4
o«

- A significant number of IBM extensions are

Systems Reference Library

IBM DOS Full American
National Standard COBOL

Program Numbers: (Versions 1 & 2) 360N-CB-482
(Version 3) 5736-CB2 (Compiler Only)
5736-LM2 (Library Only)
5736-CB3 (Compiler and Library)

This publication gives the programmer the rules for
writing programs that are to be compiled by the IBM"°
Full American National Standard COBOL compilers under
the Disk Operating System. It is meant to be used as a
reference manual in the writing of IBM Full American
National Standard COBOL programs. ’

COBOL (COmmon Business Oriented Language) is a
programming language, similar to English, that is used
for commercial data processing, It was developed by
the Conference On DAta SY¥stems Languages (CODASYL).

The standard of the language is American National
Standard COBOL, X3.23-1968, as approved by the American
National Standards Institute (ANSI).

IBM DOS Full American National Standard COBOL,
Version 3, which includes all the features of earlier
versions, incorporates the eight processing modules
defined in the highest level of the American national
standard. These modules include:

Nucleus

Table Handling
Sequential Access
Random Access
Sort

Report Writer
Segmentation
Library

as well; these extensions are printed on a
background. This IBM implementation of Am _
National Standard COBOL also complies with the first

- Draft ISO recommendation on COBOL,

Third Edition. (April 1971)

This edition, as amended by TNLs GN28-0436 and GN28-0489, describes
Versions 1 and 2 of IBM Full American National Standard COBOL at the
Release 26 level of the Operating System. It also describes the Program
Product Version 3, Release 2 -- including System/370 device support.
Changes have been made throughout the publication to correct and clarify
specific items. All technical changes are indicated by a vertical line
to the left of the change; revised and new illustrations are denoted by
the symbol e to the left of the caption.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
‘Corporation, : Programming Publications, 1271 Avenue of the Americas,
New York, New York 10020.-

© cdpyright International Business Machines Corporation 1968, 1969,
1970, 1971, 1972

@,

This publication describes the IBM
implementation of Full American National
Standard COBOL, and all IBM extensions to
that standard. Some statements are
>xtensions to either American National
standard COBOL or to both American National
standard COBOL and the complete definition
>f CODASYL COBOL.

L0 D —t - b

o-tn

In this publication, the term standard
COBOL means American National Standard
COBOL; the term IBM Full American National
Standard COBOL means this IBM
implementation of American National
Standard COBOL and all extensions to that
standard. There are two types of

extensions:

1. Those that represent features not
specified by Bmerican National
Standard COBOL.

2. Those that represent an easing of the
strict American National Standard
COBOL rules and allow for greater
programming convenience.

All such extensions are printed on a ghaded
background for the convenience of users who
wish strict conformance with the standard.
Use of features that are extensions to the
standard may result in incompatibilities
between the implementation represented by
this document and other implementations.

If a complete chapter is an extension, only
the chapter heading is shaded. These
chapters are:

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard COBOL, and,
through an example, illustrates the logical
sequence and interrelationship of commonly
used elements of a COBOL program. The
balance of the publication gives the
specific rules for correct programming in
IBM Full American National Standard COBOL,

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

PREFACE

as implemented by the System/360 Disk
Operating System. Appendixes provide
supplemental information useful in writing
COBOL programs. Appendix A describes the
use of intermediate results in arithmetic
operations; Appendix B contains several
sample programs showing the use of mass
storage files; Appendix C lists all of the
formats and reserved words in IBM Full
American National Standard COBOL; Appendix
D is a file processing summary; Appendix E
gives considerations for the use of ASCII
encoded files; Appendix F explains the
symbolic debugging feature; Appendix G
explains 3525 combined function processing.

Compiler output and restrictionms,
programming examples, and information on
running an IBM American National Standard
COBOL program are found in the publication
IBM DOS Full American National Standard
COBOL _Programmer's Guide, Order
No. GC28-6398 and in the Program Product
publication IBM DOS Full American National
Standard COBOIL. Compiler and Library,
Version 3, Programmer's Guide, Order
No. SC28-6441. These programmer's guides
and this language reference manual are
corequisite publications.

A knowledge of basic data processing
techniques is mandatory for the
understanding of this publication. Such
information, as it applies to System/360,
can be found in the following publications:

Introduction to IBM Data Processing
Systems, Form GC20-1684

Introduction to IBM System/360 Direct
Access Storage Devices and Organigation
Methods, Form GC20-1649

The reader should also have a general
knowledge of COBOL before using this
manual. Useful background information can
be found in the following publications:

COBOL Program Fundamentals: Text, Form
R29-0205

COBOL Program Fundamentals: Reference
Handbook, Form R29-0206

Writing Programs in COBOL: Text, Form

R29-0210

Writing Programs in COBOL:
Handbook, Form R29-0211

Reference

COBOL Programming Technigues:
Form R29-0215

Text,

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL

programs. Any violation of the rules
defined in this publication for using the
Disk Operating System is considered an
error.

A general knowledge of the IBM Disk
Operating System is desirable, although not
mandatory. The following publication gives
such information:

IBM System/360 Disk and Tape Operating
System: Concepts and Facilities, Form
GC24-5030.

C

(.

ACKNOWLEDGMENT

The following extract from Government Printing Office Form Number
1965-0795689 is presented for the information and guidance of the user:

"Any organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention *COBOL' in
acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or
group of companies, or of any organization or group of organizationms.

"No warranty, expressed or implied, is made by any contributor or by the
COBOL Committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Incquiries concerning the procedures for proposing changes should be
directed to the Executive Committee of the Conference on Data Systems
Languages.

"The authors and copyright holders of the copyrlghted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Programming for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commerical Translator, Form

No. F28-8013, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Mlnneapolls—Honeywell

have specifically authorized the use of this material in whole or in
part, in the COBOL specifications. Such authorization extends to the
reproduction and use of COBOL specifications in programming manuals or
similar publications.”™

Order No. GC28-6394-2,

FEATURES OF THE PROGRAM PRODUCT
VERSION 3 COMPILER ¢ « « o o o o o« o

INZIRODUCTI ON L] L] - L] . L] L L] L] - L] ®
Principles of COBOL . +« o & o o = «
A Sample COBOL Program « « o« « o« o @
Identification Division
Environment Division « o « o« o «
Data Division . . ¢« ¢ ¢ « s o« «
Procedure Division « « « o o o o
Beginning the Program --
Operations « « o « « o« o o o o o
Arithmetic Statements . . « « .
conditional Statements « o « «
Handling Possible Errors . . .
Data-Manipulation Statements .
Output Operations
Procedure Branching Statements
Ending the Program « « « « « «

s a & 8

PART I -- LANGUAGE CONSIDERATIONS .

STRUCTURE OF THE LANGUAGE . « « « &
COBOL Character Set . « « « o o« « @
Characters Used in Words
Characters Used for Punctuation
Characters Used for Editing . .
Characters Used in Arithmetic
Expressions . . « 4 o a e o @
Characters Used for
Relation-conditions « « o« « « o
Types Of Woxrds . ¢« ¢ ¢ o o o o o o »
Reserved WOrds « « o « « o o @
NAaMeS o 2 o o o o = o o o »
Special-NamesS .« « s o « o «
ConstantsS .« « o ¢ o o o s o o @
LiteralS o« o o o o o o o o »

Figurative Constants . . .
Special Registers o« o« « o « @

ORGANIZATION OF THE COBOL PROGRAM .,
Structure of the COBOL Program

METHODS OF DATA REFERENCE
Qualification .« +« o« o« o &
Subscripting
INdeXing « « « o s o = o =«

" a4 e 0

LI T S |
.

o o o @

USE OF THE COBOL CODING FORM . . .
Sequence NUMDEYS o« « o« s ¢ o o o » o
continuation of Lines . . « « o & «
Continuation of Nonnumeric Literals
continuation of Words and Numeric
LiteralsS o« o« o o s« o o o a o o o o @
Area A and Area B . 2« 2 2 o = = o
Division Head€r e« « ¢ o« « « « o
Section Header . v« v« =« o o o o
Paragraph-names and Paragraphs .

Level Indicators and Level Numbers

Blank Lines . « « o o o« o o o =«
comment LiN€sS o « o« ¢« o « o « «

a o 8 o @

Page Revised 5/15/72 by TNL GN28-0489

CONTENTS

FORMAT NOTATION &« o o «. ¢ o o o « @

PART II -- IDENTIFICATION AND
ENVIRONMENT DIVISIONS o o« « o« « o «

IDENTIFICATION DIVISION « o« « « o «
PROGRAM-ID Paragraph . . « . . .
DATE-COMPILED Paragraph . . « .

ENVIRONMENT DIVISION -- FILE
PROCESSING SUMMARY o & v « =« o o o &«
Data Organization « « o« o « « « o o
Sequential Data Organization . .
Direct Data Organization . « « .
Indexed Data Organization . . .
Access Methods « « « o ¢ « o ¢« ¢« o &«
Accessing a Sequential File . .
Accessing a Direct File
Sequential ACCESS 4« « o« « « o &
Random Access . . . e e e o
Accessing an Indexed Flle « e e
Sequential Access . .« . o . . .
Random ACCESS o « « « « o o o &

ORGANIZATION OF THE ENVIRONMENT
DIVISION &« 2 o o o o o o o o o o s o

ENVIRONMENT DIVISION -- CONFIGURATION

SECTION ¢ « « o e ¢ « ¢« o o o o« o
SOURCE-COMPUTER Paragraph . . .
OBJECT-COMPUTER Paragraph .« « .«
Program Product Information --
Version 3 . ¢ o ¢ ¢ o o o s o @
SPECIAL-NAMES Paragraph

ENVIRONMENT DIVISION -- INPUT-OUTPUT
SECTION ¢ o o « o o o s s s o o o &
FILE-CONTROL Paragraph « « « « « o« &«
SELECT ClausSe€ . « « s 2 s « « =
ASSIGHN ClausSe « « o o « o ¢ = &«
Program Product Information --
Version 3 . ¢ ¢ ¢ « o o o ¢« o o
RCE and OMR Format Descriptor . . .
Program Product Information --
Version 3 . ¢ ¢ o o o o o o o a
RESERVE ClauSe « « « o o o « o o
Program Product Information -—-
Version 3 .« « o o o
FILE-LIMIT Clause . .
ACCESS MODE Clause . .
PROCESSING MODE Clause
ACTUAL KEY Clause . .
NOMINAL KEY Clause . .
RECORD KEY Clause . .
TRACK-AREA Clause .
I-O-CONTROL Paragraph .
RERUN Clause « « « « N
SAME Clause . . e & o a » o o
MULTIPLE FILE TAPE Clause . «
APPLY ClausSe « o « o o o o o o o

e & o & o 5 s 8 v o
" 8 o & o 8 @
» & o & o ¥ »
" e o & o 2 o+ »
.

61

62
62
63

63
63

Order

Program Product Information --

Version 3 . ¢« ¢ o o

PART III -- DATA DIVISION

DATA DIVISION -- INTRODUCTION
Organization of External Data

Description of External Data .

ORGANIZATION OF THE DATA DIVISION
Organization of Data Division Entries

Level Indicator . .
Level Number
Special Level Numbers
Indentation
File Section « « « « o

File Description Entry

Record Description Entry

Working-Storage Section

Data Item Description Entries

Record Description Entries .

Linkage Section
Report Section « « « « «

No.

FILE DESCRIPTION ENTRY -- DETAILS OF

CLAUSES 4« o o o o o o
BLOCK CONTAINS Clause

RECORD CONTAINS Clause

Recording Mode « .« .
RECORDING MODE Clause
LABEL RECORDS Clause
VALUE OF Clause . .
DATA RECORDS Clause
REPORT Clause . . .

DATA DESCRIPTION

.

s o 2 o

s o o

DATA DESCRIPTION ENTRY -- DETAILS OF

CLAUSES « o « o o« o .

Data-name or FILLER Clause

REDEFINES Clause « .

BLANK WHEN ZERO Clause

JUSTIFIED Clause . «
OCCURS Clause . . .
PICTURE Clause . . «

The Three Classes of Data

Character String and Item Size

Repetition of Symbols

Symbols Used in the PICTURE Claus
The Five Categories of Data

Types of Editing . .
Insertion Editing .

Zero Suppression and Replacement

Editing « o« o« o o @

Program Product Information --

version 3 < ¢ o o o
SIGN Clause « « «
SYNCHRONIZED Clause
Slack Bytes .« « o+ o«
USAGE Clause . « «
Display Option « « « «

The Computational Options

.

Program Product Information --

Version 3 . . « « o
VALUE Clause « « « o
RENAMES Clause . . .

PART IV -- PROCEDURE DIVISION

" 8 o & o a

.
)
.
.
e
L]

GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

°
[os]
(%4}

® s o 3 o o s
[e-]
~J

s o ¢ @
O
[oe]

L] 101
.101
<102
.105
<106
l106
106
«107
.108
«108
.108
<112
.115
«115

<117

.118
.118
.118
119
<124
124
.124

.124
«125
.128

.131

ORGANIZATION OF THE PROCEDURE DIVISION

Categories of Statements . . «
Conditional Statements . . .
Imperative Statements . . .
Compiler-Directing Statements

ARITHMETIC EXPRESSIONS
Arithmetic Operators . . « . .

CONDITIONS ¢« « o 4« « ¢ o o o o
Test Conditions « . &
Class Condition « « « o«
Condition-Name Condition .
Relation Condition « « «
Sign Condition . « « « + &
Switch-Status Condition .
Compound Conditions
Evaluation Rules . o« « 4+ o o«
Implied Subjects and
Relational-Operators
Implied Subject . .

Implied Subject and Relat10nal

Operator « « « « o o ¢ @
Implied Subject, and
Relational-Operator . . .

CONDITIONAL STATEMENTS ¢« « o «
IF Statement . « &« &« &« .« .
Nested IF Statements . . .

DECLARATIVES ¢ « « o« o o« o o o
Sample Label Declarative

ARITHMETIC STATEMENTS
CORRESPONDING Option . . .
GIVING Option . « « . . .
ROUNDED Option « « « « o «
SIZE ERROR Option
Overlapping Operands
ADD Statement . . .
COMPUTE Statement .
DIVIDE Statement . .

MULTIPLY Statement
SUBTRACT Statement

.
e o 8 & o

PROCEDURE BRANCHING STATEMENTS
GO TO Statement
ALTER Statement <« « « o«
PERFORM Statement
STOP Statement « « « « o« o
EXIT Statement &

DATA-MANIPULATION STATEMENTS
MOVE Statement . « « . &
EXAMINE Statement <« «
TRANSFORM Statement . .

INPUT/OUTPUT STATEMENTS .+ . .
OPEN Statement « « « o o o
START Statement . « . .« .
SEEK Statement . « ¢ « « «
READ Statement . . . « «
WRITE Statement .« « « « &
REWRITE Statement . « « =
ACCEPT Statement « « « o«
DISPLAY Statement
CLOSE Statement . « « « &

Subject

Program

and

e » o

3

.133
<134
.135
«135
.136

.137
137

«139
.139
« 140
. 141
. 1‘42
.146
<146
<146
. 147

. 148
. 149

149
«149

« 150
. 150
<151

«153
.156

.160
«160
.160
«160
.161
.161
.162
.163
<164
.165
.166

.168
.168
«169
.170
<177
177

179
179
«.182
.184

. 187
. 187
.189
«190
.191
.192
.197
« 197
.198
. 200

e’

€

(ii}

order No. GC28-6394-2,

Sequential File Processing
Random File Processing « o «"s' e

SUBPROGRAM LINKAGE STATEMENTS '« o
CALL Statement« . . .
ENTRY Statement ¢ o« « '« o ¢ o @
USING Option o o 2o o o o o o o @

‘ Program Termination Con51derat10ns

EXIT PROGRAM Statement . . « «
GOBACK Statement . « « ¢ ¢ « o &
STOP RUN Statement + « « ¢ ¢ o o

-COMPILER-DIRECTING STATEMENTS « « «

COPY Statement . . « « o o o o« &
ENTER Statement e e e o @
NOTE Statement « « « o« o o o o &

a
]
.

PART V -- SPECIAL FEATURES

SORT FEATURE ¢« ¢ ¢ o o o o s o o o
Program Product Information --
Version 3 .« ¢ ¢ o o o o o o o o

Elements of the Sort Feature . . .
Environment Division Considerations
fOr SOt o e o« o o ¢ ¢ o ¢ o o o o o

Input-Output Section «

File-Control Paragraph . . . «
Assignment of Sort Work Units .
I-0-CONTROL Paragraph e e e o @
. RERUN Clause . «« e
SAME RECGCORD/SORT AREA Clause .

Data Division Considerations for

File Section « o ¢ ¢ ¢ ¢ o o o o «

Sort-File Description . « « «

Procedure Division Considerations for

Sort @ @ & 6 & e o6 o o o & o e o o o

SORT Statement . ¢« ¢ o ¢ o o o o

RELEASE Statement «+ ¢« ¢« « o ¢ o
RETURN Statement « ¢« ¢ ¢ o« ¢ o @
EXIT Statement « « o o« ¢ ¢ o o o
Special Registers for Sort

Sample Program Using .the Sort Feature

REPORT WRITER FEATURE . ¢« « ¢ o o «
Data Division -- Overall Description
Procedure Division -- Overall
Description . « « ¢ o o o o o o o @
Data Division Considerations for
Report Writer . « ¢ ¢ o o o o = o =«
File Description « « « « o o o o @
"REPORT ClausSe .« « = o o o o =« «
RECORDING MODE Clause « o« o o o
DATA RECCRDS Clause . « « ¢ o =
RECORD CONTAINS Clause . .
Report Section . « « « « o
Report Description Entry .
CODE Clause =« « o o o = o
CONTROL ClauS€-. « o o o« o o &«
PAGE LIMIT Clause .« « o« o o
Report Group Description
LINE Clause . « « =
NEXT GROUP Clause .
TYPE Clause « o o« o
USAGE Clause « o« « »
COLUMN Clause « « «
GROUP INDICATE Clause .
JUSTIFIED Clause .

& o & o o
=
2
ot
Bl
[]
2 2 o

Sort

e o 0 o & o +

«201

~+203

« 205
. 205

"« 206

. 207
.210
.211
.211
211

«212
.212
«212
. 212

. 215
« 217

.217
. 217

.218
218
.218
«219
. 219
«220
. 220
«221

221 .

«221

S 6222

. 222

227

.228
«228
«229

« 230

L] 232
. 232

. 233

. 234
« 234
. 230
« 235
.235
«235
. 236
« 236
« 236
. 237
238
. 241
e 2“3
. 245
« 247
. 249
. 249
« 250
« 250

Segment Classification . « « « « « &

Page Revised 5/15/72 by TNL GN28-0489

PICTURE ClauSe « o « o = o« « @
RESET Clause « + « e e s
BLANK WHEN ZERO Clause « s s .
‘SOURCE, SUM; or VALUE Clause '.
Procedure Division Considerations
GENERATE Statement
INITIATE Statement . « « . &
TERMINATE Statement
USE Sentence « « o o« o e s e
Special Registers: PAGE- COUNTER and
LINE~COUNTER « « « o « o o o o« =
PAGE-COUNTER « o o & o o o &
LINE-COUNTER « « o « o ¢ o o
Sample Report Writer Program . .
Key Relating Report to Report
Writer Source Program « «

TABLE HANDLING FEATURE . e s e o o o
Subscripting « « « ¢« o o ¢ ¢ o o o
INdexXing o« « o« .o o o o o o o o o o
Restrictions on Indexing,
Subscripting, and Qualification . .
Example of Subscripting and Indexing

Data Division Considerations for Table

Handling « = o« 2 « « o « o o o o &

OCCURS Clause .« s « o« o o« o o

USAGE IS INDEX Clause . . . »
Procedure Division Considerations
Table Handling « . « « « .

Relation Conditions « « « « «

SEARCH Statement . . .

SET Statement <« « ¢ o« ¢ « o

Sample Table Handling Program . .

s o
for

SEGMENTATION FEATURE . ¢ 2 o« o o o o
Organization « « o . ¢ « ¢ « o o« o o
Fixed Portion . . . ¢ e o o o o »
Independent SegmentsS « « ¢ « « o o

Segmentation Control . « « o« &
Structure of Program Segments
Priority Numbers . . « « « .«
Segment Limit .« o« ¢ ¢ ¢ o &
Restrictions on Program Flow
ALTER Statement « « o« ¢ « « ¢ o
PERFORM Statement . . « « o« « &
Called Programs

SOURCE PROGRAM LIBRARY FACILITY . .
COPY Statement « « ¢« o ¢ o o« o « &

Extended Source Program Library

Facility « - « « « .
BASTIS Card « «
INSERT Card . .
DELETE Card . .

s o & »
.

DEBUGGING LANGUAGE « . « o . . e
READY/RESET TRACE Statement « o
EXHIBIT Statement . . « « « « &
ON (Count-conditional) Statement .
Program Product Information --
version 3 .« « o . e o« o &

Compile-Time Debugging Packet e e e e
DEBUG CarYQ « « « « e o « o o o o @

FORMAT CONTROL OF THE SOURCE PROGRAM
LISTING &+ o o« o @« o a o o o & o o
EJECT Statement "« « « « « s« ¢ o o

. 250
250"

'.251
« 251 ¢

. 253
.253
. 250
. 255
. 256
. 257

.257
. 257

. 259

. 262

. 269
« 269
. 270

. 271
. 271
.272
. 272
. 279

. 280

0280 .

. 281
« 286
. 287

. 289
. 289
. 289
.289
. 290
« 290
. 290
+ 290
. 291
.292
292
.292
<292

.293
.293

. 296
« 296
. 296
. 296

. 298
« 298
. 298
« 300

« 300
301
«301

«302
«302

order No.

.SKIP1, SKIP2,
STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS o « o ‘o
Sterling Nonreport « « o« 2 « = « «
Sterling Sign Representatlon .« e
_Sterling Report
Procedure Division Considerations
International Considerations « « «

- SUPPLEMENTARY MATERIAL & o « « & o «
APPENDIX A: INTERMEDIATE RESULTS . .
Compiler Calculation of Intermediate
Results - L] L] L] - L] L] L] - - L] - - .
APPENDIX B. SAMPLE PROGRAMS . . . -
Creation of a Direct File 4 o« =« o «
Creation of an Indexed File

Random Retrieval and Updatlng of an
Indexed File « o ¢« o o o o o o o o &«

 APPENDIX C.

and SKIP3 Statements

AMERICAN NATIONAL STANDARD

VGC28:§3§4~§;

.302

«303
«304
«305

-«306

. 308

«308

. 309

«311.

«311
«313
<314

.316

. 318

COBOL FORMAT SUMMARY AND RESERVED WORDS 321

APPENDIX D.
TECHNIQUES AND APPLICABLE STATEMENTS
AND CLAUSES 4« o « o ¢ « o « s s o o

APPENDIX E: ASCII CONSIDERATIONS
1 -- Environment Division . .
ASSIGN Clause « o« o «
RERUN ClausSe « o« « .« o

II -- Data Division . . .
File Section e« « o« . ¢ o «
BLOCK CONTAINS Clause
LABEL RECORDS Clause .
RECORDING MODE Clause

.
e . .
- L] L]
-] -
L] - -
ecord

compiler Calculation of Recording

MOAE o ¢ o o o o o o o « o o .o =

'SUMMARY OF FILE-PROCESSING

«331

. 33“
. 334
334
« 334
. 334
«334
«334
«334
. 334

Page Revised 5/15/72 by T}

Data Descrlptlon Entrles S e

PICTURE ClauS@ o« -« -« s « o o o o a
SIGN ClaUSE « o o o o o« ' o o o o o338,
. USAGE Clause e e e & @& & & 8 ‘€ -" e . 33‘& .
IIT -- Procedure Division . s e s s o334 .
LABEL PROCEDURE Declaratlve e e e« 334
'Relation Conditions « « « o« o & o «334
IV -— SOrt Feature . « o« o o o o o o .o «334
Environment Division « ¢ « o « o o o.«334
ASSIGN ClauSe « « o o o o o o o «334
RERUN Clause @ o e o e e, L e e e @ : .'334' :
Data Division .« o+ o ¢ o o o o o o o +33U.
SIGN ClausSe « « « o o o o @« o . ¢ 334
USAGE ClauSe . « « « o « s« o o o 334
APPENDIX F: SYMBOLIC DEBUGGING FEATURE .334
Object-Time Contrxrol Cards « « « « «334
Sample Program -- TESTRUN334
Debugging TESTRUN . « o« o o« o o« o« o334
APPENDIX G: 3525 COMBINED FUNCTION
PROCESSING o« o « s o o = o o « = & o « «334
I -- Environment Division i
Considerations .« « . . e s o o' o o 2334
SPECIAL-NAMES Paragraph e« ¢ &« o « ¢3304
SELECT ClausSe . « « o « o o o o« » 334
ASSIGN ClausSe « o « « o« o o « o« o 334
RESERVE ClauSe€ « o« o« o e o o « o'« o334
'IT -- Data Division Consideratlo e« o «334
ITIY -- Procedure Division
Considerations « « « o « s« « o o o o o o334
OPEN Statement « « « « « o o o o' o «334
READ Statement . « « o « o « o« o« o« o334
WRITE Statement -- Punch Function
Fil€S o o o o e« o o o o o o o o o« «334
WRITE Statement -- Print Function
File€S &« o o o o o o o « o o o o « =334
CLOSE Statement e e @ & e e @ o @ 0334
IBM AMERICAN NATIONAL STANDARD COBOL
GLOSSBARY &« o« o o o « o o = a o & o o a-2335
INDEX o o e « o o o s o« o o o a o o o «349

<334
Ce338

order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Figures

Q

Figure 1. Illustration of Procedure
Branching « « o « o « o« o o« o o o @
Figure 2. Complete UPDATING Program
Figure 3., Reference Format e e o
Figure 4. Structure of the First
Eight Bytes of ACTUAL KEY -- Actual
Track Addressing e e o o o o 8 e s @
Figure 5. Level Indicator Summary .
Figure 6. Areas REDEFINED without
Changes in Length e & & e o & & @ @»
Figure 7. Areas REDEFINED an
Rearranged e & o & o o ¢ o e s o s 3 @
Figure 8. Insertion of th
Intra-occurrence Slack Bytes « o o
Figure 9. Insertion of
Inter-occurrence Slack Bytes “« s o e
Figure 10. Logical Operators and the
Resulting Values upon Evaluation . . .
Figure 11. Conditional Statements
with Nested IF Statements « o« o « o o
Figure 12. Error Byte Meaning for the
GIVING Option of an Error Declarative

Chart 1. Logical Flow of Conditional
Statement with Nested IF Statements .
Chart 2. Logical Flow of Option #
PERFORM Statement Varying One
Identifier L] - L] - L] L] - - - L] L] - -
Chart 3. Logical Flow of Option 4
PERFORM Statement Varying Two
Identifiers . « o ¢ o o« ¢ ¢ o o« o o @

«103
.104
<121
<122
« 147
<151

« 157

«152

<174

«175

Figure 13. SORT Collating Segquences
Used for Sort Keys © o e s s e o @
Figure 14. Sample Program Using the
SORT Feature e s o o s o o o & s @
Figure 15.
LIMIT Clause Is Specified
Figure 16. Sample Program Using the
Report Writer Feature . . « « + «
Figure 17. Report Produced by Repor
Writer Feature . « « o o « o o » « o
Figure 18. Storage Layout for
PARTY-TABLE &+ & « & « & « « o o o &
Figure 19. Sample Table Handling
Program (Part 1 of 2)
Figure 20. Using the TRANSFORM
Statement with ASCII Comparisons . .
Figure 21.
Sequences for COBOL Characters -- in
ascending order . ¢« « « o o
Figure 22. Using the Symbolic
Debugging Features to Debug the
Program TESTRUN « « ¢ ¢« ¢ ¢ ¢ o o o«

Chart 4. Logical Flow of Option 4
PERFORM Statement Varying Three

Identifiers o« ¢ « ¢ ¢ ¢« ¢ ¢ « o o &
Chart 5. Format 1 SEARCH Operation
Containing Two WHEN Options

. 4223

. 230

Page Format when the PAGE

. <240
. +259
. . 264
. 272
. .287

.« +334

EBCDIC and ASCII Collating

« «334

« 334

Charts

« +176

. .284

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Tables

Table 1. Typical Ledger Records Used
for MASTER-RECORD « « « ¢ o o o
Table 2. Typical DETAIL-RECORD . . .
Table 3. Summary of File-Processing
TechniquesS « o« « « ¢ ¢ « ¢ o« o o o o @
Table 4. Choices of Function-name-1
and Action Takén « « « ¢ « o o« o« s o »
Table 5. Values of Organization
Field for File Organization . « « « «
Table 5.1, Values of Organization
Field for File Organization . « « « «
Table 6. Class and Category of
Elementary and Group Data Items . « «
Table 7. Precedence of Symbols Used
in the PICTURE ClauS€ . « « o« « « o o
Table 8. Editing Sign Control
Symbols and their Results . « ¢« « « &
Table 8.1. Internal Representation
of Numeric Items . « « o o« o « o o @
Table 9. Permissible Symbol Pairs. .
Table 10, Valid Forms of the Class
Test L] - L] L] L] L] L) - L] . L) L] L] . L] - L]
Table 11. Relational-operators an
Their Meanings e 4 e 8 & o e & o s o o

e e @

Table 12, Permissible Comparisons . .
Table 13, Permissible Symbol Pairs .
Table 14. File Processing Techniques

and Associated Error Declaratives
Capabilities s o o & o &8 ®w @ ® a4 e ¢ e

. 19
« 20

« 60
.« 64
« 70
« 70
«107
. 111
«116

<124
«138

«140
142

<145
.148

«158

Table 15. Permissible Moves181
Table 16. Examples of Data Examination 183
Table 17. Examples of Data

Transformation . . . « « « « . . » . . .184
Table 18. Combinations of FROM and TO
OPtiONS o o o o o ¢ o o« « o s « o « & 4185
Table 19. Action Taken for

Function-Names -- ADVANCING Option . . .194
Table 20. Values of Identifier-2 and

Their Interpretation -- POSITIONING

Option « & & o o« o o o o o & o « o o » 2195
Table 21. Values of Integer and Their
Interpretations -- POSITIONING Option (195
Table 22. Relationship of Types of
Sequential Files and the Options of

the CLOSE Statement . « ¢« ¢ ¢ « « o o «203
Table 23. Relationship of Types of

Random Files and the Options of the

CLOSE Statement. . « « « o =« « = o o » o204
Table 24. Effect of Program

Termination Statements Within Main

Programs and Subprograms. s+ « . . . « »210
Table 25, Index-names and Index Data

Items -- Permissible Comparisons281
Table 26. Sterling Currency Editing
Applications « .« « « o « « « o o = & o+ 308
Table 27. Compiler Action on

Intermediate Result . . . « « ¢« « o « 312
Table 28. Individual Type Codes Used

in SYMDMP Qutputs . o ¢ o o o « = o » 334

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

FEATURES OF_THE PROGRAM PRODUCT VERSION 3 COMPILER

The IBM Disk Operating System Full American National Standard COBOL
Compiler Version 3 includes the following features:

s Improvements in Object Code to save main storage:

(1) Optimized Object Code -- which results, when specified, in
up to 30% space saving in object program generated code
and global tables as compared with Version 2. The space
saved depends on the number of referenced procedure-names
and branches, and on 0l-level data names.

(2) System/370 Support can be requested, to take advantage of

the System/370 instruction set. When such support is
requested, System/370 instructions particulary suited to
COBOL programming are generated to replace the eguivalent
object-time subroutines and instructions needed when
running under System/360., The System/370 instructions
save up to 12% of generated object program space, plus the
space no longer needed by the subroutines.

(3)

() Improvements in the MOVE Statement and in Comparisons --
when a MOVE statement or a comparison involves a one-byte
literal, generated code for the move and the comparison
has been improved. This saves object program space.

(5) Improved DISPLAY Routines -~ the DISPLAY routine has been
split into subsets for more efficient object program code.

e Alphabetized Cross-Reference Listing (SXREF) -- for easier
reference to user-specified names in a program. SXREF performs
up to 25 times faster than previous source-ordered
cross—-reference (XREF), Version 3 XREF performance is improved
by at least the same amount. The larger the source program, the
more that performance is improved. Total compilation time is up
to 3 times faster.

e Debugging Facilities that are more powerful and flexible

(1) sSymbolic Debuyg Feature -- which provides a symbolic
formatted dump at abnormal termination, or a dynamic dump
during program execution.

(2) Flow Trace Option -- a formatted trace can be requested
for a variable number of procedures executed before
abnormal termination.

(3) sStatement Number Option -- provides information about the
COBOL statement being executed at abnormal termination.

(4) Expanded CLIST and SYM -~ for more detailed information
about the Data Division and. Procedure Division.

(5) Relocation Factor -- can be requested to be included in
addresses on the object code listing for easier debugging.

(6) Working-Storage_Location and_Size -- When CLIST and SYM
are in effect, the starting address and size of
Working-Storage are printed.

Features Of The Program Product Version 3 Compiler 11

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

12

¢ Additional Device Support -- the following devices can be S
specified: {)
P A
3211 -- 150-character printer
2319, 3330 -~ mass storage (direct access) facilities
3410, 3420 -- tape utility devices
3505, 3525 -~ advanced unit-record devices
*¢ ASCII Support -- allows creation and retrieval of tape files
written in the American National Standard Code for Information
Interchange (ASCII).
e
; \
N

INTRODUCTION

In 1959, a group of computer professionals, representing the U.S,
Government, manufacturers, universities, and users, formed the-
conference On DAta S¥stems Language (CODASYL). At the first meeting,
the conference agreed upon the development of a common language for the-
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem-
oriented and machine-independent, and it would use a syntax closely
resembling English, avoiding the use of special symbols as much as
possible.' The COmmon Business Oriented Language (COBOL) which resulted
met most of these requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. Such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output
records.

In the years since 1959, COBOL has undergohe considerable refinement
and standardization, and a standard COBOL has been approved by ANSI
(American National Standards Institute), an industry-wide association of

‘computer manufacturers and users; this standard is called American

National Standard COBOL, X3,23-1968.

This publication explains IBM Full American Natlonal Standard COBOL,
which is compatible with the highest level of American Natiomnal Standard
COBOL and includes a number of IBM extensions to it as well. The
compiler supports the processing modules defined in the standard. These
processing modules include:

' NUCLEUS -- which defines the permissible character set and the basic

elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and making
reference to them through subscripts and indexes. A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS -- which allows the records of a file to be read or

written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file.to be read or

. written in a manner specified by the programmer. 'Specifically defined,

keys, supplied by the programmer, control successive references to the
file.

SORT -- which provides the capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the programmer to describe the format of a
report in the DATA DIVISION, thereby minimizing the amount of ‘PROCEDURE
DIVISION codlng necessarvye

SEGMENTATION --. Wthh allows large problem programs to be split into

~ segments that can then be designated as permanent or overlayable core

storage. This assures more efficient use of core storage at object
time.

Introduction 13

f
.

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 S

LIBRARY -- which supports the retrieﬁal and updating of pre—wrlttén

source program entries from a user's library, for inclusion in a COBOL : 'f‘}>
program at compile time. The effect of the compilation of library text \

is as though the text were actually written as part of the source

program.

In this publication, the features included in the NUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations™ and of the four divisions of a
COBOL program., The other five modules -- TABLE HANDLING, SORT, REPORT
WRITER, LIBRARY, and SEGMENTATION -- are presented as separate features

~of USA standard COBOL.

This manual describes all versions of IBM System/360 Disk Operating
System Full American National Standard COBOL. All information relating
to the Program Product Version 3 compiler is presented within separate
paragraphs. Such paragraphs begin with the heading "Program Product
Information -- Version 3,™ and all following paragraphs pertaining to
such information are indented.

This chapter gives the reader a general understanding of the
principles of IBM Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of commercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the ba51c concepts
of the language through relatively simple examples.

Thefreader who has an understanding of the principles of currently
implemented versions of COBOL may wish to go directly to "Language
Considerations." Other readers will find many concepts discussed in
this chapter of help in using the detalled instructions throughout the
rest of this manual.

PRINCIPLES OF COBOL -

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine independent,
freeing the programmer from many of the machine oriented restrictions of
assembler language, and allowing him to concentrate instead upon the
~logical aspects of his problem.

COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic symbols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCOME.

MULTIPLY UNIT-PRICE BY STOCK- ON HAND
GIVING STOCK-VALUE.

IF STOCK~ON-HAND IS LESS THAN ORDER-POINT
MOVE ITEM-CODE TO REORDER-CODE.

- Such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes --
before they can actually be used.

A special systems program, known as a compiler, is first entered into
the computer. The COBOL program (referred to as the source program) is
then entered into the machine, where the compiler reads it and analyzes
it. The COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved words and symbols is transformed

14 Introduction

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

by the compiler into a definite set of usable machine instructions. In
effect, the programmer has at his disposal a whole series of
"prefabricated"™ portions of the machine-language program he wishes the
compiler to construct. :

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of machine
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Introduction 14.1

s

. Once the object program has been produced, it may be used at once, or
it may bg recorded on some external medium and stored for future use.
When it is needed, it can then be called upon again and again to process
data. ’

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language (compile time), then when the
machine language program actually processes the data (execution time).

A simple example illustrates the basic principles of translating a
COBOL sentence. To increase the value of an item named INCOME by the
value of an item named DIVIDENDS, the COBOL programmer writes the
following sentence:

ADD DIVIDENDS TO INCOME,

Before the compiler can interpret this sentence, it must be given
certain information. The programmer describes the data represented by
the names DIVIDENDS and INCOME in such a way that the compiler can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics,

First, the compiler examines the word ADD. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL (rather than a word like DIVIDENDS,
which is defined by the programmer). ADD is a special kind of reserved
word--a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts them into the
object program.

The compiler next examines the word DIVIDENDS. Because the

programmer has supplied data information about DIVIDENDS, the compiler

knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data.

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
following the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCOME. Again, it has access to
data information about the word. As a result, it is able to place in
the object program the instructions necessary to locate and use INCOME
data.

The programmer placed a period after the word INCOME. The effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. All these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. The
source program is not required further, unless the programmer makes a
change in it; in that case, it must be compiled again to create a new
object program.

When the machine-language instruction for ADD is actually performed

at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

Introduction 15

1. It directly adds the value of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area, or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example, the object program could add the two specified
items with very few machine instructions. In actual practice, however,
some complex COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

A SAMPLE COBQOL PROGRAM

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Programmer-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions) and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences., Sentences may be simple (one statement or one
clause), or they may be compound (a combination of statements or a
combination of clauses). Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. Both paragraphs and sections
can be referred to as procedures, and their names can be referred to as
procedure names. Procedures (sections and paragraphs) are combined into
divisions.

There are four divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture
offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder point at

16 Introduction

C

which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. Our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the MASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have been
simplified for greater clarity. Figure 2, at the end of this chapter,
shows how the entire UPDATING program would actually be written.

Identification Division

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.

PROGRAM-ID informs the compiler that we have chosen the unigue name
UPDATING for the program we have written.

In addition to the name of the program, the Identification Division
allows us to list the name of the programmer, the date the program was
written, and other information that will serve to document the program.

Environment Division

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer (the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-F50.
OBJECT-COMPUTER. IBM-360-F50.

This tells us that both computers will be an IBM System/360 model F50.
Next we must identify the files to be used in our program, and assign

them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 17

INPUT-OUTPUT SECTION.

FILE-CONTROL. :
SELECT MASTER-FILE, ASSIGN TO ... S
ACCESS MODE IS RANDOM N

ACTUAL KEY IS FILEKEY.
SELECT DETAIL~FILE, ASSIGN TO «ue.
ACCESS MODE IS SEQUENTIAL.
SELECT ACTION-FILE, ASSIGN TO se.

The ellipses (...} in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
System—name is in a special format, and it tells the compiler on which
symbolic unit the file will be found, on what kind of device the file
resides, and in what way the data is organized within the file.

Our MASTER-FILE resides on a disk pack, which is a mass storage
device. BAccess for these devices can be either RANDOM or SEQUENTIAL.
If ACCESS MODE IS RANDOM, then each record within the file can be
located directly through the use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKEY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

Our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual ‘
record we might wish to access. Since the compiler assumes that the e’
ACCESS MODE is sequential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a MASTER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Table 1.

18 Introduction

Table 1. Typical Ledger Records Used for MASTER~RECORD
r

1 T . T T 1
| | | Stock | Unit | Stock | |
|Ttem | | on | Price | Value | Order |
ifode | Item Name | Hand | ($)Y | (%) | Point |

A

D e e + } t--- 1
20	2-drawer file cabinets	100	50	5,000	50
A11	3-drawer file cabinets	175	80	14,000	80
A12	4-drawer file cabinets	200	110	22,000	150
B10	Secretarial desks	150	200	30,000	120 1
B11	Salesmen's desks	50	175	8,750	50
=B12 | Executive desks | 75 | 500 | 37,500 | 60 |

			{		
C10	Secretarial posture chairs	125	50	6,250	140
Ci1	side chairs i 50	40	2,000	60	
jcl2 | Executive swivel chairs | 25 | 150 | 3,750 | 20]
L L L 1 L i N}

There will be a MASTER-RECORD for each item in this list. 1In
defining the data for the compiler, we will make sure that each record
is in the same format as all the others. Thus, if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. 1In this way, all of the master
records can be organized into a data set, or file, that we will name
MASTER-FILE. Each complete record within the file we will name the
MASTER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE DATA RECORD IS MASTER-RECORD...

.

01 MASTER-RECORD.
02 ITEM‘CODE. e
02 ITEM—NAME. LR
02 STOCK-ON-HAND...
02 UNIT-PRICE...
02 STOCK-VALUE...
02 ORDER-POINT.es

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduces the MASTER-FILE itself, and tells the compiler
that each entry within MASTER~FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 02 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 0l. Level numbers from 02 through 49 may subdivide the record, and
the subdivisijions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
shown here. In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE,
STOCK-VALUE, and ORDER-POINT would represent postive numeric values of a
specific size in a specific form, and so forth. At this point, we need
not: concern ourselves with these details.

Introduction 19

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering the details of individual transactions
or groups of tramsactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK~ON-HAND and STOCK-VALUE. These
changes are summarized in the detail record for each itemn.

A typical

record would appear in a ledger as shown in Table 2,

Table 2. Typical DETAIL-RECORD

r T T T 1
| Item | | . | |
{ Code | Item Name | Receipts | Shipments |
L (] 4 4 4
r T 1 1 1
|B11 | Salesmen's desks | 25 | 15 |
L AL ——-l 1 4

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM-CODE in ascending numerical order,

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD...
01 DETAIL-RECORD.

02 ITEM‘CODE. L]

02 ITEM-NAME...

02 RECEIPTSsee

02 SHIPMENTS...

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION-RECORD...
01 ACTION-RECORD,

02 ITEM-CODE...

02 ITEM“NAME. °oe

02 STOCK-ON-HAND...

02 UNIT"PRICE. ae

02 ORDER-POINT...

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM-CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-~RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. Qualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage Section of our Data
Division. This section describes records and data items that are not

part of the files, but are used during the processing of the object
program.

For our program, we will need several entries in our Working-Storage
Section. BAmong them will be several items constructed with level
numbers, similar to those used to describe the file records.

20 Introduction

WORKING-STCRAGE SECTION,

77 QUOTIENT...

01 THE-KEY...
02 FILLER«.s.
02 FILEKEY...

01 ERROR-MESSAGE.
02 ERROR-MESSAGE-1l...
02 ERROR-MESSAGE-2e..
02 ERROR-MESSAGE-3...

We will use THE-KEY record in constructing the FILEKEY. The
ERROR-MESSAGE record we will use to create warning messages when errors
are encountered during object time processing. The data item named
QUOTIENT we have assigned the level number 77. This level number
informs the compiler that QUOTIENT is a noncontiguous data item -- that
is, that this item has no relationship to any other data item described
in the Working-Storage Section. Note that the data items related to
each other must be listed after all the noncontiguous data items.

Procedure Division

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COBOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Beginning the Program -- Input QOperations

Our first step in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN I-0 MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL-FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 21

The files can now be accessed. Our next statements will therefore
be:

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-1.

At this point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic Statements

We have already seen that the COBOL language contains the wverb ADD.
Using this verb, we can add RECEIPTS to STOCK-ON-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-ON-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the value of STOCK-ON-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which
would be necessary in actual coding. Figqure 2, at the end of this
chapter, shows the actual coding necessary.)

Next we must reduce the new value of STOCK-ON-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-ON-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-ON-HAND.

Actually, there is a more concise way to perform this particular
calculation., We have broken it into two steps, but COBOL provides
another verb which allows us to specify more than one arithmetic
operation in a single statement. This is the verb COMPUTE.

COMPUTE STOCK-ON-HAND = STOCK-ON-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value on
the left of the equal sign will be changed to equal the value resulting
from the calculation spegcified on the right. The calculation on the
right of the equal sign is evaluated from left to right., That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-ON-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-ON-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old value of STOCK-ON-HAND in the MASTER-RECORD.

22 Introduction

N

So far we have brought only the value of STOCK-ON-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE., We
will assume that this figure does not include allowances for gquantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
currently in stock. COBOL provides us with a MULTIPLY verb, which
pexrmits us to accomplish this:

MULTIPLY STOCK-ON-HAND BY UNIT-PRICE GIVING STOCK-VALUE.

The result of the multiplication will be placed in the MASTER-RECORD as
the new value of STOCK-VALUE. Within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STCCK-ON-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to oxr below its
order point. Let us assume that we have written a procedure for
initiating such an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-144.4

IF STOCK-ON-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-1l.e.

in order to compare the present value of STOCK-ON-HAND with the value of
ORDER-POINT. If STOCK-ON-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-1.
If STOCK~ON-HAND is not less than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-1. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-1...

Here we are writing a compound condition with an implied subject.
STOCK-ON-HAND, the subject of the first condition, is understood to be
the subject of the second condition as well. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might), it would be simpler to test for the third
condition instead:

IF STOCK-ON-HAND IS GREATER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-1l...

Introduction 23

The words NEXT SENTENCE have a special meaning in COBOL. When IF

STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes

effect. Every instruction in the balance of the IF sentence is ignored,

and control is transferred to the sentence following. |

The test can be simplified even further, since COBOL allows us to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-1l...

If the value of STOCK-VALUE is less than or equal to that of
ORDER-POINT, control is transferred to REORDER-1. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Handling Possible Errors

Let us write one more conditional statement:

IF STOCK-ON-HAND IS LESS THAN ZERO...
GO TO ERROR-WRITE.

One would expect that the smallest value STOCK-ON-HAND could assume ~—
would be zero. If a negative record were processed, the values found

would probably be completely erroneous. To prevent this, the programmer

could anticipate the possibility of error and write a special routine to

be executed whenever the value of STOCK-ON-HAND was found to be

negative., Such a routine could stop the processing of this record,

print out the erroneous data, and proceed automatically to process the

records following. The more comprehensive a programmer makes his error

checking, the less likely it is that inaccurate information will .ass

through without being marked for special attention.

Data—-Manipulation Statements

We saw in the foregoing that if the value of STOCK-ON-HAND fell below
a certain point, control would be passed to a special sequence of
instructions named REORDER-1. Our output ACTION-FILE has been set up
for just this purpose. The bulk of REORDER-1 could consist of
data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-RECORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We must explain here that the verb MOVE does not
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items

24 Introduction

W,

contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. Our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECORD TO ITEM-CODE
OF ACTION-RECORD. '

MOVE ITEM~NAME OF MASTER-RECORD TO ITEM-NAME
OF ACTION-RECORD,

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF MASTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.

The word CORRESPONDING indicates that those data items with names which
are identical in both records are to be copied from MASTER-RECORD into
ACTION-RECORD. Thus, five MOVE statements are replaced by one.

Qutput Operations

When all avithretic and data-manipulation statements have lkeen
executed, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY ees
GO TO ERROR-WRITE.
or, if we were to indicate that an item was to be reordered, we could
write the following:
WRITE ACTION-RECORD.
In either case, the record would be recorded on the output device

specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

Introduction 25

Procedure Branching Statements

In our inventory problem, there will be as many master records as p—
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DETAIL-RECORD in
DETAIL-FILE, until every one of the records in the file has been
processed.

Each time a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. If a matching record
cannot be found, either the DETAIL-RECORD is in error, or the
MASTER-RECORD is missing from the file and we must mark that record for
special processing., Consider the series of statements in Figure 1.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements, These elements are the procedure-names we described
earlier. Each procedure-name indicates the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive instruction is processed in turn.

The procedure-names give us a means of controlling the processing of
successive items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. This
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

Processing then continues with the first sentence following the \‘J)
procedure name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples

of the GO TO statement in our program. Each gives us the means of

transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO TO, the
verb PERFORM specifies a transfer to the first sentence of a routine.

In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-QON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAGE-1.
(The characters within guotation marks are what is known as a literal --
because they literally mean themselves. When ERROR-MESSAGE is
displayed, these words will be an actual part of the error message.)
control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

26 Introduction

NEXT-DETAIL-RECORD-ROUTINE.,
READ DETAIL~FILE AT END GO TO END-ROUTINE-1.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

PERFORM DATA-ERROR GO TO ERROR-WRITE,

ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
THRU REORDER-2,
WRITE-MASTER-ROUTINE.

GO TO NEXT-DETAIL-RECORD-ROUTINE.
REORDER-1.
GO TO SWITCH-ROUTINE.
WITCH-ROUTINE,
ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.
OPEN OUTPUT ACTION-FILE.
REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION~RECORD.
ERROR-WRITE.

’n
Ui

GO TO NEXT-DETAIL-RECORD-ROUTINE.
INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.

END-ROUTINE-1.
GO TO END-ROUTINE-2,
END-ROUTINE-3.
CLOSE ACTION-FILE.
END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE ACTION-FILE.
| STOP RUN.

| I _

e et . e i o e e S P e e e S S . i . M e} S A . o . e S e s U S . e S i e St S et e ot .) e S e . St i . . Sy

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS.THAN ZERO

IF STOCK-ON-HANWND IN MASTER-RECORD IS NOT GREATER THAN

Lo s s S e S S o —— — —— — —— — — — — — T—— —— — — — — — —— v— . —— a— . — — ——— ——— — — — ——— " W g, s, s . s, .]

Figure 1. Illustration of Procedure Branching

Introduction 27

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar manner:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN i
ORDER-POINT IN MASTER-RECORD RN
PERFORM RECRDER-1 THRU REORDER-2,

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. Thus, when this PERFORM statement is executed,
control is transferred to REORDER-1. This.paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM statement may specify that a single section or paragraph be
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the programmer to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of
the program. In this case, PERFORM offers the most convenient méthod of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
will provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement that affects procedure branching: the ALTER statement.

In any given execution of our object program, we may or may not use : M
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below A —
REORDER-POINT will it be necessary to create an ACTION-RECORD.

Therefore, depending upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

Suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-1 THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-1.
REORDER-1 consists of but one statement:

GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an ALTER statement:
ALTER REORDER-1 TO REORDER-2

END-ROUTINE-1 TO END-ROUTINE-3,

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-1), and END-ROUTINE-3 for
END-ROUTINE-2 (within END-ROUTINE-1). Since, at the time the ALTER) ‘
statement is executed, we are already beyond the point at which the ‘)

28 Introduction

substitution is to be made in REORDER-1, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-1, but now the GO TO statement
within REORDER-1 has a different operand. Instead of SWITCH-ROUTINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses the OPEN ACTION-FILE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-1 TO END-ROUTINE-3

allows alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming
the ALTER statement are given later in this publication; note, however,
the increased programming flexibility it offers.

Ending the Program

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculations, moved the data from one area of
storage to another, and written the decision-making and procedure-
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the MASTER-FILE, and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records have
been acted upon. Remember that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE~1

END-ROUTINE-1 will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer made all the files available to the system
with a set of OPEN instructions, he must now disconnect these same files
with another series:

END-ROUTINE-1.

GO TO END-ROUTINE-2.
END-ROUTINE-3.

CLOSE ACTION-FILE.
END-ROUTINE-2.

CLOSE DETAIL-FILE.

CLOSE MASTER-FILE.

Introduction 29

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-1 THRU

REORDER-2 has been performed and the ALTER statement has been executed.)
once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at

the logical end of his processing:

STOP RUN.
At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.
This is only a general picture of the way in which a COBOL program
works. The following chapters in this manual give detailed descriptions

of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

30 Introduction

b

r
IDENTIFICATION DIVISION,
PROGRAM~-ID. UPDATING.)
| REMARKS. THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN
EXAMPLE OF BASIC COBOIL. TECHNIQUES. THE PROGRAM IS
EXPLATNED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL.
| ENVIRONMENT DIVISION.
| CONFIGURATION SECTION.
| SOURCE-COMPUTER. IBM-360-F50,.
OBJECT-COMPUTER, IBM-360-F50,
INPUT-OUTPUT SECTICN.
| FILE-CONTROL.
SELECT MASTER-FILE ASSIGN TO SYS015-DA-2311-A-MASTER
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.
SELECT DETAIL-FILE ASSIGN TO SYS007-UT-2400-S-INFILE
ACCESS IS SEQUENTIAL.
SELECT ACTION-FILE ASSIGN TO SYS008-UT-2400-S-OUTFILE.
DATA DIVISION.

FILE SECTION.
FD MASTER-FILE LABEL RECORDS ARE STANDARD
DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.
02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
02 STOCK-VALUE PICTURE S9(9)V99 USAGE COMP SYNC.
02 ORDER-POINT = PICTURE S9(3) USAGE COMP SYNC,
FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL-RECORD.
01 DETAIL-RECORD.
02 ITEM-CODE PICTURE X{(3).
02 ITEM-NAME PICTURE X(29).
02 RECEIPTS PICTURE S9(3) USAGE COMP SYNC.
02 SHIPMENTS PICTURE S9(3) USAGE COMP SYNC.

FD ACTION-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS ACTION-RECORD.

!
|
|
|
|
|
|
|
|
I
|
I
|
|
I
|
|
|
]
|
|
|
|
|
|
|01 ACTION-RECORD.
|

|

I

|

|

01 ERROR-MESSAGE.
02 ERROR-MESSAGE-1 PICTURE X(20).
02 ERROR~MESSAGE-2 PICTURE X(36).
02 ERROR-MESSAGE-3 PICTURE X(46).

02 ITEM-CODE PICTURE“X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
02 ORDER-POINT PICTURE 59(3) USAGE COMP SYNC.
| WORKING-STORAGE SECTION.
|77 SAVE PICTURE S9(10) USAGE COMP SYNC.
|77 QUOTIENT PICTURE S9999 USAGE COMP SYNC.
]01 KEY-ACTUAL.
[02 M PICTURE S999 COMP SYNC VALUE ZEROS.
| 02 BB PICTURE S9 COMP SYNC VALUE ZEROS.
| 02 ccC PICTURE S999 COMP SYNC VALUE ZEROS.
| 02 HH PICTURE S9 COMP SYNC.
| 02 R PICTURE X VALUE LOW-VALUE.
| 02 RECORD-ID PICTURE X(29).
|01 THE-KEY REDEFINES KEY-ACTUAL.
I 02 FILLER PICTURE X.
1 02 FILEKEY PICTURE X(37).
|01 TRACK1 PICTURE 9(4).
|01 TRACK2 REDEFINES TRACK1 COMP.
] 02 CYL PICTURE S999.
| 02 HEAD PICTURE S9.
|
|
|
|
L

Figure 2. Complete UPDATING Program (Part 1 of 2)

Introduction 31

r
| PROCEDURE DIVISION.
| OPEN-FILES-ROUTINE.
| OPEN INPUT DETAIL-FILE,.
| OPEN I-O MASTER-FILE.,
| NEXT-DETAIL-RECORD-ROUTINE,
| READ DETAIL-FILE AT END GO TO END-ROUTINE-1.
| NEXT-MASTER-RECORD-ROUTINE,.
MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT
REMAINDER TRACKIl.
ADD 1020 TO TRACK1.
MOVE ITEM-NAME IN DETAIL-RECORD TO RECORD-ID.
MOVE HEAD TO HH. MOVE CYL TO CC.
READ MASTER-FILE INVALID KEY
PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATICN-ROUTINE.
COMPUTE STOCK-ON-HAND IN MASTER-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.
IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.
MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.
IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
THRU REORDER-2.
WRITE-MASTER-ROUTINE,
WRITE MASTER-RECORD INVALID KEY
PERFORM OQUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE,
REORDER-1. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE,
ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.
DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.
REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTICN-RECORD,.
WRITE ACTION-RECORD.
ERROR-WRITE.,
MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
DISPLAY ERROR-MESSAGE.
GO TO NEXT-DETAIL-RECORD-ROUTINE,
INPUT-ERROR.
MOVE " KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.
DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE MASTER-RECORD TO ERROR-MESSAGE-3.
OUTPUT-ERROR.
MOVE "KEY ERROR ON OUTPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.
END-ROUTINE-1.
GO TO END-ROUTINE-Z2.
END-ROUTINE-3,
CLOSE ACTION-FILE.
END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.
STOP RUN.

o — S s S . G it S . S, S — S — et S——— S S ———— — ———— . — " o S— — — TS S} S—— T— ——" — S — T — o ot e St QS et M

b i et . e e — s . — —— —— — — i, — — — it S M ST i . o S t— — . —— e S oy B i T— i B et Ao ekt Sl s o . S et et o et st AP S i . e o]

Figure 2. Complete UPDATING Program (Part 2 of 2)

32 Introduction

STRUCTURE OF THE LANGUAGE

ORGANIZATION OF THE COBOL PROGRAM

METHODS OF DATA REFERENCE

USE OF THE COBOL CODING FORM

FORMAT NOTATION

PART I —< LANGUAGE_ CONSIDERATIONS

Language Considerations

33

Character Set

STRUCTURE_OF THE LANGUAGE

The COBOL language is so structured that the programmer can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are programmer-defined words which refer to particular
units of data being processed by his problem program.

COBOL_CHARACTER SET

The complete character set for COBOL consists of the following 51
characters:

Character Meaning

0,1,...,9 digit

AyBreeeyd letter

space

plus sign

minus sign (hyphen)
asterisk

stroke (virgule, slash)
equal sign

currency sign

comma

semicolon

period (decimal point)
gquotation mark

left parenthesis
right parenthesis
"greater than" symbol
"less than" symbol

+
*
/
$
r
H

] , If conformance with the standard character
t is desired, the programmer must specify the quotation mark (")
through a CBL card at compile time. If the qguotation mark is thus
specified, the apostrophe (*) may not be used.

Characters Used in Words

The characters used in words in a COBOL source program are the
following:

0 through 9
A through Z
- (hyphen)

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. . The word cannot begin or end
with a hyphen.

Structure of the Language 35

Character Set

Characters Used for Punctuation

The following characters are used for punctuation:

Character Meaning
space
’ comma
H semicolon

period

quotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBOL

source program:

8.

36

When any punctuation mark is indicated in a format in this
publication, it is required in the program.

A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space. RN

At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. Two or more successive
spaces are treated as a single space, except within nonnumeric
literals.

An arithmetic operator or an equal sign must always be preceded by
a space and followed by a space. A unary operator may be preceded
by a left parenthesis,

A comma may be used as a separator between successive operands of a
statement. 2An operand of a statement is shown in a format as a
lower—-case word.

A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

A semicolon may be used to separate a series of statements. For
example, ADD A TO B; SUBTRACT B FROM C.

Part I -- Language Considerations

Characters Used for Editing

Editing characters are single

Character Set

characters or specific two-character

combinations belonging to the following set:

(For applications,

Characters Used in Arithmetic E

Character
B
0
+

CR

¢ s ey
o3|

Meaning
space
zZero
plus
minus
credit
debit

zZero suppressjion
check protection

currency sign
comma

period (decimgl point)

see the discugsion of alphanumeric edited and numeric
edited data items in "Data Divisjon.")

pressions

The characters used in arithme¢tic expressions are as follows:

Character Meaning
+ addition
- subtraction
* multiplicatio
/ division
*¥ exponentiatio

Arithmetic expressions are us¢d in the COMPUTE statement and in
relation conditions (see "Proced

Characters Used for Relation-cond

e Division" for more details).

itions

A relation character is a char

set:

Relation characters are used i
"Procedure Division").

TYPES OF WORDS

Character Meaning
> greater than
< less than
= equal to

A word is composed of a combin
chosen from the character set for
with a hyphen.

acter that belongs to the following

n relation-conditions (discussed in

ation of not more than 30 characters
words. The word cannot begin or end

Structure of the Language 37

Words

The space (blank) is not an allowable character in a word; the space

is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, Or semicolon.

Reserved Words

Reserved words exist for syntactical purposes and must not appear as
user—-defined words. However, reserved words may appear as nonnumeric
literals, i.e., a reserved word may be enclosed in quotation marks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.,

There are three types of reserved words:

1. Key Words. A key word is a word whose presence is required in a
COBOL entry. Such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTER.

b. Required words, which appear in statement and entry formats, N,
such as the word TO in the ADD statement.

c. Words that have a spegific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2., Optional Words. Within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is not allowed.

3. Connectives. There are three types of comnnectives:

a. OQualifier connectives, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. Series connectives, which link two or more consecutive
operands. The series connective is the comma (,).

c. lLogical connectives that are used in compound conditions. The
logical connectives are AND, OR, AND NOT, and OR NOT (see
"conditions").

Note: Abbreviations (such as PIC for PICTURE) are allowed for some

reserved words; the abbreviation is the equivalent of the complete word.

For the formats in which they are allowable, such abbreviations are

shown in the format. The .reserved words THRU and THROUGH are)
equivalent. 1In statement formats, wherever the reserved word THRU A
appears, the word THROUGH is also allowed. N

38 Part I -- Language Considerations

Order No. GC28-639U4-2, Page Revised 4/15/71 by TNL GN-0436
Words/Constants

Names

character and identifies a data item in the Data Division. The
following are formed according to the rules for data-names:

1. A data-name is a word that contains at least one alphabetic

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

2. A condition-name is a name given to a specific value, set of
values, or range of values, within the complete set of values that
a particular data item may assume. The data item itself is called
a conditional variable. The condition-name must contain at least
one alphabetic character (see "Data Division" and the discussion of
"Special-Names" in "Environment Division").

3. A procedure-name is either a paragraph-name or a section-name. A
procedure-name may be composed solely of numeric characters. Two
numeric procedure-names are egquivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division"). The following are formed according to the
rules for procedure-names:

library-names
program-names

Special-Names

Special-names are used in the SPECIAL-NAMES paragraph of the
Environment Division. The term special-name refers to a mnemonic-name.
A mnemonic-name is a programmer-defined word that is associated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM.

In the Procedure bivision, mnemcnic-name can be written in place of
its associated function-name in any format where such substitution is
valid. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-Names" in "Environment Division").

CONSTANTS

A constant is a unit of data whose value is not subject to change.
There are two types of constants: 1literals and figurative constants.

Literals

A literal is a string of characters whose value is determined by the
set of characters of which the literal is composed. Every literal
belongs to one of two categories, numeric and nonnumeric.

Structure of the Language 39

Order No, GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Constants

There are two types of numeric literals: fixed-point

. A fixed-point numeric_literal is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. Every fixed-point numeric literal:

1. must contain from 1 through 18 digits.

2. must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

of fixed-point numeric items in "
I ndui— .

ok

s

NONNUMERIC LITERALS: A nonnumeric literal is defined as a string of any
allowable characters in the Extended Binary, Coded Decimal Interchange
code (EBCDIC) set, excluding the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. Any spaces within the guotation marks are part of the
nonnumeric literal and, therefore, are part of the value. All non-
numeric literals are in the alphanumeric category.

40 Part I -- Language Considerations

i

(.

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Constants

Figurative Constants

A figurative constant is a constant to which a specific data-name has
been assigned. These data-names are reserved words. Such a data-name
must not be enclosed in quotation marks when used as a figurative

Structure of the Language 40.1

Constants/Special Registers

constant. The singular and plural forms of a figurative constant are
equivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is one exception to this rule: if
the literal is restricted to numeric characters, only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

ZERO Represents the value 0, or one or more

ZEROES

occurrences of the character 0, depending on

ZEROS context.

SPACE Represents one or more blanks or spaces.

SPACES

HIGH-VALUE Represents one or more occurrences of the

HIGH-VALUES character that has the highest value in the computer's
collating sequence. The character for HIGH-VALUE is
the hexadecimal 'FF'.

LOW-VALUE Represents one or more occurrences of the

LOW-VALUES character that has the lowest value in the computer's
collating sequence. The character for LOW-VALUE is
the hexadecimal °00'.

QUOTE Represents one or more occurrences of the

QUOTES quotation mark character. The word QUOTE (QUOTES)

cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

ALL literal Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is

used for readability only.

SPECIAL REGISTERS

The compiler generates storage areas that are primarily used to store
information produced with the use of special COBOL features; these
storage areas are called special registers.

TALLY

The word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an
operational sign, and whose implicit USAGE is COMPUTATIONAL. The
primary use of the TALLY register is to hold information produced by
the EXAMINE statement. References to TALLY may appear wherever an
elementary data item of integral value may appear (see the "EXAMINE
Statement™ in "Procedure Division").

Structure of the Language 41

Order No. GC28-6394-2, Page Revised #4/15/71 by TNL GN-0436

Special Registers

LINE-COUNTER

LINE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see “"Report Writer.")

PAGE-COQUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.")

-
S

S

te e - e

-

42 Part I -- Language Considerations

COBOL Program Structure

ORGANIZATION OF THE COBOL PROGRAM

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with

a division header.

The four divisions, listed in sequence, and their functions are:

e IDENTIFICATION DIVISION, which names the program.

e ENVIRONMENT DIVISION, which indicates the machine equipment and

equipment features to be used in the program.

e DATA DIVISION, which defines the nature and characteristics of data

to be processed.

¢ PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

Note: 1In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
format, unless the associated rules explicitly state otherwise.

Strxucture of the COBQL Program

IDENTLIFICATION DIVISION.}

{

PROGRAM-ID. program-name,

[AUTHOR. [comment-entryles.]
[INSTALLATION. [comment-entrylese.]
[DATE-WRITTEN. [comment-entryle..l

[DATE-COMPILED. [comment-entryleee]

[SECURITY. [comment-entryless]

[REMARKS. [comment-entryle..]

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

[SPECIAL-NAMES. entry

[INPUT-OUTPUT SECTION.

FILE-CONTROL. f{entryl}...

[I-O-CONTROL. entryll

Organization of the COBOL Program 43

COBOL Program Structure

DATA DIVISION,

[(FILE SECTION.
{file description entry
{record description entryleseeltee.]

[WORKING-STORAGE SECTION.

[data item description enttryl...

[record description entryl...]

[REPORT SECTION.

{report description entry

{report group description entry}...}...]

PROCEDURE DIVISION |

[[DECLARATIVES.
{section-name SECTION. USE Sentence.
{paragraph-name. {sentenceleeceteceltes.

END DECLARATIVES.]

{section-name SECTION [priorityl.]}

{paragraph-name. {sentence}see}ecsl...

44 Part I -- Language Considerations

Qualification

METHODS_ OF DATA REFERENCE

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because it is made
unique through gqualification, subscripting, or indexing.

An identifier is a data-name, unique in itself, or made unique by the

syntactically correct combination of qualifiers, subscripts, and/or
indexes.,

QUALIFICATION

A name may be made unique if the name exists within a hierarchy of
names and the name can be singled out by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called
qualifiers. Qualification is the process by which such a name is made
unique.

pualification is applied by placing after a data-name or a
paragraph-name one or more phrases, each composed of a gqualifier
preceded by IN or OF., IN and OF are logically equivalent. Only one
qualifier is allowed for a paragraph-name.

Enough qualification must be mentioned to make the name unique;
however, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPLOYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but
unnecessary (see discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A level indicator (¥D, SD, RD)
specifies the beginning of a file description, sort file descriptiomn, ox
report description.) A section-name is the highest (and the only)
qualifier available for a procedure-name (see discussion of procedure-
names in "Procedure Division"). Thus, level indicator names and
section-names must be unique in themselves since they cannot be
qualified.

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Fach qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hierarchy so that
the name would appear to qualify itself.

3. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name must
be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDEFINES clause
where, by definition, gqualification is unnecessary). (See the
REDEFINES clause in "Data Division."™)

Methods of Data Reference 45

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
mast not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.
6. A name can be gualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combipations can be used.
Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:
1. No duplicate section-names are allowed.
2. No data-name can be the same as a section-name or a paragraph-name.
3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.
SUBSCRIPTING
Subscripts can be used only when reference is made to an individual
element within a list or table of elements that have not been assigned
individual data-names (see "Table Handling").
INDEXING Oy
\‘\ j;

References can be made to individual elements within a table of
elements by specifying indexing for that reference. 2An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

46 Part I -- Language Considerations

Reference Format

USE_OF_THE_COBQOL CODING FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 3) and produces an
output listing of the source program in the same reference format.

bttt - e -=1
| |
I |
| IBM COBOL Coding Form |
' SYSTEM PUNCHING INSTRUCTIONS PAGE OF l
| PROGRAM GRAPHIC CARD FORM # * I
| PROGRAMMER | pate PUNCH |
I SEQUENCE |, iA 8 COBOL STATEMENT ‘ IDENTIFICATION I
' {PAGE) [ISERIAL] § I
il 2 s 718 12 A 20 24 36 40 A4 48 ‘ 52 86 . B0 64 68 720 78 80}
| o soreliperen ! |
| 2 ’ |
| : ‘ : |
{ 4 i |] =
I I
b -- 1
| Columns 1-6 represent the sequence number area. |
| Column 7 is the continuation area. |
| Columns 8-11 represent Area A - |
ource s ents.
| Columns 12-72 represent Area B Used for writing COBOL source statem |
| Columns 73-80 are used to identify the program. 1
L . J

Figure 3.

Reference Format

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A seguence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If sequence numbers are present, they must be in ascending order. An
error message is issued when source language input is out of sequence.

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting subsequent line(s) in Area B, These subsequent lines are
called continuation lines. The line being continued is called the
continued line. If a sentence or entry occupies more than two lines,

all lines other than the first and last are both continuation and
continued lines.

Use of the COBOL Coding Form 47

Reference Format

CONTINUATION OF NONNUMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank character on the continued line, without an
intervening space.

AREA A AND AREA B

Area A, columns 8 through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area B occupies columns 12 through 72.

Division Header

The division header must be the first line in a division. The
division header starts in Area A with the division-name, followed by a
and a period. e

‘header.

Section Header

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COPY sentences.

Note: Although USE and COPY may appear in the Declaratives portion of

the Procedure Division, only USE is restricted to the Declaratives
portion. COPY may be used elsewhere in the COBOL programe.

Paragraph-names and Paragraphs

The name of a paragraph starts in Area A of any line following the
division header. It is followed by a period followed by a space.

A paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Area B of either the same
line as paragraph-name or the immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

48 Part I -- Language Considerations

Reference Format

Level Indicators and Level Numbers

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77, the level number begins in Area A followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

Blank Lines

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except immediately preceding a continuation line.

Comment Lines

NOTE statement in "Compile ecting Statements®™ in "Procedure

Division™).

Use of the COBOL Coding Form 49

Format Notation

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various

elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1.

6'

50

All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in COBOL. In all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error in the
program.

All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
programmer. These words are used only for the sake of readability;
they are called optional words and, when used, must be correctly
spelled.

The characters +, -, <, >, =, when appearing in formats, although
not underlined, are reguired when such formats are used.

All punctuation and other special characters (except those symbols
cited in the following paragraphs) represent the actunal occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

Words that are printed in lower-case letters represent information
to be supplied by the programmer, All such words are defined in
the accompanying text.

In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

Certain entries in the formats consist of a capitalized word(s)
followed by the word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

Square brackets ([1) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is obligatory.

Part I -- Language Considerations

C

10.

11.

Format Notation

The ellipsis (...) indicates that the immediately preceding unit
may occur once, Oor any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated when repetition is specified.

Comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

Format Notation 51

PART II -- TDENTIFICATION AND ENVIRONMENT DIVISIONS

IDENTIFICATION DIVISION

ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY
ORGANIZATION OF THE ENVIRONMENT DIVISION
ENVIRONMENT DIVISION -- CONFIGURATION SECTION

ENVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

53

PROGRAM-ID Paragraph

IDENTIFICATION DIVISION

The Identification Division is the first division of a COBOL program.
It identifies the source program and the object program. A source
program is the initial problem program; an object program is the output
from a compilation.

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

Structure of. the Identification Division

IDENTIFICATION DIVISION.}

t

PROGRAM-ID. program-name,

[AUTHOR. [comment-entryle..l

[INSTALLATION. [comment-entryle..]

(DATE~-WRITTEN. [comment-entryle...]

[(DATE-COMPILED. [comment-entryla...]

[SECURITY. [comment-entrylese.l

[REMARKS. [comment-entryle..]

Specific paragraph-names identify the type of information contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are
_opti 1 cluded, they must be presented in the order shown.

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period. Each comment-entry may be
any combination of characters from the EB

PROGRAM=-1ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is
identified.

Format

PROGRAM-ID. program-name.

o — s s e oy

| RS S——

Identification Division 55

DATE-COMPILED Paragraph

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the object program to the control program. k.yj
Program-name must conform to the rules for formation of a
procedure-name. The first eight characters of program-name are used as
the identifying name of the program and should therefore be unique as a
program-name.

Since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

0 toJd
1-9 to A-I
Since the system does not include the hyphen as an allowable

character, the hyphen is converted to zero if it appears as the second
through eighth character of the name.

DATE-COMPILED Paragraph

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

[SRS Ep—

[e e e e e e e e e —_—

| Format

l.__.______.___.__

|
i DATE-COMPILED. [comment-entryl

| I -— - —_———

The paragraph—-name DATE~-COMPILED causes the current date to be
inserted during program compilation. If a comment-entry is present, it
is replaced with the current date.

56 Part II -—- Identification and Environment Divisions

A

Data Organization

ENVIROWNMENT DIVISION -- FILE PROCESSING SUMMARY

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific computer are given
in one portion of the source program known as the Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
used to process files in the COBOL program. Before the language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access method specified in
the COBOL language is defined as a file-processing technique. The
file~processing technique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Table 3 summarizes the file-processing
techniques.

DATA ORGANIZATION

Three types of data organization are made avallable to Disk Operating
System COBOL users: sequential, direct The means of
creating or retrieving logical records in a 1e differ, depending on
which type of data organization exists (organization being the structure
of data on a physical file)., Each type of data organization is
incompatible with the others. Organization of an input file must be the
same as the organization of the file when it was created.

Sequential Data Organization

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they are created
and are read seguentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
is written for tape files), Such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record

files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file.

Direct Data Organization

When direct data organization is used, the positioning of the logical
records in a file is controlled by the user through the specification of
an ACTUAL KEY defined in the Environment Division. The ACTUAL KEY has
two components. The first is a track identifier which identifies the
relative or actual track at which a record is to be placed or at which
the search for a record is to begin. The second component is a record

Environment Division -- File Processing Summary 57

Access Methods

identifier, which serves as a unique logical identifier for a specific

record on the track. Files with direct data organization must be
assigned to mass storage devices,

ACCESS METHODS

Two access methods are available to users of DOS COBOL: sequential
access and random access,

Sequential access is the method of reading and writing records of a
file in a serial manner; the order of reference is implicitly determined
by the position of a record in the file,

Random access is the method of reading and writing records in a

programmer-specified manner; the control of successive references to the
file is expressed by specifically defined keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may be accessed only sequentially, i.e.,
records are read or written in order.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be retrieved sequentially; they can be created, retrieved, updated,
oxr added randomly.

Sequential Access

When reading a direct file sequentially, records are retrieved in
logical sequence; this logical sequence corresponds exactly to the
physical sequence of the records.

Random Access

When accessing a direct file randomly, the ACTUAL KEY clause is
required.

58 Part II -- Identification and Environment Divisions

Access Methods

The system uses the ACTUAL KEY to determine which track a particular
record is on and to locate the record on that track. If the record is
found, the data portion of the record is read, or, for a rewrite
&kwj operation, replaced by a new record. If during a READ operation, the

desired record cannot be found on the specified track, an invalid key
condition is said to exist.

For a write operation, the system, after locating the track, searches
for the last record on the track, and writes the new réecord (with
control fields, including a key field equal to the identifier found
within the ACTUAL KEY field) after the last record.)

When a direct file is being created, OPEN initializes the capacity
records (RO) on all the tracks of the file. Therefore, a WRITE
statement issued for an output file is processed in the same manner as a
WRITE statement that adds a record to an input-output file.

o

=
ded.

£
Sy

Environment Division -- File Processing Summary 59

Access Methods

Appendix B contains three sample COBOL programs that illustrate:

1. Creation of a direct file

(Figure 2 contains a sample COBOL program illustrating random
retrieval and updating of a direct file.)

ey

Table 3. Summary of File-Processing Techniques

v) T 1

|DOS Organization| Device Type | Access | Organization
I 1 1 1

LI T T T

| DTFCD |Reader | [SEQUENTTAL] |standard

| { | | sequential
| | |

| DTFCD | Punch | (SEQUENTIAL] | standard

i | | |sequential
] | |

| DTFPR |Printer | [SEQUENTIAL] |standard

| | | | sequential
[| |

| DTFMT | Tape | (SEQUENTIAL] | standard

] | | | sequential
| | |

| DTFSD |Mass Storage | [SEQUENTIAL] | standard

| | | |sequential
| | |

| DTFDA |Mass Storage | [SEQUENTIAL] |direct

| | [

|DTFDA [Mass Storage | RANDOM |direct

I

4

60 Part II --

Identification and Environment Divisions

e e e e e, e e, e, e s

Environment Division--Structure

ORGANIZATION OF THE ENVIRONMENT DIVISION

The Environment Division must begin in Area A with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections: the

Configuration Section and the Input-Output Section. When written, the
sections and paragraphs must be in the seguence shown.

Structure of the Environment Division

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph

[SPECIAL-NAMES paragraphl

[INPUT-OUTPUT SECTION.

FILE-CONTROL paragraph

[I-0O-CONTROL paragraphll

Organization of the Environment Division 61

|

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0u436
SOURCE-COMPUTER Paragraph

ENVIRONMENT DIVISION --— CONFIGURATION SECTION

The Configuration Section deals with the overall specifications of
computers. It is divided into three paragraphs: the SOURCE-COMPUTER
paragraph, which describes the computer on which the source program is
compiled; the OBJECT-COMPUTER paragraph, which describes the computer on
which the object program (the program produced by the COBOL compiler) is
executed; and, optionally, the SPECIAL-NAMES paragraph which relates the
function-names used by the compiler to user-specified mnemonic-names.

| it - e —— e S ———— 1
| General Format]
k - i
| |
| CONFIGURATION SECTION. |
| SOURCE-COMPUTER. source-computer-entry |
| OBJECT-COMPUTER. object-computer-entry |
| [SPECIAL-NAMES. special-names-entryl |
R S)

Section-names and paragraph-names must begin in Area A.

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph serves only as documentation, and
describes the computer upon which the program is to be compiled.

. — - -
| Format

-
SOURCE-COMPUTER. computer-name.

et e e e e e

Computer-name may be specified as IBM-360[-model-numberl or as

IBM-370 [-model-number].

The SOURCE-COMPUTER paragraph is treated as comments by the COBOL
compiler.

62 Part II -- Identification and Environment Divisions

C

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
OBJECT~COMPUTER Paragraph

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

[SEGMENT-LIMIT IS priority-numberl.

v 1 4
| Format |
i

|' T 7
| OBJECT-COMPUTER. computer-name i
I |
| WORDS |
| [MEMORY SIZE integer CHARACTERS 5] |
| MODULES i
| |
| |
| I
L y|

Computer-name is a word of the form IBM-360[-model-number].
Computer-name must be the first entry in the OBJECT-COMPUTER paragraph.

If the configuration implied by computer-name comprises more or less
egquipment than is actually needed by the object program, the MEMORY SIZE
clause permits the specification of the actual subset (or superset) of
the configuration.

The MEMORY SIZE clause is treated as comments by the COBOL compiler.

The SEGMENT-LIMIT clause is discussed in "Segmentation."

Program Product Information -~ Version 3

Computer-name may also be specified as IBM~-370[-model-numberli. If
IBM-370 is specified, System/370 instructions are generated by the
compiler.

SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph provides a means of relating
function-names to user-specified mnemonic-names. The SPECIAL-NAMES
paragraph can also be used to exchange the functions of the comma and
the period in the PICTURE character string and in numeric literals. In
addition, the user may specify a substitution character for the currency
symbol ($) -in the PICTURE character string.

Environment Division -- Configuration Section 63

SPECIAL-NAMES Paragraph

T T T T T T T T T T T T T T e e e e e e 1
| General Format |
ettt - -— ——= |
| I
| SPECIAL-NAMES. |
I I
| [function-name-1 IS mnemonic-namel... |
I I
| [function-name-2 [IS mnemonic-namel |
| : i
I ON STATUS IS condition-name-1 |
| I
| OFF STATUS 1S condition-name-2 |
| |
] [OFF STATUS IS condition-name-2]
| 1... I
| [ON STATUS IS condition-name-11 |
| ' |
| [CURRENCY SIGN IS literall [DECIMAL-POINT IS COMMAI]. |
i ' I
L J
Function-name-1 may be chosen from the following list:

SYSLST

SYSPCH

SYSPUNCH

SYSIPT

CONSOLE

C01 through c12

AS '

3llteral

If SYSLST, SYSPCH, SYSPUNCH, SYSIPT, or CONSOLE are specified, the
associated mnemonic-namés may be used in ACCEPT and DISPIAY statements.
Each of these function-names may appear only once in the SPECIAL-NAMES
paragraph.

If c01 through C12, CSP are specified, the associated
mnemonic-names may be used in a WRITE statement with the BEFORE/AFTER
ADVANCING option. These function-names are the carriage control
characters shown in Table 4,

Table 4. Choices of Function-name-1 and Action Taken

| I - I | 1
| Function-name-1 | Action Taken |
b o T e T 1
| csp | suppress spacing |
pommmm e t i
| c01 through C09 | skip to channel 1 through 9, |
| | respectively |
b fom— 1
| C10 through C12 | skip to channel 10, 11,

| | 12, respectively |
k- - t - i
| I
| |
| |
L -3

64 Part II -- Identification and Environment Divisions

Order No. GC28-63%4-2, Page Revised #4/15/71 by TNL GN-0u436
SPECIAL-NAMES Paragraph

The use of a literal indicates that function-name-1 identifies Report
Writer output. The mnemonic-name should appear in a CODE clause in a
report description entry (RD) (see "Report Writer"). One such
SPECIAL-NAMES entry may be given for each report defined in a program.
The specified literal must be a one-character nonnumeric literal.

Function-name-2 is used to define a one-byte switch and may be
specified as UPSI-0 through UPSI-7. These switches represent the User
Program Status Indicator bits in the DOS .communications region (see IBM
System/360 Disk Operating System: System Control and System Service
Programs, Form C24-5036). The status of the switch is specified by a
condition-name and interrogated by testing it. One condition-name may

be associated with the ON status; another may be associated with the OFF
status (see "Switch-Status Condition"). One condition-name must be
associated with function-name-2. A mnemonic-name, a second
condition-name, or both may be associated with the function-name-2 as
well. The condition-names represent the equivalent of level-88 items
where UPSI-n or mnemonic-name may be considered the conditional
variable.

PICTURE clause to represent the currency symbol. The literal must be
nonnumeric and is limited to a single character which must not be any of
the following characters:

1. digits 0 through 9

2. alphabetic characters A, B, ¢, D, P, R, S, V, X, Z, or the space

-
~
-
2

3. special characters * + - ’ .

If the CURRENCY SIGN clause is not presént, only the $§ can be used as
the currency symbol in the PICTURE clause.

S R R ONEIR s e e - :

The clause DECIMAL-POINT IS COMMA means that the function of the
comma and the period are exchanged in PICTURE character strings and in
numeric literals.

Environment Division -- Configuration Section 65

FILE-CONTROL Paragraph

ENVIRONMENT DIVISION --— INPUT-QUTPUT SECTION

The Input-Output Section deals with the definition of each file, the
identification of its external storage media, the assignment of the file
to one or more input/output devices and with information needed for the
most efficient transmission of data between the media and the object
program. The section is divided into two paragraphs: the FILE-CONTROL
paragraph, which names and associates the files used in the program with
the external media; and the I-0-CONTROL paragraph, which defines special
input/output techniques.

General Format

[INPUT-OUTPUT SECTION.
FILE-CONTROL. {file~control-entry} ...
[I-O-CONTROL. input-output-control-entryll

o e e s s e e o iy
U S

FILE-CONTROL PARAGRAPH

Information that is used or developed by the program may be stored
externally. File description entries in the Data Division name the
files into which information is placed and specify their physical
characteristics. The FILE~CONTROL paragraph assigns the files (by the
names given in the file description entries) to input/output devices.

General Format

FILE-CONTROL.

{SELECT Clause

ASSIGN Clause

[RESERVE Clause]l
[FILE-LIMIT Clausel
[ACCESS MODE Clausel
[PROCESSING MODE Clausel
{ACTUAL KEY Clausel

}-.‘

e s
b s e S . S e T s W . — s s et vtk e el

66 Part II -- Identification and Environment Divisions

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
' SELECT/ASSIGN Clauses

SELECT Clause

The SELECT clause is used to name each file in a program.

Format

SELECT [OPTIONALl] file-name

oo o — e g e oy

b e s s b e

Each file used in the program must be named once and only once as a
file-name following the key word SELECT.

Each file named in a SELECT clause must have a File Description (FD)
entry or Sort File Description (SD) entry in the Data Division.

The key word OPTIONAL may be sSpecified only for input files accessed
sequentially. It is required for input files that are not necessarily
present each time the object program is executed. When a file is not
present at object time, the first READ statement for that file causes
the imperative-statement following the key words AT END to be executed.
However, OPTIONAL need not be specified and will be treated as a
comment, since this function is performed through the ASSGN control
statement with the IGN parameter.

ASSIGN Clause

The ASSIGN clause is used to assign a file to an external medium.

ASSIGN TO [integer)] system—name-1 [system-name-2] ...

REEL
[FOR MULTIPLE]
UNIT

[o e o e e e et e ey

Integer indicates the number of input/output units for a given medium
assigned to file-name. Since the number of units is determined at
program execution time (see IBM_System/360 Disk Operating System:

System Control and System Service Programs, Form C24-5036), the standard
definition given above is not the action taken by this compiler.

When specified for files with standard labels or for unlabeled output
tape files, the integer option is treated as comments. When integer is
specified as greater than one for unlabeled input tape files, then at
the end of every reel a message is issued to the operator asking whether
or not end-of-file has been reached. It is the user's responsibility to
provide the operator with correct information as to the number of reels
in the file.

Environment Division -- Input-Output Section 67

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ASSIGN Clause

For multivolume input files with nonstandard labels, the integer
option is required. For such files, the compiler is unable to
distinguish between end-of-volume and end-of-file and, therefore, cannot
determine the number of reels in the file. Therefore, for input files
with nonstandard labels, the integer option is used to det ine th

contained on one reel.

All files used in a program must be assigned to an external medium.
organization of data upon this device, and the external name of the
file. Any system-names beyond the first are treated as comments.

FOR MULTIPLE REEL/UNIT is applicable whenever the number of tape
units or mass storage devices assigned might be less than the number of
reels or units in the file. However, this clause need not be specified.
The system will automatically handle wvolume switching for sequentially
accessed files. All volumes must be mounted for randomly accessed
files. Therefore, when this clause is specified, it is treated as
comments.

SYSnnn-class-device-organizationl[-namel
where:

nnn is a three-digit number between 000 and 221. This field represents
the symbolic unit to which the file is assigned.

class is a two-digit field that represents the device class. The

allowable combinations of characters are:

DA for mass storage
UT for utility
UR for unit record

Files assigned to DA devices may have standard sequential or direct
organization. When organization is direct, access may be either
sequential or random.

Files assigned to UT or UR devices must have standard sequential
organization., :

device is a four- or five-digit field that represents a device number.
Device number is used to specify a particular device within a device
class.

The allowable devices for any given device class are as follows:
Mass storage (DA) 2311, 2314, 2321

Utility (UT) 2400, 2311, 2314, 2321

68 Part II -- Identification and Environment Divisions

D for 4

Order No. GC28-6394~2, Page Revised 5/15/72 by TNL GN28-0489
ASSIGN Clause

Unit record (UR) 1442R, 1442P, 1403, 1404 (continuous forms only), 1443,
2501, 2520R, 2520P, 2540R, 2540P

(R indicates reader, P indicates punch)

Note: Sort input, output, and work files may be assigned to any utility
device except a 2321 (see "Sort").

organization is a one-character field that specifies file organization.
The letters that may be specified for each type of file are as follows:

S for standard sequential files
A for direct files -- actual track addressing
irect fil lative track add '

Table 5 can be used to determine the correct choice of the organization
field in system-names.

name is a one- to seven-character field specifying the external-name by
which the file is known to the system. If specified, it is the name
that appears in the file-name field of the VOL, DLBL, or TLBL job
control statement (see the appropriate Programmer's Guide). If name is
not specified, the symbolic unit (SY¥Snnn) is used as the external-name.
The field must be specified if more than one file is assigned to the
same symbolic unit.

Program.Product . Information -- Version 3

Note: ASCII considerations for the ASSIGN clause are given in
Appendix E.

For Version 3, the following additional system devices are
allowable:

Mass storage (DA) 2319, 3330
Utility (U 2319, 3330, 3410, 3420
Unit Record (UR) 3211, 3505, 3525p, 3525R, 3525W, 3525M

For the Version 3 DA and UT devices (2319, 3330, 3410, 3420), as
well as for the UR 150-character printer (3211), these numbers can
be specified in the device field of system-name. For these devices,
the valid entries for the other fields in system—name are unchanged.

For the 3505 card reader, system-name has the following format:

SIR]
SYSnnn-UR-3505~ [-name]
0

The S¥snnn and name fields have the same valid entries as other
devices.

For the organization field, the following considerations apply:
SIR] specifies standard sequential card reading. The optional R

field specifies RCE (Read Column Eliminate) card reading. When

Environment Division -- Input-Output Section 69

Order No., GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
ASSIGN Clause

70

R is specified, the user can indicate by program contrecl that
some card columns are to be ignored when reading data for a
particular job. (See the section "RCE and OMR Format
Descriptor" for a more complete discussion.) When the R field
is omitted, RCE card reading may not be specified.

(o] specifies Optical Mark Reading (OMR). When O is specified,
then if at object time the device reads a card with a marginal
mark, a wear mark, Oor a poor erasure, the substitution
character (hexadecimal “3F") is placed in the defective column
and in column 80 (an 80-character buffer is always provided).

(Also, see the
section "RCE and OMR Format Descriptor"” for a further
discussion.)

For the 3525 card punch with special features, system-name has the
following format:

S[RI]
P VIR]
SR X[R]
SYSnnn-UR-3525 - {-namel
w Y[R]
M T
VA

Note: The optional R code in the organization field is valid
only when the device is specified as 3525R.

The name field has the same valid entries as for other devices.

The sYSnnn field, for 3525 files that do not utilize combined
function processing, has the same valid entries as other devices.

The SYSnnn field has special considerations when combined function
card processing is used. For each associated logical file within
the combined function structure there must be a separate SELECT
sentence; each such associated logical file must be specified with
the same SYSnnn field. (See Appendix G: 3525 Combined Function
Processing for a more detailed discussion.)

For the device field, the following entries are valid:

3525R for a card read file

3525P for a card punch file

3525W for a 2-1line card print file
3525M for a multiline card print file

For the organization field, depending on the device field, the
following entries are valid:

3525R S[R] for sequential card read files
(reader) VIR] for read/print associated files
X[(R] for read/punch/print associated files
YI[R] for read/punch associated files

Note: the optional R field specifies RCE (Read

Column Eliminate) card reading. (See "RCE and
OMR Format Descriptor" for further discussion.)

Part II -- Identification and Environment Divisions

C

\%w;

-

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
ASSIGN Clause

3525P S for sequential card punch files

{punch) T for punch-and-interpret files (see Note)
X for read/punch/print associated files
Y for read/punch associated files
pA for punch/print associated files
Note: The T field denotes a normal punched
output file for which the graphically printable
punched characters are also printed on print
lines 1 and 3 of the card. Line 1 contains the
first 64 characters, left justified; line 3
contains the last 16 characters, right
justified.

3525W S for sequential 2-line print files

(2-1line V for read/print associated files

print) X for read/punch/print associated files
Z for punch/print associated files

3525M S sequential multiline print files

(multi- v for read/print associated files

line X for read-punch-print associated files

print) A for punch/print associated files

RCE .AND OMR_FORMAT DESCRIPTOR

When the user specifies 0 (for Optical Mark Read) or R (for Read
Column Eliminate) in the organization field of system-name, then at
object time he must provide a format descriptor as the first card(s)
in his data deck. If the format descriptor is missing for such
files, a message is issued to the operator, and the job is
terminated.

The format descriptor must be the first card(s) in the data deck.
Column 1 of the first card must be blank. The keyword FORMAT must
be punched in columns 2 through 7. Column 8 must be blank. Columns
9 through 71 can contain the parameters that specify which columns
of the data cards are to be read in OMR or RCE mode. Continuation
cards are valid. A continuation code must be placed in column 72 of
the preceding card. Parameters may then be continued, beginning in
column 16 of the continuation card. Comments, if used, must follow
the last operand on each card by at least one blank space, and
continuation card restrictions must be observed.

Environment Division -- Input-Output Section 70.1

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
ASSIGN Clause

The format of the format descriptor is as follows:

Col.
1200ee7e9ccncncencecnea
{1 [

| |

| | |

\'A2 vvVv

FORMAT (N1,N2) ([, (N3,N4)]...

N1, N2, N3, and N4 may be any decimal integers from 1 through 80.
However, N2 must be greater than or equal to Nl. N3 must be greater
than or equal to N3. In addition, for OMR processing, N1 and N2
must be both even or both odd, N3 and N4 must be both even or both
odd, and N3 - N2 must be greater than or equal to 2.

In OMR mode, the user establishes which columns are to be read in
OMR mode. For example, if the user wishes to read columns 1, 3, 5,
7, 9 and 70, 72, 74, 76, 78, 80 in OMR mode, the following format
descriptor is valid:

FORMAT (1,9), (70,80)

In RCE mode, the user specifies those columns which are not to be
read. For example, if the user chooses to eliminate columns 20
through 30, and columns 52 through 73, the following format
descriptor is valid:

FORMAT (20, 30), (52,73)

Table 5. Values of Organization Field for File Organization

T et ———————————
| Device | | File | Track | Organization Field |
| Type | ACCESS | Oorganization| Addressing | in System-name |
O e ——— T T T e 1
tape,	[SEQUENTIAL]	standard	-	S
punch,		sequential		
reader,		I		
printer			[
T Pttt mmmmm				
mass	[SEQUENTIAL]	standard	-	S
storagej	sequential			
device				
prmmmm o $---- + t ——-—4-				
mass	[SEQUENTIAL]}	direct	actual	a
storage		- e ——————— .		
device			relative	D

pmm - fommmmomee—t " ———t i
| mass | RANDOM | direct | actual | A

| storage| I e L S 1
| device | | | relative | D |

70.2 Part II -- Identification and Environment Divisions

i

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
‘ ASSIGN Clause

Program. Product Informﬁtibn -- Version 3

e Table 5.1. Values of Organization Field for File Organization

f Pt et e 1
| For Version 3 devices, the following entries are valid

% T T T {
[. | | File | Organization |
| Device Type | ACCESS | Organization| Field |
L | 1 4 d
r T ; T T - 1
| UR and UT | [SEQUENTIAL] | standard | S |
| (except 3505, 3525) | | sequential | |
e 1 t } |
| UR 3505, 3525R | [SEQUENTIAL] | standard | S |
| (without OMR or RCE) | | sequential | - |
¢ _ 4 $--—- --- |
| UR 3505 (with OMR) | [SEQUENTIAL] | standard: | o |
| i | -'sequential | |
prmmmmmmmm e ¥ . } ¥ i
| UR 3505, 3525R | [SEQUENTIAL] | standard | SR |
| (with RCE) | | sequential | |
; + 3= t -
| UR 3525R, 3525pP, | [SEQUENTIAL] | standard | S A
| 3525W, 3525M | | sequential | |
e $--- ! 1 —m e
| UR 3525P | [SEQUENTIAL] | standard | T |
| punch-interpret file | , | sequential | |
8 —— 1 —— 4 4 —_—— 4
T T T R A A
UR 3525R, 3525W,	[SEQUENTIAL]	standard	v
3525M read/print		sequential	
associated file			
T frmmmmmcmom oo frmmm s rmmmmmm oo			
UR 3525R (with RCE)	[SEQUENTIAL]	standard	VR
read/print		sequential	
associated file			
k- ot -4 S {			
OR 3525R, 3525P,	[SEQUENTIAL]	standard	X
3525W, 3525M		sequential	
read/punch/print			
associated file			
b + -- 1 $ {			
UR 3525R (with RCE)	[SEQUENTIAL}	standard	XR
read/punch/print		sequential	
associated file		:	
frmm === mmmmmm oo ommmmmmmmmomoeee T frmmmmmmmmmm oo			
UR 3525R, 3525P	[SEQUENTIAL]	standard	Y

| read/punch A | sequential | |
| associated file [| [|
b + + 1 |
| UR 3525R (with RCE) | [SEQUENTIAL] | standard l YR [
| read/punch) | | sequential | [
| associated file | | | |
pr—m e B - R ittt 1
| UR 3525P, 3525W | [SEQUENTIAL] | standard | Z I
| 3525M punch/print | | sequential | |
| associated file I [| I
% ¢ L L —
| DA (mass storage) | Entries valid for Version 2 |
| devices | are valid for Version 3 |
L 1 - . -1

Environment Division =~ Imput-Output Section 70.3
® v R .

Order'No. GC28-6394-~ 2, Page Rev1sed 5/15/72 by TNL GN28- 0u89
RESERVE Clause : .

RESERVE Clause

The RESERVE clause allows the user to modify the number of ' ' \’;>’

input/output areas (buffers) allocated by the compiler for a standard
gsequentlal file

et it T T T T S S e S e e m e — 1
| Format I
e i
I . : |
| integer : AREA |
| RESERVE ALTERNATE |
| NO AREAS |
I |
L - 1
This clause may be specified only for a standard sequential file.
Integer must have a value of 1.
A minimum of one buffer is required for a file. If this clause is
omitted or if 1 is specified, one additional buffer is assumed.
If NO is specified, no additional buffer‘areas are reserved aside
from the minimum of one.
Program.Product . Information -- Version 3 , \ }

Combined function file processing considerations for the RESERVE
clause are given in Appendix G.

70.4 Part II -- Identification and Environment Divisions : -

FILE-LIMIT/ACCESS MODE Clauses

FILE-LIMIT Clause

The FILE-LIMIT clause serves only as documentation, and is used to
specify the beginning and the end of a logical file on a mass storage
device.

Format

literal-1

FILE-LIMIT IS data-name-1 data-name-2
THRU
literal-2

FILE-LIMITS ARE

data-name-3 data-name-4
[lIiR_—U] e

literal-3 literal-4

[e e i o e i e i s g
b e s ey s s et . e e e e ol

The logical beginning of a mass storage file is the address specified
as the first operand of the FILE-LIMIT clause; the logical end of a mass
storage file is the address specified as the last operand of the
FILE-LIMIT clause, Because file boundaries are determined at execution
time from the control cards, this clause need not be specified and will
be treated as comments.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which records of a file
are to be accessed.

|
|
1
|
:
|
|
|
i
]
|
1
1
|
(
|
|
|
1
|
|
|
|
|
|
|
|
|
\
|
|
-

Format

SEQUENTIAL
ACCESS MODE IS k{

RANDOM

et S |
L

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed.
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially.
That is, the next logical record is made available from the file when
the READ statement is executed, or the next logical record is placed
into the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL
may be applied to files assigned to tape, unit-record, or mass storage
devices,

NDOM, storage and retrieval are based on an ACTUAL
associated with each record. When the RANDOM option

Environment Division -- Input-Output Section 71

PROCESSING MODE/ACTUAL REY Clauses

e keyword IS must be specified.

PROCESSING MODE Clause

The PROCESSING MODE clause serves only as documentation, and
indicates the order in which records are processed.

[mm— e ———— e —_— - -

.
|
4
1
| |
l
|
Jd

This clause is treated as comments, and may be omitted.

ACTUAL KEY Clause

An ACTUAL KEY is a key that is directly usable by the system to
locate a logical record on a mass storage device. The ACTUAL KEY is
made up of two componentse.

1. The track identifier, which expresses a track address at which the
search for a record, or for a space in which to place a new record,
is to begin.

2. The record identifier, which serves as a unique identifier for the
record and is associated with the record itself.

When processing a randomly accessed direct f£ile, the programmer is
responsible for providing the ACTUAL KEY for each record to be
processed.

Format

e e s s o s 0

Records are accessed randomly and-are processed in the order in which
they are accessed.

The ACTUAL KEY clause must be specified for direct files when ACCESS
IS RANDOM is specified.

When a SEEK statement is executed, the contents of data-name are used
to locate a specific mass storage record area.

72 Part II -- Identification and Environment Divisions

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0u436
ACTUAL KEY Clause

When a READ statement is executed, a specific logical record (located
by the system using the contents of data-name) is made available from
the file.

When a WRITE statement is executed, the given logical record is
written at a specific location in the file.

At file creation time, when no more room remains on a given track, a
standard error occurs, and the user must provide a USE AFTER STANDARD
ERROR declarative routine to update the track address.

specified.

The location of a particular logical record must be placed in
data-name before the execution of the SEEK statement (or if no SEEK

statement is present, the READ and WRITE statements).

Data-name must be a fixed-length item: It must be defined in the
File Section, the Working-Storage Section, or the Linkage Section.
However, if data-name is specified in the File Section it may not be
contained in the file for which it is the key. Data-name is made up of
two components: the track identifier, and the record identifier.

TRACK_IDENTIFIER: The track identifier may be expressed in two ways --
through relative track addressing, or through actual track addressing.

Relative Track Addressing: The track identifier is used to specify the
relative track address at which a record is to be placed, or at which
the search for a record is to begin.

Track identifier must be 4 bytes in length, and must be defined as an
8-integer binary data item whose maximum value does not exceed
16,777, 215.

Actual Track Addressing: The track identifier is used to specify the
actual track address at which a record is to be placed, or at which the
search for a record is to begin.

Track identifier must be a binary data item eight bytes in length.
No conversion is made by the compiler when determining the actual track
address. The structure of these eight bytes and the permissible
specifications for the 2311, 2314, and 2321 mass storage devices are
shown in Figure 4,

Before beginning processing, it is the user's responsibility to
initialize R to the figurative-constant LOW-VALUE. The user need not
concern himself further with this field.

O S e P T e

T T T 1

| CELL | CYLINDER | HEAD | RECORD
4 4 4 e -
T T T 1

| B B | C c| H H | R

1 1 4 1

T T T L)

| 1 2 | 3 4 | S 6 | 7

| | | |

| 1] 1

T L) T T

) 0 | o0 0-199| 0 0-9 | 0-255
1 ——— 4 4 ————
T T T L]

| O o | o 0-199| 0 0-19 | 0-255
[\ 4 4.

T 1 !

| 0 0-9 | 0-19 0-9 0-4 0-19 | 0-255
1 1 - 1

Figure 4, Structure of the First Eight Bytes of ACTUAL KEY —-- Actual

Track Addressing

Environment Division -- Input-Output Section 73

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ACTUAL KEY Clause

RECORD_IDENTIFIER: The symbolic portion of ACTUAL KEY used to identify
a particular record on a track is the record identifier.

Record identifier must be from 1 through 255 bytes in length. Data
within these bytes is treated exactly as specified.

A record is considered "found" when, for a given track, the record
identifier at retrieval time matches the record identifier of a record
in the file being searched.

ACTUAL KEY EXAMPLES: Two examples follow, to represent the coding
necessary to specify the data-name in the ACTUAL KEY clause.

Relative_ Track Addressing: The following example shows an ACTUAL KEY
using relative track addressing:

ENVIRONMENT DIVISION

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING~-STORAGE SECTION.
01 THE ACTUAL-KEY.)
02 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE IS S9(8)
VALUE IS 10 SYNCHRONIZED,
02 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE.

Actual Track Addressing: The following example shows an ACTUAL KEY
using actual track addressing:

ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 BINARY-FIELD-1.
05 TRACK-ID.
100 M USAGE COMPUTATIONAL PICTURE S999 VALUE IS 0.
10 BB USAGE COMPUTATIONAL PICTURE S9 VALUE IS 0.
10 CC USAGE COMPUTATIONAL PICTURE S999 VALUE IS 10.
10 HH USAGE COMPUTATIONAL PICTURE S99 VALUE Is 0.

10 R PICTURE IS X VALUE IS LOW-VALUE.
05 EMPLOYEE-NO PICTURE XXXXXX VALUE IS LOW-VALUES.
01 ACTUAL-FIELD-1 REDEFINES BINARY-FIELD-1.
05 FILLER PICTURE IS X.
05 THE-ACTUAL-KEY PICTURE IS X(1d).

Although the track identifier field must consist of eight bytes, nine
bytes are defined within TRACK-ID. This is because the entry

74 Part II -- Identification and Environment Divisions

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ACTUAL KEY Clause

10 M USAGE COMPUTATIONAL PICTURE S999

necessarily defines two bytes. However, as Figure 4 shows, the M field
must be one byte in length. Therefore, BINARY-FIELD-1 must be redefined
as ACTUAL-FIELD~1. In this way the superfluous high-order M byte can be
stripped off from THE-ACTUAL-KEY through specification of the entry

05 FILLER PICTURE IS X

in ACTUAL-FIELD-1. The first eight bytes of THE-ACTUAL-KEY thus
represent the track identifier, and the last six bytes represent the
record identifier,

Environment Division ~- Input-Output Section 74.1

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
RERUN Clause

I-0-CONTROL PARAGRAPH

The I-O-CONTROL paragraph defines some of the special techniques to
be used in the program. It specifies the points at which checkpoints
are to be established, the core storage area which is to be shared by
different files, the location of files on multiple-file reels, and
optimization techniques. The I-0O-CONTROL paragraph and its associated
clauses are an optional part of the Environment Division.

General Format

I-0-CONTROL.
[RERUN Clause] ...
[SAME AREA Clause] <.
{MULTIPLE FILE TAPE Clausel ...

oo e e . i e e S
e e et s o o . e e s

RERUN Clause

The presence of a RERUN clause specifies that checkpoint records are
to be taken. A checkpoint record is a recording of the status of a
problem program and main storage resources at desired intervals. The
contents of core storage are recorded on an external storage device at
the time of the checkpoint and can be read back into core storage to
restart the program from that point.

Format 1

RERUN ON system-name

EVERY integer RECORDS OF file-name

r
|
L
b
|
I
|
I
I
L

The system-name in the RERUN clause specifies the. external medium for
the checkpoint file, the file upon which checkpoint records are to be
written. It has the following structure:

SYSnnn-class-device-organization{-namel

cannot be the same as any specified in any ASSIGN clause.

" Environment Division -- Input-Output Section 77

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489
SAME Clause

Checkpoint records are written sequentially, and may be assigned to
any utility or mass storage device (except the 2321). Only one RERUN
clause in a program may use a mass storage device for writing checkpoint
records. (A complete list of utility and mass storage devices is given
in the description of system-name in the ASSIGN clause,)

_Format .1 specifies that checkpoint records are to be written on the
unit specified by system-name for every integer records of file-name
that are processed. The value of integer must not exceed 16,777, 215.

More than one Format 1 RERUN clause may be included in a program. If
multiple RERUN clauses are specified, they may be specified either for
the same or for different checkpoint files.

Note: ASCII considerations for the RERUN clause are given in

Appendix E.

SAME Clause

The SAME clause specifies that two or more files are to use the same
core storage during processing.

[SORT

AREA FOR file-name-1 {file-name-2} ...
RECORD .

| S S

A SAME clause with the SORT option is described in "Sort." The
following discussion pertains only to the SAME AREA and SAME RECORD AREA
clauses.

The SAME RECORD AREA clause specifies that two or more files are to
use the same main storage for processing the current logical record.
All of the files may be open at the same time. A logical record in the
shared storage area is considered to be:

e a logical record of each opened output file in this SAME RECORD AREA
clause, and

e a logical record of the most recently read input file in this SAME
RECORD AREA clause.

If the SAME clause does not contain the RECORD option, the area being
shared includes all storage areas assigned to the files; therefore, it
is not valid to have more than one of these files open at one time.

78 Part II -- Identification and Environment Divisions

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0u489
SAME Clause

More than one SAME clause may be included in a program; however:
1. A file-name must not appear in more than one SRME AREA clause.

2. A file-name must not appear in more than one SAME RECORD AREA
clause.

RECCRD AREA clause, all of the file-names in that SAME AREA clause
must appear in that SAME RECORD AREA clause. However, that SAME
RECORD AREA clause may contain additional file-names other than
those that appear in that SAME AREA clause.

Environment Division -- Input-Output Section 78.1

MULTIPLE FILE TAPE Clause

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause is used to indicate that two or more
files share the same physical reel of tape.

Format

|
|
1
|
]

MULTIPLE FILE TAPE CONTAINS file-name-1

[POSITION integer-1] [file-name-2 [POSITION integer-211 ...

[st e o e s Sy ey
b s s et e e i e el

1
|
t

reqpired when more than one file
E ?

The MULTIPLE FILE TAPE clause is pertinent only when the tape has
nonstandard labels, or when labels are omitted. It is treated as
comments for a tape that has standard labels.

Regardless of the number of files on a single reel, only those files
that are used in the object program need be specified.

For purposes of positioning, a physical file is considered to be that
segment of a tape that is terminated by a tape mark. Note that two
consecutive tape marks are considered to terminate two physical files.

If all file-names refer to single physical files and have been listed
in consecutive order, the POSITION option need not be given.

The POSFTION integer relative to the beginning of the tape must be
given if any file on the tape is not listed, or if a tape contains more
than one physical file, i.e., more than one tape mark. Therefore, if a
tape contains two files, each having one nonstandard header label
terminated by a tape mark, their positions would be 1 and 3. If the
labels are not to be processed, the positions may be specified as 2 and
4, and the LABEL RECORDS clause must specify OMITTED.

The compiler will position the tape by skipping past a number of tape
marks equal to POSITICON number minus one.

More than one MULTIPLE FILE clause may be included in a program.

Environment Division -+ Input-Output Section 79

APPLY Clause

. ¢
7

80 Part II -- Identification and Environment Divisions

DATA DIVISION -- INTRODUCTION

ORGANIZATION OF THE DATA DIVISION

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES
DATA DESCRIPTION

DATA DESCRIPTION -- DETAILS OF CLAUSES

PART III -—- DATA DIVISION

83

C

External Data--Description

DATA DIVISION -- INTRODUCTION

The Data Division of a COBOL source program contains the description
of all information to be processed by the object program. Two types of
data may be processed by a COBOL program: information recorded
externally on files and information created internally. The second
type, which exists only during the execution of a program, will be
discussed later in this chapter in "Working-Storage Section."

ORGANIZATION OF EXTERNAL DATA

A file is a collection of records. There are two types of records:
physical records and logical records. A physical record is a group of
characters or records which is treated as an entity when moved into or
out of core storage. A logical record is a number of related data
items., It may itself be a physical record, i.e., contained within a
single physical unit, or it may be one of several logical records
contained within a single physical unit, or it may extend across two or
more physical units.

COBOL source language statements provide the means of describing the
relationship between physical and logical records. Once this
relationship is established, only logical records are made available to
the COBOL programmer. Hence, in this publication, a reference to
records means logical records unless the term "physical records" is
used.

DESCRIPTION OF EXTERNAL DATA

In the discussion of data description, a distinction must first be
made between a record's external description and its internal content.

External description refers to the physical aspects of a file, i.e.,
the way in which the file appears on an external medium. For example,
the number of logical records per physical record describes the grouping
of records in the file. The physical aspects of a file are specified in
File Description entries.

A COBOL record usually consists of groups of related information that
are treated as an entity. The explicit description of the contents of
each record defines its internal characteristics. For example, the type
of data to be contained within each field of a logical record is an
internal characteristic. This type of information about each field of a
particular record is grouped into a Record Description entry.

Data Division -- Introduction 85

Data DPivision--Structure

ORGANIZATION OF THE DATA DIVISION

The Data Division is divided into four sections: the File Section,
the Working-Storage Section, nd the Report
Section.
All data that is stored externally, for example, on magnetic tape,
must be described in the File Section before it can be processed by a
COBOL program. Information that is developed for internal use must be
described i the Workin
| cia 4 > Eic The
ted by the Report
Writer feature must be described in the Report Section.
The Data Division is identified by, and must begin with, the header
DATA DIVISION, The File Section is identified by, and must begin with,
the header FILE SECTION. The header is followed by one or more file
description entries and one or more associated record description
entries., The Working-Storage Section is identified by, and must begin
with, the header WORKING-STORAGE SECTION. The header is followed by
data item description entries for noncontlguous items, followed by
record description entries. :
s
oy M - '
begin with, the header REPORT SECTION. The header is followed by one or
more report description entries, and one or more report group
description entries.
For the proper formats of Division and Section headers, see "Use of
the COBOL Coding Form"™ in "Language Considerations." ‘ Y
-’
Structure of the Data Division
DATA DIVISION.
FILE SECTION.
{file description entry
{record description entryl}...}...
WORKING-STORAGE SECTION.
[data item description entryl...
[record description entryles.
REPORT SECTION,.
{report description entry
{report group description entryleveteee.
Each of the sections of the Data Division is optional and may be ‘
omitted from the source program when the section is unnecessary. When O
used, the sections must appear in the foregoing sequence. ~

86 Part III -- Data Division

»\\-/3

Level Indicator/Number

ORGANIZATION OF DATA DIVISION ENTRIES

Each Data Division entry bedins with a level indicator or a level
number, followed by one or more spaces, followed by the name of a data
item (except in the Report Section), followed by a sequence of
independent clauses describing the data item. The last clause is always
terminated by a period followed by a space.

Level Indicator

The level indicator FD is used to specify the beginning of a file
description entry. When the file is a sort-file, the level indicator SD
must be used instead of FD (see "Sort"). When a report is to be
generated by the Report Writer feature, the level indicator RD,
specifying the beginning of a report description entry must be provided
for each report in addition to the FD for the file on which the report
is generated (see "Report Writer"). Figure 5 summarizes the level
indicators. '

r - T ———- 1
| Indicator | Use |
h + - 4
| FD | File description entries |
| SD | Sort-file description entries |
i RD | Report description entries |
L L J

Figure 5. Level Indicator Summary

Each level indicator must begin in Area A and be followed in Area B
by its associated file-name and appropriate descriptive information.

Level indicators are illustrated in the sample COBOL programs found

in Appendix B.

Level Number

Level numbers are used to structure a logical record to satisfy the
need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data reference.

The basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record may
consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. A group item consists of a named sequence of
one or more elementary items. Groups, in turn, may be combined into
larger groups. Thus, an elementary item may belong to more than one

Organization of the Data Division 87

Level Number

group. In the following example, the group items MARRIED and SINGLE are
themselves part of a larger group named RETIRED-EMPLOYEES:

02 RETIRED-EMPLOYEES.
03 MARRIED.
04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).
03 SINGLE.
04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).

A system of level numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items, the
level number for a record must be 1 or 0l. Less inclusive data items
are assigned higher (not necessarily successive) level numbers not
greater than 49. There are special level numbers -- 66, 77, and 88 --
which are exceptions to this rule. Separate entries are written in the
source program for each level number used.

A group includes all group and elementary items following it until a
level number less than or equal to the level number of that group is
encountered. The level number of an item which immediately follows the
last elementary item of the previous group must be equal to the level
number of one of the groups to which a prior elementary item belongs.

Standard
01 A.
05 c-1.
06 D PICTURE X,
06 E PICTURE X.

05 c-2,

Level numbers 01 and 77 must begin in Area A, followed in Area B by
associated data names and appropriate descriptive information. All
other level numbers may bedgin in either Area A or in Area B, followed in
Area B by associated data names and appropriate descriptive information.

A single-digit level number is written either as a space followed by
a digit or as a zero followed by a digit. At least one space must
separate a level number from the word following the level number.

Special Level Numbers

Three types of data exist whose level numbers are not intended to
structure a record., They are:

66: Names of elementary items or groups described by a RENAMES clause
for the purpose of regrouping data items have been assigned the
special level number 66. For an example of the function of the
RENAMES clause, see "Data Description.”

77: Noncontiguous Working-Storage items, which are not subdivisions of

other items and are not themselves subdivided, have been assigned
the special level number 77.

88 Part III -- Data Division

File Section

88: Entries that specify condition-names to be associated with
particular values of a conditional variable have been assigned the
special level number 88. For an example of level-88 items, see
"Data Description."

Indentation

Successive data description entries may have the same format as the
first such entry or may be indented according to level number.
Indentation is useful for documentation purposes, and does not affect
the action of the compiler.

FILE SECTION

The File Section contains a description of all externally stored data
(FD), and a description of each sort-file (SD) used in the program.

The File Section must begin with the header FILE SECTION followed by
a period. The File Section contains file description entries and
sort-file description entries, each one followed by its associated
record description entry (or entries).

General Format

FILE SECTION.

{file description entry

{record description entry} ceelese

[o o . et st e B s iy
SRS ——— S

File Description Entry

In a COBOL program, the File Description Entries (FD and SD)
represent the highest level of organization in the File Section. The
File Description entry provides information about the physical structure
and identification of a file, and gives the record-name(s) associated
with that file,

For a complete discussion of the sort-file-description entry, see
"Sort."

Record Description Entry

The Record Description Entry consists of a set of data description
entries which describe the particular record(s) contained within a
particular file. For a full discussion of the format and the clauses
required within the Record Description entry, see "Data Description.”

Organization of the Data Division 89

Working-storage Section

WORKING-=STORAGE SECTION

The Working-Storage Section may contain descriptions of records which {
are not part of external data files but are developed and processed N
internally.

The Working-Storage Section must begin with the section header
WORKING~STORAGE SECTION followed by a period. The Working-Storage
Section contains data description entries for noncontiguous items and
record description entries, in that order.

General Format

WORKING-STORAGE SECTION.

[data item description entryl ...

[record description entry) ...

[o e . et i e S, SO e Oy

Data Item Description Entries

Noncontiguous items in Working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need to be further subdivided. Instead, they are classified
and defined as noncontiguous elementary items. Each of these items is
defined in a separate data item description entry that begins with the
special level number 77,

Record Description Entries

Data elements in Working-Storage that bear a definite hierarchical
relationship to one another must be grouped into records structured by
level number.

90 Part III -- Data Division

Sections

st -

REPORT SECTION

The Report Section contains Report Description entries and report
group description entries for every report named in the REPORT clause.
The Report Section is discussed in "Report Writer."

Organization of the Data Division 91

FD Entry/BLOCK CONTAINS Clause

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The file description entry consists of level indicator (FD), followed
by file-name, followed by a series of independent clauses. The entry
itself is terminated by a period.

General Format

FD file-name

[BLOCK CONTAINS Clause)

[RECORD CONTAINS Clausel

LABEL RECORDS Clause

[VALUE OF Clausel
[DATA RECORDS Clausel

[REPORT Clausel.

e B

e s e e . e e e e e e et P .

The level indicator FD identifies the beginning of a file description
entry and must precede the file-name. The clauses that follow the name
of the file are optional in many cases, and their order of appearance is
not significant.

BLOCK_CONTAINS Clause

The BLOCK CONTAINS clause is used to specify the size of a physical
record.

Format

CHARACTERS
BLOCK CONTAINS [integer-1 TQl integer-2
RECORDS

-,
e e e e . e b e o

The BLOCK CONTAINS clause is unnecessary when a physical record ’
contains one and only one complete logical record. 1In all other i 3
instances, this clause is required. S’

92 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
BLOCK CONTAINS Clause

The BLOCK CONTAINS clause need not be specified for:

¢ direct files with F, U, or Vv mode records

¢ files containing U-mode records

For these types of files, the compiler accepts the clause and treats it
as comments.

The RECORDS option may be used unless one of the following situations
exists, in which case the CHARACTERS option should be used:

1. The physical record contains padding (areas not contained in a
logical record)

2. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied. Such would be the case
where the user describes a mode V record of 100 characters, yet
each time he writes a block of 4, he writes a 50-character record
followed by three 100-character records. Had he used the RECORDS
option, the compiler would have calculated the block length as 420.

3. Logical records extend across physical records; that is, recording
mode is S (spanned).

When the RECORDS option is used, the compiler assumes that the
blocksize provides for integer-2 records of maximum size and then
provides additional space for any required control bytes.

When the CHARACTERS option is used, the physical record size is
specified in Standard Data Format, i.e., in terms of the number of bytes
occupied internally by its characters, regardless of the number of
characters used to represent the item within the physical record. The
number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause. Integer-1 and integer-2 must
include slack bytes and control bytes contained in the physical record.

When the CHARACTERS option is used, if only integer-2 is shown, it
represents the exact size of the physical record. If integer-1 and

integer—-2 are both shown, they refer to the minimum and maximum size of
the physical record, respectively.

Integer-1 and integer-2 must be positive integers.

If this clause is omitted, it is assumed that records are not
blocked. i

When neither the CHARACTERS nor the RECORDS option is specified, the
CHARACTERS option is assumed.

Note: ASCII considerations for the BLOCK CONTAINS clause are given in
Appendix E. : ‘ :

File Description Entry -- Details of Clauses 93

RECORD CONTAINS Clause

RECORD_CONTAINS Clause

The RECORD CONTAINS clause is used to specify the size of a file's
data records.

Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

[o o e g e
e o s e —

Since the size of each data record is completely defined within the
record description entry, this clause is never required. When the
clause is specified, the following notes apply:

1. 1If both integer-1 and integer-2 are shown, they refer to the number
of characters in the smallest data record and the number in the
largest data record, respectively.

2. Integer-2 should not be used by itself unless all the data records
in the file have the same size. In this case, integer-2 represents
the exact number of characters in the data record.

3. The size of the record must be specified in Standard Data Format,
i.e., in terms of the number of bytes occupied internally by its
characters, regardless of the number of characters used to
represent the item within the record. The number of bytes occupied S
internally by a data item is discussed in the description of the o
USAGE clause. The size of a record is determined according to the
rules for obtaining the size of a group item.

Normally, whether this clause is specified or omitted, the record
lengths are determined by the compiler from the record descriptions.
When one or more of the data item description entries within a record
contains an OCCURS clause with the DEPENDING ON option, the compiler
uses the maximum value of the variable to calculate the record length.

However, if more than one entry in a given record description
contains an OCCURS clause with the DEPENDING ON option, and the maximum
values of the variables in these OCCURS clauses do not occur
simultaneously, integer-2, as specified by the user, may indicate a
maximum record size other than the size calculated by the compiler from
the maximum values of the OCCURS clause variables. In this case, the
user-specified value of integer-2 determines the amount of storage set
aside to contain the data record.

For example, in a school whose total enrollment is 500, an unblocked
file of collective attendance records is being created, each record of
which is described as follows:

01 ' ATTENDANCE-RECORD.

02 DATE PICTURE X(6).

02 NUMBER-ABSENT PICTURE S999 USAGE IS COMP SYNC.

02 NUMBER-PRESENT PICTURE S999 USAGE IS COMP SYNC.

02 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON
NUMBER-ABSENT PICTURE A(20).

02 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON
NUMBER-PRESENT PICTURE A(20).

94 Part III -- Data Division

Recording Mode--Description

The programmer can save storage by taking advantage of the fact that
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school's total
enrollment. Unless the programmer writes RECORD CONTAINS 10, 010
CHARACTERS in the FD entry for the file, the compiler calculates the
record size to be almost twice as large.

Recording Mode

escription to determine it. e recording mode may be F (fixed),
U (undefined), V (variable), or S (spanned).

Recording Mode F -- All of the records in a file are the same length and
each is wholly contained in one block. Blocks may contain more than one
record, and there is usually a fixed number of records per block. In
this mode, there are no record-length or block-descriptor fields.

Recording Mode U -- The records may be either fixed or variable in
length., However, there is only one record per block. There are no
record-length or block-descriptor fields.

Recording Mode V -- The records may be either fixed or variable in
length, and each must be wholly contained in one block. Blocks may
contain more than one record. Each data record includes a record-length
field and each block includes a block-descriptor field. These fields
are not described in the Data Division; provision is automatically made
for them. These fields are not available to the user.

Recording Mode S ~-- The records may be either fixed or variable in
length and may be larger than a block. If a record is larger than the
remaining space in a block, a segment of the record is written to fill
the block. The remainder of the record is stored in the next block (or
blocks if regquired). Only complete records are made available to the
user. Each segment of a record in a block, even if it is the entire
record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data
Division; provision is automatically made for them. These fields are
not available to the user.

For standard sequential files, the compiler determines the recording
mode for a given file to be:

F if all the records are defined as being the same size and the
size is smaller than or equal to the block size

V if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records and the longest
record is less than or equal to the maximum block size

S if the maximum block size is smaller than the largest record
size
For direct files, the compiler determines the recording mode for a

given file to be:

F if all the records are defined as being the same size, and the
size is smaller than or equal to the block size

U if the records are defined as being variable in size, or if the

RECORD CONTAINS clause specifies variable size records and the
longest record is less than or equal to the maximum block size

File Description Entry -- Details of Clauses 95

Order No., GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
RECORDING MODE Clause

S if the maximum block size is smaller than the largest record

size S

i)

~ Files assigned to the card reader | organiza ~—’

must be F mode (fixed format).)

Note: ASCII considerations for compiler calculation of recording mode

are given in Appendix E.

-

C)
g

T

t and/c

96 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
LABEL RECORDS Clause

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present, and if
present, identifies the labels.

= - - - -- 1
| Format |
% _____ 4
| I
[RECORD IS OMITTED [
| LABEL STANDARD |
| RECORDS ARE data-name-1 [data-name-2] ... |
|

S e S

The LABEL RECORDS clause is required in every FD.

The OMITTED option specifies either that no explicit labels exist for
the file or that the existing labels are nonstandard and the user does
not want them to be processed by a label declarative (i.e., they will be
processed as data records). The OMITTED option must be specified for
files assigned to unit record devices. It may be specified for files
assigned to magnetic tape units. Use of the OMITTED option does not
result in automatic bypassing of nonstandard labels on input. It is the
user's responsibility either to process or to bypass nonstandard labels
on input and create them on output.

STANDARD specifies that labels exist for the file and the labels
conform to system specification. The system will bypass user labels
appearing in the file if the STANDARD option is specified.

In the discussion that follows, all references to data-name-1 apply
egually to data-name-2.

The data-name-1 option indicates either the presence of user labels
in addition to standard labels, or the presence of nonstandard labels.
Data~name-1 specifies the name of a user label record. Data-name-1 must
appear as the subject of a record description entry associated with the
file, and must not appear as an operand of the DATA RECORDS clause for
the file.

If user labels are to be processed, data-name-1 may be specified for
direct files, or for standard sequential files with the exception of
files assigned to unit-record devices.

A user label is 80 characters in length. A user header label must
have UHL in character positions 1 through 3. A user trailer label must
have UTL in character positions 1 through 3. Both header and trailer
labels may be grouped and each label must show the relative position (1,
2, ...) of the label within the user label group, in character position
4, The remaining 76 characters are formatted according to the user's
choice. User header labels follow standard beginning file labels but
precede the first data record; user trailer labels follow standard
closing file labels.

If nonstandard labels are to be processed, data-name-1 may be
specified only for standard sequential files, with the exception of
files assigned to unit-record devices. The length of a nonstandard
label may not exceed 4,095 character positions.

File Description Entry -- Details of Clauses 97

Order No. GC28-6394~2, Page Revised 4/15/71 by TNL GN-0436
VALUE OF/DATA RECORDS Clauses

All Procedure Division references to data-name-1, or to any item

subordinate to data-name-1, must appear within label processing
declaratives.,

Note: ASCII considerations for the LABEL RECORDS clause are given in
Appendix E.

VALUE OF Clause

The VALUE OF clause particularizes the description of an item in the
label records associated with a file, and serves only as documentation.

Format

f({data—-name-2
VALUE OF data-name-1 IS

literal-1

data-name-4
{data-name-3 IS | P

literal-2

. e S e e . i S s e i e s

To specify the required values of identifying data items in the label
records for the file, the programmer must use the VALUE OF clause.

However, this compiler treats the VALUE OF clause as comments, since
for standard labels this function is performed by the system through the
TLBL or DLBL control statement as described in the Programmer's Guides
(as cited in "Preface"), and through the Label Declarative procedures
for user standard labels and nonstandard labels.

DATA RECORDS_Clause

The DATA RECORDS clause serves only as documentation, and identifies
the records in the file by name.

RECORD IS
DATA data-name-1 [data-name-2] ...

RECORDS ARE

[e — S —

The presence of more than one data-name indicates that the file
contains more than one type of data record. That is, two or more record
descriptions for a given file occupy the same storage area. These
records need not have the same description. The order in which the
data-names are listed is not significant.

98 Part III -- Data Division

Order No., GC28-6394-2, Page Revised U4/15/71 by TNL GN-0436
: REPORT Clause

Data-name-1, data-name-2, etc., are the names of data records and
each must be preceded in its record description entry by the level

&") number 01,

This clause is never required.

REPORT Clause

- The REPORT clause is used in conjunction with the Report Writer
feature. A complete description of the REPORT clause can be found in
"Report Writer."

File Description Entry -- Details of Clauses 98.1

Data Description General Formats

DATA DESCRIPTION

In COBOL, the terms used in connection with data description are:

Data Description Entry —- the clause, or clauses, that specify the
characteristics of any particular noncontiqguous data item, or of any
data item that is a portion of a record. The data description entry
consists of a level number, a data-name (or condition-name), plus any
associated data description clauses.

Data Item Description Entry -- a data description entry that defines
a noncontiguous data item. It consists of a level number (77), a
data-name plus any associated data description entries. Data it
descripra jes are valid in the Working-Storage Section

Record Description Entry -- the term used in connection with a
record. It consists of a hierarchy of data description entries, Record
description entries are valid in the File, Working-Storag
Sections.

The maximum length for a data descrlptlon entry is 32,767 bytes,
except for a fixed-length Working-Storage: Sectlon group item,
which may be as long as 131,071 bytes.

General Format 1

|
-
I

data-name
level number

FILLER

[REDEFINES Clause]
[BLANK WHEN ZERO Clausel]
[JUSTIFIED Clausel
[OCCURS Clausel

[PICTURE Clausel
[SYNCHRONIZED Clausel
[USAGE Clausel

(VALUE Clausel.

o o . — S (P S S . O —— i — . T)

General Format 2

66 data-name-1 RENAMES Clause.

,.._..-..—..,..._.}
|
1

e

General Format 3

88 condition-name VALUE Clause,

o o e v g b

—_

Data Description 99

Data Description General Formats

General Format 1 is used for record description entries in the File,
Worklng-Storage% ections and for data item description
entries in the W Sections. The following
rules apply:

1. Level number may be any number from 1 through 49 for record
description entries, or 77 for data item description entries.

2. The clauses may be written in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the data-name.

3. The PICTURE clause must be specified for every elementary 1tem
’w;th the exception of index data items
: Index data items are described in YTable Handling.™

4, Each entry must be terminated by a period.

5. Semicolons or commas may be used as separators between clauses.

General Format 2 is used for the purpose of regrouping data items.
The following rules apply:

1l A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-77, level-88, or level-01 entrye.

2. RAll level-66 entries associated with a given logical record must
immediately follow the last data description entry in the record.

3. The entry must be terminated by a period.

The RENAMES clause is discussed in detail later in this chapter.

General Format 3 is used to describe entries that specify
condition-names to be associated with particular values of a conditional
variable. A condition-name is a name assigned by the user to a specific
value that a data item may assume during object program execution. The
following rules apply:

1. The condition-name entries for a particular conditional variable
must immediately follow the conditional variable.

2. A condition-name can be associated with any data description entry
except another condition-name, a level-66 item, an index data item,
or a group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED, or USAGE (other than USAGE IS DISPILAY).

3. The entry must be terminated by a period.

In the following example, PAYROLL-PERIOD is the conditional variable.
WEEKLY, SEMI-MONTHLY, and MONTHLY are the condition-names associated
with it. The PICTURE associated with PAYROLL-PERIOD limits the value of
each condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE Is 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

100 Part III -- Data Division

Data-name/FILLER Clause

DATA DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The data description entry consists of a level number, followed by a
data-name, followed by a series of independent clauses. The clauses may
be written in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name. The entry must be
terminated by a period.

Data-name or FILLER Clause

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary or group item of the logical record that
is never referred to and therefore need not be named.

Format

data-name
level number

FILLER

e S
b e s . o e edre. o

In the Working-Storage
key word FILLER must be the
each data description entry.

or File Sections, a data-name or the
word following the level number in

A data-name is a name assigned by the user to identify a data item
used in a program. A data-name refers to a kind of data, not to a
particular value; the item referred to may assume a number of different
values during the course of a program.

The key word FILLER is used to specify an elementary item
item that is never referred to in the program, and therefore nee
named. Under no circumstances may a FILLER item be referred to
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING
option, FILLER items are ignored.

no

Note: Level-77 and level-01 entries in the Working-storage,
Section must be given unique data-names, since neither can b
Subordinate data-names, if they can be gualified, need not be unique.

Data Description Entry -- Details of Clauses 101

REDEFINES Clause

REDEFINES Clause

The REDEFINES clause allows the same computer storage area to contain
different data items or provides an alternative grouping or description
of the same data. That is, the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the
area.

Format

level number data-name-1 REDEFINES data-name-2

e e e e s e o

The level numbers of data-name-1 and data-name-2 must be identical,
but must not be 66 or 88, Data-name-2 is the name associated with the
previous data description entry. Data-name-1 is an alternate name for
the same area. When written, the REDEFINES clause must be the first
clause following data—-name-1.

The REDEFINES clause must not be used in level-01 entries in the File
Section. Implicit redefinitien is provided when more than one level-01
entry follows a file description entry.

Redefinition starts at data-name-2 and ends when a level number less
than or equal to that of data-name-2 is encountered. Between the data
descriptions of data-name-2 and data-name-1, there may be no entries
having lower level numbers (numerically) than the level number of
data-name-2 and data-name-1. Example:

02 A,
03 A-1 PICTURE X.
03 A-2 PICTURE XXX.
03 A-3 PICTURE 99.

02 B REDEFINES A PICTURE X(6).

In this case, B is data-name-1, and A is data-name-2. When B redefines
A, the redefinition includes all of the items subordinate to A (A-1,
A-2, and A-3).

The data description entry for data-name-2 cannot contain an OCCURS
clause, nor can data-name-2 be subordinate to an entry which contains an
OCCURS clause. 2An item subordinate to data-name-2 may contain an OCCURS
clause without the DEPENDING ON option. Data-name-1l or any items
subordinate to data-name-1 may contain an OCCURS clause without the
DEPENDING ON option. Neither data-name-2 nor data-name-1 nor any of
their subordinate items may contain an OCCURS clause with the DEPENDING
ON option. When data-name-1 has a level number other than 01, it must
specify a storage area of the same size as data-name-2.

If data-name-1 contains an OCCURS clause, its size is computed by
multiplying the length of one occurrence by the number of occurrences.

Note: In the di that follo the te "computational™ refers

to COMPUTATIONAL,

102 Part III -- Data Division

C

REDEFINES Clause

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes: ’

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

Wwhen the SYNCHRONIZED clause is specified for a computational item
that is subordinate to an item that contains a REDEFINES clause, the
computational item must not require the addition of slack bytes.

Except for condition-name entries, the entries giving the new
description of the storage area must not contain any VALUE clauses.

The entyries giving the new description of the storage area must
follow the entries describing the area being redefined, without
intervening entries that define new storage areas. Multiple
redefinitions of the same storage area should all use the data
the entry that originally defined the area

ame of

For example, both of the following are valid uses

02 A PICTURE 9999,
02 B REDEFINES A PICTURE 9V999.
02 C REDEFINES A PICTURE 99V99.

Data items within an area can be redefined without their lengths
being changed; the following statements result in the storage layout
shown in Figure 6.

02 NAME-2.
03 SALARY PICTURE XXX.
03 SO-SEC~-NO PICTURE X(9).

03 MONTH PICTURE XX.
02 NAME-1 REDEFINES NAME-2.

03 WAGE PICTURE XXX.

03 MAN-NO PICTURE X(9).

03 YEAR PICTURE XX.
r 1
| SALARY SO-SEC-NO MONTH |
| e et P et l
| (o= T——T~—T——T——T~=T-—T-—7T T——T—-T
1 [N AN T N N IR I T |
| NAME-2 | | | | |
| ([[(R T N I B I I |
[S WY (NN WU S NUY N DU NI WU TN WP W S | [
| |
| |
| WAGE MAN-NO YEAR |
| P N P N I
| T =T~ T— T~ 7T~ T~ T~ T~ T~ 7T~—1-—7T~71 |
| [I T T I U N | I I T |
| NAME-1 | | | | |
| ([S N O N N I B S I |
l L 1 L L 4 1 L L L1__1 L L L J |
B e e e e o e e e e e e e o e e e e e e S 30 —— 4
Figure 6. Areas REDEFINED without Changes in Length

103

Data Description Entry -- Details of Clauses

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
REDEFINES Clause

Data items can also be rearranged within an area; the following
statements result in the storage layout shown in Figure 7.

02 NAME-2,

03 SALARY PICTURE XXX,

03 SO-SEC-NO PICTURE X(9).

03 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2,

03 MAN-NO PICTURE X(6).

03 WAGE PICTURE 999V999,

03 YEAR PICTURE XX.
[T e e e e — - 1
| SALARY S50-SEC-NO MONTH
l P o — et l
| T T T T T TTTTTTTTT T T T T T |
| I T I A I T I T O |
| NAME-2. | | ' | | |
| I L I A D D e I (e (O O O l
| L i i L 1 1 i L L 1 L 1 1 1 J '
| |
| |
| MAN-NO WAGE YEAR |
| T Ty T T T T T YT T T 1 l
| [T T T R T D D O R B I
| NAME-1 | | | | |
| [R T (R R A R I R B B B l
l L—d__L__1__1__1 A1 A A _ L __1_.1__1 |
L e e e e e e e e e e e o e e e e e e e 2 i e e e 3

Figure 7. Areas REDEFINED and Rearranged

"When an area is redefined, all descriptions of the area remain in
effect. Thus, if B and C are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO C could be executed at any point in the program. In the
first case, B would assume the value of X and take the form specified by
the description of B, In the second case, the same physical area would
receive Y according to the description of C. It should be noted, how-
ever, that if both of the foregoing statements are executed successively
in the order specified, the value Y will overlay the value X. However,
redefinition in itself does not cause any data to be erased and does not
supersede a previous description.

The usage of data items within an area can be redefined.

Altering the USAGE of an area through redefinition does not cause any
change in existing data. Consider the example:

02 B : . PICTURE 99 USAGE DISPLAY VALUE IS 8.
02 C REDEFINES B PICTURE S99 USAGE COMPUTATIONAL.

02 A PICTURE S9999 USAGE COMPUTATIONAL.

Assuming that B is on a halfword boundary, the bit configuration of
the value 8 is 1111 0000 1111 1000, because B is a DISPLAY item.
Redefining B does not change its appearance in storage. Therefore, a
great difference results from the two statements ADD B TO A and ADD C TO
A., In the former case, the value 8 is added to A, because B is a
display item. 1In the latter case, the value -3,848 is added to A,
because C is a binary item (USAGE IS COMPUTATIONAL), and the bit
configuration appears as a negative number.

104 Part III -- Data Division

\.

C

C

BLANK WHEN ZERO Clause

Moving a data item to a second data item that redefines the first one
(for example, MOVE B TO C when C redefines B), may produce results that
are not those expected by the programmer. The same is true of the
reverse (MOVE B TO C when B redefines C).

A REDEFINES clause may be specified for an item within the scope of
an area being redefined, that is, an item subordinate to a redefined

item. The following example would thus be a valid use of the REDEFINES
clause:

02 REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).
03 STATUS PICTURE X(4),
03 SEMI-MONTHLY-PAY PICTURE 9999Vv99.

03 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY PICTURE 999V999,
02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).
03 FILLER PICTURE X(6).
03 HOURLY-PAY PICTURE 99Vv99.

REDEFINES clauses may also be specified for items subordinate to
items containing REDEFINES clauses. For example:

02 < REGULAR-EMPLOYEE,

03 LOCATION PICTURE A(8).

03 STATUS PICTURE X(4).

03 SEMI-MONTHLY-PAY PICTURE 999V999.

02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.

03 LOCATION PICTURE A(8).

03 FILLER PICTURE X(6).

03 HOURLY-PAY PICTURE 99V99.
03 CODE-H REDEFINES HOURLY-PAY PICTURE 9999.

BLANK WHEN ZERO Clause

This clause specifies that an item is to be set to blanks whenever
its value is zero.

Format

BLANK WHEN ZERO

e o o e oy s

[PR

When the BLANK WHEN ZERO clause is used, the item will contain only
blanks if the value of the item is =zero.

The BLANK WHEN ZERO clause may be specified only at the elementary
level for numeric edited or numeric items. When this clause is used for
an item whose PICTURE is numeric, the category of the item is considered
to be numeric edited.

This clause may not be specified for level-66 and level-88 data
items.

Data Description Entry -- Details of Cclauses 105

JUSTIFIED Clause

JUSTIFIED Clause

The JUSTIFIED clause is used to override normal positioning of data
within a receiving alphabetic or alphanumeric data item.

Format |

{ JUSTIFIED

RIGHT
JUST

e e S

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

e The data is aligned in the receiving field, beginning at the
leftmost character position within the receiving field. Unused
character positions to the right are filled with spaces. If
truncation occurs, it will be at the right.

The JUSTIFIED clause affects the positioning of data in the receiving
field as follows:

e When the receiving data item is described with the JUSTIFIED clause
and the data item sent is larger than the receiving data item, the

leftmost characters are truncated.
l

When the receiving data item is described with the JUSTIFIED clause
and is larger than the data item sent, the data is aligned at the
rightmost character position in the data item. Unused character
positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-66 or level-88 data
items.

QCCURS Clause

The OCCURS clause is used to define tables and other homogeneous sets
of data, whose elements can be referred to by subscripting or indexing.
The OCCURS clause is described in "Table Handling."

PICTURE Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

106 Part III -- Data Division

PICTURE Clause

Format

{ PICTURE

IS character string
PIC

[—— — o g Oy

The PICTURE clause can be used only at the elementary level.

The character string consists of certain allowable combinations of
characters in the COBOL character set. The maximum number of characters
allowed in the character string is 30. The allowable combinations
determine the category of the elementary item.

There are five categories of data that can be described with a
PICTURE clause. They are:

1. Alphabetic

2. Numeric

3. Alphanumeric

4. Alphanumeric edited
5. Numeric edited

The Three Classes of Data

The five categories of data items are grouped into three classes:
alphabetic, numeric, and alphanumeric. For alphabetic and numeric, the
class and the category are synonymous. The alphanumeric class includes
the categories of alphanumeric (without editing), alphanumeric edited, -
and numeric edited.

Every elementary item belongs to one of the three classes -and to one
of the five categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of the elementary items
subordinate to that group item. '

Table 6 shows the relationship of the class and category for
elementary and group data items.

Table 6. Class and Category of Elementary and Group Data Items

r v H

] Level of Item | Class 1} Category

e fommm oo —4-- ——mmmmee
| | Alphabetic ' | ‘Alphabetic

| Elementary | Numeric | Numeric

| R 1- PO s
| | - 1 Alphanumeric :

|] Alphanumeric | Alphanumeric Edited

| i | Numeric Edited
e L + + _

| | 1 Alphabetic

| | | Numeric

| Group | Alphanumeric | Alphanumeric

I | T Alphanumeric Edited

i | | Numeric Edited

L e ———— X - o e s e

L — S T i

Data Description Entry -- Details of Clauses 107

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0U436
PICTURE Clause

Character String and Item Size

In the processing of data through COBOL statements, the size of an
elementary item is determined through the number of character positions
specified in its PICTURE character string. In core storage, however,
the size is determined by the actual number of bytes the item occupies,
as determined by its PICTURE character string, and also by its USAGE
(see "USAGE Clause").

Normally, when an arithmetic item is moved from a longer field into a
shorter one, this compiler will truncate the data to the number of
characters represented in the PICTURE character string of the shorter
item.

For example, if a sending field with PICTURE S99999, and containing
the value +12345, is moved to a COMPUTATIONAL receiving field with
PICTURE S99, the data is truncated to +45.

Repetition of Symbols

An integer which is enclosed in parentheses following one of the
symbols

A . X 9 P 7 * B 0 + - $

indicates the number of consecutive occurrences of the symbol. For
example, if the programmer writes

A(40)

the four characters (40) indicate forty consecutive appearances of the
symbol A. The number within parentheses may not exceed 32,767.

Note: The following symbols may appear only once in a given PICTURE
clause:

S \ N CR DB

Symbols Used in the PICTURE Clause

The functions of the symbols used to describe an elementary item are:

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B in the character string represents a character position into
which the space character will be inserted.

P The P indicates an assumed decimal scaling position and is used to
specify the location of an assumed decimal point when the point is
not within the number that appears in the data item. The scaling
position character P is not counted in the size of the data item.
Scaling position characters are counted in determining the maximum

108 ©Part III -- Data Division

CR
DB

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

number of digit positions (18) -in numeric edited items or in items
that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as a continuous string
of P's within a PICTURE description. The sign character S and the
assumed decimal point V are the only characters which may appear to
the left of a leftmost string of P's. Since the scaling position
character P implies an assumed decimal point (to the left of the
P's if the P's are leftmost PICTURE characters and to the right of
the P's if the P's are rightmost PICTURE characters), the assumed
decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

The symbol S is used in a PICTURE character string to indicate the
presence (but not the representation nor, necessarily, the
position) of an operational sign, and must be written as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol S is not counted in determining

the size of the elementary item e

The V is used in a character string to indicate the location of the
assumed decimal point and may appear only once in a character
string. The V does not represent a character position and,
therefore, is not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string, the V is redundant.

Each X in the character string represents a character position
which may contain any allowable character from the EBCDIC set.

Each Z in the character string represents a leading. numeric
character position; when that position contains a zero, the zero is
replaced by a space character., Each Z is cocunted in the size of
the item.

Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

Each zero in the character string represents a character position
into which the numeral zero will be inserted, The 0 is counted in
the size of the item.

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. The comma insertion character cannot be the
last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.

In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the
item. The period insertion character cannot be the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

These symbols are used as editing sign control symbols. When
used, each represents the character position into which the
editing sign control symbol will be placed. The symbols are

Data Description Entry -- Details of Clauses 109

Order No. GC28-6394-2, Page Revised #/15/71 by TNL GN-0436
PICTURE Clause

mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

* Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a zero. Each *
is counted in the size of the item.

$ The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol § or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division.
The currency symbol is counted in the size of the item.

. Table 7 shows the order of precedence of the symbols used in the
PICTURE clause.

110 Part III -- Data Division

PICTURE Clause

order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

7.

e Table

Precedence of Symbols Used in the PICTURE Clause

T T T T T T T e T T T e T T T e T e T T T T T T T e T T T —— -
| | [T A | [B -] BT 1> [- | | | 1> | oo [0)]
i b e o s e e e e —] 1 is] -
R [PP S T S S N o N o L ELXL_ L 8 5F B&%,
e e e e e e e e e i e e e e e o e e e e e e e e i o e e e e e — .
=50 | SN X | | 1 [] [1> | | | [l | Y [SRAE S
OO e e o e e o e e e e e e e e e e e e e e e e e e e o | - ~0 ™ Oc
(S35 S S SRS SRS SO IS U S SRS SN SO NS AV SO I8 SV IO I 00 5. 0 o 6 B S T Y
—— — — s — — — — — —— — — — — — — — — — oy e w—— 3
A8 o 0 15 8 S IS ISR O S VU UM PRI IS NS USSR IR 5.0 . O U ISR AN SV B Bl ol
—— — — e asm— — — — — — e e — — — — — — — — — — —] -
o X X [B I i i | | | I > | X1 | M1; I Q- Q
lllll e o] 0 [)
o | i | | | I | | | | l | | | I | 1 - =) - UM
[} | 1 | 1 | | | I | | | | i | I [1 o} -~ + 2
O LM |5 | M| | | X b) | | | | [] I | | 1 Q o 0P O
e e e e e e e e e e e e e e e e e e e — e e — e — e —] [= 3] -0 o
" | I | | I | | { | | 1 | i | | | | Sy + * £ 09
ni 1 i | | [| | | | ! | | | | | | | %) Q [ORFT
= (SIS A B | I =X | i | [B | | | = S -0 P
Q e e e e e e e e e e e e e e e e e o e e e — e e 4} o~ ST
@ o | I |] | | | 1 1] | | | | | | 1 <] vno
oo+ L I I I | | | | | [] | | | | | | | + Ut~ nosg
WM | - | | | | I | | 1 | I | | [I | | o~ MW
Z U e YW o} [eJX=TX(]
= —— | | | | | | | ! 1 | | | I | 1 | 0 Pm m +a
HZ |+ Mo b M | | | [| 1 > | [I I 0 R aklsl
L O | =~ 1 | [| [I 1 | [[I | | | { | (] Dy >0
QH e — o o e o = " 0nP 0~
=y et I | | I I] | i | | | | | 1 { i [-] UL 0
| o # P | Moo 1>] | | | 1 | | i | NN} o m nm
B | S~ 1 1 | | | | | 1 | | | | | 1 i | + +a O MO
U)o e o e e e e e o e e e o e 0 + RS
Z)~ 1 | i | | [| I | | | | { | | |] + Jdo 00
| LR - - | L I MoK i | | | i IR Q RN MOMN)]
S~ | | | | | 1 i I | | | | | I i 1 - 0 0 Qo >
||||| e e e e e e o e o e e e e e e e o | ~ w M [=} ot
" | i I | | i I | | | | ! i | | | | + 0 P EM ML 0
7] | | | | | i | | | | | | | |] ~ -~ D g 9
O | M M | X | X Moo L B B | | > | [I] | -0 HeAW O
Pttt — e e e e e e e e e e e e e —], [ml oL QoOoHd O
——— | [| | | | | | i | | | | = o) gHQ P M
w |l eEm | | | | I | I l I i | I (i =R] ANS VA @
g1 0N i i | | 1 I 1 1 | I | | | 1 m_ - o <4 NNuw
YO | =~ | | | | 1 I i | | | | | I I | * nP oQ®ne o >
Nm1II%|+|%|+|+|+|+|+|+|+|+|+l%|+|+|+|+|+|+l+|1Y_ oOP> ©Q
= ~A— | i | 1 | i | | | { | | | | i w ™ [V} - O0S M —
B+ | | i | |] | | | | | | | | I o] P WHQOUByY o
LW | - 1 | i | i | [l | | | | | 1 T + tTooR =
Q P — e e e e e e e e e e e e e e O - o ~ O Qi P
H = |~ | 1 | | i | | [I | | | | gl ot LM 1o o 3
5O |+ I -] | [-] | XKoo | [T] [T 5] oo SHmo R &
[o et 1 | | | ! | | | | 1 1 | [|] Y| - 0.0 LI ie]
D B e o e e e o s e e e e e e o e e e e e o] u I NH 4B g Wm0
(o4 PO I | X)X [1 ™ | > 15 X | | i] 1 + Dy te S0 M
ZHpFp——t——t—et——t—at—t e —t— =t =t = — = e e — = — 4 D -7 g - 20E ©
0 s XM XM Rl Rl Bl R R RN RN | (R R [U m + 00
Z bt e e e e e e e o e e e e e e o e e e e e e e e e e e e e e e e ()) [Y] ONOOD P
(] o Moo R - I [B B - Mo X I > 1> m_ nm ™ N w o n e o}
b e o e e e e e e e e e e e e e e e o 1 < U —AdP W g
R ERER ERERLEEERE R R R RN H a0 o2unuw P
b e s e o e e e e e e e e e e e e e wo- - T [LePOC O
| i | | | | | | | | |] | | i | o} ~ [SeY, g =R 0
| i 1 | I @ | | | | 1 | | | I - o Hm® R =
| { | | =1 | | | I | | | | I | m noao 3]
| t 1 [I | I T I B | i | | | | g g 8 - O Qi ed &
1 | i | I W 1w | | I W |- 1 X] | | o | Dy oo ocug o A
1 | | Ml MO W [T I S T AV R T S I B, N - O [0 BT~ I« VI - PO neg «Hg oD o
Mol «1 « 1 O) O) U o101o0)10l 0 /|0 i | | | | + o 4 "G o He O
1 1 i | [| | | I 1 | | | |] [} O M +4 —ea L
| | i + el O NN |+ |+ 1 | & | | | | | S 08 M SAd oy
| |] | | | | | | | 1 | | | | 1> + g nu 4] LR 3}
po o e e e e i e s e e e e e e e e e e e e e e et e e e e e e ke i s e e e e e e - () Q M) 0~ O M e
1~ W w [VIS 208 Q L]
4} 1 Q 00 L0 —HQE @ &
Z 18 1 - a4 e8P A
H | v AHD D =R
| -] = | [=] o] c®no.-H -
< O v O ()] oW &M " D00 M
.9 H ow Z H m 4]] Q o L < T
[=) [-] H (3] = |+ + =] g U A
2 YOR 8 g 8 3 g 3 ol 86 &9 835838 o
|
= 4 9] = Q 9] m jas) m (] [O=] =} WOEEDP [}
D o] Z ™ = = M [| 1 —E MO . | 4o 0
0 Z H w B H w®w o w P ni >2 gUowWwown ©
10] L g+40 0OVl M
/. | I | Q0 KON Z28~4T.A M
Ny — — — e —— e —— — — — ———— ——————— — —— e — —— —— —— T —— ke S — — —————p— ——— e e ek — ——— — — — — —————— -]

-
&
N

111

Data Description Entry -- Details of Clauses

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

The Five Categories of Data

The following is a detailed description of the allowable combinations
of characters for each category of data.

ALPHABETIC ITEMS: An alphabetic item is one whose PICTURE character
string contains only the symbol A. 1Its contents, when represented in
Standard Data Format, must be any combination of the 26 letters of the
Roman alphabet and the space from the COBOL character set. Each
alphabetic character is stored in a separate byte.

ALPHANUMERIC ITEMS: An alphanumeric item is one whose PICTURE character
string is restricted to combinations of the symbols A, X, and 9. The
item is treated as if the character string contained all X's. 1Its
contents, when represented in Standard Data Format, are allowable
characters from the EBCDIC set.

A PICTURE character string which contains all A'S or all 9's does not
define an alphanumeric item.

NUMERIC ITEMS: There are two types of numeric items: fixed-point items
and floating-point items.

Fixed-Point Numeric Items: There are three types of fixed-point numeric

i

items: external decimal, binary,
discussion of the USAGE clause fo

See the
g each.

The PICTURE of a fixed-point numeric item may contain a valid
combination of the following symbols:

9 v P S

Examples of fixed-point numeric items:

PICTURE Valid Range of Values
93939 0 through 9999

S99 -99 through +99

5999Vv9 -999.9 through +999.9
PPP999 0 through .000999

S999PPP -1000 through -999000 and

+1000 through +999000 or zero
The maximum size of a fixed-point numeric item is 18 digits.

The contents of a fixed-point numeric item, when represented in
Standard Data Format, must be a combination of the Arabic numerals 0
through 9; the item may contain an operational sign. If the PICTURE
contains an S, the contents of the item are treated as positive or
negative values, depending on the operational sign; if the PICTURE does
not contain an S, the contents of the item are treated as absolute
values.

Note: ASCII considerations for the PICTURE clause are given in
Appendix E.

112 Part III -- Data Division

order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

Qi

.

L

L

b

i

s

3%

<J§i A
e

Data Description Entry -- Details of Clauses 113

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

ALPHANUMERIC EDITED ITEMS: An alphanumeric edited item is one whose
PICTURE character string is restricted to certain combinations of the
following symbols:

a X 9 B 0
~ To gualify as an alphanumeric edited item, one of the following
conditions must be true:

1. The character string must contain at least one B and at least one
X ’

2. The character string must contain at least one 0 and at least one
X,

3. The character string must contain at least one 0 (zero) and at

least one A. 1Its contents, when represented in Standard Data
- Format, are allowable characters chosen from the EBCDIC set.

'USAGE IS DISPIAY is used in conjunction with alphanumeric edited
items. '

If a VALUE clause is specified for an alphanumeric edited item, the
literal is treated exactly as specified; no editing is performed.

Editing Rules: Alphanumeric edited items are subject to only one type
of editing: simple insertion using the symbols 0 and B.

Examples of alphanumeric edited items:

PICTURE Value of Data Edited Result

. 000X(12) ALPHANUMERO1 000ALPHANUMERO1
BBBX(12) ALPHANUMERO1 ALPHANUMEROX
000A(12) - 'ALPHABETIC 000ALPHABETIC
X(5)BX(D) ALPHANUMERIC ALPHA NUMERIC

NUMERIC EDITED ITEMS: A numeric edited item is one whose PICTURE
character string is restricted to certain combinations of the symbols:

B P v Z 0 9 M . * + - CR DB S
The allowable combinations are determined from the order of
precedence of symbols and editing rules.

The maximum number of digit positions that may be represented in the
character string is 18. ‘

The contents of the character positions that represent a digit, in
Standard Data Format, must be one of the numerals.

USAGE IS DISPLAY is used in conjunction with numeric edited items.

If a VALUE clause is specified for a numeric edited item, the literal
is treated exactly as specified; no editing is performed.

The maximum length of a numeric edited item is 127 characters.

Editing Rules: All types of editing are valid for numeric edited items.

114 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

Types of Editing

There are two general methods of performing editing in the PICTURE
clause: by insertion or by suppression and replacement.

1. simple insertion
2. special insertion
3. fixed insertion

4, floating insertion

There are two types of suppression and replacement editing:

1. =zero suppression and replacement with spaces
2. zero suppression and replacement with asterisks

Inserxtion Editing

Simple insertion editing is performed using the following insertion
characters:

. (comma) B (space) 0 (zero)

The insertion characters are counted in the size of the item and
represent the position in the item into which the character will be
inserted. :

Examples of simple insertion editing:

PICTURE Value of Data Edited Result
99,999 ! 12345 12, 345
9,999,000 12345 2,345,000
9989998000 1234 01234 000
99B999B000 12345 12 345 000
99BBB999 123456 23 456

Special insertion editing is performed using the period (.) as the
insertion character. The result of special insertion editing is. the
appearance of the insertion character in the item in the same position
as shown in the character string.

In addition to being an insertion character, the period represents a.
decimal point for alignment purposes. The insertion character used for
the actual decimal point is counted in the size of the item.

The use of both the assumed decimal point, represented by the symbol
Vv, and the actual decimal point, represented by the period insertion
character, in one PICTURE character string is not allowed.

Examples of special insertion editing:

PICTURE Value of Data Edited Result
999,99 1.234 001. 23
999,99 12,34 012, 34
999.99 123.45 123 45
999.99 1234. 5 234 50

Data Description Entry -- Details of Clauses 115

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

Fixed insertion editing is performed by using the following insertion
characters:

currency symbol $ N~
-editing sign control symbols + - CR DB

Only one currency symbol and only one of the editing sign control
symbols can be used in a given PICTURE character string.

Fixed insertion editing results in the insertion character occupying
the same character position in the edited item as it occupied in the
PICTURE character string.

$ The currency symbol must be the leftmost character position to
be counted in the size of the item, unless it is preceded by
either a + or a - symbol.

+ or - When either symbol is used, it must represent the leftmost or
rightmost character position to be counted in the size of the
item. '

CR or DB When either symbol is used, it represents two character
positions in determining the size of the item and must
represent the rightmost character positions that are counted
in the size of the item.

Editing sign control symbols produce results depending upon the value
of the data item as shown in Table 8.

Table 8. Editing Sign Control Symbols and their Results

r T \
| { Result | —
| e —mmmmen]
| Editing Symbol in PICTURE | Data Item | Data Item |
| Character String | Positive or Zero | Negative i
e e oo e -]
+	+	-
- I space	-	
CR	2 spaces	CR
i DB | 2 spaces | DB |
L U U J
Examples of fixed insertion editing:
PICTURE Value of Data Edited Result
999.99+ +6555.556 555,55+
+9999,99 -5555.555 -5555. 55
9999.99~ +1234.56 1234.56
$999.99 -123.45 $123.45
-$999.99 -123.456 -$123.45
$9999.99CR +123.45 $0123, 45

$9999.99DB -123.45 $0123. 45DB

Floating insertion editing is indicated in a PICTURE character string
by using a string of at least two of the allowable insertion characters
$ + or - to represent the leftmost numeric character positions into
which the insertion characters can be floated.

The currency symbol (%) -and the editing sign symbols (+ or -) are
mutually exclusive as floating insertion characters in a given PICTURE Loy
character string. N’

116 Part III ~-- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

Any of the simple insertion characters {, B 0) embedded in the string
of floating insertion characters, or to the immediate right of this
string, are part of the floating string.

In a PICTURE character string, there are only two ways of
representing floating insertion editing:

1. Any or all leading numeric character positions to the left of the
decimal point are represented by the insertion character.

2. All of the numeric character positions in the PICTURE character
string are represented by the insertion character.

The result of floating insertion editing depends upon the
representation in the PICTURE character string:

1. If the insertion characters are only to the left of the decimal
point, a single insertion character is placed into the character
position immediately preceding the first nonzero digit in the data
represented by the insertion symbol string or the decimal point,
whichever is farther to the left of the PICTURE character string.

2. If all numeric character positions in the PICTURE character string
are represented by the insertion character, the result depends upon
the value of the data. If the value is zero,; the entire data item
will contain spaces. If the value is not zero, the result is the
same as when the insertion characters are only to the left of the
decimal point. :

To avoid truncation when using floating insertion editing, the
programmer must specify the minimum size of the PICTURE character string
for the receiving data item to be:

1. The number of characters in the sending item, plus

2. The number of insertion characters (other than floating insertion
characters) being edited into the receiving data item, plus

3. One character for the floating insertion character.

Examples of floating insertion editing:

PICTURE Value of Data Edited Result
$555.99 .123 .12
$559.99 .12 $0.12

$¢555,999.99 -1234. 56 $1, 234, 56
+,+++,999,99 -123456.789 -123, 456. 78
$5, 555, 558.99CR -1234567 $1,234,567. 00CR

$5,5$5%,55%-99DB +1234567 $1, 234, 567.00
O R S e L 0000. 00

Zero Suppression and Replacement Editing

Zero suppression and replacement editing means the suppression of
leading zeros in numeric character positions and is indicated by the use
of the alphabetic character Z or the character * in the PICTURE
character string. If Z is used, the replacement character will be the
space; if * is used, the replacement character will be *.

The symbols + - * Z and $ are mutually exclusive as floating
replacement characters in a given PICTURE character string.

Data Description Entry -- Details of Clauses 117

Order No. GC28-6394-2, Page Revised 9/15/71 by TNL GN-0436
PICTURE Clause

Each suppression symbol is counted in determining the size of an
item. TN

Zero suppression and replacement editing is indicated in a PICTURE
character string by using a string of one or more of either allowable
symbol to represént leading numeric character positions, which are to be
replaced when the associated character position in the data contains a
zero. Any of the simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.
Simple insertion or fixed insertion editing characters to the left of
the string are not included.

In a PICTURE character string, there are only two ways of
representing zero suppression:

1. Any or all of the leading numeric character positions to the left
of the decimal point are represented by suppression symbols.

2. All of the numeric character positions in the PICTURE character
string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which appears in a character
position corresponding to a suppression symbol in the string is replaced
by the replacement character. Suppression terminates at the first
nonzero digit in the data or at the decimal point, whichever is
encountered first.

If all numexic character positions in the PICTURE character string
are represented by suppression symbols, and the value of the data is not
zero, the result is the same as if the suppression characters were only
to the left of the decimal point.

If the value of the data is zero, the entire data item will be spaces { J
if the suppression symbol is Z, or it will be asterisks (except for the)
actual decimal point) if the suppression symbol is #*.

If the value of the data is zero and the asterisk is used as the
suppression symbol, zero suppression editing overrides the function of
the BLANK WHEN ZERO clause, if specified.

Examples of Zero Suppression and Replacement Editing:

PICTURE Value of Data Edited Result
222%. %22 0000. 00

kkkk, kk 0000.00 *kk, kk
222%Z.99 0000, 00 .00
*%%¥, 99 0000.00 *xk%, 00
%799.99 00000. 00 00.00

Z,2%2%. 22+ +123.456 123, 45+

* okkEk, k¥t -123.45 *%*123, 45—

4 kkk, kkh, k¥4 +12345678.9 *2,345,678, 90+
$2,2%%, 22%. 2ZCR +12345.67 $ 12,345.67

$B*, ¥** *k%¥, *#*BBDB -12345.67 § **%12,345,67 DB
Program Product Information -- Version 3

118 Part III -- Data Division

SIGN Clause

Order No. GC28-6334-2, Page Revised 4/15/71 by TNL GN-0436

.

S

e
.

118.1

Data Description Entry -- Details of Clauses

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SYNCHRONIZED Clause

SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on one of the proper boundaries in core storage.

{SYNCHRONIZED } [LEF!]

SYNC

RIGHT

[—— . o o e o o

The SYNCHRONIZED clause is used to ensure efficiency when performing
arithmetic operations on an item.

The SYNCHRONIZED clause ma

If either the LEFT or the RIGHT option is specified, it is treated as
comments.

The length of an elementary item is not affected by the SYNCHRONIZED
clause,

When the SYNCHRONIZED clause is specified for an item within the
scope of an OCCURS clause, each occurrence of the item is synchronized.

When the item is aligned, the character positions between the last
item assigned and the current itém are known as "slack bytes."™ These
unused character positions are included in the size of any group to
which the elementary item preceding the synchronized elementary item
belongs.

The proper boundary used to align the item to be synchronized depends
on the format of the item as defined by the USAGE clause.

When the SYNCHRONIZED clause is specified, the following actions are
taken:
For a COMPUTATIONAL item:

1. If its PICTURE is in the range of S9 through S9(4), the item is
aligned on a halfword (even) boundary.

2. If its PICTURE is in the range of s9(5) through S9(18), the item is
aligned on a fullword (multiple of 4) boundary.

118.2 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SYNCHRONIZED Clause

For a DISPLAY item, the SYNCHRONIZED clause is

treated as comments.

Note: 1In the discussion that follows, the term "computational® refers
to COMPUTATIONAL

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

Data Description Entry -- Details of Clauses 118.3

Order No, GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Slack Bytes

Whgn the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a

REDEFINES clause, the computational item must not require the addition
of slack bytes.

When SYNCHRONIZED is not specified for binary or internal
floating-point items, no space is reserved for slack bytes. However,
when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the
correct boundary necessary for computation.

In the File Section, the compiler assumes that all level-01 records
containing SYNCHRONIZED items are aligned on a doubleword boundary in
the buffer. The user must provide the necessary inter-record slack
bytes to ensure alignment.

In the Working-Storage Section, the compiler will align all level-01
entries on a doubleword boundary.

Slack Bytes

There are two types of slack bytes: intra-record slack bytes and
inter-record slack bytes.

Intra-record slack bytes are unused character positions preceding
each synchronized item in. the record.

Inter-record slack bytes are unused character pdsitions added between
blocked logical records.

INTRA-RECORD SLACK BYTES: For an output file, or in the Working-Storage
Section, the compiler inserts intra-record slack bytes to ensure that
all SYNCHRONIZED items are on their proper boundaries. For an input
file, or in the Linkage Section, the compiler expects intra-record slack
bytes to be present when necessary to assure the proper alignment of a
SYNCHRONIZED item.

Because it is important for the user to know the length of the
records in a file, the algorithm the compiler uses to determine whether
slack bytes are required and, if they are required, the number of slack
bytes to add, is as follows:

e« The total number of bytes occupied by all elementary data items
preceding the computational item are added together, including
any slack bytes previously added.

e This sum is divided by m, where:

I

m 2 for COMPUTATIONAL items of four-digit length or less

Il

m

4 for COMPUTATIONAL items of five-digit length or more

Data Description Entry -- Details of Clauses 119

Order No. GC28-6394~2, Page Revised 4/15/71 by TNL GN-0436
Slack Bytes

¢ If the remainder (r) of this division is equal to zero, no
slack bytes are required. If the remainder is not equal to : \
zero, the number of slack bytes that must be added is equal to . , \ j
m - r. -

These slack bytes are added to each record immediately following the
elementary data item preceding the computational item. They are defined
as if they were an item with a level number equal to that of the
elementary item that immediately precedes the SYNCHRONIZED item, and are
included in the size of the group which contains them.

For example:

01 FIELD-A.

02 FIELD-B PICTURE X(5)«
02 FIELD-C.
03 FIELD-D PICTURE XX,
{03 sSlack-Bytes PICTURE X. Inserted by compilerl
03 FIELD-E PICTURE S9(6) COMP SYNC.
01 FIELD-L.
02 FIELD-M PICTURE X(5).
02 FIELD-N PICTURE XX. :
[02 Slack-Bytes PICTURE X. 1Inserted by compiler]
02 FIELD-O.
03 FIELD-P PICTURE S9(6) COMP SYNC.

Slack bytes may also be added by the compller when a group item is
defined with an OCCURS clause and contain w1t 1n a SYN HRONIZED data
item with USAGE defined as COMPUTATIONAL, !
. To determine whether sl
owing action is taken:

added, the

e The compiler calculates the size of the group, including all the \ }
necessary intra-record slack bytes. R

e This sum is divided by the largest m required by any elementary
item within the group.

s If r is equal to zero, no slack bytes are required. If r is not
equal to zero, m - r slack bytes must be added.

The slack bytes are inserted at the end of each occurrence of the
group item containing the OCCURS clause. For example, if a record is
defined as follows: . :

01 WORK-RECORD.

02 WORK-CODE PICTURE X.
02 COMP-TABLE OCCURS 10 TIMES.
03 COMP-TYPE PICTURE X.
[03 TIa-Slack-Bytes PICTURE XX. Inserted by compiler]
03 COMP-PAY PICTURE S9(4)V99 COMP SYNC.
03 COMP-HRS PICTURE S9(3) COMP SYNC.
03 COMP-NAME PICTURE X(5).

120 Part III -- Data Division

Slack Bytes

The record will appear in storage as shown in Figure 8

| |
e First Occurrence of COMP-TABLE ——————]
53} l
[eXe) |
T | ! . i | |
£ [A | i [| i
g§l Stack COMP- ’ l | ' | [
;uh‘ﬂwﬂ | COMP-PAY HOURS | ~ COMP-NAME | | | |
b | ! [| | |
] 1 1 | i | Ji IS N I | T I i | L1
H H H H H H
F F
D D D D
D = doubleword boundary
F = fullword boundary
H = halfword boundary

Figure 8. Insertion of Intra-occurrence Slack Bytes

In order to align COMP-PAY and COMP-HRS upon their proper boundaries,
the compiler has added two intra-occurrence slack bytes (shown above as
| Ta-slack-Bytes).

However, without further adjustment, the second occurrence of
COMP-TABLE would now begin one byte before a doubleword boundary, and
the alignment of COMP-PAY and COMP-HRS would not be valid for any
occurrence of the table after the first. Therefore, the compiler must
add inter-occurrence slack bytes at the end of the group, as though the
record had been written:

01 WORK-RECORD.
02 WORK-CODE PICTURE X.
02 COMP-TABLE OCCURS 10 TIMES.
03 COMP-TYPE PICTURE X.
l (03 1Ta-sSlack-Bytes PICTURE XX. Inserted by compiler]
03 COMP-PAY PICTURE S9(4)V99 COMP SYNC,.
03 COMP-HRS PICTURE S9(3) COMP SYNC.
03 COMP-NAME PICTURE X(5),
| [03 Te-Slack-Bytes PICTURE XX. Inserted by compiler]
so that the second (and each succeeding) occurrence of COMP-TABLE begins
one byte beyond a doubleword boundary. The storage layout for the first
occurrences of COMP-TABLE will now appear as shown in Figure 9.
\'_//t

Data Description Entry -- Details of Clauses 121

Slack Bytes

D = doubleword boundary
F = fullword boundary
H = halfword boundary

| |
e First Occurrence of COMP~TABLE o Second Occurrence of COMP-TABLE——’!
, | l |
gal | i | | by | | | | l
o]
238 | 1A i | i 1 IE : | | | i | |
iZ 4 slack Fcom- | Slack || | | i f
O Z| Bytes | cOMP-PAY | HOURS COMP-NAME | Bytes | | ! | i ! |
b | | ! ¢l i 1 i | i
l i TS O N [S N B 1 ! i i I i i i | L | L] |
H ; H H H H { H H H
F F F
D D D D

Figure 9. Insertion of Inter-occurrence Slack Bytes

Each succeeding occurrence within the table will now begin at the same
relative position to word boundaries as the first.

here SYNCHRONIZED data items defined as COMPUTATIONAL,

. follow an entry containing an OCCURS
option, slack bytes are added on the basis
of the field occurring the maximum number of times. If the length of
this field is not divisible by the m required for the computational
data, only certain values of the data-name that is the object of the
DEPENDING ON option will give proper alignment of the computational
fields. These values are those for which the length of the field times
the number of occurrences plus the slack bytes that have been calculated
based on the maximum number of occurrences is divisible by m.

For example:

01 FIELD-A.

02 FIELD-B PICTURE 99.

02 FIELD-C PICTURE X OCCURS 20 TO 99 TIMES
DEPENDING ON FIELD-B.

[02 Sslack-Byte PICTURE X. Inserted by compilerl

02 FIELD-D PICTURE S99 COMP SYNC.

In this example, when references to FIELD-D are required, FIELD-B is
restricted to odd values only.

01 FIELD-A.

02 FIELD-B PICTURE 999.

02 FIELD-C PICTURE XX OCCURS 20 TO 99 TIMES
DEPENDING ON FIELD-B.

[02 Slack-Byte PICTURE X. Inserted by compiler]

02 FIELD-D PICTURE S99 COMP SYNC.

In this example all values of FIELD-B give proper references to
FIELD-D.

122 Part III -- Data Division

Slack Bytes

INTER-RECORD SLACK BYTES: If the file contains blocked logical records
that are to be processed in a buffer, and any of the records contain
entries defined as COMPUTATIONAL, T :

the user must add any inter-recor
alignment.

vtes nee ed for proper

The lengths of all the elementary data items in the record,
all intra-record slack bytes, are added. For mode V records, it is
necessary to add four bytes for the count field. The total is then
divided by the highest value of m for any one of the elementary items in
the record.

including

If r (the remainder) is equal to zero, no inter-record slack bytes
are required. If r is not equal to zero, m - r slack bytes are
required. These slack bytes may be specified by writing a level-02
FILLER at the end of the record.

Example: The following example shows the method of calculating both
intra-record and inter-record slack bytes. Consider the following
record description: .

01 COMP-RECORD,

02 A-1 PICTURE X(5).

02 A-2 PICTURE X(3}).

02 A-3 PICTURE X(3).

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

02 B-2 PICTURE S99999 USAGE COMP SYNCHRONI ZED.
02 B-3 PICTURE 59999 USAGE COMP SYNCHRONIZED.

The number of bytes in A-1, A-2,
COMPUTATIONAL item and,

added before B-1.

therefore,
With this byte added, the number of bytes preceding

and A-3 total 11. B-1 is a 4-digit
one intra-record slack byte must be

B-2 total 14. Since B-2 is a COMPUTATIONAL item of 5 digits in length,
two intra-record slack bytes must be added before it. No slack bytes
are needed before B-3.

The revised record description entry now appears as:

01 COMP-RECORD.

02 A-1 PICTURE X(5).

02 Aa-2 PICTURE X(3).

02 A-3 PICTURE X(3).

[02 Slack-Byte-1 PICTURE X. Inserted by compiler]

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.
[02 Slack-Byte-2 PICTURE XX. Inserted by compiler]

02 B-2 PICTURE 599999 USAGE COMP SYNCHRONIZED.
02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.

There are a total of 22 bytes in COMP-RECORD,
given in the preceding discussion,

but from the rules
it appears that m = 4 and ¥ = 2.

Therefore, to attain proper alignment for blocked records, the user
add two inter-record slack bytes at the end of the record.

The final record description entry appears as:

01 COMP-RECORD.

must

02 A-1 PICTURE X(5). -

02 A-2 PICTURE X(3).

02 A-3 PICTURE X(3)«

[02 Slack-Byte-1 PICTURE X. Inserted by compiler]

02 B-1 PICTURE S9999 USAGE COMP SYNCHRONIZED.

[02 Slack-Byte-2 PICTURE XX. 1Inserted by compiler]

02 B-2 PICTURE S99999 USAGE COMP SYNCHRONIZED.

02 B-3 PICTURE S9999 USAGE COMP SYNCHRONIZED.
/ 02 FILLER PICTURE XX. [inter-record slack bytes added by
K_/’ user]

Data Description Entry -- Details of Clauses 123

Order No., GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
USAGE Clause

USAGE Clause

The USAGE clause specifies the manner in which a data item is
represented in core storage.

—————m— e ————— e _——— ———————
Format 1
DISPLAY
COMPUTATIONAL
COMP

6}

|
}__-
|

I

|

|

| [USAGE ISl
|

I

|

|

|

I

|

i

L o s S et e s S Mot i i it e et sk e s

The USAGE clause can be gspecified at any level of data description.
However, if the USAGE clause is written at a group level, it applies to
each elementary item in the group. The usage of an elementary item
cannot contradict the usage of a group to which an elementary item
belongs.

This clause specifies the manner in which a data item is represented
in core storage. However, the specifications for some statements in the
Procedure Division may restrict the USAGE clause of the operand referred
to.

If the USAGE clause is not specified for an elementary item, or for

any group to which the item belongs, it is assumed that the usage is
DISPLAY,

Note: - ASCII considerations for the USAGE clause are given in
Appendix E.

DISPLAY OPTION

The DISPLAY option can be explicit or implicit. It specifies that
the data item is stored in character form, one character per eight-bit
byte. This corresponds to the form in which information is represented
for initial card input or for final printed or punched output. USAGE IS
DISPLAY is valid for the following types of items:

124 Part III -- Data Division

@

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
USAGE Clause

e alphabetic
e alphanumeric
¢ alphanumeric edited

s numeric edited

s external decimal

The alphabetic, alphanumeric, alphanumeric edited, and numeric edited
items are discussed in the description of the PICTURE clause.

External Decimal Ttems: These items are sometimes referred to as zoned
decimal items. Each digit of a number is represented by a single byte.
The four high-order bits of each byte are zone bits; the four high-order
bits of the low-order byte represent the sign of the item. The four
low-order bits of each byte contain the value of the digit. When
external decimal items are used for computations, the compiler performs
the necessary conversions.

The maximum length of an external decimal item is 18 digits.

Examples of external decimal items and their internal representation
are shown in Table 8.1.

The Computational Options

;1t3m represents a value to be use
p and must be numeric. If the USAGE of any group item is
described with any of these options, it is the elementary items within
this group which have that USAGE. The group item itself cannot be used
in computations.

COMPUTATIONAL OPTION: This option is specified for binary data items.
Such items have a decimal equivalent consisting of the decimal digits 0
through 9, plus a sign.

Data Description Entry -- Details of Clauses 124.1

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
USAGE Clause

The amount of storage occupied by a binary item depends on the number
of decimal digits defined in its PICTURE clause:

Digits in PICTURE Clause Storage Occupied
1 through 4 2 bytes (halfword)
5 through 9 4 bytes (fullword) .
10 through 18 8 bytes (2 fullwords --

not necessarily
a doubleword)

The leftmost bit of the storage area is the operational Sign.

The PICTURE of a COMPUTATIONAL item may contain only 9's, the
operational sign character S, the implied decimal point V, and one or
more P's,

An example of a binary item is shown in Table 8.1.

Note: The COMPUTATIONAL option is system dependent; for this compiler
it is binary.

124.2 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
' USAGE Clause

sca

T e

Data Description Entry -- Details of Clauses 124.3

Order No. GC28-6394-2, Page Revised #/15/71 by TNL GN-0436
USAGE Clause

e Table

8.1. Internal Representation of Numeric Items (Part 1 of 2)

External Decimal

T
Item | Value |Description

+
-1234 DISPLAY
PICTURE 9999

Internal Representation#*

|21]22|23|F4|
| IR TS I I |
e’

byte

1Z1]22|2%3|D4|
Ll _1__J
N

DISPLAY
PICTURE 59999

byte

Note that, internally,
the D4, which represents
-4, is the same bit
configuration as the
EBCDIC character M.

|
+
|
|
|
|
[
|
|
|
|
|
|
|
|
|
|

Binary

1
1

-1234 |COMPUTATIONAL [1111]1011]0010{1110]
| PICTURE S9999 L L tooa=dag)
|
|
|

Note that, intermnally,
negative binary numbers
appear in two's
complement form,

I
|
|
| S byte
|
{
]

’-—-——————-————’-—-—-——————-———————-————-———c———-—————-———————_

I
|
|
|
|
|
l
|
|
|
|
I
|
|
|
|
I
|
|
|
|
|
|
|
I
I
|
i
|
I
|
|
|
k
|
I
|
|
|
|
|
|
|
k
I
|
|
|
|
|
|
|
|
I
|
|
I

-

*Codes used in this column are as follows:

7 = zone, eguivalent to hexadecimal F, bit configuration 1111

Hexadecimal numbers and their equivalent meanings are:
F = nonprinting plus sign (treated as an absolute value)
c internal equivalent of plus sign, bit configuration 1100
D internal equivalent of minus sign, bit configuration 1101

W

&3]
I}

sign position of a numeric field; internally,
1 in this position means the number is negative
0 in this position means the number is positive

o
0\

a blank

e e St s e S — g — o —— i T — — — —— — et s (i e i — e St e — — oy S i W S s W — i — — . S . S, o s W . e . et sttt s

124. 4

Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
USAGE Clause

|

|

|
- i
| #*Codes used in this column are as follows: |
i Z = zone, equivalent to hexadecimal F, bit configuration 1111 |
| |
| Hexadecimal numbers and their equivalent meanings are: |
| F = nonprinting plus sign (treated as an absolute value) |
i C = intermnal equivalent of plus sign, bit configuration 1100 |
| D = internal equivalent of minus sign, bit configuration 1101 |
| |
| S = sign position of a numeric field; internally, |
| 1 in this position means the number is negative |
| 0 in this position means the number is positive |
| |
| b = a blank |
L 1

Data Description Entry -- Details of Clauses 124.5

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
VALUE Clause

VALUE Clause

The VALUE clause is used to define the initial value of a
Working-Storage item or the value associated with a condition-name.

There are two formats of the VALUE clause:

r 1
| Format 1 |
L

- it 1
| |
| VALUE IS literal]
| |
L J
g h]
| Format 2 |
- ———— - --- i
i |
| (VALUE Is l
| literal-1 [THRU literal-2] |
| (VALUES ARE ' |
I ' |
| {literal-3 [THRU literal-ull... |
| |
L ——— - e e e e e e e e e o e e e 4

The VALUE clause must not be stated for any item whose size, explicit
or implicit, is wvariable.

A figurative constant may be substituted wherever a literal is
specified.

Rules governing the use of the VALUE clause differ with the
particular section of the Data Division in which it is specified.

In the File Section

2. In the Working-Storage Section, the VALUE clause must be used in
condition-name entries, and it may also be used to specify the
initial value of any data item. It causes the item to assume the
specified value at the start of execution of the object program.
If the VALUE clause is not used in an item's description, the
initial value is unpredictable.

3. In the Report Section, the VALUE clause causes the report data item
to assume the specified value each time its report group is
presented. This clause may be used only at an elementary level in
the Report Section. The Report Section is discussed in detail in
the "Report Writer" chapter.

The VALUE clause must not be specified in a data description entry
that contains an OCCURS clause or in an entry that is subordinate to an
entry containing an OCCURS clause. This rule does not apply to
condition-name entries.

Within a given record description, the VALUE clause must not be used

in a data description entry that is subsequent to a data description
entry which contains an OCCURS clause with a DEPENDING On phrase.

Data Description Entry -- Details of Clauses 125

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
VALUE Clause

The VALUE clause must not be specified in a data description entry
which contains a REDEFINES clause or in an entry which is subordinate to
an entry containing a REDEFINES clause. This rule does not apply to
condition-name entries.

If the VALUE clause is used in an entry at the group level, the
literal must be a figurative constant or a nonnumeric literal, and the
group area is initialized without consideration for the USAGE of the
individual elementary or group items contained within this group. The
VALUE clause then cannot be specified at subordinate levels within this
group.

The VALUE clause cannot be specified for a group containing items
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other
than USAGE IS DISPLAY).

The following rules apply:

numeric literals. If the literal defines the value of a
Working-Storage item, the literal is aligned according to the rules
for numeric moves, except that the literal must not have a value
that would require truncation of nonzero digits.

2. If the item is alphabetic or alphanumeric, all literals in the
VALUE clause must be nonnumeric literals. The literal is aligned
according to the alignment rules (see "JUSTIFIED Clause"), except
that the number of characters in the literal must not exceed the
size of the item.

3. All numeric literals in a VALUE clause of an item must have a value
that is within the range of values indicated by the PICTURE clause
for that item. For example, for PICTURE 99PPP, the literal must be
within the range 1000 through 99000 or zero. For PICTURE PPP29,
the literal must be within the range .00000 through .00099.

4, The function of the editing characters in a PICTURE clause is
ignored in determining the initial appearance of the item
described. However, editing characters are included in determining
the size of the item.

126 Part III -- Data Division

-

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Relation Condition

Table 12. Permissible Comparisons

|Numeric Literal (NL)

| | | | I
S Feie et et Somet et St St S —-
NN|NN|NN|NN |[NN|NN |NU |NU |NU

1 1 1
a]

t
|External Decimal (ED)

‘ T T=~7T T T-7T T T T ———T———
| Second Operand|GR|AL|AN|ANE|NE|FC#*|ZR |ED |BI IN |IDI|
|First Operand [T | | |NNL|NL | | |
X [1 1 4 i 4
r T T L) T T LP -_+_ —_"
| Group (GR) | NN | NN| NN | NN |NN|NN INN |NN | [I
t ‘ t-—4-—+-—4 e —— S |
|Alphabetic (AL) | N|NN|NN|NN |NN|NN |NN |NN | |]
i 4 to—t-—— S —
| Alphanumeric (AN) [N:NN|NN|NN |NN|NN [NN [NN | R
b -—-- St T St St st S .
|Alphanumer1c Edited (ANE) | N|NN|NN|NN [NN|NN | NN |NN | i
b - t e .
| Numeric Edited (NE) , i N;NN|NN|NN |NN|NN |NN |NN | | I
pommm e -- e e el seteat et S e |
|Figurative Constant (FO)* ¢ | NN|NN|NN|NN |NNj i | NN | |
| Nonnumeric Literal (NNL) | T N R | | | | |
------ -~ S et petes Ay e S S O o
|Fig. Constant ZERO (ZR) § |NN{NN|NN|NN |NN| | |NU |NU 101
| |
H :
| |
4
]
I
(]

-—4-—1t + ———f-—{
I
] }

5 t
{Binary (BI) i |NU |NU |NU
1 i

- e -1
I
e
I
————— !
|
————— 3
|
~~~~~ i
|
T L] T T T T T T T T T T T__-+’—_{
|Index Name (IN) [ T I | |]T0t | IO |10 | I | 1I0 |1V |
—mmm e B I S B e A e S Sepwiat
|Index Data Item (IDI) | [ O I | | | I 1 1 |IV |IV |
1 ] 1 i L L L i i L L i L L
| *FC includes all Figurative Constants except ZERO.

NN

L !
- - - - Y - I
{1valid only if the numeric item is an integer. |
| |
| comparison as described for nonnumeric operands

| NU = comparison as described for numeric operands |
| I0 = comparison as described for two index-names

| |
L

IV = comparison as described for index data items

Conditions 145



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Sign/Switch-Status Conditions

Sign Condition

The sign condition determines whether or not the algebraic value of a
numeric operand (i.e., an item described as numeric) is less than,
greater than, or equal to zero.

e e i e e e e e e e e e o o e i o S S i e —_——— [ —_————— e e

Format

- {identifier POSITIVE
IS [NOT] {NEGATIVE

arithmetic-expression ZERO

r--———-—-"-._1
L e g Sy )

An operand is positive if its value is greater than zero, negative if
its value is less than zero, and zero if its value is equal to zero. An
unsigned field is positive or zero.

Switch-Status Condition

A switch-status condition determines the on or off status of a device
switch.

Format

condition-name

[ — s g o

The SPECIAL-NAMES paragraph of the Environment Division associates an
ON or OFF value (condition-name) with a switch (function-name). The
switch-status condition tests the value associated with the switch. The
result of the test is true if the switch is set to the position
corresponding to condition-name.

COMPOUND CONDITIONS

Two or more simple conditions can be combined to form a compound
condition.  Each simple condition is separated from the next by one of
the logical operators AND or OR.

The logical operators must be preceded by a space and followed by a
space. The meaning of the logical operators is as follows:

Loqical Cperator ' Meaning
OR logical inclusive OR, i.e., either or both
o are true
AND logical conjunction, i.e., both are true
NOT logical negation

146 Part IV -- Procedure Division



Compound Conditiomns

' Figure 10 shows the relationships between the logical operators and
simple conditions A and B, where A and B have the following values:

Values for A Values for B

True True
False True
True False
False False

I T L] T
|A AND B|A OR B|NOT A|NOT (A AND B) [NOT A AND B|NOT (
L 4 1 ] AR 1l

T 1
A OR B) [NOT A COR B|
L

d

] 1 T T 1 T ) 1
| True |True |False|False | False |False | True |
o S S -4 1 -~
|False |[True |True |True | True |False [ True |
b f t-———t t 4 : {
|False |True |False|True |False |False | False |
b= $----—t — : -- -
|False |False |True |True |False | Txue True |
L L 1 .y L i d

Figure 10. Logical Operators and the Resulting Values upon Evaluation

EVALUATION RULES

Logical evaluation begins with the least inclusive pair of

parentheses and proceeds to the most inclusive.

If the order of evaluation is not specified by parentheses, the

expression is evaluated in the following order:
1. Arithmetic expressions
2. Relational-operators

3. [INOT] condition

4., AND and its surrounding conditions are evaluated first, starting at
the left of the expression and proceeding to the right.

5. OR and its surrounding conditions are then evaluated, also

proceeding from left to right.

Consider the expression:

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE

This will be evaluated as if it were parenthesized as follows:

(A IS NOT GREATER THAN B) OR (((A + B) IS EQUAL TO C) AND (D IS

POSITIVE)).

Conditions 147



Compound Conditions

The order of evaluation is as follows:

1. (A + B) is evaluated, giving some intermediate result, for example,
x.

2. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate
truth value, for example, tlil.

3. (x IS EQUAL TO C) is evaluated, giving some intermediate truth
value, for example, t2.

4, (D IS POSITIVE) is evaluated, giving some intermediate truth value,
for example, t3.

5. (t2 AND t3) is evaluated, giving some intermediate truth value, for
example, ti4.

6. (t1 OR t#) is evaluated, giving the final truth value, and the
result of the expression.

Table 13 shows permissible symbol pairs. A gsymbol pair in a compound
condition is the occurrence of two symbols appearing in sequence.

Table 13. Permissible Symbol Pairs

T L ) T 1 L] ) 1
| Second | | | | |
|First Symbol| | | | |
| Symbol } Condition OR | anD | NOT | C | ) |

1

—————— — 1---——{
| condition - p o - - | p |
b -1
| OR | P | - I - 1t | P | - |
b ¥ e et R S
| AND ! P - | - p | p | - |
t 1 1 i ]
7 T T T b
| NOT P - I - - |1 | -1
L 4 31 1 1
L T v T |
| ¢ | P I - I - p | p | - |
} ———— L 1 1 L i ]
H H T T T T 1
| ) I - | p Il » 1t - 1 - | p |
l__ Lo A i 4L i L ____'
|p indicates a permissible pairing |
|- indicates that the pairing is not permitted |
L - - _— J

IMPLIED SUBJECTS AND RELATIONAD-OPERATORS

When relation conditions are written in a consecutive sequence, any
relation condition except the first may be abbreviated by:

1. The omission of the subject of the relation condition, or

2. The omission of the subject and relational-operator of the relation
condition.

Within a sequence of relation conditions, both forms of abbreviation may
be used. The effect of using such abbreviations is as if the omitted
subject was taken from the most recently stated subject, or the omitted
relational-operator was taken from the most recently stated relational-
operator.

148 Part IV -- Procedure Division



Compound Conditions

[T - ——==-3
| Format of Implied Subject: |
b :
| !
| seesubject relational-operator object |
| !
| AND | !
| [NOT]l relational-operator object... }
| OR |
! ;
r T
|Format of Implied Subject and Relational-operator: |
F — - ——mm- :
I |
| jéi_@ ]
| « « »SUbjeCL relational-operator object [NOT] object... i
| | or |
| |
1 - —_— d

Ambiguity may result from using NOT in conjunction with
abbreviations. In this event, NOT is interpreted as a logical operator

rather than as part of a relational-operator., For example, A > B AND
NOT > C OR D is equivalent to either A > B AND NOT A > C OR A > D, or

A > B AND (NOT A > C) OR A > D.

The following are examples of implied subjects, and relational-
operators. Each example consists of two equivalent statements:

Implied Sub-iect

OR NOT > C (The subject, A, is implied.)
B OR NOT A > C (The subject, A, is explicit.)

i
W

A
A

Implied Subject and Relational Operator

A = B AND C (Ssubject and relational-operator, A = , are
implied.)
A =B AND A = C (subject and relational-operator, A = , are

explicit.)

Implied Subiject, and Subject and Relational-Operator

A > B AND NOT < C AND D (subject, A, is implied in the second condi-
tion. Subject, A, and relational-operator,
<, are implied in the third condition.)

A > B AND NOT A < C (subject, A, and relational-operator, <, are
AND A < D explicit.)

The omitted subject is taken from the most recently stated subject,
i.e., A.

The omitted relational-operator is taken from the most recently

stated relational-operateor, i.e., <.

conditions 149



IF Statement

CONDITIONAL STATEMENTS

A conditional statement specifies that the truth value of a condition
is to be determined and that the subsequent action of the object program
is dependent on this truth value. Conditional statements are listed in
"Categories of Statements,"

A conditional sentence is a conditional statement optionally preceded
by an imperative statement, terminated by a period followed by a space.

Only the IF statement is discussed in this section. Discussion of
the other conditional statements is included as part of the description
of the associated imperative statements.

IF Statement

The IF statement causes a condition to be evaluated. The subsequent
action of the object program depends upon whether the condition is true
or false.

— —_— ————— e e

Format

statement—-1 ELSE statement-2
NEXT SENTENCE i NEXT SENTENCE

IF condition

= e e et e i g e
T e s

The phrase ELSE, ' NEXT SENTENCE may be omitted if it
immediately precedes the period for the sentence.

When an IF statement is executed, the following action is taken:

1. If the co d'tlon is true, the statement immediately following the
condition i (statement-1) is executed. Control is then
passed imp to the next sentence unless GO TO procedure-name
is specified in statement-1. If the condition is true and NEXT
SENTENCE is written, control passes explicitly to the next
sentence.

2. If the condition is false, either the statement follo
(statement-2) is executed, or, if the ELSE] 5
option 1s omitted, the next sentence is executed. If ion
is false and NEXT SENTENCE is written following ELSE, control
passes explicitly to the next sentence.

When IF statements are not nested, statement-1 and statement-2 must ‘ )
represent imperative statements. g

150 Part IV —-- Procedure Division



P
N

IF Statement

Nested IF Statements

The presence of one or more IF statements within the initial IF
statement constitutes a "nested IF statement."

Statement-1 and statement-2 in IF statements may consist of one or
more imperative statements and/or a conditional statement. If a
conditional statement appears as statement-1 or as part of statement-1,
it is said to be nested. MNesting statements is much like specifying
subordinate arithmetic expressions enclosed in parentheses and combined
in larger arithmetic expressions.

IF statements contained within IF statements must be considered as
paired IF and ELSE combinations, proceeding from left to right. Thus,
any ELSE encountered must be considered to apply to the immediately
preceding IF that has not already been paired with an ELSE.

In the conditional statement in Figure 11, C stands for condition; S
stands for any number of imperative statements; and the pairing of IF
and ELSE is shown by the lines connecting them.

Chart 1 is a flowchart indicating the logical flow of the conditiomal
statement in Figure 9,

l 1 l' ‘L i Y

IF1 C1 S1 IF2 C2 IF3 C3 82 ELSE S3 ELSE S4 IF4 C4 IF5 C5 S5 ELSE 86

cl c2 el e2
y
M
N
~—
bl b2
J
e

al — Statement-1 for IF1 (If C1 is false, the next sentence is executed, since there is no ELSE for it.)
bl — Statement-1 for IF2
b2 — Statement-2 for IF2
cl — Statement-1 for JF3
¢2 — Statement-2 for IF3
dl — Statement-1 for IF4 (If C4 is false, the next sentence is executed, since there is no ELSE for it.)
el — Statement-1 for IF5
e2 — Statement-2 for IFS

Figure 11. Conditional Statements with Nested IF Statements

conditional Statements 151



IF Statement

Chart 1. Logical Flow of Conditional Statement with Nested IF
Statements

SREERL R REANN
ION OF

EEERKC] A *FhR SRk S
*

ERBE

LEA LR LSS EE L2 2 L

v
HREARFIERE R kR ek k
* *

S2

LY ¥
LX)

LEEE IR 2SI SR T ]

*
kERdhkiokkkakkokd

FALSE
*

*
*
*
s1 *
*
*
*

HEEKKD2EERRR R
* *

* * L *
> st P cn .
* * *

* *
kAR EkRER RN bRk kk

*EEEAED RS KRR RREXS
* *

*
s3

LX R X3

*
Ak hkkdh kb kkkE

¥ *,

EA Lt ct SRS EE L]
*

55

LT
EX T X

kkkbhhkkkkkhkrbks

[ i $6
*

La A LI LS LI L T Y
* *
FALSE *

LX ¥

*
LRSS LSS L L]

V
*hEERH] Ak ke kR kb xk
* *

* *
: NEXT SENTENCE :

* *
EEkEk bRk kR ke R Rk

152 Part IV -- Procedure Division



[ e — — o — — T — o St ay

Declaratives-General Format

DECLARATIVES

The Declaratives Section provides a method of including procedures
that are invoked nonsynchronously: that is, they are executed not as
part of the sequential coding written by the programmer, but rather when
a condition occurs which cannot normally be tested by the programmer,

Although the system automatically handles checking and creation of
standard labels and executes error recovery routines in the case of
input/output errors, additional procedures may be specified by the COBOL
programmer. The Report Writer feature also uses declarative procedures.

Since these procedures .are executed only when labels of a file are to
be processed, or at the time an error in reading or writing occurs or
when a report group is to be produced, they cannot appear in the regular
sequence of procedural statements. They must be written at the
beginning of the Procedure Division in a subdivision called
DECLARATIVES. A group of declarative procedures constitutes a
declarative section. Related procedures are preceded by a USE sentence
that specifies their function. A declarative section ends with the
occurrence of another section-name with a USE sentence or with the words
END DECLARATIVES.

The key words DECLARATIVES and END DECLARATIVES must each begin in
Area A. No other text may appear on the same line.

e ot o et s a2 St Y2 A e e e e e . PR — - —— e s

e e e e . e e e o A i 4 e s e e . S i 1

PROCEDURE DIVISION.

DECLARATIVES.

{section-name SECTION. USE sentence.
{paragraph-name. {sentence} ... } ... } ...

END DECLARATIVES.

b o et s e e . . SO S o e, e,

The USE sentence identifies the type of declarative.

There are three formats of the USE sentence. Each is associated with
one of the following types of procedures:

1. Input/output label handling
2. Input/output error-checking procedures
3. Report writing procedures
A USE sentence, when present, must immediately fo;lgw-a section
header in the Declarative portion of the Procedure Division and must be
followed by a period followed by a space, The remainder of the section
must consist of one or more procedural paragraphs that define the :
procedures to be used.
The USE sentence itself is never executed, rather it defines the
conditions for the execution of the USE procedure.

Declaratives 153



Order No. GC28-6394-2, Page Revised u4/15/71 by TNL GN-0436
LABEL PROCEDURE Declarative

Format 1 is used to provide user label-handling procedures. There
are two options of Format 1.

| Format 1

b

I

{Option_ 1

|

l BEFORE REEL
| USE { ' STANDARD [BEGINNING] FILE
| AFTER UNIT
|

| {file-name}l ...

| QUTPUT )
| LABEL PROCEDURE ON INPOT

I 1-0

|

p———- _— _—
|

|Ooption_ 2

|

| BEFORE REEL

| USE { STANDARD [ggg;_lgc_;] FILE

| AFTER UNIT

i

| {file-namel ...

| QUTPUT

| LABEL PROCEDURE ON INPUT ¢
[ i-0

|

When BEFORE is specified, it indicates that nonstandard labels are to

be processed. Nonstandard labels may be specified only for tape files.

When AFTER is specified, it indicates that user labels follow
standard file labels, and are to be processed.

Note: ASCII considerations for user label-handling procedures are given

in Appendix E.

The labels must be listed as data-names in the LABEL RECORDS clause
in the File Description entry for the file, and must be described as
level-01 data items subordinate to the file entry.

If neither BEGINNING nor ENDING is specified, the designated
procedures are executed for both beginning and ending labels.

If UNIT, REEL, or FILE are not included, the designated procedures
are executed both for REEL or UNIT, whichever is appropriate, and for
FILE labels. The REEL option is not applicable to mass storage files.
The UNIT option is not applicable to files in the random access mode
since only FILE labels are processed in this mode.

The same file-name may appear in different specific arrangements of
Format 1. However, appearance of a file-name in a USE statement must
not cause the simultaneous request for execution of more than one USE
declarative.

154 Part IV -- Procedure Division

b e S —— ——— ——— ——— — —— — ———— —  — p—— — o wo— 2l



‘Order No. GC28-6394-2, Page Revised 4/15/71 by TNL.GN-0436

LABEL PROCEDURE Declarative

If the file-name option is used, the File Description entry for

file-name must not specify a LABEL RECORDS ARE OMITTED

clause.

The user label procedures are executed as follows when the OUTPUT,

INPUT, or I-O options are specified:

¢ When OUTPUT is specified, only for files opened as

output.

e When INPUT is specified, only for files opened as input.

e When I-O is specified, only for files opened as I-O.

The file-name must not represent a sort-file.

If the INPUT, OUTPUT, or I-O option is specified, and an input,
output, or input-output file, respectively, is described with a LABEL
RECORDS ARE OMITTED clause, the USE procedures do not apply.

The standard system procedures are performed:

1. Before or after the user's beginning or ending input label check

procedure is executed.

2. Before the user's beginning or ending output label is created.

3. After the user's beginning or ending output label
before it is written on tape.

is creategd,

but

4. Before or after the user's beginning or ending input-output label

check procedure is executed.

Within the procedures of a USE declarative in which the USE sentence
specifies an option other than file-name, references to common label
jtems need not be qualified by a file-name. A common label item is an
elementary data item that appears in every label record of the program,

but does not appear in any data record of this program.

Such items

have identical descriptions and positions within each label record.

must

Within a Format 1 declarative section there must be no reference to
any nondeclarative procedures. Conversely, in the nondeclarative
portion there must be no reference to procedure-names that appear in the
declaratives section, except that PERFORM statements may refer to a USE

procedure, or to procedures associated with it.

The exit from a Format 1 declarative section is inserted by the
compiler following the last statement in the section,
program paths within the section must lead to the exit

All logical
point.

Declaratives

155



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
LABEL PROCEDURE--Sample Program

-
&/ ’

No tape marks are written following nonstandard header labels. A
tape mark is written following the last nonstandard trailer label on
each reel.

SAMPLE LABEL DECLARATIVE PROGRAM

The following program creates two files, one with user labels, the other
with nonstandard labels. To create the labels, the program contains a
DECLARATIVES section, with USE procedures for creating both header and
trailer labels. ' '

The program illustrates the following items:

For the two files requiring label creation, the LABEL RECORDS
clause specifies the data-name option.

The user labels are created by a USE AFTER BEGINNING/ENDING LABEL
procedure,

Two user header labels are to be created. < =t - S

The nonstandard labels are created by a USE BEFORE BEGINNING/ENDING
LABEL procedure.

ONOCENONONC)

Label information for the program is taken in part from the input
file; therefore input records containing the information must be
read and stored before the output files are opened, and the header
label procedures invoked.

156 Part IV . -- Procedure Division



Order No. GC28-6394-2, Page Revised 4/15/71 by TNIL GN-0436
LABEL PROCEDURE-~Sample Program

IDENTIFICATION DIVISION.
PROGRAM-ID. ILABELPGM,
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.,
SOURCE-COMPUTER. IBM-360-F50.
OBJECT- COMPUTER, IBM-360-F50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT NO-LBL ASSIGN TO SYS010-UT-2400-S.
SELECT USER ASSIGN TO SYS011-UT-2400-S.
SELECT NON-STD ASSIGN TO SYS012-UT-2400-S.
DATA DIVISION.
FILE SECTION.
FD NO-LBL
RECORD CONTAINS 80 CHARACTERS
DATA RECORDS ARE IN-REC IN-LBL-HIST
LABEL RECORD IS OMITTED.
01 IN-REC.
05 TYPEN PIC X(4).
88 NSTD VALUE 'NSTD'.
05 DEPT-ID PIC X(11).
05 BIL-PERIOD PIC X(5).
05 NAME PIC X(20).
05 AMOUNT PIC 9(6).
05 FIL-NAM PIC. X{(15).
05 SECUR-CODE PIC XX.
05 AREAN PIC 9.
88 HDR-REC VALUE 9,
05 ACCT-NUM PIC 9(10).
05 SER-NUM PIC 9(6).
01 IN-LBL-HIST.
05 FILLER PIC X(4),
05 FILE-HISTORY PIC X(76).
FD USER
RECORD CONTAINS 80 CHARACTERS
BLOCK CONTAINS 5 RECORDS
DATA RECORD IS USR-REC
LABEL RECORDS ARE USR-LBL USR-LBL-HIST.
01 USR-LBL.
05 USR-HDR PIC X(4),
05 DEPT-ID PIC X(11).
05 USR-REC~-CNT PIC 9(8) - COMP-3.
05 BIL-PERIOD PIC X(5).
05 FILLER PIC X(53).
05 SECUR-CODE PIC XX.
01 USR-LBL-HIST.
- 05 FILLER PIC X(4).
05 LBL-HISTORY PIC X(76).
01 USR-REC.
05 TYPEN PIC X(4).
05 FILLER PIC X(5).
05 NAME PIC X(20).
05 FILLER PIC X(4).
05 ACCT-NUM PIC 9(10).
05 AMOUNT PIC 9(6) COMP-3.
05 FILLER PIC X(25).
05 U-SFQ-NUMB PIC 9(8).
FD NON-STD
RECORDING MODE IS U
DATA RECORDS ARE NSTD-REC1 NSTD-REC2
LABEL RECORD IS NSTD-LBL.
01 NSTD-LBL.
05 NSTD-HDR PIC X(7).
05 NSTD-REC-CNT PIC 9(8) COMP-3,
05 FILLER PIC X(3).
05 FIL-NAM PIC X(15).
05 DEPT-ID PIC X(11).
05 SER-NUM PIC 9(6).

Declaratives 156.1



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
LABEL PROCEDURE--~Sample Program

05 CREAT-DATE PIC X(8).
01 NSTD-REC1l.

05 ACCT-NUM PIC 9(10).

05 BIL-PERIOD PIC X(5).

05 NAME PIC X(20).

05 FILLER PIC X(40),

05 AREAN PIC 9.

05 FILLER PIC X(20),

05 AMOUNT PIC 9(6) COMP-3.
01 NSTD-REC2.

05 ACCT-NUM PIC 9(10).

05 BIL-PERIOD PIC X(5),.

05 NAME PIC X(20).

05 FILLER PIC X(15).

05 DEPT-ID PIC X(11).

05 AMOUNT PIC 9(6).

05 N-SEQ-NUMB PIC 9(8).

05 AREAN PIC 9.

05 FILLER PIC X(4).
WORKING-STORAGE SECTION. -
77 N-REC-NUMB PIC 9(8) VALUE ZERO.
77 U~REC-NUMB PIC 9(8) VALUE ZERO.
77 SAV-FIL-NAM PIC X(15).
77 SAV-DEPT-ID PIC X(11).
77 LBL-SWITCH PIC 9 VALUE ZERO.
77 USER-SWITCH PIC 9 VALUE ZERO.
77 NSTD-SWITCH PIC 9 VALUE ZERO.
77 NSTD-REC2-CNT PIC 9(8) VALUE ZERO.
01 STOR-REC,

05 DEPT-ID PIC X(11).

05 BIL-PERIOD PIC X(5).

05 SECUR-CODE PIC XX.
PROCEDURE DIVISION. °

DECLARATIVES. .
(:) USR-HDR~-LBL SECTION. USE AFTER BEGINNING FILE
LABEL PROCEDURE ON USER.
A. IF LBL-SWITCH = 0
MOVE SPACES TO USR-LBL
MOVE ZEROES TO USR-REC-CNT
MOVE 'UHL1' TO USR-HDR
MOVE CORRESPONDING STOR-REC TO USR-LBL
ADD 1 TO LBL-SWITCH GO TO MORE-LABELS
ELSE MOVE 'UHL2' TO USR-HDR
MOVE FILE-HISTORY TO LBL-HISTORY.
USR-TRLR-LBL SECTION. USE AFTER ENDING FILE
LABEL, PROCEDURE ON USER.
B. MOVE SPACES TO USR-LBL.
MOVE *UTL1' TO USR-HDR.
MOVE SAV-DEPT-ID TO DEPT-ID IN USR-LBL.
(:> MOVE U-REC-NUMB TO USR-REC-CNT,

®© ©

NSTD-HDR-LBL SECTION., USE BEFORE BEGINNING FILE
LABEL PROCEDURE ON NON-STD.
C. MOVE "NSTHDR1' TO NSTD-HDR.
MOVE ZEROES TO NSTD-REC-CNT
MOVE CORRESPONDING IN-REC TO NSTD-LBL.
MOVE CURRENT-DATE TO CREAT-DATE.
MOVE FIL-NAM OF IN-RFC TO SAV-FIL-NAM.
(:) NSTD-TRLR-LBL SECTION. USE BEFORE ENDING FILE
LABEL PROCEDURE ON NON-STD.
D. MOVE SPACES TO NSTD-LBL.
MOVE 'NSTEOF ' TO NSTD-HDR.
MOVE N-REC-NUMB TO NSTD-REC-CNT,.
MOVE SAV-FIL-NAM TO FIL-NAM IN NSTD-LBL.
END DECLARATIVES.

NON-DECLARATIVE SECTION.
OPEN INPUT NO-LBL.

156.2 Part IV -- Procedure Division



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
LABEL. PROCEDURE--Sample Program

READ-IN.
READ NO-LBL AT END GO TO END-JOB.
E. IF NSTD NEXT SENTENCE
ELSE GO TO PROCESS-USER.
IF NSTD-SWITCH = 1 NEXT SENTENCE
ELSE ADD 1 TO NSTD-SWITCH
OPEN QUTPUT NON-STD
GO TO READ-IN.
ADD 1 TO N-REC-NUMB.
IF HDR-REC MOVE SPACES TO NSTD-REC1
MOVE CORRESPONDING IN-REC TO NSTD-REC1
WRITE NSTD-REC1
ELSE ADD 1 TO NSTD-REC2-CNT
MOVE SPACES TO NSTD-REC2
MOVE CORRESPONDING IN-REC TO NSTD-REC2
MOVE NSTD-REC2-CNT TO N-SEQ-NUMB
WRITE NSTD-REC2.
GO TO READ-IN.
PROCESS-USER.
IF USER-SWITCH = 1 NEXT SENTENCE
ELSE ADD 1 TC USER-SWITCH
MOVE CORRESPONDING IN-REC TO STOR-REC
MOVE DEPT-ID OF IN-REC TO SAV-DEPT-ID
PERFORM READ-IN
'OPEN OUTPUT USER
GO TO READ-IN.
ADD 1 TO U-REC-NUM3.
MOVE CORRESPONDING IN-REC TO USR-REC.
MOVE U-REC-NUMB TO U-SEQ-NUMB
WRITE USR-REC
GO TO READ-IN.
END-JOB.
CLOSE NO-LBL.
IF USER-SWITCH
IF NSTD-SWITCH
STOP RUN.

1 CLOSE USER.
1 CLOSE NON-STD.

nn

Declaratives 156.3



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ERROR PROCEDURE Declarative

A Format 2 USE sentence specifies procedures to be followed if an
input/output error occurs during file processing.

[ T T T T T T T T T e e e e 1

| Format 2 |

b - i

| |

| |

| |

| |

| |

| |

| I

| |

| |

L i

before user-specified procedures.

USE declaratives which specify error handling procedures are
activated when an input/output error occurs during execution of a READ,
WRITE W . statement.
Within the section, the file associated with the USE sentence may not

be referred to by an OPEN, SEEK, READ, WRITE

statement. R
; )
N’

Within a USE procedure there must be no reference to nondeclarative
procedures )
Conversely, in the nondeclarative portion, there must be no reference to
procedure-names that appear in the declaratives portion, except that
PERFORM statements may refer to a USE declarative, or to procedures
"associated with such a declarative,

When either the file-name-1 option is used, user error
handling procedures are executed for input/output errors occurring
during execution of a READ, WRIT ! statement for that
file only.

more than one Format 2 USE sentence.
The user error procedures are executed when the INPUT, OUTPUT, or I-O
options are specified and an input/output error occurs, as follows:
e When INPUT is specified, only for files opened as INPUT.
' ‘When OUTPUT is specified, only for files opened as OUTPUT.

e When I-0 is specified, only for files opened as I-O (input-output).

156. 4 Part IV -- Procedure Division



ERROR PROCEDURE

s,

Declarative

i S sen
A |

An exit from this type of declarative section can be eff
executing the last statement in the section (normal return); oz
o a5 ént. Table 14 summarizes the facilities and
‘limitations associated with each file-processing technigue when an
error occurs.

The normal return from an error declarative is to the statement
following the input/output statement that caused the error.

Declaratives 157



ERROR PROCEDURE Declarative

Table 14. File Processing Techniques and Associated Error Declaratives Capabilities

] L) T ] 1
| | | Type of | Error Declarative Written No Error | | |
| |organi-| I/0 | Exrror . - Declarative |
| Access |zation |Statement | Bytes | Normal Return GO TO Exit | Written |
1L 1 i ] l 1 4
v T 1 T T T 1
| SEQUEN- |Sequen~ |READ |11 or 2 |Continued process-|User limited to |Diagnostic |
|TIAL jtial | | |ing of file per- CLOSE for file error message|
| (or not | | | |mitted; bad block is printed; |
|speci- | | | |is bypassed |job is |
|fied) | | | | | | terminated |
| | p-——— 4 1 } i ,
| | | WRITE |1 or 2 |Continued process-|Continued process-| |
| | | | |ing of file per- ing of file per- | i
| | | | |mitted; bad block |[mitted; bad block | |
| | | | |has been written |has been written | |
| | ' t { 4 1 |
| [Direct |READ {1,2, or|User limited to |User limited to | |
| | | | 4 |CLOSE for file | CLOSE for file | |
L ] 4 —_— 1 . 1

LD _+- T _+_ T - ] R | |
|RANDOM |Direct |READ 11,2, or|Continued process-|Continued process-| |
| | | |ing of file per- |ing of file per- | |
| | | |mitted; bad block |mitted; bad block | |
I | | (has not been by- has not been by- | |
| | | | passed passed | |
| I t 1 - - i I
| | 11,2,3, |Continued process-|Continued process-|

i | lor 4 |ing of file per- ing of file per- |

| | J {mitted; bad block |mitted; bad block |

| | : has been written |

S }

158

Procedure

Part IV

J




BEFORE REPORTING Declarative

A Format 3 USE sentence specifies Procedure Division statements that
are executed just before a report group named in the Report Section of
the Data Division is produced (see "Report Writer™).

Format 3

USE BEFORE REPORTING data-name.

i
e

o s e e G e g

Declaratives 159



CORRESPONDING/GIVING/ROUNDED Options

ARITHMETIC STATEMENTS

The arithmetic statements are used for computations. Individual
operations are specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE
statements. These operations can be combined symbolically in a formula,
using the COMPUTE statement.

Because there are several options common to the arithmetic state-
ments, their discussion precedes individual statement descriptions.

CORRESPONDING Option

The CORRESPONDING option enables computations to be performed on
elementary items of the same name simply by specifying the group item to
which they belong. The word CORRESPONDING may be abbreviated as CORR.

Both identifiers following CORRESPONDING must refer to group items.
For the purposes of this discussion, these identifiers will be called 4,
and d,.

Elementary data items from each group are considered CORRESPONDING
when both data items have the same name and qualification, up to but not
including d; and d,.

Neither d; nor 4, may be a data item with level number 66, 77, or 88, / 3
nor may either be described with the USAGE IS INDEX clause. Neither 4, N
nor d, may be a FILLER item.

Each data item subordinate to 4, or d, that is described with a
REDEFINES, OCCURS, or USAGE IS INDEX clause is ignored; any items
subordinate to such data items are also ignored. However, d; or d, may
themselves be described with REDEFINES or OCCURS clauses, or be
subordinate to items described with REDEFINES or OCCURS clauses.

Each FILLER ite

GIVING Option

If the GIVING option is specified, the value of the identifier that
follows the word GIVING is set equal to the calculated result of the
arithmetic operation. This identifier, since not itself involved in the
computation, may be a numeric edited item.

ROUNDED Option

After decimal point alignment, the number of places in the fraction
of the result of an arithmetic operation is compared with the number of ’ .
places provided for the fraction of the resultant identifier. i )

160 Part IV -- Procedure Division



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SIZE ERROR Option/Overlapping Operands

When the size of the fractional result exceeds the number of places
provided for its storage, truncation occurs unless ROUNDED is specified.
When ROUNDED is specified, the least significant digit of the resultant
identifier has its value increased by 1 whenever the most significant
digit of the excess is greater than or egqual to 5.

When the resultant identifier is described by a PICTURE clause
containing P's and when the number of places in the calculated result
exceeds this size, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated,

SIZE ERROR Option

If, ‘after decimal point alignment, the value of a result exceeds the
largest value that can be contained in the associated resultant
identifier, a size error condition exists, Division by zero always
causes a size error condition. The size error condition applies only to

.the final results of an arithmetic operation and does not apply to

intermediate results. If the ROUNDED option is specified, rounding
takes place before checking for size error. When such a size error
condition occurs, the subsequent action depends on whether or not the
SIZE ERROR option is specified.

If the SIZE ERROR option is not specified and a size error condition
occurs, the value of the resultant identifier affected may be
unpredictable.

If the SIZE ERROR option is specified and a size error condition
occurs, the value of the resultant identifier affected by the size error
is not altered. After completion of the execution of the arithmetic
operation, the imperative statement in the SIZE ERROR option is
executed,

Overlapping Qperands

When the sending and receiving operands of an arithmetic statement or
a MOVE statement share a part of their storage (that is, when the
operands overlap), the result of the execution of such a stateméent is
unpredictable.

Arithmetic Statements 161



ADD Statement

ADD Statement

The ADD statement causes two Or more numeric operands to be summed
and the result to be stored.

Format 1

identifier-1 identifier-2
literal-1

ADD { ] «ee TO identifier-m [ROUNDED]
literal-2

{identifier-n [ROUNDED]] ... [ON SIZE ERROR imperative-statement]

S ——
b e e — e — e e

r 1
| Format 2 |
L K|
L) T
[ . . . . |
| “identifier-1 identifier-2 identifier-3 |
| ADD ' vee |
| literal-1 literal-2 literal-3 |
| |
| GIVING identifier-m [ROUNDED] [ON SIZE ERROR imperative-statement] |
l !
r 1
| Format 3 [
L 4
1 3 |
| I
§ CORR ‘ |
| ADD . - identifier-1 TO identifier-2 |
| CORRESPONDING |
| , |
| [ROUNDED] [ON SIZE ERROR imperative-statementl] |
| |
L 4

Format 1 -- the values of the operands preceding the word TO are
added together, and the sum is added to the current value of
identifier-m (identifier-n), etc. The result is stored in identifier-m
(identifier-n), etc.

) Format 2 -- when the GIVING option is used, there must be at least
two operands preceding the word GIVING. The values of these operands
are added together, and the sum is stored as the new value of

identifier-m.

In Formats 1 and 2 each identifier must refer to an elementary
numeric item, with the exception of identifiers appearing to the right
~of the word GIVING. These may refer to numeric edited data items.

Each literal must be a numeric literal.

The maximum size of each operand is 18 decimal digits. The maximum
size of the resulting sum, after decimal point alignment, is 18 decimal
digits. . )

Format 3 -- when the CORRESPONDING option is used, elementary data
items within identifier-1 are added to and stored in corresponding
elementary data items within identifier-2., Identifier-1 and
identifier-2 must be group items.

162 Part IV -- Procedure Division



COMPUTE Statement

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the
size error test is made only after the completion of all the ADD
operations. If any of the additions produces a size error condition,
the resultant field for that addition remains unchanged, and the
imperative statement specified in the SIZE ERROR option is executed.

COMPUTE Statement

The COMPUTE statement assigns to a data item the value of a data
item, literal, or arithmetic expression.

[ON SIZE ERROR imperative-statement]

13 A
i Format |
1 — N

e e e - ———=q
| S |
| identifier-2 |
| COMPUTE identifier~1 [ROUNDED] = literal-1 |
| arithmetic-expression ]
[ |
| |
| |
L J

Literal-1 must be a numeric literal.

Identifier-2 must refer to an elementary numeric item. Identifier-1
] may describe a numeric edited data item.

The identifier-2 and literal-1 options provide a method for setting
the value of identifier-~1 equal to the value of identifier-2 or
literal-1.

The arithmetic—expression option permits the use of a meaningful
combination of identifiers, numeric literals, and arithmetic operators.
Hence, the user can combine arithmetic operations without the
restrictions imposed by the arithmetic statements ADD, SUBTRACT,
MULTIPLY, and DIVIDE,

As in all arithmetic statements, the maximum size of each operand is
18 decimal digits.

Arithmetic Statements 163



DIVIDE Statement

DIVIDE Statement

The DIVIDE statement is used to find the quotient resulting from the
division of one data item into another data item.

et ettt 1
I Format 1 |
. - e 1
| _ |
| identifier-1 } |
| DIVIDE INTO identifier-2 [ROUNDED] |
] | literal-1 f |
I |
] [ON SIZE ERROR imperative-statementl |
I I
e e - J
r 1
I Format 2 |
B e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e 4
[ |
| identifier-1 INTO identifier-2 ]
| DIVIDE GIVING identifier-3 |
| literal-1 BY literal-2 |
| |
| [ROUNDED] [REMAINDER identifier-4] |
| |
| [ON SIZE ERROR imperative-statement] |
! - R ]

When Format 1 is used, the value of identifier-1 (or literal-1) is
divided into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by the value of the quotient.

When Format 2 is used, the value of identifier-1 (or literal-1) is
divided into or by identifier—-2 (or literal-2), the gquotient is stored
in identifier-3, and the remainder optionally is stored in identifier-4.

A remainder is defined as the result of subtracting the
tient nd the divisor from the dividend

e NDED option is also specified, the gquotient is rounded
er the remainder is determined.

Each identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.

Each literal must be a numeric literal.

The maximum size of the resulting quotient, after decimal point
alignment, is 18 decimal digits. The maximum size of the resulting
remainder (if specified), after decimal point alignment, is 18 decimal
digits.

Division by zero always results in a size error condition.

164 Part IV -- Procedure Division

C



MULTIPLY Statement
MULTIPLY Statement

The MULTIPLY statement is used to multiply one data item by another
data item.

[ROUNDED1 [ON SIZE ERROR imperative-statement]

r 1
| Format 1 1
i i
| . |
| identifier-1 !
| MULTIPLY BY identifier-2 [ROUNDED] |
| literal-1 |
I |
| [ON SIZE ERROR imperative-statement] |
! |
| - -1
| Format 2 i
- -- {
l : s . . l
| identifier-1 identifier-2 |
l MULTIPLY BY GIVING identifier-3 1
| literal-1 literal-2 !
| I
| !
I |
L 3

When Format 1 is used, the value of identifier-1 (or literal-1l) is
maltiplied by the value of identifier-2. The value of the multiplier
(identifier-2) is replaced by the product.

When Format 2 is used, the value of identifier-1 (or literal-1) is
multiplied by identifier-2 (or literal-2), and the product is stored in
identifier-3.

Fach identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.,

Each literal must be a numeric literal.
The maximum size of each opernad is 18 decimal digits., The maximum

size of the resulting product, after decimal point alignment, is 18
decimal digits.,.

Arithmetic Statements 165



SUBTRACT Statement

SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of two or
more, numeric data items from another data item(s).

H 1
| Format 1 |
3 4
[ I
| identifier-1 identifier-2 |
| SUBTRACT see |
| literal-1 literal-2 |
| I
| FROM identifier-m [{ROUNDED] |
l I
| {identifier-n {ROUNDED1] ... [ON SIZE ERROR imperative-statement] |
I I
r - 1
| Format 2 i
I 4
I . . I 1
| identifier-1 identifier-2 |
| SUBTRACT see |
| literal-1 literal-2 |
| |
| fidentifier—m( l
| FRQ: GIVING identifier-n |
| Iliteral—m I [
| I
| [ROUNDED] [ON SIZE ERROR imperative-statementl |
I _ ]
|3 1
I Format 3 |
L 1
¥ ]
| I
| CORR |
| SUBTRACT identifier-1 FROM identifier-2 |
| CORRESPONDING |
| |
| [ROUNDED] [ON SIZE ERROR imperative-statement] |
| |
L ]

Format 1 —-- all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from identifier-m and
identifier-n (if stated), etc. The result of the subtraction is stcred
as the new value of identifier-m, identifier-n, etc.

Format-2 -- all literals or identifiers preceding the word FROM are
added together, and this total is subtracted from literal-m or
identifier-m. The result of the subtraction is stored as the value of
identifier-n.

Format 3 -- data items in identifier-1 are subtracted from, and the
difference stored into corresponding data items in identifier-2. When
the CORRESPONDING option is used in conjunction with ON SIZE ERROR and
an ON SIZE ERROR condition arises, the result for SUBTRACT is analogous
to that for ADD.

166 Part IV -- Procedure Division



SUBTRACT Statement

Each identifier must refer to an elementary numeric item except the
identifier following the word GIVING, which may be a numeric edited
item.

Fach literal must be a numeric literal.

The maximum size of each operand is 18 decimal digits. The maximum
size of the resulting difference, after decimal point alignment, is 18
decimal digits.

Arithmetic Statements 167



GO TO Statement

PROCEDURE BRANCHING STATEMENTS

Statements, sentences, and paragraphs in the Procedure Division are
ordinarily executed sequentially. The procedure branching statements
(GO TO, ALTER, PERFORM, STOP, and EXIT) allow alterations in the
sequence.

GO TO Statement

The GO TO statement allows a transfer from one part of the program to
another,

Format 1

GO TO procedure-name-1

m——=T=1
|

Format 2

GO TO procedure-name-1 [procedure-name-2] ...

DEPENDING ON identifier

[ . s = omen 2y
S S—— R —

Format 3

Go To.

P ——— e —
b e e e s — o

When Format 1 is specified, control is passed to procedure-name-1 or
to anothér procedure name if the GO TO statement has been changed by an
ALTER statement. (If the latter is the case, the GO TO statement must
have a paragraph name, and the GO TO statement must be the only
statement in the paragraph.)

If a GO TO statement represented by Format 1 appears in an imperative
sentence, it must appear as the only or last statement in a sequence of
imperative statements.

When Format 2 is used, control is transferred to one of a series of
procedures, depending on the value of the identifier. When identifier
has a value of 1, control is passed to procedure-name-1; a value of 2
causes control to be passed to procedure-name-2, ...; a value of n
causes control to be passed to procedure-name-n. For the GO TO
statement to have effect, identifier must represent a positive or
unsigned integer, i.e., 1, 2, ..., n. If the value of the identifier is
anything other than a value within the range 1 through n, the GO TO
statement is ignored. The number of procedure-names must not exceed i 3
2031. :

168 Part IV -- Procedure Division



C

ALTER Statement

Identifier is the name of a numeric elementary item described as an

integer. Its PICTURE must be of four digits or less. Its USAGE must be
DISPLAY, COMPUTATIONAL : =3,

When Format 3 is used, an ALTER statement, referring to the GO TO
statement, must have been executed prior to the execution of the GO TO
statement., The GO TO statement must immediately follow a paragraph name
and must be the only statement in the paragraph.

ALTER Statement

The ALTER statement is used to change the transfer point specified in
a GO TO statement.

Format

ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2

Iprocedure-name-3 TO [PROCEED TQ] procedure-name-41...

[ e et ot v . e G e

e e

Procedure-name-1, procedure-name-3, etc., must be the names of
paragraphs that contain only one sentence consisting of a GO TO
statement without the DEPENDING option.

Procedure-name-2, procedure-name-i4, etc., must be the names of
paragraphs or sections in the Procedure Division.

The effect of the ALTER statement is to replace the procedure-name
operands of the GO TO statements with procedure-name-2,
procedure-name-4, etc., 0of the ALTER statement, where the paragraph-name
containing the GO TO statement is procedure-name-1, procedure-name-3,
etc. For example:

PARAGRAPH-1.
GO TO BYPASS-PARAGRAPH,
PARAGRAPH-1A.

BYPASS-PARAGRAFH.

AL TER PARAGRAPH-1 TO PROCEED TO PARAGRAPH-2.

PARAGRAPH-2.

Before the ALTER statement is executed, when control reaches
PARAGRAPH-1, the GO TO statement transfers control to BYPASS—-PARAGRAPH.
After execution of the ALTER statement, however, when contrcl reaches
PARAGRAPH-1, the GO TO statement transfers control to PARAGRAPH-2.

Segmentation Information: A GO TO statement in a section whose
priority is greater than or equal to 50 must not be referred to by an
BALTER statement in a section with a different priority. All other uses
of the ALTER statement are valid and are performed even if the GO TO to
which the ALTER refers is in an overlayable fixed segment (see
"Segmentation").

Procedure Branching Statements 169



PERFORM Statement

PERFORM Statement

The PERFORM statement is used to depart from the normal sequence of
procedures in order to execute a statement, or a series of statements, a
specified number of times; or until a predetermined conditionm is
satisfied., After the statements are executed, control is returned to
the statement after the PERFORM statement.

Format 1

o e . s soeen. any
b e e i e 2l

PERFORM procedure-name-1 (THRU procedure-name-2]

) t
I Format 2 |
! 4
] |
| PERFORM procedure-name-1 [THRU procedure-name-2]} |
| [
| identifier-1 |
I TIMES |
| integer-1 |
L J
r 1
| Format 3 |
L 1
[ S

| |
| PERFORM procedure-name-1 [THRU procedure-name-2] |
| - |
| UNTIL condition-1 |
L J
r t
| Format 4 |
b :
[ |
| PERFORM procedure-name-1 [THRU procedure-name-21} |
| ' |
| index-name-1 index-name-2 |
[ VARYING FROM ¢ literal-2 I
| identifier-1 ) identifier-2 |
| |
| literal-3 | |
| BY UNTIL condition-1 |
| identifier-3 5 |
| |
| index-name-U4 index~name-5 |
| [AFTER FROM { literal-5 |
| { identifier-4 identifier~5 |
| |
| literal-6 |
| BY UNTII condition-2 |
| identifier-6 |
| . |
| index—-name-7 index-name-8 |
| [AFTER FROM < literal-8 |
| identifier-7 identifier-8 |
| |
| literal-9 |
| BY UNTIL condition-31] |
| jidentifier-9 |
L i — J

170 Part IV -- Procedure Division



Order No. GC28-63%4-2, Page Revised 4/15/71 by TNL GN-0436
PERFORM Statement

Each procedure-name must be the name of a section or paragraph in the
Procedure Division.

Each identifier represents a numeric elementary item described in the

Data Division. In Format 2, and Format 4 with the AFTER option, each
identifjer represents a numeric it described i

Whenever a PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-1. Control is
always returned to the statement following the PERFORM statement. The
point from which this control is passed is determined as follows:

1. If procedure-name-1 is a paragraph name and procedure-name-2 is not
specified, the return is made after the execution of the last
statement of procedure-name-1.

2. If procedure-name-1 is a section name and procedure-name-2 is not
specified, the return is made after the execution of the last
sentence of the last paragraph in procedure-name-1.

3. If procedure-name-2 is specified and it is a paragraph name, the
return is made after the execution of the last statement of that
paragraph.

4. If procedure-name-2 is specified and it is a section name, the
return is made after the excecution of the last sentence of the
last paragraph in the section.

When both procedure-name-1l and procedure-name-2 are specified, GO TO
and PERFORM statements may appear within the sequence of statements
within these paragraphs or sections. When procedure-name-1 alone is
specified, PERFORM statements may appear within the procedure. GO TO
may also appear but may not refer to a procedure-name outside the range
of procedure-name-1.

When a PERFORM statement includes within its range another PERFORM,
this embedded PERFORM statement must have its range either totally
included in or excluded from the range of the original PERFORM
statement. That is, the exit point of the first PERFORM cannot be

contained within the range of the second PERFORM

control may be passed to a sequence of statements that lies between
the entry and exit points of a PERFORM statement by means other than a
PERFORM. 1In this case, control passes through the last statement of the
procedure to the following statement as if no PERFORM statement referred
to these procedures. )

FORMAT 1: When Format 1 is used, the procedure(s) referred to are

executed once, and control returns to the statement following the
PERFORM statement.

FORMAT 2: When Format 2 is used, the procedure(s) are performed the
number of times specified by identifier-1 or integer-1. Once the TIMES
option is satisfied, control is transferred to the statement following

the PERFORM statement.

The following rules apply to the use of a Format 2 PERFORM statement:

Procedure Branching Statements 171



PERFORM Statement

1. If integer-1 or identifier-1 is zero or a negative number at the
time the PERFORM statement is initiated, control passes to the
statement following the PERFORM statement.

2. Once the PERFORM statement has been initiated, any reference to
identifier-1 has no effect in varying the number of times the
procedures are initiated.

FORMAT 3: When Format 3 is used, the specified procedures are performed
until the condition specified by the UNTIL option is true. At this
time, control is transferred to the statement following the PERFORM
statement. If the condition is true at the time that the PERFORM
statement is encountered, the specified procedure(s) are not éxecuted.

FORMAT 4: Format U4 is used to augment the value of one oOr more

ool eI

identifiers or index-names during the execution of a PERFORM statement.

When executing a Format 4 PERFORM statement, the initial wvalues of
identifier—z (index~name-2) and identifier-5 (index—name—S) -must be

object of the BY option. Also, when “index-names are used, the FROM and
BY clauses have the same effect as in a SET statement (see "Table
Handling").

Durlng executlon of the PERFORM statement, reference to index-names
of times the procedures are to be executed. Changing the value of
index-names or identifiers of the VARYING option or identifiers of the
BY option, however, will change the number of times the procedures are
executed. :

When one identifier is varied, the following is the segquence of : \ /
events:

1. Identifier-1 is set equal to its starting value, identifier-2 or
literal-2.

2. If condition~1 is false, the specified procedure(s) are executed
: once.

3. The value of identifier-1 is augmented by the specified increment
or decrement, identifier-3 or literal-3, and condition-<l is
evaluated again.

4. Steps 2 and 3 are repeated, if necessary, until the condition is
true. When the condition is true, control passes directly to the
statement following the PERFORM statement. If the c¢ondition is
true for the starting value of identifier~i, the procedure(s) are
not executed, and control passes directly to the statement
following the PERFORM statement.

Chart 2 is a flowchart illustrating the logic of the PERFORM
statement when one identifier is varied.

When two identifiers are varied, the following is the sequence of
eventss

1. Identifier-1 and identifier-4 are set to their initial values,
identifier-2 (or literal-2) -and identifier-5 (or literal-5),
respectively. :

2. Condition~1l is evaluated: if true, control is passed to the

statement following the PERFORM statement; if false, condition-2 is ;
evaluated. p—y

172 Part IV -- Procedure Division



PERFORM Statement

3. If condition-2 is false, procedure-name-1 through procedure-name-2
(if specified) is executed once.

4. TIdentifier-4# is augmented by identifier-6 (or literal-6), and
condition-2 is evaluated again.

5. If condition-2 is false, steps 3 and U are repeated.

6. If condition-2 is true, identifier-4 is set to its initial value,
identifier-5.

7. TIdentifier-1 is augmented by identifier-3 (or literal-3).

8. Steps 2 through 7 are repeated until condition-1 is true.

At the termination of the PERFORM statement, if condition-1 was true
when the PERFORM statement was encountered, identifier-1 and
identifier-4 contain their initial values., Otherwise, identifier-1 has
a value that differs from its last used setting by an increment or
S1sldecrement, as the case may be.

Chart 3 is a flowchart illustrating the logic of the PERFORM
statement when two identifiers are varied.

For three identifiers, the mechanism is the same as for two
identifiers except that identifier-7 goes through the complete cycle
each time that identifier-4 is augmented by identifier-6 or literal-6,
which in turn goes through a complete cycle each time identifier-1 is
varied.

Chart 4 is a flowchart illustrating the logic of the PERFORM
statement when three identifiers are varied.

SEGMENTATION INFORMATION: A PERFORM.statement appearing in a section
whose priority is less than the segment limit can have within its range
only one .of the following:

1. Sections each of which has a priority number less than 50

2. Sections wholly contained in a single segment whose priority number
is greater than 49

A PERFORM statement appearing in a section whose priority number is
equal to or greater than the segment limit can have -within its range
only one of the following:

1. Sections each of which has the same priority number as that
containing the PERFORM statement

2. Sections with a priority number less than the segment limit

When a procedure-name is a segment with a priority number greater
than 49 is referred to by a PERFORM statement contained in a segment
with a different priority number, the segment referred to is made
available in its initial state for each execution of the PERFORM
statement (see "Segmentation®).

Procedure Branching Statements 173



PERFORM Statement

Chart 2. Logical Flow of Option 4 PERFORM Statement Varying One
Identifier

i VAL I T IS
* EXECUTION OF #*
: PERFORM STMT #

dekk ke kR Rk kkkok

FEEEAB2 R AR ARk
* *
IDENTIFIER-1 *
EQUAL TO ITS +*
FROM VALUE :

*

EE RS EEL LS E TR

EX Y

¥,
c2 *,
o *, FERRCI Rk Rk
¥ TEST *, TRUE * *
r-~>*.‘CONDITION-1*.*——-—-———>* EXIT :

. . ¥ LR IR PR
*, L
*FALSE

v
FRAEEDD KRR R R Rk

EXECUTE
PROCEDURE-1
THRU _

PROCEDURE-
LA EELI2E TS T TS

XA
XN

J/
bahabio L EEEETE T
* *

AUGMENT

*rERRREAkkkd koK

174 Part IV -- Procedure Division




Chart 3.

Identifiers

SR T T T

* EXECUTION OF
* PERFORM STMT

EX xS

EEEEFT T P ST T

v
Fokokokk B sk ko ok kR
* *
* IDENTIFIER-1 *
* IDENTIFIER-4 *
*SET TO INITIAL *
* FROM VALUE *
#okkkok ARk kR Rk koK ok

ek
* *
* C1 *->

* *
*REK v
*

Cc1 *.
o* *, FERRC2E R EEEE
. ¥ TEST *, TRUE *
*.*CONDITION~1‘.*—-—-————): EXIT *
¥, L e T T
*, L%
*FALSE
¥,
Dl .
¥ *.
% TEST *. TRUE
—~>*.*CONDITION—Z‘.*————-—-———-—*———m
.*- o
*. .
*FALSE
v
LS A E LT PR S dk kKB kR Rk ko
* * * *
* EXECUTE * *IDENTIFIER-4 TO*
* PROCEDURE-1 * * ITS INITIAL *
* THRU * * FROM VALUE *
* PROCEDURE- * * *
L L L LRI L e R T T L
v v
RRAARTL Rk R AR Rk E EREREPLEE KRR KRRAE
* * * *
* AUGMENT * * AUGMENT *
l———* IDENTIFIER-4 * * IDENTIFIER-1 *
* WITH ITS BY : : WIT% ITS BY :
R P e e e T EERRRR KRR kR
v
LTS
* *
* Cl *
* *
*hEE

PERFORM Statement

Logical Flow of Option 4 PERFORM Statement Varying Two

Procedure Branching Statements

175



PERFORM Statement

Chart 4. Logical Flow of Option 4 PERFORM Statement Varying Three
Identifiers

AR NRE R KRR E
* EXECOTION OF *
: PERFORM STMT :

dkkkkd Rk ko khkk

v
EE RS- PRS2 TS
* IDENTIFIER-1 *
* IDENTIFIER~U *
ER: *
NITIAL #*
* FROM *
LEEEETET S ER LS E]

<
B
=
)
0

v

c2 *,
*EEk . ok *. FRERCI*RR kR RREE
* * ¥ TEST *, TROE *
* C2 #———->%, CONDITION-1 ,*——— - % EXIT *
* * *, . * *
T *, ok L T e T
o ¥
*FALSE
¥,
D2 *,
ETT LY ) *,
* * o* TEST *, TRUE
* D2 #*——~_D>%, CONDITION-2 .*
*- * *, Lx
ETTTS *, oF
. o ¥
*FALSE
k.
E2 .
. *.
o ¥ TEST *. TRUE
~~>*..CONDITION~3*.*—‘—~a‘-—~~~~—---~
KN o
- l‘
*FALSE
v v
ARRKKFIRE AR R Rk EER TR T TS EkkAAPLRRER AR kAR
+ * * SET * SET *
* EXECUTE * * IDENTIFIER-7 & *IDENTIFIER-4 TO*
*  PROCEDURE-1 . # *TO _ITS INITIAL * # ITS INITIAL *
* THRU * * FROM VALUE * * FROM VALUE *
* PROCEDURE~2 * * L% * *
FR LTt T T T TR R T L ST P e L R T
v ks
FRERKGLAE KRR ERRES EEREAGISRER R R R kR FERARAGYREREE KRR
* * * * * *
* AUGMENT * * AUGMENT * * AUGMENT *
~——~% IDENTIFIER-7 * * IDENTIFIER-4 * * IDENTIFIER~1 *
: WITH ITS BY : : WITHAITS BY : : WITH ITS BY :
T TEET TE L P Y EE Y T T PEETI Rt PR Y 2
v
EXET) *kkk
* * * *
* D2 * * C2 o+
* * * *
YT LY

176 Part IV -- Procedure Division



STOP/EXIT Statements

STOP Statement

The STOP statement halts the object program either permanently or
temporarily.

Format

RUN
STOP
literal

e ST
| PSR S Sopum——

|
|
|
|
|

When the RUN option is used, the execution of the object program is
terminated, and control is returned to the system.

If a STOP statement with the RUN option appears in an imperative
statement, it must appear as the only or last statement in a sequence of
imperative statements. All files should be closed before a STOP RUN
statement is issued.

When the literal option is used, the literal is communicated to the
operator. The program may be resumed only by operator intervention.
Continuation of the object program begins with the execution of the next
statement in sequence.

The literal may be numeric or nonnumeric, or it may be any figurative
constant except ALL.

EXIT Statement

The EXIT statement provides a common end point for a series of
procedures.

Format

paragraph—-name.

R

R s s

It is sometimes necessary to transfer control to the end point of a
series of procedures. This is normally done by transferring control to
the next paragraph or section, but in some cases this does not have the
required effect. For instance, the point to. which control is to be
transferred may be at the end of a range of procedures governed by a

Procedure Branching Statements 177



EXIT Statement

PERFORM cor at the end of a declarative section. The EXIT statement is
provided to enable a procedure-name to be associated with such a point.

If control reaches an EXIT paragraph and no associated PERFORM or USE
statement is active, control passes through the EXIT point to the first
sentence of the next paragraph.

The EXIT statement must be preceded by a paragraph-name and be the
only statement in the paragraph.

178 Part IV -- Procedure Division

\5—9



MOVE Statement

DATA-MANTIPULATION STATEMENTS

Movement and inspection of data are implicit in the functioning of
several of the COBOL statements. These statements are: MOVE, EXAMINE,

MOVE Statement

The MOVE statement is used to transfer data from one area of storage
to one or more other areas.

Format 1

identifier-1
MOVE

} TO identifjer-2 [identifier-3]...
literal

o= e . s s e g e oy
hin s e e et . el e

-

Format 2

MOVE

CORRESPONDING
identifier-1 TO identifier-2
CORR

o e e o o g e
[ S S

In Format 1, identifier~1 and literal represent the sending area;
jdentifier-2, identifier-3, ... represent the receiving areas.

The data designated by literal or identifier-1 is moved first to
identifier—-2, then to identifier-3 (if specified), etc.

An index data item cannot appear as an operand of a MOVE statement.

In Format 2, the CORRESPONDING option is used to transfer data
between items of the same name simply by specifying the group items to
which they belong.

Neither identifier may be a level-66, level-77, or level-88 data
item-

Data items from each group are considered CORRESPONDING when they
have the same name and qualification, up to but not including
identifier-1 and identifier-2.

At least one of the data items of a pair of matching items must be an
elementary data item.

Each elementary item containing an OCCURS, REDEFINES, USAGE IS INDEX,
or RENAMES clause is ignored. However, either identifier may have a

Data-Manipulation Statements 179



MOVE Statement

REDEFINES or OCCURS clause in its description or may be subordinate to a
data item described with these clauses.

General Rules Applyving to Any MOVE Statement:

1. Any move in which the sending and receiving items are both elemen-
tary items is an elementary move. Each elementary item belongs to
one of the following catedories: numeric, alphabetic,
alphanumeric, numeric edited, or alphanumeric edited (see "PICTURE
Clause" in "Data Division"). Numeric literals belong to the
category numeric; nonnumeric literals belong to the category
alphanumeric.

2. When an alphanumeric edited, alphanumeric, or alphabetic item is a
receiving item:

a. Justification and any necessary filling of unused character
positions takes place as defined under the JUSTIFIED clause.
Unused character positions are filled with spaces.

b. If the size of the sending item is greater than the size of the
receiving item, the excess characters are truncated after the
receiving item is filled.

c. If the sending item has an operational sign, the absolute value
is used.

3. When a numeric or numeric edited item is a receiving item:

a. Alignment by decimal point and any necessary zero filling of
unused character positions takes place, except when zeros are
replaced because of editing requirements.

b. The absolute value of the sending item is used if the receiving
item has no operational sign.

c. If the sending item has more digits to the left or right of the
decimal point than the receiving item can contain, excess
digits are truncated,

d. The results at object time may be unpredictable if the sending
item contains any nonnumeric characters.

4, Auy necessary conversion of data from one form of internal
representation to another takes place during the move, along with
any specified editing in the receiving item.

5. Any move that is not an elementary move is treated exactly as
though it were an alphanumeric elementary move, except that there
is no conversion of data from one form of internal representation
to another.

6. When the sending and receiving operands of a MOVE statement share a
part of their storage (that is, when the operands overlap), the
result of the execution of such a statement is unpredictable.

There are certain restrictions on elementary moves. These are shown
in Table 15.

180 Part IV -- Procedure Division



;

MOVE Statement

Table 15, Permissible Moves

| Source Field
L

T T T T T b
Receiving Fleldl [ [ T A

-_+__+__ —_—t e

T

|Group (GR) 1Y |y |Y |y |y |Y2|yr

] g =gt 4=

|Alphabetic (AL) 1Y |Y |Y IN [N N |¥

- - T s et e

|Alphanumeric (AN) Y |Y |Y |Y“|Y"|Y“|Y

L ]

I T

| External Decimal (ED) Y1 N |Y2|Y |Y ]Y |Y2

} JN IS I I SN W |
- T 7T T T~ T

|Binaxry (BI) YN |Y2|Y |Y |Y |Y2

L 1 2

v L]

|Numeric Edited (NE)

|
- - o B et
|Alphanumeric Edited (ANE) 1Y |Y |Y [N |N [N |Y
b 1 1 4 4 1 4 1
r . | | L) T T T T
| ZEROS (numeric or | TR I R I T |
| alphanumeric) Y |N {Y [¥Y3|¥3|Y3|Y
L 1 1 ] 1 1 [ 1
r- T T——T 7T T T
| SPACES (AL) {Y |¥Y |¥ [N |N |N |Y

—— B et e e

| HIGH-VALUE, LOW-VALUE, QUOTES Y IN |Y |N [N |N jY
— b—g g4 ——{—1
|ALL literal Y JY |Y |¥5|¥Y5{Y5|Y
L - [ 3 1 1 iy 1 1
T . . T ) i T T T L]
|Numeric Literal |{Y*|N |Y2|Y |Y |Y |Y¥=2
L i 1 4 1 4 4
r . . 1 1 i) 1 T ]
| Nonnumeric Literal 1Y Y Y |¥YS|YS|Y

4 4 3 1 )

|1Move without conversion (11ke AN to AN)
|20nly if the decimal point is at the right of the least significant

| 2Numeric move

j|#The alphanumeric field is treated as an ED (integer) field

|>The literal must consist only of numeric characters and is treated as
an ED integer field

*.

Y I

| digit |
|

|

|

]

J

|
L

Data-Manipulation Statements 181



EXAMINE Statement

EXAMINE Statement

The EXAMINE statement is used to count the number of times a
specified character appears in a data item and/or to replace a character
with another character.

r |}
| Format 1 |
L

b 1
| |
| UNTIL FIRST |
| EXAMINE identifier TALLYING ALL literal-1i |
| LEADING |
| |
| [REPLACING BY literal-2] i
] !
r - - -———=7
| Format 2 |
L g
3 1
| |
| 5 ALL l |
l LEADING [
| EXAMINE identifier REPLACING l FIRST s literal-1 |
| UNTIL FIRST |
| I
i BY 1literal-2 |
| i
L _— J

In all cases, the description of identifier must be such that its
usage is display (explicitly or implicitly).

When identifier represents a nonnumeric data item, examination starts
at the leftmost character and proceeds to the right. Each character in
the data item is examined in turn.

When identifier represents a numeric data item, this data item must
consist of numeric characters, and may possess an operational sign.
Examination starts at the leftmost character and proceeds to the right.
Each character is examined in turn.

If the letter *S' is used in the PICTURE of the data item description
to indicate the presence of an operational sign, the sign is ignored by
the EXAMINE statement.

Each literal must consist of a single character belonging to a class
consistent with that of the identifier; in addition, each literal may be
any figurative constant except ALL. If identifier is numeric, each
literal must be an unsigned integer or the figurative constant ZERO
(ZEROES, ZEROS),

When Format 1 is used, an integral count is created which replaces
the value of a special register called TALLY, whose implicit description
is that of an unsigned integer of five digits (see "Language
Considerations").

1. When the ALL option is used, this count represents the number of
occurrences of literal-1l.

182 Part IV -- Procedure Division



EXAMINE Statement

2, When the LEADING option is used, this count represents the number
of occurrences of literal-l prior to encountering a character other
than literal-1.

3. When the UNTTIL FIRST option is used, this count represents all
characters encountered before the first occurrence of literal-1.

Whether Format 2 is used, or the REPLACING option of Format 1, the
replacement rules are the same. They are as follows:

1. WwWhen the ALL option is used, literal-2 is substituted for each
occurrence of literal-1.

2. When the LEADING option is used, the substitution of literal-2 for
each occurrence of literal-l terminates as soon as a character
other than literal-1 or the right-hand boundary of the data item is
encountered.

3. When the UNTIL FIRST option is used, the substitution of literal-2
terminates as soon as literal-1 or the right-hand boundary of the
data item is encountered.

4. When the FIRST option is used, the first occurrence of literal-1 is
replaced by literal-2.

Specific EXAMINE statements showing the effect of each statement on
the associated data item and the TALLY are shown in Table 16.

Table 16. Examples of Data Examination

r T T T 1
| | | | Result-}
I I I |ing I
I | | |value |
| |ITEM-1 |[Data | of |
| EXAMINE Statement | (Before) | (After) | TALLY |
| S . 1 1 1 ___,_‘
H T T T
|EXAMINE ITEM-1 TALLYING ALL 0 101010 [101010 | 3 |
1 } 4 4 ]
T T 1 1 1
|EXAMINE ITEM-1 TALLYING ALL 1 REPLACING BY 0 {101010 [000000 | 3 i
L : + —
L T

| EXAMINE ITEM-1 REPLACING LEADING "#" BY SPACE|**7000 7000 1 + J
i

H T 1
| EXAMINE ITEM-1 REPLACING FIRST "#" by "§" l**l.gu 1$*1.9u ! + 1|
L —_ - —_—

-

|+ unchanged J
L

Data-Manipulation Statements 183



TRANSFORM Statement

N
- ]
-
.
-
\ ,

G

-

184 ©Part IV ~-- Procedure Division



TRANSFORM Statement

4

185

Data~-Manipulation Statements



TRANSFORM Statement

1vision

Part IV -- Procedure D

186



PASIN

OPEN Statement

INPUT/OUTPUT STATEMENTS

The flow of data through the computer is governed by the Disk
Operating System. The COBOL statements discussed in this section are
used to initiate the flow of data to and from files stored on external
media and to govern low-volume information that is to be obtained from
or sent to input/output devices such as a card reader or console
typewriter.

The Disk Operating System is a record processing system. That is,
the unit of data made available by a READ or passed along by a WRITE is
the record. The COBOL user need be concerned only with the use of
individual records; provision is automatically made for such operations
as the movement of data into buffers and/or internal storage, validity
checking, error correction (where feasible), unblocking and blocking,
and volume switching procedures.

Discussions in this section use the terms volume and reel. The term
volume applies to all input/output devices. The term reel applies only
to tape devices. Treatment of mass storage devices in the sequential
access mode is logically equivalent to the treatment of tape files.

Note: The WRITE statement with the BEFORE/AFTER ADVANCING opticn is
referred to in some of the discussions that follow as the WRITE

OPEN Statement

The OPEN statement initiates the processing of input, output, and
input-output files. It performs checking and/or writing of labels and
other input/output operations.

Format

REVERSED
OPEN [INPUT {file-name }aael

WITH NO REWIND
[QUTPUT {file-name [WITH NO REWIND] }...]

[I-0 {file-name} ...]

e e S
b o e e e et e et e et i s wed

At least one of the options INPUT, OUTPUT, or I-O must be specified.
However, there must be no more than one instance of each option in the
same statement, although more than one file-name may be used with each
option. These options may appear in any order.

Input/Output Statements 187



OPEN Statement

The I-O option pertains only to mass storage files.

The file-name must be defined by a file description entry in the Data -
Division.

The OPEN statement must not specify a sort-file; an OPEN statement
must be specified for all other files. The OPEN statement for a file
must be executed prior to the first READ, SEEK, §I
statement for that file. A second OPEN statement for a file cannot be
executed prior to the execution of a CLOSE statement for that file. The
OPEN statement does not obtain or release the first data record. A READ
or WRITE statement must be executed to obtain or release, respectively,
the first data record.

When checking or writing the first label, the OPEN statement causes
the user's beginning label subroutine to be executed if one is specified
by a USE sentence in the Declaratives.

The REVERSED and the NO REWIND options can be used only with
sequential single reel files. The REVERSED option may be specified only
for a file containing fixed-length (F mode) records.

Files with nonstandard header labels must not be opened for reversed
reading unless the last header label is followed by a tape marke.

For tape files, the following rules apply:

1. Wwhen neithexr the REVERSED nor the NO REWIND option is specified,
execution of the OPEN statement causes the file to be positioned at
its beginning.

2. When either the REVERSED or the NO REWIND option is specified,
execution of the OPEN statement does not cause the file to be
repositioned., When the REVERSED option is specified, the file must
have been previously positioned at its end. When the NO REWIND
option is specified, the file must have been previously positioned
at its beginning.

When the REVERSED option is specified, subsequent READ statements for
the file make the data records of the file available in reversed order;
that is, starting with the last record.

If an input file is designated with the OPTIONAL clause in the File
Control paragraph of the Environment Division (sequential file
processing), the clause is treated as comments, The desired effect is
achieved by specifying the IGN parameter in the ASSGN control statement
for the file. If the file is not present, the first READ statement for
this file causes control to be passed to the imperative statement in the
AT END phrase.

The I-0 option permits the opening of a mass storage file for both
input and output operations. Since this option implies the existence of s’

188 Part IV -- Procedure Division



START Statement

the file, it cannot be used if the mass storage file is being initially

created.

When the I-O option is used, the execution of the OPEN statement

includes the following steps:

1. The label is checked.

2. The user's label subroutine, if one is specified by a USE sentence,

is executed.

3. The label is written.

Input/OCutput Statements

i8¢9



SEEK Statement

SEEK Statement

The SEEK statement is meant to initiate the accessing of a mass
storage data record for subsequent reading or writing. It is used to
optimize programming efficiency.

Format

b s s e e

A SEEK statement pertains only to direct files in the random access
mode and may be executed prior to the execution of a READ or WRITE
statement.

The file—-name must be defined by a file description entry in the Data
Division.

The SEEK statement uses the contents of the data-name in the ACTUAL
KEY clause for the location of the record to be accessed. At the time
of execution, the determination is made as to the validity of the
contents of the ACTUAL KEY data item for the particular mass storage
file. If the key is invalid, when the next READ or WRITE statement for
the associated file is executed, control will be given to the
imperative-statement in the INVALID KEY option.

Two SEEK statements for fhe same direct file may logically follow
each other. Any validity check associated with the first SEEK statement
is negated by the execution of the second SEEK statement.

If the contents of the ACTUAL KEY are altered between the SEEK
statement and the subsequent READ or WRITE statement, any validity check
associated with the SEEK statement is negated, and the READ or WRITE
statement is processed as if no SEEK statement preceded it.

190 Part IV -- Procedure Division



READ Statement

READ Statement

The functions of the READ statement are:

1. For sequential file processing, to make available the next logical
record from an input file and to give control to a specified
imperative-statement when end-of-file is detected.

2. For random file processing, to make available a specific record
from a mass storage file and to give control to a specified
im eratlve—statement if the contents of the associated ACTUAL KEY
' data item are found to be invalid.

Format

READ file-name RECORD [INTO identifier)

AT END
imperative-statement
INVALID KEY

—.—-—_.._———-"-—-‘
e e e e e

An OPEN statement must be executed for the file prior to the execu-
tion of the first READ for that file.

When a READ statement is executed, the next logical record in the
named file becomes accessible in the input area defined by the
associated record description entry.

The record remains in the input area until the next input/output
statement for that file is executed. No reference can be made by any
statement in the Procedure Division to information that is not actually
present in the current record. Thus, it is not permissible to refer to
the nth occurrence of data that appears fewer than n times. If such a
reference is made, no assumption should be made about the results in the
object program.

When a file consists of more than one type of logical record, these
records automatically share the same storage area; this is equivalent to
an implicit redefinition of the area. Only the information that is
present in the current record is accessible.

FILE-NAME: The file-name must be defined by a file description entry in
the Data Division.

INTO IDENTIEIER OPTION: The INTO identifier option makes the READ
statement equivalent to a READ statement plus a MOVE statement.
Identifier must be the name of a Working-Storage &%
entry, or an output record of a previously opene
option is used, the current record becomes available in the input area,
as well as in the area specified by identifier. Data will be moved into
identifier in accordance with the COBOL rules for the MOVE statement
without the CORRESPONDING option.

AT END OPTIQN: The AT END option must be specified for all files in the
sequential access mode. If, during the execution of a READ statement,
the logical end of the file is reached, control is passed to the
imperative-statement specified in the AT END phrase. After execution of
the imperative-statement associated with the AT END phrase, a READ
statement for that file must not be given without prior execution of a
CLOSE statement and an OPEN statement for that file.

Input/Output Statements 191



READ Statement

If an input file is designated with the OPTIONAL clause in the File
Control paragraph of the Environment Division (sequential file
processing), the clause is treated as comments. The desired effect is
achieved by specifying the IGN parameter in the ASSGN control statement

for the file. If the file is not present, the first READ statement for R
this file causes the imperative-statement in the AT END phrase to be
executed. )

If, during the processing of a multivolume file in the sequential
access mode, end-of-volume is recognized on a READ, the following
operations are carried out:

1. The standard ending volume label procedure and the user's ending
volume label procedure, if specified by the USE sentence. The
order of execution of these two procedures is specified by the USE
sentence.

2. A volume switch,.

3. The standard beginning volume label procedure and the user's
bedinning volume label procedure, if specified. The order of
execution is again specified by the USE sentence.

4. The first data record of the new volume is made available.

INVALID KEY OPTION: If ACCESS IS RANDOM is specified for the file, the

contents of the ACTUAL KEY for the file must be set to the
desired value before the execution of the READ statement.

Only the track specified in the ACTUAL KEY is searched for the record
being read.

For a randomly accessed file, the READ statement implicitly performs L)
the functions of the SEEK statement, unless a SEEK statement for the N
file has been executed prior to the READ statement. ’

The INVALID KEY option must be specified for files in the random
access mode. The imperative-statement following INVALID KEY is executed
when the contents of the ACTUAL KEY ¢ field are invalid.

The key is considered invalid under the following conditions:

1. For a direct file that is accessed randomly, when the record is not
found within the search limits, or when the track address in the
ACTUAL KEY field is ocutside the limits of the file.

WRITE Statement

The WRITE statement releases a logical record to an output file. It
can also be used for vertical positioning of a print file. . For
sequentially accessed mass storage files, the WRITE statement passes
control to a specified imperative-statement if the file limit is
exceeded. For randomly accessed mass storage files, the WRITE statement
passes control to a s 1fi imperative-statement if the contents of
the associated ACTUAL KEY data item are found to be invalid.

192 Part IV -- Procedure Division



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
WRITE Statement

Format 1
WRITE record-name [FROM identifier-1]
BEFORE identifier-2 LINES
ADVANCING integer LINES
AFTER mnemonic-name

- e e e = e s P S s e e g e
e s s e e et S . s S . . b s

- - 1
| Format 3 |
pomm e —— 4
| i
| WRITE record-name [FROM identifier-11] |
| |
| INVALID KEY imperative-statement |
] !

An OPEN statement for a file must be executed prior to executing the.
first WRITE statement for that file.

For files in both the sequential and random access modes, the logical
record released is no longer available after the WRITE statement is
executed.

RECORD-NAME: The record-name is the name of a logical record in the

File Section of the Data Division and must not be part of a sort-file.

FROM_OPTION: When the FROM option is written, the WRITE statement is
equivalent to the statement MOVE identifier-1 TO record-name followed by
the statement WRITE record-name. Data is moved into record-name in
accordance . with the COBOL rules for the MOVE statement without the
CORRESPONDING option. Identifier-1 should be defined in the

Working-Storage Section, | or in another FD.

Input/Output Statements 193



WRITE Statement

FORMAT 1 AND FORMAT 2: Formats 1 and 2 are used only with standard
sequential files.,

The ADVANCING options allow control of the vertical
p051t10n1ng of each record on the printed page. If the ADVANCING

: option is not used, automatic advancing is prOV1ded to cause
51ngle spacing. If the ADVANCING or POSITIONING option is used, auto-
matic advancing is overridden.

When the ADVANCING option is written for a record in a
file, every WRITE stat rec rds in the same file must also
contain one of these options. The: ADVANCING options may

not both be specified for a file.

When the ADVANCING 6 ption is used, the first character
in each logical record must be reserved by the user for the
control character. The compiler will generate instructions to insert
the appropriate carriage control character as the first character in the

user's responsibility to see that the
on the carriage control tape.

Format 1: In the ADVANCING option, when identifier-2 is used, it must
be the name of a nonnegative numeric elementary item (less than 100) -
described as an integer. If identifier-2 is specified, the printer page

is advanced the number of lines contained in the identifier.

When integer is used in the ADVANCING option, it must be nonnegatlve,
and less than 100. If integer is specified, the printer page is
advanced the number of lines equal to the value of integer.

When the mnemonic-name option is used in the ADVANCING optiom, it
must be defined as a functlon-name in the Spec1al Names paragraph of the
Environment Division, 1 nd
to suppress spacing.

The meaning of each function-name is shown in Table 19.

Table 19. Action Taken for Function-Names -- ADVANCING Option

r T - 1

| Function-name | Action Taken

——————————————— oo :

|cCsP | Suppress spacing |

i S, - ,'

r ]

|c01 through C09| Skip to channel 1 through 9, respectively |

k + i

|C10 through C12| skip to channel 10, 11, and 12, respectively |

ks == 1
|
|
1

If the BEFORE ADVANCING option is used, the record is written before
the printer page is advanced according to the preceding rules.

If the AFTER ADVANCING option is used, the record is written after
the printer page is advanced according to the preceding rules.

194 Part IV -- Procedure Division



WRITE Statement

EXHIBIT, WRITE K PIONT
ADVANCING statements all cause the printer to space before printing.

However, a simple WRITE statement without any option given, or a WRITE
BEFORE ADVANCING statement both cause the printer to space after
printing Therefore, it is possible that mixed DISPLAY statements,

E T8 ientsy and simple WRITE statements or WRITE BEFORE

s within the same program may cause overprinting.

:AbﬁANCINg&Sié%ement

FORMAT 3: Format 3 is used for randomly or sequentially accessed mass
storage files.,

Input/Output Statements 195




Order No. GC28-6394-2, Page Revised #/15/71 by TNL GN-0436
WRITE Statement '

If ACCESS IS RANDOM is specified for the file, the contents of the
ACTUAL or NOMINAL KEY field for the file must be set to the desired ,
value before the execution of a WRITE statement. For. a direct file, the { )
track specified in the ACTUAL KEY field is searched for space for the R
record to be written.

The INVALID KEY phrase must be specified for a file that resides on a
mass storage device. Control is passed to the imperative-statement
following INVALID KEY when the following conditions exist:

1. For a mass storage file in the sequential access mode opened as
OUTPUT, when an attempt is made to write beyond the limit of the
file.

2. For a direct file opened as I-O or OUTPUT, if access is random and
a record is being added to the file, when the track address
specified in the ACTUAL KEY field is outside the limits of the
file.

3. For a direct file opened as I-0, if access is random and a record
is being updated, control is passed to the imperative-statement
following INVALID KEY when the record is not found, or when the
track number in the ACTUAL KEY field is outside the limits of the
file.

RANDOMLY ACCESSED DIRECT FILES: The WRITE statement performs the
function of a SEEK statement, unless a SEEK statement for this record
was executed prior to the WRITE statement.

For a randomly accessed direct file that is opened I-0, the following
considerations apply:

o If A or D is specified in the ASSIGN clause system-name, then:

(1) a WRITE statement updates a record if the preceding
input/output statement was a READ statement for a record with
the same ACTUAL KEY.

(2) a WRITE statement adds a new record to the file, whether or not
a duplicate record exists, if the preceding READ statement was
not for a record with the same ACTUAL KEY.

196 Part IV -- Procedure Division



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
WRITE Statement

MULTIVOLUME SEQUENTIAL FILES: The discussion below applies to all
multivolume tape files and to multivolume mass storage files in the
sequential access mode.

After the recognition of an end-of-volume on a multivolume OUTPUT or
I-0 file in the sequential access mode, the WRITE statement performs the
following operations:

1. The standard ending volume label procedure and the user's ending
volume label procedure if specified by a USE sentence. The order
of execution of these two procedures is specified by the USE
sentence.

2. A volume switch.
3. The standard beginning volume label procedures and the user's

beginning volume label procedure if specified by the USE sentence.
The order is specified by the USE sentence.

Input/Output Statements 196.1






Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
REWRITE Statement

ACCEPT Statement

. The function of the ACCEPT statement is to obtain data from the
{ : system logical input device (SYSIPT), or from the CONSOLE.

Input/Output Statements 197



ACCEPT Statement

Format

ACCEPT identifier [FROM

[
-name

[ —— — e e = iy
b e e i s e s o

Identifier may be either a fixed-length group item or an elementary
alphabetlc, alphanumerlc, external decima
item. Identifier may not be any Special Register except TALLY. The
data is read and the appropriate number of characters is moved into the
area reserved for identifier. No editing or error checking of the
incoming data is done.

If the input/output device specified by an ACCEPT statement is the
same one designated for a READ statement, the results may be
unpredictable. .

Mnemonic-name may assume either the meaning SYSIPT or CONSOLE.
Mnemonic-name must be specified in the Special-Names paragraph of the
Environment Division. If mnemonic-name is associated with CONSOLE,
identifier must not exceed 255 character positions in length. If the
FROM option is not specified, SYSIPT is assumed.

When an ACCEPT statement with the FROM mnemonic-name for CONSOLE

option is executed, the following actions are taken:

1. A system generated message code is automatically displayed followed
by the literal "AWAITING REPLY".

2. Execution is suspended. When a console input message is identified
by the control program, execution of the ACCEPT statement is
left justified regardless of the PICTURE. If the fleia-fg—ﬁot
filled the low-order positions may contain invalid data.

If mnemonic-name is associated with SYSIPT:
, an input record size of 80 is assum ize
accepting data item is less than 80 characters, the data must appear as
the first set of characters within the input record. If the size of the
accepting data item is greater than 80 characters, as many input records
as necessary are read until the storage area allocated to the data item
is filled. 1If the accepting data item is greater than 80 characters,
but is not an exact multiple of 80, the remainder of the last input
record is not accessible, »

DISPLAY Statement

The function of the DISPLAY statement is to write data on an output
device.

198 Part IV -- Procedure Division



DISPLAY Statement

1
Format |
; i
literal-1 literal-2
DISPLAY cos
identifier-1 identifier-2 |

l | |

mnemonlc-name S

v .

Mnemonic-name must be specified in the Special-Names paragraph of the
Environment Division. Mnemonic-name may be associated only with the
reserved words CONSOLE, SYSPCH, SYSPUNCH, or SYSLST.

When the UPON option is omitted, the system list device (SYSLST) is
assumed.

A maximum logical record size is assumed for each device. For
CONSOLE (the system logical console device), the maximum is 100
characters. For SYSLST (the system logical output device), the maximum
is 120 characters. For SYSPCH or SYSPUNCH (the system punch device),
the maximum is 72 characters, with positions 73-80 used for the
PROGRAM-ID name,

If the total character count of all operands is less than the maximum
(oxr 72 for SYSPCH or SYSPUNCH), the remaining character positions are
padded with blanks. If the count exceeds the maximum size, operands are
continued in the next record. As many records as necessary are written
to display all the operands specified. Those operands pending at the
time of the break are split between lines if necessary.

Identifiers described as USAGE COMPUTATIONAL,; ]
. are converted automatically to

; ind binary items are converted to external
Signed values cause a low-order sign overpunch to be

ecimal.
developed.

3. No other data items require conversion.

If a figurative constant is specified as one of the operands, only a
single occurrence of the figurative constant is displayed.

Identifier may not be any Special Register except TALLY.

When a DISPLAY statement contains more than one operand, the data
contained in the first operand is stored as the first set of characters,
and so on, until the output record is filled. This operation continues
until all information is displayed. Data contained in an operand may
extend into subsequent records.

Input/Output Statements 199



CLOSE Statement

Note: DISPLAY, %and WRITE AFTER
ADVANCING statements all cause the printer to space before printing.
However, a simple WRITE statement without any option given, or a WRITE
BEFORE ADVANCING statement both cause the printer to space after

ore, it is possible that mixed DISPLAY statements,

, and simple WRITE Statements or WRITE BEFORE

ents within the same program may cause overprinting.

CLOSE_Statement

The CLOSE statement terminates the processing of input and output
reels, units, and files, with optional rewind and/or lock where
applicable.

Format
REEL NO REWIND
CLOSE file-name-1 [WITH )|
UNIT LOCK

REEL ' NO REWIND
[file-name-2 (WITH { } 11 ...

UNIT LOCK

[ e o e S s e S e S WY e g
b s . s s S e S e et st i . e

Each file-name is the name of a file upon which the CLOSE statement
is to operate; it must not be the name of a sort-file. The file-name
must be defined by a file-description entry in the Data Division.

The REEL and WITH NO REWIND options are applicable only to tape
files. The UNIT option is applicable only to mass storage files in
sequential access mode.

For purposes of showing the effect of various CLOSE options as
applied to various storage media, all 1nput/output files are divided
into the following categories:

1. Unit record volume. A file whose input or output medium is such
that rewinding, units, and reels have no meaning.

2. Sequential single-volume. A sequential file that is entirely
contained on one volume. There may be more than one file on this
volume,

3. Sequential multivolume. A sequential file that may be contained on
more than one volume.

4. Random single-volume., A file in the random access mode that may be
contained on a single mass storage volume.

5. Random multivolume. A file in the random access mode that may be
contained on more than one mass storage volume.

200 Part IV -- Procedure Division



CLOSE Statement

Sequential File Processing

The results of executing each CLOSE option for each type of file are
summarized in Table 22. The definitions of the symbols in the
illustration are given below. Where the definition of the symbol
depends on whether the file is an input or output file, alternate
definitions are given; otherwise, a definition applies to INPUT, OUTPUT,
and I-0O files.

A--Previous Volumes Unaffected

All volumes in the file prior to the current volume are processed
according to standard volume switch procedures except those volumes
controlled by a prior CLOSE REEL/UNIT statement.

B--No Rewind of Current Reel

The current volume is left in its current position.

C-~Standard .Close File

Files Opened as INPUT and I-0O: If the file is positioned at its end
and there is an ending label record, the standard ending label
procedures and the user's ending label procedures (if specified by a
USE sentence) are performed. System closing procedures are then
performed.

If the file is positioned at its end and there is no ending label
record, system closing procedures are performed.

If the file is positioned other than at its end, system closing
procedures are performed but there is no ending label processing. An
INPUT or an I-O file is considered to be at end-of-file if the
imperative-statement in the AT END phrase has been executed and no
CLOSE statement has been executed.

Files Opened as OUTPUT: If an ending label record has been described
for the file, it is constructed and written on the output medium.
System closing procedures are performed.

D--Standaxrd Reel/Unit Lock

This feature has no meaning in this system and is treated as
comments.

E--Standard File Lock

The compiler ensures that this file cannot be opened again during
this execution of the object program.

Input/Output Statements 201



CLOSE Statement

F--Standard Close Volume

Files Opened as INPUT and I-0: The following operations are
performed:

1. A volume switch.

2. The standard beginning volume label procedure and the user's
beginning volume label procedure (if specified by the USE
sentence). The order of execution of these two procedures is
specified by the USE sentence.

3. Makes the next data record on the new volume available to be
read.

Files Opened as QUTPUT: The following operations are performed:

1. The standard ending volume label procedure and the user's ending
volume label procedure (if specified by the USE statement). The
order of execution of these two procedures is specified by the
USE statement.

2. A volume switch.

3. The standard beginﬁing volume label procedure and the user's
beginning volume label procedure (if specified by the USE

statement). The order of execution of these two procedures is
specified by the USE statement.

G-—Rewind

The current volume is positioned at its beginning.
X--Illegal

This is an illegal combination of a CLOSE option and a file type.
The results at object time may be unpredictable.

202 Part IV -- Procedure Division



CLOSE Statement

Table 22, Relationship of Types of Sequential Files and the Options of
the CLOSE Statement

L] L) ] 1
| FILE | | | |
| Type | | I |
| CLOSE | Unit | Sequential | Sequential |
1 Option | Record | Single-Volume | Multivolume

1 [
r L] t H
: CLOSE | c | c, G | C4 G, A

| | 1
| CLOSE | ¢, E | ¢, G, E { ¢, G, E, A
| WITH LOCK | ( | |
| | | |
| CLOSE WITH | x | ¢, B | ¢, By A
| NO REWIND | | !
| | | |
| CLOSE REEL X | X | ¥, G |
[ | | I |
| CLOSE REEL X | X | ¥ D, G | |
| WITH LOCK | | |
| | | | |
| CLOSE REEL X | X | F, B |
| WITH NO REWIND ] [ [
| | I | |
| CLOSE UNIT | X | X | F [
| | | [ [
| CLOSE UNIT | X | x | F, D [
| WITH LOCK | | | I
L N 1 L L J

General Considerations: A file is designated as optional by specifying
the IGN parameter in the ASSGN control statement. If an optional file
is not present, the standard end-of-file processing is not performed.
For purposes of language consistency, the OPTIONAL phrase of the SELECT
clause should be specified for this type of file.

If a CLOSE statement without the REEL or UNIT option has been
executed for a file, the next input/output statement to be executed for
that file must be an OPEN statement.

Random File Processing

The results of executing each CLOSE option for each type of file are
summarized in Table 23. The definitions of the symbols in the figure
are given below. Where the definition depends on whether the file is an
INPUT or OUTPUT file, alternate definitions are given; otherwise, a
definition applies to INPUT, OUTPUT,and I-O files.

H--Standard .Close File

Files Opened as INPUT and I-O: If there is an ending label record,
the ending label record is checked, and the conventional system
closing procedures are performed. If there is no ending label
record, the system closing procedures are performed. For I-0O files,
the label is updated and written.

Files Opened as OUTPUT: if an ending label record has been described
for the file, it is constructed and written on the output medium.
The system closing procedures are performed.

Input/Output Statements 203



CLOSE Statement

J--Standard File Lock

The compiler ensures that this file cannot be opened again during
this execution of the object program.

Table 23, Relationship of Types of Random Files and the Options of the
CLOSE Statement.

k) L] ]
| FILE | l |
I Type | I |
| CLOSE | Random | Random |
|option i Single-Volume | Multivolume |
b { t- {
| | | |
| CLOSE | H l H |
| | ! |

CLOSE i | , |
WITH LOCK | H, J ] H, J |
i . L J

204 Part IV -- Procedure Division



CALL Statement

Subprogram linkage statements are special statements that permit

communication between object programs. These statements are CALL,
ENTRY, GOBACK, and EXIT.

CALL Statement

The CALL statement permits communication between a COBOL object

‘program and one or more COBOL subprograms or other language subprograms.

U N I——

Literal is a nonnumeric literal and is the name of the program that
is being called, or the name of an entry point in the called program.
The program in which the CALL statement appears is the calling program.

Literal must conform to the rules for formation of a program—-name. The

first eight characters of literal are used to make the correspondence
between the called and calling program.

When the called program is to be entered at the beginning of the
Procedure Division, literal must specify the program-name in the
PROGRAM-ID paragraph of the called program, and the called program must
have a USING clause as part of its Procedure Division header if there is
a USING clause in the CALL statement that invoked it.

When the called program is to be entered at entry points other than
the beginning of the Procedure Division, these alternate entry points
are identified by an ENTRY statement and a USING option corresponding to
the USING option of the invoking CALL statement. 1In the case of a CALL
statement with a corresponding ENTRY, literal must be a name other than
the program—name but follows the same rules as those for the formation
of a program-name.

The identifiers specified in the USING option of the CALL statement
indicate those data items available to a calling program that may be
referred to in the called program.

When the called subprogram is a COBOL program, each of the operands
in the USING option of the calling program must be defined as a data
item in the File Section, Working-Storage Section, or Linkage Section.
If the called subprogram is written in a language other than COBOL, the
operands of the USING option of the calling program may additionally be
a file-name or a procedure-name. If the operand of the USING option is
a file-name, the file with which the file-name is associated must be
opened in the calling program.

Names in the two USING lists (that of the CALL in the main program

and that of the Procedure Division header or the ENTRY in the
subprogram) are paired in a one-for-one correspondence.

Subprogram Linkage Statements 205



ENTRY Statement

There is no necessary relationship between the actual names used for
such paired names, but the data descriptions must be equivalent. When a
group data item is named in the USING list of a Procedure Division
header or an ENTRY statement, names subordinate to it in the subpro- \
gram's Linkage Section may be employed in subsequent subprogram
procedural statements.

When group items with level numbers other than 01 are specified,
proper word-boundary alignment is required if subordinate items are
described as COMPUTATIONAL, COMPUTATIONAL-1l, or COMPUTATIONAL-2.

The USING option should be included in the CALL statement only if
there is a USING option in the called entry point, which is either
included in the Procedure Division header of the called program or
included in an ENTRY statement in the called program. The number of
operands in the USING option of the CALL statement should be the same as
the number of operands in the USING option of the Procedure Division
header, or ENTRY statement. If the number of operands in the USING
option of the CALL statement is greater than the number in the USING
option in the called program, only those specified in the USING option
of the called program may be referred to by the called program.

The execution of a CALL statement causes control to pass to the
called program. The first time a called program is entered, its state
is that of a fresh copy of the program. Each subsequent time a called
program is entered, the state is as it was upon the last exit from that
program. Thus, the reinitialization of the following items is the
responsibility of the programmer:

GO TO statements which have been altered

TALLY

Data items

ON statements

PERFORM statements

EXHIBIT CHANGED statements

EXHIBIT CHANGED NAMED statements R

EXHIBIT CHANGED and EXHIBIT CHANGED NAMED operands will be compared
against the value of the item at the time of its last execution, whether
or not that execution was during another CALL to this program. If a
branch is made out of the range of a PERFORM, after which an exit is
made from the program, the range of that PERFORM is still in effect upon
a subsequent entry.

Called programs may contain CALL statements, However, a called
program must not contain a CALL statement that directly or indirectly
calls the calling program.

A called program may not be segmented.

ENTRY Statement

The ENTRY statement establishes an entry point in a COBOL subprogram.

.‘
|
|

Format

ENTRY literal [USING identifier-1 [identifier-2] ...)

o e e g
e

206 Part IV -- Procedure Division

R



",

USING Option

Control is transferred to the ENTRY point by a CALL statement in an
invoking program.

Literal must not be the name of the called program, but is formed
according to the same rules followed for program-names. Literal must

not be the name of any other entry point or program—name in the run
unit.

A called program, once invoked, is entered at that ENTRY statement
whose operand, literal, is the same as the literal specified in the CALL
statement that invoked it.

USING Option

The USING option makes data items defined in a calling program
available to a called program. The number of operands in the USING
option of a called program must be less than or equal to the number of
operands in the corresponding CALL statement of the invoking program.

The USING option may be specified in the CALL statement, the ENTRY
statement, or in the Procedure Division header.

PROCEDURE DIVISION [USING identifier-1 [identifier-2l...].

L 1
| Format 1 (Within a Calling Program) |
i‘ 1
| CALL literal [USING identifier-1 [identifier-2]...]1 |
! |
r 1
| Format 2 (Within a Called Program) |
L i
m 1
|option 1 |
| |
| ENTRY literal [USING identifier-1 [identifier-2]...l |
! _ j
| h
Option 2 |

|

|

I

]

When the USING option is specified in the CALL statement, it must
appear on either the Procedure Division header of the called program, Or
in an ENTRY statement in the called program.

The USING option may be present on the Procedure Division header or
in an ENTRY statement, if the object program is to function under the
control of a CALL statement, and the CALL statement contains a USING
option.

When a called program has a USING option on its Procedure Division
header and linkage was effected by a CALL statement where literal is the
name of the called program, execution of the called program begins with
the first instruction in the Procedure Division after the Declaratives
Section,

Subprogram Linkage Statements 207



USING Option

When linkage to a called program is effected by a CALL statement
where literal is the name of an entry point specified in the ENTRY
statement of the called program, that execution of the called program
begins with the first statement following the ENTRY statement.

Each of the operands in the USING option of the Procedure Division
header or the ENTRY statement must have been defined as a data item in
the Linkage Section of the program in which this header or ENTRY
statement occurs, and must have a level number of 01 or 77. Since the
compiler assumes that each level-01 item is aligned upon a double-word
boundary, it is the programmer's responsibility to ensure proper
alignment.

Wher the USING option is present, the object program operates as
though each occurrence of identifier-1, identifier-2, etc., in the
Procedure Division had been replaced by the corresponding identifier
from the USING option in the CALL statement of the calling program.
That is, corresponding identifiers refer to a single set of data which
is available to the calling program. The correspondence is positional
and not by name.

The following is an example of a calling program with the USING
option:

IDENTIFICATION DIVISION,.
PROGRAM-ID. CALLPROG.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 RECORD-1.

03 SALARY PICTURE S9(5)V99.
03 RATE PICTURE S9V99.
03 HOURS PICTURE S99V9.

PROCEDURE DIVISION.

-

CALL "SUBPROG" USING RECORD-1.

CALL "PAYMASTR" USING RECORD-1.

208 Part IV -- Procedure Division

C

C



C

USING Option

The following is an example of a called subprogram associated with
the preceding calling program:

IDENTIFICATION DIVISION.
PROGRAM-ID. SUBPROG.

DATA DIVISION,.

LINKAGE SECTION.
01 PAYREC.

02 PAY PICTURE S9(5)Vv99.
02 HOURLY-RATE PICTURE S9V99.
02 HOURS PICTURE S99V9.

PROCEDURE DIVISION USING PAYREC.

GOBACK.
ENTRY "PAYMASTR" USING PAYREC,

GOBACK.

Processing begins in CALLPROG, which is the calling program. When the
statement

CALL "SUBPROG" USING RECORD-1.

is executed, control is transferred to the first statement of the
Procedure Division in SUBPROG, which is the called program. In the
calling program, the operand of the USING option is identified as
RECORD-1.

When SUBPROG receives control, the values within RECORD-1 are made
available to SUBPROG; in SUBPROG, however, they are referred to as
PAYREC. Note that the PICTURE clauses for the subfields of PAYREC
(described in the Linkage Section of SUBPROG) are the same as those for
RECORD-1.

When processing within SUBPROG reaches the first GOBACK statement,
control is returned to CALLPROG at the statement immediately following
the original CALL statement. Processing then continues in CALLPROG
until the statement

CALL "PAYMASTR" USING RECORD-1.

is reached. Control is again transferred to SUBPROG, but this time
processing begins at the statement following the ENTRY statement in
SUBPROG. The values within RECORD-1 are again made available to SUBPROG
through the matching USING operand PAYREC. When processing reaches the
second GOBACK statement, control is returned to CALLPROG at the
statement immediately following the second CALL statement.

Subprogram Linkage Statements 209



USING Option

In any given execution of these two programs, if the values within
RECORD-1 are changed between the time of the first CALL and the second,
the values passed at the time of the second CALL statement will be the
changed, not the original, values. If the programmer wishes to use the
original values, then he must ensure that they have been saved.

Program Termination Considerations

There are three ways in COBOL source language to terminate a program.
They are:

1, EXIT PROGRAM
2. GOBACK
3. STOP RUN

Table 24 shows the effect of each program termination statement based
on whether it is issued within a main program or a subprogram.

A main program is the highest level COBOL program invoked in a step.
A subprogram is a COBOL program that is invoked by another COBOL
program. (Programs written in other languages that follow COBOL linkage
conventions are considered COBOL programs in this sense.)

Table 24, Effect of Program Termination Statements Within Main Programs
and Subprograms.

r R T T 1
| Termination ] | |
| Statement ! Main Program ] Subprogram |
L - 4 4 ——— ____‘
[ 3 T 1]

| EXIT | Non-operational | Return to invoking |
| PROGRAM | | program ]
| | | |
| STOP RUN | Return to system | Return to system

| | and cause end of | and cause end of |
| | Jjob step (EOJ macro)| 3job step (EOJ macro) |
| I I |
| GOBACK | Abnormal termination| Return to invoking program |
| | of job | |
L L 4 J

210 Part IV -- Procedure Division



\u_/

EXIT PROGRAM/GOBACK Statement
EXIT PROGRAM Statement

This form of the EXIT statement marks the logical end of a called
program.

Format

paragraph-name. EXIT PROGRAM.

= e s g . g
bt o et e i s ed

The EXIT statement must be preceded by a paragraph-name and be the
only statement in the paragraph.

If control reaches an EXIT PROGRAM statement while operating under
the control of a CALL statement, control returns to the point in the
calling program immediately following the CALL statement.

If control reaches an EXIT PROGRAM statement and no CALL statement is
active, control passes through the exit point to the first sentence of
the next paragraph.

GOBACK Statement

The GOBACK statement marks the logical end of a called program.

Format

GOBACK.

e

S Wy

A GOBACK statement must appear as the only statement or as the last
of a series of imperative-statements in a sentence.

If control reaches a GOBACK statement while operating under the
control of a CALL statement, control returns to the point in the calling
program immediately following the CALL statement.

If control reaches a GOBACK statement and no CALL statement is
active, there will be an abnormal termination of the job. '

STOP_RUN Statement

For a discussion of the STOP statement with the RUN option, see
"Procedure Branching Statements.”

Subprogram Linkage Statements 211



ENTER/NOTE Statements

COMPILER-DIRECTING STATEMENTS

Compiler directing statements are special statements that provide
instructions for the COBOL compiler. The compiler directing statements
are COPY, ENTER, and NOTE.

COPY Statement

Prewritten source program entries can be included in a COBOL program
at compile time. Thus, an installation can utilize standard file
descriptions, record descriptions, or procedures without having to
repeat programming them. These entries and procedures are contained in
user-created libraries. They are included in a source program by means
of a COPY statement (see "Source Program Library Facility").

ENTER Statement

The ENTER statement serves only as documentation and is intended to
provide a means of allowing the use of more than one source language in
the same source program. This compiler allows no other source language
in the program.

Format

ENTER language-name [routine-namel.

e |
e s e e s e

The ENTER statement is accepted as commentse.

NOTE Statement

The NOTE statement allows the programmer to write commentary which
will be produced on the source listing, but not compiled.

Format

NOTE character string

o —— —
[

——— — —_—

|
|
|

Any combination of the characters from the EBCDIC set may be included
in the character string.

212 Part IV -- Procedure Division

N’



NOTE Statement

If a NOTE sentence is the first sentence of a paragraph, the entire

P paragraph is considered to be part of the character string. Proper
{ ) format rules for paragraph structure must be observed.

N
If a NOTE sentence appears as other than the first sentence of a
paragraph, the commentary ends with the first instance of a period
followed by a space.
{ 3
e’

Compiler-Directing Statements 213






SORT FEATURE

REPORT WRITER FEATURE

TABLE HANDLING FEATURE

SEGMENTATION FEATURE

SOURCE PROGRAM LIBRARY FACILITY

PART V -- SPECIAL FEATURES

Special Features

215






Order No. GC28-639u4-2, Page Revised 4/15/71 by TNL GN-0436
Sort Feature--Description

The COBOL programmer can gain convenient access to the sorting
capability of the system sort/merge program by including a SORT
statement and other elements of the Sort Feature in his source program.
The Sort Feature provides the capability for sorting files and including
procedures for special handling of these files both before and after
they have been sorted. Within the limits of object-time storage, a
source program may have any number of SORT statements, and each SORT
statement may have its own special procedures.,

The basic elements of the Sort Feature are the SORT statement in the
Procedure Division and the Sort~File-Description (SD) entry, with its
associated record description entries, in the Data Division. A sorting
operation is based on sort-keys named in the SORT statement. A sort-key
specifies the field within a record on which the file is sorted.
Sort-keys are defined in the record description associated with the SD
entry. The records of a file may be sorted in ascending or descending
order or in a mixture of the two; that is, the sort-keys may be
specified as ascending or descending, independent of one another, and
the sequence of the sorted records will conform to the mixture
specified. Additional information on the Sort Feature can be found in
the publication IBM System/360 Disk Operating System: American National
Standard COBOL Programmer's Guide, Form GC28-6398,

Program Product Information -- Version 3

Information on the Program Product Version 3 Sort Feature can be
found in the publication IBM System/360 Disk Operating System:
Full American National Standard COBOL Compiler and Library Version
3 Programmer's Guide, Order No. SC28-6441,

Note: Language considerations for an ASCII-collated sort are given in
Appendix E.

ELEMENTS OF THE SORT FEATURE

To use the Sort Feature, the COBOL programmer must provide additional
information in the Environment, Data, and Procedure Divisions of the
source program.

The SORT statement in the Procedure Division is the primary element
of a source program that performs one or more sorting operations. The
term "sorting operation" means not only the manipulation by the Sort
Program of sort-work-files on the basis of the sort-keys designated by
the COBOL prodgrammer, but also includes the method of making records
available to, and retrieving records from, these sort-work-files. A
sort-work-file is the collection of records that is involved in the
sorting operation as it exists on an intermediate device(s). Records
are made available either by the USING or INPUT PROCEDURE options of the
SORT statement., Sorted records are retrieved either by the GIVING or
OUTPUT PROCEDURE options of the SORT statement.

In the Environment Division, the programmer must write SELECT
sentences for all files used as input and output to the Sort Program and

Sort Feature 217



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Sort Feature--File-Control Paragraph

for the sort-file

In the Data Division, the programmer must include File Description
entries (FD) for all files that are used to provide input to or output
from the sort program and for the sort file. He must also write a
Sort-File-Description (SD) entry and its associated record description
entries to describe the records that are to be sorted, including their
sort-key fields.

In the Procedure Division SORT statement, the programmer specifies
the sort-file to be sorted, and the sort-key names. He must also
specify whether the sort is to be in ascending or descending sequence by
key, and whether records are to have spec1a1 proce551ng. If there is to
be such processing, he also includes in the Pr isi
program sections that perform the processing.

ENVIRONMENT DIVISION CONSIDERATIONS FOR_SORT

There are certain statements the programmer must include in the
Environment Division to use the Sort Feature. Detailed descriptions of
these statements follow.

INPUT-OUTPUT SECTION

The Input-Output Section is composed of two parts: the File-Control
Paragraph and the I-0-Control Paragraph.

File—-Control Paragraph

The File-Control Paragraph is specified once in a COBOL program.
Within this paragraph, all files referred to in the source program must
be named in a SELECT clause.

Files used within input and output procedures and files named in the
USING and GIVING options of the SORT statement are named in the SELECT
clause as described in "Environment Division,®™ The file named in the
GIVING option of the SORT statement can alternately be described in the
following format.

218 Part V -- Special Features



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SELECT Clause for GIVING Option

r 1
| Format |
L

e 1
| |
| SELECT file-name i
| |
| ASSIGN TO [integer-1] system-name-1 [system-name-2] ... |
| |
I REEL |
| OR system-name-3 [FOR MULTIPLE ] |
| UNIT l
| ]
{ integer-2 AREA |
| [RESERVE ALTERNATE 1. 1
| NO AREAS |
| |
L J

The OR option is neither required nor used by this compiler, and is
treated as comments.

Sort Feature 218.1






SELECT sort-file—-name

The MULTIPLE clause function is specified by object time control
cards; hence, the MULTIPLE clause is neither required nor used by this
compiler. The RESERVE clause is applicable as described in the
"Environment Division™ chapter.

Assignment of Sort Work Units

The File Control paragraph must be specified for the sort file and is
used to assign work units for the sorting operation.

Format

|
|
|

SELECT sort-file-name

ASSIGN TO [integer] system-name-1 [system—-name-2] ...

[ e e e S i g e ey
e e e et et s, s s sl

sort-file-name: the name used as the first operand of the SORT
statement (alsc the name associated with the SD entry for the
sorting operation).

integer: specifies the number of work units available to the Sort
Program. From one through eight units may be assigned for a disk
sort. From three through nine units may be assigned for a tape
sort. If integer is not specified, the compiler assumes one unit
for a disk sort and three units for a tape sort.

system-name-1: created in the same format as the system-name in other
ASSIGN clauses (see "Environment Division"). However, the names by
which the work files are known to the Sort Program are fixed. The
first work unit for every sort-file in the program must be assigned
to SYS001, the second to S¥S002, etc. If the files have standard
labels, the name field must be specified, SORTWK1l for SY¥YsS001,
SORTWK2 for SYsS002, etc.

Integer work units beginning with the first are reserved for the
sorting operation. The user may, if he wishes, specify these additional
work units in multiple system-names. However, the compiler treats these
as comments.

For example, the SELECT sentence for a sort-file with standard
labels, which has five work units (tape) available, would be:

SELECT SORTFILE
ASSIGN TO 5 SYS001-UT-2400-S-SORTWK1.

SYS001 through SYS005 are assigned by the compiler to the work units.

I-O-CONTROL Paragraph

The I-0-Control paragraph specifies when checkpoints are to be taken,
as well as what core storage area is to be shared by different files.
The I-O-Control paragraph is coded once in the source program. The

Sort Feature 219



RERUN/SAME AREA Clauses

checkpoint interval associated with the standard RERUN format (specified

in the "Environment Division") is determined by the number of records

processed for the given file. However, the format has meaning only when x

a file is not being used in a sorting operation. ‘Obtaining chéckpoint \
. S 7 Sy ’ 4 SR

iz " L N J
) | On o 2 - % - 9 5 o “\.‘—/

SAME RECORD/SORT AREA Clause

The SAME RECORD/SORT AREA clause specifies that two or more files are
to use the same storage area during processing.

- - 1
Format i

1 1 4

{ ]

| |

| RECORD |

| SAME AREA FOR file-name-1 {file-name-2} ... |

| SORT |

| 1

T —_ _— - —_ J

When the RECORD option is used, the named files, including any

sort-files, share only the area in which the current logical record is

processed. Several of the files may be open at the same time, but the

logical record of only one of these files can exist in the record area , \

at one time. A

220 Part V ~-- Special Features



SD (sort-file-description) Entry

The function of the SORT option is to optimize the assignment of
storage areas to a given SORT statement. The system handles storage
assignment automatically; hence, the SORT option, if given, is treated
as comments.

DATA DIVISION CONSIDERATIONS FOR SORT

In the Data Division the programmer must include File Description
entries for files that are input to or output from the Sort,
sort-file-description entries which describe the records as they appear
on the sort work files, and record description entries for each.

FILE SECTION

The File Section of a program which contains a sorting operation must
furnish information concerning the physical structure, identification,
and record names of the sort work file. This is provided in the
sort-file-description entry.

Sort-File Description

A sort-file-description entry must appear in the File Section for
every file named as the first operand of a SORT statement.

Format

SD sort-file-name

R -

RECORD IS
[DATA data-name-1 [data-name-2]1 ...]

RECORDS ARE

[RECORD CONTAINS [integer-1 TOl integer-2 CHARACTERS]

- ot e

[ o e . e iy s s e i, i e e, S . B St
o e e e s S Pt o S . T . s S et st i s ek

There must be a SELECT sentence for sort-file—-name that describes the
system—-name for the sort work file., Sort-file-name is also the name
specified in the SORT statement.

=l The
recording mode must be F or V.

The DATA RECORDS clause specifies the names of the records in the
file to be sorted. Data-name-1, data-name-2, ... Of the DATA RECORDS

clause refer to the records described in the record descriptions
associated with this SD.

Sort Feature 221



SORT Statement

The RECORD CONTAINS clause specifies the size of data records in the
file to be sorted. This clause is optional. The actual size and mode
(fixed or variable) of the records to be sorted are determined from the
level-01 descriptions associated with a given SD entry. When the USING
and GIVING options of the SORT statement are used, the record length
associated with the SD must be the same length as the record associated
with the FD's for the USING and GIVING files. If any of the SD data
record descriptions contains an OCCURS clause with the DEPENDING ON
option, variable-length records are assumed. Refer to "Data Division"
for the format assumptions that are made by the compiler when the
RECORDING MODE clause is not specified.

Both the DATA RECORDS and the RECORD CONTAINS clauses are described
in "Data Division."

PROCEDURE DIVISION CONSIDERATIONS FOR SORT

The Procedure Division must contain a SORT statement to describe the
sorting operation and, optionally, input and output procedures. The
procedure-names constituting the input and output procedures are
specified within the SORT statement.

The Procedure Division may contain more than one SORT statement

appearing anywhere except in the declaratives portion or in the input
and output procedures associated with a SORT statement.

SORT Statement

The SORT statement provides information that controls the sorting
operation. This information directs the sorting operation to obtain
records to be sorted either from an input procedure or the USING file to
sort the records on a set of specified sort keys, and in the final phase
of the sorting operation to make each record available in sorted order,
either to an output procedure or to the GIVING file.

Format

DESCENDING
SORT file-name-1 ON KEY {data-name-1} ...

ASCENDING

DESCENDING
[ON KEY {data-name-2} ...] ...
ASCENDING

;INPUT PROCEDURE IS section-name-1 [THRU section-name-2] f
USING file-name-2

3OUTPUT PROCEDURE IS section-name-3 [THRU section-name—u]%
GIVING file-name-3

[ o e e T e e . o S . e e e e et e e
L ot s o . e S T i . . A s St S s socbith e ]

222 Part V -- Special Features



SORT Statement

File-name-1 is the name given in the sort-file-description entry that
describes the records to be sorted.

ASCENDING and DESCENDING: The ASCENDING and DESCENDING options specify
whether records are to be sorted into an ascending or descending
sequence, respectively, based on one or more sort keys.

Each data-name represents a "key" data item and must be described in
the records associated with the sort-file-name.

At least one ASCENDING or DESCENDING clause must be specified. Both
options may be specified in the same SORT statement, in which case,
records are sorted on data-name-1, in ascending or descending order, and
then within data-name-1, they are sorted on the KEY data item
represented by data-name-2, in ascending or descending order, etc.

Keys are always listed from left to right in order of decreasing
significance, regardless of whether they are ascending or descending.

The direction of the sort depends on the use of the ASCENDING or
DESCENDING clauses as follows:

1. When an ASCENDING clause is used, the sorted sequence is from the
lowest value of the key to the highest value, according to the
collating sequence for the COBOL character set.

2. When a DESCENDING clause is used, the sorted sequence is from the
highest value of the key to the lowest value, according to the
collating sequence of the COBOL character set.

Sort keys must be one of the types of data item listed in Figure 13.
Corresponding to each type of data item is a collating sequence that is
used with it for sorting.

A character in the EBCDIC collating sequence (used with alphabetic,
alphanumeric, etc., data items) is interpreted as not being signed. For
fixed-point and internal floating-point numeric data items, characters
are collated algebraically (that is, as being signed).

r H 1
| Type of Data Item Used for Sort Key | Collating Sequence |
T  — » -4
|Alphabetic | EBCDIC |
|Alphanumeric | EBCDIC |
| Numeric Edited | EBCDIC |
| Group | EBCDIC |
|External Decimal | Zoned Decimal |
| Binary |Fixed Point |
li ‘

|
] I
L. i

Figure 13. SORT Collating Sequences Used for Sort Keys

Sort Feature 223



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SORT Statement

The EBCDIC collating sequence for COBOL. characters in ascending order

is:

1. (space)

2. « (period or decimal point)

3. < (less than)

4. ( (left parenthesis)

5. + (plus symbol)

6. $ (currency symbol)

7. * (asterisk)

8., ) (right parenthesis)

9. ; (semicolon)
10. - (hyphen or minus symbol)
11. / (stroke, virgule, slash)
12, , (comma) - :
13. > (greater than)

15. = (egual sign)
16. " (guotation mark)
17-42. A through Z
43-52, O through 9

(The complete EBCDIC collating sequence is given in IBM System/360
Reference Data, Form X20-1703.)

The record description for every record that is listed in the DATA
RECORDS clause of an SD description must contain the "key" items
data-name-1, data-name-2, etc. These "key" items are subject to the
following rules:

1. Keys must be physically located in the same position and have the
same data format in every logical record of the sort-file. If
there are multiple record descriptions in an SD, it is sufficient
to describe a key in only one of the record descriptions.

2. Key items must not contain an OCCURS clause nor be subordinate to
entries that contain an OCCURS clause.

3. A maximum of 12 keys may be specified. The total length of all the
keys must not exceed 256 bytes.

4, All keys must be at a fixed displacement from the beginning of a
record; that is, they cannot be located following a variable table
in a record.

5. All key fields must be located within the first 4092 bytes of a
logical record.

6. The data-names describing the keys may be qualified.

SECTION-NAME~-1 AND SECTION-NAME-2: Section-name-1 is the name of an
input procedure. Section-name-2 is the name of the last section that
contains the input procedure in the COBOL main program. Section-name-2
is required if the procedure terminates in a section other than that in
which it was started.

INPUT PROCEDURE: The presence of the INPUT PROCEDURE option indicates
that the programmer has written an input procedure to process records

before they are sorted and has included the procedure in the Procedure
Division as one or more distinct sections.

The input procedure must consist of one or more sections that are
written consecutively and do not form a part of any output procedure.
The input procedure must include at least one RELEASE statement in order
to transfer records to the sort-file.

224 Part V -- Special Features



—

SORT Statement

Control must not be passed to the input procedure unless a related
SORT statement is being executed, because the RELEASE statement in the
input procedure has no meaning unless it is controlled by a SORT
statement. The input procedure can include any procedures needed to
select, create, or modify records. There are three restrictions on the
procedural statements within an input procedure:

1. The input procedure must not contain any SORT statements.

2. The input procedure must not contain any transfers of control to
points outside the input procedure. A The execution of USE
declaratives for label handling and error processing are not
considered transfers of control outside of an input procedure.
Hence, they are allowed to be activated within these procedures.

3. The remainder of the Procedure Division must not contain any
transfers of control to peoints inside the input procedure (with the
exception of the return of control from a declarative section).

If an input procedure is specified, control is passed to the input
procedure when the SORT program input phase is ready to receive the
first record. The compiler inserts a return mechanism at the end of the
last section of the input procedure and, when control passes the last
statement in the input procedure, the records that have been released to
file-name-1 are sorted.

The RELEASE statement transfers records from the Input Procedure to
the input phase of the sort operation (see "RELEASE Statement").

USING: If the USING option is specified, all the records in file-name-2
are transferred automatically to file-name-1., At the time of execution
of the SORT statement, file-name-2 must not be open. File-name-2 must
be a standard sequential file.

For the USING option, the compiler will open, read, release, and
close file-name-2 without the programmer specifying these functions. If
the user specifies error handling and/or label processing declaratives
for file-name-2, the compiler will make the necessary linkage to the
appropriate declarative section.

SECTION-NAME-3 AND SECTION-NAME-4: Section-name-3 represents the name
of an output procedure. Section-name-4 is the name of the last section
that contains the output procedure in the COBOL main program.
Section-name-4 is required if the procedure terminates in a sectiomn
other than that in which it is started.

Sort Feature 225



SORT Statement

OUTPUT PROCEDURE: The output procedure must consist of one or more

sections that are written consecutively and do not form a part of any

input procedure. The output procedure must include at least one RETURN . .
statement in order to make sorted records available for processing. \ )

Contxrol must not be passed to the output procedure unless a related
SORT statement is being executed, because RETURN statements in the
output procedure have no meaning unless they are controlled by a SORT
statement. The output procedure may consist of any procedures needed to
select, modify, or copy the records that are being returned omne at a
time, in sorted order, from the sort-file. There are three restrictions
on the procedural statements within the output procedure.

1. The output procedure must not contain any SORT statements.

2. The output procedure must not contain any transfers of control to
points outside the output procedure. The execution of USE
declaratives for label handling and error processing are not
considered transfers of control outside of an output procedure.
Hence, they are allowed to be activated within these procedures.

3. The remainder of the Procedure Division must not contain any
transfers of control to points inside the output procedure (with
the exception of the return of control from a declarative section).

C

If an output procedure is specified, control passes to it after
file-name-1 has been placed in sequence by the SORT statement. The
compiler inserts a return mechanism at the end of the last section in
the output procedure. When control passes the last statement in the
output procedure, the return mechanism provides for termination of the
SORT and then passes control to the next statement after the SORT
statement.

When all the records are sorted, control is passed to the output
procedure. The RETURN statement in the output procedure is a request
for the next record (see "RETURN Statement").

GIVING: If the GIVING option is used, all sorted records in file-name-1
are automatically transferred to file-name-3. At the time of execution
of the SORT statement, file-name-3 must not be open. File-name-3 must
name a standard sequential file.

For the GIVING option, the compiler will open, return, write, and
close file-name-3 without the programmer specifying these functions. If )
the user specifies error handling ands/or label processing declaratives W

226 Part V -- Special Features



RELEASE Statement

for file-name-3, the compiler will make the necessary linkage to the
appropriate declarative section.

CONTROL OF INPUT OR OUTPUT PROCEDURES: The INPUT or OUTPUT PROCEDURE
options function in a manner similar to the PERFORM statement

(Option 1); for example, naming a section in an INPUT PROCEDURE clause
causes execution of that section Quring the sorting operation to proceed
as though that section had been the subject of a PERFORM statement. As
in the execution of a PERFORM statement, the execution of the section is
terminated after execution of its last statement. The procedure may be
terminated by an EXIT statement (see "EXIT Statement").

RELEASE Statement

The RELEASE statement transfers records from the Input Procedure to
the input phase of the Sort operation.

r 1
| Format |
b -
] |
l RELEASE sort-record-name [FROM identifierl |
| |
L 4

A RELEASE statement may be used only within the range of an input
procedure associated with a SORT statement.

If the INPUT PROCEDURE option is specified, the RELEASE statement
must be included within the given set of procedures.

Sort-record-name must be the name of a logical record in the asso-
ciated sort-file description,

When the FROM identifier option is used, it makes the RELEASE
statement equivalent to the statement MOVE identifier TO
sort-record-name, followed by the statement RELEASE.

Sort-record-name and identifier must not refer to the same storage
area. A move with the rules for group items is effected from
identifier, using the length of the record-name associated with the SD
entrye.

Sort Feature 227



RETURN/EXIT Statements

The RETURN statement obtains individual records in sorted order from

the final phase of the sort program. ~
| et - - 1
I Format |
1 4
i |
| RETURN sort-file-name RECORD [INTO identifier] |
| |
| AT END imperative-statement |
! !

Sort-file-name is the name given in the sort-file-description entry
that describes the records to be sorted.

All references to records retrieved by a RETURN statement must be in
terms of the record description(s) associated with the SD entry, unless
the INTO option is specified. The retrieved record may, optionally, be
moved to the user's own area and be referenced as appropriate.

A RETURN statement may only be used within the range of an output
procedure associated with a SORT statement for file-name-1.

The identifier must be the name of a working-storage area or an w )
output record area. Use of the INTO option has the same effect as the
MOVE statement for alphanumeric items.

The imperative-statement in the AT END phrase specifies the action to
be taken when all the sorted records have been obtained from the sorting
operation.

EXIT Statement

The EXIT statement may be used as a common end point for input or
output procedures as with procedures executed through a PERFORM
statement.

Format

paragraph-name. EXIT.

o e e e g e ey
e

When used in this manner, the EXIT statement must appear as the only “ N
statement in the last paragraph of the input or output procedure. N

228 Part V -- Special Features



Sort—--Special Registers

-

Ak

229

sort Feature



Sort--Sample Program

SAMPLE PROGRAM USING THE SORT_ FEATURE

This example illustrates a sort based on a sales contest. The
records to be sorted contain data on salesmen: name and address,

employee number, department number, and pre-calculated net sales for the
contest period.

The salesman with the highest net sales in each department wins a
prize, and smaller prizes are awarded for second highest sales, third
highest, etc. The order of the SORT is (1) by department, the lowest
numbered first (ASCENDING KEY DEPT); and (2) by net sales within each
department, the highest net sales first (DESCENDING KEY NET-SALES).

The records for the employees of departments 7 and 9 are eliminated
in an input procedure (SCREEN-DEPT) before sorting begins. The
remaining records are then sorted, and the output is placed on another
file for use in a later job step.

r
| 000005 IDENTIFICATION DIVISION.

[000010 PROGRAM-ID. CONTEST.

[ 000015 ENVIRONMENT DIVISION.

|000016 CONFIGURATION SECTION.

1000017 SOURCE-COMPUTER. IBM-360-F50.
|000018 OBJECT-COMPUTER. IBM-360-F50.

| 000019 SPECIAL-NAMES. SYSLST IS PRINTER.
|000020 INPUT-GUTPUT SECTION.

{000025 FILE-CONTROL.

000030 SELECT NET-FILE-IN ASSIGN TO S¥sS008-UT-2400-S.
| 000035 SELECT NET-FILE-OUT ASSIGN TO SYS007-UT-2400-5-SORTOUT.
|000040 SELECT NET-FILE ASSIGN TO 3 SYS001-UT-2400-S.

| 000050 DATA DIVISION.
000055 FILE SECTION.
[ 000060 SD NET-FILE

e o ot . . U o S ot — —— it . — S — — — S — —— — e S T e, O s, S s, O s, e e, e

1000065 DATA RECORD IS SALES-RECORD.

| 000070 01 SALES-RECORD.

000075 02 EMPL-NO PICTURE 9(6).

| 000080 02 DEPT PICTURE 9(2).

| 000085 02 NET-SALES PICTURE 9(7)V99.
|000090 02 NAME-ADDR PICTURE X(55).

| 000095 FD NET-FILE-IN

[{000096 LABEL RECORDS ARE OMITTED

| 000100 DATA RECORD IS NET-CARD-IN,

000105 01 NET-CARD-IN.

| 000110 02 EMPL-NO-IN PICTURE 9(6).
1000115 02 DEPT-IN PICTURE 9(2).

| 000120 02 NET-SALES-IN PICTURE 9(7)V99.
1000125 02 NAME-ADDR-IN PICTURE X(55).

| 000130 FD NET-FILE-OUT

000131 LABEL RECORDS ARE OMITTED

| 000135 DATA RECORD IS NET-CARD-OUT.

000140 01 NET-CARD-OUT.

| 000145 02 EMPL-NO-OUT PICTURE 9(6).
1000150 02 DEPT-OUT PICTURE 9(2).

| 000155 02 NET-SALES-OUT  PICTURE 9(7)V99.
000160 02 NAME-ADDR-OUT PICTURE X(55).

L -
Figure 14. sSample Program Using the SORT Feature (Part 1 of 2)

230 Part V —- Special Features



Sort—--Sample Program

P

| 000165 PROCEDURE DIVISION. i
1000170 ELIM-DEPT-7-9-NO-PRINTOUT. |
} 000175 SORT NET-FILE |
1000180 ASCENDING KEY DEPT, I
] 000185 DESCENDING KEY NET-SALES |
|000190 INPUT PROCEDURE SCREEN-DEPT I
[ 000195 GIVING NET-FILE-OUT. [
000200 CHECK-RESULTS SECTION. |
] 000205 c-R-1. 1
000210 OPEN INPUT NET-FILE-OUT. |
000215 c-r-2. |
1000220 READ NET-FILE-OUT AT END GO TO C-R-FINAL. |
| 000225 DISPLAY EMPL~NO-OUT DEPT-OUT NET-SALES-OUT

1000230 NAME-ADDR-OUT UPON PRINTER. |
| 000235 c-R-3. |
000240 GO TO C-R-2. |
] 000245 C-R-FINAL. |
1000250 CLOSE NET-FILE-OUT. |
| 000255 STOP RUN. |
|000260 SCREEN-DEPT SECTION. |
| 000265 s-D-1. |
000270 OPEN INPUT NET-FILE-IN. |
000275 S-D-2. [
|000280 READ NET-FILE-IN AT END GO TO S-D-FINAL. |
1000285 DISPLAY EMPL-NO-IN DEPT-IN NET-SALES-IN |
1000290 NAME-ADDR-IN UPON PRINTER. |
000295 s-D-3, |
1000300 IF DEPT-IN = 7 OR 9 GO TO S-D-2 |
1000305 ELSE i
1000310 MOVE NET-CARD-IN TO SALES-RECORD, |
1000315 RELEASE SALES-RECORD, |
| 000320 GO TO S-D-2. |
|000325 S-D-FINAL. |
|000330 CLOSE NET~FILE-IN. |
000335 S-D-END. |
|000340 EXIT. !
L —

Figure 14, Sample Program Using the SORT Feature (Part 2 of

Sort Feature

2)

231



Report Writer Feature--Description

REPORT WRITER FEATURE

The Report Writer Feature permits the programmer to specify the
format of a printed report in the Data Division, thereby minimizing the
amount of Procedure Division coding he would have to write to create the
report,.

. A Printed.report consists of the information reported and the format
in which it is printed. Several reports can be produced by one program.

In the Data Division, the programmexr gives the name{s) and describes
the format(s) of the report(s) he wishes produced. In the Procedure
Division, he writes the statements that produce the report(s).

At program execution time, the report in the format defined is
produced -- data to be accumulated is summed, totals are produced,
counters are stepped and reset, and each line and each page is printed.
Thus, the programmer need not concern himself with the details of these
operations.

DATA DIVISION ~-- OVERALL DESCRIPTION

In the Data Division, the programmer must write an FD entry that
names the ocutput file upon which the report is to be written, and must
also name the report itself. A report may be written on two files at
the same time.

At the end of the Data Division, he must add a Report Section to
define the format of each report named. In the Repoxrt Section, there
are two types of entries:

1. The Report Description Entry (RD) which describes the physical
aspects of the report format.

2. The report group description entries which describe the data items
within the report and their relation to the report format.

In the report description entry, the programmer specifies the maximum
number of lines per page, where report groups are to appear on the page,
and which data items are to be considered as controls.

controls govern the basic format of the report. When a control
changes value -- that is, when a control break occurs -- special actions
will be taken before the next line of the report is printed. Controls
are listed in a hierarchy, proceeding from the most inclusive down to
the least inclusive. Thus, by specifying HEADING and FOOTING controls,
the programmer is able to instruct the Report Writer to produce the
report in whatever format he desires.

For example, in the program at the end of this chapter, the hierarchy
of controls proceeds from the highest (FINAL) to an intermediate control
(MONTH) to the minor control (DAY). DAY is the minor control since, if
MONTH changes, DAY also must change. Whenever any control changes,

special actions are performed by the Report Writer -- sum information is
totaled, counters are reset, special information is printed, and so
forth -- before the next detail line is printed.

The report group description entries describe the characteristics of
all data items contained within the report group: the format of each
data item present, its placement in relation to the other data items
within the report group, and any control factors associated with the

232 Part V -- Special Features



\v’f

Report Writer Feature--Description

group. Information to be presented within a report group can be
described in three ways:

* as SOURCE information, which is information from outside the report

* as SUM information, which is the result of addition operations upon
any data present, whether SOURCE information or other SUM
information

» as VALUE information, which is constant information

Through the RD and the report group description entries, the
programmer has thus defined completely the content, the format, and the
summing operations necessary to produce the desired report.

PROCEDURE DIVISION —-- OVERALL DESCRIPTION

In the Procedure Division, the programmer instructs the Report Writer
to produce the report through the use of three Report Writer statements:
INITIATE, GENERATE, and TERMINATE.

The INITIATE statement performs functions in the Report Writer
analogous to the OPEN statement for individual files,

The GENERATE statement automatically produces the body of the report.
Necessary headings and footings are printed, counters are incremented
and reset as desired, source information is obtained, and sum
information is produced, data is moved to the data item(s) in the report
group description entry, controls are tested, and when a control break
occurs, the additional lines requested are printed, as well as the
detail 1line that caused the control break. 2All of this is done
automatically, thus relieving the programmer of the responsibility for
writing detailed tests and looping procedures that would otherwise be
necessary.

The TERMINATE statement completes the processing of a report. It is
analogous to the CLOSE statement for individual files.

In the Declaratives portion of the Procedure Division, the programmer
may also specify a USE BEFORE REPORTING procedure for report group. In
this procedure, he is able to specify any additional processing he
wishes done before a specific report group is printed.

Two special registers are used by the Report Writer feature:

LINE-COUNTER -- which is a numeric counter used by the Report Writer to
determine when a PAGE HEADING and/or a PAGE FOOTING report group is
to be presented. The maximum value of LINE-COUNTER is based on the
number of lines per page as specified in the PAGE LIMIT(S) clause.
LINE-COUNTER may be referred to in any Procedure Division
statement.

PAGE-COUNTER —-- which is a numeric counter that may be used as a SOURCE
data item in order to present the page number on a report line.
The maximum size of PAGE-COUNTER is based on the size specified in
the PICTURE clause associated with an elementary item whose SOURCE
IS PAGE-COUNTER. This counter may be referred to by any Procedure
Division statement.

Figure 16, at the end of this chapter, gives an example of a Report
Writer program for a manufacturer's quarterly report.

Report Writer Feature 233



FD Entry/REPORT Clause

Figure 17, which follows the program, shows the report that would be
produced.

DATA DIVISION CONSIDERATIONS FOR REPORT WRITER

The names of all the reports to be produced must be named in the File
Section of the Data Division. An entry is required in the FD entry to
list the names of the reports to be produced on that file. A Report
Section must be added at the end of the Data Division to define the
format of each report.

FILE DESCRIPTION

The File Description furnishes information concerning the physical
structure, identification, and record-names pertaining to a given file.

General Format

FD file-name

[(BLOCK CONTAINS Clausel
[RECORD CONTAINS Clausel

LABEL RECORDS Clause
ALUE OF Clausel

REPORT Clause,

[ et S e S e U s S e S e e S oy
b e s e . S e S o S St e it e ]

A dlscu551on of all the above-mentioned clauses a ears 1n "Data

REPORT Clause

Each unique report-name must appear in the REPORT clause of the FD
entry (or entries) for the file(s) on which the report(s) is to be
produced. The REPORT clause cross references the description of Report
Description entries with their associated File Description entry.

Format

sREPORT Is l
report-name-1 [report-name-2]...
} REPQRTS ARE }

o v e s, e e e o g
L

|
1
|
|
|
|
|
|
|
I
|
1
{
|
|
|
|
|

234 Part V -- Special Features



RECORD CONTAINS Clause

. Each File Description entry for standard sequential OUTPUT files
within the File Section may include a REPORT clause containing the names
of one or more reports. These reports may be of different sizes,

formats, etc., and the order in which their names appear in the clause
is not significant.

Each unique report-name listed in an FD entry must be the subject of
an RD entry in the Report Section. A given report-name may appear in a
maximum of two REPORT clauses.

RECORD CONTAINS Clause

The RECORD CONTAINS clause enables the user to specify the maximum
size of his report record.

[ e e e —_ ——

Format

RECORD CONTAINS [integer-1 TO] integer-2 CHARACTERS

e S

[ e )

The specified size of each report record must include the carriage
control/line spacing character, and the CODE character, if the CODE
option is used. If the RECORD CONTAINS clause is omitted, the compiler
assumes a default size of 133 characters.

For variable-length records, the size of each print line will be
integer-2 characters, and the size of each blank line required for
spacing will be 17 characters. For fixed-length records, the size of
each print line and each blank line required for spacing will be
integer-2 characters.

For further information on the RECORD CONTAINS clause, see "Data
Division."

Report Writer Feature 235



RD (report description) Entry
REPORT SECTION
The Report Section consists of two types of entries for each report;
one dgscribes the physical aspects of the report format, the other type
describes conceptual characteristics of the items that make up the
report and their relationship to the report format. These are:
1. Report Description entry (RD)

2. Report group description entries

The Report Section must begin with the header REPORT SECTION.

Report Description Entry

The Report Description entry contains information pertaining to the
overall format of a report named in the File Section and is uniquely
identified by the level indicator RD. The clauses that follow the name
of the report are optional, and their order of appearance is not
significant.

The entries in this section stipulate:
1. The maximum number of lines that can appear on a page.

2. Where report groups are to appear on a page.

3. Data items that act as control factors during presentation of the
report.

General Format

REPORT SECTION.

RD report—-name
[CODE Clausel
{CONTROL Clausel
[PAGE LIMIT Clausel.

o e e et s i o . s B s e
bt e et St s i e e et i s

RD is the level indicator.
Report-name is the name of the report and must be unique. The

report-name must be specified in a REPORT clause in the File Description
entry for the file on which the report is to be written.

CODE Clause

The CODE clause is used to specify an identifying character added at
the bedinning of each line produced. The identification is meaningful
when more than one report is written on a file.

236 Part V —- Special Features



CODE/CONTROL Clauses

r~—=--

Format

CODE mnemonic—-name

= e e e e et

b e s e by e

Mnemonic-name must be associated with a single character literal used
as function-name-1 in the SPECIAL-NAMES paragraph in the Environment
Division. The identifying character is appended to the beginning of the
line, preceding the carriage control/line spacing character. This
clause should not be specified if the report is to be printed on-line.

CONTROL Clause

. The CONTROL clause indicates the identifiers that specify the control
hierarchy for this report, that is, the control breaks,

[T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T T 1
I Format |
- 1
] I
| { CONTROL IS FINAL |
|{ } { identifier-1 [identifier-2]l... } |
| { CONTROLS ARE FINAL identifier-1 [identifier-2Jl... |
| |
L - 1

A control is a data item that is tested each time a detail report
group is generated. If the test indicates that the value of the data
item (i.e., CONTROL) has changed, a control break is said to occur, and
special action (described below) is taken before printing the detail
line.

FINAL is the highest level control. (It is the one exception to the
statement that controls are data items.) The identifiers specify the
control hierarchy of the other controls. Identifier-1 is the major
control, identifier-2 is the intermediate control, etc. The last
identifier specified is the minor control. The levels of the controls
are indicated by the order in which they e itt

» 6 CONTRO:

When controls are tested, the highest level control specified is
tested first, then the second highest level, etc. When a control break
is found for a particular level, a control break is implied for each
lower level as well. A control break for FINAL occurs only at the
beginning and ending of a report (i.e., before the first detail line is
printed and after the last detail is printed).

The action to be taken as a result of a control break depends on what
the programmer defines. He may define a CONTROL HEADING report group
and/or a CONTROL FOOTING group or neither for each control.

The control footings and headings that are defined are printed prior
to printing the originally referenced detail. They are printed in the
following order: lowest level control footing, next higher level
control footing, etec., up to and including the control footing for the

Report Writer Feature 237



PAGE LIMIT Clause

level at which the control break occurred; then the control heading for
that level, then the next lower level control heading, etc., down to and
including the minor control heading; then the detail is printed. 1If, in
the course of printing control headings and footings, a page condition
is detected, the current page is ejected and a new page begun. If the
associated report groups are given, a page footing and/or a page heading
are also printed.

The CONTROL clause is required when CONTROL HEADING or CONTROL
FOOTING report group are specified.

The identifiers specified in the CONTROL clause are the only
identifiers referred to by the RESET and TYPE clauses in a report group
description entry for this report. The identifiers must be defined in
the File or Working-Storage Section of the Data Division.

PAGE LIMIT Clause

The PAGE LIMIT clause indicates the specific line control to be
maintained within the logical presentation of a page, i.e., it describes
the physical format of a page of the report.

———
| Format
LIMIT IS LINE
PAGE integer-1
LIMITS ARE LINES

[HEADING integer-2]
[FIRST DETAIL integer-3]
[LAST DETAIL integer-4]
[FOOTING integer-5]}

[ e —— e (e e St S . .
e e et et e e s e . . e i, s

If this clause is not specified, PAGE-COUNTER and LINE-COUNTER
special registers are not generated.

The PAGE LIMIT clause is required when page format must be controlled
by the Report Writer.

integer-1: The PAGE LIMIT integer-1 LINES clause is required to
specify the depth of the report page; the depth of the
report page may or may not be equal to the physical
perforated continuous form often associated in a report
with the page length. The size of the fixed data-name,
LINE-COUNTER, is the maximum numeric size based on
integer-1 lines required for the counter to prevent
overflow,

integer-2: The first line number of the first heading print group is
specified by integer-2. No print group will start
preceding integer-2, i.e., integer-2 is the first line on
which anything may be printed.

integer-3: The first line number of the first normal print group
(body group) is specified by integer-3. No DETAIL,
CONTROL HEADING, or CONTROL FOOTING print group will start
before integer-3.

238 Part V -- Special Features



PAGE LIMIT Clause

integer-4: The last line number of the last nonfooting body group is
specified by integer-4. No DETAIL or CONTROL HEADING
print group will extend beyond integer-i.

integer-5: The last line number of the last CONTROL FOOTING print
group is specified by integer-5. No CONTROL FOOTING print
group will extend beyond integer-5. PAGE FOOTING print
groups will follow integer-5.

Using the parameters of the PAGE LIMIT clause, the Report Writer
establishes the areas of the page where each type of report group is
allowed to be printed. The following are the page areas for each type
of report group:

1. A REPORT HEADING report group can extend from line integer-2 to
line integer-1, inclusive, If the REPORT HEADING report group is
not on a page by itself, the FIRST DETAIL integer-3 clause must be
present in the PAGE LIMIT clause of the report.

2, A PAGE HEADING report group may extend from line integer-2 to line
integer-3 minus 1, inclusive. If a PAGE HEADING report group is
specified in the report description, the FIRST DETAIL integer-3
clause must be present in the PAGE LIMIT clause of the report. A
PAGE HEADING report group that follows a REPORT HEADING report
group on the same page must be able to be printed in the area of
the page defined in this rule.

3. CONTROL HEADING report groups and DETAIL report groups must be
printed in the area of the page that extends from line integer-3 to
line integer-u%, inclusive.

4. CONTROL FOOTING report groups must be printed in the area of the
page extending from line integer-3 to line integer-5, inclusive.

5. A PAGE FOOTING report group may extend from line integer-5 plus 1
to line integer-1, inclusive. If PAGE FOOTING is specified in the
report description, either the FOOTING integer-5 or LAST DETAIL
integer-4 clause must be present in the PAGE LIMIT clause of the
report.

6. A REPORT FOOTING report group can extend from line integer-2 to
line integer-1, inclusive. If the REPORT FOOTING report group is
not on a page by itself, either the FOOTING integer-5 or LAST
DETAIL integer-4 clause must be present in the PAGE LIMIT clause of
the report.

Figure 15 pictorially represents page format report group control
when the PAGE LIMIT clause is specified.

Report Writer Feature 239



PAGE LIMIT Clause

REPORT DETAIL &
HEADING/ PAGE CONTROL CONTROL PAGE
FOOTING HEADING HEADING FOOTING FOOTING
integer-2 ‘
integer-3
integer-4 1
integer-5 Y
integer-1 Y +

Figure 15. Page Format when the PAGE LIMIT Clause Is Specified

The PAGE LIMIT clause may be omitted when no association is desired
between report groups and the physical format of an output page. In
this case, relative line spacing must be indicated for all report groups
of the report.

If absolute line spacing is indicated for all the report groups, none
of the integer-2 through integer-5 controls need be specified. If any
of these limits are specified for a report that has only absolute line
spacing, the limits are ignored.

If relative line spacing is indicated for any report group, all LINE
NUMBER and NEXT GROUP spacing must be consistent with the controls
specified or implied in the PAGE LIMIT clause.

If PAGE LIMITS integer-1 is specified and some or all of the HEADING
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, FOOTING
integer-5 clauses are omitted, the following implicit control is assumed
for all omitted specifications:

1. If HEADING integer-2 is omitted, integer-2 is considered to be
equivalent to the value 1, that is, LINE NUMBER one.

2. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to be
equivalent to the value of integer-2.

3. If LAST DETAIL integer—-4 is omitted, integer-4 is considered to be
equivalent to the value of integer-5.

4, If FOOTING integer-5 is omitted, integer-5 is considered to be
equivalent to the value of integer-4. If both LAST DETAIL
integer-4% and FOOTING integer-5 are omitted, integer-4 and
integer-5 are both considered to be equivalent to the value of
integer-1.

Only one PAGE-LIMIT clause may be specified for a Repart Group
Description entry.
e Integer-1 through integer-5 must be positive integers.

e Integer-2 through integer-5 must be in ascending order. Integer-5
must not exceed integer-1.

240 Part V —- Special Features



e

Report Group Description Entry

Report Group Description Entry

A report comprises one or more report groups. Each report group is
described by a hierarchy of entries similar to the description of a data
record. There are three categories of report groups: heading groups,
detail groups, and footing groups. A CONTROL HEADING, DETAIL, or
CONTROL FOOTING report group may also be referred to as a body group.

The report group description entry defines the format and
characteristics for a report group. The relative placement of a
particular report group within the hierarchy of report groups, the
format of all items, and any control factors associated with the group
are defined in this entry.

Schematically, a report group is a line, a series of lines, or a null
(i.e., nonprintable) group. A report group is considered to be one unit
of the report. Therefore, the lines of a report group are printed as a
unit. A null group is a report group for which no LINE clauses are
specified.

The report group description entry defines the format and
characteristics applicable to the type of report group.

1. For all report groups that are not null, the description entry
indicates where and when the report group is to be presented.

2. For all report groups, the description entry indicates when the
nonprinting functions of the report group, such as summation, are
to be performed.

3. For all report groups except DETAIL, the description entry allows
for the execution of a user-specified procedure prior to printing a
report group. If a report group is null, the execution of the user

procedure occurs in the same manner as though the report group were
printed.

4, For CONTROL FOOTING report groups, the description entry indicates
the user's summation algorithm.
Report group hames are required when reference is made in the Procedure
Division:
¢ to a DETAIL report group by a GENERATE statement.
e to a HEADING oxr FOOTING report group by a USE sentence.
Report group names are required when reference is made in the Report
Section to a DETAIL report group by a SUM UPON clause.

Except for the data-name clause which, when present, must immediately
follow the level number, the clauses may be written in any order.

Report Writer Feature 241



Report Group Description Entry--Formats

General Format 1

01 [data-name-1]
[LINE Clausel
[NEXT GROUP Clausel
TYPE Clause
[USAGE Clausel.

[ -t e s . . e g Sy

General Format 2

level number [data-name-1]
[LINE clausel
[USAGE clausel.

e S

e s e s e o .

General Format 3

level number [data-name-1]
{BLANK WHEN ZERO Clausel
[COLUMN Clause]
[GROUP cClausel
[JUSTIFIED Clausel
[LINE Clausel
[PICTURE Clausel
[RESET Clausel
SOURCE
[ SUM Clause ]
VALUE
[USAGE Clausel.

o e e o i it . . e, S . e, . e T et

General Format U4

01 [data—-name-11

[BLANK WHEN ZFRO Clausel

[COLUMN Clausel

[GROUP Clausel

[JUSTIFIED Clausel

[LINE Clausel]

[NEXT GROUP Clause]

PICTURE Clause

[RESET Clause]
SOURCE

{SUM Clause
VALUE

TYPE Clause

[USAGE Clausel.

[ e e i et e e e s S . e e e e e e e )

242 Part V -- Special Features



LINE Clause

Format 1 is used to indicate a report group. A report group
description must contain a report group entry (level-01) and it must be
the first entry. A report group extends from this entry either to the
next report group level-01 entry or to the end of the next report
description. A null report group may contain only a Format 1 report
group entry.

Format 2 is used to indicate a group item. A group item entry may
contain a level number from 02 through 49; this entry has the following
functions:

e If a report group has more than one line and one of the lines
contains more than one elementary item, a group item entry may be
used to indicate the LINE number of the subordinate elementary
items.

e If a group item entry contains no LINE clause and there are no SUM
counters subordinate to it, its only function is documentation.

Format 3 is used to indicate an elementary item. An elementary item
entry may contain a level number from 02 through 49; this entry has the
following functions:

e An elementary item entry may be used to describe an item that is to
be presented on a printed line. In this case, a COLUMN clause, a
PICTURE clause, and either a SOURCE, SUM, or VALUE clause must be
present.

e An elementary item entry in a DETAIL report group may be used to
indicate to the Report Writer what operands are to be summed upon
presentation of the DETAIL report group.

e An elementary item entry in a CONTROL FOOTING report group may be
used to define a SUM counter. (See SUM Clause.)

Format 4 is used to indicate a report group that consists of only one
elementary item. If Format 4 is used to define the report group instead
of Format 1, it must be the only entry in the group.

LINE Clause

The LINE clause indicates the absolute or relative line number of
this entry in reference to the page or previous entry.

Format

5 integexr-1
LINE NUMBER IS PLUS integer-2
l NEXT PAGE

[ e . e e e g .
L T

Each line of a report must have a LINE clause associated with it.
For the first line of a report group, the LINE clause must be given
either at the report group level or prior to or for the first elementary
item in the line. For report lines other than the first in a report
group, the LINE clause must be given prior to or for the first

Report Writer Feature 243



LINE Clause

elementary item in the line. When a LINE clause is encountered,
subsequent entries following the entry with the LINE clause are
implicitly presented on the same line until either another LINE clause
or the end of the report group is encountered.

Integer-1 and integer-2 must be positive integers,

LINE NUMBER IS integer-1 is an absolute LINE clause. It indicates
the fixed line of the page on which this line is to be printed.
LINE-COUNTER is set to the value of integer-1 and is used for printing
the items in this and the following entries within the report group
until a different value for the LINE-COUNTER is specified.

LINE NUMBER IS PLUS integer-2 is a relative LINE clause. The line is
printed relative to the previous line either printed or skipped.
LINE-COUNTER is incremented by the walue of integer-2 and is used for
printing the items in this and the following entries within the report
group until a different value for the LINE-COUNTER is specified.
Exceptions to this rule are discussed later.

LINE NUMBER IS NEXT PAGE indicates that this report group is to be
printed on the next page, not on the current page. This LINE clause may
appear only in a report group entry or may be the LINE clause of the
first line of the report group.

Within any report group, absolute LINE NUMBER entries must be
indicated in ascending order, and an absolute LINE NUMBER cannot be
preceded by a relative LINE NUMBER. If the first line of the first body
group that is to be printed on a page contains either a relative LINE
clause or a LINE NUMBER IS NEXT PAGE clause, the line is printed on line
FIRST DETAIL integexr-3. However, if the LINE-COUNTER contains a value
that is greater than or equal to FIRST DETAIL integer-3, the line is
printed on line LINE-COUNTER plus 1. This value of LINE-COUNTER was set
by an absolute NEXT GROUP clause in the previously printed body group
(see rules for NEXT GROUP).

If the report group entry of a body group contains a LINE NUMBER IS
NEXT PAGE clause and the first line contains a relative LINE clause, the
first line is printed relative to either FIRST DETAIL integer-3 or

LINE-COUNTER, whichever is greater. This value of LINE-COUNTER was set
by an absolute NEXT GROUP clause in the previously printed body group.

The following are the rules for the LINE clause by report group type:
1. REPORT HEADING

e LINE NUMBER IS NEXT PAGE cannot be specified in the report group.

o The first line of the report group may contain an absolute or
relative LINE clause.

o If the first line contains a relative line clause, it is relative
to HEADING integexr-2.

2. PAGE HEADING
e ILINE NUMBER IS NEXT PAGE cannot be specified in the report group.

e The first line may contain either an absolute or relative LINE
clause,

o If the first line contains a relative LINE clause, it is relative
to either HEADING integer-2 or the value of LINE-COUNTER,
whichever is greater. The value in LINE-COUNTER that is greater
than HEADING integer-2 can only result from a REPORT HEADING

2ul  Part V -- Special Features



5.

NEXT GROUP Clause

report group being printed on the same page as the PAGE HEADING
report group.

CONTROL HEADING, DETAIL, and CONTROL FOOTING

¢ LINE NUMBER IS NEXT PAGE may be specified in the report group.

e The first line of the report group may contain either an absolute

or relative LINE clause.

PAGE FOOTING

LINE NUMBER IS NEXT PAGE cannot be specified in the report group.

The first line of the report group may contain an absolute or
relative LINE clause.

If the first line contains a relative LINE clause, it is relative
to FOOTING integer—5.

REPORT FOOTING

If the report group is to be printed on a page by itself, LINE
NUMBER IS NEXT PAGE must be specified.

If LINE NUMBER IS NEXT PAGE is the only LINE clause in the report
group description, the line will be printed on line HEADING
integer-2.

If the report group description does not contain a LINE NUMBER IS
NEXT PAGE clause, the first line must contain an absolute or
relative LINE clause. If it contains a relative LINE clause, the
line is relative to either FOOTING integer-5 or the value of
LINE-COUNTER, whichever is greater. The value in LINE-COUNTER
that is greater than FOOTING integer-5 can only result from the
printing of the PAGE FOOTING report groupe.

NEXT GROUP Clause

The NEXT GROUP clause indicates the spacing condition following the

last line of the report group.

Format

[ e oo s s s . et

NEXT GROUP IS { PLUS integer-2

|
|
i

L

integer-1 }

NEXT PAGE

The NEXT GROUP clause can appear only in a report group entry.

Integer-1 and integer-2 must be positive integers.

Report Writer Feature 245



NEXT GROUP Clause

The following are the rules for the NEXT GROUP clause by report group
type:

1. REPORT HEADING L )

o

e ITf the report group is to be printed on a page by itself, NEXT
GROUP IS NEXT PAGE must be specified in the report group
description.

* Integer-1 indicates an absolute line number which sets the
LINE-COUNTER to this value after printing the last line of the
report group.

e Integer-2 indicates a relative line number which increments the
LINE-COUNTER by the integer-2 value after printing the last line
of the report group.

e An absolute or relative NEXT GROUP clause must not cause the
LINE-COUNTER to be set to a value greater than FIRST DETAIL
integer-3 minus 1.

2. PAGE HEADING, PAGE FOOTING, and REPORT FOOTING
¢ A NEXT GROUP clause cannot be specified in the report group.
3. CONTROL HEADING, DETAIL, and CONTROL FOOTING

e If a NEXT GROUP clause implies a page change, the change occurs
only when the next body group is to be printed.

¢ The NEXT GROUP IS NEXT PAGE clause indicates that no more body
groups are to be printed on this page.

e An absolute or relative NEXT GROUP clause may cause the | )

LINE-COUNTER to be set to a value greater than or equal to FIRST
DETAIL integer-3 and less than or equal to FOOTING integer-5.
This is an exception to the rule which defines the page area of
CONTROL HEADING and DETAIL report groups.

¢ If a NEXT GROUP IS integer-1 clause causes a page change, the
value of LINE-COUNTER is set to the value of integer-1 before the
formatting of the first line of the next body group to be
printed. This implies that if the first line of the next body
group to be printed contains a relative LINE NUMBER clause, the
line will be printed on line LINE-COUNTER plus 1; if the first
line contains an absolute LINE NUMBER clause that is less than or
equal to integer-1, a page will be printed which contains only
PAGE HEADING and FOOTING report groups, and the following page
will contain the body group.

e When the NEXT GROUP clause is specified for a CONTROL FOOTING
report group, the NEXT GROUP clause functions are performed only
when a control break occurs for the control that is associated
with this report group.

246 Part V -- Special Features



TYPE Clause

TYPE Clause

Thg TYPE clagse specifies the particular type of report group that is
Qescrlbed by this entry and indicates the time at which the report group
is to be generated.

r - btk |
| Format i
iL i
I gREPORT HEADING § {
| RH I
i %PAGE HEADING } |
I PH |
| % CONTROL HEADING% gidentifier—n% |
| CH FINAL |
| TYPE IS gDETAIL % |
I DE I
I %CONTROL FOOTING % éidentifier—n% |
I CF FINAL |
| gPAGE FOOTING % |
I PF |
I %REPORT FOOTING § i
| RF |
| I
L 4

The TYPE clause in a particular report group entry indicates the
point in time at which this report group will be generated as output.

If the report group is described as TYPE DETAIL or DE, then a
GENERATE statement in the Procedure Division directs the Report Writer
to produce this report group. Each DETAIL report group must have a
unique data-name at level-01 in a report.

If the report group is described as other than TYPE DETAIL or DE, the
generation of this report group is an automatic feature of the Report
Writer, as detailed in the following paragraphs. .

The REPORT HEADING or RH entry indicates a report group that is
produced only once at the beginning of a report during the execution of
the first GENERATE statement. There can be only one report group of
this type in a report. SOURCE clauses used in REPORT HEADING report
groups refer to the values of data items at the time the first GENERATE
statement is executed.

The PAGE HEADING or PH entry indicates a report group that is pro-
duced at the beginning of each page according to PAGE condition rules as
specified below. There can be only one report group of this type in a
report.

The CONTROL HEADING or CH entry indicates a report group that is pro-
duced at the beginning of a control group for a designated identifier,
or, in the case of FINAL, is produced once before the first control
group during the execution of the first GENERATE statement. There can
be only one report group of this type for each identifier and for the
FINAL entry specified in a report. In order to produce any CONTROL
HEADING report groups, a control break must occur. SOURCE clauses used
in CONTROL HEADING FINAL report groups refer to the values of the items
at the time the first GENERATE statement is executed,

The CONTROL FOOTING or CF entry indicates a report group that is
produced at the end of a control group for a designated identifier or is

Report Writer Feature 247



TYPE Clause

produced once at the termination of a report ending a FINAL control
group. There can be only one report group of this type for each identi-
fier and for the FINAL entry specified in a report. In order to produce :
any CONTROL FOOTING report groups, a control break must occur. SOURCE N
clauses used in CONTROL FOOTING FINAL report groups refer to the values

of the items at the time the TERMINATE statement is executed.

The PAGE FOOTING or PF entry indicates a report group that is
produced at the bottom of each page according to PAGE condition rules as
specified below. There can be only one report group of this type in a
report.

The REPORT FOOTING or RF entry indicates a report group that is
produced only at the termination of a report. There can be only one
report group of this type in a report. SOURCE clauses used in TYPE
REPORT FOOTING report groups refer to the value of items at the time the
TERMINATE statement is executed.

Identifier-n, as well as FINAL, must be one of the identifiers
described in the CONTROL clause in the Report Description entry.

A FINAL type control break may be designated only once for CONTROL
HEADING or CONTROL FOOTING entries within a particular report
description.

Nothing precedes a REPORT HEADING entry and nothing follows a REPORT
FOOTING entry within a report.

The HEADING or FOOTING report groups occur in the following Report
Writer sequence if all exist for a given report:

REPORT HEADING (one occurrence only)
PAGE HEADING

CONTROL HEADING
DETAIL

CONTROL FOOTING

PAGE FOOTING
REPORT FOOTING (one occurrence only)

CONTROIL HEADING report groups are presented in the following
hierarchical arrangement:

Final Control Heading (one occurrence only)
Major Control Heading

Minor Control Heading

CONTROL FOOTING report groups are presented in the following
hierarchical arrangement:

Minor Control Footing

Major Control Footing C)
Final control Footing (one occurrence only) e’

248 Part V -- Special Features



COLUMN Clause

CONTROL HEADING report groups appear with the current values of any
indicated SOURCE data items before the DETAIL report groups of the
CONTROL group are produced. CONTROL FOOTING report groups appear with
the previous values of any indicated SOURCE data items specified in the
CONTROL clause, just after the DETAIL report groups of that CONTROL
group have been produced.

The USE procedures specified for a CONTROL FOOTING report group that
refer to:

s source data items that are specified in the CONTROL clause affect
the previous value of the items

* source data items that are not specified in the CONTROLS clause
affect the current value of the items

These report groups appear whenever a control break occurs. LINE NUMBER
determines the absolute or relative position of the CONTROL report
groups exclusive of the other HEADING and FOOTING report groups.

USAGE Clause

DISPLAY is the only option that may be specified for group and
elementary items in a Report Group Description entry (see "USAGE
Clause").

COLUMN Clause

The COLUMN clause indicates the absolute column number on the printed
page of the high-order (leftmost) character of an elementary item.

Format

COLUMN NUMBER IS integer

o e e o —

b e e e

The COLUMN clause indicates that the leftmost character of the
elementary item is placed in the position specified by integer. If the
column number is not indicated, the elementary item, though included in
the description of the report group, is suppressed when the report group
is produced at object time.

Integer must be a positive integer.

The COLUMN number clause is given at the elementary level within a
report group even if the elementary level is a single level-01 entry,
which alone constitutes the report group.

Report Writer Feature 249



GROUP INDICATE/RESET Clauses

GROUP INDICATE Clause

The GROUP INDICATE clause specifies that this elementary item is to

be produced only on the first occurrence of the item after any control
or page break.

Format

GROUP INDICATE

[ e et s st s ey

The GROUP INDICATE clause must be specified only at the elementary
item level within a DETAIL report group.

An elementary item is not only group indicated in the first DETAIL
report group containing the item after a control break, but is also
group indicated in the first DETAIL report group containing the item on
a new page, even though a control break did not occur.

JUSTIFIED Clause

The JUSTIFIED clause is applicable in report group description
entries as described in "bata Division."

PICTURE Clause

The PICTURE clause is applicable in Report Group Description entries
as described in "Data Division."

RESET Clause

The RESET clause indicates the CONTROL identifier that causes the SUM

counter in the elementary item entry to be reset to zero on a CONTROL
break.

| Format

identifier
RESET ON

FINAL

R e P

After presentation of the CONTROL FOOTING report group, the counters
associated with the report group are reset automatically to zero,

250 Part V -- Special Features

et s et s e e



SOURCE/SUM/VALUE Clause

unlessan explicit RESET clause is given specifying reset based on a
higher level control than the associated control for the report group.

The RESET clause may be used for progressive totaling of identifiers
where subtotals of identifiers may be desired without automatic

resetting upon producing the report group.

Identifier must be one of the identifiers described in the CONTROL
clause in the Report Description entry (RD). Identifier must be a
higher level CONTROL identifier than the CONTROL identifier associated
with the CONTROL FOOTING report group in which the SUM and RESET clauses
appear.

The RESET clause may be used only in conjunction with a SUM clause.

BLANK WHEN ZERQO Clause

The BLANK WHEN ZERO clause is applicable here as discussed in "Data
Division.,"

SOQURCE, SUM, or VALUE Clause

The SOURCE, SUM, or VALUE clause defines the purpose of this
elementary item within the report groupe.

Format

SOURCE IS { }
identifier-1

SUM { } { {
jidentifier-2

VALUE IS literal-1

} «ss [UPON data-namel
identifier-3

-———qr__———q—_————_l——q
e e v e o s i v s e i e e i et e et s

SOQURCE: The SOURCE clause indicates a data item that is to be_used as
the source for this report item. The item is presented §ccord1ng to the
PICTURE clause and the COLUMN clause in this elementary item entry.

The SOURCE clause has two functions:

1. to specify a data item that is to be printed

2. to specify a data item that is to be summed in a CONTROL FOOTING
report group (see SUM clause)

Report Writer Feature 251



SOURCE/SUM/VALUE Clause

SUM: The SUM clause is used to cause automatic summation of data and
may appear only in an elementary item entry of a CONTROL FOOTING report
group. The presence of a SUM clause defines a SUM counter. If a SUM
counter is to be referred to by a Procedure Division statement or Report
Section entry, a data-name clause must be specified with the SUM clause
entry. The data-name then represents the summation counter generated by
the Report Writer to total the operands specified immediately following
SUM. If reference is mever made to a summation counter, the counter
need not be named explicitly by a data-name entry.

Whether the elementary item entry that contains a SUM clause names
the summation counter or not, the PICTURE clause must be specified for
each SUM counter. Editing characters or editing clauses may be included
in the description of a SUM counter. ZEditing of a SUM counter occurs
only upon presentation of that SUM counter. At all other times, the SUM
counter is treated as a numeric data item. The SUM counter must be
large enough to accommodate the summed quantity without truncation of
integral digits.

An operand of a SUM clause must be an elementary numeric data item
that appears in the File, Working-Storage, ! Section, or is the
name of a SUM counter. A SUM counter that is an operand of SUM clause
must be defined in the same CONTROL FOOTING report group that contains
this SUM clause or in a CONTROL FOOTING report group that is at a lower
level in the control hierarchy of this report.

A SUM counter is incremented by its operands in the following manner:

e An operand that is an elementary numeric data item appearing in the
File, Working-Storage, or Linkage Section is added to the SUM
counter upon the generation of a DETAIL report group that contains
this operand as a SOURCE data item; even if the operand appears in
more than one SOURCE clause of the DETAIL report group, it is added

only once to the SUM counter. The operands must appear exactly as

they are in the SOURCE clauses with regard to qualification,
subscriptin and indexin

e An operand that is a SUM counter and is defined in a CONTROL FOOTING
that is at any lower level in the control hierarchy of this report
is summed before presentation of the CONTROL FOOTING in which it is
defined, This counter updating is commonly called rolling counters
forward.

e An operand that is a SUM counter and is defined in the same CONTROL
FOOTING as this SUM clause, is summed before presentation of this
CONTROL FOOTING. This counter updating is commonly called
cross-footing. SUM counter operands are added to their respective
SUM counters in the oxder in which they physically appear in the
CONTROL FOOTING report group description, i.e., left to right within
an elementary item entry and down the elementary item entries.

The UPON data-name option is required to obtain selective summation for
a particular data item that is named as a SOURCE item in two or more
Identifier-2 and identifier~3 must be SOURCE data

The following is the chronology of summing events.

1. Cross-footing and counter rolling.
2. Execution of the USE BEFORE REPORTING procedure.

3. Presentation of the control footing if it is not a null group.

252 Part V -- Special Features



GENERATE Statement

4. SUM counter resetting unless an explicit RESET clause appears in
the entry that defines the SUM counter.

VALUE The VALUE clause causes the report data item to assume the
specified value each time its report group is presented only if the
elementary item entry does not contain a GROUP INDICATE clause. If the
GROUP INDICATE clause is present and a given cbject time condition

exists, the item will not assume the specified value (see GROUP INDICATE
rules).

PROCEDURE DIVISION CONSIDERATIONS

To produce a report, the INITIATE, GENERATE, and TERMINATE statements
must be specified in the Procedure Division. In addition, a USE BEFORE
REPORTING declarative may be written in a Declarative Section of the
Procedure Division. This option allows the programmer to manipulate or
alter data immediately before it is printed. '

GENERATE Statement

The GENERATE statement is used to produce a report.

Format

GENERATE identifier

oo e e et e e ey
|
R e

Identifier is the name of either a DETAIL report group or an RD
entry.

If identifier is the name of a DETAIL report group, the GENERATE
statement does all the automatic operations within a Report Writer
program and produces an actual output detail report group on the output
medium. This is called detail reporting.

If identifier is the name of an RD entry, the GENERATE statement does
all of the automatic operations of the Report Writer except producing
any detail report group associated with the report. This is called
summary reportinge.

In summary reporting, SUM counters are algebraieally incremented in
the same manner as for detail reporting. If more than one DETAIL report
group is specified in a report, SUM counters are algebraically
incremented as though consecutive GENERATE statements were issued for
all the DETAIL report groups of the report. This consecutive summing
takes place in the. order of the physical appearance of the DETAIL report
group descriptions. Even if there is more than one DETAIL report group
within a report, only one test for control break is made for each
GENERATE report-name. This test is made by the Report Writer prior to
the summary reporting. After initiating a report and before terminating
the same report, both detail reporting and summary reporting may be
performed.

Report Writer Feature 253



INITIATE Statement

A GENERATE statement, implicitly in both detail and summary
reporting, produces the following automatic operations (if defined):

i. Steps and tests the LINE COUNTER and/or PAGE COUNTER to produce
appropriate PAGE FOOTING and/or PAGE HEADING report groups, after a
line is printed.

2. Recognizes any specified control breaks to produce appropriate
CONTROL FOOTING and/or CONTROL HEADING report groups.

3. Accumulates into the SUM counters all specified identifier(s).
Resets the SUM counters.

4. Executes any specified routines defined by a USE statement before
generation of the associated report group(s).

During the execution of the first GENERATE statement, the following
report groups associated with the report (if specified) are produced in
the order:

1. REPORT HEADING report group
2. PAGE HEADING report group

3. All CONTROL HEADING report groups in the order FINAL, major to
minor

4. The DETAIL report group if specified in the GENERATE statement.

If a control break is recognized at the time of the execution of a
GENERATE statement (other than the first that is executed for a report),
all CONTROL FOOTING report groups specified for the report are produced
from the minor report group, up to and including the report group speci-
fied for the identifier which caused the control break. Then, the
CONTROL HEADING report group(s) specified for the report are produced,
starting with the report group specified for the identifier that caused
the control break, and continuing down to and ending with the minor
report group. Then, the DETAIL report group specified in the GENERATE
statement is produced.

Data is moved to the data item in the Report Group Description entry
of the Report Section and is edited under control of the Report Writer
according to the same rules for movement and editing as described for
the MOVE statement (see "Procedure Division").

INITIATE Statement

The INITIATE statement begins the processing of a report.

Format

INITIATE report-name-1 [report-name-2] ...

R el el
b s e e i e

Each report—name must be defined by a Report Description entry in the
Report Section of the Data Division.

254 Part V -- Special Features



TERMINATE Statement

The INITIATE statement resets all data-name entries that contain SUM
clauses associated with the report; the Report Writer controls for all
the TYPE report groups that are associated with this report are set up
in their respective order.

The PAGE~COUNTER register, if specified, is set to 1 (one) during the
execution of the INITIATE statement. If a starting value other than 1
is desired, the programmer may reset this PAGE-COUNTER following the
INITIATE statement.

The LINE-COUNTER register, if specified, is set to zero during the
execution of the INITIATE statement.

o e - -

The INITIATE statement does not open the file with which the report
is associated; an OPEN statement for the file must be given by the user.
The INITIATE statement performs Report Writer functions for individually
described reports analogous to the input and/or output functions that
the OPEN statement performs for individually described files,

A second INITIATE statement for a particular report-name may not be

executed unless a TERMINATE statement has been executed for that
report-name subsequent to the first INITIATE statement.

TERMINATE Statement

The TERMINATE statement completes the processing of a report.

Format

TERMINATE report-name-1 [report-name-2] ...

F'—_—"!I‘_T
[ S K

Each report—-name given in a TERMINATE statement must be defined by an
RD entry in the Data Division.

The TERMINATE statement produces all the CONTROL FOOTING report
groups associated with this report as though a control break had just
occurred at the highest level, and completes the Report Writer functions
for the named reports. The TERMINATE statement also produces the last
REPORT FOOTING report group associated with this report.

Appropriate PAGE HEADING and/or PAGE FOOTING report groups are
prepared in their respective order for the report description.

A second TERMINATE statement for a particular report may not be
executed unless a second INITIATE statement has been executed for the

report-name.

The TERMINATE statement does not close the file with which the report
is associated; a CLOSE statement for the file must be given by the user.
The TERMINATE statement performs Report Writer functions for indi-
vidually described report programs analogous to the input/output
functions that the CLOSE statement performs for individually described
files.

Report Writer Feature 255



USE BEFORE REPORTING Declarative

If, at object time, no GENERATE statement is executed for a report,
the TERMINATE statement of the report will not produce any report groups
and will not perform any SUM processing.

SOURCE clauses used in CONTROL FOOTING FINAL or REPORT FOOTING report R
groups refer to the values of the items during the execution of the
TERMINATE statement.

USE _Sentence

The USE sentence specifies Procedure Division statements that are
executed just before a report group named in the Report Section of the
Data Division is produced.

Format

USE BEFORE REPORTING data-name.

o e et o g e oy
 SRPR RS ——" Sy———

A USE sentence, when present, must immediately follow a section
header in the declaratives portion of the Procedure Division and must be
followed by a period followed by a space. The remainder of the section
must consist of one or more procedural paragraphs that define the
preocedures to be used.

Data-name represents a report group named in the Report Section of | /
the Data Division. A data-name must not appear in more than one USE ~
sentence. Data-name must be qualified by the report-name if data-name
is not unique.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be
written in a procedural paragraph(s) following the USE sentence in the
declaratives portion.

The USE sentence itself is never executed; rather it defines the
conditions calling for the execution of the USE procedures,

The designated procedures are executed by the Report Writer just
before the named report is produced, regardless of page or control break
associations with report groups. The report group may be any type
except DETAIL.

Within a USE procedure, there must not be any reference to any
nondeclarative procedures. Conversely, in the nondeclarative portion,
there must be no reference to procedure names that appear in the De-
claratives Section, except that PERFORM statements may refer to a USE
procedure or to the procedures associated with the USE procedure.

256 Part V -- Special Features



Report Writer--Special Registers

SPECIAL REGISTERS: PAGE-COUNTER AND LINE-COUNTER

The fixed data-names, PAGE-COUNTER and LINE-COUNTER, are numeric
counters automatically generated by the Report Writer based on the
prresence of specific entries; they do not require data description
clauses. The description of these two counters is included here in
order to explain their resultant effect on the overall report format.

PAGE-COUNTER

A PAGE-COUNTER is a counter generated by the Report Writer to be used
as a source data item in order to present the page number on a report
line. A PAGE-COUNTER is generated for a report by the Report Writer if
a PAGE-LIMIT clause is specified in the RD entry of the report. The
numeric counter is a 3-byte
according to the PICTURE clause ass
whose SOURCE is PAGE-COUNTER.

If more than one PAGE-COUNTER is given as a SOURCE data item within a
given report, the number of numeric characters indicated by the PICTURE
clauses must be identical. If more than one PAGE-COUNTER exists in the
program, the user must qualify PAGE-COUNTER by the report name.

PAGE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. After an INITIATE statement,
PAGE~-COUNTER contains one; if a starting value for PAGE-COUNTER other
than one is desired, the programmer may change the contents of the
PAGE-COUNTER by a Procedure Division statement after an INITIATE
statement has been executed. PAGE-COUNTER is automatically incremented
by one each time a page break is recognized by the Report Writer, after
the production of any PAGE FOOTING report group but before production of
any PAGE HEADING report group.

LINE-COUNTER

A LINE-COUNTER is a counter used by the Report Writer to determine
when a PAGE HEADING and/or a PAGE FOOTING report group is to be
presented. One line counter is supplied for each report with a PAGE
LIMIT(S) clause written in iption entry (RD). The
numeric counter is a 3-byte item that is presented
according to the PICTURE clause assoc1ated with the elementary item
whose SOURCE is LINE~COUNTER.

LINE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. If more than one Report Description
entry (RD) exists in the Report Section, the user must qualify
LINE-COUNTER by the report-name. LINE-COUNTER is automatically tested
and incremented by the Report Writer based on control specifications in
the PAGE LIMIT(S) clause and values specified in the LINE NUMBER and

Report Writer Feature 257



Report Writer--Special Registers

NEXT GROUP clauses. After an INITIATE statement, LINE-COUNTER contains

zero. Changing the value of LINE-COUNTER by Procedure Division

statements may cause page format control to become unpredictable in the

Report Writer. P

The value of LINE-COUNTER during any Procedure Division test state-
ment represents the number of the last line printed by the previously
generated report group or represents the number of the last line skipped
to by a previous NEXT GROUP specification.

In a USE BEFORE REPORTING, if no lines have been printed or skipped

on the current page, LINE-COUNTER will contain zero. In all other
cases, LINE-COUNTER represents the last line printed or skipped.

258 Part V -- Special Features



.]000060 DATA DIVISION.

Report Writer--Sample Program

SAMPLE REPORT WRITER PROGRAM

Figure 16 illustrates a Report Writer source program. The records
used in the report (i.e., input data) are shown after the STOP RUN card
in the program. Using the first record as an example, the data fields
are arranged in the following card format:

AOO 02
P /& — S .
Department Number of Type of Month Day Cost
Number Purchases Purchase

The decimal point in the cost field is assumed to be two places from

|
|
|
-

r

|000005 IDENTIFICATION DIVISION.

|000010 PROGRAM-ID. ACME.

[000015 REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER.
1000020 ENVIRONMENT DIVISION,

1000025 CONFIGURATION SECTION.

|000030 SOURCE-COMPUTER. IBM-360-F50.

1000035 OBJECT-COMPUTER. IBM-360-F50.

| 000040 INPUT-OUTPUT SECTION.

]000045 FILE~-CONTROL,

1000050 SELECT INFILE ASSIGN TO SYS000-UT-2400-sS.

| 000055 SELECT REPORT-FILE ASSIGN TO SYS001-UT-2400-S.

1000065 FILE SECTION,
|000070 FD INFILE

|

|

|

|

i

|

|

I

|

|

|

|

i

1000075 LABEL RECORDS ARE OMITTED |
1000080 DATA RECORD IS INPUT-RECORD. |
1000085 01 INPUT-RECORD. |
000090 02 FILLER PICTURE AA. |
000095 02 DEPT PICTURE XXX. |
|000100 02 FILLER PICTURE AA. |
000105 02 NO-PURCHASES  PICTURE 99. |
000110 02 FILLER PICTURE A. |
1000115 02 TYPE-PURCHASE PICTURE A. |
000120 02 MONTH PICTURE 99. |
000125 02 DAY PICTURE 99. |
1000130 02 FILLER PICTURE A. |
| 000135 02 COST PICTURE 999V99. |
| 000180 02 FILLER PICTURE X(59). |
[000145 FD REPORT-FILE |
{000150 LABEL RECORDS ARE STANDARD |
|000151 RECORD CONTAINS 121 CHARACTERS |
1000155 REPORT IS EXPENSE-REPORT. |
1000160 WORKING-STORAGE SECTION, |
j000165 77 SAVED-MONTH PICTURE 99 VALUE IS O. |
|000175 77 CONTINUED PICTURE X(11) VALUE IS SPACE, |
L —_— ; J

Figure 16., Sample Program Using the Report Writer Feature (Part 1 of #4)

Report Writer Feature 259



Report Writer—--Sample Program

r
|000180 01 MONTH-TABLE-1.

1000185 02 RECORD-MONTH.

|000190 03 FILLER PICTURE A(9) VALUE IS "JANUARY ".
1000195 03 FILLER PICTURE A(9) VALUE IS "FEBRUARY ".
000200 03 FILLER PICTURE A(9) VALUE IS "MARCH e
| 000205 03 FILLER PICTURE A(9) VALUE IS "APRIL .
| 000210 03 FILLER PICTURE A(9) VALUE IS "MAY "e
1000215 03 FILLER PICTURE A(9) VALUE IS "JUNE "
1000220 03 FILLER PICTURE A(9) VALUE IS "JULY "
|000225 03 FILLER PICTURE A(9) VALUE IS "AUGUST ".
000230 03 FILLER PICTURE A(9) VALUE IS "SEPTEMBER".
1000235 03 FILLER PICTURE A(9) VALUE IS "OCTOBER ".
jooo2u0 03 FILLER PICTURE A{9) VALUE IS "NOVEMBER ".
000245 03 FILLER PICTURE A(9) VALUE IS "DECEMBER ",
1000250 02 RECCRD-AREA REDEFINES RECORD-MONTH.

|000255 03 MONTHNAME PICTURE A(9) OCCURS 12 TIMES.

000260 REPORT SECTION.
|]000265 RD EXPENSE-REPORT

-1
|
|
I
|
|
|
|
|
|
|
|
|
I
|
|
]
|
1000270 CONTROLS ARE FINAL MONTH DAY |
}000275 PAGE LIMIT IS 59 LINES |
|]000280 HEADING 1 |
| 000285 FIRST DETAIL 9 |
1000290 LAST DETAIL 48 |
000295 FOOTING 52. |
|000300 01 TYPE IS REPORT HEADING. I
1000305 02 LINE NUMBER IS 1 |
1000310 COLUMN NUMBER IS 27 |
{000315 PICTURE IS A(26) |
1000320 VALUE IS “ACME MANUFACTURING COMPANY". |
| 000325 02 LINE NUMBER IS 3 |
1000330 COLUMN NUMBER IS 26 |
| 000335 PICTURE IS A(29) |
1000340 VALUE IS "QUARTERLY EXPENDITURES REPORT". i
]000345 01 PAGE-HEAD |
1000350 TYPE IS PAGE HEADING. |
| 000355 02 LINE NUMBER IS 5. |
{000360 03 COLUMN Is 30 |
|000365 PICTURE IS A(9) - |
{000370 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH). ]
1000375 03 COLUMN IS 39 |
| 000380 PICTURE IS A(12) |
|000385 VALUE IS "EXPENDITURES". |
]000390 03 COLUMN IS 52 ]
|000395 PICTURE IS X(11) |
[ 000400 SOURCE IS CONTINUED. i
|000405 02 LINE IS 7. |
jooou10 03 COLUMN IS 2 |
|]000415 PICTURE IS X(35) |
{ 000420 VALUE IS "MONTH DAY DEPT NO-PURCHASES". i
jooou25 03 COLUMN IS 40 |
|o00u30 PICTURE IS X(33) |
[oo0435 VALUE IS "TYPE COST CUMULATIVE-COST". |
L . J

)

Figure 16. Sample Program Using the Report Writer Feature (Part 2 of

260 Part V -- Special Features

F3

—



Report Writer--Sample Program

r -
|000440 01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.
jooouus 02 COLUMN IS 2 GROUP INDICATE PICTURE IS A(9)

| 000450 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH) .
|000455 02 COLUMN IS 13 GROUP INDICATE PICTURE IS 99

| 000460 SOURCE IS DAY,

|000465 02 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT.

j 000470 02 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES.
| 000475 02 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE,
|ooous80 02 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST.
|000485 01 TYPE IS CONTROL FOOTING DAY.

|000490 02 LINE NUMBER IS PLUS 2.

| 000495 03 COLUMN 2 PICTURE X(22)

]000500 VALUE "PURCHASES AND COST FOR".

] 000505 03 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
|000510 03 COLUMN 26 PICTURE X VALUE "-".

1000515 03 COLUMN 27 PICTURE 99 SOURCE DAY.

1000520 03 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.
1000525 03 MIN

1000530 COLUMN 49 PICTURE $5$$9.99 SUM COST.

] 000535 03 COLUMN 65 PICTURE $5$59.99 SUM COST

|000540 RESET ON FINAL.

| 000545 02 LINE PLUS 1 COLUMN 2 PICTURE X{(71)

|000550 VALUE ALL "#".

J]000555 01 TYPE CONTROL FOOTING MONTH

1000560 LINE PLUS 1 NEXT GROUP NEXT PAGE.

1000565 02 COLUMN 16 PICTURE A(14) VALUE "TOTAL COST FOR"
|0600570 02 COLUMN 31 PICTURE A(9)

|000575 SOURCE MONTHNAME OF RECORD-AREA (MONTH) .

1000580 02 COLUMN 43 PICTURE AAA VALUE "WAS".

[000585 02 INT

1000590 COLUMN 48 PICTURE $$%$9.99 SUM MIN.

|000595 01 TYPE CONTROL FOOTING FINAL LINE NEXT PAGE.

1000600 02 COLUMN 16 ‘ PICTURE A(26)

]000605 VALUE "TOTAL COST FOR QUARTER WAS".

] 000610 02 COLUMN 45 PICTURE $$5$59.99 SUM INT.

j]000615 01 TYPE PAGE FOOTING LINE 57.

1000620 02 COLUMN 59 PICTURE X(12) VALUE "REPORT-PAGE-".
1000625 02 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER.
[000630 01 TYPE REPORT FOOTING

]000635 LINE PLUS 1 COLUMN 32 PICTURE A(13)

| 000640 VALUE "END OF REPORT".

|000645 PROCEDURE DIVISION.

|000650 DECLARATIVES.

|000655 PAGE~HEAD-RTN SECTION.

] 000660 USE BEFORE REPORTING PAGE-HEAD.

|000665 PAGE-HEAD-RTN-SWITCH.

]000670 GO TO PAGE-HEAD-RTN-TEST.

|000675 PAGE-HEAD-RTN-TEST.

] 000680 “IF MONTH = SAVED-MONTH MOVE "(CONTINUED)" TO CONTINUED
}000685 ELSE MOVE SPACES TO CONTINUED

]000690 MOVE MONTH TO SAVED-MONTH.

{000695 GO TO PAGE-HEAD-RTN-EXIT.

|000697 PAGE-HEAD-RTN-ALTER.

1000698 ALTER PAGE-HEAD-RTN-SWITCH TO PAGE-HEAD-RTN-SUPPRESS.
|000700 PAGE-HEAD-RTN-SUPPRESS.

] 000705 MOVE 1 TO PRINT-SWITCH.

|000710 PAGE-HEAD-RTN-EXIT.

[ 000715 EXIT.

|000720 END DECLARATIVES.

Lo

Figure 16. Sample Program Using the Report Writer Feature (Part 3 of 4

Report Writer Feature

|
l
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
I .
|
|
|
|
|
|
I
|
|
|
|
|
|
|
I
I
|
|
|
|
|
|
|
I
|
I
|
I
|
I
|
|
|
|
|
|
|
4
)

261



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Report Writer--Sample Program

— - -
|000725 OPEN-FILES. OPEN INPUT INFILE OUTPUT REPORT-FILE.

| 000730 INITIATE EXPENSE-REPORT.

|000735 READATA.

000740 READ INFILE AT END GO TO COMPLETE.
| 000745 GENERATE DETAIL-LINE.

1000760 GO TO READATA.

|000765 COMPLETE.

| 000770 PERFORM PAGE-HEAD-RTN-ALTER.
|000780 TERMINATE EXPENSE-REPORT.

| 000785 CLOSE INFILE REPORT-FILE.

|000790 STOP RUN.

A00 02 A0101 00200
A02 01 AO0101 00100
A02 01 A0101 01600
A01 02 B0102 00200
A04 10 A0102 01000
A01 20 D0108 03840

A01 06 E0329 0ou800
a03 20 EO0331 0600
A03 10 G0331 05000

[ o e S s s v S e T e U i S i

1
|
|
|
|
|
|
|
:
|
|
|
|
|
|
a
|
|
|
|
:
|
|
|
s
|
|
)

Figure 16. Sample Program Using the Report Writer Feature (Part 4 of 4

Key Relating Report to Report Writer Source Program

In the key, the numbers enclosed in circles (for example, (:)) relate
the explanation below to the corresponding output line in Figure 17.

The six-digit numbers (for example, 000615) show the source statement
from the program illustrated in Figure 16.
is the REPORT HEADING resulting from source lines 000300-000340,

is the PAGE HEADING resulting from source lines 000345-000435.

is the DETAIL line resulting from source lines 000440-000480 (note
that since it is the first detail line after a control break, the
fields defined with the GROUP INDICATE clause, lines
000uu45-000460, appear).

©® O 6

(:) is a DETAIL line resulting from the same source lines as
In this case, however, the fields described as GROUP INDICATE do
not appear (since the control break did not immediately precede
the detail line).

(:) is the CONTROL FOOTING (for DAY) resulting from source lines
000485-~000550.

(:) is the PAGE FOOTING resulting from source lines 000615-000625.

262 Part V -- Special Features



Report Writer--Sample Program

is the CONTROL FOOTING (for MONTH) resulting from source lines
000555-000575,

Q

is the CONTROL FOOTING (for FINAL) resulting from source lines
000595-000610.

(:) is the REPORTING FOOTING resulting from source lines
000630-000640.

Lines 000650-000715 of the example illustrate a use of USE BEFORE
REPORTING. The effect of the source is that each time a new page is
started, a test is made to determine whether the new page is being
started because a change in MONTH has been recognized (the definition
for the control footing for MONTH specifies NEXT GROUP NEXT PAGE) or
because the physical limits of the page were exhausted. If a change in
MONTH has been recognized, spaces are moved to the PAGE HEADING; if the
physical limits of the page are exhausted, "(CONTINUED)" is moved to the
PAGE HEADING.

Report Writer Feature 263



Report Writer--Sample Program

@

ACME MANUFACTURING COMPANY

QUARTERLY EXPENDITURES REPORT

(2)\\\ JANUARY EXPENDITURES
MONTH DAY DEPT NO-PURCHASES  TYPE COST CUMULATIVE--COST
ANUARY 01 AOO 2 A 2.00
AO2 1 A 1.00
AD2 2 c 16.00
PURCHASES AND COST FOR 1-01 5 $19.00 $19.00
(:):::*********#****************************#******#****#***#*********#****#*
JANUARY 02 A01 2 B 2.00
A4 10 A 10.00
AO4 10 c 80.00
PURCHASES AND COST FOR 1-02 22 $92.00 $111.00
s st o o e ik vk g R 3k ok 3 she e sl ok it S sl e sk ol o s sl sk sk e e ok ok e e ik ok ok e o e kel 3 s st e e s sk st e e 3k e e ek e e ol e e ek ke ek ek ok
JANUARY 05 AO1 2 8 2.00
PURCHASES AND COST FOR 1-05 2 $2.00 $113.00
e e s 3k 3 33k ok e e e e sl e 3 A s e e e e o ik 3k ok e ol s sk e ook e e ke e ok s s ok skl ol s e 3k e Aok ik o o e e s ol e i e ok o e e ok el e ek
JANUARY 08 AO1 10 A 10.00
‘A01 8 B8 12.48
AO1 20 D 38.40
PURCHASES AND COST FOR 1-08 38 $60.88 $173.88
e ok S e o o ol sk sk e o ok e e ol sk e e ik sk sk e sk ik sl o sk e o ok o ode s e e sl ok e ke ik ok 3l e ok e 2 e e e e ek ok ofe e o ok sk ode e e o e ke ol e ol ok ke Xk
JANUARY 13 A0O 4 B 6.24
A0O 1 C 8.00
PURCHASES AND COST FOR 1-13 5 $14.24 $188.12
e e e e e e e e e e e Kk %< e 3o e ok 3 e ek el e s e e ok e 3 ok e e s ol e e e ok e sl e e e e e Feofe e e e ke e e e st e e e e o ofe e sk ek koo
JANUARY 15 A0O 10 D 19.20
A2 1 o 8.00
PURCHASES AND COST FOR 1-15 11 $27.20 $215.32
e e e e e e o e o ok R e e e Sk el ok o 3 e e o ek e ok 3k Sie ok ok ok e v e o e e ale e e 2 o Fe e e e e e Sk e e e el e e e e ek kol sk e ek
JANUARY 21 AO03 10 E 30.00
A03 10 F 25.00
AO3 10 G 50.00
PURCHASES AND COST FOR 1-21 30 $105.00 $320.32
**#*************************#****t*************************************
JANUARY 23 AOO 5 A 5.00
PURCHASES AND COST FOR 1-23 5 $5.00 $325.32

3¢ e st 3 ol e ol 3 e o o e e o e sk e e ke e o e sbe e s e e s s s sk s e s e o e e e e e s e s st e s e ke ok e ke sk sk e e okl ke keok Aok kol

REPORT-PAGE-O1

@~

Figure 17. Report Produced by Report Writer Feature (Part 1 of 5)

264

Part V —- Special Features



o

Report Writer-~-Sample Program

(2}\ JANUARY EXPENDITURES (CONTINUED)
NMONTH DAY DEPT NO-PURCHASES  TYPE COST CUMULATIVE-COST
JANUARY 26 AO4 5 A 5.00

®/Ao4 5 B 7.80
PURCHASES AND COST FOR 1-26 10 $12.80‘ $338.12

ﬁ******* e e e e e A v e e e e e 3 e e e e e e e e ok e e e s s sfe S s s e sk sbe e e e ek ale s e s e e ol e e o e oo e e e o ok el ook

JANU ARY 27 AQO 6 B G.36
AOOC 15 C 120.00
PURCHASES AND COST FOR 1-27 21 $129.36 $467.48
sk sl stk s el e s e et ko st et o s sk o s stk o s sl e s e s sk st et e sk e s e kool o ook e s e e ko ok e
JANUARY 30 AQO 2 B 3.12
AQ2 10 A 10.00 -
A02 1 C 8.00
AO4 15 B 23.40
AO& 10 C 80.00
PURCHASES AND COST FOR 1-30 38 $124.52 $592.00
Stcate sl s e et e s st e s oo s st e s el e s e b e o sttt s s s ot ool e s s ot e sk e s s e oo el e ek
JANUARY 31 AQOQ 1 A 1.00
AO4 6 A 6.00
PURCHASES AND COST FOR 1-31 T N $7.00 $599.00
: e e s e ok s e e oo st e e oo b e oo e e e s s o o st s s ke et sk Sk e Sk ok sk e sk sl s e et sk ok e e ok ok e
@ TOTAL COST FOR JANUARY WAS $599.00

@ , REPORT—PAGE-02

Figure 17. Report Produced by Report Writer Feature (Part 2 of 5)

Report Writer Feature 265



Report Writer—-—Sample Program

(@\ FEBRUARY EXPENDITURES
MONTH DAY DEPT NO-PURCHASES  TYPE COST CUMULATIVE-COST
@——FEBRUARY 15 A02 10 A 10.00.
AD2 2 B 3,12
A02 1 C 8400
A0 15 G 75.00
A04 5 B 7.80
A0S 8 A 8.00
AQS 5 c 40.00
@:PURCHASES AND COST FOR 2-15 46 $151.92 $750.92
e 3¢ o S ek e dfe fe s Sk ok e e o 3 e s ssle e e sk S s e sk e s sk ol s e sk sl dle R ade ke e e e s A e s sfe oo sk e e sl este dfe sk Skl e kek
FEBRUARY 16 A02 2 c 16.00
A06 10 A 10.00
AQT 10 A 10.00
rO7 10 F 25.00
PURCHASES AND COST FOR 2-16 32 $61.00 $811.92
e 3 3k 3 ofe ke e ol sfeske e shest sl oje st kst soale e e stk e s ok sk sk e ke s sk s sl sje koo s e o sfe e e s s sl e e s g sk kol sk sk ok sjesk ke skeolesk sk
FEBRUARY 17 A07 10 E 30.00
AO7 10 G 50.00
PURCHASES AND COST FOR 2-17 20 $80.00 $891.92
e 3 e % o sk e o v ol ke e gk e e e e s e e s sk e sl s e o e e e sl S st e e e e S e e e e e e sk sfe 3 ok s sk st e e e e ks o e e Sk ookt el etk
FEBRUARY 21 A6 20 A 20.00
A06 20 B 31.20
AOG 20 c 160.00
A06 20 D 38.40
A06 20 E 60.00
A06 20 F 50.00
AOE 20 6 100. 00
PURCHASES AND COST FOP 2-21 140 $459.60 $1351.52
95 3 ok e 28 st e e e ofe sk e e e s e sl Fesie s st sl s e St sie ol s ofe e ade sfe el e e sie e dfe s st e ok e e e sk e sk e e el e sk ook ek kel ok Xk
FEBRUARY 27 A01 21 D 40.32
PURCHASES AND COST FOR 2-27 21 $40.32 $1391.84
e 3¢ 34 e e sk e 43 e e e e e e e she e e 3k sk ek e st o e e e sk ek e e e st ok sfe s ok el e s e e o sl e sl e s e sl e ol sfeofe el sk o sl ek sk
FEBRUARY 28 A02 3 B 4,68
A02 5 c 40.00
A03 15 E 45,00
PURCHASES AND COST FOR 2-28 23 $89.68 $1481.52

e e e e o S e 3k v e S S o e e sl el dfe ke e e e s dfe sk s e e e ke e ek o e e e sk e ke sl e e sfe e e 3 e e s e ek e e ek e e e ok ke e Ak Fekk

@

TOTAL COST FOR FEBRUARY WAS" $882.52

G-

REPORT-PAGE=-03

Figure 17. Report Produced by Report Writer Feature (Part 3 of 5)

266

Part V -- Special Features



Report Writer--Sample Program

®
(:)———MARCH 01 AQ2

MARCH EXPENDITURES

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST

5 A 5.00
_ A02 1 c 8.00
@-—-——-——”/Aoa 25 G 125.00
PURCHASES AND COST FOR 3-01 31 $138.00 $1619.52
(:):::***********************************************************************
MARCH 06  AO2 5 A 5.00
PURCHASES AND COST FOR 3-06 5 $5.00 $1624.52
e 3k e sfe s e o e 3 e e e ok e e s e ke s Sfeale e e s e e ok s e e s e e e e e e e i o e e e e ke o e ke e e e e e o obe e ok ok skt e sfeole ek sl ok ke
MARCH 07 A02 5 A 5.00
PURCHASES AND COST FOR 3-07 5 $5.00 $1629.52
2 e 3K e e S e s o e s st 3 e e e e oo e e o st ke ok e e e s v e o e e e e s ok s oofe e sfe ke e o e 3 e e s ste e e ok e o ok ok ol ol ol ok ok ok
MARCH 13 A02 10 A 10.00
PURCHASES AND COST FOR 3-13 10 $10.00 $1639.52
35 e e 3k 3k s s e sfe s Sk e e 3 e e e e e e ol e e ok e e e sfe ke ke vk e e e e o o e ke ke e s kol S e ke o e ol ok ke el e el dfe s e ke e ke kol
MARCH 15 Aol 21 A 21.00
A02 1 A 1.00
203 15 F 37.50
206 5 E 15.00
AOE 5 F 12.50
PURCHASES AND COST FOR 3-15 47 $87.00 $1726.52
Fe 3 sk die e et e e 3 e ade 3 e S e e el e sk e sk et sde e e e e abe e sl vk e ke e e o e sde e e e e e sk e ek sfe e st e ofe e sk sfe s oo ook e sk ke ke e ek
MARCH 20 A03 15 € 45.00
PURCHASES AND COST FOR 3-20 15 $45.00 $1771.52
3 e ok e e ol e e sk e e e ek o e e ek 2k e s e s s sfe sfe e e s e s e e e e sfe e sk s s el Sk e e 3 sfe e she e dfe e sk e e e sl e e sk kol e ook
MARCH 21 A02 15 A 15.00
A03 15 F 37.50
PURCHASES AND COST FOR 3-21 30 $52.50 $1824.02
ste e e e 3 e e e e o Ak e ol e el ke e sfe e e e e i fesde e s 3 e e e e e o sk sk e s e sfe e sfe e s s e sk e e sl e ok e e o S e e ek ik Skeskk ek
MARCH 23 A02 2 A 2.00
PURCHASES AND COST FOR 3-23 2 $2.00 $1826.02
e s e sie e e s e e e e e e afe s e ek e e e sk s sk e e e e e e e e e e e sie e e s o s o e s ol s e e e e s e e sde e e ek ksl s ke el ek
MARCH 25 A03 30 F 75.00
PURCHASES AND COST FOR 3-25 30 $75.00 $1901.02

sfe sbe e e e sfe e e e esle s e s s e e sheok s ok 3 s e sk ke e S e e 35 e She e e sl o e e e e e sl sk e sfe sfe ke ok e e e e e e e e e sle el e el e ek e ok

®

REPORT-PAGE-04

Figure 17. RepoiﬁnProduced by Report Writer Feature (Part 4 of 5)

Report Writer Feature 267



Report Writer--Sample Program

MARCH EXPENDITURES (CONTINUED)

i

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST
MARCH 26 AQ2 1 A 1.00
. PURCHASES AND COST FOR 3-26 1 $1.00 $1902.02
(:}:::********************************************************#**************
MARCH 29 AQ1l 6 C 48.00
PURCHASES AND COST FOR 3-29 6 $48.00 $1950.02
St ofee ek et e ek s e steale st et skt fofe s ket sk ok st sk ookttt skolskol stk sfokolc ok kool St ko estedkdokok
MARCH 31 AO3 20 E 60.00
PURCHASES AND COST FOR 3-31 20 $60.00 $2010.02
e s e e e e fetofe s sk e sk ok sk ok sk desiokafel sk stk s sl ek ek e e s ek e ot desfoleskalesk ok e ok ololok sokok
@ TOTAL COST FOR MARCH WAS $528.50

@ REPORT-PAGE-05

AN NSNS NSNS SIS IS IS NSNS NSNS SIS NI NN NN NTNINNINININSAINIS NSNS NINNLNINNLNININININININNSS

TUTAL CCST FOR QUARTER WAS $2010.02

(8) REPORT-PAGE~06
@ ~ END OF REPORT

A A A A A A N AN A AP SA TIPS NI NN NN SN I NSNS NPT NPT NINININ SIS NI NSNS T

Figure 17. Report Produced by Report Writer Feature (Part 5 of 5)

268 Part V -- Special Features



Subscripting and Indexing

TABLE HANDLING FEATURE

The Table Handling feature enables the programmer to process tables
or lists of repeated data conveniently. A table may have up to three
dimensions, i.e., three levels of subscripting or indexing can be
handled. Such a case exists when a group item described with an OCCURS
clause contains another group item with an OCCURS clause, which in turn
contains an item with an OCCURS clause, To make reference to any
element within such a table, each level must be subscripted or indexed.

SUBSCRIPTING

Subscripts are used only to refer to an individual element within a
list or table of elements that have not been assigned individual
data~names.

Format

data-name (subscriptl, subscriptl[, subscriptl)

S
%
e e s e et e

The subscript, or set of subscripts, that identifies the table
element is enclosed in parentheses immediately following the space that
terminates data-name, which is the name of the table element. When more
than one subscript appears within a pair of parentheses, the subscripts
must be separated by commas. A space must follow each comma, but no
space may appear between the left parenthesis and the leftmost subscript
or between the rightmost subscript and the right parenthesis. To
identify an element in the table named SAILARY by the set of subscripts
YEAR, MONTH, and WEEK, the programmer would write:

SALARY (YEAR, MONTH, WEEK).

The subscript can be represented by a numeric literal. that is a
positive integer, by the special register TALLY, or by a data-name.
Restrictions on the use of a data-name as a subscript are:

1. Data-name must be a numeric elementary item that represents a
positive integer.

2. The name itself may be gqualified, but not subscripted.

The subscript may contain a sign, but the lowest permissible
subscript value is 1. Hence, the use of zero or a negative subscript is
not permitted. The highest permissible subscript value in any
particular case is the maximum number of occurrences of the item as
specified in the OCCURS clause.

Qualification may be used in conjunction with subscripting, in which
case OF or IN follows the data-name being subscripted.

Table Handling Feature 269



Subscripting and Indexing

(subscript{, subscriptl(, subscriptl)

r

| Format
b

|

| ( oF OoF
i data—name{ } data-name-1 [ { } data-name-2]...
| IN In
|

|

|

L

b e e e s —

Note: Data-name is the item being subscripted, not data-name-l. That
is, in the statement SALARY OF EMPLOYEE-RECORD (YEAR, MONTH, WEEK), the
data item SALARY is subscripted by YEAR, MONTH, and WEEK.

INDEXING

References can be made to individual elements within a table of
elements by specifying indexing for that reference.

An index is assigned to a given level of a table by using an INDEXED
BY clause in the definition of the table. A name given in the INDEXED
BY clause is known as an index-name and is used to refer to the assigned
index. An index-name must be initialized by a SET statement before it
is used in a table reference. An index may be modified only by a SET,
SEARCH, or PERFORM statement. Data items described by the USAGE IS
INDEX clause permit storage of the values of index-names as data without
conversion. Such data jitems are called index data items.

{
{
{

Format

+

data-name (index-name [{ } integer]

+ +

[, index-name [{ }integer]][, index-name [{ }integer]])

[ e e o o et s et e v e
| IV S S U Segu—— |

Direct indexing is specified by using an index-name in the form of a
subscript. For example,

ELEMENT (PRIME-INDEX)

Relative ‘indexing is specified when the terminal space of the
data-name is followed by a parenthesized group of items: the
index-name, followed by a space, followed by one of the operators +
or -, followed by another space, followed by an unsigned integral
numeric literal., For example,

ELEMENT (PRIME-INDEX + 5)

Qualification may be used in conjunction with indexing, in which case
OF or IN follows the data-name being indexed.

270 Part V -- Special Features



C

Subscripting and Indexing

Format

OF
data-name
(IN

+

(index-name [{

+

[, index-name [%

- m—

} data-name-1 [ {'—-
}integer][, index-name [{

}integer]])

OF
data-name-2)...
IN

+

}integer]]

s s e ey e st e s

RESTRICTIONS ON INDEXING, SUBSCRIPTING, AND QUALIFECATION

Tables may have one, two,
to an element in a table may

1. A data-name must not be
is itself being used as

or three dimensions. Therefore, references
require up to three subscripts or indexes.

subscripted or indexed when the data-name
an index, subscript, or qualifier.

2. When qualification, subscripting, or indéxing are required for a
given data item, the indexes or subscripts are specified after all

necessary qualification

is given.

)

3. Subscripting and indexing must not be used together in a single

reference.

4, Wherever subscripting is not permitted, indexing is not permitted.

5. The commas shown in the formats for indexes and subscripts are

required.

EXAMPLE OF SUBSCRIPTING AND INDEXING

For a table with three levels of indexing, the following Data
Division entries would result in a storage layout as shown in Figure 18.

01 PARTY-TABLE REDEFINES TABLE.
02 PARTY-CODE OCCURS 3 TIMES INDEXED BY PARTY.
03 AGE-CODE OCCURS 3 TIMES INDEXED BY AGE.
04 M-F-INFO OCCURS 2 TIMES INDEXED BY M-F
PICTURE 9(7)V9 USAGE DISPLAY,

PARTY-TABLE contains three levels of indexing. Reference to
elementary items within PARTY-TABLE is made by use of a name that is
subscripted or indexed. A typical Procedure Division statement might

be:

MOVE M~F-INFO (PARTY, AGE, M-F) TO M-F-RECORD.

In order to use the Table Handling feature, the programmer must
provide certain information in the Data Division and Procedure Division

of the program.

Table Handling Feature

271



Subscripting and Indexing

r k]
| 8 bytes Byte|
{ No. |
I e, N NS

|
I r 1 0
| |M-F-INFO (1, 1, 1)| |
i AGE-CODE (1, 1){ b——- | 8|
| |M-F-INFO (1, 1, 2)| |
| b { 16}
| |M~-F-INFO (1, 2, 1)| I
| PARTY-CODE(1) ( AGE-CODE (1, 2) {} { 24|
| ' |M-F-INFO (1, 2, 2)| |
| : 1 32]
| M-F-INFO (1, 3, 1)| |
| AGE-CODE (1, 3) 4 { 80|
| |M-F-INFO (1, 3, 2)| [
| t { u8]
| |[M-F-INFO (2, 1, 1)| |
[ AGE-CODE (2, 1) {} : 1 56|
| |M-F-INFO (2, 1, 2)| |
I - { 64|
| |M-F-INFO (2, 2, 1)]| |
| PARTY-TABLE { PARTY-CODE(2) { AGE-CODE (2, 2) {} , {1 72|
| f M-F-INFO (2, 2, 2)| |
| i 80|
| M-F-INFO (2, 3, 1)| |
| AGE-CODE (2, 3) : { 88}
| |M-F-INFO (2, 3, 2)| [
| I 1 96|
| |M-FP-INFO (3, 1, 1)| |
i AGE-CODE (3, 1) { : 4 104]
I M-F-INFO (3, 1, 2)| I
| 1 112]
| M-F-INFO (3, 2, 1)|
| PARTY-CODE(3) { AGE-CODE (3, 2) { 120]
| |M-F-INFO (3, 2, 2)]
| t 1 128]
| |M-F-INFO (3, 3, 1)|
| AGE-CODE (3, 3){ - { 136]|
| |M-F-INFO (3, 3, 2)| |
| t : - |
{ T e vt ———— TN ll
| OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES |
L t

Figure 18. Storage Layout for PARTY-TABLE

DATA DIVISION CONSIDERATIONS FOR TABLE HANDLING

The OCCURS and USAGE clauses are included as part of the record
description entries in a program utilizing the Table Handling feature.

OCCURS Clause

The OCCURS clause eliminates the need for separate entries for
repeated data, since it indicates the number of times a series of
records with identical format is repeated. It also supplies information
required for the application of subscripts or indexes.

The OCCURS clause has three formats.

272 Part V -- Special Features



OCCURS Clause

T
| Format 1 i
L 4
If i
|
| OCCURS integer-2 TIMES i
| |
| ASCENDING |
| [ KEY IS data-name-2 [data-name-3] ... ] ... |
| DESCENDING |
| }
| [INDEXED BY index-name-1[index-name-2] ... ] |
) !
r - ettt -——= 1
| Format 2 |
e {
| |
| OCCURS integer-1 TQO integer-2 TIMES [DEPENDING ON data-name-1] |
| |
] ASCENDING |
l [ KEY IS data-name-2 [data-name-3] ... ] ... i
| DESCENDING |
| |
| (INDEXED BY index-name-1 [index-name-2] ... ) |
I |
L J

The other data description clauses associated with an entry whose
description includes an OCCURS clause apply to each occurrence of the
item described.

Since three subscripts or indexes are allowed, three nested levels of
the OCCURS clause are allowed.

The subject of an OCCURS clause is the data-name of the entry that
contains this OCCURS clause. The subject of an OCCURS clause must be
subscripted or indexed whenever reference is made to it in any statement
other than SEARCH. '

When subscripted, the subject refers to one occurrence within the
table. When not subscripted (permissible only in the SEARCH statement),
the subject represents the entire table element. (A table element
consists of all occurrences of one level of a table.) A table element
must be no greater than 32,767 bytes in length.

Table Handling Feature 273



Order No. GC28-6394-2, Page Revised 4/15/71 by TNI GN-0436
OCCURS Clause

The OCCURS clause may not be specified in a data description entry
that:

1. has a level-01 or level-77 number
2, describes an item whose size is variable
(The size of an item is variable if the data description of any

§ubordinate item within it contains an OCCURS DEPENDING ON clause--that
is, an OCCURS clause with the DEPENDING ON option.)

Except for condition-name entries, a record description entry that
contains an OCCURS clause must not also contain a VALUE clause.

Within a given record description, the VALUE clause must not be used
in a data description entry that is subsequent to a data description
entry that contains an OCCURS DEPENDING ON clause.

In the discussion that follows, the term "computational" refers to
COMPUTATIONAL data items.

When a computational elementary item specifies both the OCCURS and
SYNCHRONIZED clauses, any necessary slack bytes for each occurrence of
the item are added by the compiler. When a group item specifies the
OCCURS clause and also contains SYNCHRONIZED computational elementary
items, any necessary slack bytes for each occurrence of the group are
added by the compiler, as well as the necessary slack bytes for the
computational items (see "Slack Bytes" 'in "Data Division" for a complete
discussion).

In Format 1, integer-2 represents the exact number of occurrences.
In this case, integer-2 must be greater than zero.

DEPENDING ON OPTION: In Format 2 3, the DEPENDING ON option
is used. This indicates that the this entry has a variable
number of occurrences. This does not mean that the length of the
subject is variable, but rather that the number of times the subject may
be repeated is variable, the number of times being controlled by the

and integer-2 represents the maximum number of occurrences. Integer-1
may be zero or any positive integer. Integer-2 must be greater than
zero, and also greater than integer-l1l. Integer-2 must be less than

32,768. The value of data-name-1 must not exceed integer-2.

274 Part V -- Special Features



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
OCCURS Clause

Data-name-1, the object of the DEPENDING ON option:
* must be described as a positive integer

* must not exceed integer-2 in value

* may be qualified, when necessary

¢ must not be subscripted (that is, must not itself be the subject of,
or an entry within, a table)

e must, if it appears in the same record as the table it controls,
appear before the variable portion of the record

If the value of data-name-1 is reduced, the contents of data items
whose occurrence numbers exceed the new value of data-name-1 become
unpredictable.

Unused character positions resulting from the DEPENDING ON option
will not appear on external media.

The DEPENDING ON option is required only when the last occurrence of
the subject cannot otherwise be determined.

Any Data Division entry that contains an OCCURS DEPENDING ON clause,
or which has subordinate to it an entry that contains an OCCURS
DEPENDING ON clause, cannot be the object of a REDEFINES clause.

KEY OPTION: The KEY option is used in conjunction with the INDEXED BY
option in the execution of a SEARCH ALL statement. The KEY option is
used to indicate that the repeated data is arranged in ASCENDING or in
DESCENDING order, according to the values contained in data-name-2,
data-name-3, etc.

clause, or it must be an entry subordinate to the entry containing the
OCCURS clause. If data-name-2 is the subject of this table entry, it is
the only key that may be specified for this table. If data-name-2 is
not the subject of this table entry, all the keys identified by
data-name-2, data-name-3, etc.;

» must be subordinate to the subject of the table entry itself

* must not be subordinate to any other entry that contains an OCCURS
clause

s must not themselves contain an OCCURS clause
When the KEY option is specified, the following rules apply:
e Keys must be listed in descending order of significance.

e The total number of keys for a given table element must not exceed
12.

¢ The sum of the lengths of all keys associated with one table element
must not exceed 256 bytes.

e A key may have the following usages: DISPLAY,
COMPUTATIONAL.

Table Handling Feature 275



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
OCCURS Clause

L

o

INDEXED BY OPTION:

this entry (the data-name described by the OCCURS clause, or an item
within this data-name, if it is a group item) is to be referred to by
indexing. The index-name(s) identified by this clause is not defined
elsewhere in the program, since its allocation and format are dependent
on the system, and, not being data, cannot be associated with any data
hierarchy.

The number of index-names for a Data Division entry must not exceed
12. :

276 Part V -- Special Features




Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
| OCCURS Clause

Table Handling FPeature 276.1






OCCURS Clause

Each index-name is a fullword in length and contains a binary value
that represents an actual displacement from the beginning of the table
that corresponds to an occurrence number in the table. The wvalue is
calculated as the occurrence number minus one, multiplied by the 1ength
of the entry that is indexed by this index-name.

For example, if the programmer writes
A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10)

on the fifth occurrence of A, the binary value contained in Z will be:

Z=(5-1) % 10 = 40

Note that, for a table entry of variable length, the value contained in
the index-name entry will become invalid when the table entry length is
changed, unless the user issues a new SET statement to correct the value
contained in the index-name.

The following example of the setting of values in index-name is
incorrect:

DATA DIVISION.

77 E PICTURE S9(5) COMP SYNC.
01 ...
02 A OCCURS 10 INDEXED BY IND-l...
03 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2...

PROCEDURE DIVISION.

.

.
MOVE 8 TO E
SET IND-1 TO 3
SEARCH A ...

MOVE 10 TO E
SEARCH A «ae

(Moving 10 to E changes the length of the table entry A, so that IND-1
now contains an invalid value.)

Table Handling Feature 277



OCCURS Clause

The following example of the setting of values in index-name is
correct:

DATA DIVISION.

77 E PICTURE S9(5) COMP SYNC.
77 D PICTURE S9(5) COMP SYNC,
01 ek e
02 A OCCURS 10 INDEXED BY IND-i...
03 B OCCURS 10 DEPENDING ON E INDEXED BY IND-2...

-

PROCEDURE DIVISION.

L]
-

MOVE 8 TO E
SET IND-1 TO 3
SET D TO IND-1
SEARCH A ...

MOVE 10 TO E
SET IND-1 TO D
SEARCH A ...

(Here the user has saved the occurrence number in D, and then later
reset IND-1 to obtain the corrected value.) -

There are two types of indexing: Direct Indexing and Relative
Indexing.

Direct Indexing: If a data-name is used in the procedure text with
index-names, the data-name itself must be the subject of an INDEXED BY

option, or be subordinate to a group(s) that is the subject of the
INDEXED BY option.

In the following example

A (INDEX-1, INDEX-2, INDEX-3)

implies that A belongs to a structure with three levels of OCCURS
options, each with an INDEXED BY option.

278 Part V -- Special Features



‘\‘ ;

USAGE IS INDEX Clause
Relative Indexing: The index-name is followed by a space, followed
by one_of the operators + or -, followed by another space, followed by
an unsigned numeric literal, The numeric literal is considered to be an
occurrence number, and is converted to an index value before being added
to, or subtracted from, the corresponding index-name.
Given the following example:
A(Zz+1, J+3, K+ 4)
where:
table element indexed by Z has an entry length of 100
table element indexed by J has an entry length of 10

table element indexed by K has an entry length of 2

the resulting address will be computed as follows:

(ADDRESS of A) + Z + 100 * 1 + J + 10 * 3 + K + U4 * 2

|
conversion of integers
to index values

USAGE IS INDEX Clause

The USAGE IS INDEX clause is used to specify the format of a data
item stored internally. ‘

Format

[USAGE IS] INDEX

[ e e e g v oy

DS S

The USAGE IS INDEX clause allows the programmer to specify index data
items.

An index data item is an elementary item (not necessarily connected
with any table) that can be used to save index-name values for future
reference. An index data item must be assigned an index-name value
(i.e., (occurrence number - 1) * entry length) through the SET
statement. Such a value corresponds t0 an occurrence number in a table,

The USAGE IS INDEX clause may be written at any level, If a group
iten is described with the USAGE IS INDEX clause, it is the elementary
ijtems within the group that are index data items; the group itself is
not an index data item, and the group name cannot be used in SEARCH and
SET statements or in relation conditions. The USAGE clause of an
elementary item cannot contradict the USAGE clause of a group to which
the item belongs.

An index data item can be referred to directly only in a SEARCH or
SET statement or in a relation condition. An index data item can be
part of a group which is referred to in a MOVE or an input/output

Table Handling Feature 279



Table Handling--Relation Condition

statement. When such operations are executed, however, there is no
conversion of the contents of the index data item.

An index data item cannot be a conditional variable.

The SYNCHRONIZED, JUSTIFIED, PICTURE, BLANK WHEN ZERO, or VALUE
clauses cannot be used to describe group or elementary items described
ith th G S

PROCEDURE DIVISION CONSIDFERATIONS FOR TABLE HANDLING

The SEARCH and the SET statements may be used to facilitate table
handling. In addition, there are special rules involving Table Handling
elements when they are used in relation conditions.

Relation Conditions

Comparisons involving index-names and/or index data items conform to
the following rules:

1. The comparison of two index-names is actually the comparison of the
corresponding occurrence numbers.

2. In the comparison of an index-name with a data item (other than an
index data item), or in the comparison of an index-name with a
literal, the occurrence number that corresponds to the value of the
index-name is compared with the data item or literal.

3. In the comparison of an index data item with an index-name or
another index data item, the actual values are compared without
conversion.

Any other comparison involving an index data item is illegal.

Table 25 gives permissible comparisons for index-names and index data
items. ‘

280 Part V -- Special Features




SEARCH Statement

Table 25. Index-names and Index Data Items ~-- Permissible Comparisons
) ) T ] 1
| Second | | | | |
| Operand| | | Data-name | Numeric |
|First | | Index | (numeric | literal |
| Operand | Index-name |Data Item |integer only) | (integer only) |
t T { 1 - { .|
| Index-name | compare | compare icompare Tcompare ]
| |occurrence |without |occurrence |occurrence |
| [ number jconversion |number with |number with |
| | | |data-name |literal |
¥ ¢ + ¥ 1 {
|Index Data Item |[compare | compare |illegal |illegal |
| |without |without | | |
| |conversion |conversion | | |
k ' -4 { 1 .
| Data-name | compare |illegal | |
| (numeric | occurrence | | |
| dinteger only) |number | | |
| |with | ] See Table 12 |
| |data-name | | for |
s 4 4 9 Permissible
| Numeric | compare |illegal | Comparisons
| literal | occurrence | | |
| (integer only) | number | | |
| |with | | |
] |literal | | |
L L -1 U d
SEARCH Statement
The SEARCH statement is used to search a table for an element that
satisfies a specified condition, and to adjust the value of the
associated index-name to the occurrence number corresponding to that
table element.
r ]
| Format 1 |
- )
| { index-name-1 } |
| SEARCH identifier-1 [VARYING ] |
| identifier-2 |
|
{ [AT END imperative-statement-1] |
|
: imperative-statement-2 ]
| WHEN condition-1 |
| NEXT SENTENCE |
I
} imperative-statement-3 i
| [WHEN condition-2 { Jowe |
| NEXT SENTENCE |
| |
L d
Table Handling Feature 281



SEARCH Statement

Format 2

SEARCH ALL identifier-1 [AT END imperative-statement-1]

imperative-statement-2
WHEN condition-1

NEXT SENTENCE

o it e e . s st . i e ol

Identifier-1 must not be subscripted or indexed. Its description
must contain an OCCURS clause with the INDEXED BY option. !

Identifier-1 can be a data item subordinate to a data item that
contains an OCCURS clause, thus providing for a two or three dimensicnal
table. An index-name must be associated with each dimension of the
table through the INDEXED BY phrase of the OCCURS clause. Execution of
a SEARCH statement causes modification only of the setting of the
index-name associated with identifier-1 (and, if present, of
index-name-1 or identifier-2). Therefore, to search an entire two or
three dimensional table, it is necessary to execute a SEARCH statement
several times; prior to each execution, SET statements must be executed
to adjust the associated index-names to their appropriate settings.

In the AT END and WHEN options, if any of the specified imperative
statement(s) do not terminate with a GO TO statement, control passes to
the next sentence after execution of the imperative statement.

Format 1 Considerations -- Identifier-2, when specified, must be
described as an index data item, or it must be a fixed-point numeric
elementary item described as an integer. When an occurrence number is
incremented, identifier-2 is simultaneously incremented by the same
amount.

Condition-1, condition-2, etc., may be any condition, as follows:

relation condition
class condition
condition~name condition
sign condition
switch-status condition
(conditionm)

AND
[NOT1] {

condition
OR

(See Conditions section of "Procedure Division.")

Upon the execution of a SEARCH statement, a serial search takes
place, starting with the current index setting.

If, at the start of the SEARCH, the value of the index-name

associated with identifier-1 is not greater than the highest possible
occurrence number for identifier-1, the following actions take place:

1. The condition(s) in the WHEN option are evaluated in the order they
are written.

282 Part V —— Special Features




SEARCH Statement

2. If none of the conditions are satisfied, the index-name for
identifier-1 is incremented to reference the next table element,
) and step 1 is repeated.

3. If, upon evaluation, one of the WHEN conditions is satisfied, the
search terminates immediately, and the imperative-statement
associated with that condition is executed. The index-name points
to the table element that satisfied the condition.

4, If the end of the table is reached without the WHEN condition being
satisfied, the search terminates as described in the next
paragraphe.

If at the start of the search, the value of the index-name associated
with identifier-1 is greater than the highest permissible occurrence
number for identifier-1, the search is terminated immediately, and if
the AT END option is specified, imperative-statement-1 is executed. If
this option is omitted, control passes to the next sentence.

When the VARYING index-name-1 option is specified, one of the
following applies:

e If index-name-1 is one of the indexes for identifier-1, index-name-1
is used for the search. Otherwise, the first (or only) index-name
for identifier-1 is used.

e If index-name-1 is an index for another table entry, then when the
index-name for identifier-1 is incremented to represent the next
occurrence of the table, index-name-1l.is simultaneously incremented
to represent the next occurrence of the table it indexes.

A flowchart of the Format 1 SEARCH operation containing two WHEN
options is shown in Chart 5.

Table Handling Feature 283



SEARCH Statement

Chart 5. Format 1 SEARCH Operation Containing Two WHEN Options

REKERD KA KRR RERE . -
Pt L)
*
* BEGIN *
t‘tt*%*;tgﬁtttt \Nuﬂj
----------- >
¥,
B2 *. R DU KRR E R
*** TNDEX SETTING EQUALS ¥ *, * * .
HIGHEST PERMISSIBLE o* *, GT AT END # # IMPERATIVE- * *%
OCCURRENCE NUMBER "t Ll *.‘ e >*  STATEMENT-1 #emeaeeo>
N « * *
*, ¥ * *
*. ¥ P T T TR TS

}t’ LT OR =
Lk

c2” s, RERKRCURRER KRR KKK
* *

. *, TRUE  WHEN CONDITION-1
+. CONDITION-1 !+ e

*

ok .

* IMPERATIVE- *# %
>: STATEMENT-2 :——~—-——>

*

* &
LR PR R R L L

LI
*FALSE
. *,
D2 *, [T ETT T T EY Ty
¥ *, * *
. *. TRUE WHEN CONDITION-2% * TIMPERATIVE- # **
*.'CONDITION-z*.* R >: STATEMENT-3 :—-‘-~—>
‘%, o * *
*, . ¥ HkkhkR kb kR Rk
*FALSE
v
FRRKEAE2RRRRERRRAR

v
AERRAT2R R R SRRk
* INCREMENT *
* EX-N. ~1 *
L-——* {FOR AN?THER :
* IDENTIFIER-2 *
SRR RRRERA R Rk

* THESE OPERATIONS ARE INCLUDED ONLY WHEN CALLED FOR
IN THE STATEMENT.

** EACH OF THESE CONTROL TRANSFERS IS TO THE NEXT

SENTENCE UNLESS THE IMPERATIVE-STATEMENT ENDS WITH
A GO TO STATEMENT,

284 Part V -- Special Features



SEARCH Statement

Format 2 Considerations -- The first index-name assigned to
identifier-1 will be used for the search.

The description of identifier-1 must contain the KEY option in its
OCCURS clause,

Condition-1 must consist of one of the following:

¢ A relation condition incorporating the EQUALS, EQUAL TO, or equal
sign ( = ) relation. Either the subject or the object (but not
both) of the relation condition must consist solely of one of the
data-names that appear in the KEY clause of identifier-i.

¢ A condition-name condition in which the VALUE clause describing the
condition-name consists of a single literal only. The conditional
variable associated with the condition-name must be one of the
data-names that appear in the KEY clause of identifier-1.

¢ A compound condition formed from simple conditions of the types
described above, with AND as the only connective,

Any data-name that appears in the KEY clause of identifier-1 may be
tested in condition-1. However, all data-names in the KEY clause
preceding the one to be tested must also be so tested in condition-1.
No other tests may be made in condition-1.

For example, if the following table were defined in the Data
Division:

77 VALUE-1 PICTURE 99.

02 A OCCURS 10 TIMES ASCENDING KEY IS KEY1l, KEY2, KEY3, KEY4
INDEXED BY T.
03 KEY1 PICTURE 9.
03 KXEY2 PICTURE 99.
03 KEY3 PICTURE 9.
03 KEY4 PICTURE 9.
88 BLUE VALUE 1.

-
.

in the Procedure Division, valid WHEN phrases could be:

WHEN KEY1 (I) 3 AND KEY2 (I) 10 AND KEY3 (I) = 5 ...
WHEN KEY1l (I) 3 AND KEY2 (I) = VALUE-1

AND KEY3 (I) = 5 AND BLUE (I) ...

During execution of a Format 2 SEARCH statement, the setting of
index-name is varied during the search so that at no time is it 1less
than the value that corresponds to the first element of the table, nor
is it ever greater than the value that corresponds to the last element
of the table. If condition-1 cannot be satisfied for any setting of the
index within this permitted range, control is passed to imperative-
statement-1 when the AT END option appears, or to the next sentence when
this clause does not appear. In either case, the final setting of the
index is not predictable. If the index indicates an occurrence that
allows condition-1 to be satisfied, control passes to
imperative-statement-2.

Table Handling Feature 285



SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names to wvalues associated with table
elements. The SET statement must be used when initializing index-name
values before execution of a SEARCH statement; it may also be used to
transfer values between index-names and other elementary data items.

— -——=1
| Format 1 |
1 d
{ | |
| index—-name-1 [index-name-2]... 5index—name—3 |
| SET TC identifier-3 |
| identifier-1 [identifier-2]... lliteral—l |
! ]
r 1
| Format 2 |
t 4
| |
| UP BY ( identifier-4 |
| SET index-name-4 [index-name-5] ... { |
| DOWN BY literal-2 |
! }

All identifiers must name either index data items or fixed-point
numeric elementary items described as integers; however, identifier-4
must not name an index data item. When a literal is used, it must be a
positive integer. Index-names are related to a given table through the
INDEXED BY option of the OCCURS clause; when index-names are specified
in the INDEXED BY option, they are automatically defined.

All references to index-name-1, identifier-1, and index-name-4 apply
equally to index-name-2, identifier-2, and index-name-5, respectively.

Format 1 Considerations —-- When the SET statement is executed, one of
the following actions occurs:

1. Index—name-l is converted to a value that corresponds to the same
table element to which either index-name-3, identifier-3, or
literal-1 corresponds. If identifier-3 is an index data item, or
if index-name-3 is related to the same table as index-name-l1l, no
conversion takes place.

2. If identifier-1 is an index data item, it is set equal to either
the contents of index-name-~3 or identifier-3, where identifier-3 is
also an index data item. Literal-l cannot be used in this case.

3, If identifier-1 is not an index data item, it is set to an
occurrence number that corresponds to the value of index-name-3.
Neither identifier-3 nor literal-l can be used in this case.

Format 2 Considerations -- When the SET statement is executed, the
contents of index-name-4 (and index-name-5, etc., if present) are
incremented (UP BY) or decremented (DOWN BY) by a value that corresponds
to the number of occurrences represented by the value of literal-2 or
identifier-4.

286 Part V -- Special Features

“\‘ J



Table Handling--Sample Program

SAMPLE TABLE HANDLING PROGRAM

The program in Figure 19 illustrates the Table Handling feature,
including the use of indexing, of the SET statement, and of the SEARCH
statement (including the VARYING option and the SEARCH ALL format).

The census bureau uses the program to compare:

1. +the number of births and deaths that occurred in any one of the 50
states in any one of the past 20 years with

2. the total number of births and deaths that occurred in the same
state over the entire 20-year period

The input file, INCARDS, contains the specific information upon which
the search of the table is to be conducted. INCARDS is formatted as
follows:

STATE-NAME a U-character alphabetic abbreviation of the state name
SEXCODE 1 = male; 2 = female

YEARCODE a U-digit field in the range 1950 through 1969
A typical run might determine the number of females born in New York

in 1953 as compared with the total number of females born in New York in
the past 20 years.

r

| IDENTIFICATION DIVISION,

| PROGRAM-ID. TABLES.

| ENVIRONMENT DIVISION.

| CONFIGURATION SECTION.

| SOURCE-COMPUTER. IBM-360.

| OBJECT-COMPUTER. IBM-360.

| SPECIAL-NAMES. CONSOLE IS TYPEWRITER.

| INPUT-OUTPUT SECTION.

| FILE~CONTROL.

| SELECT INFILE ASSIGN TO SYS007-UT-2400-S-INTAPE.
1 SELECT OUTFILE ASSIGN TO SYS012-UR-1403-S-PRTOUT.
| SELECT INCARDS ASSIGN TO SYS013-UR-2540R-S-ICARDS.
| DATA DIVISION.

| FILE SECTION.

| INFILE LABEL RECORDS ARE OMITTED.
I TABLE PIC X(28200).

| TABLE-2 PIC X(1800).

| OUTFILE LABEL RECORDS ARE OMITTED.
|01 PRTLINE PIC X(133).

I INCARDS LABEIL RECORDS ARE OMITTED.
101 CARDS.

1 02 STATE-NAME PIC X(Uu).
|

|

|

|

|01

|

|

]

|

|

I

|

L

RER32_8

02 SEXCODE PIC 9.

02 YEARCODE PIC 9(4).

02 FILLER PIC X(71).
WORKING—STORAGE SECTION.

PRTAREA-20,

02 FILLER PIC X VALUE SPACES.

02 YEARS-20 PIC 9(4).

02 FILLER PIC X(3) VALUE SPACES.

02 BIRTHS-20 PIC 9(7).

02 FILLER PIC X{(3) VALUE SPACES.

02 DEATHS-20 PIC 9(7).

02 FILLER PIC X(108) VALUE SPACES.

T . s S s il — o — — i, S S S, S S— — — —— — — — — —— ———— ———— ——— — ]

Figure 19. Sample Table Handling Program (Part 1 of 2)

Table Handling Feature 287



Table Handling--Sample Program

)

|01 PRTAREA.

| 02 FILLER PIC X.

I 02 YEAR PIC 9(4).

i 02 FILLER PIC X(3) VALUE SPACES.

| 02 BIRTHS PIC 9(5).

| 02 FILLER PIC X(3) VALUE SPACES.

I 02 DEATHS PIC 9(5).

| 02 FILLER PIC X(112) VALUE SPACES.

|01 CENSUS-STATISTICS-TABLE.

| 02 STATE-TABLE OCCURS 50 TIMES INDEXED BY ST.

I 03 STATE-ABBREV PIC X(4).

| 03 SEX OCCURS 2 TIMES INDEXED BY SE.

I 04 STATISTICS OCCURS 20 TIMES ASCENDING KEY IS YEAR
| INDEXED BY YR.

I 05 YEAR PIC 9(4).

| 05 BIRTHS PIC 9(5).

I 05 DEATHS - PIC 9(5).

|01 STATISTICS-LAST-20-YRS.

| 02 SEX-20 OCCURS 2 TIMES INDEXED BY SE-20.

| 03 STATE-20 OCCURS 50 TIMES INDEXED BY ST-20.

| 04 YEARS-20 PIC 9(4).

| 04 BIRTHS-20 PIC 9(7).

| 04 DEATHS-20 PIC 9(7).

| PROCEDURE DIVISION.

| OPEN-FILES.

I OPEN INPUT INFILE INCARDS OUTPUT OUTFILE.

| READ-TABLE.

| READ INFILE INTO CENSUS-STATISTICS-TABLE
I AT END GO TO READ-CARDS.
| READ INFILE INTO STATISTICS-LAST-20-YRS

I AT END GO TO READ-CARDS.

| READ-CARDS.

I READ INCARDS

I AT END GO TO EOJ.

| DETERMINE-ST.

I SET ST ST-20 TO 1.

| SEARCH STATE-TABLE VARYING ST-20 AT END GO TO ERROR-MSG-1
| WHEN STATE-NAME = STATE-ABBREV (ST) NEXT SENTENCE.
| DETERMINE-SE.

] SET SE SE-20 TO SEXCODE.

| DETERMINE-YR.

| SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2

| WHEN YEAR OF STATISTICS (ST, SE, YR) = YEARCODE

[ GO TO WRITE-RECORD.

| ERROR-MSG-1.

I DISPLAY "INCORRECT STATE " STATE-NAME UPON TYPEWRITER.
| GO TO READ-CARDS.

| ERROR-MSG-2.

| DISPLAY "INCORRECT YEAR "  YEARCODE UPON TYPEWRITER.
I GO TO READ-CARDS.

| NRITE-RECORD.

| MOVE CORRESPONDING STATISTICS (ST, SE, YR) TO PRTAREA.
| WRITE PRTLINE FROM PRTAREA AFTER ADVANCING 3.

I MOVE CORRESPONDING STATE-20 (SE-20, ST-20) TO PRTAREA-20.
I WRITE PR