC4 De 

INT 14 ,, 
~ PCo D7 

t\2 11 21 

~ 
PC1 Vccf+&VJ 

INTE 18 ' : 21 ~ ~ 
OBIN 17' . • WAIT ~ ... 

0 WI 11 21 READY Pao Pis 
SYNC 11 22 ., ,., PB4 

'~-

f+IV>Vcc 2D 21 HLDA "2 "3 

8228 
srs!'DI cmsm1c1aa .1111> BUS DJUV.U .. YccC+IVJ 

HI.DA l7R • -OBIN i7llf 
gl4 iiliii 

D4 115 ,. ::~ 

DB,:. m 
Dr o· . 8 

Dia Die 
~ °' 082 Dis 
D2 o, '.• 

01o· oa1 

0 GNO Do 

PIN CONFIGURATION OF LSI'S AND IC'S USED IN THE MTS 



8224 

Clock Generator 
and Driver 

..,. Yc:c C+1IVI - XTAL1 
XTAU 

lllADY TMK 
SYNC me 

~mu • ., 
lllTI ~ 

GND Yoo (+1M 

• 

511>1 

1,024 Bit Static ~ . 

As Yee C...VI 

Ai ~· 

A, IWW 
Ag .Cl1 
Aa -At .Cl2 . 

Ai D04 .,., 
Dt4 

ae, ~ 
ao, D'3 
D'2 002 

; 

8212 

8-Bit I/O Port 

m. Vee ., Dn' 
Dt1 Dt1 
ao, DOa 
Dl2· D'J 
Dai 00, 
Dl3 Die 

DOa D09 

°'• Dt1 
DOc 00s' 
sn CCI 

DS.z 
.. ' 

' 454 

. ·2., 048 Bi tt EEPROM 

Cli 1 .. Yee 
Ao ,2 

°' A, 3 a, 
Az. • ~ 
As. I ~ 
A._ • D4 
As 7 .,. 
At • °' ., • a., .. 10 Yao 

'JC&. 11 Vea 
Vl9 12 v. 

C-4 

C/6/78 

.,,) 

e 

; 

-
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ICS MICROCOMPUTER TRAINING SYSTEM TEST PROCEDURE 

STEP 1 Connect power supply and turn 
on +SV and +12V. Switch settings 
are 'ENABLE' and 'AUTO' • LED 
should display 

STEP 2 Enter test program as follows by 
passing indicated keys 

Press Keys 
. -

Continue entering re11&inder of 
prosr• from attached coding sheets 
from address 8203 to 8248. Once 
progr• has been entered, check to 
be sure that all instructions have 
been entered correctly by pressing 
the keys 

•.. -•... etc. 

STEP 3 Teat the BAM aa follow : 

Preas~· -----

8200 I 

Display Should be --·-----
I a200 I 21 I 

I a201 I oo I 

I 1202 I I a' I 

Di•P.!!1: Should be : 

s200 I 21 

* I SlP'F I 
*(IF YOU BAVE 1024 BYTES OF MEMORY THIS DISPLAY SHOULD BE 7FFF) 
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:2' - 2 -

-STEP 4 Test the ROM and keyboard 
as follows : 

Press Key.!. J2!!P!!Y Should be 

Q I 145B 5DOO I 

[] I 8E4C I 2601 I 

D I 50DB F302 I 

[] I 60BD I 9903 I 

[] 91 
04 I 

[] os I 

D [ 06 I 

D 01 I 

[J oa I 

Q 09 I e 



c- 7 

o2 - 3 -

STEP 4 Press Keys Display Should be 

(cont'd) 

[] OA 

Q I OB I 

Q I I oc 

GJ I I I OD 

(:) [] I I I QE 

D I I I 01 I 

Step .S Test the COID&lld keys (acluding 
RST) as f ollowa 

Press Keya Display Should be 

{;] I I I 11 

El I I I 10 

0 EJ I 16 

[;J I 11 



2 -4-

Step 5 Press Keys 
(cont'd) 

Repeat keys 0,1,2,3, and check 
previous list of displays for 
these keys. 

The basic functions of the MTS 
are operational if all displays 
specified above have occurred 
during test sequence. 

~ote : If the RAM test fails, 
try the ROM test by pressing 
the following sequence of keys 

Press Keys 

c - 8 

Display Should be 

12 

14 

I 13 I 

15 

EJEJCJDDc:JEJ 



RS'r 

0 

t-5Ycc 
+llV. 

GNO Yst 

··~·­... 

fl 

SCHEMA TIC - MICROCOMPUTER TRAINING SYSTEM 
8NTEGRATED COMPUTER SYSTEMS, INC. 

e 
NAr-·'•• 

151r 

121 c/10/11 
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w 
w 
% 
en 
<.:> z -0 
0 
CJ 

:E w ... 
Cf) 

> 
Cf) 

c:> z -z 
< a: 
t-

o 
' .::> a.. 

:E 
0 
CJ 
0 
a: 
S:2 
:E 

Cl) 

:E 
w 
tn 
> 
Cl) 

a: 
w .... 
::> a. 
:E 
8 
0 
w 
~ a: 
<.:> 

()~ 

. 

A c D R 

8 ~"' 0 

1 

2 

3 

4 

5 

'9" ,.. C1 8 

7 

8 

I 

A 

a 
~2,"C 

D 

E 

F 

8 7- , 0 

1 

2 

3 

4 

5 

& 

7 

8 

9 

'/' ,_ I A 

a 
c 
D 

E 

F 

8 0 

1 -
2 

3 

4 

5 

8 

7 

8 

CODE 

~ I '- x 
0 0 

~ 'I 
I I L. )( 

~ 0 

~ •2-

I lP v ~ 
~ '2- -..) IJ 
(!) ~ 

1( 2-

I ' /.Ii v 
:z t:1' 
.1.. g l) ~ 

'I ~ ,.,, 
"' I A L ]) 

7 7 "" 
(:) 

l3 ' t_ M 
~ L ..J N 

l A-
~ Z-
7 I M (') 

7 1£ 11 0 

13 q ~ M 
~ ,4 !J ~ 

" ~ r ~ 
~ J> ~ A-
1> ' t:J 2-
c J> ~ A-
ff 2-
0 1-

: 

C-9 

.I.. ti ~ S"' '-/ (') 0 AJ J ru,,s '1J-bo Ve. ta,, lu.st 
~14 le~o...t1~ .. 

1 j) 
' r 2. ,_ 0 ,4-c1.J .,.~~ s tJ.b O l'L res!-

,(I ,,. (} " ,,...... ft\ 
.. • 

~ I!. J) ~.,,.~""' e...:f -fes-f 

C: &-- z.. "" c. #-1"'" .. r ~ -..,. tlJ "1! I,$ 

' .. 

.'L. t ~ J. e:> A--r YZ..t:>O ~+ ~Z..U> 

x 1-/ J) U. r-'U+~. t T-4!st ~t"eU 
v 4- ~ M ..So. t'e ~~ .-/ .... "'!'"::.. 

A )( p "-·- f-fl$f- k"~r-~ ,..,,....... -,c • ..,.. 

A bw.~ 'fo 
. . 

v M ~ -~ ""--~ -;-w ,. 

(/ /Vt rest .Jkn-
.. 

SI.Lt!.~ S..J 

l! ~ ].. J A- G" ... ,r ""1-'l e ,,.,.. o-...-

v ~ ~ c... R..a-$ f,,.,,.£. ~ .• ,~..-,., .c/4 t,~ 
v A- M 

., 
~ 
-

p e.. -r~st {:,,,_ .$1,,t1..C.Qt2 IS 

r :J... 0 " Lt!:) l!JI, ,c ~ '<· 
I 

'- '- ID w 0 A. LI> . '""'+- d. is,-/~ 

'"' C-A f,,,... 1-t. i t:• ,,J' 
AA.Gt A.e. L..J- ,.., lie...._ 

'- '- c. ~t- te. ,;. .,-



1-w 
w 
:I: en 
<!1 
z 
0 
0 
u 

:E 
w 
t­en 
>­en 
CJ z 
z 
<( 
a: 
l-
a: 
w 
I­
:> a. 
:E 
0 
u 
0 
a: 
u 
:! 

en 
:E 
w 
t; 
>­en 
a: 
w 
t­
::> 
a.. 
:E 
0 
u 
Q 
w 
~ 
a: 
<!1 
w 
1-z 

. 

A 0 0 R CODE 

8.Z. z. 0 c D 
1 .3 D 
2 0 :2. 
3 c. D 
4 ~ 7 
5 D 2. 
6 c D 
7 'I s 
8 0 2 
9 7 q 
A ,.:' c 
8 0 '+ 
c D 2 
D 2. 0 
E 8 2.. 
F -D s 

8 z 3 0 s I 
1 A F" 
2 s F' 
3 ~ 1 
4 ' F8 
5 q. 7 
6 ,;: ~ 
7 4 r: 
8 e: e, 
9 0 q 
A A q 
B I c 
c c. 2 
D .3 s 
E 8 2 
F D I 

8 2. " 0 c.. 0 
1 q A 
2 0 2. 
3 c. D 
4 0 '+ 
5 6 2.. 
6 . c.. 3 
7 2. D 
8 e 2.. 

ROM AtJD t<E"YC3DA~D ~s~ c - io 

~ A L- L 6- IE. I K y 

c_ A L.. L- c L E. A ~ 

c A L.. '- D g y I E: 

H B v A " c. 
c. p I Q 4-

.:r tJ c. ~ z z 0 

{J u.. s H D DISPLAY /fDOltE5~ 
M ti " D .. c_ t11(rM Aoo.us.s = KE-rJ 
x I!.. A . A - L.({C. Ct..EAt( 

M l~ v ~ .. A C~ LJJ"J AOOtLES.S 
l'1 ~ t \) J-1 

, 

' A ~ A.C.IT11M~'TlC.. . "" A t1 ' 
,, '- " .SU"1 

"' M l • v ~ .... A LJ..£1+1.. ~ AOO 
"' )( c. H {;. ADOll£SS RAM 

M th \} c. ... IM ~'r ~tlrE 
I 

6- -x c. H «;1-t t-1 "TD H L 

D A 0 B ~oo a~n: 

x ~ A (_ FoW(..M L-~t:... 

r k) R e: 7::1'.Jt-ll.. AoD~SS 
.-r u ? 8 z .3 s 

. 
p d p D 01SILA\I ADD1t£SS 
(_ A l- /.... 0 8 y 2 

c. A L I... D w D 2. 

:r t1 p A 2. z 0 
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Appendix D 

BINARY/DECIMAL CONVERSIONS 

Several programs are presented for conversion of decimal data to 

binary data. All of these are written as subroutin~s; generally 

the data to be 9onverted (or a memory address for the data) are 

entered in register pair HL and the r.esult is returned in the 

same, with all other registers preserved. 

Page Section Function 

D.1 D-1 Decimal to Binary Integer 

D.11 D-2 Decimal to Binary Fraction 

D.13 D-3 ~inary to Decimal Conversion 

D.21 D-4 Binary to Decimal - Two Bytes 

D.24 o-s Smmnary 

D-l DECIMAL TO BINARY INTEGER 

The conversion from decimal data to binary can he done by calculating 

and sUllD'.ling the values of the successive bits. Figure D•l lists the 

values of the bits. These can be calculated by this procedµre. 

Bit .zero value • l (l) 

Next bit • double the value (2) 

Next bit -double the value (4) 

Next bit • double the value (8) 

Next bit = add one fourth (10) 
to previous value, 
or multiply by 5/8. 
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Decimal Binary 
Bit Value Value 

o 1 0001 
1 2 0002 
2 4 0004 
3 8 0008 
4 10 OOOA 
5 20 0014 
6 40 0028 
7 80 0050 
8 100 0064 
9 200 ooc8 

10 400 0190 
11 800 0320 
12 1000 03E8 
13 2000 07DO 
14 4000 OFAO 
15 8000 1F40 
16 10,000 2710 
20 100,000 186AO 
24 1,000,000 F4240 
28 10,000,000 989680 

Values of Bits in a Decimal Number 

Figure D-1 

The bit value can be calculated and added into· the sum representing 

the binary value as each bit of the decimal value is processed, or 

they can be pre-calculated and stored. It is faster and simpler to 

store a table of the bit values, but this requires memory for the 

s.torage, as shown in the program of Figure D-2. The procedure of 

Figure D~3 calculates-· the values and pushes them into the stack; 

then recovers each bit value as the decimal value is shifted. Thus 

no memory is permanently allocated to the bit value. The stack is 

used for 38 bytes - six to save registers and 32 for bit values. 

Either subroutine meets the same specification, except for length. 

0 



() 
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DECBN Convert four digit packed decimal value to two 

byte binary. 

Enter with decimal value in (HL) 

Return with binary value in (HL) 

All other reqisters are preserved. 

The program of Figure D-4 can be used to test either of these 

proqrams. 



t­
w 
w 
:c en 
C> z 
0 
0 
0 

:E 
·w 
t­en 
>­
Cl) 

C> 
z 

I ~ 
a: 
t-
a: 
w 
I­
:> 
a. 
:E 
0 
CJ 
0 
a: 
CJ 

~ 

Cl) 

~ 
w 
t; 
> 
Cl) 

a: 
w ... 
::> 
a. 
~ 
0 
0 
0 
w 
·~ 
a: 
C> 
w ,.... 
z 

./' 

p l:i" a 1 JVt 11 '-- /I) -~ 1,J fl R y 
A 0 0 R CODE 

. 8 2. 2- 0 f. s p () s H p 
1 p ~ f' I) s t-1 J) 

2 c. 
,,,., p () s 14 13 ~ 

3 ( I '- )( I. :z:: ~ 
-

4 CJ 0 

5 0 0 
6 () ( '- x J: 8 ' 
7 '-1 0 
8 ~ 2.. 

y z. .,_ 9 e;. ,4 '- J) ,4 x B 
A 0 3 L /J x LB 
8 :2.. q J) 14-- .D 1-1 
c J) 7. ... ) N (!.. r 2-
D 3 'f 

i E i z.. 
F 1' 3 .A D .D. ' 8 .:L...3 0 ~ F iA () v ~ ""\ 

-
1 0 A L ]) A- >< 13 
2 7 ,A A D c... J) 
3 J"' 7 M 0 v D ' 

tj" 2-3 4 () 3 r II )I: !3 
5 7 ]) ,(If 0 v A ' 
6 5 'I () fJ... /4· H 
7 C!.. 2.. J N -t:- ~ i 
8 l. q 
9 i' z.. 
A /£ B /( (!_ H G-
B c.. I p 0 f> B 
c 'D I . fJ 0 p .D 
D F I p 0 p p .$ 
E . c. [q ft. .£ -r· 

. F 

8 0 IE IJ -r ~ I~ 
1 ( J.J. '- ) --
2 

3 (<. G' T u fl N 
4 ( 1+ /.:. ) --
5 IA- L L " r 6 p R /£ .:5 c 
7 

8 

D - ~ (I/12/77) 
~ rrl-4 rtt 13' e 

s M) 

0 0 0 0 

a-- 2- '-/ (J 'f o.l,/a a.,J.J,,,.t!S$ ~ 
I olAJ bJ11fe.. a-1- ~,.t 
-~ t ~ f it c 0-.·h t 1:111' 

(A)E- /o.v b~ fe v,,_/ c..Ut 

~ MS.8> b1...,. 

.S lu t f d.iz. c. ""' aJ v o..Jk.11.. 
3 '-I s /,£, 12 ~d IC-

II I? ~ I l+t o..l l::nr-= o 

A-eld la- bf~ va..li\.R. 
A -h J.a_ C I H· l oJ Va_/ v'-'l 

("[){'J .. 
~~ 

A 
AJJre$.1 v....,/IA.A.. ,,.../. ~"t 

'- Io we..,- t I f • re ~ -:· 
b I l-t "-"'" &t ._ .. .A/, \A. +c-,... ..) 

.2. ~ LO'-' t:7 . 
v 

"""'"d' I a....! I 
~ -ee-ro b1+$ 
ka...vc. ~ ~ver-fe..J 
( /../ L) -<-- r e s " I t 
(<...L. ~ fl!Y"4!.. r~ 1.$f-t--r;. 

v 

/A) 

. .. 

w -z T H 
(-' A ~ K e"D ]) EC I Jt,-f A '-
'{ J) I G.I I -5 

g I /\/ A f< '? €QV 1\/A Lel'll 
/-1 € R 12£ .. G 1.s -r E. RS 
IQ.. v € 

F1GuR€ j) - ::2.. (~ 
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a " I 

~ D 0 () 
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A. 0 0 R CODE 

8 2 .. l- 0 f $' f tJ s 1-1 p .s w 
1 D c p tJ s I~ :p 
2 c. ~ p l) s H B 
3 (£ L3 x ~ 1.i Gr (p~)-'-cke1»t.JI ~llAJI.. 
4 z, € M•V ..t A .... " 'I ft:> c.so~t L/ J,q ~f ,,t 

'-I 
.. -

& C> 
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A single byte conversion can use either of the foregoing procedures, 

but a simpler method results from separating the two decimal digits. 

The low digit, with a value from 0 to 9, is already in binary as 

well as binary coded decimal form. The high digit, 00 to 90, can 

be converted by a binary multiplication by 5/8, which only takes 

five steps. 

RAR 

MOV E,A 

RAR 

RAR 

ADD E 

(A) ... X/2 

(C)4- X/2 

(A).,.. X/4 

(A)..._ X/8 

(A) .... X/2 + X/8 

Figure D-5 shows ·the complete subroutine., which accepts the two 

digit decimal number in (L) and returns the binary equivalent in 

(L) • 
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The procedure of Figure D-5 can also be used with multi-byte values. 

Almost any realistic program that requires decimal to binary con-

version will also have a binary multiplication subroutine, which 

can be used to multiply the value of the two digit number by an 

appropriate power of 10 expressed in binary. These values can be 

stored in a table, or they can also be calculated by binary mul­

tiplication. This scheme is-by far the best when more than four 

digits ar~ involved. 

D-2 1DECIMAL FRACTION TO BINARY FRACTION 

Surprisingly, the conversion of a decimal fraction to a binary 

fraction is significantly.simpler than the conversion of integers. 

The decimal fraction is repeatedly doubled: if a carry out of the 

() fraction results, a one is shifted into the binary value; if no 
..... ,._ 

carry occurs, a zero is shifted in. Figure D-6:shows a 16 bit con­

version program. For larger numbers of bits, the data would be 

kept in memory,_ and the procedure c-.n then be extended to any de­

sired precision. 
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D-3 BINARY TO DECIMAL CONVERSION 

Since each bit in a binary number, either integer or fraction, has 

twice the value of the preceding bit, this conversion starts with 

a decimal value for the least significant bit and repeatedly doubles 

that value for succeeding bits. The successive bits of t.he binary 

value are tested, and eac~ time a one is encountered, the bit value 

is summed into the decimal value. 

The program of Figure D-7 operates in memory rathei- than in registers, 

and allows conversion of any number of bytes. It demonstrates pass­

ing parameters to a subroutine through memory with a command and 

address table. Five areas in memory are required: 

~ Binary Data 

Decimal Result 

Temporary Bit Value 

Value of Least Significant Bit 

CC>liaand and Addre.ss Table 

The conversion subroutine is entered with (BL) • address .of the 

command and address table, which contains <in this order): 

Number of binary bytes to be converted 

Number of decimal bytes 

Binary data address 

Result address 

Temporary bit value address 

LSB value address 

address for least 
significant byte 
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The conversion program alters only the result and the temporary 

bit value. None of the other data are changed, so the binary 

value remains available for further processing and the other data 

could be stored in ROM. 

A subroutine, RECAD, recovers these addresses and places them in 

registers for use in initialization and in the repetitive con­

version loop. In the initialization, the least significant bit 

value is copied from its permanent location to the temporary bit 

value area, and the result area is cleared. 

·I~ the loop, RECAD is called with a byte count in register C (in­

itially set to 00), and RECAD adds this value to the binary data 

address from the table, returning the address of the binary data 

byte now being processed. The data byte addressed is masked by 

the content of register B (initially set to 01 and subsequently 

shifted left), giving the value of the current bit. 

If the current bit is one, another subroutine, DCADM, is called 

to add the decimal value of the bit (addressed by BC) to the de-

cimal result (addressed by HL). Then the. bit value address is 

duplicated in HL and another call to DCADM adds, the bit value to 

itself, giving the value o~ the next higher bit. 

At the end of the loop, the bit mask and byte count are recovered, 

and the bit mask in~register a·is rotafed left before repeating 

the loop. ·when it shifts from bit 7 back to bit O, the byte count 

is incremented and compared with tl:e number of bytes to be converted. 
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The cormnand table shown is suitable for conversion of a four byte 

binary value with 16 integer bits and 16 fractional bits. The 

coding given is for locations 8280 to 82F4, with the command table, 

LSB value and scratch pad in 8300-831F; binary data anc decimal 

result in 8320-832E. 
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D-4 BINARY FRACTION TO DECIMAL FRACTION 

The program of Figure D-8 is a shortened version of the binary 

to decimal conversion, taking a two byte binary fra·ction in (BL} 

and returning the two byte decimal equivalent in (HL). For 

economy of program space it does not save the other registers, 

and returns only the two high bytes of the result in (BL). The 

other bytes of the conversion are stored in memory, with the 

least significant at 8308 and most significant at 830F. It re­

quires that its scratch pad and result area occupy .the lowest 

16 bytes of the page immediately following the least siqnif icant 

bit value, which i$ stored at 82FB-82FF. The program ~uld work 

for integers :>r mixed integer/fraction values if a different LSB 

(~ . --~alue were sto:u;d in that location. 

0 
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0-5 SUMMARY ~ 
The foregoing subroutines occupy one full page (256 bytes) of 

memory.· 

8220-825F 

8260-827F 

8280-82FF 

Decimal to Binery Integer 

Decimal to Binary Fraction 

Binary to Decimal 

8300-831F Command Table, etc. (any 32 bytes) -· 

To.perform any useful function with them, you will need the full 

1024 bytes of memory in your MTS. If it is equipped with only 

512 bytes and you want to pursue development of more complex pro-

grams, you should add the.additional memory. 
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Appendix E 

CALCULATING TRIGONOMETRIC FUNCTIONS 

The sine of an angle (in radians) is calculated from: 
3 5 7 x x x 

(a) sin x = - 3T + -"i! - ?! + 

The cosine is generated by a similar series: 
x2 x4 x6 

(b) cos x = 1 - 2!' + iT - 6! + 

The exponential function ex is: 
x2 x3 x4 

(c) ex = 1 + x + 2 ! + JT + iT + ---

t. = xt. 1/i l. l.-

Starting with t 0 = 1, this gives: 

Term Value 

0 l 

l x/:l 

2 x2;2 

3 3 x ./3.2 

4 4 x /4.3.2 

5 s x /5·.4.3.2 

6 6 x /6.5.4.3.2 

Disposition 

Enter .to cosine 

Enter to sine 

Subtract f 

Subtract from sin 

Add to .cosine 

Add to sine 

Subtract from cosine 

() The value of x must be expressed in radians, and for reasonably rapid 

convergence of the series large values of x should be avoided. Since 
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. ./"\ 

th~ si~e of an angle is equal to the cosine of its complement: 
' 

sin x =cos (~ - x) 

it is easy to restrict the anqle to less than 45°, or 0.785 radians. 

With this limit terms beyond 6 are not needed for 16 bit precision. 

In .this appendix, we present a subroutine to calculate the sine 

and cosine, qiven x as a value between 0 and 0.785 radians. A 

main proqram (Fiqure E-1) will accept an anqle in decimal degrees 

and convert it to binary radians, call SINCOS, and display the 

·results in decimal. 

The program also uses a binary multiplication subroutine and a 

twos complement subroutine,_presentE7d in the following· pages; the 

sinqle byte decimal to binary integer conversion of Figure D-5 

and the two byte binary fraction to decimal fraction conversion 

of Figure D-8, in Appendix D. These are also duplicated here. 

Memory assignments for the program are: 

MAIN 8200-823F 

SINCOS 8250-827F 

TERM 8280-82AF 

DECBI 82B0-82BF 

BFDCF 82C0-82FF 

Variable Data 8300-830F 

BMULT 8310-8330 

TWO SC 8336-833F 



() 

0 -........... 

.._ 

--

CALL ENTBY. 

(L)._ decimal angle 
I 

CALL DECBI 
(L).- binary angle 

I 

(A)..- co-angle 
(co-angle • 90°-anc;le} 
Compare with anq·1e 

·<>·angle 'co-angle 

Replace angle· with 
co-a.ngle 

I....,. .. --
Save comparison (ey) 

·.· .. : 
Multiply angle by 1T/180 
(•0438 hex) for ·fraction 
of radian 

--
.. 

CALL SINCOS 

I 
Recover comparison flag. 
Exchange sine and cosine 
if flag ~s set. 

I . 

Display sine ·ancl cosine 

)m.IN PROGRAM 
Figure E-1 

•. 

•. 
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Subroutines S~NCOS and TERM are defined in the text below and 

depicted in Figures E-3 and E-4. SINCOS-adds or subtracts succes-

sive terms, as discussed early in this appendix. TERM generates 

the terms, addressi~g a table of coefficients according to the 

term number. These coefficients are nominally 1/2, 1/3, 1/4, 1/5, 

etc. Adjustments to the coefficients for terms 5 and 6 are made 

as shown in the table of Figure E-5 to correct for_ rounding errors 

and absent higher order terms. 

The table of Figure E-5 shows the results returned by this program. 

Note that the adjusted coefficients affect only the least signif i­

cant digit, for angles between.40 and SO degrees. The adjustment 

may be important in some instances, to make sin 45° =cos 45°. 

SINCOS Find the sine and cosine of. X 

Enter with (BL) = x 
Return with (BC) = x 

.(DE) = sin x 
(BL) = cos x 

Constraints: X must be a fractional value (i;.e. less than 1). 

The cosine of zero is returned as FFFF. 

TERM Find·succes~ive terms of ex 

·Enter with (A) = term number 1 to 8 

(BC) = x 
(BL) = previous term· 

Return with (A) = next term number 

(BC) = x 

. (HL) = new term 

Requires a table of values of l/(A). Term is always positive. 



0 ENTER {HL) ::;X 

{BC) 4i- X for multiplicand 
(ST)4i- (DE).,._ FFFF for cosine 
(DE).,_ 0000 for sine 
(A).-. 01 to mark term 1 

,. 
{ST)...,_ (HL) save positive term 

Test for term 2,3,6,7 
Take two's complement to 
subtract tbese terms 

I 
{OE) ....... \BL) I 

(Ht).,.._ (DE) + (HL) 
Add term to function in (HL) 
(DE).-.. (ST) Positive term 
(HL) ..... \ST) Exchange sine 
and cosine in (HL), (ST) 

E - 7 (I/12/77) 

(DE) ......... ,BL) (DE) ..... function 
(HLl...--tetm 

CALL TERM 
(A)...- {A) + 1 

I 

(HL) ..... (BC) x (Ht) . x Coef 
Set zero f lacr if term • O 

(HL) ...... (ST) Sine or cosine 
If term number is odd exchan9e 
sine and .cosine 

SUBROUT'INE SIHCOS 

Figure E-3 



(A)...,_(A) + l 
Test fQr term beyond table 
and·return with zero flag 
set if it is reached. 

- I 
(ST)..-(OE) Save registers 
(S'P)....-(A,F) ·save term no. 
(ST)..,.....(BC) save x 

l 
Add· 2lt term nUJDber to table 
address 
(Bc).-coef ficient ,, 
CALL BMULT 
(HL~ai t.-l 

l. 

I 
(BCJ..,.(ST") Restore x 
CALL .. BMULT 
(HL)+-ti =·X c. 

l. 
t.-1 

l. 
Test result for zero 
to return flag when further 
terms • O 

I 
(A) ..,_(D)...,_ST· 
To restore term number but 
preserve aero flag 
(DB):..t-. (ST). Restore registers 
Return 

SUBROUTINE TERM 
Figure E-4 
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() 

Results of Sine/Cosine Calculation 

Angle Cosine Sine 

0 0.9999 0.0000 
1 .9998 .0174 
2 .9993 .0349 

·3 .9986 .0523 
4 .9975 .0697 
s .9961 .0871 

10 .9847 .1736 
15 .9658 .2588 
20 .9396 With .3420 
25 .9062 adjusted .4266 
30 .8659 coefficients .5000 
35 .8191 • 5736 
40 .7661 *.7660 .6428 
44 .7195 *.7193 .6949 
45 .7073 * .7071 • 7072 
46 .6949 *.6947. .7195 
so .6428 .7661 
60 .5000 .8659 
75 .2588 .9658 
-90 o. ooo·o 0.9999 

*Values with error least significant digit 

RESULTS OF SINE/COSINE CALCULATION 
Figure E-5 

With 
adjusted 

coefficients 

*.6947 
*.7071 < 

•.7193 
*.7660 
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