


---, 

--, 

---, 



IBM PC 3270 Emulation Program 
Entry Level Version 1.21 

ProgrammerS Guide 

High Level Language 
Application Program Interface 

■ Communications Family 

-~------- - - --- _, ----- -- ---- - - ------ -------. -



Third Edition (December 1987) 

This book describes how to use the IBM PC 3270 Emulation Program, 
Entry Level, High-Level Language Application Program Interface. 

References in this publication to IBM products, programs, or services 
do not imply that IBM intends to make them available in all countries 
in which IBM operates. Any reference to an IBM program product in 
this publication is not intended to state or imply that only IBM's 
program product may be used. Any functionally equivalent program 
may be used instead. 

Publications are not stocked at the address given below. Requests for 
this or other IBM publications should be made directly to the IBM 
branch office serving your locality. 

A Reader's Comments Form is provided at the back of this publication. 
If the form has been removed, address comments to IBM Corporation, 
Department 95H, 11400 Burnet Road, Austin, Texas 78758. IBM may 
use or distribute whatever information you supply in any way it 
believes appropriate without incurring any obligation to you. 

© Copyright International Business Machines Corporation 1986, 1987 



About This Book 

Preface 

This book provides programming information you 
will need to use the IBM Personal Computer 3270 
Entry Emulator High-Level Language 
Application Program Interface (EEHLLAPI). 

EEHLLAPI is used with the IBM PC 3270 
Emulation Program, Entry Level (hereafter 
referred to as the Entry Level Emulation 
Program). 

EEHLLAPI gives users and application 
programmers a set of functions that can be called 
from an application program running in a 
personal computer session to access the host 
presentation space. 

If you just want to get started using the Entry 
Level Emulation Program or have no interest in 
using the programming interface, see the IBM 
PC 3270 Emulation Program, Entry Level, User's 
Guide. 

About This Book iii 



About This Book 

How This Book Is Organized 

• Chapter 1, "Introduction," provides an 
overview of EEHLLAPI and discusses parts of 
the interface. 

• Chapter 2, "Loading the Program," describes 
how to load the resident portion of 
EEHLLAPI and run the EEHLLAPI program 
sampler. 

• Chapter 3, "EEHLLAPI Functions," describes 
each function in detail. These functions are 
listed in alphabetical order. 

• Chapter 4, "Compiling and Running Your 
EEHLLAPI Application Program," provides 
information about linking your EEHLLAPI 
program with the appropriate Language 
Interface Module (LIM), running your 
program, and using Trace. 

• Appendix A, "Messages," explains the 
messages you may see while using 
EEHLLAPI. 

• Appendix B, "Writing Your Own Language 
Interface Module," describes how you can 
write a Language Interface Module for any 
computer language you want to use beyond 
those supported by LIMs on your Entry 
Emulator diskette. 

• Appendix C, "OIA Image and Bit Group 
Information," explains information needed to 
interpret the returned data string under 
Function 13 Copy OIA. 

1v Programming Guide 



About This Book 

• Appendix D, "Related Publications," refers 
you to IBM books that you might need. 

• Appendix E, "Sample Programs," contains 
code samples. 

• Appendix F, "Glossary," defines acronyms 
and terms used in this manual. 

• Appendix G, "Alternate Code Page Support," 
lists the code pages supported for each 
country. 

Who Should Read This Book 

This book is intended for PC users and 
programmers who want to write application 
programs that use the services of EEHLLAPI. 

A working knowledge of the Personal Computer 
and IBM Personal Computer DOS is assumed. If 
you want more information about the Personal 
Computer, refer to the list of IBM Personal 
Computer publications in Appendix D, "Related 
Publications." 

This book assumes you are familiar with the 
language and compiler you will be using. If you 
need more information on how to write, compile, 
or link-edit programs, refer to the appropriate 
reference books for the specific language. 

About This Book v 



About This Book 

Requirements 

Before you can use EEHLLAPI, you must 
understand the following hardware, software, and 
host computer requirements. 

Hardware Requirements 
EEHLLAPI is designed to operate on the IBM 
Personal Computer, the IBM Personal Computer 
AT, the IBM Personal Computer XT, the IBM 
Personal Computer XT Model 286, and IBM 
Personal System/2™ Models 25, 30, 50, 60, and 80. 
It requires approximately 12,000 bytes of storage 
in addition to the requirements for DOS and the 
Entry Level Emulation Program. 

Software Requirements 

The following software guidelines should help 
you use EEHLLAPI: 

• DOS Levels 3.2 and 3.3 are supported. 

• Level 1.21 of the Entry Level Emulation 
Program. 

• You must write your EEHLLAPI program in 
one of the following high-level languages (or 
its equivalent): 

Compiled BASIC 1.0 or 2.0 
Interpretive BASIC 2.1, 3.1, or 3.2 
IBM COBOL 1.0 
IBM C 1.0 

- IBM PASCAL 2.0. 

™ IBM Personal System/2 is a trademark of the 
International Business Machines Corporation. 

vi Programming Guide 



About This Book 

- Macro Assembler. 

• Host graphics are not supported by 
EEHLLAPI. 

Note: For the latest information on available 
hardware and software that can be used 
with this product, see your authorized IBM 
Personal Computer dealer or local IBM 
representative. 

Compatibility with Other Emulation 
Products 

The Entry Level Emulation Program EEHLLAPI 
provides a subset of the programming functions 
offered by the IBM 3270 Personal Computer 
High-Level Language Application Program 
Interface. Programs written using EEHLLAPI 
can be run unchanged on a properly configured 
3270 PC. This compatibility provides for easy 
migration of programs from the IBM PC 3270 
Entry Level Emulation Program to the 3270 PC. 
Refer to the latest level of the IBM 3270 Personal 
Computer High-Level Language Application 
Program Interface, Programming Guide, for more 
details. 

Host Requirements 

There are no additional requirements other than 
those for the Entry Level Emulation Program. 

About This Book vii 



vm Programming Guide 



Contents 

Contents 

Chapter 1. Introduction . . . . . . . . . . . 1-1 
EEHLLAPI Overview . . . . . . . . . . . . . . . 1-1 
What You Need to Get Started . . . . . . . 1-3 

Chapter 2. Loading EEHLLAPI and 
Running the Program Sampler . . . . . . 2-1 

Loading EEHLLAPI ................ 2-1 
Installing and Running the Program 
Sampler . . . . . . . . . . . . . . . . . . . . . . . . 2-2 

Loading EEHLLAPI Automatically . . . . 2-4 

Chapter 3. EEHLLAPI Functions 3-1 
Page Layout Conventions . . . . . . . . . . . 3-1 
Connect Presentation Space (1) . . . . . . . 3-4 
Convert Position or RowCol (99) . . . . . . 3-7 
Copy Field to String (34) . . . . . . . . . . . . 3-9 
Copy OIA (13) . . . . . . . . . . . . . . . . . . . 3-11 
Copy Presentation Space (5) . . . . . . . . . 3-13 
Copy Presentation Space to String (8) . 3-15 
Copy String to Field (33) . . . . . . . . . . . 3-17 
Copy String to Presentation Space (15) 3-19 
Disconnect Presentation Space (2) . . . . 3-21 
Find Field Length (32) . . . . . . . . . . . . . 3-23 
Find Field Position (31) . . . . . . . . . . . . 3-25 
Pause (18) . . . . . . . . . . . . . . . . . . . . . . 3-27 
Query Cursor Location (7) . . . . . . . . . . 3-29 
Query Field Attribute (14) . . . . . . . . . . 3-30 
Query Host Update (24) . . . . . . . . . . . . 3-32 
Query Session Status (22) . . . . . . . . . . . 3-33 
Query Sessions (10) . . . . . . . . . . . . . . . 3-35 
Query System (20) . . . . . . . . . . . . . . . . 3-37 
Receive File (91) . . . . . . . . . . . . . . . . . 3-40 
Considerations for Using Functions 90 
and 91 . . . . . . . . . . . . . . . . . . . . . . . . 3-44 

Release (12) . . . . . . . . . . . . . . . . . . . . . 3-46 

Contents 1x 



Contents 

Reserve (11) . . . . . . . . . . . . . . . . . . . . . 3-47 
Reset System (21) . . . . . . . . . . . . . . . . . 3-48 
Search Field (30) . . . . . . . . . . . . . . . . . 3-49 
Search Presentation Space (6) . . . . . . . 3-52 
Send File (90) . . . . . . . . . . . . . . . . . . . . 3-55 
Send Key (3) . . . . . . . . . . . . . . . . . . . . 3-60 
Set Session Parameters (9) . . . . . . . . . . 3-65 
Start Host Notification (23) . . . . . . . . . 3-70 
Stop Host Notification (25) . . . . . . . . . 3-73 
Storage Manager (17) . . . . . . . . . . . . . . 3-7 4 
Wait (4) . . . . . . . . . . . . . . . . . . . . . . . . 3-80 

Chapter 4. Compiling and Running Your 
EEHLLAPI Application Program . . . . 4-1 

Linking Your EEHLLAPI Application 
Program with the Appropriate LIM . . . 4-1 

Running Your EEHLLAPI Application 
Program . . . . . . . . . . . . . . . . . . . . . . . 4-15 

Using Trace to Help You Debug Your 
Program . . . . . . . . . . . . . . . . . . . . . . . 4-16 

Appendix A. EEHLLAPI Messages A-1 

Appendix B. Writing Your Own 
Language Interface Module . . . . . . . . B-1 

Functions a LIM Can Perform ........ B-4 

Appendix C. OIA Image and Bit Group 
Information . . . . . . . . . . . . . . . . . . . . C-1 

OIA Image Group (Positions 2 through 
81) ............................ C-1 

OJA Group Indicator Meanings 
(Positions 82-103) . . . . . . . . . . . . . . . . . C-3 

Appendix D. Related Publications . . . . D-1 

Appendix E. Sample Programs . . . . . . E-1 
BASIC Sample Program ............. E-1 
COBOL Sample Program . . . . . . . . . . . . E-6 
PASCAL Sample Program . . . . . . . . . . E-11 
"C" Sample Program .............. E-18 

x Programming Guide 



Contents 

Appendix F. Glossary F-1 

Appendix G. Alternate Code Page 
Support . . . . . . . . . . . . . . . . . . . . . . . G-1 

Index . . . . . . . . . . . . . . . . . . . . . . . . . . X-1 

EEHLLAPI Functions by Function Number 

1, "Connect Presentation Space (1)" on page 3-4 
2, "Disconnect Presentation Space (2)" on page 3-21 
3, "Send Key (3)" on page 3-60 
4, "Wait (4)" on page 3-80 
5, "Copy Presentation Space (5)" on page 3-13 
6, "Search Presentation Space (6)" on page 3-52 
7, "Query Cursor Location (7)" on page 3-29 
8, "Copy Presentation Space to String (8)" on page 3-15 
9, "Set Session Parameters (9)" on page 3-65 
10, "Query Sessions (10)" on page 3-35 
11, "Reserve (11)" on page 3-4 7 
12, "Release (12)" on page 3-46 
13, "Copy OIA (13)" on page 3-11 
14, "Query Field Attribute (14)" on page 3-30 
15, "Copy String to Presentation Space (15)" on page 3-19 
17, "Storage Manager (17)" on page 3-74 
18, "Pause (18)" on page 3-27 
20, "Query System (20)" on page 3-37 
21, "Reset System (21)" on page 3-48 
22, "Query Session Status (22)" on page 3-33 
23, "Start Host Notification (23)" on page 3-70 
24, "Query Host Update (24)" on page 3-32 
25, "Stop Host Notification (25)" on page 3-73 
30, "Search Field (30)" on page 3-49 
31, "Find Field Position (31)" on page 3-25 
32, "Find Field Length (32)" on page 3-23 
33, "Copy String to Field (33)" on page 3-17 
34, "Copy Field to String (34)" on page 3-9 
90, "Send File (90)" on page 3-55 
91, "Receive File (91)" on page 3-40 
99, "Convert Position or RowCol (99)" on page 3-7 

Contents x1 



xii Programming Guide 



EEHLLAPI Overview 

Chapter 1. Introduction 

EEHLLAPI Overview 

The Entry Emulator High-Level Language 
Application Program Interface or EEHLLAPI 
(pronounced E-E hil-lappy) lets you write and use 
personal computer programs in IBM BASIC, 
PASCAL, COBOL, C, or Macro Assembler to 
interact with your host session. 

EEHLLAPI is valuable in a variety of work 
environments. It can increase productivity for 
experienced users and provide a shorter learning 
curve for inexperienced users. 

1. It improves overall ease of use by: 

• Automating repetitive tasks 

• Masking complex applications from the 
user 

• Consolidating several complicated tasks 
into one simple task. 

2. It simplifies existing host applications. 

Chapter 1. Introduction 1-1 



EEHLLAPI Overview 

3. It provides unattended operation, a 
programmed operator that monitors tasks 
without human intervention. This 
programmed operator could: 

• Monitor events that are serial in nature 
(for example, data center applications) 

• Automate console operation 
• Monitor response time and availability 
• Do stress testing. 

4. You can create composite screen 
applications using input from the host. The 
input for a composition screen is formatted 
and presented within a PC presentation 
space. 

5. You can write programs that divide the work 
between host and PC sessions. EEHLLAPI 
will let you write and use an application to 
access files and programs in either the host or 
the PC session. The more trivial tasks (file 
editing, simple graphics, etc.) can be done in 
the PC session and the more powerful host 
can do database searches, updates, and 
retrievals when needed. The terminal 
operator does not even need to know whether 
a PC or host application is doing the work. 
The goal is simply to finish the task. 

In other words, you can use EEHLLAPI with the 
functions provided by the Entry Level Emulation 
Program to enhance interaction between an IBM 
Personal Computer application program and a 
host session and to simplify your programming 
tasks. 

1-2 Programming Guide 



What You Need to Get Started 

What You Need to Get Started 

To use EEHLLAPI, you'll need the following: 

1. The first thing you will need is an application 
program that you or someone else has written 
using IBM BASIC, COBOL, PASCAL, C, or 
Macro Assembler to call on the EEHLLAPI 
functions. If you don't have one yet, you can 
try out the Program Sampler that is provided 
on the Entry Emulator diskette (see Chapter 2 
for more information). 

The other files that you'll need are on your 
Entry Emulator diskette. 

2. PC3270.COM - this is the base Entry Emulator 
code. 

3. EEHLLAPI.EXE - this is the EEHLLAPI 
interface module. It lets your program 
interact with the base code. 

4. Except for interpretive BASIC, and assembly 
language programs, you will need one of the 
following Language Interface Modules 
(LIMs): 

• HLLC_s. OBJ - LIM for IBM "C" Language 
(small size) 

• HLLC_M.OBJ - LIM for IBM "C" Language 
(medium size) 

• HLLC_L.OBJ- LIM for IBM "C" Language 
(large size) 

• HLLCBAS. OBJ- LIM for Compiled IBM 
BASIC 

• HLLCOB. OBJ- LIM for IBM COBOL 

• HLLPAS.OBJ- LIM for IBM PASCAL. 

Chapter 1. Introduction 1-3 



What You Need to Get Started 

The LIM you choose depends on the 
programming language you intend to use. 
For example, if you were programming in 
COBOL, you would need the HLLCOB.OBJ 
file. (This book will explain how to use LIMs 
and how to write your own LIMs later on.) 

The Base Code (PC3270.COM) 
This is the code that provides the base emulation 
function on your IBM PC. It must be loaded 
before loading EEHLLAPI. 

The Resident Module 
(EEHLLAPI.EXE) 

The resident module for EEHLLAPI is called 
EEHLLAPI.EXE. It must be loaded before you 
can use EEHLLAPI and will remain in storage as 
an extension of DOS. 

Language Interface Modules (LIMs) 
LIMs are the "bridges" between your EEHLLAPI 
application program and EEHLLAPI.EXE. LIMs 
are provided because each implementation of a 
programming language has its own unique 
methods of storing data and calling subroutines. 
LIMS allow EEHLLAPI to support multiple 
high-level languages. 

LIMs are provided for Compiled IBM BASIC, 
IBM COBOL, IBM C, and IBM PASCAL. No 
LIM is required for Interpretive BASIC. Instead, 
you must access a special Interpretive BASIC 
LIM that is available whenever EEHLLAPI is 
loaded. Refer to Chapter 4, "Compiling and 
Running Your EEHLLAPI Application 
Program," for details. 

1-4 Programming Guide 



What You Need to Get Started 

Programs written using the MACRO Assembler 
can invoke EEHLLAPI directly. If you prefer to 
use a language other than those mentioned 
above, refer to Appendix B, "Writing Your Own 
Language Interface Module." 

Linking Your EEHLLAPI Program 
with Its LIM 

When you are ready to run your EEHLLAPI 
application program, you can make the 
appropriate LIM a permanent part of your 
program in this manner: 

• If you are using a compiled language (such as 
COBOL or Compiled BASIC), you call the 
appropriate language interface as an external 
subroutine. When you link-edit your program 
(using the DOS link command), the 
appropriate LIM will be merged with your 
EEHLLAPI program. Refer to 
Chapter 4, "Compiling and Running Your 
EEHLLAPI Application Program" for details. 

Function Calls 
EEHLLAPI is a "function-code"----driven system. 
This means that each EEHLLAPI function has a 
number associated with it. This number is the 
name you use to call the function from a program 
that you are writing. 

Chapter 1. Introduction 1-5 



Notes 

1-6 Programming Guide 



Loading EEHLLAPI 

Chapter 2. Loading EEHLLAPI 
and Running the Program 
Sampler 

This chapter tells you: 

• How to load EEHLLAPI 

• How to load and run the Program Sampler 

• How to load EEHLAPI automatically. 

Loading EEHLLAPI 

To load EEHLLAPI: 

1. Load DOS. 

2. Place the Entry Level Emulation Program 
diskette in your default diskette drive. 

3. Type PC3270 r next to the DOS prompt and 
press Enter ( ._J ) to load the base code. 

Note: You must load the entry emulator in 
resume mode (r option when initially 
loading the PC3270 program, or type 
Alt-R while at the host when the 
PC3270 program is already loaded) 
before loading EEHLLAPI. 

Chapter 2. Loading and Sampling EEHLLAPI 2-1 



Loading EEHLLAPI 

4. Next, type eehllapi and press Enter ( .,a ) to 
load the EEHLLAPI code. 

Note: The base code must always be loaded 
first. 

When the program loads, you will see the 
following messages: 

Entry Emulator High Level Language Application Program Interface 1.1 

(c) Copyright International Business Machines Corporation 1984,1987 

EHL001 EEHLLAPI is loaded 

EHL002 EEHLLAPI is ready for use 

A> 

If you receive any other message refer to 
Appendix A, "EEHLLAPI Messages." 

Note: If you want to load EEHLLAPI everytime 
you start your PC, see "Loading 
EEHLLAP I Automatically" on page 2-4. 

Installing and Running the 
Program Sampler 

After you have successfully loaded EEHLLAPI, 
you are ready to use the EEHLLAPI interface. 
The EEHLLAPI diskette contains a Complied 
BASIC Program Sampler (EHLSAMP.EXE) that 
lets you experiment with the various functions. 

2-2 Programming Guide 



Installing and Running the Program Sampler 

The Program Sampler allows you to specify a 
function and its parameters and observe the 
results. It also serves as an example of running a 
program written in BASIC in which the 
EEHLLAPI functions have been used. When you 
get ready to write your EEHLLAPI application 
program, you may find it useful to refer to the 
BASIC sample program in Appendix E, "Sample 
Programs" on page E-1. 

To run the Program Sampler EHLSAMP.EXE: 

1. Have your Entry Level Emulation Program 
and EEHLLAPI.EXE loaded into storage. 

2. Be sure that the following files are available 
to the program sampler ( on the same diskette 
or in the same fixed disk directory): 

PC utilities that EHLSAMP uses, such as 

• Send.com 
• Receive.com. 

3. Place your Entry Level Emulator Program 
diskette which contains EHLSAMP.EXE in 
Drive A. 

4. Type ehlsamp and press Enter. You will see 
the EEHLLAPI Program Sampler panel 
appear. 

5. Sample the EEHLLAPI functions. 

It is a good idea to have the description of any 
function you sample (found in Chapter 3) in front 
of you as you use the Program Sampler. When 
you use the Program Sampler, you are using 
actual EEHLLAPI functions, not simulations of 
functions. All the rules about the order in which 
functions should be called apply when using the 
Program Sampler. For example, when using an 

Chapter 2. Loading and Sampling EEHLLAPI 2-3 



Loading EEHLLAPI Automatically 

EEHLLAPI program, you must be connected to a 
session (by means of Function 1 Connect) before 
you can send keys to it (using Function 3 Send 
Key). 

If you want to quit a function without 
completing it, press Ctrl + Break. This will take 
you back to DOS. To use the EEHLLAPI 
Program Sampler again, type EHLSAMP and 
press Enter. 

When you are ready to exit the Program Sampler 
and return to DOS, type 300, and press Enter 
from main menu. 

For more information about using Compiled 
BASIC, refer to the IBM Compiled BASIC 
Reference Manual. 

Loading EEHLLAPI 
Automatically 

If you load your Entry Level Emulation Program 
using an AUTOEXEC.BAT file, you can also 
load EEHLLAPI automatically by adding a line 
to your AUTOEXEC.BAT file. Edit the 
AUTOEXEC.BAT file, using any editor that 
works on the personal computer. If you don't 
have a standard personal computer editor, you 
can use the editor that comes with DOS (EDLIN). 
See your DOS manual for more details. 

To load EEHLLAPI using an AUTOEXEC.BAT 
file, add "eehllapi" following the "PC3270" 
statement, as follows: 

pc3270 r 
eehllapi 

2-4 Programming Guide 



Preparing a Diskette 

Preparing a Diskette 

If you want to use EEHLLAPI on an everyday 
basis, you will need to copy over certain files to 
your system diskette. The Install.bat file that is 
on the original diskette contains a list of all the 
files in the diskette along with comments that 
explain why the files are needed. To display this 
file on your screen, enter: 

type Install.bat 

To type this file to your PC printer, enter: 

type Install.bat>prn 

Copy the Install.bat file and use a PC editor 
(e.g., Personal Editor, EDLIN) to modify it to 
copy the files you need. 

Chapter 2. Loading and Sampling EEHLLAPI 2-5 



Notes 

2-6 Programming Guide 



Page Layout Conventions 

Chapter 3. EEHLLAPI Functions 

Page Layout Conventions 

All EEHLLAPI function calls are presented in 
the same format so that you can retrieve the 
information you need quickly. The format looks 
like this: 

Function Name 
• Parameters Required When Called 
• Values Returned 
• Notes on Using This Function. 

Parameters Required When Called 
"Parameters Required When Called" defines 
what parameters you need to define in your 
program in order to use this function and how 
these parameters are to be defined. 

EEHLLAPI function calls pass the following four 
parameters in this fixed format: 

• A function number 
• A data string 
• The string's length 
• The host presentation space position. 

Chapter 3. EEHLLAPI Functions 3-1 



Page Layout Conventions 

Function Number, the first parameter, is 
always required. This position must be filled by 
a 2-byte (fullword) integer. 

Data String, the second parameter, is used in 
different ways by different functions. In some 
functions, the data string is a string of 
characters. In other functions, it is a string of 
concatenated data items. 

String Length, the third parameter, is usually 
the length of the character string or 
concatenated list of data items. In special cases, 
this parameter passes information such as buffer 
size. This position must be filled by a 2-byte 
(fullword) integer. 

Presentation Space Position, the fourth 
parameter, is a value associated with the IBM 
3278/79 Display Station screen sizes emulated by 
the PC. This position must be filled by a 2-byte 
(fullword) integer, and must be a value from 1 
through 1920 for the Entry Level Emulation 
Program. When the PS position is not 
applicable, this 2-byte integer may be any value. 

Values Returned 
"Values Returned" defines the information that 
your program will receive from EEHLLAPI after 
EEHLLAPI has processed your function call. 

EEHLLAPI function calls return requested 
information in the following format: 

• Function number 
• Data string 
• Data string length or host presentation space 

position 
• Return code. 

3-2 Programming Guide 



Page Layout Conventions 

Note that not all four parameters will be 
changed on return for each function. 

Function Number, the first parameter, is 
always returned unchanged. 

Data String, the second parameter, returns 
different information according to function. In 
some functions, the data string is a string of 
characters. In other functions, it is a string of 
concatenated data items. 

You must preallocate space for returning data 
strings in your EEHLLAPI application program. 

The third parameter, when sending data to 
EEHLLAPI, is interpreted as Data Length. For 
certain function calls EEHLLAPI returns a 
presentation space position (this is a numeric 
value 1 through 1920). 

Return Code, the last parameter, is usually a 
numeric return code. Function 99 Convert 
Position or RowCol is the exception to this 
rule. In Function 99, the return code position 
passes data to the program. 

Return codes are explained in detail in the 
descriptions of the individual functions. 

Notes on Using This Function 
"Notes On Using This Function" explains any 
prerequisite function calls that should be issued 
before using the function under discussion. It 
also provides technical information about using 
the function and application development tips. 

See Appendix E, "Sample Programs" for 
examples on how the functions are used. 

Chapter 3. EEHLLAPI Functions 3-3 



Connect Presentation Space 

Connect Presentation Space (1) 

Connect Presentation Space establishes a 
connection between your EEHLLAPI application 
program and the host presentation space. 

Parameters Required When Called 

Data String: 

Length: 
PS Position: 

One-character short name of the 
host presentation space.* 
NA (1 is implied). 
NA 

*The calling data string can contain: 

• A one-character host presentation space short 
name. 

• For the Entry Level Emulation Program, the 
default presentation space is "E". 

Note: If you are using this default, you must 
have an "E" in the calling data string. 

3-4 Programming Guide 



Connect Presentation Space 

Values Returned 

The following return codes are valid: 

Return 
Code Explanation 
0 Connect was successful; the host presentation space 

is unlocked and ready for input. 

1 An invalid host presentation space id. 

4 Successful connection was achieved, but the host 
presentation space is busy. 

5 Successful connection was achieved, but the host 
presentation space is locked (input inhibited). 

9 A system error was encountered. 

11 This resource is unavailable. The host presentation 
space is already being used by another system 
function. 

Notes on Using This Function 
1. The following functions do not require that 

you issue a Connect call before using: 

• Function 9 Set Session Parameters 
• Function 10 Query Sessions 
• Function 20 Query System 
• Function 21 Reset System 
• Function 22 Query Session Status 
• Function 24 Query Host Update 
• Function 90 Send File 
• Function 91 Receive File 
• Function 99 Convert Position or RowCol 

2. The Connect Presentation Space function 
sets the return code to indicate the status of 
the attempt and, if successful, the status of 
the host presentation space. 

Chapter 3. EEHLLAPI Functions 3-5 



Connect Presentation Space 

3. Two parameters under Function 9 affect 
Connect: 

Para.meter Explanation 
CONPHYS During the Connect, jump to the requested presentation 

space (Do a physical connect). 

CONLOG During the Connect, do not jump to the requested 
presentation space (Do a logical connect). 

3-6 Programming Guide 



Convert Position or RowCol 

Convert Position or RowCol (99) 

This function converts the host presentation 
space positional value into the display 
row/column coordinates or converts the display 
row/column coordinates into the host 
presentation space positional value. This 
function does not change the cursor position. 

Parameters Required When Called 
Data String: 

Length: 
PS Position: 

Host Presentation space short 
name and "P" for convert 
position, OR 

Host presentation space short 
name and "R" for convert 
row/column. 
Row 
Column (when specify "R" 
above) or host presentation 
position (when specify "P" 
above). 

Values Returned 
The function is the exception to the rule that the 
return code position always contains a return 
code. In this instance, it contains a status code. 
If you have established a common error-handling 
routine, this function could return misleading 
information. 

Chapter 3. EEHLLAPI Functions 3-7 



Convert Position or RowCol 

Two pieces of information are returned: 

• The Length parameter which returns the row 
number or "O" for incorrect row input. 

• A status code in the Return Code parameter 
which is explained below: 

Status 
Code Explanation 

0 Incorrect column or presentation space position was 
provided. 

>O This is the PS position or column. 

9998 An invalid host presentation space ID was specified, 
or the host presentation space was never connected. 

9999 Character 2 in the data string is not P or R. 

3-8 Programming Guide 



Copy Field to String 

Copy Field to String (34) 

The Copy Field to String function transfers 
characters in the host-connected presentation 
space into a string. The string begins at the 
field's origin delimiter. This position and length 
information can be found by using Function 31 
Find Field Position and Function 32 Find Field 
Length. This function can be used with either 
protected or unprotected fields but only in a 
field-formatted host presentation space. 

The string ends when one of these three 
conditions is encountered: 

• When the end of the field is reached 
• When the length of the target string is 

exceeded 
• When the end of the host presentation space 

is reached. 

Parameters Required When Called 
Data String: 
Length: 
PS Position: 

Preallocated target data string. 
Length of the target data string. 
Position of the source field in 
the host presentation space from 
which to copy. 

Chapter 3. EEHLLAPI Functions 3-9 



Copy Field to String 

Values Returned 

Return 
Code 
0 

1 

2 

6 

7 

9 

This function returns the requested data string 
and one of the following return codes: 

Explanation 
Copy Field to String was successful. 

Your program is not currently connected to the emulated host 
session. 
An error was made in specifying parameters. 

The data to be copied and the target field were not the same size. 
The data may have been truncated because the string length may 
have been smaller than the field copied. 

The host presentation space position is invalid. 

A system error was encountered. 

3-10 Programming Guide 



Copy OIA 

Copy OIA (13) 

*The Copy OIA function returns the current 
OIA data from the host connected presentation 
space. 

Parameters Required When Called 

Byte 

Position 1 

Data String: 
Length: 

PS Position: 

Target string 
Length of the target data 
string.* 
NA 

*The OIA data is returned in a data string that 
must be 103 bytes long. The format of the 
returned string is as follows: 

Definition 

The OIA Format Byte for the PC. 

Positions 2-81 The OIA image in host code points. Refer to 
Appendix C, "OJA Image and Bit Group Information" for 
complete explanations of these positions. 

Positions 82-103 The OIA Group. Refer to Appendix C, "OJA Image and 
Bit Group Information" for complete explanations of 
these positions. 

Chapter 3. EEHLLAPI Functions 3-11 



Copy OIA 

Values Returned 

Return 
Code Explanation 
0 The target presentation space is unlocked. 

1 Your program is not currently connected to the emulated host 
session. 

2 An error was made in specifying string length. OIA data was not 
returned. 

4 OIA data was returned. The target presentation space is busy. 

5 OIA data was returned. The target presentation space is locked. 

9 An internal system error was encountered. OIA data was not 
returned. 

3-12 Programming Guide 



Copy Presentation Space 

Copy Presentation Space (5) 

The Copy Presentation Space function copies 
the contents of the host-connected presentation 
space into a data area that you define in your 
EEHLLAPI application program. 

Copy Presentation Space translates the 
characters in the host source presentation space 
into ASCII. Attribute bytes and other characters 
not represented in ASCII normally are translated 
into blanks. (If you do not want the attribute 
bytes translated into blanks, you can override 
this translation with the ATTRB option under 
Function 9 Set Session Parameters.) 

Parameters Required When Called 
Data String: 

Length: 

PS Position: 

Preallocated target area the size 
of your host presentation space. 
This is 1920 for Entry Level 
Emulation Program. 

NA (length of the presentation 
space is implied) 
NA 

Chapter 3. EEHLLAPI Functions 3-13 



Copy Presentation Space 

Values Returned 

Return 
Code Explanation 
0 The host presentation space contents were copied to application 

program. The target presentation space was active, and the 
keyboard was unlocked. 

1 Your program is not currently connected to the emulated host 
session. 

2 The receiving string was too small to contain PS data. 

4 The host presentation space contents were copied. The connected 
host presentation space was waiting for host response. 

5 The host presentation space was copied. The keyboard was locked. 

9 A system error was encountered. 

Notes on Using This Function 
• A program written in Interpretive BASIC 

cannot use this function, since copying the 
host presentation space exceeds the maximum 
allowed string size of 255 bytes. Compiled 
BASIC programs, however, can use this 
function. 

• If you want to copy only a portion of the host 
presentation space, use Function 8 Copy 
Presentation Space to String. 

3-14 Programming Guide 



Copy Presentation Space to String 

Copy Presentation Space to 
String (8) 

The Copy Presentation Space to String 
function is used to copy all or part of the 
host-connected presentation space into a data 
area that you define in your EEHLLAPI 
application program. 

The offset of the string into the host presentation 
space is based on a layout in which the upper left 
comer (row 1/column 1) is Location 1 and the 
bottom right corner is the maximum screen size 
for the host presentation space (for the Entry 
Level Emulation Program, for example, this 
would be 1920). The value of offset + length 
cannot exceed the maximum screen size for the 
host presentation space. 

The "PS Position" calling parameter is used to 
pass the beginning offset of the data string to the 
function. The maximum length of the target 
string is 255 bytes for Interpretive BASIC. The 
requested length must not exceed the length of 
your application program's preallocated buffer 
size. 

Copy Presentation Space to String translates 
the characters in the host source presentation 
space into ASCII. Attribute bytes and other 
characters not represented in ASCII normally are 
translated into blanks. If you do not want the 
attribute bytes translated into blanks, you can 
override this translation with the ATTRB option 
under Function 9 Set Session Parameters. 

Chapter 3. EEHLLAPI Functions 3-15 



Copy Presentation Space to String 

Parameters Required When Called 

Data String: 

Length: 
PS Position: 

Target string (maximum 
255 bytes for Interpretive 
BASIC). 
Length of the target data string. 
The beginning of your string is 
represented by the byte position 
within the host presentation 
space. 

The value of Position + Length cannot exceed 
the maximum size of the host presentation space. 
This value cannot exceed 1920 for the Entry 
Level Emulation Program. 

Values Returned 

Return 
Code 

0 

1 

2 

4 

5 

7 

9 

The Copy Presentation Space to String 
function returns a string containing the host 
presentation space contents and one of the 
following return codes: 

Explanation 

The host presentation space contents were copied to application 
program. The target presentation space was active, and the 
keyboard was unlocked. 

Your program is not currently connected to the emulated host 
session. 

An error was made in specifying string length. 

The host presentation space contents were copied. The host 
presentation space was waiting for host response. 

The host presentation space was copied. The keyboard was locked. 

The host presentation space position is invalid. 

A system error was encountered. 

3-16 Programming Guide 



Copy String to Field 

Copy String to Field (33) 

The Copy String to Field function transfers a 
string of characters into a specified field in the 
host-connected presentation space. This function 
can be used only in a field-formatted host 
presentation space. 

The string to be transferred is specified with the 
Calling Data String parameter. The string ends 
when one of these four conditions is encountered: 

• When an EOT is encountered in the string 
(if EOT mode was selected using Function 9 
Set Session Parameters). See "Set Session 
Parameters (9)" on page 3-65. 

• When the number specified in the length is 
reached if not in EOT mode. 

• When an end of field is encountered in the 
field. 

• When the end of the host presentation space 
is reached. 

In other words, there is no wrapping. 

Parameters Required When Called 
Data String: 

Length: 

PS Position: 

String containing the data to be 
transferred to a target field in 
the host presentation space. 
Length of the source data string 
or an EOT in the data string if 
in EOT mode. 
Position of the field that is the 
target of the copy. 

Chapter 3. EEHLLAPI Functions 3-17 



Copy String To Field 

Values Returned 

Return 
Code Explanation 

0 Copy String to Field was successful. 

1 Your program is not currently connected to the emulated host 
session. 

5 The target field was protected or inhibited, or illegal data was sent 
to the target field (such as a field attribute). 

6 Copy was completed, but data is truncated. 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

3-18 Programming Guide 



Copy String to Presentation Space 

Copy String to Presentation 
Space (15) 

Copy String to Presentation Space copies an 
ASCII data string directly into the host 
presentation space at the location specified by 
the "PS Position" calling parameter. 

Parameters Required When Called 
Data String: String of ASCII data to be 

copied into the host 
presentation st,ace. 

Length: 

PS Position: 

Length of data string or an EOT 
in data string if in EOT mode. . ·.• 
Position in the host 
presentation space to begin the 
copy; between 1 and 1920 for the 
Entry Level Emulation 
Program. 

Values Returned 

Return 
Code Explanation 

0 Copy String to Presentation Space was successful. 

1 Your program is not currently connected to the 
emulated host session. 

5 The target presentation space is protected or 
inhibited, or illegal data was sent to target 
presentation space (such as a field attribute byte). 

6 The copy was completed, but the data was truncated. 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

Chapter 3. EEHLLAPI Functions 3-19 



Copy String to Presentation Space 

Notes on Using This Function 
• If you want to place the string data at a 

specific cursor location, use Function 7 
Query Cursor Location first to get the PS 
Position of the cursor. Then place this value 
in the "PS Position" calling parameter. 

• The string ends when an EOT is encountered 
in the string (if EOT mode was selected using 
Function 9 Set Session Parameters). See 
"Set Session Parameters (9)" on page 3-65. 

• Even though Function 3 Send Key seems to 
accomplish the same purpose as Copy String 
to Presentation Space, the latter is much 
faster in answering prompts and entering 
commands. The concept behind the Send 
Key function is to emulate a terminal 
operator typing in data from the keyboard. 
Thus, it is too slow for applications that 
require large amounts of data for each 
operation. Copy String to Presentation 
Space provides a much faster input path to 
the host. 

• The keyboard mnemonics (see Function 3 
Send Key) cannot be sent using Copy String 
to Field. 

• The source data (the string being copied) can 
be no larger that 1920 characters. 

3-20 Programming Guide 



Disconnect Presentation Space 

Disconnect Presentation Space (2) 

Disconnect Presentation Space drops the 
connection between your EEHLLAPI application 
program and the host presentation space. 

Parameters Required When Called 
Data String: NA 
Length: NA 
PS Position: NA 

Values Returned 

Return 
Code Explanation 

0 Disconnect was successful. 

1 You are not currently connected to the host 
presentation apace. 

9 A system error was encountered. 

Notes on Using This Function 
• Once the Disconnect Presentation Space 

function has been called, functions that 
interact with the host presentation space are 
no longer valid (for example, Send Key, Wait, 
Reserve, and Release). 

• Your programmed operator should disconnect 
from the host presentation space before 
exiting your EEHLLAPI application program. 
Failure to do so can result in problems 
when using some PC utilities, particularly 
file transfer. 

Chapter 3. EEHLLAPI Functions 3-21 



Disconnect Presentation Space 

Parameter 
CONPHYS 

CONLOG 

• Disconnect Presentation Space does not 
reset the session parameters to the defaults. 
Your programmed operator must call 
Function 21 Reset System to accomplish 
this. For example, a keyboard locked using 
the Reserve function will remain locked after 
the application has been disconnected. 

• Two parameters under Function 9 affect 
Disconnect: 

Explanation 
During the Disconnect, jump to the PC session where the 
EEHLLAPI application is running (Do a physical 
disconnect). 

During the Disconnect, do not jump to the PC session. Stay 
at the current presentation space - could be at the HOST or 
PC (Do a logical disconnect). 

3-22 Programming Guide 



Find Field Length 

Find Field Length (32) 

Find Field Length returns the length of a target 
field in the connected presentation space. This 
function can be used to find either protected or 
unprotected fields but only in a field-formatted 
host presentation space. 

This function returns the number of characters 
contained in the "Requested Field." This includes 
all characters from the beginning of the target 
field up to either the character preceding the 
next attribute byte or the end of the host 
presentation space. 

Parameters Required When Called 
Data String: See table below. 
Length: NA (2 is implied). 
PS Position: Position within the host 

presentation space from which 
to start the Find. 

The calling two-character data string can 
contain: 

Code Explanation 
Blanks This field 
or 
"T" 
"P ,, The previous field, either protected or unprotected 
"N,, The next field, either protected or unprotected 

"NP" The next protected field 

"NU" The next unprotected field 

"PP" The previous protected field 

"PU" The previous unprotected field 

Chapter 3. EEHLLAPI Functions 3-23 



Find Field Length 

Values Returned 
Length: 0 means PC or unformatted 

host presentation space. 
> 0 means length of requested 

field in host presentation 
space. 

Return Code: The following are valid: 

Return 
Code Explanation 
0 Find Field Length was successful. 

1 Your program has not issued a CONNECT to the 
emulated host session. 

2 A parameter error was encountered. 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

24 No such field was found. 

3-24 Programming Guide 



Find Field Position 

Find Field Position (31) 

Find Field Position returns the beginning 
position of a target field in the host connected 
presentation space. This function can be used to 
find either protected or unprotected fields but 
only in a field-formatted host presentation space. 

Parameters Required When Called 
Data String: See table below. 
Length: NA (2 is implied). 
PS Position: Position (within the field) 

relative to the origin of the host 
presentation space at which to 
start the Find. 

The calling two-character data string can 
contain: 

Code Explanation 
Blanks This field 
or 
"T,, 

"P " The previous field, either protected or unprotected 
"N" The next field, either protected or unprotected 

"NP" The next protected field 

"NU" The next unprotected field 

"PP" The previous protected field 

"PU" The previous unprotected field 

Chapter 3. EEHLLAPI Functions 3-25 



Find Field Position 

Values Returned 
Length: 0 means unformatted 

presentation space. 
> 0 means relative position of 

requested field from the 
origin of the host 
presentation space. This 
position is defined to be the 
first position after the 
attribute byte. 

Return Code: The following are valid: 

Return 
Code Explanation 
0 Find Field Position was successful. 

1 Your program has not issued a CONNECT to the 
emulated host session. 

2 A parameter error was encountered. 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

24 No such field was found. 

3-26 Programming Guide 



Pause 

Pause (18) 

Pause waits for a specified amount of time. It 
should be used in place of "timing loops" to wait 
for an event to occur. A Pause may be ended by 
a host event if a prior Function 23 Start Host 
Notification had been called. 

Parameters Required When Called 
Data String: 
Length: 

PS Position: 

NA 
Contains the pause duration in 
half-second increments.* 
NA 

* A practical maximum value for Pause is 2400. 
You should not use Pause for these kinds of 
tasks: 

• Delay for very long durations (of several 
hours, for example) 

• Delay for more than a moderate length of 
time (20 minutes) before checking the system 
"time of day" clock and proceeding with your 
EEHLLAPI program execution 

• With applications requiring a high-resolution 
timer. Since the time interval created by a 
Pause is approximate, such applications 
should use an alternate timing method. 

Chapter 3. EEHLLAPI Functions 3-27 



Pause 

Values Returned 

Return 
Code Definition 

0 The wait duration has expired. 

9 An internal system error was encountered. The time results are 
unpredictable. 

26 A host session presentation space or OIA has been updated. Use 
Function 24 Query Host Update for more information. 

Notes on Using This Function 
One of the parameters set using Function 9 Set 
Session Parameters affects the length of the 
pause you get when you call this function. 

Parameter Explanation 
FPAUSE 

IPAUSE 

Full-duration pause. 

Interruptible pause. Function 23 Start Host Notification 
and a host event will satisfy a Pause. 

Once a pause has been satisfied by a host event, 
you must call Function 24 Query Host Update 
to obtain more data regarding the host PS/OIA 
update prior to the next Pause. If you use the 
IPAUSE option, Pause will continue to be 
satisfied with the pending event until Function 
24 Query Host Update is completed. 

3-28 Programming Guide 



Query Cursor Location 

Query Cursor Location (7) 

The Query Cursor Location function indicates 
the position of the cursor in the host-connected 
presentation space by returning the cursor 
position. 

Before you can call Query Cursor Location, 
you must be connected to the host presentation 
space. 

Parameters Required When Called 
Data String: NA 
Length: NA 
PS Position: NA 

Values Returned 
Length: Presentation space position of 

the cursor. 

Return Code: One from the table below: 

Return 
Code Explanation 

0 Query Cursor Location was successful. 

1 Your program is not currently connected to the 
emulated host session. 

9 A system error was encountered. 

Chapter 3. EEHLLAPI Functions 3-29 



Query Field Attribute 

Query Field Attribute (14) 

The Query Field Attribute function returns the 
attribute byte of the field containing the host 
presentation space position in the host connected 
presentation space. This information is returned 
as the "Returned Data Length" parameter. Note 
also these use characteristics: 

• The returned Data Length parameter is set to 
"O" if the screen is unformatted. 

• Attribute bytes are equal to or greater than 
hex CO. 

Parameters Required When Called 
Data String: 
Length: 
PS Position: 

NA 
NA 
Presentation space position in 
the connected presentation 
space 

Values Returned 
Length: 

3-30 Programming Guide 

The Attribute value or "O" if the 
screen is unformatted. 



Query Field Attribute 

Return Code: The following are valid: 

Return 
Code Explanation 
0 Query Field Attribute was successful. 

1 Your program has not issued a CONNECT to the 
emulated host session. 

7 The host presentation space position is invalid. 

Chapter 3. EEHLLAPI Functions 3-31 



Query Host Update 

Query Host Update (24) 

The Query Host Update function lets the 
programmed operator determine if the host has 
updated the host PS/OIA since the last time this 
request was made. The target presentation space 
must be specified in the data string, even though 
you don't need to be connected to the host 
presentation space to check for updates. 

The Start Host Notification function must be 
called before your programmed operator can use 
the Query Host Update function. 

Parameters Required When Called 
Data String: 

Length: 
PS Position: 

One-character short name of the 
host presentation space. 
NA (1 is implied). 
NA 

Values Returned 

Return 
Code Def'mition 
0 No updates have been made since the last call. 

1 An invalid host presentation space was specified, one that was 
labeled with an invalid name. 

8 No prior Start Host Notification function was called for the host 
presentation space ID. 

9 A system error was encountered. 

21 The OIA was updated. 

22 The presentation space was updated. 

23 The OIA and the host presentation space were updated. The Entry 
Level Emulation Program can not distinguish between OIA and 
presentation space updates. 

3-32 Programming Guide 



Query Session Status 

Query Session Status (22) 

Query Session Status provides session-specific 
information. 

Parameters Required When Called 

Data String: 

Length: 
PS Position: 

Short name of the target 
presentation space plus 17 bytes 
for returned data 
18 bytes 
NA 

Values Returned 

Data String 

Byte 

Position 1 

A data string of 18 bytes is returned. The bytes 
are defined below. 

Definition 
Short name (PSID). This can contain: 

• The one-letter short name of the host presentation 
space 

• A blank or null indicating a function call against the 
host presentation space (if connected). 

If a "generic" request has been made, the actual PSID will 
be substituted in the string that is returned. 

Positions 2-9 Reserved 

Position 10 Session type (where C = CUT Host) 

Chapter 3. EEHLLAPI Functions 3-33 



Query Session Status 

Byte Definition 
Position 11 For the Entry Emulator the returned value will always be 0. 

Position 12 Number of rows in the host presentation space, expressed as 
a binary number. 

Position 14 Number of columns in the host presentation space, expressed 
as a binary number. 

Positions Reserved 
16-17 

Position 18 Reserved 

Return Codes 

Return 
Code Explanation 
0 Query Session Status was successful. 

1 The session requested was invalid. 

2 An invalid string length was made. This code will not be returned 
for all programming languages. 

9 A system error was encountered. 

3-34 Programming Guide 



Query Sessions 

Query Sessions (10) 

Query Sessions, in the case of the Entry 
Emulator, returns a 12-byte data string 
describing the host session. The data string 
contains the short name, session type, and 
presentation space size of the host session. 

If this function is to be used in 3270 PC 
applications as well as in Entry Emulation 
applications, you should know that this function 
will return one 12-byte descriptor for each 
session type available ( excluding WS CTRL). 
This means a potential 144 bytes could be 
returned (12 sessions X 12 bytes) in a 3270 PC 
environment. 

Parameters Required When Called 
Data String: 
Length: 
PS Position: 

Preallocated string of 12 bytes. 
From 12 to 144 bytes. 
NA 

Values Returned 

Data String 

The returned data string contains the short 
name, host session type, and PS size of the host 
session. 

Chapter 3. EEHLLAPI Functions 3-35 



Query Sessions 

Byte 

Position 1 

The format of each 12-byte session descriptor is 
as follows: 

Definition 
Short name of session 

Positions 2-9 Long name of session. For Entry Level Emulation 
Program this is HOSTl. 

Position 10 Session type (H = host). For 3270 PC N = Notepad and 
P=PC. 

Positions 11-12 Host presentation space size (this is a binary number and 

Return 
Code 

0 

2 

9 

is not in display format) 

Length 

The number of configured sessions will always be 
1 for the Entry Level Emulation Program. 

Return Code: The following are valid: 

Explanation 

Query Sessions was successful. 

An improper string size was specified; the string is too small. 
(Note that here and in other functions the ability to verify actual 
string size is language dependent.) 

A system error was encountered. 

Notes on Using This Function 
A maximum of 1 session (host) can exist in an 
Emulator environment. 

3-36 Programming Guide 



Query System 

Query System (20) 

An EEHLLAPI application program can use 
Query System to determine the level of the 
Entry Level Emulation Program support and 
other system-related values. This function 
returns a string with the appropriate system 
data. Most of this information is for use by a 
service coordinator when you call the IBM 
Support Center after receiving a Return Code 9 
(a system error was encountered). 

The bytes in this returned string are defined 
below under "Values Returned." 

Parameters Required When Called 

Data String: 
Length: 
PS Position: 

Preallocated string of 35 bytes. 
NA (Implied length is 35). 
NA 

Values Returned 

Data String 

A data string of 35 bytes is returned. The bytes 
are defined as follows: 

Byte Definition 
Position 1 EEHLLAPI version number 

Positions 2-3 EEHLLAPI level number 

Positions 4-9 EEHLLAPI date (month, date, year-for service purposes 
only) 

Position 10 LIM version number (only valid for LIMs provided on the 
Entry Emulator diskette; otherwise, LIM number= 0) 

Chapter 3. EEHLLAPI Functions 3-37 



Query System 

Byte Definition 

Positions 11-12 LIM level number 

Position 13 Hardware base, where P= PC or PC XT, A= Personal 
Computer AT, and U=Unable to Determine 

Position 14 Control program type, where E = Entry Emulator. 

Position 15 Control program level, where if an E is returned, then 
l=l.XX. 

Position 16 Reserved 

Positions 17-18 NLS table code for 3270 PC. Reserved for Entry 
Emulator. 

Position 19 Reserved 

Positions 20-23 Extended Error Code 1. This is a printable ASCII string 
representing a hex word giving the EEHLLAPI 
component ID and system error number for that function 
(for service purposes only). 

Positions 24-27 Extended Error Code 2. This is a printable ASCII string 
representing a fault symptom code for the last internal 
system error.* 

Positions 28-35 Reserved. 

Return 
Code 

0 

2 

9 

*In general, extended error codes represent 
internal diagnostic information, such as the 
contents of the computer register which 
indicated the system error and contained the bad 
internal code. 

Return Codes 

Explanation 

Query System was successful; data string has been returned. 

Improper string size (string too small). Note that here and in other 
functions the ability to verify actual string size is language 
dependent. 

A system error was encountered. 

3-38 Programming Guide 



Query System 

Notes on Using This Function 

Your EEHLLAPI program should include a 
check of the return code for all function calls as 
a prerequisite for continuing your program. 

• If the return code is good, the program should 
continue. 

• If the return code is "9" (system error), your 
EEHLLAPI program should call a subroutine 
that requests Function 20 Query System. 
The subroutine could extract extended error 
code information to help your service 
coordinator determine the cause of the system 
error. When you contact your service 
coordinator, be prepared to give the 
system-error information generated by 
Function 20. 

Chapter 3. EEHLLAPI Functions 3-39 



Receive File 

Receive File (91) 

Receive File is used to receive a file from the 
host session to the PC session. It is used the 
same way as the "receive" command is used in 
the Entry Level Emulation Program. However, 
the Receive File function may be called by an 
EEHLLAPI application program. 

Parameters Required When Called 
Data String: 

Length: 

PS Position: 

The same receive parameters as 
are usual for an Entry Level 
Emulation Control Program file 
transfer request. 
Length of the data string or 
EOT in the data string. 
Drive number 

The drive number indicates the location of the 
RECEIVE.COM file, where: 

Drive A= 1 
Drive B = 2 

Drive Z = 26 

If RECEIVE.COM is located on a fixed disk, the 
file must be in the current subdirectory. 

3-40 Programming Guide 



Receive File 

Values Returned 

Return 
Code 
2 

9 

Return 
Code 
3 

You can receive three kinds of return codes: 

1. EEHLLAPI Return Codes 

If a problem was encountered with the way 
you specified your data string or with the 
system, you would receive one of these return 
codes: 

E:s:planation 
You have specified a data string length that is too long for the 
EEHLLAPI buffer. The file transfer was unsuccessful. 

A system error was encountered. 

2. File Transfer Message Codes 

The message number of the Entry Level 
Emulation Program file transfer messages 
may be returned. For example, if you are 
using the Entry Level Emulation Program, 
file transfer message "TRANS003 File transfer 
complete" would send back a return code of 3. 
For a complete list of the file transfer 
messages, refer to Appendix A in the IBM PC 
3270 Emulation Program, Entry Level, User's 
Guide. 

An example of a message you might receive is 
listed below: 

E:s:planation 
File transfer complete. 

Chapter 3. EEHLLAPI Functions 3-41 



Receive File 

3. DOS Extended Error Codes 

DOS extended error codes are preceded by the 
number "3" (added by EEHLLAPI). To 
determine the DOS extended error code, 
subtract 300 and reference the IBM DOS 
Technical Reference Guide. 

Notes on Using This Function 
1. You must not be currently connected or have 

the session reserved before using Receive 
File. If you are linked to the host session 
already, you will receive File Transfer 
Message 7, "Cannot link to host: file transfer 
cancelled." 

Therefore: 

• If you are connected (with Function 1 
Connect Presentation Space) to the host 
session, you must disconnect (using 
Function 2 Disconnect Presentation 
Space). 

• If you have reserved (with Function 11 
Reserve) the host session, you must 
release it (using Function 12 Release). 

2. Special considerations for providing a path 
back to COMMAND.COM exist when you use 
this function. 

The parent application (EEHLLAPI) causes a 
subprocess program (like RECEIVE.COM) to 
be loaded, and the subprocess program 
inherits the parent's environment. The 
EEHLLAPI environment segment contains 
the path back to the COMMAND.COM used 
when EEHLLAPI was loaded. 

3-42 Programming Guide 



Receive File 

While some subprocess applications are 
running, COMMAND.COM may be overlaid 
and may have to be reloaded. Therefore, the 
COMMAND.COM must be available on the 
same path as EEHLLAPI. 

It also means that RECEIVE.COM must be in 
the current directory when you issue a call to 
Function 91 RECEIVE File. This is not 
necessarily the root directory or the directory 
in use when EEHLLAPI was loaded, all of 
which may be changed by the time the 
Receive File function is executed. 
RECEIVE.COM must be in the current 
directory. 

3. Two sets of parameters under Function 9 Set 
Session Parameters are related to this 
function: 

Parameter Explanation 
QUIET Keeps SEND and RECEIVE messages from being 

displayed. EEHLLAPI will keep track of the message 
number and discard the message. 

NOQUIET Restores the display of messages. 

Parameter Explanation 
TIMEOUT=N A one-character indicator from the table below will tell 

EEHLLAPI how many 30 second cycles (how many 
messages with TRANSOlO) it should accept before issuing 
a CTRL + BREAK itself. 

Character Value Character Value 
(in (in 

minutes) minutes) 

1 .5 8 4.0 
2 1.0 9 4.5 
3 1.5 J 5.0 
4 2.0 K 5.5 
5 2.5 L 6.0 
6 3.0 M 6.5 
7 3.5 N 7.0 

Chapter 3. EEHLLAPI Functions 3-43 



Receive File 

Parameter Explanation 

TIMEOUT=0 Timeout messages will be displayed every 30 seconds 
until the operator presses CTRL + BREAK (these 
messages would not be visible in the QUIET mode). This 
is standard for operator usage of SEND and RECEIVE. 

Considerations for Using 
Functions 90 and 91 

Functions 90 and 91 provide powerful additional 
abilities to high-level language applications, but 
they may require some effort to be usable in the 
language in which you choose to write your 
EEHLLAPI program. 

This is because when DOS loads a program, it 
normally loads it so that a new program "owns" 
all of memory from the Program Segment Prefix 
(PSP) to the highest end of memory, including 
the memory occupied by COMMAND.COM 
(which contains the loader). 

A well-behaved program uses the DOS 
SETBLOCK function call when it receives 
control from COMMAND.COM to shrink its 
allocated memory block down to the size it really 
needs. This action frees unneeded memory, which 
can then be used for loading subsequent 
programs (and the loader, if necessary). 

You should also be aware that the MAX ALLOC 
field and MIN ALLOC field parameters in the 
EXE file header affect the memory size. 

3-44 Programming Guide 



Receive File 

Functions 90 and 91 can only operate if there is 
enough free memory for the appropriate program 
to be loaded. If insufficient space is available, 
EEHLLAPI will return a 308 return code 
("Insufficient memory"). In general, Interpretive 
BASIC and C do not occupy all of memory but 
may still produce a 308 return code if sufficient 
memory is not available for the subsequent 
program. 

If left unchanged, Compiled BASIC, PASCAL, 
and COBOL, when linked with their appropriate 
LIMS and loaded, will be given all of the 
available memory in the DOS session. Since 
there is no uniform way for EEHLLAPI to 
perform a SETBLOCK function for all languages 
and all situations, it does not do it. It is your 
responsibility to implement the DOS SETBLOCK 
function (DOS interrupt X'21' AH=X'4A') 
suitable to your high-level language to shrink 
the application module to a minimum size so that 
SEND.COM and RECEIVE.COM can be 
executed. 

For more information, refer to the IBM Personal 
Computer Disk Operating System Technical 
Reference. 

Chapter 3. EEHLLAPI Functions 3-45 



Release 

Release (12) 

Release unlocks the host presentation space that 
was reserved using Function 11 Reserve. 

Parameters Required When Called 

Data String: NA 
Length: NA 
PS Position: NA 

Values Returned 

Return 
Code Explanation 
0 Release was successful. 

1 Your EEHLLAPI program is not connected to a valid host 
presentation space. 

9 A system error was encountered. 

Notes on Using This Function 

If you forget to Release a reserved host 
presentation space (reserved by using Function 
11 Reserve) before ending your EEHLLAPI 
application, you will be locked out of that 
session until another application releases it or 
until you call Function 21 Reset System. 

3-46 Programming Guide 



Reserve 

Reserve (II) 

Reserve locks the host presentation space to 
prevent input from the terminal operator. 

The reserved host presentation space remains 
locked until it is either unlocked by Function 12 
Release or Function 21 Reset System. 

Parameters Required When Called 

Data String: NA 
Length: NA 
PS Position: NA 

Values Returned 

Return 
Code Explanation 

0 Reserve was successful. 

1 Your EEHLLAPI program is not connected to the host 
presentation space. 

9 A system error was encountered. 

Notes on Using This Function 

If your EEHLLAPI application program is 
sending a series of transactions to the host, you 
may need to prevent the user from gaining access 
to that session until your application processing 
is complete. 

Chapter 3. EEHLLAPI Functions 3-47 



Reset System 

Reset System (21) 

The Reset System function reinitializes the 
resident interface module EEHLLAPI. Event 
notification is stopped. The session parameter 
options are reset to their defaults. The reserved 
host session is released. The host presentation 
space is disconnected. 

You can use Reset System during initialization 
or at program termination to reset the system to 
a known initial condition. 

Parameters Required When Called 

Data String: NA 
Length: NA 
PS Position: NA 

Values Returned 

Return 
Code Definition 

0 Reset System was successful. 

9 A system error was encountered. 

3-48 Programming Guide 



Search Field 

Search Field (30) 

Search Field examines a field within the 
connected host presentation space for the 
occurrence of a string. If the target string is 
found, this function returns the decimal position 
of the string numbered from the beginning of the 
host presentation space. (For example, the "row 
1, column 1" position is numbered "l", or the 
"row 5, column 1" position is numbered "321".) 

This function can be used to search for either 
protected or unprotected fields but only in a 
field-formatted host presentation space. 

This function returns "O" if the string is not 
found. 

Parameters Required When Called 
Data String: 
Length: 

PS Position: 

Target string for search. 
Length of the target data string 
or an EOT in the data string if 
in EOT mode. 
Position within the host 
presentation space where the 
search is to begin. Valid only if 
SRCHFROM parameter has 
been specified using Function 9, 
Set Session Parameters. 

Chapter 3. EEHLLAPI Functions 3-49 



Search Field 

Values Returned 

Length: 0 means that the string was 
not found. 

> 0 means that the string was 
found at the host 
presentation space position. 

Return Code 

Return 
Code Explanation 

0 Search Field was successful. 

1 Your program has not issued a CONNECT to the 
emulated host session. 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

24 The search string was not found, or the screen was 
unformatted. 

Notes on Using This Function 
Two sets of parameters under Function 9 Set 
Session Parameters related directly to search 
operations: 

Parameter Explanation 
SRCHALL Search will scan the entire host presentation space. 

SRCHFROM Search will start from a specified beginning position. 

Parameter Explanation 
SRCHFRWD Search will be performed in an ascending direction. 

SRCHBKWD Search will be performed in a descending direction. A 
Search will be satisfied if the first character of the requested 
string starts within the bounds specified for the Search. 

3-50 Programming Guide 



Search Field 

You can use Function 9 Set Session 
Parameters to determine whether your searches 
will search forward (SRCHFRWD) or search 
backward (SRCHBKWD). This is important 
because search will not wrap from the bottom of 
the screen to the top. 

Chapter 3. EEHLLAPI Functions 3-51 



Search Presentation Space 

Search Presentation Space (6) 

Search Presentation Space lets your 
EEHLLAPI program examine the host 
presentation space for the occurrence of a 
specified string. 

Parameters Required When Called 

Data String: 
Length: 

PS Position: 

Target string of Search. 
Length of the target data string 
or an EOT in the data string if 
in EOT mode. 
Position within the host 
presentation space where the 
search is to begin. Valid only if 
SRCHFROM parameter has 
been specified using Function 9, 
Set Session Parameters. 

Values Returned 

Length 0 means that the string was 
not found. 

3-52 Programming Guide 

> 0 means that the string was 
found at the host 
presentation space position. 



Search Presentation Space 

Return Code 

Return 
Code Explanation 
0 Search Presentation Space was successful. 

1 The host presentation space was not connected. 

2 An error was made in specifying parameters (for 
example, the EOT character was specified under 
Set Session Parameters, but not found in the 
data string). 

7 The host presentation space position is invalid. 

9 A system error was encountered. 

24 The search string was not found. 

Notes on Using This Function 
• Search Presentation Space scans the host 

presentation space for the first occurrence of 
the specified string. 

If the string is not located, then the 
Returning Length is set to 0. 

If the string is found, then the Returning 
Length is set to the string's beginning 
location in the host presentation space. 
This location represents a position in the 
host presentation space based on the 
layout where the upper left corner ("row 1, 
column 1") is location 1 and the bottom 
right location is 1920 for the Entry Level 
Emulation Program. 

• The Search Presentation Space function is 
useful in determining when the host 
presentation space is available. If your 
programmed operator is expecting a specific 
prompt or message before sending data, 
Search Presentation Space allows you to 
check for the prompt message before 

Chapter 3. EEHLLAPI Functions 3-53 



Search Presentation Space 

continuing. If the expected prompt has not 
yet been sent, your program can call 
Function 18 Pause or Function 24 Query 
Host Update and continue to call Search 
Presentation Space until a zero return code 
is received. 

• Two sets of parameters under Function 9 Set 
Session Parameters relate directly to 
Search functions: 

Parameter 
SRCHALL 

SRCHFROM 

Parameter 

SRCHFRWD 

SRCHBKWD 

Explanation 
Search will scan the entire host presentation space. 

Search will start from a specified beginning position. 

Explanation 
Search will be performed in an ascending direction. 

Search will be performed in a descending direction. A 
Search will be satisfied if the first character of the requested 
string starts within the bounds specified for the Search. 

Search Presentation Space normally checks 
the entire host presentation space. However, 
you can use Function 9 to specify 
SRCHFROM. In this mode, you specify a 
starting position for the search operation. 
Then the function looks for the designated 
string from that starting position through the 
end of the host presentation space. This 
option is useful if you are looking for a 
keyword that may have multiple occurrences 
in the host presentation space. 

You can also use Function 9 to specify 
SRCHBKWD. Then the search operation 
locates the last occurrence of the string. 

3-54 Programming Guide 



Send File 

Send File (90) 

Send File is used to send a file from the PC 
session where EEHLLAPI is running to a host 
session. It is used the same way the "send" 
command is used in the Entry Level Emulation 
Program. However, the Send File function may 
be called by an EEHLLAPI application program. 

Parameters Required When Called 
Data String: 

Length: 

PS Position: 

The same send parameters as 
are usual for the Entry 
Emulator file transfer request. 
Length of the target data string 
or EQT in the data string if in 
EOT mode. 
Drive number 

The drive number indicates the location of the 
SEND.COM file where: 

Drive A= 1 
Drive B = 2 

Drive Z = 26 

If SEND.COM is located on a fixed disk, the file 
must be in the current subdirectory. 

Chapter 3. EEHLLAPI Functions 3-55 



Send File 

Values Returned 

Return 
Code 

2 

9 

Return 
Code 

3 

4 

You can receive three kinds of return codes: 

1. EEHLLAPI Return Codes 

If a problem was encountered with the way 
you specified your data string or with the 
system, you will receive one of these return 
codes: 

Explanation 

You have specified a data string length that is too long for the 
EEHLLAPI buffer. File transfer was unsuccessful. 

A system error was encountered. 

2. File Transfer Message Codes 

The message number of the Entry Level 
Emulation Program file transfer messages 
may be returned. For example, if you are 
using the Entry Level Emulation Program, 
file transfer message "TRANS003 File transfer 
complete" would send back a return code of 3. 
For a complete list of the file transfer 
messages, refer to Appendix A in the IBM PC 
3270 Emulation Program, Entry Level, User's 
Guide. 

The most common messages you might receive 
are listed below: 

Explanation 
File transfer complete. 

File transfer complete with records segmented. 

3-56 Programming Guide 



Return 
Code 

301 

302 

305 

308 
310 

311 

Send File 

3. DOS Extended Error Codes 

The following DOS extended error codes are 
valid, preceded by the number "3" (added by 
EEHLLAPI). 

Explanation 
Invalid function number 

File not found 

Access denied 

Insufficient memory 

Invalid environment 

Invalid format 

Notes on Using This Function 
1. You must not have issued a connect or 

reserve function call before using Send File. 
If you are linked to the host session already, 
you will receive File Transfer Message 7, 
"Cannot link to host: file transfer cancelled." 

Therefore: 

• If you are connected (with Function 1 
Connect Presentation Space) to the host 
session, you must disconnect (using 
Function 2 Disconnect Presentation 
Space). 

• If you have reserved (with Function 11 
Reserve) a host session, you must release 
it (using Function 12 Release). 

2. Special considerations for providing a path 
back to COMMAND.COM exist when you use 
this function. 

Chapter 3. EEHLLAPI Functions 3-57 



Send File 

The parent application (EEHLLAPI) causes a 
subprocess program (like SEND.COM) to be 
loaded, and the subprocess program inherits 
the parent's environment. The EEHLLAPI 
environment segment contains the path back 
to the COMMAND.COM used when 
EEHLLAPI was loaded. 

While some subprocess applications are 
running, COMMAND.COM may be overlaid 
and may have to be reloaded. Therefore, the 
COMMAND.COM must be available on the 
same path as EEHLLAPI. 

It also means that SEND.COM must be in the 
current directory when you issue a call to 
Function 90 Send File. This is not 
necessarily the root directory or the directory 
in use when EEHLLAPI was loaded, both of 
which may be changed by the time Send File 
function is executed. SEND.COM must be in 
the current directory. 

3. Two sets of parameters under Function 9 Set 
Session Parameters are related to this 
function: 

Parameter Explanation 
QUIET Keeps SEND and RECEIVE messages from being displayed. 

EEHLLAPI will keep track of the message number and 
discard the message. 

N02UIET Restores the display of messages. 

3-58 Programming Guide 



Send File 

Parameter Explanation 
TIMEOUT=N A one-character indicator from the table below will tell 

EEHLLAPI how many 30 second cycles (how many messages 
with trans0lO) it should accept before issuing a 
CTRL + BREAK itself. 

Character Value Character Value 
(in (in 

minutes) minutes) 

1 .5 8 4.0 
2 1.0 9 4.5 
3 1.5 J 5.0 
4 2.0 K 5.5 
5 2.5 L 6.0 
6 3.0 M 6.5 
7 3.5 N 7.0 

TIMEOUT=0 Timeout messages will be displayed every 30 seconds until 
the operator presses CTRL + BREAK (these messages would 
not be visible in the QUIET mode). This is standard for 
operator usage of SEND and RECEIVE. 

For additional information, see "Considerations 
for Using Functions 90 and 91" on page 3-44. 

Chapter 3. EEHLLAPI Functions 3-59 



Send Key 

Send Key (3) 

Send Key sends a keystroke or a string of 
keystrokes to the host presentation space. Your 
EEHLLAPI application program must use 
Function 1 Connect Presentation Space before 
sending keystrokes. 

You define the string of keystrokes to be sent 
with the calling data string parameter. The 
keystrokes appear to the target session as though 
they were entered by the terminal operator. You 
can also send all attention identifier (AID) keys 
such as Enter, P Al, etc. All the fields that are 
protected for input or are numeric only must be 
treated accordingly. 

Parameters Required When Called 

Data String: 

Length: 

PS Position: 

A string of keystrokes, 
maximum 255. 
Length of the target data string 
or an EOT in the data string if 
in EOT mode. 
NA 

3-60 Programming Guide 



Send Key 

Values Returned 

Return 
Code Explanation 
0 The keystrokes were sent; status is normal. 

1 Your program did not issue a connect to the emulated host session. 

2 An incorrect parameter was passed to EEHLLAPI. 

4 The host session was busy; all of the keystrokes could not be sent. 

6 Input to the target session was inhibited or rejected; all of the 
keystrokes could not be sent. 

9 A system error was encountered. 

Notes on Using This Function 
The following guidelines may help you use the 
Send Key function more efficiently: 

• Keystrokes cannot be sent to a session whose 
keyboard is locked; for example, when input 
is inhibited. You can check this with 
Function 4, Wait. 

• Keystroke input is no longer accepted after 
the first AID character is received. The 
remainder of the input data string may be 
rejected if the host is busy. 

• To send special Control keys, a compound 
character coding scheme is used. This coding 
scheme uses two ASCII characters to indicate 
one keystroke and comprises the @ sign 
followed by the keycode. For example, to 
type in the sequence "LOGON ABCDE" 
followed by the Enter key, you would code 
the string "LOGON ABCDE@E." A complete 
list of these keycodes is represented in 
"Keyboard Mnemonics" on page 3-63. 

Chapter 3. EEHLLAPI Functions 3-61 



Send Key 

This compound coding technique allows an 
ASCII string representation of all necessary 
keystroke codes without requiring the use of 
complex hexadecimal key codes. The string 
length passed to the application should count 
these compound keystrokes as being 2 bytes 
long. 

• You can specify an escape character other 
than "@" using Function 9 Set Session 
Parameters and specifying another 
character under "ESC = n." 

• The maximum length of a string that can be 
passed to the Send Key function in one 
request is 255 characters. However, your 
application program can make multiple calls 
to the Send Key function to transmit longer 
keystroke strings. 

• Users needing higher performance should use 
Function 33 Copy String to Field or 
Function 15 Copy String to Presentation 
Space rather than send keystrokes with 
Function 3. 

3-62 Programming Guide 



Send Key 

Keyboard Mnemonics 

This set of keyboard mnemonics is provided to 
allow you to use ASCII characters to represent 
the special function keys of the PC keyboard. A 
mnemonic abbreviation code makes these special 
keys easy to remember. An alphabetic key code 
has been used for the most common keys. For 
example, the Clear key is "C", the Tab key is 
"T", etc. Please note that the upper and lower 
case alphabetic characters are mnemonic 
abbreviations for different keys. 

@I Insert @TTab @B Backtab 
@C Clear 
@D Delete 
@E Enter 

@L Cursor Left 
@N New Line 
@P Print 

@U Cursor Up 
@V Cursor Down 
@Z Cursor Right 

@F Erase EOF 

@0 Home 
@1 PFl 
@2 PF2 
@3 PF3 
@4 PF4 
@5 PF5 
@6 PF6 

@A@C - Test 

@R Reset 

@7 PF7 
@8 PF8 
@9 PF9 
@a PFlO 
@b PFll 
@c PF12 
@d PF13 

@A@D - Word Delete 
@A@F - Erase Input 
@A@H - System Request 
@A@I - Alt+ Insert 
@A@J - Cursor Select 
@A@P -Ident 
@A@Q - Attention 
@A@R - Device Cancel 

@e PF14 
@f PF15 
@g PF16 
@h PF17 
@i PF18 
@j PF19 
@k PF20 

@1 PF21 
@m PF22 
@n PF23 
@o PF24 
@x PAl 
@y PA2 

@A@d - DOC Mode 
@A@e - Wrap 
@A@f - Change Format 
@A@m - Cursor Position 
@S@x-Dup 
@S@y - Field Mark 

Chapter 3. EEHLLAPI Functions 3-63 



Send Key 

AID Key Mnemonics 

The AID key mnemonics set by Function 3 Send 
Key are listed below: 

@l PFl @8 PFS @f PF15 @m PF22 
@2 PF2 @9 PF9 @g PF16 @n PF23 
@3 PF3 @a PFlO @h PF17 @o PF24 
@4 PF4 @b PFll @i PF18 @x PAl 
@5 PF5 @c PF12 @j PF19 @y PA2 
@6 PF6 @d PF13 @k PF20 
@7 PF7 @e PF14 @l PF21 

@A@C · Test @C. Clear 
@A@H • System Request @E. Enter 
@A@J - Cursor Select 
@A@Q- Attn 

lit, 
You can specify an escape character other than 
"@" using an EOT delimiter defined using 
Function 9 Set Session Parameters and 
specifying another character under "ESC = n." 

Note: The length of the data string is explicitly 
defined. You can also define the length 
implicitly using an end-of-transmission 
(EOT) delimiter using Function 9 Set 
Session Parameters. 

3-64 Programming Guide 



Set Session Parameters 

Set Session Parameters (9) 

Set Session Parameters lets you change 
certain default session options in EEHLLAPI, 
the resident interface module. 

Parameters Required When Called 
Data String: 

Length: 

PS Position: 

String containing the session 
parameters.* 
Explicit length of the data 
string (EOT mode is not 
allowed). 
NA 

*The Calling Data String can contain any of the 
parameters below. The parameters should be 
placed on the Calling Data String line, separated 
by commas or blanks. The sets of parameters are 
explained in terms of the functions they affect. 
The default is underlined. 

The next three sets of parameters affect Copy 
functions. The parameter EOT = n also affects 
Functions 90 (Send File) and 91 (Receive File): 

Parameter Explanation 
ATTRB Pass back all codes that do not have an ASCil equivalent as 

their original values. 

NOATTRB Convert all unknown values to blanks. 

Parameter Explanation 
STRLEN An explicit length will be passed for all strings. 

STREOT String lengths are not explicitly coded. They are terminated 
with an EOT (End of Text) character. 

Chapter 3. EEHLLAPI Functions 3-65 



Set Session Parameters 

Parameter Explanation 

EOT=n Allows you to specify the EOT character for string 
terminators (in STREOT mode). Binary zero is the default. 
Do not leave a blank after the equals sign. 

The next two sets of parameters affect Function 3 
Send Key: 

Parameter Explanation 

ESC=n Specify the escape character for keystroke mnemonics(@ is 
the default). Do not leave a blank after the equals sign. 
Blank is not a valid character. 

Parameter Explanation 

AUTORESET The application will attempt to reset all inhibited conditions 
by prefixing all strings of keys sent using Function 3 Send 
Key with a reset. 

NORESET Do not AUTORESET. 

The next two sets of parameters affect Search 
functions: 

Parameter Explanation 

SRCHALL Search will scan the entire host presentation space. 
SRCHFROM Search will start from a specified beginning position. 

Parameter Explanation 
SRCHFRWD Search will be performed in an ascending direction. 
SRCHBKWD Search will be performed in a descending direction. A 

search will be satisfied if the first character of the requested 
string starts within the bounds specified for the search. 

3-66 Programming Guide 



Set Session Parameters 

The next set of parameters relates to using 
TRACE to debug your EEHLLAPI program. 
Refer to "Using Trace to Help You Debug Your 
Program" on page 4-16 for more information 
about this parameter. 

Parameter Explanation 
TRON 

TROFF 

Turns trace on. 

Turns trace off. 

The trace function may conflict with messages on the screen 
from languages or applications that manage their own 
displays. For more information about Trace messages, refer 
to Appendix A, "EEHLLAPI Messages." 

The next set of parameters affects Function 4 
Wait: 

Parameter Explanation 
TWAIT 

LWAIT 

NWAIT 

Wait will wait up to a minute before timing out on 
XCLOCK or XSYSTEM. 

Wait will wait until XCLOCK/XSYSTEM clears. This 
option is not recommended since control does not return to 
your application until the host is available. 

Wait checks status and returns immediately (no wait). 

Two parameters under Function 9 affect 
Disconnect: 

Parameter Explanation 
CONPHYS During the Connect, jump to the requested presentation 

space (Do a physical connect). 

During the Disconnect, jump to the PC session where the 
EEHLLAPI application is running (Do a physical 
disconnect). 

CONLOG During the Connect, do not jump to the requested 
presentation space (Do a logical connect). 

During the Disconnect, do not jump to the PC session. Stay 
at the current presentation space - could be at the HOST or 
PC (Do a logical disconnect). 

Chapter 3. EEHLLAPI Functions 3-67 



Set Session Parameters 

This set of parameters affects Function 18 Pause: 

Parameter Explanation 
FPAUSE If full-duration pause, it will pause for however long you 

specified in Set Session Parameters. 
!PAUSE Interruptible pause. Function 23 Start Host Notification 

and a host event will satisfy a Pause. 

The two next sets of parameters affect Function 
90 Send and Function 91 Receive: 

Parameter Explanation 
QUIET Keeps SEND and RECEIVE messages from being displayed. 

EEHLLAPI will keep track of the message number and 
discard the message. 

NOQUIET Restores the display of messages. 

Parameter Explanation 
TIMEOUT=N A one-character indicator from the table below will tell 

EEHLLAPI how many 30 second cycles (how many messages 
with TRANSOl0) it should accept before issuing a 
CTRL + BREAK itself. 

Character Value Character Value 
(in (in 

minutes) minutes) 

1 .5 8 4.0 
2 1.0 9 4.5 
3 1.5 J 5.0 
4 2.0 K 5.5 
5 2.5 L 6.0 
6 3.0 M 6.5 
7 3.5 N 7.0 

TIMEOUT=0 Timeout messages will be displayed every 30 seconds until 
the operator presses CTRL + BREAK (these messages would 
not be visible in the QUIET mode). This is standard for 
operator usage of SEND and RECEIVE. 

3-68 Programming Guide 



Set Session Parameters 

Values Returned 

Return 
Code Explanation 

0 The session parameters have been set. 

2 The length of the parameter list is invalid. 

9 A system error was encountered. 

Chapter 3. EEHLLAPI Functions 3-69 



Start Host Notification 

Start Host Notification (23) 

The Start Host Notification function begins the 
process by which your EEHLLAPI application 
program determines if the host PS/OIA have been 
updated. This version of EEHLLAPI does not 
distinguish between PS and OIA updates. 

After using this function, your application 
program can use Function 24 Query Host 
Update to determine what specific host event 
has occurred. 

Parameters Required When Called 

Position 
Position 1 

Position 2 

Data String: 

Length: 

PS Position: 

Preallocated string. See Note 
below. 
The length of the host event 
buffer (256 recommended). 
NA 

Note: The Calling Data String contains these 
elements: 

Def'mition 
One of the following: 

• A specific host presentation space short name (PSID) 

• A blank or null indicating a request against the host 
presentation space 

The character B asking for notification of both host 
presentation space and OIA updates 

Positions 3-6 The 4-byte address of a preallocated buffer space to be 
used internally for enqueuing and dequeuing of host 
events. The suggested size of this space is 266 bytes, 
specified in the calling "Length" parameter.* 

*Internally, this address is represented as a 
2-byte offset followed by a 2-byte segment address 
of the buffer. 

3-70 Programming Guide 



Start Host Notification 

All supported languages may use Function 17 
Storage Manager Subfunction 1 Get Storage 
to obtain a buffer block of storage. Get Storage 
allows all languages to get additional storage 
and to free smaller blocks of storage as needed. 

Function 17 Storage Manager Subfunction 1 
Get Storage returns a 4-byte address in the 
"Data String" parameter that can be 
concatenated with the first data string bytes for 
this function. 

The following restrictions exist for individual 
languages: 

• PASCAL or C: You choose either to use the 
Storage Manager function to provide the 
address of the buffer or to provide your own 
address pointer capability to point to a buffer 
structure in your data area. 

• Interpretive or Compiled BASIC: You must 
use the Storage Manager function since 
BASIC variables do not remain in a fixed 
location. 

• COBOL: You may use the Storage Manager 
function to provide the needed 4-byte address. 
Otherwise, your EEHLLAPI program must fill 
the space with 4 bytes of binary zeros (low 
value) so that the COBOL LIM will know 
that the buffer following immediately after 
the 4 bytes of binary zeros is a continuing 
part of that data structure. In this case, the 
COBOL LIM will provide the address itself 
for a common EEHLLAPI interface. 

Note: If you allocate buffer storage with any 
language within your EEHLLAPI program 
(rather than using Function 17 Storage 
Manager), you must call Function 25 
Stop Host Notification before you exit 

Chapter 3. EEHLLAPI Functions 3-71 



Start Host Notification 

EEHLLAP I. (You could also use Function 
21 Reset System to accomplish the same 
purpose). Failure to do so may cause 
subsequent programs to fail 
unpredictably with storage overlays. 

Values Returned 

Return 
Code Definition 

0 Start Host Notification was successful. 

1 An invalid host presentation space was specified. 

2 An error was made in designating parameters. 

9 A system error was encountered. 

Notes on Using This Function 

In order to use this function, Storage Manager 
can be utilized. A Get Storage call should be 
made. See "Storage Manager (17)" on page 3-7 4. 

3-72 Programming Guide 



Stop Host Notification 

Stop Host Notification (25) 

The Stop Host Notification function disables 
the capability of Function 24 Query Host 
Update to determine if the host PS/OIA have 
been updated. This function also stops host 
events from affecting the Pause function. 

Parameters Required When Called 

Data String: 

Length: 
PS Position: 

One-character short name of the 
target presentation space ID. 
NA (implied length of 1 byte). 
NA 

Values Returned 

Return 
Code Def'mition 

0 Stop Host Notification was successful. 

1 An invalid host presentation space was specified, one labeled with 
an invalid name. 

8 No previous Start Host Notification was issued. 

9 A system error was encountered. 

Notes on Using This Function 

After issuing Stop Host Notification, the 
Storage Manager subfunctions "Free Storage" 
or "Free All Storage" should be utilized if a 
previous "Get Storage" call was issued during 
Start Host Notification. See "Storage Manager 
(17)" on page 3-7 4. 

Chapter 3. EEHLLAPI Functions 3-73 



Storage Manager 

Storage Manager (17) 

The Storage Manager function is used in 
EEHLLAPI to allocate or deallocate queue 
storage for Function 23 (Start Host 
Notification). 

The Storage Manager function solves a storage 
allocation problem created by BASIC, but can be 
used with EEHLLAPI application programs 
written in other supported languages as well. 

Users of BASIC can use Storage Manager to 
overcome the problem of dynamic storage pools 
used by BASIC. 

The following restrictions exist for individual 
languages: 

• PASCAL or C: You choose either to use the 
Storage Manager function to provide the 
address of the buffer or to provide your own 
address pointer capability to point to a buffer 
structure in your data area. 

• Interpretive or Compiled BASIC: You must 
use the Storage Manager function since 
BASIC variables do not remain in a fixed 
location. 

3-7 4 Programming Guide 



Storage Manager 

• COBOL: You may use the Storage Manager 
function to provide the needed 4-byte address. 
Otherwise, your EEHLLAPI program must fill 
the space with 4 bytes of binary zeros (low 
value) so that the COBOL LIM will know 
that the buffer following immediately after 
the 4 bytes of binary zeros is a continuing 
part of that data structure. In this case, the 
COBOL LIM will provide the address itself 
for a common EEHLLAPI interface. 

Note: If you allocate buffer storage with any 
language within your EEHLLAPI program 
(rather than using Function 17 Storage 
Manager), you must call Function 25 
Stop Host Notification before you exit 
EEHLLAP I. (You could also use Function 
21 Reset System to accomplish the same 
purpose.) Failure to do so may cause 
subsequent programs to fail 
unpredictably with storage overlays. 

The preferred way to allocate storage for use by 
EEHLLAPI functions is to use the Storage 
Manager function. Three calls can be made to 
Storage Manager: 

• Get Storage 

• Free Storage 

• Free All Storage. 

Since each of these subfunctions has its own 
calling and returning parameters and generates 
its own set of return codes, each will be 
discussed as an individual subfunction. These 
subfunctions are identified to EEHLLAPI by 
passing the subfunction number in the calling 
"PS Position" parameter. 

Chapter 3. EEHLLAPI Functions 3-75 



Get Storage 

Get Storage 

Get Storage allocates a piece of the storage 
block to be used by an application as a queue 
structure for Start Host Notification. 

Parameters Required When Called 

Data String: 
Length: 

PS Position: 

NA (preallocated to 4 bytes). 
Size (in bytes) of the requested 
storage area. 
01 (for Get Storage). 

Values Returned 
The subfunction returns three pieces of 
information: 

• The Data String contains the storage address 
expressed as two binary words in offset 
segment order. This string should be used in 
Positions 3-6 in the Data String defined for 
Start Host Notification. 

• The Length parameter contains the storage 
block ID. 

3-76 Programming Guide 



Return 
Code 
0 

1 

2 

9 

10 

Get Storage 

• The Return Code, which is one of the 
following: 

Explanation 
The requested storage was allocated. 

You have requested more storage than is available. 

The LIM to which your EEHLLAPI application program is linked 
does not support this function. 

A system error was encountered. 

Storage Manager is not available. 

Notes on Using This Function 

For EEHLLAPI the Storage Manager function 
is designed to simulate the full functions 
provided on the 3270 PC HLLAPI. Warning: 
Users should ONLY use this function to 
allocate storage for Function 23, Start Host 
Notification. If you attempt to use the 
allocated storage for other purposes, the 
results are unpredictable. 

Chapter 3. EEHLLAPI Functions 3-77 



Free Storage 

Free Storage 
Free Storage frees the block of storage 
allocated by Subfunction 1 Get Storage. This 
function should be used after to a Stop Host 
Notification request in order to free "queue" 
memory created by a Get Storage call on Start 
Host Notification. 

Parameters Required When Called 

Data String: 
Length: 

PS Position: 

NA (preallocated to 4 bytes). 
ID of the storage block to be 
freed. 
02 (for Free Storage). 

Values Returned 

Return 
Code 
0 

2 

9 

10 

The subfunction returns these return codes: 

Explanation 
The storage has been freed. 

The storage block ID was invalid, or the LIM to which your 
EEHLLAPI application program is linked does not support this 
function. 

A system error was encountered. 

Storage Manager is not available. 

Once a block of storage has been allocated, the 
block remains the size of the original allocation. 
A subsequent request for storage will waste the 
excess storage in the previously allocated block. 

3-78 Programming Guide 



Free All Storage 

Free All Storage 

Free All Storage frees all allocated storage 
blocks. The storage blocks are regrouped into a 
single storage pool that is the same size as the 
original block of memory allocated. 

Parameters Required When Called 
Data String: 
Length: 
PS Position: 

NA (preallocated to 4 bytes) 
NA 
04 (for Free All Storage) 

Values Returned 

Return 
Code 
0 

2 

9 

10 

The size of the largest available block of storage 
is returned in the "Length" parameter. 

One of the following return codes is also 
returned: 

Explanation 
Free All Storage was successful. 

The LIM to which your EEHLLAPI application program is linked 
does not support this function. 

A system error was encountered. 

Storage Manager is not available. 

Chapter 3. EEHLLAPI Functions 3-79 



Wait 

Wait (4) 

Wait checks the status of the host presentation 
space. If the session is waiting on a host response 
(indicated by XCLOCK or XSYSTEM), the Wait 
function will cause EEHLLAPI to wait up to one 
minute to see if the condition clears. 

Parameters Required When Called 

Data String: NA 

Length: NA 

PS Position: NA 

Values Returned 
The following return codes are valid: 

Return 
Code Definition 

0 The keyboard is unlocked and ready for input. 

1 Your application program is not connected to a valid session. 

4 Timeout while still in XCLOCK or XSYSTEM. 

5 The keyboard is locked. 

9 A system error was encountered. 

3-80 Programming Guide 



Wait 

Notes on Using This Function 

Wait is used to give host requests like those 
made by Function 3 Send Key the time required 
to be completed. Using Function 9 Set Session 
Parameters, you can make the request in three 
ways: 

Parameter Explanation 
TWAIT 

LWAIT 

NWAIT 

Wait will wait up to a minute before timing out on 
XCLOCK or XSYSTEM. 

Wait will wait until XCLOCK/XSYSTEM clears. 

Note: This option is not recommended since control does not 
return to your application until the host is available. 

Wait checks status and returns immediately (no wait). 

You can use this function to see if the host OIA 
is inhibited. 

Wait is satisfied by the host unlocking the 
keyboard. This may not mean the transaction 
has been completed, so you should use Search 
combined with Wait to look for expected 
keyword prompts. 

Chapter 3. EEHLLAPI Functions 3-81 



Notes 

3·82 Programming Guide 



Linking Your EEHLLAPI Program 

Chapter 4. Compiling and 
Running Your EEHLLAPI 
Application Program 

You learned in Chapter 1 that when you have 
finished writing your EEHLLAPI application 
program, you can make the corresponding 
Language Interface Module (LIM) a permanent 
part of your program. This chapter teaches you: 

• How to link your EEHLLAPI application 
program with the appropriate LIM 

• How to run your application program 

• How to use Trace to help you debug your 
program. 

Linking Your EEHLLAPI 
Application Program with the 
Appropriate LIM 

When you are ready to run your EEHLLAPI 
application program, you can make the 
appropriate LIM a permanent part of your 
program in this manner: 

• If you are using a compiled language (such as 
COBOL or Compiled BASIC), you call the 
appropriate language interface as an external 
subroutine. When you link-edit your program 

Chapter 4. Compiling and Running EEHLLAPI 4-1 



Linking Your EEHLLAPI Program 

(using the DOS link command), the 
appropriate LIM will be merged with your 
EEHLLAPI program. 

• If you are using the Interpretive BASIC 
language, you will have to use another 
technique for calling the BASIC LIM 
(Interpretive BASIC has no provision for 
using the DOS link command to include an 
external subroutine). Instead, you must access 
a special Interpretive BASIC LIM that is 
available whenever EEHLLAPI is loaded. 

Each language that you can use to call 
EEHLLAPI functions has its own programming 
conventions and requirements. These 
requirement are explained below for the 
languages supported directly by EEHLLAPI 
(those for which LIMs are provided). For 
information about writing a LIM to support 
another programming language, refer to 
Appendix B, "Writing Your Own Language 
Interface Module." 

Information about each directly supported 
high-level language follows. 

4-2 Programming Guide 



Using BASIC 

Using BASIC 
The EEHLLAPI Function 5 Copy Presentation 
Space is not available to application programs 
written in Interpretive BASIC. Users of BASIC 
have a choice of two programming environments: 
Interpretive BASIC and Compiled BASIC. While 
these environments are similar, differences exist 
in subroutine linkage and string handling. 

Interpretive BASIC 

If you use Interpretive BASIC, you will need 
special initialization programming to access the 
Interpretive BASIC language interface that is in 
the EEHLLAPI module. The special code locates 
the interface from a fixed pointer location and 
uses this address to set the SEG and OFFSET 
values for the subroutine call. 

If you don't understand the routine involved, 
don't worry; just copy the following program 
statements into your program's initialization 
routine: 

100 DEF SEG = 0: APILOC=PEEK(&HlFE) + PEEK(&HlFF) 
110 IF APILOC = 0 THEN PRINT "EEHLLAPI IS NOT AVAILABLE": END 
120 DATA &H04B8, &HB301, &HCDBB, &HCA7F, &H0002 
130 DIM APICALL\ (4) 
140 FOR I=O to 4: READ APICALL\(I): NEXT I 
150 BLIMSET = VARPTR (APICALL\(O)) 
160 DEF SEG: CALL BLIMSET (APICALL\(l)) 
170 BLIM=APICALL\(l): DEF SEG = APICALL\(0) 
180 IF BLIM = &HB301 THEN PRINT "EEHLLAPI NOT AVAILABLE": END 

Note: While the initialization code used by 
Interpretive BASIC is not required by 
Compiled BASIC, it is compatible with it, 
allowing you to develop a program with 
Interpretive BASIC and then to compile it 
to improve performance. 

Chapter 4. Compiling and Running EEHLLAPI 4.3 



Using BASIC 

To call the interface from BASIC, you use a fixed 
format call with fourparameters. These 
parameters must occur in a fixed sequence and 
all four parameters must be in the call list, even 
if they aren't used. If a parameter isn't needed 
for a given call, you don't need to value it. 

The call format is: 

100 CALL BLIM (FUNC\,SDATA$,DLEN\,RETC\) 

Where: 

FUNC% is the function code 
SDATA$ is a string of data 
DLEN% is the data length 
RETC% is the return code. 

Please note these restrictions in defining these 
parameters; 

• The parameters can have any names, but they 
must be of the proper type. Refer to the 
definitions of the calling parameters under 
"Parameters Required When Called" on 
page 3-1 and of the returned parameters 
under "Values Returned" on page 3-2. 

• The function code, data length, and return 
code must be two-byte integer variables. 

• The data string must be a string variable. 

Users of BASIC need to carefully review the 
restrictions for string processing. 

• Since the maximum string length for 
Interpretive BASIC is 255 bytes, Function 5 
Copy Presentation Space is not available, 
but Function 8 Copy Presentation Space to 

4-4 Programming Guide 



Using BASIC 

String may be used to extract segments of the 
host presentation space. 

• String variables are managed dynamically in 
BASIC's data segment. This means that all 
strings must be preallocated before they can 
receive data from the interface. 

While this may sound complicated, all it means is 
that the subroutine package cannot change the 
size of a string, so you must preformat your 
string to the required size. 

Let's look at an example: 

1000 SDATA$=SPACE$(80) 'PREALLOCATE TO 80 BYTES 
1010 FUNC\=OA 'COPYSTRING FUNCTION 
1020 DLEN%=e, 'COPY 00 BYTES 
1030 RETC%=~ 'LOCATIONS 1-80 FOR COPY 
1035 REM NOTE USE OF RETC% TO PASS OFFSET FOR COPYSTRING 
1040 CALL BLIM(FUNC%,SDATA$,DLEN%,RETC%) 

If you forget to preallocate your strings, the 
BASIC LIM attempts to detect this condition and 
will return a parameter specification error. 

An issue related to string preallocation for 
Interpretive BASIC is string performance. If you 
are writing complex or long-running 
applications, you should understand the 
implications of Interpretive BASIC's string usage 
so that you can take steps to avoid degraded 
performance. 

Interpretive BASIC manages strings dynamically. 
This means that as you assign and reassign data 
to a string, Incerpretive BASIC reacquires space 
in its dynamic storage pool. 

While this is not a problem for many programs, if 
you write a complex application that uses strings 
frequently, Interpretive BASIC may continue to 
append strings. This can result in lengthy 

Chapter 4. Compiling and Running EEHLLAPI 4-5 



Using BASIC 

pauses in your program's execution while BASIC 
compresses strings. 

Compiled BASIC 

Users of Compiled BASIC can call the Compiled 
BASIC Language Interface Module (BLIM) as an 
external call. In order to do this, use the link 
module provided with Compiled BASIC to link 
the Compiled BASIC LIM (named 
HLLCBAS.OBJ and located on your Entry 
Emulator diskette) with your EEHLLAPI 
application program. To do this, follow these 
general instructions: 

1. Compile your EEHLLAPI program as 
instructed in the IBM Compiled BASIC 
manual. 

2. Place your IBM BASIC Compiler "BASIC" 
diskette containing the file LINK.EXE in 
your default diskette drive. 

3. Have your compiled EEHLLAPI program and 
the file HLLCBAS.OBJ from your Entry 
Emulator diskette available. You will need to 
specify the drive locations of these programs 
for the link program and add path 
information to the basic link command 
provided below. 

4. Type LINK YOURPROG+HLLCBAS; after 
the DOS prompt. 

This will produce an executable module named 
YOURPROG.EXE. After loading EEHLLAPI, 
you can execute the BASIC program in the usual 
manner. 

4-6 Programming Guide 



Using BASIC 

For more details about linking programs under 
Compiled BASIC, refer to IBM Personal 
Computer Language Series: BASIC Compiler. 

For programming samples in BASIC, refer to the 
individual functions and the BASIC program 
sampler. 

Chapter 4. Compiling and Running EEHLLAPI 4-7 



Using COBOL 

Using COBOL 
If your are writing your EEHLLAPI program in 
COBOL, be aware that the COBOL program 
should declare the parameter variables in the 
Data Division. 

Here is an example of the parameter declaration: 

77 FUNCODE 
77 RETCODE 
77 STRLEN 
01 DATA-STRING 

PIC 99 
PIC 99 
PIC 99 
PIC X(l920) 

COMP-0. 
COMP-0. 
COMP-0. 
VALUE SPACES. 

You have the option of changing the data names 
to fit your own programming conventions. The 
string variable should always be large enough to 
receive the largest amount of host data you will 
request. 

The call to the COBOL LIM would be coded: 

CALL 'HLLCOB' USING FUNCODE DATA-STRING STRLEN RETCODE. 

Once you have compiled your EEHLLAPI 
program, you will need to use the DOS link 
command to link it with the COBOL LIM (named 
HLLCOB.OBJ on your Entry Emulator diskette). 

To do this, follow these general instructions: 

1. Compile your EEHLLAPI program as 
instructed in the IBM Personal Computer 
Language Series: COBOL manual. 

2. Place your DOS "Supplemental Programs" 
diskette in your default diskette drive. 

3. Have your compiled EEHLLAPI program and 
the file HLLCOB.OBJ from your E'ntry 
Emulator diskette available. You will need to 
specify the drive locations of these programs 
for the link program and add path 

4-8 Programming Guide 



Using COBOL 

information to the basic link command 
provided below. 

4. Type LINK YOURPROG + HLLCOB; after 
the DOS prompt. 

This will produce an executable module called 
YOURPROG.EXE. After loading EEHLLAPI 
you may execute this COBOL program in the 
normal manner. 

For more details about linking programs under 
DOS, refer to the IBM Personal Computer 
Language Series: Disk Operating System manual. 
For more details about using COBOL, refer to 
IBM Personal Computer Language Series: 
COBOL. 

Chapter 4. Compiling and Running EEHLLAPI 4-9 



Using PASCAL 

Using PASCAL 

VAR 
FUNC, 
LEN, 

If you are writing your EEHLLAPI program in 
PASCAL, you should note that PASCAL needs to 
declare the required variables and to link to the 
PASCAL language interface module. The 
following is an example of the necessary 
definitions: 

(* Function number 

RETC : INTEGER; 
CONN_PS_STR: STRING(l); 

(* Length of the data string 
(* EEHLLAPI return code 

*) 
*) 
*) 

(* Connect Presentation Space string*) 

PROCEDURE HLLPAS (VAR LIM FUNC: INTEGER; 
VAR LIM-STR: STRING; 
VAR LIM-LEN, 

lIM=RETC: INTEGER); EXTERN; 

The call to the LIM would then be coded: 

HLLPAS (FUNC,CONN_PS _STR,LEN,RETC); 

Several EEHLLAPI functions separate the data 
string, either on call or return, into a series of 
fields. Although IBM PASCAL 2.0 provides no 
explicit substringing functions for variables of 
type STRING, there are ways to work with the 
fields within the data string. 

One suggested method is to use record overlays. 
By setting the address of a record equal to the 
address of the data string, you can directly 
access the different type fields within the data 
string. For example, a call to Function 20 Query 
System can be done as shown on the following 
page. 

4-10 Programming Guide 



Using PASCAL 

PROGRAM QSYS(INPUT,OUTPUT); 

TYPE 
(* Query System overlay type *) 
(* [xx] necessary for proper *) 

QSYSOVLTYP = RECORD 
HLLVERS [00]: STRING(l); 
HLLLVL [01]: STRING(2); 
HLLDATE [03]: STRING(6); 
LIMVERS [09]: STRING(l); 
LIMLVL [10]: STRING(2); 
HARDW [12]: STRING(l); 
CPTYPE [13]: STRING(l); 
CPLVL [14]: STRING(l); 

(* byte alignment *) 
(* EEHLLAPI version number *) 
(* EEHLLAPI level number *) 
(* EEHLLAPI date *) 
(* LIM version number *) 
(* LIM level number *) 
(* Hardware base *) 
(* Control Program type *) 
(* Control Program level *) 

RESl [15]: STRING(l); (* Reserved *) 
RES2 [16]: STRING(2); (* Reserved *) 
PCSHRTN [18]: STRING(!); 
COMPRC [19]: STRING(4); 
SYSRC [23]: STRING(4); 
RES3 [27]: STRING(9); 
END; 

(* PC session short name *) 
(* Component error return code *) 
(* System error return code *) 
(* Reserved *) 

VAR 
FUNC, 
LEN, 
RETC :INTEGER; 
Q_SYS_OVL: QSYSOVLTYP; 

Q_SYS_STR: STRING(35); 

(* Function number 
(* Length of the data string 
(* EEHLLAPI return code 

(* Query System Overlay 

*) 
*) 
*) 

*) 

(* Query System data string *) 
Q_SYS_PTR: ADS OF Q_SYS_OVL; 

(*pointer to the Q System overlay*) 

PROCEDURE HLLPAS (VAR LIM FUNC: INTEGER; 
VAR LIM-STR: STRING; 
VAR LIM-LEN, 

LIM=RETC: INTEGER); EXTERN; 

BEGIN 
(* --------------------------------------------------------- *) 
(* Query System (Function 20) *) 
(* --------------------------------------------------------- *) 

FUNC 
LEN 
RETC 

:= 20; 
:= 35; 
:= O; 

HLLPAS (FUNC,Q_SYS_STR,LEN,RETC); 

Q_SYS_PTR := ADS OF Q_SYS_STR; 

WITH Q_SYS_PTR DO 
BEGIN 

WRITELN('EEHLLAPI version number: 
WRITELN('EEHLLAPI level number: 
WRITELN('EEHLLAPI date: 
WRITELN('LIM version number: 
WRITELN('LIM level number: 
WRITELN('Hardware base: 
WRITELN('Control Program type: 
WRITELN('Control Program level: 
WRITELN('Base PC short name 
WRITELN('Component return code: 
WRITELN('System return code: 

END; 

END. 

(* Data String Length *) 

(* Set overlay on string*) 

':23, HLLVERS 
':23, HLLLVL 
':23, HLLDATE 
':23, LIMVERS 
' : 23, LIMLVL 
':23, HARDW 
': 23, CPTYPE 
':23, CPLVL 
':23, PCSHRTN) 
':23, COMPRC) 
':23, SYSRC ) 

Chapter 4. Compiling and Running EEHLLAPI 4-11 



Using PASCAL 

Once you have compiled your EEHLLAPI 
program, you will need to use the DOS link 
command to link it with the PASCAL LIM 
(named HLLPAS.OBJ on your Entry Emulator 
diskette). 

To do this, follow these general instructions: 

1. Compile your EEHLLAPI program as 
instructed in the IBM Personal Computer 
Language Series: PASCAL manual. 

2. Place your DOS "Supplemental Programs" 
diskette in your default diskette drive. 

3. Have your compiled EEHLLAPI program and 
the file HLLPAS.OBJ from your Entry 
Emulator diskette available. You will need to 
specify the drive locations of these programs 
for the link program and add path 
information to the basic link command 
provided below. 

4. Type LINK YOURPROG + HLLP AS; after 
the DOS prompt. 

This will produce an executable module called 
YOURPROG.EXE. After loading EEHLLAPI 
you may execute this PASCAL program. 

For more details about linking programs under 
DOS, refer to the IBM Personal Computer 
Language Series: Disk Operating System manual. 
For more details about using PASCAL, refer to 
IBM Personal Computer Language Series: 
PASCAL. 

4-12 Programming Guide 



Using IBM C 

Using IBM C 

If you are writing your EEHLLAPI program in 
IBM C, you should note that IBM C needs to 
declare the required variables and to link to the 
IBM C language interface module. The following 
is an example of the necessary definitions: 

INT API FUNC, API LEN, 
API RETC -

CHAR API_STRING [255) 

The call to the language interface would then be 
coded: 

HLLC(&API_FUNC, API _STR, &API_LEN, &API_RETC); 

Once you have compiled your EEHLLAPI 
program, you will need to use the IBM C CLINK 
command to link it with one of three IBM C 
LIMS, depending on the memory model option 
specified during compilation 

• HLLC _S.OBJ (small memory model) 

• HLLC _M.OBJ (medium memory model) 

• HLLC _L.OBJ (large memory model). 

To do this, follow these general instructions. 

1. Compile your EEHLLAPI program as 
instructed in the IBM Personal Computer 
Language Series: C Compiler Compile, Link 
and Run manual. 

2. Have your compiled EEHLLAPI program and 
the file "HLLC_X.OBJ" (where "X" is either 
S, M, or L, depending on memory model 
option selected) from your Entry Emulator 
diskette available. You will need to specify 
the drive locations of these programs for the 

Chapter 4. Compiling and Running EEHLLAPI 4-13 



Using 8088 Assembler 

link program and add path information to the 
basic link command provided below. 

3. Type CLINK YOURPROG + HLLC _X; after 
the DOS prompt. 

This will produce an executable module called 
YOURPROG.EXE. After loading EEHLLAPI, 
you may execute this IBM C program. 

For more details about compiling and linking 
programs under DOS, refer to the IBM Personal 
Computer Language Series: C Compiler Compile, 
Link and Run manual. 

Using 8088 Assembler 

If you program in the Assembler language, you 
do not need a LIM. You can use software 
interrupts instead. If you are using an 
EEHLLAPI program written under this version 
of EEHLLAPI, you can invoke EEHLLAPI.EXE 
directly by issuing an Interrupt hex 7F with 
AH= 01, AL= 04, and BX= 00. 

At the time of the interrupt, DS:SI should point 
to a Parameter Control Block specifying your 
parameters. For more detail on how to construct 
a parameter control block for Assembler 
language, see Appendix B, "Writing Your Own 
Language Interface Module." 

4-14 Programming Guide 



Running Your EEHLLAPI Program 

Running Your EEHLLAPI 
Application Program 

When you are ready to run your EEHLLAPI 
program with an application, your EEHLLAPI 
program should have the following available: 

1. Have your Entry Level Emulation Program 
and EEHLLAPI loaded into storage. 

2. Be sure that any DOS files you plan to use 
are available to your EEHLLAPI program as 
specified by the individual functions. This 
includes the Entry Emulation utilities, such 
as 

• SEND.COM 
• RECEIVE.COM. 

Chapter 4. Compiling and Running EEHLLAPI 4-15 



Using Trace to Help You Debug Your Program 

Using Trace to Help You Debug 
Your Program 

If you need help tracing program events when 
you are debugging your EEHLLAPI application 
program, you might want to turn on Trace using 
Function 9 Set Session Parameters. The TRON 
and TROFF parameters are explained below. 

Parameter Explanation 
TRON 

TROFF 

Turns trace on. 

Turns trace off. 

By turning Trace on, EEHLLAPI will indicate: 

• When a function begins execution 
• When the function completes 
• What return code was returned. 

The Trace function may conflict with messages 
on the screen from languages or applications 
that manage their own displays. For more 
information about Trace messages, refer to 
Appendix A, "EEHLLAPI Messages." 

4-16 Programming Guide 



Appendix A 

Appendix A. EEHLLAPI 
Messages 

Messages from the Personal Computer 
High-Level Language Application Program 
Interface can be identified by the prefix "EHL" 
and a message code followed by the message text. 
The message codes have the following format: 

• EHLnnn 'Message Text' 

Where 'nnn' is a message ID. 

The messages are listed below in numerical 
order: 

EHLOOl EEHLLAPI is loaded 

EHL002 

EHL003 

Explanation: The program is now loaded. 
This message is followed by EHL002. 

EEHLLAPI is ready for use 

Explanation: The program is successfully 
loaded and available for your use. This 
message is displayed after EHL00l or 
EHL003. 

EEHtLAPI is already loaded 

Explanation: You entered the command 
eehllapi when the EEHLLAPI program was 
already loaded. This message is followed by 
EHL002. 

Since you have already loaded EEHLLAPI, 
the program is available for use. 

Appendix A. EEHLLAPI Messages A-1 



Messages 

EHL004 

EHL005 

EHL008 

EHL0lO 

Unable to load EEHLLAPI 

Explanation: After you entered the 
command eehllapi, an error occurred while 
trying to load the program. The message 
that was displayed before this one indicates 
what went wrong. The program is not 
available for use. 

Incorrect level of the Entry Level 
Emulation Program. 

Explanation: You have loaded an incorrect 
level of the Entry Level Emulation Program. 
This message is followed by EHL004. The 
program is not available for use. 

System error - 88nn 

Explanation: An error with the Entry 
Level Emulation Program was encountered 
while trying to load EEHLLAPI. This 
message is followed by EHL004. The program 
is not available for use. 

"88nn" is a four-digit return code. The first 
two digits are always "88" to indicate 
EEHLLAPI. Record this information and 
have it available when you talk with your 
service coordinator. 

EEHLLAPI trace. Request nn 

Explanation: You specified TRON 
(Trace On) as a session parameter. This 
message indicates which request you have 
invoked. "nn" is the request number in 
hexadecimal notation. The trace messages 
may conflict (overlap) with your application 
messages if you are using a language like 
BASIC that manages its own display. 

A-2 Programming Guide 



EHL012 

Appendix A 

EEHLLAPI trace. Return code: nnnn 

Explanation: You specified TRON 
(Trace On) as a session parameter. This 
message indicates ending status for each 
request. These return codes are dependent 
upon the EEHLLAPI request that was 
executed. Note that this may overlap with 
messages from programs that track their 
own screen management (i.e., BASIC). The 
value is displayed in hexadecimal notation. 

Appendix A. EEHLLAPI Messages A-3 



Notes 

A-4 Programming Guide 



Appendix B 

Appendix B. Writing Your Own 
Language Interface Module 

The Personal Computer High-Level Language Application 
Program Interface is designed to allow you to develop 
support for languages and features that may be unique to 
your environment. By using a language interface module 
(LIM) as a bridge between the application program and 
the primary interface program, you can: 

• Write a LIM for any language you may wish to 
support. 

• Use an existing LIM as a gateway to other external 
functions. 

• Change the format of the function calls or parameter 
lists to better suit your environment. 

The most basic step in getting ready to write your own 
LIM is to understand how the parts of EEHLLAPI work 
together. Refer to Figure B-1 on page B-3 as you read this 
information. 

Appendix B. Writing Your Own LIM B-1 



Writing Your Own LIM 

Let's look at a typical example of how your EEHLLAPI 
application program uses a EEHLLAPI function. 

1. Your EEHLLAPI program calls the appropriate LIM. 

2. The LIM takes your program's parameters and builds a 
parameter control block. 

3. The LIM passes this control block and your 
EEHLLAPI request to the resident interface module 
(EEHLLAPI.EXE) by means of software interrupt hex 
7F. 

4. EEHLLAPI interprets the information and passes the 
request on to the Entry Level Emulation Program. 

5. The Entry Level Emulation Program performs (or 
attempts) the task. 

6. After the task is completed (or attempted), EEHLLAPI 
places a return code in the parameter control block 
and returns control to the calling LIM. 

7. The LIM then returns control to your EEHLLAPI 
application program. 

B-2 Programming Guide 



The path looks something like this: 

En.!!)' Level Emulation Program 
1--- El Task is Performed -----, 
! I 

t 

Appendix B 

II Interprets the Call 
and Passes 
Request to ... 

And EEHLLAPI . EXE 
Is Informed 

I 
I 
I 
I 
I 

Resident Interface Module 
CEEHLLAPI EXE) 

II Software Interupt hex 7F 

Parameter 
Control 
Block (PCB) 

Bl LIM Builds ... 

II Fills PCB 

PCB contains 
Return Code 
and Result 
Code 

And Returns 
Control To ... 

Language Interface Module 
(LIM) 

D Call a EEHLLAPI 
Function 

B Returns Control 
to ... 

Your EEHLLAPI Application Program 
(Running with DOS) 

Figure B-1. The Parts of EEHLLAPI 

Appendix B. Writing Your Own LIM B-3 



Writing Your Own LIM 

Functions a LIM Can Perform 

The primary functions of a LIM are as follows: 

• Handle linkage from the calling application. 

• Obtain data parameter pointers or values. 

• Convert any language-unique data formats. 

• Construct a control block for the primary program. 

• Call (using an interrupt) EEHLLAPI.EXE. 

• Receive control back from EEHLLAPI.EXE. 

• Pass back necessary parameters and return control to 
the calling application. 

If you are writing support for a language, you only need 
the above functions. If you want to extend these 
functions, there are two primary areas for interface 
extension: 

1. Support for additional external functions 

2. Modification or extensions of user calls to the primary 
program. 

Frequently, users of Personal Computer languages develop 
multiple subroutine packages to provide utility functions 
such as display managers and data managers. Many of 
these packages require the application developers to call 
external subroutines. If you would like to consolidate 
several of your subroutines into one function package, 
you may write an extended LIM for this purpose. 

B-4 Programming Guide 



Appendix B 

Two different techniques are available: 

1. The simpler technique is to reserve a range of function 
codes for each subroutine package. The LIM then 
examines the function code being invoked and calls 
the appropriate subroutine package. You may need to 
make adjustments in the number and type of 
parameters passed to EEHLLAPI. 

2. A second technique for interface extensions is more 
complex. Function Code O has been reserved for a 
Signal Gateway function. In this mode, you can pass 
a "gatename" to your LIM. The interface can then use 
this function to establish routing for all subsequent 
function codes to a given subroutine. 

This technique is useful when existing subroutine 
packages have overlapping function codes. By 
switching all function requests through a specified 
gateway until a new "gateway" is requested, you can 
access a variety of external functions through a 
common call architecture. 

Revised Call Support for the 
Personal Computer 
The IBM-supplied LIMs are designed to provide a 
fixed-format, easy-to-use call format. You may wish to 
tailor the number or format of the parameters to your 
specifications. 

For example, calls to the interface use offsets into the 
host presentation space. As an ease-of-use feature, you 
may want to redesign the function calls to use a 
row/column format. 

Appendix B. Writing Your Own LIM B-5 



Writing Your Own LIM 

In that case your LIM would convert the row/column data 
into the offset values required by the actual interface 
function module. 

Other revisions you might make to the call architecture 
could include: 

• Restrict certain functions from your application 
programmers. 

• Set up the session parameters automatically. 

• Do extended validity checking of function calls. 

• Make revisions in the call structure to fit your 
requirements. 

• Provide support for different data formats. 

Details of Writing Your Own 
Language Interface Module 
The LIM is responsible for building a parameter control 
block with the requisite data and issuing an Interrupt hex 
7F to call the function module. Before issuing the 
Interrupt hex 7F, you must set register AX to hex 0104 
and should set register BX to 0. 

B-6 Programming Guide 



Appendix B 

As a good programming technique, you should verify that 
an interrupt vector has been established for the interface's 
EEHLLAPI.EXE module. The parameter control block 
has the following format: 

PCB HOR DB 
PCB-FUNC DB 
PCB-DSEG DW 
PCB-DADDR DW 
PCB-LENGTH DW 
PCB-FILLER DB 
PCB-RETCODE DW 
PCB=STRLEN DW 

'PCB' 
0 
0 
0 
0 
0 
0 
25000 

;PCB Header (in Caps) 
;Function code VALUE 
;String seg addr 
;String offset addr 
;Data length VALUE 
;Unused 
;Return code VALUE 
;Maximum user string size 

These rules apply in building the parameter control block: 

• The control block header PCB (in upper case) must 
appear at the start of the control block. 

• The function code must be the 1-byte numeric (binary) 
function code. 

• The pointer to the user's data string must contain the 
segment and offset address (note that the segment 
address precedes the offset). 

• The string pointer should point to the actual data 
string, and not to a length or pointer prefix. 

• The length should be the actual binary length value 
passed by the user. Since some function calls pass 
data in the fourth parameter (normally the return 
code), this value should be passed in the parameter 
control block. 

• The string length field contains the actual length of 
the user's string, if the language you are using to write 
your EEHLLAPI program provides a length value. 
This allows the code to avoid overlays by checking the 
length before placing data in the string. This field is 
only used by languages such as BASIC that provide 
the string length in the linkage data. 

Appendix B. Writing Your Own LIM B-7 



Writing Your Own LIM 

If your language does not provide the allocated length 
of a string, default this to 25000. 

• There are special considerations for Storage Manager 
calls. The internal interface to the storage manager is 
different from the regular EEHLLAPI interface. The 
storage manager shares the 7F interrupt vector, but 
does not use a PCB call. It has a register interface. 
The LIM service layer remaps the standard format user 
call into this register interface. The storage manager 
interface is: 

INT 7FH 
Registers: AX - 0104H (mandatory) 

Returns: 

BX - rrAAH (BL must= AAhex), 
rr=Ol-04 request code 
(Ol=get, 02=free, 04=freeall) 

CX - storage size (on GET request) 
block ID (on FREE request) 

Call: 01 (get): CX=block ID, DX=RETC 
AX=storage seg 
BX=offset 

02 (free): 
04 (free all) 

DX=RETC 
DX=RETC 

Note: The storage manager uses a register interface, 
not the EEHLLAPI PCB. The support for 
function 17 is handled at the LIM level. 
IBM-supplied LIMs support this call. 
User-supplied LIMs may or may not provide this 
feature. 

Once the control block is built, call the resident module 
with the INT hex 7F interrupt. The DS:SI registers should 
point to the control block. You should save any required 
non-segment registers. After executing the requested 
function, control is returned to your next sequential 
instruction after the INT hex 7F. The return code and 
any result codes are passed back to the parameter control 
block. You should pass these values back to the 
application caller's data area. 

B-8 Programming Guide 



Appendix B 

Note that EEHLLAPI passes the string data back directly, 
but the return code is passed back to the parameter 
control block, and you must retain the user's data 
addresses and ·pass hack the return and result codes. This 
allows you to examine and, if necessary, reformat these 
values. 

Appendix B. Writing Your Own LIM B-9 



Notes 

B-10 Programming Guide 



Appendix C 

Appendix C. OIA Image and Bit 
Group Information 

This appendix explains Positions 2 through 81 and 82 
through 103 in the host Operator Information Area (OIA). 
This information is vital to interpreting the returned data 
string under Function 13 Copy OIA. 

OIA Image Group (Positions 2 
through 81) 

The meaning of symbols in the OIA Image Group are 
understood by looking up the desired hexadecimal code in 
Figure C-1 "Host Presentation Space Character Table" on 
page C-2. This figure shows the hexadecimal codes found 
in the host presentation space, and the characters they 
represent. Refer to the IBM PC 3270 Emulation Program, 
Entry Level, User's Guide for information on the OIA 
indicators. 

Appendix C. OIA Image and Bit Group Information C-1 



OIA Image and Bit Group Information 

Ox 1x 2x ~x 4x 5x Rx 7x Ax 9x Av Rv r,y DY F.v F'Y 
xO NUL SP 0 & ' ·a A a A a Q A Q ~ A p m 
x1 EM = 1 ' -~ E ~ b B R - I s ffl - e r 
x2 , 2 ":,. r I ·r C s ■ ➔ ~ FF l C s "%. 

x3 NL 
,, 

3 c) ti 0 tj d t D T Q i' ~ , -
x4 I 4 ' ' u u g, 

~ Bl STP u u u e u E -:., 
x5 \ 5 + I\ A i f V F V :: - ' 

-
CR a a 

x6 I 6 -, I\ 6 ~ g G w ,c r I:. -0 e w 
x7 I 

7 
-

V 
4 y i h H X L ~ • I l X -x8 > ? 8 0 ' f) A (} i y I y ... , fJ l a 

x9 < ' 9 ' I\ E 0 j z J z .. J 2 :a1 e u ;, ... 

xA [ $ f3 /\. e a: E A k ae K )E 0- " 3 Cl 

xB J <t s ~ ':- ./ ./ 

1 L % a ► ISi l e I E fl/ ... 
xC ) £ # .. 0 

,< 
0 

./ ·a M A A n: □ i I I m 
xD ( y_ @ ' ' 6 u 6 ~ N ~ .! L!: ++ □ T u n 
xE } Pts % 

, 
li 

./ y (j -;--

0 I - i] I u 0 ' ' -
xF I ~ - ~ ~ n C N p -; p • I II • Net 

Sup-
porl8d 

Figure C-1. Host Presentation Space Character Table 

C-2 Programming Guide 



Appendix C 

OIA Group Indicator Meanings 
(Positions 82-103) 

The states of each group are ordered so that the high 
order bits represent the indicators of higher priority. 
Therefore, if more than one state is active within a group, 
the state with the highest priority is the active state 
within that group. 

Bytes 1 and 5 from Group 8 are used for the Entry Level 
Emulation Program. The remaining bytes and Groups are 
reserved. 

• Group 8: Input inhibited (5 bytes) 

Byte 1: 

Bit Meaning 
0-1 Reserved 
2 Machine check 
3 Communications check 
4 Program check 
5-7 Reserved 

Byte 5: 

Bit Meaning 
0 Reserved 
1 Application program has operator input 

inhibited 
2 - 7 Reserved 

Appendix C. OIA Image and Bit Group Information C-3 



Notes 

C-4 Programming Guide 



Appendix D 

Appendix D. Related Publications 

Although it is assumed that you are familiar with the 
operation of the Personal Computer and the related 
languages, you may wish to refer to the publications listed 
below: 

IBM PC Disk Operating System 

IBM PC Disk Operating System Technical Reference 

IBM Personal Computer Language Series: C Compiler 
Compile, Link and Run 

IBM PC BASIC Manual 

IBM PC BASIC Compiler Manual 

IBM PC COBOL Reference 

IBM PC PASCAL Manual 

IBM PC Macro Assembler Manual 

IBM PC 3270 Emulation Program, Entry Level, User's 
Guide 

IBM 3270 PC High Level Language Application 
Program Interface, Programming Guide. 

Appendix D. Related Publications D-1 



Notes 

D-2 Programming Guide 



BASIC Sample Program 

Appendix E. Sample Programs 

This appendix contains code samples. The tables 
appearing before the sample programs list the functions 
used in the sample. 

BASIC Sample Program 

Function Name 
Connect 

Copy Field to String 

Disconnect 

Find Field Length 

Find Field Position 

Receive 

Reset System 

Search Field 

Sendkey 

Wait 

10 REM EEHLLAPI Version l.XX 
20 REM SAMPLE PROGRAM 

Function Number 

1 
34 

2 

32 
31 
91 

21 

30 

3 

4 

30 REM (c) COPYRIGHT 1986,1987, IBM CORPORATION 
40 KEY OFF: CLS 
50 LOCATE 1,10: PRINT" EEHLLAPI SAMPLE BASIC PROGRAM" 
60 LOCATE 2,10 : PRINT "(c)Copyright 1986,1987 IBM Corporation" 
70 CLEAR 
80 REM This sample basic program uses EEHLLAPI to provide an 
90 REM interface to the user for downloading multiple files 
100 REM from the host. 
110 REM--------------------------------------------------------
120 REM*** MANDATORY INT BASIC INITIALIZATION**** 
130 REM-------------------------------------------------------
140 DEF SEG = 0: APILOC=PEEK(&HlFE) + PEEK(&HlFF) 
150 IF APILOC = 0 THEN PRINT "EEHLLAPI IS NOT AVAILABLE": END 
160 DATA &H04B8, &HB301, &HCDBB, &HCA7F, &H0002 
170 DIM APICALL% (4) 
180 FOR I=O TO 4: READ APICALL%(I): NEXT I 

Appendix E. Sample Programs E-1 



BASIC Sample Program 

190 BLIMSET = VARPTR (APICALL%(0)) 
200 DEF SEG: CALL BLIMSET (APICALL%(1)) 
210 BLIM=APICALL\(l): DEF SEG = APICALL%(0) 

220 IF SLIM= &HB301 THEN PRINT "EEHLLAPI NOT AVAILABLE": END 
230 REM-------------------------------------------------------
240 REM*** END OF REQUIRED INIT. LOGIC*** 
250 REM-------------------------------------------------------
260 GOTO 380 
270 REM------ Common routine to call EEHLLAPI ----------------
280 CALL BLIM (FUNC%,SDATA$,DLEN%,RETC\) 
290 IF RETC% = 9 AND FUNC\ <> 99 THEN GOTO 310 
300 RETURN 
310 REM --- System Error ---
320 CLS 

330 PRINT "A System Error was detected during function:";FUNC\ 
340 FUNC%=20: SDATA$ = SPACE$(35) 
350 CALL SLIM (FUNC%,SDATA$,DLEN%,RETC\) 

360 PRINT "Error component information="; MID$(SDATA$,20,8) 
370 END 
380 REM======================================================= 
390 REM----------------------- MAIN PROGRAM------------------
400 REM======================================================= 
410 REM------------ RESET SYSTEM-------------
420 FUNC% = 21 
430 GOSUB 270 
440 REM---------------------------------------
450 CLS 

460 LOCATE 5,5 : PRINT "Drive# (1 .. 26) for RECEIVE.COM"; 
470 INPUT" ,DRIVE% 
480 HOST$= "E" 
490 REM>>> Connect to Host Session 
500 REM--------------- CONNECT---------------
510 FUNC\ = 1 
520 SDATA$ = HOST$ 
530 GOSUB 270 
540 REM---------------------------------------
550 IF RETC% <> 0 THEN PRINT "could not connect to host" END 
560 REM>>> Clear Host Screen 
570 REM--------------- SENDKEY ---------------
580 FUNC% = 3 
590 SDATA$ = "@c" 
600 OLEN%= 2 
610 GOSUB 270 
620 REM---------------------------------------
630 CLS 
640 REM--------- PROMPT FOR FILE SPECS---------
650 LOCATE 5,1 

660 PRINT "Please input the info for files to be"; 
670 PRINT "considered for downloading from the host." 

680 PRINT "use the wild card character(*) in order 
690 PRINT "to consider a group of files." 

700 LOCATE 11,15: INPUT "filename ",FILENAME$ 

710 LOCATE 13,15: INPUT "filetype: ",FILETYPE$ 

720 LOCATE 15,15: INPUT "filemode: ",FILEMODE$ 

730 FILELIST$ =FILENAME$+""+ FILETYPE$ + "" + FILEMODE$ 
740 REM>>> Filelist Command 
750 REM--------------- SENDKEY =============== 
760 FUNC\ = 3 
770 SDATA$ = "filelist" + FILELIST$ + "@E" 
780 OLEN%= LEN(SDATA$) 

E-2 Programming Guide 



'"--_______ ,.,. 

BASIC Sample Program 

790 GOSUB 270 
800 REM---------------------------------------
810 REM>>> Wait for Host to execute filelist command 
820 REM================ WAIT================= 
830 FUNC\ = 4 
840 GOSUB 270 
850 REM---------------------------------------
860 REM>>> Determine Position of Header Field 
870 REM========= FIND FIELD POSITION========= 
880 FUNC\ = 31 
890 SDATA$ = "N" 
900 RETC\ = 1 
910 GOSUB 270 
920 REM---------------------------------------
930 IF RETC\ = 0 THEN GOTO 950 
940 PRINT "could not find position of header field" END 
950 FPOS\ = OLEN% 
960 IF FPOS\ < 200 THEN GOTO 980 

970 PRINT "Found bad header field position" : END 
980 REM>>> Determine Size of Header Field 
990 REM========== FIND FIELD LENGTH========== 
1000 FUNC\ = 32 
1010 SDATA$ = "T" 
1020 RETC\ = FPOS\ 
1030 GOSUB 270 
1040 REM---------------------------------------
1050 FLEN\ = OLEN\ 
1060 REM>>> Search Header Field for 'Filename' 
1070 REM-------------- SRCH FIELD-------------
1080 FUNC\ = 30 
1090 SDATA$ = "Filename" 
1100 OLEN%= 8 
1110 RETC\ = FPOS\ 
1120 GOSUB 270 
1130 REM---------------------------------------
1140 IF RETC\ <> 24 THEN GOTO 1160 

1150 
1160 
1170 
1180 
1190 
1200 

1210 

1220 
1230 

1240 

1250 

1260 

1270 
1280 

1290 
1300 
1310 
1320 
1330 
1340 
1350 
1360 
1370 

1380 

PRINT "could not find header string" : END 
REM>>> The file info (name,type,mode) in 
REM>>> each field begins under 'Filename' 
OFFSET\= OLEN\ - FPOS\ 
CLS 
LOCATE 4,1 
PRINT "Please jump to your Host session and" 

PRINT "put an asterisk(*) in the cmd field" 
PRINT "tor each file that you would like"; 

PRINT "downloaded from the host. The set" 

PRINT "of files to be downloaded must include" 

PRINT "the first file and any number of" 

PRINT "consecutive files after the first." 

PRINT "Then jump back to your PC session and 
INPUT "press enter to continue .. . ",X$ 
CLS 
REM ============================ 
REM BEGIN LOOP GET/TRANSFER FILE ---
REM ============================ ---
CLS 
REM>>> Find the beginning of the next field 
REM--------- FIND FIELD POSITION==------
FUNC\ = 31 
SDATA$ = "N" 

Appendix E. Sample Programs E-3 



BASIC Sample Program 

1390 RETC\ = FPOS\ 
1400 GOSUB 270 
1410 REM---------------------------------------
1420 IF RETC\ = 0 THEN GOTO 1440 

1430 PRINT "could not find next field" : END 
1440 FPOS\ = OLEN\ 

1450 IF FPOS\ > 1441 THEN PRINT "Bad Field" : END 
1460 REM>>> Search cmd field for flag* 
1470 REM============== SRCH FIELD-----=-------
1480 FUNC\ = 30 
1490 SDATA$ = "*" 
1500 OLEN\= 1 
1510 RETC\ = FPOS\ 
1520 GOSUB 270 
1530 REM---------------------------------------
1540 REM>>> If no flag, then all done 
1550 IF RETC\ = 24 THEN GOTO 2150 
1560 REM>>> Copy file info from field 
1570 REM========= COPY FIELD TO STRING======== 
1580 FUNC\ = 34 
1590 OLEN\= FLEN\ 
1600 SDATA$ = SPACE$(DLEN\) 
1610 RETC\ = FPOS\ + OFFSET\ 
1620 GOSUB 270 
1630 REM---------------------------------------
1640 HOSTFILE$ = MID$(SDATA$,OFFSET\ + 1,20) 
1650 REM --- remove spaces from file spec string 
1660 TEMP\= INSTR(HOSTFILE$," ") 
1670 IF TEMP\= 0 THEN GOTO 1720 
1680 TEMP1$ = MID$(HOSTFILE$,1,TEMP%) 
1690 TEMP2$ = MID$(HOSTFILE$,TEMP% + 2,LEN(HOSTFILE$)) 
1700 HOSTFILE$ = TEMP1$ + TEMP2$ 
1 710 GOTO 1660 
1720 REM --- Get PC File specs ---
1730 CLS 
1740 LOCATE 5,5 : PRINT "ooWNLOADING " 
1750 LOCATE 7,25: PRINT HOSTFILE$ 
1760 LOCATE 10, 5 
1770 PRINT "Please input PC file specifications!' 
1780 LOCATE 11, 5 

1790 PRINT "If you specify a path, be"; 
1800 PRINT "be sure that the path ends in -

1810 LOCATE 13,15: INPUT "path ",PCPATH$ 

1820 LOCATE 15,15: INPUT "filename: ",PCNAME$ 

1830 LOCATE 17,15: INPUT "filetype: ",PCTYPE$ 

1840 PCFILE$ = PCPATH$ + PCNAME$ + "" + PCTYPE$ 

1850 LOCATE 19,15: INPUT "options : ", OPTIONS$ 
1860 OPTIONS$="("+ OPTIONS$ 
1870 REM>>> Must Disconnect in order to call Function 91 
1880 REM============= DISCONNECT============== 
1890 FUNC\ = 2 
1900 GOSUB 270 
1910 REM---------------------------------------
1920 CLS 
1930 LOCATE 1,1 
1940 PRINT "Downloading: ";HOSTFILE$;" to ";PCFILE$ 
1950 LOCATE 3,1 
1960 REM ==========a== RECEIVE FILE============ 
1970 FUNC\ = 91 

1980 SDATA$ = PCFILE$ +" "+ HOSTFILE$ +""+OPTIONS$ 

E-4 Programming Guide 



1990 DLEN\ = LEN(SDATA$) 
2000 RETC\ = DRIVE\ 
2010 GOSUB 270 

BASIC Sample Program 

2020 REM---------------------------------------

2030 LOCATE 24,10 : INPUT "Press Enter to continue .... ",x$ 
2040 REM>>> Reconnect to Host Session 
2050 REM--------------- CONNECT---------------
2060 FUNC\ = 1 
2070 SDATA$ = HOST$ 
2080 GOSUB 270 
2090 REM---------------------------------------
2100 GOTO 1310 
2110 REM ========================== 
2120 REM --- END LOOP GET/TRANSFER FILE ---
2130 REM --- ========================== ---
2140 REM>>> Get out of filelist screen 
2150 REM--------------- SENDKEY ---------------
2160 FUNC\ = 3 
2170 SDATA$ = "@3" 
2180 OLEN\= 2 
2190 GOSUB 270 
2200 REM---------------------------------------
2210 REM>>> Reset System to known state (Disconnect, etc.) 
2220 REM------------ RESET SYSTEM-------------
2230 FUNC\ = 21 
2240 GOSUB 270 
2250 REM---------------------------------------
2260 CLS 

2270 LOCATE 2,5 

2280 LOCATE 5,5 
2290 CLS 

2300 IF SCONT$ 

PRINT "DOWNLOADING IS COMPLETED" 

INPUT "(b) BASICA or (d) DOS? ",SCONT$ 

"b" THEN GOTO 2330 

2310 IF SCONT$ "a" THEN GOTO 2340 
2320 GOTO 2340 
2330 KEY ON: END 
2340 SYSTEM 
2350 ========================================================== 

Appendix E. Sample Programs E-5 



COBOL Sample Program 

COBOL Sample Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SAMPLER. 

* This is a Cobol sampler program which allows 
* the user to test EEHLLAPI function calls. 

AUTHOR. PSC 
ENVIRONMENT DIVISION. 
DATA DIVISION. 
WORKING-STORAGE SECTION. 

*====GLOBAL VARIABLES====* 
77 CHOICE PIC 999. 
77 OLEN-DISPLAY PIC 9999. 
77 RETC-DISPLAY PIC 9999. 

*----EEHLLAPI PARAMETERS----* 
77 FUNC PIC 99 COMP-0. 
77 OLEN PIC 99 COMP-0. 
77 RETC PIC 99 COMP-0. 
77 DATA-STR PIC X(80) VALUE SPACES. 

*----MISC INPUT STRINGS----* 
77 PSID-STR PIC X VALUE SPACES. 
77 EMPTY-STR PIC X(80) VALUE SPACES. 
01 HOST-EVENT-BUFF. 

03 HE-PSID PIC X VALUE' '. 
03 HE-TYPE PIC X VALUE 'B'. 
03 HE-PTR PIC X(4) VALUE LOW-VALUES. 
03 FILLER PIC X(256). 

*======================================================== 
SCREEN SECTION. 
01 NUMER-MENU. 

*----NUMERICAL LIST OF FUNCTIONS----* 
03 BLANK SCREEN. 
03 LINE 1 COLUMN 24 VALUE 'EEHLLAPI NUMERICAL MENU'. 
03 LINE 2 COLUMN 24 VALUE '=======================' 
03 LINE 3 COLUMN 1 VALUE I 1 - Connect'. 
03 LINE 4 COLUMN 1 VALUE I 2 - Disconnect'. 
03 LINE 5 COLUMN 1 VALUE I 3 - Send Key'. 
03 LINE 6 COLUMN 1 VALUE I 4 - Wait'. 
03 LINE 7 COLUMN 1 VALUE I 6 - Search PS' . 
03 LINE 8 COLUMN 1 VALUE I 7 - Q Cursor Location'. 
03 LINE 9 COLUMN 1 VALUE I 8 - Copy PS to String'. 
03 LINE 10 COLUMN 1 VALUE I 9 - Set Session Parms'. 
03 LINE 11 COLUMN 1 VALUE '10 - Q Sessions'. 
03 LINE 3 COLUMN 27 VALUE '11 - Reserve'. 
03 LINE 4 COLUMN 27 VALUE I 12 - Release'. 
03 LINE 5 COLUMN 27 VALUE I 13 - Copy OIA'. 
03 LINE 6 COLUMN 27 VALUE I 14 - Q Field Attribute'. 
03 LINE 7 COLUMN 27 VALUE '15 - Copy String to PS'. 
03 LINE 8 COLUMN 27 VALUE '18 - Pause'. 
03 LINE 9 COLUMN 27 VALUE '20 - Q System'. 
03 LINE 10 COLUMN 27 VALUE '21 - Reset System' . 
03 LINE 11 COLUMN 27 VALUE '22 - Q Session Status'. 
03 LINE 3 COLUMN 53 VALUE '23 - Start Host Notify'. 
03 LINE 4 COLUMN 53 VALUE '24 - Q Host Update'. 
03 LINE 5 COLUMN 53 VALUE '25 - Stop Host Notify'. 
03 LINE 6 COLUMN 53 VALUE '30 - Search Field'. 
03 LINE 7 COLUMN 53 VALUE '31 - Find Field Pos.'. 
03 LINE 8 COLUMN 53 VALUE '32 - Find Field Length'. 
03 LINE 9 COLUMN 53 

VALUE '33 - Copy String to Field'. 
03 LINE 10 COLUMN 53 

VALUE '34 - Copy Field to String'. 
03 LINE 11 COLUMN 53 VALUE '99 - Convert Pos/RowCol' . 

01 CHOICE-SCR. 
*----SELECTION SCREEN----* 

E-6 Programming Guide 



* 
* 
* 

COBOL Sample Program 

This screen is used to prompt the user for the 
desired function. It also presents the user with 
choices for different menus and program termination. 

03 LINE 14 COLUMN 20 VALUE 'Select a function: '. 
03 LINE 14 COLUMN 39 PIC ZZ9 TO CHOICE. 
03 LINE 23 COLUMN 1 BLANK LINE. 
03 LINE 24 COLUMN 20 VALUE '300-Exit Sample Program'. 

*----PROMPT SCREENS----------------------------------------
01 STRING-PROMPT. 

* This screen is used to prompt the user for the 
* Data String calling parameter. 

03 LINE 15 COLUMN 13 VALUE 'String: '. 
03 LINE 15 COLUMN 23 PIC X(55) TO DATA-STR. 

01 PSID-PROMPT. 
* This screen is used to prompt the user for the 
* Data String calling parameter when the Data String 

only needs a PSID. * 
03 LINE 15 COLUMN 13 VALUE 'PSID: '. 
03 LINE 15 COLUMN 21 PIC XTO PSID-STR. 

01 HOST-STR-PROMPT. 
* This screen is used to prompt the user for the 

PSID and option code for function 23, Start Host * 
* Notification. 

03 LINE 15 COLUMN 
03 LINE 15 COLUMN 
03 LINE 15 COLUMN 
03 LINE 15 COLUMN 

01 LENGTH-PROMPT. 

13 VALUE 'PSID: '. 
21 PIC XTO HE-PSID. 
25 VALUE 'option code 
39 PIC XTO HE-TYPE. 

* This screen is used to prompt the user for the 
Length calling parameter. * 

03 LINE 16 COLUMN 13 VALUE 'Length: '. 
03 LINE 16 COLUMN 23 PIC ZZZ9 TO OLEN JUST. 

01 RC-PROMPT. 
* This screen is used to prompt the user for the 

PS Position/Return Code calling parameter. * 
03 LINE 17 COLUMN 13 VALUE 'PS Position: '. 
03 LINE 17 COLUMN 28 PIC ZZZ9 TO RETC JUST. 

*----DISPLAY SCREENS-------------------------------------
01 STRING-DISPLAY. 

* This screen displays the returned Data String. 
03 LINE 19 COLUMN 13 VALUE 'String: '. 
03 LINE 19 COLUMN 23 PIC X(55) FROM DATA-STR. 

01 LENGTH-DISPLAY. 
* This screen displays the returned Length. 

03 LINE 20 COLUMN 13 VALUE 'Length: '. 
03 LINE 20 COLUMN 23 PIC ZZZ9 FROM OLEN-DISPLAY. 

01 RC-DISPLAY. 
* This screen displays the returned Return Code. 

03 LINE 21 COLUMN 13 VALUE 'Return Code: '. 
03 LINE 21 COLUMN 28 PIC ZZZ9 FROM RETC-DISPLAY. 

*----MISCELLANEOUS SCREENS-------------------------------
01 BLANK-SCR. 

03 BLANK SCREEN. 
01 BLANK-LINE. 

03 BLANK LINE. 
01 CONT-SCR. 

03 LINE 23 COLUMN 23 BELL REVERSE-VIDEO 
VALUE 'Press Enter to continue'. 

03 LINE 24 COLUMN 1 BLANK LINE. 
*======================================================== 

PROCEDURE DIVISION. 
MAIN-PARAGRAPH. 

* This procedure displays a numerical list 
* of the available functions and passes control 
* to USERS-CHOICE for implementation of the 
* desired function(s). 

DISPLAY NUMER-MENU. 
GO TO USERS-CHOICE. 

Appendix E. Sample Programs E-7 



COBOL Sample Program 

USERS-CHOICE. 
* This procedure allows the user to test functions from 
* the current menu. It passes control for implementation 
* of specific functions to the appropriate procedures. 

* 

DISPLAY (14, 1) ERASE. 
MOVE OTO CHOICE. 
DISPLAY CHOICE-SCR. 
ACCEPT CHOICE-SCR. 

Does the user want to exit the program? 
IF CHOICE= 300 GO TO DONE. 

*----INITIALIZE VARIABLES-------------------------------
MOVE CHOICE TO FUNC. 
MOVE OTO DLEN RETC. 
MOVE EMPTY-STR TO DATA-STR. 

*----PERFORM FUNCTION------------------------------------
* This part of the procedure passes control to the 
* appropriate procedure for implementing the desired 
* EEHLLAPI function. 

IF FUNC 1 PERFORM CONNECT. 
IF FUNC 2 PERFORM DISCONNECT. 
IF FUNC 3 PERFORM SENDKEY. 
IF FUNC 4 PERFORM WAIT. 
IF FUNC 6 PERFORM SEARCH-PS. 
IF FUNC 7 PERFORM Q-CURSOR-LOC. 
IF FUNC 8 PERFORM COPY-PS-STRING. 
IF FUNC 9 PERFORM SET-SESSION-PARMS. 
IF FUNC 10 PERFORM QUERY-SESSIONS. 
IF FUNC 11 PERFORM RESERVE-KEYBD. 
IF FUNC 12 PERFORM RELEASE-KEYBD. 
IF FUNC 13 PERFORM COPY-OIA. 
IF FUNC 14 PERFORM Q-FIELD-ATTRIB. 
IF FUNC 15 PERFORM COPY-STRING-PS. 
IF FUNC 18 PERFORM PAUSE. 
IF FUNC 20 PERFORM Q-SYSTEM. 
IF FUNC 21 PERFORM RESET-SYSTEM. 
IF FUNC 22 PERFORM Q-SESS-STATUS. 
IF FUNC 23 PERFORM START-HOST. 
IF FUNC 24 PERFORM Q-HOST. 
IF FUNC 25 PERFORM STOP-HOST. 
IF FUNC 30 PERFORM SEARCH-FIELD. 
IF FUNC 31 PERFORM FIND-FIELD-LENGTH-POS. 
IF FUNC 32 PERFORM FIND-FIELD-LENGTH-POS. 
IF FUNC 33 PERFORM COPY-STRING-FIELD. 
IF FUNC 34 PERFORM COPY-FIELD-STRING. 
IF FUNC 99 PERFORM CONVERT-POS-ROWCOL. 

*----DISPLAY RETURN CODE AND PAUSE-----------------------
* After any EEHLLAPI function call, we want to see 
* the Return Code and pause to examine the parameters 
* passed and returned. 

DISPLAY RC-DISPLAY. 
DISPLAY CONT-SCR. 
DISPLAY (23, 1) ' 
STOP I I. 

GO TO USERS-CHOICE. 
*----EEHLLAPI FUNCTIONS---------------------=------------
* These procedures control the implementation of 
* specific EEHLLAPI function calls. Procedure calls 
* are made to the miscellaneous IO procedures for the 
* prompting and displaying of parameters. 

CONNECT. 
PERFORM GET-PSID. 
PERFORM EEHLLAPI-CALL. 

CONVERT-POS-ROWCOL. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 

E-8 Programming Guide 



COPY-FIELD-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY STRING-DISPLAY. 

COPY-OIA. 
PERFORM GET-LENGTH. 
PERFORM EEHLLAPI-CALL. 
DISPLAY STRING-DISPLAY. 

COPY-PS-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY STRING-DISPLAY. 

COPY-STRING-FIELD. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 

COPY-STRING-PS. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 

DISCONNECT. 
PERFORM EEHLLAPI-CALL. 

FIND-FIELD-LENGTH-PCS. 
PERFORM GET-STRING. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 

PAUSE. 
PERFORM GET-LENGTH. 
PERFORM EEHLLAPI-CALL. 

Q-CURSOR-LOC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 

Q-FIELD-ATTRIB. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 

Q-HOST. 
PERFORM GET-PSID. 
PERFORM EEHLLAPI-CALL. 

QUERY-SESSIONS. 
MOVE 24 TO OLEN. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 
DISPLAY STRING-DISPLAY. 

Q-SESS-STATUS. 
PERFORM GET-PSID. 
MOVE 18 TO DLEN. 
PERFORM EEHLLAPI-CALL. 
DISPLAY STRING-DISPLAY. 

Q-SYSTEM. 
PERFORM EEHLLAPI-CALL. 
DISPLAY STRING-DISPLAY. 

RELEASE-KEYBD. 
PERFORM EEHLLAPI-CALL. 

RESERVE-KEYBD. 
PERFORM EEHLLAPI-CALL. 

RESET-SYSTEM. 
PERFORM EEHLLAPI-CALL. 

SEARCH-FIELD. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM GET-RC. 
PERFORM EEHLLAPI-CALL. 

COBOL Sample Program 

Appendix E. Sample Programs E-9 



COBOL Sample Program 

DISPLAY LENGTH-DISPLAY. 
SEARCH-PS. 

PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM EEHLLAPI-CALL. 
DISPLAY LENGTH-DISPLAY. 

SENDKEY. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM EEHLLAPI-CALL. 

SET-SESSION-PARMS. 
PERFORM GET-STRING. 
PERFORM GET-LENGTH. 
PERFORM EEHLLAPI-CALL. 

START-HOST. 
PERFORM GET-HOST-STR. 
MOVE LOW-VALUES TO HE-PTR. 
MOVE 256 TO DLEN. 
CALL 'COBLIM' USING FUNC HOST-EVENT-BUFF DLEN RETC. 

STOP-HOST. 
PERFORM GET-PSID. 
PERFORM EEHLLAPI-CALL. 

WAIT. 
PERFORM EEHLLAPI-CALL. 

*======================================================== 
•----GENERIC EEHLLAPI CALL-------------------------------
* This is the EEHLLAPI function call used by most of 
* the above procedures. This procedure also moves the 
* returned parameters into variables used for display. 

EEHLLAPI-CALL. 
CALL 'HLLCOB' USING FUNC DATA-STR DLEN RETC. 
MOVE DLEN TO OLEN-DISPLAY. 
MOVE RETC TO RETC-DISPLAY. 

*====MISCELLANEOUS ROUTINES============================== 
GET-STRING. 

* This procedure prompts the user for the Data String. 
DISPLAY STRING-PROMPT. 
ACCEPT STRING-PROMPT. 

GET-PSID. 
* This procedure prompts the user for the Data String 
* in the case where the Data String requires only a PSID. 

DISPLAY PSID-PROMPT. 
ACCEPT PSID-PROMPT. 
MOVE PSID-STR TO DATA-STR. 

GET-HOST-STR. 
* This procedure prompts the user for the Data String 

needed for function 23, Start Host Notification. * 
DISPLAY HOST-STR-PROMPT. 
ACCEPT HOST-STR-PROMPT. 

GET-LENGTH. 
* This procedure prompts the user for the Length. 

DISPLAY LENGTH-PROMPT. 
ACCEPT LENGTH-PROMPT. 

GET-RC. 
* This procedure prompts the user for the PS Position. 

DISPLAY RC-PROMPT. 
ACCEPT RC-PROMPT. 

DONE. 
* This procedure clears the screen and 

terminates the program. * 
DISPLAY BLANK-SCR. 
STOP RUN. 

E-10 Programming Guide 



PASCAL Sample Program 

PASCAL Sample Program 

Function Name Function Number 
Connect 1 

Copy Presentation Space to String 8 

Disconnect 2 

Query Sessions 10 

Query System 20 

Release 12 

Reserve 11 

Reset System 21 

Search Presentation Space 9 

Send Key 3 

Wait 4 

program set_time ( input, output); 

(*===========================================================*) 
(*--------------SAMPLE EEHLLAPI PROGRAM------------------*) 
(* This program is designed to obtain the time and date *) 
(* information from the host session and pass this *) 
(* information to the PC session. *) 
(*===========================================================*) 

canst 
(*---------------------------------------------------------*) 
(* KEYBOARD MNEMONICS *) 
(* These mnemonics are only valid as long as the escape *) 
(* character is not changed from its default value of '@' *) 
(* with a call to Set Session Parameters. *) 
(*---------------------------------------------------------*) 

clear_key 
enter_key 
reset_key 

type 

'@C'; 
'@E'; 
'@R'; 

(*----------------------------------------*) 
(* date and time record types for passing*) 
(* information to PC Session *) 
(*----------------------------------------*) 
time record= record 

hour, 
min, 
sec, 
tick: integer; 

end; 
date_record = record 

year, 

Appendix E. Sample Programs E-11 



PASCAL Sample Program 

var 

month 
day 

end; 

, 
integer; 

(* EEHLLAPI calling parameters *) 
Function Number : integer; 
Data_StrTng: string(144); 
Length: integer; 
Return_Code: integer; 

(* --- strings containing time and date information *) 
time_string, (*time: hh:mm:ss *) 
date_string: lstring(S); (*date: mm/dd/yy *) 

(* --- records containing time and date information *) 
time time record; 
date: date:record; 

(* --- PSID of Host Session determined during init --- *) 
Host_Session: char; 

(* External reference to call EEHLLAPI Pascal LIM*) 
procedure HLLPAS ( var lim_func: integer; 

var lim_str : string; 
var lim len, 
lim_retc: integer); EXTERN; 

(*-------------------------------------------------------*) 
(* External references to Pascal library functions for *) 
(* setting the time and date. See the Pascal Compiler *) 
(* Language Reference for more information on how to *) 
(* use these functions. *) 
(*-------------------------------------------------------*) 
function setdat (year,month,day: integer) 

: boolean; EXTERN; 
function settim (hours,minutes,seconds,hundreds : integer) 

: boolean; EXTERN; 
(*------------------------------------------------------*) 
(* External reference to Pascal library procedure for *) 
(* terminating the program. See the Pascal Compiler *) 
(* Language Reference for more information on how to *) 
(* use this functions. *) 
(*------------------------------------------------------*) 
procedure ENDXQQ; EXTERN; 

procedure check_system; 
(*-------------------------------------------------------------*) 
(* This procedure should be called after any call to EEHLLAPI. *) 
(* This procedure determines whether or not there was a system*) 
(* error (return code of 9 from EEHLLAPI). If a system error *) 
(* did occur, then system information is obtained through a *) 
(* call to Query System and program execution is halted. *) 
(*-------------------------------------------------------------*) 
var 

i : integer; 
begin 

if Return_Code = 9 then begin 
writeln('There was a system error.'); 
writeln('Calling Query System to get system info.'); 

E-12 Programming Guide 



end 
end; 

PASCAL Sample Program 

(*========Query System========*) 
Function Number := 20; 
HLLPAS (-Function_Number, 

Data_String, 
Length, 
Return Code ) ; 

if Return Code; 9 then 
writeln('Unrecoverable System Error.') 

else begin 
writeln('<<< SYSTEM DATA>>>'); 
write(' Bytes 1 to 15 : '); 
for i := 1 to 15 do write(Data_String{i}); 
writeln; 
write ( ' Extended Error Code 1 : ' ) ; 
for i := 20 to 23 do write(Data_String{i}); 
writeln; 
write ( ' Extended Error Code 2 : ' ) ; 
for i := 24 to 27 do write(Data_String{i}); 
writeln; 

end; (* of else*) 
(* stop execution and return to DOS*) 
ENDXQQ; 

procedure set_Host_Session; 
(*------------------------------------------------------------*) 
(* This procedure calls the EEHLLAPI function Query Sessions *) 
(* in order to determine the short name of the host session. *) 
(* The global variable 'Host_Session' is set accordingly. *) 
(*------------------------------------------------------------*) 
var 

offset, 

i: integer; 

begin 

(* offset to the beginning of the*) 
(* 12 bytes of info per session; *) 
(* loop control variable *) 

(*=======Query Sessions=======*) 
Function Number := 10; 
Length:-;- 144; 
HLLPAS ( Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -
(*Note:# of sessions is returned in Length*) 
(* check each session to see if it is the host session*) 
for i := 1 to Length do begin 

(* calculate offset to ith session*) 
offset:= (i - 1) * 12; 
(* session type is returned in 10th position*) 
if Data_String{offset+lO} = 'H' then 

Host_Session := Data_String{offset+l}; 
end; (* of for loop*) 

end; 

function digit (ch: char) : integer; 
(*-------------------------------------------------------*) 
(* This function converts a digit in character form to *) 
(* a digit in integer form. *) 
(*-------------------------------------------------------*) 
begin 

Appendix E. Sample Programs E-13 



PASCAL Sample Program 

digit := ord(ch) - ord('0') 
end; 

procedure convert_info; 
(*-------------------------------------------------------------*) 
(* This procedure is used to convert the time and date strings*) 
(* into integer values so that they may be passed to DOS using*) 
(* the Pascal function calls 'settim', and 'setdat'. The *) 
(* values are stored in records, the global variables 'time' *) 
(* and 'date'. *) 
(*-------------------------------------------------------------*) 
begin 

time.hour := 10 * digit(time_string[l]) + 
digit(time_string[2]) ; 

time.min:= 10 * digit(time_string[4]) + 
digit(time_string(S]) 

time.sec:= 10 * digit(time_string[7]) + 
digit(time_string[8]) 

time.tick:= 0; 
date.month:= 10 * digit(date_string(l]) + 

digit(date_string[2]) 
date.day:= 10 * digit(date_string[4]) + 

digit(date_string[S]) ; 
date.year := 10 * digit(date_string[7]) + 

digit(date_string[8]) + 
1900; 

end; 

procedure get_info ( canst delimiter : lstring; 
var info_string: string); 

(*-----------------------------------------------------------*) 
(* This procedure searches the host screen for the given *) 
(* delimiter. If the delimiter is found, then the string of*) 
(* of info ( time or date) is copied into the given string *) 
(* variable. *) 
(*-----------------------------------------------------------*) 
var 

delimiter_position: integer; 

begin 
(*=Search Presentation Space *) 
Function Number := 6; 
copystr(delimiter,Data_String); 
Length := l; 
Return Code:= l; 
HLLPAS-( Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

(* Note : position of string is returned in Length*) 
delimiter_position := Length; 
(* If the delimiter was found then copy the info*) 
if delimiter_position > 0 then begin 
(*======Copy PS to String=====*) 

Function Number:= 8; 
Length:~ 8; 
Return Code := 

delimiter_position - 2; 
HLLPAS ( Function Number, 

info_strTng, 
Length, 
Return_Code ) ; 

E-14 Programming Guide 



check_system; 

end· ( * of if * ) 
end;· ' 

procedure query_for_info; 

PASCAL Sample Program 

(*----------------------------------------------------------*) 
(* This procedure attempts to query the host for the time. *) 
(*----------------------------------------------------------*) 
var 

cursor_location: integer; 
begin 

(*----------Send Key----------*) 
Function Number := 3; 
copystr(clear_key,Data_String); 
Length:= 2; 
HLLPAS ( Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

(*------------Wait============*) 
Function Number:= 4; 
HLLPAS (-Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

(* =====Search Presentation Space=====*) 
Function Number :=6; 
copystr('RUNNING',Data_String); 
Length:= 7; 
Return Code :=l; 
HLLPAS-( Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

(*----------Send Key----------*) 
Function Number:= 3; 
copystr('query time '*enter_key,Data_String); 
Length:= 12; 
HLLPAS ( Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

(*------------Wait============*) 
Function Number:= 4; 
HLLPAS (-Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

(* =====Search Presentation Space=====*) 
Function Number :=6; 
copystr('RUNNING',Data_String); 
Length:= 7; 
Return Code:= 1; 
HLLPAS-( Function Number, 

Data_StrTng, 

Appendix E. Sample Programs E-15 



PASCAL Sample Program 

Length, 
Return Code ) ; 

check_system; -

get_info ( ':' time_string ); 
get_in!o ( '/' , date_string ); 

end; 

procedure get_time_from_host; 
(*------------------------------------------------------------*) 
(* This procedure calls 'query_for_info' to obtain the time *) 
(* and date info from the host after it takes control of the *) 
( * Host Session. *) 
(*------------------------------------------------------------*) 
begin 

set_Host_Session; 

(* Connect to Host and reserve keyboard*) 
(*----------Connect----~-----=*) 
Function Number := 1; 
copystr(Host_Session,Data_String); 
Length := 1; 
HLLPAS ( Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

(*--------=-Reserve-----------*) 
Function Number := 11; 
HLLPAS (-Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

query_for_info; 

(*----------Release===========*) 
Function Number := 12; 
HLLPAS (-Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

(*---------Disconnect=========*) 
Function Number := 2; 
HLLPAS (-Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

end; 

procedure give_time_to_PC; 
(*------------------------------------------------------------*) 
(* This procedure converts the time and date strings into *) 
(* the integer form that is passed to the Pascal settim and *) 
(* setdat functions. If the functions return a false value *) 
(* then a message is printed warning the user of the invalid*) 

E-16 Programming Guide 



PASCAL Sample Program 

(* attempt to set the date and/or time. *) 
(*------------------------------------------------------------*) 
begin 

convert info; 
if not settim(time.hour,time.min,time.sec,time.tick) then 

writeln('Time not set.'); 
if not setdat(date.year,date.month,date.day) then 

writeln('Date not set.'); 
end; 

(* MAIN PROGRAM*) 

begin 

(*========Reset System========*) 
Function Number := 21; 
HLLPAS (-Function Number, 

Data_String, 
Length, 
Return Code ) ; 

check_system; -

get_time_from_host; 

give_ time_ to_PC; 

(*========Reset System========*) 
Function Number := 21; 
HLLPAS (-Function Number, 

Data_StrTng, 
Length, 
Return Code ) ; 

check_system; -

end. 

Appendix E. Sample Programs E-17 



"C" Sample Program 

"C" Sample Program 

Function Name Function Number 

Connect 1 

Convert Position or RowCol 99 

Disconnect 2 

Query Cursor Location 7 

Query Field Attribute 14 

Release 12 

Reserve 11 

Reset System 21 

/***************************************************/ 
/* This sample C program is designed to use HLLAPI */ 
/* to obtain position and attribute information of*/ 
/* the cursor location. The user is prompted to */ 
/* position the cursor accordingly, and is given */ 
/* the cursor position and a decoding of the field*/ 
/* attribute byte at that position. */ 
/***************************************************/ 

/* Include statement for standard input/output module*/ 
#include <c:\ibmc\include\stdio.h> 

/* HLLAPI Parameters*/ 
int API_FUNC, API_LEN, API_RETC; 
char API_STRING[255]; 

unsigned int shift (byte,numbits) 
/* This function returns the unsigned integer that*/ 
/* results from shifting byte right numbits. If a*/ 
/* negative number is passed throught the numbits */ 
/* parameter, byte is shifted left -numbits. */ 

unsigned int byte; 
int numbits; 
{ 

} 

unsigned int result; 
if (numbits > 0) 

result= byte 
/* right shift*/ 

>> numbits; 
else 

result= byte 
return(result); 

/* left shift*/ 
<< -numbits; 

void byte_to_bits (byte, bits) 
/* This function is designed to extract the 8 'bits' that*/ 
/* define 'byte' and return them in the 'bits' array. */ 

unsigned int byte; 
short int bits[8); 
{ 
unsigned int andbyte; 

E-18 Programming Guide 



"C" Sample Program 

int i; 
unsigned int tempbyte; 
for ( i = 7, andbyte = 1; i >= 0; --i, andbyte *= 2) 

{ 

} 

/* zero out all but ith bit*/ 
tempbyte = byte & andbyte; 
/* shift ith bit to rightmost bit position*/ 
bits[i] = shift(tempbyte,7-i); 

void get_info () 
/* This function obtains information regarding*/ 
/* the attributes of the cursor location. */ 

{ 
/* cursor location info*/ 
int cursor_pos, 

cursor row, 
cursor-col, 
attribyte; 

/* Connect to Host Session*/ 
API_FUNC = l; 

strcpy(API_STRING,"E\O"); 
API_LEN = l; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 
if (API_RETC != 0) 

{ 

printf("warning: could not connect to Host.\n"); 

printf("Return Code: %d\n",API_RETC); 
return; 

} ; 

/* Reserve Keyboard*/ 
API FUNC = 11; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 

/*************************/ 
/* Query Cursor Location*/ 
/*************************/ 
API FUNC = 7; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 
if (API_RETC == 0) 

( 
cursor_pos = API_LEN; 
printf("cursor Location Position %d\n",cursor_pos); 

} 
else 

{ 

printf("warning 
"could not determine cursor location.\n"); 

printf("Return Code: %d\n",API_RETC); 
return; 

} ; 

/******************************/ 
/* Convert Position to RowCol */ 
/******************************/ 
API_FUNC = 99; 
strcpy(API_STRING,"EP\0"); 
API.RETC • cursor_pos; 

Appendix E. Sample Programs E-19 



"C" Sample Program 

hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 
if (API_RETC == 0 I I API_LEN == 0) 

{ 

} 

printf("warning Incorrect input error.\n"); 
return; 

else if (API_RETC == 9998) 
{ 

} 

printf("warning 

"Invalid Host id or Host never connected.\n"); 
return; 

else if (API_RETC == 9999) 
{ 

printf("warning: input error in Data String\n"); 
return; 

} 
else 

{ 
cursor_row = API_LEN; cursor_col = API_RETC; 

printf("cursor Location: Row \d, Column \d\n", 
cursor_row,cursor_col); 

/*************************/ 
/* Query Field Attribute*/ 
/*************************/ 
API FUNC = 14; 
API:RETC = cursor_pos; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 
if (API LEN== 0) 

{ -

} 

printf("The screen is unformatted.\n"); 
return; 

else if (API RETC != 0) 
{ -

} 
else 

printf("could not determine the attribute byte.\n"); 
return; 

{ 
inti; 
/* attribute byte*/ 
unsigned int attribyte; 
/* bit breakdown of attribute byte*/ 
short int attribits[B]; 
short int attribit45; 

/* attribute byte is returned in length parameter*/ 
attribyte = API_LEN; 
printf("Attribute byte (hex code) : \x\n",attribyte); 
/*breakdown attribyte into attribits */ 
byte_to_bits (attribyte,attribits); 
printf("Attribute byte (bin code) : "); 
for ( i = 0; i <= 7; ++i) 

printf("1d",attribits[iJ); 

printf ('\n"); 

/* Unprotected/Protected bit*/ 
if (attribits[2] == 1) 

printf("Protected data field.\n"); 

E-20 Programming Guide 



"--

else 

printf(" 

"C" Sample Program 

Unprotected data field.\n"J; 

/* Alpha/Numeric bit*/ 
if (attribits[3] == 1) 

printf(" 
else 

printf(" 

Numeric data only.\n"); 

Alphanumeric data.\n"); 

/* Automatic skip*/ 
if (attribits[2] ==1 && attribits[3] 1) 

printf(" Automatic skip.\n"); 

/* Intensity/Selector Pen Detectability bit*/ 
attribit45 = (2 * attribits[4]) + attribits[S]; 
if (attribit45 == 0) 

{ 

printf(" 

printf(" 
} 

Normal intensity.\n"); 

Not pen detectable.\n"); 

else if (attribit45 
{ 

1) 

printf(" 

print£(" 
) 

Normal intensity.\n"); 
Pen detectable.\n"); 

else if (attribit45 
( 

== 2) 

printf(" 

printf(" 
) 

High intensity.\n"); 

Pen detectable.\n"); 

else if (attribit45 
{ 

== 3) 

printf(" 

printf(" 
} 

Non-display.\n"); 

Not pen detectable. \n") ; 

/* Release Keyboard*/ 
API FUNC = 12; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 

/* Disconnect from Host Session*/ 
API FUNC = 2; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 

} /* end of function get_info */ 

main() 
{ 
char ch; 

/* Reset System*/ 
API FUNC = 21; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 

do ( 

print£ <'\nPlease jump to your Host Session and move \n"); 

Appendix E. Sample Programs E·21 



"C" Sample Program 

} 

printf("the cursor to the desired location.\n"); 

printf("Press 'i<RETURN>' to obtain info, or\n"); 

printf(" 'q<RETURN>' to quit program. --> "); 
ch= getchar(); 
getchar(); if (ch!='/012') getchar(); 
if (ch== 'i') get_info(); 

while (ch!= 'q'); 

/* Reset System*/ 
API FUNC = 21; 
hllc(&API_FUNC,API_STRING,&API_LEN,&API_RETC); 

E-22 Programming Guide 



Glossary 

Appendix F. Glossary 

AID key. A control key that generates a host 
attention interrupt. 

American National Standard Code for 
Information Interchange (ASCII). One of the 
two standard codes used for exchanging 
information among data processing systems and 
associated equipment; the standard code used by 
the IBM Personal Computer and other 
microcomputers. 

attention identifier. See "AID key." 

attribute byte. In 3270 application, the byte 
used for determining the characteristics of the 
following field (color, protected, highlighted). 

autoskip. A field defined as protected and 
numeric. Causes the cursor to skip to the next 
unprotected field. 

BASIC. Beginner's All-Purpose Symbolic 
Instruction Code. A high-level, widely used 
computer programming language. 

EEHLLAPI.EXE. See "resident interface 
module." 

extended error code. An eight-byte data string 
returned by Query System generated by an 
internal system error that is used by service 
personnel for diagnosis. 

Appendix F. Glossary F-1 



Glossary 

field. A group of consecutive positions on a 
presentation space with similar characteristics. 
These characteristics are defined by the field 
attribute byte at the beginning of the field. 

field-formatted presentation space. A 
presentation space which is made up of one or 
more fields. 

HLLAPI. High-Level Language Application 
Program Interface. 

language interface module (LIM). Programs 
provided by EEHLLAPI or that you can write 
that serve as bridges between your program and 
the resident interface module (EEHLLAPI.EXE) 
that passes parameters to the Entry Level 
Emulation Program. 

logging on. The procedure by which you are 
linked to a multiple-user host computer system; 
the procedure requires a user identification and 
generally a password. 

menu. A list of available operations. You 
select which operation you want from the list. 

NA. Not applicable. When this appears in a 
calling parameter position, it means that 
EEHLLAPI will not read the data in these fields. 

operator information area (OIA). The 
bottommost line of your screen where you receive 
information about the status of your host. 

presentation space (PS). An area in storage 
that corresponds to the image on your screen. 

presentation space position parameter. One 
of the four parameters that you must specify for 
each EEHLLAPI function. A position in the 
presentation space from 1 to 1920. 

F-2 Programming Guide 



Glossary 

programmed operator. The software "user" 
that performs and monitors activities in your PC 
without actual human intervention; your 
EEHLLAPI application program. 

protected field. A field that is protected from 
modification by the operator. 

PS. See "presentation space." 

PSID. Presentation Space Identifier; short 
one-character or one-letter name of the 
presentation space. 

resident interface module (EEHLLAPI.EXE). 
The main interface module for EEHLLAPI; it 
must be loaded before you can use EEHLLAPI 
and must remain in storage as a resident 
extension of DOS. 

service coordinator. The person in your 
organization responsible for answering hardware 
and software computing questions. 

session. A connection between your work 
station and a host computer. (Contrast with 
"presentation space.") 

short name. The one-letter name (A through Z) 
of the host presentation space. For the Entry 
Level Emulation Program this is always "E". 

terminal operator. The human user of an 
EEHLLAPI application program (contrast with 
"programmed operator"). 

unprotected field. A field that is available for 
the operator to enter or modify data. 

valid key. A key that is recognized by the host 
session. 

Appendix F. Glossary F-3 



Notes 

F-4 Programming Guide 



Appendix G 

Appendix G. Alternate Code Page 
Support 

EEHLLAPI, using DOS 3.30, has Code Page 
Support for the following countries: 

Country Code Supported Code Pages 
BE 437, 850 
BI 437, 850 
CF 863,850 
DK 865, 850 
FR 437, 850 
FB 437, 850 
GR 437, 850 
IT 437, 850 
LA 437, 850 
NO 865, 850 
PO 860, 850 
SP 437, 850 
so 437, 850 
sv 437,850 
SU 437, 850 
SF 437, 850 
SG 437, 850 
UK 437, 850 
us 437, 850 

Figure G-1. Supported Code Pages 

Warning: If you configure DOS for a language 
that does not match your entry emulator 
language, the results of an ASCII translation will 
be unpredictable. 

Appendix G. Alternate Code Page Support G-1 



Notes 

G-2 Programming Guide 



Index 

alternate presentation 
spaces 

functions requiring 
special attention 3-60 

Assembler 8088 
language 4-14 

linking your EEHLLAPI 
program with 4-14 

attribute bytes 3-13, 3-15, 
3-20, 3-30, 3-65 

AUTOEXEC.BAT 2-4 
AUTOEXEC.BAT file 2-4 

loading EEHLLAPI 
from 2-4 

BASIC language 
examples of 2-2 
functions not available 
to 4-3 

limitations because 
of 3-44, 3-71, 3-7 4 

solutions to 3-74 
BAT files 

Index 

C language 
See IBM C language 

COBOL language 4-8 
limitations because 
of 3-44, 3-71, 3-74 

linking your EEHLLAPI 
program with 4-8 

Code Page Support G-1 
communication services 

functions 
Receive File 3-40 
Send File 3-55 

Compiled BASIC 4-6 
linking your EEHLLAPI 
program with 4-6 

See also "BASIC 
language." 4-6 

Connect Presentation 
Space 3-4, 3-5 

functions where not 
required 3-5 

Copy Field to String 3-9 
copy functions 3-65 

Copy Field to 
String 3-9 

Copy OIA 3-11 
Copy Presentation 
Space 3-13 

Copy Presentation Space 
to String 3-15 

Copy String to 
Field 3-17 

Index X-1 



Index 

Copy String to 
Presentation 
Space 3-19 

parameters 
affecting 3-65 

Copy OIA 3-11, C-1 
Copy Presentation Space to 
String 3-15 

Copy String to Field 3-17 

data length (calling) 3-2 
defined 3-2 

data length (returned) 3-3 
defined 3-3 

data string (calling) 3-2 
defined 3-2 

data string (returned) 3-3 
defined 3-3 

device services 
functions 

Release 3-46 
Reserve 3-47 

Disconnect Presentation 
Space 3-21 

EEHLLAPI 1-1 
advantages of using 1-1 
compiling your 
EEHLLAPI 
program 4-1 

defined 1-1 
loading the program 2-1 

from a diskette 2-1 
messages A-1 

X-2 Programming Guide 

overview 1-1, 1-3 
parts of 1-3 
Programs E-1 
running your 
program 4-15 

EEHLLAPI Functions 
defined 3-1 

EEHLLAPI.EXE 1-3 
defined 1-4 
loading 2-1 

EHLBASM 
functions associated 
with 

Free All Storage 
subfunction 3-79 

EHLSAMP 
See "Program 
Sampler" 2-2 

field-related functions 
Copy Field to 
String 3-9 

Copy String to 
Field 3-17 

Find Field Length 3-23 
Find Field 
Position 3-25 

Search Field 3-49 
file transfer 3-40, 3-55 

considerations for 
using 3-44 

Receive File 
function 3-40 

Send File function 3-55 
Find Field Length 3-23 
Find Field Position 3-25 
Free All Storage 
subfunction 3-79 



Free Storage 
subfunction 3-78 

Function calls 1-3 
defined 1-5 
notes on using the 
function 3-3 

page layout 
conventions 3-1 

parameters when 
called 3-1 

parameters when 
returned 3-2 

services provided 1-5 
use of 3-1 

function code (calling) 3-2 
defined 3-2 

function code 
(returned) 3-3 

defined 3-3 

@] 
Get Storage 
subfunction 3-76 

hardware requirements v1 
HLLBASM 3-70, 3-72 

functions associated 
with 3-74 

host requirements vii 

Index 

IBM C language 
linking your EEHLLAPI 
program with 4-13 

Interpretive BASIC 4-3 
initialization code for 
EEHLLAPI 4-3 

limitations 3-14 
linking your EEHLLAPI 
program with 4-3 

restrictions 4-4 
See also "BASIC 
language." 4-3 

string manipulation 4-5 

keyboard mnemonics 3-63 
See also 
"Mnemonics." 3-63 

language interface 
modules 1-3 

See LIMs. 1-3 
languages supported vi 
LIMs 1-3 

defined 1-4 
functions performed 
by B-4 

languages 
supported 1-4 

linking to 1-5, 4-1 
Assembler 8088 4-14 
BASIC 4-3 

Index X-3 



Index 

COBOL 4-8 
Compiled BASIC 4-6 
IBM C language 4-13 
Interpretive 
BASIC 4-3 

PASCAL 4-10 
revised call support for 
the 3270 PC4 B-5 

user-generated B-1, B-6 

messages A-1 
mnemonics 3-20, 3-63 

for Send Key 3-63 

@] 
OJA 3-11, C-1 
Operator Information Area 

See "OJA." 3-11 
operator services 

functions 
Pause 3-27 
Query Host 
Update 3-32 

Query Session 
Status 3-33 

Query Sessions 3-35 
Query System 3-37 
Send Key 3-60 
Set Session 
Parameters 3-65 

Start Host 
Notification 3-70 

Stop Host 
Notification 3-48, 
3-73 

X-4 Programming Guide 

Wait 3-80 

parameters when 
called 3-1 

defined 3-1 
PASCAL language 4-10 

creating record 
overlays 4-10 

example 4-10 
limitations because 
of 3-44, 3-71, 3-7 4 

linking your EEHLLAPI 
program with 4-10 

Pause 3-27 
parameters 
affecting 3-68 

presentation services 3-4 
functions 3-4 

Connect Presentation 
Space 3-4 

Copy Field to 
String 3-9 

Copy OIA 3-11 
Copy Presentation 
Space 3-13 

Copy Presentation 
Space to String 3-15 

Copy String to 
Field 3-17 

Copy String to 
Presentation 
Space 3-19 

Disconnect 
Presentation 
Space 3-21 

Find Field 
Length 3-23 



Find Field 
Position 3-25 

Query Cursor 
Location 3-29 

Query Field 
Attribute 3-30 

Search Field 3-49 
Search Presentation 
Space 3-52 

presentation space 
character table C-1 
field formatted 3-9, 3-17, 
3-23, 3-25, 3-49 

related 
publications D-1 

Program Sampler 2-2 
installing and 
running 2-2 

programmed operator 1-2 
defined 1-2 
tasks 1-2 

Query Cursor 
Location 3-29 

Query Field Attribute 3-30 
Query Host Update 3-32 
Query Session Status 3-33 
Query Sessions 3-35 
Query System 3-37 

Index 

Receive File 3-40, 3-44 
considerations for 
using 3-44 

Release 3-46 
Reserve 3-4 7 
resident interface 
module 1-3 

loading 2-1 
See 
EEHLLAPI.EXE 1-3 

return codes 3-3 
defined 3-3 

Samples E-1 
Search Field 3-49 
search functions 3-66 

parameters 
affecting 3-66 

Search Field 3-49 
Search Presentation 
Space 3-52 

Search Presentation 
Space 3-52 

Send File 3-44, 3-55 
considerations for 
using 3-44 

Send Key 3-60 
sending keystrokes 3-60 

mnemonics 3-63 
Send Key function 3-60 

Set Session 
Parameters 3-65 

software interrupts 4-14 
software requirements vi 
specifying strings 3-20 

Index X-5 



Index 

Start Host 
Notification 3-70 

Stop Host 
Notification 3-48, 3-73 

functions 
Storage 
Manager 3-74 

Storage Manager 3-70, 
3-74 

subfunctions 
Free All 
Storage 3-79 

Free Storage 3-78 

X-6 Programming Guide 

Get Storage 3-76 
string specification 3-65 

trace 3-67, 4-16 

Wait 3-80 



r 

\ 

r 




