o

MICROCONPUTER TRAINING SYSTEN REL”’%N 10
wraox MREAK 60
INSTROVENT SECTiON
~ LIBRARY

EDWARD DILLINGHAM, M.E., M.S.E.E.

 'ASSISTED BY

Dr. David C. Collins -
Mr. Eric R. Garen
Dr. Daniel M. Forsyth

"Published By

INTEGRATED COMPUTER SYSTEMS, INC.

© Copyright 1977.

“LOS ANGELES BRUSSELS

“Rev. A 6/78'"‘

All materials copyright by Integrated ‘Computer" Systems Inc.,
Not to be reproduced without prior written consent.

TABLE OF CONTENTS

HARDWARE AND SOFTWARE FUNDAMENTALS

Basic Cohcepts _

Number Systems and Representations
The Organization of Memory
Structure of the CPU

The MTS Monitor

Preparing a Program

Summary

2 TWO AND THREE BYTE INSTRUCTIONS

2.1
2.2

o> w

Program Exercise No 2
Data Storage Conventions

~-Program Exercise No 3

Summary of Instructions

3 PROGRAM LOOPS

3.1

.

Program Loops and Flow Charts
Programmed Monitor Entry'.
Addition by Counting

Summary

Summary of Instructions .

4 THE OTHER REGISTERS

The Other Registers

The Carry and Zero Flags
Immediate Instructions
Transfer Notation

1-2
1-9

1-20
1-29
1-36
1-44
1-59

2-1
2-15

2-16

2-30

3-1
3-8
3-12

3-19
3-20

4-12
4-16
4-26

THE OTHER REGISTERS (CONT'D)

4.5
1.6
1.7
4.8
4.9
4.10

MEMORY

5.1
5.2
5.3
5.4
5.5

Register Pairs
Sensor Correction Exercise

Additional Instructions for Register Pairs

Sensor Correction, Version 2
Summary :
Instruction Card

HARDWARE

Memory Technology

Memory Pages

Data Bus Connections
Memory Signals'and Timing
Battery Back-up

‘MODULES, SUB-ROUTINES AND THE STACK

6.1
6.2
6.3
6.4
6.5
6.6
6.7

6.8

6.9
6.10

Program Modules
Subroutines

Subroutine Specification
Monitor Breakpoints

Sensor Program Subroutines
Using the Stack for Data
Processor Status Word (PSW)
Stack Pointer Instructions
Subroutine Classification
Monitor Subroutines

LOGIC AND BIT MANIPULATION

7.1
7'2

' Rotate Commands

Program Exercise I

ii

4-29
4-33
4-49
4-56
4-68
4-68

5-2

5-10
5-13
5-17
5-21

6-1

6-13
6-29
6-34
6-38
6-57
6-63

6-65

6-68
6-70

7-1
7-14

7 LOGIC AND BIT MANIPULATION (CONT'D)

7.3
7.4
7.5

Logical Functions
Program Exercise II
Summary

8 INPUT/OUTPUT TECHNIQUES

Isolated Input/Output
Memory Mapped Input/Output
Direct Memory Access

I/0 Initiation

Interrupt Service Routines
Using Interrupts with MTS

9 DATA FORMAT

10 BINARY

10.1
10.2
10.3
10.4
10.5
10.6
10.7

Parallel Input/Output

.Serial Input/Output

Transmitting and Receiving ASCII Characters
Equipment Interfacing

AND DECIMAL ARITHMETIC

Binary Addition

- Four Byte Addition

Binary Subtraction

Decimal Addition and Subtraction
Binary Multiplication

Decimal Multiplication

Other Representations of Numbers

1ii

7-22
7-30
7-72

8-2
8-35
8-39
8-50
8-76
8-80

9-2
9-12

9-18
9-41

10-2
10-6

10-25
10-33
10-39
10-44

11

REVIEW OF INSTRUCTIONS

11.1
11.2
11.3
11.4
11.5
11.6

Data Transfer

Counting Instructions
Accumulator/Carry Instructions
Arithmetic and Logic Instructions
Branch Instructions

Input/Output

iv

11-2
11-5
11-7
11-9
11-12

11-14

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

THE ICS MONITOR

General Monitor Functions A-2
Monitor Commands _ " A-8

Monitor Subroutines and Display _ ~ A=-20

THE ICS MONITOR
Program Listing

HARDWARE LAYOUT AND TEST PROCEDURE

BINARY/DECIMAL CONVERSIONS

CALCULATING TRIGONOMETRIC FUNCTIO&S

cooe

8 2 0 0

ol O]l O]}]
o~

1
1
1
1
1
2 2 0

133HS ONIA0D

WILSAS ONINIVHL HILNJdWOOOHIIN

o

\

.ms_m._.m>w H31LNdWOD A31VHOILNI

o

CODE

133HS ONIA0D

W31LSAS ONINIVHL H31NdWOJ0HIIN

@

SW31SAS mthm_aOu (31VHOILNI

—

- MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 1

HARDWARE AND SOFTWARE FUNDAMENTALS

INTRODUCTION TO CHAPTER I

This chapter serves aé the foundation upon which subsequent chapters are
based. The basic structure of computer systems is described, principles
of tbe binary number system are developed, the functional organization
of memory and the central processing unit is introduced and the

execution of several computer instructions is presented in some detail.

By writing and loading simple programs of your own, you will learn to

use the Microcomputer Training System keyboard and display. You will

~observe first-hand the dynamics of program execution by watching,

step-by-step, the results of executing individual instructions on your,

own computer.

- If you are familiar with some’of the topics covered here, skim but do

not skip the material. The basic concepts are related to the structure

and operation of the Microcomputer Training System.

After completing this chapter you will have a clear comprehension of the
basic fundamentals of computer hardware and software. Most importantly,

your knowledge will be rooted in hands-on usage of your MTS computer

system.

1.1 BASIC CONCEPTS

o

1.1.1 Definition of a Computer

A computer is an electronic system which performs arithmetic and logical
operations on data according to a sequence of instructions. The system

consists of both hardware (physical devices) and software (sequences of

instructions).

HARDWARE: The electromechanical components of a

computer system.

- . o L ‘:Ii

1.1.2 Basic Hardware Structure of a Computer

A computer has three principle hardware subsystems: a Central Processing

Unit (CPU), a memory, and Input/Output (I/0) devices.

CPU: The central processing unit, a set of elements
which perform the actual arithmetic and logical
operations. The CPU also serves the central

control function of the computer system.

MEMORY: A physical device in which data and instructions

are stored for subsequent processing.

o

I/0 DEVICES: Electro-mechanical devices which provide
input of data and instructions to the
system and output of results, for
example keyboards for input and displays

- for output.

These three subsystems are interconnected such that each one can

communicate with the other two:

CPU

MEMORY d =1 1/0 DEVICES

The model for computer operation is as follows:

; 1. Instructions are input via an I/O device and

| stored in memory. .

2. Data are input via an‘I/O device and stored
in memory. | '

3. The data are processed in a sequence and manner
specified by the instructions.

4. The results of the data processing are output via

an I/0 device.

In Figure 1-1, showing the layout of the MTS computer, the principal
subsystems have been -identified: The CPU, Memory, and Keyboard and

o

Display. We will look at these in more detail later in the chapter.

MEMORY

Space for 1024 bytes
of CMOS RAM
memory - 512 bytes
provided with system

PROCESSOR
HARDWARE
8080 microprocessor
plus 8228 system

controller and
clock circuit

SWITCH (A)

provides the option
to switch power
supply mode to
two user-supplied
1.5 volt dry celis.
This permits re-
tention of data

in CMOS RAM
memory.

SWITCH (B)

provides the option
of operating the
system in a hard-
ware-generated
single-step mode

or in a free-run-
ning mode.

o })\ \}TK}[MTE

MEMORY DMA DISPLAY

1024 bytes of Electrically Direct Memory Access (DMA) 8-digit, 7-segment
Eraseable PROM memory and timing circuits LED display
containing ICS Educational

Monitor

[ER SYSTEVS MICROCIOMPUTER TRAINING SYSTEMY NG

seen b e ssee

.
g0

—
e
= Q

4
(6 oo 8,89 ARSB
p 3 {
£9 - S st 52 KX KR ¥
. OR1.E2.8 3 B
B P "1 v
SR X
i
POWER SUPPLY EDGE CONNECTOR PROGRAMMABLE FREE AREA KEYBOARD
CONNECTION permits interfacing to PERIPHERAL INTERFACE provided for hardware 25-key keyboard
heiynlic il I i b b e Sy e 8 famtion s
wp:‘l'; of +5 volts (CPU address, data control g&?g;ﬂ?:g:ﬂ'lo ports fo,to Y
(at 1 amp) and buses are made available asynchronous transmit and
+12 volts (at 0.2 at board-edge pins) receive - ICS Monitor handles
amp) —user supplied all transmit/receive functions)

1.1.3 Basic Software Concepts | 6

" The computer performs its functions under the control of a .sequence of
instructions. As an illustration, consider using a computer to convert
miles to kilometers using the approximation that there are eight
kilometers in five miles. The rule, as it might appear in a textbook,
would say "Multiply the number of miles by eight and divide by five fo
obtain the answer in kilometers." The computer Qill need more detailed

instructions than this, and the sequence might appear as follows:

START

INPUT NUMBER OF MILES TO BE CONVERTED
STORE IN MEMORY UNDER (MILES)
RETRIEVE, (MILES) FROM MEMORY e e
RETRIEVE (8) FROM MEMORY

MULTIPLY (MILES) TIMES (8)

STORE IN MEMORY UNDER (TEMPORARY)

RETRIEVE (TEMPORARY) FROM MEMORY

RETRIEVE (5) FROM MEMORY

DIVIDE (TEMPORARY) BY (5)

STORE IN MEMORY UNDER (RESULT)

OUTPUT (RESULT)

STOP

A sequence of instructions which performs such a calculation (or

computation) is called a program.

PROGRAM: A sequence of instructions which performs a
specific calculation, computation or set of

logical operations.

Programs may be specified which perform a vast and varied number of
functions, including mathematical calculations, symbol manipulation,
word processing and the detailed control and sequencing of I/0 devices.

A collection of such programs is referred to as software.

SOFTWARE: 1) A collection of progfams which perform
many different functions; 2) The program
component of a computer system in general,

. as distinguished from the hardware or

physical component.

T
{

1.1.4 The ICS Self-Study Microcomputer Training Course

This course is designéd to provide you with the basic knowledge and

practical experience which will give you the capability to:

-Specify and write programs for performing a wide

variety of different functions,

-Enter programs and data into the Training Computer.

-Verify that your programs operate correctly and,

when they do not, modify themuntil they do so.

; N
-Learn design techniques by actually connecting
I/0 devices to the Training Computer and controlling

them with your own programs.

-BExplore the many hardware/software interrelationships,
learn the cost-effective use of each, and design

.complete systems of your own.

In the succeeding chapters of this book you will be given, in
step-by-step fashion, a sound foundation in both software and hardware
techniques. You will progress from the simplified concepts of this
introduction to a thorough understanding of these techniques as you

"learn by doing", implementing each new concept yourself on your own

computer.

. 1.2 NUMBER SYSTEMS AND REPRESENTATIONS

1.2.1 The Representation of Numbers

To physically represent a decimal number requires an element with ten
possible states, one for each of the decimal digits 0-9. such a
representation is found, for example, in the cog wheels of mechanical

calculators. 'Elements with more than ten states are also common, for

example in clocks.

For reasons of reliability and cost, such multi-state representations
~are impractical in the various types of electronic circuitry required by
computer systems. A reliable and practical representation is a
two-valued state, which may be realized by the use of two different

voltage levels, by the state of a gate or flip-flop which is either open

or closed, or by the positive or negative polarity of a magnetic
element. 1In all cases, however, the computer operates on these two
states logically as representing'onés and zeros. Computers, therefore,-

use a two-state binary number system to represent numbers.

BINARY NUMBER SYSTEM: A two-valued number system

using only the digits 0 and 1.

To wunderstand the basic principles of computer operation, it is
essential to know something about number systems in general, and about

binary numbers in particular.

1.2:2 The Decimal Number System

Consider the following four ways of representing the decimal number

8192:

1) 2) 3) ' 4)
8000 8 x 1000 8 x 10 x 10 x 10 8 x 103
100 1 x 100 1l x 10 x 10 1l x 102
90 . 9 x 10 9 x 10 9 x 101A
2 2 x1 2 x1 | 2 x ld)
8192 8192 8192 8192

All of these representations are familiar, Column (1) indicates that
the number 8192 can be represented as the sum of four different numbers.
Columns kZ) -~ (4) go further by illustrating that 8192 can be
represented as the sum of four §roducts. Column (4), however,
exemplifies the basic principle of all number systems:_éach product can
be obtained by multiplying a digit (in decimal the symbols 0-9) times a

base (in decimal the number 10) raised to a power (see column 4 above).

DIGIT: One of the symbols used in a number system.

BASE: The number of different symbols used in a

number system.

POWER: The number of times that a base is multiplied |

by itself to form a product.

The decimal number system has ten digits or symbols; therefore the
decimal number system has a base of ten, and in the example each product

is obtained by multiplying a digit times the base ten raised to a power.

~ The power to which the base is raised can be seen to be a natural

progression from the least significant digit (rightmost) to the most
significant (leftmost). The value of a base raised to a power is thus a
function of its position in a string of digits, where position is
counted from right to left starting with zero. In the following table we
call the quantity of a base raised tb its positional power a
"multiplier". This number is multiplied by a digit to provide the final

product:

1 - 12

POSITION 3 2 1 0
MULTI- 103 102 10t 10°
PLIER (1000) (100) (10) (1)
DIGIT _ 8 1) 3
PRODUCT 8000 100 90 2

Tables such as the above can be used to express the magnitude of a

number in a system with any arbitrary base. The binary number system

will be considered next.
1.2.3 The Binary Number System

The choice of base for a number sy;tem may be accidental or deliberate.
The decimal system doubtless became widespread because of the ease of
counting on ten finge:sf Nonetheless, the Babylonians used a base of
sixty and the Mayans, a base of twenty. The binary number system, which

is most appropriate for computers, uses a base of two, and the digits 0

and 1.

Consider the following binary number:

11011

Had we 1lived from birth with a binary number system, we would
immediately grasp its magnitude. As we have not, it is useful to

convert it to its decimal equivalent.

o

Knowing that binary numbers have a base of two, we can construct a table
similar to that for decimal numbers. The table converts binary numbers

to their decimal equivalent in the following fashion:

POSITION 4 3 2 1 0
MULTI- 24 23 22 2! 20
PLIER (16) | (8) (4) (2) (1)
DIGIT 1 1 0 1 1
PRODUCT 16 8 0 2 1

Thus 11011 (binary) = (16 x 1) + (8 x 1) + (4 x 0) + (2 x 1) + (1 x 1) =
27 (decimal). Larger tables may be constructed for converting longer

strings of binary numbers. : Ce- T

Looking at the table again, it can be seen that the multiplier of each
digit position is exactly twice the value of the position preceding it.
Using this proberty, it is easy to quickly jot down the products which

are to be summed.

Conversion from decimal to binary could also be accomplished by using a
table, but it is much easier to use a process which we may call
"remaindering". Dividing an even decimal number by two will produce a
quotient with a remainder of zero; dividing an odd decimal number by two
will produce a quotient with a remainder of one. The remainders are
used to construct the binary number, in the following example for

decimal 57:

1 - 14
Quotient Remainder
57/2 = 28 _ 1 position 0—
28/2 = 14 0 1
14/2 = 7 0 2-
7/2 = 3 1 3
3/2 = 1] ————rrH
1/2 = 0 1 —5
._} |

1 1 1 0 0 1

Decimal 57 is the equivalent of binary 111001. We may check this by
quickly Jjotting down the products, counting from position 0: (1 x 1) +

v

1.2.4 Binary Addition

The rules for binary addition are very simple:

0+0=0
0+1=1
1'+0=1
1 +1=10

In performing the final addition} we would say to ourselves "One plus
one equals zero and carry one". The rule for carries in binary is
similar to that in decimal but much simpler, as there are 'only two "\

symbols to worry about instead of ten. In both systems, symbols cycle

O

(are successively incremented by 1) thru a digit position until all have

been used. The next higher position is then incremented and the cycle

is repeated.

The following addition tables illustrate addition (counting) rules for

binary and decimal numbers:

0+0 = 0 0+0= 0
0+1 = 1 0+1= 1
1+1 = 10 1+1= 2

10 +1 = 11 2+1= 3
11 +1 = 100 3+1= 4
100 + 1 = 101 4+1= 5
101 + 1 = 110 5+1= 6
110 + 1 = 111 6+1= 7
11 +1 = 1000 7+1= 8

1000 + 1 = 1001 8+1= 9

1001 + 1 = 1010 9 +1 =10

The binary portion of this table provides a'graphic illustration of the
relationship between a digit's position in a string and the power to
which the base is raised at that position. In the "zero" pésition, note
that 0's and 1's cycle. Iﬂ the "one" position, two 0's cycle with two
1's. In the "two" position, four 0's will cycle with four 1's, Each
cycle is twice (base two) the length of the previous cycle. For decimal

numbers each cycle will be ten times (base ten) the 1length of the

previous cycle.

Subtraction, multiplication, division and the representation of negative

binary numbers will be discussed in a subsequent chapter, but keep in

- mind that these operations are all derivatives of the basic operation of

addition - which in turnis really nothing more than counting.

When using more than one number system, their representations can often

become confusing. To avoid this problem, a number may be subscripted to

indicate its base:

112 (three)

11) (Eleven)
io0

In this manual whenever a number is not apparent from context, it will

be subscripted appropriately.

A number of nomenclature conventions are important to introduce at this

time: bit, string, bit position, most significant bit, and least

significant bit,

BIT: An abbreviation for binary digit.

BIT STRING: A string of bits

BIT POSITION: The location of a bit in a bit string.

MOST SIGNIFICANT BIT: The leftmost bit of a bit string.

LEAST SIGNIFICANT BIT: The rightmost bit of a bit string.

1.2.5 Hexadecimal Representation

We have seen that binary numbers are ideally suited to machine
representation, and that they are easily added. ‘ Subtraction,
multiplication and division are also simple operations in binary. There
is in_ fact only one dra&back to the use of binary numbers: they are
difficult to percei&e and describe if there are more than a few bits in

a number. Consider, for example, the binary number:

1011000100001001

It is almost impossible to look at such a number and remembef the digit
in each bit position. There needs to be a way of encoding and naming
such numbers so that they may be more easily comprehended, while at the
same time preserving the underlying binary notion. 1In the decimal
system, digits are often grouped by threes, separated by commas (e.g.
862,249,101). Consider some possible groupings of the bits in our

example:

o

1 - 18
10110001 00001001 (grouped by 8 bits)
1011 0001 0000 1001 (grouped by 4 bits)
10 11 00 01 00 00 10 01 (grouped by 2 bits)

A group of eigbt bits can represent one of 256 numbers ranging from
000000002 to llllllil2 , or from 010 to 25510 (the reader is asked to
verify that this is so by converting 11111111 to a decimal number).

This 1is considerably 1less than the 65,536 | numbers which can be
: 10

represented by a group of sixteen bits, but is still too 1large (256

different names?) to be useful. A two bit group, on the other hand, can
represent only four numbers, and‘is too small to be ﬁseful. A four bit
grouping, representing sixteen possible numbers, seems both visually
saﬁisfactory (lodimat éﬁe groupings again) and reasonable. What wé need
is a set of sixteen symbols to represent each of the different numbers,

and these are given in the following table:

0000 0 1000 8
0001 1 - 1001 9
0010 2 1010 a
0011 3 1011 B
0100 4 1100 C
0101 5 1101 D
QllO 6 1110 €
0111 . 7 1111 F

By adding the first six letters of the alphabet to the ten existing

decimal symbols we are able to unambiguously name each unique group of

four bits. Returning to the original sixteen bit example,

01100010000j1001

it can be seen that this notation is much easier to read and remember.
The introduction of a sixteen-symbol convention to represent groups of
four binary digits is for the convenience of the user only. It can be

seen, however, that we have in fact introduced a new number system with

a base of 16lo *, and which is called the hexadecimal - number system °

(abbreviated hex).

HEXADECIMAL NUMBER SYSTEM: A sixteen-valued number system

using the symbols 0 - 9, A - F.

While it is possible to add hex numbers and COnstruct tables for
converting hex to decimal and decimal to hex} wé will not consider these
operakions in any detail. The use of hex notation will be liﬁited
solely to the representation of four-bit groups of binary numbers, and
is used only to facilitate describing them. The use of numbers such as

3C16, 82FF16 etc. will always be understood as a simple encoding of

binary numbers.

1.3 THE ORGANIZATION OF MEMORY | |
1.3.1 Memory Words

. Data and instructions, represented as binary numbers, are stored in the

computer's memory. The fundamental units of memory are words, each of

which has a word size.

WORD: The basic unit of storage in a computer memory.

WORD SIZE: The number of bits which are contained in a word.

bit(N-1).eeeeeeeeeees. bit O ' A memory word with

-
|

|

word size N. \
} e S . 1‘5’

The word size of‘memory varies with the size of the computer system.
| Very large computers have word sizes from 32 to 64 bits. Mini-computers
typically have word sizes of 16 or 24 bits. Micro-computers usually
have a word size of 8 bits, which is the size of the MTS memory word.
One factor is common to most - the word size 1is divisible by eight.
This has 1lead to the.adoption of a special term for an 8-bit wofd or

string, the byte.

BYTE: An 8-bit word. More genérally, an 8-bit string.

1 0 1 1 0 1 0 1| A byte representing the number 181lo

(or 8516).

O

Each word in a memory has a location which is identified by

address.

a

MEMORY LOCATION: The location of a word in a memory.

MEMORY ADDRESS: A number specifying the exact location

of a memory word.

A memory's size is equal to the number of words in a memory.

MEMORY SIZE: The total number of words in a memory.

An address size is the number of bits used to specify a memory

address.

ADDRESS SIZE: The total number of bits which may be

used to specify a memory address.

memory

1.3.2 Memory Module

At first glance it might appear that memory size and address size are
directly related. ‘For example, a computer with an address size of eight
bits can address 256 words;.with an address size of sixteen bits, 65,536
words can be addressed. However, thé capability of addressing wqrds
does not imply that the memory must contain that many words. Most
computers, 1in fact, have far fewer memory words available than they are
capable of addressing. This 1is possible because memory is usually
vavailable in modules, with each module.containing a few hundred or a few
thousand words. The same CPU can thus be used in a variety of
configurations, with the size of memory used dictated by the application

for which thé system has been designed.

MEMORY MODULE: A unit of memory containing a fixed number

of words.

Memory modules contain a number of words or bytes which 1is generally

10
expressed as some factor of the quantity 1024 (2 }). This is such a

10
convenient unit for describing memory size that the number 1024 has been
given the symbol K. A memory module containing 4096 bytes is referred
to as a 4K memory; one with 512 bytes, a .5K memory. These concepts may

be illustrated by the diagram on the following page:

MEMORY MODULE 2 (.5K) (DECIMAL ADDRESS)

Address 83FF - - — - ——— = 33791
16 10

i ‘ 33281
Address 820116 10

Address 8200, L __ , 33280

10

Address O3FF e = o —— ' 102310
; 16 . ‘

Address - 1 00| = —————— Co 1 SR,
Address 0 R S S, ‘ 0

The diagram describes the memory structufe of a system with a word size
of eighi bits, an .address size of sixteen bits (Why are sixteen bits
required?), and a memory size of 1.5K words. It is in fact the memory
structure of your own MTS computer system. Two important properties of
memory organization are illustrated here. 1) Within a memory module,
addresses are numbefed sequentially; 2) If two or more modules are used,
the first address of the second module is independent of the 1last
address of the first module (although for ease of implementation it is
usually some multiple of 1K). This independence is made possible by the
fact that the two modules are "wired in"; the addresses of available

words are determined by the hardware of the systen.

1.3.3 Memory Access

The process by means of which a request is made to access a memory word
is conceptually simple. The requestor (the CPU or, in some instances,
an I/0 device) outputs the requested ;ddrESs on parallel address lines,
one line for each bit of the address. This signal is interb;eted by an
address decoder, which then selects the single lead which will access

the desired memory word. The contents of the word will then be made

available on the data lines.

DECODER: A device containing a switching matrix which
 looks at the‘paﬁtern of a set of input signals

and selects an output signal determined by -

" that pattern.

The diagram on the following page illustrates the process:

o

REQUESTER DECODER MEMORY
1]
0 - |
0 - |
0 - :.__::
: - |m—_——— ——
0 -]
1 - == ——
: -— —T0l01111| ADDRESS 8300
| -
0 - (CONTENTS=AF)
0 — 16
0 -— DATA
0 -— LINES
g —= (BUS)
— .
° -— e
ADDRESS MEMORY -
LINES SELECT
(BUS) LINES

The memory select lines are essentially internal to the memory itself.
The address 1lines and data lines serve as the communication channels
between the CPU and its memories and I/0 devices, and they have special

names: address bus and data bus.

ADDRESS BUS: The set of lines carrying address information.
The number of lines in the bus will be equal

to the address size of the system.

DATA BUS: The set of lines carrying data. The number of

lines will be equal to the word size of the

‘system.

1.3.4 Varieties of Memory

There are two types of memory in your MTS computer system: Random Access

Memory (RAM), which may be read or written, and Read Only Memory (ROM),
from which data may be read but not written into. To read data from
-memory, the address bus is used to select a word whose contents can then

be read out onto the data bus. To write data into memory, the address

bus is wused to select a word whose contents are then changed to that
which is being sent on the data bus. Reading the contents of a word

leaves the word unchanged.

RAM: Random Access Memory which may be both read and written.

ROM: Read Only Memory which may be read but not written.

Read and write operations are illustrated in the following diagram:

RAM OR ROM MEMORY

NN
ADDRESS BUS h\\ WORD Read operations put the contents
V/’ of a word onto the data bus.

Jiis 1N

RAM MEMORY ONLY

w—_/\/
"WORD Write operations put the information
ADDRESS‘BUS :>> on the data bus into a word.

< DATA BUS >

In Figure 1-2 the RAM and ROM memories of your MTS system are indicated.
There are 512lo words of RAM and 10241;0 words of ROM memory. Your ROM
contains a set of programs called the MONITOR, designed to assist you in
learning the system. The functions of the MONITOR will be defined step
Ey step as yoﬁ‘progress through this manual. The RAM memory will be
used to store the different programs which you will write yourself. ROM
memories are used for programs which do not need to be changed, and are
protected against inédvertent modification. RAM memories are used for
program development (these programs can then be placed in a ROM memory,
but special equipment is required) and for storage of transient data in

actual applications.

Y

=)

INTEGIA
COVPU

X —

MEMORY DMA
1024 bytes of Electrically Direct Memory Access (DMA)
Erassable PROM memory and timing circuits

containing ICS Educational .

[E
SYSIEVAS |

MEMORY

Space for 1024 bytes
of CMOS RAM
memory - 512 bytes
provided with system

PROCESSOR
HARDWARE

8080 microprocessor
plus 8228 system
controller and

clock circuit

ol elvye s o viav-adl B

SWITCH (A)

provides the option
to switch power
supply mode to
two user-supplied
1.5 volt dry cells.
This permits re-
tention of data

in CMOS RAM
memory.

SWITCH (8B)

provides the option
of operating the
system in a hard-
ware-generated
single-step mode

or in a free-run-
ning mode.

eiv e die ne

NC.

CNTFGRATEC Y IAPUTER SYSEAE. MICROGQOMPUTER TRAINING SYSTEMY @

Monitor

o
2

b ey e e AR e

o

A

DISPLAY
8-digit, 7-segment .
LED display

STd

H

POWER SUPPLY
CONNECTION
the system requires
a simple external
supply of +5 volts
(at 1 amp) and

+12 voits {at 0.2
amp) —user supplied

EDGE CONNECTOR
permits interfacing to
external devices and
expansion of memory
(CPU address, data control
buses are made available
at board-edge pins)

Q

PROGRAMMABLE

PERIPHERAL INTERFACE

provides 3 programmable 8-bit

1/0 ports (can be programmed to

provide two serial 1/O ports for
asynchronous transmit and
receive - ICS Monitor handles
all transmit/receive functions)

FREE AREA
provided for hardware
additions by user

KEYBOARD

25-key keyboard
(16 hex keys and
9 function keys)

1.4 STRUCTURE OF THE CPU

On the first page of this chapter, the CPU was described as a set of
elements which perform the arithmetical and logical operations and also
serve as the central controlling elements of a computer systeﬁ. We will
look at some of these operations in more detail in this chapter, but

first we may review the structure of the system including the 'data bus

and address bus:

<‘r DATA BUS |

CPU MEMORY I/0

: ADDRESS BUS]

\

The CPU may send or receive data along the data bus (it is

bidirectionai), but . no memory address is sent to the CPU along the

address bus.
1.4.1 Functional Units

Internally, the CPU consists of four functionai units. One is concerned
'ptincipally with addressing functions, selecting addresses which will be
sent out on the address bus. A second unit 1is concerned with
interpreting and decoding the instructions which are stored in memory.
The third is the Arithmetic and Logic Unit (ALU), in which all

arithmetic and logical functions are performed. These units are able to

1 - 30

communicate with each other over an internal data bus, which 1is the
fourth functional component of the CPU. The following diagram

schematically cutlines this organization:

(internal data bus) :> " DATA BUS

ARITHMETIC AND LOGIC
UNIT

INSTRUCTION UNITI

ADDRESSING UNIT | 3 ADDRESS BUS

EVAEVARV:

CPU ORGANIZATION

Q

The internal data bus is illustrated here only to indicate that there is
a physical pathway between the various internal units of the CPU. The
term data bus will always refer to the main (external) data bus, to

avoid confusion.

Each of the internal units of the CPU has one or more registers, one or
two byte storage elements which are similar to memory words but which
are used for temporary storage, for holding the results of a
calculation, or for other dynamic purposes. The nature and function of

each register will be described as its use is first encountered.

REGISTER: A one or two byte storage register used by
' the CPU for temporary storage or other dynamic

purposes.

1.4.2 The Execution of Instructions

A computer is a system which performs operations on data acéording to a
sequence of instructions called a program. A program is created by a
user (programmer) to cause the computer to fulfill a particular task.
An instruction 1is the smallest element of the program that conveys a
complete meaning; it is similar to (and often représented by) é command
in human 1language such as ADD B to A. To be stored in the computer's
memory and héndled by its electronic circuits, the instruction must be

represented as a binary number.. This representation is called a code,

.

and a program in binary code ready for use by the computer is said to be =

in machine language.

INSTRUCTION: The smallest element of a computer
language that instructs the computer

to perform a specific operation.

Each execution of an instruction will perform. one small step in the
calculation or process which the program is designed to accomplish. 1In
turn, the execution of each instruction is broken up into a number of

\
steps which are performed one after another. Q

1.4.3 Instruction Cycles

The program will be stored in memory; therefore the execution of each
instruction will have to start with the transfer of an instruction from
memory to one of the registers of the CPU. Then the instruction will be
decoded (interpreted) and the operations specified will be carried out.
The total time taken to fetch and execute an instruction is called an

instruction cycle. The length of an instruction cycle varies

considerably, depending upon the operations which must be performed.

Every instruction cycle, however, begins with an instruction fetch.

)

INSTRUCTION CYCLE: The total time taken to fetch and

execute an instruction.

The basic sequence of events during an instruction cycle is:

FETCH INSTRUCTION FROM MEMORY

DECODE INSTRUCTION

EXECUTE SPECIFIED OPERATIONS

1.4.4 The Program Counter

To fetch an instruction from memory requires a memory address. The
address from which an instruction is to be fetched is always contained
in a CPU register called the Program Counter (PC). There are two strong
implications in this statement: there must be a way to initialize the PC
with the address of the first instruction in a program, and. there must
be a way to modify the PC after each instruction cycle so that it will

contain the proper address for the next instruction to be fetched.

PROGRAM COUNTER: A register in the CPU which contains

the address of the next instruction

to be fetched.

Use of the PC is illustrated below:

CPU MEMORY
m
o
ADDRESS BUS N\ i“’“'B Word Containing
V/ Next Instruction

1.4.5‘The Instruction'Register

When a memory word has been selected by the PC, its contents will be

gated onto the data bus and placed in a CPU register called the

Instruction Register (I).

_

3%

INSTRUCTION REGISTER:

the instruction currently being

executed.

A register in the CPU containing

PC

CPU MEMORY
3 (internal bus) :> DATA BUS :>
7 0
15 T 7T T
\ S NS AR e
X___~| ADDRESS BUS 0
v\/\

After the instruction has been loaded in I it is fed to the

decoder.

The

instruction

Word Containing
Next Instruction

instruction

decoder works much like the address decoder

described earlier, looking at a pattern of input binary signals and

outputing a pattern of signals which will sequence and control all of

- the steps required to execute the instruction.

DECODER

g
oy
e
]
L e |
ol
g ——
PReeS—
-]
- —
-y
——

Control and Sequencing
Signals

1.4.6 The Accumulator
The program counter is one of the registers contained in the addressing

unit. The instruction register is in the instruction unit. The final

register which we will define at this point is called the accumulator

-~ (A), an eight bit register in the arithmetic and logic unit. It is the
register‘most actively used by programs because it contains the results

of most arithmetic and logical instructions executed by the system.

We will shortly begin active use of the Microcomputer Training Systenm,
but before doing so the system monitor provided with the MTS must be

described briefly.
1.5 THE MTS MONITOR
1.5.1 Monitor Software

The Microcomputer Training System has a CPU, memory (.5K of RAM, 1K of
ROM) and two I/O devices, a keyboard and a display (see Figure 1-3). 1In
addition to its hardware, the MTS also has a set of programs which are

stored in read-only memory. This software is provided to assist you in

1l - 37

learning to use the MTS system, and is stored in ROM so that you will
not inadvertently modify any of its instructions, While it would be
possible for you to learn microprocessor principles without any software
assistance at all, the learning process would take considerably longer.
These programs are placed in the ROM memory at the factory and are ready

to run as soon as power is supplied to the system.

The programs are collectively called the monitor. The monitor controls
your input and output devices (keyboard and display), allows you to
inspect and change the contents of memory, and performs other functions

which will be described in detail as you progress through the course.

MONITOR: A collection of programs which control I/0
devices and provide various other functions

for the user.

While the monitor provides these facilities to enable you to use the MTS
immediately, in 1later chapters you will learn to write programs for

controlling the keyboard and display yourself.

INTEGATED MEMORY oma piseLAY
! 1024 bytes of Electrically Direct Memory Access (DMA) ———- 8-digit, 7-segment
@VI r —R — Eraseable PROM memory and timing circuits LED display
s containing ICS Educational ,
SYSTEVIS, INC i
(A . -

 CINTEGRATH

to switch power
supply mode to 4

two user-supplied

1.5 volt dry cells.

This permits re- - i -G T . . -
tention of data : SF YL e e ; X

in CMOS RAM L. , i om1. 2.8 3 maurl-

memory. B O -) . ' TN Y
B U 22 p ”

¥
, Al
MEMORY :
Space for 1024 bytes } 1 ‘- “ +
of CMOS RAM - —
memory - 512 bytes T — 6
provided with system das b SO0 4 3 ¥ i
(5 el RN H 11 P B
& O By g %) 3
. 3 oSy { b L8
G i ; g 82 g fg;'? ¥ ¢
& §> b k% 4 £ 3 2
PROCESSOR T gt < T € 3 o 8 ‘
HARDWARE n i N sl S ¥ . g
8080 microprocessor B < é
plus 8228 system b i 9 e
controller and - H IS — i ailé
clock circuit e] T i
N & CEDEBERF i
A s i) . .
2 3 o >
SWITCH (A)) i S9N ARB
provides the option R :
g z
5
2
:

.
o

SWITCH (B) '
provides the option ‘
of operating the A =
system in a hard- '
ware-generated POWER SUPPLY EDGE CONNECTOR PROGRAMMABLE FREE AREA KEYBOARD
:l?ig;e;s:::&r:\‘?:e conuecno@ permits interfacing to PERIPHERAL INTERFACE provided for hardware 25-key keyboard
O @ e the system requires external dev;ces and provides 3 programmable 8-bit additions by user (16 hex keys and
o :ms:m';;I:'e :-tsemls ?égfln:g’;r:ssmd;':‘aogmml 1/0 ports (can be programmed to 9 function keys)
{at 1 amp) and buses are made available g;::;ﬁm&?::::‘gno;‘p:“? for
+12 volts (at 0.2 at board-edge pins) receive - ICS Monitor handles
— amp) —user supplied all transmit/receive functions)

[
Qo

H s

~—

o

‘1.5.2 The MTS Keyboard and Display

The MTS keyboard and display are shown in Figure 1-3. The display,
located in the wupper-right corner of the MTS, consists of two sets of
four characters each. The characters are formed} by sets of
light-emitting diodes (LEDs). In each character ppsition, there are

seven LED elements arranged in the following fashion:

By activating one or more of the LEDs in a character position a

character is formed, for example "A":

We will use initially a character set consisting of 0—9, A-F, and R.

With a seven segment display, however, there are several ambiguities.
The ten decimal digits are easily created, but "B" would be the same as
"8", and "b" the same as "6". Also "D" would be the same as "0" and "R"

the same as "A". These characters are thus represented by:

to
L]

| . — . —

v}
]
_
o
]

The keyboard is a five by fi&e‘afray. The upper row and right éolumn of
this array are cbmmahd keys,"each‘ of which requests the monitor to
perform a particular function. Thé remaining keys constitute the hex
characters 0-9, A-F. For the moment we will ignore the alpha characters

which appear on the 1, 2, 8 and 9 keys.

Usihg the keyboard and display, you will be able to:

e

~. =Inspect the contents of a memory word ' T T @/
-Change the contents of a memory word .
-Inspect the éontents of the program counter (PC)
-Change the contents of the program counter
-Inspect tHe contents of a register (e.gq. Af
-Change the contents of a register
-Execute an instruction contained in a memory word

-Execute a program contained in memory

1.5.3 Using the MTS '

The monitor is the silent and unseen servant that helps you accomplish
all of the above functions. As it is a program, however, it uses all of

the registers of the CPU, and you may be asking how your program and the (:.'

o

°

monitor programs can use the same registers without confusion. The
answer is that the monitor "remembers" the contents of these registers

(stores them in memory). This is possible because your program'and the

~monitor programs are never being executed at the same time.

When the power is turned on, the monitor will set the contents of your

PC to 8200 which is the first address of your RAM memory. This

16 '
number will be displayed in the left four digits 6f the display. The
contents of location 8200 will be'displayed in the rightmost two digits
of your display. The monitor will then wait for you to depress one of
the keys on the keyboard. Initially, the contents of 8200 will be
undefined - whatever is contained there is not a number which you put
there. For convenience in wgiting, whenever a number is undefined we
shall represent it with question marks{N'Whenrpbﬁérxiémfdfnédiaﬁ} then,

your display will read:

V]
|0
L

(8200]]

Remember, the display will not actually contain question marks; it will

simply be a number which the author of this manual cannot predict!

1.5.4 Inspeéting Memory Contents

Having turned on the MTS, take a piece of paper and make two columns
‘labeled ADDRESS and CONTENTS. Enter 8200 in the first column, and its
contents (the two rightmost digits) in the second column. We will now

continue to examine the contents of the first ten words of memory. To

look at the contents of 8201, press the command key labeled NEXT .

~,

The display should now read: { 9201” 22 a

01 in the first column, and its contents in the second. Press

again, and write down 8202 and its contents. Continue in

ashibn until the display reads 8209. You shoﬁld now know the

contents of the first ten words of your memory, in whatever random

condition they may be.

The command key RST (for RESTART) has the same effect as turning

power on: the wuser's PC will be set to 8200, memory address 8200 will

appear in the left four digits of the display}and the contents of 8200

will be displayed in the rightmost two digits. If you have made an

error, press RST and start over,k

1.5.5 Changing Memory Contents

We will now consider changing the contents of a memory word.

Press | RST . The display will read:

18200 (22]

By pressing the MEM (for MEMORY) key, the monitor is commanded to accept

data from the keyboard and store it in the displayed address. Press

MEM | , then hex key 1 ; the display will read:

((8200)_o01

Press hex key 2 |; the display will read:

[(8200](___12]
Press hex key 3 ; the display willkread:

(8200) 23]

Each time a hex key is pressed, .the right digit is shifted to the 1left,
displacing whatever was there, and the new digit is entered in the
rightmost position. Remember, a memory word can store only two hex

charécters (one byte). The monitor will allow you to press as many hex

keys as you desire, but only the 1last two will be stored. This

capability allows you to correct keying errors without the necessity of
pressing another command key. To see what all of the hex characters

look like on the display, continue pressing the keys until you have seen

the entire set. Finally, press hex keys 0 and 1 so that the

display reads:

(_8200]_01
Now press NEXT followed by hex keys 2 and 3 . The
display will read:

{ 8201;___23]

Pressing NEXT allows you to enter data in consecutive memory addresses.

1.6 PREPARING A PROGRAM

You are now ready to prepare &our first simple program. First, we will
define the instructions which will be used. Nexf, we will write the
program down on paéer. Then the program will be entefed at the keyboard
énd verified. Finally, the program will be executed one instruction at

a time, and the sequence of operations within the system will be

detailed for each instruction.

Instruction codes are one-byte, 8-bit binary words represented by two
hex characters; Neither the binary word nor its hex‘equivalent has an
intrinsic meaning, so fd: each instruction_a short two, three or four
character mnembnic has been assigned. The mnemonic is a shorthand

representation of the meaning or functional description of the

instruction.

@)

1.6.1 Instructions to be Used

" The first instruction we will use is defined as follows:

BINARY CODE: 00000000

HEX CODE: 00

MNEMONIC: NOP |

MEANING: No Operation. This is an instruction which

does nothing at all. 1Its execution has no

effect on any memory location or CPU register.

The chief purpose of NOP is to leave a space open in case you have to
fix something - 1like leaving a spare pin on the edge connector of a
printéd circuit board. This instrucéion appears in the instruction set
of almost every computer on the market, from huge IBM installations to
microprocessors such as the one in your MTS. It is in effect a
non-instruction; when a pattern of all zeroes is presented to the

instruction decoder, no operation is specified.

The A register (accumulator) is the most important register in the CPU
from the programmer's point of view, and there are a number of
instructions which manipulate its contents. It is logical to consider

next the instruction which sets the contents of the A register to zero:

1 - 46
—
BINARY CODE: 10101111
HEX CODE: AF
MNEMONIC: XRA A
MEANING: Clear the contents of the A register .
(Set to zero)

The mnemonic for this instruction wili appear a bit strange. This is
actually one of a set of 1logical instructions operating on the A
register. The full significance of the mnemonic will become apparent
when the other instructions are considered. - The third instruction which)
will be used in your first program is one which. incremeriftis“(adas one) to

the contents of the A register:

LB

BINARY CODE: 00111100

HEX CODE: 3C

MNEMONIC: : INR A

MEANING: : Increment the A register (add one

to the contents of the A register)

With these three instructions, you can write a program which initializes
the A register with a value of zero and then successively adds one to A
until it contains a specified value. Although a very simple routine, it

will introduce and clarify some of the basic concepts of instruction and Q

1.6.3 Writing (Coding) the Program

e

program execution.

1.6.2 Program Specification

Writing a program is a very structured exercise, and from the beginning
you are urged to be methodical and precise about it. Aall programs

should originate in a program specification, a written definition of

what the program should accomplish. The specification for your first

program is:

"Write a program which sets the A register to an initial value of =zero
and then, by successive increments of one, ends with the number seven in

the A register.”

The hext step is to write the program down on paper, usihg the same
notation which was used when you inspectedkthe contents of the first ten
locations of your memory. An important addition to that format,
“however, will be a column for comments. Proéramming-mnemonics are so
terse that simply looking at a sequence of hex codes or mnemonics will
not convey the function, goal or intent of the program. Comments are
used to convey this information. Writing a program is often called

‘coding', as it 1is a translation from a natural language to computer

code.

Your first program, written in the recommended format, should look like

this:

1 - 48
ADDRESS HEX - MNEMONIC COMMENTS
8200 00 NOP Start with dummy operation
8201 AF XRA A Ciear the A register
8202 3C INR A Increment the A register-
8203 3C INR A
8204 kTe INR A - continue to increment -
8205 3C INR A
8206 3C INR A
8207 3C INR A
8208 INR A « until A = 7 ~

3C

Remember, comments are used so that you will be able to 1look at a

program you wrote weeks or months ago and understand what it is your

program is doing.

Even more important, when you are working as part of

a team, they help someone else understand what your program is doing.

1.6.4 Loading Your Program in the MTS

Now that your program is committed to paper, it is time to 1load it in

the MTS

memory.

First,

initialize the system by pressing RST | ,

which will establish the first entry point at 8200. The scenario should

be as follows:

RST

Q\;

Set in write mode to enter data:

MEM

Enter first instruction:

- Advance to next instruction:

NEXT

Enter second instruction.

Advance to next memory address.

NEXT

NEXT

49

(8200 L __22]
(8200 (—00]
(8201] (22)
(8201) [aF)
(8202 (=22)
(8202 (C_3cC)
(8203 [_27)
(8203) ([3c]

1 - 50
NEXT | (8204)
3 o 8204, [(_3C]
NEXT ‘ 8205] [__22]
3 c .8205] ___3c!
NEXT ({ 8206, ' _ ??]
3 c . 8207 [3c;
NEXT (8208 [22} O
Q
3 c | (.8208 (_3¢]
NEXT [8209 [27]

Your program has now been entered in memory. Note that . the final

NEXT command is given to terminate your input string of

characters.
1.6.5 Verifying and Correcting the Stored Program

Now that you have loaded your program, it will be helpful to you to

verify it. It is easy to make a mistake at the keyboard, and the

computer is absolutely intolerant of mistakes in the sense that it will

1 - 51
do exactly what you tell it to do. It is trite but powerfully true that

"garbage input, garbage output". To be sure that our entries are

correct, press RST ‘and then, using the NEXT command, check

the contents of memory against your written coding Sheet. If you detect

an incorrect code in a word, it can be easily corrected, e.g.

Nexr| . G

The entry at 8205 should have been 3C. To correct it,

3 c L8205 __3¢Cj
0_« i ‘C';orrects the error.
NEXT : ‘ (8206] ___3C

Inspect next register, then continue.

When you are satisfied that the program is correct according to your.

coding sheet, you are ready to execute the program.

1.6.6'Executing Your Program .

To execute your program and follow the results of its ~operation on a

step-by-step basis, three_ new commands must be introduced. These are

REG ' STEP and ADDR] . The l REG command causes the

right four 1gits of your display to present a register name and:its

‘ ‘:) contents. To use the REG command, therefore, it is necessary to

1l - 52

follow it by pressing a hex key which is the name of the register you G

wish to see. For the current program, we are interested only in the A

register. Using the protocol developed above:

REG a | (8200 5=22_)

The command| REG [followed by the hex character A leaves the address at

8200, but in the right four digits identifies the register (A) and its
contents (undefined at this point). All of the registers will be
represented in - the right four digité according to the format: register

name/dash/ register contents.

The STEP command executes the insttuction contained in the

location designated by the left four-digit display (the PC). After each

STEP command, the display will preseht the address of the next

instruction. If the command REG A has been given putting the

system in the "display register"” mode, the contents of A will also be

displayed after each instruction has been executed.

Follow this scenario on your MTS. Use your coding sheet as a guide:

Set PC to 8200 and display contents (NOP)

REG A (8200],A-22

RST 82000 "_00]

~

O)

l1- 53

Before going on, be sure that the toggle switch at the lower left
corner of the MTS is set to STEP. Now press the STEP key.

STEP | : { 8201] [a-22]

The NOP instruction has been executed and the PC has been incremented.
Nothing has been done, so the content of A is still undefined.

ADDR | | N a0

ADDR displays the current program caunter and the instruction at that
location. 8201 contains the instruction XRA A, clear the A register.

STEP . { 8202) [a-00]

The A register has now been cleared (it may have been empty before).

STEP (8203)] [a-01)

The A register has been incremented. Look at your coding sheet. The
instruction at 8203 is INR A. -

Press STEP to execute it: ' 5 |

STEP ’ ((8204])(a=02)

Continue sggpping through your program in this fashion until the PC is
set at 8209. At this point, the A register should contain‘the number 7.
If it does not, you have made a mistake either in entering your program
or in pressing the command keys to execute’it. If you,have finished
with the wrong value, inspect the memory to make sure it agrees with

your coding sheet, then go through the above procedure again.

1.6.7 Instruction Execution: A Detailed Examination

)
We will now look at the three different instructions used in your Q
program, describing what happens to the PC, the A register and the I

register at each stage of instruction execution. 1Initialize the system:

RST (_8200] ([_o0]

| STEP

When the command STEP is issued, the following operations will occur:

1) The processor sends thé contents of (PC) to memory, selecting address

8200.

Q

A 00 | 8200
| 22

1 AF | 8201
3¢ | 8202

3C_ | 8203

PC 8200 3C | 8204

The contents of A and I are not yet defined.

2) Next, the memory sends the contents of address 8200 to the I register

i and (PC) is incremented by 1.

a 00| 8200
¢ AF‘ 8201

3c| 8202
« [3c] 8203
PC | 8201 |=((PC)=— (PC) +1) 3c| 8204

W

The contents of A are still undefined. The instruction is executed

and as it is a NOP, the instruction cycle is completed.

* The backward arrow (<-) in an expression should be read as
"is replaced by". Thus this expression reads: "The contents of PC

are replaced by the contents of PC added to one".

The next instruction will clear the A register:

1) The processor sends the contents of (PC) to the memory, selecting

STEP

address 8201:

PC

22|

8201 |

00

3C

3C

3C

8200
8201
8202
8203
8304

o

2) The memory sends the contents of address 8201 to the I register, and

the (PC) is incremented.

A ?2? 00 8200

. [opl— —{ aF | 8201

3¢ | 8202

3c | 8203

PC | 8202 (PC)==— (PC)+]) 3¢ | 8204

3) The instruction is executed and the A register is set to zero.

‘ a2 [ool—(a)m—0) oo | 8200
I | AF | 8201
3c | 8202

| 3c | ‘8203

pc |8202 e | 8204

W

The next instruction will increment the A register:

STEP

1) The processor sends the contents of (PC) to the memory, selecting

address 8202.

PC

2) The memory sends the contents of

A .

I

PC

00

8202

and the (PC) is incremented.

00

AF

3C

3C

3C

N

00 00
3C AF
3C
3C
8203 |==—((PC)=a—(PC) +1) 3c

~d

8200
8201
8202
8203
8204

8200
8201
8202
8203
8204

58

address 8202 to the I register,

i
i

3) The instruction is executed and the A register is incremented by 1.

PC

01 [=—((A)==—(a)+1

)

3C

| 820

00
AF

3C

3C

3C

‘Wu\\

8200
8201
8202

8203
8204

@ 1.7 SUMMARY

This chapter has covered some very important basic concepts, both of
hardware organization and function and software preparation, loading and
executing. If you feel uncomfortable with any of the materials

presented, go back over the relevant sectioné.

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 2

THO AND THREE BYTE INSTRUCTIONS

e 2.1 PROGRAM EXERCISE #2

o

"i@

In your first program, all of the instructions used (NOP, XRA A, INR A)
were one byte instructions, fetched from memory and executed with no
further memory accesses required. Many instructions comprise

two or three bytes and require more than one memory access. In your
next program two such instructions will be considered. Additional
memory accesses are required whenever an instruction operates on data
which is stored in memory, or when the results of an operation must be

stored in memory.

2.1.1 The ADI instruction

A number of instructions have the effect of adding a number to the
.content§ of the accumulator (A). One of these is "Add Immediate", which
translates to: "Add to the accﬁﬁulator the contents of the secd;d byte
of the instruction". Thus if the instruction is contained in address

(m), the contents of (m + 1) would be added to A.

BINARY CODE: 11000110

HEX CODE: cé

SECOND BYTE: Data

MNEMONIC: ADI

MEANING: Add to the accumulator the contents of the
next memory address.

The ADI instruction requires two memory fetches, the first to get. the

instruction and the second to get the contents of the follbwing word.

Each memory access which

éalled a machine cycle.

is required during an instruction cycle is

The instruction INR A takes one machine cycle;

the instruction ADI takes two machine cycles.

MACHINE CYCLE: The

tha

either for reading from or writing to

operation of accessing an address,

t address.

2.1.2 The STA Instruction

To transfer data from the

machine cycles (before

accumulator to an address takes even more

reading further, close the manual and try to

determine by yourself how many cycles are required). 'The instruction to

store the accumulator is

contain the address in wh

a three byte instruction. Bytes two and three

ich the data is to be stored:

BINARY CODE:
HEX CODE:
BYTE TWO:
BYTE THREE:
MNEMONIC:
MEANING:

00110010

32

Low-order part of storage address
High-order part of storage address

STA

Store the contents of the accumulator (A)
in the address which is contained in

the following two memory addresses.

o

N
o

ADI is a two-byte instruction, STA is a three byte instruction. Their
execution 1is more complex than the execution of the single byte

instructions used in the previous program, so we will look at them in

detail before using them.
2.1.3 Instruction Execution Details

Whén the ADI code is fetched from memory and -decodéd, the 1logic
determines that a second memory read operation is required, and that the
'data read is to be placed in the A register. The operation 1looks .like
this:

1) The proceésor sends the contents of (PC) to

memory, selecting address 8200 (for this example)

g‘i’ 4 | Cé6 2 00
: A | oo : 07 2 0 1
?2?. 2 0 2
I ??
\‘v
P C 8200
2) The memory sends the contents of address 8200
to the I register and (PC) is incremented by 1.
cé6 8 2 0 o
A 00 07 8 2 0 1
?? 8 2 0 2
|

P C 8201 =—((pCc) ==— (pC)+1l)

-
3) The logic is decoded, and the processor again ' Q

sends the contents of (PC) to memory, selecting

address 8201.

4)

5)

Cc6 8 2 0 90
00 _ 07 8 2 0 1
| 22 8 2 0 2
C6
L\/\/
8201

The memory sends the contents of address 8201, which is added

_to the contents of the A register, and (PC) is incrémentgd

ol o
cé6 8 2 0 0
07 |==—(a) @—— (a)+(8201) Jmeat—1097 8. 201
22 8 2 0 2
c6
\—\’\J

8202 |==—((PC)=— (PC)+1)

The instruction is completed. The memory has been
accessed twice (two machine cycles), and (PC) has
been incremented twice.

When the STA instruction is decoded, the 1logic ‘'recognizes' that an
address must be obtained from memory before the instruction can be
completed, as the operation commanded is to store the contents of A in
that address. The contents of the two memory words fdllowing‘the
instruction STA must be read and stored temporarily in the processor so
that they may be used. This is accomplished by the use of two registers
which are called W and Z. The high-order bits of the address (most
significant eight bits) are stored in W and the low order bits (least
significant eight bits) are stored in Z; The sixteen bit quantity ﬁ, Z
is then the addresé in which the contents of A will be stored. Like the
I register, the W and Z registers are for internal use by the processor

and no instruction éxplicitly refers to them.

W,Z REGISTERS: A temporary register pair in the address logic

used during internal execution of instructions.

The details of execution are:

1) The processor sends the contents of (PC) to memory,

selecting address 8200 (for this example):,

A | o7
! ?2?
w Z 2?2 | ?2?
P C 8200
2) The memory sends the contents of 8200 to the
I register and (PC) is incremented by 1.
32
A 07 . 00
- 83
1 32 ?2?
z 22 | 22 , ——
P c 8201 f=m—{ (PC)==—— (PC)+l)
3) The instruction is decoded, and the processor
sends the contents of (PC) to memory, selecting.
address 8201.
| 32
A 07 00
| 82
' 32 | ?2?
z 22 | 2? N
P C 8201

@ & o

o 0 o o

N N NN

N N NN

NN NN

o O ©o .o

o © ©o O

o O © o

W N =2 O

W N = O

W N =2 O

4) The memory sends the contents of 8201 to the Z
register and (PC) is incremented by 1. Now Z
contains the low order part of the address in which
the contents of A will be stored. The design of
the processor requires that the low order part of
the address be stored immediately after the instfuction

code, followed by the high order portion.

32 8 2 0
07 00 8 2 0
83 8 2 0
32 ?2? 8 2 0
2?2 | 00 N
8202 —'"*—C (PC) =— (PC)+1)
|
5) Again the processor sends the contents of (PC) to
memory, selecting address 8202.. ;
: 32 8 2 0
07 00 -8 2 0
83 8 2 0
32 2? 8 2 0
8202

W N =2 O

W N = O

4

The memory sends the contents of 8202 to the W
register, and (PC) is incremented by 1. The complete

address in which the contents of A are to bé stored is

now available.

32 8 2 0 0
07 00 8 2 0 1
83 8 2 0 2
32/// ?2? 8 2 0 3
83 | 00 T
8203 |-a—((PC) =— (PC)+1)
The contents of W, Z are sent to memory,
selecting address 8300:
32 8 2 00
07 "1oo] 8 2 o 1
' 83 8 2 0 2
32 ?2? 8 2 0 3.
V
83 | oo - 22 83 00
205] T . —

8) The procéssor sends the contents of the
A register to address 8300 and the instruction

' is completed.

8 2 0 0
A 8 2 0 1
8 2 0 2
| 8 2 0 3
8 300
P C 8203 ——

.The execution of STA has required four machine cycles: an instruction
fetch, two memory reads, and one memory write. Do not be confused by
the fact that the high and low order parts of the address in this
three-byte instruction (and all similar instructions) are reversed. The
arrangement was adopted by the microprocessor's désigners “to simplify

parts of the internal circuitry.

2 - 10
, ’ —~
2.1.4 Writing the Program o
You are now ready to observe the behavior of these instructions in a
program. As before, we start with a program specification:
"Write a program which sets the accumulator to an initial value of
seven and then, by successive increments of one, doubles the
initial value. Store the result in location 8300."
Before looking closely at’the model coding sheet which follows,
try to write the program by yourself.
ADDRESS - HEX MNEMONIC COMMENfS
8200 - - 00 NOP Dummy operaﬁion
8201 AF XRA A Clear A)
-~ 8202 cé ADI ' Add immediate to A the number-- ; ?
8203 07 -- contained in this location
8204 3C INR A Increment the A register
8205 3C INR A
8206 : 3C INR A
8207 : 3C . INR A -=- continue to increment
8208 3C - INR A
8209 3¢ INR A
8204 3C INR A Until (A) = 1410 | = El6
820B 32 STA Store result in
820C , 00 location
820D 83 8300
820E 00 Dummy operation.

@

Note that the instruction in location 8201 clears A. This is required
because ADI adds the contents of the next memory byte to A. STA
operates to replace the contents of 8300 with the new value. Adding and
replacing are both common operaﬁions, and the beginning programmer must

be careful to distinguish them.

2.1.5 Loading and Executing the Program

Review the directions for loading a program, then enter your'new program

in the MTS memory. Do not forget to verify it! Before executing your

program, we need t ook at memory address 8300. In order £o do so the

command Kkey ADDR must be introduced. Pressing ADDR .will
display the address contained in (PC) and the contents of tRat —address.
Since RST always sets your program coun@ér to 8200, you should
see:

ADDR Bz000) (oo

If ADDR is followed by four hex'keys, the address specified

by those keys will be displayed with its contents:

.
'ADDRJ 8 3 0 0 8300] (=22

2 - 12

| . =
If this sequence is now followed by| MEM | the address is now a memory C:’;

address and data may be entered.

As this is the address which your

program will use to store a result, it would be instructive to set some

arbitrary initial value, so:

MEM | 7 7 - @300 —717)

are ready to execute your

STEP |instead of MEM fthe (PC)

would have beefl changed. However, (PC) should s ill be set at 8200, so

program. If | ADDR| had been followed by

your program can be executed,as follows:

ADDR " Bz000 Coo

(PC) and contents of 8200.

1 =

'REGi i A

b e e . o

(8200 ; A=22]

Contents of A are undefined here,

e

© i ,
| STEP 8201) A=22]

The instruction in 8200 was NOP; only (PC) changes.

| STEP!
I
Looking at the coding sheet, we see that XRA A has cleared the A
register.
STEP . 8204] =07

The (PC) has abeen stepped by two, and A contains the results of the ADI

instruction,

STEP ' - (8205 ; [A-08]}

First of the INR A instructions adds 1 to the contents of A.

{ STEP 8206] A-09]

" STEP| | 8207) GE=on]

STEP : | | (8208] A-0B°)

STEP| | | @09] ([@-oc]

STEP - 8208] (a-0D]) 3
STEP| B20B) E=0E]) .

Now A contains OE = 14 ; the next instruction will store this result in
16 10 .

8300:

STEP - B20E]) [A=0E]

/
e

o

The (PC) has been stepped by three and the program has been executed.

Now take a look at location 8300:

| ADDR 8 3 0 0 E300) ([CoE])

If at any point your program execution did not produce the results
described above, correct the bad instruction in your memory (if there's

an error, there's a bad instruction!) and start over.
2.2 DATA STORAGE CONVENTIONS

You may have wondered why 8300 was selected as the storage location for
‘ this. result. While it is somewhat arbitrary, the basic requirement i‘s
\ to keep programs and data separated. It would have been quite possible,
fér example, to store the results in location 820F. The program would
execute exactly as before, except ;hat the results would be placed in a
different memory word. Suppoée, however, that you wished to modify the
program, to add instructions to achieve some different purpose? The

program could not wutilize additional consecutive addresses without

"changing the initial storage address. In the -example, only one such
address wés used, bui in a complex program with many storage addresses,
the problem becomes acute. Data addresses are therefore chosen to leave
lots of space between program and data areas. You should satisfy
yourself that 8300 is the first word of the top half of your .5k RAM

memory.

2 - 16

Ry

\

N.B. As the monitor is stored in read-only memory, it requires part
of the RAM for temporary storage of data. The top 96 bytes of RAM,
addresses 83A0 through 83FF, are allocated to the monitor; care should

be taken not to modify these memory locations.
2.3 PROGRAM EXERCISE #3

2.3.1 The LDA Instructions

An instruction similar to STA has the effect of transferring data from

memory to the accumulator:

BINARY CODE: 00111010 _

HEX CODE: 3A | |)

BYTE TWO: _ Low=order partmof" ;;idress. - | : o

BYTE THREE: High-order part of address.

MNEMONIC: LDA

- MEANING: Load the accumulator with the
contents of the word whose
address is contained in the

following two memory addresses.

The detailed instruction cycle for LDA is shown in Figures 2-1, 2-2

PROCESSOR MEMORY
A 00
——
1 AF AF
W ADDRESS 3a
z W 00
P C 8204 - : L83
(:) Processor sends PC
CONTENTS
(:) Memory selects 8204 and
returns its contents on
data bus
A
/\
I
w
z
P c 8205 |(3)
Processor loads data to I
register and increments PC
’\/
14
A 01
v [] ®
W
b4
P C 8205

2 - 17

LDA INSTRUCTION CYCLE

(:) Processor interprets 3A as a three
byte instruction

Figure

2 -1

© © ™ 0 O W O 0 0 W W 0 W
N N N NN N N NN NNMNDMNDMNODN

0 00 o
W W N

© O O O © © O O 0O 0 © 0 0o ©

©C O =

O O @ » © ® N O O H» W N -2 O

- O =™

P

@O

]

(:) Processor loads data
register and increments PC

Processor sends PC

w
4
Cc

ON s

0O N Z

PROCESSOR

00

3A

8205

Processor sends PC

Memory selects 8205 and
Yeturns its contents
on data bus

00

8206

00

to Z

8207

©

(:)u Memory selects 8206 and returns
its contents on data bus

and increments PC

Processor loads data to W register

Figure 2 - 2

MEMORY

3A
00
83

FF
14

FF

@ 0 W ™ W ® M 0 ® M W O W o

W W N

N N N N NN NMNDNDNMNNODNDN

o O m

O © O O O 0 © 0O © 0o © 00 ©

O 0O @ > © ® N O Ol & W N = ©

- o m

—

o

2 - 19

PROCESSOR MEMORY
8 2 0 O j
A 00 8 2 0 1
— 8 2 0 2
' 3A ' | AF - 8 2 0 3
w 83 } @ 3A | 8 2 o0 4
z 00 . ' 00 8 2 0 5
P C 8207 83 8 2 0 6
(:D, Processor sends contents 8 207
of W and Z on address bus 8 2 0 8
8 2 0 9
| 8 2 0 A
8 2 0 B
8 2 0 C
8 2 0 D
,{9 —
A 14
——
! 3 |
w 83
2 00
P C 8207 =t
. FF 8 2 F F
@ Memory selects 8300 and returns 14 8 3 0 0
contents on data.bus e 8 3.0 1
Processor loads data from data
bus into A register ‘ N

Figure 2 -3

2.3.2 The JMP Instruction

‘To this point we have used instructions which perform an operation and
advance the program counter so that it points to'the address of the
nexﬁ sequential instruction. A very important class of instructions
allows a progfam to branch or 'jump' to an instruction at an arbitrary

address. One of these instructions is JMP:

BINARY CODE: 11000011
~ HEX CODE: c3
BYTE IWO: Low-order part beaddress.
BYTE THREE: High-order part of address.
MNEMONIC: JMP
MEANING: Load the PC with address contained

in the following two wqrds.

The Execution cycle of the JMP instruction is shown in Figures 2-4 and

2"50

®
®

ONOXO)

JMP INSTRUCTION CYCLE

PROCESSOR

A 15

e

32
83

00
820B <:>

Processor sends PC

O N & -

P

Memory selects 820B
and returns its content

1
w
4
c

P 820C

Processor loads data to I register
and increments PC

Processor interprets C3 as three
byte instruction

Processor sends PC

A 15
—
1 c3
w 83
z 03
P C 820D

Memory selects B20C' and returns its
content on data bus

Processor loads data to 2 register and
increments PC

Figure 2 - 4

MEMORY

3A
00
83
3C
32
00
83

FF
15
FF

(

@ o ©® 0 0 0 0 0 0 0 0 o o o

21

N N N N NN M DN N DNMNDMNMNN

W wN

0O O O ©O O O ©0 ©O 0 06 0o 0o 0o o

o O =

O 0O W » © ® N O O & W N = ©

- O m

PROCESSOR

A 15
,;-"ﬁ-ﬂ
C3

83
03

O N =

P 820D

~ Processor sends PC

Memory selects 820D
and returns content

w [82
z || 03
c 8203

P

Processor loads data into W
register. Processor transfers
data from W and Z into Program
Counter :

Figure 2 - 5

MEMORY

FF

15

FF

22

@ &

© 0 ® M ©® 00 M ™ ™ ® 0 W o

N N NN NN NN NDNMNNMNMNDDDN

W w N

© O 0 © © 0000 © 0 06 0o ©

[~ T - B

O O @ » © ® N O U & W N = O

- o=

|

2.3.3 Writing the Program

Program specification:

"Write a program which will clear the accumulator, load it with
the contents of 8300, increment this number by one, and store

the result in 8300. Loop through this sequence repeatedly."

The program below starts with three consecutive NOPs, a convention
which would permit entering a three-byte instruction here should one

wish to change the program later:

ADDR HEX MNEMONIC COMMENTS
8200 00 NOP Dummy B
01 00 NOP
02 00 ‘ NOP
03 AF = XRA A Clear A
04 3A - LDA 8300 Load A from
05 00 8300
06 83
07 3C INR A Increment A
08 32 - STA 8300 Store A in
09 00 8300
0A 83
0B C3 JMP 8203 Jump back to
oc 03 start
oD 82
8300 14 « Arbitrary Data

Load and verify the program, press RST to sét'(PC) to 8200, then press

STEP:

STEP

24

B201) (Cag])

STEP executes the first NOP instruction and displays the next one.

STEP

STEP

Two more STEP's get us to the Clear A instruction.

STEP

(8202 ; [_o00]
(8203] (CarF)

(8204 [34]

We have executed Clear A. The next instruction is LDA. (3A at

location 8204)

| sTEP | | | 8207 1 [3c]

We cannot see the internal steps. The three byte instruction LDA
occupies addresses 8204, 8205 and 8206. It has been executed and now

the INR A instruction at 8207 is displayed.

° Execute the INR A instruction.

STEP ‘8208 1 (32

This is STA, another three byte instruction

STEP; , (820B ! (_c3 i
)

We have come to the JMP instruction.

STEP 8203] [_AF]

’ REGJ A 8203] (A1

The program loaded 14 from 8300, incremented it and stored the new

value. Register A still holds that value.

Execute the Clear A instruction at 8203.

STEP v 8204] (a-00 .

Now the A registef has been cleared.

STEP , 8207 . (A-=1

Now the LDA has reloaded from 8300,

2 - 27

1

ADDR @207 1 (_3c

ADDR displays the instruction

STEP | [820&: [A=16_)

| SR —

Step executes it and again displays the register we last examined.

~Let's examinﬁithe memory location.

ADDR| | 8 3 o |. | o gm0 5o

The new value has not been stored yet. DO NOT PRESS STEP NOW =~ The

computer would execute from location 8300. Use ADDR to recall the

current program counter.

ADDR [B2og] ([32

Then STEP.

STEP

And look again at 8300:

ADDR

Now the new value has been stored.‘

MEM tells the monitorv you did not intend to change the program

counter, but only the memory address.

MEM|.

28

B G
E005 (5]

The PC contained 820B, addressing the Jump instruction.

So we jumped.

The memory address wé last requested is still there, so pressing MEM

STEP

Using thHe MEM key disposed of the A

will fetch it back again.

—

(8203)

register

Therefore you can now use STEP.

[aE]

display.

e

.\

MEM (8300) (_16 |

We have introduced four new instructions and looked at the details of
their execution cycles. In Chapter 3 we will begin to develop some

fundamental concepts of programming.

2.4 SUMMARY OF INSTRUCTIONS

3C

AF

Cé6

XX

32
XX

XX

3A
XX

XX

c3
XX

XX

INR A

XRA A

ADI

data

STA
low address

high address

LDA
low address

high address

JMP
low address

high address-

Increment A register
One byte

One machine cycle

Clear the A register

One byte

‘One machine cycle

Add immediate

Two bytes

Two machine cycles

Store the A register
Three bytes

Four machine cycles

Load the A register
Three bytes

Four machine cycles

Jump
Three bytes .

Three machine cycles

30

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 3

- PROGRAM LOOPS

3.1 PROGRAM LOOPS AND FLOW CHARTS

The program we used in Chapter 2 was a loop:

r__.

XRA A

LDA 8300

INR A

STA 8300

JMP 8203
L

Short loops of this kind are very common in computer programs, but they
always include some means of exit from the loop. Otherwise the program

would simply recycle through the loop forever, doing nothing useful.

" 3;1.1 The Monitor Run Command

To this point you have used the:STEP command to execute your programs.

Each time |STEP| is ‘pressed, € instruction pointed to by your PC is

executed, after which the monitor is re-entered so that it may activate

the display and wait for your next»command.

When thd RUN lcommand is issued, the monitor 'is also re-entered after

your inStructionblis executed. However, instead of waiting for your
command, it immediately allows your next instruction to be executed. To

demonstrate this,'make sure that your program loop is still in memory.

If you presq RUN ko execute this loop, the display will disappear and

nothing more will happen. Internally, the count at location 8300 is

being incremented again and again, but you have no way of knowing what

3- 2

is happening. The keyboard is dead. Only the RESET key (or the power
cord) can interfere. There must be some means of leaving such a closed

loop.

In a sense, all computer programs are loops: they must somehow return
and repeat the same instructions, but operating on different data,
producing different outputs, and sometimes executing different sections

of the program depending on the data.

This chapter presents the conditional jump, an instruction thac alters
the program flow as a function of the data. This is the most common way
of exiting from a short loop. The flow chart is introducted, which

describes the program flow and i; the principal design tool for
programming. Finally, another method of entering the monitor for input

and output will be provided.

.1.2 The Conditional Jump

In the program loop shown at 3.1, the content of the A register is
repeatedly incremented. Once every 256 times the program loops, the
contents become FF and then 00. This change can be detected and acted

upon by the instruction "Jump if Not Zero."

e

BINARY CODE:
HEX CODE:
BYTE TWO:
BYTE THREE:
MNEMONIC:
MEANING:

11000010

c2

Low-order part of address.
High-order part of address.

JNZ

Jump to the address contained

in the following two words if

the result of the last counting,
arithmetic or logical operatién was

not zero.

We will-now -modify the program loop above by replacing the 'jump
I\\., :

instruction with the conditional jump, as follows:

8203
8204

8206
8207
8208
8209
8204
820B
820C
820D

8205

AF
3A
00
83
3C
32
00
83
ce
03
82

~XRA A
LDA 8300
INR A
STA 8300
IJNZ 8203

Change this instruction by pressing - d
ADDR 8 2 0 B B208) [_¢c3]
MEM | C i 2 '820B ‘I_JLLQ
‘.
NEXT| ' (820c ; (03

Since the jump address for the JNZ instruction is the same as for the
old JMP, it need not be reentered. To avoid going through the loop many

times, set a high value, say FC, into address 8300. Then step through

the program:

apDR| | 8 3 0 0 8300) L 227
MEM F C (8300] (_Fc]

Now go back to the beginning and step.

r A

; | ,)
| ADDR| 8 2 0 0 8200) [__00]

STEP " 8201) (00}

Request display of register A,

REG A (8201) (a-27]

3 - 5

and step through the program, watching register A.

STEP | - B202) E=77]
STEP B203) [E=2Z]
STEP | (B202]) (=00])

The XRA A instruction at 8203 has cleared A.

STEP (8207 | -FC

The LDA instruction at 8204 has loaded A with the data from 8300.

STEP : _ (A=FD]
(INR A done)

STEP A-FD
(STA done)

sTep ED B
(JNZ done)

- Continue stepping until you seé:

STEP 8207) &=FF_
(LDA done)
STEP| , (8208) (&=00)

(INR A done)

Register A has now been incremented from FF to 00.

STEP | . @]

(STA done)

STEP B20E] (A=007)

Since the INR A instruction at 8207 has incremented the value to 00, the
JNZ instéuction at 820B did not result in a jump.- The three machine
cycles were still performed, loading I, Z and W with the three bytes of
the instruction and incrementing the program counter three times. At
the final'step, however, the logic unit tests for zero and sees that the
condition for jumping is not met - the result was zero - and so does not
transfer W and Z into the program counter. Execution continues from the

previously incremented contents of the program counter to the next

—

|
|

i

sequential instruction.

3.1.3 Flow Charts

A flow chart shows this operation in the following fashion:

Clear A l

Y

Load A from 8300

Y

Increment A

Y

Store A at 8300 |

|

No ero

Yes

The diamond shape répresents a program branch conditioned by data. The .

branch to be followed depends on the results of the previous operatjions.

Flow charts represent the design of computer programs; they‘ may be
considered the equivalent of schematics in electronic design. Writing
the final program is akin to the circuit board layout - the function is
fully defined but there is still some degrée of freedom for the

designer. From here on, each exercise will either include a flow chart

or ask you to prepare one.

FLOW CHART: A symbolic representation of the logical

- ‘steps of a program, detailing control and
sequencing of the flow of data, procedures
to be foliowed, computations to be |

performgd, and input/output operations.

The flow chart above shows an incomplete program. If you continue to
step after passing the JNZ instruction, you will execute an unintended
instruction at location 820E. A closed loop such as we started with has
no value since it accomplishes nothing Sut merely repeats itself. An

open loop is intolerable because it will have unintended results.

The purpose of the computer is to provide outputs depending on inputs.

We have been obtaining outputs by looking ét the A register contents

after each step. You provided one input by 1loading data to address’

8300. You could also change the data in the A register by a monitor

command, but this is only effective at certain points in the program,

since Clear A and Load A will destroy anything yod'enter. What we need _

is a means of entering data only at a certain position in the program.
3.2 PROGRAMMED MONITOR ENTRY

It is possible to activate the monitor from your program, instead' ot
from the keyboard. Eight such instructions are available, but the one

we shall introduce here is:

o

BINARY CODE: 11100111

HEX CODE: ET

MNEMONiC: RSTUY

MEANING: Restart the monitor at entry
point four.

When this command is executed, all of the monitor functions become
available to you. This allows you to use the RUN command, but permits
your program to enter the monitor where you wish it to do so. Now you
can modify your program to provide additional inputs. Consider the

revised flow chart in Figure 3-1.

CLEAR A

Y

LOAD A FROM 8300

10

T<

INCREMENT A

Y

STORE A AT 8300

NO :
"ZERO?

Figure 3-1

“YES

ENTER MONITOR

Y

PUT NEW VALUE IN A

Qo

3 - 1

e To implement the program, r;lake the following changes to your code:

820E
820F
8210
8211

ET

c3
07

82

RSTY
JMP

Enter the monitor
Jump to the "INR A"

instruction.

Once again load a large value at 8300, then set the address to 8200 and

step through the program.

When the address display shows:

(0029) (CF3)

(or (0020) [(B=27))

you have entered the monitor. Step again and your jump instruction will

appear,

Now

try

RUN

Each time you press RUN the display will go

blank briefly while the computer counts to FF and 00, and then it will

reenter the monitor.

Now

press

REG

L.

A _ ((820F [A-00

(Your jump instruction address)

F 0 = (820F)] ([(A=FO) | 0

1§

You have entered a 1arge value to the A register.

RUN | : (820F] [(A=00]

This time the'dispiay should barely blink, because the program only

looped 16 times instead of 256.

This. exercise illustrates the ~way in which timéd delays may be

implemented wusing program loops, a feature which is common in many’

process control operations.

3.3 ADDITION BY COUNTING

B

The next program exercise will dem.onstr‘ate finding the sum of two @
numbers by the basic principle of counting. The program specification

is:

"Write a program which will form the sum of two numbers by
succesively 1incrementing the first number and decrementing the

second, until the second reaches a value of zero."

To implement this program a new instruction will be required:

BINARY CODE: 00111101

HEX CODE: 3D
MNEMONIC: DCR A
MEANING: Decrement the A register

3 - 13

A flow chart for the program will be helpful and one is presented in

. Figure 3-2. Before 1looking at the coding sheet (Figure 3-3) try to

write this program all by yourself, then match it against the one

provided.

ENTER MONITOR
TO OBTAIN A VALUE

Y

STORE IT AT 8300

Y

ENTER MONITOR FOR
ANOTHER VALUE -

Y

STORE IT AT 8301

LOAD, INCREMENT AND
STORE THE VALUE ')
AT 8300 o

'

LOAD, DECREMENT AND
STORE THE VALUE

at 8301
NO
YES
, Go back to the monitor
LOAD THE VALUE FROM to disglay the result
8300 and obtain another value 4

Figure 3 « 2

Fig,
3 -3

CODING SHEET

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

CODE

3 - 15

o »

monitor to

display it

D
0 oo N|O|P Save three bytes for a
0o 1 0jo N| O| P future change
0 2 0|0 N|O|P
0 3 E|7 R| S| T Enter monitor
0o 4 312 S|T|A 8 and save the value
0 5 olo returned in A at 8300
0 6 813
o 7 E|7 R|S|T Enter monitor
0 8 3|12 S| T|A 8 and save the value
0 9 01 returned in A at 8301
0 A 8|3 _
0 B 3|]Aa LiD|A 8 Begin loop
0 C 0|0 Load first value
0 D 8|3
0 E 3lc¢ I|N|R A Increment and
0 F 312 T|A 8 store the first
1 0 o|c value
11 813
1°2 3|A L|D|A 8 Load the second
1 3 01 ' ' value
1 4 8|3
15 3|D D|C|R A Decrement and
1 6 3|2 s|Tla 8 store the
1 7 0{1 second value
1 8 813
1 9 cl|2 J|N|2Z 8 Loop until second
1 A O B value is zero
1 B 812
1 ¢ 3|Aa L{D|A 8 Exit from loop
D 0]0 Load the first
E 813 value and |
F cl3 J|M|P 8 go back to
0 0|3
1 812
2
3
4
5
]
7
8

NININININININIDIN]2]= |-

3 -

Before stepping through your program, press RST and then enter a small

value in A:

16

REG N 2 (s200) (A-02)
STEP | (8201) (a=02)
Now press STE? repeatedly, { 8202] {A-02]
[8203) ’[A,-oz "
You have just entered the monitor. - [o020] [a-02)
. (8ao8) (a0z)

(8207) (a0
You have entered the monitor again | 0020] (a-02]
Continue to STEP. (8208] [(a-02)
This is the beginning | | { 820B] (A-02 ']
of the loop. Continue | [820E] (a-02]

to step.

~.

R

o

You have done the

first INR A.

The first value

has been stored.

The second value, also 2,

has been loaded

Decremented

And stored. The program

is now at JNZ

and the jump occurs.

The first value is loaded

Incremented
Stored,
The second value is loaded

Decremented

[A-014AJ- o

3- 17
[820F] (A-03)
[8212] [(a-03 |
[8215] [(a-02 |
[8216] [a-01 ‘]-'
L 8219]’ (A-01
V)[‘ 820B|
[820E) [A-03)
(820F) (a-04]
(8212] [(a-04 |
[8215] (a-01 |
(8216] [(a-00 |

Stored. The program is (8219) [(a-00)
again at JNZ but

the jump does not occur. [821c] [a-00)
The first value is loaded [821F] (a-04 |

and now the jump

back to the beginning occurs. | L 8203] [a-ou]
The monitor again. | | f 0020) [A-04 |
Step again. Back to your | [820u4] [a-04]

program with A unchanged.

As the initial value placed in A (2) became the value of both the first
and second numbers, we can verify that the result (4) is in fact their

sum.

~Now press RST and run your program for various pairs of numbers.
Remember each instruction takes only a few microseconds; the dispiay
will noﬁ even blink. Press RUN, then REG A (PC will be 8204) and enter
the first number. Press RUN, REG A (PC will be 8208) and enter the

second number. Press RUN again. The result will be displayed, and you

can key in a new pair. Any two numbers whose sum is less than or equal

to 25510 (FI-‘l6) can be added in the two-byte A register.

3.4 SUMMARY

In_thi§ chapter several new instructions have been introduced, the use
of RU& and programmed monitgr entry has been shown, and the important
concept of flow charts has been presented. All of the instructions used
so far are summarized in Section 3.5. You may wish to write a program
of your own at ihis point, for practice. If you do, follow the rules:
a) Specify the program |
.b) Draw the flow chart
c) Write the code, with comments (do not use
locations 83A0-83FF)
d) Key in the code and verify it
e) Step through the program to check if, then

run it.

3.5 SUMMARY OF INSTRUCTIONS

00

AF

3C

3D

3A
XX
XX

32
XX

XX

c3
XX
XX

NOP

XRA A

INR A

DCR A

LDA
low address.

high address

STA
low address

high address

-JMP

low address

high address

Do nothing

Clear the A,fegister
Increment the A register
Decrement the A register

Load the A-registerk
with the data stored
in the memory location
whose address is in

the second and third bytes.

Store the contents of
the A register in

the memory location
whose address is in.

the second and third bytes.

Jump to the location
whose address is in

the second and third bytes.

ce2

XX

XX

E7

JNZ

low address

high address

RST4

Jump if the result of

. the last arithmetic

operation was not zero;
otherwise continue to

the next sequential instruction.

Enter the monitor.

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 4

THE OTHER REGISTERS

4.1 THE OTHER REGISTERS

In this section we introduce the general purpose registers B, C, D, E, H

ard L. These registers are used. for:

1) Temporary data storage

2) Storing operands for arithmetic and logical operations

3) Counting

4) Memory addressing

For temporary data storage and counting, the general purpose registers
are equivalent to the A register. There are instructions for all seven
- registers permitting data to be moved among them, moving data into them

from memory, moving data from them into memory, incrementing and

‘ decrementing their contents. They are not identical in all functions,

however, and each has certain unique features. The A register, or

accumulator, is very different in that the results of most arithmetic

and logical operations are stored in the A register. Similarly,

input/outputAinstructions use the A register.

4.1.1 The MOV Instructiors o g

+ It is often necessary to move data into ore register from arother. The
3
instructior. to do this has the form 'MOV destination, source'. Such an
instructiorn exists for each possible pairing of registers. For

instance:

BINARY CODE: 01001111

HEX CODE: UF
MNEMONIC: MOV C,A

MEANING: Move into C the contents of A

The data remain unchanged in the source register arnd are copied into the \
: \
}

destination register, whose. old content is 1lost. Note that in the °’“*
mnemonic’the destination is listed first, then the source register.
Interchanging these 1is a commor. source of error, so be careful. Think,

of the instruction as 5move into C from A'. The table below contairns a
summary of the MOV instructions. Noie that the table is complete,
including the useless MOV A,A; MOV B,B; etc. These are totally
valueless to’ the wuser, but because of internal procedures’in-the
microprocessor it would have added complexity to omit ﬁhem or to usekthe

wasted instruction codes for other purposes.

Inter-Register MOV Instructions:

Source Register

A B C D E H L
MOV A,s TF |78 | 79| 7A| 7B| 7C| 7D
MOV B,s Cou7 {uo a1 | u2| 43| uu| us
MOV C,s uF |48 {49 | ua| uB| uc| up
MOV D,s 57 |50 | 51{ 52| 53| 54| 55
MOV E,s 5F |58 {59 | 5A| 5B | 5¢| 5D
MOV H,s 67 |60 61| 62| 63| 6] 65
MOV L,s 6F | 68 | 69 | 6A | 6B | 6C | 6D
|

4.1.2 The ADD

The program
irefficiert
instruction

or.e operand

Instruction

of Chapter 3 performed additior by counting. This is

ir terms of both program space and executior time. A single

will‘perform this furction, row that we have a way to put

into arother register:

BINARY CODE: 10000001

HEX CODE: 81

MNEMONIC: ADD C

MEANING: Add to A the cortent
of C

Ary register content may be added to A:

HEX
ADD A 87
ADD B 80
ADD ¢ 81
ADD D 82
ADD E 83
ADD H 84
ADD L 85

(:’

°

Replace the loop in the addition program of Chapter 3 (addresses 820B to

8221) with the following code, then step through it as before:

820B 3A LDA 8300
820c 00 |

820D 83

820E UF MOV C,A
820F 3A LDA 8301
8210 01

8211 83

8212 81 ADD C
8213 €3 JMP 8203
8214 03)
8215 82

4.1.3 Multiplication By Addition

By applying the techniques used fof addition in Chapter 3 we can perform
a multiplication, sirce integer multiplication can be viewed as
repetitive addition. Once again we will use the monitor functions to
obtain input values: but instead of adding one to the other, we will

repeatedly add one value (the multiplicand) to a partial product while

we decrement the second value (the multiplier) until it reaches zero.

Multiplication can result in a product with as many digits as the sum of
the numbers of digits in the multiplier and multiplicand, so this
program is very likely to generate carries. The flow chart shown 1in

Figure 4-1 will lose these. We will not solve the problem here: for the

4 - 6

N,

Y
~ .
momer.t use this program for single digit values of multiplicand and

multiplier. In this flow chart note the use of circle symbols to label
the destination of branching instructions. This permits flow charts to

Occupy more than one page while still'depicting program flow. The

program is given in Figure 4-2 .

==

Enter the moritor to display

register A and obtain’

‘a new multiplicand

|

Store the multiplicand

at memory location 8300

Er.ter the moritor to

obtain a new multiplier

!

Store the multiplier

at memory locatior 8301

!

Clear the A register

Move data into C from A

to form the initial value

of the product

Load the multiplicand to .

the A register.

'

e e

Add to the partial product"-

'

o

Move the result to c

!

Load, decrement and

store the multiplier

-No

-

Move the product into

register A from register C

<D

Figure 4-1

MICROCOMPUTER TRAINING SYSTEM

CODING SHEET

INTEGRATED COMPUTER SYSTEMS

4 _ 9 -

BINARY MULT1PLIOATION RY REPETITIVE ADPDITroN
A] 0 R CODE
8 2 0 o 5-0 Molpr Starl”

0o 1 |olo

0 2 o0 :

0o 3 |£]7 RlsiT| |4 | Enter amon tor

0 4 3 2 57—A S/.g oo \eu"‘ mu/f'p/lmJ

0o 5 |olo ' store v memory

EGE | '

o 7 |£]7 RIs|IT| |4 Enter amontor

0o 8 32 s|TlA Fl12l0|/ -pof‘ multplier 5

09 ol store u plpiory

0 A 132

0o B |AlF XAl |A Clear A

0 ¢ |H|F Miov Cl.|A _C/ewd-&r,ﬁroc{uc‘f

o b |2A L\PA g32lo|o Load MuHm/u;_a_%i_

0 E o0

0 F 132
8 2 1 0 &1/ Al\D|D ¢ 4‘&/4 1o A?EQCLMC‘.7L :

101 A= Mlo IV &l |A &furn pqgc{ue,‘f'fb c

12 2A LIDIA gF12101/ Load /ww(/‘/’/////er-

1 3 Ol

1 4 2 ' .

18 3? _D [/Q A‘ . pe are ke uT Ml't--i/fijz/,e,-

1 6 32— S|IT|A ¥l2i10]l Store it -

1 7 ol |

18 g3

1 9 Cl2 AVVIES Aol D TIE u/fl,p/'/;r ot

1 A oD q,o'f Zero > /aaﬁ

1 8 g1 24 +u repedf gd, trou

1 ¢ 719 MoV 4',, a (/4) (——Prwﬂ"

1 D cls \/MP sl1z|0|2 Juuy é).ack Yo

1 E % 2 eufér‘ Hl(’u/?c)f“

1 F ¥4 ond c((gp/a-tf result
8 2 2 o

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8 1 Figure 4-2

10

Load the program shown ir Figure U4-2 and step through it:

RST

REG

We will be entering data to A.

r—_-q
STEP

STEP

STEP|

The next STEP puts you in the moritor:

STEP

Nn——— -

Enter a two-digit number :

STEP
_—J

e ————

STEP

STEP

Back ir. the monitor.

Enter two more digits:

200} (_00]

—_—

8200 (A-22]

“———

201) (EF=2)

(8202]) (a=22)

(8203 (A-27]

(0020) (&=0z]
(B2oa) (a=02)
(G20 (E=02)
(00z0) (a=oz)

|0620I (A-03)

(0020) (A=EH)

)

11

. Continue stepping (from here on we will not show STEP each

implied by a new PC value):

time - it

20B nggaj
(820c) [(A-00)
(8zop) (E=00)
(8210) [E=02)
(Bz11) (&=02)
(8212] (A-=02]
(8215) (A-03]
(8216] (A-02]
(8219 (A-02]
(820p) (A=02)

is

A has not reached zero, so the p;ogram looped. Continue stepping until

PC is 821C:

Exit from the loop.

And return to start:

Now pick up result:

(8zic] (a-00]
(821D] (A=-06]
(8203) (E=06)
(o020]) ([a-06])

4 - 12

You are back ir the monitor, displaying the result and Qaiting for new
input data. Turn the toggle switch to AUTO, press RUN, ard try the
program for various pairs of digits. (Press RUN after entering each
pair 'of numbers). Wher. STEPping through your program, the monitor
displayed its owr address (0020) when RST4 was executed. In RUN mode,
the calling address is displayed (8204 or 8208).

4.2. THE CARRY AND ZERO FLAGS

Ir Chapter 3 we defined the instruction JNZ, jump if the result of the

last operation was not zero. While it might appear as though the jump

was corditioned by the content of A, this 1is not actually the case.

‘When certain operatiors leave zero in A, é 'flag' is set in the CPU.

The flag may be both set and cleared, and JNZ is one of several

instructions which detect the state .of the zero flag. Notall "

instructions affect the flag. For exadplé, data transfer instructions
rever set any flags: these ihstruqtidns include LDA, STA, MOV, and

others.

\
i }
°’

4.2.1. Carry -
If two numbers are added whose sum is greater than FF , there should

be a carry from the addition, e.g.:

75
94

109
16

This carry is generated by the ADD instruction, and sets a condition
flag called the carry flag (CY). Like the zero flag which is set when
the result of an operation is zero, this flag can be tested to cause a

conditional jump to occur.

BINARY CODE: 11010010

'HEX CODE: D2

MNEMONIC: INC

SECOND BYTE: Low-order ‘part of address

THIRD BYTE: High-order part of address
MEANING: Jump if the carry flag is not set.

The instruction cycle of this instruction is the same as that for JMP,

except that no jump occurs if the carry flag is set.

Single register counting instructions (INR and DCR) affect the zero flag
but not the carry flag. If the result of the count is zero, the zero

flag is set, otherwise it is cleared.

4 - 14

Arithmetic and logical instructions affect both zero and carry. If the
result of the operation is a zero in the accumulator, the zero flag is
set; otherwise it is cleared. If the operation generates a carry out of

the highest bit the carry flag 1is set, otherwise it is cleared.

Conditional jumps can be made with tests for the set or clear state of

each flag:

Hex Code Mnemonic " Meaning

c2 JNZ Jump if not zero
CA JZ Jump if zero

D2 JNC Jump if not carry
DA JC Jump if carry -

#.1.5 Comparisor Instructions o

In the add and count instructions the flag setting is a result of the

operation performed. There is a set of compare instructions whose only

function is to set the flags. These instructions permit a program to

determine whether the contents of the A register are greater than, equal

to, or less than the conternts of any specified gereral purpose register.

For comparing the C register with the A register the instructior is:

BINARY CODE: 10111001

HEX CODE: B9
MNEMONIC: CMP C

MEANING: Compare the conterts

This sets

of A and C and set

the flags accordingly.

15

or clears the zero and carry flags as follows:

Zero
.greater than C Cleared
equal to C ’ Set
less than C Cleared

Carrz

Cleared

Cleared

Set

~

4.3 IMMEDIATE INSTRUCTIONS Q

Although we have distinguished program memory from data memory, it is

common to include some data irn the program memory. Tables of fixed

values such as argumemts of functions (e.g. trigonometric) or -
calibratior. data are often’ stored at the end of é program. Some
instructions include data in the secord or Second and third bytes of thev
instruction. This is referred to as 'immediate data' and the

instructions are called 'immediate instructions'. Such an instruction

(ADI) was presented in the first chapter.

4,3.1 Move Immediate Instructions (MVI r)

The MOV instruction has a complete set of MVI counterparts. The general

MVI irstructior. looks like this: ' | \
MNEMONIC : MVI r
SECOND BYTE: Data |
MEANING: Move the corntent of the following

address into register r.

o

Following is the complete set of MVI instructions:

MNEMONIC: | HEX CODE:

MVI A 3E

MVI B 06

MVI C OE _
MVI D |16 | | L
MVI E [15

MVI H 26

MVI L 2E

The MVI instruction is often used to initialize a counter. For example,
in serial data comhuniqations it is necessary to transmit the eight bits
of one byte sequentially. A counter is initializedb at 8 and
sucéessively decremented (using DCR) to detect cbmpletion of the

transmission.

The instruction cycle for MVI is shown in Figure 4-3.

p C

®
@

INSTRUCTION CYCLE FOR MVI B INSTRUCTION

PROCESSOR

@ =" 06

MEMORY

__,_i' ‘—‘_f_———"’ | <:>

8205

CPU sends PC as address

Memory selects-BZQS and
returns data

8206

CPU loads data to I register and
increments PC 06

CPU interprets 3E as a two byte
instruction '

CPU sends PC as address

27

06
B ™

| 8207 |

Memory selects 8206 and returns data

CPU loads data to B register and
increments PC

Figure 4-3

27

4 - 18

c/6/78

N N N NN N NMNMNMNNNMNMDDRN
0 0 0 0 © 0 0 0 ©© 0 0o 0o o o

W W N
Qe O M
- @ m

Onwbomuam&una'o.

4,3.2 Compare Immediate

Immediate instructions also provide data for compare and other

arithmetic and logical instructions:

HEX CODE: FE

SECOND BYTE: Data

MNEMONIC: CPI

MEANING: Subtract the content of the following address
from the A register and set all flags to reflect
the result. Do not modify the content of A.

From this point on, we will generally omit the practice of showing the
binary code for instructions. The purpose of doing so initially was to
stress the fact that binary numbers, not hex characters, are what the

computer operates on. The instructior cycle for CPI is shown in Figure

4y,

INSTRUCTION CYCLE FOR CPI DATA INSTRUCTION

Memory selects 8207

and

PROCESSOR
F
A 06
™P
) ®
8207
CPU sends PC as address

returns data

06

FE

8208

CPU

loads data to I Register

and increments PC
CcPU interprets FE as a two byte
instruction and
e,
06
07
FE

Memory selects 8208 and returns data
CPU loads data to TMP register and

compares with Accumulator

CPU

stores results in flags

4 - 20
C/6/78
MEMORY
8 2 0
8§ 2 0
8 2 0
8 2 0
8§ 2 0
8 2 0
8 2 0
8 2 0
8§ 2 0
8 2 0
8 2 0
8 2 0
8 2 0
3 2 0
8 2 F
8 3 0
-8 3 O
"_/'
Figure 4-4

O O B » © 0 N & B & W N = O

- O N

4 - 21
For all of the arithmetic and légical instructions that operate on data

in the A register and one general purpose register, there are

corresponding immediate instructions. These may be thought of as
referring to a phantom register, created just to provide a desired data

byte.
4.,3.3 Division by Addition

Integer diVision, with no fractional result, answers the question "how
mary times can the divisor be added into a product before the product is

greater than the dividend?" If the dividend is 7 and the divisor 1is 2,

the quotient is 3, not 3.5, because this is integer d}vision.

We will modify the binary multiplication program to perform integer
‘ ~ division. Instead of counting a multiplier down, we willb count a
quotient up, and stop when the product is greater than the dividend.

Figures 4-5 and U4-6 show the process. The initial steps of obtaining

two numbers and storing them, and clearing the product in register C,

are retained from the multiplication program.

We initialize the quotient, in register B, to FF rather than zero,
because we will increment the quotient at 1least once, even if the

divisor is greater than the dividend. 1In phe loop, we add the divisor

into the product, just as in multiplication; increment the quotient, and

compare the dividend with the product. Care is needed here to make the

correct decision. Sirce we load the dividend to A and compare it with

the product, carry will be set when the product is greater than the

. dividend, and cleared whern the product is equal to or less than the

-4 - 22

~
dividend. Be sure that you get the right answers both when the integer 0

division is exact and when there is a remainder.

(emm)

[

Enter Monitor to display

result and obtain dividend

Obtain divisor

Clear Product in

register C

Set quotient to FF

in register B

Load divisor .

Add product
Save produét in C

Increment quotient in B

23

Load Dividend
Compare Product

Ny

Dividerd > Product

1

Set

Product > Dividend

(A) <~ Quotient

(e)

Figure 4-5

25

BIV\AA’Q .—D/V/J/an

A D D R

é; /&p.e f:flve Add 111 o3

CODE

*~
: T
:W.\w lm.‘w /W_c.w
EEREHARERN
M/u 9 Ly Y
NEEREEERRER i
EENENERE PR 2
M ~ :W NERE e\nju_m.r &
3 S npw.r NN o
\) QIS | I o [OPH B
Q ~ Ul |~ Q| 1)
Q Q Y4 |o %! |9 Q Mo
3 72 \.\ 3 la ™ 1 .)1
3% N T [Jlea] [NIRVOT N J[% %
NEENE [SES <S[H[x A< Q[d NEY
NRRNZIE NNEERCNENER NEER 3R ES
REEND ¥/ w MEREEN <| N[< J[> I|>
[9] 0] 9]~ o] oM df | mf W (g W] =] M| <[\ 3] O] Mo][] M| N
Q| Q] 0f\ufmf ajoe[ly] M| O] Sof I T[] §] U] 9] I Q] Mf Q| S| YA Q5[N <) Qf o
0123456789A.BCDEF0123456789ABCDEF0 < jw ©

133HS ONIG0D

W3 LSAS ONINIVHL H31NdWOIOHIIN

SW3LSAS HILNJWOD GILVHOILINI

9

4.4 TRANSFER NOTATION |

A number of rew instructions have been introduced. Most of these are

members of sets that perform similar functions using different registers

@S a source and destination for data.

In this section the term "transfer notation' is introduced. A" capital
letter designates a specific register or a flag; avlower‘case letter
refers to a register which will be identified in the instruction.

Parentheses imply 'the content of'. Thus:
ADD r (A) <= (&) + (r)

states that the content of register r is added to the content of

regiSter A and the result is placed in register A.

©

The following register reference instructions ard immediate

instructions have been introduced thus far.

4.4,1 Instruction Effects on Flags

their effects on the zero (Z) and carry (CY) flags.

INR r

DCR r

MOV d,s
@

MVI r,data

ADD r

Increment register r
(r) <= (r) + 1

If (r) becomes 0 then (Z) <~ 1
else (Z) <- 0
The carry flag is not affected.

Decrement register r
(r) <= (r) -

If (r) becomes 0 then (Z) <- 1

else (Z) <~ 0
The carry flag is not affected.

Move data into destination
register d from source register s.
(d) <= (s) .

The flags are not affected.

The content of s is not affected.

Move immediate data into
register r. Byte 2 of the

instruction contains the data.

(r) <- (byte 2)
The flags are not affected.

Add register to accumulator

(A) <= (A) + (r)
The content of register r is

added to the content of register A
and the result is placed in the
accumulator. The content of
register r is not affected.
If (A) becomes 0 then (Z) <~ 1
else (Z) <~ 0
If the result of the addition is
greater than FF (ie a carry occurs)
then (CY) <~ 1
else (CY) - 0

data

The list below indicates

ADI

CMP

CPI

XRA

data

data

Add immediate data to accumulator
(A) <= (A) + (byte 2)

The content of byte 2 of the
instruction is added to the
content of register A and

the result is placed in the
accumulator. Flags are

affected as for ADD.

Compare accumulator»with register

£ = ' -
I (Aglse(f%) <= 0 then (Z) <- 1
If (A) < (r) then (CY) <~ 1

: else (CY) <- 0
The content. of A is not affeted.

Compare accumulator with immediate data.
If (A) = (byte 2) then (Z) <- 1

else (Z) <- 0
If (A) < (byte 2) then (CY) <~ 1

1 c <~ 0
The content of A else (CY)
isxxﬂ:afﬁaﬂmﬂ.
Clear register A
(A) <=0~ e -

(2) <-1
(CY) -0

‘Note XRA r is a logical instruction which operates on the contents of

registers r

and A and places the result ir A. Only when the register

specified in the instruction is A (XRA A) does it have the effect of

clearing A.

CMP A

ORA A

Compare register A with itself. Sets
the zero flag and clears the carry flag.
(2) =—1
(CY)=—020

Test register A to set condition flags.
clear carry.

If (A) = 0 then (2) =1
else (Z) =90
always (CY) =0

o

4.5 REGISTER PAIRS

Ir the foregoing instructions the six general purpose registers (B, C,
D, E, H, L) are equivalent to each other. They store data, provide
operands for arithmetic and logical instructions, and count. Any one of
them will serve as well as another. The general purpose registers are

paired:

B c
D E
H L

Their arrangement is like that of the W and Z registers, and for the

same reason: a pair of eight bit registers is able to store a 16-bit

memory address.

A number of instructions use register pairs for addressing the data
memory. There are several reasons for addressing the memory this way.
The least important (but.not trivial) reason is efficiency. If the same
address - is to be accessed repeatedly, it takes less program space énd
running time to load the address into a register pair than to repeatedly
load the memory address from the program memory into W,Z. More

importantly, if the same operation is to be performed on data in a

series of adjacent memory locations, that operation can be performed in

a repetitive loop, with the address being modified by incrementing (or

4 - 30

~
- A\
i

decrementing) the register pair. 1In many applications a memory addreés 0

is calculated from variable data.

4.5.1 The LDAX and STAX Instructions

Register pairs B,C and D,E'are psed for addressing by the LDAX and STAX
instructions. These correspond to the LDA and STA instructions,
differing only in the source of address information. As is the case in
all instructions using register pairs, the name of the first register is

used to identify the pair, as in LDAX B:

HEX CODE: 0A
MNEMONIC: LDAX B .
MEANING: = Load the A fegtster with the content of the

memory location whose address is corntained o
in register pair B,C.

This is called an indirect instruction, and is expressed as: 'Load A
indirect from B'. The term 'indirect' means simply that the content of
the designated register is not to be loaded; rather, its content is the
address of a location to be loaded. The address is obtained indirectly,
rather than by directly specifying it as the LDA'instruction would have

done.
The other ibStructions in this set are:

1A LDAX D Load A indirect from D
(&) <= ((D),(E))

5 - 31

The STAX instructions similarly provide for storing data:

- 02 STAX B Store A indirect at B
| ((B),(C)) <= (A)

12 STAX D Store A indirect at D
((D),(E)) <~ (A)

The content of A is stored in the memory 1location whose address is
contained in the named register pair. Note that double parentheses such
as ((B),(C)) imply the content of the memory locatior. whose address is

contained in register pair B,C.

Figure 4-7 illustrates the instruction cycle for STAX D, which typifies

‘this usage of register pairs..

INSTRUCTION CYCLE FOR STAX D INSTRUCTION

PROCESSOR MEMORY

A 09
=
83
0l

8209 -~ (:>

QO -~ m ©O

CPU sends PC as address

00,

Memory selects 8209 <:) 12
and returns data]

CPU loads data to I and
increments PC

> ©

820A

CPU interprets instruction

CPU sends content of D, E
as an address :

OlO.Oryr e

Memory selects 8301

A 09 }-— T T ~
—
D
E
1
P C 820A

@ - CPU sends content of A to memory

’Figure 4-7

W 0 W 0 o 0 0 0 0 0 W & o o

0 0 o

4 -

N N N N NN NN NN NMNNMNNMNN

W W N

32

Q o™

O O @ » © © N O ¢ & W N = O

- o™

4.6 SENSOR CORRECTION EXERCISE, VERSION i

4.6.1 Sensor Characteristics

A sensor 1is a device for measuring a physical variable such as

temperature, pressure, sound, etc. A thermometer, for example, is a
device for measuring temperature. Temperature can vary over a
tremendous range, of course, ard no thermometer can accurately measure

all temperatures. Sensors are desigred to operate over a limited range

of the physical variable they measure.

Even in this range they are not accurate (linear) over the entire scale.

A sersor may be calibrated, however, to determine the magnitude of its

deviation from linearity for each value that it does measure. This can

be shown on a calibration curve, a hypothetical example of which is

shown in Figure 4-8.

Noticé that each of the calibration curves in Figure U4-8 provides an
output lower than ﬁhe actual value it is meant to measure for low values
of the variable, but that both reach a point where they become 1linear.

From these curves we may construct correction tables, which are shown in

Table 4-1.

Sensors are often desigred to provide readings which differ from their
measurement by some factor. Ar automobile tachometer, for example,
measuring the engine's revolutions per minute, gives a reading on a

scale of 0 to 8 (generally). This must be multiplied by a scaling

factor of 1000 to obtain actual rpms. For our two hypothetical sensors,

a scaling factor is also shown in Table 4-1.

10

C-—
SENSOR
INPUT 8 —

@—— Sensor # 1

Sensor # 2

| ! B
0 4 8 C 10

IDEAL LINEAR SENSOR

SENSOR CALIBRATION CURVES
'FIGURE 4- 8

34

Sensor #1

Sensor Value

Corrected Value

0 0
1 3
2 y
3 5
4 6
5 -7
6 8
T 9
8 9
9 A
A B
B B
> B Linear
Sensor f#2
‘ Sernsor Value Corrected Value
‘_ s ‘ 0 0
1 2
-2 y
3 4
4 5
5 .6
6 7
T 7
> 7 Linear
Table H#-1

Scaling Factor

Scaling Factor

02

03

4.6.2 Organizing the Data Structure

We will develop a program to correct a nor-lirear sensor input value and

- multiply ﬁhe result by a scaling factor. In the program the corrected
values will be listed in tables. Since the sensors become linear well
before full scale, we will store in the table ornly data for the
non-linear.area. This gives different table lengths . for the two
sensors. We will assume that the programmer does not know the table

lergths when he designs the program. Since the tables are cortiguous,

he also does not krow the starting address for the secornd table.
Therefore for each sensor we will store the following informatior:

a) The starting address for its table

b) The sensor input value at which the senéor has become linear

(the linear point)
¢) The scaling factor for the sensor

d) The list of corrected values

The Starting address for each sensor's table must be accessed knowing
only which of the sensors is being read. The remairing data can be
included with the correction table. Table 4-2 shows the organization

and locations for these data in our data memory.

Y

o

o

37

4 -

-

-

o e

r

eed

& 7/

3

FOR

DPATA T7ARLE

” Qf <N M] o] o | ™ NN BN
| aonaaoovcooAaoK Qlal] Q] Q] 9] 9f9
' Fal 4 YIRS of &
al D ~ -
“Lm«“ws mJ. WWF d.WU
"\.,EME e.m CJ/ N AOP
“ww&mk,r al N O R
SR * Wy, |
m)_PIMJ_
<l 9~ W \ h
_ N K% NN b
I, < 9 _Mﬁu N R
,.CE/ Urcl— F_L m
“maapww NEIN SRR 5
S| of <™ NINE of <D 2
[SAS Wl Wi
A\ A
-I[q ~[v d |
W b~ -
MEIRS V| |V vl {v
o] @ aof {\ af |
555 L] v A4 &
3Rw NEE I [
\f Wiy > W] | Q W Q
wivly wi 9 R
1>l o]l o]o|0]of«]| @ q MY o ~] o o g A @ ™ol N =~
Aonlaaoa@ao.aoooamaao0000900000000
123456789ABCDEF0123456789vABCDEF01234
™ "
. © , =K ‘
133HS ONIQ0D W31SAS ONINIVYL HILNIWOIOHDIW SWILSAS HILNIWOI QILVHOIINI

o . 9
v/

4.6.3 Organizing the Program) Q

This exercise will be more complete than previous exercises. The basic

program specification is simple: Obtain a sensor value input from one of

two sensors, retrieve a corrected value from a table if necessary,

multiply the value by a scaling factor, and display the result.

In organizing the program, the assumptior is made that all data 1is

stored in tables, and that only the address of the first table is known.
A further assumption is that the input data will alternate back and

forth between sensors #1 and #2, starting with #1.

We wi;l use the multiplication code developed for the last program; and

use the monitor for input and display of results. The procedures for

accessing tabular'data, however, are new. The design of the data

structure in Table 4-2 will dictate the prlncipal organization of the
program. Before turning to the flow chart of Figure 4-9, sketch one of

your owr, then compare it. A program solution is given in Figures 4-10

(o=)

Initialize Sensor #

Y

'Input Sensor Value

| |

Update Sensof #

1

Select Sensor Table

Fetch Scaling ‘Factor

Fetch Lirear Point

Input

YES

Lirear?

NO

39

4 - yo

Fetch Corrected Value

Multiply by Scaling Factor

Go Display Result and

Input New Sensor Value

Figure 4-9

SENSOR

cO

DE

CORRECT ION

FROGRAM

4 - 41

CODING SHEET

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

o
0o oo Mo P

0 1 O|O | '

0 2 o|0

0o 3 3¢ miviz| (A \|ol=- TZutafize Sensor

0 4 O 2 | Muwmbor = 02

0 5 3|2 S yAlsi 32 o Store T

0 6 &0

0 7 #2 _ _

0o 8 |&]7 Ris|T| |4 Enter auou tor bor |
09 |¥|F Molv] e | Seet sor s uputs

0 A /16 Mvlzl 1Pl 152 Address data

0 B ?F} W

0 C- /1 E MV L £l 8o Address Seusor

6 D i) : /hu_méer

0 E /1A LI|D|A D Load [est seunsor
o F_(21¢ LM A Mewl: seusor

10 |FlE cirlr| |ol3 Teyf fes: fine 2 2
11 ol '

1 2 |DlA vl S1A111|7 Jum'/) 1+ [ess

13 17 ' ‘ Thaw 2 to store
14 512 . Seisor gruwlber

1 5 3l ML A’ N | Vs ke S~

1 8 ol : Paa b~ |/

17 (1 Z SIT1A D =fore Sewse, Atwubes
1 8 |&[F Mlolvi |E] § Gel sewsor datas
1.9 /it LIDIA| p Tetle address

1 A J1F MiolVv| |E]|~ Address datble
18 (A L] DA D Load scaling factor
1c 147 HMlolv| 1Bl 1A | Scalus Foctor to B
1.0 |l|& IIMR| &€ Address [1near poini-
N LIDlAIX| P loed linear poiut
1 F Bl 9 CIMIFP| IC Compere tpuf

2 0

2 1

2 2

2 3

2 4

2 5

2 6

2 7

2 8 Figure 4-10

CODING SHEET

- MICROCOMPUTER TRAINING SYSTEM

- N X

SENSOR C

cooE.

ORRECTION FPROGRAM coutd 4- 42

A
8

2 2~

J

C

&7

2]

2

J g L /e o

4

Add ress correctiom

toble stacrl

/4’:14 Sensor /‘nﬂ‘f

LY (R

Add ress gud /ood |

1

corcrecled value |

L

Aorrected ol o &

2 [0 vio|9]o]z

Clear A Lom amultoply

Y]

|

PhRIKD<R]

A’Jc{ /lugr'l%_g_c! (Hﬁgt

Decre tm'f'm /f;'g/z er |

<MAXRIFREBIXMN

e
v

<P IPRIR

CD‘R"L!AM’L//

PIp(A=MIN ™ IN~ RPN

mltiply complete
L2 q ™

C
K
m

IS

2 3

lo [0 joyM]pf0 g~]axiN~ [t o

~ o

& u‘i';uf resc]l

- INTEGRATED COMPUTER SYSTEMS

wlv]jlojon]lalw]|v]jalolmmloloj@ip|ola|vNljajon]|sjwIN]=lonimjo|O0O]jm|[Plo]jolv]jloalan]jasjw]ln]=l0]|s

Figure 4-11

Load the program and data tables and verify carefully. Use the solution
giver first, then try your own solution if it is different. Start at
8203 and press REG A. We will step though the program and describe

the operations in some detail. Follow the codirng sheet and flow chart

as we go:

Move immediate to A L§gg3J [A;ggj
places 02 in A, [82651 [A=02)
which is stored in the (8208] (A-02]

data table as the current sensor

number. This is the Initializing procedure.

From the mornitor, we may - ‘ (6020] (A-02

Input a Sensor Value:

1 ' | (Gozo) (E=01)

The value 1 will be stored . 209 A-01

in register C. Next we will

Update the Sensor #,

putting 83 in D : (8208) [A=01)
and 80 in E. ‘ 20C |§~01|
(820E) A-01
Look at register pair D,E
ADDR D MEM 8380 (DEO2 |

4 - 4y

This is a new sequence of keys for inspecting the cortent of a

register pair:

ADDR B,D or H

MEM

The content of the register pair appears at the left.

The right four

locations display the name of the register pair and the content of the

memory location addresses by the pair.

preserved, and must be keyed ir each time.

- Now we will load (D,E)

REG A

The

display format is

EEF) ()
(B20F] [(&=07)

not

This part of the code (820a to 8217) updates the current sensor number,

which must alternate between 1 'and 2 each time.

The/sensor number has been
incremented froﬁ 2 to 3. Now we
will test its magritude with CPI,
And jump if iﬁ is less than 3.

It is not, so (A) <- 1

and will be stored in 8380.

Satisfy yourself that each time we pass through these instructions, the

sensor number will alternate between 1 and 2.

210 (A=03)

o

Y
}
/

4 - 45

By putting the sensor number in E, (8218) [A=01]
we form address 8301 in D,E; (8219) (A-071)
ADDR D MEM (8301]) (DEOE]
REG A STEP (82178) [(A=08]

and load its content. The number 08 is an offset (from 8300) which

gives us the 1low-order byte of the address of the first entry of the

table for sersor #1 (8308), thus selecting the correct Sensor Table.

ADDR D MEM DEO1

Now we Fetch the Scaling Factor for sensor #1;
G | REG | [STEP Bzic]) (E=02
and store it in B. A-02

Register pair B,C now contains the scaling factor and input value:

NEXT (8210) (B-02])
NEXT 21D [€-01)
STEP 21E {c-01]

Register pair D,E, which holds our table pointer (current address in the

table), has been incremented to point to the next entry:

ADDR D MEM (8309) (DEOB

4 - 46

e _
We will load its content, the Linear Point, and

REG A STEP B21F] (A=0B)
compare it with the input value. ‘ : (8220) (A=0B)

We are row poised at a decision point. If the sensor value is equal to

or greater than the linear point, we do not need to access the

correction table.

In this case it is less. (8223]) (A=0B)
To Fetch the Corrected Value,

we increment the table pointer,. 224 A-04 }
move the low byte to A and .

)
add the sensor input. (8226) (E=0B .

We have computed the value of a table pointer by adding the sensor value

to the address of the first correction entry.

Now we return the pointer to E, A-0B
ADDR | |D MEM

load the corrected value,

REG A STEP |- (8228

and substitute it for the input value in (C). A-03

g

:

We multiply by the Scaling Factor, just as we did in sectior 4.2,

TR

The A register is cleared; (822K7) (A=00)
add corrected input, (8228) A-03

decrement the counter (B), (822C) |A-53|
loop, | (8224] (A-03)
add input again, ‘ (822B) (A-06)
decrement counter (822C] (A-06)
and jump out of the loop (822F) [(2-06])
And so back to the beginning,

to display the results and

‘get a value for sensor #2. (o020]) (A-06]

Noﬁ RUN the program:

RST REG A RUN ' - L@gﬁ_} (a=22]
»(Sensﬁr #1) 1 'RUN | [8209J' (a-06]
(Sensor #2) .2 RUN (8209) (&-06]
(Sensor #1) 2 RUN (8209 ‘LA-OB]
(Sensor #2) - | 2 | ~ RUN ‘ (8209) (A=0C)

This STEP through of your program is keyed to both the flow chart and

the coding sheet. If you are at all confused by it, STEP through it

again, following both documents carefully. In addition to illustrating

the use of new instructions, this'program demonstrates two importarnt

4 - 48

o

.

corcepts: incrementing an address in a register pair to access

Successive entries in a table, and the computation of addresses.

b7 ADDITIONAL INSTRUCTIONS FOR REGISTER PAIRS

u:7.1 Load Immediate, Increment and Decrement

Several additional instructions useful for dealing with register pairs

are defined here.

They could have been used in the forégoing exércise,

although there was no difficulty in programming the problem without

them. They are:

LXI rp

INX rp
DCX rp

‘ Example:

LXI rp
XX

Yy

(rp refers to a register pair.)

Y

Load immediate data to register pair:
(rl) <- (byte 2)
(rh) <- (byte 3)

The content of byte 2 of the instruction is loaded to the 1low order

register (C,

or L) of the régister pair. The content of byte 3 is

loaded to the high order register(B, D, or H). The flags are not

affected. The LXI instructions-are:

01 LXI

11 LXI
21 LXI

4 - 50

~.
These instructions are most commonly used to load ar address pair, but

they can equally be used to initialize counters or otherwise enter data

into a pair of registers.

Increment and Decrement Instructiorns are:

INX rp Increment Register Pair
03 INX B o (rl) <= (rl) + 1
13 INX D If (rl) becomes 0 ther
23 INX H (rh) <= (rh) + 1

Flags are not affected

DCX rp Decrement Register Pair

0B DCX B (rl) <= (rl) - 1
1B DCX D If (rl) becomes FF ther
2B DCX H (rh) <= (rh) - 1

Flags are not affected.

These instructions are used almost exclusively to change an address held

in a register pair. 1In the foregoing exercise we could have used INX B

instead of INR C, and INX D instead of INR E, with no change in the

program's operation.' Since all of the table addresses were within 830D,

there was no need to alter the high byte of the address, but if the

table had started within the 82xx region and ended in the 83xx region,
the INX B and INX D instructions would have to be used.

Note that INX and DCX do rot affect the flags, whereas INR and DCR

affect all flags except carry. This difference is important. 1In some

©

applications it is desirable that the flags resulting from a previous
operation be retained while a memory address is changed. On the other
hand if a loop is to be repeated until a counter reaches zero, the INR

or DCR instruction must be used to set or clear the zero flag.

4.7.2 Use of a Memory'Location as a Register

Register pair H,L is primarily intended for addressing memory, and the
memory location addressed by (H,L) is available to the CPU as though»it
were another register. All of the register reference instructions (MOV,
MVI, 1INR, DCR, ADD, XRA, ORA, CMP, and others not yet presented) have
counterparts that perform the same function using the memory location

addressed by (H,L). The flags are affected as though the memory
e"' location were a general purpose reg_iéter. -

Before «carrying out an exercise involving this type of memory
addressing, we will formally define the instructions involving memory

reference, and also several instructions specific to register pair H,L.

4.7.3 Memory Reference Instructiors

INR

DCR

MOV

MOV

MVI

M

M,data

- by the register pair H,L is

Increment Memory

((HY(L)) <= ((HWY(W)) + 1
Increment the content of the
memory location addressed

by the cortent of register
pair H,L.

If ((H)(L)) becomes 0 ther (Z) <-

else (Z) <-
The carry flag is not affected.

Decremer.t Memor

((HX()) <- ((H¥(L)) -1

Decrement the content of the

memory location addressed
by the content of register

pair H,L.
If ((H)(L)) becomes 0 then (Z) <~

else (Z) - 0

The carry flag is not affected.

Move data into memory

((H)(L)) <~ (8)
The memory locatior addressed

loaded with the content of

source register s.
The flags are not affected.

The content of s is not affected.

Move data from memory
(d) <= ((HY(L))
Destinatior register d is

loaded with the conternt
of the memory location

addressed by register pair H,L
The flags are rot affected.
The content of the memory
locatior is not affected.

Move immediate data into memory
((H)(L)) <~ (byte 2) ‘

The memory location addressed
by register pair H,L is

loaded with the content of

byte 2 of the instruction.

The flags are not affected.

1
0

S’

4 - 53

ADD M Add memory to accumulator
(A) <= (A) + ((H)(M)) «
The content of the memory
location addressed by register
pair H,L is added ‘to the
content of register A and the
result is placed in register A.

The content of the memory
location is not affected.

If (A) becomes 0 then (Z) <- 1

else (Z) <= 0
If the result of the addltlon

is greater than FF (ie a

carry occurs) then (CY) <~ 1
else (CY) <- 0

CMP M Compare accumulator with memory
If (A) = ((H)(L)) then (Z) <~ 1
else (Z) <- 0
If (A) < ((H)(L)) then (CY) <~ 1
else (CY) <= 0
The contents of A and
((H)(L)) are not affected.

9 4.7.4 Additional Instructions for H,L

‘The following instructions specifically involve register pair H,L.
Their primafy function is for use in addressing memory, although the DAD

instruction is also very useful in arithmetic.

DAD rp Add the content of register pair

. rp to the content of H,L.
— (H) (L) <- (H),(L) + (rh) (rl)
If the result of the addition is

greater than FFFF, then (CY) <~ 1
else (CY) K- 0

The HEX codes for DAD instructions are:

09 DAD B
19 DAD D

29 DAD H

4 - 54

In the sersor correction exercise this instruction could have been used
to add the table address (in pair D,E) to the input value (in register
L), but the Scaling factor would have to be held elsewhere and register
H set to zero. This willlbe uséd in the éevised version of the sensor

correction problem at the end of this chapter.

The DAD instruction performs a 'double precision' add: two bytes or 16
bits are involved. DAD H adds the content of H,L to itself - that is,

the content is doubled. Another useful instructior is:

EB XCHG Exchange H,L with D,E

(53 £33 th3 |
The contents of registers H

and L are exchanged with
the contents of and E.

The flags are not affected.
This is one of orly two exchange instructions in the 8080. All other

data transfer instructions are one-way: the content of the source

register or memory location is duplicated while the previous content of

the destination 1is lost. 1In the XCHG instructior the previous cortent
of all four registers are preserved but in different registers. It is

especially useful when two different memory pages are successively

accessed.

The content of (H,L) may be loaded and stored using LHLD and SHLD:

2A LHLD Load H and L Direct
XX (L) <= ((byte 3)(byte 2))
vy (H) <~ ((byte 3)(byte 2) + 1)

The content of the location addressed by

byte 3 arnd byte 2 of the
instructior is moved to

register L.The content
of the memory location at

.\k
ﬁ '

22 SHLD
XX

Yy

y - 55

the succeeding addreSs is
moved to register H.

Store H and L Direct

((byte 3)(byte 2)) &~ (L)
((byte 3)(byte 2) + 1) <~ (H)
The content of register L

is moved to the memory
location addressed by byte 3
and byte 2 of the instruction.
The content of register H

is moved to the memory

location at the succeeding address.

4.8 SENSOR CORRECTION, VERSION 2

In the following exercise we will duplicate the sensor correction
program of Table 4-9 with three exceptions. The data table (Table §.2)
will store the number of sensors which will be used, so that it need not
be paft of the program. FWe will address the data table with register
pair H,L insteéd ofxu;E and .use memory reference instruction such as MOV

A,M, and do a double precision multiply for the scaling.

4.8.1 Double Precision

Double precision means that a number is stored-in two bytes, giving a
~ precision of 16 bits (ore pért in 65,536). It is often the case that
one byte (orie part in 256) of precision is SUffiéient, but in
.iwmgltiplicat;onr’grrdivisiopﬁye ean use double precision in the operation
aﬁd“tge; discard the less signrnificant part of the result. In our
earlier scaling, having only a single precision mhltiply forced us to
restrict the input and scaling factors to single digit values. With a
double precision multiply we can use full bytes for both input and
scaling factpr,‘multiply to obtain a four byte result, and output the

high order byte.

The revised flow chart and coding afe presented in Figures 4-12 through

4-14,

o)

o

Initialize # of Sensors

¥

Input Sensor Value

Decrement Sensor i

1‘5’ o NO
\ : '

1

Initialize Sensor

Fetch Scaling Factor O

Input

Linear

Y

Fetech Correéted Value

v

Multiply by Scaling Factor

'

Go Display Result and

Input New Sensor Value

Figure 4-12

58

SesSoR SRR EST e rS PrRO SR AM 4- 59

’ A [»] D R CODE .)
| 8 2 00 Mo|P Save 2 speces
| 0
© .
0 LI|D\|A g 30l Load highest
0 | Seusor HNMuuwber

Store 1 ot §280

)
|
by
X
W
X
O

CODING SHEET

[Wlc|=]c|® [n]~WIS IV wl° [»]o]o]c

e?md fo (mpal™

INTEGRATED COMPUTER SYSTEMS

()
1 o
2 (&
3 3
4 o
0 5 &
06 12
0 7 &
o 8 I°8 ;
08 |&] R 31 | Enter apu for
0 A L MOV C \A In'//u.f" fu' (_,.L
o8 |O mviz| |2|,|ole Clewy B Cor
0 c o ' leater add fiorn
§ 0 D 2] LixlC H N P20 | Add ress prev: oS
g 0 E 1 Sl Sor- At be —
o o F &«
g 8 2 1 0 |3 Dlelr] M Decrcuwn] F o
g 11 cla AVIES | $12 119 ‘/M?—vr-‘f"' Sguser s ber ;
i 'u-: 12 l? ard Te | ier Zeo
| ‘ g L~ 92‘- - ' YR =
‘ % 1 4 2|4 LiID|A4 12100 LO_).LJ.I']&@,/\.FSI'
8 1.5 OO S tCimr plU i~
% 6 ?-3 QAL t/ ::‘fl'.;',v‘c' /f [
s 7 7 7 ‘ o\v M N A Tla gy wcao or
‘ 8 719 Molyl A4l le _Iru)n‘f % /4 i
9 A Mio V Ly M Add ress a,uc/ lpad |
A 4|E MoV L1y M date Fable a-c/dress
8 Sle M0 |V 63"1 5’-&/1# £octor o
c 213 LI X / Add ress linear gom'f
o |BlE ciMepel M Cowpare seuser (upul
E Dl 2 JIMV 5122 s/u—m,p L lwcars pou{r
F 2..1’-] ' [ess Hom o
8 2 0 512
1
2
3
s
5
6
7
8

NININININININ I IN] @ e alalela lajwe ja]la

| ’ Figure 4-13

coutd 4 - 50

SR AN

Fr

COI!{’NE CTiens

ot | U
4 5A A+ > L
EEERENE! : 3
FRFEEEEEERAKI
ww d | o
\
3 3~ X wlr Imn_
uSch < ~ &
>3 o~ v 3 ‘
EREENEREARLE E
9 |\ o
T oM N| d]9
N A I N AN
XM Jf =] 3]y]S <%
X EEENEEEREEDN
] | o] o] J| RI1R1E
NARXX[R[AN] | X
ol [mey] O] N oA 0[N Aoy N
o T~ oo~ 99| Q] < I {|R] ~[JI[Q]%
n.“.123456789ABCDEF01234587 onjojlojwlun]e o] e © ©
[N
o‘_l
d
q [] (]

133HS ONIA0D

WILSAS ONINIVHL H31NdWODOHIIW

SIWILSAS HILNJWOD O31VHOILINI

4,8.2 Running the Program

Load the newbprogram. You must also load the data table (Table 4-2) if

it is not still in your memory. Enter 02 at location 8300, for the

highest sensor number.

Now reset énd press REG, A, RUN to arrive at the data input point. From

~ here we will trace the data in the processor.

RST REG A RUN . (820A] (A-02

Leave 02 as the input value.' We are about to move the input value into

C, clear B, and load registers H and L with an LXI H instruction.

Step three times and observe the registers:

(820B) [(&-02)

(8200) (A-02)
(B210] (E-02]
NEXT = | (8210) [(B=00)
NEXT | (Bzi0) (C-02)

The content of register pair H,L addresses the memory location where the

0ld sensor number is stored:

ADDR 8/H MEM (8380} (HLO2]

| B21) (Cc2)

: ®)
ADDR H MEM 380 HLO1] ‘

Since the content of 8380 did not reach zero, the JNZ instruction (C2)

will cause a jump:

219] ([6E]

The instruction at 8219 is MOV L,M. The content of memoby location 8380

will be moved into L, so the memory address will become 8301, pointing

to the table address for sensor number 1:

(821) [8E }
aooR [|0 | | uEw 301 - ([@0E)

Another MOV L,M will put the table address into H,L, and point to the

scaling factor: B) .

@218]) (CB5E)
ADDR H MEM | HLO2

At 821B we have MOV E,M to save the scaling factor in register E, and
then INX H to address the linear point:

Eic) ()
@3] (B

ADDR | | H MEM

The rext instruction (BE at 821D) compares the linear point (0B at 8309)

with the content of register A. Before executing it, review the .

registers:‘
REG A (sensor input) (8210] (a-02]
NEXT (B cieared) (82ip) (B-00]
NEXT | ‘(sensor input) (8210] (c-=02)
NEXT (rot used) (8210) (D-22)
NEXT | (scaiing factor) (8210) [(E-02)
NEXT (flags’- ignore) ngng' (F=24a]
NEXT (high address) (8210] (H-83]
NEXT | ~ (low address) (8210) (C=09]

The following instructions compare the sensor input. with the 1linear

point, and finding the input not greater the jump to 8224 is not taken:

(821E] (L-09

|§22i] (L-09 j

At 8221 register pair H is incremented to address the first point in the

table of corrected values:’

522] (L=0A

4 - 64

’)y
At 8222 register pair B,C (contairing 0002) is added to register pair HL: o
(containing 8304):

G2z3) (T=oc)

This addresses the linearized value for a sensor input of 02:

The followirng three instructiors move that value to C and clear H and L.

ADDR H MEM (B30c]) (HLOR]
\
|

We are firnished with H and L for addressing and now need them for the

double precisiorn multiply:

[822“] L_QQJ
e e 2@

Before starting the multiplication review the registers again.

REG A (8226] (a-02]
NEXT | (8226) (B=00)
NEXT 8226 (C-04])

NEXT 3526) (=27

4 - 65

NEXT . (8228) (E-02J
NEXT _ : 8226
NEXT | (8226} (H=00)
NEXT - (82z26) (L=00J
In the multiplication we will add (BC) = 0004 into (HL) = 0000 as we

count down in register E from 02 to 00. You can watch this in register

L.

\~~,

Al%’ o | | | ~8227) (T=00)

(L 8228] [L-04

(8226] (L=-04

rgz227] (1-08}

(8228) (L=08)

(82z8) (L-08)

b - 66

Register E has beén counted down to zero and the program has exited from

the 1loop. At 822B the single precisior result is moved into A from L,

and then the jump back to the moritor entry occurs:

(@22¢)

REG A (822c] (A-08]
(8209]) (&=08)
STEP (6020]) (&=08]

By using DAD B in the‘multiplication loop we héve computed a double
precision product, but have only iooked at the low-order part (L).
Change the scaling factors at 8308 aﬁd 8316 to CO (making both the same
will produce identical results for each sensor except in their
non-linear regions). Run the program for various inrputs. Each time the

program returns to the monitor, display the contents of H,L to see the

complete multiple precision result.

RST REG A RUN (B208) (&-02)
1 6 (320a) (&-156)
RUN | (820a) (&=80)

.

o

4 - 67

ADDR H MEM 1080 (HLCE])

For input values of B or greater, both sensors give the same result:

REG A 1 6 (820A) (A-16]
RUN (820a) (A-80]
ADDR H MEM (7080) (HLCE]

4.9 SUMMARY S

In this exercise we have seen register pair H,L used as a store for a

memory address, which we modified ir four ways:

a) Loading it initially with LXI H

b) Copying data from an addressed memory location into L,
with MOV L,M.

¢) Incrementing it, with INX H.

d) Adding a variable to the address, with DAD B.

We have also seen the memory locatior addressed by H,L used as a counter

(DCR M) and for a comparisorn (CMP M), in each case affecting the flags.

N\

We have seen it as a source register (MOV L,M; MOV E,M; MOV C, M) and as (:’;
a destination register (MOV M,a).

Finally we observed register pair H,L used for addition with DAD B, in
the multiplicatior loop as well as in addressing.

4.10 INSTRUCTION CARD

The instruction card shows all of the 8080 instructions. Most of the
data transfer and counting instructions have now been introduced, as well
as a few of the arithmetic and branch instructions. Study the
organization of this chart so that you can readily find an instruction
when you need it.

HEX CODES FOR 8080 INSTRUCTIONS

SOURCE REGISTER
DATA IMMEDIATE
TRANSFER A B c D E H L | ™ SP | (DATA FROM PROGRAM)
MOV Ags 7F 78 79 7A 78 7C 70 7€ MVIA 3E
MOV B3 47 40 a1 42 a3 44 a5 46 MVIB 06
MOV Cis 4F a8 49 4A 48 ac 4D 4E MVIC OE
MOV D 57 50 51 52 53 54 55 56 MVID 16
MOV Es 5F 58 59 5A 5B 5C 5D SE MVIE 1E
MOV Hs 67 60 61 62 63 64 65 | .66 MVIH 26
MOV Lgs | 6F 68 69 6A 6B 6C 6D 6E MVIL 2E
MOV M 77 70 7 72 73 74 75 - MVIM 36
2 DATA BYTES
LXl 01 1 21 31 ZDATABYTES @
LDA addr 3A ADDRESS FROM
STA addr 32 ‘ , PROGRAM (2 BYTES)
LDAX rp 0A 1A , ADDRESS FROM
STAX 02 12 REGISTER PAIR
LHLD addr ' 2A ADDRESS FROM
SHLD addr 22 PROGRAM (2 BYTES)
SPHL ‘ F9 ' SP<—HL
PCHL E9 PCe—HL (BRANCH)
XCHG EB ' DEe»HL
XTHL E3 "STACK TOP<HL
PUSH rp cs5 DS ES PUSH PSW F5 SP<—SP — 2
POP rp c1 D1 E1 POP PSW F1 SP4—SP + 2
COUNTING A B c D E H L M sP FLAGS AFFECTED
INR d ac 04 oc 14 1c 24 2C 34 | . 2,8,P,AC
DCR d 3D 05 0D 15 1D 25 20 35 Z.S.P, AC
INX rp 03 13 23 33 NONE
e DCX rp 0B 1B 28 | 38| NONE
B ARITH/LOGIC Al B [D E H L | ™ SP IMMEDIATE
DAD rp 09 19 29 39 |. (DATA FROM PROGRAM)
ADD s 87 80 81 82 83 84 85 86 ADI C6
ADC s 8F | 88 89 8A 88 8c 8D 8E ACI CE
SUB s 97 90 91 92 93 94 95 96 sul D6
SBB s 9F 98 | 99 9A 98 oc | 9D 9E SBI DE
ANA s A7 A0 Al A2 A3 Ad | A5 A6 ANl E6
XRA s AF A8 A | AA| AB| AC| AD | AE XRl EE
ORA s B7 BO B1 B2 B3 B4 BS B6 ORI F6
CMP s BF BS B9 BA BB BC BD BE CPt FE
INSTRUCTION FLAGS
ACCUMULATOR | RLC | RRC | RAL | RAR | DAA | cmAa | sTC | cmc ONLY THE CY FLAG IS AFFECTED EXCEPT:
AND CARRY 07 OF 17 1F 27 2F 37 3F CUA ~ NOFLAGS
BRANCH IMP | CALL | RET |PCHL | HLT | NOP DO NOT AFFECT ANY FLAGS | O
co | c9 E9 76 00
COND NZ c2 | c4 | co AFFECT ANY FLAGS excepre® 00 NOT
Z . CA cc cs POP PSW AFFECTS ALL FLAGS
Ne | o2 | D4 oo | ARpmeTlcal s
c DA DC DB DAD A#FECTS cYy ONL;
PO E2 E4 EO0
PE EA EC E8 l&% EA:"ro DCR AFFECT ALL FLAGS
PLUS F2 F4 o | ey :
MINUS FA FC F8 INX AND DCX DO NOT AFFECT ANY FLAGS
INPUT/OUTPUT | IN | oUT | EI DI
&INTERRUPT | 0B | D3 | FB | F3 INSTRUCTIONS WITH PORT ADDRESS
RESTART RSTO | RST1| RST2 | RST3 | RST4 |RSTS5| RST 6 | RST 7
(CALL TO) oooo ooos 0010 0018 oozo 0028 0030 0038

INTEGIATED COVIPUTER SYSTEAVIS,INC.

4445 Overland Avenue / Culver City, California 90230 USA / Tel: (213) 559-9265 / TWX: 910-340-6350
European office: Boulevard Louis Schmidt 84, Bte 6 / 1040 Brussels, Belgium / Tel: (02) 735 6003 / Telex: 62473

MICROCOMPUTER TRAINING WORKBOOK

CHAPTER 5

MEMORY HARDWARE

5. INTRODUCTION TO CHAPTER 5

Having explored (in Chapters 2 and 4) the ways that programs address the
memory, we will now examine the physical addressing of the memory. This

chapter discusses the following subjects:

Memory Technology - ROM and RAM
Memory Addressing and Address Decoding
Data Bus Connéctions and Tri-State Ciréuits

Direct Memory Access and Interrupt Inputs

Memory Signals and Timing

5.1 MEMORY TECHNOLOGY Q

A memory device includes semiconductor circuits or elements to serve

four functions:
a) Store data in an ordered array
~b) Decode the address inputs to select a certain location
¢) Alter the ;tored data at the selected location upon command
d) Output the data from the selected location upon command

The memory devices used in the MTS each have 256 locations, addressed by

the low-order eight bits of the system address bus. The ROM and RAM
memories of your MTS system are shown in the schematic diagram, Figure

5-1. -The ROM devices store eight bits- at each location. The RA}M)
"devices store four bits at each location, so two devices are used forl

the eight bits that must be stored for each address. This convention is
illustrated in Figure 5-2.

5-3
c/6/78
cHIP
SELECT
WA'T aemeamsegi 400000200 Jes e on s ap as as ob @D G G b e
:o . DABy 18
roy -l
1 CEy
RAM RAM
5101 6101
0D R 0D
—>1INT
> 08y 5
!NV
N DATA
AUTO/STEPO L:zrgn DECODER
SELECT ,
LED DISPLAY
7401
‘ A
INTERRUPT 1- omA [A%
GENERATOR ik ¢ TR gf AB,
\V b 4 4 AB,
' v PORT FOR HOLD o.C.
RESET - EXTERNAL PERIPHERAL HLDA

KEY J”I

MICROCOMPUTER TRAINING SYSTEM CONFIGURATION

FIGURE 5-1

Address Bus
High Order 8 Bits

Address Bus
Low Order 8 Bits

Data Bus

256 locations

256 locations| [256 locations

5 - 4
CHIP
SELECT
DECODER
‘_
CE CE CE
[
ROM RAM RAM

8 bits each 4 bits ‘4 bits
P : *
’e -0~
>— >~
- —
—
” .

-

One ROM chip
provides 8 bits

Figure 5 - 2

Two RAM chips
selected together
provide 8 bits

L
. 5.1.1 Storage Techniques

The electronic means of storing data depends on the kind of memory
device used. Permanent (mask) Read Only Memory (ROM) has, for each bit,
a transistor ‘that is eithér created or destroyed during the
semiconductor manufacturing process. In electrically‘ eraseable and
Programmable Read only Memory (PROM) devices, such as the MTS' U454, a
physical quality of the semiconductor material at each bit position is
altered by a relatively high voltage pulse during programming. The
change is reversible but non-volatile: it will remain indefinitely until
a new programming operation is performed. The microcomputer has no
facility for applying such high energy signals, so the PROM cannot be
altered while it is in thé circuit. Other types of PROMs are erased by
exposure to an inten;e ultraviolet light, and may then be reprogrammed

electrically.

In read-write memory the data are stored in the form of current or
charge in transistors. Static RAMs, such as the MTS' 5101, include a
flip flop circuit for each bit. Such a circuit has two stable states;
one transistor conducts while a second is cut off. Dynamic RAMs store
data in the form of a charge, which gradually leaks away and must be
refreshed at approximately one millisecond intervals. Refreshing
requires additional external circuits, which is not appropriate in sméll
systems. Howevef, many more bits can be stored in one dynamic device,

which is desirable in large systems.

5- 6

The MTS memory devices have an array of 256 storage locations, each :
arranged as a square 16 cells high and 16 cells wide. The eighi address
lines received by the device are divided into two groups of four lines.

Each group is decoded to select one of 16 lines, as shown in Figure 5-3.

The intersection of thé two lines is the selected 1location. Gates at

that location connect the input and output of the storage circuit to the
éontrcl circuitry within the device. This array is replicated four

times at each address to provide the four bits stored by the RAM

device, or eight times in the ROM.

Address Input
8 Low Order Bits of Address Bus

]

DECODER

1/16

Figure 5 =~

3

DECODER
1/16
4 & S
C}A;i:
H/
/"
/
/
L
g

Selected Location

INTERNAL ADDRESS DECODING

~IN A MEMORY DEVICE

16 x 16 array

5.1.2 Chip Select Logic

Every memory device in the system receives the eight 1low order 1lines
from the address bus, decodes the bit patterns, selects one location and
connects it internally. The high order eight bits of the address bus
are decoded externally to select one ROM or two RAMs. 1In an 808b
computer system with 65,536 bytes of memory, the high order address
would have to be fully decoded to select among 256 separate memory

devices (or pairs of devices).

The MTS is equipped with four ROM chips (1024 bytes) and two pairs of

RAM chips (512 bytes), with provision for two additional pairs of RAM
éhips. It is therefore necessary to decode only eight of the possible

256 high order addresses. This is accomplished by a single 2155 address

decoder; which has three address inputs and eight decoded outputs. Each

output is connected to one ROM chip ér to one pair of RAM chips.

The decoding is thus incomplete: three of the high order address bits
enter the 2155 and the other five are ignored. 1In this configuration
the physiCal memory appears to be replicated 32 times. You can test
this with your micrbcomputer.» Press ADDR and enter any of these

addresses:
0000, 0400, 0800, OCOO, 1000, 1400, ...7C00

The same data (31) will be seen at each address because the same monitor

(ROM) location has been selected in each case.

In your own program memory (RAM) you may also substitute addresses at

@

intervals of 110016 ; for example:
8600 instead of 8200
9A01 instead of 8201
FEO2 instead of 8202

The address bits decoded for chip selection are the highest bit (A15),
which distinguishes ROM (high bit = 0) from RAM (high bit = 1), and the

two low order bits (A8 and A9). The following diagram will clarify:

Address 8200 =1000001000000O0O00O0
16 |, W /WW_—-/

This bit selects f # e

ROM or RAM

membry: the less significant

bits are decoded by

These five bits are the memory device :

ignored by the decoder.

These two bits select the

target ROM or RAM device:

Provision is made on the circgit board for an additional input. to the
2155 address decoder to disable all of its chip select lines so that
external memory can be added using a different decoder, but it is hard.
to 1imagine this being appropriate. Programs needing more than 1024
bytes of RAM generally belong in expensive development systems with text

editors, assemblers, compilers, and floppy disks.

5.2 MEMORY PAGES

All 256 bytes of an MTS memory device have the same high address (e.g.
82) and all. possible 1low addresses (i.e. 00 through FF). This is
called a page of memory. With small memory devices it corresponds to a
physical separation: a single 454 ROM chip or a pair of 5101 RAM chips
is one page. This affects addressing, since only the low-order bytes of

addresses change within a given page.

For example, you could clear data memory (8300 through 839F) with this

program:

8203 LXI H,83A0 Load address 83A0 in H,L
8204 A0

8205 83 ‘

8206 DCR L Decrement L

8207 MVI M,00 Store zero in address (H,L)
8208 00

8209 JNZ 8206 Loop. until L = zero

820A 06

820B 82

-

There may be occasion to use addresses with the same low-order byte in
two separate pages for data, e.g. for storing argument pairs. This
involves a violation of the division suggested above betweén program and
memory. Thﬁt division is not sacred, however, and memory should be used
as efficiently as possibile. It is often useful to make a memory map
for any program that is divided into modules, or if large areas of

memory are used for variable data. Figure 5-4 illustrates such a map.

5~ 12

§200 - 820F .
(PROGRAM) :
8210 - 821F -~
8220 - 822F
8230 - 823F
8240 - 824% 256 Blytes
3250 -~ 826F " Generally used for
8260 - 82€F Program Memory
8270 - 827F
8280 - 828F
8290 - 829F
8210 - 32AF
3280 - 825F
| 8200 - 8CF
8200 - 820F
82E0 - 82=F | |
82F0 - 82FF +
8300 - 83CF |
8310 - 831F | | |

8320 - 832F 160 Bytes

o Generally used for
38330 - 833F Variable Data
8340 - 834r

835) = 835F
8360 - 336&F
8370 - 837F

(DATA SEGMENT 1)

8380 - 838F | (DATA SEQYENT 2)
8390 - 839F Y

830 - 83AF ‘ 32 Bytes for Stack
8380 - 83BF (Chapter 6)

83C0 - 83CF
8300 - 83CF
83E0 - 83EF
83F0 - 8TFT Display (8 Bytes)

56 Bytes Reserved
for Monitor

MEMORY MAP
READ WRITE MEMORY

Figure 5 - 4

—_

5.3 DATA BUS CONNECTIONS

Figure 5-1 shows that the inputs and outputs of all the mémory devices
are connected to a common data bus. Only the chip (or pair of RAM
chips) that has been enabled by the high address decoder is allowed to
use the data bus: when the bus is active it is drivén'by one'device
(memory, CPU, or input) and it drives one device ‘(memofy, CPU, or

output).
5.3.1 Tri-State Circuits

The device that is to receive data from the bus expects each line of the
bus to be in a clearly defined state - one or zero. To achieve this the
driving device either pullé the bus down to a voltage level close to O
volts or pulls it up to a voltage level well sbove 0 volts - between
about 2.5 and 5 volts. Other devices that are capable of driving the
bus must not interfere with this Qperation. A semiconductor circuit for
this purpose is called a Tri-State circuit: it has three output states,
high, 1low, and off, and is analogous to a three-way an-off-on toggle

switceh.
+5 Volts

high

0 N,

Nq<xmnamﬁon

Data Bus Connection

5 - 14

Clearly we could connect many such switches to a data bus line‘ and if
exactly one switch 1is high or low the line will be in a well defined
state. The circuit used in the memory uses MOS transistors. If the
| high transistor 1is turned on, the cifcuit delivers current to the line
from the 5 volt supply. If the low transistor is turned on, the circuit
sinks current to ground. If both are off, the circﬁit exhibits a‘high

impedance to the line.

Tri-state circuits are used for all connections capable of driving the
address bus or the data bus. This includes the 8080 CPU, the 8228
System Controller, each U454 ROM and 5101 RAM (on the data bus only), and
the 8255 Peripheral Interface.

5.3.2 Read-Write Control

Inmaddition to allowing mah& deiiéés ‘to share the datéj g;é,“f£gé
tri-state qircuit allows the individual device'tb use the same pins for
input‘and output. When a device has been selected by the address bus
decoder it observes the control lines from the 8228 system controller

(the control bus), signals which are derived from the CPU.

A memory read operation causes the selected memory device to connect the
outputs of the selected memory location to the system data bus by

enabling the tri-state output to enter its high or low state.

‘When its tri-state circuits are in the high impedance state the device
can sense data that the CPU has placed on the data bus. When a signal
from the CPU (via the 8228 and the control bus) commands a memory write

operation, the selected device copies data from the bus to the inputs of

@ii_

\ ﬁ

the storage flip flops addressed by its internal decoder.

A similar operation occurs in the 8255 Peripheral Interface device when
the CPU commands an input or output operation. On input the 8255 copies
data from its external ports (from the keyboard, for instance) onto the
data bus. On output the 8255 senses the data bus and copies the data to

the output ports.

5.3.3 DMA and Interrupts - Introduction

The 8255 provides for programmed input and output. It sends data to the
CPU from the external world when thé program requests it, and it sends
data to the external world when the program so specifies. There are two
other means of input and output used in computers, and the MTS employs
both of them. Direct Memory Access. and-- Interrupts both -provide for
input or output on demand of an external device instéad of on demand‘by
a program. These subjects are discussed in detail in a later chapter;
at the moment we arebconcerned with their relationship to memory and the

buses.

Direct memory access permits an external device to read or write to the
éomputer's memory without programvCAntrol or CPU intervention. When the
device needs access to the memory it generatés a signal to the CPU
requeéting a HOLD state. When the CPU finishes the current machine
cycle it acknowledges the hold and relinquishes control of ﬁhe memory,
placing 1its address and data bus drivers into the high impedance
condition. The external device- the DMA channel- now drives the address

lines and the .read and write control lines. If memory read is being

5 - 16

requested, the selected,memory device drives the data bus just as if the
CPU had commanded a memory read - the memory does not know the
difference. The DMA channel accepts the data from the bus, then returns

control to the CPU by dropping the hold request.

The Interrupt method of externally controlled input and output . involves
only the data bus. An interrupt request is delivered to the CPU, which
finishes the current instruction and relinquishes control of the buses.
The interrupting device proceeds to place an instruction on the data

bus, and the CPU treats this as though it were an instruction read from

the program memory. Eight RST instructions are provided for this

purpose. As you have seen, RST4 as an instruction in your program
causes an entry to the monitor program. If~it were entered by means of
an external interrupt, exactly the same process would occur. Usually
the 1interrupt initiates a programmed input or output operation; this is

treated in chapter 8.

a 5.4 MEMORY SIGNALS AND TIMING

ie

5.4.1 Machine States and Transitions

Figure 5-5 shows the signals involved in memory access during the MOV
M,A instruction cycle. The system clock is driven by the 8224 clock
generator, which includes an oscillator. controlled by an external
crystal. The oscillator is counted down and divided into a two phase
cléck: the § 1 and g 2 clocks, as shown. SYNC is generated by the CPU
at the beginning of each machine cyéle. The @ 1 clock period marks
"states" of the processor. Each machine cycle has three or more states
(clock periods). Each instruction cycle has one or more machine cycles.
We will proceed along the time axis and explain the states as we meet

them.

'5.4.2 First State (T1)

During the last half of state T1 and the first half of state T2, the CPU
generates a SYNC signal, and outputs on the data bus an eight-bit status
word designating the kind of machine cycle that is being performed. In
the first machine cycle of any instruction this is always an instruction

FETCH.

MEMORY ACCESS TIMING

Clock - # 1 (8224)
Clock f 2 (8224)

Sync (CPU)

Status Stroke (8224)

Address Bus |

Data Bus (CPU)

Data Bus (Mamory)

DBIN (CPU)

Memory Read (8228)

Write (CPU)

Memory Writg (8228)

Ready/Mait

Figure 5 - 8§

T3

e

e

TO MEMORY

8T - ¢

O

The clock generator receives the SYNC signal and generates a status
strobe in response: this is a narrow pulse which the system controller

uses to latch the status data.

The CPU also connects its program counter outputs onto the address bus
during the instruction FETCH machine cycle. This connection is retained
through most of'the machine cycle. All of the memory devices

receive the address (8 low-order bits) and decode it, and the external

decoder selects one of the memory devices.

The system conﬁroller recognizes that this is an instruction FETCH cycle
and generates the MEMORY READ signal. This is an active low signal; the
near 0 volts condition tells the memory to read. Because the controller
.alsq isolates the CPU data bus from the system . data bus{ it is
permissible for the memory read to overlap the status output from the

CPU.

5.4.3 Second State (T2) and Wait State (TW)

During state T2 a signal (DBIN) is raised to indicate that the processor
is ready to receive data. The DBIN signal is terminated during state
T3. CMOS RAM is relatively slow: it may not have data read& and on the
data bus by the time the CPU is ready for it ét the end of T2. To
provide for this, if the 8080 READY signaliis low at the end of T2 the
CPU enters a WAIT state, Tw. If the READY signal 1is generated
externally the WAIT state lasts indefinitely (but always an integral
number of clock periods) until the READY signal becomes high. When it
enters this state the CPU outputs a WAIT signal.

5 - 20

In the MTS the READY signal is not generated externally. It Simplyd

connects‘ the CPU's WAIT output to its READY input. Therefore the CPU .

always finds READY low (i.e. not ready) at the end of T2, enters the
WAIT state Tw, raises the WAIT signal, and at the end of one clock
period finds the READY signal high. It then enters T3; drops the WAIT
oﬁtput, and proceeds to read data from the data bus. Even though the
ROM is fast enough to need no waiting period this system always provides

it, since it does not know the source of the instruction: RAM or ROM.

5.4.4 States T3, T4 and T5

During T3 the data bus is read by the CPU,- and since this 1is an
instruction FETCH it 1is loaded to the I register. The instruction is
interpreted dufing T4, at the end of which a new machine cycle begins.
The T5 state is available for certain instructions, but if not required

T1 follows T4.

Since the instruction in Figure 5-5 is MOV M,A a MEMORY WRITE cycle |is
required. The CPU again outputs SYNC, Status and an address, but now
the address is the content of (H,L). During T2 the CPU places the
content off register A on its data bus and thev8228 passes it on to the

system data bus. The CPU generates a WRITE comﬁand and the 8228 copies

it to the memory devices. Once again a WAIT state is entered. After ka

the standard T3 state occurs. With a fast memory the T3 state would
provide time enough for writing. The Tw state doubles that time, while

reducing the processor's speed by about 25%.

5.5 BATTERY BACKUP

The reason for using CMOS memory is that it can retain its data with 1a
single low voltage power source and extremely low current. This makes
it practical to provide battery backup for the memory of the MTS with
two small dry cells (AR or AAR cells will do). The MTS includes
connection points, two diodes and a toggle switch as shown below. When
the toggle switch 1is open, the diodes isolate one power source or the
other. When the external power supply delivers 5 'volts, the 3 volt
battery is isolated by the back biased diode CR2. When the external
supply is off or disconnected the battery delivers about 2.4 volts to
the memory alone, the other 1loads being isolated by CR1. When the
memory is to be used by the microprocessor, the switch must be closed to
avoid a diode drop from reducing the voltage delivered to the memory.
When the power is to be disconnected the switch should be opened to
minimize the locad on the battery. It isrfecomﬁ;nded that the RST kéy be
depressed while the switch is being toggled, to protect data in the

memory from'pdssible transient voltage pulses. If you choose to rewire

. the circuit and use a rechargeable Ni-Cad battery, the reprint from

Electronics magazine on the following page may be of interest.

5- 22
m
o
Ve +5 Volt : CR2
N Py .- P 1 ®
power supply %4 N
CRT
RAM FAM | ——— | RAM —
“ 3 . —
-— L T ‘\\’
BATTERY BACKUP FOR MEMORY POWER
Figure 5 -

24-V battery backup protects
microprocessor memory.

by Raymond N. Bennett
Advanced Technology Laboratories inc., Beflevus, Wash.

FAOM o TO Ve OF MEMORIES
POWER '
+49V AT 100 mA
SUPPLY Qﬁ 0aA
: +23V AT 50 ma
| {BACKUP) ;
Ry 3 6200 :
< . :
0
2N4036 :
Ry 25600 : |
2 <
e Ry 21000 :
/ i
4+ ~24V ?
= {2) NICKEL- !
CADMIUM ‘
+ "C"” CELLS .
_— N SEMES .
i

Memory saver. A series pair of nickei-cadmium ““C" ceils, each
nominally rated at 1.25 voits, puts out about 2.4 voits and can deliver
2.3 volts to microprocessor memories to prevent loss of data in the
event of supply failure. Transistors saturate to less than 100 mv.

Reprinted with permission of:
Electronics /February 3, 1977

5 =

Using diodes to isolate a backup battery frem the power
supply of microprocessor memories works fine—if the

23

0.7- to 1.0-volt drop across each diode can be tolerated..

A more efficient circuit (see figure) substitutes saturable

switching transistors that have a drop of less than 100 .

millivolts, which minimizes current drain and therefore
extends battery life.

Moreover, the voitage of the nickel-cadmium battery
supply need only be 2.4 volts, since during a power
failure a saturated transistor then delivers all of 2.3 v to
the memories. That is more than enough for such metal-
oxide-semiconductor devices as the 2102 static random-
access memory, which begins to lose data if its supply
drops below about 2 v.

The circuit shown in the figure is connected between
the + 5-v power-supply line and the supply input of the
memories. When the 5-v supply is functioning normally,
transistor Q, is biased heavily into conduction by the
difference between the supply voltage and that of the Ni-
Cad batteries: 5 v=2.4 v = 2.6 v. The voltage delivered
to the memories is then about 4.9 v, since the drop across
Q, is at most 100 millivolts. During this time, the R,-R,
voltage divider holds transistor Q, off, and the batteries

receive a charge of about 20 milliamperes through R,

and the base-emitter junction of Q,.

When power failure occurs and the 5-v supply drops
below about 3.1 v (which is 2.4 v+ V), Q, begins to cut
off, 1solatmg the dying 5-v supply from the load. At the
same time, Q,, biased by the R.-R, voltage divider,
begins to conduct, connecting the backup batteries to the
load. The reverse bias on transistor Q, prevents the Ni-
Cads from discharging through the supply circuit.

Both Q, and Q, were chosen for their very low
saturation characteristics. Although their current ratings
seem far in excess of what is needed, the result is that
they exhibit a Vcgsan of less than 100 millivolts. But any
pnp power transistors of the same general qualifications
as ‘;iho,se specified, such as the GE Powertab series, should
suffice.

The standby switch has been included to permit
defeating of the battery backup feature. 0

Designer's casebook is 8 reguisr festire in Slectronics. We invite readers o submit original
and unpubished Circuit ideas and SORLIONS tO CEsIgN Problems. Expiain briefly but thoroughly
the circuit's operating principle snd purpose. We'll pay $50 for each item published.

109

MICROCOMPUTER TRAINING WORKBOOK
CHAPTER 6

MODULES, SUB-ROUTINES AND THE STACK

6.1 PROGRAM MODULES

The design and hardware of a complex machine are always dividedv into
modules, each having a limited fuhction and a limited set of inputs and
outputs. The purpose is to make each module comprehensible to the
designer and to make it fit within a physically realizable structure

(such as a circuit board). Often modules operate in parallel because

their functions are separable but must or can overlap in time.

The design of a machine that uses a microprocessor is handled the same
way. The microprocessor is part of a solution; it is surrounded by
other hardware modules that relate to it. The program of the
microprocessor is similarly divided into modules, which relate to each
other and to the surrounding hardware. Your microcomputer . training
syétem and its moritor program inclﬁde a clear example of this: when you
press numeric keys they are displayed, but_in the hardware there is no
physical connection between‘ the keyboard and display. Tﬁere is a
program module which services the keyboard and a program module which
services the display. These operate independently, and other program
modules determine their interactions, which vary with time and history.
When you press a hexadecimal key it may be displayed in any of six
positions depending on what command key and bther hexadecimal keys you
pressed before. In a later chapter we will examine the design of the

MTS and its input and output electronics and programming.

6.1.1. IN-LINE PROGRAMMING

Consider the sensor correction program: .

If the input and output functiors were part of your program you might
program them all ‘'in-line', with a series of instructions to accept
hexadecimal keys and display them (possibly with a loop for input of two
or more Kkeys), followed by the iﬂstructions for the table lookup for a
‘linearized value, followed by the multiplication for scaling, then the
commar.ds to output the result, and firally a jump back to the beginning.

~

Obtain the Input

Display Input

e

Tablé}Lookup

Multiply

—

Display Result

6.1.2 Creating Program Modules

As these procedures become sufficiently complex, it is desirable to
distinguish each of them as separate modules and develop them
independently. This could be done with a subsequent integration of the

several modules into an in-line program. Alternatively we could put

them into separate places in the program memory and write a control

program that would Jjump into each of them. Consider a very simple Y

linear procedure comprising input, process, and output.

Demand Input
Input Program i Hardware
Module B
i Input Data
Input
Data
Y
Process Data
Program Module
Result
Command Output
" L
Output Hardware
Program Module ™
Result Data

The input may involve several data items (as for instanée in the
addition ahd multiplication problems), and the inpqt program module
retains control until the requisite data items have been obtained.
There may be 1loops and decision points within the module, but control

stays there until the task has been completed. Then some data

processing occurs, which -may involve loops, table lookup, and perhaps

6 - 4

i
use of previous data. Again, control remains with this program module .

until 1its task is done. Finally results are passed to an output module

which sends out the data. Such a procedure is exemplified by the sensor

correction problem in Chapter U4, except that we used only one entry to

the monitor both for output'of a result and input of new data. By- the

end of this chapter you will have learned ways to call upon the moriitor

. for input and output as separate‘functions.

Why would we do this? In Chapter 4 we started with a multiplicatior that
was valid only for single digit inputs. Then we improved it to handle
two digit inputs. If the program had been organized as in Figure 6-1 we
could have rewritten the multiplication module with no effect on the

table lookup module. If we decided to reorganize the data tables the

table lookup module could be revised with no effect on -the

multiplication module. If we decided to take sensor identification as

an input, instead of processing the sensors sequentially, we could add

another input module and modify the main program.

CONTROL PROGRAM

START
JMP to Input

Process

JMP to Display

Process

JMP to Table Lookup

Process

JMP to Multiply

Process

JMP to Display

JMP to Start

MODULES

INPUT
JMP back

DISPLAY INPUT
JMP back

TABLE LOOKUP
JMP back

MULTIPLY

JMP back

L
e
pos—————
‘-—-——-——
T ——————————
B By
r——
P —

DISPLAY RESULT
JMP back

Figure 6-1

6 - 6

As long aé the overall function remains unchanged and no new modules are
added, the main program retains the same jumps - one to the start of
each module. Each module jumps back to the main program following the
instruction that jumpedA to the module. When each jump occurs, there
usually is some information to be{passedto the module or back to the
main program: at 1least the inputs and results. These data may be in

registers (the inputs and outputs, for instance) while other data might

be in a specjfied memory address.
6.1.3 Module Specification

Now consider the program specification for eacﬁ module. Suppose each
were to be designed independently; what must its desigrer be given? Here

are some of the important considerations:

Function:

Specify the "black box'" algorithm for the module.
Call:

The address of the module.
Extent:

The range of program memory allotted to the module (starting and

ending addresses or number of memory words used).

Inguts:

Identify the inputs to be given to the module. What are they, and

o

where will they be? In what register or memory location? How many

bytes?
Outputs:

Identify the results the module is to generate. What are they,

and where must the module place them?

Registers:

What registers are used or preserved?

Constraints:

What memory areas may the module use for data storage, either
temporarxﬁ or permanent? Is the module permitted to use all of the
registers, or must certain ones be preserved? How much time is

permitted for the module's function?

N.B. A calling program should rot have to worry about protecting the
content of its registefs when. it calls a subroutine. The subroutine

specifications should state which registers will be wused to return

results. All otheré should be returned without modification.

It may appear thét the need to specify all of this (and often much more)
makes the dse of program modules a nuisance. In fact it is one of the
best reasons for modular design: it forces a discipline that may
otherwise be neglected. When such items are well-defined, many

programming errors may be avoided.

6 - 8

Suppose that ore module serves a function that is needed several times '

in the program - displaying data, for instance. In the‘ sensor
correctibn program we want to display the input, and also the result.
If wevjumped to the display module with an additional variable (perhaps
in an unﬁsed régister) indicating whether the ‘entry is for input or
result, the display module could test that variable and decide'where to

return. This demands that the specification include two return

addresses and a definition of the new control variable.

A much better procedure is for the main program to pass the return

address as a variable. Then we need a jump instruction that can use a

variable address. We have such an instruction:

HEX CODE: E9
MNEMONIC: PCHL
MEANING: Move the contents of register pair H,L

into the program counter and continue

program execution from that address.

To experiment with this we will write a trivial program that does
nothing except 1oad, a variable return address and jump to a module,
which does nothing except jump back. Figure 6-2 is a flow chart of the
program shown in Figure 6-3. The return address to be loaded must be

the address of the instruction following the jump into the module.

Do rothing

Load immediate
return address

to HL
Jump to module

.Do nothing

Do nothing

Load immediate
» retgrn address

to HL

Jump back

to main

Jump to module (PCHL)

Do nothing

Jdmp to start

Do Nothing Program with Do Nothing Module

Figure 6-2

Do

NOTHING PrROGHK M

CODE
—————

% %
of § |9 of 81, . 3
¥+ |3 I |3 ¢
4] % o I N B .
f” ,Vf 9 w
<o X 14 |3 ‘ R
A | A3 | * 3~ o
ol |9 Yol | s 3 R !
3 i 3 i 1E /mw@w 5
X[} [43 D D IS &
\ Q
a ~
N Q N Q Q
% |) N Q
la L Iz I Z L
I O 3 Y Uo
1
QA W Q AUl Q Qi Ul
< X by Q| X by V| T Q|
R N > 2 D) SIS N
N ~|o-{d|M] o[~]|0]~]| o|d| ™| a|~]o]m|a]A Q
Q N BRI NN NENN NN Ql\y
) 3456789A3.CDEF01 ™ omjolaoajlwlw]jo]l~] o <lw .8

133HS ONIA0D:

WILSAS ONINIVHL H31NdWOI0HIIW

SW3ILSAS H3LNIWOD GILVHOILNI

Q

6 - 12

When you have loaded the program; step though it. The program counter

should show this sequencei

NOP 8200 00
NOP 8201 00
NOP 8202 | 00
LXI H 8203 21

~JuP 8206 _ - c3
NOP - 8220 00
PCHL 8221 E9
NOP - 8209 ' 00

LXI H 8204 21
JMP - 820D c3
NOP 8220 . 00
PCHL 8221 - E9

‘NOP 8210 00
JMP 8211 - c3-
NOP 8200 00
NOP 8201 00

ete |

Of course if H,L were reeded for other purposes we could have stored the
return address in memory. 1In fact, the use of a variable return address
is so common that the microprocessor has speciél jump instructiors that

do that for us automatically. When these‘are uséd the module becomes a

subroutine.

6.2 SUBROUTINES

6.2.1 Subroutine Access

The entry to a subroutine is made by a special kind of jump instruction,
CALL, which includes the address of the subroutine just as an ordinary
jump instruction includes an address. The microprocessor automatically

generates and saves an address for a subsequent jump back to the calling

program, executed at a RETurn instruction.

SUBROUTINE: A program module which is entered

by means of a CALL instruction and which normally
returns to the calling program by means of a

RETurn instruction.

CALLING PROGRAM: The program module which has called

a subroutine. The calling program may be

the main program or another subroutine.

6 - 14

The CALL instruction is fundamental to program architecture:

HEX CODE:
MNEMONIC:

SECOND BYTE:

THIRD BYTE:

MEANING:

-

The CALL instruction executes a Jump, but instead of discarding the

present -content

of the

CD»
CALL
Low address

High address

'Call the subroutine whose first

instruction is located at the

address given in bytes 2 and 3.

memory area called the stack.

program counter it stores (PC) ir an assigned

STACK: An area of memory assignred by the programmer
for the temporary‘storage of réturn addresses
or other data. It is addressed by a dedicated
16-b;t counter called the Stack Pointer.

The jump back to the calling program is made by the Return

instruction:

HEX CODE:
MNEMONIC:

MEANING:

c9
RET
Recover the address stored by

CALL and jump to that location.

N

N

.)

6.2.2 Tracing the Program

Revise the Do Nothing program (Figure 6-3) by replacing the following

op-codes:
Address Was Change To
8206 : C3 Jmp | CD CALL
820D C3 Jmp Ch caLL
8221 E9 PCHL C9 RET

Again trace the program flow and observe that the program counter
sequence is the same; only the instructions change. The two LXI H
instructions could be changed or removed with no effect. Now we will

examine and define the CALL and RET instructions more thoroUghiy, and

- discuss the stack.

Now use the program we have in the MTS to follow this. Step though your

program to 8206, the CALL:

STEP (8206) (C<cbJ)

The monitor can display the stack pointer as a register pair:

ADDR 1/P MEM (83D3 } [SP??I

Now step to execute the CALL instruction:

STEP (8220) | QO'|

Display the stack pointer again:

6 - 16

ADDR 1/P MEM : (8301) (spog J ‘

The next memory location contains the high byte of the return address:

NEXT (83p2 | (_82]

Any}time that you display a register pair you can see the following
sequential memory pairs by pressing NEXT. In debugging programs you

will more often be interested in the return address than the value of

the stack pointer:

ADDR 2/T MEM - (8209 (ST00]}

Now step twice to returr to the main program:

B2z1]) (Cc9]

)

The return address has been placed in the program counter,
6.2.3 CALL Execution

Figure 6-4 shows the program counter addressing 8206 and the‘ CALL
instruction being loaded into the instruction register. The program
counter'is‘incremented twice as the following two byfes are loaded into
registers Z and W respectively. So far the process is identical to that
of a JMP instruction, as described in Chapter 2. We see that the
prograﬁ counter now addresses the next instruction follpwing CALL, which
is to be the return address. Registers W and Z contain the jump
address. The stack pointer addressés a location (83D3) near the top of

S/

memory: this was loaded by the monitor program when power was turned on. ’

PROCESSOR

© =
21

CALL INSTRUCTIONS

®

8206

2 O N S

83D3

Address

1 CcD -,

©)

T — ////'Data (:)

- address

8207

83D3

v O N-S

CD

-

20

8208

Address

- 0O N =

83D3

——

82
20

|

8209

v O N 8 -~

83D3

As in a jump instruction, the PC is used to address

MEMORY

21
09
82
CD
20
82
00

T

0 00 O o 0 0 M 0 o o0 o

W W W W W W W W

6 -

N N N NN NMN B N NMDNMNDBN

0o 0 OO 0 0O O o O o o ©

O U 0O OO0 0O 0 o0

the instruction code and the two following bytes, which are loaded into
I, 2 and W respectively

Figure 6-4

17

P O 0 N O G A W N =2 O

H W N =4 O MmO

6 - 18

Figure 6-5'shows the stack writing operation in a CALL instruction.' The
corntent of the stack pointer is’décremented and sent out on the address
bus. The high byte of the program counter is sent out on the data bus
to be.written to. the selected location in the stack area of the memory.

Now the stack pointer is decremented again and the low byte _of the

program counter is written to the memory at the next location below the

high byte. Any 8080 instruction that stores ar address places it in the

same position sequence -~ low byte at the lower memory location.

Finally the subroutine address is moved from registers W and Z into the

program counter, as -in a normal jump, and program execution continues

with the instruction there.

PROCESSOR
© [=
82
20

8209

v O N =

83D3

82
20

8909

T O N S

83D2

v O N =
N
o

{ CcD

(=9

- 8220

°
(9]

83Dl

m.

CALL INSTRUCTION
: MEMORY

21
09
82
CD

82
00

0 0 O 6 O o ¢ © o0 o
N NN NN N N NN NMNBNDDN

00 8 2

|)

Address

09
82

O o 0 ™ M 0 & o .
W W W WwW W W W

Y

The stack pointer is decremented (7) and sent out as in

address (8).

The high byte of the program counter is

sent on the data bus (9) and written to the addressed

memory location. This is repeated for the low byte of the program
counter (10,11,12). Then the content of W,Z, is moved to PC.

Figure 6-5

o © 0 © 0 0 . © 0 o o @

6 -

O U O OO0 O O O

P © 0 N O O b WN =20

d W N =2 O M m QO

19

v O N & - T O N =B

v« O N § -

PROCESSOR

8222 / '

- 83p1

The N@P instruction at 8220 is
fetched and executed and the
return instruction at 8221 is
fetched.

Figure 6-6

MEMORY

09

82

o @

N

N NN N NNNNRNDDN

W OW W W W W W W

6 -

0 0 0 0 0O 0 0O 0 0 o o

N
o

0O 0O 00 Oo o o600

S W N =2 0" MmO

P O ® N O GO A W N = O

20

N

6 - 21

The RET instruction recovers the last address entered in the stack
and executes a jump to that address. Note that although RET is a
jump it only requires one byte in the program (like PCHL)

because the address to which it jumps is a variable stored by the

CALL. The RET instruction cycle is shown in Figures 6-6 and 6-7.

HEX CODE: c9
MNEMONIC: RET
MEANING : Return to the calling program
0 Figure 6-6 shows the fetch and execution of the NOP instruction -

at 8220 and fetch of the RET instruction (C9) at 8221. Execution

of the return is shown in the next two pages.-

6 - 22

6.2.4. Execution of Return

o

In Figure 6~-6 we saw the RET instruction loaded to the‘I

register. Its execution appears in Figure 6-7. The stack

pointer provides a memory address, and the low byté of the

return address is moved into Z. The stack pointer is incremented
to address the high byte, which is moved into W. The stack

pointer is incremented again and the content of W and Z is moved

to the program counter to accomplish the jump. Notice that this
process is identical to a normal jump except that aftef the
instruction fetch, the stack pointer is used instead of the program

counter to read the jump address.

o

_ RETURN INSTRUCTION Cont'd
PROCESSOR MEMORY

T —

‘:} | |‘ c9 T

8222
83D1

'BONS

09

8222
83D2

-« O N S

82
09
8222
83D3

T O N =

——
i C9

| ©
05 /fﬁ\ 82

8209 _—
83p3 |
N

"

v O N &

The stack pointer addresses the low byte

of the return address which is loaded

to 2 (7,8). The stack pointer is incremented
(9) and the high byte is loaded to W (10,11).
The stack pointer is incremented again (12)

and the program counter is loaded from W and 2.

Figure 6-7

© 0 0 6 0 O M 0 ©® ™ o

0 00 0 0 o0 0 oo o

N .
N N N N N NN M NMNDNMN

W W W W W W W W

0 0 O 06 O O 0 0 0o o o©

NN

O O O OO 0O OO0

P O ® N O RNE W N = O

23

o

& W N @« O MmO

|
6.2.5 Subroutine Nestirg

Why is the retdrn address stored ir. memory? Since a 16 bit register
exists (the stack pointer), why rot simply place the returr address in
that register? In fact this scheme was used ir early computers, ard
Still appears in such small microprocessors as the 4004 and 4040. The
problem is that if orly ore register exists there'can be only ore level
of Subroutine: ore subroutine cannot call arnother subroutine. The 4004
and 4040 have four return address registers, so that' four 1levels of

subroutines can be used.

This is 'still a noticeable limitatior. Using a memory stack permits
urlimited subroutine ﬁesting. Figure 6-8 shows some nested subroutines.

Note that there is ro inherent 'level' to a subroutine - ary subrouting \,
can be called from the mair program or from ary other subroutine. Load ‘
the program (Figure 6-9) and trace the program flow. Display the stack

pointer and thern wup through the stack (using NEXT) when the program
counter is at 821C.

CALL SUB1

CALL SUB3

SuB1

\ CALL SUB2|— i SUB2
RET CALL SUB3
RET
‘ Figure 6-8

SuUB3

RET

26

6 -

-

/4 7/ v <

{

oT
-

]

7if

Do

1/e St D

< - I N
~ Y .
T 11 : 2 i
~ V S VU!.. WJ‘W b
N S 5. /D o

-~ ™ N ™)

) N N ¥ !

19 d Q S 3

% %) N % B

N

J J | J J |

N N|J IRNLE Q| U] 4 QU -

LY Qi< NY B3 YT N RO] RV A N AN RAY)

J 20 NE NE, 22 =) Y R|Y

2| N[9]a]J[d[a[m[o[~ Slael Mol o[d[a]] o]

/?01@'.90&00@ 01..~/.,v00¢0...,_.1.000coc
3456789ABCDEF0TZ3,,45678;9ABCDEF01234
.00\0.00000000.00111111111111.111122222

~ ~
ol ©

133HS ONIQ0D) WILSAS ONINIVHL H31NJWOI0HIIN SW31SAS H3LNAWOI AILVHOILNI

27

Trace the Program flow through the dummy subroutines of Figure 6-9:

RST

STEP

STEP

ADDR

MEM

NEXT

NEXT

NEXT

NEXT

NEXT

STEP

ADDR

STEP

MEM

ADDR

STEP

MEM

(B200] L 00
B.ZJ_QJ o0 |
GRS ;,,{S;'Pm l
(B3ce] (82]
B3cr] [_14]
| - —
8301] E_Qﬂ__l
B3p2]) (82
B210]) (cal
(B21a) (00
{83CF | P14
(8213) L c9
(8301 (spo4)
(8215) L_c9]
20u) [_o0]

ADDR

MEM

STEP

28

(8205 | (_cp |

- (821c] (_o00]

(B3D1, (SP08]

(B2ib) (<

6

6

.3 SUBROUTINE SPECIFICATION

Figure 6-10 shows a flow chart for the sensor correction problem written

as a series of subroutines and a main program. We will develop these

modules separately and then integrate the complete program.

.3.1 Subroutine Development

The chief reason for writing modules as subroutines 1is to permit the
same module to be called from various program locations. There are two

extra advantages: the single byte RET saves program space, and it avoids

- the need to specify the return address during program design. Therefore

most program modules are written as subroutines even if they are to be

‘'used only once.

We commonly give a name to a subroutine (INPUT, DISPLAY, TABLELOOKUP,
MULTIPLY). This is a copvenience for the programmer, like the mremonic
names of instructiéns. It is mﬁch easier to remembéﬁ a name thar an
address, and the name conveys some meaning. However, a subroutine has
an address, the address of its first instruction. When you write the

CALL instruction you must, of course, use the hexadecimal address of the

subroutine, just as you would use an address in a jump instruction.

CONTROL PROGRAM

SUBROUTINES

START
CALL INPUT

Process

CALL DISPLAY INPUT

CALL TABLE LOOKUP

Process

CALL MULTIPLY

Process

CALL DISPLAY RESULT

Process

JMP START

| INPUT
| RET

DISPLAY INPUT
| RET

TABLE LOOKUP

MULTIPLY
RET

DISPLAY RESULT

et
[emee———T
P ————)
e —————————
f@——— RET
E —
e ————
sttt prarmme Y
[l cncm———

| RET

Figure 6-10

30

Developing a program generally involves these steps:

a) Define the problem

b) Conceive a program solution

c) Divide the solutioﬁ into comprehensible and realizable.
program modules

d) Specify the modular functions

e) Specify the interfaces

f) Develop and test the modules

g) Integrate and test the system.

In Chapter 4 we defined the sensor correction problem ard conceived a

solution. Now we have divided the progrém into modules. It remains to

specify the functions and interfaces of the. modules, to develop and

integrate them. First we will give brief functional specifications.

These will be developed more fully later.

Ingut:

Accept two keys as a one byte sensor input.

Display Input:

Display the input in the third and fourth
locations of the display.

Table Lookup:

Obtain the scaling factor and linearized
value of the input from a data table

Multiply:

Generate the product of the scaling factor and the
linearized value of the input as a double

precision result.

Display Result:

Y

Display the double precision result in the <:’
four right hand digits of the display. :

6.3.2 Two Monitor Subroutines, GETKY and DBY2

Section 6.10 of this chapter presents the specifications for a number of
monitor subroutines which are available to the user. We will use two of
the subroutines described there: GETKY (6.10.2) and DBY2 (6.10.6). Read
the Specifications carefully. These routines should be tested, both to
be sure that they fit the needs of the sensor correction program and to

gain familiarity with them. The test is simple:

8200 CcD CALL GETKY - Get a key
01 3D ,
02 02 - .
03 11 LXI D,83FB - Address for display
0 FB . (Why? Change it and see what happens)
05 83
06 CD CALL DBY2
07 98 ' ©
08 02
09 C3 JMP 8200
0A 00 -
0B 82

You cannot step through this program because the monitor will not know

that a key you press is intended for your programmed call to GETKY. It
supposes you are giving commands or data to the monitor program. After

loading the program, operate it with RUN, but with the STEP/AUTO toggle
switch still in STEP position. Then try it in AUTO (return to STEP

position when done).

The output will appear in the ‘third and fourth 1locations of your

display. You can now see the hex value that is assigned to the command

keys. Note that RST is not a key that can be detected by GETKY; it

6 - 33

serves a hardware function much like a power on/off switch.

. \
6.4 MONITOR BREAKPOINTS ‘ Q

It is often desirable to trace program flow without the tedious task df
stepping through lengthy loops, or through previously tested and proven
program modules. Breakpoints permit you to use the RUN key (but only
with the toggle switch in STEP position) to cause your program to run
without apparent interference until you reach a specific instruction.
Breakpoints also permit you to call GETKY and other monitor input

subroutines, but still step through you own program instructions.
6.4.1 Using Breakpoints

With the above program loaded, do this:

apoR| | 8206 CEos) e
BRK | (82061 (BF._]

ADDR (8200) [_cp]

RUN

Now your program is running, with control in the GETKY subroutine,

waiting for a key. Press a hex key:

3’ | 8206] ([_cDJ

GETKY has accepted your input and returned to 8203. The LXI D

instruction was executed, and the program counter reached 8206. Since ;

6 - 35

the toggle switch is at STEP, the monitor is constantly monitoring your

program

breakpoint at 8206. It now behaves as though you had stepped to this

point.

Now press RUN again and your program calls DBY2 to display the input.

'Press another hex key:

Just as if you had used STEP, the monitor retains your reqhest to

display A.

You can enter up to eight breakpoints:

and you can look at the list of breakpoints:

Now program execution will stop at each of these points.

Your program has called DBY2 and GETKY, so press another key:

execution (hence its name) and it finds that you have entered a

Display register A and you will see the key you entered:

REG A - [B206] ([&=03)

RUN (03] | |

5 | . Ez56] (=05

{ ADDR 8203] | BRK (8203 J (BP._J

NEXT (8206 } (BPOO .}
e ——
NEXT (8203) [BPoO |

RUN o) C

There are two ways of clearing breakpoints.

BRK

cLR

(8203] (A-09]
8203 BPOO
8206 BPOO

The breakpoint at 8203 has been cleared; the one at 8206 remains.

A reset clears all breakpoints:

RST

BRK

Now enter a break at 8206 again.

ADDR

8206

BRK

The right hand digits are blank; you can enter a number here:

3

(0000] (BPOO]

Eos) B

o

206 | (BPO3 |

Now program execution will stop after the instruction at 8206 has been

executed three times and is about to be executed again:

RUN |

]
e———————

1

(8206 | (_cCD]

6 - 37

BRK 206 BPOO

The count you entered has been decremented to zero; now program

execution will stop here every time, before executing the instruction.

RUN | 0"”
5 | @%) o

You can easily restore a count by pressing BRK and the count you want.
BRK |§203] (BP0O)
3 8206 | (BPO3]

‘Each breakpoint has a separate count so you can manipulate them to stop

at one 1location each time it is reached, at another location after 5

repetitions, etc.

Remember that if you are using breakpoints you must avoid using RST to

go back to starting address 8200; use ADDR 8200 instead. RST clears all

breakpoints.

You will want to wuse breakpoints if you have trouble with your
development of the sensor correctidn program because of the use of GETKY
for input. We now proceed to develop the input subroutine module.

Practice the use of breakpoints here even if you have no trouble.

6.5 SENSOR PROGRAM SUBROUTINES , o

6.5.1 The INPUT Subroutine

Since GETKY only gets one key - one hex digit - we must call it twice.

But we want the two keys combined into one byte, not treated as two

sepafate bytes.

Let us review the relationship between two hexadecimal nibbles (a nibble

is half a byte, or one four bit hex character) and a byte.

2 1 0
Value of Nibble = B X 23 + B X 2 + B X 2 + B x 2
3 2 1 0
7 6 4
Value of Byte = B X 2 + B x 2 + B X 2 + B X 2
+ B x 2 + B X 2 + B X 2 + B x 2
3 o 0
3 2 1l 0 4)
Value of Byte = (B X2 .+ B x 2 + B X 2 +B x 2) X 2 .
' 3 3 2 2 1l 1 0 0 ‘
+ (B x 2 + B X 2 + B X 2 + B X 2)
3. 2 1 0
Therefore we can say:
4
Value of Byte = (Nibble 1) x 2 + Nibble 0

By conventioﬁ nibble 1 is the first key entered and nibble 0 is the
: 4
second. What we must do is read two keys; multiply the first by 2 =

16 = 10 and'add the second.
- 10 16

The procedure for input will be this:

Call GETKY for nibble 1
Multiply by 10

ply Dy 16 |
Save result in a register

Call GETKY for nibble O

Add it tb previous result.

Since we will have a multiplication subroutine we can call it for the
multiplication. What will that require? If we are able to specify MULT

so that no extra moving of data between registers 1is necessary, the

procedure will be:

CALL GETKY
(C) <- Key (done by GETKY) -
MVI E,10 (multiplier)

- CALL MULT
(L) <- 1016 X Key (done by MULT)

(H) <- 0 (since the product cannot exceed FO)

6 - U0

The result is in L, which is preserved during subsequent calls to GETKY.

We should recognize, though, that multiplication by 10 in a binary

computer is just about as easy as manual multiplication by 10 .

Remember that the set of ADD instructions includes:

ADD A (A) <= (A) + (A)
or

A) <= 2 x (A)

If we do this repeatedly, we get the following results:

ADD A 2 x (4)
ADD A 4 x (A)
ADD A 8 x (A)
ADD A 16 x (A)

Now MOV L,A will place the result in L just as MULT would have done.

This procedure takes the Same program space (five bytes) as:

MVI E,10 (two bytes)
CALL MULT (three bytes)

Therefore we will use the ADD A procedure instead of a call to MULT.

~

N

®

Now we can specify the INPUT Subroutine:

Function

Accept two keys and form a one byte sensor input value, using the
first key as the high order digit.

Call

CD CALL INPUT
FO

82
Inputs

From keyboard
OQutputs
Sensor input in register A

Extent

™ 82F0 through 82FD
i ‘ Calls GETKY

Registers Used

A, B, C, D, L
Registers E and H are preserved.

Constraints

GETKY retains control until a key has been pressed and released,
and for 20 milliseconds thereafter. The delay is exaggerated in
STEP mode.

Try writing an INPUT subroutine on your own, and test it with a CALL to

DBY2. Then look at the coding presented in Figure 6-11.

SURRO T IVE

\

©° ® ©
| “ﬂ w
SRR YT >
SR ESIN 33 [. I
[V N u. - I ST g ..'..
‘REE SRR 11 19
4y ~ Y| (<] K -
- < ﬂx..ﬁ m by o RY .
~ o N ¢ N A N F ~
.pr 0 /'l ' N —
~ ~ ~ 4 U . ; b
wm. = u,f A~ >] s
S RRERRRECEREC R AR RS | |
- 2 . A
y AN B 0, £
- B | U SN
X Y NE NHEEE
N . T INTR\R M| > Q
W <l W < | o Q Q
) AV ~ 8% n A N
NENEN q[v 3 3 %
4 J| W J
< AlajalalS] S AN - N W J U
T N INEINEAS ANEHEIEA X < I
N g < | 3| | NEEEER J J R
S N
ol Alal A~ N~ QA s e AN Afos| N M]

& JIMJ o] %] 0| Sof S g I m[oS [] JIL o <] e~ oI oS
0...&23456789ABCDEF.0123456789 ojolojwijn]joleln]|m|e]n o
e 3

of X\ o
(-] ©0 . (]

133HS ONFA0D

WILSAS ONINIVHL HI1NJWODOUDIW

SWILSAS HILNJWOD GILVHDILNI

6.5.2 Display Result Subroutine - DRES

We have programmed a double precision multiplication in Chapter 4. Its
result appears in registers (H,L) and since the specification for DBY2
states that those registers are preserved, it seems appropriate to
specify that the double preciSion result to be displayed by DRES will be
placed in (H,L) at input. |

Function

Display a four digit number in the right hand four digits
of the display, using DBY2 as a subroutine.

call

CD CALL DRES
EO

82

"Inputs
Four digit number in H,L

Outputs
Seven segment codes for four digits are stored at 83FC-83FF
Extent

82E0 through 82EB
Calls DBY2

kRegisters

A, B, D, E are used
Registers H and L are preserved.

Write a DRES subroutine (check the specs again) and test it. Then 1look
at Fig 6-12.

s 6 - 44

S UK

D s

N\ LY

| 3 l
~ ~ Y 2 o
< | : MIDSE N

NEN w ~< Wi.g =T

nm,zw N M @/.n =

_Mv ~X D up D)

wd /MJ 4 gl 3 /nF Mv 3
fuju dlw /&. r /p O
3l 3 " A3 & B “~ wl o
PR L SEIRRERERE :
X[P A N Y Q =
L il N A —
L ~N o) Jl M .
™ R D- B| Y Q v 19
& J/ S) NE N x| Y Q

A A 3D ~l ™~ A~ \..D ..,A.
A X < v X N X
Jd J . NN Jd N} |

v NIR NN | K| NN NE af
X Q| <] NES 9 ISANEE I N RS Al ¢ kg
3 NN 3l N4 N N =1 >

| o

. |

~|uim o] O] f] ula]] N o A NN AR AR [~
.lFVo—/ o~ Ol ndJiS] 0 J QFoa/u.C_l s/Lﬂvﬂ—Ooc.u_wd
0“123456789A8 ojlwjwjolr|lvlojejn]|din]ojoldlolololwlulolrlaleol« 0
wl o D. .
™ ol

133HS ONfA0D

WILSAS ONINIVHL H31NdWOI0HIIW

SW3LSAS H3LNdWOI AILVHDILNI

6.5.3 Table Lookup Subroutine (TABLU)

The Table Lookup Subroutine Specification is:

Funection

Given a sensor number and a one byte input, obtain a scaling
factor and a linear point for the sensor., If the input is in the
non-linear region, obtain a linearized value.

Call
CD . CALL TABLU
BO
82

Inputs
Regrstér C Input value
Pair H,L Memory Address

((H),(i))‘ Sensor Number

,; OQutputs

Register E Scaling Factor.
Register C Linearized Input

Extent
82B0 through 82C0

Registers Used

A, B, C, E, H, L
Register D is preserved

Constraints

A table of scaling factors, linear points and corrected values

must be in memory within locations 8301 to 83BF. The format is to
be in accordance with figure U4-17.

Look at the code in the final program of Chapter 4, extract the table

look-up portion, and write it in the form of a subroutine, originating

at 82B0. A solution is shown in Figure 6-13. We will test this 'with
the calling program after integration.

TARBLU

4’

ClorReeTION

'

v) ,-.ln I
N Ny ,,JM ~v
! 39 y] Y o
| o I} nrw NI
~y | -+ I&M -y
gy g BN NN
.uh;ﬁdf 3 o
N A &/f M 3
| I IE i
ml W "
MMM_.MWMQ/JM/ M.“,,.e 7
ERERERKEFENEEEE :
3 IS] S~ | 9] (<] S :
.’”
3
Q
m ™ Q Q
JEEENEECNENEER S
" 17 s s 1 ~ n
SHEC SIS T HOXAEEE
O[> |9[9]R]9j ¥ NEEEEREN
NEEEELERREREREREN
of | 9™ W] W]] o\] o] R o] Q][iy
NS NN ENNNMNENNEER
W
Cejojrininltlvloln|o|lojcslo]jojojw|un]lo]l-]la]lolelv]e]~ olololwlulolalala "
,;.wo,/b <J
,/GD./. :
/JAa o)

133HS ONIG0D

W3 LSAS ONINIVHL H31NdWOOO0UDIW

SW31SAS cwhsws_oo g31vHO3i1INI

6.5.4 Double Precision Multiply Subroutine (MULT)

Function

Multiply two input bytes and return'the double preéision product.

Call

CD CALL MULT

DO
82

Inguts

Register (E) Multiplier
Register (C) Multiplicand

Outputs
Registers (H,L) Product

Extent
 82D0 through 82DA

Eggisters Used

B, C, E, H, L
-Registers A and D are preserved

You have used this routine often enough to know it by heart. But what
happens if one of the inputs is zero? Write a MULT subroutine which

checks for this. Then compare it with Figure 6-14.

P

Moty Pt CATIONM SUBROVT IN & mMueT 5—48 |

CODING SHEET

A_D_D. cope
8 2Do jAll 1LixiT] IH lojololol Cleor Product
2101 . . N
ol o ' &]
AHF XIRKHAH |A Cleor A ‘
"/ 7 Mmio vV B =~ C/éM" 3
B3 amipl] Test Lor zero
clA J|Z 1 &2\ plg Mu./f‘:‘pﬁgr aud
D €] 4 et oL zero
8124 . .
() ‘i ;D AlD 5 AJJ /z«uu/ff'IIfrCade
1D Dleir] [&] Decrewcd anultiplior
C\z' JI\/Z ﬁZP? Lé.k@__g,.'f' u.u'll‘//
D ? : /Mrt u,/?‘if’//ff‘ ZLro
%] 2 | |
g RiE|T]

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

wivjeojalsjwin|jo|nimiolola|plole|v]lajanljslu|n]a|olnlmljojoja|r|le]jelvlalalslulnlalel

Figure 6-14

6.5.5 The Integrated Program

We now have all of the modules needed to integrate the final. sensof
correction program. We did not specify a routine for displaying the
input, as DBY2 will do that and is fully defined. Draw a flow chart and
write the main calling program. Make sure before each call that you are
passing the proper arguments to the subroutine, i.e. that all required

values are in the proper registers. Then compare your work with Figures

6-15 and 6-16.

SENSOR CORRECTION - MAIN
FLOW DIAGRAM

Initialize
Load highest sensor #

- -
< omL eur >

Set Display Address ’
! |

<- CALL DB*YZ >

Address Previous Sensor '

Decrement Sersor #

Load Highest Sensor #
Store as new sensor #

<' CALL DRES >

Figure 6-15 ,

CORRECTION — rAan 6 - 51

Jo) M| o|P
O -1
© -
24 LDPIA |F]3]|0|0 Copy highas?”
o ' Sensor mumber |
3 _
sirlal |12 5o fo curpend

CODING SHEET
clp

S ensor Mu,ana—-

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

(>

&1

2

&

€132 .
|dp clalele] |TIMPIVIT| Get jvput data
F|o -

52 ‘

Al L% SEI3FIB| Address ofigT” ¢
B

13

el D AL L] |D|BlY|2 Display tnput
2|8 -

o2 : .

21 luxlo (KL lzlzleo| Addrese current
10 SeiSor s b
513 ‘ ,

37 DRl M Pv‘areuwu'f" '

&l 24 < N/ & g2 1| D E_Jumvp ¥ tyfu" ocSS
IP s;/ck'fa- WH/(’JJ
12 Seunsor mumber ©
._3/4 LIDIA yi2|olo] - Leoad hig le s*
oo S S o~ nu.mLeAr'
5132 ond store aos
717 Mlo|lV] M . |A curreunl ccuser
¢iD clAlLlL | |TIAlBlLIU| Getf corrected
Blo tupul and

glZ Sc.gtan; C-ag/‘u-r‘
cip ClALIL] MuIL|T] Mu,h“:g{g correcled
PE tufuf’ é? éc.a-/:% ‘
g« | Loctor

clp Clalal| [PIRETS ‘D'S-‘L&V result
ElO0

512

[y 3 JIM P ?Tza‘? /ga.—olgt)‘3 uatpu.',‘
o1

512

Figure 6-16

Enter the code, verify it, then verify that all your subroutines are
still 1loaded and intact. As we have already STEPed through much of the
code on these pages, you understand the dynamics of all of the
instructions(If your program fails, debug it using breakpoints, or

recheck your memory locations.

When you press RUN, the display will go blank. Enter two numbers. The
entered numbers and the results will appear (to the eye)_simultaneously,
and will remain until the next two numbers are pressed. Remember that

you are toggling back and forth between sensor #1 and sensor #2. If you

 lose track of which is which, restart. Place OC in the scaling factor

for sensor #1 (8208), and OB for thekfactor in sensor #2 (8316). Then

try some of the following inputs:

Input Sensor #1 Sensor #2 -)
01 24 16
05 54 42
0B 8y 79
12 D8 cé
4B 384 339
D6 A08 932
FF AF5 BF4

Try various calibration factbrs. You can select values which will allow
you to construct thé entire hexadecimal multiplication table. Do this

for an exercise. (Hint: change the 1linear point, and wuse different

calibration factors).

®

6.5.6 Alternate Subroutine Entries

It is often very useful to design a subroutine to permit several entry

points. As an example, consider the multiplication subroutine. Suppose

we wish to generate the function:
Z = ax + by
This can be done by the following procedure:

(C) <= a
(E) <= x

CALL 82D0
(C) <= b

‘tib | (E) <~y

CALL 82D3

The second call enters the subroutine beyond the instruction that clears
the product, so the partial product from the first multiplication is

preserved, and the second product'is added to it.

——

6 - 54

We have been using the monitor subroutine DBY2, and loading an address

for the digits to be displayed. In fact the subroutine has two

preceding entry points, as you saw from the specifications:

0294 TE MOV A,M (DMEM)

0295 1 LXI D, 83FF (DBYTE)
FF
83
0298 E5 (save H,L) (DBY2)
02A9 C9 RET

S

e/

Entering at DMEM (by CALL 0294) will display the content of the memory
location addressed by (HL), in the right hand two digits of the display.
Entering at DBYTE (by CALL 0295) will display the content of register A
in the right hand two digits. Entering at DBY2 (by CALL 0298) will
display the content of register A in the digits addressed by (DE).

§.5.7 Conditional Call and Return

We have been using five jump instructions: JMP, JNZ, JZ, JNC, JC. Four

more will be 1introduced 1later. Since CALL and RET instructions are

special jumps, they also have corresponding conditional versions:

CD CALL Call (unconditional)

cy CNZ Call if not zero

cC CcZ Call if zero

D4 " CNC Call if not carry

DC , cC Call if carry set

c9 , RET Return (unconditional)

Co RNZ Return if not zero

c8 RZ Return if zero

DO RNC Return not carry ot
D8 RC Return if carry set

The conditional calls are infrequently used. Conditional returns more
often have some value. Both in TABLU and MULT given’qs solutions to the
preceding exercise, there are conditional jumps to the feturn
instruction which could be replaced by the corresponding conditional
returns. A version of the multiplication subroutine using two
conditional returns is shown in Figure 6-17. At 82D5 the program tests
register E; the conditional return RZ at 82D6 returns if E is =zero.
Then the double precision ADD is performed at 82D7, and if a carry
occurs the conditional return RC at 82D8 éerminates the multiplication.
The célling program can also test the carry flag at return, either by a

conditional Jjump or a conditional call to an error processing

~subroutine. An interestihg feature is that the RZ instruction serves

double duty here; it returns either if the multiplier is zero initially,

or when it has been decremented to zero.

CODJING SHEET

AL/_';“fo;Z‘/—/Cﬁf/qu SUBROUTINE MULT 6- 56 °
lez2Po lali] 1ZIXT| |H Jolololo]| Clear Froduet |
1 lolo] | 1
o|o o ¥
AlF XIRA A Clear A
¥17 Miolv é N A Q/G—d—r‘ E : .
B2 4 MF g Zé 't r Ze
yzp Cl&l RlZ refurn with result
0|9 DAD| |5 Add _ymiit plcond
D|§ RIC Boturn ou_overtlow | .
i) Lole] | De crewent _giipe/liplier
1¢12 JIM|P F1Z| D6 éo;ﬁuz’ o reticrn
Dl6 NA_;L«. Auu./'f/é/ler‘ i
7z o _ o2n t(lr; AN-N

MICROCOMPUTER TRAINING SYSTEM

INTEGRATED COMPUTER SYSTEMS

uqmmaun-co'nmnna>on~lambuN-ao-nmoon'l)wnumm»u»i

Figure 6-17

6

.6 USING THE STACK FOR DATA

The stack can provide temporary storage of data as well as storage of
returrn addresses. You have probably seen a spring loaded stack of
dishes in a restaurant. The busboy puts clean dishes on top and their
weight pushes them down.k When one is'taken down from’tbe top, the
spring gggé the next one up. The microprocessor has PUSH and POP
instructions to place data into the stack, and remove it. Since the
stack exists mainly to hold addresses, the data are entered ard

recovered two bytes at a time, from and to register pairs:

C5 PUSH B Push data into the stack from
D5 PUSH D register pair (B,C), (D,E), or (H,L).
"E5 - PUSH H

c1 .POP B . Pop data into register pair (B,C), (D,E)
D1 POP D or (H,L) from the stack.
E1 POP H

Suppose that a program needs to call MULT, then DRES, but also needs to
retain the content of (H,L). Since each of the registers is used in at
least one of these subroutines, we must save the address in memory. We

could do this with SHLD and LHLD, but at the expense of three bytes for
each instruction and two bytes in data memory at least partially
dedicated to this purpose. PUSH H before the call to MULT and POP H
after return from DRES will save and recover the data. The content of

any of the three register pairs can be saved in this manner.

6 - 58

The program listed in Figure 6-18 uses the data table, MULT and DRES

from the preceeding exercise. Register pair H,L addresses the table of

linearized values for sensor number 1 and B,C addresses the table for

sensor number é. These addresses are saved while MULT, DRES and GETKY

are called, then restored after the call (GETKY is used merely to signal

that you are ready for the next data pair). Load the program and check

for the following results; then we will trace the stack:

Table Entries (hex). ‘Result
03 x 02 = 0006
o4 x 04 = 0010
05 x -04 = 0014
06 x 05 = 001E
07 x 06 = 002A
08 x 07 = 0038
09 x 07 z 003F

MOLT IPLICATIONW oF TtIO 7TA4 12CE S 6 - 59

A_D_DO R CODE_
8 2 0 0 olo Mlo | P
3 0o 1 |o|o
o 2 OO :
- 0 3 211 LIX|] H| 15 3 Oo|A| Address Hable
§ 0 4 oA ‘ Lor Sensor !
o 0 5 73 |
g 0 6 ol LIXlrl |B|S|F13| /1% | Address +alble
8 0 7 /1% Lo seuwsor 2
0o 8 g2 _
0o 9 212 ITIMX i Mext talle ewitry
o & |del MlolV] el M b _resister £
0 B O3 I—A/X @ /\./g_,x‘f fg\é/e er,‘rl
0 C olA | LPlA X IC; 4 reaqrster A
2 o o |B|7 OIRIAl A Test Lor eud ol table |
3"’-: 0 E 2l A V| Z 12| oo At eud S0 ‘o ‘
8. 0 F 0|0 : .Sfa.rf' over
Zls 2 1 o #1 2]
z ,
g 1 1 Els1 Pluls |H H Suve addres.co
= 1 2 |els Pluls|H| |B |
© ui 13 |4[F mlolv] Tel Al T [[Muttiplicend to C
g 1 ¢ [elp Al] MU T Tmuidipdy
8 15 |Po .
2 16 Isz]
§ 17 cip CiA|ILIL] PIRIELS Disple g (xsult
‘ 18 |£o Y
19 |82 ' _
- 1 A |alp clalL L] |6lE|ITIKY élézf'for-l@-«’,
2. 18 |2 commond Yo
‘E-; 1 ¢ ol2- continue
@ 1D el Plo|lP| |B] Recover oddresses
,.“.". 1 € el Plo|P| |H _ '
g 1 F a3 JIM|F g1210|9 Go tfo rext Talle
Sls 2 2 0 |o|9 eutry
a 2 1 ¥ 2 | /
2 2 2 , |
§ 2 3 Mol Tle]: TIMHE| |sHoRTER TABLE
- 2 4 Mulsir Rle| |TIEIRMINATED) iTH
- 2 5 OO0 |AHT 1712320 7T MareE)
2 6 rirltls| [pPlrlele|R|AM DereeT
2 7 EIMD| (AT (5720 D
2 8 - IFigure 6-18

6 - 60

™

Enter a breakpoint at 8211, just before the first PUSH is executed; and
another at 82E0, the start of DRES. Press RUN, and at 8211 observe the

stack pointer:

ADDR| | P MEM B303) (P27

The stack is empty. Now exedute the PUSH H, and check it again.

Bziz) (o5l
ADDR| | P MEM @307] (SPoB]

The stadk,top contains the address from H,L and points to the data

entry, 03:

’ADDB T MEM - @3]
Now execute PﬁSH B: |
ADDR P MEM 83cr)} (SP19)
ADDR T MEM (€319] (E102]
Step into'subroutine MULT.
| 8214 L cpJ
a1

ADDR| | P MEM GEiz)

*

The stack now contains the following, which you can check by pressing

NEXT:

Stack Address Data

83CD SP.17 Return Address for MULT
83CE 82 :}/ |

83CF 19 Address from B,C

83D0 83 :} |

83D1 0B Address from H,L

83D2 v 83 :}

Now press RUN to reach your breakpoint at 82E0, and review the stack

* again.
@ |

' 83CD SP.1A Return
83CE 82 address
83CF 19 |
83D0 83
83D1 OB :}
83D2 83

The top of the stack has been replaced witﬁ the return address for DRES.

6 - 62

Another RUN will display the result, and wait for any key to command

continue.
RUN ‘ 8211) (CEs]
ADDR P | MEM | : (83p3]) (spP22]

The stack is empty again: that is, the pointer is at the top. If you

review the empty part of the stack (starting at 83CF) you will see the
| present cortents of L, H, C and B, but this is not because you placed
them there; it happens that the monitor pushes data into them in the

Same sequence that you used. The monitor shares your stack, so you will

find various other data at lower addresses, even though your RET and POP

instructions do not themselves alter the stack contents, but only the

pointer. o o)

O

§.7 PROCESSOR STATUS WORD (PSW)

For the PUSH and POP instructions only, register A and the flags are
treated as a register pair, with A the high order member. This permits
register A and the flags to be saved and recovered despite intefvening

steps that affect them. Consider this program segment:

8200 ADD D (A) <~ (A) + (D)
01 PUSH PSW Save A,F
02 INR E Count
03 MOV A,E Move counter to A
04 CPI 06 Test for end
05 JzZ 8209 Jump if end (zero) to POP and exit
06 POP PSW Restore A,F
07 JNC 8200 Jump if no ADD carry tp start of loop
08 - JMP 820B Else go to carry handling section.
‘09 POP PSW Restore A,F |

OA RET (exit from loop)

0B (process carry from ADD)

The A register and flags are affected in testing for the end of the
loop, and that test is to take precedence over the test for a carry from
the ADD. PUSH PSW saves the flags for the test; it also saves regis£er
A for the next addition. . Note that we have one PUSH and two POP

instructions, but only one POP will be executed. The instructions are:

F5 PUSH PSW "~ Push A and F

into the stack.

F1

POP

PSW

Pop A and F

from. the stack.

64

6.8 STACK POINTER INSTRUCTIONS

These instructions are defined for completeness. You are urged not to

use them when working with MTS until you fully understand the monitor

program. The first, however, is a vital part of any real program:

31 ' LXI SP Load an initial
XX low address - value to the
Yy - high address stack pointer.

This instruction must be executed before the stack can be used for data
storage or for subroutine calls. Address 0000 to see it: it is the

first instruction in the monitor, and initializes the stack at power-on

‘ or restart.‘ Other instructions include:
33 INX SP Increment stack pointer:
3B DCX SP Decrement stack pointer
39 DAD SP ((H,),(L)) <= ((H),(L)) + (SP)
F9 SPHL . ' (SP) <- ((H),(L))

These manipulate the stack pointer. It may be incremented (with INX SP)
to discard data or a return address that has been pushed into the stack,
or decremented (with DCX SP) to recover data that has been pushed and

popped. You can maintain two separate stacks by using SPHL.

6.8.1 Exchange Stack Top with H,L

The 'Stack Top' refers to two bytes: the byte addressed by the stack

pointer and thé'byte at the next higher address. On a RET instruction

these provide the return address; a POP instruction brings them to the

6 - 66

designated register pair. Either of those instructions increments the
stack pointer twice, so a new stack top is addressed. We have another

way of accessing the stack top:

E3 XTHL Exchange stack top with H and L.

(SP) <=> (L)
(SP) + 1 <=> (H)

The stack pointer content is unchanged.

No flags are affected.

This is often used to provide two more bytes of readily available
storage when a program.requires more than six general purpose registers.

For instance if four different memory locations must be accessed we can

use BC for one address, DE for a second, and HL for two more by use of‘_ .
XTHL.

6.8.2 Using the Stack
There are some restridtions on use of the stack.
a) For every CALL there must be a RETURN. You must not jump into

or out of a subroutine except by CALL and RETURN.

b) For every PUSH there must be akPOP. You must hot repeatedly
push data onto the stack, or you will write into your program

memory.

¢) To restore registers saved by PUSH, the POP instructions must)

be in reverse order from the PUSH instructions, because the last ./

~RAM, into a ROM production model.

data entered is the first data returned.

d) PUSH and POP must be in the same program module. If a

subroutine executes a POP with no preceeding PUSH, the data

recovered will be the return address.

These rules are not absolute: if you understand what you are doing you
may use violations of the rules to good purpose. For instance, one .

program module might push data into the stack for retrieval by another

‘module. This is referred to as unbalanced usage of the stack. However,

it is a poor general practice, and should be used only when trying to

save space and queeze the last instruction of a program, developed in

It may be desirable to jﬁmp from any of several subroutines to 'a
special location in the méin program when an error is detected;. This is
called an abnormal return. The error handling module may then return to
the <c¢alling program, it may POP the return addfess to a register pair
and discard it, or it may initialize the stack. Avoid such procedures

until you are reasonably expert.

We will define four kinds of subroutires, which are not ﬁutually

6.9 SUBROUTINE CLASSIFICATION

exclusive.

Global Subroutines

Local Subroutines

Reentrant Subroutines
" Interrupt Service Routines
6.9.1 Global Subroutines

A global subroutine is one which is available to be called from any A
other program module. Typically it Aserves a general purpose function
such as multiplication, éxbonentiation, etc. It must be fully specified
so that other programmers may use it. A nuﬁber of restrictions are

usually‘applied,‘although nore are absolute:

a) It always returns to the calling program - it does not

make abnormal returns.

b) Any use of the stack is balanced.

¢) No data are preserved from ore call to the next,

except in memory locations specified by the calling program.

d) Global subroutines are almost always transparent to the user,

\

i.e. all registers returned with their content unchanged, °}

except as they are used to return resulté.

e

©

©

\

6.9.2 Local Subroutines

A local subroutine has restrictions that limit its use by other program

modules. Typically it is a small or special purpose procedure. It may
have restrictions on entry, abnormal returns, unbalanced stack usage, or

it may preserve variable data in permanently assigred memory locatiors.

Of the subroutines used in the sensor correction problem, clearly INPUT,

MULT and DRES could be treated as global subroutires. 1In fact, you will

use them again in a later exercise. TABLU is too specialized: it

demards a particular data table organization.

6.9#3 Re-Entrant Subroutines

A reentrant subroutine is one that can be cglled everr though it is
‘already in use. A number of the mohitor subroutines exemplify this.
An& subroutine that is subject to interrupts and whi¢h is called . by an
interrhpt service routire must be reentrant. Full discussion of this

type of subroutine is beyond the scope of this text.

6.9.4 Interrupt Service Routire

An interrupt service routine is executed when an exterral interrupt
occurs.<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>