
i
~·

t. ..

Q

i(· .. ! v

Systems Reference Library

IBM DOS Full American

National Standard COBOL

Program Numbers: (Versions 1 & 2) 360N-CB-482

(Version 3) 5736-C::B2 (Compiler Only)

5736-LM2 (Library Only)

5736-CB3 (Compiler and Library)

This publication gives the programmer the rules for
~rri ting programs that are to be compiled by the IBM
Full American National Standard COBOL compilers under
the Disk Operating System. It is meant to be used as a
reference manual in the writing of IBM Full American
National Standard COBOL programs.

COBOL <common ~usiness Qriented &anguage> is a
programming language, similar to English, that is used
for commercial data processing. It was developed by
the f_anference Qn Q~ta SYstems &anguages (CODASYL>.
The standard of the language is American National
Standard COBOL, X3.23-1968, as approved by the American
National Standards Institute (ANSI).

IBM DOS Full American National Sta.ndard COBOL,
Version 3 1 which includes all the features of earlier
versions, incorporates the eight processing modules
defined in the highest level of the American national
standard. These modules include:

Nucleus
Table Handling
Sequential Access
Random Access
sort
Report Writer
Segmentation
Library

A significant number of IBM extensions are implemented
as well; these extensions are printed on a ~ll•lllf
background. This IBM implementation of American
National Standard COBOL also complies with the first
Draft ISO recommendation on COBOL.

Third Edition.(April 1971)

This edition, as amended by TNLs GN28-0436 and GN28-0489 1 describes
Versions 1 and 2 of IBM Full American National Standard COBOL at the
Release 26 level of the Operating System. It also describes the Program
Product Version 3, Release 2 -- including System/370 device support.
changes have .been made throughout the publication to correct and clarify
specific items. All technical changes are indicated by a vertical line
to the left of the change: revised and new illustrations are denoted by
the symbol • to the left of the caption.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
-corporation, Programming Publications, 1271 Avenue of the ~!Ilericas,
New York, New York 10020.

© Copyright International Business Machines corporation 1968, 196-9,
1970, 1971, 1972

: ') u

\1

..

(;
~

(:
~i

i
\ : -.._,;

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

This publication describes the IBM
implementation of Full American National
i;>tandard COBOL, and all IBM extensions to
that standard. Some statements are
extensions to either American National
Standard COBOL or to both American National
Standard COBOL and the complete definition
of CODASYL COBOL.

i In this publication, the term 2tag~~rd
doaoL means American National Standard
GOBOL; the term IBM Full American National
Standard COBOL meanS-this IB~~------~~
implementation of American National
Standard COBOL and all extensions to that
standard. There are two types of
extensions:

1. Those that represent features not
specified by American National
Standard COBOL•

2. Those that represent an easing of the
strict P.merican National Standard
COBOL rules and allow for greater
programming convenience.

All such extensions are printed on a lifl!I
background for the convenience of users who
wish strict c:onformance with the standard.
use of features that are extensions to the
standard may result in incompatibilities
between the implementation represented by
this document and other implementations.
If a complete chapter is an extension, only
the chapter heading is shaded. These
chapters are:

For the less experienced programmer, the
introduction summarizes the general
principles of COBOL, highlights features of
American National Standard COBOL, and,
through an example, illustrates the logical
sequence and interrelationship of commonly
used elements of a COBOL program. The
balance of the publication gives the
specific rules for correct programming in
IBM Full American National Standard COBOL,

PREFACE

as implemented by the system/360 Disk
Operating System. Appendixes provide
supplemental information useful in writing
COBOL programs. Appendix A describes the
use of intermediate results in arithmetic
operations; Appendix B contains several
sample programs showing the use of mass
storage files; Appendix c lists all of the
formats and reserved words in IBM Full
American National Standard COBOL; Appendix
D is a file processing summary; Appendix E
gives considerations for the use of ASCII

I encoded files; Appendix F explains the
symbolic debugging feature; Appendix G
explains 3525 combined function processing.

compiler output and restrictions,
programming examples, and information on
running an IBM American National Standard
COBOL program are found in the publication
IBM DOS Full American National Standard
£OBoL-Programmer•s-Guiiie~-order-~---~
No. GC28-6398 and in the Program Product
publication I~~-QQ§_[~ll ~IB§£i£~g-~atiQ£~1
§terr~eE~-~Q~Q~_£Q~Qib~~-err~-~i££~£~L
Ver2i2rr_~L-~£Qq£e!!!!!!§£~~-@~i~§, order
No. SC28-6441. These programmer's guides
and this language reference manual are
corequisite publications.

A knowledge of basic data processing
techniques is mandatory for the
understanding of this publication. such
information, as it applies to system/360 1

can be found in the following publications:

!rrtroduction to IBM Data ~~~i!:!Y
Systems, Form GC20-1684

Introduction to Ig~..JiY§.t~m/360 Qir~ct
Access Storage Devices and Orgarri~atiQg
~ethods, Form GC20-1649

The reader should also have a general
knowledge of COBOL before using this
manual. Useful background information can
be found in the following publications:

£Q~Q~_E£Qgram Fundamentals: TeKt, Form
R29-0205

COBOL Program Fundamentals: Reference
gan~book, Form R29-0206

~r!ting_PrQgE~ill~-i~_£Q~Q~£--~~~~. Form
R29-0210

Writing Prog_rams in COBOL: _Refg;:gncg
Handbook, Form R29-0211

Where information in the foregoing
publications conflicts with information in
this publication, the contents herein
supersede any other in the writing of COBOL

programs. Any violation of the rules
defined in this publication for using the
Disk operating System is considered an
error.

A general knowledge of the IBM Disk
Operating System is desirable, although not
mandatory. The following publication gives
such information:

i
i

"-/

ACKNOWLEDGMENT

The following extract from Government Printing Off ice Form Number
1965-0795689 is presented for the infonnation and guidance of the user:

"A11y organization interested in reproducing the COBOL report and
specifications in whole or in part, using ideas taken from this report
as the basis for an instruction manual or for any other purpose is free
to do so. However, all such organizations are requested to reproduce
this section as part of the introduction to the document. Those using a
short passage, as in a book review, are requested to mention 'COBOL' in
acknowledgment of the source, but need not quote this entire section.

"COBOL is an industry language and is not the property of any company or
grCJup of companies, or of any organization or group of organizations.

"No warranty, expressed or implied, is made by any contributor or by the
COBOL committee as to the accuracy and functioning of the programming
system and language. Moreover, no responsibility is assumed by any
contributor, or by the committee, in connection therewith.

"Procedures have been established for the maintenance of COBOL.
Inquiries concerninq the procedures for proposing changes should be
directed to the Executive committee of the conference on Data Systems
Languages.

"The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC (Trademark of Sperry Rand Corporation),
Progranuning for the UNIVAC (R) I and II, Data Automation
Systems copyrighted 1958, 1959, by Sperry Rand
Corporation; IBM Commerical Translator, Form
No. F28-80l3,, copyrighted 1959 by IBM; FACT, DSI
27A5260-2760, copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or in
pa:rt, in the COBOL specifications. Such authorization extends to the
reproduction and ust~ of COBOL specifications in programming manuals or
similar publications."

i
__,

•

•

"

{ j
-._/

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

FEATURES OF THE PROGRAM PRODUCT
VERSION 3 COMPILER •

INTRODUCTION • • •
Principles Of COBOL
A Sample COBOL Program

Identification Division
Environment Division •
Data Division •••••
Procedure Division •••••
Beginning the Program -- Input
Operations • • • • • • •

• 11

• 13
14
16
17
17

• • • 18
21

21
Arithmetic statements • • • • 22
Conditional Statements •
Handling Possible Errors •
Data-Manipulation Statements • • • •
Output Operations • • • • • •
Procedure Branching Statements •
Ending the Program • • • • • • •

23
24
24
25
26
29

PART I -- LANGUAGE CONSIDERATIONS 33

STRUCTURE OF THE LANGUAGE 35
• • • • 35 COBOL Character Set • • •

Characters Used in words •
Characters Used for Punctuation
Characters Used for Editing
Characters Used in Arithmetic

35
36

• 37

Expressions • • • • • • • • • 37
Characters Used for
Relation-conditions • 31

Types of Words • • • 37
Reserved Words 38
Names • • • • • • • • • • • 39
Special-Names • • • • • 39

constants • • • • • • • • 39
Literals • • • • • • • • • • • • 39
Figurative Constants • • •••• 40

Special Registers • • • • • • • • • 41

ORGANIZATION OF THE COBOL PROGRAM 43
Structure of the COBOL Program • • • 43

45 METHODS OF DATA REFERENCE
Qualification
subscripting • •

• 45
• • • • 46

Indexing • • • • • • • • • • 46

USE OF THE COBOL CODING FORM • • • • 47
Sequence Numbers • • • • • • • • • • • • 47
continuation of Lines • • • • • • 47
continuation of Nonnumeric Literals 48
continuation of Words and Numeric
Literals • • • • • • • • • •
Area A and Area B • • • •

Division Header

48
48
48

• • 48 Section Header • • • • • • • • •
Paragraph-names and Paragraphs •
Level Indicators and Level Numbers •
Blank Lines • • • •
Comment Lines • • • •

48
49
49

• 49

FORMAT NOTATION • • • • • 50

PART II -- IDENTIFICATION AND
ENVIRONMENT DIVISIONS 53

IDENTIFICATION DIVISION
PROGRAM-ID Paragraph
DATE-COMPILED Paragraph

• • • • 55

ENVIRONMENT DIVISION -- FILE
PROCESSING SUMMARY • • • • •
Data Organization • • • • •

Sequential Data Organization •
Direct Data organization •
Indexed Data Organization

Access Methods • • • • • • • • ,
Accessing a Sequential File
Accessing a Direct File

Sequential Access • • • •
Random Access

Accessing an Indexed File • • • •
Sequential Access
Random Access

ORGANIZATION OF THE ENVIRONMENT
DIVISION • • • • • • • • • • • •

ENVIRONMENT DIVISION -- CONFIGURATION

55
56

57
57

. 57
57

• • 58
• 58

58
• 58

58
58
59
59
59

• 61

SECTION • • • • • • • e • • • • • • e • 62
SOURCE-COMPUTER Paragraph 62
OBJECT-COMPUTER Paragraph 63
Program Product Information --
Version 3 • • • • • • • • • • • 63
SPECIAL-NAMES Paragraph • • • • 63

ENVIRONMENT DIVISION -- INPUT-OUTPUT
SECTION • • • • • • • • • • • 66
FILE-CONTROL Paragraph • • • • • 66

SELECT Clause • • • • • • • • 67
ASSIGN Clause , • • • • • • • • • • 67
Program Product Information --
Version 3 • • • • • • • • • • • 69

RCE and OMR Format Descriptor • • • • • 10
Program Product Information -­
Version 3 . . • . • • . • • .
RESERVE Clause • • • • • • • • •
Program Product Information -­

70
70

70 Version 3 • • • •
FILE-LIMIT Clause
ACCESS MODE Clause
PROCESSING MODE Clause •
ACTUAL KEY Clause
NOMINAL KEY Clause •
RECORD KEY Clause
TR~CK-AREA Clause

• • • • • 71
• • • . 71

• • • • • • 7 2
• . • . 72

• 75
• • • • • 76

• • • • • • • • 7 6
I-0-CONTROL Paragraph 77

RERUN Clause • • • • • • • • • • 77
SAME Clause • • • • • • • •
MULTIPLE FILE TAPE Clause
APPLY Clause • • • • • • •

• • 78
79
80

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Program Product Information -­
Version 3 • • • • • • • ~ •

PART III -- DATA DIVISION

DATA DIVISION -- INTRODUCTION
Organization of External Data
Description of External Data • •

81

• 83

85
85
85

ORGANIZATION OF THE DATA DIVISION •
Organization of Data Division Entries

86
• 87

Level Indicator • • • • • 87
87 Level Number • • • • • • • • •

Special Level Numbers
Indentation

File Section • • • • • • • • • • • •
File Description Entry •
Record Description Entry •

Working-storage Section
Data Item Description Entries
Record Description Entries • •

88
89
89
89
89
90
90
90
90 Linkage Section

Report Section • • • • • 91

FILE DESCRIPTION ENTRY -- DETAILS OF
CLAUSES • • • • • • • • • 92

BLOCK CONTAINS Clause ••••••• 92
RECORD CONTAINS Clause • • • 94
Recording Mode • • • • • • • 95
RECORDING MODE Clause 96
LABEL RECORDS Clause • • • • • • • • 97
VALUE OF Clause • • • • 98
DATA RECORDS Clause • • • • • • 98
REPORT Clause • • • • 98

DATA DESCRIPTION • 99

DATA DESCRIPTION ENTRY -- DETAILS OF
CLAUSES • • • • • • • • • •• 101

Data-name or FILLER Clause • • .101
REDEFINES Clause. • • .102
BLANK WHEN ZERO Clause • • • •• 105
JUSTIFIED Clause. • .106
OCCURS Clause • • • • • • 106
PICTURE Clause • • • • .106
The Three Classes of Data .107
Character String and Item Size ••• 108
Repetition of Symbols ••••••• 108
Symbols Used in the PICTURE Clause .108
The Five Categories of Data .112
Types of Editing •••••••••• 115
Insertion Editing ••••••••• 115
Zero Suppression and Replacement
Editing •••••••••••••• 117
Program Product Information -­
Version 3 • • • • • •
~IGN Clause • • • • •
SYNCHRONIZED Clause
Slack Bytes • • • •
USAGE Clause • • • • • • • • •

Display Option • • • • • • • •
The computational Options
Program Product Information -­
Version 3
VALUE Clause • •
RENAMES Clause

PART IV -- PROCEDURE DIVISION

••• 118
•• 118

••• 118
.119

••• 124
• • .124
••• 124

••• 124
•• 125
•• 128

•• 131

.133
• 134

• .135

ORGANIZATION OF THE PROCEDURE DIVISION
Categories of Statements • • • • •

conditional Statements ••••
Imperative Statements ••••••
Compiler-Directing Statements

• • 135
•• 136

ARITHMETIC EXPRESSIONS •
Arithmetic Operators •

CONDITIONS • • • • • • • • •
Test conditions ••••

• • • • • • 137
• • • • 137

• • • 139
• • • • • • 139

• • • • 140 Class Condition
Condition-Name Condition • • .141

• 142
••• 146

• 146

Relation condition •••
Sign Condition ••••••
Switch-Status Condition

compound conditions
Evaluation Rules • •
Implied Subjects and
Relational-Operators •

• • • • • • • 1ll6
• • • . • • • 147

• • • 148
Implied subject • • • •
Implied Subject and Relational

.149

Operator. • • • • • • • • • • .149
Implied Subject, and Subject and
Relational-Operator •• 149

CONDITIONAL STATEMENTS •
IF Statement • • • • • •
Nested IF Statements

• 150
• .150
•• 151

DECLARATIVES. • • • • • • •• , •• 153
Sample Label Declarative Program •••• 156

ARITHMETIC STATEMENTS ••••••••• 160
CORRESPONDING Option •••••••• 160
GIVING Option •••••• 160
ROUNDED Option • • , • • , , 160
SIZE ERROR Option •• 161
Overlapping Operands. • • .161
ADD Statement •• 162
COMPUTE Statement .163
DIVIDE Statement. • • • • • • .164
MULTIPLY Statement • • • • • • • 165
SUBTRACT Statement. • ••••• 166

PROCEDURE BRANCHING STATEMENTS •
GO TO Statement

• 168
• • 168
•• 169
•• 170
•• 177

ALTER Statement
PERFORM Statement
STOP Statement •
EXIT Statement • • • ••• 177

DATA-MANIPULATION STATEMENTS
MOVE Statement • • • • • • •

• • 179
•• 179

EXAMINE Statement • • • • •
TRANSFORM Statement • • • • • •

• • 182
• .184

INPUT/OUTPUT STATEMENTS
OPEN statement •
START Statement
SEEK Statement • •
READ Statement • •
WRITE Statement
REWRITE Statement
ACCEPT Statement • •
DISPLAY Statement
CLOSE Statement

• • • • • 187
•••• 187

•••••• 189
. • • • .. • 190

•• 191
• 192

•• 197
• 197

•••• 198
• 200

' I \.._I

\

. ! __,;

0

I' . u

0

Order No. GC28-6394-2 1 Pag¢Revised 5/15/.72 by TNL GN28-01189
. "

sequential File Processing •
Random File Processing • • • •

• .201
• 203

SUBPROGRAM LINKAGE STATEMENTS · ••••• 205
CALL Statement • • • .205
ENTRY Statement • • • • • • • • 206
USING Option •••••••••••• 207
Program Termination Considerations .210
EXIT PROGRAM Statement. • •• 211
GOBACK Statement • • • • • • • • 211
STOP RUN Statement • • • .211

COMPILER-DIRECTING STATEMENTS •• 212
COPY Statement • • • • • • • 212
ENTER Statement • • • • • 212
NOTE Statement • • 212

PART V -- SPECIAL FEATURES • .215

SORT FEATURE • • • • • • • .217
Pr<J9ram Product Information --
Version 3 ••••••••••••• 217

Elements of the Sort Feature ••••• 217
Environment Division Considerations
for Sort • • • • • • • • • • •• 218

Input-Output Section ••••••••• 218
File-Control Paragraph ••••••• 218
Assignment of Sort Work Units ••• 219
I-0-CONTROL Paragraph ••••••• 219
RERUN Clause. • • • • • • • • .220
SAME RECORD/SORT AREA Clause •••• 220

Data Division considerations for Sort .221
File section • • • • • • • • • • 221

sort-File Description • 221
Procedure Division considerations for
Sort • • • •. • • • • • • • •. • • 222

SORT Statement • • • • • • • 222
RELEASE Statement ••••••• 227
RETURN Statement • .228
EXIT Statement ••••••••••• 228

Special Registers for Sort • • •• 229

Sample Program Using _the Sort Feature .230

REPORT WRITER FEATURE • 232
• 232 Data Division -- overall Description •

Procedure Division -- overall
Description • • • • • • • • •• 233
Data Division Considerations for
Report Writer • • • • • •• 234

File Description • • • • • • • •
REPORT Clause • • • • • • • •
RECORDING. MODE Clause
DATA RECORDS Clause
RECORD CONTAINS Clause •

Report Section • • • • • • •
Report Description Entry
CODE Clause • • • •
CONTROL Clause· ••••••
PAGE LIMIT Clause

• 234
• 234
• 235

• • 235
• 235
• 236

•• 236
• • • 236
• • • 237

• 238
Report Group Description Entry •
LINE Clause

• • 241
•• 243

• 245 NEXT GROUP Clause
TYPE Clause
USAGE Clause •
COLUMN Clause
GROUP INDICATE Clause
JUSTIFIED Clause • • • •

• • 247
• • • • • 249

• 249
•• 250

• • • 250

PICTURE Clause • • • • •
RESET Clause • • • • •
BLANK WHEN ZERO Clause

• ••• 250
• • • • .• 2SO

• 2~>1
SOURCE, SUM, or VALUE Clause • • • .• 2~i1

Procedure Division considerations • 2S3
GENERATE Statement. • ••••• 253
INITIATE Statement •
TERMINATE Statement
USE sentence • • • • •

Special Registers: PAGE-COUNTER and

• • 254
•• 255
• • 256

LINE-COUNTER • • • • • 257
PAGE-COUNTER • • • • • • • • 2 5 7
LINE-COUNTER • • • • • • • • 257

Sample Report Writer Program •••••• 259
Key Relating Report to Report
Writer Source Program ••••• 262

TABLE HANDLING FEATURE • • • • •• 269
Subscripting. • • • • • • • • • .269-
Indexing •••••• ~ • • • •• 270
Restrictions on Indexing,
Subscripting, and Qualification .271
Example of Subscripting and Indexing .;271

Data Division Considerations for Table
Handling • • • • • • • • • • • • • , • • 27 2

OCCURS Clause • • • • • .272
USAGE IS INDEX Clause • 279

Procedure Division Considerations for
Table Handling. • • ••••• 280

Relation Conditions ••••• 280
SEARCH Statement •••••••••• 281
SET Statement •••••• 286

Sample Table Handling Program ••• 287

SEGMENTATION FEATURE • • • • • • • 2EI 9
Organization. • • • .289

Fixed Portion •• 289
Independent Segments • • •. 289

Segment Classification • • 2510
Segmentation Control ••••• 290
structure of Program Segments ••••• 290

Priority Numbers • • • • • • • • 290
Segment Limit •••••••••••• 291

Restrictions on Program Flow • • • 292
ALTER Statement • • • • • • • • . • • 292
PERFORM Statement •• 292
Called Programs •• 292

SOURCE PROGRAM LIBRARY FACILITY
COPY Statement • • • • • • •

Extended Source Program Library
Facility ••••

BASIS Card •
INSERT Card • • • • •
DELETE Card

• • 293
• • 293

• 296
•• 296
•• 296
•• 2%

DEBUGGING LANGUAGE • • • • • • • 298
RE;;.DY/RESET TRACE Statement • • 298
EXHIBIT Statement • • • • • • • 298
ON (Count-:conditionall Statement • • 300
Program Product Information --
Version 3 • • • • • • • • • • • • • 300

Compile-Time Debugging Packet .• .301
DEBUG Card. • • • • • • • ••• 301

FORMAT CONTROL OF THE SOURCE PROGRAM
LISTING •••••• 302

EJECT statement • • 302

SKIPl, SKIP2, and SKIP3 Statements .302

STERLING CURRENCY FEATURE AND
INTERNATIONAL CONSIDERATIONS •••••• 303

Sterling Nonreport • • • • • • .304
sterling Sign Representation. .305

Sterling Report ••••••••••• 306
Procedure Division considerations •• 308

International Considerations •••••• 308

SUPPLEMENTARY MATERIAL·. • 309

APPENDIX A: INTERMEDIATE RESULTS •••• 311.
Compiler Calculation of Intermediate
Results • • • • • • • • • • • • 311

APPENDIX B. SAMPLE PROGRAMS. .• • • 31.3

Creation of a Direct File • • • • • 314

Creation of an Indexed File • 316

Random Retrieval and Updating of an
Indexed File • • • • • • • • .318

APPENDIX C. AMERICAN NATIONAL STANDARD
COBOL FORMAT SUMMARY AND RESERVED WORDS 321

APPENDIX D. SUMMARY OF FILE-PROCESSING
TECHNIQUES AND APPLICABLE STATEMENTS
AND CLAUSES •••••••••••••• 331

APPENDIX E: ASCII CONSIDERATIONS •••• 334
I -- Environment Division • • • • .334

ASSIGN Clause • • • • .334
RERUN Clause. • • •••••• 334

II -- ~ata Division ••••••• 334
File section • • • • • • • • .334

BLOCK CONTAINS Clause .334
LABEL RECORDS Clause. • • • .334
RECORDING MODE Clause ••••••• 334
compiler calculation of Recording
Mode •••••••••••••••• 334

' Data Description Entries • 334
PICTURE Cla.use . . . • . . . • 334
SIGN Clause • 334
USAGE Clause • 334

III -- Procedure Division . • 33.4
LABEL PROCEDURE Declarative • 334
Relation Conditions • 334

IV -- sort Feature • 334
Environment Division . .• 334

ASSIGN Clause • • 334
RERUN Clause ' . .334

Data Division . .334·
SIGN clause • 334
USAGE Clause . . . • 334

FEArURE .334
• 334

APPENDIX F: SYMBOLIC DEBUGGING
Object-Time Control Cards
Sample Program -- TESTRUN
Debugging TESTRUN • • • • •

• .334
• • • • 334

APPENDIX G: 3525 COMBINED FUNCTION
PROCESSING • • • • • • • • • •• 334
I -- Environment Division
considerations • • • • • • • • • • • .. • 33_4

SPECIAL-NAMES Paragraph
SELECT Clause

• • • • • • 334
• • .• • • • 334

• • • • 334 ASSIGN Clause • • • • •
RESERVE Clause • • • • • •

II -- Data Division considerations •
III -- Procedure Division

• 334
• • 334

Considerations ••••••••••••• 334
OPEN Statement. • • ••• 334
READ Statement. • • ••• 334
WRITE statement -- Punch Function
Files • • • • • • • ••••• 334
WRITE Statement -- Print Function
Files • • • • • • • • • • •• 334
CLOSE Statement ••• • • • e334

IBM AMERICAN NATIONAL STANDARD COBOL
GLOSSARY • • • • • • • • • • • • • • 335

INDEX • 349

CJ '·

CJ

u

•

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Figure 1. Illustration of Procedure
Branching • • • • • • • • • • • • • • • 27
Figure 2. Complete UPDATING Program • 31
Figure 3. Reference Format 47
Figure 4. Structure of the First
Eight Bytes of ACTUAL KEY -- Actual
Track Addressing ••••••••••• 73
Figure 5. Level Indicator summary 87
Figure 6. A.reas REDEFINED without
Changes in Length • • • • • • • •
Figure 7. Areas REDEFINED and
Rearranged • • • • • • • • •
Figure 8. Insertion of the
Intra-occurrence Slack Bytes
Figure 9. Insertion of

.103

.104

• 121

Inter-occurrence Slack Bytes ••• 122
Figure 10. Logical Operators and the
Resulting Values upon Evaluation •
Figure 11. conditional statements
with Nested IF Statements • • • •

• 147

.151
Figure 12. Error Byte Meaning for the
GIVING Option of an Error Declarative .157

Chart 1. Logical Flow of conditional
Statement with Nested IF Statements •• 152
Chart 2. Logical Flow of Option 4
PERFORM Statement Varying One
Identifier ••••••••••••••• 174
Chart 3. Logical Flow of Option 4
PERFORM Statement Varying Two
Identifiers •••••••••••••• 175

Figure 13. SORT Collating Sequences
Used for Sort Keys •• 223
Figure 14. Sample Program Using the
SORT Feature • • • • • • • • .230
Figure 15. Page Format when the PAGE
LIMIT Clause Is Specified •• 240
Figure 16. sample Program Using the
Report Writer Feature . • • • • .259
Figure 17. Report Produced by Report
Writer Feature. • • • • • • • • • • .264
Figure 18. Storage Layout for
PARTY-TABLE •• 272
Figure 19. sample Table Handling
Program (Part 1 of 2) • • • • • • .287
Figure 20. using the TRANSFORM
Statement with ASCII Comparisons • .334
Figure 21. EBCDIC and ASCII Collating
Sequences for COBOL Characters -- in
ascending order • • • • • • • • .334
Figure 22. Using the Symbolic
Debugging Features to Debug the
Program TESTRUN • •••••..•••• 334

Chart 4. Logical Flow of Option 4
PERFORM Statement Varying Three

Charts ----

Identifiers •••••••••••••• 176
Chart 5. Format 1 SEARCH Operation
containing Two WHEN Options •••••• 284

Order No. GC2B-6394-2, Page Revised 5/15/72 by TNL GN2B-0489

Tables

Table 1. Typical Ledger Records used
for MASTER-RECORD ••••••••••• 19
Table 2. Typical DETAIL-RECORD • • • • 20
Table 3. summary of File-Processing
Techniques • • • • • • • • • • • • • • • 60
Table 4. Choices of Function-name-1
and Action Taken • • • • • • • • • • • • 64
Table 5. Values of Organization
Field for File Organization • • • • • • 70
Table 5.1. Values of Organization
Field for File Organization • 70
Table 6. Class and category of
Elementary and Group Data Items • 107
Table 7. Precedence of Symbols Used
in the PICTURE Clause • • • • • • .111
Table 8. Editing Sign Control
Symbols and their Results •• 116
Table B.1. Internal Representation
of Numeric Items •••••••••••• 124
Table 9. Permissible Symbol Pairs ••• 138
Table 10. Valid Forms of the Class
Test • •••••••••••••••• • 140
Table 11. Relational-operators and
Their Meanings ••••••••••••• 142
Table 12. Permissible comparisons ••• 145
Table 13. Permissible Symbol Pairs •• 148
Table 14. File Processing Techniques
and Associated Error Declaratives
capabilities •••••••••••• • .158 I

Table 15. Permissible Moves •••••• 181
Table 16. Examples of Data Examination 183
Table 17. Examples of Data
Transformation. • • • • •••••• 184
Table 18. combinations of FROM ana TO
Options ••••••• ~ •••••••• 185
Table 19. Action Taken for
Function-Names -- ADVANCING Option • 194
Table 20. Values of Identifier-2 and
Their Interpretation -- POSITIONING
Option . . . • . . • . . • . • . . • . . 195
Table 21. Values of Integer and Their
Interpretations -- POSITIONING Option .195
Table 22. Relationship of Types of
Sequential Files and the Options of
the CLOSE Statement •••••••••• 203
Table 23. Relationship of Types of
Random Files and the Options of the
CLOSE Statement ••••••••••••• 204
Table 24. Effect of Program
Termination Statements Within Main
Programs and subprograms. .210
Table 25. Index-names and Index Data
Items -- Permissible Comparisons •••• 281
Table 26. Sterling currency Editing
Applications • • • • • • • • .308
Table 27. compiler Action on
Intermediate Result ••••• 312
Table 28. Individual Type Codes Used
in SYMDMP output. • • • • .334

' }
'""-"

i .
'-._.,)

(I

_.,,)

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0499

The IBM Disk Operating System Full American Nationa.l Standard COBOL
Compiler Version 3 includes the following features:

(1) QEtimized Obi~~t._£od~ which results, when specified, in
up to 303 space saving in object program generated code
and global tables as compared with Version 2. The space
saved depends on the number of referenced procedure-names
and branches, and on 01-level data names.

(2) .§ystem/370 SuppQE~ can be requested, to take advantage of
the System/370 instruction set. When such support is
requested, system/370 instructions particulary suited to
COBOL programming are generated to replace the equivalent
object-time subroutines and instructions needed. when
running under System/360. The System/370 instructions
save up to 123 of generated object program space, plus the
space no longer needed by the subroutines.

(3)

(4) Improvements in the MOVE Statement and in comp~E!~Q~~ -­
when a MOVE statement or a comparison involves a one-byte
literal, generated code for the move and the comparison
has been improved. This saves object program space.

(5) Improved DISPLAY Routines -- the DISPLAY routine has been
split into subsets for more efficient object program code.

• ~Ph~Qg~~zed~ro~~=B~f~E~g£~-~!~!igg__i§~g~~~ -- for easier
reference to user-specified names in a program. SXREF performs
up to 25 times faster than previous source-ordered
cross-reference (XREF>. Version 3 XREF performance is improved
by at least the same amount. The larger the source program, the
more that performance is improved. Total compilation time is up
to 3 times faster.

• Q~~~gqinq Facilities that are more powerful and flexible

(1) Symbolig__j2gQyg__~eature -- which provides a symbolic
formatted dump at abnormal termination, or a dynamic dump
during program execution.

(2) Flow Trace Op~iQ~ -- a formatted trace can be requested
for a variable number of procedures executed before
abnormal termination.

(3) Statement Number Option -- provides information about the
COBOL statement being executed at abnormal termination.

(4) Expanded CLIST and SYM -- for more detailed information
about the Data Division and Procedure Division.

(5) Relocation Factor -- can be requested to be included in
addresses on the object code listing for easier debugging.

(6) wo~kinq~~tQE~qg_~Q£~~iQg_~g~_§ie~ -- When CLIST and SYM
are in effect, the starting address and size of
Working-Storage are printed.

Features Of The Program Product Version 3 Compiler 11

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

12

• Ad~itio!!£!_!_Devi~-§~QEQrt -- the following devices can be
specified:

3211 -- 150-character printer

2319, 3330

3410, 3420

3505, 3525

mass storage (direct access) facilities

tape utility devices

advanced unit-record devices

• ASCII SUf?POrt -- allows creation and retrieval of tape files
written in the American National Standard Code for Information
Interchange (ASCII>.

I)

'~

·.) ,.._,.

:•

: ..

0

In 1959, a group of computer professionals, repre~enting the u.s.
Government, manufacturers, universities, and users, formed the
£onference Qn DAta SYstems !!anguage (CODASYL>. At the. first meeting,
the conference agreed upon the development of a common language for the
programming of commercial problems. The proposed language would be
capable of continuous change and development, it would be problem­
oriented and machine-independent,. and it would use a syntax closely
resembling English, avoiding the use of special symbols as much as
possible.' The common ~usiness Qriented !!anguage (COBOL> which resulted
met most of these requirements.

As its name implies, COBOL is especially efficient in the processing
of business problems. such problems involve relatively little algebraic
or logical processing; instead, they usually manipulate large files of
similar records in a relatively simple way. This means that COBOL
emphasizes the description and handling of data items and input/output
records.

In the years since 1959, COBOL has undergone considerable refinement
and standardization, and a standard COBOL has been approved by ANSI
(~merican ~ational ~tandards !nstitutel, an industry-wide association of
computer manufacturers and users; this standard is called American
National Standard COBOL, X3.23-1968.

This publication explains IBM Full American National Standard COBOL,
which is compatible with the highest level of American National Standard
COBOL and includes a number of IBM extensions to it as well. The
compiler supports the processing modules defined in the standard. These
processing modules include:

NUCLEUS -- which defines the permissible character set and the basic
elements of the language contained in each of the four COBOL divisions:
Identification Division, Environment Division, Data Division, and
Procedure Division.

TABLE HANDLING -- which allows the definition of tables and ma~ing
reference to them through subscripts and indexes. · A convenient method
for searching a table is provided.

SEQUENTIAL ACCESS -- which allows the records of a file to be read or
written in a serial manner. The order of reference is implicitly
determined by the position of the logical record in the file.

RANDOM ACCESS -- which allows the records of a file,to be read or
written in a manner specified by the programmer. Sp!'!cifically defined,
keys, supplied by the programmer, control successive references to the
file.

SORT -- which provides t~e capability of sorting files in ascending
and/or descending order. This feature also includes procedures for
handling such files both before and after they have been sorted.

REPORT WRITER -- which allows the.programmer to describe the format of.a
report in the DATA DIVISION, thereby minimizing the amount of PROCEDURE
DIVISION coding necessary.

'
SEGMENTATION -- which allows large problem programs t9 be split into
segments that can then be designated as permanent or overlayable core
st.orage. This assures more efficient use of core storage at.object
time.

Introduction 13

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

LIBRARY -.., which supports the retrieval and updating of pre-written
source program entries from a user's library, for inclusion in a COBOL
program at compile time. The effect of the compilation of library text
is as though the text were actually written as part of the source
program.

In this publication, the features included in the NUCLEUS, SEQUENTIAL
ACCESS, and RANDOM ACCESS modules are presented as part of the
discussion of "Language Considerations" and of the four divisions of a
COBOL program. The other five modules -- TABLE HANDLING, SORT, REPORT
WRITER, LIBRARY, and SEGMENTATION -- are presented as separate features
of USA Standard COBOL.

This manual describes all versions of IBM System/360 Disk Operating
System Full American National Standard COBOL. All information relating
to the Program Product Version 3 compiler is presented within separate
paragraphs. Such paragraphs begin with the heading "Program Product
Information -- Version 3,• and all following paragraphs pertaining to
such information are indented.

This chapter gives the reader a general understanding of the
principles of IBM Full American National Standard COBOL (hereinafter
simply termed "COBOL"). It introduces the reader to COBOL and
demonstrates some of the ways in which the language can be used in the
solution of commercial problems. This discussion does not define the
rules for using COBOL, but rather attempts to explain the basic concepts
of the language through relatively simple examples.

The reader who has an understanding of the principles of currently
implemented versions of COBOL may wish to go directly to "Language
Considerations." Other readers will find many concepts discussed in
this chapter of help in using the detailed instructions throughout the
rest of this manual.

PRINCIPLES OF COBOL

COBOL is one of a group of high-level computer languages. Such
languages are problem oriented and relatively machine independent,
freeing the programmer from many of the machine oriented restrictions of
assembler language, and allowing him to concentrate instead upon the
logical aspects of his problem.

COBOL looks and reads much like ordinary business English. The
programmer can use English words and conventional arithmetic symbols to
direct and control the complicated operations of the computer. The
following are typical COBOL sentences:

ADD DIVIDENDS TO INCOME.
MULTIPLY UNIT-PRICE BY STOCK-ON-HAND

GIVING STOCK-VALUE.
IF STOCK-ON-HAND IS LESS THAN ORDER-POINT

MOVE ITEM-CODE TO REORDER-CODE.

such COBOL sentences are easily understandable, but they must be
translated into machine language -- the internal instruction codes -­
before they can actually be used.

A special systems program, .known as a compiler, is first entered into
the computer. The COBOL program <referred to as the source program) is
then entered into the machine, where the compiler reads it and analyzes
it. The COBOL language contains a basic set of reserved words and
symbols. Each combination of reserved.words and symbols is transformed

14 Introduction

0

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

by the compiler into a definite set of usable machine instructions. In
effect1, the programmer has at his disposal a whole series of
"prefabricated" portions of the machine-language program he wishes the
compiler to construct.

When he writes a COBOL program, he is actually directing the compiler
to bring together, in the proper sequence, the groups of machine
instructions necessary to accomplish the desired result. From the
programmer's instructions, the compiler creates a new program in machine
language. This program is known as an object program.

Introduction 14.1

I
_.1

\

-_!

(I

"-/

Once the object program has been produced, it may be used at once, or
it may be recorded on some external medium and stored for future use.
When it is needed, it can then be called upon again and again to process
data.

Every COBOL program is processed first when the compiler translates
the COBOL program into machine language <compile time>, then when the
machine language program actually processes the data (execution time>.

A simple example illustrates the basic principles of translating a
COBOL sentence. To increase the value of an item named INCOME by the
value of an item named DIVIDENDS, the COBOL programmer writes the
following sentence:

ADD DIVIDENDS TO INCOME.

Before the compiler can interpret this sentence, it must be given
certain information. The programmer describes the data represented by
the names DIVIDENDS and INCOME in such a way that the compiler can
recognize it, obtain it when needed, and treat it in accordance with its
special characteristics.

First, the compiler examines the word ADD.. It determines whether or
not ADD is one of the COBOL reserved words, that is, words that have
clearly defined meanings in COBOL (rather than a word like DIVIDENDS,
which is defined by the programmer}. ADD is a special kind of reserved
word--a COBOL key word. Therefore, the compiler generates the machine
instructions necessary to perform an addition and inserts them into the
object program.

The c0mpiler next examines the word DIVIDENDS. Because the
programmer has supplied data information about DIVIDENDS, the compiler
knows where and how DIVIDENDS information is to be placed in core
storage, and it inserts into the object program the instructions needed
in order to locate and obtain the data.

When the compiler encounters the word TO, it again determines whether
or not this is a COBOL reserved word. It is such a word, and the
compiler interprets it to mean that the value represented by the name
fol.lowing the word TO, in this case INCOME, must be increased as a
result of the addition.

The compiler next examines the word INCOME. Again, it has access to
data information about the word. As a result, it is able to place in
the object program the instructions necessary to locate and use INCOME
data.

The programmer placed a period after the word INCOME. The effect of
the period on the COBOL compiler is similar to its effect in the English
language. The period tells the compiler that it has reached the last
word to which the verb ADD applies, the end of the sentence.

The logical steps we have described are performed by the compiler in
creating the object program, although they might not be performed in
exactly this sequence. All these preparatory steps are required only in
creating the object program. Once created, the object program is used
for the actual processing and may be saved for future reference. The
source program is not required further, unless the programmer makes a
change in it; in that case, it must be compiled again to create a new
object program.

When the machine-language instruction for ADD is actually performed
at execution time, the instruction is executed in either of two ways,
depending on the format of the data:

Introduction 15

1. It directly adds the value of DIVIDENDS to the value of the data
representing INCOME, thus giving the new value of INCOME.

or

2. It moves the data representing INCOME into a special work area, or
register; then DIVIDENDS is added to it to create the sum, after
which the new value of INCOME is returned to the proper area in
storage.

In this simple example., the object program could add the two specified
items with very few machine instructions. In actual practice, however,
some complex COBOL sentences produce dozens of machine instructions.
Then, too, a computer can be instructed to repeat a procedure any number
of times. A few COBOL sentences can start the computer on operations
that could process millions of data records rapidly and accurately.

A SAMPLE COBOL PROGRAM

COBOL is based on English; it uses English words and certain syntax
rules derived from English. However, because it is a computer language,
it is much more precise than English. The programmer must, therefore,
learn the rules that govern COBOL and follow them exactly. These rules
are detailed later, beginning in the next chapter. The rest of this
chapter gives a general picture of how a COBOL program is put together.

The basic unit of COBOL is the word -- which may be a COBOL reserved
word or a programmer-defined word. Reserved words have a specific
syntactical meaning to the COBOL compiler, and must be spelled exactly
as shown in the reserved word list (see Appendix C). Progranuner-defined
words are assigned by the user to such items as data-names and
procedure-names; they must conform to the COBOL rules for the formation
of names.

Reserved words and programmer-defined words are combined by the
programmer into clauses (in the Environment and Data Divisions) and
statements (in the Procedure Division); clauses and statements must be
formed following the specific syntactical rules of COBOL. A clause or a
statement specifies only one action to be performed, one condition to be
analyzed, or one description of data. Clauses and statements can be
combined into sentences. Sentences may be simple (one statement or one
clause), or they may be compound (a combination of statements or a
combination of clauses). Sentences can be combined into paragraphs,
which are named units of logically related sentences, and paragraphs can
be further combined into named sections. Both paragraphs and sections
can be referred to as procedures, and their names can be referred to as
procedure names. Procedures (sections and paragraphs) are combined into
divisions.

There are four divisions in each COBOL program. Each is placed in
its logical sequence, each has its necessary logical function in the
program, and each uses information developed in the divisions preceding
it. The four divisions and their sequence are:

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION.

To illustrate how a COBOL program is written, let us create a
simplified procedure to record changes in the stocks of office furniture
offered for sale by a manufacturer. We will need such data items as an
item code to identify each type of product, an item name corresponding
to the code, the unit price of each item of stock, the reorder point at

16 Introduction

··~

which the manufacturer replaces each item, and the amount of stock on
hand plus its value for each item. our procedure will update a
MASTER-FILE of all stocks the manufacturer carries by reading a
DETAIL-FILE of current transactions, performing the necessary
calculations, and placing the updated values in the ~.ASTER-FILE. We
will also create an ACTION-FILE of items to be reordered. The
MASTER-FILE resides on a direct access (mass storage) disk device; the
DETAIL-FILE and ACTION-FILE reside on tape devices.

Many of the examples used in the following discussion have been
simplified for greater clarity. Figure 2, at the end of this chapter,
shows how the entire UPDATING program would actually be written.

Identification Division

First we must assign a name to our program, presenting the
information like this:

IDENTIFICATION DIVISION.
PROGRAM-ID. UPDATING.

PROGRAM-ID informs the compiler that we have chosen the unique name
UPDATING for the program we have written.

In addition to the name of the program, the Identification Division
allows us to list the name of the programmer, the date the program was
written, and other information that will serve to document the program.

Environment Division

Although COBOL is, to a large degree, machine independent, there are
some aspects of any program that depend on the particular computer being
used and on its associated input/output devices. In the Environment
Division, the characteristics of the computer used may be identified.
The location of each file referenced in the program, and how each one of
them will be used, must be described.

First we will describe the source computer (the one the compiler
uses) and the object computer (the one the object program uses) as
follows:

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.

This tells us that both computers will be an IBM System/360 model FSO.

Next we must identify the files to be used in our program, and assign
them to specific input/output devices. This is done in the Input-Output
Section.

Introduction 17

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT MASTER-FILE, ASSIGN TO •••
ACCESS MODE IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT DETAIL-FILE, ASSIGN TO •••
ACCESS MODE IS SEQUENTIAL.

SELECT ACTION-FILE, ASSIGN TO •••

The ellipses (•••) in the three foregoing ASSIGN clauses indicate the
omission of system-name, an item too complex to illustrate here.
system-name is in a special format, and it tells the compiler on which
symbolic unit the file will be found, on what kind of device the file
resides, and in what way the data is organized within the file.

our MASTER-FILE resides on a disk pack, which is a mass storage
device. Access for these devices can be either RANDOM or SEQUENTIAL.
If ACCESS MODE IS RANDOM, then each record within the file can be
located directly through the use of a key (identified in the statement
ACTUAL KEY IS FILEKEY). For our program we have named this key FILEKEY,
and later in the Data Division we will describe it fully. During the
processing of our object program, each record will be made available to
the user in the sequence that the keys are presented to the system.

our DETAIL-FILE and our ACTION-FILE reside on tape. This means that
ACCESS MODE must be sequential. On tape it is necessary to refer to
each successive record in the file in order to find any individual
record we might wish to access. Since the compiler assumes that the
ACCESS MODE is sequential unless specified otherwise, the ACCESS MODE
clause is never needed in describing a tape file.

Data Division

The Data Division of the COBOL program gives a detailed description
of all the data to be used in the program -- whether to be read into the
machine, used in intermediate processing, or written as output. To
simplify this discussion, we will describe only the two most important
aspects of data description.

1. We will inform the compiler that we intend to work with one kind of
input record, our detail record; one kind of update record, our
master record; and one kind of output record, our action record.

2. We will assign data-names to each of the items of data to be used.

First, we must organize the two input records -- a MASTER-RECORD and
a DETAIL-RECORD. The MASTER-RECORD will be derived from ledger records
that look like those shown in Table 1.

18 Introduction

\)
~

('

\)

I"-.)

Table 1. Typical Ledger Records Used for MASTER-RECORD
r-----T-~-------------------------T--------T--------T---------T-------1
I I I Stock I Unit I Stock I I
I Item I I on I Price I Value I order I
!Code I Item Name I Hand I ($) I ($) I Point I
I------+----------------------------+--------+--------+---------+-------~
IAlO I 2-drawer file cabinets I 100 I 50 I 5 1 000 I 50 I
!All I 3-drawer file cabinets I 175 I 80 I 14,000 j 80 I
IA12 I 4-drawer file cabinets I 200 I 110 I 22,000 I 150 I
I I I I I I I
I B:lO I Secretarial desks I 150 I 200 I 30, 000 I 120 I
IBll I Salesmen's desks I 50 I 175 I a,750 I 50 I
IB12 I Executive desks I 75 I 500 I 37,500 I 60 I
I I I I I I I
IC10 I Secretarial posture chairs I 125 I 50 I 6,250 I 140 I
1c11 I side chairs I so I 40 I 2, ooo I 60 I
IC12 I Executive swivel chairs I 25 I 150 I 3 1 750 I 20 I
L------~--------------~---~--------'---~---~--------~---------~-------J

There will be a MASTER-RECORD for each item in this list. In
defining the data for the compiler, we will make sure that each record
is in the same format as all the others. Thus, if we specify the
characteristics of a single record, we will have specified the
characteristics of the whole set. In this way, all of the master
records can be organized into a data set, or file, that we will name
MASTER-FILE. Each complete record within the file we will name the
MASTER-RECORD, with the individual items of data grouped within it.
Accordingly, we will begin our Data Division as follows:

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE DATA RECORD IS MASTER-RECORD •••

01 MASTER-RECORD.
02 ITEM-CODE •••
02 ITEM-NAME •••
02 STOCK-ON-HAND •••
02 UNIT-PRICE •••
02 STOCK-VALUE •••
02 ORDER-POINT •••

The FILE SECTION entry informs the COBOL compiler that the items that
follow will describe the format of each file and of each record within
each file to be used in the program. The level indicator FD (File
Description) introduces the MASTER-FILE itself, and tells the compiler
that each entry within MASTER-FILE will be referred to as MASTER-RECORD.
The entry with level number 01 identifies the MASTER-RECORD itself, and
the subordinate entries with level number 02 describe the subdivisions
within the complete MASTER-RECORD. The concept of levels is a basic
attribute of COBOL. The highest level is the FD, the next highest level
is 01. Level numbers from 02 through 49 may subdivide the record, and
the subdivisions themselves can be further subdivided if need be. The
smaller the subdivision, the larger the level number must be.

Each of the data items would actually be described more fully than is
shown here. In an actual program, for example, we would inform the
compiler that each of the items identified as STOCK-ON-HAND, UNIT-PRICE,
STOCK-VALUE, and ORDER-POINT would represent postive numeric values of a
specific size in a specific form, and so forth. At this point, we need
not concern ourselves with these details.

Introduction 19

The MASTER-FILE is the main record of current inventory. Changes to
this record are made by entering the details of individual transactions
or groups of transactions. Thus, receipts of new stocks and shipments
to customers will change both STOCK-ON-HAND and STOCK-VALUE. These
changes are summarized in the detail record for each item. A typical
record would appear in a ledger as shown in Table 2.

Table 2. Typical DETAIL-RECORD
r--------~-------------------------T-----------------T----------------1

I Item I I I I
I code I Item Name I Receipts I Shipments I
l---------+------------------~-~-+-----------------+----------------~
fBll I Salesmen's desks I 25 I 15 I
L---------i-------------------------i-----------------.L----------------J

We will therefore organize a DETAIL-FILE, made up of individual items
to be referred to as DETAIL-RECORD. DETAIL-FILE will be arranged by
ITEM-CODE in ascending numerical order.

FD DETAIL-FILE DATA RECORD IS DETAIL-RECORD •••
01 DETAIL-RECORD.

02 ITEM-CODE •••
02 ITEM-NAME •••
02 RECEIPTS •••
02 SHIPMENTS •••

The ACTION-FILE will contain a list of items to be reordered, plus
relevant data:

FD ACTION-FILE DATA RECORD IS ACTION-RECORD •••
01 ACTION-RECORD.

02 ITEM-CODE •••
02 ITEM-NAME •••
02 STOCK-ON-HAND •••
02 UNIT-PRICE •••
02 ORDER-POINT •••

This completes the description of the files we will use.

Note that the names of data items contained within the files are in
many cases identical. Yet each name within each file must be unique, or
ambiguities in references to them will occur. Since identical names are
used in our data descriptions, we must use a special means of
distinguishing between them. The COBOL naming system, with its concept
of levels, allows us to make this distinction by reference to some
larger group of data of which the item is a part. Thus, ITEM-CODE OF
MASTER-RECORD, and ITEM-CODE OF DETAIL-RECORD, and ITEM-CODE OF
ACTION-RECORD can be clearly differentiated from each other. The use of
a higher level name in this way is called qualification. Qualification
is required in making distinctions between otherwise identical names.

Now we must construct the Working-Storage section of our Data
Division. This section describes records and data items that are not
part of the files, but are used during the processing of the object
program.

For our program, we will need several entries in our working-storage
section. Among them will be several items constructed with level
numbers, similar to those used to describe the file records.

20 Introduction

\
l J
,.._1

i \
_)

WORKING-STORAGE SECTION.

77 QUOTIENT •••

01 THE-KEY •••
02 FILLER.•.
02 FILEKEY •••

01 ERROR-MESSAGE.
02 ERROR-MESSAGE-1 •••
02 ERROR-MESSAGE-2 •••
02 ERROR-MESSAGE-3 •••

We will use THE-KEY record in constructing the FILEKEY. The
ERROR-MESSAGE record we will use to create warning messages when errors
are encountered during object time processing. The data item named
QUOTIENT we have assigned the level number 77. This level number
informs the compiler that QUOTIENT is a noncontiguous data item -- that
is,, that this item has no relationship to any other data i tern described
in the working-Storage section. Note that the data items related to
each other must be listed after all the noncontiguous data items.

Procedure Division

The Procedure Division contains the instructions needed to solve our
problem. To accomplish this, we will use several types of COBOL
statements. In constructing our sample program, we will discover how
each type of statement can be used to obtain the results we want.

Be~ninq the Program -- Input Operations

our first step in building the Procedure Division is to make the
records contained in the MASTER-FILE and the DETAIL-FILE available for
processing. If we write the statements:

PROCEDURE DIVISION.

OPEN INPUT DETAIL-FILE.
OPEN I-0 MASTER-FILE.

the system establishes a line of communication with each file, checks to
make sure that each is available for use, brings the first record of the
DETAIL-FILE file into special areas of internal storage known as
buffers, and does other housekeeping.

Introduction 21

be:
The files can now be accessed. Our next statements will therefore

READ DETAIL-FILE AT END GO TO END-ROUTINE.

READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR
GO TO ERROR-ROUTINE-1.

At this. point in our program, these two statements make available for
processing the first record from each file. (Note that the AT END
phrase and the INVALID KEY phrase are necessary in these sentences.
Their use will be explained later.) We are now able to begin arithmetic
operations upon the data.

Arithmetic Statements

We have already seen that the COBOL language contains the verb ADD.
Using this verb, we can add RECEIPTS to STOCK-ON-HAND by writing the
COBOL statement:

ADD RECEIPTS TO STOCK-ON-HAND.

This instructs the program to find the value of RECEIPTS in the
DETAIL-RECORD and add it to the va1ue of STOCK-ON-HAND in the
MASTER-RECORD. (For the sake of brevity, this example and the ones
following have been simplified by omitting the name qualification which
would be necessary in actual coding. Figure 2, at the end of this
chapter, shows the actual coding necessary.>

Next we must reduce the new value of STOCK-ON-HAND by the amount of
SHIPMENTS. The COBOL verb SUBTRACT will accomplish this result for us,
and so we write:

SUBTRACT SHIPMENTS FROM STOCK-ON-HAND.

These two statements, carried out in succession, will produce a current
value for STOCK-ON-HAND.

Actually,
calculation.
another verb
operation in

there is a more concise way to perform this particular
We have broken it into two steps, but COBOL provides

which allows us to specify more than one arithmetic
a single statement. This is the verb COMPUTE.

COMPUTE STOCK-ON-HAND = STOCK-ON-HAND + RECEIPTS - SHIPMENTS.

A COMPUTE statement is always interpreted to mean that the value on
the left of the equal sign will be changed to equal the value resulting
from the calculation specified on the right. The calculation on the
right of the equal sign is evaluated from left to right. That is, in
our example, the addition is performed first and then the subtraction.

The name STOCK-ON-HAND occurs twice in this sentence, but this causes
no difficulty. The expression to the right is calculated first; thus,
it is the current value of STOCK-ON-HAND that is used as the basis for
computing the new value. When this new value has been calculated, it
replaces the old value of STOCK-ON-HAND in the MASTER-HECORD.

22 Introduction

. l \._;

' I ; ,_,

So far we have brought only the value of STOCK-ON-HAND up to date,
but a change in this value will also cause a change in STOCK-VALUE. we
will assume that this figure does not include allowances for quantity
discounts, damage to stock, or other such factors, and that STOCK-VALUE
is nothing more than the unit price multiplied by the number of items
cuz·rently in stock. COBOL provides us with a MULTIPLY verb, which
permits us to accomplish this:

MULTIPLY STOCK-ON-BAND BY UNIT-PRICE GIVING STOCK-VALUE.

The, result of the mul.tiplication will be placed in the MASTER-RECORD as
the new val.ue of STOCK-VALUE. Within the program, this statement must
be executed after the COMPUTE statement we wrote earlier, since
STOCK-ON-HAND must be the updated, not the original, value.

Conditional Statements

There are instructions in COBOL that examine data to determine
whether or not some condition is present and, depending on what is
found, to carry out an appropriate course of action.

The MASTER-RECORD contains an item called ORDER-POINT. An item is to
be reordered when its stock has been reduced either to or below its
order point. Let us assume that we have written a procedure for
initiating such an order, and that we have given the name
REORDER-ROUTINE to this procedure. We then write the following two
sentences:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT
PERFORM REORDER-1 •••

IF STOCK-ON-HAND IS EQUAL TO ORDER-POINT
PERFORM REORDER-1 •••

in order to compare the present value of STOCK-ON-HAND with the value of
ORDER-POINT. If STOCK-ON-HAND is a smaller value, the COBOL verb
PERFORM causes a transfer of control to the paragraph named REORDER-1.
If STOCK-ON-HAND is not less than ORDER-POINT, our next instruction is
evaluated. If the values are equal, control is transferred to
REORDER-1. If the values are not equal, control is transferred to the
next instruction.

It is permissible, in COBOL, to combine the two tests into one:

IF STOCK-ON-HAND IS LESS THAN ORDER-POINT OR EQUAL TO
ORDER-POINT PERFORM REORDER-1 •••

Here we are writing a compound condition with an implied subject.
STOCK-ON-HAND, the subject of the first condition, is understood to be
the subject of the second condition as well. Compound conditions
increase the flexibility of COBOL and make the handling of many kinds of
problems easier.

In this example, we tested successively for two conditions out of
three. Unless the programmer has some need to distinguish between these
two conditions (and he might>, it would be simpler to test for the third
condition instead:

IF STOCK-ON-HAND IS GREATER THAN ORDER-POINT NEXT SENTENCE
ELSE PERFORM REORDER-1 •••

Introduction 23

The words NEXT SENTENCE have a special meaning in COBOL. When IF
STOCK-ON-HAND IS GREATER THAN ORDER-POINT is true, NEXT SENTENCE takes
effect. Every instruction in the balance of the IF sentence is ignored,
and control is transferred to the sentence following.

The test can be simplified even further, since COBOL allows us to
express negation:

IF STOCK-ON-HAND IS NOT GREATER THAN ORDER-POINT
PERFORM REORDER-1 •••

If the value of STOCK-VALUE is less than or equal to that of
ORDER-POINT, control is transferred to REORDER-1. If the value is
greater, control automatically passes to the next successive sentence.

The actual rules for specifying tests and comparisons will be given
in a subsequent chapter.

Handling Possible Errors

Let us write one more conditional statement:

IF STOCK-ON-HAND IS LESS THAN ZERO •••
GO TO ERROR-WRITE.

one would expect that the smallest value STOCK-ON-HAND could assume
would be zero. If a negative record were processed, the values found
would probably be completely erroneous. To prevent this, the programmer
could anticipate the possibility of error and write a special routine to
be executed whenever the value of STOCK-ON-HAND was found to be
negative. such a routine could stop the processing of this record,
print out the erroneous data, and proceed automatically to process the
records following. The more comprehensive a programmer makes his error
checking. the less likely it is that inaccurate information will rass
through without being marked for special attention.

Data-Manipulation statements

We saw in the foregoing that if the value of STOCK-ON-HAND fell below
a certain point, control would be passed to a special sequence of
instructions named REORDER-1. Our output ACTION-FILE has been set up
for just this purpose. The bulk of REORDER-1 could consist of
data-manipulation statements; that is, instructions which move the
necessary data items from the MASTER-RECORD area in storage to that area
reserved for the ACTION-FILE records. The COBOL verb MOVE can be used
to accomplish this. We roust explain here that the verb MOVE does not
mean an actual physical movement of data. Instead, it means that the
data items from MASTER-RECORD are copied into ACTION-RECORD. Items
within MASTER-RECORD are not destroyed when a MOVE statement is
executed, and are available for further processing. Individual items

24 Introduction

i

\~./

contained in ACTION-RECORD before the operation, however, are replaced
when the statement is executed. our MOVE statements will be written:

MOVE ITEM-CODE OF MASTER-RECORD TO ITEM-CODE
OF ACTION-RECORD.

MOVE ITEM-NAME OF MASTER-RECORD TO I.TEM-NAME
OF ACTION-RECORD.

MOVE STOCK-ON-HAND OF MASTER-RECORD TO
STOCK-ON-HAND OF ACTION-RECORD.

MOVE UNIT-PRICE OF MASTER-RECORD TO UNIT-PRICE
OF ACTION-RECORD.

MOVE ORDER-POINT OF MASTER-RECORD TO ORDER-POINT
OF ACTION-RECORD.

With these five statements, we have set up the ACTION-RECORD to be
written in the ACTION-FILE. However, there is another and easier method
for the programmer to specify the five MOVE operations by taking
advantage of the qualification system in naming:

MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.

The word CORRESPONDING indicates that those data items with names which
are identical in both records are to be copied from MASTER-RECORD into
AC'.rION-RECORD. Thus, five MOVE statements are replaced by one.

output Operations

When all a.rithrretic and data-manipulation statements l'.lave teen
ex1~cuted, we will write the results in some form. COBOL allows us to do
this with a WRITE instruction.

WRITE MASTER-RECORD INVALID KEY •••
GO TO ERROR-WRITE.

or, if we were to indicate that an item was to be reordered, we could
write the following:

WRITE ACTION-RECORD.

In either case, the record would be recorded on the output device
specified for the file in the Environment Division; its format would be
determined by the Data Division description of the file.

Introduction 25

Procedure Branching Statements

In our inventory problem, there will be as many master records as
there are kinds of furniture in stock, and there will be a varying
number of detail records. We must read each successive DETAIL-RECORD in
DETAIL-FILE, until every one of the records in the file has been
processed.

Each time a DETAIL-RECORD is read, we will perform calculations upon
its ITEM-CODE in order to produce our FILEKEY. FILEKEY will then be
used to find a matching record in MASTER-RECORD. ~f a matching record
cannot be found, either the DETAIL-RECORD is in error, or the
MASTER-RECORD is missing from the file and we must mark that record for
special processing. Consider the series of statements in Figure 1.

You will note that several new elements have been added to the
arithmetic statements and conditional phrases we have already discussed.
First, there are the elements that extend to the left of the other
statements. These elements are the procedure-names we described
earl.ier. Each procedure-name indicates the beginning of a paragraph or
a section within the program, and each indicates a reference point for
programmer-specified transfer of control. When a procedure is entered,
each logically successive instruction is processed in turn.

The procedure-names give us a means of controlling the processing of
successive items in our DETAIL-FILE. If, for example, we have finished
processing one complete DETAIL-RECORD and wish to begin processing the
next, control must be transferred to NEXT-DETAIL-RECORD-ROUTINE. This
is accomplished through the use of the COBOL verb GO TO, which transfers
control to the procedure indicated, as in the statement:

GO TO NEXT-DETAIL-RECORD-ROUTINE.

Processing then continues with the first sentence following the
procedure name NEXT-DETAIL-RECORD-ROUTINE. Note the many other examples
of the GO TO statement in our program. Each gives us the means of
transferring control from one procedure to another.

Another way in which to control the processing of a series of records
is through the use of the COBOL verb PERFORM. Like the verb GO TO, the
verb PERFORM specifies a transfer to the first sentence of a routine.
In addition, PERFORM provides various ways of determining the manner in
which the procedure is to be processed.

Within the COMPUTATION-ROUTINE, there is a statement which uses the
COBOL verb PERFORM:

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

When STOCK-ON-HAND is computed to be less than zero, an error condition
has occurred. First, the compiler is instructed to transfer control to
a procedure named DATA-ERROR. Within DATA-ERROR, there is a MOVE
statement which copies the characters within quotation marks ("DATA
ERROR ON INPUT ") into the area of storage reserved for ERROR-MESSAGE-1.
(The characters within quotation marks are what is known as a literal
because they literally mean themselves. When ERROR-MESSAGE is
displayed, these words will be an actual part of the error message.)
Control is now transferred back to the next statement following the
PERFORM statement, which is the GO TO ERROR-WRITE statement.

26 Introduction

I \J

r-----------------~---------~--------~------------------------------1 I NEXT-DETAIL-RECORD-ROUTINE. I
I READ DETAIL-FILE AT END GO TO END-ROUTINE-1. I
I I
I I
I I
I READ MASTER-FILE INVALID KEY PERFORM INPUT-ERROR I
I GO TO ERROR-WRITE. I
I COMPUTATION-ROUTINE. I
I I
I I
I I
I IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO I
I PERFORM DATA-ERROR GO TO ERROR-WRITE. I
I I
I I
I I
I IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN I
I ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1 I
I THRO REORDER-2. I
I WRITE-MASTER-ROUTINE. I
I I
I I
I I
I GO TO NEXT-DETAIL-RECORD-ROUTINE. I
IREORDER-1. I
I GO TO SWITCH-ROUTINE. I
I SWITCH-ROUTINE. I
I ALTER REORDER-1 TO REORDER-2 I
I END-ROUTINE-1 TO END-ROUTINE-3. I
I OPEN OUTPUT ACTION-FILE. I
IREORDER-2. I
I MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD. I
I WRITE ACTION-RECORD. I
I ERROR-WRITE. I
I I
I I
I I
I GO TO NEXT-DETAIL-RECORD-ROUTINE. I
(INPUT-ERROR. I
I MOVE n KEY ERROR ON INPUT " TO ERROR-MESSAGE-1. I
I I
I I
I • I I DATA-ERROR. I
I MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1. I
I I
I I
I I
IEND-ROUTINE-1. I
I GO TO END-ROUTINE-2. I
f END-ROUTINE-3. I
J CLOSE ACTION-FI.LE. I·
IEND-ROUTINE-2. I
I CLOSE DETAIL-FILE. I
I CLOSE ACTION-FILE. I
I STOP RUN. I
L-----~---J
Figure 1. Illustration of Procedure Branching

Introduction 27

Note that within COMPUTATION-ROUTINE there is another PERFORM
statement that is processed in a similar marmer:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-1 THRU REORDER-2.

This time, the PERFORM statement instructs the object program to
process several paragraphs before returning control to the next
successive statement. Thus, when this PERFORM statement is executed,
control is transferred to REORDER-1. This,paragraph is executed, the
next paragraph, SWITCH-ROUTINE, is also executed, and then all the
statements contained in REORDER-2 are executed, at which point control
is returned to the first statement in WRITE-MASTER-ROUTINE -- the next
successive statement after the PERFORM statement.

A PERFORM statement may specify that a single section or paragraph be
processed, or, if the desired procedure consists of more than one
section or paragraph, it can specify two names that identify the
beginning and the end of the procedure.

GO TO and PERFORM statements may seem to do much the same job. Yet
there are specific reasons that will cause the progranuner to choose one
over the other. On the one hand, the programmer may wish to transfer
control to the same procedure from two entirely different sections of
the program. In this case, PERFORM offers the most convenient method of
returning to the point from which the transfer was made. On the other
hand, if the programmer wishes to proceed to a portion of the program
without specifying a return to the current routine, a GO TO statement
will provide the best method of making the transfer.

In addition to the GO TO and PERFORM statements, there is another
COBOL statement t~at affects procedure branching: the ALTER statement.

In any given execution of our object program, we may or may not use
our ACTION-FILE. Only if some item in STOCK-ON-HAND has fallen below
REORDER-POINT will it be necessary to create an ACTION-RECORD.
Therefore, depending upon the data that is being processed, we will open
ACTION-FILE only if and when such an operation is necessary.

suppose that for the first time in a particular execution of our
object program we have encountered a value for STOCK-ON-HAND that
indicates it must be reordered. The statement:

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD
PERFORM REORDER-1 THRU REORDER-2.

instructs the compiler, when STOCK-ON-HAND is not greater than
ORDER-POINT, to transfer control to the first sentence in REORDER-1.
REORDER-1 consists of but one statement:

GO TO SWITCH-ROUTINE.

SWITCH-ROUTINE, as it happens, is the next paragraph, and it contains
an ALTER statement:

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.

This statement instructs the compiler to substitute the words
REORDER-2 for SWITCH-ROUTINE (within REORDER-1), and END-ROUTINE-3 for
END-ROUTINE-2 (within END-ROUTINE-1). Since, at the time the ALTER
statement is executed, we are already beyond the point at which the

28 Introduction

\ i

"-"'

substitution is to be made in REORDER-1, we continue processing each
sequential statement until we reach the end of REORDER-2. We open
ACTION-FILE, and so forth, until we return control to the next statement
following the PERFORM statement.

However, in this execution of our object program, the next time we
must reorder an item, a different sequence of statements is performed.
The program transfers control to REORDER-1, but now the GO TO statement
within REORDER-1 has a different operand. Instead of SWITCH-ROUTINE,
the program is now instructed to transfer control to the paragraph named
REORDER-2. Through use of the ALTER statement, we have created a switch
that bypasses the OPEN ACTION-FI.LE statement in subsequent processing of
reordered items, since the OPEN statement need be executed but once in
any execution of our object program.

Similarly, if ACTION-FILE was never opened in this execution of our
object program, it is not necessary to close it. Therefore, the second
part of the ALTER statement:

END-ROUTINE-1 TO END-ROUTINE-3

allo~s alternate paths of program flow, depending on whether or not this
ALTER statement was ever executed. The precise rules for programming
the ALTER statement are given later in this publication; note, however,
the increased programming flexibility it offers.

Ending the Program

One last step in the logic of our inventory program must now be
taken. We have obtained the update information from a record, performed
the needed arithmetic calculations, moved the data from one area of
storage to another, and written the decision-making and procedure­
branching instructions necessary to take care of special cases and to
process each succeeding record. Then we have written the updated
information into the MASTER-FILE, and, when necessary, have written the
ACTION-FILE. We must now terminate the program after all records have
been acted upon. Remember that we wrote our first READ statement as
follows:

READ DETAIL-FILE AT END GO TO END-ROUTINE-1

END-ROUTINE-1 will consist of the few instructions necessary to
terminate operations for this program.

Just as the programmer ma:'ie all the files available to the system
with a set of OPEN instructions, he must now disconnect these same files
with another series:

END-ROUTINE-1.
GO TO END-ROUTINE-2.

END-ROUTINE-3.
CLOSE ACTION-FILE.

END-ROUTINE-2.
CLOSE DETAIL-FILE.
CLOSE MASTER-FILE.

Introduction 29

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

These instructions initiate necessary housekeeping routines. (Note here
that, in our program, ACTION-FILE will be closed only if REORDER-1 THRU
REORDER-2 has been performed and the ALTER statement has been executed.)
Once a file has been closed, it cannot be accessed by the program again.
The programmer now writes one last COBOL instruction, and it must be at
the logical end of his processing:

STOP RUN.

At this point, COBOL ending procedures are initiated, and the execution
of the program is halted.

This is only a general picture of the way in which a COBOL program
works. The following chapters in this manual give detailed descriptions
of all four divisions within a COBOL program, with explicit instructions
for correct programming in IBM Full American National Standard COBOL.

30 Introduction

r-----------------------------~--1 f IDENTIFICATION DIVISION. I
IPROGRAM-ID. UPDATING. I
IREMARKS.· THIS IS A SIMPLIFIED UPDATE PROGRAM, USED AS AN I
I EXAMPLE OF BASIC COBOL TECHNIQUES. THE PROGRAM IS I
I EXPLAINED IN DETAIL IN THE INTRODUCTION TO THIS MANUAL. I
IENVIRONMENT DIVISION. I
ICONFIGURATION SECTION. I
ISOURCE-COMPUTER. IBM-360-FSO. I
IOBJECT-COMPUTER. IBM-360-FSO. I
IINPUT-OUTPUT SECTION. I
(FILE-CONTROL. I
~ SELECT MASTER-FILE ASSIGN TO SYSOlS-DA-2311-A-MASTER I
) ACCESS MODE IS RANDOM I

ACTUAL KEY IS FILEKEY. I
SELECT DETAIL-FILE ASSIGN TO SYS007-UT-2400-S-INFILE I

ACCESS IS SEQUENTIAL. I
SELECT ACTION-FILE ASSIGN TO SYSOOS-UT-2400-S-OUTFILE. I

DATA DIVISION. I
FILE SECTION. I
FD MASTER-FILE LABEL RECORDS ARE STANDARD I

DATA RECORD IS MASTER-RECORD.
01 MASTER-RECORD.

02 ITEM-CODE PtCTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S999V99 USAGE COMP SYNC.
02 STOCK-VALUE PICTURE S9(9)V99 USAGE COMP SYNC.
02 ORDER-POINT PICTURE S9(3) USAGE COMP SYNC.

FD DETAIL-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS DETAIL-RECORD.

01 DETAIL-RECORD.
02 ITEM-CODE PICTURE X(3).
02 ITEM-NAME PICTURE X(29).
02 RECEIPTS PICTURE S9(3) USAGE COMP SYNC.
02 SHIPMENTS PICTURE S9(3) USAGE COMP SYNC.

FD ACTION-FILE LABEL RECORDS ARE OMITTED
DATA RECORD IS ACTION-RECORD.

01 ACTION-RECORD.
02 ITEM-CODE PICTURE~X(3).
02 ITEM-NAME PICTURE X(29).
02 STOCK-ON-HAND PICTURE S9(6) USAGE COMP SYNC.
02 UNIT-PRICE PICTURE S99'9V99 USAGE COMP SYNC.
02 ORDER-POINT PICTURE S9(3) USAGE COMP SYNC.

IWORKING-STORAGE SECTION.
177 SAVE PICTURE S9(10) USAGE COMP SYNC.
177 QUOTIENT PICTURE S9999 USAGE COMP SYNC.
101 KEY-ACTUAL.
I 02 M PICTURE S999 COMP SYNC VALUE ZEROS.
I 02 BB PICTURE S9 COMP SYNC VALUE ZEROS.
I 02 CC PICTURE S999 COMP SYNC VALUE ZEROS.
I 02 HH PICTURE S9 COMP SYNC.
I 02 R PICTURE X VALUE LOW-VALUE.
I 02 RECORD-ID PICTURE X(29).
101 THE-KEY REDEFINES KEY-ACTUAL.
I 02 FILLER PICTURE X.
I 02 FILEKEY PICTURE X(37).
101 TRACK1 PICTURE 9(4).
101 TRACK2 REDEFINES TRACK1 COMP.
I 02 CYL PICTURE S999.
I 02 HEAD PICTURE S9.
f 01 ERROR-MESSAGE.
I 02 ERROR-MESSAGE-1 PICTURE X(20).
I 02 ERROR-MESSAGE-2 PICTURE X(36). I
I 02 ERROR-MESSAGE-3 PICTURE X(46). I
L---~--------------------J
Figure 2. complete UPDATING Program (Part 1 of 2)

Introduction 31

r-----~---1
!PROCEDURE DIVISION.
!OPEN-FILES-ROUTINE.
I OPEN INPUT DETAIL-FILE.
I OPEN I-0 MASTER-FILE.
I NEXT-DETAIL-RECORD-ROUTINE.
I READ DETAIL-FILE AT END GO TO END-ROUTINE-1.
I NEXT-MASTER-RECORD-ROUTINE.
I MOVE ITEM-CODE IN DETAIL-RECORD TO SAVE.
I DIVIDE 19 INTO SAVE GIVING QUOTIENT
I REMAINDER TRACK1.
I ADD 1020 TO TRACK1.
I MOVE ITEM-NAME IN DETAIL-RECORD TO RECORD-ID.
I MOVE HEAD TO HH. MOVE CYL TO CC.
I READ MASTER-FILE INVALID KEY
I PERFORM INPUT-ERROR GO TO ERROR-WRITE.
COMPUTATION-ROUTINE.

COMPUTE STOCK-ON-HAND IN MASTER-RECORD = STOCK-ON-HAND
IN MASTER-RECORD + RECEIPTS - SHIPMENTS.

IF STOCK-ON-HAND IN MASTER-RECORD IS LESS THAN ZERO
PERFORM DATA-ERROR GO TO ERROR-WRITE.

MULTIPLY STOCK-ON-HAND IN MASTER-RECORD BY UNIT-PRICE
IN MASTER-RECORD GIVING STOCK-VALUE
IN MASTER-RECORD.

IF STOCK-ON-HAND IN MASTER-RECORD IS NOT GREATER THAN
ORDER-POINT IN MASTER-RECORD PERFORM REORDER-1
THRU REORDER-2.

WRITE-MASTER-ROUTINE.
WRITE MASTER-RECORD INVALID KEY

PERFORM OUTPUT-ERROR GO TO ERROR-WRITE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

REORDER-1. GO TO SWITCH-ROUTINE.
SWITCH-ROUTINE.

ALTER REORDER-1 TO REORDER-2
END-ROUTINE-1 TO END-ROUTINE-3.

DISPLAY "ACTION FILE UTILIZED".
OPEN OUTPUT ACTION-FILE.

REORDER-2.
MOVE CORRESPONDING MASTER-RECORD TO ACTION-RECORD.
WRITE ACTION-RECORD.

ERROR-WRITE.
MOVE DETAIL-RECORD TO ERROR-MESSAGE-2.
DISPLAY ERROR-MESSAGE.
GO TO NEXT-DETAIL-RECORD-ROUTINE.

INPUT-ERROR.
MOVE n KEY ERROR ON INPUT " TO ERROR-MESSAGE-1.
MOVE SPACES TO ERROR-MESSAGE-3.

DATA-ERROR.
MOVE "DATA ERROR ON INPUT " TO ERROR-MESSAGE-1.

I MOVE MASTER-RECORD TO ERROR-MESSAGE-3.
I OUTPUT-ERROR.
I MOVE "KEY ERROR ON OUTPUT " TO ERROR-MESSAGE-1.
I MOVE SPACES TO ERROR-MESSAGE-3.
IEND-ROUTINE-1.
I GO TO END-ROUTINE-2.
IEND-ROUTINE-3.
I CLOSE ACTION-FILE.
I END-ROUTINE- 2.
I CLOSE DETAIL-FILE.
I CLOSE MASTER-FILE.
I STOP RUN. I
L-------------------------~--~---------------------------------------J
Figure 2. Complete UPDATING Program (Part 2 of 2)

32 Introduction

PART_I LANGUA§E CONSIDERATIONS

• STRUCTURE OF THE LANGUAGE

I • ORGANIZATION OF ~HE COBOL PROGRAM

• METHODS OF DATA REFERENCE

• USE OF THE COBOL CODING FORM

• FORMAT NOTATION

\ '

'-'

Language Considerations 33

(l
"'-/

Character Set

STRUCTURE OF THE LANGUAGE

The COBOL language is so structured that the progranrrner can write his
individual problem program within a framework of words that have
particular meaning to the COBOL compiler. The result is the performance
of a standard action on specific units of data. For example, in a COBOL
statement such as MOVE NET-SALES TO CURRENT-MONTH, the words MOVE and TO
indicate standard actions to the COBOL compiler. NET-SALES and
CURRENT-MONTH are prograrnmer-def ined words which refer to particular
units of data being processed by his problem program.

The complete character set for COBOL consists of the following 51
characters:

Character
0,1, ••• ,9
A,B, ••• ,z

..

+

*
/
=
$

)

>
<

Meaning
digit
letter
space
plus sign
minus sign (hyphen)
asterisk
stroke <virgule, slash)
equal sign
currency sign
comma
semicolon
period (decimal point)
quotation mark
left parenthesis
right parenthesis
"greater than" symbol
"less than" symbol

e s an ar aracter
programmer must specify the quotation mark (0)

through a CBL card at compile time. If the quotation mark is thus
specified, the apostrophe (') may not be used.

Characters Used in Words

'I'he characters used in words in a COBOL source program are the
following:

0 through 9
A through Z
- (hyphen)

A word is composed of a combination of not more than 30 characters
chosen from the character set for words. The word cannot begin or end
with a hyphen.

Structure of the Language 35

Character Set

Characters Used for Punctuation

The following characters are used for punctuation:

Character Meaning
space
comma
semicolon
period
quotation mark
left parenthesis
right parenthesis

The following general rules of punctuation apply in writing a COBOL
source program:

1. When any punctuation mark is indicated in a format in this
publication, it is required in the program.

2. A period, semicolon, or comma, when used, must not be preceded by a
space, but must be followed by a space.

3. A left parenthesis must not be followed immediately by a space; a
right parenthesis must not be preceded immediately by a space.

4. At least one space must appear between two successive words and/or
parenthetical expressions and/or literals. 'IWo or more successive
spaces are treated as a single space, except within nonnumeric
literals.

s. An arithmetic operator or an equal sign must always be preceded by
a space and followed by a space. A unary operator may be preceded
by a left parenthesis.

6. A comma may be used as a separator between successive operands of a
statement. An operand of a statement is shown in a format as a
lower-case word.

7. A comma or a semicolon may be used to separate a series of clauses.
For example, DATA RECORD IS TRANSACTION, RECORD CONTAINS 80
CHARACTERS.

8. A semicolon may be used to separate a series of statements. For
example, ADD A TO B; SUBTRACT B FROM c.

36 Part I -- Language Considerations

\)
"-'

._) ,,.._,,

Characters Used for Editing

Editing characters are singl
combinations belonging to the f

Character Meaning
B space
0 zero
+ plus

minus
CR credit
DB debit
z zero suppress

* check protect
$ currency sign

comma
period (decim

Character Set

characters or specific two-character
lowing set:

on
on

1 point)

(For applications, see the discu sion of alphanumeric edited and numeric
edited data items in "Data Divis on.")

Characters Used in Arithmetic E ressions

The characters used in arithm tic expressions are as follows:

Character
+

* /

**

Meaning
addition
subtraction
multiplicatio
division
exponentiatio

Arithmetic expressions are us d in the COMPUTE statement and in
relation conditions (see "Proced e Division" for more details).

Characters Used for Relation-con itions

A relation character is a cha acter that belongs to the following
set:

Character
>
<

Meaning
greater than
less than
equal to

Relation characters are used n relation-conditions (discussed in
"Procedure Division").

TYPES OF WORDS

A word is composed of a combi ation of not more than 30 characters
chosen from the character set fo words. The word cannot begin or end
with a hyphen.

Structure of the Language 37

Words

The space (blank) is not an allowable character in a word; the space
is a word separator. Wherever a space is used as a word separator, more
than one may be used.

A word is terminated by a space, or by a period, right parenthesis,
comma, or semicolon.

Reserved Words

Reserved words exist for syntactical purposes and must not appear as
user-defined words. However, reserved words may appear as nonnuroeric
literals, i.e., a reserved word may be enclosed in quotation marks.
When used in this manner, they do not take on the meaning of reserved
words and violate no syntactical rules.

Th_ere are three types of reserved words:

1. Key Words. A key word is a word whose presence is required in a
COBOL entry. such words are upper case and underlined in the
formats given in this publication.

Key words are of three types:

a. Verbs such as ADD, READ, and ENTER.

b. Required words, which appear in statement and entry formats,
such as the word TO in the ADD statement.

c. Words that have a speGific functional meaning, such as ZERO,
NEGATIVE, SECTION, TALLY, etc.

2. optional Words. Within each format, upper case words that are not
underlined are called optional words because they may appear at the
user's option. The presence or absence of each optional word in
the source program does not alter the compiler's translation.
Misspelling of an optional word, or its replacement by another word
of any kind, is ~ot allowed.

3. Connectives. There are three types of connectives:

a. Qualifier connectives, which are used to associate a data-name
or paragraph-name with its qualifier. The qualifier
connectives are OF and IN (see "Methods of Data Reference").

b. series connectives, which link two or more consecutive
operands. The series connective is the comma <,>.

c. Logical connectives that are used in compound conditions. The
logical connectives are AND, OR, AND NOT, and OR NOT (see
"Conditions").

Note: Abbreviations (such as PIC for PICTURE) are allowed for some
reserved words; the abbFeViation is the equivalent Of the complete word.
For the formats in which they are allowable, such abbreviations are
shown in the format. The .reserved words THRU and THROUGH are
equivalent. In statement formats, wherever the reserved word THRU
appears, the word THROUGH is also allowed.

38 Part I -- Language Considerations

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Words/Constants

Names

There are three types of g~~~~ used in a COBOL program:

1. A data-name is a word that contains at least one alphabetic
character-and identifies a data item in the Data Division. The
following are formed according to the rules for data-names:

file-names
index-names
mnemonic-names
record-names
report-names
sort-file-names
sort-record-names

2. A condition-name is a name given to a specific value, set of
values;-or-range of values, within the complete set of values that
a particular data item may assume. The data item itself is called
a conditional variable. The condition-name must contain at least
one alphabetic character (see "Data Division" and the discussion of
"Special-Names" in "Environment Division").

3. A 12!.QQedur~-name is either a paragraph-name or a section-name. A
procedure-name may be composed solely of numeric characters. Two
numeric procedure-names are equivalent if, and only if, they are
composed of the same number of digits and have the same value (see
"Procedure Division"). The following are formed according to the
rules for procedure-names:

library-names
program-names

Special-Names

Special-names are used in the SPECIAL-Nl\.MES paragraph of the
Environment Division. The term special-name refers to a mnemonic-name.
A mnemonic-name is a programmer-defined word that is associated in the
Environment Division with a function-name: function-names are names
with a fixed meaning, defined by IBM.

In the Procedure Division, mnemonic-name can be written in place of
its a.ssociated function-name in any format where such substitution is
valid.. The formation of a mnemonic-name follows the rules for formation
of a data-name (see "Special-Names" in "Environment Division°).

CONSTANTS ------

A constant is a unit of data whose value is not subject to change.
There-are two types of constants: literals and figurative constants.

A literal is a string of characters whose value is determined by the
set of characters of which the literal is composed. Every literal
belongs to one of two categories, numeric ana· nonnumeric.

Structure of the Language 39

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Constants

There are two types of numeric literals: fixed-point

A !!~~g=e2i~t-~~ffigfi£_1it~~1 is defined as a string of characters
chosen from the digits 0 through 9, the plus sign, the minus sign, and
the decimal point. Every fixed-point numeric literal:

1. must contain from 1 through 18 digits.

2. must not contain more than one sign character. If a sign is used,
it must appear as the leftmost character of the literal. If the
literal is unsigned, the literal is positive.

3. must not contain more than one decimal point. The decimal point is
treated as an assumed decimal point, and may appear anywhere in the
literal except as the rightmost character. If the literal contains
no decimal point, the literal is an integer.

(See discussion of fixed-point numeric items in noata Division. 0)

~Q~~QM~B~~-~~r~B~§: A nonnumeric literal is defined as a string of any
allowable characters in the~xtendea.-sinary,Coded Decimal Interchange
code (EBCDIC) set, excluding the quotation mark character. A nonnumeric
literal may be composed of from 1 through 120 characters enclosed in
quotation marks. 'Any spaces within the quotation marks are part of the
nonnumeric literal and, therefore, are part of the value. All non­
numeric literals are in the alphanumeric category.

40 Part I ~- Language considerations

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Constants

A figurative constant is a constant to which a specific data-name has
been assigned. These data-names are reserved words. such a data-name
must not be enclosed in quotation marks when used as a figurative

Structure of the.Language 40.1

\ ... _,/

..

l ; .,,_/

Constants/Special Registers

constant. The singular and plural forms of a figurative constant are
equivalent and may be used interchangeably.

A figurative constant may be used in place of a literal wherever a
literal appears in a format. There is one exception to this rule: if
the literal is restricted to numeric characters, only the figurative
constant ZERO (ZEROES, ZEROS) is allowed.

The fixed data-names and their meanings are as follows:

ZERO
ZEROES
ZEROS

HIGH-VALUE
H!GH=Viii:UEs

QUOT~
QUOTES

ALL literal

Represents the value o, or one or more
occurrences of the character O, depending on
context •

Represents one or more blanks or spaces.

Represents one or more occurrences of the
character that has the highest value in the computer'$
collating sequence. The character for HIGH-VALUE is
the hexadecimal 'FF'.

Represents one or more occurrences of the
character that has the lowest value in the computer's
collating sequence. The character for LOW-VALUE is
the hexadecimal 1 00'.

Represents one or more occurrences of the
quotation mark character. The word QUOTE (QUOTES)
cannot be used in place of a quotation mark to enclose
a nonnumeric literal.

Represents one or more occurrences of the string of
characters composing the literal. The literal must be
either a nonnumeric literal or a figurative constant
other than the ALL literal. When a figurative
constant is used, the word ALL is redundant and is
used for readability only.

The compiler generates storage areas that are primarily used to store
information produced with the use of special COBOL features; these
storage areas are called ~P~£~~1-~~i~t~~~·

TALLY

'I'he word TALLY is the name of a special register whose implicit
description is that of an integer of five digits without an
operational sign, and whose implicit USAGE is COMPUTATIONAL. The
primary use of the TALLY register is to hold information produced by
the EXAMINE statement. References to TALLY may appear wherever an
elementary data item of integral value may appear (see the "EXAMINE
Statement" in "Procedure Division").

Structure of the Language 41

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Special Registers

LINE-COUNTER

LINE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.">

PAGE-COUNTER

PAGE-COUNTER is a numeric counter that is generated by the Report
Writer. (For a complete discussion, see "Report Writer.")

42 Part I -- Language Considerations

.)
\._I

..

\
\,._,i

COBOL Program Structure

ORGANIZATION OF THE COBO~ PROGRAM

Every COBOL source program is divided into four divisions. Each
division must be placed in its proper sequence, and each must begin with
a division header.

The four divisions, listed in sequence, and their functions are:

• IDENTIFICATION DIVISION, which names the program.

• ENVIRONMENT DIVISION, which indicates the machine equipment and
equipment features to be used in the program.

• DATA DIVISION, which defines the nature and characteristics of data
to be processed.

• PROCEDURE DIVISION, which consists of statements directing the
processing of data in a specified manner at execution time.

No~~: In all formats within this publication, the required clauses and
optional clauses (when written) must appear in the sequence given in the
format, unless the associated rules explicitly state otherwise.

Structure of the COBOL Program

PROGRAM-ID. program-name.

[AUTHOR. lcoroment-entryl ••• J

CINSTA~LATION. Ccomment-entryl ••• 1

[DATE-WRITTEN. [comment-entry] •••]

[DATE-COMPILED. [comment-entry] •••]

[SECURITY. Cconunent-entryl ••• J

[REMARI\S. [comment-entry] •••)

ENVIRONMENT DIVISION.

ilCONFIGURATION SECTION.

SOURCE-COMPUTER. entry

OBJECT-COMPUTER. entry

{SPECI~-NAMES. entry)~
tbft

[INPUT--OUTPUT SECTION.

FILE-CONTROL. {entry} •••

[I-0-CONTROL. entry]]

Organization of the COBOL Program 43

COBOL Program Structure

DATA DJ;VISION.

[FILE ~ION.

{file description entry

{record description entry} ••• } •••]

[WORKI~G-STORAGE SECTION.

[data item description entry] •••

[record description entry] •••]

[REPORT SECTION.

{report description entry

{report group description entry} ••• } •••]

PROCEDURE DIVISION

[[DECLARATIVES.

{section-name SECTION. USE Sentence.

{paragraph-name. {sentence} ••• } ••• } •••

END DECLARATIVES.]

{section-name SECTION [priority].]

{paragraph-name. {sentence} ••• } ••• } •••

44 Part I -- Language Considerations

'
_,)

Qualification

METHODS OF DATA REFERENCE

Every name used in a COBOL source program must be unique, either
because no other name has the identical spelling, or because it is made
unique through qualification, subscripting, or indexing.

An identifier is a data-name, unique in itself, or made unique by the
syntactically correct combination of qualifiers, subscripts, and/or
indexes.

QUAJ,I FI CATION

1~ name may be made unique if the name exists within a hierarchy of
names and the name can be singled out by mentioning one or more of the
higher levels of the hierarchy. The higher levels are called
qualifiers. Qualification is the process by which such a name is made
unique.

Qualification is applied by placing after a data-name or a
paragraph-name one or more phrases, each composed of a qualifier
preceded by IN or OF. IN and OF are logically equivalent. Only one
qualifier is allowed for a paragraph-name.

Enough qualification must be mentioned to make the name unique;
howm.ter, it may not be necessary to mention all levels of the hierarchy.
For example, if there is more than one file whose records contain the
field EMPLOYEE-NO, yet there is but one file whose records are named
MASTER-RECORD, EMPLOYEE-NO OF MASTER-RECORD would sufficiently qualify
EMPl~OYEE-NO. EMPLOYEE-NO OF MASTER-RECORD OF MASTER-FILE is valid but
unnecessary (see discussion of level indicators and level numbers in
"Data Division").

The name associated with a level indicator is the highest level
qualifier available for a data-name. (A level indicator (FD, SD, RD)
specifies the beginning of a file description, sort file description, or
report description.) A section-name is the highest (and the only)
qualifier available for a procedure-name (see discussion of procedure­
narnes in "Procedure Division"). Thus, level indicator names and
section-names must be unique in themselves since they cannot be
qualified.

The name of a conditional variable can be used as a qualifier for any
of its condition-names. In addition, a conditional variable may be
qualified to make it unique.

The rules for qualification follow:

1. Each qualifier must be of a successively higher level, and must be
within the same hierarchy as the name it qualifies.

2. The same name must not appear at two levels in a hie·rarchy so that
the name would appear to qualify itself.

3. If a data-name or a condition-name is assigned to more than one
data item in a source program, the data-name or condition-name must
be qualified each time reference is made to it in the Procedure,
Environment, or Data Division (except in the REDEFINES clause
where, by definition, qualification is unnecessary). (See the
REDEFINES clause in nData Division.")

Methods of Data Reference 45

Subscripting/Indexing

4. A paragraph-name must not be duplicated within a section. When a
paragraph-name is qualified by a section-name, the word SECTION
must not appear. A paragraph-name need not be qualified when
referred to within the section in which it appears.

5. A data-name cannot be subscripted when it is being used as a
qualifier.

6. A name can be qualified even though it does not need qualification;
if there is more than one combination of qualifiers that ensures
uniqueness, then any of these combinations can be used.

Although user-defined data-names can be duplicated within the Data
Division and Procedure Division, the following rules should be noted:

1. No duplicate section-names are allowed.

2. No data-name can be the same as a section-name or a paragraph-name.

3. Duplication of data-names must not occur in those places where the
data-names cannot be made unique by qualification.

SUBSCRIPTING

Subscripts can be used only when reference is made to an individual
element within a list or table of' elements that have not been assigned
individual data-names (see "Table Handling").

References can be made to individual elements within a table of
elements by specifying indexing for that reference. An index is
assigned to a given level of a table by using an INDEXED BY clause in
the definition of the table. A name given in the INDEXED BY clause is
known as an index-name and is used to refer to the assigned index (see
"Table Handling").

46 Part I -- Language Considerations

··~

I

·~

Reference Format

USE OF THE COBOL CODING FORM

The reference format provides a standard method for writing COBOL
source programs. The format is described in terms of character
positions in a line on an input/output medium. Punched cards are the
initial input medium to the COBOL compiler. The compiler accepts source
programs written in reference format (see Figure 3) and produces an
output listing of the source program in the same reference format.

r--1
I I
I I
I COBOL Coding Form I
I PUNCH.ING INSTRUCTIONS PAGE 0-F I
I GRAPHIC ! CARO FORM# I
I CATE PUNCH I
I I
I I
l I
I I
I I
I I
I I
I I
~-----------~-------~-----~--~ I Columns 1-6 represent the sequence number area. I
I Column 7 is the continuation area. I
I columns 8-11 represent Area A} U d f "t" COBOL source statements. I I Columns 12-72 represent Area B se or wri ing I
I Columns 73-80 are used to identify the program. I
L--J
Figure 3. Reference Format

The rules for spacing given in the following discussion of the
reference format take precedence over any other specifications for
spacing given in this publication.

SEQUENCE NUMBERS

A sequence number, consisting of six digits in the sequence number
area, is used to identify numerically each card image to be compiled by
the COBOL compiler. The use of sequence numbers is optional.

If must be An

CONTINUATION OF LINES

Any sentence or entry that requires more than one line is continued
by starting subsequent line(s) in Area B. These subsequent lines are
called continuation lines. The line being continued is called the
continu.ed line. If a sentence or entry occupies more than two lines,
all lines other than the first and last are both continuation and
continued lines.

Use of the COBOL Coding Form 47

Reference Format

CONTINUATION OF NONNQMERIC LITERALS

When a nonnumeric literal is continued from one line to another, a
hyphen is placed in column 7 of the continuation line, and a quotation
mark preceding the continuation of the literal may be placed anywhere in
Area B. All spaces at the end of the continued line and any spaces
following the quotation mark of the continuation line and preceding the
final quotation mark are considered part of the literal.

CONTINUATION OF WORDS AND NUMERIC LITERALS

When a word or numeric literal is continued from one line to another,
a hyphen must be placed in column 7 of the continuation line to indicate
that the first nonblank character in Area B of the continuation line is
to follow the last nonblank character on the continued line, without an
intervening space.

AREA A AND AREA B

Area A, columns S through 11, is reserved for the beginning of
division headers, section-names, paragraph-names, level indicators, and
certain level numbers. Area B occupies col"QI!lns 12 through 72.

Division Header

The division header must be the first line in a division. The
division header starts in Area A with the division-name, followed
space and the word DIVISION, and a period.

may appear on
header.

section He~

a

The name of a section starts in Area A of any line following the
division header. The section-name is followed by a space, the word
SECTION, and a period. If program segmentation is desired, a space and
a priority number may follow the word SECTION. No other text may appear
on the same line as the section-header, except USE and COPY sentences.

Note: Although USE and cOPY may appear in the Declaratives portion of
the Procedure Division, only USE is restricted to the Declaratives
portion. COPY may be used elsewhere in the COBOL program.

Paragraph-names and Paragraphs

The name of a paragraph starts in Area A of any line following the
division header. It is followed by a period followed by a space.

A paragraph consists of one or more successive sentences. The first
sentence in a paragraph begins anywhere in Area B of either the same
line as paragraph-name or the immediately following line. Each
successive line in the paragraph starts anywhere in Area B.

48 Part I -- Language Considerations

\
') -

\ /

Reference Format

Level Indicators and Level Nurobers

In those Data Division entries that begin with a level indicator, the
level indicator begins in Area A followed in Area B by its associated
file-name and appropriate descriptive information.

In those data description entries that begin with a level number 01
or 77 1 the level number begins in Area A followed in Area B by its
associated data-name and appropriate descriptive information.

In those data description entries that begin with level numbers 02
through 49, 66, or 88, the level number may begin anywhere in Area A or
Area B, followed in Area B by its associated data-name and descriptive
information.

Blank Lines

A blank line is one that contains nothing but spaces from column 7
through column 72, inclusive. A blank line may appear anywhere in the
source program, except innnediately preceding a continuation line.

Comment Lines

Division").

use of the COBOL coding Form 49

Format Notation

FORMAT NOTATION

Throughout this publication, basic formats are prescribed for various
elements of COBOL. These generalized descriptions are intended to guide
the programmer in writing his own statements. They are presented in a
uniform system of notation, explained in the following paragraphs.
Although it is not part of COBOL, this notation is useful in describing
COBOL.

1. All words printed entirely in capital letters are reserved words.
These are words that have preassigned meanings in COBOL. In all
formats, words in capital letters represent an actual occurrence of
those words. If any such word is incorrectly spelled, it will not
be recognized as a reserved word and may cause an error in the
program.

2. All underlined reserved words are required unless the portion of
the format containing them is itself optional. These are key
words. If any such word is missing or is incorrectly spelled, it
is considered an error in the program. Reserved words not
underlined may be included or omitted at the option of the
progranuner. These words are used only for the sake of readability:
they are called optional word2 and, when used, must be correctly
spelled.

3. The characters +, -, <, >, ~, when appearing in formats, although
not underlined, are required when such formats are used.

4. All punctuation and other special characters <except those symbols
cited in the following paragraphs) represent the actual occurrence
of those characters. Punctuation is essential where it is shown.
Additional punctuation can be inserted, according to the rules for
punctuation specified in this publication.

s. words that are printed in lower-case letters represent information
to be supplied by the programmer. All such words are defined in
the accompanying text.

6. In order to facilitate references to them in text, some lower-case
words are followed by a hyphen and a digit or letter. This
modification does not change the syntactical definition of the
word.

7. certain entries in the formats consist of a capitalized word<s>
followed by t'he word "Clause" or "Statement." These designate
clauses or statements that are described in other formats, in
appropriate sections of the text.

8. square brackets ([]) are used to indicate that the enclosed item
may be used or omitted, depending on the requirements of the
particular program. When two or more items are stacked within
brackets, one or none of them may occur.

9. Braces ({ }) enclosing vertically stacked items indicate that one
of the enclosed items is obligatory.

50 Part I -- Language Considerations

('
\.._/

Format Notation

10. The ellipsis (••• > indicates that the immediately preceding unit
may occur once, or any number of times in succession. A unit means
either a single lower-case word, or a group of lower-case words and
one or more reserved words enclosed in brackets or braces. If a
term is enclosed in brackets or braces, the entire unit of which it
is a part must be repeated when repetition is specified.

11. comments, restrictions, and clarifications on the use and meaning
of every format are contained in the appropriate portions of the
text.

Format Notation 51

PART II -- IDENTIFICATION AND ENVIRONMENT DIVISIONS

• IDENTIFICATION DIVISION

• ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

• ORGANIZATION OF THE ENVIRONMENT DIVISION

• ENVIRONMENT DIVISION -- CONFIGURATION SECTION

• :E:NVIRONMENT DIVISION -- INPUT-OUTPUT SECTION

53

PROGRAM-ID Paragraph

IDENTIFICATION DIVISION

The Identification Division is the first division of a
It identifies the source program and the object program.
2roqram is the initial problem program; an object program
fz:om a compilation.

COBOL program.
A source
is the-output

In addition, the user may include the date the program is written,
the date the compilation of the source program is accomplished, etc., in
the paragraphs shown.

Structure of the Identification Division

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] •••]

[INSTALIJ\,TION. [comment-entry] •••]

[DATE-WRITTEN. [comment-entry] ••• ~

[DATE-COMPILED. [comment-entry] •••]

[SECURIT)!'.. [comment-entry] •••]

[REMARKS. Ccomment-entryl ••• J

Specific paragraph-names identify the type of inf onnation contained
in the paragraph. The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph. The other paragraphs are

·onal. If · c uded the ust be resen ed in the order shown.

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period. Each comment-entry may be
any combination of characters from the EBCDIC set or anized to confonn

and

PROGRAM~ID Paragraph

The PROGRAM-ID paragraph gives the name by which a program is
identified.

r--1
I Format I
1-~----------------------~-~-~-------------------~---------------~
I I
I PROGRAM-ID. program-name. I
I I
l--------------~---------------------------------~--------------------J

Identification Division 55

DATE~COMPILED Paragraph

The PROGRAM-ID paragraph contains the name of the program and must be
present in every program.

Program-name identifies the object program to the control program.
Program-name must conform to the rules for formation of a
procedure-name. The first eight characters of program-name are used as
the identifying name of the program and should therefore be unique as a
program-name.

Since the system expects the first character of program-name to be
alphabetic, the first character, if it is numeric, will be converted as
follows:

O to J

1-9 to A-I

Since the system does not include the hyphen as an allowable
character, the hyphen is converted to zero if it appears as the second
through eighth character of the name.

DATE-COMPI~Paraqraph

The DATE-COMPILED paragraph provides the compilation date on the
source program listing.

r------~--1
1 Format I
~--~----------------------------~
I I I DATE-COMPILED. [comment-entry] I
I I
l--J

The paragraph-name DATE-COMPILED causes the current date to be
inserted during program compilation. If a co~nt-~~~rY is present, it
is replaced with the current date.

56 Part II -- Identification and Environment Divisions

I '

'-....J

. I
~

/
"' .·· '--""

Data Organization

ENVIRONMENT DIVISION -- FILE PROCESSING SUMMARY

In COBOL, all aspects of the total data processing problem that
depend on the physical characteristics of a specific computer are given
in one portion of the source program known as the Environment Division.
Thus, a change in computers entails major changes in this division only.
The primary functions of the Environment Division are to describe the
computer system on which the object program is run and to establish the
necessary links between the other divisions of the source program and
the characteristics of the computer.

The exact contents of the Environment Division depend on the method
used to process files in the COBOL program. Before the language
elements used in the Environment Division can be discussed meaningfully,
some background in the file processing techniques available to the COBOL
user must be given.

Each combination of data organization and access method specified in
the COBOL language is defined as a file-processing technique. The
file-processing technique to be used for a particular file is determined
by the data organization of that file and whether the access method is
sequential or random. Table 3 summarizes the file-processing
techniques.

DATA ORGANIZATION

Three types of data organization are made available to Disk Operating
system COBOL users: sequential, directiliil'@-~ The means of
creating or retrieving logical records in·a file alf.fer, depending on
which type of data organization exists (organization being the structure
of data on a physical file). Each type of data organization is
incompatible with the others. Organization of an input file must be the
same as the organization of the file when it was created.

Sequential Data Organization

When sequential data organization is used, the logical records in a
file are positioned sequentially in the order in which they are created
and are read sequentially in the order in which they were created (or in
sequentially reversed order if the REVERSED option of the OPEN statement
~s written for tape files). Such a file organization is referred to in
this publication as standard sequential organization.

This type of data organization must be used for tape or unit-record
files and may be used for files assigned to mass storage devices. No
key is associated with records on a sequentially organized file.

Direct Data Organization

When direct data organization is used, the positioning of the logical
records in a file is controlled by the user through the specification of
an ACTUAL KEY defined in the Environment Division. The ACTUAL KEY bas
two components. The first is a track identifier which identifies the
relative or actual track at which a record is to be placed or at which
the search for a record is to begin. The second component is a record

Environment Division -- File Processing Suill!llary 57

Access Methods

identifier, which serves as a unique logical identifier for a specific
record on the track. Files with direct data organization must be
assigned to mass storage devices.

ACC,ESS METHODS

Two access methods are available to users of DOS COBOL: sequential
access and random access.

sequential access is the method of reading and writing records of a
file in a serial manner; the order of reference is implicitly determined
by the position of a record in the file.

Random access is the method of reading and writing records in a
progranuner-specified manner; the control of successive references to the
file is expressed by specifically defined keys supplied by the user.

ACCESSING A SEQUENTIAL FILE

A standard sequential file may be accessed only sequentially, i.e.,
records are read or written in order.

ACCESSING A DIRECT FILE

Direct files may be accessed both sequentially and randomly. Records
can be retrieved sequentially1 they can be created, retrieved, updated,
or added randomly.

Sequential Access

When reading a direct file sequentially, records are retrieved in
logical sequence; this logical sequence corresponds exactly to the
physical sequence of the records.

Random Access

When accessing a direct file randomly, the ACTUAL KEY clause is
required.

58 Part II -- Identification and Environment Divisions

Access Methods

The system uses the ACTUAL KEY to determine which track a particular
record is on and to locate the record on that track. If the record is
found, the data portion of the record is read, or, for a rewrite
operation, replaced by a new record. If during a READ operation, the
desired record cannot be found on the specified track, an invalid key
condition is said to exist.

For a write operation, the system, after locating the track, searches
for the last record on the track, and writes the new record (with
control fields, including a key field equal to the identifier found
within the ACTUAL KEY field) after the last record.

When a direct file is being created, OPEN initializes the capacity
records (RO) on all the tracks of th~ file. Therefore, a WRITE
statement issued for an output file is processed in the same manner as a
WRITE statement that adds a record to an input-output file.

Environment Division -- File Processing Sunnnary 59

Access Methods

Appendix B contains three sample COBOL programs that illustrate:

1. Creation of a direct file

(Figure 2 contains a sample COBOL program illustrating random
retrieval and updating of a direct file.)

Table 3. summary of File-Processing Techniques
r-----~~-------T~---~----------T---------------~T---~-------------1

IDOS Organization! Device Type I Access I Organization I
~---------~------+~----------------+---~------------+-----------------~
IDTFCD !Reader [SEQUENTIAL] !standard I
I I I sequential I
I I I I
IDTFCD I Punch [SEQUENTIAL] I standard I
I I I sequential I
I I I I
IDTFPR !Printer [SEQUENTIAL] Jstandard I
I I I sequential I
I I I I
IDTFMT fTape [SEQUENTIAL] I standard I
I I I sequential I
I I I I
I DTFSD I Mass storage C SEQUENTIAL] I standard I
I I I sequential I
I I I I
IDTFDA !Mass Storage [SEQUENTIAL] f direct I
I I I I
IDTFDA !Mass Storage RANDOM !direct I

I
I
I
I ________________ J

60 Part II -- Identification and Environment Divisions

I

_.,)

(/

"-/

Environment Division--Structure

ORGANIZATION OF THE ENVIRONMENT DIVISION

The Environment Division must begin in Area A with the heading
ENVIRONMENT DIVISION followed by a period.

The Environment Division is divided into two sections: the
Configuration section and the Input-Output Section. When written, the
sections and paragraphs must be in the sequence shown.

~~YIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER paragraph

OBJECT-COMPUTER paragraph

[SPECIAL-NAMES paragraph]

[INPUT-OUTPUT SECTION.

FILE-CONTROL paragraph

CI~O-CONTROL paragraph]]

Organization of the Environment Division 61

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SOURCE-COMPUTER Paragraph

The Configuration Section deals with the overall specifications of
computers. It is divided into three paragraphs: the SOURCE-COMPUTER
paragraph, which describes the computer on which the source program is
compiled; the OBJECT-COMPUTER paragraph, which describes the computer on
which the object program <the program produced by the COBOL compiler) is
executed; and, optionally, the SPECIAL-NAMES paragraph which relates the
function-names used by the compiler to user-specified mnemonic-names •

.--,
I General Format I
~--i
I I
I CONFIGURATION SECTION. I
I §oug~~=~Q~PUTEg;-50-urce-computer-entry I
I Q~~gQT-CQ~Pu~gR. object-computer-entry I
I l§~gCI?M!=~~~§. special-names-entry] I
I I
L--.----------------J

Section-names and paragraph-names must begin in Area A.

SOURCE-COMPUTER Paragraph

The SOURCE-COMPUTER paragraph serves only as documentation, and
describes the computer upon which the program is to be compiled •

.--,
I Format I
1---i
I I
I §QQRCg=£Q~PU~ER. computer-name. I
I I
L--~---------------------J

£Q!!!Q~~~E=~ame may be specified as IBM-360[-model-number] or as
IBM-370(-model-numberl.

l The SOURCE-COMPUTER paragraph is treated as comments by the COBOL
compiler.

62 Part II -- Identification and Environment Divisions

i
_.)

f .
I I

~

i !

~

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph describes the computer on which the
program is to be executed.

r--1 I Format · I
~--~
I I
I OBJECT-COMPUTER. computer-name I
I I

I [MEMORY SIZE integer { ~~~~CTERS } 1 I
I ~QDULES I
I I
I [~~G~NT=LIMI! IS priority-number]. I
I I
L--J

£2~P~t~£=~~~~ is a word of the form IBM-360[-model-numberJ.
computer-name must be the first entry in the OBJECT-COMPUTER paragraph.

If the configuration implied by £Q_mpute£=.!!ame comprises more or less
equipment than is actually needed by the object program, the MEMORY SIZE
clause permits the specification of the actual subset <or superset> of
the configuration.

The MEMORY SIZE clause is treated as comments by the COBOL compiler.

The SEGMENT-LIMIT clause is discussed in •segmentation.•

Program Product Information -- Version 3

Computer-name may also be specified as IBM-370[-model-numberJ. If
IBM-370 is specified, System/370 instructions are generated by the
compiler.

The SPECIAL-NAMES paragraph provides a means of relating
function-names to user-specified mnemonic-names. The SPECIAL-NA~JES
paragraph can also be used to exchange the functions of the comma and
the period in the PICTURE character string and in numeric literals. In
adaition, the user may specify a substitution character for the currency
symbol ($) in the PICTURE character string.

Environment Division -- configuration section 63

SPECIAL-NAMES Paragraph

r--1
I General Format I
~--1
I I
I §~§£!~=~Mi~§. I
I I
I [function-name-1 !§mnemonic-name]... I
I I
I [function-name-2 [IS mnemonic-name] I
I. I
I {ON STATUS IS condition-name-1 I
I I
I QFF STATUS !§ condition-name-2 I
I I
I CQFF STATUS IS condition-name-2)} I
I J • • • I
I [ON STATUS IS condition-name-1) I
I I
I [CURRENCY SIGN IS literal] [DECIMAL-POINT!§~]. I
I I
L--J

[~~QtiQ~=g~~~-1 may be chosen from the following list:

SYSLST
SYSPCH
SYS PUNCH
SY SI PT
CONSOLE
COl through C12
CSP

literal

If SYSLST, SYSPCH, SYSPUNCH, SYSIPT, or CONSOLE are specified, the
associated ~~~moni£=g~~es may be used in ACCEPT and DISPLAY statements.
Each of these function-names may appear only once in the SPECIAL-NAMES
paragraph.

If col through c12, cs are specified, the associated
mnemonic-names may be used in a statement with the BEFORE/AFTER
ADVANCING option. These function-names are the carriage control
characters shown in Table 4.

Table 4. Choices of Function-name-1 and Action Taken
r---------------------------------T------------------------------------1
I Function-name-1 I Action Taken I
~---------------------------------+------------------------------------i
l CSP I suppress spacing I
~---------------------------------+------------------------------------i
I COl through c09 I skip to channel 1 through 9, I
I I respectively I
~---------------------------------+------------------------------------~
I ClO through C12 I skip to channel 10, 11, I
I I 12, respectively I
t---------------------------------+------------------------------------~
I .. I
I I
I I L--"'-------"----------'-------------- ...; __ ...; ________________________________ J

64 Part II -~ Identification and Environment Divisions

,

•

(.
~

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

SPECIAL-NAMES Paragraph

The use of a literal indicates that function-name-1 identifies Report
Writer output. The mnemonic-name should appear in a CODE clause in a
report description entry (RD) (see "Report Writer"). One such
SPECIAL-NAMES entry may be given for each report defined in a program.
The specified literal must be a one-character nonnumeric literal.

rg~£~iQn-~ame-2 is used to define a one-byte switch and may be
specified as UPSI-0 through UPSI-7. These switches represent the User
Program Status Indicator bits in the DOS .communications region (see !.fil!
~~!~!!!L1~~-Di~~-QQerat~~-~st~~~--System~QQ~tro1_~g~2Y_stem Service
~!:Q9.!:!!_ms, Form C24-5036). The status of the switch is specified by a
£Q~~!t!Qg~~~IB~ and interrogated by testing it. one condition-name may
be associated with the ON status; another may be associated with the OFF
status (see "Switch-Status Condition"). One condition-name must be
associated with function-name-2. A mnemonic-name, a second
condition-name, or both may be associated with the function-name-2 as
well. The condition-names represent the equivalent of level-88 items
where UPSI-n or mnemonic~name may be considered the conditional
variable.

The literal which appears in the CURRENCY SIGN clause is used in the
PICTURE-clause to represent the currency symbol. The literal must be
nonnumeric and is limited to a single character which must not be any of
the following characters;

1. digits O through 9

2. alphabetic characters A, B, c, D, P, R, s, v, x, z, or the space

3. special characters * + n

If the CURRENCY sIGN clause is not present, only the $ can be used as
the currency symbol in the PICTURE clause. ·

The clause DECIMAL-POINT IS COMMA means that the function of the
comma and the period are exchanged in PICTURE character strings and in
numeric literals.

Environment Division -- Configuration Section 65

FILE-CONTROL Paragraph

The Input-output Section deals with the definition of each file, the
identification of its external storage media, the assignment of the file
to one or more input/output devices and with information needed for the
most efficient transmission of data between the media and the object
program. The section is divided into two paragraphs: the FILE-CONTROL
paragraph, which names and associates the files used in the program with
the external media; and the I-0-CONTROL paragraph, which defines special
input/output techniques.

r--1
I General Format I
~--~
I I
I [INPUT-OUTPUT SECTION. I
I FILE-CONTROL. {file-control-entry} ••• I
I CI-0-CONTROL. input-output-control-entry]] I
I I t._ ___ J

Information that is used or developed by the program may be stored
externally. File description entries in the Data Division name the
files into which information is placed and specify their physical
characteristics. The FILE-CONTROL paragraph assigns the files (by the
names given in the file description entries) to input/output devices.

r--1
I General Format I
~---------------------------------------~------------------------------~

{SELECT Clause
ASSIGN Clause
[RESERVE Clause]
[FILE-LIMIT Clause]
[ACCESS MODE Clause]
[PROCESSING MODE Clausel
(ACTUAL KEY Clausel

I
I
I
I
I
I
I
I
I
I
I
I
I
I

L--J

66 Part II -- Ideotification and Environment Divisions

!

i~,

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

SELECT/ASSIGN Clauses

The SELECT clause is used to name each file in a program.

r--1
I Format I
~--i
I I
I SELECT [OPTIONAL] file-name I
I I
L--J

Each file used in the program must be named once and only once as a
file-name following the key word SELECT.

Each file named in a SELECT clause must have a File Description (FD>
entry or Sort File Description (SD) entry in the Data Division.

The key word OPTIONAL may be specified only for input files accessed
sequentially. It is required for input files that are not necessarily
present each time the object program is executed. When a file is not
present at object time, the first READ statement for that file causes
the imperative-statement following the key words AT ENO to be executed.
However, OPTIONAL need not be specified and will be treated as a
comment, since this function is performed through the ASSGN control
statement with the IGN parameter.

ASSIGN Clause

The ASSIGN clause is used to assign a file to an external medium.

r---~------------------1
I Format I
~---~------------i

I I
I ASSIGN TO [integer] system-name-1 lsystem-name-2) ••• I
I I

I cFoR !'!!:!~:n.E.~~ { B~~~} 1 I
I UN!! I
I I
L--J

Integer indicates the number of input/output units for a given medium
assigned to file-name. Since the number of units is determined at
program execution time (see !~~-§yst~gV36Q_Di2~Q£~~~£ing_§y~£§~~­
System Control a!!~_£Ye1~~-g~~Y!_g_~-E_~Q9.~r Form C24-5036), the standard
definition given above is not the action taken by this compiler.

When specified for files with standard labels or for unlabeled output
tape files, the ~nte~~ option is treated as comments. When integer is
specified as greater than one for unlabeled input tape files, then at
the end of every reel a message is issued to the operator asking whether
or not end-of-file has been reached. It is the user's responsibility to
provide the operator with correct information as to the number of reels
in the file.

Environment Division -- Input-Output Section 67

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

ASSIGN Clause

For multivolume input files with nonstandard labels, the integer
option is required. For such tiles, the compiler is unable to
distinguish between end-of-volume and end-of-file and, therefore, cannot
determine the number of reels in the file. Therefore, for input files
with nonstandard labels, the inte er option is used to determine the
number of reels in the file.

All files used in a program must be assigned to an external medium.
2Yet~~~g~~§ specifies a device class, a particular device, the
organization of data upon this device, and the external name of the
file. Any system-names beyond the first are treated as comments.

FOR MULTIPLE REEL/UNIT is applicable whenever the number of tape
units or mass storage devices assigned might be less than the number of
reels or units in the file. However, this clause need not be specified.
The system will automatically handle volume switching for sequentially
accessed files. All volumes must be mounted for randomly accessed
files. Therefore, when this clause is specified, it is treated as
comments.

~Y~t~~~g~~§ has the following structure:

SYSnnn-class-device-organization[-name]

where:

nnn is a three-digit number between 000 and 221. This field represents
the symbolic unit to which the file is assigned.

£!~~~ is a two-digit field that represents the device class. The
allowable combinations of characters are:

DA for mass storage
UT for utility
UR for unit record

Files assigned to DA devices may have standard sequential or direct
organization. When organization is direct, access may be either
sequential or random.

Files assigned to UT or UR devices must have standard sequential
organization.

device is a four- or five-digit field that represents a device number.
Device number is used to specify a particular device within a device
class.

The allowable devices for any given device class are as follows:

Mass storage (DA) 2311, 2314 1 2321

Utility (UT) 2400, 2311, 2314, 2321

68 Part II -- Identification and Environment Divisions

\ \ __)

i '
_/

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

ASSIGN Clause

Unit record <UR) 1442R, 1442P, 1403, 1404 (continuous forms only), 1443,
2501, 2520R, 2520P, 2540R, 2540P

<g indicates reader, R indicates punch)

Note: Sort input, output, and work files may be assigned to any utility
device except a 2321 (see nsort"I.

organization is a one-character field that specifies file organization.
The letters that may be specified for each type of file are as follows:

S for standard sequential files
A for direct files actual track addressing
D for direct files -- relative track addressing

Table 5 can be used to determine the correct choice of the organization
field in system-names.

~ is a one- to seven-character field specifying the external-name by
which the file is known to the system. If specified, it is the name
that appears in the file-name field of the VOL, DLBL, or TLBL job
control statement (see the appropriate Programmer's Guide). If name is
not specified, the symbolic unit (SYSnnn) is used as the external-name.
The field must be specified if more than one file is assigned to the
same symbolic unit.

Note: ASCII considerations for the ASSIGN clause are given in
Appendix E.

For Version 3, the following additional system devices are
allowable:

Mass storage CDA)
Utility (UTI
Unit Record (UR)

2319, 3330
2319, 3330, 3410, 3420
3211, 3505, 3525P 1 3525R1 3525W1 3525M

For the Version 3 DA and UT devices (2319, 3330, 3410, 3420), as
well as for the UR 150-character printer (3211>, these numbers can
be specified in the device field of system-name. For these devices,
the valid entries for-the-other fields in system-name are unchanged.

For the 3505 card read~E• system-name has the following format:

SYSnnn-UR-3505- i:[R]l[-namel

The SYSnnn and name fields have the same valid entries as other
devices-.-

For the organization field, the following considerations apply:

S[R] specifies standard sequential card reading. The optional R
field specifies RCE (Read Column Eliminate) card reading. When

Environment Division -- Input-Output Section 69

Order No. GC28-6394-2, Page Revised 5/15/12 by TNL GN28-0489

ASSIGN Clause

R is specified, the user can indicate by program control that
some card columns are to be ignored when reading data for a
particular job. (See the section "RCE and OMR Format
Descriptor" for a more cdmplete discussion.> When the R field
is omitted, RCE card reading may not be specified.

0 specifies Optical Mark Reading (OMR>. When O is specified~
then if at object time the device reads a card with a marginal
mark, a wear mark, or a poor erasure, the substitution
character (hexadecimal "3F"} is placed in the defective column
and in column 80 (an BO-character buffer is alwa s provided>.

For the 3525 card punch with special features, 2:Ye~~!!Cll~~~ has the
following format:

" !S[R]!
P' V[R]
R X[R]

SYSnnn-UR-3525 ~~ \- {-name]
W Y[R)
M T

z

!']:ote: The optional R code in the organization field is valid
only when the devic~ is specified as 3525R.

The ~~me field has the same valid entries as for other devices.

The SYSnnn field, for 3525 files that do not utilize combined
function processing, has the same valid entries as other devices.

The SYSnng field has special considerations when combined function
card processing is used. For each associated logical file within
the combined function structure there must be a separate SELECT
sentence; each such associated logical file must be specified with
the same SYSnnn field. (See Appendix G: 3525 combined Function
Processing for a more detailed discussion.)

For the device field, the following entries are valid:

3525R
3525P
3525W
3525M

for a card read file
for a card punch file
for a 2-line card print file
for a multiline card print file

For the organization field, depending on the device field, the
following entries are valid:

3525R
<reader)

S[R] for sequential card read files
V[R] for read/print associated files
X[RJ for read/punch/print associated files
Y[R] for read/punch associated files

Note: the optional R field specifies RCE (Read
Column Eliminate) card reading. (See "RCE and
OMR Format Descriptor" for further discussion.>

70 Part II -- Identification and Environment Divisions

, I
'\,,,.,,,,/

..

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

ASSIGN Clause

3525P
(punch>

3525W
(2-line
print)

3525M
(multi­
line
print)

s
T
x
y

z

for sequential card punch files
for punch-and-interpret files (see Note)
for read/punch/print associated files
for read/punch associated files
for punch/print associated files

Note: The ! field denotes a normal punched
output file for which the graphically printable
punched characters are also printed on print
lines 1 and 3 of the card.. Line 1 contains the
first 64 characters, left justified; line 3
contains the last 16 characters, right
justified.

s
v
x
z

s
v
x
z

for sequential 2-line print files
for read/print associated files
for read/punch/print associated files
for punch/print associated files

sequential multiline print files
for read/print associated files
for read-punch-print associated files
for punch/print associated files

RCE AND OMR FORMAT DESCRIPTOR

When the user specifies 0 (for Optical Mark Read) or R (for Read
Column Eliminate> in the organization field of system-name, then at
object time he must provide a format descriptor as the first card<s>
in his data deck. If the format descriptor is missing for such
files, a message is issued to the operator, and the job is
terminated.

The format descriptor must be the first card(s) in the data deck.
Column 1 of the first card must be blank. The keyword F'ORMAT must
be punched in columns 2 through 7. column 8 must be blank. Columns
9 through 71 can contain the parameters that specify which columns
of the data cards are to be read in OMR or RCE mode. Continuation
cards are valid. A continuation code must be placed in column 72 of
the preceding card. Parameters may then be continued. beginning in
column 16 of the continuation card. comments, if used, must follow
the last operand on each card by at least one blank space, and
continuation card restrictions must be observed.

Environment Division -- Input-Output section 70.1

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

ASSIGN Clause

The format of the format descriptor is as follows:

Col.

12 •••• 7.9 •••••••••••••
11 I I
11 l I
11 I I
vv v v

FORMAT (N1, N2) C, (N3, N4)] •••

N1, N2, N3, and N4 may be any decimal integers from 1 through 80.
However, N2 must be greater than or equal to Nl. N3 must be greater
than or equal to N3. In addition, for OMR processing, N1 and N2
must be both even or both odd, N3 and N4 must be both even or both
odd, and N3 - N2 must be greater than or equal to 2.

In OMR mode, the user establishes which columns are to be read in
OMR mode. For example, if the user w-ishes to read c'olumns 1, 3, 5,
7 1 9 and 70, 72, 74, 76, 78, 80 in OMR mode, the following format
descriptor is valid:

FORMAT (1, 9) I (10, 80)

In RCE mode, the user specifies those columns which are gQ~ to be
read. For example, if the user chooses to eliminate columns 20
through 30, and columns 52 through 73, the following format
descriptor is valid:

FORMAT (20,30), (52;73)

Table 5. Values of Organization Field for File Organization
r--------T-------------T-------------T------------T--------------------1
I Device I l File I Track I Organization Field I
I Type I ACCESS l Organization! Addressing I in System-name I
~--------+-------------+-------------+------------+--------------------~
I tape, I [SEQUENTIAL]! standard I I S I
I punch, I I sequential I I I
I reader, I I I I I
I printer! I I I I
~--------+-------------+-------------+------------+--------------------~
I mass I [SEQUENTIAL]! standard I I s I
I storage I I sequential I I I
I device I l I I I
~--------+-------------+-------------+------------+--------------------~
I mass I [SEQUENTIALll direct I actual I A I
I storage! l ~------------+--------------------~
I device I I I relative I D I

~--------+-------------+-------------+------------+--------------------~
I mass I RANDOM I direct I actual I A I
I storage! I ~------------+--------------------~
I device I I I relative I D I

70.2 Part II -- Identification and Environment Divisions

\ ! \......,,...,

/

··l_;

..

•

~···

Order No. GC28-6394~2, .Page Revised 5/15/72 by TNL GN~B-0489,

ASSIGN Clause

Program Product .. Information -- Version 3

•Table 5.l. Values of Organization Field for File Organization
r--1
I For Version 3 devices, the fallowing entries are valid I
~-----------------------T----------------T-------------T---------------i
I I I File I Organization I
I Device Type I ACCESS I Organization I Field I
~-----------------------+----------------+-------------+---------------i
I UR and UT I [SEQUENTIAL] I standard I S I
I <except 3505, 3525) I I sequential I I

~-----------------------+----------------+-------------+---------------i
I UR 3505, 3525R I [SEQUENTIAL) I standard I s I
I (without OMR or RCE) I I sequential I I

~----------------------~+----------------+-------------+---------------i
I UR 3505 (with OMR) I [SEQUENTIAL] I standard I O I

I I I sequential I I

~-----------------------+----------------+-----------,.--+---------------i
I UR 3505, 3525R I [SEQUENTIAL] I standard I SR I

I (w-ith RCE) I I sequential I I

~-----------------------+----------------+-------------+---------------i
I UR 3525R, 3525P, I [SEQUENTIAL] I 'standard I s I
I 3525W, 3525M I I sequential I I

~-----------------------+----------------+-------------+-----------~---i
I UR 3525P I [SEQUENTIAL] I standard I T I
I punch-interpret file I I sequential I I

~-----------------------+----------------+-------------+--------~------i
I UR 3525R, 3525W, I [SEQUENTIAL] I standard I V I
I 3525M read/print I I sequential I I

I associated file I I . I I

~-----------------------+----------------+-------------+-------------~-i
I UR 3525R (with RCE) I [SEQUENTIAL] I standard I VR I
I read/print I I sequential I I
I associated file I I I I

~----------------~-----~+---------------~+-------------+-----------~---i
I UR 3525R, 3525P, I [SEQUENTIAL] I standard I X I
I 3525W, 3525M I I sequential I I
I read/punch/print I I I I
I associated file I I I I
~-----------------------+-----""----.-----""+-------------+---------------i
I UR 3525R <with RCE) I [SEQUENTIAL] I standard I XR I
I read/punch/print I I sequential j I

I associated file I I I I
~-----------------------+--~-~-----------+-------------+---------------i
I UR 3525R, 3525P I [SEQUENTIAL] I standard I Y I
I read/punch -1 I sequential I I
I associated file I I I I

~-----------------------+----------------+-------------+---------------~
I UR 3525R (with RCEI I [SEQUENTIAL] I standard I YR I
I read/punch I I sequential I I
I associated file I I I I

~-----------------------+~---------------+-------------+---------------i
I UR 3525P, 3525W I [SEQUENTIAL] I standard I Z I
I 3525M punch/print I I sequential I I
I associated file I I I I

~-----------------------+----------------.L--------------L---------------i
I DA <mass storage) I Entries valid for Version 2 I
I devices I are valid for Version 3 I
L------------------------L---------------------------~------------------J

Environment Division -- Input-Output Section 70.3
ct>

Order No. GC:28-6394-2, Page Revised 5/15/72 by TNL GN2H-0489

RESERVE Clause

RESERVE Clause

The RESERVE clause allows the user to modify the number of
input/output areas (buffers) allocated by the compiler for a standard
,11-s.e,~!!i';e~tial file llD~S{lf~"1~BnlEJ!Mll-1i-
~ '!\:~~ •
~"' lt:f'::::"·~'' ,

r-----------------------'---1
I Format I
}--·---,--------~
I I
I RESERVE { integer } ALTERNATE [AREA J I
I · . NO AREAS I
I I
L----------------------·--J

This clause may be specified only for a standard sequential file.

Integer must have a value of 1.

A minimum of one buffer is required for a file. If this clause is
omitted or if 1 is specified, one additional buffer is assumed.

If NO is specified, no additional buffer areas are reserved aside
from the minimum of one.

Program.Product Information -- Version 3

Combined function file processing considerations for the RESERVE
clause are given in Appendix G.

70.4 Part II -- Identification and Environment Divisions

(,

\...._./

FILE-LIMIT/ACCESS MODE Clauses

FILE-LIMIT Clause

The FILE-LIMIT clause serves only as documentation, and is used to
specify the beginning and the end of a logical file on a mass storage
device.

r--1
I Format I
~----------------------------~--i
I I
I { !lLE-LIMJ;T 1§ { { data-name-1 } THRU { data-name-2 }' I
I FILE-LIMITS ARE f literal-1 literal-2 I
I 1. I [{ data-name-3 } THRU { data-name-4 }'] • • • I
I literal-3 ~~ literal-4 I
I I
L------~----------------------~--~--~-----~-----------------------J

The logical beginning of a mass storage file is the address specified
as the first operand of the FILE-LIMIT clause; the logical end of a mass
storage file is the address specified as the last operand of the
FILE-LIMIT clause. Because file boundaries are determined at execution
time from the control cards, this clause need not be specified and will
be treated as comments.

ACCESS MODE Clause

The ACCESS MODE clause defines the manner in which records of a file
are to be accessed •

.------~--,
I Format I
~----------------------------~-------~------------------------------i
I I
I
I Is { SEQUENTIAL } '1 ACCESS MODE
I RANDOM I
I I
L--J

If this clause is not specified, ACCESS IS SEQUENTIAL is assumed.
For ACCESS IS SEQUENTIAL, records are placed or obtained sequentially.
That is, the next logical record is made available from the file when
the READ statement is executed, or the next logical record is placed
into the file when a WRITE statement is executed. ACCESS IS SEQUENTIAL
may be applied to files assigned to tape, unit-record, or mass storage
devices.

For ACCESS IS RANDOM, storage and retrieval are based on an ACTUAL
KEY ~~-~1;11$associated with each record. When the RANJ?OM option
is specified, the file must be assigned to a mass storage device.
ACCESS IS RANDOM may be specified when file organization is direct

Environment Division -- Input-Output Section 71

PROCESSING MODE/ACTUAL KEY Clauses

PROCESSING MODE Clause

The PROCESSING MODE clause serves only as documentation, and
indicates the order in which records are processed.

r--1
I Format I
t--~
I I
I PROCESSING MODE IS SEQUE!:!'.£IA1 I
I I
l---~---------------------------J

This clause is treated as comments, and may be omitted.

ACTUAL KEY Clause

An ACTUAL KEY is a key that is directly usable by the system to
locate a logical record on a mass storage device. The ACTUAL KEY is
made up of two components.

1. The track identifier, which expresses a track address at which the
search for a record, or for a space in which to place a new record,
is to begin.

2. The record identifier, which serves as a unique identifier for the
record and is associated with the record itself.

When processing a randomly accessed direct £ile, the programmer is
responsible for providing the ACTUAL KEY for each record to be
processed.

r--,
I Format I
~--------------------------------------~----------------~--~--------~
I I
I ACTUAL KEY IS aata-narne I
I I
l--------------------------------------~------------------------------J

Records are accessed randomly and are processed in the order in which
they are accessed.

The ACTUAL KEY clause must be specified for direct files when ACCESS
IS RANDOM is specified.

When a SEEK statement is executed, the contents of data-name are used
to locate a specific mass storage record area.

72 Part II -- Identification and Environment Divisions

·. j
·~

(.
~

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

ACTUAL KEY Clause

When a READ statement is executed, a specific logical record (located
by the system using the contents of data-name) is made available from
the file.

When a WRITE statement is executed, the given logical record is
written at a specific location in the file.

At file creation time, when no more room remains on a given track, a
standard error occurs, and the user must provide a USE AFTER STANDARD
ERROR declarative routine to update the track address.

The location of a particular logical record must be placed in
data-name before the execution of the SEEK statement (or if no SEEK statement is present, the READ and WRITE statements).

Data-name must be a fixed-length item. It must be defined in the
File Section, the Working-storage Section, or the Linkage Section.
However, if data-name is specified in the File Section it may not be
contained in the file for which it is the key. Data-name is made up of
two components: the track identifier, and the record identifier.

~B~£K_!QEN~![!~B: The track identifier may be expressed in two ways -­
through relative track addressing, or through actual track addressing.

Relative Track Addressing: The track identifier is used to specify the
relative track address at which a record is to be placed, or at which
the search for a record is to begin.

Track identifier must be 4 bytes in length, and must be defined as an
8-integer binary data item whose maximum value does not exceed
16, 777, 215.

Actual Track Addressing: The track identifier is used to specify the
actual track address at which a record is to be placed, or at which the
search for a record is to begin.

Track identifier must be a binary data item eight bytes in length.
No conversion is made by the compiler when determining the actual track
address. The structure of these eight bytes and the permissible
specifications for the 2311, 2314, and 2321 mass storage devices are
shown in Figure 4.

Before beginning processing, it is the user 1 $ responsibility to
initialize R to the figurative-constant Low-VALUE. The user need not
concern himself further with this field.

r--------T----------T------------T-------------T---------1
I PACK I CELL I CYLINDER I HEAD I RECORD I
~--------+----------+------------+-------------+---------i
IM IB BIC CIH HI RI

------------+--------+----------+------------+-------------+---------i
Byte I o I 1 2 I 3 4 I 5 6 I 7 I

I Device I I I I I I
~------------- --------+----------+------------+-------------+---------~
I 2311 I 0-221 I o o I o 0-1991 o o-9 J o-2ss I
~-------------+--------+----------+------------+-------------+---------i
I 2314 I 0-221 I o o I o o-1991 o 0-19 I 0-255 I
~-------------+--------+----------+------------+-------------+---------~
I 2321 I 0-221 I o o-9 I 0-19 o-9 I o-4 0-19 I o-2s5 I
L-------------i--------i----------i------------i-------------i---------J
Figure 4. Structure of the First Eight Bytes of ACTUAL KEY -- Actual

Track Addressing

Environment Division -- Input-output Section 73

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ACTUAL KEY Clause

RECORD IDENTIFIER: The symbolic portion of ACTUAL KEY used to identify
a-particular-record on a track is the record identifier.

Record identifier must be from 1 through 255 bytes in length. Data
within these bytes is treated exactly as specified.

A record is considered "found" when, for a given track, the record
identifier at retrieval time matches the record identifier of a record
in the file being searched.

ACrUAL KEY EXAMPLES: Two examples follow, to represent the coding
necessary~to-specify the ~~t~~g~~~ in the ACTUAL KEY clause,

B~!~ti~g-~~~£~-~g~~~~~igg: rhe following example shows an ACTUAL KEY
using relative track addressing:

ENVIRONMENT DIVISION

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 THE ACTUAL-KEY.

02 RELATIVE-TRACK-KEY USAGE COMPUTATIONAL PICTURE, IS S9(8)
VALUE IS 10 SYNCHRONIZED.

02 EMPLOYEE-NO PICTURE IS X(6) VALUE IS LOW-VALUE.

~£t~~!_!~~£~-~~dr~~igg: The following example shows an ACTUAL KEY
using actual track addressing:

ENVIRONMENT DIVISION.

ACTUAL KEY IS THE-ACTUAL-KEY.

DATA DIVISION.

WORKING-STORAGE SECTION.
01 BINARY-FIELD-1.

05 TRACK-ID.
10 M USAGE
10 BB USAGE
10 CC USAGE
10 HH USAGE
10 R

COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL
COMPUTATIONAL

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

05 EMPLOYEE-NO
01 ACTUAL-FIELD-1 REDEFINES

05 FILLER

PICTURE
BINARY-FIELD-1.

05 THE-ACTUAL-KEY
PICTURE
PICTURE

S999 VALUE IS O.
S9 VALUE IS O.
S999 VALUE IS 10.
S99 VALUE IS 0.
IS X VALUE IS LOW-VALUE.
XXXXXX VALUE IS LOW-VALUES.

IS X.
IS X(14).

Although the track identifier field must consist of eight bytes, nine
bytes are defined within TRACK-ID. This is because the entry

74 Part II -- Identification and Environment Divisions

\

' \.._,,/

..

!
\ : ""'--"/

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
ACTUAL KEY Clause

10 M USAGE COMPUTATIONAL PICTURE 8999

necessarily defines two bytes. However, as Figure 4 shows, the M field
must be one byte in length. Therefore, BINARY-FIELD-1 must be redefined
as ACTUAL-FIELD-1. In this way the superfluous high-order M byte can be
stripped off from THE-ACTUAL-KEY through specification of the entry

05 FILLER PICTURE IS X

in ACTUAL-FIELD-1. The first eight bytes of THE-ACTUAL-KEY thus
represent the track identifier, and the last six bytes represent the
record identifier.

Environment Division -- Input-output Section 74.1

\ _;

' i
'-"

Order No. GC28-6394~2, Page Revised 5/15/72 by TNL GN28-0489

RERUN Claus~

I-0-CONTROL PARAGRAPH

The I-0-CONTROL paragraph defines some of the special techniques to
be used in the program. It specifies the points at which checkpoints
are to be established, the core storage area which is to be shared by
different files, the location of files on multiple-file reels, and
optimization techniques. The I-0-CONTROL paragraph and its associated
clauses are an optional part of the Environment Division.

r--1
I General Format I
t--~
I I
I I-o-coNTROL. I
I --[RERUN Clause] • • • I
I [SAME AREA Clausel I
I [MULTIPLE FILE TAPE Clausel I
I ~t•ll!!l\,lil~ll,fti • I
I I
L--J

RERUN Clause

The presence of a RERUN clause specifies that checkpoint records are
to be taken. A ~heckpoint_~~£QE~ is a recording of the status of a
problem program and main storage resources at desired intervals. The
contents of core storage are recorded on an external storage device at
the time of the checkpoint and can be read back into core storage to
restart the program from that point.

r--1
I Format 1 I
t-----------------------~--~
I I
I ~~ ON system-name I
I I
I EVERY integer gg£QEQ§ OF file-name I
I I
L--J

The §Y.Ste~-name in the RERUN clause specifies the external medium for
the checkpoint file, the file upon which checkpoint records are to be
written. It has the following structure:

SYSnnn-class-device-organization[-namel

The SYS£!!!! and ~ fields in the eYet~~~rr~~~ for the checkpoint file
cannot be the same as any specified in any ASSIGN clause.

Environment Division -- Input-Output Section 77

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

SAME Clause

Checkpoint records are written sequentially, and may be assigned to
any utility or mass storage device (except the 23211. Only one RERUN
clause in a program may use a mass storage device for writing checkpoint
records. CA complete list of utility and mass storage devices is given
in the description of ~Y§.tem::na~ in the ASSIGN clause.)

Format 1 specifies that checkpoint records are to be written on the
unit specified by system-name for every integer records of file-name
that are processed. The value of inte_g~E must not exceed 16,777,215.

More than one Format 1 RERUN clause may be included in a program. If
multiple RERUN clauses are specified, they may be specified either for
the same or for different checkpoint files.

Note: ASCII considerations for the RERUN clause are given in
Appendix E.

SAME Clause

The SAME clause specifies that two or more files are to use the same
core storage during processing.

r----------~---1
I Format I
~-----------------~--~
I I
II [SORT J II SAME AREA FOR file-name-1 {file-name-2} •••
I RECORD•· I
I I
L--J

A SAME clause with the SORT option is described in "Sort." The
following discussion pertains only to the SAME AREA and SAME RECORD AREA
clauses.

The SAME RECORD AREA clause specifies that two or more files are to
use the same main storage for processing the current logical record.
All of the files may be open at the same time. A logical record in the
shared storage area is considered to be:

• a logical record of each opened output file in this SAME RECORD AREA
clause, and

• a logical record of the most recently read input file in this SAME
RECORD AREA clause.

If the SAME clause does not contain the RECORD option, the area being
shared includes all storage areas assigned to the files; therefore, it
is not valid to have more than one of these files open at one time.

78 Part II -- Identification and Environment Divisions

\._)

' I ,__,;

i.
~·

1.

2.

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

SAME Clause

More than one SAME clause may be included in a program; however:

A file-name must not appear in more than one SAME AREA clause.

A file-name must not appear in more than one SAME RECORD AREA
clause.

3. If one or more file~~~~ of a SAME AREA clause appear in a SAME
RECORD AREA clause, all of the file-names in that SAME AREA clause
must appear in that SAME RECORD AREA clause. However, that SAME
RECORD AREA clause may contain additional file-names other than
those that appear in that SAME AREA clause.

Environment Division -- Input-Output Section 78.1

i '-'!

MULTIPLE FILE TAPE Clause

MULTIPLE FILE TAPE Clause

The MULTIPLE FILE TAPE clause is used to indicate that two or more
files share the same physical reel of tape.

r-----------------------------~---------------------------------------1
I Format I
~----------------------------~--~-----~------------------------------~
I I
I MULTIP:yE FILE TAPE CONTAINS f ile-name-1 I
I I
I [POSITION integer-1] [file-name-2 [POSITION integer-2]) ••• I
I I
L-----------------~--J

The when more than one file

The MULTIPLE FILE TAPE clause is pertinent only when the tape has
nonstandard labels, or when labels are omitted. It is treated as
comments for a tape that has standard labels.

Regardless of the number of files on a single reel, only those files
that are used in the object program need be specified.

For purposes of positioning, a physical file is considered to be that
segment of a tape that is terminated by a tape mark. Note that two
consecutive tape marks are considered to terminate two physical files.

If all file-names refer to single physical files and have been listed
in consecutive order, the POSITION option need not be given.

The POSI-TION integer relative to the beginning of the tape must be
given if any file on the tape is not listed, or if a tape contains more
than one physical file, i.e., more than one tape mark. Therefore, if a
tape contains two files, each having one nonstandard header label
terminated by a tape mark, their positions would be 1 and 3. If the
labels are not to be processed, the positions may be specified as 2 and
41 and the LABEL RECORDS clause must specify OMITTED.

The compiler will position the tape by skipping past a number of tape
marks equal to POSITION number minus one.

More than one MULTIPLE FILE clause may be included in a program.

Environment Division -~ Input-output Section 79

APPLY Clause

· . ._;

80 Part II -- Identification and Environment Divisions

PART III -- DATA DIVISIOli

• DATA DIVISION -- INTRODUCTION

• ORGANIZATION OF THE DATA DIVISION

• FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

• DATA DESCRIPTION

• DATA DESCRIPTION -- DETAILS OF CLAUSES

i • "-'/

83

··~

External Data--Description

DATA DIVISION -- INTRODUCTION

The Data Division of a COBOL source program contains the description
of all information to be processed by the object program. Two types of
data may be processed by a COBOL program: information recorded
externally on files and information created internally. The second
type, which exists only during the execution of a program, will be
discuss'!:'(l later in this chapter in "Working-Storage Section ...

ORGANIZATION OF EXTERNAL DATA

A file is a collection of records. There are two types of records:
physical records and logical records. A Ehysical record is a group of
characters or records which is treated as an entity when moved into or
out of core storage. A logical record is a number of related data
items. It may itself be a physical record, i.e., contained within a
single physical unit, or it may be one of several logical records
contained within a single physical unit, or it may extend across two or
more physical units.

COBOL source language statements provide the means of describing the
relationship between physical and logical records. Once this
relationship is established, only logical records are made available to
the COBOL programmer. Hence, in this publication, a reference to
records means logical records unless the term "physical records" is
used.

DESCRIPTION OF EXTERNAL DATA

In the discussion of data description, a distinction must first be
made between a record's external description and its internal content.

External description refers to the physical aspects of a file, i.e.,
the way in which the file appears on an external medium. For example,
the number of logical records per physical record describes the grouping
of records in the file. The physical aspects of a file are specified in
File Description entries.

A COBOL record usually consists of groups of related information that
are treated as an entity. The explicit description of the contents of
each record defines its internal characteristics. For example, the type
of data to be contained within each field of a logical record is an
internal characteristic. This type of information about each field of a
particular record is grouped into a Record Description entry.

Data Division -- Introduction 85

Data Division--Structure

ORGAl~IZATION OF THE DATA DIVISION

The Data Division is divided into four sections: the File Section,
the Working-Storage Section, and the Report
section.

All data that is stored externally, for example, on magnetic tape,
must be described in the File Section before it can be processed by a
COBOL program. Information that is developed for internal use must be
described in the Workin -Stora e Section.

The
the Report

Writer

The Data Division is identified by, and must begin with, the header
DATA DIVISION. The File Section is identified by, and must begin with,
the header FILE SECTION. The header is followed by one or more file
description entries and one or more associated record description
entries. The Working-Storage Section is identified by, and must begin
with, the header WORK!NG-STORAGE SECTION. The header is followed by
data item description entries for noncontiguous items, followed by
record descri tion entries.

e
header is

entries, and one or more report group

For the proper formats of Division and Section headers, see •use of
the COBOL Coding Form" in "Language Considerations."

structure of the Data Division

DATA DIVISION.

FILE SECTION.

{file description entry

{record description entry} ••• } •••

WORKING-STORAGE SECTION.

[data item description entry] •••

[record description entry] •••

REPORT SECTION.

{report description entry

{report group description entry} ••• } •••

or

Each of the sections of the Data Division is optional and may be
omitted from the source program when the section is unnecessary. When
used, the sections must appear in the foregoing sequence.

86 Part III -- Data Division

Level Indicator/Number

ORGANIZATION OF DATA DIVISION ENTRIES

Each Data Division entry begins with a level indicator or a level
number, followed by one or more spaces, followed by the name of a data
item <except in the Report Section), followed by a sequence of
independent clauses describing the data item. The last clause is always
terminated by a period followed by a space.

Level Indicator

The level indicator FD is used to specify the beginning of a file
description entry. When the file is a sort-file, the level indicator SD
must be used instead of FD (see "Sort"). When a report is to be
generated by the Report Writer feature, the level indicator RD,
specifying the beginning of a report description entry must be provided
for each report in addition to the FD for the file on which the report
is generated (see "Report Writer"). Figure 5 summarizes the level
indicators.

r---------------T--1
l Indicator I Use I
~---------------+-------------~--~
I FD I File description entries I
I SD I sort-file description entries I
I RD I Report description entries I
L---------------~----------------------~------------------------------J
Figure 5. Level Indicator summary

Each level indicator m~st begin in Area A and be followed in Area B
by its associated file-name and appropriate descriptive information.

Level indicators are illustrated in the sample COBOL programs found
in Appendix B.

Level Number

Level numbers are used to structure a logical record to satisfy the
need to specify subdivisions of a record for the purpose of data
reference. Once a subdivision has been specified, it may be further
subdivided to permit more detailed data reference.

The basic subdivisions of a record, that is, those not further
subdivided, are called elementary items; consequently, a record may
consist of a sequence of elementary items, or the record itself may be
an elementary item.

In order to refer to a set of elementary items, the elementary items
are combined into groups. A group item consists of a named sequence of
one or more elementary items. Groups, in turn, may be combined into
larger groups. Thus, an elementary item may belong to more than one

organization of the Data Division 87

Level Number

group. In the following example, the group items MARRIED and SINGLE are
themselves part of a larger group named RETIRED-EMPLOYEES:

02 RETIRED-EMPLOYEES.
03 MARRIED.

04 NO-MALE PICTURE 9(8).
04 NO-FEMALE PICTURE 9(8).

03 SINGLE.
04 NO-MALE PICTURE 9(8).
0 4 NO- FEMALE PICTURE . 9 (8) •

A system of level numbers shows the organization of elementary items
and group items. Since records are the most inclusive data items, the
level number for a record must be 1 or 01. Less inclusive data items
are assigned higher (not necessarily successive) level numbers not
greater than 49. There are special level numbers ~- 66 1 77, and 88
which are exceptions to this rule. Separate entries are written in the
source program for each level number used.

A group includes all group and elementary items following it until a
level number less than or equal to the level number of that group is
encountered. The level number of an item which immediately follows the
last elementary item of the previous group must be equal to the level
number of one of the groups to which a prior elementary item belongs.

Standard
01 A.

05 C-1.
06 D PICTURE x.
06 E PICTURE x.

OS c-2.

Level numbers 01 and 77 must begin in Area A, followed in Area B by
associated data names and appropriate descriptive information. All
other level numbers may begin in either Area A or in Area B, followed in
Area B by associated data names and appropriate descriptive information.

A single-digit level number is written either as a space followed by
a digit or as a zero followed by a digit. At least one space must
separate a level number from the word following the level number.

Special Level Numbers

Three types of data exist whose level numbers are not intended to
structure a record. They are:

66: Names of elementary items or groups described by a RENAMES clause
for the purpose of regrouping data items have been assigned the
special level number 66. For an example of the function of the
RENAMES clause, see "Data Description."

77: Noncontiguous Working-Storage items, which are not subdivisions of
other items and are not themselves subdivided, have been assigned
the special level number 77.

88 Part III -- Data Division

I'-../

(.
_/

;

i ;

"'-''

File Section

88: Entries that specify condition-names to be associated with
particular values of a conditional variable have been assigned the
special level number 88. For an example of level-88 items, see
"Data Description."

Indentation

Successive data description entries may have the same format as the
first such entry or may be indented according to l~vel nUmber.
Indentation is useful for documentation purposes, and does not affect
the action of the compiler.

FILE SECTION

The File Section contains a description of all externally stored data
(FD>, and a description of each sort-file (SD) used in the program.

The File Section must begin with the header FILE SECTION followed by
a period. The File Section contains file description entries and
sort-file description entries, each one followed by its associated
record description entry (or entries).

r---1
I General Format I
~----~---~
I I
I FILE SECTION. I
I I
I {file description entry I
I I
I {record description entry} ••• }... I
I I l __________ __:_ ___ J

File Description Entry

In a COBOL program, the File Description Entries <FD and SD)
represent the highest level of organization in the File Section. The
File Description entry provides information about the physical structure
and identification of a file, and gives the record-name(s) associated
with that file.

For a complete discussion of the sort-file-description entry, see
"Sort."

Record Desc:i:;iption Entry

The Record Description Entry consists of a set of data description
entries which describe the particular record(s) contained within a
particular file. For a full discussion of the format and the clauses
required within the Record Description entry, see "Data Description."

Organization of the Data Division 89

Working-Storage Section

WORKING-STORAGE SECTION

The Working-Sto~age Section may contain descriptions of records which
are not part of external data files but are developed and processed
internally.

The Working-storage Section must begin with the section header
WORKING-STORAGE SECTION followed by a period. The Working-Storage
Section contains data description entries for noncontiguous items and
record description entries, in that order.

r---------------------~--1
I General Fonnat I
~---------~--~-----------~
I I
I WORKING-STORAGE SECTION. I
I I
I [data item description entry] I
I I
I [record description entry] ••• I
I I
l-------------~---J

Data Item De,scription Entries

Noncontiguous items in working-Storage that bear no hierarchical
relationship to one another need not be grouped into records, provided
they do not need to be further subdivided. Instead, they are classified
and defined as noncontiguous elementary items. Each of these items is
defined in a separate data item description entry that begins with the
special level number 77.

Record Description Entries

Data elements in Working-Storage that bear a definite hierarchical
relationship to one another must be grouped into records structured by
level number.

90 Part III -- Data Division

·,

0

(:

\'--' ... /

Linkage/Report Sections

REPORT SECTION

The Report Section contains Report Description entries and report
group description entries for every report named in the REPORT clause.
The Report section is discussed in "Report Writer."

Organization of the Data Division 91

FD Entry/BLOCK CONTAINS Clause

FILE DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The file description entry consists of level indicator (FD), followed
by file~name, followed by a series of independent clauses. The entry
itself is terminated by a period.

r-----~----~~---1
I General Format I
~----~----------------------·--~
I FD :f il e-'name I
I I
I [BLOCK CONTAINS Clause] I
I I
I (RECORD CONTAINS Clausel I
I I
I I
I I
I LABEL RECORDS Clause I
I I
I [VALUE OF Clausel I
I I
I (DATA RECORDS Clause] I
I I
I [REPORT Clause]. I
I I
L--J

The level indicator FD identifies the beginning of a file description
entry and must precede the file-name. The clauses that follow the name
of the file are optional in many cases, and their order of appearance is
not significant.

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause is used to specify the size of a physical
record.

r--------------------------------------~------------------------------1
I Format I
~-----~--~
I I
I {' CHARACTERS } I
I BLOCK CONTAINS linteger-1 TO] integer-2 I
I REcogDs I
I I
L--J

The BLOCK CONTAINS clause is unnecessary when a physical record
contains one and only one complete logical record. In all other
instances, this clause is required.

92 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

BLOCK CONTAINS Clause

The BLOCK CONTAINS clause need not be specified for:

• direct files with F, u, or V mode records

• files containing U-mode records

For these types of files, the compiler accepts the clause and treats it
as comments.

The RECORDS option may be used unless one of the following situations
exists, in which case the CHARACTERS option should be used:

1. The physical record contains padding (areas not contained in a
logical record)

2. Logical records are grouped in such a manner that an inaccurate
physical record size would be implied. . Such would be the case
where the user describes a mode V record of 100 characters, yet
each time he writes a block of 4, he writes a SO-character record
followed by three 100-character records. Had he used the RECORDS
option, the compiler would have calculated the block length as 420.

3. Logical records extend across physical records; that is, recording
mode is S (spanned).

When the RECORDS option is used, the compiler assumes that the
blocksize provides for integer-2 records of maximum size and then
provides additional space for any required control bytes.

When the CHARACTERS option is used, the physical record size is
specified in Standard Data Format, i.e., in terms of the number of bytes
occupied internally by its characters, regardless of the number of
characters used to represent the item within the physical record. The
number of bytes occupied internally by a data item is included as part
of the discussion of the USAGE clause. Integer-1 and inteqer-2 must
include slack bytes and control bytes contained in the physical record.

When the CHARACTERS option is used, if only igt~q~~£ is shown, it
represents the exact size of the physical record. If inteqe!:~!:. and
integer-2 are both shown, they refer to the minimum and maximum size of
the physical record, respectively.

!gt~9~!:~! and igt~qer~£ must be positive integers.

If this clause is omitted, it is assumed that records are not
blocked.

When neither the CHARACTERS nor the RECORDS option is specified, the
CHARACTERS option is assumed.

Note: ASCII considerations for the BLOCK CONTAINS clause are given in
Appendix E.

File Description Entry -- Details of Clauses 93

RECORD CONTAINS Clause

The RECORD CONTAINS clause is used to specify the size of a file's
data records.

r--1
I F~~t I
~--~
I I
I RECORD CONTAINS [integer-1 !Ql integer-2 CHARACTERS I
I I
L--J

Since the size of each data record is completely defined within the
record description entry, this clause is never required. When the
clause is specified, the following notes apply:

1. If both igt~gg~~! and igt~g~~-2 are shown, they refer to the number
of characters in the smallest data record and the number in the
largest data record, respectively.

2. Igt~gg~~~ should not be used by itself unless all the data records
in the file have the same size. In this case, integer-2 represents
the exact number of characters in the data record.

3. The size of the record must be specified in Standard Data Format,
i.e., in terms of the number of bytes occupied internally by its
characters, regardless of the number of characters used to
represent the item within the record. The number of bytes occupied
internally by a data item is discussed in the description of the
USAGE clause. The size of a record is determined according to the
rules for obtaining the size of a group item.

Normally, whether this clause is specified or omitted, the record
lengths are determined by the compiler from the record descriptions.
When one or more of the data item description entries within a record
contains an OCCURS clause with the DEPENDING ON option, the compiler
uses the maximum value of the variable to calculate the record length.

However, if more than one entry in a given record description
contains an OCCURS clause with the DEPENDING ON option, and the maximum
values of the variables in these OCCURS clauses do not occur
simultaneously, igteq~~~. as specified by the user, may indicate a
maximum record size other than the size calculated by the compiler from
the maximum values of the OCCURS clause variables. In this case, the
user-specified value of integer-2 determines the amount of storage set
aside to contain the data record.

For example, in a school whose total enrollment is 500, an unblocked
file of collective attendance records is being created, each record of
which is described as follows:

01 ATTENDANCE-RECORD.
02 DATE PICTURE X{6).
02 NUMBER-ABSENT PICTURE S999 USAGE IS COMP SYNC.
02 NUMBER-PRESENT PICTURE S999 USAGE IS COMP SYNC.
02 NAMES-OF-ABSENT OCCURS 0 TO 500 TIMES DEPENDING ON

NUMBER-ABSENT PICTURE A(20).
02 NAMES-OF-PRESENT OCCURS 0 TO 500 TIMES DEPENDING ON

NUMBER-PRESENT PICTURE A(20).

94 Part III -- Data Division

\
I

' I
\~

!
I ' -._.,j

Recording Mode--Description

The programmer can save storage by taking advantage of the fact that
NUMBER-ABSENT plus NUMBER-PRESENT will never exceed the school'$ total
enrollment. Unless the programmer writes RECORD CONTAINS 10,010
CHARACTERS in the FD entry for the file, the compiler calculates the
record size to be almost twice as large.

t e COBOL compiler scans
e recording mode may be F (fixed>,

or S (spanned).

Recording Mode F -- All of the records in a file are the same length and
each is wholly contained in one block. Blocks may contain more than one
record, and there is usually a fixed number of records per block. In
this mode, there are no record-length or block-descriptor fields.

E~£Qfg!gg_~Q.{!~_!! -- The records may be either fixed or variable in
length. However, there is only one record per block. There are no
record-length or block-descriptor fields.

gg£QEg!gg~Q.gg_y -- The records may be either fixed or variable in
length, and each must be wholly contained in one block. Blocks may
contain more than one record. Each data record includes a record-length
field and each block includes a block-descriptor field. These fields
are not described in the Data Division; provision is automatically made
for them. These fields are not available to the user.

ggs;.Q.ES!!gg_~Q.gg_§. -- The records may be either fixed or variable in
length and may be larger than a block. If a record is larger than the
remaining space in a block, a segment of the record is written to fill
the block. The remainder of the record is stored in the next block (or
blocks if required). Only complete records are made available to the
user. Each segment of a record in a block, even if it is the entire
record, includes a segment-descriptor field, and each block includes a
block-descriptor field. These fields are not described in the Data
Division; provision is automatically made for them. These fields are
not available to the user.

For standard sequential files, the compiler determines the recording
mode for a given file to be:

F if all the records are defined as being the same size and the
size is smaller than or equal to the block size

v if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records and the longest
record is less than or equal to the maximum block size

s if the maximum block size is smaller than the largest record
size

For direct files, the compiler determines the recording mode for a
given file to be:

F if all the records are defined as being the same size, and the
size is smaller than or equal to the block size

a if the records are defined as being variable in size, or if the
RECORD CONTAINS clause specifies variable size records and the
longest record is less than or equal to the maximum block size

File Description Entry -- Details of Clauses 95

Order No. GC28-639~-2, Page Revised 4/15/71 by TNL GN-0436

RECORDING MODE Clause

s if the maximum block size is smaller than the largest record
size

Files assigned to the card reader
must be F mode (fixed format).

~2t~: ASCII considerations for compiler calculation of recording mode
are given in Appendix E.

96 Part III -- Data Division

\

I j
'-..-"

i ' ,'__,

Order No. GC28-6394-2 1 Page Revised 4/15/71 by TNL GN-0436

LABEL RECORDS Clause

LABEL RECORDS Clause

The LABEL RECORDS clause specifies whether labels are present, and if
present, identifies the labels.

r--1
I Format I
~--~
I I
I { E!,;£Q~ IS } {Q.MI!!ED } I
I LABEL STANDARD I
I ---~ g~£0RDS ARE data-name-1 Cdata-name-21 ••• I
I I
l--J

The LABEL RECORDS clause is required in every FD.

The OMITTED option specifies either that no explicit labels exist for
the file or that the existing labels are nonstandard and the user does
not want them to be processed by a label declarative (i.e., they will be
processed as data records). The OMITTED option must be specified for
files assigned to unit record devices. It may be specified for files
assigned to magnetic tape units. use of the OMITTED option does not
result in automatic bypassing of nonstandard labels on input. It is the
user's responsibility either to process or to bypass nonstandard labels
on input and create them on output.

STANDARD specifies that labels exist for the file and the labels
conform to system specification. The system will bypass user labels
appearing in the file if the STANDARD option is specified.

In the discussion that follows, all references to data-name-1 apply
equally to Q~t~-na~~~~-

The gat~~g~~~~! option indicates either the presence of user labels
in addition to standard labels, or the presence of nonstandard labels.
Data-name-1 specifies the name of a user label record. Data-name-1 must
appear as the subject of a record description entry associated with the
file, and must not appear as an operand of the DATA RECORDS clause for
the file.

If user labels are to be processed, data-name-1 may be specified for
direct files, or for standard sequential files with the exception of
files assigned to unit-record devices.

A user label is 80 characters in length. A user header label must
have UHL in character positions 1 through 3. A user trailer label must
have UTL in character positions 1 through 3. Both header and trailer
labels may be grouped and each label must show the relative position <1,
2, •••) of the label within the user label group, in character position
4. The remaining 76 characters are formatted according to the user's
choice. User header labels follow standard beginning file labels but
precede the first data record; user trailer labels follow standard
closing file labels.

If nonstandard labels are to be processed, data-name-! may be
specified only for standard sequential files, with the exception of
files assigned to unit-record devices. The length of a nonstandard
label may not exceed 4,095 character positions.

File Description Entry -- Details of Clauses 97

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
VALUE OF/DATA RECORDS Clauses

All Procedure Division references to data-name-1, or to any item
subordinate to data-name-1, filUSt appear within label processing
declaratives.

~= ASCII considerations for the LABEL RECORDS clause are given in
Appendix E.

The VALUE OF clause particularizes the description of an item in the
label records associated with a file, and serves only as documentation.

r--1
I Format I
~--------------------------~---~
I I
1
1

.{data-name-2}
1
1

VALU~ OF data-name-1 IS
I literal-1 I
I I

I
I { data-name-4} 1

1 (data-name-3 IS l ...
I literal-2 , I
I I l __ J

To specify the required values of identifying data items in the label
records for the file, the programmer must use the VALUE OF clause.

However, this compiler treats the VALUE OF clause as comments, since
for standard labels this function is performed by the system through the
TLBL or DLBL control statement as described in the Programmer's Guides
(as cited in "Preface"), and through the Label Declarative procedures
for user standard labels and nonstandard labels.

The DATA RECORDS clause serves only as documentation, and identifies
the records in the file by name.

r--1
I Format I
~--~
I I

DATA } data-name-1 [data-name-2] •••
jl (RECORD IS } 1

1

I l REcogos ARE, I
I I
L--J

The presence of more than one ~et~~~~~ indicates that the file
contains more than one type of data record. That is, two or more record
descriptions for a given file occupy the same storage area. These
records need not have the same description. The order in which the
data-names are listed is not significant.

98 Part III -- Data Division

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

REPORT Clause

!2~t~::.!!~~=-1• data:_name-2, etc., are the names of data records and
each must be preceded in its record description entry by the level
number 01.

This clause is never requ~red.

REPORT Clause

The REPORT clause is used in conjunction with the Report Writer
feature. A complete description of the REPORT clause can be found in
"Report Writer.•

File Description Entry -- Details of Clauses 98.1

Data Description General Formats

DATA DESCRIPTION

In COBOL, the terms used in connection with data description are:

Data Description Entry -- the clause, or clauses, that specify the
charact~ristics of any particular noncontiguous data item, or of any
data item that is a portion of a record. The data description entry
consists of a level number, a data-name (or condition-name>, plus any
associated data description clauses.

Data Item Description Entry -- a data description entry that defines
a noncontiguous data item. It consists of a level number (77), a
data-name plus any associated data description entries. Data ·
descript:t.on.e11tries are valid in the Working-Storage Section

~~llt·~-~~llift·
Record Description Entry -- the term used in connection with a

record. It consists of a hierarchy of data description ent;ri.es •..... I{~(:(Jrd
description entries are valid in the File, Working-Storagel~IWf~~IJll•'litJ
Sections. ··

The maximum length for a data description entry is 32,767 bytes,
except for a fixed-length Working-Storage~~l!~IJ.llifisection group item,
which may be as long as 131,071 bytes.

r-~--~-----------~--~-~--~--------------~-----------------------1

I General Format 1 I
~---~-----------------------------~----------------------------------~
I I
1
1

{' data-name } I
level number

I FILLER
I
I
I
I
I
l
I
I

[REDEFINES Clause]
(BLANK WHEN ZERO Clause]
[JUSTIFIED Clausel
(OCCURS Clause]
(PICTURE Clause]
[SYNCHRONIZED Clausel
(USAGE Clausel

I (VALUE Clausel.
I l __ J

.-------------------------------------~------------------------------, I General Format 2 I
~-----~~--------~------~-----~------------------------------------~
I I
I 66 data-name-1 RENAMES Clause. I
I I
L-------~•------~-------~-----------~------------------------------J

r-------------~---~---~---------------~-------------------------------1 I General Fonnat 3 I
~-------~--------------------~-------------------------~-------------~
I I
I 88 condition-name VALUE Clause. I
I -- . I

l----------~---------~----------------------------~--------------------J

Data Description 99

Data Description General Formats

General Format 1 is used for record description entries in the File,
Work~ng-~torage?l~i~~~1@~!t~~~sections and for data item description
entries in the Working-Storage~~li~~~j~~~~ Sections. The following
rules apply:

1. Level number may be any number from 1 through 49 for record
description entries, or 77 for data item description entries.

2. The clauses may be written in any order, with one exception: the
REDEFINES clause, when used, must immediately follow the data-name.

4. Each entry must be terminated by a period.

5. Semicolons or commas may be used as separators between clauses.

General Format 2 is used for the purpose of regrouping data items.
The following rules apply:

1. A level-66 entry cannot rename another level-66 entry, nor can it
rename a level-77, level-SS, or level-01 entry.

2. All level-66 entries associated with a given logical record must
inunediately follow the last data description entry in the record.

3. The entry must be terminated by a period.

The RENAMES clause is discussed in detail later in this chapter.

General Format 3 is used to describe entries that specify
condition-naJlleS to be associated with particular values of a conditional
variable. A condition-name is a name assigned by the user to a specific
value that a data item may assume during object program execution. The
following rules apply:

1. The condition-name entries for a particular conditional variable
must immediately follow the conditional variable.

2. A cond!tion-name can be associated with any data description entry
except another condition-name, a level-66 item, an index data item,
or a group containing items with descriptions including JUSTIFIED,
SYNCHRONIZED, or USAGE (othe~ than USAGE IS DISPLAY).

3. The entry must be terminated by a period.

In the following example, PAYROLL-PERIOD is the conditional variable.
WEEKLY, SEMI-MONTHLY, and MONTHLY are the condition-names associated
with it. The PICTURE associated with PAYROLL-PERIOD limits the value of
each condition-name to one digit.

02 PAYROLL-PERIOD PICTURE IS 9.
88 WEEKLY VALUE IS 1.
88 SEMI-MONTHLY VALUE IS 2.
88 MONTHLY VALUE IS 3.

100 Part III -- Data Division

l ! "'-"/

\ .• _.,-·

Data-name/FILLER Clause

DATA DESCRIPTION ENTRY -- DETAILS OF CLAUSES

The data description entry consists of a level number, followed by a
data-name, followed by a series of independent clauses. The clauses may
be written in any order, with one exception: the REDEFINES clause, when
used, must immediately follow the data-name. The entry roust be
terminated by a period.

Data-name or FILLER Clause

A data-name specifies the name of the data being described. The word
FILLER specifies an elementary or group item of the logical record that
is never referred to and therefore need not be named.

r-----------~-~-~-~-------~--~----~------------------------------1
I Format I
1---------------------~--i
I I
I level number { data-name} I
I FILLER I
I I
l-----~---J

In the Working-Storage,~l&~S or File Sections, a data-name or the
key word FILLER must be the first word following the level number in
each data description entry.

A data-name is a name assigned by the user to identify a data item
used in a program. A data-name refers to a kind of data, not to a
particular value; the item referred to may assume a number of different
values during the course of a program.

ite;h~h~~i=0~~v!~L~:;e~~e~s~~ I~ ~~:c~~;g~~m~1:~~n~~~e~~~:~!!I'~
named. Under no circumstances may a FILLER item be referred to
directly. In a MOVE, ADD, or SUBTRACT statement with the CORRESPONDING
option, FILLER items are ignored.

Note: Level-77 and level-01 entries in the Working-Storage~~111~11~
Section must be given unique data-names, since neither can oe·''quai.it'iea:
Subordinate data-names, if they can be qualified, need not be unique.

Data Description Entry -- Details of Clauses 101

REDEFINES Clause

REDEFINES C1ause

The REDEFINES clause allows the same computer storage area to contain
different data items or provides an alternative grouping or description
of the same data. That is, the REDEFINES clause specifies the
redefinition of a storage area, not of the data items occupying the
area.

r-------------------~--1
I Format I
~--~
I I
I level number data-name-1 REDEFINES data-name-2 I
I I
L------~--J

The level, numbers of data-name-1 and data-name-2 must be identical,
but must not be 66 or 88. Data-name-2 is the name associated with the
previous data description entry. Data-name-1 is an alternate name for
the same area. When written, the REDEFINES clause must be the first
clause following data-name-1.

The REDEFINES clause must not be used in level-01 entries in the File
Section. Implicit redefinition is provided when more than one level-01
entry follows a file description entry.

Redefinition starts at data-name-2 and ends when a level number less
than or equal to that of data-name-2 is encountered. Between the data
descriptions of data-name-2 and data=name-1, there may be no entries
having lower level numbers (numerically) than the level number of
data-name-2 and data-name-1. Example:

02

02

A.
03 A-1
03 A-2
03 A-3
B REDEFINES

PICTURE X.
PICTURE XXX.
PICTURE 99.

A PICTURE X(6).

In this case, B is data-name-1, and A is data-name-2. When B redefines
A, the redefinition includes all of the items subordinate to A CA-1,
A-2, and A-'3).

The data description entry for data-name-2 cannot contain an OCCURS
clause, nor can data-name-2 be subordinate to an entry which contains an
OCCURS clause. An item subordinate to data-name-2 may contain an OCCURS
clause without the DEPENDING ON option. Data-name~l or any items
subordinate to data-name-1 may contain an OCCURS clause without the
DEPENDING ON option. Neither data-name-2 nor data-name-1 nor any of
their subordinate items may contain an OCCURS clause with the DEPENDING
ON option. When data-name-1 has a level number other than 01, it must
specify a storage area of the same size as data-name-2.

If data-name-1 contains an OCCURS clause, its size is computed by
multiplying the length of one occurrence by the number of occurrences.

Note: In the discussion that follows, the term "computational" refers
to COMPUTATIONALf'~~~~~~~g~lij~iJ~~~i\~•llil~~~l~l~Jilli:•

102 Part III -- Data Division

REDEFINES Clause

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 A PICTURE X(4),
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

When the SYNCHRONIZED clause is specified for a computational item
that is subordinate to an item that contains a REDEFINES clause, the
computational item must not require the addition of slack bytes.

Except for condition-name entries, the entries giving the new
description of the storage area must not contain any VALUE clauses.

The entries giving the new description of the storage area must
follow the entries describing the area being redefined, without
intervening entries that define new storage areas. Multiple
redefinitions of the same storage area should all use the data-name of
the entr that ori inally defined the area.

For example, both of the following are valid uses
REDEFINES c1ause:

02 A PICTURE 9999.
02 B REDEFINES A PICTURE 9V999.
02 C REDEFINES A PICTURE 99V99.

Data items within an area can be redefined without their lengths
being changed; the following statements result in the storage layout
shown in Figure 6.

02 NAME-2.
03 SALARY PICTURE XXX.
03 SO-SEC-NO PICTURE X(9).
0 3 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2.
03 WAGE PICTURE XXX.
03 MAN-NO PICTURE X(9).
03 YEAR PICTURE XX.

r----~---~-----~--~------------------------~---------------------------1

NAME-2

SALARY so-SEC-NO MONTH I
l
l
I
l
I
I
I
I

WAGE MAN-NO YEAR I
,.._..~ ,.._,,'---. l
r--T--T--T--T--T--T--T--T--T--T--T--T--T--1 I
I I I I l I I I I I l I I I I I

NAME-1 I I l I I
I I I I I I I I I I I I I I I I I I L __ i __ i __ i __ i __ i __ i __ i __ i __ i __ i __ i __ i __ i __ J I

L---~------J
Figure 6. Areas REDEFINED without Changes in Length

Data Description Entry -- Details of Clauses 103

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
REDEFINES Clause

Data items can also be rearranged within an area; the following
statements result in the storage layout shown in Figure 7.

02 NAME-2.
03 SALARY PICTURE XXX.
03 SO-SEC-NO PICTURE X(9).
03 MONTH PICTURE XX.

02 NAME-1 REDEFINES NAME-2.
03 MAN-NO PICTURE X(6)•
03 WAGE PICTURE 999V999.
03 YEAR PICTURE XX.

r--1
I SALARY SO-SEC-NO MONTH I
I
I
I
I
I
I
I
I

NAME-2

~~ ~'-'. r--T--T--T--T--T--T--T--T--T--T--T--T--T--1
I l I I I I I I I I I I I I I
I I I I
! I I I I I I I I I I I I I I
l--i--i--i--i--i--i--i-_i __ .1.__i __ i __ i __ i __ J

I MAN-NO WAGE YEAR
I ""' _ _.. -""- -~
I r--T--T--T--T--T--T--T--T--T--T--T--T--T--1
I I I I I I I I I I I l I I I I
I NAME-1 I I I I
I I I I I I I
I L--i--i--i--i--i--i--i--i--i--i--i--i--i--J

L------------------------~------~-~------------------------------------
Figure 7. Areas REDEFINED and Rearranged

When an.area is redefined, all descriptions of the area remain in
effect. Thus, if B and c are two separate items that share the same
storage area due to redefinition, the procedure statements MOVE X TO B
or MOVE Y TO c could be e~ecuted at any point in the program. In the
first case, B would assume the value of X and take the form specified by
the description of B. In the second case, the same physical area would
receive Y according to the description of c. It should be noted, how­
ever, that if both of the foregoing statements are executed successively
in the order specified, the value Y will overlay the value x. However,
redefinition in itself does not cause any data to be erased and does not
supersede a previous description.

The usage of data items within an area can be redefined.

Altering the USAGE of an area through redefinition does not cause any
change in existing data. consider the example:

02 B
02 C REDEFINES B
02 A

PICTURE 99 USAGE DISPLAY VALUE IS 8.
PICTURE S99 USAGE COMPUTATIONAL.
PICTURE S9999 USAGE COMPUTATIONAL.

Assuming that B is on a halfword boundary, the bit configuration of
the value 8 is 1111. 0000 1111 1000, because B is a DISPLAY item.
Redefining B does not change its appearance in storage. Therefore, a
great difference results from the two statements ADD B TO A and ADD c TO
A. In the former case, the value B is added to A, because B is a
display item. In the latter case, the value -3,848 is added to A,
because c is a binary item (USAGE IS COMPUTATIONAL), and the bit
configuration appears as a negative number.

104 Part III -- Data Division

\ j
··~

BLANK WHEN ZERO Clause

Moving a data item to a second data item that redefines the first one
(for example, MOVE B TO C when c redefines B) 1 may produce results that
are not those expected by the programmer. The same is true of the
reverse (MOVE B TO c when B redefines C).

A REDEFINES clause may be specified for an item within the scope of
an area being redefined, that is, an item subordinate to a redefined
item. The following example would thus be a valid use of the REDEFINES
clause:

02 REGULAR-EMPLOYEE.
03 LOCATION PICTURE A(8).
03 STATUS PICTURE X(4).
03 SEMI-MONTHLY-PAY PICTURE 9999V99.
03 WEEKLY-PAY REDEFINES SEMI-MONTHLY-PAY PICTURE 999V999.

02 TEMPORARY-EMPLOYEE REDEFINES REGULAR-EMPLOYEE.
03 LOCATION PICTURE A(8).
03 FILLER PICTURE X(6}.
03 HOURLY-PAY PICTURE 99V99.

REDEFINES clauses may also be specified for items subordinate to
items containing REDEFINES clauses. For example:

02

02

REGULAR-EMPLOYEE.
03 LOCATION
03 STATUS
03 SEMI-MONTHLY-PAY
TEMPORARY-EMPLOYEE REDEFINES
03 LOCATION
03 FILLER
03 HOURLY-PAY

PICTURE
PICTURE
PICTURE

REGULAR-EMPLOYEE.
PICTURE
PICTURE

03 CODE-H REDEFI·NES HOURLY-PAY
PICTURE
PICTURE

BLANK WREN ZERO Clause

A(8).
x (4).

999V999.

A(8).
X(6).
99V99.
9999.

This clause specifies that an item is to be set to blanks whenever
its value is zero.

r-------------~---1
I Format I
~--_; _______ "
I I
I BLANK WHEN ZERO I
I I
l-----------'-----------------------------:-----------------------------J

When the BLANK WHEN ZERO clause is used, the item will contain only
blanks if the value of the item is zero.

The BLANK WHEN ZERO clause may be specified only at the elementary
level for numeric edited or numeric items. When this clause is used for
an item whose PICTURE is numeric, the category of the item is considered
to be numeric edited.

This clause may not be specified for level-66 and level-88 data
items.

Data Description Entry -- Details of Clauses 105

JUSTIFIED Clause

JUSTIFIED Clause

The JUSTIFIED clause is used to override normal positioning of data
within a receiving alphabetic or alphanumeric data item •

.----------------~-~-----------------------------~----------------,
I Format I
t---.-------~
I I I { JUSTIFI§D } RIGHT I
I ill!fil'. I
I I
L---J

Normally, the rule for positioning data within a receiving
alphanumeric or alphabetic data item is:

• The data is aligned in the receiving field, beginning at
leftmost character position within the receiving field.
character positions to the right are filled with ~paces.
truncation occurs, it will be at the right.

the
Unused
If

The JUSTIFIED clause affects the positioning of data in the receiving
field as follows:

• When the receiving data item is described with the JUSTIFIED clause
and the data item sent is larger than the receiving data item, the
leftmost characters are truncated.

• When the receiving data item is described with the JUSTIFIED clause
and is larger than the data item sent, the data is aligned at the
rightmost character position in the data item. Unused character
positions to the left are filled with spaces.

The JUSTIFIED clause may only be specified for elementary items.

This clause must not be specified for level-66 or level-88 data
items.

OCCURS Clause

The OCCURS clause is used to define tables and other homogeneous sets
of data, whose elements can be referred to by subscripting or indexing.
The OCCURS clause is described in "Table Handling•"

PICTURE Clause

The PICTURE clause describes the general characteristics and editing
requirements of an elementary item.

106 Part III -- Data Division

!

(!

\._.../

PICTURE Clause

r---~----1
I Format I
~---~--~
I I
II {PICTURE } II

IS character string
I !'.!~ I
I I
L--J

The PICTURE clause can be used only at the elementary level.

The character string consists of certain allowable combinations of
characters in the COBOL character set. The maximum nu!l\ber of characters
allowed in the character string is 30. The allowable combinations ·
determine the category of the elementary item.

There are five categories of data that can be described with a
PICTURE clause. They are:

1. Alphabetic
2. Numeric
3. Alphanumeric
4. Alphanumeric edited
5. Numeric edited

The Three Classes of Data

The five categories of data items are grouped into three classes:
al.phabetic, numeric, and alphanumeric. For alphabetic and numeric, the
class and the category are synonymous. The alphanumeric class includes
the categories of alphanumeric (without editing), alphanumeric edited,
and numeric edited.

Every elementary item belongs to one of the three classes ·and to one
of the five categories. The class of a group item is treated at object
time as alphanumeric regardless of the class of the elementary items
subordinate to that group item.

Table 6 shows the relationship of the class and category for
elementary and group data items.

Table 6. Class and category of Elementary and Group Data Items
r--------------------T---------------------T---------------------------1
I Level of Item I Class I Category I
~-------------------+---------------------+---------------------------~
I I Alphabetic I Alphabetic I
I ~--------..:..------'------+----------.;..--"""---.;..---------~
I Elementary I Numeric I Numeric I
I ~---------------------+--------------------------~~
I I I Alphanumeric I
I I Alphanumeric I Alphanumeric Edited I
I I I Numeric Edited I
~--------------------+---------------------+-----------------'----------~
I I .I Alphabetic I
I I I Numeric I
I Group I Alphanumeric I Alphanumeric I
I I I Alphanumeric Edited I
I I I Numeric Edited I
L--------------------i---------------------i-------------------------~-J

Data Description Entry -- Details of Clauses 107

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
l?ICTURE Clause

In the processing of data through COBOL statements, the size of an
elementary item is determined through the number of character positions
specified in its PICTURE character string. In core storage, however,
the size is determined by the actual number of bytes the item occupies,
as determined by its PICTURE character string, and also by its USAGE
(see "USAGE Clause").

Normally, when an arithmetic item is moved from a longer field into a
shorter one, this compiler will truncate the data to the number of
characters represented in the PICTURE character string of the shorter
item.

For example, if a sending field with PICTURE 599999, and containing
the value +12345, is moved to a COMPUTATIONAL receiving field with
PICTURE 899, the data is truncated to +45.

Reeetition of symgol~

An integer which is enclosed in parentheses following one of the
symbols

A x 9 p z * B 0 +

indicates the number of consecutive occurrences of the symbol. For
example, if the programmer writes

A(40)

$

the four characters (40) indicate forty consecutive appearances of the
symbol A. The number within parentheses may not exceed 32,767.

~Qt~: The following symbols may appear only once in a given PICTURE
clause:

s v CR DB

Symbols Used in the PICTURE Clause

The functions of the symbols used to describe an elementary item are:

A Each A in the character string represents a character position that
can contain only a letter of the alphabet or a space.

B Each B in the character string represents a character position into
which the space character will be inserted.

p The P indicates an assumed decimal scaling position and is used to
specify the location of an assumed decimal point when the point is
not within the number that appears in the data item. The scaling
position character P is not counted in the size of the data item.
Scaling position characters are counted in determining the maximum

108 Part III -- Data Division

\ ,
"-"

s

v

x

z

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE Clause

number of digit positions (18) -in numeric edited items or in items
that appear as operands in arithmetic statements.

The scaling position character P may appear only to the left or
right of the other characters in the string as a continuous string
of p•s within a PICTURE description. The sign characters and the
assumed decimal point V are the only characters which may appear to
the left of a leftmost string of p•s. Since the scaling position
character P implies an assumed decimal point (to the left of the
P's if the P's are leftmost PICTURE characters and. to the right of
the P's if the P's are rightmost PICTURE characters)~ the assumed
decimal point symbol V is redundant as either the leftmost or
rightmost character within such a PICTURE description.

The symbol S is used in a PICTURE character string to indicate the
presence (but not the representation nor, necessarily, the
position) of an operational sign, and must be written as the
leftmost character in the PICTURE string. An operational sign
indicates whether the value of an item involved in an operation is
positive or negative. The symbol s is not counted in determinin
the size of the elementar ite

The v is used in a character string to indicate the location of the
assumed decimal point and may appear only once in a character
string. The V does not represent a character position and,
therefore, is not counted in the size of the elementary item. When
the assumed decimal point is to the right of the rightmost symbol
in the string, the v is redundant.

Each X in the character string represents a character position
which may contain any allowable character from the EBCDIC set.

Each Z in the character string represents a leading numeric
character position; when that position contains a z~ro, the zero is
replaced by a space character-. Each z is counted in the size of
the item.

9 Each 9 in the character string represents a character position that
contains a numeral and is counted in the size of the item.

0 Each zero in the character string represents a character position
into which the numeral zero will be inserted. The 0 is counted in
the size of the item.

±
CR
DB

Each comma in the character string represents a character position
into which a comma will be inserted. This character is counted in
the size of the item. The comma insertion character cannot be the
last character in the PICTURE character string.

When a period appears in the character string, it is an editing
symbol that represents the decimal point for alignment purposes.
In addition, it represents a character position into which a period
will be inserted. This character is counted in the size of the
item. The period insertion character cannot be the last character
in the PICTURE character string.

Note: For a given program, the functions of the period and comma
are exchanged if the clause DECIMAL-POINT IS COMMA is stated in the
SPECIAL-NAMES paragraph. In this exchange, the rules for the
period apply to the comma and the rules for the comma apply to the
period wherever they appear in a PICTURE clause.

These symbols are used as editing sign control symbols When
used, each represents the character position into which the
editing sign control symbol will be placed. The symbols are

Data Description Entry -- Details of Clauses 109

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

*

mutually exclusive in one character string. Each character used in
the symbol is counted in determining the size of the data item.

Each asterisk (check protect symbol) in the character string
represents a leading numeric character position into which an
asterisk will be placed when that position contains a zero. Each *
is counted in the size of the item.

$ The currency symbol in the character string represents a character
position into which a currency symbol is to be placed. The
currency symbol in a character string is represented either by the
symbol $ or by the single character specified in the CURRENCY SIGN
clause in the SPECIAL-NAMES paragraph of the Environment Division.
The currency symbol is counted in the size of the item.

Table 7 shows the order of precedence of the symbols used in the
PICTURE clause.

110 Part III -- Data Division

(l

\J

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
PICTURE Clause

/ •:r:able 1. Precedence of Symbols Used in the PICTURE Clause
(,-------------,-------------T------------------------T-----------------------T_.:_ _________ 1

"'-'t FIRST I I I I
I SYMBOL I I I I
I I NON-FLOATING I FLOATING I OTHER I
I I INSERTION SYMBOLS I INSERTION SYMBOLS I SYMBOLS I
I ~-T-T_T_T ___ T ___ T ____ T---+---y---T ___ T ___ T ___ T---f-y-y-T-T-T-1
I SECOND I I I I l{+}l{+UfcR}I l{Z}l{.Z}'lf+}l{+}'I I I IAI I I I I
I SYMBOL IBIOI, I· I - I -Jl!,DB jcs 1 1 *,I * n- I - 1cs1 1cs1 19IXISIVIPIPI
~---------------T---------- -f-f-f-f---f---f----f---f---f---f---f---f---f---f-f-f-f-f-+~1
I I B 1x1x1x1x1 x I I IX I x I x I x I x 1x IX 1x1x1 1x1 1x1
I ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---t-t-+-+-+-t-1
I I o 1x1x1x1x1 x I I IX I x I x I x I x IX IX 1x1x1 1x1 1x1
I NON-FLOATING ~----------t-t-t-t-t---t---t----t---f---t---f---t---t---t---t-t-t-t-t-t-1
I I , 1x1x1x1x1 x I I IX I x I x I x I x IX IX IXI I IXI IXI
I INSERTION 1----------t-t-f-f-f---f---f----t---f---t---t---t---t---t---f-t-f-f-t-f-1
I I • IXIXIXI I x I I IX I x I I x I IX I IXI I I I I I
I SYMBOLS ~----------t-t-t-t-f---f---f----t---t---f---t---f---t---t---f-t-t-t-t-t-1
I I + or - I
I ~----------t-t-+-+-+---t---+----+---+---+---+---t---t---+---+-+-+-t-t-t-1
I I + or - I x I x I x I x I I I I x I x I x I I I x I x I x I I I x I x Ix I
I ~----------+-+-+-+-+---t---t----+---t---t---+---t---+---+~--+-+-+-+-+-+-1
I I CR or DB Ix Ix Ix Ix I I I Ix I x I x I I I x Ix Ix I I I x Ix Ix I
I ~----------+-+-+-+-t---+---+----t---+---+---+---+---+---+---+-+-+-+-+-t-1
I I cs 1 I I I I I x I I I I I I I I I I I I I I I I
~---------------+----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-1
I I z or * I x I x I x I I x I I I x I x I I I I I I I I I I I I
I ~----------+-+-+-+-+---+---+----+---+---+---+---+---+---+---t-+-+-+-t-+-1
I FLOATING I Z or * I XIX I XI XI X I I I X I X I X I I I I I I I I XI I XI
I ~----------t-+-t-t-t---+---+----t---+---t---t---+---+---t---+-+-+-+-+-+-1
I INSERTION I + or - IXIXIXI I I I IX I I I x I I I I I I I I I I
I ~----------t-t-t-t-t---t---t----t---+---t---t---+---+---t---+-t-+-t-t-t-~
J s YMBOLS I + or - I x I x I x I x I I I I x I I I x I x I I I I I I x I Ix I \._.,,, r---~;~----t;t;t;t_t_;_t ___ t ____ t ___ t ___ t ___ t ___ t ___ t~--t ___ t_t_t_t_t_t-1
I ~----------+-+-+-+-+---+---t----t---t---+---+---+---t---+---+-+-+-+-t-t-1
I I cs 1 Ix Ix Ix I x I x I I I I I I I Ix Ix I I I Ix I Ix I
~---------------+----------+-+-+-+-+--~+---+----+---+---+---+---+---+---+---+-+-+-+-+-+-i
I I 9 1x1x1x1x1 x I I IX I x I I x I IX I 1x1x1x1x1 1x1
I ~----------t-t-+-t-t---t---t----t---t---+---t---t---+---t---+-+-+-+-+-t-1
I I A x IXIXI I I I I I I I I I I I IXIXI I I I I
I ~----------+-+-+-+-+---t---+----+---+---+---+---+---t---+---t-t-t-t-+-t-i
I OTHER I s I I I I I I I I I . I I I I I I I I I I I I
I ~----------+-t-t-+-t---+---t----t---t---t---t---t---t---t---t-+-+-+-+-t-1
I SYMBOLS I v Ix Ix Ix I I x I I Ix I x I I x I Ix I Ix I Ix I Ix I I
I ~----------t-t-t-t-t---t---+----+---t---t---t---+---+---t---+-t-+-+-t-t-i
I I P IXIXIXI I X I I IX I x I I x I IX I IXI IXI IXI I
I ~----------t-t-t-t-t---t---t----+---t---+---t---t---t---t---t-t-t-t-t-+-~
I I P I I I I I x I I IX I I I I I I I I IXIXI IXI
~---------------.L. _________ i_i_i_i_i ___ i ___ i----L---i~--L---i ___ i ___ i ___ i ___ i_i_i_i_i_i-i

l 1 cs is the abbreviation for the currency symbol.- I
~---~

I
or I At least one of the symbols A, x, z, 9, or *• or at least two of the symbols +, -,

cs must be present in a PICTURE string. I
I

An x at an intersection indicates that the symbol(s) at the top of the column may, in at
given character-string, appear anywhere to the left of the symbol(s) at the left of thel
row. I

I
Non-floating insertion symbols + and -, floating insertion symbols z, *• +, -, and cs, I
and other symbol P appear twice in the above PICTURE character precedence table. The I
leftmost column and uppermost row for each symbol represents its use to the left of thel
decimal point position. The second appearance of the symbol.in the table represents I

. its use to the right of the decimal point position. I
, , I
_,,j Braces ({}) indicate items that are mutually exclusive I

L--~--~---------J

Data Description Entry -- Details of Clauses 111

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE Clause

The Five Categories of Data

The following is a detailed description of the allowable combinations
of Characters for each category of data.

~~g~~!!g_!!~MS: An alphabetic item is. one whose PICTURE character
string contains only the symbol A. Its contents, when represented in
Standard Data Format, must be any combination of the 26 letters of the
Roman alphabet and the space from the COBOL character set. Each
alphabetic character is stored in a separate byte.

~R~~QMEB!Q_!TEMS: An alphanumeric item is one whose PICTURE character
string is restricted to combinations of the symbols A, x, and 9. The
item is treated as if the character string contained all X's. Its
contents, when represented in Standard Data Format, are allowable
characters from the EBCDIC set.

A PICTURE character string which contains all A's or all 9 1 $ does not
define an alphanumeric item.

NUMERIC ITEMS: There are two types of numeric items: fixed-point items
and-floating=point items.

The PICTURE of a fixed-point numeric item may contain a valid
combination of the following symbols:

9 v p s

Examples of fixed-point numeric items:

PICTURE 9999 __ _
S99

S999V9
PPP999
S999PPP

ValiS! Ran~f_y:alues
0 through 9999
-99 through +99
-999.9 through +999.9
0 through .000999
-1000 through -999000 and
+1000 through +999000 or zero

The maximum size of a fixed-point numeric item is 18 digits.

The contents of a fixed-point numeric item, when represented in
Standard Data Format, must be a combination of the Arabic numerals 0
through 9; the item may contain an operational sign. If the PICTURE
contains an s, the contents of the item are treated as positive or
negative values, depending on the operational sign; if the PICTURE does
not contain an s, the contents of the item are treated as absolute
values.

Note: ASCII considerations for the PICTURE clause are given in
Af>pendix E.

112 Part III -- Data Division

'•

. I
\ . ._/'

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE Clause

Data Description Entry -- Details of Clauses 113

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE Clause

~~~~~QMEft!Q_~DlT~Q_!!EMS: An alphanumeric edited item is one whose 
~ICTURE character string is restricted to certain combinations of the 
following symbols; 

A x 9 B 0 

To qualify as an alphanumeric edited item, one of the following 
conditions must be true: 

1. 'l'he character string must contain at least one B and at least one 
x. 

2. The character string must contain at least one 0 and at least one 
x. 

3. The character string must contain at least one 0 (zero> and at 
least one A. Its contents, when represented in.Standard Data 
Format, are allowable characters chosen from the EBCDIC set. 

USAGE IS DISPLAY is used in conjunction with alphanumeric edited 
items. 

If a VALUE clause is specified for an alphanumeric edited item, the 
literal is treated exactly as specified; no editing is performed. 

Editing Rules; Alphanumeric edited items are subject to only one type 
of editing: simple insertion using the symbols 0 and B. 

Examples of alphanumeric edited items: 

PICTURE 
ooox'f12> 
BBBX(12) 
OOOA( 12) 
X{S) BX(7) 

Value of Data 
ALPHANUMEROl 
ALPHANUMEROl 
ALPHABETIC 
ALPHANUMERIC 

Edited Result 
000ALPHANUMER01 

ALPHANUMER01 
OOOALPHABETIC 
ALPHA NUMERIC 

NUMERIC EDITED ITEMS: A numeric edited item is one whose PICTURE 
character string is restricted to certain combinations of the symbols: 

B p v z 0 9 * + CR 

The allowable combinations are determined from the order of 
precedence of symbols and editing rules. 

DB $ 

The maximum number of digit positions that may be represented in the 
character string is 18 .• 

The contents of the character positions that represent a digit, in 
Standard Data Format, must be one of the numerals. 

USAGE IS D!SPLAY is used in conjunction with numeric edited items. 

If a VALUE clause is specified for a numeric edited item, the literal 
is treated exactly as specified: no editing is performed. 

The maximum length of a numeric edited item is 127 characters. 

,Editing Rules: All types of editing are valid for numeric edited items. 

114 Part III -- Oata Division 

j 

'~ 



( : 

\._) 

i 
I : 
\..._.../ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

PICTURE Clause 

There are two general methods of performing editing in the PICTURE 
clause: by insertion or by suppression and replacement. 

There are four types of !g£ertion editing: 

1. simple insertion 
2. special insertion 
3. fixed insertion 
4. floating insertion 

There are two types of ~!!£E_ression and replacement editing: 

1. zero suppression and replacement with spaces 
2.. zero suppression and replacement with asterisks 

Insertion Editing 

Simple insertion editing is performed using the following insertion 
characters: 

, (comma) B <space> 0 {zero) 

The insertion characters are counted in the size of the item and 
represent the position in the item into which the character will be 
inserted. 

Examples of simple insertion editing: 

PICTURE 
99,999 

9,999,000 
99B999B000 
99B999BOOO 

99BBB999 

Y!!!~_of Data 
12345 
12345 

1234 
12345 

123456 

Edited Result 
12,345 

2,345,000 
01.234 000 
12 345 000 

23 456 

Special insertion editing is performed using the period <.> as the 
insertion character. The result of special insertion editiµg is the 
appearance of the insertion character in the item in the same position 
as shown in the character string. 

In addition to being an insertion character, the period represents a 
decimal point for alignment purposes. The insertion character used for 
the actual decimal point is counted in the size of the item• 

The use of both the assumed decimal point, represented by the symbol 
v, and the actual decimal point, represented by the period insertion 
character, in one fICTURE character string is not allowed. 

Examples of special insertion editing: 

PICTURE 
999.99 
999.99 
999.99 
999.99 

Value of Data 
-- 1.23_4_ 

12. 34 . 
123.45 

1234. 5 

Edited Result 
001. 23 
012. 34 
123. 45 
234 50 

Data Description Entry -- Details of Clauses 115 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

PICTURE Clause 

Fixed insertion editi!!S{ is performed by using the following insertion 
characters: 

currency symbol $ 
·editing sign control symbols + CR DB 

Only one currency symbol and only one of the editing sign control 
symbols can be used in a given PICTURE character string. 

Fixed insertion editing results in the insertion character occupying 
the same character position in the edited item as it occupied in the 
PICTURE character string. 

$ The currency symbol must be the leftmost character position to 
be counted in the size of the item, unless it is preceded by 
either a + or a - symbol. 

+ or - When either symbol is used, it must represent the leftmost or 
rightmost character position to be counted in the size of the 
item. 

CR or DB When either symbol is used, it represents two character 
positions in determining the size of the item and must 
represent the rightmost character positions that are counted 
in the size of the item. 

Editing sign control symbols produce results depending upon the value 
of the data item as shown in Table 8. 

Table 8. Editing Sign Control Symbols and their Results 
r---------------------------------T------------~-----------------------1 

I I Result I 
I ~--------------------T---------------~ 
I Editing Symbol in PICTURE I Data Item I Data Item I 
I Character String I Positive or Zero I Negative I 
~---------------------------------+--------------------+---------------~ 
I + I + I f 
I I space I I 
I CR I 2 spaces I CR I 
I DB I 2 spaces I DB I 
L---------------------------------i--------------------i---------------J 

Examples of fixed insertion editing: 

PICTURE 
-999:99+ 

+9999.99 
9999.99-
$999.99 

-$999.99 
$9999.99CR 
$9999.990B 

Value of Data 
--+6sss:ssr-

-55ss. sss 
+1234.56 
-123.45 
-123.456 
+123.45 
-123.45 

Edited Result 
555.55+ 

-5555.55 
1234.56 
$123.45 

-$123.45 
$0123.45 
$0123.45DB 

f1Q~tigg_~gse~tion_§~iting is indicated in a PICTURE character string 
by using a string of at least two of the allowable insertion characters 
$ + or - to represent the leftmost numeric character positions into 
which the insertion characters can be floated. 

The currency symbol <$> and the editing sign symbols (+ or -> are 
mutually exclusive as floating insertion characters in a given PICTURE 
character string. 

116 Part III -~ Data Division 

' . I 
I ' 

' . ...._,' 



Order No. GC28-6394~2, Page Revised 4/15/71 by TNL GN-0436 
PICTURE Clause 

Any of the simple insertion characters <, B 0) embedded in the string 
of floating insertion characters, or to the immediate right of this 
string, are part of the floating string. 

In a PICTURE character string, there are only two ways of 
representing floating insertion editing: 

1. Any or all leading numeric character positions to the left of the 
decimal point are represented by the insertion character. 

2. All of the numeric character positions in the PICTURE character 
string are represented by the insertion character. 

The result of floating insertion editing depends upon the 
representation in the PICTURE character string: 

1. If the insertion characters are only to the left of the decimal 
point, a single insertion character is placed into the character 
position immediately preceding the first nonzero digit in the data 
represented by the insertion symbol string or the decimal point, 
whichever is farther to the left of the PICTURE character string. 

2. If all numeric character positions in the PICTURE character string 
are represented by the insertion character, the result depends upon 
the value of the data. If the value is zero, the entire data item 
will contain spaces. If the value is not zero, the result is the 
same as when the insertion characters are only to the left of the 
decimal point. 

To avoid truncation when using floating insertion editing, the 
programmer must specify the minimum size of the PICTURE character string 
for the receiving data item to be: 

1. The number of characters in the sending item, plus 

2. The number of insertion characters (other than floating insertion 
characters) being edited into the receiving data item, plus 

3. one character for the floating insertion character. 

Examples of floating insertion editing: 

PICTURE 
--$$$$.99 

$$$9.99 
$, $$$, 999. 99 
+,+++,999.99 

$$,$$$,$$$.99CR 
$$,$$$,$$$.99DB 
++,+++,+++.+++ 

Value of Data 
-------:-123-

.12 
-1234.56 

-123456.789 
-1234567 
+1234567 

0000. 00 

~~~Q_§.!!eeression and Reelacement Editing 

Edited Result
----$:T2-

$0.12
$1,234.56

-123,456.78
$1,234 1 567.00CR
$1,234,567.00

Zero suppression and replacement editing means the suppression of
leading zeros in numeric character positions and is indicated by the use
of the alphabetic character z or the character * in the. PICTURE
character string. If z is used, the replacement character will be the
space; if * is used, the replacement character will be *·

The symbols + - * z and $ are mutually exclusive as floating
replacement characters in a given PICTURE character string.

Data Description Entry -- Details of Clauses 117

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE Clause

Each suppression symbol is counted in determining the size of an
item.

Zero suppression and replacement editing is indicated in a PICTURE
character string by using a string 0£ one or more of either allowable
symbol to represent leading numeric character positions, which are to be
replaced when the associated character position in the data contains a
zero. Any of the.simple insertion characters embedded in the string of
symbols or to the immediate right of this string are part of the string.
Simple insertion or fixed insertion editing characters to the left of
the string are not included.

In a PICTURE character string, there are only two ways of
representing zero suppression:

1. Any or all of the leading numeric character positions to the left
of the decimal point are represented by suppression symbols.

2. All of the numeric character positions in the PICTURE character
string are represented by suppression symbols.

If the suppression symbols appear only to the left of the decimal
point, any leading zero in the data which appears in a character
position corresponding to a suppression symbOl in the string is replaced
by the replacement character. Suppression terminates at the first
nonzero digit in the data or at ~he decimal point, whichever is
encountered first.

If all numeric character positions in the PICTURE character string
are represented by suppression symbols, and the value of the data is not
zero, the result is the same as if the suppression characters were only
to the left of the decimal point.

If the value of the data is zero, the entire data item will be spaces
if the suppression symbol is z, or it will be asterisks (except for the
actual decimal point) if the suppression symbol is *•

If the value of the data is zero and the asterisk is used as the
suppression symbol, zero suppression editing overrides the function of
the BLANK WHEN ZERO clause, if specified.

Examples of Zero Suppression and Replacement Editing:

PICTURE
--zzzZ.zz

****·**
ZZZZ.99
****· 99
ZZ99.99

z,zzz.zz+
*•***·**+

•*•***·**+
$Z,ZZZ,ZZZ.ZZCR

$B*r***•***·**BBDB

Value of Data
-- 0000.00

0000.00
0000. 00
0000.00

00000.00
+123.456
-123.45

+12345678.9
+12345.67
-12345.67

118 Part III -- Data Division

****·**
• 00

****.00
oo.oo

123.45+
**123.45-

•2,345,678.90+
$ 12,345.67

$ ***12 1 345.67 DB

\
, I
\.._;!

i I
~,

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

SIGN Clause

Data Description Entry -- Details of Clauses 118.1

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary item
on one of the proper boundaries in core storage.

r--1
I Format I
~--~
I I
I f SYNCHRONIZED } [LEFT J l

I t §!NC , !S!@RT I
I I
L----~---------------------------------~-------------------------------J

The SYNCHRONIZED clause is used to ensure efficiency when performing
arithmetic operations on an item.

The SYNCHRONIZED clause may appear only at the elementar

If either the LEFT or the RIGHT option is specified, it is treated as
comments.

The length of an elementary item is not affected by the SYNCHRONIZED
clause.

When the SYNCHRONIZED clause is specified for an item within the
scope of an OCCURS clause, each occurrence of the item is synchronized.

When the item is aligned, the character positions between the last
item assigned and the current item are known as "slack bytes." These
unused character positions are included in the size of any group to
which the elementary item preceding the synchronized elementary item
belongs.

The proper boundary used to align the item to be synchronized depends
on the format of the item as defined by the USAGE clause.

When the SYNCHRONIZED clause is specified, the following actions are
taken:

For a COMPUTATIONAL item:

1. If its PICTURE is in the range of S9 through S9<4>, the item is
aligned on a halfword (even> boundary.

2. If its PICTURE is in the range of 59(5) through S9(18>r the item is
aligned on a fullword <multiple of 4) boundary.

118.2 Part III -- Data Division

I

0

('

\._.,!

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
SYNCHRONIZED Clause

~Qt~: In the discussion that follows, the term "computational" refers
to COMPUTATIONALi'.J1tfl~g~~~-l~~~J[il!l~lli~~~~~) items.

When the SYNCHRONIZED clause is specified for an item that also
contains a REDEFINES clause, the data item that is redefined must have
the proper boundary alignment for the data item that REDEFINES it. For
example, if the programmer writes:

02 A PICTURE X(4).
02 B REDEFINES A PICTURE S9(9) COMP SYNC.

he must ensure that A begins on a fullword boundary.

Data Description Entry -- Details of Clauses 118.3

'._;'

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Slack Bytes

When the SYNCHRONIZED clause is specified for a computational item
that is the first elementary item subordinate to an item that contains a
REDEFINES clause, the computational item must not require the addition
of slack bytes.

When SYNCHRONIZED is not specified for binary or internal
floating-point items, no space is reserved for slack bytes. However,
when computation is done on these fields, the compiler generates the
necessary instructions to move the items to a work area which has the
correct boundary necessary for computation.

In the File Section, the compiler assumes that all level-01 records
containing SYNCHRONIZED items are aligned on a doubleword boundary in
the buffer. The user must provide the necessary inter-record slack
bytes to ensure alignment.

In the Working-Storage Section, the compiler will align all level-01
entries on a doubleword boundary.

Slack Bytes

There are two types of slack bytes: intra-record slack bytes and
inter-record slack bytes.

!gt~~=~~££~d s£ack byt~~ are unused character positions preceding
each synchronized item in the record.

Inter-record slack bytes are unused character positions added between
blocked logical records.

INTRA-RECORD SLACK BYTES: For an output file, or in the working-Storage
section;-the-compiier-inserts intra-record slack bytes to ensure that
all SYNCHRONIZED items are on their proper boundaries. For an input
file, or in the Linkage Section, the compiler expects intra-record slack
bytes to be present when necessary to assure the proper alignment of a
SYNCHRONIZED item.

Because it is important for the user to know the length of the
records in a file, the algorithm the compiler uses to determine whether
slack bytes are required and, if they are required, the number of slack
bytes to add, is as follows:

• The total number of bytes occupied by all elementary data items
preceding the computational item are added together, including
any slack bytes previously added.

• This sum is divided by fil, where:

m 2 for COMPUTATIONAL items of four-digit length or less

m ~ for COMPUTATIONAL items of five-digit length or more

Data Description Entry -- Details of Clauses 119

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Slack Bytes

• If the remainder <!:> of this division is equal to zero, no
slack bytes are required. If the remainder is not equal to
zero, the number of slack bytes that must be added is equal to
!!! - !:. •

These slack bytes are added to each record immediately following the
elementary data item preceding the computational item. They are defined
as if they were an item with a level number equal to that of the
elementary item that immediately precedes the SYNCHRONIZED item, and are
included in the size of the group which contains them.

For example:

01 FIELD-A.
02 F'IELD-B
02 FIELD-C.

03 FIELD-D
[03 Slack-Bytes

03 FIELD-E

01 FIELD-L.
02 FIELD-M
02 FIELD-N

[02 Slack-Bytes
02 FIELD-0.

03 FIELD-P

PICTURE X(5) ~

PICTURE XX.
PICTURE x. Inserted by compiler]
PICTURE S9(6) COMP SYNC,

PICTURE X(5),
PICTURE XX.
PICTURE x. Inserted by compiler]

PICTURE 89(6) COMP SYNC.

Slack bytes may also be added by the compiler when a group item is
defined with an OCCURS clause and contaihs within it a SYNCHRONIZED data
.:1-.~~~,~~!:~ .. ~~l\.<;3.E, defined as COMPUTATIONAL~~!,~~il~ilri~B&J
~~~li~~~l· To determine whether slack bytes are to be added, the 
following action is taken: 

• The compiler calculates the size of the group, including all the 
necessary intra-record slack bytes. 

• This sum is divided by the largest ~ required by any elementary 
item within the group. 

• If £ is equal to zero, no slack bytes are required. If ~ is not 
equal to zero, !!! - !: slack bytes must be added. 

The slack bytes are inserted at the end of each occurrence of the 
group item containing the OCCURS clause. For example, if a record is 
defined as follows: 

01 WORK-RECORD. 
02 WORK-CODE 
02 COMP-TABLE OCCURS 10 

03 COMP-TYPE 
[03 Ia-Slack-Bytes 

03 COMP-PAY 
03 COMP-HRS 
03 COMP-NAME 

120 Part III -- Data Division 

PICTURE X. 
TIMES. 
PICTURE X. 
PICTURE XX. Inserted by compiler] 
PICTURE S9(4)V99 COMP SYNC. 
PICTURE 89(3) COMP SYNC. 
PICTURE X(S), 

' I 
"..._/ 



Slack Bytes 

The record will appear in storage as shown in Figure 8 

First Occurrence of COMP-TABLE 
,;,wl 
081 
3= vi, I 

IA "" I Slack 1a~1 
Jv ,_I Bytes COMP-PAY 

D 

I I 

H 

D = doubleword boundary 
F ::::: fu ~!word boundary 
H ""' halfword boundary 

I 
H 

I 
I 

COMP- I 
HOURS I 

I 

H 

0 

COMP-NAME 

I l 
H ~ H 

Figure 8. Insertion of Intra-occurrence Slack Bytes 

In order to align COMP-PAY and COMP-HRS upon their proper boundaries, 
the compiler has added two intra-occurrence slack bytes <shown above as 
Ia-Slack-Bytes). 

However, without further adjustment, the second occurrence of 
COMP-TABLE would now begin one byte before a doubleword boundary, and 
the alignment of COMP-PAY and COMP-HRS would not be valid for any 
occurrence of the table after the first. Therefore, the compiler must 
add inter-occurrence slack bytes at the end of the group, as though the 
record had been written: 

01 WORK-RECORD. 
02 WORK-CODE 
02 COMP-TABLE OCCURS 10 

03 COMP-TYPE 
[03 Ia-Slack-Bytes 

03 COMP-PAY 
03 COMP-HRS 
03 COMP-NAME 

[03 re-slack-Bytes 

PICTURE X. 
TIMES. 
PICTURE X. 
PICTURE XX. Inserted by compiler] 
PICTURE S9(4)V99 COMP SYNC. 
PICTURE S9(3) COMP SYNC. 
PICTURE X(5). 
PICTURE xx. Inserted by compiler] 

so that the second (and each succeeding) occurrence of COMP-TABLE begins 
one byte beyond a doubleword boundary. The storage layout for the first 
occurrences of COMP-TABLE will now appear as shown in Figure 9. 

Data Description Entry -- Details of Clauses 121 



Slack Bytes 

I 
\..--------First Occurrence of COMP-TABLE-------t-------Second Occurrence of COMP-TABLE------

' I 
"wl ..:c. I 
~OI, IA 
U~ wJ Sieck 

i8 ~I Bytes 

I I 
COMP-PAY 

D 

H 

D :::: doubleword boundary 
F = ful !word boundary 
H =halfword boundary 

H 

I I 
I I 
I COMP- I 
I HOURS 
I I 

H 

D 

COMP-NAME 

IE 
Sieck 
Bytes 

I 
H H 

D 

Figure 9. Insertion of Inter-occurrence Slack Bytes 

H 

0 

Each succeeding occurrence within the table will now begin at the same 
relative position to word boundaries as the first. 

Where SYNCHRONIZED data items defined as COMPUTATIONAL, 

H 

! ~-~~mliWl:A'l:l~~IBN~IBf~~~~ follow an entry containing an OCCURS 
clause with the DEPENDING ON option, slack bytes are added on the basis 
of the field occurring the maximum number of times. If the length of 
this field is not divisible by the m required for the computational 
data, only certain values of the data-name that is the object of the 
DEPENDING ON option will give proper alignment of the computational 
fields. These values are those for which the length of the field times 
the number of occurrences plus the slack bytes that have been calculated 
based on the maximum number of occurrences i.s di visible by ~. 

For example: 

01 FIELD-A. 
02 FIELD-B 
02 FIELD-C 

DEPENDING ON FIELD-B. 
[02 Slack-Byte 
02 FIELD-D 

PICTURE 99. 
PICTURE X OCCURS 20 TO 99 TIMES 

PICTURE x. Inserted by compiler] 
PICTURE S99 COMP SYNC. 

In this example, when references to FIELD-D are required, FIELD-B is 
restricted to odd values only. 

01 FIELD-A. 
02 FIELD-B 
02 FIELD-C 

DEPENDING ON FIELD-B. 
[02 Slack-Byte 
02 FIELD-D 

PICTURE 999. 
PICTURE XX OCCURS 20 TO 99 TIMES 

PICTURE x. Inserted by compiler] 
PICTURE S99 COMP SYNC. 

In this example all values of FIELD-B give proper references to 
FIELD-D. 

122 Part III -- Data Division 

I 
I 
D 

. ) 
'-._' 



! 
\ / 

"'-"' 

Slack Bytes 

IN!~g~g~cogQ_§~ACK BYT~~: If the file contains blocked logical records 
that are to be processed in a buffer, and any of the records contain 
entries defined as COMPUTATIONAL ~iititn~~~T:~~tl~~~~tr~""'¥.!lii: t.l112 
the user must add any inter-reco~d.~"'$f'a'cJC'"'5~~ii~~7.fed·~lfe::or'pr~~!~;81.~di1' 
alignment. 

The lengths of all the elementary data 
all intra-record slack bytes, are added. 
necessary to add four bytes for the count 
divided by the highest value of ~ for any 
the record. 

items in the record, including 
For mode V records, it is 
field. The total is then 
one of the elementary items in 

If ~ (the remainder) is equal to zero, no inter-record slack bytes 
are required. If £ is not equal to zero, ~ - ~ slack bytes are 
required. · These slack bytes may be specified by writing a level-02 
FILLER at the end of the record. 

Example: The following example shows the method of calculating both 
intra-record and inter-record slack bytes. consider the following 
record description: 

01 COMP-RECORD. 
02 A-1 PICTURE X( 5), 
02 A-2 PICTURE X(3), 
02 A-3 PICTURE X(3) • 
02 B-1 PICTURE 89999 USAGE COMP SYNCHRONIZED. 
02 B-2 PICTURE 899999 USAGE COMP SYNCHRONIZED. 
02 B-3 PICTURE 89999 USAGE COMP SYNCHRONIZED. 

The number of bytes in A-1, A-2, and A-3 total 11. B-1 is a 4-digit 
COMPUTATIONAL item and, therefore, one intra-record slack byte must be 
added before B-1. With this byte added, the number of bytes preceding 
B-2 total 14. Since B-2 is a COMPUTATIONAL item of 5 digits in length, 
two intra-record slack bytes must be added before it. No slack bytes 
are needed before B-3. 

The revised record description entry now appears as: 

01 COMP-RECORD. 
02 A-1 
02 A-2 
02 A-3 

(02 Slack-Byte-1 
02 B-1 

(02 Slack-Byte-2 
02 B-2 
02 B-3 

PICTURE X(5), 
PICTURE X(3). 
PICTURE X(3), 
PICTURE x. Inserted by compiler] 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 
PICTURE xx. Inserted by compiler] 
PICTURE 899999 USAGE COMP SYNCHRONIZED. 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 

There are a total of 22 bytes in COMP-RECORD, but from the rules 
given in the preceding discussion, it appears that ~ = 4 and ~ = 2. 
Therefore, to attain proper alignment for blocked records, the user must 
add two inter-record slack bytes at the end of the record. 

The final record description entry appears as: 

01 COMP-RECORD. 
02 A-1 
02 A-2 
02 A-3 

[02 Slack-Byte-1 
02 B-1 

[02 Slack-Byte-2 
02 B-2 
02 B-3 
02 FILLER 

PICTURE X{S). 
PICTURE X(3). 
PICTURE X(3). 
PICTURE x. Inserted by compiler] 
PICTURE S9999 USAGE COMP SYNCHRONIZED. 
PICTURE XX. Inserted by compiler] 
PICTURE 899999 USAGE COMP SYNCHRONIZED. 
PICTURE S9999 OSAGE COMP SYNCHRONIZED. 
PICTURE XX. [inter-record slack bytes added by 

user] 

Data Description Entry -- Details of Clauses 123 



Order No. GC28-6394-2, Page Revised .4/15/71 by TNL GN-0436 

USAGE Clause 

USAGE Clause 

The USAGE clause specifies the manner in which a data item is 
represented in core storage • 

. ---------------~-----------------------------------------------------, 
I Format 1 I 
~----------------------------------------------------------------------~ 

[USAGE ISJ 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

L----------------------------------------------------------------------J 

The USAGE clause can be specified at any level of data description. 
However, if the USAGE clause is written at a group level, it applies to 
each elementary item in the group. The usage of an elementary item 
cannot contradict the usage of a group to which an elementary item 
belongs. 

This clause specifies the manner in which a data item is represented 
in core storage. However, the specifications for some statements in the 
Procedure Division may restrict the USAGE clause of the operand referred 
to. 

If the USAGE clause is not specified for an elementary item, or for 
any group to which the item belongs, it is assumed that the usage is 
DISPLAY. 

Note: ASCII considerations for the USAGE clause are given in 
Appendix E. 

The DISPLAY option can be explicit or implicit. It specifies that 
the data item is stored in character form, one character per eight-bit 
byte. This corresponds to the form in which information is represented 
for initial card input or for final print~d or punched output. USAGE IS 
DISPLAY is valid for the following types of items: 

124 Part III -- Data Division 

"-"'i 



( ! 

~ 

~) 

l i 

\_.! 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

USAGE Clause 

• alphabetic 

• alphanumeric 

• alphanumeric edited 

• numeric edited 

• external decimal 

The alphabetic, alphanumeric, alphanumeric edited, and numeric edited 
items are discussed in the description of the PICTURE clause. 

External Decimal Items: These items are sometimes referred to as zoned 
decimal items. Each digit of a number is represented by a single byte. 
The four high-order bits of each byte are zone bits; the four high-order 
bits of the low-order byte represent the sign of the item. The four 
low-order bits of each byte contain the value of the digit. When 
external decimal items are used for computations, the compiler performs 
the necessary conversions. 

The maximum length of an external decimal item is 18 digits. 

Examples of external decimal items and their internal representation 
are shown in Table 8.1. 

The computational Q£tio~~ 

A. COz.IPUTATIONAL~~~~~fl-~R\fii\~~j~l;ij~\~l~~~-j'~~i~I~;iftailj;~fil\llflit 
i!mi~~'!Ui~lf!~C ···item represents a value to be used in arithmetic 
operations an must be numeric. If the USAGE of any group item is 
described with any of these options, it is the elementary items within 
this group which have that USAGE. The group item itself cannot be used 
in computations. 

COMPUTATIONAL OPTION: This option is specified for binary data items. 
such items have a decimal equivalent consisting of the decimal digits 0 
through 9, plus a sign. 

Data Description Entry -- Details of Clauses 124.1 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
USAGE Clause 

The amount of storage occupied by a binary item depends on the number 
of decimal digits defined in its PICTURE clause: 

Digits in PICTURE Clause 
1 through 4 
5 through 9 

10 through 18 

Storage Occupied 
2 bytes (half word) 
4 bytes (fullword> 
8 bytes (2 fullwords 

not necessarily 
a doublewordl 

The leftmost bit of the storage area is the operational sign. 

The PICTURE of a COMPUTATIONAL item may contain only 9's, the 
operational sign character s, the implied decimal point V, and one or 
more P's. 

An example of a binary item is shown in Table 8.1. 

Note: The COMPUTATIONAL option is system dependent; for this compiler 
it is binary. 

124.2 Part III -- Data Division 

\ 

' I 
\.._/ 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

USAGE Clause 

Data Description Entry -- Details of Clauses 124.3 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
USAGE Clause 

•Table 8.1. Internal Representation of Numeric Items (Part 1 of 2) 

r----------------T---------T---------------T---------------------------1 
I Item I Value !Description I Internal Representation* I 
1----------------+---------+~--------------+---------------------------~ 
External Decimal{ -1234 !DISPLAY {ZllZ2{Z3jF4j I 

I I PICTURE 9999 L __ J. __ J. __ ~ __ J I 
I I _,__, I 
I I byte I 
I I 
I I DISPLAY 
I I PICTURE S9999 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I I 
I L 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I I 
I I I 

IZ1IZ2IZ3ID41 L--..1.--J.-_J. __ J 
'--.,-' 

byte 

Note that, internally, 
the D4, which represents 
-4, is the same bit 
configuration as the 
EBCDIC character M. 

~----------------+---------+--------------- ---------------------------~ 
!Binary I -1234 !COMPUTATIONAL I 11111!1011{0010{11101 I 
1 1 1 PrcTuRE s99991 Lr __ J. ____ J.~J 1 
I I I I I I 
I I I I s byte I 
I I I J I 
I I I ·· Note that, internally, I 
I I I I negative binary numbers I 
I I I appear in two's I 
I I I I complement f orrn. I 
~----------------..1.---------..1.---------------i---------------------------~ 
{*Codes used in this column are as follows: I 
I Z = zone, equivalent to hexadecimal F, bit configuration 1111 I 
I I 
I Hexadecimal numbers and their equivalent meanings are: I 
I F = nonprinting plus sign (treated as an absolute value) I 
I c = internal equivalent of plus sign, bit configuration 1100 I 
I D = internal equivalent of minus sign, bit configuration 1101 I 
I I 
I s = sign position of a numeric field; internally, I 
I 1 in this position means the number is negative I 
I 0 in this position means the number is positive I 
I I 
I b = a blank I L_ _____________________________________________________________________ J 

124.4 Part III -- Data Division 



( : ..._,; 

Order No. GC28-6394-2 1 Page Revised 4/15/71 by TNL GN-0436 

USAGE Clause 

Table 8.1. Internal Representation of Numeric Items (Part 2 of 2) 
r----------------T---------T---------------T---------------------------1 
I Item I Value !Description I Internal Representation* I 
~,'.'.'. ... ---------,-.,.---- - ~ 
I I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I. 
I 
I 
I 
I I 
P:-------------"-- ----"----"-------------..,.-----1 
*Codes used in this column are as follows: 

Z = zone, equivalent to hexadecimal F, bit configuration 1111 

Hexadecimal numbers and their equivalent meanings are: 

s 

F nonprinting plus sign (treated as an absolute value> 
c internal equivalent of plus sign, bit configuration 1100 
D = internal equivalent of minus sign, bit configuration 1101 

sign position of a numeric field; internally, 
1 in this position means the number is negative 
0 in this position means the number is positive 

b = a blank ______________________________________________________________________ J 

Data Description Entry -- Details of Clauses 124.5 



' I 
\,,_J 



i 
\_,I 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

VALUE Clause 

The VALUE clause is used to define the initial value of a 
Working-Storage item or the value associated with a condition-name. 

There are two formats of the VALUE clause: 

r----------------------------------------------------------------------1 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I VALUE IS literal I 
I I 
L----------------------------------------------------------------------J 

r----------------------------------------------------------------------1 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
II {VALUE IS } 11 literal-1 C!g~~ literal-21 
I VALUES ARE I 
I I 
I Cliteral-3 C!gRU literal-4] l... I 
I I 
l----------------------------------------------------------------------J 

The VALUE clause must not be stated for any item whose size, explicit 
or implicit, is variable. 

A figurative constant may be substituted wherever a literal is 
specified. 

Rules governing the use of the VALUE clause differ with the 
particular section of the Data Division in which it is specified. 

1. the File sectiontll~mi~~~l~ 
used only in condition-na 

2. In the Working-Storage Section, the VALUE clause must be used in 
condition-name entries, and it may also be used to specify the 
initial value of any data item. It causes the item to assume the 
specified value at the start of execution of the object program. 
If the VALUE clause is not used in an item's description, the 
initial value is unpredictable. 

3. In the Report Section, the VALUE clause causes the report data item 
to assume the specified value each time its report group is 
presented. This clause may be used only at an elementary level in 
the Report Section. The Report Section is discussed in detail in 
the •Report Writer" chapter. 

The VALUE clause must not be specified in a data description entry 
that contains an OCCURS clause or in an entry that is subordinate to an 
entry containing an OCCURS clause. This rule does not apply to 
condition-name entries. 

within a given record description, the VALUE clause must not be used 
in a data description entry that is subsequent to a data description 
entry which contains an OCCURS clause with a DEPENDING ON phrase. 

Data Description Entry -- Details of Clauses 125 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

VALUE Clause 

The VALUE clause must not be specified in a data description entry 
which contains a REDEFINES clause or in an entry which is subordinate to 
an entry containing a REDEFINES clause. This rule does not apply to 
condition-name entries. 

If the VALUE clause is used in an entry at the group level, the 
literal must be a figurative constant or a nonnumeric literal, and the 
group area is initialized without consideration for the USAGE of the 
individual elementary or group items contained within this group. The 
VALUE clause then cannot be specified at subordinate levels within this 
group. 

The VALUE clause cannot be specified for a group containing items 
with descriptions including JUSTIFIED, SYNCHRONIZED, or USAGE (other 
than USAGE IS DISPLAY). 

The following rules apply: 

1. If the item is numeric, all literals in the VALUE clause must be 
numeric literals. If the literal-defines the value of a 
Working-Storage item, the literal is aligned according to the rules 
for numeric moves, except that the literal must not have a value 
that would require truncation of nonzero digits. 

2. If the item is alphabetic or alphanumeric, all literals in the 
VALUE clause must be nonnumeric literals. The literal is aligned 
according to the alignment rules (see "JUSTIFIED Clause">, except 
that the number of characters in the literal must not exceed the 
size of the item. 

3. All numeric literals in a VALUE clause of an item must have a value 
that is within the-range of values indicated by the PICTURE clause 
for that item. For example. for PICTURE 99PPP, the literal must be 
within the range 1000 through 99000 or zero. For PICTURE PPP99, 
the literal must be within the range .00000 through .00099. 

4. The function of the editing characters in a PICTURE clause is 
ignored in determining the initial appearance of the item 
described. However, editing characters are included in determining 
the size of the item. 

126 Part III -- Data Division 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Relation Condition 

Table 12. Permissible Comparisons 
------------------------------T--T--T--T---T--T ___ T ___ T ___ T ___ T __ _ 

Second OperandlGRIALIANIANEINEIFC*IZR IED IBI I 
I First Operand I I I I I I NNLI NL I I I 
~------------------------------ --+--+--+---+--+---+---+---+-:;,-:;:;: 
I Group (GR> INN INN INN I NN INN INN I NN INN J1i/{tlW I 
.~-------------------------------+--+-~+--+---+--+---+---+---f.:;::::::::.+ 
!Alphabetic (AL) INNINNINNINN INNjNN INN INN I I 
~------------~-----------------+--+--+--+---+--+---+---+---+---
I Alphanumeric (AN) INNINNINNINN INNINN INN INN I I 
~-------------------------------+--+--+--+---+--+---+---+---+---+ 
IA!phanumeric Edited {ANE) · INNINNINNINN INNINN INN INN I I 
~-------------------------------+--+--+--+---+--+---+---+---+---
I Numeric Edited (NE) INNINNINNINN INNINN INN INN I I 
~-------------------------------t--+--+--+---t--+---+---+---+---
1 Figurative Constant (FC)* & INN(NNINNINN INNI I INN I I 
jNonnumeric Literal (NNL) I I I I I I I I I I 
~-------------------------------+--+--+--+---+--+---+---+---+---
1 Fig. constant ZERO CZR) & INNINNINNINN INNI I INU INU I 
I Numeric Literal (NL) I I I I I I I I I I 
~-------------------------------+--+--+--+---+--+---+---+---+---
I External Decimal (ED) INNINNf NNINN INNINN INU INU !NU I 
~-------------------------------+::::;0.+--+--+---+--+---+---+---+---

1 I Binary (BI> · Ffi!I I I I I I NU I NU I NU I 
~------------------------------- -- -- -- --- -- --- --- -

---T---1 

IN IIDII 
I I 

---+---~ 
I I 

---+---~ 
I I 

---+---~ 
I I 

----+---1 
I I 

---+---1 
I I 

---+---1 
I I 
I I 

---+---~ 
mi. I I 

I I 
---+---1 
roi. I I 
---+---1 
roi.1 I 
---+---~ 

I I 
---'+---1 

I I 
---+---1 

I I 
---+---1 

I I 
---+---1 

I I 
--''.!----+---~ 

!Index Name <IN) I I I I I I IIoi.1roi.1101 1 I I I IIO IIV I 
~-------------------------------+--+--+--+---+--+---+---+---+---+--~+--+--+--t--+---+---1 
!Index Data Item CIDI> I I I I I I I I I I I I I I IIV IIV I 
~-------------------------------i __ i __ i __ i ___ i __ i ___ i ___ i ___ i ___ i __ ...;i __ i __ i __ i __ i ___ ~---~ 

l*FC includes all Figurative Constants except ZERO. I 
11valid only if the numeric item is an integer. I 
I I 
I NN = comparison as described for nonnumeric operanas I 
I NU = comparison as described for numeric operands I 
I IO = comparison as described for t~o index-names I 
I IV = comparison as described for index data items I 
l---------------------------------------------------------------------------------------J 

conditions 145 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Sign/Switch-Status Conditions 

The sign condition determines whether or not the algebraic value of a 
numeric operand (i.e., an item described as numeric) is less than, 
greater than, or equal to zero. 

·---------------------------------------------------------------------, 
I Format I 
~----------------------------------------------------------------------1 
I I 
I
I {'identifier ·} {!"..Q§_!_TIVE} 

1
1 

IS [NOT] NEGATIVE 
I ,arithmetic-expression ZERO - I 
I I 
L----------------------------------------------------------------------J 

An operand is positive if its value is greater than zero, negative if 
its value is less than zero, and zero if its value is equal to zero. An 
unsigned field is positive or zero. 

Switch-Status Condition 

~ switch-status condition determines the on or off status of a device 
switch. 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------1 
I I 
I condition-name I 
I I 
L----------------------------------------------------------------------J 

The SPECIAL-NAMES paragraph of the Environment Division associates an 
ON or OFF value (condition-name) with a switch (function-name>. The 
switch-status condition tests the value associated with the switch. The 
result of the test is true if the switch is set to the position 
corresponding to condition-name. 

COMPOUND CONDITIONS 

Two or more simple conditions can be combined to form a compound 
condition. Each simple condition is separated from the next by one of 
the logical operators AND or OR. 

The logical operators must be preceded by a space and followed by a 
space. The meaning of the logical operators is as follows: 

logical inclusive OR, i.e., either or both 
are true 

logical conjunction, i.e., both are true 
logical negation 

146 Part IV _;... Procedure Division 



' . 
\_,! 

Compound conditions 

Figure 10 shows the relationships between the logical operators and 
simple conditions A and B, where A and B have the following values: 

Values for A Values for B 
True True 
False True 
True False 
False False 

r-------T------T-----T~-----------T----------~y------------T----------1 
IA AND BJA OR BjNOT AJNOT (A AND B)INOT A AND BINOT (A ORB) INOT A OR Bl 
~-------+------+-----+---------~--+---~------+------------+----------~ l True I True I False I False I False I False I True I 
1-------t------+-----t--------~----+-----------t------------+----------~ I False I True I True I True I True I False I True I 
~-------+------+-----+----~-------+---~------+------------+----------~ I False I True I False l True I False I False I False I 
1-------+------+-----t-------------+-----------+------------t----------~ I False I False I True I True I False I True I True I 
L--------L------l.-----i-------------i-----------i------------i----------J 
Figure 10. Logical Operators and the Resulting Values upon Evaluation 

EVALUATION RULES 

Logical evaluation begins with the least inclusive pair of 
parentheses and proceeds to the most inclusive. 

If the order of evaluation is not specified by parentheses, the 
expression is evaluated in the following order: 

1. Arithmetic expressions 

2. Relational-operators 

3. [NOT] condition 

4. AND and its surrounding conditions are evaluated first, starting at 
the left of the expression and proceeding to the right. 

s. OR and its surrounding conditions are then evaluated, also 
proceeding from left to right. 

Consider the expression: 

A IS NOT GREATER THAN B OR A + B IS EQUAL TO C AND D IS POSITIVE 

This will be evaluated as if it were parenthesized as follows: 

(A IS NOT GREATER THAN B) OR (((A + B) IS EQUAL TO C) AND (DIS 
POSITIVE)). 

Conditions 147 



Compound conditions 

The order of evaluation is as follows: 

1. (A + B) is evaluated, giving some intermediate result, for example, 
x. 

2. (A IS NOT GREATER THAN B) is evaluated, giving some intermediate 
truth value, for example, tl. 

3. <x IS EQUAL TO C) is evaluated, giving some intermediate truth 
value, for example, t2. 

4. (D IS POSITIVE> is evaluated, giving some intermediate truth value, 
for example, t3. 

5. Ct2 AND t3) is evaluated, giving some intermediate truth value, for 
example, t4. 

6. (tl OR t4> is evaluated, giving the final truth value, and the 
result of the expression. 

Table 13 shows permissible symbol pairs. A symbol pair in a compound 
condition is the occurrence of two symbols appearing in sequence. 

Table 13. Permissible Symbol Pairs 
------------------T--------------.-------T-------T-------T-----T-----1 

second I I I I I I I 
Symbol I I I I I I I 

!Symbol I Condition I OR I AND I NOT 1 ( I ) I 
~------------------- --------------+------~+-------+-------+-----+-----~ 
I condition I I P I P I I I P I 
~-------------------+--------------+-------+-------+-------+-----+-----i 
IOR I p 1- I - Ip Jpl-1 
~-------------------+--------------+-------+-------+-------+-----+-----i 
I AND I P I I I P I P I I 
~-------------------+--------~--+-------+-------+-------+-----+-----i 
INOT I p I I I IPI I 
1----~------------+---~----------+-------+-------+-------+-----t-----i 
I< I P I- I - IP Jpl-1 
~-------------------+--------------+-------+-------+-------+-----+-~---i 
I > l I P I P I I I P I 
~------------------i-~------------i-------~-------i _______ i _____ i _____ ~ 
IP indicates a permissible pairing I 
I- indicates that the pairing is not permitted I 
l--------------------~------------------------------------------------J 

IMPLIED SUBJECTS AND RELATIONAD-OPERATORS 

When relation conditions are written in a consecutive sequence, any 
relation condition except the first may be abbreviated by: 

1. The omission of the subject of the relation condition, or 

2. The omission of the subject and relational-operator of the relation 
condition. 

Within a sequence of relation conditions, both forms of abbreviation may 
be used. The effect of using such abbreviations is as if the omitted 
subject was taken from the most recently stated subject, or the omitted 
relational-operator was taken from the most recently stated relational­
operator. 

148 Part IV -- Procedure Division 



u 

( ' 
\_..;' 

Compound conditions 

r-----------------------------~---------------------------------------1 
!Format of Implied Subject: I 
~-----~--------------------------------------~-----------------------i 
I I 
I ••• subject relational-operator object j 
I ! 

! { ~D} [NOT] relational-operator object ••• 

I ! 
L------~--------------------------------------------------------------J 

r----------------------------------------------------------------------1 
f Format of Implied Subject and Relational-operator: I 
~----------------------------------------------------------------------~ 
I I 

! ... subject relational-operator object { :: } {NOT], object... l 
I I 
L----------------------------------------------------------------------J 

Ambiguity may result from using NOT in conjunction with 
abbreviations. In this event, NOT is interpreted as a logical operator 
rather than as part of a relational-operator. For example, A > B AND 
NOT > C OR D is equivalent to either A > B AND NOT A > C OR A > D, or 
A > B AND (NOT A > C) OR A > D. 

The following are examples of implied subjects, and relational­
operators. Each example consists of two equivalent statements: 

Implied Subject 

A 
A 

B OR NOT > C 
B OR NOT A > C 

(The subject, A, is implied.) 
(The subject, A, is explicit.) 

Implied subject and Relational Operator 

A = B AND C 

A = B AND A c 

(Subject and relational-operator, A = 
implied.) 

(SubjEct and relational-operator, A = 
explicit.) 

are 

are 

Im21.ied subjectL and Subject and ;Relational-Operator 

A > B AND NOT < C AND D 

A > B AND NOT A < C 
AND A < D 

(Subject, A, is implied in the second condi­
tion. subject, A, and relational-operator, 
<, are implied in the third condition.) 

(Subject, A, and relational-operator, <, are 
explicit..> 

The omitted subject is taken from the most recently stated subject, 
i.e., A. 

The omitted relational-operator is taken from the most recently 
stated relational-operator, i.e., <. 

conditions 11J9 



IF Statement 

A conditional statement specifies that the truth value of a condition 
is to be determined and that the subsequent action of the object program 
is dependent on this truth value. Conditional statements are listed in 
"Categories of Statements." 

A conditional sentence is a conditional statement optionally preceded 
by an imperative statement, terminated by a period followed by a space. 

Only the IF statement is discussed in this section. Discussion of 
the other conditional statements is included as part of the description 
of the associated imperative statements. 

IF Statement 

The IF statement causes a condition to be evaluated. The subsequent 
action of the object program depends upon whether the condition is true 
or false. 

r-------------------------~-------------------------------------------1 
I Format I 
~----------------~------~---~-------------~-----------------------~ 
I I 
I IF conditionlJRlh { statement-1 } {ELSE } { statement-2 } I 
I ''"'''''""'··' ~ SENTENCE -· NEXT SENTENCE I 
L------~--------------------------------------------------------------J 

The phrase ELSEflfll/!li~NEXT SENTENCE may be omitted if it 
immediately precedes the period for the sentence. 

When an IF statement is executed, the following action is taken: 

1. If the condition is true, the statement immediately following the 
conditi?nf~~l!iit~<statement-1) is executed. control is then 
passed 1mpl1c1tly to the next sentence unless GO TO procedure-name 
is specified in statement-1. If the condition is true and NEXT 
SENTENCE is written, control passes explicitly to the next 
sentence. 

2. If.the.condition is false, either the statement following ELSE 
lfllUl~i! (staternent-2) is executed, or, if the ELSEfl~,~--­
option"is omitted, the next sentence is executed. I 
is false and NEXT SENTENCE is written following ELSE, 
passes explicitly to the next sentence. 

When IF statements are not nested, staternent-1 and statement-2 must 
represent imperative statements. 

150 Part IV -- Procedure Division 

• 

' . J 
\_./ 



' \ i), -

IF Statement 

Nested IF Statements 

The presence of one or more IF statements within the initial IF 
statement constitutes a "nested IF statement.~ 

Statement-1 and statement-2 in IF statements may consist of one or 
more imperative statements and/or a conditional statement. If a 
conditional statement appears as statement-1 or as part of stateroent-1, 
it is said to be nested. Nesting statements is much like specifying 
subordinate arithmetic expressions enclosed in parentheses and combined 
in larger arithmetic expressions. 

IF statements contained within IF statements must be considered as 
paired IF and ELSE combinations, proceeding from left to right. Thus, 
any ELSE encountered must be considered to apply to the immediately 
preceding IF that has not already been paired with an ELSE. 

In the conditional statement in Figure 11, c stands for condition; s 
stands for any number of imperative statements; and the pairing of IF 
and ELSE is shown by the lines connecting them. 

Chart 1 is a flowchart indicating the logical flow of the conditional 
statement in Figure 9. 

' 
!Fl 

i t t i + t t 
Cl Sl IF2 C2 IF3 C3 S2 ELSE S3 ELSE S4 IF4 C4 IFS cs S5 ELSE S6 

cl c2 l el e2 

v 
dl 

\.. 

bl b2 

al 

al - Statement-I for !Fl (If Cl is false, the next sentence is executed, since there is no ELSE for it.) 

b I - Statement-I for IF2 

b2 - Statement-2 for IF2 

cl - Statement-I for IF3 

c2 - Statement-2 for IF3 

dl - Statement-1 for IF4 (IfC4 is false, the next sentence is executed, since there is no ELSE for it.) 

el - Statement-1 for IFS 

e2 - Statement-2 for IFS 

'r 

Figure 11. Conditional Statements with Nested IF Statements 

conditional Statements 151 



IF statement 

Chart 1. Logical Flow of Conditional Statement with Nested IF 
Statements 

I .•. 
Bl *• .. .. 

• • *• FALSE 
*• C1 • •--------------~-~------------------------------- ......... ---------------------------•.. . . . . . . .. . . 

r~ 
*****Cl********** • • • • * S1 * • • • • •••:+•••·········· 

1 
. *· ·*· Dl *· +:tc+•+D2++++•+++++ 03 *• . • •. • • . • *· 

.. * •. FALSE • * . * *. FALSE 
•. c2 • •-------->• sq *-------->•. cq .. *--~---------------------> .. . . . . .. . . . . . . . . .. . . .. . .. ................. . .. . I TROE i TROE 

... 
El *· +++++E2********** .• *· • • 

.• +. FALSE * * 
*• C3 . •--~----->+ S3 * .. . . . . 

*· •• • • •• •• • •••••••••••••••• 
r~ 

*****Fl*•******** • • • • • $2 • • • • • .......•....•.... 

. .. 
E3 +. *****E4********** .• •• * • 

.+ +, FALSE + + 
*• C5 .•-----~->+ S6 + •. . . . . .. .. . . 

• .. • **••••··········· r· 
*****F3*****•**** • • • • * S5 * * • • • 

·······r······ 

<-------~----------~--------~------~~---------------~--~-----~-~--~-----------

*****Hi********** . . 
• • * NEXT SENTENCE * 

152 

• * • • 
•*•••············ 

Part IV -- Procedure Division 

· . .,,_, 

\ 
\. .. _,.) 



( ; 
'-..-! 

Declaratives-General Format 

DECLARATIVES 

The Declaratives section provides a method of including procedures 
that are invoked nonsynchronously: that is, they are executed not as 
part of the sequential coding written by the programmer, but rather when 
a condition occurs which cannot normally be tested by the programmer. 

Although the system automatically nandles checking and creation of 
standard labels and executes error recovery routines in the case of 
input/output errors, additional procedures may be specified by the COBOL 
programmer. The Report Writer feature also uses declarative procedures. 

since these procedures .are executed only when labels of a file are to 
be processed, or at the time an error in reading or WJ:"iting occurs or 
when a report group is to be produced, they cannot appear in the regular 
sequence of procedural statements. They must be written at the 
beginning of the Procedure Division in a subdivision called 
DECLARATIVES. A group of declarative procedures constitutes a 
declarative section. Related procedures are preceded by a USE sentence 
that specifies their function. A declarative section ends with the 
occurrence of another section-name with a USE sentence or with the words 
END DECLARATIVES. 

The key words DECLARATIVES and END DECLARATIVES must each begin in 
Area A. No other text may appear on the same line. 

r..----------------------------------------------------------------------1 
I General Format I 
·~----------------------------------------------------------------------~ 
I I 
I PROCEDURE DIVISION. I 
I I 
I Q~£h~~!!YES. I 
I I 
I {section-name SECTION. USE sentence. I 
I {paragraph-name. {sentence} • • • } • • • } • • • I 
I I 
I END DECLARATIVES. I 
I I 
L----------------------------------------------------------------------J 

The USE sentence identifies the type of declarative. 

There are three formats of the USE sentence. Each is associated with 
one of the following types of procedures: 

1. Input/output label handling 

2. Input/output error-checking procedw:.-es 

3. Report writing procedures 

A USE sentence, when present, must immediately follow a section 
header in the Declarative portion of the Procedure Division and must be 
followed by a period followed bY a space. The remainder of the section 
must consist of one or more procedural paragraphs tpat define the 
procedures to be used. 

The USE sentence itself :1,s never executed, rather it defines the 
conditions for the execution of the USE procedure. 

Declaratives 153 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

LABEL PROCEDURE Declarative 

Format 1 is used to provide user label-handling procedures. There 
are two options of Format 1. 

r----------------------------------------------------------------------1 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 
I~~ I 
I I 

USE J STANDARD [BEGJ.~NING] fl (BEFORE} [RFEIELLEJ 1
1 

I lAFTER UNIT I 
I I 

I OUTP!!! > I 
I {{file-name}•••). I 

I ~~~ PROCEDURE ON INPUT l I 
I I-Q ) I 
I I 
~----------------------------------------------------------------------i 
I I 
IQ2t!Qg_~ I 
I I 

I USE {BEFORE} STANDARD [ENDING] [~~~i] I 
I AFTER UNI! I 
I I 
I ({file-name} •• •) I 
I 'OUTPUT l I 
I LABEL PROCEDURE ON '1 INPU! (I I 
I .,I-Q ) I 
I I 
L----------------------------------------------------------------------J 

When BEFORE is specified, it indicates that nonstandard labels are to 
be processed. Nonstandard labels may be specified only for tape files, 

When AFTER is specified, it indicates that user labels follow 
standard file labels, and are to be processed. 

Note: ASCII considerations for user label-handling procedures are given 
in Appendix E. 

The labels must be listed as data-names in the LABEL RECORDS clause 
in the File Description entry for the file, and must be described as 
level-01 data items subordinate to the file entry. 

If neither BEGINNING nor ENDING is specified, the designated 
procedures are executed for both beginning and ending labels. 

If UNIT, REEL, or FILE are not included, the designated proceeures 
are executed both for REEL or UNIT, whichever is appropriate, and for 
FILE labels. The REEL option is not applicable to mass storage files. 
The UNIT option is not applicable to files in the random access mode 
since only FILE labels are processed in this mode. 

The same file-name may appear in different specific arrangements of 
Format 1. However, appearance of a file-name in a USE statement must 
not cause the simultaneous request for execution of more than one USE 
declarative. 

154 Part IV -- Procedure Division 



i 
\ , 
~ 

I , 

'.._...; 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL.GN-0436 

LABEL PROCEDURE Declarative 

If the f!l~=~~me option is used, the File Description entry for 
file-name must not specify a LABEL RECORDS ARE OMITTED clause. 

The user label procedures are executed as follows when the OUTPUT, 
INPUT, or I-0 options are specified: 

• When OUTPUT is specified, only for files opened as output. 

• When INPUT is specified, only for files opened as input. 

• When I-0 is specified, only for files opened as I-0. 

The file=~~ must not represent a sort-file. 

If the INPUT, OUTPUT, or I-0 option is specified, and an input, 
output, or input-output file, respectively, is described with a LABEL 
RECORDS ARE OMITTED clause, the USE procedures do not apply. 

The standard system procedures are performed: 

1. Before or after the user's beginning or ending input label check 
procedure is executed. 

2. Before the user's beginning or ending output label is created. 

3. After the user's beginning or ending output label is created, but 
before it is written on tape. 

4. Before or after the user's beginning or ending input-output label 
check procedure is executed. 

Within the procedures of a USE declarative in which the USE sentence 
specifies an option other than file-name, references to common label 
items need not be qualified by a file-name. A common label item is an 
elementary data item that appears in every label record of the program, 
but does not appear in any data record of this program. such items must 
have identical descriptions and positions within each label recor;d. 

Within a Format 1 declarative section there must be no reference to 
any nondeclarative procedures. Conversely, in the nondeclarative 
portion there must be no reference to procedure-names that appear in the 
declaratives section, except that PERFORM statements may refer to a USE 
procedure, or to procedures associated with it. 

The exit from a Format 1 declarative section is inserted by the 
compiler following the last statement in the section. All logical 
program paths within the section must lead to the exit point. 

Declaratives 155 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
LABEL PROCEDURE--Sample Program 

No tape marks are written following nonstandard header labels. A 
tape mark is written following the last nonstandard trailer label on 
each reel. 

SAMPLE LABEL DECLARATIVE PROGRAM 

The following program creates two files, one with user labels, the other 
with nonstandard labels. To create the labels, the program contains a 
DECLARATIVES section, with USE procedures for creating both header and 
trailer labels. 

The program illustrates the following items: 

For the two files requiring label creation, the LABEL RECORDS 
clause specifies the dat~~ option. 

The user labels are created by a USE AFTER BEGINNING/ENDING LABEL. 
procedure. 

~ Two user header labels are to be created. 

The non~tandard labels are created by a USE BEFORE BEGINNING/ENDING 
LABEL procedure. 

Label information for the program is taken in part from the input 
file~ therefore input records containing the information must be 
read and stored before the output files are opened, and the header 
label procedures invoked. 

156 Part IV -- Procedure Division 

\ 

\ ... _) 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

LABEL PROCEDURE--Sample Program 

IDENTIFICATION DIVISION. 
PROGRAM-ID. LABELPGM. 
ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. IBM-360-F50. 
OBJECT-COMPUTER. IBM-360-F50. 
INPUT-OUTPUT SECTION. 
FILE- CONTROL. 

SELECT NO-LBL ASSIGN TO SYS010-UT-2400-S. 
SELECT USER ASSIGN TO SYS011-UT-2400-s. 
SELECT NON-STD ASSIGN TO SYS012-UT-2400-S. 

DATA DIVISION. 
FILE SECTION. 
FD NO-LBL 

RECORD CONTAINS 80 CHARACTERS 
DATA RECORDS ARE IN-REC IN-LBL-HIST 
LABEL RECORD IS OMITTED. 

01 IN-REC. 
05 TYPEN PIC X(4). 

88 NSTD VALUE 'NSTD'. 
05 DEPT-ID PIC X(11). 
05 BIL-PERIOD PIC X( 5) .. 
05 NAME PIC X(20). 
05 AMOUNT PIC 9(6). 
05 FIL-NAM PIC X(l5). 
05 SECUR-CODE PIC XX. 
05 AREAN PIC 9. 

88 HDR-REC VALUE 9. 
05 ACCT-NUM PIC 9(10). 
05 SER-NUM PIC 9(6). 

01 IN-LBL-HIST. 
05 FILLER PIC X(4). 
05 FILE-HISTORY PIC X(76). 

FD USER 
RECORD CONTAINS 80 CHARACTERS 
BLOCK CONTAINS 5 RECORDS 
DATA RECORD IS USR-REC 
LABEL RECORDS ARE OSR-LBL USR-LBL-HIST. 

01 USR-LBL. 
05 USR-HDR PIC X(4). 
05 DEPT-ID PIC X(ll). 
05 USR-REC-CNT PIC 9(8) COMP-3. 
05 BIL-PERIOD PIC X(5). 
05 FILLER PIC X(53). 
05 SECOR-CODE PIC XX. 

01 USR-LBL-HIST. 
- 05 FILLER PIC X(4). 

05 LBL-HISTORY PIC X(76) • 
01 USR-REC. 

05 TYPEN PIC X(4). 
05 FILLER PIC X(S). 
05 NAME PIC X(20) •. 
05 FILLER PIC X(4). 
05 ACCT-NUM PIC 9(10). 
05 AMOUNT PIC 9(6) COMP-3. 
05 FILLER PIC X(25). 
05 U-SFQ-NUMB PIC 9(8). 

FD NON-STD 
RECORDING MODE IS U 
DATA RECORDS ARE NSTD-RECl NSTD-REC2 
LABEL RECORD IS NSTD-LBL. 

01 NSTD-LBL. 
05 NSTD-HDR PIC XC7). 
05 NSTD-REC-CNT PIC 9(8) COMP-3, 
05 FILLER PIC X(3). 
05 FIL-NAM PIC X(15). 
05 DEPT-ID PIC X(ll). 
05 SER-NUM PIC 9(6). 

Declaratives 156.1 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
LABEL PROCEDURE--Sample Program 

05 CREAT-DATE PIC Xl8). 
01 NSTD-REC1. 

05 ACCT-NUM PIC 9(10). 
05 BIL-PERIOD PIC X( 5). 
05 NAME PIC Xl20). 
05 FILLER PIC X{ 40). 
05 AREAN PIC 9. 
05 FILLER PIC X(20). 
05 AMOUNT PIC 9(6) COMP-3. 

01 NSTD-REC2. 
05 ACCT-NUM PIC 9(10). 
05 BIL-PERIOD PIC X(S). 
05 NAME PIC X(20). 
05 FILLER PIC X(l5). 
05 DEPT-ID PIC X(ll). 
05 AMOUNT PIC 9(6). 
05 N-SEQ-NUMB PIC 9(8). 
05 AREAN PIC 9. 
05 FILLER PIC X(4). 

WORKING-STORAGE SECTION. 
77 N-REC-NUMB PIC 9(8) VALUE ZERO. 
77 U-REC-NUMB PIC 9(8) VALUE ZERO. 
77 SAV-FIL-NAM PIC X{15). 
77 SAV-DEPT-ID PIC X(ll}. 
77 LBL-SWITCH PIC 9 VALUE ZERO. 
77 USER-SWITCH PIC 9 VALUE ZERO. 
77 NSTD-SWITCH PIC 9 VALUE ZERO. 
77 NSTD-REC2-CNT PIC 9(8) VALUE ZERO. 
01 STOR-REC. 

05 . DEPT-ID PIC X(ll}. 
05 BIL-PERIOD PIC X(5). 
05 SECUR-CODE PIC XX. 

PROCEDURE DIVISION. 

DECLARATIVES. , 
USR-HDR-LBL SECTION. USE AFTER BEGINNING FILE 

LABEL PROCEDURE ON USER. 
A. IF LBL-SWITCH = 0 

MOVE SPACES TO USR-LBL 
MOVE ZEROES TO USR-REC-CNT 
MOVE •uHL1 1 TO USR-HDR 
MOVE CORRESPONDING STOR-REC TO USR-LBL 
ADD 1 TO LBL-SWITCH GO TO MORE-LABELS 

ELSE MOVE 'UHL2' TO USR-HDR 
MOVE FILE-HISTORY TO LBL-HISTORY. 

USR-TRLR-LBL SECTION. USE AFTER ENDING FILE 
LABEL PROCEDURE ON USER. 

B. MOVE SPACES TO USR-LBL. 
MOVE •UTLl' TO USR-HDR. 
MOVE SAV~DEPT-ID TO DEPT-ID IN USR-LBL. 
MOVE U-REC-NUMB TO USR-REC-CNT, 

NSTD-HDR-LBL SECTION. USE BEFORE BEGINNING FILE 
LABEL PROCEDURE ON NON-STD. 

C. MOVE 'NSTHDR1 1 TO NSTD-HDR. 
MOVE ZEROES TO NSTD-REC-CNT 
MOVE CORRESPONDING IN-REC TO NSTD-LBL. 
MOVE CURRENT-DATE TO CREAT-DATE. 
MOVE FIL-NAM OF IN-RFC TO SAV-FIL-NAM. 

NSTD-TRLR-LBL SECTION. USE BEFORE ENDING FILE 
LABEL PROCEDURE ON NON-STD. 

D. MOVE SPACES TO NSTD-LBL. 
MOVE 1 NSTEOF 1 TO NSTD-HDR. 
MOVE N-REC-NUMB TO NSTD-REC-CNT. 
MOVE SAV~FIL-NAM TO FIL-NAM IN NSTD-LBL. 

END DECLARATIVES. 

NON-DECLARATIVE SECTION. 
OPEN INPUT NO-LBL. 

156.2 Part IV -- Procedure Division 

' \_; 

I 
\~ 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

LABEL.PROCEDURE--Sample Program 

READ-IN. 
READ NO-LBL AT END GO TO END-JOB. 

E. IF NSTD NEXT SENTENCE 
ELSE GO·TO PROCESS-USER. 

IF NSTD-SWITCH = 1 NEXT SENTENCE 
ELSE ADD 1 TO NSTD-SWITCH 

OPEN OUTPUT NON-STD 
GO TO READ-IN. 

ADD 1 TO N-REC-NUMB. 
IF HOR-REC MOVE SPACES TO NSTD-RECl 

MOVE CORRESPONDING IN-REC TO NSTD-RECl 
WRITE NSTD-RECl 

ELSE ADD 1 TO NSTD-REC2-CNT 
MOVE SPACES TO NSTD-REC2 
MOVE CORRESPONDING IN-REC TO NSTD-REC2 
MOVE NSTD-REC2-CNT TO N-SEQ-NUMB 
WRITE NSTD-REC2. 

GO TO READ-IN. 
PROCESS-USER. 

IF USER-SWITCH = 1 NEXT SENTENCE 
ELSE ADD 1 TO USER-SWITCH 

MOVE CORRESPONDING IN-REC TO STOR-REC 
MOVE DEPT-ID OF IN-REC TO SAV-DEPT-ID 

PERFORM READ-IN 
OPEN OUTPUT USER 
GO TO READ-IN. 

ADD 1 TO U-REC-NUM3. 
MOVE CORRESPONDING IN-REC TO USR-REC. 
MOVE U-REC-NUMB TO U-SEQ-NUMB 
WRITE USR-REC 
GO TO READ-IN. 

END-JOB. 
CLOSE NO- LBL. 
IF USER-SWITCH = 1 CLOSE USER. 
IF NSTD-SWITCH 1 CLOSE NON-STD. 
STOP RUN. 

Declaratives 156.3 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

ERROR PROCEDURE Declarative 

A Format 2 USE sentence specifies procedures to be followed if an 
input/output error occurs during file processing • 

.----------------------------------------------------------------------, 
I Format 2 I 
t-----------------------------------------------------------------------~ 
I I 
I ~§§ ~f!§g STANDARD ~li~Q~ PRQ£~QQRE I 
I I 
I / {file-name-1} • • • I 
I )illi~~'Jill;~?~E'llll~~~~~~l'.~E~~i?i;[[,~l'~l~~lt~ I 
I ON i ;rn.!'.!!'!'. • I 
I Q!!!~Q'!'. I 
I '!.::.Q I I 
I I 
L----------------------------------------------------------------------J 

When Format 2 is used, automatic system error routines are executed 
~~fQf~ user-specified procedures. 

USE declaratives which specify error handling procedures are 
activated when an input/output error occurs during execution of a READ, 
WRITE)i~Bm'lBm~l!im'~ statement. 

Within the section, the file associated with the USE sentence may not 
be referred to by an OPEN, SEEK, READ, WRITEf~j~j!\i'ifi~l~Bili\~ 
statement. 

Within a U5E procedure there must be no reference to nondeclarative 
procedures J~--~~\11\i[~~IH!itf:!~~ih~~~~~ll'i~J,Kl~~~~t~~itli'~~~}i~~~ 
Conversely, in the nondeclarative portion, there must be no reference to 
procedure-names that appear in the declaratives portion, except that 
PERFORM statements may refer to a USE declarative, or to procedures 
associated with such a declarative. 

When either the file-name-1 ~l~~~~,~j~BJ'!F~ option is used, user error 
handling procedures are executec('°'fof'' :iffpuE7Butput errors occurring 
during execution of a READ, WRITE!~?~~\~~;~\li'.i'@~~~i' statement for that file only. ,, "·'·'· · """""""'·""' "····•"'"·W"" · · """· 

A file-name must not be referred to, implicitly or explicitly, in 
more than-one-Format 2 USE sentence. 

The user error procedures are executed when the INPUT, OUTPUT, or I-0 
options are specified and an input/output error occurs, as follows: 

• When INPUT is specified, only for files opened as INPUT. 

• 'When OUTPUT is specified, only for files opened as OUTPUT. 

• When 1-0 is specified, only for files opened as I-0 (input-output>. 

156.4 Part IV -- Procedure Division 

\ 
\_,/ 



( . 
\.._,) 

i 
'-._,,) 

ERROR PROCEDURE Declarative 

An exit from this type of declarative section can be effectedbJ[ 
executina the last statement in the section (normal return)"~li"i~~~ 
~-~--)II. Table 1 4 summarizes the facilities a·~a_·· "'· .. ~~~:¥!!> 
limitations associated with each file-processing technique when an 
error occurs. 

The normal return from an error declarative is to the statement 
following the input/output statement that caused the error. 

Declaratives 157 



ERROR PROCEDURE Declarative 

Table 14. File Processing Techniques and Associated Error Declaratives Capabilities 
r--------T---~-T--------T------T----------------------------------T------------1 
I I !Type of I I Error Declarative Written I No Error I 
I I Organi- I I/O I Error t-----------------T------------------~ Declarative I 
I Access lzation !Statement I Bytes I Normal Return I GO TO Exit I Written I 
t--------+-------+---------+-------+----------------+------------------+-------------i 
ISEQUEN- ISequen-IREAD 11 or 2 fcontinued process-IUser limited to !Diagnostic I 
ITIAL ltial I I ling of file per- !CLOSE for file !error message! 
I <or not I I I fmitted; bad block I I is printed; I 
lspeci- I I I !is bypassed I fjob is I 
I fied> I I I I I I tenninated I 
I I r------------+-------+------------------t------------------~ I 
I I !WRITE f 1 or 2 !Continued process-JContinued process-I I 
I I I I ling of file per- ling of file per- I I 
I I I I lmitted; bad block lmitted; bad block I I 
I I I I I has been written I has been written I I 
I r------+----------t-------t------------------t------------------~ I 
I !Direct !READ f 1,2, orfUser limited to !User limited to I I 
I I I I 4 ICLOSE for file fCLOSE for file I I 
t--------+-------+--~-------t-------+----------------+------------------~ I 
I RANDOM I Direct I READ 11, 2, or I continued process- I continued process- I I 
I I I I 4 I ing of file per- I ing of file per- I I 
I I I I I mi tted; bad block I mi tted; bad block I I 
I I I I I has not been by- I has not been by- I I 
I I I I !passed I passed I I 
I I !---------+---·---+----------------+-----------------~ I 
I I !WRITE fl,2,3 1 (Continued process-fContinued process-I 
I I I jor 4 f ing of file per- ling of file per- I 
I I ~~-------- -----4mitted; bad block lmitted; bad block I 
I I I jhas been written !has been written I 
I I I I I I 
1-:::-------
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I e; ______ _ 

158 Part IV -- Procedure Division 



( . 
"'--"'' 

I 

\._,,/ 

BEFORE REPORTING Declarative 

A Format 3 USE sentence specifies Procedure Division statements that 
are executed just before a report group named in the Report Section of 
the Data Division is produced (see "'Report WriterR). 

r--------------------------------------------------------------------1 
I Format 3 I 
~--------------------------------------------------------------------~ 
I I 
I USE BEFORE REPORTING data-name. I 
I I 
L--------------------------------------------------------------------J 

Declaratives 159 



CORRESPONDING/GIVING/ROUNDED Options 

ARITHMETIC STATEMENTS 

The arithmetic statements are used for computations. Individual 
operations are specified by the ADD, SUBTRACT, MULTIPLY, and DIVIDE 
statements. These operations can be combined symbolically in a formula, 
using the COMPUTE statement. 

Because there are several options common to the arithmetic state­
ments, their discussion precedes individual statement descriptions. 

CORRESPONDING Option 

The CORRESPONDING option enables computations to be performed on 
elementary items of the same name simply by specifying the group item to 
which they belong. The word CORRESPONDING may be abbreviated as CORR. 

Both identifiers following CORRESPONDING must refer to group items. 
For the purposes of this discussion, these identifiers will be called d 1 

and d 20 

Elementary data items from each group are considered CORRESPONDING 
when both data items have the same name and qualification, up to but not 
including d 1 and d 2 • 

Neither d 1 nor d 2 may be a data item with level number 66, 77, or 88, 
nor may either be described with the USAGE IS INDEX clause. ~either d 1 

nor d 2 may be a FILLER item. 

Each data item subordinate to d1 or d 2 that is described with a 
REDEFINES, OCCURS, or USAGE IS INDEX clause is ignored: any items 
subordinate to such data items are also ignored. However, d 1 or d 2 may 
themselves be described with REDEFINES or OCCURS clauses, or be 
subordinate to items described with REDEFINES or OCCURS clauses. 

GIVING Option 

If the GIVING option is specified, the value of the identifier that 
follows the word GIVING is set equal to the calculated result of the 
arithmetic operation. This identifier, since not itself involved in the 
computation, may be a numeric edited item. 

ROUNDED Option 

After decimal point alignment, the number of places in the fraction 
of the result of an arithmetic operation is compared with the number of 
places provided for the fraction of the resultant identifier. 

160 Part IV -- Procedure Division 

) 
,~ 

I 

\_,/ 



Order No. GC2B-6394-2, Page Revised 4/15/71 by TNL GN~0436 
SIZE ERROR Option/Overlapping Operands 

When the size of the fractional result exceeds the number of places 
provided for its storage, truncation occurs unless ROUNDED is specified, 
When ROUNDED is specified, the least significant digit of the resultant 
identifier has its value increased by 1 whenever the most significant 
digit of the excess is greater than or equal to 5. 

When the resultant identifier is described by a PICTURE clause 
containing P's and when the number of places in the calculated result 
exceeds this size, rounding or truncation occurs relative to the 
rightmost integer position for which storage is allocated. 

SIZE ERROR Option 

If; 'after decimal point alignment, the value of a result exceeds the 
largest value that can be contained in the associated resultant 
identifier, a size error condition exists. Division by zero always 
causes a size error condition. The size error condition a.pplies only to 

.the final results of an arithmetic operation and does not apply to 
intermediate results. If the ROUNDED option is specified, rounding 
takes place before checking for size error. When such a size error 
condition occurs, the subsequent action depends on whether or not the 
SIZE ERROR option is specified. 

If the SIZE ERROR option is not specified and a size error condition 
occurs, the value of the resultant identifier affected may be 
unpredictable. 

If the SIZE ERROR option is specified and a size error condition 
occurs, the value of the resultant identifier affected by the size error 
is not altered. After completion of the execution of the arithmetic 
operation, the imperative statement in the SIZE ERROR option is 
executed. 

When the sending and receiving operands of an arithmetic statement or 
a MOVE statement share a part of their storage (that is, when the 
operands overlap), the result of the execution of such a statement is 
unpredictable. 

Arithmetic Statements 161 



ADD Statement 

ADD statement 

The ADD statement causes two or more numeric operands to be summed 
and the result to be stored. 

r·-----------------------------------------------------------------1 
I Format 1 I 
1------------------------------------------------------------------i 
I I 
1
1 

ADD { identifier-1 } [ identifier-2 J 1
1 • • • TO identifier-m CBOUNDEDJ 

I literal-1 literal-2 I 
I I 
I Cidentifier-n [ROUNDED]] ••• [ON~ ERROR imperative-statement] I 
I I 
L------~----·.-----------------------------------------------------J 

.------------------------------------------------------------------, I Format 2 I 
I----"'"------'--------. ------"--------------------------------------i 
I I I ADD {. identi.fier-1} { identifier-2} [ identifier-3] I 
I literal-1 literal-2 literal-3 I 
I I 
I GIVING identifier-m [ROUNDED] CON SIZE filIBQE imperative-statement] I 
I I L----------"---------------_._----------------------------------------J 
r----------~-----------------------------------------------------, 
I Format 3 I 
t---------------. -----------------------------------------------------i 
I I 
I ADD . { CORR. }. identifier-1 TO identifier.;,2 I 
I CORRESPONDING I 
I I 
I [ROUNDED] CON SIZE ~ imperative-statement] I 
I I 
L---------~------------------•---------------------------------------J 

Format 1 -- the values of the operands preceding the word TO are 
added together, and the sum is added to the current value of 
identi.fier-m (identifier-n), etc. The result is stored in identifier-m 
Cidentifier-n), etc. 

Format 2 -- when the GIVING option is used, there must be at least 
two operands preceding the word GIVING. The values of these operands 
are added together,.and the sum is stored as the new value of 
identifier-m. 

In Formats 1 and 2 each identifier must refer to an elementary 
numeric item, with the exception of identifiers appearing to the right 
of the word GIVING. These may refer to numeric edited data items. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting sum, after decimal point alignment, is 18 decimal 
digits. 

Format 3 -- when the CORRESPONDING option is used, elementary data 
items within identifier-1 are added to and stored in corresponding 

. elementary data items within identifier-2. Identifier-1 and 
identifier-2 must be group items. 

162 Part IV -- Procedure Division 



COMPUTE Statement 

When ON SIZE ERROR is used in conjunction with CORRESPONDING, the 
size error test is made only after the completion of all the ADD 
operations. If any of the additions produces a size error condition, 
the resultant field for that addition remains unchanged, and the 
imperative statement specified in the SIZE ERROR option is executed. 

COMPUTE Statement 

The COMPUTE statement assigns to a data item the value of a data 
item, literal, or arithmetic expression. 

r------~-----~---~----~--------------~------------------------------1 
I Format I 
~------~---------------------------~----------------------------------~ 
I I 
I { identifier-2 } I 
I COMPUTE identifier-1 [ROUNDED] = literal-1 I 
I arithmetic-expression I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I t_ _____________________________________________________________________ J 

Literal-1 must be a numeric literal. 

Identifier-2 must refer to an elementary numeric item. Identifier-1 
may describe a numeric edited data item. 

The identifier-2 and literal-1 options provide a method for setting 
the value of identifier~1 equal to the value of identifier-2 or 
literal-1. 

The arithmetic-expression option permits the use of a meaningful 
combination of identifiers, numeric literals, and arithmetic operators. 
Hence, the user can combine arithmetic operations without the 
restrictions imposed by the arithmetic statements ADD, SUBTRACT, 
MULTIPLY, and DIVIDE. 

As in all arithmetic statements, the maximum size of each operand is 
18 decimal digits. 

Arithmetic statements 163 



DIVIDE Statement 

The DIVIDE statement is used to find the quotient resulting from the 
division of one data item into another data item. 

r----------------~----------------------------------------------------1 
I Format 1 I 
~---------------------------------------------------------------------i 
I I 
I f identifier-1 l I 
I DIVIDE ) I .!_NTO identifier-2 [ROUNDED] I 
I { literal-1 ) I 
I I 
I (ON SIZE ERROR imperative-statement] I 
I I l ______________________________________________________________________ J 

r---------------------------------------------------------------------1 
I Format 2 I 
~------~-------------------------------------------------------------i 
I I 
1
1 

{ identifier-1) ( INTO'} ( identifier-2 j t
1 !2IVIDE ? J J ( GIVING identifier-3 

I literal-1 J l BY , l 1iteral-2 ) I 
I I 
I [ROUNDED] [REMAINDER identifier-4] I 
I I 
I [ON SIZE ERROR imperative-statement] I 
I I 
l----------------------------------------------------------------------J 

When Format 1 is used, the value of identifier-1 (or literal-1) is 
divided into the value of identifier-2. The value of the dividend 
(identifier-2) is replaced by the value of the quotient. 

When Format 2 is used, the value of identifier-1 (or literal-:1) is 
divided into or by identifier-2 (or literal-2), the quotient is stored 
in identifier-3, and the remainder optionally is stored in identifier-4. 

remainder is defined as the result of subtractin 
uotient and the divisor from the dividend. 

e ED option is also spec1 1ed, the quotient is rounded 
after the remainder is determined. 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING, which may be a numeric edited 
item. 

Each literal must be a numeric literal. 

The maximum size of the resulting quotient, after decimal point 
alignment, is 18 decimal digits. The maximum size of the resulting 
remainder (if specified), after decimal point alignment, is 18 decimal 
digits. 

Division by zero always results in a size error condition. 

164 Part IV -- Procedure Division 

·\ ...... 1111,l 

\ 
\ ' ,._; 



MULTIPLY Statement 

MULTIPLY Statement 

The MULTIPLY statement is used to multiply one data item by another 
data item. 

r-------~--------------------------------------------------------------1 
I Format 1 I 
t---------------------------~-------------------------------------i 

l { identifier-1 } \ I MULTIPLY BY identifier-2 [ROUNDED] I 
I literal-1 I 
I I I CON SIZE .~ imperative-statement] I 
I I 
l-----------------------------------------------------------------J 

r---------------------------------------------------------------------1 
I Format 2 I 
t---------------------------------------------------------------------i 
I I 
I {' identifier-1 } \ identifier-2} I I MULTIPLY BY I Gl:VING identifier-3 I 
I literal-1 ~ l literal-2 I 
I I I [ROUNDED] [ON SIZE ERROR imperative-statement] I 
I I 
L----------------------------------------------------------------~ 

When Format 1 is used, the value-of identifier-1 (or literal-1) is 
multiplied by the value of identifier-2-:--The value of the multiplier 
<identifier-2) is replaced by the product. 

When Fo:imat 2 is used, the value of identifier-1 (or literal-1) is 
multiplied by identifier-2 (or literal-2), and the product is stored in 
identifier-3:• 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING, which may be a numeric edited 
item. 

Each literal must be a numeric literal. 

The maximum size of each opernad is 18 decimal digits. The maximum 
size of the resulting product, after decimal point alignment, is 18 
decimal digits. 

Arithmetic statements 165 



SUBTRACT Statement 

SUBTRACT Statement 

The SUBTRACT statement is used to subtract one, or the sum of two or 
more, numeric data items from another data item(s) • 

.-------~----~---~--~-----------------------------------------------, 
I Format 1 I 
l---------------------------------------------------------------4 
I I 
I
I { identi.!fier-1} [ identifier-2] 1

1 SUBTRACT 
I literal-1 literal-2 I 
I I 
I FROM identifier~m [ROUNDED] I 
I I 
I Cidentifier-n {ROUNDED]] ••• [ON SIZE ERROR imperative-statementll 
I I 
~--------------------------------------------------------------------J 

.-----------------------------~----------------------------------------, 
I Format 2 I 
~-------------------:...---------------------------------------------4 
I I 
I
I { identifier-1} [ identifier-2 J 

1
1 

SUBTRACT 
I literal-1 literal-2 I 
I I 

I fRQ:1 ~ GIVING identif ier-n I 
I {'identifier-ml I 

I literal-m J I 
I I 
I [ROUNDED] [ON SIZ~ ERROR imperative-statement] I 
I I 
L----------------------------~---------------------------------------J 

.---------------------------------------------------------------------, 
I Format 3 I 
~-----------------------------------------------------------------4 
1

,1 { CORR } II SUBTRACT identifier-1 [ROM identifier-2 
I CORRESPONDING I 
I I 
I [ROUNDED] CON SIZE ERROR imperative-statement] I 
I I 
L------------------------------------------------------------------J 

Format 1 -- all literals or identifiers preceding the word FROM are 
added together, and this total is subtracted from identifier-m and 
identifier-n (if stated), etc. The result of the subtractio!lis stored 
as the new value of identifier-m, identifier-n, etc. 

Format-2 -- all literals or !de~if i~ preceding the word FROM are 
added together, and this total is subtracted from literal-'m or 
identifier-'m. The result of the subtraction is stored as the value of 
identif ier-n. 

Format 3 -- data items in identifier-1 are subtracted from, and the 
difference stored into corresponding data items in id~gtifi~~-2. When 
the CORRESPONDING option is used in conjunction with ON SIZE ERROR and 
an ON SIZE ERROR condition arises, the result for SUBTRACT is analogous 
to that for ADD. 

166 Part IV -- Procedure Division 

j 

'"'-""' 



SUBTRACT Statement 

Each identifier must refer to an elementary numeric item except the 
identifier following the word GIVING, which may be a numeric edited 
item. 

Each literal must be a numeric literal. 

The maximum size of each operand is 18 decimal digits. The maximum 
size of the resulting difference, after decimal point alignment, is 18 
decimal digits. 

Arithmetic Statements 167 



GO TO Statement 

PROCEDURE BRANCHING STATEMENTS 

Statements, sentences, and paragraphs in the Procedure Division are 
ordinarily executed sequentially. The procedure branching statements 
(GO TO, ALTER, PERFORM, STOP, and EXIT) allow alterations in the 
sequence. 

GO TO Statement 

The GO TO statement allows a transfer from one part of the program to 
another. 

r-----------------------------------------------------------------------1 
I Format 1 I 
r---------~------~------~-----------~------------------------------~ 
I I 
I GO TO procedure-name-1 I 
I I 
L-----~---------------------------------------------------------------J 

r------~--------------------------------------------------------------1 

I Format 2 I 
r-------~~------------------·--------~------------------------------~ 
I I 
I §Q TO procedure-name-1 [procedure-name-21 I 
I I 
I DEPENDING ON identifier I 
I I 
L---------~----------~------~---~---------------~-----------------J 

r-----------~---------------~--------~------------------------------1 

I Format 3 I 
r~-----------------------------------------------·--------------------~ 
I I 
I GO TO. I 
I I 
l-------~--------------------~---------------------------------------J 

When Format 1 is specified, control is passed to EEocedure-n~~~-1 or 
to another procedure name if the GO TO statement has been changed by an 
ALTER statement. (If the latter is the case, the GO TO statement must 
have a paragraph name, and the GO TO statement must be the only 
statement in the paragraph.) 

If a GO TO statement represented by Format 1 appears in an imperative 
sentence, it must appear as the only or last statement in a sequence of 
imperative statements. 

When Format 2 is used, control is transferred to one of a series of 
procedures, depending on the value of the identifier. When identifier 
has a value of 1, control is passed to procedure-name-1; a value of 2 
causes control to be passed to procedure-name-2, ••• ; a value of Q 
causes control to be passed to procedure-name-n. For the GO TO 
statement to have effect, identifier must represent a positive or 
unsigned integer, i.e., 1, 2, ••• , n. If the value of the identifier is 
anything other than a value within the range 1 through n, the GO TO 
statement is ignored. The number of procedure-names must not exceed 
2031. 

168 Part IV -- Procedure Division 



' ' '..._,! 

ALTER Statement 

described as an 
Its USAGE must be 

When Format 3 is used, an ALTER statement, referring to the GO TO 
statement, must have been executed prior to the execution of the GO TO 
statement. The GO TO statement must immediately follow a paragraph name 
and must be the only statement in the paragraph. 

ALTER Statement 

The ALTER statement is used to change the transfer point specified in 
a GO TO statement. 

r------~----------------------~--------------------------------------1 I Format I 
~--------------------~-------------------------------------------------~ 
I I 
I ALTER procedure-name-1 TO [PROCEED TO] procedure-name-2 I 
I I 
I I 
I Iprocedure-name-3 TO [PROCEED TO] procedure-name-4]... I 
I I 
L-------------------------~-------------------------------------------J 

Procedure-name-1, procedure-narne-3, etc., must be the names of 
paragraphs that contain only one sentence consisting of a GO TO 
statement without the DEPENDING option. 

~~ocedure-name-2, procedure-name-~, etc., must be the names of 
paragraphs or sections in the Procedure Division. 

The effect of the ALTER statement is to replace the procedure-name 
operands of the GO TO statements with p;:QcedU£~~~~~=£, 
procedure-name-4, etc., of the ALTER statement, where the paragraph-name 
containing the GO TO statement is p~oce~~[~=~~~-1, 2!:2£ed~~~=g~~~-3, 
etc. For example: 

PARAGRAPH-1. 
GO TO BYPASS-PARAGRAPH. 

PARll.GRAPH-lA. 

BYPASS-PARAGRAPH. 

ALTER PARAGRAPH-1 TO PROCEED TO PARAGRAPH-2 • . . 
PARAGRAPH-2. 

Before the ALTER statement is executed, when control reaches 
PARAGRAPH-1; the GO TO statement transfers control to BYPASS~PARAGRAPH. 
After execution of the ALTER statement, however, when control reaches 
PARAGRAPH-1, the GO TO statement transfers control to PARAGRAPH-2. 

Segmentation Information: A GO TO statement in a section whose 
priority is greater than or equal to 50 must not be referred to by an 
ALTER statement in a section with a diffE;rent priority. All other uses 
of the ALTER statement are valid and are perf orrred even if the GO TO to 
which the ALTER refers is in an overlayable fixed segment (see 
"Segmentation"). 

Procedure Branching Statements 169 



PERFORM statement 

PERFORM Statement 

The PERFORM statement is used to depart from the normal sequence of 
procedures in order to execute a statement, or a series of statements, a 
specified number of times; or until a predetermined condition is 
satisfied. After the statements are executed, control is returned to 
the statement after the PERFORM statement • 

. ------------------------------------------------~--------------------~ I Format 1 I 
r---------------------------~· -----------------------------------i 
I I 
I PERFORM procedure-name-1 [THRU procedure-name-21 I 
L---------------------------~----------------------------------------J 

r------------------------------------------------~--------------------1 
I Format 2 I 
~----~· --~-----------------------------------------------------------~ 
I I 
I PERFORM procedure-name-1 CTHRU procedure~name-21 I 
I I 
1
1 

{ identifier-1 }· 
1
1 

TIMES 
I integer-1 I 
L----------------------------'-------------------~--------------------J 

r---------------------------------------------------------------------1 
I Format 3 I 
~-----------------------------------------------------------------~ 
I I 
I PERFORM procedure-name-1 (THRU procedure-name-2) I 
I I 
I UNT~L condition-1 I 
L--------------.------------.;...----------------------------------------J 
r---------------------------------------------------------~-----------1 
I Format 4 I 
~---------------------------------------------------------------------~ 
I I 
I PERFORM procedure-name-1 [THRU procedure-name-21 I 
I I 

I VARYING ) FROM literal-2 I 
I { index-name-1 ·}. { index-name-2 } I 

I l identifier-1 , ---- identifier-2 I 
I I 
I { literal-3 } I 
I BY { UNTIL condi tion-1 I 
I lidentifier-3 ---- I 
I I 
I { index-name- 4 } { index-name-5 } I 
I [AFTER FROM litera1-5 I 
I identifier-4 , identifier-5 I 

11 { litera1-6 } /1 BY UNTIL condition-2 
I identifier-6 , --- I 
I I 
I {. index-name-7 { { index-name- 8 I I 
I [~ ( FROM litera1-.8 { I 
I identifier-7 J identifier-8) I 
I I 
I { literal-9 ~ I 
I BY { UNTIL condition-3]] I 
I identifier-9 J I 
l-------------------------------------------------~--------------------J 

170 Part IV -- Procedure Division 



\._.__./ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
PERFORM Statement 

Each erocedure-name must be the name of a section or paragraph in the 
Procedure Division. 

Each i~~g~if!~ represents a numeric elementary item described in the 
Data Division. In Format 2, and Format 4 with the AFTER option each 
identifier represents a numeric item described as an integer. ' 

Each li~eral represents a numeric literal. 

Whenever a PERFORM statement is executed, control is transferred to 
the first statement of the procedure named procedure-name-1. control is 
always returned to the statement following the PERFORM statement. The 
point from which this control is passed is determined as follows: 

1. If procedure-name-1 is a paragraph name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
statement of procedure-name-1. 

2. If procedure-name-1 is a section name and procedure-name-2 is not 
specified, the return is made after the execution of the last 
sentence of the last parag~aph in procedure-name-1. 

3. If procedure-name-2 is specified and it is a paragraph name, the 
return is made after the execution of the last statement of that 
paragraph. 

4. If procedure-name-2 is specified and it is a section name, the 
return is made after the excecution of the last sentence of the 
last pa,ragraph in the section. 

When both erocedure-name-1 and 2rocedure-name-2 are specified, GO TO 
and PERFORM statements may appear within the sequence of statements 
within these paragraphs or sections. When procedure-name-1 alone is 
specified, PERFORM statements may appear within the procedure. GO TO 
may also appear but may not refer to a procedure-name outside the range 
of procedure-name-1. 

When a PERFORM statement includes within its range another PERFORM, 
this embedded PERFORM statement must have its range either totally 
included in or excluded from the range of the original PERFORM 
statement. That is, the exit point of the first PERFORM cannot be 
contained within the range of the second PERFO 

control may be passed to a sequence of statements that lies between 
the entry and exit points of a PERFORM statement by means other than a 
PERFORM. In this case, control passes thro~gh the last statement of the 
procedure to the following statement as if no PERFORM statement referred 
to these procedures. 

FORMAT 1: When Format 1 is used, the procedure(s) referred to are 
executed once, and control returns to the statement following the 
PERFORM statement. 

FORMAT 2: When Format 2 is used, the procedure(s) are performed the 
nuiiiber of times specified by i~~gt~fi~~-1 or intege~-1. Once the TIMES 
option is satisfied, control is transferred to the statement following 
the PERFORM statement. 

The foilowing rules apply to the use of a Format 2 PERFORM statement: 

Procedure Branching Statements 171 



PERFORM Statement 

1. If integer-1 or identifier-1 is zero or a negative number a.t the 
time the PERFORM statement is initiated, control passes to the 
statement following the PERFORM statement. 

2. Once the PERFORM statement has been initiated, any reference to 
identifier-1 has no effect in varying the number of times the 
procedures are initiated. 

FORMAT 3: When Format 3 is used, the specified procedures are performed 
until the condition specified by the UNTIL option is true. At this 
time, control is transferred to the statement following the P:ffiRFORM 
statement. if the condition is true at the time that the PERFORM 
statement is encountered, the specified procedure<s> are not executed. 

FOB~!-~: Format 4 is used to augment the value Of one or more 
!g~gt!f!~E~ or !g~~~gam~~ during the execution of a PERFORM statement. 

when executing a Format 4 PERFORM statement, 
identifier-2 (index..,name-2) and identifier-5 <i 
positive in ordertocon:form withthe-standard. 

i1i11!1&1~~-~ltt8~'111ri•l:l~1~11~~1~iiJ~1*~1alal!,! 

the initial values of 
-5) ·must be 

In the :following discussion of Format 4, every reference to 
i~!2.!:!titi~ also refers to inde~:.!!~ except when iderttifier-n is the 
object of the BY option. Also, when index-names are used, the FROM and 
BY clauses have the same effect as in a SET statement (see "Table 
Handling"). 

During execution of the PERFORM statement, reference to !Ilg~~Il~ill~£ 
or !~entif!gE§ of the FROM option has no effect in altering the number 
of times the. procedures are to be executed. Changing the value of 
index-names or identifiers of the VARYING option or identifiers of the 
BY option, however, will change the number of times the procedures are 
executed. 

When Qg~_!_ggg~ifi~E-i~-Y~~ie~, the following is the sequence of 
events: 

1. Identifier-1 is set egual to its starting value, identifier-2 or 
literal-2. 

2. If condition-1 is false, the specified procedureCs) are executed 
once. 

3. The value of identifier-1 is .augmented by the specified increment 
or decrement, identifier-3 or literal-3, and condition-1 is 
evaluated again. 

4. steps 2 and 3 are repeated, if necessary, until the condition is 
true. When the condition is true, control passes directly to the 
statement following the PERFORM statement. If the condition is 
true for the starting value of identifier-1, the procedure(s) are 
not executed, and control passes directly to the statement 
following the PERFORM statement. 

Chart 2 is a flowchart illustrating the logic of the PERFORM 
statement when one identifier is varied. 

When two identif;hers are varied, the following is the sequence of 
events: 

1. Identi:fier-1 and identifier~4 are set to their initial values, 
identifier-2 <or literal•2) ·and identifier .... $ <or literal~S>, 
respectively. 

2. condition-1 is evaluated; if true, control is passed to the 
statement follOW'ing the PERFORM statement; if false, condition-2 is 
!!:!Valuated. 

172 Part IV -- Procedure Division 

\ J -



PERFORM Statement 

3. If condition-2 is false, procedure-name-1 through procedure-name-2 
(if specified) is executed once. 

4. Identifier-4 is augmented by identifier-6 (or literal-6), and 
condition-2 is evaluated again. 

5. If condition-2 is false, steps 3 and 4 are repeated. 

6. If condition-2 is true, identifier-4 is set to its initial value, 
identifier-5. 

7. Identifier-1 is augmented by identifier-3 <or literal-3). 

8. Steps 2 through 7 are repeated Until condition-1 is true. 

At the termination of the PERFORM statement, if condition-1 was true 
when the PERFORM statement was encountered, identifier-1 and 
identifier-4 contain their initial values. Otherwise, identifier-1 has 
a value that differs from its last used setting by an increment or 
SlSldecrement, as the case may be. 

Chart 3 is a flowchart illustrating the logic of the PERFORM 
statement when two identifiers are varied. 

For three identifiers, the mechanism is the same as for two 
identifiers except that identifier-7 goes through the complete cycle 
each time that identifier-4 is augmented by identifier-6 or literal-6, 
which in turn goes through a complete cycle each time identifier-1 is 
varied. 

Chart 4 is a flowchart illustrating the logic of the PERFORM 
statement when three identifiers are varied. 

SEGMENTATION INFORMATION: A PERFORM statement appearing in a section 
whose priority is less than the segment limit can have within its range 
only one.of the following: 

1. Sections each of which has a priority number less than 50 

2. Sections wholly contained in a single segment whose priority number 
is greater than 49 

A PERFORM statement appearing in a section whose priority number is 
equal to or greater than the segment limit can have within its range 
only one of the following: 

1. sections each of which has the same priority number as that 
containing the PERFORM statement 

2. sections with a priority number less than the segment limit 

When a procedure-name is a segment with a priority number greater 
than 49 is referred to by a PERFORM statement contained in a segment 
with a different priority number, the segment referred to is made 
available in its initial state for each execution of the PERFORM 
statement (see "Segmentation"). 

Procedure Branching Statements 173 



PERFORM Statement 

Chart 

174 

2. Logical Flow of Option 4 PERFORM Statement Varying One Identifier 

****A2********* * EXECUTION OF * * PERFORM STMT * * BEGINS * ***********"'*** 

l 
*****B2********** * SET * * IDENTIFIER-1 * * EQUAL TO ITS * * FROM VALUE * • • 
········i········ 

... 
C2 *• 

•* *• ****C3*•******* • • TES'r *· TRUE + 1 

~>• •• :ONDITION-:.·*-------->: \ EXIT * 
•• • * ***~*********** .... r .. 

"****D2*******•** • • * EXECUTE * 
• PROCEDORE-1 * 

THRU • * PROCEDURE-2 * ••••••••••••••••• 

l 
*****E2********** . . 
+ AU ~T * ---* IDENT -1 * * WITH BY + 
* V E * *******••········ 

Part IV -- Procedure Division 



PERFORM Statement 

Chart 3. Logical Flow of Option 4 PERFORM Statement Varying Two 
Identifiers 

****A1******••• * EXECUTION OF • 
+ PERFORM STMT • 
* BEGINS * 
*************** 

v 
*****Bl********** • • * IDENTIFIER-1 * 
• IDENTIFIER-4 * 
*SET TO INITIAL * 
* FROM VALUE * 
************ ***** 

:·::·:->l • * 
**** .•. 

Cl • • 
• + *• ****C2********* ·* TEST *· TRUE * * *• CONDITION-1 .. *-------->* EXIT * 

*· .+ * * 
*I 0 * "'************··· ...... 

rALSE 

... 
D1 *· 

·* * .. • + TEST +. TRUE 

->*. CONDITION-2 .•----------------] ... .. * 
•. "+ 

*· . * 
rALSE 

*****El********** *****E2********** 
* * * SET * + EXECUTE * *IDENTIFIER-4 TO* 
* PROCEDORE-1 + • ITS INITIAL * 
* THRU * * FROM VALUE + * PROCEDURE-2 • * * ....... T....... ·······1······· 
+++••F1*****"'**** **••+F2*****•**** 
* * * * * AUGMENT + * AUGMENT * ---* IDENTIFIER-q + * IDENTIFIER-1 * * WITH ITS BY * * WITH ITS BY * 
"+ VALUE + * VALUE * ................. ········r··**··· 

..... . . 
* C1 + • • ...... 

Procedure Branching Statements 175 



PERFORM Statement 

Chart 

176 

4. Logical Flow of Option 4 PERFORM Statement Varying Three 
Identifiers 

••••A2**•t••••• 
• EXECUTION OF * 
* PERFORM STMT * * BE~INS • 

······1······ 
*****B2********** 
+ IDENT -1 • 
* IDENT -4 + 
* !DENT -7 + 
*SET TO IAL * * FROM VALUES * ....... *j ....... . 

. •. 
C2 *• 

**** • * +.. +••*-C3***•••+++ * + •* TEST +. TRUE * • 
* C2 *---->*. CONDlTlON-1 .•-~-----~>• EXIT * 
• + ... ·* * * .... •. .• ......•...••.•. ... . . 

rLSE 
.•. 

D2 *• •••• •• *· 
+ + •* TEST *· TRU~ 

* D2 +---->•, CONDITION-2 .+----------------------------------~-~---+ • •• .. * 
•••• •• • * .... 

rALSE 

.•. 
E2 *• .. . . 

• • TEST *· TRUE 

-->•. CONDITION-3 .•-----------------! *· .• .. . . 
T"'" 

*****F2********** *****Fl********** 
* • * SET * * EXECUTE • + IDENTIFIER-? * * PROCEDIJRE-1 • *TO ITS INITIAL + 
+ THRU * * FROM VALUE • 
* PROCEDURE-2 * * * 
·······1······· ·······r······ 

*****G2++•+++++++ +++•+G3********** • • • • 
+ * * AU + ---* I -7 + * IDENT -u 
*W BY* *WITH BY 
+ VAL * * VAL * .............•... ········1········ 

*•*• . . 
* D2 * . . .... 

*****F4********** 
* SET * 
•IDENTIFIER-~ TO* 
• ITS INITIAL • 
• FROM VALUE + • • ·······r······ 
•••••G4•••••••••• • • . . 
* ID -1 * 
* BY * • v • ........ ! ........ 

**•• • • 
* C2 * • • . ... 

Part IV -- Procedure Division 



l"-": 

STOP/EXIT Statements 

The STOP statement halts the object program either permanently or 
temporarily. 

r---------------~--------~-~-----~---------------------------------1 
I Format I 
~---------------------------------------~------------------------------~ 
I I 
I { RUN l I 
I STOP . I 
I literal J I 
I I 
L-----~----------------------~----------------------------------------J 

When the RUN option is used, the execution of the object program is 
terminated, and control is returned to the system. 

If a STOP statement with the RUN option appears in an imperative 
statement, it must appear as the only or last statement in a sequence of 
imperative statements. All files should be closed befor.e a STOP RUN 
statement is issued. 

When the literal option is used, the literal is communicated to the 
operator. The program may be resumed only by operator intervention. 
continuation of the object program begins with the execution of the next 
statement in sequence. 

The literal may be numeric or nonnumeric, or it may be any figurative 
constant except ALL. 

EXIT Statement 

The EXIT statement provides a common end point for a series of 
procedures. 

r----------------------------~--------~------------------------------1 
I Format I 
~-----------------------------~----------------------------------------~ 
I I 
I paragraph-name. .EXIT ~&~I· 1 
I I 
L------~--------------------~-------~-----~-----------------------J 

It is sometimes necessary to transfer control to the end point of a 
series of procednres. This is normally done by transferring control to 
the next paragraph or section~ but in some cases this does not have the 
required effect. For instance, the point to.which control is to be 
transferred may be at the end of a range of procedures governed by a 

Procedure Branching Statements 177 



EXIT Statement 

PERFORM or at the end of a declarative section. The EXIT statement is 
provided to enable a procedure-name to be associated with such a point. 

If control reaches an EXIT paragraph and no associated PERFORM or USE 
statement is active, control passes through the EXIT point to the first 
sentence of the next paragraph. 

The EXIT statement must be preceded by a paragraph-name and be the 
only statement in the paragraph. 

178 Part IV -- Procedure Division 



MOVE Statement 

DATA-MANIPULATION STATEMENTS 

Movement and inspection of data are implicit in the functioning of 
several of the COBOL statements. These statements are: MOVE, EXAMINE, 

~iili~R1fil'll· 

MOVE Statement 

The MOVE statement is used to transfer data from one area of storage 
to one or more other areas. 

r---------------------------~------------------------------------1 

I Format 1 I 
!----------------~-------~---------------------------------------~ 
I I 
I {' identifier-1 / I 
I MOVE ' TO identifier-2 [identifier-3]... I 
I literal J - I 
I I l _____________________________________________________________________ J 

r---------------------------------------------------------------------1 
I Format 2 I 
!-------------------------------------------------------------------~ 
I I 
I { CORRESPONDING ) I 
1

1 

MOVE )t ( identifier-1 TO identifier-2 1

1 CORR J 
I I 
l----------------------------~----------------------------------------J 

In Furmat 1, identifier-1 and literal represent the sending area; 
identifier-2-, identifier-3, • • • represent the receiving areas. 

The data designated by literal or identifier-1 is moved first to 
identifier-2, then to identifier-3 (if specified), etc. 

An index data item cannot appear as an operand of a MOVE statement. 

In Format 2, the CORRESPONDING option is used to transfer data 
between items of the same name simply by specifying the group items to 
which they belong. 

Neither identifier may be a level-66, level-77, or level-88 data 
item. 

Data items from each group are considered CORRESPONDING when they 
have the same name and qualification, up to but not including 
identifier-1 and identifier-2. 

At least one of the data items of a pair of matching items must be an 
elementary data item. 

Each elementary item containing an OCCURS, REDEFINES, USAGE IS INDEX, 
or RENAMES clause is ignored. However, either identifier may have a 

Data-Manipulation Statements 179 



MOVE statement 

REDEFINES or OCCURS clause in its description or may be subordinate to a 
data item described with these clauses. 

General Rules Applying to Any MOVE Statement: 

1. Any move in which the sending and receiving items are both elemen­
tary items is an elementary move. Each elementary item belongs to 
one of the following categories: numeric, alphabetic, 
alphanumeric, numeric edited, or alphanumeric edited (see wprcTURE 
Clause" in "Data Division"). Numeric literals belong to the 
category numeric; nonnumeric literals belong to the category 
alphanumeric. 

2. When an alphanumeric edited, alphanumeric, or alphabetic item is a 
receiving item: 

a. Justification and any necessary filling of unused character 
positions takes place as defined under the JUSTIFIED clause. 
Unused character positions are filled with spaces. 

b. If the size of the sending item is greater than the size of the 
receiving item, the excess characters are truncated after the 
receiving item is filled. 

c. If the sending item has an operational sign, the absolute value 
is used. 

3. When a numeric or numeric edited item is a receiving item: 

a. Alignment by decimal point and any necessary zero filling of 
unused character positions takes place, except when zeros are 
replaced because of editing requirements. 

b. The absolute value of the sending item is used if the receiving 
item has no operational sign. 

c. If the sending item has more digits to the left or right of the 
decimal point than the receiving item can contain. excess 
digits are truncated. 

d. The results at object time may be unpredictable if the sending 
item contains any nonnumeric characters. 

4. A ... :/ necessary conversion of data from one form of internal 
representation to another takes place during the move, along with 
any specified editing in the receiving item. 

5. Any move that is not an elementary move is treated exactly as 
though it were an alphanumeric elementary move, except that there 
is no conversion of data from o~e form of internal representation 
to another. 

6. When the sending and receiving operands of a MOVE statement share a 
part of their storage (that is, when the operands overlap>, the 
result of the execution of such a statement is unpredictable. 

There are certain restrictions on elementary moves. These are shown 
in Table 15. 

180 Part IV -- Procedure Division 

i 

'.._,/ 



Table 15. Permissible Moves 
--------------------------------T--T--T--T--T--T--T---

1 Receiving Field! I I I I I I 
!Source Field IGRIALIANIEDIBIINEIAN 
!-:::----------------------------- --+--+--+--+--+--+---
I Group (GR) IY IY IY IY1 IY 1 IY1 IY1 

t--------------------------------+--+--+--+--+--+--+---
1 Alphabetic (AL) IY IY IY IN IN IN IY 
1-:::-------------------------------+--+--+--+--+--+--+---l Alphanumeric (AN) IY IY IY IY~IY~IY~IY 
1----------------------------+--+--+--+--+--+--+---
f External Decimal (ED) IY1 jN IY2 1Y IY IY IY2 
1-:::---------------~---------------+-+--+--+--+--+--+--l Binary (BI) IY1 IN IY2 IY IY IY IY2 

1-------------------------~---+--+--+--+--+--+--+--
l Numeric Edited (NE) IY IN IY IN IN IN IY 
1-:::---------------------------~---+--+--+--+--+--+--+---
l Alphanumeric Edited (ANE) IY f Y IY IN IN IN IY 
t--------------------------------+--+--+--+--+--+--+---
1 ZEROS <numeric or I I I I I I I 
I alphanumeric) IY IN JY IY3 IY3 IY3 IY 
!--------------------------------+--+--+--+--+--+--+---
'SPACES (AL) IY IY IY IN IN IN IY 
1---------------------------------+--+--+--+--+--+--+---l HIGH-VALUE, LOW-VALUE, QUOTES IY IN IY IN IN IN IY 
t------------------------------+--+--+--+--+--+--+---
1 ALL literal I Y I Y I Y I Y 5 I Y5 J Y5 I Y 
1-:::-------------------------------f-~f--+--+--+--f--+---
l Numeric Literal IY1 IN IY2 IY IY IY fY 2 

t--------------------------------+--+--+--+--+--+--+---
1 Nonn umeric Literal IY IY IY JY5 JY5 IY5 IY 
1-:::----------------------------·---
I 

I 

I 

MOVF; Statement 

I I 
1-:::------------~--------------- -~ l':tMove without conversion <like AN to AN) I 
12only if the decimal point is at the right of the least significant I 
ld~tt I 
13Numeric move I 
l~The alphanumeric field is treated as an ED (integer) field I 
lsThe literal must consist only of numeric characters and is treated asl 
I an ED integer field I 
l---------~------------------~-------~----------------------------~-J 

Data-Manipulation Statements 181 



EXAMINE Statement 

EXAMINE Statement 

The EXAMINE statement is used to count the number of times a 
specified character appears in a data item and/or to replace a character 
with another character. 

r--~----------------------------------~------------------------------1 
I Format 1 I 
~----------------------------------------------------------------------~ 
I I 

EXAMilli;j identifier TALLYING literal-1 II ,( UNTALLIL FIRST } '1 

! LEADING 
I I 
I [REPLACING BY literal-21 I 
I I 
L-------------------------~-------------------------------------------J 

r----------------------------~--------~---------~--------------------, 
I Format 2 I 
!--------------------------~-~-------~------------------------------~ 
I I 
I (ALL } I 
I ' LEADING I 
I EXAMINE identifier REPLACING ) FIRST literal-1 I 
I l UNTIL FIRS! I 
I I 
I BY literal-2 I 
I I 
L----------------------------------------------------------------------J 

In all cases, the description of identifier must be such that its 
usage is display (explicitly or implicitly). 

When ~ifi§E represents a nonnumeric data item, examination starts 
at the leftmost character and proceeds to the right. Each character in 
the data item is examined in turn. 

When identifier represents a numeric data item, this data item must 
consist of numeric characters, and may possess an operational sign. 
Examination starts at the leftmost character and proceeds to the right. 
Each character is examined in turn. 

If the letter •s• is used in the PICTURE of the data item description 
to indicate the presence of an operational sign, the sign is ignored by 
the EXAMINE statement. 

Each literal must consist of a single character belonging to a class 
consistent with that of the identifier; in addition, each literal may be 
any figurative constant except ALL. If identifier is numeric, each 
literal must be an unsigned integer or the figurative constant ZERO 
(ZEROES, ZEROS). 

When Format 1 is used, an integral count is created which replaces 
the value of a special register called TALLY, whose implicit description 
is that of an unsigned integer of five digits (see "Language 
Considerations"). 

1. When the ALL option is used, this count represents the number of 
occurrences of literal-1. 

182 Part IV -- Procedure Division 



\ ' 
'-._...! 

L/ 

EXAMINE Statement 

2. When the LEADING option is used, this count represents the number 
of occurrences of literal-1 prior to encountering a character other 
than li teral-1. 

3. When the UNTTL FTRST option is usea, this count represents all 
characters encountered before the first occurrence of literal-1. 

Whether Format 2 is used, or the REPLACING option of Format 1, the 
replacement rules are the same. They are as follows: 

1. When the ALL option is used, literal-2 is substituted for each 
occurrence of literal-1. ~~-----

2. When the LEADING option is used, the substitution of literal-2 for 
each occurrence of literal-1 terminates as soon as a character 
other than literal-1 or the right-hand boundary of the data item is 
encountered. 

3. When the UNTIL FIRST option is used, the substitution of literal-2 
terminates as soon as liter~!-1 or the right-hand boundary of the 
data item is encountered. 

4. When the FIRST option is used, the first occurrence of literal-1 is 
replaced by literal-2. 

Specific EXAMINE statements showing the effect of each statement on 
the associated data item and the TALLY are shown in Table 16. 

Table 16. Examples of Data Examination 
r-------------~--~---------------------------T--------T-------T-------1 

I I I I Result- I 
I I I ling I 
I I I !Value I 
I I ITEM-1 I Data I of I 
I EXAMINE Statement !<Before) l<After>ITALLY I 
1------~---------------------~---------------+--------+-------+-------~ 
!EXAMINE ITEM-1 TALLYING ALL 0 I 1010-10 I 101010 I 3 I 
~-------------------------------------------+--------+-------+-------~ 
!EXAMINE ITEM-1 TALLYING ALL 1 REPLACING BY 0 1101010 1000000 I 3 I 
1-----------------------------~---------------t--------+-------+-------~ 
!EXAMINE ITEM-1 REPLACING LEADING "*" BY SPACEl**7000 I 7000 I + I 
~----------------------------------------+--------+-------+-------i 
!EXAMINE ITEM-1 REPLACING FIRST ••" by "$" l**l.94 1$*1.94 I t I 
1--------------------------------~------------i---~----i _______ i _______ ~ 

It unchanged I 
l-----------------------~-----------------------------------------J 

Data-Manipulation Statements 183 



TRANSFORM Statement 

· .. .._,, 

184 Part IV -- Procedure Division 



( 
\-.._..; 

TRANSFORM Statement 

Data-Manipulation Statements 185 



TRANSFORM Statement 

186 Part IV -~ Procedure Division 



OPEN Statement 

INPUT/OUTPUT STATEMENTS 

The flow of data through the computer is governed by the Disk 
Operating System. The COBOL statements discussed in this section are 
used to initiate the flow of data to and from files stored on external 
media and to govern low-volume information that is to be obtained from 
or sent to input/output devices such as a card reader or console 
typewriter. 

The Disk Operating System is a record processing system. That is, 
the unit of data made available by a READ or passed along by a WRITE is 
the record. The COBOL user need be concerned only with the use of 
individual records; provision is automatically made for such operations 
as the movement of data into buffers and/or internal storage, validity 
checking, error correction (where feasible), unblocking and blocking, 
and volume switching procedures. 

Discussions in this section use the terms volume and reel. The term 
volume applies to all input/output devices. The term reel applies only 
to tape devices. Treatment of mass storage devices in the sequential 
access mode is logically equivalent to the treatment of tape files. 

Note: The WRITE statement with the BEFORE/AFTER ADVANCING option is 
referred to in some of the discussions that follow as the WRITE 
BEFORE/AFTER ADVANCING statement. 

OPEN statement 

The OPEN statement initiates the processing of input, output, and 
input-output files. It performs checking and/or writing of labels and 
other input/output operations. 

r---------~-----------------------------------------------------------1 

I Format I 
~-----------------------------~~------~------------------------------1 

I I 

II [ REVERSED J II 
QPEN [INPUT {file-name } ••• ] 

I WITH NO REWIND I 
I I 
I [OUTPUT {file-name [WITH NO REWIND] } ••• ] I 
I I 
I [I-0 {file-name} ••• ] I 
I I 
L-----~------~----------~--~--------------~-----------------------J 

At least one of the options INPUT, OUTPUT, or I-0 must be specified. 
However, there must be no more than one instance of each option in the 
same statement, although more than one file-name may be used with each 
option. These options may appear in any order. 

Input/Output Statements 187 



OPEN Statement 

The I-0 option pertains only to mass storage files. 

The file-name must be defined by a file description entry in the Data 
Division. 

The OPEN statement must not specify a sort-file; an OPEN statement 
must be specified for all other files. The OPE ent for a file 
must be executed prior to the first READ, SEEK, or WRITE 
statement for that file. A second OPEN statement or a file cannot be 
executed prior to the execution of a CLOSE statement for that file. The 
OPEN statement does not obtain or release the first data record. A READ 
or WRITE statement must be executed to obtain or release, respectively, 
the first data record. 

When checking or writing the first label, the OPEN statement causes 
the user's beginning label subroutine to be executed if one is specified 
by a USE sentence in the Declaratives. 

The REVERSED and the NO REWIND options can be used only with 
sequential single reel files. The REVERSED option may be specified only 
for a file containing fixed-length (F mode) records. 

Files with nonstandard header labels must not be opened for reversed 
reading unless the last header label is followed by a tape mark. 

For tape files, the following rules apply: 

1. When neither the REVERSED nor the NO REWIND option is specified, 
execution of the OPEN statement causes the file to be positioned at 
its beginning. 

2. When either the REVERSED or the NO REWIND option is specified, 
execution of the OPEN statement does not cause the file to be 
repositioned. When the REVERSED option is specified, the file must 
have been previously positioned at its end. When the NO REWIND 
option is specified, the file must have been previously positioned 
at its beginning. 

When the REVERSED option is specified, subsequent READ statements for 
the file make the data records of the file available in reversed order; 
that is, starting with the last record. 

If an input file is designated with the OPTIONAL clause in the File 
control paragraph of the Environment Division (sequential file 
processing), the clause is treated as comments. The desire.a effect is 
achieved by specifying the IGN parameter in the ASSGN control statement 
for the file. If the file is not present, the first READ statement for 
this file causes control to be passed to the imperative statement in the 
AT END phrase. 

The I-0 option permits the opening of a mass storage file for both 
input and output operations. since this option implies the existence of 

188 Part IV -- Procedure Division 

·---· 



START statement 

the file, it cannot be used if the mass storage file is being initially 
created. 

When the I-0 option is used, the execution of the OPEN statement 
includes the following steps: 

1. The label is checked. 

2. The user's label subroutine, if one is specified by a USE sentence, 
is executed. 

3. The label is written. 

A INPUT and OUTPUT and I-0 in 

Input/Output Statements 189 



SEEK Statement 

SEEK Statement 

The SEEK statement is meant to initiate the accessing of a mass 
storage data record for subsequent reading or writing. It is used to 
optimize programming efficiency • 

. ----------------------------~---------------------------------------, 
l Format I 
~--------------------~---------~-----~------------------------------~ 
I I 
I SEEK file-name RECORD I 
I I 
l-------------------------------------------------~--------------------J 

A SEEK statement pertains only to direct files in the random access 
mode and may be executed prior to the execution of a READ or WRITE 
statement. 

The file-.name must be defined by a file description entry in the Data 
Division. 

The SEEK statement uses the contents of the data-name in the ACTUAL 
KEY clause for the location of the record to be accessed. At the time 
of execution, the determination is made as to the validity of the 
contents of the ACTUAL KEY data item for the particular mass storage 
file. If the key is invalid, when the next READ or WRITE statement for 
the associated file is executed, control will be given to the 
imperative-statement in the INVALID KEY option. 

Two SEEK statements for the same direct file may logically follow 
each other. Any validity check associated with the first SEEK statement 
is negated by the execution of the second SEEK statement. 

If the contents of the ACTUAL KEY are altered between the SEEK 
statement and the subsequent READ or WRITE statement, any validity check 
associated with the SEEK statement is negated, and the READ or WRITE 
statement is processed as if no SEEK statement preceded it. 

190 Part IV -- Procedure Division 



READ Statement 

READ Statement 

\ ...... ) The functions of the READ statement are: 

I ' 

'._.,J 

1. For sequential file processing, to make available the next logical 
record from an input file and to give control to a specified 
imperative-statement when end-of-file is detected. 

2. For random file processing, to make available a specific record 
from a mass storage file and to give control to a specified 
imperative-statement if the contents of the associated ACTUAL KEY 
"fi&~~~~s~~dat "t f d t b . l"d iP1;,,~lf&ll'B,~~~£!s~~ a i em are oun o e inva i • 

,-------------~-------------------------------------------------------, 
I Format I 
!--------------------~---~-~---------------------------------------~ 
I I 
I READ file-name RECORD [INTO identif ierJ I 
I I 

I
ll If, AT END KEY fl '1 imperative-statement 

fNVALID 
I I 
l----------------------------------------------------------------------J 

An OPEN statement must be e.xecuted for the file prior to the execu­
tion of the first READ for that file. 

When a READ statement is executed, the next logical record in the 
named file becomes accessible in the input area defined by the 
associated record description entry. 

The record remains in the input area until the next input/output 
statement for that file is executed. No reference can be made by any 
statement in the Procedure Division to information that is not actually 
present in the current record. Thus, it is not permissible to refer to 
the Qth occurrence of data that appears fewer than Q times. If such a 
reference is made, no assumption should be made about the results in the 
object program. 

When a file consists of more than one type of logical record, these 
records automatically share the same storage area; this is equivalent to 
an implicit redefinition of the area. Only the information that is 
present in the current record is accessible. 

FILE-NAME: The file-name must be defined by a file description entry in 
the Data Division. 

INI'O IDENTxFIER OPTION: The INTO identifier option makes the READ 
statement equivalent to a READ statement plus a MOVE statement. 
Identifier must be the name of a working-storage ~-I'-~ Section 
entry, or an output record of a previously opened""1r!~":"-"'"'"wtlen this 
option is used, the current record becomes available in the input area, 
as well as in the area specified by identifier. Data will be moved into 
identifier in accordance with the COBOL rules for the MOVE statement 
without the CORRESPONDING option. 

AT END OPTION: The AT END option must be specified for all files in the 
sequential access mode. If, during the execution of a READ statement, 
the logical end of the file is reached, control is passed to the 
imperative-~tatement specified in the AT END phrase. After execution of 
the imperative-statement associated with the AT END phrase, a READ 
statement for that file must not be given without prior execution of a 
CLOSE statement and an OPEN statement for that file. 

Input/Output Statements 191 



READ Statement 

If an input file is designated with the OPTIONAL clause in the File 
control paragraph of the Environment Division (sequential file 
processing), the clause is treated as comments. The desired effect is 
achieved by s·pecifying the IGN parameter in the ASSGN control statement 
for the file. If the file is not present, the first READ statement for 
this file causes the im2erative-statement in the AT END phrase to be 
executed. 

If, during the processing of a multivolume file in the sequential 
access mode, end-of-volume is recognized on a READ, the following 
operations are carried out: 

1. The standard ending volume label procedure and the user's ending 
volume label procedure, if specified by the USE sentence. The 
order of execution of these two procedures is specified by the USE 
sentence. 

2. A volume switch. 

3. The standard beginning volume label procedure and the user's 
beginning volume label procedure, if specified. The order of 
execution is again specified by the USE sentence. 

4. The first data record of the new volume is made available. 

INVALID KEY OPTION: If ACCESS IS RANDOM is specified for the file, the 
contents of the ACTUAL li:illl~.Bl!KEY for the file must be set to the 
desired value before the execution of the READ statement. 

Only the track specified in the ACTUAL KEY is searched for the record 
being read. 

For a randomly accessed file, the READ statement implicitly performs 
the functions of the SEEK statement, unless a SEEK statement for the 
file has been executed prior to the READ statement. 

The INVALID KEY option must be specified for files in the random 
access mode. The imEerati ve-statem~nt·"'!.9.l,?;,2~i,~12,"'IJ;NALID KEY is executed 
when the contents of the ACTUAL KEY l.it~l'\~~-t field are invalid. 

The key is considered invalid under the following conditions: 

1. For a direct file that is accessed randomly, when the record is not 
found within the search limits, or when the track address in the 
ACTUAL KEY field is outside the limits of the file. 

WRITE Statement 

The WRITE statement releases a logical record to an output file. It 
can also be used for vertical positioning of a print file. For 
sequentially accessed mass storage files, the WRITE statement passes 
control to a specified imperative-statement if the file limit is 
exceeded. For randomly accessed mass storage files, the WRITE statement 
passes co~trol to a sr;~,S,!,.t!~~~A!Pllerati ve-s'!=-atement if the conte~ts o~ 
the associated ACTUAL [~i!IIi•E~iKEY data item are found to be invalid. 

192 Part IV -- Procedure Division 



\ , '-'/ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

WRITE Statement 

r----------------------------------------------------------------------1 
I Format 3 I 
~----------------------------------------------------------------------1 
I I 
I ~RI~~ record-name l[RQ~ identifier-11 I 
I I 
I INVALID KEY imperative-statement I 
I I 
L----------------------------------------------------------------------J 

An OPEN statement for a file must be executed prior to executing the 
first WRITE statement for that file. 

For files in both the sequential and random access modes, the .logical 
record released is no longer available after the WRITE statement is 
executed. 

RECORD-NAME: The record-name is the name of a logical record in the 
Fiie-sectio·n of the-oata-i5Ivision and must not be part of a sort-file. 

FROM OPTION: When the FROM option is written, the WRITE statement is 
equivalent-to the statement MOVE identifier-1 TO record-name followed by 
the statement WRITE record-name. -Data-rs-moved into-record~name in 
accordance with the COBOL rules for the MOVE statement without the 
CORRESPONDING option. Identif ier-1 should be defined in the 
Working-Storage Section, or in another FD .• 

Input/Output Statements 19.3 



WRITE Statement 

FORMAT 1 AND FORMAT 2: Formats 1 and 2 are used only with standard 
sequentiaf-¥I1es:~--

The ADVANCING r•~;~mi:lf'~~~ options allow control of the vertical 
po,si.Uc:>niI1g, of ~ach. record on the print~d page. . If ~he ADV~NCING ~;\if~ 
i~~l~ilf!i!S~ option is not used, automatic advancing is provided to cause 
single spacing. If the ADVANCING or POSITIONING option is used, auto­
matic advancing is overridden. 

When the ADVANCING \~~'\~!~~l~im!j,~\0 option is used, the first character 
in each logical record ~or the file must be reserved by the user for the 
control character. The compiler will generate instructions to insert 
the appropriate carriage control character as the first character in the 
record~ · .. Hf~~~Jl1~~~~~~ii1Fl~~Ii\~MY~\ 

user s responsibility to see that the 
on the carriage control tape. 

Format 1: In the ADVANCING option, when identifier-2 is used, it must 
be-the-name of a nonnegative numeric elementary iteiil<less than 100) 
described as an integer. If identifier-2 is specified, the printer page 
is advanced the number of lines contained in the identifier. 

When iQi~g~r is used in the ADVANCING option, it must be nonnegative, 
and less than 100. If i~i~~~ is specified, the printer page is 
advanced the number of lines equal to the value of integer. 

When the mnemonic-name option is used in the ADVANCING option, it 
must be defined as a function-name in the Special-Names paragraph of the 
Environment Division. It is used for a to channels 1-9 10-12 
to suppress spacing. 

--~~!~fl; 
The meaning of each function-name is shown in Table 19. 

Table 19. Action Taken for Function-Names -- ADVANCING Option 

r---------------T------------------------------------------------------1 
I Function-name I Action Taken I 
~---------------+------------------------------------------------------i 
I CSP I Suppress spacing I 
~---------------+------------------------------------------------------i 
ICOl through C09l Skip to channel 1 through 9, respectively I 
~---------------+------------------------------------------------------i 
IClO through C12l Skip to channel 10, 11, and 12, respectively I 

------------------------------------------------------i 
I 
I 
J 

If the BEFORE ADVANCING option is used, the record is written before 
the printer page is adv~nced according to the preceding.rules. 

If the AFTER ADVANCING option is used, the record is written after 
the printer page is advanced according to the preceding rules. 

194 Part IV -- Procedure Division 



/ 

\_) 

( / 

~ 

\ . 
\.,._/! 

WRITE Statement 

Note: DISPLAY, ~~~S:tti,%\,Ji!i!f:~R~i\1~W;-fli:Ml! and WRITE AFTER 
ADVANCING statements all cause the printer to space before printing. 
However, a simple WRITE statement without any option given, or a WRITE 
BEFORE ADVANCING statement both cause the printer to space after 
printing. Therefore, it is possible that mixed DISPLAY statements, 
f~\'.tl:~~~[~[~ni~ti)and simple WRITE statements or WRITE BEFORE 
~A:DvA:Ncr:NG "sta'tem~'ilf~ within the same program may cause overprinting. 

FORMAT 3: Format 3 is used for randomly or sequentially accessed mass 
storage-files. 

Input/Output Statements 195 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
WRITE Statement 

If ACCESS IS RANDOM is specified for the file, the contents of the 
ACTUAL or NOMINAL KEY field for the file must be set to the desired 
value before the execution of a WRITE statement. For.a direct file, the 
track specified in the ACTUAL KEY field is searched for space for the 
record to be written. 

The INVALID KEY phrase must be specified for a file that resides on a 
mass storage device. control is passed to the imperative-statement 
following INVALID KEY when the following conditions exist: 

1. For a mass storage file in the sequential access mode opened as 
OUTPUT, when an attempt is made to write beyond the limit of the 
file. 

2. For a direct file opened as I-0 or OUTPUT, if access is random and 
a record is being added to the file, when the track address 
specified in the ACTUAL KEY field is outside the limits of the 
file. 

3. For a direct file opened as I-O, if access is random and a record 
is being updated, control is passed to the imperative-statement 
following INVALID KEY when the record is not found, or when the 
track number in the ACTUAL KEY field is outside the limits of the 
file. 

RANDOMLY ACCESSED DIRECT FILES: The WRITE statement performs the 
function-of-a-sEEK-statement;-unless a SEEK statement for this record 
was executed prior to the WRITE statement. 

For a randomly accessed direct file that is opened I-O, the following 
considerations apply: 

• If ~ or Q is specified in the ASSIGN clause system-name, then: 

(1) a WRITE statement updates a record if the preceding 
input/output statement was a READ statement for a record with 
the same ACTUAL KEY. 

(2) a WRITE statement adds a new record to the file, whether or not 
a duplicate record exists, if the preceding READ statement was 
not for a record with the same ACTUAL KEY. 

196 Part IV -- Procedur·e Division 

,, ) 
\""-" 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
WRITE Statement 

!1!I~!IYQ~~~-~~Q!IENTIA!!_FI~~~: The discussion below applies to all 
multivolume tape files and to multivolume mass storage files in the 
sequential access mode. 

After the recognition of an end-of-volume on a multivolume OUTPUT or 
I-0 file in the sequential access mode, the WRITE statement performs the 
following operations: 

1. The standard ending volume label procedure and the user's ending 
volume label procedure if specified by a USE sentence. The order 
of execution of these two procedures is specified by the USE 
sentence. 

2. A volume switch. 

3. The standard beginning volume label procedures and the user's 
beginning volume label procedure if specified by the USE sentence. 
The order is specified by the USE sentence •. 

Input/Output statements 196.1 





'"-', 

Order No. GC2B-6394-2, Page Revised 4/15/71 by TNL GN~0436 

REWRITE Statement 

The function of the ACCEPT statement is to obtain data from the 
system logical input device (SYSIPT), or from the CONSOLE. 

Input/Output statements 197 



ACCEPT Statement 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------~ 

I , } I 
I ACCEPT identifier CERQ~ J J I 
I l -name, I 
I I 
L----------------------------------------------------------------------J 

!~~g~ifi~f may be either a fixed-length roup item or an elementar 
alphabetic, alphanumeric, external decima:J.l1,11~~~~~!~~i\!il!~i~~'l!l;l~~i,~!i~~1 
item. Identifier may not be any Special Reg ster except TALLY. The 
data is read and the appropriate number of characters is moved into the 
area reserved for identifier. No editing or error checking of the 
incoming data is done. 

If the input/output device specified by an ACCEPT statement is the 
same one designated for a READ statement, the results may be 
unpredictable. 

Mnemonic-name may assume either the meaning SYSIPT or CONSOLE. 
Mnemonic-name must be specified in the Special-Names paragraph of the 
Environment Division. If mnemonic-name is associated with CONSOLE, 
identifier must not exceed 255 character positions in length. If the 
FROM option is not specified, SYSIPT is assumed. 

When an ACCEPT statement with the FROM mnemonic-name for CONSOLE 
option is executed, the following-actions are taken; 

1. A system generated message code is automatically displayed followed 
by the literal "AWAITING REPLY". 

2. Execution is suspended. When a console input message is identified 
by the control program, execution of the ACCEPT statement is 
resumed and the message is moved to the specified identifi~~ and 
left justified regardless of the PICTURE. If the field is not 
filled the low-order positions may contain invalid data. 

• . . '"'-''''.'f"'llN"'''°U5'.'.~~·/·····•'."Y•<fi<~1'.~ffiljtt<J:••:•"''.'''"""'°'''•C 
1. f mn. em·.·o. nic-name is associated with SYS I PT ief~~~"::.m .. ·.·.·.·.1::}·:i:~:.: · .. · .. c)\°'.·.1,~ .. ·.a· ·¥J£: .. '1.-"" .·,~.·:•&l'.~··'1'iiF.'; '"" .. '".-::-. .• ... :;.: 

~l~t~~~j~;--an:-input recora. size of so is assumetC·''"'·'rt:' tlie=s·ize··iirflie 
·acceptlng··aata item is less than 80 characters, the data must appear as 
the first set of characters within the input record. If the size of the 
accepting data item is greater than 80 characters, as many input records 
as necessary are read until the storage area allocated to the data item 
is filled. If the accepting data item is greater than 80 characters, 
but is not an exact multiple of 80, the remainder of the last input 
record is not accessible. 

DISPLAY Statement 

The function of the DISPLAY statement is to write data on an output 
device. 

198 Part IV -- Procedure Division 



( ! 
I I 

'-' 

\ ; '-/ 

DISPLAY statement 

r----~-~----~------~--~-----------~------------------------------1 I Format I 
!-----------------------------~----------~-----~-·--------------------~ 
I I 
1
1 

{ literal-1 } { li teral-2 } II 
DISPLAY 

I identifier-1 identifier-2 I 
I I 

! [UPON } t] ! 
I t mnemonic-name) I 
I I 
L----~--------------------------------~------------------------------J 

Mnemonic~name must be specified in the Special-Names paragraph of the 
Envirorunent Division. Mnemonic-name may be associated only with the 
reserved words CONSOLE, SYSPCH, SYSPUNCH, or SYSLST. 

When the UPON option is omitted, the system list device (SYSLST) is 
assumed. 

A maximum logical record size is assumed for each device. For 
CONSOLE (the system logical console device), the maximum is 100 
characters. For SYSLST (the system logical output device>, the maximum 
is 120 characters. For SYSPCH or SYSPUNCH (the system punch device), 
the maximum is 72 characters, with positions 73-80 used for the 
PROGRAM-ID name. 

If the total character count of all operands is less than the maximum 
(or 72 for SYSPCH or SYSPUNCH), the remaining character positions are 
padded with blanks. If the count exceeds the maximum size, operands are 
continued in the next record. As many records as necessary are written 
to display all the operands specified. Those operands pending at the 
time of the break are split between lines if necessary. 

COMPUTATIONA~,~~~~fiilik 
iillll,~mare converted automatically to 

1. rail~l~l'f(-, binary i terns are converted to external 
"'<lecirnai~-~- signed"vafues cause a low-order sign overpunch to be 

developed. 

3. No other data items require conversion. 

If a figurative constant is specified as one of the operands, only a 
single occurrence of the figurative constant is displayed. 

Identifier may not be any Special Register except TALLY. 

When a DISPLAY statement contains more than one operand, the data 
contained in the first operand is stored as the first set of characters, 
and so on, until the output record is filled. This operation continues 
until all information is displayed. Data contained in an operand may 
extend into subsequent records. 

Input/Output Statements 199 



CLOSE Statement 

~: DISPLAY, and WRITE AFTER 
ADVANCING statemen s a space before printing. 
However, a$imple WRITE statement without any option given, or a WRITE 
BEFORE ADVANCING statement both cause the printer to space after 
printing •. Therefore, it is possible that mixed DISPLAY statements, 
~~,I and simple WRITE statements or WRITE BEFORE 
ADVANCING statements within the same program may cause overprinting. 

CLOSE Statement 

The CLOSE statement terminates the processing of input and output 
reels, units, and files, with optional rewind and/or lock where 
applicable • 

.-----------------~-----------~-------------------~--------------------, 
I Format I 
~-----------------------------~----------------------------------------~ 
II [REEL J { NO REWIND }. II CLOSE file-name-1 [WITH 
I UNIT LOCK . I 
I · I 
I I 
I [file-name-2 [REEL] [WITH { NO REWIND } ] l • • • \ 
I Yfil1: l LOCK I 
I I 
I I 
L----------~----------------------------------------------------------J 

Each file-name is the name of a file upon which the CLOSE statement 
is to operate; it must not be the name of a sort-file. The file-name 
must be defined by a file-description entry in the Data Division. 

The REEL and WITH NO REWIND options are applicable only to tape 
files. The UNIT option is applicable·only to mass storage files in 
sequential access mode. 

For purposes of showing the effect of various CLOSE options as 
applied to various storage media, all input/output files are divided 
into the following categories: 

1. Unit record volume. A file whose input or output medium is such 
that rewinding, units, and reels have no meaning. 

2. Sequential single-volume. 
contained on one volume. 
volume. 

A sequential file that is entirely 
There may be more than one file on this 

3. Sequential rnultivolume. A sequential file that may be contained on 
more than one volume. 

4. Random single-volume. A file in the random access mode that may be 
contained on a single mass storage volume. 

s. Random multivolume. A file in the random access mode that may be 
contained on more than one mass storage volume. 

200 Part IV -- Procedure Division 

\ 
·. J ..._,. 



CLOSE Statement 

Sequential File Processing 

The results of executing each CLOSE option for each type of file are 
summarized in Table 22. The definitions of the symbols in the 
illustration are given below. Where the definition of the symbol 
depends on whether the file is an input or output file, alternate 
definitions are given; otherwise, a definition applies to INPUT, OUTPUT, 
and I-0 files. 

A--Previous Volumes Unaffected 

All volumes in the file prior to the current volume are processed 
according to standard volume switch procedures except those volumes 
controlled by a prior CLOSE REEL/UNIT statement. 

B--No Rewind of Current Reel 

The current volume is left in its current position. 

c--Standard Close File 

Files Opened as INPUT and I-0: If the file is positioned at its end 
and there is an ending label record, the standard ending label 
procedures and the user's ending label procedures (if specified by a 
USE sentence) are performed. System closing procedures are then 
performed. 

If the file is positioned at its end and there is no ending label 
record, system closing procedures are performed. 

If the file is positioned other than at its end, system closing 
procedures are performed but there is no ending label processing. An 
INPUT or an I-0 file is considered to be at end-of-file if the 
imperative-statement in the AT END phrase has been executed and no 
CLOSE statement has been executed. 

Files Opened as OUTPUT: If an ending label record has been described 
for the file, it is constructed and written on the output medium. 
System closing procedures are performed. 

D--Standard Reel/Unit Lock 

This feature has no meaning in this system and is treated as 
comments. 

E--standard File Lock 

The compiler ensures that this file cannot be opened again during 
this execution of the object program. 

Input/Output Statements 201 



CLOSE Statement 

F--standard Close Volume 

Kiles Qpened as INPUT and I-0: The following operations are 
performed: 

1. A volume switch. 

2. The standard beginning volume label procedure and the user's 
beginning volume label procedure (if specified by the USE 
sentence). The order of execution of these two procedures is 
specified by the USE sentence. 

3. Makes the next data record on the new volume available to be 
read. 

Files Opened as OUTPUT: The following operations are performed: 

1. The standard ending volume label procedure and the user's ending 
volume label procedure (if specified by the USE statement>. The 
order of execution of these two procedures is specified by the 
USE statement. 

2. A volume switch. 

3. The standard beginning volume label procedure and the user's 
beginning volume label procedure (if specified by the USE 
statement). The order of execution of these two procedures is 
specified by the USE statement. 

G--Rewind 

The current volume is positioned at its beginning. 

x--Illeqal 

This is an illegal combination of a CLOSE option and a file type. 
The results at object time may be unpredictable. 

202 Part IV -- Procedure Division 

' ) "'-". 



( : 
~ 

i ! 
I ' .._/ 

CI,OSE Statement 

Table 22. Relationship of Types of Sequential Files and the Options of 
the CLOSE Statement 

--------------------T-------~y------------------~-T------------------1 
I FILE I I I I 
I Type I I I I 
I I Unit I Sequential I Sequential I 
I Option I Record I Single-Volume I Multivolume I 

~-------------------- ----~--t--------------------+------------------i 
CLOSE c I c, G c, G, A 

CLOSE 
WITH LOCK 

CLOSE WITH 
NO REWIND 

CLOSE REEL 

CLOSE REEL 
WITH LOCK 

c, E 

x 

x 

x 

I 
I c, G, E C1 G, E, A 
I 

C1 B C1 B 1 A 

x F, G 

x F, D, G 

I 
CLOSE REEL x x F, B I 
WITH NO REWIND I 

I 
CLOSE UNIT X X F I 

I 
CLOSE UNIT x x F, D I 

I WITH LOCK I L_ ___________________ i _________ i ____________________ i __________________ J 

General Considerations: A file is designated as optional by specifying 
the IGN parameter in the ASSGN control statement. If an optional file 
is not present, the standard end-of-file processing is not performed. 
For purposes of language consistency, the OPTIONAL phrase of the SELECT 
clause should be specified for this type of file. 

If a CLOSE statement without the REEL or UNIT option has been 
executed for a file, the next input/output statement to be executed for 
that file must be an OPEN statement. 

Random File Processing 

The results of executing each CLOSE option for each type of file are 
summarized in Table 23. The definitions of the symbols in the figure 
are given below. Where the definition depends on whether the file is an 
INPUT or OUTPUT file, alternate definitions are given; otherwise, a 
definition applies to INPUT, OUTPUT,and I-0 files. 

H--Standard -Close File 

Files Op~ned as INPUT and I-0: If there is an ending label record, 
the ending label record is checked, and the conventional system 
closing procedures are performed. If there is no ending label 
record, the system closing procedures are performed. For I-0 files, 
the label is updated and written. 

Files Op~ned as OUTPUT: If an ending label record has been described 
for the file, it is constructed and written on the output medium. 
The system closing procedures are performed. 

Input/Output Statements 203 



CLOSE Statement 

J--standard File Lock 

The compiler ensures that this file cannot be opened again during 
this execution of th'e object program. 

Table 23. Relationship of Types of Random Files and the Options of the 
CLOSE Statement. 

--~~~--------~----T------------------------T---------------------1 

I FILE I I I 
I Type I I I 
I CLOSE I Random I Random I 
I Option I Single-Volume I Multi volume I 
1-------------------- ----~-----------------f.:._.-------------------i 
I I I I 
I CLOSE I H I H I 
I I I I 
I CLOSE I I I 
I WITH LOCK I H, J I H, J I 
L-----------------------i-----~------------------..1.---------------------J 

204 Part IV -- Procedure Division 



i ,' 
""--"' 

( 
\ ..... _ ... ) 

CALL statement 

Subprogram linkage statements are special statements that permit 
communication between object programs. These statements are CALL, 
ENTRY, GOBACK, and EXIT. 

CALL Statement 

The CALL statement permits communication between a COBOL object 
program and one or more COBOL subprograms or other language subprograms. 

r----------------------------------------------------------------------1 
I Format I 
~-------------------------------------------------------------------~ 
I I 
I CALL literal [USING identifier-1 [identifier-2] ••• ] I 
I I 
L----------------------------------------------------------------------J 

Literal is a nonnumeric literal and is the name of the program that 
is being called, or the name of an entry point in the called program. 
The program in which the CALL statement appears is the calling program. 
Literal must conform to the rules for formation of a program-name. The 
first eight characters of literal are used to make the correspondence 
between the called and calling program. 

When the called program is to be entered at the beginning of the 
Procedure Division, literal must specify the program-name in the 
PROGRAM-ID paragraph of the called program, and the called program must 
have a USING clause as part of its Procedure Division header if there is 
a USING clause in the CALL statement that invoked it. 

When the called program is to be entered at entry points other than 
the beginning of the Procedure Division, these alternate entry points 
are identified by an ENTRY statement and a USING option corresponding to 
the USING option of the invoking CALL statement. In the case of a CALL 
statement with a corresponding ENTRY, !iteral must be a name other than 
the prograrn-'name but follows the same rules as those for the formation 
of a program-name. 

The identifiers specified in the USING option of the CALL statement 
indicate those data items available to a calling program that may be 
referred to in the called program. 

When the called subprogram is a COBOL program, each of the operands 
in the USING option of the calling program must be defined as a data 
item in the File Section, Working-Storage Section, or Linkage Section. 
If the called subprogram is written in a language other than COBOL, the 
operands of the USING option of the calling program may additionally be 
a file-name or a procedure-name. If the operand of the USING option is 
a file-name, the file with which the file-name is associated must be 
opened in the calling program. 

Names in the two USING lists (that of the CALL in the main program 
and that of the Procedure'Division header or the ENTRY in the 
subprogram) are paired in a one-for-one correspondence. 

Subprogram Linkage Statements 205 



ENTRY Statement 

There is no necessary relationship between the actual names used for 
such paired names, but the data descriptions must be equivalent. When a 
group data item is named in the USING list of a Procedure Division 
header or an ENTRY statement, names subordinate to it in the subpro­
gram's Linkage Section may be employed in subsequent subprogram 
procedural statements. 

When group items with level numbers other than 01 are specified, 
proper word-boundary alignment is required if subordinate items are 
described as COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-2. 

The USING option should be included in the CALL statement only if 
there is a USING option in the called entry point, which is either 
included in the Procedure Division header of the called program or 
included in an ENTRY statement in the called program. The number of 
operands in the USING option of the CALL statement should be the same as 
the number of operands in the USING option of the Procedure Division 
header, or ENTRY statement. If the number of operands in the USING 
option of the CALL statement is greater than the number in the USING 
option in the called program, only those specified in the USING option 
of the called program may be ref erred to by the called program. 

The execution of a CALL statement causes control to pass to the 
called program. The first time a called program is entered, its state 
is that of a fresh copy of the program. Each subsequent time a called 
program is entered, the state is as it was upon the last exit from that 
program. Thus, the reinitialization of the following items is the 
responsibility of the programmer: 

GO TO statements which have been altered 
TALLY 
Data items 
ON statements 
PERFORM statements 
EXHIBIT CHANGED statements 
EXHIBIT CHANGED NAMED statements 

EXHIBIT CHANGED and EXHIBIT CHANGED NAMED operands will be compared 
against the value of the item at the time of its last execution, whether 
or not that execution was during another CALL to this program. If a 
branch is made out of the range of a PERFORM, after which an exit is 
made from the program, the range of that PERFORM is still in effect upon 
a subsequent entry. 

Called programs may contain CALL statements. However, a called 
program must not contain a CALL statement that directly or indirectly 
calls the calling program. 

A called program may not be segmented. 

ENTRY Statement 

The ENTRY statement establishes an entry point in a COBOL subprogram. 

r----------------------------------------------------------------------1 
I Format I 
t----------------------------------------------------------------------~ 
I . I 
I ENTRY literal C!!§ING identifier-1 Cidentifier-2] ••• l I 
I I 
L----------------------------------------------------------------------J 

206 Part IV -- Procedure Division 

·."'-" 



' I 

~ 

/ 
\_;' 

USING Option 

control is transferred to the ENTRY point by a CALL statement in an 
invoking program. 

Literal must not be the name of the called program, but is formed 
according to the same rules followed for program-names. Literal must 
not be the name of any other entry point or program-name in the run 
unit. 

A called program, once invoked, is entered at that ENTRY statement 
whose operand, literal, is the same as the literal specified in the CALL 
statement that invoked it. 

USING Option 

The USING option makes data items defined in a calling program 
available to a called program. The number of operands in the USING 
option of a called program must be less than or equal to the number of 
operands in the corresponding CALL statement of the invoking program. 

The USING option may be specified in the CALL statement, the ENTRY 
statement, or in the Procedure Division header. 

r----------------------------------------------------------------------1 
I Format 1 (Within a Calling Program) I 
~-------~----~-------------~----------------------------------------~ 
I I 
I CALL literal [USING identifier-1 Cidentifier-2) ••• l I 
I I 
L-----~~------------~-----------~--~----------~----------------~J 

r---------------------~------~---------------------------------------1 

I Format 2 (Within a Called Program) I 
~------~-~----------------------------------------------------------~ 
!Option 1 I 
I I 
I ENTRY literal [USING identifier-1 Cidentifier-21 ••• l I 
I I 
~--------------------~---------------~------------------------------~ 
!Option 2 I 
I I 
I PROCEDURE DIVISION [USING identifier-1 [identifier-21 ••• J. I 
I I 
L----------------~--------~----~--------------------------------------J 

When the USING option is specified in the CALL statement, it must 
appear on either the Procedure Division header of the called program, or 
in an ENTRY statement in the called program. 

The USING option may be present on the Procedure Division header or 
in an ENTRY statement, if the object program is to function under the 
control of a CALL statement, and the CALL statement contains a USING 
option. 

When a called program has a USING option on its Procedure Division 
header and linkage was effected by a CALL statement where literal is the 
name of the called program, execution of the called program begins with 
the first instruction in the Procedure Division after the Declaratives 
Section. 

Subprogram Linkage Statements 207 



USING Option 

When linkage to a called program is effected by a CALL statement 
where literal is the name of an entry point specified in the ENTRY 
statement of the called program, that execution of the called program 
begins with the first statement following the ENTRY statement. 

Each of the operands in the USING option of the Procedure Division 
header or the ENTRY statement must have been defined as a data item in 
the Linkage Section of the program in which this header or ENTRY 
statement occurs, and must have a level number of 01 or 77. since the 
compiler assumes that (i!ach level-01 item is aligned upon a double'-word 
boundary, it is the programmer's responsibility to ensure proper 
alignment. 

Whe~ the USING option is present, the object program operates as 
though each occurrence of identifier-1, identifier-2, etc., in the 
Procedure Division had been replaced by the corresponding identifier 
from the USING option in the CALL statement of the calling program. 
That is, corresponding identifiers refer to a single set of data which 
is available to the calling program. The correspondence is positional 
and not by name. 

The following is an example of a calling program with the USING 
option: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. CALLPROG. 

DATA DIVISION. 

WORKING-STORAGE 
01 RECORD-1. 

03 SALARY 
03 RATE 
03 HOURS 

SECTION. 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION. 

CALL "SUBPROG" USING RECORD-1. 

CALL "PAYMASTR" USING RECORD-1. 

208 Part IV -- Procedure Division 



I 

\ .· 
-~ 

i 
\_/ 

USING Option 

The following is an example of a called subprogram associated with 
the preceding calling program: 

IDENTIFICATION DIVISION. 
PROGRAM-ID. SUBPROG. 

DATA DIVISION. 

LINKAGE SECTION. 
01 PAYREC. 

02 PAY 
02 HOURLY-RATE 
02 HOURS 

PICTURE S9(5)V99. 
PICTURE S9V99. 
PICTURE S99V9. 

PROCEDURE DIVISION USING PAYREC. 

GO BACK. 
ENTRY "PAYMASTR" USING PAYREC. 

GOBACK. 

Processing begins in CALLPROG, which is the calling program. When the 
statement 

CALL "SUBPROG0 USING RECORD-1. 

is executed, control is transferred to the first statement of the 
Procedure Division in SUBPROG, which is the called program. In the 
calling program, the operand of the USING option is identified as 
RECORD-1. 

When SUBPROG receives control, the values within RECORD-1 are made 
available to SUBPROG; in SUBPROG, however, they are referred to as 
PAYREC. Note that the PICTURE clauses for the subfields of PAYREC 
(described in the Linkage Section of SUBPROG) are the same as those for 
RECORD-1. 

When processing within SUBPROG reaches the first GOBACK statement, 
control is returned to CALLPROG at the statement immediately following 
the original CALL statement. Processing then continues in CALLPROG 
until the statement 

CALL "PAYMASTR" USING RECORD-1. 

is reached. control is again transferred to SUBPROG, but this time 
processing begins at the statement following the ENTRY statement in 
SUBPR<X3. The values within RECORD-1 are again made available to SUBPROG 
through the matching USING operand PAYREC. When processing reaches the 
second GOBACK statement, control is returned to CALLPROG at the 
statement immediately following the second CALL statement. 

Subprogram Linkage Statements 209 



USING Option 

In any given execution of these two programs, if the values within 
RECORD-1 are changed between the time of the first CALL and the second, 
the values passed at the time of the second CALL statement will be the 
changed, not the original, values. If the programmer wishes to use the 
original values, then he must ensure that they have been saved. 

Program Termination Considerations 

There are three ways in COBOL source language to terminate a program. 
They are: 

1. EXIT PROGRAM 

2. GOBACK 

3. STOP RUN 

Table 24 shows the effect of each program termination statement based 
on whether it is issued within a main program or a subprogram. 

A main program is the highest level COBOL program invoked in a step. 
A subprogram is a COBOL program that is invoked by another COBOL 
program. (Programs written in other languages that follow COBOL linkage 
conventions are considered COBOL programs in this sense.} 

Table 24. Effect of Program Termination Statements Within Main Programs 
and subprograms. 

r----------------T----~----------------T------------------------------1 

I Termination I I I 
I statement I Main Program I Subprogram I 
r----------------+----------------------t---------~--------------------~ 
I EXIT I Non-operational I Return to invoking I 
I PROGRAM I I program I 
I I I I 
I STOP RUN I Return to system l Return to system I 
I I and cause end of I and cause end of I 
I I job step (EOJ macro) I job step (EOJ macro) I 
I I I I 
I GOBACK I Abnormal termination! Return to invoking program I 
I I of job I I 
L_---------------~-----~------'----------..1---------------~-------------J 

210 Part IV -- Procedure Division 



( . 
'-! 

i 
\ .' 

'-.,..' 

EXIT PROGRAM/GOBACK Statement 

EXIT PROGRAM Statement 

This form of the EXIT statement marks the logical end of a called 
program. 

r-------------------~-----------------------~--------------------, 
I Format I 
t-----~--------------------------------------------------------------~ 
I I 
I paragraph-name. EXIT PROGRAM. I 
I I 
l-------------------------------------------~------------------------J 

The EXIT statement must be preceded by a paragraph-name and be the 
only statement in the paragraph. 

If control reaches an EXIT PROGRAM statement while operating under 
the control of a CALL statement, control returns to the point in the 
calling program immediately following the CALL statement. 

If control reaches an EXIT PROGRAM statement and no CALL statement is 
active, control passes through the exit point to the first sentence of 
the next paragraph. 

GOB.ACK Statement 

The GOBACK statement marks the logical end of a called program. 

r----------------------------------------------------------------1 
I Format I 
t---------------------------------------------------------------------~ 
I I 
I GOBACK. I 
I I 
l-------------------------'------------~-----------------------------J 

A GOBACK statement must appear as the only statement or as the last 
of a series of imperative-statements in a sentence. 

If control reaches a GOBACK statement while operating under the 
control of a CALL statement., control returns to the point in the calling 
program immediately following the CALL statement. 

If control reaches a GOBACK statement and no CALL statement is 
active, there will be an abnormal termination of the job. 

STOP RUN Statement 

For a discussion of the STOP statement with the RUN option, see 
"Procedure Branching Statements." 

Subprogram Linkage Statements 211 



ENTER/NOTE Statements 

COMPILER-DIRECTING STATEMENTS 

compiler directing statements are special statements that provide 
instructions for the COBOL compiler. The compiler directing statements 
are COPY, ENTER, and NOTE. 

COPY Statement 

Prewritten source program entries can be included in a COBOL program 
at compile time. Thus, an installation can utilize standard file 
descriptions, record descriptions, or procedures without having to 
repeat programming them. These entries and procedures are contained in 
user-created libraries. They are included in a source program by means 
of a COPY statement (see "Source Program Library Facility">. 

ENTER Statement 

The ENTER statement serves only as documentation and is intended to 
provide a means of allowing the use of more than one source language in 
the same source program. This compiler allows no other source language 
in the program. 

r------~-----~-------------------------------------------------------1 
I Format I 
!-----------------~-------~--~--------~----------~------------------~ 
I I 
I filIT1IB language-name [routine-name]. I 
I I 
L------~---------------------~----------------------------------------J 

The ENTER statement is accepted as comments. 

NOTE Statement 

The NOTE statement allows the programmer to write commentary which 
will be produced on the source listing, but not compiled. 

r----------------------------·----------------------------------------1 
I Format I 
~-----------------------------~--------~------------------------------~ 
I I 
I NOTE character string I 
I I 
l-----------------------------~--~-------------------------------------J 

Any combination of the characters from the EBCDIC set may be included 
in the character stri!!Sl• 

212 Part IV -- Procedure Division 



NOTE Statement 

If a NOTE sentence is the first sentence of a paragraph, the entire 
paragraph is considered to be part of the character string. Proper 
format rules for paragraph structure must be observed. 

If a NOTE sentence appears as o±her than the first sentence of a 
paragraph, the commentary ends with the first instance of a period 
followed by a space. 

Compiler-Directing Statements 213 



\~ 



PART V -- SPECIAL FEATURES 

4 SORT FEATURE 

@ REPORT WRITF.R FEATURE 

• TABLE HANDLING FEATURE 

• SEGMENTATION FEATURE 

• SOURCE PROGRAM LIBRARY FACIL£TY 

special Features 215 



•.. ) 
'-._I 

~. I 

' '-' 



( i 
~/ 

i ' "-'/ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Sort Feature--Description 

The GOBOL programmer can gain convenient access to the sorting 
capability of the system sort/merge program by including a SORT 
statement and other elements of the.Sort Feature iri his source program. 
The Sort Feature provides the capability for sorting files and including 
procedures for special handling of these files both before and after 
they have been sorted. Within the limits of object-time storage, a 
source program may have any number of SORT statements, and each SORT 
statement may have its own special procedures. 

The basic elements of the sort Feature are the SORT statement in the 
Procedure Division and the Sort-File-Description (50) entry, with its 
associated record de$cription entries, in the Data Division. A sorting 
operation is based on sort-keys named in the SORT statement. A sort-key 
specifies the field within a record on which the file is sorted. 
sort-keys are defined in the record description associated with the SD 
entry. The records of a file may be sorted in ascending or descending 
order or in a mixture of the two; that is, the sort-keys may be 
specified as ascending or descending, independent of one another, and 
the sequence of the sorted records will conform to the mixture 
specified. Additional information on the Sort Feature can be found in 
the publication IBM §yste~/36~_oisk 02erating System: American_~~t!Q~! 
Standard COBOL Programmer's Guide, Form GC28-6398. 

Information on the Program Product Version 3 Sort Feature can be 
found in the publication IBM System/360 Disk O~rating_syste~l­
Full ~fil~~!ca!l_Na£~2~~;L.~t~nd~rd COBOL Com2il~! and Library Y~!§~2a 
;L.R£QY£~mmer~@~ide, order No. SC28-6441. 

Not~: Language considerations for an ASCII-collated sort are given in 
Appendix E. 

ELEMENTS OF THE SORT FEATURE 

To use the sort Feature, the COBOL programmer must provide additional 
information in the Environment, Data, and Procedure Divisions of the 
source program. 

The SORT statement in the Procedure Division is the primary element 
of a source program that performs one or more sorting operations. The 
term "sorting operation• means not only the manipulation by the Sort 
Program of sort-work-files on the basis of the sort-keys designated by 
the COBOL programmer, but also includes the method of making records 
available to, and retrieving records from, these sort-work-files. A 
sort-work-file is the collection of records that is involved in the 
sorting-operation as it exists on an intermediate device(s). Records 
are made available either by the USING or INPUT PROCEDURE options of the 
SORT statement. Sorted records are retrieved either by the GIVING or 
OUTPUT PROCEDURE options of the SORT statement. 

In the Environment Division, the programmer must write SELECT 
sentences for all files used as input and output to the Sort Program and 

sort Feature 217 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Sort Feature--File-Control Paragraph 

In the Data Division, the programmer must include File Description 
entries (FD) for all files that are used to provide input to or output 
from the sort program and for the sort file. He must also write a 
Sort-File-Description (SD) entry and its associated record description 
entries to describe the records that are to be sorted, including their 
sort-key fields. 

In the Procedure Division SORT statement, the programmer specifies 
the sort-file to be sorted, and the sort-key names. He must also 
specify whether the sort is to be in ascending or descending sequence by 
key, and whether records are to have special processing. If there is to 
be such processing, he also includes in the Procedure Division the 
program sections that perform the processing. · 

ENVIRONMENT DIVISION CONSIDERATIO~S FOR SORT 

There are certain statements the progranuner must include in the 
Environment Division to use the sort Feature. Detailed descriptions of 
these statements follow. 

INPUT-OUTPUT SECTION 

The Input-output Section is composed of two parts: the File-control 
Paragraph and the I-o-control Paragraph. 

File-Control Paragraph 

The File-control Paragraph is specified once in a COBOL program. 
Within this paragraph, all files referred to in the source program must 
be named in a SELECT clause. 

Files used within input and output procedures and files named in the 
USING and GIVING options of the SORT statement are named in the SELECT 
clause as described in •Environment Division.• The file named in the 
GIVING option of the SORT statement can alternately be described in the 
following format. 

218 Part V -- Special Features 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

SELECT Clause for GIVING Option 

r----------------------------------------------------------------------1 I Format I 
~--------------~------------------------------------------------------~ 
I I 
I SELECT file-name I 
I I 
I ~£!§~ TO (integer-1) system-name-1 [system-name-2] I 
I I 
II { REEL } II Q~ system-name-3 [FOR MULTIPLE ] 
I UNIT I 
I I 

: [RE~ER~ { ::teger-
2 

} ALTERNATE { ::S } ]. \ 
I I 
L----------------------------------------------------------------------J 

The OR option is neither required nor used by this compiler, and is 
treated as comments. 

sort Feature 218.1 





( 
\.,_,) 

SELECT sort-file-name 

The MULTIPLE clause function is specified by object time control 
card~; hence, the MULTIPLE clause is neither required nor used by this 
compiler. The RESERVE clause is appl·icable as described in the 
"Environment Division" chapter. 

Assignment of Sort Work Units 

The File Control paragraph must be specified for the sort file and is 
used to assign work units for the sorting operation. 

r---------------------------------------------------------------'-----1 
I Format I 
~-------------------------------------------------~--------------------~ 
I I 
I SELECT sort-file-name I 
I I 
I ASSIGN TO [integer] system-name-1 [system-narne-2] ••• I 
I I 
L---------------------------------------------------------------------J 

sort-file-name: the name used as the first operand of the SORT 
statement (also the name associated with the SD entry for the 
sorting operation). 

integer: specifies the number of work units available to the Sort 
Program. From one through eight units may be assigned for a disk 
sort. From three through nine units may be assigned for a tape 
sort. If integer is not specified, the compiler assumes one unit 
for a disk sort and three units for a tape sort. 

svstem-name-1: created in the same format as the system-name in other 
ASSIGN clauses (see "Environment Division"). However, the names by 
which the work files are known to the Sort Program are fixed. The 
first work unit for every sort-file in the program must be assigned 
to SYSOOl, the second to SYS002, etc. If the files have standard 
labels, the ~ field must be specified, SORTWKl for SYSOOl, 
SORTWK2 for SYS002, etc. 

Integer work units beginning with the first are reserved for the 
sorting operation. The user may, if he wishes, specify these additional 
work units in multiple gystem-names. However, the compiler treats these 
as comments. 

For example, the SELECT sentence for a sort-file with standard 
labels, which has five work units (tape) available, would be: 

SELECT SORTFILE 
ASSIGN TO 5 SYSOOl-UT-2400-S-SORTWKl. 

SYS001 through SYS005 are assigned by the compiler to the work units. 

I-0-CONTROL,Paragraph 

The I-0-control paragraph specifies when checkpoints are to be taken, 
as well as what core storage area is to be shared by different files. 
The I-0-Control paragraph is coded once in the source program. The 

sort Feature 219 



RERUN/SAME AREA Clauses 

checkpoint interval associated with the standard RERUN format 
in the "Environment Division") is determined by the number of 
processed for the file. However, the format has anin 
a f. ·s not bei n a s r · 

SAME RECORD/SORT AREA Clause 

The SAME RECORD/SORT AREA clause specifies that two or more files are 
to use the same storage area during processing. 

r----------------------------------------------------------------------1 
l Format I 
~----------------------------------------------------------------------~ 
l l 

I SAME { J;3;ECORD } AREA FOR file-name-1 {file-name-2} • • • I 
I SORT I 
I I 
L-----·-----------------------------------------------------------------J 

When the RECORD option is used, the named files, including any 
sort-files, share only the area in which the current logical record is 
processed. several of the files may be open at the same time, but the 
logical record of only one of these files can exist in the record area 
at one time. 

220 Part v -- Special Features 



i 
I ' 
~· 

SD (sort-file-description) Entry 

The function of the SORT option is to optimize the assignment of 
storage areas to a given SORT statement. The system handles storage 
assignment automatically; hence, the SORT option, if given, is treated 
as comments. 

DATA DIVISION CONSIDERATIONS FOR SORT 

In the Data Division the programmer must include File Description 
entries for files that are input to or output from the sort, 
sort-file-description entries which describe the records as they appear 
on the sort work files, and record description entries for each. 

FILE SECTION 

The File section of a program which contains a sorting operation must 
furnish information concerning the physical structure, identification, 
and record names of the sort work file. This is provided in the 
sort-file-description entry. 

sort-File Description 

A sort-file-description entry must appear in the File Section for 
every file named as the first operand of a SORT statement. 

r--------------------~---~-~--------~------------------------------1 

I Format I 
1----------------------~--------------------------·--------------------1 
I I 
I SD sort-file-name I 
I I 
I I 
I I 
I { RECORD IS } I I [DATA data-name-1 [data-name-2] ••• ] I 
I RECORDS ARE I 
I I 
I integer-2 CHARACTERS] l 
I I 
I I 
I I 
I I 
I I 
L--------------------------------------~------------------------------J 

There must be a SELECT sentence for sort-file-name that describes the 
system-name for the sort work file. sort-file-name is also the name 
specified in the SORT statement. 

The 

The DATA RECORDS clause specifies the names of the records in the 
file to be sorted. Data-name-1, data-name-2, ••• of the DATA RECORDS 
clause refer to the records described in the record descriptions 
associated with this SD. 

Sort Feature 221 



SORT Statement 

The RECORD CONTAINS clause specifies the size of data records in the 
file to be sorted. This clause is optional. The actual size and mode 
(fixed or variable) of the records to be sorted are determined from the 
level-01 descriptions associated with a given SD entry. When the USING 
and GIVING options of the SORT statement are used, the record length 
associated with the SD must be the same length as the record associated 
with the FD's for the USING and GIVING files. If any of the SD data 
record descriptions contains an OCCURS clause with the DEPENDING ON 
option, variable-length records are assumed. Refer to "Data Division" 
for the format assumptions that are made by the compiler when the 
RECORDING MODE clause is not specified. 

Both the DATA RECORDS and the RECORD CONTAINS clauses are described 
in "Data Division." 

PROCEDURE D~VISION CONSIDERATIONS FOR SORT 

The Procedure Division must contain a SORT statement to describe the 
sorting operation and, optionally, input and output procedures. The 
procedure-names constituting the input and output procedures are 
specified within the SORT statement. 

The Procedure Division may contain more than one SORT statement 
appearing anywhere except in the declaratives portion or in the input 
and output procedures associated with a SORT statement. 

SORT Statement 

The SORT statement provides information that controls the sorting 
operation. This information directs the sorting operation to obtain 
records to be sorted either from an input procedure or the USING file to 
sort the records on a set of specified sort keys, and in the final phase 
of the sorting operation to make each record available in sorted order, 
either to an output procedure or to the GIVING file. 

r-------------~--------------~---------------------------------------1 
I Format I 
~------~------~-------------------------------------------------------~ 

SORT file-name-1 ON { 
DESCENDING } 

. 
KEY {data-name-1} 

ASCENDING 

(ON { 
DESCENDING }. 

ASCENDING 
KEY {data-name-2} ••• ] .... 

l INPUT PROCEDURE IS section-name-1 [THRU section-name-2) t 
~ file-name-2 f 

jOUTPUT PROCEDURE IS section-name-3 (THRU section-name-4)~ 
lGIVING file-name-3 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

I I 
l----------------------------------------------------------------------J 

222 Part V -- Special Features 

\ ) .__,. 



SORT Statement 

File-name-1 is the name given in the sort-file-description entry that 
describes-the-records to be sorted. 

ASCENDING and DESCENDING: The ASCENDING and DESCENDING options specify 
whether records are to be sorted into an ascending or descending 
sequence, respectively, based on one or more sort keys. 

Each g~~~~~~~~ represents a "key" data item and must be described in 
the records associated with the sort-file-name. 

At least one ASCENDING or DESCENDING clause must be specified. Both 
options may be specified in the same SORT statement, in which case, 
records are sorted on data~name-!, in ascending or descending order, and 
then within data-name-1, they are sorted on the KEY data item 
represented by data-~ame-2, in ascending or descending order, etc. 

Keys are always listed from left to right in order of decreasing 
significance, regardless of whether they are ascending or descending. 

The direction of the sort depends on the use of the ASCENDING or 
DESCENDING clauses as follows: 

1. When an ASCENDING clause is used, the sorted sequence is from the 
lowest value of the key to the highest value, according to the 
collating sequence for the COBOL character set. 

2. When a DESCENDING clause is used, the sorted sequence is from the 
highest value of the key to the lowest value, according to the 
collating sequence of the COBOL character set. 

Sort keys must be one of the types of data item listed in Figure 13. 
corresponding to each type of data item is a collating sequence that is 
used with it for sorting. 

A character in the EBCDIC collating sequence (used with alphabetic, 
alphanumeric, etc., data items) is interpreted as not being signed. For 
fixed-point and internal floating-point numeric data items, characters 
are collated algebraically (that is, as being signed). 

r-------------------------------------T------------7-------------------1 
!Type of Data Item Used for Sort Key I Collating Sequence I 
!-------------------------------------+--------------------------------~ I Alphabetic I EBCDIC I 
I Alphanumeric I EBCDIC I 
!Numeric Edited !EBCDIC I 
I Group I EBCDIC I 
!External Decimal !Zoned Decimal I 
!Binary !Fixed Point I 
p I 
I I 
I I 
L------------------------------------- -------------------------------~J 
Figure 13. SORT Collating Sequences Used for Sort Keys 

sort Feature 223 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

SORT Statement 

The EBCDIC collating sequence for COBOL characters in ascending order 
is: 

1. 
2. 
3. 
4. 
5. 
6. 
7. 
a. 
9. 

16. 
17-42. 
43-52. 

< 
( 

+ 
$ 

* 

I 

(space) 
(period or decimal point) 
(less than) 
(left parenthesis) 
<plus symbol) 
(currency symbol) 
(asterisk> 
<right parenthesis} 
(semicolon} 
(hyphen or minus symbol) 
(stroke, virgule, slash) 
(comma) 

n (quotation mark) 
A through Z 
O through 9 

(The complete EBCDIC collating sequence is given in IBM System/360 
ggf~~~~~~-Q~t~, Form X20-1703.) 

The record description for every record that is listed in the DATA 
RECORDS clause of an SD description must contain the •key• items 
data-name-1, data-name-2, etc. These nkey" items are subject to the 
following rules: 

1. Keys must be physically located in the same position and have the 
same data format in every logical record of the sort-file. If 
there are multiple record descriptions in an SD, it is sufficient 
to describe a key in only one of the record descriptions. 

2. Key items must not contain an OCCURS clause nor be subordinate to 
entries that contain an OCCURS clause. 

3. A maximum of 12 keys may be specified. The total length of all the 
keys must not exceed 256 bytes. 

4. All keys must be at a fixed displacement from the beginning of a 
record: that is, they cannot be located following a variable table 
in a record. 

5. All key fields must be located within the first 4092 bytes of a 
logical record. 

6. The data-names describing the keys may be qualified. 

SECTION-NAME-1 AND SECTION-NAME-2: Section-name-1 is the name of an 
input-procedure. Section-name-2 is the name of the last section that 
contains the input procedure in the COBOL main program. Section-name-2 
is required if the procedure terminates in a section other than that in 
which it was started. 

INPUT PROCEDURE: The presence of the INPUT PROCEDURE option indicates 
that the programmer has written an input procedure to process records 
before they are sorted and has included the procedure in the Procedure 
Division as one or more distinct sections. 

The input procedure must consist of one or more sections that are 
written consecutively and do not form a part of any output procedure. 
The input procedure must include at least one RELEASE statement in order 
to transfer records to the sort-file. 

224 Part V -- Special Features 



\ ' '--/ 

I 

\ ' 
"-" 

SORT Statement 

Control must not be passed to the input procedure unless a related 
SORT statement is being executed, because the RELEASE statement in the 
input procedure has no meaning unless it is controlled by a SORT 
statement. The input procedure can include any procedures needed to 
select, create, or modify records. There are three restrictions on the 
procedural statements within an input procedure: 

1. The input procedure must not contain any SORT statements. 

2. The input procedure must not contain any transfers of control to 
points outside the input procedure. The execution of USE 
declaratives for label handling and error processing are not 
considered transfers of control outside of an input procedure. 
Hence, they are allowed to be activated within these procedures. 

3. 'l'he remainder of the Procedure Division must not contain any 
transfers of control to points inside the input procedure (with the 
exception of the return of control from a declarative section). 

If an input procedure is specified, control is passed to the input 
procedure when the SORT program input phase is ready to receive the 
first record. The compiler inserts a return mechanism at the end of the 
last section of the input procedure and, when control passes the last 
statement in the input procedure, the records that have been released to 
file-name-1 are sorted. 

The RELEASE statement transfers records from the Input Procedure to 
the input phase of the sort operation (see •RELEASE Statement"). 

USING: If the USING option is specified, all the records in file-name-2 
are transferred automatically to file-name-1. At the time of execution 
of the SORT statement, file-name-2 must not be open. File-name-2 must 
be a standard sequential file. 

For the USING option, the compiler will open, read, release, and 
close file-name-2 without the programmer specifying these functions. If 
the user specifies error handling and/or label processing declaratives 
for file-name-2, the compiler will make the necessary linkage to the 
appropriate declarative.section. 

SECTION-NAME-3 AND SECTION-NAME-4: section-name-3 represents the name 
of an output procedure. Section-name-4 is the name of the last section 
that contains the output procedure in the COBOL main program. 
Section-name-4 is required if the procedure terminates in a section 
other than that in which it is started. 

Sort Feature 225 



SORT Statement 

OUTPUT PROCEDURE: The output procedure must consist of one or more 
sections that are written consecutively and do not form a part of any 
input procedure. The output procedure must include at least one RETURN 
statement in order to make sorted records available for processing. 

control must not be passed to the output procedure unless a related 
SORT statement is being executed, because RETURN statements in the 
output procedure have no meaning unless they are controlled by a SORT 
statement. The output procedure may consist of any procedures needed to 
select, modify, or copy the records that are being returned one at a 
time, in sorted order, from the sort-file. There are three restrictions 
on the procedural statements within the output procedure. 

1. The output procedure must not contain any SORT statements. 

2. The output procedure must not contain any transfers of control to 
points outside the output procedure. The execution of USE 
declaratives for label handling and error processing are not 
considered transfers of control outside of an output procedure. 
Hence, they are allowed to be activated within these procedures. 

3. The remainder of the Procedure Division must not contain any 
transfers of control to points inside the output procedure (with 
the exception of the return of control from a declarative section). 

If an output procedure is specified, control passes to it after 
file-name-1 has been placed in sequence by the SORT statement. The 
compiler inserts a return mechanism at the end of the last section in 
the output procedure. When control passes the last statement in the 
output procedure, the return mechanism provides for termination of the 
SORT and then passes control to the next statement after the SORT 
statement. 

When all the records are sorted, control is passed to the output 
procedure. The RETURN statement in the output procedure is a request 
for the next record (see nRETURN Statement"). 

GIVING: If the GIVING option is used, all sorted records in file-!§!!!€-1 
are automatically transferred to file-name-3. At the time of execution 
of the SORT statement, file-name-3 must not be open. File-name-3 must 
name a standard sequential file. 

For the GIVING option, the compiler will open, return, write, and 
close file-name-3 without the programmer specifying these functions. If 
the user specifies error handling and/or label processing declaratives 

226 Part v -- Special Features 



\ ' 

"-' 

RELEASE Statement 

for file-name-3, the compiler will make the necessary linkage to the 
appropriate declarative section. 

CONTROL OF !NPUT OR OUTPUT PROCED:uRES: The INPUT or OUTPUT PROCEDURE 
options function in a manner similar to the PERFORM statement 
(Option 1); for example, naming a section in an INPUT PROCEDURE clause 
causes execution of that section during the sorting operation to proceed 
as though that section had been the subject of a PERFORM statement. As 
in the execution of a PERFORM statement, the execution of the section is 
terminated after execution of its last statement. The procedure may be 
terminated by an EXIT statement (see "EXIT Statement"). 

RELEASE Statement 

The RELEASE statement transfers records from the Input Procedure to 
the input phase of the Sort operation. 

r---------------------------------------------------------------------1 
I Format I 
r----------------------------------------------------------------------~ 
I I 
I RELEAS.E sort-record-name [FROM identifier] I 
I I 
L---------~----------~-----~-----------------------------------------J 

A RELEASE statement may be used only within the range of an input 
procedure associated with a SORT statement. 

If the INPUT PROCEDURE option is specified, the RELEASE statement 
must be included within the given set of procedures. 

sort-record-name must be the name of a logical record in the asso­
ciated so.rHile description. 

When the FROM identifier option is used, it makes the RELEASE 
statement equivalent to the statement MOVE identifier TO 
sort-record-name, followed by the statement RELEASE. 

Sort-record-name and identifier must not refer to the same storage 
area. A move with the rules for group items is effected from 
identifier, using the length of the record-name associated with the SD 
entry. 

Sort Feature 227 



RETURN/EXIT Statements 

The RETURN statement obtains individual records in sorted order from 
the final phase of the sort program. 

,-------------------------------------------------~--------------------, 
I Format I 
~--------------------~------~-------------------------------------~ 
I I 
I RE!URN sort-file-name RECORD [!~TO identifier] I 
I I 
I AT END imperative-statement I 
I I l ____________________________________________________________________ J 

Sort-fil~-name is the name given in the sort-file-description entry 
that describes the records to be sorted. 

All references to records retrieved by a RETURN statement must be in 
terms of the record description(s) associated with the SD entry, unless 
the INTO option is specified. The retrieved record may, optionally, be 
moved to the user's own area and be referenced as appropriate. 

A RETURN statement may only be used within the range of an output 
procedure associated with a SORT statement for file-name-1. 

The identifier roust be the name of a working-storage area or an 
output record area. Use of the INTO option has the same effect as the 
MOVE statement for alphanumeric items. 

The imper;ative-statement in the AT END phrase specifies the action to 
be taken when all the sorted records have been obtained from the sorting 
operation. 

EXIT Statement 

The EXIT statement may be used as a common end point for input or 
output procedures as with procedures executed through a PERFORM 
statement. 

r--------------------------------------------------------------------1 
I Format I 
r------~--------------------------------------------------------------~ 
I I 
I paragraph-name. EXIT. I 
I I 
l------~---------------------~---~--~------------------------------J 

When used in this manner, the EXIT statement must appear as the only 
statement in the last paragraph of the input or output procedure. 

228 Part V -- Special Features 

l \._; 



\ . .._ ... / 

sort Feature 229 



sort--Sample Program 

SAMPLE PROGgAM USING THE SORT FEATURE 

This example illustrates a sort based on a sales contest. The 
records to be sorted contain data on salesmen: name and address, 
employee number, department number, and pre-calculated net sales for the 
contest period. 

The salesman with the highest net sales in each department wins a 
prize, and smaller prizes are awarded for second highest sales, third 
highest, etc. The order of the SORT is (1) by department, the lowest 
numbered first (ASCENDING KEY DEPT); and (2) by net sales within each 
department, the highest net sales first (DESCENDING KEY NET-SALES). 

The records for the employees of departments 7 and 9 are eliminated 
in an input procedure (SCREEN-DEPT) before sorting begins. The 
remaining records are then sorted, and the output is placed on another 
file for use in a later job step. 

r---~--------~~~------~-~--------------~-----------------------1 
1000005 IDENTIFICATION DIVISION. I 
1000010 PROGRAM-ID. CONTEST. I 
1000015 ENVIRONMENT DIVISION. I 
1000016 CONFIGURATION SECTION. I 
1000017 SOURCE-COMPUTER. IBM-360-F50. I 
1000018 OBJECT-COMPUTER. IBM-360-F50. I 
1000019 SPECIAL-NAMES. SYSLST IS PRINTER. I 
1000020 INPUT-OUTPUT SECTION. I 
I 000025 FILE-CONTROL. I 
1000030 SELECT NET-FILE-IN ASSIGN TO SYSOOS-UT-2400-S. I 
1000035 SELECT NET-FILE-OUT ASSIGN TO SYS007-UT-2400-S-SORTOUT. I 
1000040 SELECT NET-FILE ASSIGN TO 3 SYSOOl-UT-2400-S. I 
I 000050 DATA DIVISION. I 
1000055 FILE SECTION. I 
1000060 SD NET-FILE I 
1000065 DATA RECORD IS SALES-RECORD. I 
1000070 01 SALES-RECORD. I 
1000075 02 EMPL-NO PICTURE 9(6). I 
1000080 02 DEPT PICTURE 9(2). I 
J000085 02 NET-SALES PICTURE 9(7)V99. I 
1000090 02 NAME-ADDR PICTURE X(55). j 
1000095 FD NET-FILE-IN I 
1000096 LABEL RECORDS ARE OMITTED J 
1000100 DATA RECORD IS NET-CARD-IN. I 
1000105 01 NET-CARD-IN. I 
1000110 02 EMPL-NO-IN PICTURE 9(6). I 
1000115 02 DEPT-IN PICTURE 9(2). I 
1000120 02 NET-SALES-IN PICTURE 9(7)V99. I 
1000125 02 NAME-ADDR-IN PICTURE X(55). I 
1000130 FD NET-FILE-OUT I 
J000131 LABEL RECORDS ARE OMITTED I 
1000135 DATA RECORD IS NET-CARD-OUT. J 
1000140 01 NET-CARD-OUT. I 
1000145 02 EMPL-NO-OUT PICTURE 9(6). I 
1000150 02 DEPT-OUT PICTURE 9(2). I 
1000155 02 NET-SALES-OUT PICTURE 9(7)V99. I 
1000160 02 NAME-ADDR-OUT PICTURE X(55). I 
L----------------------~------~--------------------------------------J 
Figure 14. Sample Program Using the SORT Feature (~art 1 of 2) 

230 Part v -- Special Features 



' \_/ 

Sort--Sample Program 

r-------~-----------~-------~-------~------------------------------1 1000165 PROCEDURE DIVISION. I 
1000110 ELIM-DEPT-7-9-NO-PRINTOUT. I 
1000175 SORT NET-FILE I 
1000180 ASCENDING KEY DEPT, I 
1000185 DESCENDING KEY NET-SALES I 
1000190 INPUT PROCEDURE SCREEN-DEPT I 
1000195 GIVING NET-FILE-OUT. I 
1000200 CHECK-RESULTS SECTION. I 
I 000205 c-R-1. I 
1000210 OPEN INPUT NET-FILE-OUT. I 
1000215 C-R-12. 
)000220 READ NET-FILE-OUT AT END GO TO C-R-FINAL. 
000225 DISPLAY EMPL-NO-OUT DEPT-OUT NET-SALES-OUT 
000230 NAME-ADDR-OUT UPON PRINTER. 
000235 C-R-3. 
000240 GO TO C-R-2. 
000245 C-R-FINAL. 
000250 CLOSE NET-FILE-OUT. 
000255 STOP RUN. 
000260 SCREEN-DEPT SECTION. 
000265 S-D-1. 
000270 OPEN INPUT NET-FILE-IN. 
000275 S-D-2. 
000280 READ NET-FILE-IN AT END GO TO S-D-FINAL. 
000285 DISPLAY EMPL-NO-IN DEPT-IN NET-SALES-IN 
000290 NAME-ADDR-IN UPON PRINTER. 
000295 S-D-3. 
000300 IF 
000305 
000310 
000315 
000320 

DEPT-IN = 7 OR 9 GO TO S-D-2 
ELSE 

MOVE NET-CARD-IN TO SALES-RECORD, 
RELEASE SALES-RECORD, 
GO TO S-D-2. 

000325 S-D-FINAL. 
000330 CLOSE NET-FILE-IN. 
000335 S-D-END. 
000340 EXIT. 

L----------------------------------------------------------------------Figure 14. sample Program Using the SORT Feature (Part 2 of 2) 

Sort Feature 231 



Report Writer Feature--Description 

REPORT WRITER FEATURE 

The Report Writer Feature permits the programmer to specify the 
format of a printed report in the Data Division, thereby minimizing the 
amount of Procedure Division coding he would have to write to create the 
report. 

A printed report consists of the information reported and the format 
in which it is printed. Several reports can be produced by one program. 

In the Data Division, the programmer gives the name(sl and describes 
the format(s) of the report(s) he wishes produced. In the Procedure 
Division, he writes the statements that produce the report(s). 

At program execution time, the report in the format d~fined is 
produced -- data to be accumulated is summed, totals are produced, 
counters are stepped and reset, and each line and each page is printed. 
Thus, the programmer need not concern himself with the details of these 
operations. 

DATA DIVISION -- OVERALL DESCRIPTION 

In the Data Division, the programmer must write an FD entry that 
names the output file upon which the report is to be written, and must 
also name the report itself. A report may be written on two files at 
the same time. 

At the end of the Data Division, he must add a Report Section to 
define the format of each report named. In the Report Section, there 
are two types of entries: 

1. The Beport Description Entry (RD) which describes the physical 
aspects of the report format. 

2. The report group description entries which describe the data items 
within the report and their relation to the report format. 

In the report description entry, the prograroroer specifies the maximum 
number of lines per page, where report groups are to appear on the page, 
and which data items are to be considered as controls. 

Controls govern the basic format of the report. When a control 
changes value -- that is, when a control break occurs -- special actions 
will be taken before the next line of the report is printed. Controls 
are listed in a hierarchy, proceeding from the most inclusive down to 
the least inclusive. Thus, by specifying HEADING and FOOTING controls, 
the programmer is able to instruct the Report Writer to produce the 
report in whatever format he desires. 

For example, in the program at the end of this chapter, the hierarchy 
of controls proceeds from the highest (FINAL) to an intermediate control 
(MONTH) to the minor control (DAY). DAY is the minor control since, if 
MONTH changes, DAY also must change. Whenever any control changes, 
speci~l actions are performed by the Report Writer -- sum information is 
totaled, counters are reset, special information is printed, and so 
forth -- before the next detail line is printed. 

The report group description entries describe the characteristics of 
all data items contained within the f~t_group: the format of each 
data item present, its placement in relation to the other data items 
within the report group, and any control factors associated with the 

232 Part v -- Special Features 

1 

'0 

' ' i 
~ 



! '-/ 

Report Writer Feature--Description 

group. Information to be presented within a report group can be 
described in three ways: 

• as SOURCE information, which is information from outside the report 

• as SUM information, which is the result of addition operations upon 
any data present, whether SOURCE information or other SUM 
information 

• as VALUE information, which is constant information 

Through the RD and the report group description entries, the 
programmer has thus defined completely the content, the format, and the 
summing operations necessary to produce the desired report. 

PROCEDURE DIVISION -- OVERALL DESCRIPTION 

In the Procedure Division, the programmer instructs the Report Writer 
to produce the report through the use of three Report Writer statements: 
INITIATE, GENERATE, and TERMINATE. 

The INITIATE statement performs functions in the Report Writer 
analogous to the OPEN statement for individual files. 

The GENERATE statement automatically produces the body of the report. 
Necessary headings and footings are printed, counters are incremented 
and reset as desired, source information is obtained, and sum 
information is produced, data is moved to the data item(s) in the report 
group description entry, controls are tested, and when a control break 
occurs, the additional lines requested are printed, as well as the 
detail line that caused the control break. All of this is done 
automatically, thus relieving the programmer of the responsibility for 
writing detailed tests and looping procedures that would otherwise be 
necessary. 

The TERMINATE statement completes the processing of a report. It is 
analogous to the CLOSE statement for individual files. 

In the Declaratives portion of the Procedure Division, the programmer 
may also specify a USE BEFORE REPORTING procedure for report group. In 
this procedure, he is able to specify any additional processing he 
wishes done before a specific report group is printed. 

Two special registers are used by the Report Writer feature: 

LINE-COUNTER -- which is a numeric counter used by the Report Writer to 
determine when a PAGE HEADING and/or a PAGE FOOTING report group is 
to be presented. The maximum value of LINE-COUNTER is based on the 
number of lines per page as specified in the PAGE LIMIT(S) clause. 
LINE-COUNTER may be referred to in any Procedure Division 
statement. 

PAGE-COUNTER -- which is a numeric counter that may be used as a SOURCE 
data item in order to present the page number on a report line. 
The maximum size of PAGE-COUNTER is based on the size specified in 
the PICTURE clause associated with an elementary item whose SOURCE 
IS PAGE-COUNTER. This counter may be referred to by any Procedure 
Division statement. 

Figure 16, at the end of this chapter, gives an example of a Report 
Writer program for a manufacturer's quarterly report. 

Report Writer Feature 233 



FD Entry/REPORT Clause 

Figure 17, which follows the program, shows the report that would be 
produced. 

DATA DIVISipN CONSIDERATIONS FOR REPORT.WRITER 

The names of all the reports to be produced must be named in the File 
Section of the Data Division. An entry is required in the FD entry to 
list the names of the reports to be produced on that file. A Report 
Section must be added at the .end of the Data Division to define the 
format of each report. 

FILE DESCRIPTION 

The File Description furnishes information concerning the physical 
structure, identification, and record-names pertaining to a given file. 

r----------~--------------------~-~----~---------------------------1 
I General Format I 
~----~---------------------------------------------------------------~ 
I I 
I FD file-name I 
I I 
I [BLOCK CONTAINS Clause] I 
I [RECORD CONTAINS Clause] I 
I \!R~IRi ... lllBB I 
I LABEL RECORDS Clause I 
I [VALUE OF Clausel I 
I !Wi,111~~1~ I 
I REPORT Clause. I 
I I 
L----------~----------~--------------~-----~-----------------------J 

. ~ ?iscussion of i;in. the above-mentioned clau~.ei;,w.~EE~~.!~ ,in ..... "D~t~ 
Division." A description of the REPORT clause, @R~~f~--~~1l 
~~ttfl~~-Ji-~ilil~ and the RECORD CONTAINS clause for a 
file on which a report is produced follows. 

REPORT Clause 

Each unique report-name must appear in the REPORT clause of the FD 
entry (or entries) for the file(s) on which the report(s) is to be 
produced. The REPORT clause cross references the description of Report 
Description entries with their associated File Description entry. 

r------------------------------~--------------------------------------1 
I Format I 
~-----~------------------------------------------~--------------------~ 
I I 
I { REPORT Is t I 
I J report-name-1 [report-name-2]... I 
I 1 REPORT;?_ ARE J I 
I I 
L-------------------------~--------------------~----------------------J 

234 Part v -- Special Features 



' ! ; 
~' 

I 
\ ,' 
'~ 

RECORD CONTAINS Clause 

Each File Description entry for standard sequential OUTPUT files 
within the File section may include a REPORT clause containing the names 
of one or more reports. These reports may be of different sizes, 
formats, etc., and the order in which their names appear in the clause 
is not significant. 

Each unique report-name listed in an FD entry must be the subject of 
an RD entry in the Report Section. A given report-name may appear in a 
maximum of two REPORT clauses. 

RECORD CONTAINS Clause 

The RECORD CONTAINS clause enables the user to specify the maximum 
size of his report record • 

. ---------------------------------------------------------------------, 
I Format I 
t--------------------------------~----~-----~--------~-------------~ 
I I 
I RECQRD CONTAINS [integer-1 TO] integer-2 CHARACTERS I 
I I 
L-----------~----------------~------------~-----~--------------------J 

The specified size of each report recox:d roust include the carriage 
control/line spacing character, and the CODE character, if the CODE 
option is used. If the RECORD CONTAINS clause is omitted, the compiler 
assumes a default size of 133 characters. 

For variable-length records, the size of each print line will be 
integer-2 characters, and the size of each blank line required for 
spacing will be 17 characters. For fixed-length records, the size of 
each print line and each blank line required for spacing will be 
integer-2 characters. 

For further information on the RECORD CONTAINS clause, see "Data 
Division." 

Report Writer Feature 235 



RD <report description) Entry 

REPORT SECTION 

The Report Section consists of two types of entries for each report; 
one describes the physical aspects of the report formatf the other type 
describes conceptual characteristics of the items that make up the 
report and their relationship to the report format. These are: 

1. Report Description entry (RD) 

2. Report group description entries 

The Report Section must begin with the header REPORT SECTION. 

Re2ort Descri2tion Eni!,y 

The Report Description entry contains information pertaining to the 
overall format of a report named in the File section and is uniquely 
identified by the level indicator RD. The clauses that follow the name 
of the report are optional, and their order of appearance-is not 
significant. 

The entries in this section stipulate: 

1. The maximum nUlT'ber of lines that can appear on a page. 

2. Where report groups are to appear on a page. 

3. Data items that act as control factors during presentation of the 
report. 

r---------------------------------------------~-----------------------1 
I General Format 1 
~-------~-------------------------------------------------------------~ 
I I 
I REPORT SECTION. l 
I I 
I RD report-name I 
I [CODE Clause) I 
I [CONTROL Clausel l 
I [PAGE LIMIT Clausel. I 
I I 
L------~----------------------~~------------------------------------J 

RD is the level indicator. 

Report-name is the name of the report and roust be unique. The 
report-name must be specified in a REPORT clause in the File Description 
entry for the file on which the report is to be written. 

CODE Clause 

The CODE clause is used to specify an identifying character added at 
the beginning of each line produced. The identification is meaningful 
when more than one report is written on a file. 

236 Part V -- Special Features 

' ) \._,,, 



' 
\ I __., 

\ ' '-/ 

CODE/CONTROL Clauses 

r----------------------------------------------------------------------1 
I Format I 
~--------------------------------~------------------------------------~ 
I I 
I COD~ mnemonic-name I 
I I 
l----------------------------------------------------------------------J 

Mnemonic-.narne must be associated with a single character literal used 
as function-narne-1 in the SPECIAL-NAMES paragraph in the Environment 
Division. The identifying character is appended to the beginning of the 
line, preceding the carriage control/line spacing character. This 
clause should not be specified if the report is to be printed on-line. 

CONTROL Cla~~ 

The CONTROL clause indicates the identifiers that specify the control 
hierarchy for this report, that is, the control breaks. 

r-------~-~---------~-----------------------------------------------1 
I Format I 
l--------------------------------------~------------------------------~ 
I I 
I { CONTROL IS t { FINAL } I 
I identifier-1 Cidentifier-21... I 
I CONTROLS ARE} FINAL identifier-1 [identifier-21... I 
I I l ______________________________________________________________________ J 

A control is a data item that is tested each time a detail report 
group is generated. If the test indicates that the value of the data 
item (i.e., CONTROL} has changed, a control break is said to occur, and 
special action (described below) is taken before printing the detail 
line. 

FINAL is the highest level control. (It is the one exception to the 
statement that controls are data items.) The identifiers specify the 
control hierarchy of the other controls. Identifier-1 is the major 
control, identifier- 2 is the intermediate control, etc. The last 
identifier specified is the minor control. The levels of the controls 
are indicated by the order in which they are written. 

When controls are tested, the highest level control specified is 
tested first, then the second highest level, etc. When a control break 
is found for a particular level, a control break is implied for each 
lower level as well. A control break for FINAL occurs only at the 
beginning and ending of a report (i.e., before the first detail line is 
printed and after the last detail is printed). 

The action to be taken as a result of a control break depends on what 
the programmer defines. He may define a CONTROL HEADING report group 
and/or a CONTROL FOOTING group or neither for each control. 

The control footings and headings that are defined are printed prior 
to printing the originally referenced detail. They are printed in the 
following order: lowest level control footing, next higher level 
control footing, etc., up to and including the control footing for the 

Report Writer Feature 237 



PAGE LIMIT Clause 

level at which the control break occurred; then the control heading for 
that level, then the next lower level control heading, etc., down to and 
including the minor control heading; then the detail is printed. If, in 
the course of printing control headings and footings, a page condition 
is detected, the current page is ejected and a new page begun. If the 
associated report groups are given, a page footing and/or a page heading 
are also printed. 

The CONTROL clause is required when CONTROL HEADING or CONTROL 
FOOTING report groups ~i!•lrJfl'Jl,~f&tlJ are specified. 

The identifiers specified in the CONTROL clause are the only 
identifiers referred to by the RESET and TYPE clauses in a report group 
description entry for this report. The identifiers must be defined in 
the File or Working-Storage section of the Data Division. 

PAGE LIMIT Clause 

The PAGE LIMIT clause indicates the specific line control to be 
maintained within the logical presentation of a page, i.e., it describes 
the physical format of a page of the report. 

r-----~---------------------------------------------------------------, 
I Format I 
~------~-----------------------------------------------------------~ 
I I 
II [ LIMIT IS J { LINE } II PAGE integer-1 ~ 
I LIMITS ARE ~ I 
I I 
I [HEADING integer-2] I 
I [FIRST DETAIL integer-3] I 
I [LAST DETAIL integer-41 I 
I [FOOTING integer-SJ I 
I I 
L----------~--------------------------------------------------------.1 

If this clause is not specified, PAGE-COUNTER and LINE-COUNTER 
special registers are not generated. 

The PAGE LIMIT clause is required when page format must be controlled 
by the Report Writer. 

integer-1: 

integer-2: 

integer-3: 

The PAGE LIMIT integer-1 LINES clause is required to 
specify the depth of the report page; the depth of the 
report page may or may not be equal to the physical 
perforated continuous form often associated in a report 
with the page length. The size of the fixed data-name, 
LINE-COUNTER, is the maximum numeric size based on 
integer-1 lines required for the counter to prevent 
overflow. 

The first line number of the first heading print group is 
specified by integer-2. No print group will start 
preceding integer-2, i.e., integer-2 is the first line on 
which anything may be printed. 

The first line number of the first normal print group 
(body group) is specified by integer-'3. No DETAIL, 
CONTROL HEADING, or CONTROL FOOTING print group will start 
before integer-3. 

23B Part V -- Special Features 



\'--", 

\. . 

'-" 

inteqer-4: 

integer-5: 

PAGE LIMIT Clause 

The last line number of the last nonfooting body group is 
specified by integer-4. No DETAIL or CONTROL HEADING 
print group will extend beyond integer-4. 

The last line number of the last CONTROL FOOTING print 
group is specified by integer-5. No CONTROL FOOTING print 
group will extend beyond integer-5. PAGE FOOTING print 
groups will follow integer-5. 

Using the param~ters of the PAGE LIMIT clause, the Report Writer 
establishes the areas of the page where each type of report group is 
allowed to be printed. The following are the page areas for each type 
of report group: 

1. A REPORT HEADING report group can extend from line integer-2 to 
line integer-1, inclusive. If the REPORT HEADING report group is 
not on a page by itself, the FIRST DETAIL integer-3 clause must be 
present in the PAGE LIMIT clause of the report. 

2. A PAGE HEADING report group may extend from line integer-2 to line 
integer-3 minus 1, inclusive. If a PAGE HEADING report group is 
specified in the report description, the FIRST DETAIL integer-3 
clause must be present in the PAGE LIMIT clause of the report. A 
PAGE HEADING report group that follows a REPORT HEADING report 
group on the same page must be able to be printed in the area of 
the page defined in this rule. 

3. CONTROL HEADING report groups and DETAIL report groups must be 
printed in the area of the page that extends from line integer-3 to 
line integer-4, inclusive. 

4. CONTROL FOOTING report groups must be printed in the area of the 
page extending from line integer-3 to line integer-5, inclusive. 

s. A PAGE FOOTING report group may extend from line integer-5 plus 1 
to line integer-1, inclusive. If PAGE FOOTING is specified in the 
report description, either the FOOTING integer-5 or LAST DETAIL 
integer-4 clause must be present in the PAGE LIMIT clause of the 
report. 

6. A REPORT FOOTING report group can extend from line integer-2 to 
line integer-1, inclusive. If the REPORT FOOTING report group is 
not on a page by itself, either the FOOTING integer-5 or LAST 
DETAIL integer-4 clause must be present in the PAGE LIMIT clause of 
the report. 

Figure 15 pictorially represents page format report group control 
when the PAGE LIMIT clause is specified. 

Report Writer Feature 239 



PAGE LIMIT Clause 

integer-2 

integer-3 

integer-4 

integer-5 

integer· I 

REPORT 

HEADING/ 

FOOTING 

PAGE 

HEADING 

t 

DETAIL & 

CONTROL 

HEADING 

! 

CONTROL 

FOOTING 

PAGE 

FOOTING 

t 
Figure 15. Page Format when the PAGE LIMIT Clause Is Specified 

The PAGE LIMIT clause may be omitted when no association is desired 
between report groups and the physical format of an output page. In 
this case, relative line spacing must be indicated for all report groups 
of the report. 

If absolute line spacing is indicated for all the report groups, none 
of the integer-2 through integer-5 controls need be specified. If any 
of these limits are specified for a report that has only absolute line 
spacing, the limits are ignored. 

If relative line spacing is indicated for any report group, all LINE 
NUMBER and NEXT GROUP spacing must be consistent with the controls 
specified or implied in the PAGE LIMIT clause. 

If PAGE LIMITS integer-1 is specified and some or all of the HEADING 
integer-2, FIRST DETAIL integer-3, LAST DETAIL integer-4, FOOTING 
integer-5 clauses are omitted, the following implicit control is assumed 
for all omitted specifications: 

1. If HEADING integer-2 is omitted, integer-2 is considered to be 
equivalent to the value 1, that is, LINE NUMBER one. 

2. If FIRST DETAIL integer-3 is omitted, integer-3 is considered to be 
equivalent to the value of integer-2. 

3. If LAST DETAIL integer-4 is omitted, integer-4 is considered to be 
equivalent to the value of integer-5. 

4. If FOOTING integer-5 is omitted, integer-5 is considered to be 
equivalent to the value 01! integer-4. If both LAST DETAIL 
integer-4 and FOOTING integer~s are omitted, integer-4 and 
integer-5 are both considered to be equivalent to the value of 
integer-1. 

only one PAGE-LIMIT clause may be specified for a Report Group 
Description entry. 

• Integer-1 through integer-5 must be positive integers. 

• Integer-2 through integer-5 must be in ascending order. Integer-5 
must not exceed integer-1. 

240 Part V -- Special Features 



\ 

'-/ 

Report Group Description Entry 

Report Grou12._Description Ent:r:y 

A report comprises one or more report groups. Each report group is 
described by a hierarchy of entries similar to the description of a data 
record. There are three categories of report groups: heading groups, 
detail groups, and footing groups.. A CONTROL HEADING, DETAIL, or 
CONTROL FOOTING report group may also be ref erred to as a body group. 

The report group description entry defines the format and 
characteristics for a report group. The relative placement of a 
particular report group within the hierarchy of report groups, the 
format of all items, and any control factors associated with the group 
are defined in this entry. 

Schematically, a report group is a line, a series of lines, or a null 
(i.e., nonprintable) group. A report group is considered to be one unit 
of the report. Therefore, the lines of a report group are printed as a 
unit. A null group is a report group for which no LINE clauses are 
specified. 

The report group description entry defines the format and 
characteristics applicable to the type of report group. 

1. For all report groups that are not null, the description entry 
indicates where and when the report group is to be presented. 

2. For all report groups, the description entry indicates when the 
nonprinting functions of the report group, such as summation, are 
to be performed. 

3. For all report groups except DETAIL, the description entry allows 
for the execution of a user-specified procedure prior to printing a 
report group. If a report group is null, the execution of the user 
procedure occurs in the same manner as though the report group were 
printed. 

4. For CONTROL FOOTING report groups, the description entry indicates 
the user's summation algorithm. 

Report group names are required when reference is made in the Procedure 
Division: 

• to a DETAIL report group by a GENERATE statement. 

• to a HEADING or FOOTING report group by a USE sentence. 

Report group names are required when reference is made in the Report 
Section to a DETAIL report group by a SUM UPON clause. 

Except for the data-name clause which, when present, must immediately 
follow the level number, the clauses may be written in any order. 

Report Writer Feature 241 



Report Group Description Entry--Formats 

r-----------~----------------·~-------~--------~---~-------~------, 
I General Format 1 I 
~----~-~-------------------~---------------------------------------~ 
I I 
I 01 [data-name-1) I 
I [LINE Clausel I 
I [NEXT GROUP Clause] I 
I TYPE Clause I 
I [USAGE Clause]. I 
I I 
L-------------------------~-~~-------------~-~--------------------l 

r------------------------------~-------------~-----------------------1 
I General Format 2 I 
~---------------------~-~-----~--~--~--~-~-----------------------~ 
I I 
I level number [data-name-11 I 
I CLINE clause] I 
I [USAGE clause]. I 
I I 
L----~~--------------------------------------------------------------J 

r-----------------~---------~-------~----------------------~------, 
I General Format 3 I 
~------~---~--------~-----------------------------------------------~ 
I I 
I level number [data-name-1) I 
I [BLANK WHEN ZERO Clausel I 
I [COLUMN Clause] I 
I [GROUP Clausel l 
I [JUSTIFIED Clausel I 
I CLINE Clausel I 
I [PICTURE Clause] I 
I {RESET Clausel I 

l [ { ~~RCE } Clause I 
I VALUE I 
I [USAGE Clause]. I 
I I 
L------------------------------~---------------------------------------J 

r----------------------------------------------------------------------1 
I General Format 4 I 
~---~-----------------------------------------------------------------1 
I I 
I 01 [data-naroe-1] I 
I [BLANK WHEN ZERO Clausel I 
I [COLUMN Clausel I 
I [GROUP Clause] I 
I {JUSTIFIED Clausel I 
I CLINE Clause] I 
I [NEXT GROUP Clause] I 
I PICTURE Clause I 
I [RESET Clause] I 

I {~~~CE ( Clause I 
I VALUE ( I 
1 TYPE clause I 
I [USAGE Clause]. I 
I I 
L----------------------------------------------------------------------J 

242 Part V -- Special Features 

:. i 
"-' 



r 

\_/ 

LINE Clause 

Format 1 is used to indicate a report group. A report group 
description must contain a report group entry (level-01) and it must be 
the first entry. A report group extends from this entry either to the 
next report group level-01 entry or to the end of the next report 
description. A null report group may contain only a Format 1 report 
group entry. 

Format 2 is used to indicate a group item. A group item entry may 
contain a level number from 02 through 49; this entry has the following 
functions: 

• If a report group has more than one line and one of the lines 
contains more than one elementary item, a group item entry may be 
used to indicate the LINE number of the subordinate elementary 
items. 

• If a group item entry contains no LINE clause and there are no SUM 
counters subordinate to it, i~s only function is documentation. 

Format 3 is used to indicate an elementary item. An elementary item 
entry may contain a level number from 02 through 49; this entry has the 
following functions: 

• An elementary item entry may be used to describe an item that is to 
be presented on a printed line. In this case, a COLUMN clause, a 
PICTURE clause, and either a SOURCE, SUM, or VALUE clause must be 
present. 

• An elementary item entry in a DETAIL report group may be used to 
indicate to the Report Writer what operands are to be summed upon 
presentation of the DETAIL report group. 

• An elementary item entry in a CONTROL FOOTING report group may be 
used to define a SUM counter. (See SUM Clause.} 

Format 4 is used to indicate a report group that consists of only one 
elementary item. If Format 4 is used to define the report group instead 
of Format 1, it must be the only entry in the group. 

LINE Clsuse 

The LINE clause indicates the absolute or relative line number of 
this entry in reference to the page or previous entry. 

r----~-------~----~~-~----~~---~------~--~--------------------1 
I Format I 
l-~-~-~----~-------------------------~---~------------------------i 
I I 
I {' integer-1 } I 
I LINE NUMBER IS PLUS i.nteger-2 I 
I ' NEXT PAGE I 
I I 
L------~-----~-----~--------~----------------------------------------J 

Each line of a report roust have a LINE clause associated with it. 
For the first line of a report group, the LINE clause must be given 
either at the report group level or prior to or for the first elementary 
item in the line. For report lines other than the first in a report 
group, the LINE clause must be given prior to or for the first 

Report Writer Feature 243 



LINE Clause 

elementary item in the line. When a LINE clause is encountered, 
subsequent entries following the entry with the LINE clause are 
implicitly presented on the same line until either another LINE clause 
or the end of the report group is encountered. 

Integer-1 and integer-2 must be positive integers. 

LINE NUMBER IS integer-1 is an absolute LINE clause. It indicates 
the fixed line of the page on which this line is to be printed. 
LINE-COUNTER is set to the value of integer-1 and is used for printing 
the items in this and the following entries within the report group 
until a different value for the LINE-COUNTER is specified. 

LINE NUMBER IS PLUS integer-2 is a relative LINE clause. The line is 
printed relative to the previous line either printed or skipped. 
LINE-COUNTER is incremented by the value of integer-2 and is used for 
printing the items in this and the following entries within the report 
group until a different value for the LINE-COUNTER is specified. 
Exceptions to this rule are discussed later. 

LINE NUMBER IS NEXT PAGE indicates that this report group is to be 
printed on the next page, not on the current page. This LINE clause may 
appear only in a report group entry or may be the LINE clause of the 
first line of the report group. 

Within any report group, absolute LINE NUMBER entries must be 
indicated in ascending order, and an absolute LINE NUMBER cannot be 
preceded by a relative LINE NUMBER. If the first line of the first body 
group that is to be printed on a page contains either a relative LINE 
clause or a LINE NUMBER IS NEXT PAGE clause, the line is printed on line 
FIRST DETAIL integer-3. However, if the LINE-COUNTER contains a value 
that is greater than or equal to FIRST DETAIL integer-3, the line is 
printed on line LINE-COUNTER plus 1. This value of LINE-COUNTER was set 
by an absolute NEXT GROUP clause in the previously printed body group 
(see rules for NEXT GROUP}. 

If the report group entry of a body group contains a LINE NUMBER IS 
NEXT PAGE clause and the first line contains a relative LINE clause, the 
first line is printed relative to either FIRST DETAIL integer-3 or 
LINE-COUNTER, whichever is greater. This value of LINE-COUNTER was set 
by an absolute NEXT GROUP clause in the previously printed body group. 

The following are the rules for the LINE clause by report group type: 

1. REPORT HEADING 

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group. 

• The first line of the report group may contain an absolute or 
relative LINE clause. 

• If the first line contains a relative line clause, it is relative 
to HEADING integer-2. 

2. PAGE HEADING 

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group. 

• The first line may contain either an absolute or relative LINE 
clause. 

• If the first line contains a relative LINE clause, it is relative 
to either HEADING integer-2 or the value of LINE-COUNTER, 
whichever is greater. The value in LINE-COUNTER that is greater 
than HEADING integer-2 can only result from a REPORT HEADING 

244 Part V -- Special Features 



i ' 
~· 

NEXT GROUP Clause 

report group being printed on the same page as the PAGE HEADING 
report group. 

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING 

• LINE NUMBER IS NEXT PAGE may be specified in the report group. 

• The first line of the report group may contain either an absolute 
or relative LINE clause. 

4. PAGE FOOTING 

• LINE NUMBER IS NEXT PAGE cannot be specified in the report group. 

• The first line of the report group may contain an absolute or 
relative LINE clause. 

• If the first line contains a relative LINE clause, it is relative 
to FOOTING integer-5. 

5. REPORT FOOTING 

• If the report group is to be printed on a page by itself, LINE 
NUMBER IS NEXT PAGE must be specified. 

• If LINE NUMBER IS NEXT PAGE is the only LINE clause in the report 
group description, the line will be printed on line HEADING 
integer-2. 

• If the report group description does not contain a LINE NUMBER IS 
NEXT PAGE clause, the first line must contain an absolute or 
relative LINE clause. If it contains a relative LINE clause, the 
line is relative to either FOOTING integer-5 or the value of 
LINE-COUNTER, whichever is greater. The value in LINE-COUNTER 
that is greater than FOOTING integer-5 can only result from the 
printing of the PAGE FOOTING report group. 

NEXT GROUP Clause 

The NEXT GROUP clause indicates the spacing condition following the 
last line of the report group. 

r----------~---~-------------~--------------------------------------1 
I Format I 
~---~----------~----------------------------------------------------~ 
I I 
I {' integer-1 } I 
I NEXT GROUP IS PLUS integer-2 I 
I NEXT ~ I 
I I 
L------~-------------~-----------------------------------------------J 

The NEXT GROUP clause can appear only in a report group entry. 
Integer-1 and inteqer-2 must be positive integers. 

Report Writer Feature 245 



NEXT GROUP Clause 

The following are the rules for the NEXT GROUP clause by report group 
type: 

1. REPORT HEADING 

• If the report group is to be printed on a page by itself, NEXT 
GROUP IS NEXT PAGE must be specified in the report group 
description. 

• Integer-1 indicates an absolute line number which sets the 
LINE-COUNTER to this value after printing the last line of the 
report group. 

• Integer-2 indicates a relative line number which increments the 
LINE-COUNTER by the integer-2 value after printing the last line 
of the report group. 

• An absolute or relative NEXT GROUP clause must not cause the 
LINE-COUNTER to be set to a value greater than FIRST DETAIL 
integer-3 minus 1. 

2. PAGE HEADING, PAGE FOOTING, and REPORT FOOTING 

• A NEXT GROUP clause cannot be specified in the report group. 

3. CONTROL HEADING, DETAIL, and CONTROL FOOTING 

• If a NEXT GROUP clause implies a page change, the change occurs 
only when the next body group is to be printed. 

• The NEXT GROUP IS NEXT PAGE clause indicates that no more body 
groups are to be printed on this page. 

• An absolute or relative NEXT GROUP clause may cause the 
LINE-COUNTER to be set to a value greater than or equal to FIRST 
DETAIL integer-3 and less than or equal to FOOTING integer-s. 
This is an exception to the rule which defines the page area of 
CONTROL HEADING and DETAIL report groups. 

• If a NEXT GROUP IS integer-1 clause causes a page change, the 
value of LINE-COUNTER is set to the value of integer-1 before the 
formatting of the first line of the next body group to be 
printed. This implies that if the first line of the next body 
group to be printed contains a relative LINE NUMBER clause, the 
line will be printed on line LINE-COUNTER plus 1: if the first 
line contains an absolute LINE NUMBER clause that is less than or 
equal to in1::ieger-1, a page will be printed which contains only 
PAGE HEADING and FOOTING report groups, and the following page 
will contain the body group • 

• When the NEXT GROUP clause is specified for a CONTROL FOOTING 
report group, the NEXT GROUP clause functions are performed only 
when a control break occurs for the control that is associated 
with this report group. 

246 Part V -- Special Features 

i . ,._; 



TYPE Clause 

TYPE Clause 

The TYPE clause specifies the particular type of report group that is 
~escribed by this entry and indicates the time at which the report group 
is to be generated. 

r----------------------------------------------------------------------1 
I Format I 
1-----------------------------------------~-----------------------i 
I I 
J \REPORT HEADING I 
I I RH I 
I \PAGE HEADING I 
I I PH I 
II }~NTROL HEADING} jidentifier-nt !

1 I I FINAL 1 
I TYPE IS I DETAIL t I 
I I DE I I 
II j CCOFNTROL FOOTING t } identifier-nt II 

I l FINA~ I 
I j PAGE FOOTING I 
I l PF I 
I j REPORT FOOTING I 
I tRF I 
I I 
l----------·-----------------------------------------------------------J 

The TYPE clause in a particular report group entry indicates the 
point in time at which this report group will be generated as output. 

If the report group is described as TYPE DETAIL or DE, then a 
GENERATE statement in the Procedure Division directs the Report Writer 
to produce this report group. Each DETAIL report group must have a 
unique data-name at level-01 in a report. 

If the report group is described as other than TYPE DETAIL or DE, the 
generation of this report group is an automatic feature of the Report 
Writer, as detailed in the following paragraphs. 

The REPORT HEADING or RH entry indicates a report group that is 
produced only once at the beginning of a report during the execution of 
the first GENERATE statement. There can be only one report group of 
this type in a report. SOURCE clauses used in REPORT HEADING report 
groups refer to the values of data items at the time the first GENERATE 
statement is executed. 

The PAGE HEADING or PH entry indicates a report group that is pro­
duced at the beginning of each page according to PAGE condition rules as 
specified below. There can be only one report group of this type in a 
report. 

The CONTROL HEADING or CH entry indicates a rep0rt group that is pro­
duced at the beginning of a control group for a designated identifier, 
or, in the case of FINAL, is produced once before the first control 
group during the execution of the first GENERATE statement. There can 
be only one report group of this type for each identifier and for the 
FINAL entry specified in a report. In order to produce any CONTROL 
HEADING report groups, a control break must occur. SOURCE clauses used 
in CONTROL HEADING FINAL report groups refer to the values of the items 
at the time the first GENERATE statement is executed. 

The CONTROL FOOTING or CF entry indicates a report group that is 
produced at the end of a control group for a designated identifier or is 

Report Writer Feature 247 



TYPE Clause 

produced once at the termination of a report ending a FINAL control 
group. There can be only one report group of this type for each identi­
fier and for the FINAL entry specified in a report. In order to produce 
any CONTROL FOOTING report groups, a control break must occur. SOURCE 
clauses used in CONTROL FOOTING FINAL report groups refer to the values 
of the items at the time the TERMINATE statement is executed. 

The PAGE FOOTING or PF entry indicates a report group that is 
produced at the bottom of each page according to PAGE condition rules as 
specified below. There can be only one report group of this type in a 
report. 

The REPORT FOOTING or RF entry indicates a report group that is 
produced only at the termination of a report. There can be only one 
report group of this type in a report. SOURCE clauses used in TYPE 
REPORT FOOTING report groups refer to the value of items at the time the 
TERMINATE statement is executed. 

Identifier-n, as well as FINAL, must be one of the identifiers 
described in the CONTROL clause in the Report Description entry. 

A FINAL type control break may be designated only once for CONTROL 
HEADING or CONTROL FOOTING entries within a particular report 
description. 

Nothing precedes a REPORT HEADING entry and nothing follows a REPORT 
FOOTING entry within a report. 

The HEADING or FOOTING report groups occur in the following Report 
Writer sequence if all exist for a given report: 

REPORT HEADING (one occurrence only> 
PAGE HEADING 

CONTROL HEADING 
DETAIL 
CONTROL FOOTING 

PAGE FOOTING 
REPORT FOOTING Cone occurrence only) 

CONTROL HEADING report groups are presented in the following 
hierarchical arrangement: 

Final control Heading (one occurrence only) 
Major Control Heading 

Minor control Heading 

CONTROL FOOTING report groups are presented in the following 
hierarchical arrangement: 

Minor Control Footing 

Major Control Footing 
Final Control Footing (one occurrence only) 

248 Part V -- Special Features 



COLUMN Clause 

CONTROL HEADING report groups appear with the current values of any 
indicated SOURCE data items before the DETAIL report groups of the 
CONTROL group are produced. CONTROL FOOTING report groups appear with 
the previous values of any indicated SOURCE data items specified in the 
CONTROL clause, just after the DETAIL report groups of that CONTROL 
group have been produced. 

The USE procedures specified for a CONTROL FOOTING report group that 
refer to: 

• source data items that are specified in the CONTROL clause affect 
the previous value of the items 

• source data items that are not specified in the CONTROLS clause 
affect the current value of the items 

These report groups appear whenever a control break occurs. LINE NUMBER 
determines the absolute or relative position of the CONTROL report 
groups exclusive of the other HEADING and FOOTING report groups. 

USAGE Clause 

DISPLAY is the only option that may be specified for group and 
elementary items in a Report Group Description entry (see "USAGE 
Clause"). 

COLUMN Clause 

The COLUMN clause indicates the absolute column number on the printed 
page of the high-order (leftmost) character of an elementary item. 

r-----~----~---~----~---------~~---------------------------------1 
I Format I 
!----------------------------------------------------------------------~ 
I I 
I COLUMN NUMBER IS integer I 
I I 
L------~----------------------~------~~----------------------------J 

The COLUMN clause indicates that the leftmost character of the 
elementary item is placed in the position specified by integer. If the 
column number is not indicated, the elementary item, though included in 
the description of the report group, is suppressed when the report group 
is produced at object time. 

Integer must be a positive integer. 

The COLUMN number clause is given at the elementary level within a 
report group even if the elementary level is a single level-01 entry, 
which alone constitutes the report group. 

Report Writer Feature 249 



GROUP INDICATE/RESET Clauses 

GROUP INDICATE Clause 

The GROUP INDICATE clause specifies that this elementary item is to 
be produced only on the first occurrence of the item after any control 
or page break. 

r----~------------------~----~------~------~----------------------, 
I Format I 
~----------------------------------~--~--~-~-----------------------~ 
I I 
I GROUP INDICATE J 

I I 
l-----~---~-----~-~-------~-~------------------------------------J 

The GROUP INDICATE clause must be specified only at the elementary 
item level within a DETAIL report group. 

An elementary item is not only group indicated in the first DETAIL 
report group containing the item after a control break, but is also 
group indicated in the first DETAIL report group containing the item on 
a new page, even though a control break did not occur. 

JUSTIFIED C!ause 

The JUSTIFIED clause is applicable in report group description 
entries as described in "Data Division." 

PICTURE Clause 

The PICTURE clause is applicable in Report Group Description entries 
as described in "Data Division." 

RESET Clause 

The RESET clause indicates the CONTROL identifier that causes the SUM 
counter in the elementary item entry to be reset to zero on a CONTROL 
break. 

r----------------------------------------------------------------------1 
l Format I 
t--------------------------~-~--------~~----------------------------~ 
I I 
1

1 

{identifier} 1
1 RESET ON 

I .~ I 
I I 
l----------------------~------~--------------------------------------J 

After presentation of the CONTROL FOOTING report group, the counters 
associated with the report group are reset automatically to zero, 

250 Part V -- Special Features 



SOURCE/SUM/VALUE Clause 

unlessan explicit RESET clause is given specifying reset based on a 
higher level control than the associated control for the report group. 

· The RESET clause may be used for progressive totaling of identifiers 
where subtotals of identifiers may be desired without automatic 
resetting upon producing the report group. 

Identifier must be one of the identifiers described in the CONTROL 
clause in the Report Description entry (RD). Identifier must be a 
higher level CONTROL identifier than the CONTROL identifier associated 
with the CONTROL FOOTING report group in which the SUM and RESET clauses 
appear. 

The RESET clause may be used only in conjunction with a SUM clause. 

BLANK WHEN ZERO Clause 

The BLANK WHEN ZERO clause is applicable here as discussed in woata 
Division." 

SOURCE, SUM, or VALUE Clause 

The SOURCE, SUM, or VALUE clause defines the purpose of this 
elementary item within the report group. 

r-----------------------------------------------------------------1 
I Format I 
~-------------------------------------------------------------------~ 
I I 

I SOURCE IS { } l 
1 identifier-1 I 
I I 
l----------------------------------------------~--------------------~ 
I . I 

l ~ { identifier-2} [ { identifier-3} J . • • {UPON data-name] l 
I I 
l--------------------------------------------------------------------~ 
I I 
I VALUE IS literal-1 I 
I ~- I 
L--------------------------------------------------------------------J 

SOURCE: The SOURCE clause indicates a data item that is to be used as 
thesource for this report item. The item is presented according to the 
PICTURE clause and the COLUMN clause in this elementary item entry. 

The SOURCE clause has two functions: 

1. to specify a data item that is to be printed 

2. to specify a data item that is to be sununed in a CONTROL FOOTING 
report group <see SUM clause) 

Report Writer Feature 251 



SOURCE/SUM/VALUE Clause 

SUM: The SUM clause is used to cause automatic summation of data and 
may appear only in an elementary item entry of a CONTROL FOOTING report 
group. The presence of a SUM clause defines a SUM counter. If a SUM 
counter is to be ref erred to by a Procedure Division statement or Report 
Section entry, a data-name clause must be specified with the SUM clause 
entry. The data-name then represents the summation counter generated by 
the Report Writer to total the operands specified inunediately following 
SUM. If reference is never made to a summation counter, the counter 
need not be named explicitly by a data-name entry. 

Whether the elementary item entry that contains a SUM clause names 
the summation counter or not, the PICTURE clause must be specified for 
each SUM counter. Editing characters or editing clauses may be included 
in the description of a SUM counter. Editing of a SUM counter occurs 
only upon presentation of that SUM counter. At all other times, the SUM 
counter is treated as a numeric data item. The SUM counter must be 
large enough to accommodate the sununed quantity without truncation of 
integral digits. 

An operand of a SUM clause must be an elementary numeric data item 
that appears in the File, Working-Storageij[i~~i~~~~i Section, or is the 
name of a SUM counter. A SUM counter that is an operand of SUM clause 
must be defined in the same CONTROL FOOTING report group that contains 
this SUM clause or in a CONTROL FOOTING report group that is at a lower 
level in the control hierarchy of this report. 

A SUM counter is incremented by its operands in the following manner: 

• An operand that is an elementary numeric data item appearing in the 
File, Working-Storage, or Linkage Section is added to the SUM 
counter upon the generation of a DETAIL report group that contains 
this operand as a SOURCE data item; even if the operand appears in 
more than one SOURCE clause of the DETAIL report group, it is added 
only once to the SUM counter. The operands must appear exactly as 
they are in the SOURCE clauses with re ard to qualification 
subscript in 

• An operand that is a SUM counter and is defined in a CONTROL FOOTING 
that is at any lower level in the control hierarchy of this report 
is summed before presentation of the CONTROL FOOTING in which it is 
defined. This counter updating is commonly called rolling counters 
forward. 

• An operand that is a SUM counter and is defined in the same CONTROL 
FOOTING as this SUM clause, is summed before presentation of this 
CONTROL FOOTING. This counter updating is commonly called 
cross-footing. SUM counter operands are added to their respective 
SUM counters in the order in which they physically appear in the 
CONTROL FOOTING report group description, i.e., left to right within 
an elementary item entry and down the elementary item entries. 

The UPON data-name option is required to obtain selective summation for 
a particular data item that is named as a SOURCE item in two or more 
DETAIL report groups. Identifier-2 and i · ier-3 must be SOURCE data 
items in data-name. 
~~~~~!!ii~~:f·~· ~~11\~~l~!~J~l 
Data-name must be the

The following is the chronology of summing events.

1. Cross-'footing and counter rolling.

2. Execution of the USE BEFORE REPORTING procedure.

3. Presentation of the control footing if it is not a null group.

252 Part v -- Special Features

, I . ._,

j ,.._,,,,

GENERATE Statement

4. SUM counter resetting unless an explicit RESET clause appears in
the entry that defines the SUM counter.

VALUE: The VALUE clause causes the report data item to assume the
specified value each time its report group is presented only if the
elementary item entry does not contain a GROUP INDICATE clause. If the
GROUP INDICATE clause is present and a given object time condition
exists, the item will not assume the specified value (see GROUP INDICATE
rules).

PROCEDURE DIVISION CONSIDERATIONS

To produce a report, the INITIATE, GENERATE, and TERMINATE statements
must be specified in the Procedure Division. In addition, a USE BEFORE
REPORTING declarative may be written in a Declarative Section of the
Procedure Division. This option allows the programmer to manipulate or
alter data immediately before it is printed. ·

GENERATE Statement

The GENERATE statement is used to produce a report.

r-------------~--------------~---1
I Format I
~---------------------~-----------------------~------------------------~
I I
I GENERATE identifier I
I I
L-----------'---------~---------~---------------------------------------J

Identifier is the name of either a DETAIL report group or an RD
entry.

If identi£ier is the name of a DETAIL report group, the GENERATE
statement does all the automatic operations within a Report Writer
program and produces an actual output detail report group on the output
medium. This is called detail reporting.

If identifier is the name of an RD entry, the GENERATE statement does
all of the automatic operations of the Report Writer except producing
any detail report group associated with the report. This is called
summary reporting.

In summary reporting, SUM counters are algebraically incremented in
the same manner as for detail reporting. If more than one DETAIL report
group is specified in a report, SUM counters are algebraically
incremented as though consecutive GENERATE statements were issued for
all the DETAIL report groups of the report. This consecutive summing
takes place in the order of the physical appearance of the DETAIL report
group descriptions. Even if there is more than one DETAIL report group
within a report, only one test for control break is made for each
GENERATE report-name. This test is made by the Report Writer prior to
the summary reporting. After initiating a report and before terminating
the same report, both detail reporting and summary reporting may be
performed.

Report Writer Feature 253

INITIATE Statement

A GENERATE statement, implicitly in both detail and summary
reporting, produces the following automatic operations (if defined):

1. Steps and tests the LINE COUNTER and/or PAGE COUNTER to produce
appropriate PAGE FOOTING and/or PAGE HEADING report groups, after a
line is printed.

2. Recognizes any specified control breaks to produce appropriate
CONTROL FOOTING and/or CONTROL HEADING report groups.

3. Accumulates into the SUM counters all specified identifier(s).
Resets the SUM counters.

4. Executes any specified routines defined by a USE statement before
generation of the associated report group(s).

During the execution of the first GENERATE statement, the following
report groups associated with the report (if specified) are produced in
the order:

1. REPORT HEADING report group

2. PAGE HEADING report group

3. All CONTROL HEADING report groups in the order FINAL, major to
minor

4. The DETAIL report group if specified in the GENERATE statement.

If a control break is recognized at the time of the execution of a
GENERATE statement (other than the first that is executed for a report),
all CONTROL FOOTING report groups specified for the report are produced
from the minor report group, up to and including the report group speci­
fied for the identifier which caused the control break. Then, the
CONTROL HEADING report group(s) specified for the report are produced,
starting with the report group specified for the identifier that caused
the control break, and continuing down to and ending with the minor
report group. Then, the DETAIL report group specified in the GENERATE
statement is produced.

Data is moved to the data item in the Report Group Description entry
of the Report Section and is edited under control of the Report Writer
according to the same rules for movement and editing as described for
the MOVE statement (see "Procedure Division").

INITIATE Statement

The INITIATE statement begins the processing of a report.

r------~-----------------~-----~------------------------------------1
I Format I
~--~
I I
I INITIATE report-name-1 [report-name-2] ••• I
I I
L------~-------------~---------~------------------------------------J

Each repprt-name must be defined by a Report Description entry in the
Report Section of the Data Division.

254 Part V -- Special Features

TERMINATE Statement

The INITIATE statement resets all data-name entries that contain SUM
clauses associated with the report; the Report Writer controls for all
the TYPE report groups that are associated with this report are set up
in their respective order.

The PAGE-COUNTER register. if specified, is set to 1 (one) during the
execution of the INITIATE statement. If a starting value other than 1
is desired, the programmer may reset this PAGE-COUNTER following the
INITIATE statement.

The LINE-COUNTER register, if specified, is set to zero during the
execution of the INITIATE statement.

The INITIATE statement does not open the file with which the report
is associated; an OPEN statement for the file must be given by the user.
The INITIATE statement performs Report Writer functions for individually
described reports analogous to the input and/or output functions that
the OPEN statement performs for individually described files.

A second INITIATE statement for a particular report-name may not be
executed unless a TERMINATE statement has been executed for that
report-name subsequent to the first INITIATE statement.

TERMINATE St~tement

The TERMINATE statement completes the processing of a report •

.-------~-~-----------------~--,
I Format I
~-----------~--------~-------~--------------------------------------i
I I
I TERMINAT.E report-name-1 [report-name-2] ••• I
I I
L----------~---J

Each report-name given in a TERMlNATE statement must be defined by an
RD entry in the Data Division.

The TERMINATE statement produces all the CONTROL FOOTING report
groups associated with this report as though a control break had just
occurred at the highest level, and completes the Report Writer functions
for the named reports. The TERMINATE statement also produces the last
REPORT FOOTING report group associated with this report.

Appropriate PAGE HEADING and/or PAGE FOOTING report groups are
prepared in their respective order for the report description.

A second TERMINATE statement for a particular report may not be
executed unless a second INITIATE statement has been executed for the
report-name.

The TERMINATE statement does not close the file with which the report
is associated: a CLOSE statement for the file must be given by the user.
The TERMINATE statement performs Report Writer functions for indi­
vidually described report programs analogous to the input/output
functions that the CLOSE statement performs for individually described
files.

Report Writer Feature 255

USE BEFORE REPORTING Declarative

If, at object time, no GENERATE statement is executed for a report,
the TERMINATE statement of the report will not produce any report groups
and will not perform any SUM processing.

SOURCE clauses used in CONTROL FOOTING FINAL or REPORT FOOTING report
groups refer to the values of the items during the execution of the
TERMINATE statement.

USE sentence

The USE sentence specifies Procedure Division statements that are
executed just before a report group named in the Report section of the
Data Division is produced.

r---------------------~-------~--------------------------------------1
I Format I
~--~
I I
I USE BEFORE REPORTING data-name. I
I I
L-------------------------~-~--------~------------------------------1

A USE sentence, when present, must immediately follow a section
header in the declaratives portion of the Procedure Division and must be
followed by a period followed by a space. The remainder of the section
must consist of one or more procedural paragraphs that define the
procedures to be used.

Data-name represents a report group named in the Report Section of
the Data Division. A data-name must not appear in more than one USE
sentence. Data-name must be qualified by the report-name if data-name
is not unique.

No Report Writer statement (GENERATE, INITIATE, or TERMINATE) may be
written in a procedural paragraph(s) following the USE sentence in the
declaratives portion.

The USE sentence itself is never executed; rather it defines the
conditions calling for the execution of the USE procedures.

The designated procedures are executed by the Report Writer just
before the named report is produced, regardless of page or control break
associations with report groups. The report group may be any type
except DETAJ:L.

Within a USE procedure, there must not be any reference to any
nondeclarative procedures. conversely, in the nondeclarative portion,
there must be no reference to procedure names that appear in the De­
claratives Section, except that PERFORM statements may refer to a USE
procedure or to the procedures associated with the USE procedure.

256 Part V -- Special Features

i
\...._..,;·

Report Writer--Special Registers

SPECIAL REGISTERS: PAGE-COUNTER AND LINE-COUNTER
~----

The fixed data-names, PAGE-COUNTER and LINE-COUNTER, are numeric
counters automatically generated by the Report Writer based on the
presence of specific entries; they do not require data description
clauses. The description of these two counters is included here in
order to explain their resultant effect on the overall report format.

PAGE-COUNTER

A PAGE-COUNTER is a counter generated by the Report Writer to be used
as a source data item in order to present the page number on a report
line. A PAGE-COUNTER is generated for a report by the Report Writer if
a PAGE-LIMIT clause is specifi~d. ~r1 the RD. entry of the report. The
numeric counter is a 3-byte[~~~iA~!~~~~item that is presented
according to the PICTURE clause associated with the elementary item
whose SOURCE is PAGE-COUNTER.

If more than one PAGE-COUNTER is given as a SOURCE data item within a
given report, the number of numeric characters indicated by the PICTURE
clauses must be identical. If more than one PAGE-COUNTER exists in the
program, the user must qualify PAGE-COUNTER by the report name.

PAGE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. After an INITIATE statement,
PAGE-COUNTER contains one; if a starting value for PAGE-COUNTER other
than one is desired, the programmer may change the contents of the
PAGE-COUNTER by a Procedure Division statement after an INITIATE
statement has been executed. PAGE-COUNTER is automatically incremented
by one each time a page break is recognized by the Report Writer, after
the production of any PAGE FOOTING report group but before production of
any PAGE HEADING report group.

LINE-COUNTER

A LINE-COUNTER is a counter used by the Report Writer to determine
when a PAGE HEADING and/or a PAGE FOOTING report group is to be
presented. One line counter is supplied for each report with a PAGE

~:!~1~> c~~~~~~ ~i!t~~b~e ~W-~~~Miii~1~;~nt~~~ls <:!~en~~~
according to the PICTURE clause associated with the elementary item
whose SOURCE is LINE-COUNTER.

LINE-COUNTER may be referred to in Report Section entries and in
Procedure Division statements. If more than one Report Description
entry (RD) exists in the Report Section, the user must qualify
LINE-COUNTER by the report-name. LINE-COUNTER is automatically tested
and incremented by the Report Writer based on control specifications in
the PAGE LIMITCS> clause and values specified in the LINE NUMBER and

Report Writer Feature 257

Report Writer--Special Registers

NEXT GROUP clauses. After an £NITIATE statement, LINE-COUNTER contains
zero. Changing the value of LINE-COUNTER by Procedure Division
statements may cause page format control to become unpredictable in the
Report Writer.

The value of LINE-COUNTER during any Procedure Division test state­
ment represents the number of the last line printed by the previously
generated report group or represents the number of the last line skipped
to by a previous NEXT GROUP specification.

In a USE BEFORE REPORTING, if no lines have been printed or skipped
on the current page, LINE-COUNTER will contain zero. In all other
cases, LINE-COUNTER represents the last line printed or skipped.

258 Part v -- Special Features

\

' J
'>.._,,,,'

I ·.

"-/

Report Writer--Sample Program

SAMPLE REPORT WRITER PROGRAM

Figure 16 illustrates a Report Writer source program. The records
used in the report (i.e., input data) are shown after the STOP RUN card
in the program. Using the first record as an example, the data fields
are arranged in the following card format:

1 1

--~----~--~-----2 _______ _
A 0 0 0 2 A 0 1 0 l 0 0 2 0 0

/!~ /--'~ ~·~. j__ ~~. -~ ~-
Department

Number
Number of
Purchases

Type of
Purchase

Month Day Cost

The decimal point in the cost field is assumed to be two places from
the right.

r-----------~---1
1000005 IDENTIFICATION DIVISION. I
1000010 PROGRAM-ID. ACME. I
!000015 REMARKS. THE REPORT WAS PRODUCED BY THE REPORT WRITER. I
1000020 ENVIRONMENT DIVISION. I
J000025 CONFIGURATION SECTION. I
1000030 SOURCE-COMPUTER. IBM-360-FSO. f
1000035 OBJECT-COMPUTER. IBM-360-FSO. I
1000040 INPUT-OUTPUT SECTION. I
I 000045 FILE-CONTROL. I
1000050 SELECT INFILE ASSIGN TO SYSOOO-UT-2400-S. I
1000055 SELECT REPORT-FILE ASSIGN TO SYSOOl-UT-2400-S. I

. J 000060 DATA DIVISION. I
1000065 FILE SECTiON. I
1000070 FD INFILE I
1000075 LABEL RECORDS ARE OMITTED I
J000080 DATA RECORD IS INPUT-RECORD. I
I 000085 01 INPUT-RECORD. I
!000090 02 FILLER PICTURE AA. I
f 000095 02 DEPT PICTURE XXX. I
000100 02 FILLER PICTURE AA. I
000105 02 NO-PURCHASES PICTURE 99. I
000110. 02 FILLER PICTURE A. I
000115 02 TYPE-PURCHASE PICTURE A. I
000120 02 MONTH PICTURE 99. I
000125 02 DAY PICTURE 99. I
000130 02 FILLER PICTURE A. I
000135 02 COST PICTURE 999V99. I
000140 02 FILLER PICTURE X(59). I
000145 FD REPORT-FILE I
000150 LABEL RECORDS ARE STANDARD I
000151 RECORD CONTAINS 121 CHARACTERS I
000155 REPORT IS EXPENSE-REPORT. l
000160 WORKING-STORAGE SECTION. I
000165 77 SAVED-MONTH PICTURE 99 VALUE IS O. I

1000175 77 CONTINUED PICTURE X(11) VALUE IS SPACE. I
L----------i------------.._-------------------'-----------------------------J

Figure 16. Sample Program Using the Report Writer Feature (Part 1 of 4)

Report Writer Feature 259

Report Writer--Sample Program

r-----------~-----------~--1

I 000180 01 MONTH-TABLE-1. I
1000185 02 RECORD-MONTH. I
1000190 03 FILLER PICTURE A(9) VALUE IS "JANUARY "• I
1000195 03 FILLER PICTURE A(9) VALUE IS "FEBRUARY n I
1000200 03 FILLER PICTURE A(9) VALUE IS "MARCH n I
1000205 03 FILLER PICTURE A(9) VALUE IS 0 APRIL "• I
1000210 03 FILLER PICTURE A(9) VALUE IS "MAY n]

1000215 03 FILLER PICTURE A(9) VALUE IS "JUNE "• I
1000220 03 FILLER PICTURE A(9) VALUE IS "JULY "• I
1000225 03 FILLER PICTURE A(9) VALUE IS "AUGUST " I
1000230 03 FILLER PICTURE A(9) VALUE IS "SEPTEMBER". I
1000235 03 FILLER PICTURE A(9) VALUE IS "OCTOBER "• I
000240 03 FILLER PICTURE A(9) VALUE IS 9 NOVEMBER ". I
000245 03 FILLER PICTURE A(9) VALUE IS "DECEMBER "• I
000250 02 RECORD-AREA REDEFINES RECORD-MONTH. I
000255 03 MONTHNAME PICTURE A(9) OCCURS 12 TIMES. I
000260 REPORT SECTION. I
000265 RD EXPENSE-REPORT I
000270 CONTROLS ARE FINAL MONTH DAY I
000275 PAGE LIMIT IS 59 LINES I
000280 HEADING 1 I
000285 FIRST DETAIL 9 I
000290 LAST DETAIL 48 I
000295 FOOTING 52. I
000300 01 TYPE IS REPORT HEADING. I
000305 02 LINE NUMBER IS 1 I
000310 COLUMN NUMBER IS 27 I
000315 PICTURE IS A(26) I
000320 VALUE IS 9 ACME MANUFACTURING COMPANY". I
000325 02 LINE NUMBER IS 3 I
000330 COLUMN NUMBER IS 26 I
000335 PICTURE IS A(29) I
000340 VALUE IS 0 QUARTERLY EXPENDITURES REPORT". I
000345 01 PAGE-HEAD I
000350 TYPE IS PAGE HEADING. I \J
000355 02 LINE NUMBER IS 5. I

1000360 03 COLUMN IS 30 I
000365 PICTURE IS A(9) I
000370 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH). I
000375 03 COLUMN IS 39
000380 PICTURE IS AC12)
000385 VALUE IS "EXPENDITURES".
000390 03 COLUMN IS 52
000395 PICTURE IS X(11)
000400 SOURCE IS CONTINUED.
oooqo5 02 LINE IS 7.
000410 03 COLUMN IS 2
000415 PICTURE IS X(35)
000420 VALUE IS "MONTH DAY DEPT NO-PURCHASESw.
000425 03 COLUMN IS 40
000430 PICTURE IS X(33)

1000435 VALUE IS "TYPE COST CUMULATIVE-COSTw.
L-----------~---~-----------~---------------------------------------
F i gur e 16. sample Program Using the Report Writer Feature (Part 2 of 4)

··-.._)

260 Part v -- special Features

Report Writer--Sample Program

r--1
000440 01 DETAIL-LINE TYPE IS DETAIL LINE NUMBER IS PLUS 1.
000445 02 COLUMN IS 2 GROUP INDICATE PICTURE IS AC9)
000450 SOURCE IS MONTHNAME OF RECORD-AREA (MONTH),

l. '-"'.
000455 02 COLUMN IS 13 GROUP INDICATE PICTURE IS 99
000460 SOURCE IS DAY.
000465 02 COLUMN IS 19 PICTURE IS XXX SOURCE IS DEPT.
000470 02 COLUMN IS 31 PICTURE IS Z9 SOURCE IS NO-PURCHASES.
000475 02 COLUMN IS 42 PICTURE IS A SOURCE IS TYPE-PURCHASE.
000480 02 COLUMN IS 50 PICTURE IS ZZ9.99 SOURCE IS COST.
000485 01 TYPE IS CONTROL FOOTING DAY.
000490 02 LINE NUMBER IS PLUS 2.
000495 03 COLUMN 2 PICTURE X(22)
000500 VALUE "PURCHASES AND COST FOR".
000505 03 COLUMN 24 PICTURE Z9 SOURCE SAVED-MONTH.
000510 03 COLUMN 26 PICTURE X VALUE "-".
000515 03 COLUMN 27 PICTURE 99 SOURCE DAY.
000520 03 COLUMN 30 PICTURE ZZ9 SUM NO-PURCHASES.
000525 03 MIN
000530 COLUMN 49 PICTURE $$$9.99 SUM COST.
000535 03 COLUMN 65 PICTURE $$$$9.99 SUM COST
000540 RESET ON FINAL.
000545 02 LINE PLUS 1 COLUMN 2 PICTURE X(71)
000550 VALUE ALL n*"•
000555 01 TYPE CONTROL FOOTING MONTH

j000560 LINE PLUS 1 NEXT GROUP NEXT PAGE. I
j000565 02 COLUMN 16 PICTURE A(14) VALUE "TOTAL COST FOR", I
1000570 02 COLUMN 31 PICTURE A(9) I
1000575 SOURCE MONTHNAME OF RECORD-AREA (MONTH). I
1000580 02 COLUMN 43 PICTURE AAA VALUE •wAs". I
[000585 02 INT I
1000590 COLUMN 48 PICTURE $$$9.99 SUM MIN. I
1000595 01 TYPE CONTROL FOOTING FINAL LINE NEXT PAGE. I

L;
1000600 02 COLUMN 16 PICTURE A(26) I
1000605 VALUE "TOTAL COST FOR QUARTER WAS". I
1000610 02 COLUMN 45 PICTURE $$$$9.99 SUM INT. I
000615 01 TYPE PAGE FOOTING LINE 57. I
000620 02 COLUMN 59 PICTURE X<l2) VALUE "REPORT-PAGE-". I
000625 02 COLUMN 71 PICTURE 99 SOURCE PAGE-COUNTER. I
000630 01 TYPE REPORT FOOTING [
000635 LINE PLUS 1 COLUMN 32 PICTURE A(13) j
000640 VALUE "END OF REPORT". I
000645 PROCEDURE DIVISION. I
000650 DECLARATIVES. I
000655 PAGE-HEAD-RTN SECTION. I
000660 USE BEFORE REPORTING PAGE-HEAD. I
000665 PAGE-HEAD-RTN-SWITCH. I
000670 GO TO PAGE-HEAD-RTN-TEST. I
000675 PAGE-HEAD-RTN-TEST. I
000680 IF MONTH= SAVED-MONTH MOVE •(CONTINUED)" TO CONTINUED I
000685 ELSE MOVE SPACES TO CONTINUED I

)000690 MOVE MONTH TO SAVED-MONTH. I
1000695 GO TO PAGE-HEAD-RTN-EXIT. I
1000697 PAGE-HEAD-RTN-ALTER. I
1000698 ALTER PAGE-HEAD-RTN-SWITCH TO PAGE-HEAD-RTN-SUPPRESS. I
1000700 PAGE-HEAD-RTN-SUPPRESS. I
1000705 MOVE 1 TO PRINT-SWITCH. I
1000110 PAGE-HEAD-RTN-EXIT. I
1000715 EXIT. I
1000720 END DECLARATIVES. I l __ J

Figure 16. Sample Program Using the Report Writer Feature (Part 3 of 4)

Report Writer Feature 261

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436
Report Writer--Sample Prograra

r---1
1000725 OPEN-FILES. OPEN INPUT INFILE OUTPUT REPORT-FILE.
I 000730 INITIATE EXPENSE-REPORT.
1000735 READATA.
1000740 READ INFILE AT END GO TO COMPLETE.
1000745 GENERATE DETAIL-LINE.
J000760 GO TO READATA.
1000765 COMPLETE.
1000770 PERFORM PAGE-HEAD-RTN-ALTER.
1000780 TERMINATE EXPENSE-REPORT.
1000785 CLOSE INFILE REPORT-FILE.
1000790 STOP RON.
l
I
I
I
I
I
I
I
I
I
I
I

AOO
A02
A02
AOl
A04
A01

02 A0101
01 A0101
01 A0101
02 80102
10 A0102
20 00108

00200
00100
01600
00200
01000
03840

I AOl 06 C0329 04800
I A03 20 E0331 0600
I A03 10 G0331 05000 I
L--J
Figure 16. Sample Program Using the Report Writer Feature (Part 4 of 4)

In the key, the numbers enclosed in circles (for example, {2)> relate
the explanation below to the corresponding output line in Figure 17.

The six-digit numbers (for example, 000615) show the source statement
from the program illustrated in Figure 16.

C0
0
0

is the REPORT HEADING resulting from source lines 000300-000340.

is the PAGE HEADING resulting from source lines 000345-000435.

is the DETAIL line resulting from source lines 000440-000480 (note
that since it is the first detail line after a control break, the
fields defined with the GROUP INDICATE clause, lines
000445-000460, appear).

is a DETAIL line resulting from the same source lines as Ci)
In this case, however, the fields described as GROUP INDICATE do
not appear (since the control break did not immediately precede
the detail line).

is the CONTROL FOOTING (for DAY) resulting from source lines
000(J85-000550.

~ is the PAGE FOOTING resulting from source lines 000615-000625.

262 Part v -- Special Features

\ ' \ ' ._,,,,

Report Writer--Sample Program

is the CONTROL FOOTING (for MONTH) resulting from source lines
000-555-000575.

is the CONTROL FOOTING (for FINAL) resulting from source lines
000595-0(}0610.

is the REPORTING FOOTING resulting from source lines
000630-000640.

Lines 000650-000715 of the example illustrate a use of USE BEFORE
REPOR'I'ING. The effect of the source i$ that each time a new page is
started, a test is made to determine whether the new page is being
started because a change in MONTH has been recognized (the definition
for the control footing for MONTH specifies NEXT GROUP NEXT PAGE) or
because the physical limits of the page were exhausted. If a change in
MONTH has been recognized, spaces are moved to the PAGE HEADING; if the
physical limits of the page are exhausted, "(CONTINUED)" is moved to the
PAGE HEADING.

Report Writer Feature 263

Report Writer--Sample Program

(!)~~~~~~~~~~~~~--ACME MANUFACTURING COMPANY

QUARTERLY EXPENDITURES REPORT

~~~~~~~~~~~~~~~JANUARY EXPENDITURES 

~~MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

©-JANUARY 01 AOO 

-------------~·A02 
4 \_ A02 

2 
1 
2 

A 
A 
c 

2.00 
1.00 

16.00 

/'?\---PURCHASES ANO COST FOR 1-01 5 $19.00 $19.00 
~*********************************************************************** 

JANUARY 02 AOl 2 B 2 .00 
A04 10 A 10.00 
A04 10 C 80 .00 

PURCHASES AND COST FOR 1-02 22 $92. 00 $111.00 
*********************************************************************** 
JANUARY 05 AOl 2 B 2.00 

PURCHASES AND COST FOR 1-05 2 $2.00 $113.00 
*********************************************************************** 
JANUARY 08 AOl 10 A 10.00 

'AOl 8 B 12.48 
AOl 20 D 38.40 

PURCHASES AND COST FOR 1-08 38 $60.88 $173.88 
*********************************************************************** 
JANUARY 13 AOO 4 B 6.24 

AOO 1 c a.oo 

PURCHASES AND COST FOR 1-13 5 $14.24 $188.12 
*********************************************************************** 
JANUARY 15 AOO 10 0 19.20 

A02 1 C 8.00 

PURCHASES AND COST FOR 1-15 11 $27. 20 $215.32 
*********************************************************************** 
JANUARY 21 A03 10 E 30.00 

A03 10 F 25.00 
A03 10 G 50.00 

PURCHASES ANO COST FOR 1-21 30 $105.00 $320.32 
*********************************************************************** 
JANUARY 23 AOO 5 A 5. 00 

PUPCHASES ANO COST FOR 1-23 5 $5.00 $325.32 
*********************************************************************** 

(!) REPORT-PAGE-01 

Figure 17. Report Produced by Report Writer Feature (Part 1 of 5) 

264 Part V -- Special Features 



Report Writer--Sample Program 

~ JANUARY EXPENDITURES (CONTINUED! 

. MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

©-JANUARY 26 A04 5 A 5.00 
~---------------A04 5 B 7.80 

@-~4 PURCHASES AND COST FOR 1-26 10 $12. 80 $338.12 

5 *********************************************************************** 
JANUARY 27 AOO 6 8 9. 36 

AOO 15 C 120.00 

PURCHASES AND COST FOR 1-27 21 $129.36 $467.48 

*********************************************************************** 
JANUARY 30 AOO 2 B 3.12 

A02 10 A 10.00 
A02 1 c a.oo 
A04 15 B 23.40 
A04 lo c ao.oo 

PURCHASES ANO COST FOR 1-30 38 $124.52 $592.00 

*********************************************************************** 
JANUARY 31 AOO l A 1.00 

A04 6 A 6.00 

PURCHASES AND COST FOR 1-31 7 $7.00 $599.00 

*********************************************************************** (!),__~~~~~~~TOTAL COST FOR JANUARY WAS $599.00 

6 REPORT-PAGE-02 

Figure 17. Report Produced by Report Writer Feature (Part 2 of Sl 

Report Writer Feature 265 



Report Writer--Sample Program 

~MONTH FEBRUARY EXPENDITURES 

DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

©--FEBRUARY 15 A02 10 A 10.00 
A02 2 B 3.12 
A02 1 c s.oo 
A03 15 G 75.00 
A04 5 B 7.80 
A05 8 A a.oo 
A05 5 c 40.00 

r.;y.--PURCHASES AND COST FOR 2-15 46 $151.92 $750.92 
~*********************************************************************** 

FEBRUARY 16 A02 2 C 16. 00 
A06 10 A 10.00 
A07 10 A 10.00 
A07 10 F 25.00 

PURCHASES AND COST FOP 2-16 32 $61.00 $811.92 
*********************************************************************** 
FEBRUARY 17 A07 10 E 30.00 

A07 10 G 50.00 

PURCHASES ANO COST FOR 2-17 20 $ 80. 00 $891. 92 

*********************************************************************** 
FEBRUARY 21 A06 20 A 20.00 

A06 20 B 31. 20 
A06 20 C 160.00 
A06 20 D 38.40 
A06 20 E 60.00 
A06 20 F 50.00 
A06 20 G 100. 00 

PURCHASES AND COST FOP 2-21 140 $459.60 $1351. 52 

*********************************************************************** 
FEBRUARY 27 AOl 21 D 40.32 

PURCHASES AND COST FOR 2-27 21 $40.32 $1391.84 

*********************************************************************** 
FEBRUARY 28 AOZ 3 B 4.68 

A02 5 C 40 .OO 
A03 15 E 45.00 

PURCHASES AND COST FOR 2-28 23 $89~68 $1481. 52 

*********************************************************************** 
(i)~~~~~~~~roTAL COST FOR FEBRUARY WAS $882.52 

Figure 17. Report Produced by Report Writer Feature (Part 3 of 5) 

266 Part V -- Special Features 

" '-.-" 



l : '"-/ 

\ 
~/ 

Report Writer--Sample Program 

0 MARCH EXPENDITURES 

MONTH DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

©-MARCH 01 A02 5 A 5.00 
A02 1 c s.oo 

©-- A03 25 G 12 5. 00 

(";'r-PURCHASES AND COST FOR 3-01 31 $138.00 $1619.52 
~*********************************************************************** 

MARCH 06 A02 5 A 5.00 

PURCHASES AND COST FOR 3-06 5 $5 .OO $1624. 52 
*********************************************************************** 
MARCH 07 A02 5 A 5.00 

PURCHASES ANO COST FOR 3-07 5 $5.00 $1629.52 
*********************************************************************** 
MARCH 13 A02 10 A 10.00 

PURCHASES AND COST FOR 3-13 10 $10.00 $1639.52 
*********************************************************************** 
MARCH 15 AOl 21 A 21.00 

A02 1 A 1. 00 
A03 15 F 37.50 
A06 5 E 15.00 
A06 5 F 12.50 

PURCHASES AND COST FOR 3-15 47 $87.00 $1726.52 
*********************************************************************** 
MARCH 20 A03 15 E 45.00 

PURCHASES AND COST FOR 3-20 15 $45.00 $1771. 52 
*********************************************************************** 
MARCH 21 A02 15 A 15.00 

A03 15 F 37.50 

PURCHASES AND COST FOR 3-21 30 $52.50 $1824.02 
*********************************************************************** 
~ARCH 23 A02 2 A 2. 00 

PURCHASES ANO COST FOR 3-23 2 $2.00 $1826.02 
*********************************************************************** 
MARCH 25 A03 30 F 75.00 

PURCHASES AND COST FOR 3-25 30 $75.00 $1901.02 
*********************************************************************** 

(!) REPORT-PAGE-04 

Figure 17. Report Produced by Report Writer Feature (Part 4 of 5) 

Report Writer Feature 267 



Report Writer--Sample Program 

©:;:MONTH 

MARCH EXPENDITURES {CONTINUED! 

DAY DEPT NO-PURCHASES TYPE COST CUMULATIVE-COST 

©--MARCH 26 A02 1 A i.oo 

~PURCHASES AND COST FOR 3-26 1 $1.00 $1902.02 
~*********************************************************************** 

IJIARCH 29 AOl 6 C 48. 00 

PURCHASES ANO COST FOR 3-29 6 $48.00 $1950.02 
*********************************************************************** 
MARCH 31 A03 20 E 60.00 

PURCHASES ANO COST FOR 3-31 20 $60.00 $2010.02 
*********************************************************************** 

0)-----------TOTAL COST FOR MARCH WAS $528.50 

C!)t--------------------------------REPORT-PAGE-05 

©--TOTAL COST FOR QUARTER WAS $2010 .• 02 

C!)r-------------------------------------'"--- REPORT-PAGE-06 

(!)1--------------------------~END OF REPORT 

Figure 17. Report Produced by Report Writer Feature (Part 5 of 5) 

268 Part V -- Special Features 

··.~ 



i ' 

0 

Subscripting and Indexing 

TABLE HANDLING FEATURE 

The Table Handling feature enables the programmer to process tables 
or lists of repeated data conveniently. A table may have up to three 
dimensions, i.e., three levels of subscripting or indexing can be 
handled. Such a case exists when a group item described with an OCCURS 
clause contains another group item with an OCCURS clause, which in turn 
contains an item with an OCCURS clause. To make reference to any 
element within such a table, each level must be subscripted or indexed. 

SUBSCRIPTING 

Subscripts are used only to refer to an individual element within a 
list or table of elements that have not been assigned individual 
data-names. 

r----------------------------------------------------------------------1 
I Format I 
~----------~----------------------------------------------------------~ 
I I 
I data-name (subscript[, subscript][, subscript]} I 
I I 
L-----~----~---------------------------------------------------------J 

The subscript, or set of subscripts, that identifies the table 
element is enclosed in parentheses immediately following the space that 
terminates data-name, which is the name of the table element. When more 
than one subscript appears within a pair of parentheses, the subscripts 
must be separated by commas. A space must follow each comma, but no 
space may appear between the left parenthesis and the leftmost subscript 
or between the rightmost subscript and the right parenthesis. To 
identify an element in the table named SALARY by the set of subscripts 
YEAR, MONTH, and WEEK, the programmer would write: 

SALARY (YEAR, MONTH, WEEK). 

The subscript can be represented by a numeric literal that is a 
positive integer, by the special register TALLY, or by a data-name. 
Restrictions on the use of a data-name as a subscript are: 

1. Data-name must be a numeric elementary item that represents a 
positive integer. 

2. The name itself may be qualified, but not subscripted. 

The subscript may contain a sign, but the lowest permissible 
subscript value is 1. Hence, the use of zero or a negative subscript is 
not permitted. The highest permissible subscript value in any 
particular case is the maximum number of occurrences of the item as 
specified in the OCCURS clause. 

Qualification may be used in conjunction with subscripting, in which 
case OF or IN follows the data-name being subscripted. 

Table Handling Feature 269 



Subscripting and Indexing 

r------------------~---------------------------------------------------1 
I Format I 
~------------------------~------~----------------------------------~ 
I I 

l data-name{. OF f data-name-1 [ { OF }. data-name-2]... I 
I INf m I 
I I 
I (subscript[, subscript][, subscript]) I 
I I 
L-----~---~--------~-----~-----------------------------~---------J 

~ote: Data-name is the item being subscripted, not data-name-1. That 
is, in the statement SALARY OF EMPLOYEE-RECORD (YEAR, MONTH, WEEK), the 
data item SALARY is subscripted by YEAR, MONTH, and WEEK. 

INDEXING 

References can be made to individual elements within a table of 
elements by specifying indexing for that reference. 

An index is assigned to a given level of a table by using an INDEXED 
BY clause in the definition of the table. A name given in the INDEXED 
BY clause is known as an index-name and is used to refer to the assigned 
index. An index-name must be initialized by a SET statement before it 
is used in a table reference. An index may be modified only by a SET, 
SEARCH, or PERFORM statement. Data items described. by the USAGE IS 
INDEX clause permit storage of the values of index-names as data without 
conversion. Such data items are called index data items. 

. ---------------------------~-----------------------------------------, 
I Format l 
~--------------------------------------------------------------------! 
I I 

! data-name (index-name [ { : } integer] ! 
I I 

l [, index-name £ { : } integer]] [, index-name [ { : } integer]]) ! 
I I 
L---------------------------------------------------------------------·J 

Direct indexing is specified by using an index-name in the form of a 
subscript. For example, 

ELEMENT (PRIME-INDEX) 

Relative .indexing is specified when the terminal space of the 
data-name is followed by a parenthesized group of items: the 
index-name, followed by a space, followed by one of the operators + 
or -, followed by another space, followed by an unsigned integral 
numeric literal. For example, 

ELEMENT (PRIME-INDEX + 5) 

Qualification may be used in conjunction with indexing, in which case 
OF or IN follows the data-name being indexed. 

270 Part V -- Special Features 

) ."-" . 

I ) 

\..._! 



\ , 
~ 

' I '.._/ 

subscripting and Indexing 

r------.----------------------------------------------------------------1 I Format I 
~-------~· ------------------4~----------------------------------------~ 
I I ! data-name { : } data-name..;1 [ { :: } data-name-21... I 
I I ! (index-name [ {:} inteqer] C, index-name C { : } integer)] I 
I I ! [, index-name [ {: } integer]]> ! 
I I L----------------------------------------------------------------------l 

RESTRICTIONS ON INDEXING, SUBSCRIPTING, AND QUALIF~CATION 

Tables may have one, two, or three dimensions. Therefore, references 
to an element in a table may require up to three subscripts or indexes. 

1. A data-name must not be subscripted or indexed when the data-name 
is itself being used as an index, subscript, or qualifier. 

2. When qualification, subscripting, or indexing are required for a 
given data item, the indexes or subscripts are specified after all 
necessary qualification is given. 

3. Subscripting and indexing must not be used together in a single 
reference. 

4. Wherever subscripting is not permitted, indexing is not permitted. 

5. The commas shown in the formats for indexes and subscripts are 
required. 

EXAMPLE OF SUBSCRIPTING AND INDEXING 

For a table with three levels of indexing, the following Data 
Division entries would result in a storage layout as shown in Figure 18. 

01 PARTY-TABLE REDEFINES TABLE. 
02 PARTY-CODE OCCURS 3 TIMES INDEXED BY PARTY. 

03 AGE-CODE OCCURS 3 TIMES INDEXED BY AGE. 
04 M-F-INFO OCCURS 2 TIMES INDEXED BY M-F 

PICTURE 9(7)V9 USAGE DISPLAY. 

PARTY-TABLE contains 
elementary items within 
subscripted or indexed. 
be: 

three levels of indexing. Reference to 
PARTY-TABLE is made by use of a name that is 

A typical Procedure Division statement might 

MOVE M-F-INFO (PARTY, AGE, M-F) TO M-F-RECORD. 

In order to use the Table Handling feature, the programmer must 
provide certain information in the Data Division and Procedure Division 
of the program. 

Table Handling Feature 271 



Subscripting and Indexing 

r----------------------------~---------------------------------------1 
I 8 bytes Bytel 
I No. f 
I /-. - I 
I r------------------1 01 

I AGE-CODE <1, u ~. ~~=:==~::~-~=~-=~-=~~ s I 
I ) I M-F-INFO (1, 1, 2) I I 
I ~-----------------1 161 

I PARTY-CODE( 1) AGE-CODE <1, 2) ~ ~~=:==~:~-~~-~~-=~~ 241 
I l tM-F-INFO (1, 2, 2) I I 
I ~--~---------------1 321 

I AGE-CODE (1, 3) { i~=~==~~-~=:-~~-=~~ 40 I 
I ' I M-F-INFO Cl, 3, 2) I I 
I •-----------------1 481 

I AGE-CODE (2, 1) { ~~=:==~::~-~:~-=~-=~~ 561 
I f M-F-INFO (2, 1, 2) I I 
I •--~---------------1 641 

IPARTY-TABLE PARTY-CODE(2) AGE-CODE (2, 2) {~~. =:==~FO-~~:-~:-=~~ 121 
I IM-F-INFO (2, 2, 2) I I 
I •--------~---------1 001 

l AGE-CODE (2, 3) { ~=~=~:~-~~:_.::_:~~ sa l 
I IM-F-INFO (2, 3, 2) I I 
I •------------------1 961 
I ~ IM-F-INFO (3, 1, 1} I I 

AGE-CODE (3, 1) l t;:;:~~Fo-<3:-1:-2>1 1041 

~----------------1 1121 

PARTY-CODE(3) AGE-CODE (3, 2) ~ ~=~==~:~-~-=:-~~-=~~ 120 I l f M-F-INFO (3, 2, 2) I I 
~------------------1 1281 

AGE-CODE (3, 3) { ~=:==~~-~=:_.::_:~~ 1361 
IM-F-INFO (3, 3, 2) I I 

.--~---------

__ '-""" ____ _ l ___ ..: ___________ _c __ J I 

I 
I 

OCCURS 3 TIMES OCCURS 3 TIMES OCCURS 2 TIMES I 
-----------'-----------------------------------'-------------------J 

Figure 18. Storage Layout for PARTY-TABLE 

DATA DIVISION CONSIDERATIONS FOR TABLE HANDLING 

The OCCURS and USAGE clauses are included as part of the record 
description entries in a program utilizing the Table Handling feature. 

OCCURS Clause 

The OCCURS clause eliminates the need for separate entries for 
repeated data, since it indicates the number of times a series of 
records with identical format is repeated. It also supplies information 
required for the application of subscripts or indexes. 

The OCCURS clause has three formats. 

272 Part V -- Special Features 

\ 
' I ''-7 

' ' \ j -



I"-,· 

f 
I . .,_.,. 

OCCURS Clause 

r--------------------------------------------------------~------------1 I Format 1 I 
~--------------------------------------------------------------------~~ 
I I 
I Q££~RS integer-2 TIMES I 

1
1 [ ·{ 1

1 
KEY IS data-name-2 [data-name-31 ••• J ••• 

ASCENDING } 

I Q~SC~ND!N2 I 
I I 
I [INDEXED BY index-name-l[index-name-21 ••• J I 
I I 
L--------------------------------------------------------------------~J 

.----------------------------------------------------------------------, 
I Format 2 I 
~----------------------------------------------------------------------~ 
I I 
I Q££~RS integer-1 !Q integer-2 TIMES [DEPENDING ON data-name-11 I 
I I 
II [ { ASCENDING } 1

1 KEY IS data-name-2 [data-name-31 ••• 1 ••• 
I Q~££~NQ!N§ I 
I I 
I [INDEXED BY index-name-1 Cindex-name-21 ••• 1 I 
I I 
L----------------------------------------------------------------------J 

The other data description clauses associated with an entry whose 
description includes an OCCURS clause apply to each occurrence of the 
item described. 

Since three subscripts or indexes are allowed, three nested levels of 
the OCCURS clause are allowed. 

The ~~QjgQt of an OCCURS clause is the data-name of the entry that 
contains this OCCURS clause. The subject of an OCCURS clause must be 
subscripted or indexed whenever reference is made to it in any statement 
other than SEARCH. 

When subscripted, the ~ubject refers to one occurrence within the 
table. When not subscripted (permissible only in the SEARCH statement), 
the subject represents the entire table element. (A table element 
consists of all occurrences of one level of a table.) A table element 
must be no greater than 32,767 bytes in length. 

Table Handling Feature 273 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
OCCURS Clause 

The OCCURS clause may not be specified in a data description entry 
that: 

1. has a level-01 or level-77 number 

2. describes an item whose size is variable 

(The size of an item is variable if the data description of any 
subordinate item within it contains an OCCURS DEPENDING ON clause--that 
is, an OCCURS clause with the DEPENDING ON option.) 

Except for condition-name entries, a record description entry that 
contains an OCCURS clause must not also contain a VALUE clause. 

Within a given record description, the VALUE clause must not be used 
in a data description entry that is subsequent to a data description 
entry that contains an OCCURS DEPENDING ON clause. 

In the discussion that follows, the term "computational• refers to 
COMPUTATIONAL~liit~~:f§:••~~lliF~J~l~~~~~~~~~~i~ data i terns. 

When a computational elementary item specifies both the OCCURS and 
SYNCHRONIZED clauses, any necessary slack bytes for each occurrence of 
the item are added by the compiler. When a group item specifies the 
OCCURS clause and also contains SYNCHRONIZED computational elementary 
items, any necessary slack bytes for each occurrence of the group are 
added by the compiler, as well as the necessary slack bytes for the 
computational items (see "Slack Bytes" in "Data Division" for a complete 
discussion>. 

In Format 1 1 inteqer-2 represents the exact number of occurrences. 
In this case, integer-2 must be greater than zero. 

Q~!'.~!!QJ.NG Q!LQPTION: In Format 2 )!ig~Li~~~~lf!ij, the DEPENDING ON option 
is used. This indicates that the subject of this entry has a variable 
number of occurrences. This does not mean that the length of the 
subject is variable, but rather that the number of times the subject may 
be repeated is variable, the number of times being controlled by the 
value of g~t~=~~m~=! at object time. 

In Format 2, !~t~~er-1 represents the minimum number of occurrences, 
and !~tg~~=£ represents the maximum number of occurrences. Integer-1 
may be zero or any positive integer. Integer-2 must be greater than 
zero, and also greater than integer-1. Integer-2 must be less than 
32,768. The value of data~~~! must not exceed integer-2. 

274 Part V -- Special Features 

i 
\_./ 

' \ j 
'-" 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

OCCURS Clause 

Data-name-1, the object of the DEPENDING ON option: 

• must be described as a positive integer 

• must not exceed int~~~!::.~ in value 

• may be qualified, when necessary 

• must not be subscripted (that is, must not itself be the subject of, 
or an entry within, a table) 

• must, if it appears in the same record as the table it controls, 
appear before the variable portion of the record 

If the value of data-name-1 is reduced, the contents of data items 
whose occurrence numbers exceed the new value of data-name-1 become 
unpredictable. 

Unused character positions resulting from the DEPENDING ON option 
will not appear on external media. 

The DEPENDING ON option is required only when the last occurrence of 
the subject cannot otherwise be determined. 

Any Data Division entry that contains an OCCURS DEPENDIN~ ON clause, 
or which has subordinate to it an entry that contains an OCCURS 
DEPENDING ON clause, cannot be the object of a REDEFINES clause. 

KEY OPTION: The KEY option is used in conjunction with the INDEXED BY 
option in the execution of a SEARCH ALL statement. The KEY option is 
used to indicate that the repeated data is arranged in ASCENDING or in 
DESCENDING order, according to the values contained in data-name-2, 
~~t~=~~~g=~• etc. 

Q~~~=~~me=£ must be either the name of the entry containing an OCCURS 
clause, or it must be an entry subordinate to the entry containing the 
OCCURS clause. If data-name-2 is the subject of this table entry, it is 
the only key that may be specified for this table. If data-name-2 is 
not the subject of this table entry, all the keys identified by 
data-name-2, data-name-3, etc.; 

• must be subordinate to the subject of the table entry itself 

• must not be subordinate to any other entry that contains an OCCURS 
clause 

• must not themselves contain an OCCURS clause 

When the KEY option is specified, the following rules apply: 

• Keys must be listed in descending order of significance. 

• The total number of keys for a given table element must not exceed 
12. 

• The sum of the lengths of all keys associated with one table element 
must not exceed 256 bytes. 

or 

Table Handling Feature 275 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
OCCURS Clause 

!!:!Qg~~Q-~~-Q~!!ON: The INDEXED BY option is required if the subject of 
this entry (the ~~ta=!@~~ described by the OCCURS clause, or an item 
within this data-name, if it is a group item) is to be referred to by 
indexing. The index-name(s) identified by this clause is not defined 
elsewhere in the program, since its allocation and format are dependent 
on the system, and, not being data, cannot be associated with any data 
hierarchy. 

The number of !_gQ.~!_-n~mes for a Data Division entry must not exceed 
12. 

276 Part V -- Special Features 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

OCCURS Clause 

An index-name must be initialized through a SET statement before it 
is used:-------

Table Handling Feature 276.l 



' l 
\~ 



I \.,_,,, 

OCCURS Clause 

Each index-name is a fullword in length and contains a binary value 
that represents an actual displacement from the beginning of the table 
that corresponds to an occurrence number in the table. The value is 
calculated as the occurrence number minus one, multiplied by the length 
of the entry that is indexed by this index-name. 

For example, if the programmer writes 

A OCCURS 15 TIMES INDEXED BY Z PICTURE IS X(10) 

on the fifth occurrence of A, the binary value contained in z will be: 

z = (5 - 1) * 10 = 40 

Note that, for a table entry of variable length, the value contained in 
the index-name entry will become invalid when the table entry length is 
changed, unless the user issues a new SET statement to correct the value 
contained in the index-name. 

The following example of the setting of values in index-name is 
incorrect: 

DATA DIVISION. 

77 E PICTURE S9(5) COMP SYNC. 
01 

02 A OCCURS 10 INDEXED BY IND-1 ••• 
03 B OCCURS 10 DEPEND~NG ONE INDEXED BY IND-2 ••• 

PROCEDURE DIVISION • 
• 

MOVE 8 TO E 
SET IND-1 TO 3 
SEARCH A••• 

MOVE 10 TO E 
SEARCH A ••• 

(Moving 10 to E changes the length of the table entry A, so that IND-1 
now contains an invalid value.) 

Table Handling Feature 277 



OCCURS Clause 

The following example of the setting of values in index-name is 
correct: 

DATA DIVISION. 

77 
77 
01 

E PICTURE S9{5) COMP SYNC. 
D PICTURE S9(5) COMP SYNC. ... 
02 A OCCURS 10 INDEXED BY IND-1 ••• 

03 B OCCURS 10 DEPENDING ONE INDEXED BY IND-2 ••• 

PROCEDURE DIVISION. 

MOVE 8 TO E 
SET IND-1 TO 3 
SET D TO IND-1 
SEARCH A••• 

• 

MOVE 10 TO E 
SET IND-1 TO D 
SEARCH A ••• 

(Here the user has saved the occurrence number in D, and then later 
reset IND-1 to obtain the corrected value.> 

There are two types of indexing: Direct Indexing and Relative 
Indexing. 

Direct Indexing: If a data-name is used in the procedure text with 
index-names, the data-name itself must be the subject of an INDEXED BY 
option, or be subordinate to a group(s) that is the subject of the 
INDEXED BY option. 

In the following example 

A (INDEX-1, INDEX-2, INDEX-3) 

implies that A belongs to a structure with three levels of OCCURS 
options, each with an INDEXED BY option. 

278 Part V -- Special Features 



( .' 

~i 

USAGE IS INDEX Clause 

Relative, Indexing: The index-name is followed by a space, followed 
by one of the operators + or -, followed by another space, followed by 
an unsigned numeric literal. The numeric literal is considered to be an 
occurrence number, and is converted to an index value before being added 
to, or subtracted from, the corresponding index-name. 

Given the foll.owing example: 

i\ {Z + 1, J + 3, K + 4) 

where: 

table element indexed by z has an entry length of 100 

table element inde:x!ed by J has an entry length of 10 

table element indexed by K has an entry length of 2 

the resulting address will be computed as follows: 

(ADDRESS of A)+ Z + 1100 * 1,+ J + 110 * 31 + K + 1 4 * 2 1 

I I 

USAGE IS INPEX Clause 

conversion of integers 
to index values 

The USAGE IS INDEX clause is used to specify the format of a data 
item stored internally. 

r--------------------------~---------------------------------------1 
I Format I 
~-------------~----------------------------------------------------~ 
I I 
I [USAGE IS] INDEX I 
I I 
L------------------------~--------------------------------------J 

The USAGE IS INDEX clause aLlows the programmer to specify index data 
items. 

An index data item is an elementary item (not necessarily connected 
with any table) that can be used to save index-name values for future 
reference. An index data item must be assigned an index-name value 
(i.e., (occurrence number - 1) * entry length) through the SET 
statement. Such a value corresponds to an occurrence number in a table. 

The USAGE IS INDEX clause may be written at any level. If a group 
item is described with the USAGE IS INDEX clause, it is the elementary 
items within the group that are index data items; the group itself is 
not an index data item, and the group name cannot be used in SEARCH and 
SET statements or in relation conditions. The USAGE clause of an 
elementary item cannot contradict the USAGE clause of a group to which 
the item belongs. 

An index data item can be referred to directly only in a SEARCH or 
SET statement or in a relation condition. An index data item can be 
part of a group which is ref erred to in a MOVE or an input/output 

Table Handling Feature 279 



Table Handling--Relation Condition 

statement. When such operations are executed, however, there is no 
conversion of the contents of the index data item. 

An index data item cannot be a conditional variable. 

The SYNCHRONIZED, JUSTIFIED, PICTURE, 
clauses cannot be used to describe grou 
with the USAGE s IN clause. 

PROCEDURE D.IVISION CONSIDERATIONS FOR TABI.E HANDLING 

The SEARCH and the SET statements may be used to facilitate table 
handling. In addition, there are special rules involving Table Handling 
elements when they are used in relation conditions. 

Relation Conditions 

Comparisons involving index-names and/or index data items conform to 
the following rules: 

1. The comparison of two index-names is actually the comparison of the 
corresponding occurrence numbers. 

2. In the comparison of an index-name with a data item (other than an 
index data item), or in the comparison of an index-name with a 
literal, the occurrence number that corresponds to the value of the 
index-name is compared with the data item or literal. 

3. In the comparison of an index data item with an index-name or 
another index data item, the actual values are compared without 
conversion. 

Any other comparison involving an index data item is illegal. 

Table 25 gives permissible comparisons for index-names and index data 
items. 

280 Part V -- Special Features 

··--.._;· 



i I 
~, 

i 

"...._,, 

SEARCH Statement 

Table 25. Index-narnes and Index Data Items -- Permissible comparisons 
----------------T-----~----T-~--------,-------------T-----~--------1 

I second I I I I I 
I Operandi I I Data-name I Numeric I 
!First I I Index I (numeric I literal I 
I Operand I Index-name I Data Item I integer only) I (integer only) I 
~------~------- -----------+-~------~t-----------~+---------------i 
I Index-name I compare I compare I compare I compare I 
I !occurrence !without !occurrence !occurrence I 
I !number !conversion !number with I number with I 
I I I fdata-name I literal I 
~-----------~---+-----------+~---------+-~----------+---------------i 
!Index Data Item !compare 1coropare !illegal !illegal I 
I !without !without I I I 
I !conversion !conversion I I I 
~----------------+-----------+-----------+-------------i---------------i 
I Data-name I compare I illegal I I 
I (numeric I occurrence I I I 
I integer only) !number I I I 
I !with I I See Table 12 I 
I !data-name I I for I 
~-----------~----+-----------+---~----~i Permissible I 
JNumeric !compare I illegal I Comparisons I 
I literal I occurrence I I I 
I (integer onlyllnumber I I I 
I I with I I I 
I I literal I I I 
L----------------i----•------i------------'-----------------------------J 

SEARCH Statement 

The SEARCH statement is used to search a table for an element that 
satisfies a specified condition, and to adjust the value of the 
associated index-name to the occurrence number corresponding to that 
table element. 

r-----------~-----~------~-----------~------------------------------1 
I Format 1 I 
r----------~----------~------------------------------------------------i 
I I 
1
1 

f index·-name-1 }l 1 1
1 SEARCH identifier-1 [VARYING 

I . identifier-2 I 
I I 
I [AT END imperative-statement-1] I 
1 I 
1

1 

{ imperative-statement.:. 2 } 1

1 WHEN condition-1 
I NEXT SENTENCE , I 

I . . . 3 } II 
1

1 

{' l.Rlperative-statement- I 

[~ condition-2 J ••• 
I NEXT SENTENCE I 
I ~ I 
L-----~----'----------~--------~-------------~--------------~--~----J 

Table Handling Feature 281 



SEARCH Statement 

r--------------------------------------------------------------~------, I Format 2 I 
~-------------------------~-----------~--~-----~--------------------1 
I I I SEARCH ALL identifier-1 {AT END imperative-statement-1] I 
I . I 
I
I { imperative-statement-2} 1

1 WHEN condition-1 
I , NEXT SENTENC.E I 
I I 
l------~~-~---------------~-----------~---~------------------------J 

Identifier-1 must not be subscripted or indexed. Its description 
must contain an OCCURS clause with the INDEXED BY option. \\~~~~t1;l!~~if~~~ 

Identifi,er-1 can be a data item subordinate to a data item that 
contains an OCCURS clause, thus providing for a two or three dimensional 
table. An index-name must be associated with each dimension of the 
table through the INDEXED BY phrase of the OCCURS clause. Execution of 
a SEARCH statement causes modification only of the setting of the 
index-name associated with identifier-1 (and, if present, of 
index-name-1 or identi~ier-2). Therefore, to search an entire two or 
three dimensional table, it is necessary to execute a SEARCH statement 
several times: prior to each execution, SET statements must be executed 
to adjust the associated index-names to their appropriate settings. 

In the AT END and WHEN options, if any of the specified imperative 
statement(s) do not terminate with a GO TO statement, control passes to 
the next sentence after execution of the imperative statement. 

Format 1 considerations -- Identifier-2, when specified, must be 
described as an index data item, or it must be a fixed-point numeric 
elementary item described as an integer. When an occurrence number is 
incremented, identifier-2 is simultaneously incremented by the same 
amount. 

conditio~-1, condition-2, etc., may be any condition, as follows: 

relation condition 
class condition 
conditionrname condition 
sign condition 
switch-status condition 
(condition) 

[NOT] { :D } condition 

(See Conditions section of "Procedure Division.") 

Upon the execution of a SEARCH statement, a serial search takes 
place, starting with the current index setting. 

If, at the start 9f the SEARCH, the value of the index-name 
associated with identifier-1 is not greater than the highest possible 
occurrence number for identifier-1, the following actions take place: 

1. The condition(s) in the WHEN option are evaluated in the order they 
are written. 

282 Part V -- Special Features 



\ : 
~· 

/ 
\ ; ,,__,, 

SEARCH Statement 

2. If none of the conditions are satisfied, the index-name for 
identifier-1 is incremented to reference the next table element, 
and step 1 is repeated.. · 

3. If, upon evaluation, one of the WHEN conditions is satisfied, the 
search terminates inunediately, and the imperative-statement 
associated with that condition is executed. The index-name points 
to the table element that satisfied the condition. 

4. If the end of the table is reached without the WHEN condition being 
satisfied, the search terminates as described in the next 
paragraph. 

If at the start of the search, the value of the index-name associated 
with ident.if.ier-1 is greater than the highest permissible occurrence 
:pumber for identifier-1, the search is terminated immediately, and if 
the AT END option is specified, imperative-statement-1 is executed. If 
this option is omitted, control passes to the next sentence. 

When the VARYING index-na;In~-1 option is specified, one of the 
following applies: 

• If index-naroe--1 is one of the indexes for identifier-1, index-narne-1 
is used for the search. Otherwise, the first (or only) index-name 
for identifier-1 is used. 

• If inde5-narne-1 is an index for another table entry, then when the 
index-name for identif ier-1 is incremented to represent the next 
occurrence of the table, index-name-1 is simultaneously incremented 
to represent the next occurrence of the table it indexes. 

A flowchart of the Format 1 SEARCH operation containing two WHEN 
optiol)s is shown in Chart S. 

Table Handling Feature 283 



SEARCH Statement 

Chart 5. Format 1 SEARCH Operation Containing Two WHEN Options 

****A2*.******** 
* EXECUTION * 
• OF SEARCH • 
• BEGINS • ................. 

---------->! ... 
B2 *· ****+B4********** •• •• * • 

• * *• GT AT END* * IMPERATIVE- * ** 
*· *** •*-------~~~~~------~~-------~->* S~ATEMENT-1 *~-----> •. . "' * * 

*· . * * * 
* •• * ***************** l LT OR= 

... 
C2 *• *****C4********** 

·* *· * * . * *. TRUE WHEN CON'DITION-1 * IMPERATIVE- * +• 
*• CONDITION-1 • •------'-----------''-'----------->* STATEMENT-2 •-----> .. . . . . 

*· . • * * .. .. . ............... . 
rLSE 

... 
D2 *• *****D4*****'+***"' ·* •. • • • * *• TRUE WHEtJ CONDITION-2,~ * IMPERATlV.E- * ** 

*• CONDlTION-2 • •--------------'-='--'--'---------->* STATEMENT-3 ----> •. ·* • 
*· .• * * . . . . . ............... . 
j~ 

*****E2******••++ * INC * 
*I R * • • . { . 
.t: IF )+ 
•••••• *** 

I 
*****F2********** * INCREMENT • 
• INDEX-NAME-1 • 

---• (FOR ANOTHER • 
* TABLE) OR * 
• IDENTIFIER-2 • 
******* ********** 

THESE OPERATIONS ARE INCLUDED ONLY WHEN CALLED FOR 
IN THE STATEMENT, 

•• EACH OF THESE CONTROL TRANSFERS IS TO THE NEXT 
SENTENCE. UNLESS THE IMPERATIVE-STATEMENT ENDS WITH 
A GO TO STATEMENT, . 

284 Part V -- Special Features 



\ . ......_.,,, 

SEARCH Statement 

Format 2 considerations -- The first index-name assigned to 
identifier-1 will be used for the search. 

The description of identifier-1 must contain the KEY option in its 
OCCURS clause. 

condition-1 must consist of one of the following: 

• A relation condition incorporating the EQUALS, EQUAL TO, or equal 
sign ( = ) relation. Either the subject or the object (but not 
both) of the relation condition must consist solely of one of the 
data-names that appear in the KEY clause of identifier-1. 

• A condition-name condition in which the VALUE clause describing the 
condition-name consists of a single literal only. The conditional 
variable associated with the condition-name must be one of the 
data-na.mes that appear in the KEY clause of identifier-1. 

• A compound condition formed from simple conditions of the types 
described above. with AND as the only connective. 

Afl.y data--name that appears in the KEY clause of identifier-1 may be 
tested in condition-1. However, all data-names in the KEY clause 
preceding the one to be tested must also be so tested in condition-1. 
No other tests may be made in condition-1. 

For example, if the following table were defined in the Data 
Division: 

77 VALUE-1 PICTURE 99 • 

• 
02 A OCCURS 10 TIMES ASCENDING KEY IS KEYl, KEY2, KEY3, KEY4 

INDEXED BY I. 
03 KEY1 PICTURE 9. 
03 KEY2 PICTURE 99. 
03 KEY3 PICTURE 9. 
03 KEY4 PICTURE 9. 

88 BLUE VALUE 1. 

in the Procedure Division. valid WHEN phrases could be: 

WHEN KEY1 (I) = 3 AND KEY2 (I) = 10 AND KEY3 (I} 

WHEN KEYl (I) = 3 AND KEY2 (I) = VALUE-1 
AND KEY3 (I) = 5 AND BLUE (I) ••• 

5 ••• 

During execution of a Format 2 SEARCH statement, the setting of 
index-name is varied during the search so that at no time is it less 
than the value that corresponds to the first element of the table, nor 
is it ever greater than the value that corresponds to the last element 
of the table. If condition-1 cannot be satisfied for any setting of the 
index within this permitted range. control is passed to imperative­
statement-1 when the AT END option appears, or to the next sentence when 
this clause does not appear. In either case, the final setting of the 
index is not predictable. If the index indicates an occurrence that 
allows condition-1 to be satisfied, control passes to 
imperative-staternent•2 • 

Table Handling Feature 285 



SET Statement 

The SET statement establishes reference points for table handling 
operations by setting index-'names to values associated with table 
elements. The SET statement must be used when initializing index-name 
values before execution of a SEARCH statement; it may also be used to 
transfer values between index-names and other elementary data items • 

.-----------~--------------~~---------~~-----------------------------, 
I Format 1 I 
~---------------------~---~--~--~------------------~---------------~ 
I I 
I { index-name-1 [index-name- 2 l •.• }' ~ index-narne-3} I 
I SET TO ). identifier- 3 I 
I identifier-1 (identifier-21... ,literal-1 I 
I I 
l-----~----------------------~----------------------------------------J 

r----------~---------~------------------------------------------------1 
I Format 2 I 
~------~-'---~--------~-----------------------------------------------~ 
I I 
1
1 

{' UP BY } {. identifier-4 ·} 1
1 SET index-name-4 [index-name-5] ••• 

I DOW!'! BY/ literal-2 . I 
I I 
L----~~--~~---------------~-----------------------------------------J 

All identifiers must name either index data items or fixed-point 
numeric elementary items described as integers; however, identifier-4 
must not name an index data item. When a literal is used, it must be a 
positive integer. Index-names are related to a given table through the 
INDEXED BY option of the OCCURS clause; when index-names are specified 
in the INDEXED BY option, they are automatically defined. 

All references to index-name-1, identifier-1, and index-narne-·4 apply 
equally to index-name-2, identifier-2, and ind~-name-5, respectively. 

Format 1 considerations -- When the SET statement is executed, one of 
the following actions occurs: 

1. Index..,;name-1 is converted to a value that corresponds to the same 
table element to which either index-name-3, identifier-3, or 
literal-1 corresponds. If identifier-3 is an index data item, or 
if index-name-3 is related to the same table as index-name-1, no 
conversion takes place. 

2. If ideAtifier-1 is an index data item, it is set equal to either 
the contents of index-name-3 or identifier-3, where identifier-3 is 
also an index data item. Literal-1 cannot be used in this case. 

3. If identifier-1 is not an index data item, it is set to an 
occurrence number that corresponds to the value of index-name-3. 
Neither identi£ier-3 nor literal-1 can be used in this case. 

Format 2 Considerations -- When the SET statement is executed, the 
contents of index-n£U11e-4 (and index-name-5, etc., if present) are 
incremented (UP BY) or decremented (DOWN BY) by a value that corresponds 
to the number of occurrences represented by the value of literal-2 or 
identif ier-4. 

286 Part v -- Special Features 



! 
\~ 

Table Handling--Sample Program 

SAMPLE TABLE HANDLING PROGRAM 

The program in Figure 19 illustrates the Table Handling feature, 
including the use of indexing, of the SET statement, and of the SEARCH 
statement (including the VARYING option and the SEARCH ALL format). 

The census bureau uses the program to compare: 

1. the number of births and deaths that occurred in any one of the 50 
states in any one of the past 20 years with 

2. the total number of births and deaths that occurred in the same 
state over the entire 20-year period 

The input file, INCARDS, contains the specific information upon which 
the search of the table is to be conducted. INCARDS is formatted as 
follows: 

STATE-NAME a 4-character alphabetic abbreviation of the state name 

SEX CODE 1 = male; 2 = female 

YEAR CODE a 4-digit field in the range 1950 through 1969 

A typical run might determine the number of females born in New York 
in 1953 as compared with the total number of females born in New York in 
the past 20 years. 

r-----~----~---~---------------~---~--~--------------------------1 
!IDENTIFICATION DIVISION. I 
!PROGRAM-ID. TABLES. I 
}ENVIRONMENT DIVISION. I 
!CONFIGURATION SECTION. I 
1soURcE~coMPUTER. IBM-360. I 
!OBJECT-COMPUTER. IBM-360. I 
!SPECIAL-NAMES. CONSOLE IS TYPEWRITER. [ 
!INPUT-OUTPUT SECTION. I 
!FILE-CONTROL. I 
I SELECT INFILE ASSIGN TO SYS007-UT-2400-S-INTAPE. I 
I SELECT OUTFILE ASSIGN TO SYS012-UR-1403-S-PRTOUT. I 
I SELECT INCARDS ASSIGN TO SYS013-UR-2540R-S-ICARDS. [ 
!DATA DIVISION. I 
!FILE SECTION. I 
IFD INFILE LABEL RECORDS ARE OMITTED. I 
101 TABLE PIC X(28200). I 
101 TABLE-2 PIC X{1800). I 
IFD OUTFILE LABEL RECORDS ARE OMITTED. I 
101 PRTLINE PIC X(133). I 
IFD INCARDS LABEL RECORDS ARE OMITTED. l 
101 CARDS. I 
I 02 STATE-NAME PIC X(4). I 
I 02 SEXCODE PIC 9. I 
I 02 YEARCODE PIC 9(4). I 
I 02 FILLER PIC X(71). I 
!WORKING-STORAGE SECTION. I 
101 PRTAREA-20. I 
I 02 FILLER PIC X VALUE SPACES. I 
I 02 YEARS-20 PIC 9(4}. I 
I 02 FILLER PIC X(3) VALUE SPACES. I 
I 02 BIRTHS-20 PIC 9(7). I 
I 02 FILLER PIC X(3) VALUE SPACES. I 
I 02 DEATHS-20 PIC 9(7). I 
I 02 FILLER PIC X(108) VALUE SPACES. I 
L----------------------------------------------------------------------J 
Figure 19. sample Table Handling Program (Part 1 of 2) 

Table Handling Feature 287 



Table Handling~-sample Program 

r----------------------------------------------------------------------1 
01 PRTAREA. 

02 FILLER PIC X. 
02 YEAR PIC 9(4). 
02 FILLER PIC X(3) VALUE SPACES. 
02 BIRTHS PIC 9(5). 
02 FILLER PIC X(3) VALUE SPACES. 
02 DEATHS PIC 9(5). 
02 FILLER PIC X(112) VALUE SPACES. 

01 CENSUS-STATISTICS-TABLE. 
02 STATE-TABLE OCCURS 50 TIMES INDEXED BY ST. 

03 STATE-ABBREV PIC X(4). 
03 SEX OCCURS 2 TIMES INDEXED BY SE. 

04 STATISTICS OCCURS 20 TIMES ASCENDING KEY IS YEAR 
INDEXED BY YR. 
05 YEAR PIC 9(4). 
05 BIRTHS PIC 9(5). 
05 DEATHS · PIC 9(5). 

01 STATISTICS-LAST-20-YRS. 
02 SEX-20 OCCURS 2 TIMES INDEXED BY SE-20. 

03 STATE-20 OCCURS 50 TIMES INDEXED BY ST-20. 
04 YEARS-20 PIC 9(4). 
04 BIRTHS-20 PIC 9(7). 
04 DEATHS-20 PIC 9(7). 

PROCEDURE DIVISION. 
OPEN-FILES. 

OPEN INPUT INFILE INCARDS OUTPUT OUTFILE. 
READ-TABLE. 

READ INFILE INTO CENSUS-STATISTICS-TABLE 
AT END GO TO READ-CARDS. 

READ INFILE INTO STATISTICS-LAST-20-YRS 
AT END GO TO READ-CARDS. 

READ-CARDS. 
READ INCARDS 

AT END GO TO EOJ. 
I DETERMINE-ST. 
I SET ST ST-20 TO 1. 
I SEARCH STATE-TABLE VARYING ST-20 AT END GO TO ERROR-MSG-1 
I WHEN STATE-NAME = STATE-ABBREV (ST) NEXT SENTENCE. 
I DETERMINE-SE. 
I SET SE SE-20 TO SEXCODE. 
I DETERMINE-YR. 
I SEARCH ALL STATISTICS AT END GO TO ERROR-MSG-2 
I WHEN YEAR OF STATISTICS (ST, SE, YR) = YEARCODE 
I GO TO WRITE-RECORD. 
IERROR-MSG-1. 
I DISPLAY "INCORRECT STATE " STATE-NAME UPON TYPEWRITER. 
I GO TO READ-CARDS. 
IERROR-MSG-2. 
I DISPLAY "INCORRECT YEAR " YEARCODE UPON TYPEWRITER. 
I GO TO READ-CARDS. 
I WRITE-RECORD. 
I MOVE CORRESPONDING STATISTICS (ST, SE, YR) TO PRTAREA. 
I WRITE PRTLINE FROM PRTAREA AFTER ADVANCING 3. 
I MOVE CORRESPONDING STATE-20 (SE-20 1 ST-20) TO PRTAREA-20. 
I WRITE PRTLINE FROM PRTAREA-20 AFTER ADVANCING 1. 
I GO TO READ-CARDS. 
IEOJ. 
I CLOSE INFILE INCARDS OUTFILE. 
I STOP RUN. I 
L----------------------------------------------------------'-------J 
Figure 19. Sample Program for the Table Handling Feature (Part 2 of 2) 

288 Part V -- Special Features 



i 
''-/ 

Segmentation Feature--Organization 

The segmentation feature allows the problem programmer to specify 
object program overlay requirements. The segmentation feature permits 
segmentation of procedures only. The Procedure Division and Environment 
Division are considered in determining segmentation requirements for an 
object program. 

ORGANIZATION 

Although it is not mandatory, the Procedure Division for a source 
program is usually written as several consecutive sections, each of 
which is composed of a series of closely related operations that are 
designed to perform collectively a particular function. However, when 
segmentation is used, the entire Procedure Division must be in sections. 
In addition, each section must be classified as belonging either to the 
fixed portion or to one of the independent segments of the object 
program. Segmentation in no way affects the need for qualification of 
procedure-names to ensure uniqueness. 

FIXED PORTION 

The fixed portion is defined as that part of the object program that 
is logically treated as if it were always in computer storage. This 
portion of the program is composed of two types of computer storage seg­
ments, permanent segments and overlayable fixed segments. 

A permanent segment is a segment in the fixed portion that cannot be 
overlaid by any other part of the program. 

An overlayable fixed segment is a segment in the fixed portion which, 
although logically treated as if it were always in storage, can be 
overlaid (if necessary) by another segment to optimize storage utiliza­
tion. However, such a segment, if called for by the program, is always 
made available in the state it was in when it was last used. 

Depending on the availability of storage, the number of permanent 
segments in the fixed portion can be varied through the use of a special 
facility called SEGMENT-LIMIT, which is discussed in "Structure of 
Program Segments." 

INDEPENDENT SEGMENTS 

An indep§ndent segment is defined as that part of the object program 
which can overlay, and be overlaid by, either an overlayable fixed seg­
ment or another independent segment. An independent segment is always 
considered to be in its initial state each time it is made available to 
the program. 

Segmentation Feature 289 



Segmentation control and Structure 

SEGMENT CLASSIFICATION 

Sections that are to be segmented are classified by means of a system 
of priority numbers. The following criteria should be used: 

• Logical requirements: Sections that must be available for 
reference at all times, or which are referred to very frequently, 
are normally classified as belonging to one of the permanent 
segments: sections that are less frequently used are normally 
classified as belonging either to one of the overlayable fixed 
segments or to one of the independent segments, depending on logic 
requirements. 

• Frequency of use: Generally, the more frequently a section is 
referred to, the lower its priority number should be; the less 
frequently it is referred to, the higher its priority number should 
be. 

• Relationship to other sections: Sections that frequently 
communicate with one another should be given equal priority 
nwnbers. All sections with the same priority number constitute a 
single program segment. 

SEGMENTATION CONTROL 

The logical sequence of the program is the same as the physical 
sequence except for specific transfers of control. A reordering of the 
object module will be necessary if a given segment has its sections 
scattered throughout the source program. However, the compiler will 
provide transfers to maintain the logic flow of the source program. The 
compiler will also ins~rt instructions necessary to load and/or initial­
ize a segment when necessary. control may be transferred within a 
source program to any paragraph in a section; that is, it is not 
mandatory to transfer control to the beginning of a section. 

STRUCTURE OF PROGRAM SEGMENTS 

PRIORITY NUMBERS 

section classification is accomplished by means of a system of 
priority numbers. The priority number is included in the section 
header. 

r--------------------------------------------------------------------1 
I Format I 
~------------------------------------------------------------------~ 
I I 
I section-name SECTION [priority-number]. I 
I I 
l----------------------------------------------------------------------J 

All sections that have the same priority-number constitute a program 
segment with that priority. 

The priority-number must be an integer ranging in value from 0 
through 99. 

290 Part V -- Special Features 



\ . 
'-._/ 

SEGMENT-L.I.MI.T Cl.ause 

Segments with priority-numbers 0 through 49 belong to the fixed 
portion of the object program. 

Segments with EEiority=~UrnQ~£~ 50 through 99 are independent 
segments. 

Sections in the declaratives portion of the Procedure Division must 
not contain QE!or!tJ!-nu~be~§ in their section headers. They are treated 
as fixed segments with a priority-number of zero. 

If the P!:!or_!:ty=m!mbg!: is omitted from the section header, the 
priority is assumed to be zero. 

When a procedure-name in an independent segment is referred to by a 
PERFORM statement contained in a segment with a different priority 
number, the segment referred to is made available in its initial state 
for each execution of the PERFORM statement. 

SEGMENT LIMIT 

Ideally, all program segments having priority-numbers ranging from O 
through 49 are treated as permanent segments. However, when insuffi­
cient storage is available to contain all permanent segments plus the 
largest overlayable segment, it becomes necessary to decrease the number 
of permanent segments. The SEGMENT-LIMIT feature provides the user with 
a means by which he can reduce the number of permanent segments in his 
program, while these permanent segments still retain the logical 
properties of fixed portion segments (priority numbers O through 491, 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I [SEGMENT-LIMIT IS priority-number] I 
I I 
L----------------------------------------------------------------------J 

The SEGMENT-LIMIT clause is coded in the OBJECT-COMPUTER paragraph. 

Priori!Y=numb~ must be an integer that ranges in value from 1 
through 49. 

When the SEGMENT-LIMIT clause is specified, only those segments 
having P£iority-number~ from 0 up to, but not including, the priority 
number designated as the segment limit are considered as permanent 
segments of the object program. 

Those segments having p~iQ~ity_g~!!!Q~~ from the segment limit through 
49 are considered as overlayable fixed segments. 

When the SEGMENT-LIMIT clause is omitted, all segments having 
g~!ority_n~~Q~~ from o through 49 are considered to be permanent 
segments of the object program. 

segmentation Feature 291 



Order No. GC28-639q-2, Page Revised 5/15/72 by TNL GN2B-0489 

Segmentation Restrictions 

1. A GO TO statement in a section whose priority number is 50 or 
higher must not be referred to by an ALTER statement in a section 
with a different priority number. 

2. A GO TO statement in a section whose priority number. is lower than 
50 may be ref erred to by an ALTER statement in any section, even if 
the GO TO statement to which the ALTER refers is in a segment of 
the program that has not yet been called for execution. 

1. A PERFORM statement that appears in a section whose priority number 
is lower than the segment limit can have within its range only the 
following: 

a. Sections with priority numbers lower than 50. 

b. Sections wholly contained in a single segment whose priority 
number is higher than q9. 

2. A PERFORM statement that appears in a.section whose priority number 
is equal to or higher than the segment limit can have within its 
range only the following: 

a. sections with the same priority number as the section 
containing the PERFORM statement. 

b. sections with priority numbers that are lower than the segment 
limit. 

When a procedure-name in a permanent segment is ref erred to by a 
PERFORM statement in an independent segment, the independent segment is 
reinitialized upon exit from the performed paragraphs. 

292 Part V -- Special Features 

' ) 
\._v 



i I "-/ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

COPY Statement 

SOURCE PROGRAM LIBRARY F~£f~ITY 

Prewritten source program entries can be included in a source program 
at compile time. Thus, an installation can use standard file 
descriptions, record descriptions, or procedures, without recoding them. 
These entries and procedures are contained in user-created libraries; 
they are included in a source program by means of a COPY statement. 

COPY Statement 

The COPY statement permits the user to include prewritten Data 
Division entries, Environment Division clauses, and Procedure Division 
procedures in his source program. 

r----------------------------------------------------------------------1 
I General Format I 
~----------------------------------------------------------------------~ 
IQQi!2~_± (within the configuration Section)1 I 
I I 
I ~QURC~=~QMPUTEg. COPY statement. I 
I OBJECT-COMPUTER. COPY statement. I 
I SPECIAL-NAMES. COPY statement. I 
~------------------------~---------------------------------------------~ 
IQEt!2~_£ <within the Input-Output Section>: I 
I I 
I FILE-CONTROL. COPY statement. I 
I I-0-CONTROL. COPY statement. I 
~~---------------------------------------------------------------------~ 
I I 
I I 
I I 
f-----------~---------------~-----------~~-----------------------------~ 
1Qet!2~-~ <within the File section>: I 
I I 
I ~Q file-name COPY statement. I 
I SD sort-file-name COPY statement. I 
~----------------------------------------------------------------------~ 
IQEi!2~-~ (within the Report Section): I 
I I 

t __ 11i~~~ii~iiii11.Jiii~ii~1~~~!ff'~~~~jJ~~~,~~~l ________ J 
f Oetion 6 <within a File or sort description entry, or within the 
,- ----- working-storage section ~~Jltiii~'ll~~ft!~-l~tli~IO~m> i 

I I 
I 01 data-name COPY statement. I 
~-~--------------------------------------------------------------------~ 
IQEt!2~_2 (with a Report Group): I 
I I 
I 01 [data-name] COPY statement. I 
~--------------------------------------------------------------~-------~ 
I I 
I I 
I , I 
~~-----~------------------~----------~----------~--~-~~--------~~----~~~ 
1oetion 9 <within the Procedure Division): I - ------ I 
II I section-name SECTION [priority-number]. COPY statement. 
I paragraph-narn€:- COPY statement. I 
L----------------------------------------------------------------------J 

Source Program Library Facility 293 



COPY Statement 

r--------------------------------------------------------------------~, 
I Format I 
~----------------------------------------------------------------------~ 
I I 
I £QE! library-name I 
I I 
I ( word-2 f I 
I [8~E~~£!~~ word-1 BY J literal-1 l I 
I -- t identifier-1' I 
I I 
I { word-4 } I 
I Cword-3 BY literal-2 1 ••• J. I 
I . identifier-2 I l ______________________________________________________________________ J 

statement or clause ma ear in the same entr as the COPY 

Wh.en the library text is copied from the library, compilation is the 
same as though the text were actually part of the source program. 

The COPY statement processing is terminated by the end of the library 
text. 

The text contained in the library must not contain any COPY 
statements. 

~ibrary=rr~me is the name of the library text contained in the user's 
library. Library-name must follow the rules of formation for 
program-name. The first eight characters are used as the identifying 
name. 

The words preceding COPY conform to margin restrictions for COBOL 
programs. on a given source program card containing the completion of a 
COPY statement, there must be no information beyond the statement 
terminating period. The material introduced into the source program by 
the COPY statement will follow the COPY statement on the listing 

on the next line. · 

If the REPLACING option is used, each word specified in the format is 
replaced by the stipulated ~!:~• identifier, or literal which is 
associated with it in the format. 

Word-1, word-2, etc., may be a data-name, procedure-name, 
condition-name~-iiinemonic-name, or file-name. 

Use of the REPLACING option does not alter the material as it appears 
in the library. 

~hen options 1, 2, 3, 4, S, or 9 are written, the words COPY 
library-name are replaced by the information identified by library-name. 
This information comprises the sentences or clauses needed to complete 
the paragraph, sentence, or entry containing the COPY statement. 

294 Part V -- Special Features 



l 
,~, 

COPY Statement 

When options 6, 7, or 8 are written, the entire entry is replaced by 
the information identified by library-name, except that data-name {if 
specified) replaces the corresponding data-name from the library. 

For example, if the library entry PAYLIB consists of the following 
Data Division record: 

01 A. 
02 B 
02 c 
02 D 

PIC $99. 
PIC S9(5)V99. 
PIC 89999 OCCURS 0 TO 52 TIMES 

DEPENDING ON B OF A. 

the programmer can use the COPY statement in the Data Division of his 
program as follows: 

01 PAYROLL COPY PAYLIB. 

In this program, the library entry is then copied as follows: 

01 PAYROLL. 
02 B 
02 c 
02 D 

PIC 899. 
PIC S9 ( 5) V99. 
PIC 89999 OCCURS 0 TO 52 TIMES 

DEPENDING ON B OF A. 

Note that the data-name A has not been changed in the DEPENDING ON 
option. 

To change some Cor all) of the names within the library entry to 
names be wishes to reference within his program, the programmer can use 
the REPLACING option: 

01 PAYROLL COPY PAYLIB REPLACING A BY PAYROLL 
B BY PAY-CODE C BY GROSSPAY. 

In this program, the library entry is copied as follows: 

01 PAYROLL. 
02 PAY-CODE 
02 GROSS-PAY 
02 D 

PIC 
PIC 
PIC 

DEPENDING ON 

S99. 
S(5)V99. 
89999 OCCURS 0 TO 52 
PAY-CODE OF PAYROLL. 

TIMES 

The changes shown are made only for this program. The entry as it 
appears in the library remains unchanged. 

source Program Library Facility 295 



BASIS/INSERT/DELETE Cards 

I 

·~ 

296 Part V -- Special Features 



( . 
~ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

INSERT/DELETE Statements 

source Program Library Facility 297 



TRACE/EXHIBIT Statements 

The following statements are providAd for program debugging. They 
may appear anywhere in an IBM American National Standard COBOL program 
or in a compile-time debugging packet. 

For the TRACE and EXHIBIT statements, the output is written on the 
system list device (SYSLST). 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------i 
I I 
I I B~~Q! f I 
I\ l TR~£g I 
I ~ B~§~! J I 
I I 
l----------------------------------------------------------------------J 

After a READY TRACE statement is executed, each time execution of a 
paragraph or section begins, its compiler-generated card number is 
displayed. 

The execution of a RESET TRACE statement terminates the functions of 
a previous READY TRACE statement. 

r----------------------------------------------------------------------1 
I Format I 
~----------------------------------------------------------------------i 
I I 
I { NAMED } { identif ier-1 } I 
I EXHIBIT CHANGED NAMED I 
I ------- £HAN§~Q ~-~ / .nonnumeric-literal-1 I 
I I 
I [ identifier-2 J I 
I • • • I I nonnumeric-literal-2 I 
I I 
l----------------------------------------------------------------------J 

The execution of an EXHIBIT statement causes a formatted display of 
the !g~!!t.!f!~rs (or ~QDnUID.~E!£_~!teE~~2) listed in the statement. 

!g~g~!f!~E~ listed in the statement cannot be any special register 
except TALLY. 

Nonnumeric-literals listed in the statement are followed by a space 
when displayed. 

298 Part v -- special Features 

· .• .__,,,,,, 



EXHIBIT Statement 

The display of the operands is continued as described for the DISPLAY 
statement. A maximum logical record size of 120 characters is assumed. 

EXHIBIT NAMED: Each time an EXHIBIT NAMED statement is executed, there 
is-a formatted display of each idegtifie~ listed and its value. Since 
both the identifying name and the value of the identifier are displayed, 
a fixed columnar format is unnecessary. If the list of operands 
includes ~2.!!!!!!~eric-!iterals, they are displayed as remarks each time 
the statement is executed. 

The format of the output for each identifier listed in the EXHIBIT 
NAMED statement is: 

original identifying name, including qualifiers if written (no more 
than 120 characters in length) 

space 
equal sign 
space 
value of identifier <no more than 256 bytes in length) 
space 

EXHIBIT CHANGED NAMED: Each time an EXHIBIT CHANGED NAMED statement is 
executea;-there-rs-a-display of each iQ~ntifi~r listed and its value 
only if the value has changed since the previous time the statement was 
executed. The initial time such a statement is executed, all values are 
considered changed and are displayed. If the list of operands includes 
nQnn~@~ri£~!it~~~12• they are displayed as remarks each time the 
statement is executed. 

since both the identifying name and the value of each identifier is 
displayed, a fixed columnar format is unnecessary. If some of the 
idgntifie~~ have not changed in value, no space is reserved for them. 
If none of the identifiers have changed in value, no blank line(s) will 
be printed. 

The format of the output for each identifier listed in the EXHIBIT 
CHANGED NAMED statement is: 

original identifying name, including qualifiers if written <no more 
than 120 characters in length) 

space 
equal sign 
space 
value of identifier (no more than 256 bytes in length) 
space 

EXHIBIT CHANGED: Each time an EXHIBIT CHANGED statement is executed, 
there-is-a-display of the current value of each !~~Q!!fi~~ listed only 
if the value has changed since the previous time the statement was 
executed. The initial time the statement is executed, all values are 
considered changed and are displayed. If the list of operands includes 
gQn~~~~ri£~!!t~ra!~• they are printed as remarks each time the statement 
is executed. 

The format of the output for a specific EXHIBIT CHANGED statement 
presents each operand in a fixed columnar position. Since the operands 
are displayed in the order they are listed in the statement, the 
programmer can easily distinguish each operand. The following 
considerations apply: 

• If there are two or more i~~ntifi~ as operands, and some, but not 
all, are changed from the previous execution of the statement, only 
the changed values are displayed. The positions reserved for a 
given operand are blank when the value of the operand has not 
changed. 

Debugging Language 299 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
ON (Count-conditional) Statement 

• If none of the operands have changed in value from the previous 
execution of the statement, a blank line(s) will be printed. 

• Variable length identifiers are not permitted as operands. 

• The storage reserved for any operand cannot exceed 256 bytes. 

Not~: The combined total length of all operands for all EXHIBIT CHANGED 
NAMED plus all EXHIBIT CHANGED statements in one program cannot exceed 
32,767 bytes. 

If two distinct EXHIBIT CHl\.NGED NAMED or two EXHIBIT CHANGED 
statements appear in one program, each specifying the same identifiers, 
the changes in value of those identifiers are associated with each of 
the two separate statements. Depending on the path of program flow, the 
values of the identifier saved for comparison may differ for each of the 
two statements. 

The ON statement allows the programmer to specify when the statements 
it contains are to be executed. 

r----------------------------------------------------------------------1 
I Format 1 I 
1----------------------------------------------------------------------~ 
I I 
I Q~ integer-1 CANQ ~~R! integer-21 CUN~~~ integer-31 I 
I I 
I { imperative-statement ••• } { ELSE } { statement • • • } I 
I ~~!~ SENTENCE OTHERWISE NEXT SENTENCE I 
I I 
L--------------------------~-------------------------------------------J 

,----------------------------------------------------------------------, 
I Format 2 (Version 3) I 
~----------------------------------------------------------------------~ 

{ integer-1 } 

identifier-1 [~ND gYER! 

{ 
integer-3 } 

[UNTIL ] 
identifier-3 

{ 
integer-2 '} 

identifier-2 1 

{ 
imperative-statement} 

~ SENTENCE 

· { ELSE } { statement • • • } 
OTHERWISE NEX! SENTENCE . 

L----------------------------------------------------------------------J 

All integers specified in the ON statement must be positive and no 
greater than 16,777,215. 

The phrase ELSE/OTHERWISE NEXT SENTENCE may be omitted if it 
immediately precedes the period for the sentence. 

300 Part V -- Special Features 



i 
i ' 
'-...,_/ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

ON {Count-conditional) Statement 

All identifiers must be fixed-point numeric items described as 
integers. Their values must be positive and no greater than 
16,777,215. 

At object time each identifier must be initialized to a positive 
value before the first execution of the ON statement. Between 
executions of the ON statement, the value.s contained in the 
identifiers may be modified. The programmer's manipulation of these 
values in no way affects the compiler-generated counters associated 
with the ON statement. 

In the following discussion, each reference to inteqer-! applies 
equally to identifier-1. Similarly, each reference to !_nt~q~r-~ 
applies to identifier-2, and each reference to inteqer-3 applies to 
! deg!::_!,f!~:r:..:!. 

In all versions of the compiler, the ON statement is evaluated and 
executed as follows: 

• Each ON statement has compiler-generated counters and save areas 
associated with it. The counters are initialized in the object 
program. Each time the path of program flow reaches the ON 
statement, the counters are incremented, and the £~=£on~i!::.!Q~ 
Unteger-1 AND EVERY integer-2 UNTIL integer-3) is tested. 

• If the count-condition is satisfied, the imperative-statement <or 
NEXT SENTENCE) preceding ELSE/OTHERWISE is executed. (Note that an 
imperative-statement may consist of a series of imperative 
statements.) 

• If the co~!!!::.=QQ.!!Q.itiog is not satisfied, the statement(s) (or NEXT 
SENTENCE) following ELSE/OTffERWISE is execu~ed. If the 
ELSE/OTHERWISE option does not appear, the next sentence is 
executed. 

The count-condition is evaluated as follows: 

• If only !,!!_teg~!::..! has been specified, then the £_Qunt--co!!Q.it!.Q!! is 
satisfied only once: when the path of program flow has reached the 
ON statement integer-1 times -- that is, when the value in the 
counter equals integer-1. 

• When only in!::_~g~! and :!:,g:\:;~er-3 are specified, then the value of 
integer-2 is assumed to be one, and the count-condition is satisfied 
when the value in the counter is any value within the range 
!.!!t~9~E:..1 through !,gteqer=~· 

• If only in!::_~g~r_-1 and !:_nt~q~:_~ are specified, then the 
count-condition is satisfied each time the value in the counter is 
equal-to-ini~[~E=! + <!!!!::.~~~£=~ * K) 1 where K is any positive 
integer or zero. No upper limit for the execution of the ON 
statement is assumed. 

• When all three !.!!!::.~~!:.~ are specified, then the SQ!!Ilt-CQ!!f!!!::.!.Qg is 
satisfied as in the last preceding case, except that an upper limit 
beyond which the count-condition cannot be satisfied is specified. 
The upper limit is int~g~!:.::2.• 

Debugging Language 300.1 



\ 
i ) \....._,, 

\.._.) 



i . 
\-._.,,/ 

r ; 

\.._./' 

DEBUG Card 

COMPILE-TIME DEBUGGING PACKET 

Debugging statements for a given paragraph or section in a program 
may be grouped together into a debugging packet. These statements will 
be compiled with the source language program and will be executed at 
object time. Each packet ref~s to a specified paragraph-name or 
section-name in the Procedure Division. compile-time debugging packets 
are grouped together and are placed immediately following the source 
program. No reference to procedure-names in debug packets may be made 
in the body of the program. 

DEBUG Cqrd 

Each compile time debug packet is headed by the control card DEBUG • 

.------~--------------------~-----------------------------------------, 
I Format I 
~----~-----~----~-----~--~~--~-~-------------------------------'! 
I I 
I DEBUG location I 
I I 
l-----~---~---------------~--~·----------------------------------------J 

The word DEBUG followed by locati-on may appear anywhere within 
columns 1 through 72 on the card. There must be no other text on the 
card. 

The location is the section-name or paragraph-name (qualified, if 
necessary) indicating the point in the program at which the packet is to 
be executed. Effectively, the statements in the packet are executed as 
though they were physically placed in the source program following the 
section-name or paragraph-name, but preceding the text associated with 
the procedure. The same location must not be used in more than one 
DEBUG control card. Location cannot be a paragraph-name within any 
DEBUG packet. 

A debug packet may consist of any procedural statements conf orroing to 
the requirements of COBOL. The following considerations apply: 

• A PERFORM or ALTER statement in a debug packet may refer to a 
procedure-name in any debug packet or in the main body of the 
Procedure Division. 

• A GO TO statement in a debug packet may not refer to a 
procedure-name in another debug packet, .but it may refer to a 
procedure-name in the main body of the Procedure Division. 

Debugging Language 301 



EJECT/SKIP Statements 

There are four statements that allow the programmer 
spacing of the source program listings produced by the 
These statements are: EJECT, SKIP1, SKIP2, and SKIP3. 
written anywhere in the source program. 

EJECT Stat§!lent 

to control the 
COBOL compiler. 

They may be 

The EJECT statement instructs the compiler to print the next source 
statement at the top of the next page. 

r-----... -------------------------------------------------------------, 
I Format I 
~---------------~------------------------------------------------~ 
I I 
I 1 Area B I 
I --------------------- I I EJECT I 
I I 
l-----------'-----------------------------------------------------------J 

The word EJECT may be written anywhere within Area B and must be the 
only statement on the card. There roust be !!2 punctuation. 

SKIPl, SKIP2c and SKIP3 Statement.s 

These statements instruct the compiler to skip 1, 2, or 3 lines 
before printing the next source statement. 

r--------------------~-------------~---------•------------------------1 

I Format I 
i-----------------------------'--'-----------~----------------------------~ 
I I 
I 1 Area B I 
I --------------~------ I 

I { ~~1.I~~ } I 
I SKIP3 I 
I I 
l---------------------------------------------------------------------J 

SKIP1 tells the compiler to skip 1 line {double spacing). 

SKIP2 tells the compiler to skip 2 lines (triple spacing). 

SKIP3 tells the compiler to skip 3 lines (quadruple spacing}. 

SKIPl, SKIP2, or SKIP3 may be written anywhere within Area B and must 
be the only statement on the card. There must be no punctuation. 

302 Part v -- Special Features 

\ ) 
~ 



\....._ . ./ 

Sterling conventions 

COBOL provides facilities for handling sterling currency items by 
means of an extension of the PICTURE clause. Additional options and 
formats, necessitated by the nondecimal nature of sterling 
and by the conventions by which sterling amounts are represented in 
punched cards, are also available. 

COBOL provides a means to express sterling currency in pounds, 
shillings, and penoe, in that order. There ar~ 20 shillings in a pound, 
and 12 pence in a shilling. Although sterling amounts are sometimes 
expressed in shillings and pence only (in which case the number of 
shillings may exceed 99>, within machine systems, shillings will always 
be expressed as a two-digit field. Pence, when in the form of integers, 
likewise will be expressed as a two-digit field. However, provision 
must be made for pence to be expressed as decimal fractions as well, as 
in the form 17s.10.237d. 

The IBM method for representing sterling amounts in punched cards 
uses two columns for shillings and one for pence. Tenpence ClOd.) is 
represented by an •11• punch and elevenpence (lld.) by a '12' punch. 
The British Standards Institution (B.S.I.} representation uses single 
columns for both shillings and pence. The B.S.I. representation for 
shillings consists of a 1 121 punch for ten shillings and the alphabetic 
punches A through I for 11 through 19 shillings, respectively. 

Note: The B.s.I. representation for shillings precludes the use of more 
than 19 shillings in a sterling expression; therefore, 22/10 (that is, 
22 shillings 10 pence) must be expanded by the user to 1/2/10. 
Similarly, the guinea -- 21 shillings -- or any multiple thereof, must 
be expanded to pounds and shillings. 

The indicated representations may be used separately or in 
combination, resulting in four possible conventions. 

1. IBM shillings and IBM pence 

2. IBM shillings and B.S.I. pence 

3. B.S.I. shillings and IBM pence 

4. B.S.I. shillings and B.s.r. pence 

Any of these conventions may be associated with any number of digits 
(or none) in the pound field and any number of decimal places (or none) 
in the pence field. In addition, sign representation may be present as 
an overpunch in one of several allowable positions in the amount, or may 
be separately entered from another field. 

Two formats are provided in the PICTURE clause for the representation 
of sterling amounts: sterling report format <used for editing) and 
sterling nonreport format (used for arithmetic). 

Sterling Currency and International Considerations 303 



Sterling Nonreport Format 

In the formats that follow, !! stands for a positive integer other 
than zero. This integer enclosed in parentheses and following the 
symbols 9, B, etc., indicates the number of consecutive occurrences of 
the preceding symbol. For example, 9(6) and 999999 are equivalent. The 
PICTURE characters used to describe sterling items are: 

6789CD*,/BZV. £ s d CR DB + -

(The character £ is the sterling equivalent of the character $.> 

Notec The lower-case letters •s• and "d" are represented by an 11-0-2 
punch and a 12-0-4 punch, respectively. 

STERLING NONREPORT 

The format of the PICTURE clause for a sterling nonreport data item is: 

r--------------~-----~---------------~---------------------------~-1 I Fo:r;:mat I 
~----~~--~---~----------~-------~-------------------------------i 
I I I{ PICTURE} { 6 [6] } I I .IS 9C(n)JDC8J8D · [(V]9[(n)]] [USAGE IS] DI§_PLAY-ST I 
I PIC 7[7] I 
I I 
l------~---------------------~·----------------------------------------4 

Note: For a sterling nonreport picture to be valid, it must contain a 
pound fi~ld, a shilling field, and a pence field. 

The representation for pounds is 9[(n)]D where: 

1. The character 9 indicates that a character position will always 
contain a numeric character, and may extend to !! positions. 

2. The character D indicates the position of an assumed pound 
separator. 

The representation for shillings is [8l8D where: 

1. The characters [818 indicate the position of the shilling field and 
the convention by which shillings are represented in punched cards. 
88 indicates IBM shilling representation occupying a two-column 
field. 8 indicates B.S.I. single-column shilling representation. 

2. The character D indicates the position of an assumed shilling 
separator. 

The representation for pence is: 

{ 
6 [ 6 ] } [ (V] 9 [( n) ]] 

7[7] 

1. The character 6 indicates IBM single-column pence representation 
wherein 10d. is represented by an 1 11' punch and 11d. by a '12' 
punch. The characters 66 indicate two-column representation of 
pence, usually from some external medium other than punched cards. 

304 Part V -- Special Features 

\ 

,._,,,! 



( j 

"-"! 

Order No. GC28-6394-,2, Page Revised 4/15/71 by TNL GN-0436 

Sterling Sign Representation 

2. The character 7 indicates B.S.I. single-column pence representation 
wherein lOd. is represented by a '12' punch and lld. by an 1 11' 
punch. The characters 77 indicate two-column representation of 
pence. consequently, 66 and 77 serve the same purpose and are 
interchangeable. 

3. The character v indicates the position of an assumed decimal point 
in the pence field. Its properties and use are identical with that 
of v in dollar amounts. Decimal positions in the pence field may 
extend to g positions. 

4. The character 9 indicates that a character position will always 
contain a numeric character, and may extend to g positions. 

~~~~Q!~: Assume that a sterling currency data item used in arithmetic 
expressions is to be represented in IBM shillings and IBM pence, and
that this data item will never exceed 99/19s/1ld. Its picture should
be:

PICTURE 9(2)D88D6 DISPLAY-ST.

The VALUE clause must not be specified for sterling nonreport items.

Sterling Sign Representa~!on

Signs for sterling amounts may be entered as overpunches in one of
several allowable positions of the amount. A sign is indicated by an
embedded S in the nonreport PICTURE immediately to the left of the
position containing the overpunch. Allowable overpunch positions are
the high-order and low-order positions of the pound field, the high­
order shilling digit in two-column shilling representation, the
low-order pence digit in two-column pence representation, or the least
significant decimal position of pence.

The following are examples of sterling currency nonreport data items
showing sign representation in each of the allowable positions:

PICTURE S99D88D6V9(3) DISPLAY-ST

PICTURE 9S9D88D6V9(3) DISPLAY-ST

PICTURE 9(2)DS88D6V9(3) DISPLAY-ST

PICTURE 9(2)D88D6S6V9(3) ·DISPLAY-ST

PICTURE 9(2)D88D6V99S9 DISPLAY-ST

Sterling currency and International Considerations 305

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Sterling Report Format

STERLING REPORT

The sterling currency report data is composed of four portions:
pounds, shillings, pence, and pence decimal fractions.

r----------------------------------~-----------------------------------1
I FORMAT I
~--4
I { !'..!~'!'.!Lg~ t I
I { IS I
I PIC) I
I I
I [pound-report-string][pound-separator-stringldelimiter I
I I
I shilling-report-string[shilling-separator-string]delimiter I
I I
I pence-report-string[pence-separator-string] [sign-string] (
I I
I CQ§_~§E! IS] Dig!'..!!AY=§.! I l __ J

Rou~~=gepo~t-Stri~g - This string is optional. It is subject to the
same rules as other numeric edited items, with the following exceptions:

• The allowable characters are: £ (pound symbol) 9 Z * + - O (zero) B
, (comma>.

• The total number of digits in the pound-report-string plus the
fractional-pence field cannot exceed 15. (That is, if there are 11
digits in the pound-report-string, there cannot be more than 4
digits in the fractional-pence-field.)

• The character £ is the sterling equivalent Of $.

• Termination is controlled by the pound-separator-string.

Re~!!g::.§.~2S!!:.S!tor-§_tr!_!}g - This string is optional. It may include one
character, or any combination of the following characters:

B : / • (period or decimal point)

Editing of the separator characters is dependent upon the use of C or
D as delimiters.

The Delimiter Characters - The delimiter characters C and D are
required. They primarily serve to indicate the end of. the pounds and
shillings portions of the picture. In addition, they serve to indicate
the type of editing to be applied to separator characters to the right
of the low-order digit (of the pounds and shillings integer portions of
the item).

The delimiter character D indicates that separator character(s) to
the right of the low-order digit position <of the field delimited) are
always to appear; that is, no editing is performed on the separator
character(s).

The delimiter character c indicates that if the low-order digit
position (of the field delimited> is represented by other than the edit
character 91 editing continues through the separator character<s>.

The delimiter characters c and D are used for editing purposes only.
They do !!Q!: take up space in the printed result.

306 Part V -- Special Features

)
\.._;

,.

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Sterling Report Format

The following examples show the editing performed when a value of
zero is moved to a sterling report item.

**/CZ9s/D99d

would result in

***bOs/OOd

whereas, if the picture were

**/DZ9s/D99d

the result would be

**/bOs/OOd

The delimiter c is equivalent to D when the low-order digit position
is represented by a 9. That is, the following two pictures are
equivalent:

ZZ9/DZ9/D99
ZZ9/CZ9/C99

The delimiters used for the pounds and shillings portion of the
picture need not be the same.

~Qt~: Although the PQ~~g=~~PQ£t=st~!~~ and the EQ~gd-se~ratQ~=~t~~ng
are optional, a delimiter character (either C or D) must be present;
thus, when programming for shillings and pence only, the PICTURE clause
must begin PICTURE IS C (or 0) •

Shilling-Report-String - This is a required two-character field. It is
made up of the following characters:

9 8 x *
The valid combinations of these characters are:

99 Z~ ZZ ZS *9 ** *S

The S is an edit character and is treated as a 9. However, if the
digits to the left of the edit character 8 are zeros, the 8 is treated
as the character that precedes it <either Z or •>.

§~!!!!~g=§~p~~atQ~=et~~ng - This string is optional. It may include one
character, or any combination of the following characters:

B : / s • (period or decimal point)

Editing of the shilling-separator characters is dependent upon the
use of c or D as delimiters.

Pence-Report-string - This field is made up of two parts: a required
whole-pence field, and an optional fractional-pence field.

The required whole-pence field is a two-character field, made up of
the following symbols:

9 8 z *
Valid combinations of these characters are:

99 Z9 ZZ ZS *9 ** *8

The function of the editing character 8 is the same as in the
shilling-report-string.

sterling currency and International cons.iderations 307

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Sterling Report Format

The optional fractional-pence field is indicated by a decimal point
followed by one or more 9's. It is used to specify fractional pence in
decimal form.

The total number of digits in the fractional-pence field plus the
pound-report-string cannot exceed 15.

Pence-Separator-String - This string is optional and may consist of one
or both of the following characters:

d • (period or decimal point)

If both characters are used, they must be used in the order shown above.

§_;!_qn-Fiel~ - This field is optional and may consist of:

• optionally, one or more blanks (B), followed by

• one of the following one- or two-character combinations:

+ - CR DB

Sterling Report editing applications are shown in Table 25.

Table 26. Sterling currency Editing Applications
r------------------T--------------T---------------------T--------------1 I Picture !Numeric Value I Sterling Equivalent I I
I I <in pence) I £ s d I Printed Result I
~------------------+--------------+---------------------+--------------~

£££/D99s/D99d I 3068 I 12 15 08 f£12/15s/08d I
£££ /D99s/D99d I 0668 I 2 15 08 I ,£ 2/15s/08d I
£££ /D99s/D99d I 0188 I o 15 08 I /15s/08d I
£££ :C99s:D99d I 0188 I o 15 08 I 15s/08d I
ZZZ/DZZs/DZZd I 0000 I 0 00 00 I / s/ d I
ZZZ/CZZs/DZZd I 0000 I 0 00 00 I s/ d I
£BD99sBD99.9d I 080.5 I 0 06 08.5 I 06s 08.Sd I
***/C**D/C**.99d I 1040.12 I 4 06 08.12 1**4/*6s/•8.12dl
:C**s:C**.99d I 080.12 I 0 06 08.12 1**6s:•8.12dl
/D**s/D**.99d I 00001.23 I O 00 01.23 l/**s/•1.23dl
£££ /D*9s/D**· 99d I 00961. 23 I 4 00 01. 23 I £4/•0s/*1. 23dl
£••/D*9s/D••.99d I 00961.23 I 4 00 01.23 1£*4/*0s/*l.23dl
£••/D*9s/D**.99d I 00001.23 I 0 00 01.23 ~**/*Os/•1.23dl
£££ /D99s/D99dCR I -3068 I 12 15 08 1;£12/15s/08dCR I

l------------------i--------------i---------------------i--------------J

A sterling report PICTURE may have a BLANK WHEN ZERO clause
associated with it specifying that the item described is filled with
spaces whenever the value of the item is zero.

If the VALUE clause is specified for a Sterling Report item, the
literal must be alphanumeric. The VALUE clause is treated exactly as it
is specified, with no editing performed.

The maximum length of a sterling report item is 127 characters.

308 Part V -- Special Features

\ ;

"-""'

i
1-._,,;

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

International Currency Considerations

PROCEDURE DIVISION CONSIDERATIONS

The MOVE, DISPLAY, ACCEPT, EXAMINE, and TRANSFORM statements,
arithmetic statements, and relation tests may be written containing
identifiers that represent sterling items.

If a nonsterling value is moved into a Sterling report item, the
compiler treats the value as pence, and converts it to
pounds/shillings/pence.

Sterling items are not considered to be integers and should not be
used where an integer is required.

1. The functions of the period and the comma may be exchanged in the
PICTURE character-string and in numeric literals by writing the
clause DECIMAL-POINT IS COMMA in the SPECIAL-NAMES paragraph of the
Environment Division.

2. The PICTURE of report items may terminate with the currency symbol
in cases where the graphic $ is supplanted by a particular national
currency symbol, through use of the CURRENCY SIGN IS literal clause
in the SPECIAL-NAMES paragraph of the Environment Division.

Sterling currency and International considerations 308.1

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

• APPENDIXES

A: Intermediate Results

B: Sample Programs

C: American National Standard COBOL Formats and Reserved Words

D: File-Processing Techniques and Applicable Statements and Clauses

E: ASCII Considerations <Version 3)

F: Symbolic Debugging Feature (Version 3)

G: 3525 Combined Function Processing (Version 31

• IBM American National Standard COBOL GLOSSARY

"\......_...,

Supplementary Material 309

' \ ' "-"/

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

This appendix. discusses the conceptual compiler algorithms for
determining the number of integer and decimal places reserved for
intermediate results. The following abbreviations are used:

i--number of integer places carried for an intermediate result

~--number of decimal places carried for an intermediate result

dmax--maximum number of decimal places defined for any operand (except
~~for data-names used as exponents) in a particular statement

QE!--first operand in a generated arithmetic statement

QE£--second operand in a generated arithmetic statement

~!L~£--number of decimal places defined for opl or op2, respectively

ir--intermediate result field obtained from the execution of a generated
arithmetic statement or operation. ~~!. i~£, etc., represent
successive intermediate results. These intermediate results are
generated either in registers or in storage locations. Successive
intermediate results may have the same location.

In the case of an arithmetic statement containing only a single pair
of operands, no intermediate results are generated, except when the
TRUNC option is specified for COMPUTATIONAL items. Intermediate results
are possible in the following cases:

1. In an ADD or SUBTRACT statement containing multiple operands
immediately following the verb.

2. In a COMPUTE statement for a series of arithmetic operations.

3. In arithmetic expressions contained in IF or PERFORM statements.

In such cases, the compiler treats the statement as a succession of
operations. For example, the following statement:

is

COMPUTE y A + B * C - D / E + F ** G

replaced by

** F BY G yielding irl
MULTIPLY B BY C yielding ir2
DIVIDE E INTO D yielding ir3
ADD A TO ir2 yielding ir4
SUBTRACT ir3 FROM ir4 yielding irS
ADD irS TO irl yielding y

The number of integer places in an ir is calculated as follows:

• The compiler first determines the maximum value the ir can contain
by performing the statement in which the i~ occurs.

1. If an operand in this statement is a data-name, the value used
for the data-name is equal to the numerical value of the
PICTURE for data-name (e.g., PICTURE 9V99 has value 9.99).

Appendix A: Intermediate Results 311

2. If an operand is a literal, the literal's actual value is used.

3. If an operand is an intermediate result, the value determined
for the intermediate result in a previous arithmetic operation
is used.

4. If the operation is division:

a. If op2 is a data-name, the value used for op2 is the
minumum nonzero value of the digit in the PICTURE for the
data-name (e.g., PICTURE 9V99 has the value 0.01).

b. If op2 is an intermediate result, the intermediate result
is treated as though it had a PICTURE, and the nunimum
nonzero value of the digits in this PICTURE is used.

• When the maximum value of the ir is determined by the above
procedures, i is set equal to the number of integers in the
maximum value.

• The number of decimal places contained in an ir is calculated as:

QQ§!:_atiQ!!
+ or -

*
/

**

Decimal Places
dl-or-d2;-whichever is greater
dl + d2
dl - d2 or dmax, whichever is greater
dmax if op2 is nonintegral or a data-name;

dl * op2 if op2 is an integral literal

Table 27 indicates the action of the compiler when handling
intermediate results.

Table 27. Compiler Action on Intermediate Result
r--------T---------T-------------T-------------------------------------1
I Value I Value I value I I
I of I of I of I I
I i + d I d I i + dmax I Action Taken I
~--------+---------t-------------+-------------------------------------i
I <30 I Any I Any value I ! integer and g decimal places I
~--------i value I I are carried for ir I
I =30 I I I I
~--------+---------+-------------t-------------------------------------i
I >30 I <dmax I Any value I 30 - ~ integer and ~ decimal I
I ~---------i I places are carried for ir I
I I =dmax I I I
I ~---------+-------------+-------------------------------------~
I I >dmax I <30 I ! integer and 30 - ! decimal places!
I I ~-------------i are carried for ir I
I I I =30 I I
I I ~-------------+-------------------------------------~
I I I >30 I 30 - dmax integer and dmax decimal I
I I I I places are carried for ir I l ________ i _________ i _____________ i _____________________________________ J

312 Supplementary Mate.rial

i)
\~

APPENDIX B: SAMPLE PROGRAMS

The three programs in this appendix illustrate several methods of
accessing mass storage files. The three programs are:

1. CREATION OF A DIRECT FILE

Appendix B; sample Programs 313

·CREATION OF A DIRECT FILE

This program creates a file with direct organization through use of
an ACTUAL KEY ~- using actual track addressing. The ACTUAL KEY has two
components:

1. A track identifier, which is the actual track address, calculated
through a simple remainder randomizing technique. A field from the
input record (CD~ITEM-CODE) is converted to a track address
(TRACKl). CD-ITEM~CODE is divided by 19; the remainder is placed
in TRACK1. This gives a valid track address ranging in value from
O to 18. The program assumes that the file must begin on cylinder
102; therefore, a displacement value of 1020 is added to assure
that the cc field will contain the value of decimal 102.

2. A unique record identifier, in this case TRACK-NAME, that contains
the CD-ITEM-NAME of the input record.

The UPDATING program in the introduction updates the file that this
program creates.

IDENTIFICATION DIVISION.,
PROGRAM-ID. CREATEDF.
REMARKS. ILLUSTRATE CREATION OF A DIRECT FILE. THE FILE MAY BE

USED AS THE MASTER FILE FOR THE SAMPLE PROGRAM ILLUSTRATED
IN THE INTRODUCTION TO THIS MANUAL.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DA-FILE ASSIGN TO SYSOlS-DA-2311-A-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS FILEKEY.

SELECT cARD-FILE ASSIGN TO SYS007-UR-2540R-S.
DATA DIVISION.
FILE SECTION.
FD DA-FILE

01

FD

01

DATA RECORD IS DISK
LABEL RECORDS ARE STANDARD.
DISK.
02 DISK-ITEM-CODE
02 DISK-ITEM-NAME
02 DISK-STOCK-ON-HAND
02 DISK-UNIT-PRICE
02 DISK-STOCK-VALUE
02 DISK-ORDER-POINT
CARD-FILE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

LABEL RECORDS ARE OMITTED
DATA RECORD IS CARDS.
CARDS.
02 CD-ITEM-CODE
02 CD-ITEM-NAME
02 CD~STOCK-ON-HAND
02 CD-UNIT-PRICE
02 CD-STOCK-VALUE
02 CD-ORDER-POINT
02 FILLER

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

314 Supplementary Material

X(3) •
X(29).
89(6) USAGE COMP SYNC.
S999V99 USAGE COMP SYNC.
S9(9)V99 USAGE COMP SYNC.
S9(3) USAGE COMP SYNC.

X(3).
X(29).
S9(6).
S999V99.
S9(9)V99.
S9(3).
X(23).

\ ' "-'-/

WORKING-STORAGE SECTION.
77 SAVE
77 QUOTIENT
01 TRACKl

PICTURE
PICTURE
PICTURE

S9(5) USAGE COMP SYNC.
S9(4) USAGE COMP SYNC.
9999.

01 TRACK2 REDEFINES
02 CYL
02 HEAD

01 KEY-1.
02 M
02 BB
02 cc
02 HH
02 R
02 TRACK-NAME

01 THE-KEY REDEFINES
02 FILLER
02 FILEKEY

PROCEDURE DIVISION.
BEGIN.

TRACKl.

KEY-1.

OPEN INPUT CARD-FILE.
OPEN OUTPUT DA-FILE.

PARA-1.

999. PICTURE
PICTURE 9.

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

PICTURE
PICTURE

S999 COMP
S9 COMP
S999 COMP
S9 COMP
X VALUE
X(29).

x.
X(37) •

READ CARD-FILE AT END GO TO END-JOB.
MOVE CD-ITEM-CODE TO SAVE.
DIVIDE 19 INTO SAVE GIVING QUOTIENT

REMAINDER TRACKl.
ADD 1020 TO TRACKl.
MOVE CD-ITEM-NAME TO TRACK-NAME.
MOVE CYL TO CC.
MOVE HEAD TO HH.
MOVE CD-ITEM-CODE TO DISK-ITEM-CODE.
MOVE CD-ITEM-NAME TO DISK-ITEM-NAME.

~YNC VALUE
SYNC VALUE
SYNC.
SYNC.

LOW-VALUE.

MOVE CD-STOCK-ON-HAND TO DISK-STOCK-ON-HAND.
MOVE CD-UNIT-PRICE TO DISK-UNIT-PRICE.

WR.

MOVE CD-STOCK-VALUE TO DISK-STOCK-VALUE.
MOVE CD-ORDER-POINT TO DISK-ORDER-POINT.

WRITE DISK INVALID KEY GO TO ERROR-ROUTINE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE DA-FILE.
DISPLAY "END OF JOB".
STOP RUN.

ERROR-ROUTINE.
DISPLAY "UNABLE TO WRITE RECORD".
DISPLAY TRACK-NAME.
GO TO PARA-1.

ZEROES.
ZERO.

Appendix B: Sample Programs 315

This program creates an indexed file. These records are presented in
ascending sequence by RECORD KEY. The APPLY clause builds the master
index.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATEIS.
REMARKS. ILLUSTRATE CREATION OF INDEXED SEQUENTIAL FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IEM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO SYSOlS~DA-2311-I-MASTER
ACCESS IS SEQUENTIAL
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASSIGN TO SYS007-UR-2540R-S
RESERVE 1 ALTERNATE AREA. .

I-0-CONTROL.
APPLY MASTER-INDEX TO 2311 ON IS-FILE.

DATA DIVISION.
FILE SECTION.
FD IS-FILE

BLOCK CONTAINS 5 RECORDS
RECORDING MODE IS F
LABEL RECORDS ARE STANDARD
DATA RECORD IS DISK.

01 DISK.
02 DELETE-CODE
02 REC-ID
02 DISK-FLDl
02 DISK-NAME
02 DISK-BAL
02 FILLER

FD CARD-FILE
RECORDING MODE IS F

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

LABEL RECORDS ARE OMITTED
DATA RECORD IS CARDS.

01 CARDS.
02 KEY-ID
02 CD-NAME
02 CD-BAL
02 FILLER

PICTURE
PICTURE
PICTURE
PICTURE

316 Supplementary Material

x.
9(10).
X(10).
XC20).
99999V99.
xcs2>.

9(10).
X(2()).
99999V99.
X(43).

\ / "--"/

i .

"--''

PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT IS-FILE.

PARA-1.
READ CARD-FILE AT END GO TO END-JOB.
MOVE LOW-VALUE TO DELETE-CODE.

ERR.

MOVE KEY-ID TO REC-ID.
MOVE CD-NAME TO DISK-NAME.
MOVE CD-BAL TO DISK-BAL.
WRITE DISK INVALID KEY GO TO ERR.
GO TO PARA-1.

DISPLAY "DUPLICATE OR SEQ-ERR" UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE IS-FILE.
DISPLAY "END OF JOB" UPON CONSOLE.
STOP RUN.

Appendix B: Sample Programs 317

This program randomly updates an existing indexed file. The READ
IS-FILE statement causes a search of indexes for an equal compare
between the NOMINAL KEY obtained from the input record and the RECORD
KEY of the I-0 file. If an equal compare occurs, the record is updated,
and the details of this update are printed. If a matching record is not
found, the invalid key branch is taken.

IDENTIFICATION DIV~SION.
PROGRAM-ID. RANDOMIS.
REMARKS. ILLUSTRATE RANDOM RETRIEVAL FROM IS-FILE.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-FSO.
OBJECT-COMPUTER. IBM-360-FSO.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT IS-FILE ASSIGN TO SYS015-DA-2311-I-MASTER
ACCESS IS RANDOM
NOMINAL KEY IS KEY-ID
RECORD KEY IS REC-ID.

SELECT CARD-FILE ASSIGN TO SYS007-UR-2540R-S
RESERVE 1 ALTERNATE AREA.

SELECT PRINT-FILE ASSIGN TO SYSOOS-UT-2400-S-PROUT
RESERVE NO ALTERNATE AREAS.

I-0-CONTROL.
APPLY MASTER-INDEX TO 2311 ON IS-FILE.
RERUN ON SYS002-UT-2400-S-CKPT EVERY 10000 RECORDS

OF IS-FILE.
DATA DIVISION.
FILE SECTION.
FD IS-FILE

BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 100 CHARACTERS
LABEL RECORDS ARE STANDARD
RECORDING MOD~ IS F
DATA RECORD IS DISK.

01 DISK.
02 DELETE-CODE
02 REC-ID
02 DISK-FLD1
02 DISK-NAME
02 DISK-BAL
02 FILLER

FD CARD-FILE

PICTURE
PICTURE
PICTURE
PICTURE
PICTURE
PICTURE

RECORDING MODE IS F
LABEL RECORDS ARE OMITTED
DATA RECORD IS CARDS.

01 CARDS.
02 KEY-IDA
02 CD-NAME
02 CD-AMT
02 FILLER

FD PRINT-FILE
RECORDING MODE IS F

PICTURE
PICTURE
PICTURE
PICTURE

LABEL RECORDS ARE STANDARD
DATA RECORD IS PRINTER.

318 supplementary Material

x.
9 (10).
X(10).
X(20).
99999V99.
X(52).

9(10).
X(20).
99999V99.
X(43).

\ ,,_./

\ ,./

01 PRINTER.
02 FORMSC PICTURE X.
02 PRINT-ID PICTURE X(10).
02 FILLER PICTURE XC10).
02 PRINT-NAME PICTURE XC20).
02 FILLER PICTURE X(10).
02 PRINT-BAL PICTURE $ZZZ,999.99-.
02 FILLER PICTURE X(10).
02 PRINT-AMT PICTURE $ZZZ 1 ZZZ.99-.
02 FILLER PICTUR~ X(10).
02 PRINT-NEW-BAL PICTURE $ZZZ,ZZZ.99-.

WORKING-STORAGE SECTION.
77 KEY-ID PICTURE 9(10).
PROCEDURE DIVISION.
BEGIN.

OPEN INPUT CARD-FILE.
OPEN OUTPUT PRINT-FILE.
OPEN I-0 IS-FILE.

PARA-1.
MOVE SPACES TO PRINTER.
READ CARD-FILE AT END GO TO END-JOB.
MOVE KEY-IDA TO KEY-ID.
READ IS-FILE INVALID KEY GO TO NO-RECORD.
MOVE REC-ID TO PRINT-ID.
MOVE DISK-NAME TO PRINT-NAME.
MOVE DISK-BAL TO PRINT-BAL.
MOVE CD-AMT TO PRINT-AMT.
ADD CD-AMT TO DISK-BAL.
MOVE DISK-BAL TO PRINT-NEW-BAL.
REWRITE DISK INVALID KEY GOTO NO-RECORD.
WRITE PRINTER AFTER POSITIONING 2 LINES.
GO TO PARA-1.

NO-RECORD.
DISPLAY 'NO RECORD FOUND' UPON CONSOLE.
DISPLAY KEY-ID UPON CONSOLE.
GO TO PARA-1.

END-JOB.
CLOSE CARD-FILE PRINT-FILE IS-FILE.
DISPLAY 1 END OF JOB' UPON CONSOLE.
STOP RUN.

Appendix B: sample Programs 319

\)

_,:

\ ;

'-'

... ...
w
:z:
:a:
ii ...

APPENDIX C: AMERICAN NATIONAL STANDARD COBOL FORMAT SUMMARY AND RESERVED WORDS

The Formats and Reserved Words in this appendix have been printed in a specially reduced size with paqes numbered in
sequence to make up a pocket-sized reference booklet- for use while codin9 IBM American National Standard COBOL -
programs. Although most readers may prefer to retain this reference material within the manual, the booklet can be
prepared as follows:

cut along trin:t lines.

P~ace sheets so that page numbers at lower right-hand corner are in ascending order in odd-number progression
(i.e., l, 3, 5, etc.); lower left-hand page numbers will then be in descendinq order in even-number progression
(i.e., 16, ltl, 12,. etc.)_

• Fold trinuned sheets after collating.

• Punch for six-hole binder.

TRiii\ HERE

• Staple along fold if desired, ~1

1---
1
I
I
I
I
I
I
I
I
I
I
I

I
I
I
I
I
I
I
I

GI
Ill
::J
0
u
w
~
::::>
I-
!::!
a..

GI ..c
.E .,,
QI

~
..2
"<
Ill

0
.0
E
J;

bO .e
~

::E

'O
~ <i:cli:i..oo>:>O'l~o ··+I~~·*
£

International Business MachlnH Corporation
Data Procetlfng DIYlolon
1133 Weel'Cheatvr Avenue, Whlte Plains, New York 10804
(U.s.A. only)

IBM World T- Corporation
821 Unlled Nalk>n• Plaza
NW Yorh, New York 10G17
(lnlemellonal)

Printed in U.S.A. GC2Q·6394

• •
• •
• •

• •
• •
• •

IBM
©

System/360
Reference Data

Disk Operating System

IBM
American
National
Standard
COBOL

Appendix C: IBM American National

Standard COBOL

Format Summary and

Reserved Words

The general format of a COBOL program is. illustrated
in these format summaries. Included within the general fm·
mat is the specific format for each valid COBOL statement.
All clauses are shown as though they were required hy the
COBOL source program, although within a given context
many are optional. Hepetition of clauses has not been in<li·
cated. Several formats are included under special headings,
which are different from, ot' additions to, the general format.
Under these special headings are included formats peculiar
to the following COBOL features: Sort, Heport Writer, Table
Handling, Segmentation, Source Program Library Facility,

Each of these features
is explainec within a special c apter of this publication -
IBM Suo1em/.360 TJisk Ope1'i1ting Sr/Stem: Amei'ican National
Stanclar<l COBO/,, Form GC28-6394,

1---TRIM HERE

9
2

Appendix C: American National Standard COBOL Fonnat summary and Reserved Words 321

IDENTIFICATION DIVISION - BASIC FORMATS

TRIM HERE --.
li~ION DIVISION,}

PROGRAM-ID. program-name.

AUTHOR. [wmme11t-entty] •..

INSTALLATION. [cnmmeni-entry] •.

DATE-\VRIIDN. [comment-entry] ..

DATE-COMPILED. [Comment-entry]

SECURITY_. [comment-entry] , • ,

~~[comment-entry] ..

ENVIRONMENT DIVISION - BASIC FORMATS

ENVIRONMENT DIVISION.

CONFIGURATION SECTlON,

fil)JJRCE-COMPUTER. com17utu-name.

OBJECT-COMPUTER. wm1Jtiter-name [MEMORY SIZE integer fl""'Oill>~""'°"S}]
MO

[SEGMENT-LIMIT IS priority-number].

S}'E~IAL-NAMES. [function-11ame-l !§mnemonic-name] ...

[fmwtion..name-2 [!§. tnnfimonic-name]

SQ.N STATUS!§ c<mrlitl01Mumie-l [OJ<~F STATUS!§. conditian-narne-2]}
lQD!' STATUS!.§. condition-nmne-2 [QN STATUS JS conclitio;o-n<tme-1)] · • •

[~ SICN !§literal]

[DECJMAL.POINTIS COMMA].

INPUT.OUTPUT SECTION.

FILE·CONTROL.

(SELECT[~] fi/o.nanw

2

ASSIGN TO [integer] systenMwtne-1 [system-name-2] . , ,

[FOR~l~l]

~ l~ger] ALTEHNATE [~~~~S]
!_FILE-LIMIT 1£ l ldata-Tiame-ri THR U ! didtHiame-21
FILE~LIMITS AREf literal-I -- liiteral-Z

[1dat11-n.ame·3} TH-ll:ll f d.ata-name-4}]
Uterot-3 -- llitmal-4 · ·

ACCESS MODE IS !SEQUENTIAL}
-·-- · - RANDOM

PROCESSING MODE!§ SEQUENTIAL

ACTUAL KEY!§ data...fllJfflC

. } . , ,

~ Q!:!_ ~wt.<::r.1--name EVERY integer~ OF file-name

MM§ [~~~RD] AREA FOR fo/e-name-1 {filc-name-2) .

MULTIPLE FILE TAPE CONTAINS file.,.amc-1 [!'.QfilI!Q!:i tnte,ie,._l]

[file-name~2 [POSITION integer-2]] .••

• •
• •
• •

• •
• •
• •

m
<:

-"'
0
0

I-

0
:>

" <{

m
<:

c:

" -"
5
>­
w
!>.<'.

.....
<{

=>
1-
u
<{

~
0
0

" "'

-u
0

" :i::

~

" -0
c:

,_ ->-.
u

--
Q)

u

-"'
u
0

"-

Lr') Lr') "' Lr') .,.,
"' ""- " N N N

I I I
0 0 0

:i:: '° 'l' "' "" 0 I I
0 0

"'t
:i::

I ,,., 0 0 0

u "' "' .,.,
"' I I "" I

0 0 0

"' I u M 0 0 0

"" N 0 0 "' I
0

I
a> - 0 0 0

N N ;:::;
"' N N

~ 0 I I 1
0 0 0

2
>..

""

., - ;:::;
'~ ;:;; ;;; "" > N "' "' " Cl

19

·--------------------------------rRiM-tt~e----------------------------------

322 Supplementary Material

9
2

1.:
I~
I~
I;; , ..
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

' j
~

··.~

i i

\.,__,/

Page No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

TRIM HERE
~1

i---------------------------------------~--------------------------------

Uol
:c
:IC
iii ...

1
I Structure of system-name in the ASSIGN clause

18

SYSnnn-class-device-organization [.-name J

nnn -- a three-digit number between 000 and 221

cl-ass -- a two-character field that represents device class.
Allowa-ble combinations ore: •

DA mess storage
UT utility
UR unit record

device -- o four- or five-digit field that represents device
number. Allowoble numbers for each device class
are:

DA
UT
UR

2311, 2321, 2314
2400, 2311, 2314, 2321
l442R, 1442P, 1403, 1404 (continuous forms
only), 1443, 250!, 252DR, 2520P, 2540R,
2540P

Progrom Product Information -- Version ~

T~e following additional device doss numbers are valid:

DA 2319, 3330
UT 2319, 3330, 3410, 3420
UR 3211, 3505, 3525R, 3525P, 3525W, 3525M

organization -- a one-character field that specifies file
orgonization. Aflowab!e characters are:

for standard sequential files
for direct files -- actual track addressing
for direct files. -- relative track addressi

Progrom Product Information -- Version 3

The following additional orgcmizotion characters are valid:

0 for 3505 OMR reading
S (R] for 3505 and 3525R sequential reading•
T for 3525 punch-and-in!erprol files
V [R] for 3525 read/print associated files*
X !R] for 3525 read/punch/print associated flies•
Y !RJ for 3525 read/punch associated files•
Z for 3525 punch/print associated files

the opiional R field denotes RCE reading, and
is vol!d only for the 3505 and 3525R devices.

name -- a one- to seven-character field thot specifies the
external-name by which the file is known to the
system.

•
•

•
•
•

•
•

•
•
•

DATA DIVISION - BASIC FORMATS

!2.£A!2!Y!§!!?.I:!·

.!'.!!&.~·
!'.Qfile-name

BLOCK CONTAINS [;n..,"1""·! E!l ir.teg.,-2

~CONTAINS (intege.-1 !Q.l intege.-2 CHARACTERS

LAJ;EL {H8oRD _rs l f~f:l~~~ I
--~ ARE l_aata.-nGm!f [data--name~2] .. , f
~!!!'MtrNwme-1 IS {ft:wa-2} [data-nanw-3IS • .. {Z!::Z~me--4}]

RECORD IS } .!2;ITA RECORDS ARE data-name-1 [data-rulme-2] ...•

N01"J!;1 The Format of the REPORT Clllllse is included with Fonnats for the REPORT
writer feature.

Ol-49 {data-nams.J}
~

~daia»wme-2

~WHEN~

UHWFIED} RIGHT

{~§TURE1 IS character string

(USAGE !S]

88 condition--Mme {¥ft~~SI~RE} Uterol-1 fTHRU,liteml-.S]

[lit...U-3 [!fil!![Uterol-4]] . • . .

60 datll-name-1 ~ t[ata-naffle-2 [!!!fill data~name-3] .
NOTEt Fonnats of the OCCURS Clame are included with Formabl for the TABLE

HANDLING f.,.ture.

3
~· -- --------------------------------~----------------------------------- - TRIM H-ERE

Appendix c.

9
!2

Format summary and Reserved words 323

order NO• GC28-6394-2. Page Revised 5/15/72 by TNL GN28-0489

9
2

TRIM HERE ---·

4

WORKING-STORAGE SECTION.

77 data-namu-1

Ol-49 !data-nr;me-1 \
.fil!&l!

REDEFINES data-name-2

~Wl-IENE!lQ.

{JUSTIFIED) RIGHT
JUST _ !

f SYNCHROJ\IZED! [LEFT J Srnc ml

[~IS]

~IS literal.

88 condition~name 'Q~l8~sl~RE} literal-1 [.!!:!!i!l litetal-.2]

[IUeral-3 [!!:!fil! Utstal-4] J • • . •
66 dotii-name-1 ~ data-name--2 [I!!fill. dattM1ame-3] .

Noni Fonaats of the OCCURS Clause are included with Formats for the TABLE
HANDLING foatu:re,

•
•
•

•
•
•

•
•
•

(ca)

(xac)

(xae)
(<a)

(ca)

(xa)

(ca)

(xac)
ical

(spn)
(xa)

{ca)

(spn)

(spn)

(xac)

(<a)

(ca)

(ca)
{~a)

(xa)

(xac)
(xac)
(xao)

(xa.c)
(xac)
(xac)
{xac)

PLUS
POINTER
POSITION
POSITIONING
POSITIVE
PRINT-SWITCH
PRIORITY
PROCEDURE
PROCEED
PROCESS
PROCESSING
PROGRAM
PROGRAM·ID

QUEUE
QUOTE
QUOTES

RANDOM
RD
READ
READY
RECEIVE
RECORD
RECORD-OVERFLOW
RECORDING
RECORDS
REDEFINES
REFERENCES
REEL
RELEASE
REMAINDER
REMARKS
RENAMES
REORG-CRITERIA
REPLACING
REl'ORT
REPORTING
REPORTS
REREAD
RERUN
RESERVE
RESET
RETURN
RETURN-CODE
REVERSED
REWIND
I\EWRITE
RF
RH
RIGHT
ROUNDED
RUN

SA
SAME
SD
SEARCH
SECTION
SECURITY
SEEK
SECMENT
SEGMENT-LIMIT
SELECT
SELECTED
SEND
SENTENCE
SEPARATE
SEQUENTIAL
SET
SIGN
SIZE
SKIP!
SKIP2
SKIP3
SORT
SORT-CORE·SIZE
SORT-FILE-SUE
SORT-MODE-SIZE
SORT-RETURN
SOURCE
SOURCE-COMPUTER
SPACE
SPACES
SPECIAL-NAMES
STA.'iDARD

(xac) START
STATUS
STOP

(ca) STRING
(ca) SUB-QUEUE-1
(ca) SUB-QUEUE-2
(ca) SUB-QUEUE-3

SUBTRACT
SUM

(ca) SUPERV1SOR
(xac} SUPPRESS
(ca) SUSPEND
(oo) SYMBOIJC

SYNC
SYNCHRONIZED

(spn) SYS IN
(,p) SYS!PT
(sp) SYSLST
(spn) SYS OUT
(sp) SYSPCH
(sp) SYSPUNCH
(sp) SOI
{sp) S02

(cs) TABLE
TALLY
TALLYING
TAPE

(ca) TERMINAL
TERMINATE

{co) TEXT
THAN

(xac) THEN
THROUGH
THRU

(ca) TIME
(.xac) TIME-OF-DAY

TIMES
TO

(spn) TOTALED
('J)n) TOTALING
(xac) TRACE
(spn) TRACK
(xac) TRACK-AREA
(spn) TRACK-LIMIT
{xac} TRACKS
(xa) TMILING
(xac) TRANSFORM

TYPE

(ca) L'NEQUAL
UNIT

(ca) UNSTRI.NG
UNTIL
UP
UPON

(ca) UPPER-BOUND
(ca) UPPER~BOUNDS
(sp) UPSl-0
(sp) UPSl-1
(sp) UPSI~2
(•p) L'PSI-3
(sp) UPSl-4
(sp) UPSl-5
(sp) UPSl·B
tsp) UPSl-7

USAGE
USE
USING

VALUE
VALUES
VARYING

WHEN
WITH
WORDS
WORKING-STORAGE
WRITE

(xac) WRITE-ONLY
(xac) WRITE-VERIFY

ZERO
ZEROES
ZEROS

11

-------------------------------rRiM-H~e----------------------------------

324 supplementary Material

w
"' w
:i::

I ::e
I°' I,_
I
I
I
I
I
I
I
I
I
I
I

\.._)

\.__/

(j

\.___J

UI
:c
~
iii ...

·1 ___________________________________ !!':_~~--------------------------------·
DATE-WRITTEN

I <ca> DAY !<ca)
DE

(uc) DEBUG I (ca)
DEB UC-CONTENTS

(c•) DEBUG-LINE (xac)
{ca) DEBUG-NAME I teal
(ca) DEllUC-SUB-n
(ca) DEBUGGING

DECIMAL-POINT
DECLARATIVES

(xac) DELETE I (ca) DELIMITED
(ca) DELIMITER

DEPENDING
I <ca> DEPTH

DESCENDING
I (ca) DESTINATION (ca)

OF.TAIL
I <co> DISABLE (spn)

(spn) DISF
DISPLAY

(:rac) DISPLAY-ST {.pn)

(ca) DISPLAY-n
DIVIDE I teal
DIVISION
DOWN (ca)

(xac) DYNAMIC

(xac) EJECT
(ca)
(ca)

ELSE
(ca) EM!
(ca) ENABLE

END (xa)
(xa) END-OF-PAGE

ENDING
ENTER

(xac) ENTRY (ca)
ENVIRONMENT (ca)

(xa) EOP
EQUAL

(xac) (ca) EQUALS
ERROR I (ca) I (ca} ESl

(e<) ETI
EVERY
EXAMINE (xac)

(ca) E.'CCEEDS
(xac) EXHIBIT

EXIT
(xac) EXTENDED-SEARCH

(xac)
FD
FILE
FILE-CONTROL
FILE-LIMIT (.<ac)
FILE-LIMITS
FILLER
FINAL (xae)

FIRST
FOOTING I (ca.) FOR

I (xac) FREE
FROM

(ca)
GENERATE
GIVING
GO

(xo.c) GO BACK (ca)
GREATER
GROUP

HEADING
HIGH-VALUE
HIGH-VALUES (xac)

(ca) HOLD
(<a)

1-0 (ca)

1-0-CONTROL
(xac) ID

IDENTIFICATION
IF
IN
INDEX

(ca) INDEX-n
INDEXED

16

INDICATE
INITIAL
INITIATE
INPUT
INPUT-OUTPUT
INSERT
INSPECT
INSTALLATION
INTO
INVALID
IS

JUST
JUSTIFIED

KEY
KEYS
LABEL
LABEL-RETURN
LAST
LEADING
LEAVE
LEFT
LENGTH
LESS
LIBRARY
LIMIT
LIMITS
LINAGE
LINAGE-COUNTER
LINE
LINE-COUNTER
LINES
LINKAGE
LOCK
LOW-VALUE
LOW-VALUES
LOWER-BOUND
LOWER-BOUNDS

MASTER-INDEX
MEMORY
MESSAGE
MODE
MODUT,ES
MORE-LABELS
MOVE
MULTIPLE
MULTIPLY

NAMED
NEGATIVE
NEXT
NO
NOMINAL
NOT
NOTE
NSTD-REELS
NUMBER
NUMERIC
NUMERIC-EDITED

OBJECT-COMPUTER
OBJECT -PROGRAM
OCCURS
OF
OFF
OH
OMITTED
ON
OPEN
OPTIONAL
OR
OTHERWISE
OUTPUT
av
OVERFLOW

PAGE
PAGE-COUNTER
PERFORM
PF
PH
PIG
PICTURE

• •
• •
• •

• •
• •
• •

PROCEDURE DIVISION BASIC FORMATS

ACCEPT Statemflnt

ACCEPT ;dentifi"' [FROM

ADD St•tlt-ment

FoBMAT I

ADD li'dentifi<.>r·li [identifier-2] . T_O identifier-m [llOUND. ED]
-- liteml-1 llteral-2 ' ·

[ldentlfit?r-n [ROUNDED}] .. , [ON film !ili1!QJl impcratit..'<"-.Ytate1nent]

FoBM.A.T 2

:\DD f1dentificr-l! ftdentificr-21 [identifier-3]
:..,__ 1litetal·1 (litetnl-2 litf'!ral-3 · · ·

GIVINC identtfier--m [~] [ON SIZE ERROR imperailve-statemenl]

FORMAT

JCORRESPONDINC} ADD)CORR identifier-I TO ;dcntifim·-2 [ROUNDED)

[ON SIZE ERROR imperative-statement-]

Al:J'EH Statement

1ALTER procedure-name-1 IQ [PROCEED IQ] pmcetlure-name....2

[pn)t>edme·n«m{,!-3 IQ:. [PROCEED IQ] procedure-name-4] • , .

CLOSE Statement

CLOSE file-uanw·l [=] [WITH {~&~EWINDl]

[file-name-2 [~ J [WITH l~~EWIND1]] ...

COMPUTE Statement

COMPUTE identlfi..--1 [ROUNDED] identtfi"-2 {
arithmetic-r.rpres.'>ion}

DECLARATIVE Section

PROCEDURF. DIVISION.

DECLARATIVES.

{section~name ~·USE sentence.

{pareg;aph-name. {,.ntence) ... } ... } •..

END DECLARATIVES.

DISPLAY Stutement

D ISPLAY \'d. enfi/ier-ll [identq;e,.2]
literal-1 ,literal-2 · · ·

lite;al·I

----------------·--------------------~~-HERE--------------------------------·

Q

2

Appendix C: American National Standard COBOL Format Summary and Reserved Words 325

, TRIM HERE

--~------------------------------~--~
DIVIDE Statel'rlent

FORMAT l

Q!Y!Q§ {~:!tf1J !li1Q 1dennfi..--2 l!lQ!lli!l!illJ

[ON SIZE ERROR imperative-ttfat""1lent]

FORMAT 2

DIVIDE {fdentifi..--1} {!!:IT91 itdentifiec-2! C!VING 'd ., 3 [n"'"'DEn] --' literal·l fil' { llit<Yal-2 i enhi,or·· ~

[REMAINDER identific:r~4J [ON SIZE ERROR i-mperatlve-staten1e:t'Jt]

ENTER Statement

ENTER language-name [routinMUJm6'].

EXAMINE Statement

li'oaMAT 1

EXAMINE frlr.nttfier TALL YING ALL 1'teral-l {
UNTIL l"IRST }

LEADING ~

[REPLACING !!! literal-2]

FoaMAl 2

EXIT Statement

paragraph-riame, EXIT ~ID\V~·

CO TO Statement

FORMAT]

QQ IQ procl1d-ure~name-l

Foll.MAT 2.

rALL }
LEADING literal-1 BY Utoraf...2 l FlRST -
UNTIL FIRST

~ IQ pTocedurc-tltlma~l [procedure-name-2] ... DEPENDfNG ON identi.JWr

FOhMAT 3

IF Stnteroent

MOVE Statement

Foo.MAT 1

6

'lOVE !CQ11RESPONDING} . i t'< l TO Id .,, 0 -" __ CORR 11'. en 11,er.. _ en .. ,.~,....i:;

• •
• •
• •

• •
• •
• •

IBM AMERICAN NATIONAL STANDARD
COBOL RESERVED WORDS

No word in the following list should appear as a
programmer defined name, The keys that appear before
some of the words) and their meal)ings, are!

(xa) before a word means that the word is a
System/360 extension to American National
Standard COBOL.

(xac) before a word means that the word is a Sys­
tem/360 extension to both American Na­
tional Standard COBOL and CODASYL
COBOL.

(ca) before· a word means that the word is a
CODASYL COBOL reserved word not in­
corporated in American National Standard
COBOL or in IBM American National
Standard COBOL.

(sp) before a word means that the \\1ord is an
IBM function-name established in support
of the SPECIAL-NAMES function.

(spn) before a word means that the word is used
by an IBM System/360 American National
Standard COBOL compiler, but not this
compiler.

(asn) before a word means that the word is de­
fined by American National Standard CO­
BOL, but ls not used by this compiler.

(asn)

lea)
(ca)

(xa)

(xac)

(xa)
(ca)
(spn)
(ca)

(xac)
(xa)

(am)

(asn)

ACCEPT
ACCESS
ACTUAL
ADD
ADDRESS
ADVANCING
AFTER
ALL
ALPHABETIC
ALPHANUMERIC
ALPHANUMERIC-EDITED
ALTER
ALTERNATE
AND
APPLY
ARE
AREA
AREAS
ASCENDING
ASSIGN
AT
AUTHOR

BASIS
BEFORE
JlEGINNING
llLANK
BLOCK
BY

GALL
CANCEL
CRL
GD
CF
C!I
CHANGED
CHARACTER
CHARACTERS
GLOCK-UNITS
CLOSE
COBOL
CODE
COLUMN

(xac)

(xa)
(xa)
(xa)
(xa)

(xa)
(xa)
(xe)
(xa)

(sp)

(xac)

(ca)
(•pl

(xac)
(xac)
(irnd
(,p)
(sp)
('!')
('!')
(sp)
(sp)
(sp).
(sp}
(sp)
(sp)
(sp)
(sp)

(ca)

COM-REG
COMMA
COMP
COMP-I
COMP-2
COMP-3
COMP-4
COMPUTATIONAL
COMPUTATIONAL-I
COMPUTATIONAL-2
COMPUTATIONAL-3
COMPlJTATIONAL-4
COMPUTE
CONl'1GlJRATION
CONSOLE
CONTAINS
CONTROL
CONTROLS
COPY
COllE-INDEX
CORR
CORRESPONDING
COUNT
CSP
CURRENCY
CURRENT-DATE
CYL-INDEX
CYL-OVEllFLOW
GO!
C02
COJ
C04
GOS
G06
G07
C08
C09
GIO
Cl!
CI2

DATA
DATE
DA TE-COMPILED

15

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I..,

''= l:s:
I :lE
I ii ...

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I .- --! ------------------ TRIM HERE

326 Supplementary Material

' i
\._/

',)
\._I

('

~

i
\._./

... ~L. i--1 MULTIPLY Statement

...
"' ... :c
:ie

=

I
I

Procedure Division Debugging Formats

EXHIBIT Statement

,. {NAMED I_ {identifier-I ·1 [frienUfi.,·2] ..filf!:!!fil!. ~P, ~ J nonn1.1meric-Iiteral-l nonnunu..'f'lc-Uteml-2 · • ,

ON (Couot-.wnditional) Statement

FORM.AT l

.QJ:i. integer-1 [~ ~ tnteger-2] (UNTIL intcger-3]

{ imperatfoc,:fatoment •• '} {ELSE } ·{lnatement , . . } !:!!8£!' ~ mmiRWISE ~~
FORMAT 2 (Vetsion 3)

"" jlntegec-1 } [A1'D EVERY {1""'g"'-2 } l ~ udent:fier-1 ----- identifier-2

{integer-3 }]. {imperatlve...rlal~moot}
[UNTIL id1'11Nji<r-3 ~~

JELSE } statement . . . l
/O'i'HERWISE NEXT~J

READY/RESET TRACE Statement

f READY I TRACE
RESET ---

Complle-Tlme Debug9irig Pocket

DEBUG C•r<l

~ lo~tlon

EJECT Statement

AreaB

SKIP!, SKlP2, SKIP3 Statemen~

Al'ea B

{
SKIP! l
SKIP2 r

.§!f!!:lj

Dato Division Sterllng Formats

Nnnre(lort PICTURE Clause

{Mf1'UREJ IS 9[(n)] D [8] 8D mm [[VJ 9 [(n)]] [~IS] DISPLAY-1."T

Report PlCTURE Clause

I ~i§WRE} IS [pound-report-string} [poto1d~eparat0Nt1ing] delimitt...'1'"
!,!lg shilling~Teport-&tring [sMlltt1g-eepa-ralor-$tring] delimiter

petJce-reporl-string [pe1w~atator·string] [sign-string]
[~IS] DISPLAY-ST

l 14

•
•
•

•
•
•

•
•
•

•
•
•

FoRM:AT I

MULTIPLY {~:;!t:r-J} fil identifier-2 [ROUNDED]

[ON ~ l!:RROR imperotive-stutement]

FORMAT .2.

!identifier-ii {identifier-2} ,
~ literal-I fil literal-2 CI\ INC tdentificr--3

[ROUNDED] [ON SIZE !ill!!91!_ imperative-staternetin

NOTE Statement

~character $(,ring

OPEN Statement

fi le [REVERSED J OPEN [lli!'.l!! { -name WITH !iQ REWIND } ' ..]

[OUTPUT {file-name [WITH.!iQ REW!NDJ} ...]

[!:Q (file-name} ..•]

PERFORM Statement

Foll.MA't l

~ procedur~-name-1 ['!!!.ill::! procedure,-name-2]

Fcmz-.r.t.T 2

PERFORM proceclwe-name-1 ['!!:!IDJ procffdure-name-2] { !%:';!~1 \ TIMES

FQll."\UT 3

~ proe:edure-name--1 [THRU procedure-nam.e-2] UNTIL r:ondltion-1

FORMAT 4

FEH1''0RM prOcedurtMiama-1 [THHU procedure-rumie-2]

VARYING 1~nde.'t~name:-l{ f.tlQM { ;;:;j_~ame-2 l HY
id.mtifier-l r ideritifier-2 J -

[AFTEH

[AFTER

READ Stalement

{ liwal.;;] nd' identifier..Sj UNT!b co itlon-1

! index~namR-41 b~ROM { i~.;;:i~me-.S} BY
frlent-1fier-4 . -- idenlifier-5 -

lltteral-8 l UN1·11 d" 2
ideritifier-6 J --· con ihon-

(ind1Jx-name-8)
f~nde."f.~nam!·7i F'l\OM l lite;aJ.... 8 }. BY
{ 1dentificr-1 -- l identifier·B J -

!lltc,al-9 I N IL d· . 3] 1· ideniifier-9 ~ con ition-

READ 'file-name llECORD [INTO identifier] {~~V~~I'n KEY} imperotive-.;-trtli?ment

SEEK StE1tement

SEEK file-name RECORD

L---n1M HERE

Appendix C; American National Standard COBOL Format S1'.lmrnary and Reserved Words 327

9
e

TRIM HERE
·---~---------------------------.

STOP Srot~ent

l!ill!i l STOP)/i!eral

SUB1'RACT Statemeut

FoaMAT 1

SUBTRACT fi:lantifir;;r-J1 [z'd,·t~:·1·f<-0_"2 r-.2] ... FRO~'f identtfier-m [UOUNDF.D]
---- !litt-ml-J r ~

[identifier-n [ROUNDED]] . , . [ON SIZE,ERROR 1mperathw-.rtatement]

FOB.MAT 2

SUBTRACr ii~lentifier-1} [idimtifier-2] . F 0 {i<lentifier-m/
---- literal-I literal-2 · · ..:lLM literal-m ~ Q!Y!!:iQ

tdentifier-n [!ill~] [ON SIZE &1!.RQ1! impemtioe-.~tatement]

Fo'.RMlt.'r 3

SUBTRACT 1gg~~ESPONDING} iden.tifo.,.J !IBQM identifie,-2 (ROUNDED]

[ON SIZE ERROR imperotive-state·m.ent]

USE Sentence

FonMA.T 1

Option. 1:

fBEFO!J&j . [~EEL] USE _lAnER l STANDARD [BEGINNING] ~

Option 2:

Jr {fofe-Mme} ... I
Q!!11'.\IT l

'l !filll.! J . !oQ

USE l!lli!'.Qlllij STANDARD[~] [~~ck]
-~l \i.b'IT

bi!ill!; PROCEDURE ON

f {.Rle-name}
I OUTPUT

"'\ INPUT
l J;Q

Fol'IMAT 2

USE AFTER STANDAllD ERROR PHOCEDURE

ON

Nm.li:; Format 3 of the USE Sentence is included in ,l,?onnl1ts for the. REPORT WRITER
foR.ture.

8

• •
• •
• •

• •
• •
• •

SET Statement

Foll.MAT 1

FOll.MAT .2

SeGM~NTA TION - BASIC FORMATS

f!!f fil (f;dcntifie,..4\
JQfill::!:! fill)Uteml-2

Environment Division Segmentation Formats

SEGMENT-LIMIT Clause

Objr.ct~Comp~1ter Paragra.ph

SEGMENT~LIMIT IS 1iri.oritr;-t1umbGr

Procedure Division Segmentation Formats

Priority Number~

aection-name SEcnON [privrlty-nttmbe-r].

SOURCE PROGRAM LIBRARY FACILITY - BASIC FORMATS

COPY Statem<'.nt

COPY lihranJ-ttame tit!~~£

[REPLACING u:ord-1 fil { ~t~:~J~ ~ [word-3 llY- f ir::~~2 } l .. ,] .
tdCJitifier-1; L ideritifwr-2

13

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
1,::1
t'~
12;
Iii<
I ...
I
I
I
I
I
I
I
I
I

I
I
I
I
I ---! TRIM HERE

Q

2
328 supplementary Material

I
\. '
·~

i
I ' \._,.!

i 0··

;-----------------------------------!!!!!!!!!' _______________________________ _
I

w

"" w
:c
:i:
iii ... ,

I
I

Procedure Division Report Writer Formats

GENERATE Statement

GENERATE idBn!i/iM
INITIATE Statement

~report-name-I [report-name-2] , , ,

TERMINATE Statement

TERMINATE t'cport-nmne--1 [report-name:·2] •..

USE Sentence

TABLE HANDLING - BASIC FORMATS

Delio Division Tobie Handling Formats

OCCURS Clati.se

FonMAT l

~ in.teger-2 TIMES

!ASCENDING l [DESCENDING) KEY lS dala·name-2 [data-name-3],, ,] , . ,

[INDEXED ~y index-oonw-1 [<Index-name-2] ...]

OCCURS lntege<-1 T.Q integer-2 TIMES [DEPENDING ON dala-nama-1]

{ASCENDING } [DESC,!lNDING KEY IS data-mJm•-2 [data-oame·3] •..] ...

[INDEXED BY index---nam.e~l [tndex~name-Z] ...]

USAGE Clause

12

[USAGE IS] INDE..X

Proeedure Division Table Hondling Formats

SEARCH Statement

FonMAT l

SEARCH i~nti'fier-1 [VAR11NC {htdex-name~l}] --- --- id.enti/ier-2

[AT END impemtive·-<>tatament-1]

WHEN d 't' n-l {imperatiw~statemeni.:.21
__ co111io NEXT~ f

. fimperatWe-sWtement-3}
[WHEN condiffon-2)NEXT SENTENCE] •••

Fob.MAT 2

WHEN condition~l limpemt1.ve.statement-2l
NEXT SENTENCE f

•
• •
• •

• •
• •
• •

WRITE Statement

FORMAT 1

WRITE record-name [FROM identifier·l] [{~:g:~~E} ADVANCING

FO-li.MA'l' 3

(ident.ifirzr-2 LINESl
l iriteger !~IN.ES r]
\..mnemonic-mime J

~ "'ec1>rd-name [~OM idcnfrfier-1] ~KEY impcratioo-statement

SORT - BASIC FORMATS

Environment Division Sort Formats

FILE-CONTROL PARAGRAPH SELECT SENTENCE

SELECT Sentence (for GIVINC oplfon only)

SELECT file-nnme

ASSIGN TO [intege:r-1] systmn-nmne-1 [systam-·mnne-2] ..

QB. ~;stem-n,.me-.1 [FOR MULTIPLE lt't1i:\:l J

[RESERVE l~ger-21 ALTERNATE [~:is J] ,
SELECT Sentence {for Sort Work Files)

~ sort..file-name

ASSIGN TO [1nt1Jger] sy8tem-name.-1 [system-natr.£-2] ,

I-0 CONTROL PARAGRAPH

SAME RECORD/SORT AREA Clause

fRECOR0·1 SAME l SORT ARRA FOR file-nam6 1 {.file-name-2}

Doto Division Sort Forrnots

SORT-FILE DESCRIPTION

fil! sort~·fi.le~name
;~'iil®i\'wlill~~~'lit~q:

fRECORD IS)
DAT A ureCORDS ARE j data-tiome--1 [data-name-2] .. ,

RECORD CONTAINS [intt!ger-1 IQ] intt<ge-r~2 CHARACTERS

9

I
I
I
I
I
I
I
I
I
I
I
I
I
I
~---TRIM HERE

Appendix C; American National standard COBOL Format summary and Reserved Words 329

TRIM HERE

·---~

Procedure Division Sort Formots

RELEASE Statement

RELEASE sort~r.ecord-name [FROM identifier]

RETURN Statement

RETURN sort-file-11a111e RECORD [!NTO identifier]

AT END lmperali'tJe-statement

SORT Statement

SOHT fil•-nam•-1 ON {~tiiMJfJMG} KEY {data-name-1) ..•

[)DESCENDING}
ON l ASCENDING KEY {data-name-2) , , .] , ,

JINPUT PROCEDURE IS section-name-1 [TI:IB.!J section-name-2]}
I~ file-name-2

{OUTPUT PROCEDURE IS ser.:tian-name--3 [THRU .section-namg.,-4]}
GIVING ~le-nams,'J

REPORT WRITER - BASIC FORMATS

Data Division - Report Wtiter Formah

No·rio~ Formats whieh appear as Basic Format.s withjn the general de11criptlon of the Data
Division are illustrated then'l.

l'ILE SECTION ·· REPORT Clause

ll!film!J" IS l
REPORTS ARE f reporl-name·l [n;parHwme-2] . , •

REPORT SECTION

RE!'ORT~.

fil2 reporNuime

,~~~~mnemonic-name

10

JCONTROL IS] {FIN~L . }
]CONTROLS ARE[~~J,";;f.!:.~f[;:i-2.;1~~'-2],.,

[LIMIT !S] . lLINE (
PACE LIMITS ARE mtBge<-l LINES(

r~ lntegff-2]

(.EIB.fil' DETAIL integer-3]

[LAST DETAIL integc.-4]

[~integer--5],

• •
• •
• •

• •
• •
• •

REPORT CROUP DESCRIPTION ENTRY

Fo2MA1' I

01 [da:tll-twme-l]

LINE NUMBER IS {~~r;~teger-2}
NEXTPACF.

NEXT GROUP IS { ~{~f;~teger-2 -}
NEXT~

USAGE Clause.

Foro.i:A..T 2

rm (daru-Mme-1]

LINE Clause - See Forim1t 1

USAGE Clause.

.f'ORMAT 3

nn [data-name-1]

BLANK WHEN ZERO Clause

COLUMN NUMBER IS integer-I

GROUP INDICATE

JU511F!ED Clause

UNE Clou1>e - See Format l

PICTURE Cfa"Use

RESET ON {identlfi,,,-1)
FINAL J

f~" SQURCEIS !;J,,,;;~2)
®$'@$ W#Jtigi

WM {fd~ff~;,..3} ha~~~er-4} .. , [UPON data-name]

VALUE JS liro•al-1

USAGE Clause.

F'mtMAT 4

01 tlat1i:..name-l

BLANK WHEN ZERO Cl.use

COLUMN Clause--· Sele Format 2

GROUP Chm~ - See Format 2

JOSTIFIED Cla.u::e

LlNE Clause - See Format 1

NEXT GROt:P Clause-· See Format l

PICTURE Clause

RESET Chi.use - See Format 2

{
SOUllCE Clau.,e}
SUM Clause See Formnt 2
VALUE Clm1se

TYPE Clause - See Format 1

USAGE Clause.

11

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I 1:
·~ l::e
Iii< , ...
I
I
I
I
I
I
I
I
I
I
I
I
I
I
[
I
I
I
I
I
I

·-------------------------------rRiM-tt~e----------------------------------

Q

2
330 supplementary Material

')
\.._;'

APPENDIX D: SUMMARY OF FILE-PROCESSING TECHNIQUES AND APPLICABLE
STATEMENTS AND CLAUSES

This appendix summarizes the statements and
specified for each file-processing.technique.
file-name must be specified in a SELECT clause
Division and must be defined by an FD entry in
Data Division.

clauses that may be
In addition, each
in the Environment
the File Section of the

Appendix D: summary of File-Processing Techniques 331

332 Supplementary Material

(~ (" ('
STANDARD SEQUENTIAL FILES- Required and Optional Entries

De"\ice Required Entries Optional Entries
Type

LABEL Other ENVIRONMENT I BLOCK
System-name RECORDS OPEN CLOSE Access Verbs RESERVE ACCESS DIVISION Clauses CONTAJNS3 l&i''.~!!§1;m I USE

Reader I SYSnnn-UR-xxxx-S [-n•me] OMIITED INPUT (LOCK) READ [INTO) lln~~""! I SEQUENTIAL I SAME [RECORD) AREA I I !i3l3l;illfmlll§'li I ERROR4

AT END RERUN

Punch I SYSnnn-UR-xxxx-S [-name) I OMIITED I OUTPUT I [LOCK] IWRITE1 (FROM) lintegerl I SEQUENTIAL I SAME [RECORD] AREA I - rn~!~lil1!IllI1i\i~1l I ERROR4

{BEFORE} NO\ RERUN
(AFrER ADVANCING)

Printe; I SYSnnn-UR-xxxx-S [.name] I OMITTED I OUTPUT I
[LOCK) I WRITE l [FROM) 1in:~··1 I SEQUENTIAL I SAME [Rf.CORD! AREA I I ERROR4

{BEFORE RERUN REPORTING
:i:oi I [1 AFTER } ADVANCING)

ttj
I'd
(!)
:!

°' I-'•
I I I I I I llll!lilllml<~Jtl.ll!:ll!ill"1¥fH§ I NO

x
0 I Tape I SYSnnn-Uf-xx.xx-S [-name] , rANDARD

1
INPUT (REEL) READ (INTO] lin:~"l SEQUENTIAL SAME (RECORD] AREA I [nTO] m I LABEL

OMJ'ITED (REVERSED)
[LOCK J AT END RERUN ERROR

data-name [NO REWIND] NO REWIND MULTIPLE FILE TAPE
en ---j ---- ------

I r----
OUTPUT [REEL) WRITE1 [FROM] LAllEL

DJ [NO REWIND]
[LOCK J [{!~~:8} ADVANCING]

ERROR
Ii NO REWIND REPORTING i.c:

0
Hi

~

SYSnnn-{:}-xxxx-S [-nameJ {STANDARD} I lin:~•r! I-'• Ma" I READ (INTO) I SEQUENTIAL I SAME [RECORD! AREA I (nTO) m I AFTER LABEL
I-' Storage daU-name JNPUJ' [UNIT] AT END RERUN ERROR (!)
I (LOCK]

~ ---- -;,;:,;- - p-:-.:- ;;-.,.] --
I I I r~:L:: 0 OUTPUT 0

ID (LOCK] ({BEFORE} ERROR
ti.I AFTER REPORTING
(ll
:!
IQ

:;; ~ ~ ~ra' 1-INVALID KEY
0 ---- --- -----

I I I r:rr;:B~ ;," -0 · (UNIT] :; [LOCK) READ (INTO! ERROR
,Q · ATEND

~ WRITE2 (FROM]

(ll INVAUDKEY

w I 1ereate 2u,<1ate 3Not for U mode 4 STXIT Op1ioa mw:t be specified oo the CBL control cwd (JJ
(JJ

w DIRECf FILES (mass storage devices only)- Required and Optional Entries
w
-=
gi

I Required Entries I Optional Entries

:g
I I I I I I CLOSE I I Other ENVIRONMENT

ACCESS KEY System-name LABEL RECORDS OPEN Access Verbs DIVISION Oauses I :x'ic~irM~!'i1111J~~J USE
~
('!)
::I I I I SYSru1n-DA-xxxx·{~} [-name) I }STANDARD} I I I rt- [SEQUENTIAL] INPUT (UNIT] READ [INTO]
QJ ldata-name [LOCK] ATEND

~
:s: RANDOM ACTUAL SYSnnn-DA-xxxx-{ ~}(-name) {STANDARD}

~~· ·=· I SEEK I SAME [RECORD] AREA I AFTER LABEL CJ
data-name READ [INTO) RERUN ERROR rt-

('!) INVALID KEY
Ii
I-'·
QJ OUTI'UT [LOCK] I SEEK

WRITE1 [FROM]
INVALID KEY

1.-:-1~~]
I '

I SEEK
READ [INTO)

INVALID KEY
WRJTE2 [FROM)

INVALID KEY

RANDOM J ACTUAL I SYSnnn-DA-KXxx-{ ~} [-name) {STANDARD} INPUT {LOCK] SBEK I \i!ilil!(J31Pl:UlmlllllmmJfi!1 SAME [RECORD] AREA I AFTER LABEL
data-name READ (INTO]

INVALID KEY

. --
OUTl'UT I [LOCK) SEEK

WRITE2

(_j (/ (/

Order -No. GC28-6394-2, Page Revised 4115/71 by TNL GN-0436

APPENDIX E: ASCII CONSIDERATIONS

This compiler supports the American National Standard code for
Information Interchange (ASCII>. Thus the programmer can create and
process tape files recorded in accordance with the following
standards:

• ASCII Standard Code X3.4-1967

• American National Standard X3.27-1969, Magnetic Tape Labels for
Information Interchange

• American National standard 9-track, 800 bpi, NRZI Magnetic Tape
Standard X3.22-1967

ASCII encoded tape files, when read into the system, are
automatically translated in the buffers into EBCDIC. Internal
manipulation of data is performed exactly as if they were EBCDIC
encoded files. For an output file, the system translates the EBCDIC
characters into ASCII in the buffers before writing the file out on
tape. Therefore there are special considerations concerning ASCII
encoded files when they are processed in COBOL. The following
paragraphs discuss these considerations.

Environment Division clauses affected by the specification of ASCII
files are the ASSIGN clause and the RERUN clause.

When ASCII files are to be processed, the §,YStem-name in the ASSIGN
clause has the following format:

SYSnnn-UT-device-C[-offset] [-name]

~nn is a three-digit number between 000 and 221. This number
represents the symbolic unit to which the file is assigned.

g~ for utility must be specified in the £!~~~ field

Q~Yi£g must specify a magnetic tape device (2400).

~ in the Q~g~~i~~~iQ~ field specifies that an ASCII encoded
sequential file is to be processed, or that an ASCII collated sort
is to be performed.

Qff~~~ may be specified only for an ASCII file, and then only if a
block prefix of length 01 through 99 exists. It is a 2-digit field,
and may be specified as follows:

01 through 99
04

for an input file
for an output file (D-mode records only>

name is a one- to seven-character field specifying the external-name
by-which the file is known to the system. If specified, it is the
name that appears in the file-name field of the VOL, DLBL, or TLBL
job control statement. If this field is not specified, the symbolic

Appendix E: ASCII Considerations 334.1

Order No, GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

unit (SYSnnn> is used as the external-name. This field must be
specified if more than one file is assigned to the same symbolic
unit.

The ~~~~m-name in a RERUN clause must not specify an ASCII encoded
file.

ASCII encoded files containing checkpoint records cannot be
processed.

In the Data Division there are special considerations for ASCII
files, both in the File Section and in Data Description Entries.

FILE SECTION

In the File Section the BLOCK CONTAINS clause, the LABEL RECORDS
clause and the RECORDING MODE clause are affected. There are also
special considerations regarding the compiler default options for
recording mode.

For an ASCII file that contains a £uff~[2tfs~:t field, the following
considerations apply:

• If the BLOCK CONTAINS clause with the RECORDS option is
specified, or if the BLOCK CONTAINS clause is omitted, the
compiler compensates for the buffer offset field.

• If the BLOCK CONTAINS clause with the CHARACTERS option is
specified, the programmer must include the buffer offset as part
of the physical record.

All three options of the clause (OMITTED/STANDARD/data-name> are
allowed. However, if the programmer specifies the dat~~~am~ option,
he must make sure that data-name refers only to user standard
labels. Nonstandard labels are not allowed for ASCII files.

334.2 supplementary Material

·._.)

(i

"'-"'

(

(I

"-"/

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Co~J2iler Calculation of Recording Mode

When the RECORDING MODE clause is not used to specify the mode of
the records in an ASCII file, the COBOL compiler determines the mode
by scanning each record description entry. The default option may
be:

F if all the records are defined as being the same size.

D if the records are defined as variable in size, or if the RECORD
CONTAINS clause specifies variable size records. Internally D
mode is the equivalent of V mode for EBCDIC encoded files.

DATA DESCRIPTION ENTRIES

For ASCII files ."t:,h~ Data D~scrigtion Entries ?tffected are the
PICTURE clause, $~Jll~(~ftl~~iiJl~~j'~~I and the USAGE clause.

For ASCII files all five categories of data are valid.

If a data item is numeric, however, and the item is signed, then the
SIGN clause with the SEPARATE CHARACTER option must also be
specified.

For data items in ASCII files, only the DISPLAY option of the USAGE
clause is valid.

For ASCII files, there are special considerations in regard to Label
Declaratives and relation conditions.

Appendix E: ASCII considerations 334.3

Order No. GC28-6394-2, Page Revised 4/15171 by TNL GN-0436

Since the user may not specify nonstandard labels for an ASCII
encoded file, the BEFORE option of the LABEL PROCEDURE Declarative
is not allowed.

334.4 Supplementary Material

'·) ,.._,

Order No. GC2B-6394-2, Page Revised 4/15/71 by TNL GN-0436

'"'-"

\.._ .. ./

Appendix E: ASCII Considerations 334.5

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

r---------------------------------T--------------------------------1
I ~BCDI~£Q1lating_£gg~~~£~ I ASCII Collating Seguence I
~---------------------------------t--------------------------------~
I 1. <space) I 1. <space) I
I 2. (period, decimal point) I 2, " (quotation mark> I
I 3. < <less than) I 3. $ (currency symbol) I
I 4. (<left parenthesis> I I
I I I
I 5. + (pl us symbol) I (left parenthesis I I
I 6. $ (currency symbol) I 6. (right parenthesis) I
I 7. * (asterisk I I 7. * (asterisk) I
I 8. (right parenthesis) I 8. + (plus symbol) I
I 9. (semicolon) I 9. (comma> I
I 10. <hyphen, minus symbol) j 10. (hyphen, minus symbol)
111. / <stroke, virgule,. slash) 111. (period, decimal point>
112. , (comma) 112. / (stroke, virgule, slash)
113. > than) I

I
I 113-22. 0 through 9
115. = (equal sign> I
116. " <quotation mark> I
I 123. (semicolon)
I J24. < (less than!
117-42. A through Z 12~. - (equ~l sign)
I 126. > (greater than)
143-52. 0 through 9 127-52. A through Z
L---------------------------------i--------------------------------J
Figure 21. EBCDIC and ASCII Collating Sequences for COBOL

Characters -- in ascending order

IV -- SORT FEATURE

For ASCII-collated sorts, there are special considerations in the
Environment Division and in the Data Division.

ENVIRONMENT DIVISION

For ASCII-collated sorts, there are special considerations for the
ASSIGN clause IJl~~~~~'lll~~l~~~(~~~li\\l~r~

The ASSIGN clause for an ASCII collated sort has the same format as
for an EBCDIC collated sort. However, the ~~!~~=~~~~ must be in
the following format:

SYSnnn-class-device-c-name

The following considerations apply:

SYSnnn must specify the fixed sort work units assigned to the
sort-file. The first work unit for every sort-file in the program
must be assigned to SYS001, the second to SYS002, etc.

Qlass may be specified as UT or DA.

334.6 Supplementary Material

' i

_/

f
\ /
\..,_../'

device may specify a utility or mass storage device.

~ in the QE9i!_nizati2!! field specifies an ASCII collated sort.

name specifies the external-name by which the sort-file is known to
the system. If the file has standard labels, the name field must be
specified as SORTWK1 for SYS001, SORTWK2 for SYS002, etc.

Note: For an ASCII-collated sort, the buffer Qffse~ field is not
permitted.

DATA DIVISION

USAGE Clause

sorts, there are special considerations for the
USAGE clause.

If an ASCII-collated sort is requested, the sort keys must be
DISPLAY items, explicitly or implicitly.

Appendix E: ASCII Considerations 334.7

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Program Product Information -- Version 3

APPENDIX F: SYMBOLIC DEBUGGING FEATURE

A programmer using IBM Full American National Standard COBOL,
Version 3, under the Disk Operating system, has several methods
available to him for testing and debugging his programs. Use of the
symbolic debugging feature is the easiest and most efficient method
for testing and debugging and is described in detail in this
appendix.

The symbolic debug option produces a symbolic formatted dump of
the object program's data area when the program abnormally
terminates. It also enables the programmer to request dynamic dumps
of specific data-names at strategic points during program execution.
If two or more COBOL programs are link edited together and one of
them terminates abnormally, the program causing termination and any
callers compiled with the symbolic d.ebug option, up to and including
the main program, will be given a formatted dump.

The abnormal termination dump consists of the following parts:

1. Abnormal termination message, including the number of the
statement and of the verb being executed at the time of an
abnormal termination.

2. Selected areas in the Task Global Table.

3. Formatted dump of the Data Division including:

(a) for an SD, the card number, the sort-file-name, the type,
and the sort record.

(bl for an FD, the card number, the file-name, the type, SYSnnn,
DTF status, the contents of the Pre-DTF and DTF in
hexadecimal, and the fields of the record.

(c) for an RD, the card number, the report-name, the type, the
report line, and the contents of PAGE-COUNTER and
LINE-COUNTER if present.

(d) For an index-name, the name, the type, and the contents in
decimal.

Note: For DTFDA when ACCESS IS RANDOM, the actual key is not
provided in the Pre-DTF.

Operation of the symbolic debug option is dependent on
object-time control cards placed in the input stream. These cards
are discussed below.

The operation of the symbolic debug option is determined by two
types of control cards:

Program-control card -- required if abnormal termination and/or
dynamic dumps are requested.

334.8 Supplementary Material

\ ' . .__,

\ I ,___,

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Line-control card -- required only if dynamic dumps are
requested.

Program-Control Cards: A program-control card must be present at
execution time for any program requesting symbolic debugging. A
program-control card must contain the following information:

The 1-8 character program-name of the COBOL program compiled
using symbolic debugging.

The logical unit and file-name assigned to the file produced at
compile time on SYS005.

Additional optional parameters can also be specified:

An entry used to provide a trace of a program-name when several
programs are link edited together. Each time the specified
program is entered, its program name is displayed.

Two formats of the Data Division area in the abnormal
termination dump are allowed:

1. Level-01 items are provided in hexadecimal. Items
subordinate to level-01 items are printed in EBCDIC if
possible. Level-77 items are printed both in hexadecimal
and EBCDIC.

2. Level-77 items and items subordinate to level-01 items are
provided in EBCDIC. If these items contain unprintable
characters, hexadecimal notation is provided. This is the
default option.

Line-control Cards: A line-control card must contain the following
Information:-~~-

The card number associated with the point in the Procedure
Division at which the dynamic dump is to be taken. The number
specified is the compiler-generated card number.

Additional optional parameters can also be specified:

The position of the verb in the specified line number at which
the dynamic dump is to be taken. When the verb position is not
specified, the first verb in the line is assumed. Any verb
position not exceeding 15 may be specified.

An equivalent to the COBOL statement "ON n AND EVERY m UNTIL k
" This option limits the request dynamic dumps to

specified times. For example "ON n" results in one dump,
produced the gth time the line number is reached during
execution. "ON n AND EVERY m" results in a dump the first time
at the nth execution of the specified line number, and
thereafter at every ~th execution until end-of-job.

Two formats of the Data Division areas displayed in the dynamic
dump are allowed:

1. Level-01 items are provided in hexadecimal. Items
subordinate to level-01 items are provided in EBCDIC, if
possible. Level-77 items are provided both in hexadecimal
and EBCDIC.

2. Level-77 items subordinate to level-01 items are provided
in EBCDIC. If these items contain unprintable characters,
hexadecimal notation is provided. Note that if a group
item is specified, neither the group nor the elementary
items in the group are provided in hexadecimal. This is
the default option.

Appendix F: Symbolic Debugging Feature 334.9

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

Selected areas of the Data Division to be dumped. A single
data-name or a range of consecutive data-names can be
specified. (If the programmer wishes to see a subscripted
item, he specifies the name of the item without the subscript;
this results in a dump of every occurrence of the subscripted
item.)

A dump of everything that would be dumped in the event of an
abnormal termination can also be specified. This allows the
programmer to receive a formatted dump at normal end-of-job.
To do this, the programmer must specify the generated statement
number of the STOP RUN, GOBACK, or EXIT PROGRAM statement.

Figure 22 is an illustration of a program that utilizes the
symbolic debugging features. In the following description of the
program and its output, letters identifying the text correspond to
letters in the program listing.

©
0

©

©

©

©

Because the SYMDMP option is requested on the CBL card, the
logical unit SYS005 must be assigned at compile time.

The CBL card specifications indicate that an alphabetically
ordered cross-reference dictionary, a flow trace of 10
procedures, and the symbolic debug option are being requested.

An alphabetically ordered cross-reference dictionary of
data-names and procedure-names is produced by the compiler as a
result of the SXREF specification on the CBL card.

The file assigned at compile time to SYS005 to store SYMDMP
information is assigned to SYS009 at execution time.

The SYMDMP control cards placed in the input stream at
execution time are printed along with any diagnostics.

G) The first card is the program-control card where:

(a) TESTRUN is the PROGRAM-ID.

Cb> 9 is the logical unit to which the SYMDMP file is
assigned.

(c) MT indicates that the SYMDMP file is on tape.

(d) (HEX) indicates the format of the abnormal termination
dump.

The second card is a line-control card which requests a
(HEX) formatted dynamic dump of COUNT, NAME-FIELD,
NO-OF-DEPENDENTS, and RECORD-NO prior to the first and
every fourth execution of generated card number 71.

The third card is also a line-control card which requests a
CHEX) formatted dynamic dump of WORK-RECORD and B prior to
the execution of generated card number 80.

The type code combinations used to identify data-names in
abnormal termination and dynamic dumps are defined. Individual
codes are illustrated in Table 28.

The dynamic dumps requested by the first line-control card.

334.10 Supplementary Material

\._ .. /

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489

~ The dynamic dumps requested by the second line-control card.

0

©
0

®
0
©
©

Program interrupt information is provided by the system when a
program terminates abnormally.

The statement number information indicates the number of the
verb and of the statement being executed at the time of the
abnormal termination. The name of the program containing the
statement is also provided.

A flow trace of the last 10 procedures executed is provided
because FLOW=lO was specified on the CBL card.

Selected areas of the Task Global Table are provided as part of
the abnormal termination dump.

For each file-name, the generated card number, the file type,
SYSnnn, the DTF status, and the fields of the Pre-DTF and DTF
in hexadecimal are provided,

The fields of records associated with each FD are provided in
the format requested on the ,Program-control card.

The contents of the fields of the Working-Storage Section are
provided in the format requested on the program-control card.

The values associated with each of the possible subscripts are
provided for data items described with an OCCURS clause.

Asterisks appearing within the EBCDIC representation of the
value of a given field indicate that the type and the actual
content of the field conflict.

~: When using the symbolic debugging option, level numbers
appear "normalized" in the symbolic dump produced. For example, a
group of data items described as:

01 RECORDA.
05 FIELD-A.

10 FIELD-Al PIC X.
10 FIELD-A2 PIC X.

will a.ppear as follows in symbolic debugging output:

01 RECORDA •••
02 FIELD-A •••
03 FIELD-Al •••
03 FIELD-A2 •••

1. Referring to the statement number information (.j) provided by
the symbolic debug option, it is learned that 8<e abend
occurred during the execution of the first verb on card 80.

2. Generated card number 80 contains the statement
COMPUTE B = B + 1.

3. verifying the contents of B at the time of the abnor~.~.~~'"'•'''.''""
:l:E,;:t"~!!l~tion @ it ?an be seen that th~ usa?e of B <:11i'M~i'l1i!
~~~ conflicts with the value contained in the data area 
re's'e'rved for B (numeric displayl. 

Appendix F: Symbolic Debugging Feature 334.11 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

4. The abnormal termination occurred while trying to perform an 
addition on a display item. 

More complex errors may require the use of dynamic dumps to 
isolate the problem area. Line-control cards are included in 
TESTRUN merely to illustrate how they are used and the output they 
produce. 

• Table 28. Individual Type codes Used in SYMDMP output. 
r------------------------T---------------------------------------------1 
I Code I Meaning I 
~-----'--------------------+---------------------------------------------~ 
I A I Alphabetic I 
I B I Binary I 
I D I Display I 
I E I Edited I 
I * I Subscripted Item I 

l :z:~:~:~:~:•ir== ! 
I S I Signed I 
I OT I Overpunch Sign Trailing I 
I I 
I I 
I I 
L------------------------i---------------..:.-----------------------------J 

334.12 supplementary Material 



I 
I "--/ 

\ I 

~ 

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

// JOB DEBUGL 
/I OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS,DUMP 
// ASSGN SYS005,X'185' ~A 
/I EXEC FCOBOL \.V 

CBL SXREF,FLow~10,sYMDMP,QUOTE,SEQ .----(!) 
00001 
00002 
00003 
00004 
00005 
00006 
00007 
00008 
00009 
00010 
00011 
00012 
00013 
00014 
00015 
00016 
00017 
00018 
00019 
00020 
00021 
00022 
00023 
00024 
00025 
00026 
00027 
00028 
00029 
00030 
00031 
00032 
00.033 
00034 
00035 
00036 
00037 

000010 IDENTIFICATION DIVISION. 
000020 PROGRAM-ID. TESTRUN. 
000030 AUTHOR, PROGRAMMER NAME, 
000040 INSTALLATION. NEW YORK PROGRAMMING CENTER, 
000050 DATE-WRITTEN, FEBRUARY 10, 1971, 
000060 DATE-COMPILED. 03/05/71 
000070 REMARKS, THIS PROGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR 
000080 COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
000090 INPUT. 
000100 
000110 ENVIRONMENT DIVISION, 
000120 CONFIGURATION SECTION. 
000130 SOURCE-COMPUTER, IBM-360-H50. 
000140 OBJECT-COMPUTER. IBM-360-H50. 
000150 INPUT-OUTPUT SECTION. 
0Q0160 FILE-CONTROL. 
000170 SELECT FILE-1 ASSIGN TO SYSOOB-UT-2400-S. 
000180 SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S, 
000190 
000200 DATA DIVISION. 
000210 FILE SECTION, 
000220 FD FILE-1 
000230 LABEL RECORDS ARE OMITTED 
000240 BLOCK CONTAINS 5 RECORDS 
000250 RECORDING MODE IS F 
000255 RECORD CONTAINS 20 CHARACTERS 
000260 DATA RECORD IS RECORD-1, 
000270 01 RECORD-1. 
000280 05 FIELD-A PIC X!20l. 
000290 FD FILE-2 
000300 LABEL RECORDS ARE OMITTED 
000310 BLOCK CONTAINS 5 RECORDS 
000320 RECORD CONTAINS 20 CHARACTERS 
000330 RECORDING MODE IS F 
000340 DATA RECORD IS RECORD-2. 
000350 01 RECORD-2. 
000360 05 FIELD-A PIC Xl20l, 

• Figure 22. Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 1 of 12) 

Appendix F: symbolic Debugging Feature 334.13 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

00038 000370 
00039 000360 
00040 000390 
00041 000400 
00042 ooouo 
00043 000420 
00044 000430 
00045 000440 
00046 000450 
00047 000460 
00048 000470 
00049 000480 
00050 000490 
00051 000500 
00052 000510 
00053 000520 
00054 000530 
00055 000534 
00056 000535 
00057 000536 
00058 000540 
00059 000550 
00060 000560 
00061 000570 
00062 000580 
00063 000590 
00064 000600 
00065 000610 
00066 000620 
00067 000630 
00068 00(,640 
00069 000650 
00070 000660 
00071 000670 
00072 000680 
00073 000690 
00074 000700 
00075 000710 
00076 000720 
00077 000730 
00078 000740 
00079 000750 
00080 000755 
00081 000760 
00082 000770 
00083 000780 
00084 000790 

• Figure 22. 

WORKING-STORAGE SECTION. 
01 FILLER. 

02 COUNT PIC S99 COMP SYNC. 
02 ALPHABET PIC X(26l VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ", 
02 ALPHA REDEFINES ALPHABET PIC X OCCURS 26 TIMES. 
02 NUMBR PIC S99 COMP SYNC. 
02 DEPENDENTS PIC X<26l VALUE "01234012340123401234012340", 
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES. 

01 WORK-RECORD. 
05 NAME-FIELD PIC X. 
05 FILLER PIC X VALUE IS SPACE, 
05 RECORD-NO PIC 9999, 
05 FILLER PIC X VALUE IS SPACE, 
05 LOCATION PIC AAA VALUE IS "NYCw, 
05 FILLER PIC X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PIC XX. 
05 FILLER PIC Xt7l VALUE IS SPACES. 

01 RECORDA. 
02 A PICTURE 59(41 VALUE 1234. 
02 B REDEFINES A PICTURE S9(7) COMPUTATIONAL-3, 

PROCEDURE DIVISION. 
BEGIN. 

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED 
AND INITIALIZES COUNTERS. 

STEP-1, OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMBR. 
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE 
CONTAINED IN THE FILE, WRITES THEM ON TAPE, AND DISPLAYS 
THEM ON THE CONSOLE, 

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO 
NAME-FIELD, 
MOVE DEPEND (COUNT} TO NO-OF-DEPENDENTS. 
MOVE NUMBR TO RECORD-NO. 

STEP-3. DISPLAY WORK-RECORD UPON CONSOLE. WRITE RECORD-1 FROM 
WORK-RECORD, 

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26, 
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS 
IT AS INPUT, 

STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2. 
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES 
OUT EMPLOYEES WITH NO DEPENDENTS, 

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-6, 
COMPUTE B = B + 1. 

STEP-7. IF NO-OF-DEPENDENTS IS EQUAL TO "O" MOVE "Z" TO 
NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6. 

STEP-8. CLOSE FILE-2, 
STOP RUN. 

Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 2 of 12) 

334.14 Supplementary Material 

) 
\ , 
·~ 



INTRNL NAME 

DNM=l-148 
DNM=l-178 
DNM=l-199 
DNM=l-216 
DNM=l-246 
DNM=l-267 
DNM=l-287 
DNM=l-306 
DNM=l-321 
DNM=l-339 
DNM=l-357 
DNM=l-372 
DNM=l-392 
DNM=l-408 
DNM=l-432 
DNM=l-452 
DNM=l-471 
DNM=l-490 
DNM=2-000 
DNM=2-018 
DNM=2-037 
DNM=2-063 
DNM=2-082 
DNM=2-102 
DNM=2-113 

• Figure 22. 

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

LVL SOURCE NAME BASE DIS PL INTRNL NAME DEFINITION USAGE R O Q M 

FD FILE-1 
01 RECORD-1 
02 FIELD-A 
FD FILE-2 
01 RECORD-2 
02 FIELD-A 
01 FILLER 
02 COUNT 
02 ALPHABET 
02 ALPHA 
02 NUMBR 
02 DEPENDENTS 
02 DEPEND 
01 WORK-RECORD 
02 NAME-FIELD 
02 FILLER 
02 RECORD-NO 
02 FILLER 
02 LOCATION 
02 FILLER 
02 NO-OF-DEPENDENTS 
02 FILLER 
01 RECORDA 
02 A 
02 B 

DTF=Ol 
BL=l 
BL=l 

DTF=02 
BL=2 
BL=2 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 
BL=3 

DNM=l-148 
000 DNM=l-178 
000 DNM=l-199 

DNM=l-216 
000 DNM=l-246 
000 DNM=l-267 
000 DNM=l-287 
000 DNM=l-306 
002 DNM=l-321 
002 DNM=l-339 
Ole DNM'"'l-357 
OlE DNM=l-372 
OlE DNM=l-392 
038 DNM=l-408 
038 DNM=l-432 
039 DNM=l-452 
03A DNM=l-471 
03E DNM=l-490 
03F DNM=2-000 
042 DNM=2-018 
0113 DNM=2-037 
045 DNM=2-063 
050 DNM=2-082 
050 DNM=2-102 
050 DNM=2-113 

DS OCL20 
DS 20C 

DS 0CL20 
DS 20C 
DS OCL56 
DS lH 
DS 26C 
DS lC 
DS lH 
DS 26C 
DS lC 
DS 0CL20 
DS lC 
DS lC 
DS 4C 
OS lC 
DS 3C 
OS lC 
DS 2C 
DS 7C 
OS 0CL4 
DS 4C 
DS 4P 

Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 3 of 12) 

DTFMT 
GROUP 
DISP 
DTFMT 
GROUP 
DISP 
GROUP 
COMP 
DISP 
DISP 
COMP 
DISP 
DISP 
GROUP 
DISP 
DISP 
DISP-NM 
DISP 
DISP 
DISP 
DISP 
DISP 
GROUP 
DISP-NM 
COMP-3 

R 0 

R 0 

R 

Appendix F: Symbolic Debugging Feature 334.15 

F 

F 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

TGT 

SAVE AREA 
SWITCH 
TALLY 
SORT SAVE 
ENTRY-SAVE 

MEMORY MAP 

SORT CORE SIZE 
NSTD-REELS 
SORT RET 
WORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
PGT-VN TBL 
TGT-VN TBL 
SORTAB ADDRESS 
LENGTH OF VN TBL 
LNGTH OF SORTAB 
PGM ID 
A(INITll 
UPSI SWITCHES 
DEBUG TABLE PTR 
CURRENT PRIORITY 
TA LENGTH 
PROCEDURE BLOCK1 PTR 
UNUSED 
OVERFLOW CELLS 
BL CELLS 
DTFADR CELLS 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STORAGE-II 
BLL CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
ONCTL CELLS 
PFMCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA =2 
XSASW CELLS 
XSA CELLS 
PARAM CELLS 
RPTSAV AREA 
CHECKPT CTR 
IOPTR CELLS 
DEBUG TABLE 

003E8 

003E8 
00430 
00434 
00430 
0043C 
00440 
00444 
00446 
00448 
00570 
0057C 
00580 
00584 
00588 
0058C 
005BE 
00590 
00598 
0059C 
005A4 
OOSAB 
005A9 
005AC 
005BO 
005B4 
005B4 
005CO 
005C8 
005D0 
OOSDO 
00500 
00500 
005D4 
005D4 
005D4 
005D4 
OOSDC 
OOSDC 
005DC 
005EO 
005E4 
OOSE4 
005E4 
005Ell 
005E8 
005E8 
005E8 
OOSEB 

• Figure 22. Using the Symbolic Debugging Features to Debug the 
Program TESTRUN <Part 4 of 12) 

334.16 supplementary Material 

.. '-" 



.. 

( ; 
~· 

I 
\ ; 

~ 

Order No. GC28-639ij-2, Page Revised 5/15/72 by TNL GN2B-0489 

LITERAL POOL IHEXI 

00650 (LIT+O) 
00668 (LIT+24) 

00000001 OOlAlCSB 5BC2D6D7 C5D5405B 5BC2C3D3 D6E2C55B 
5BC2C6C3 D4E4D300 C0000000 

DISPLAY LITERALS (BCD) 

00674 (LTL+36) I WORK-RECORD' 

PGT 

DEBUG LINKAGE AREA 
OVERFLOW CELLS 
VIRTUAL CELLS 
PROCEDURE NAME CELLS 
GENERATED NAME CELLS 
SUBDTF ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 
PROCEDURE BLOCK CELLS 

REGISTER ASSIGNMENT 

REG 6 
REG 1 
REG 8 

BL =3 
BL =1 
BL =2 

005F8 

005F8 
00600 
00600 
00624 
00634 
00648 
00648 
00650 
00674 
00680 

WORKING-STORAGE STARTS AT LOCATION OOOEB FOR A LENGTH OF 00058. 

60 

63 

63 

• Figure 22. 

000680 START EQU • 
000680 01 00 BCR o, 0 
000682 58 FO C 018 L 15, 018<0, 12) 
000686 05 EF BALR 14,15 
000688 58 FO C Ole L 15, OlC(0, 121 
00068C 05 1F BALR 1, 15 
00068E 003C DC X' 003C' 
000690 07 00 BCR 0, 0 
000692 58 FO c 018 L 15, 018<0,12l 
000696 05 EF BALR 14,15 
000698 58 FO c 01C L 15, 01c10, 121 
00069C 05 1F BALR 1,15 
00069E 003F DC X' 003F 1 

0006AO 58 FO c 018 L 15, 018 ( 0, 12) 
0006A4 05 EF BALR 14,15 
0006A6 41 10 C 05F LA 1 1 05FIO,12) 
0006AA 58 00 D 1D8 L 0, 1D8(0,13) 
0006AE 18 40 LR 4,0 
000680 01 00 BCR o, 0 
000682 05 FO BALR 15, 0 
000684 50 00 F 008 ST 0,008(0,151 
0006B8 45 00 F OOC BAL 0, OOC( O, 151 
0006BC 00000000 DC x• 00000000• 
0006CO OA 02 SVC 2 

Using the symbolic Debugging Features to Debug the 
Program TESTRUN (Part 5 of 12> 

V <I LB DD BG 4 I 

V<ILBDFLW11 

V <ILBDDBG 41 

V(ILBDFLW11 

V (I LBDDBG4) 

LIT+7 
DTF=l 

Appendix F: Symbolic Debugging Feature 334.17 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-04B9 

© 
DATA NAMES 

A 
lµ.PHA 
ALPHABET 
B 
COUNT 
DEPEND 
DEPENDENTS 
FIELD-A 
FIELD-A 
FILE-1 
FILE-2 
LOCATION 
NAME-FIELD 
NO-OF-DEPENDENTS 
NUMBR 
RECORD-NO 
RECORD-1 
RECORD-2 
RECORDA 
WORK-RECORD 

© 
PROCEDURE NAMES 

BEGIN 
S'l'EP-1 
STEP-2 
STEP-3 
STEP-4 
STEP-5 
STEP-6 
STEP-7 
STEP-8 

CARD ERROR MESSAGE 

CROSS-REFERENCE DICTIONARY 

DEFN REFERENCE 

000056 
OQ0042 000067 
000041 
000057 000080 
000040 000063 000067 000069 000073 
000045 000069 
000044 
000029 
000037 
000017 000063 000071 000076 
000018 000076 000079 000083 
000051 
000047 000067 
000053 000069 000081 
000043 000063 000067 000070 
000049 000070 
000028 000071 
000036 000079 
000055 
000046 000071 000079 000082 

DEFN REFERENCE 

000060 
000063 
000067 000073 
000071 000073 
000073 
000076 
000079 000082 
000081 
000083 000079 

56 
67 
67 

ILA2190I-W 
ILA5011I-W 
ILA5011I-W 

PICTURE CLAUSE IS SIGNED, VALUE CLAUSE UNSIGNED, ASSUMED POSITIVE, 
HIGH ORDER TRUNCATION MIGH'I' OCCUR. 
HIGH ORDER TRUNCATION MIGHT OCCUR. 

/I EXEC LNKEDT 

JOB DEBUGL 

ACTION 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 
LIST 

TAKEN MAP 
INCLUDE ILBDDBGO 
AUTOLlNK IJFFBZZN 
AUTO LINK IJJCPDVl 
AUTOLINK ILBDADRO 
AUTOLINK ILBDDSPO 
INCLUDE IJJCPDl 
AUTOLINK ILBDFLWO 
AUTOLINK ILBDIMLO 
AUTOLINK ILBDNNSO 
AUTO LINK ILBDSAEO 
ENTRY 

DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT 

• Figure 22. Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 6 of 12) 

334.18 Supplementary Material 

'\_) 

I ' 

I\~ 



\ ; 
~ 

' \. ./ ,_, 

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

PHASE XFR-AD LOCORE 

PHASE*** 003CE0 0032AO 

* UNREFERENCED SYMBOLS 

003 UNRESOLVED ADDRESS CONSTANTS 

/I ASSGN SYSOOB,X1 182' 
/I ASSGN SYS009,X'185' ,.._tjj\ 
/I EXEC \.!) 

HICORE OSK-AD 

005E2B 66 011 2 

ESD TYPE 

CSECT .. ENTRY 
ENTRY 

• ENTRY 
ENTRY 
ENTRY .. ENTRY 
ENTRY 
ENTRY 
ENTRY 

CSECT 
ENT.KY 
ENTRY 

CSECT 
• ENTRY .. ENTRY 

* ENTRY .. ENTRY 

CSE CT .. ENTRY 

CSECT 

CSECT 
• ENTRY .. ENTRY .. ENTRY 

CSECT 
ENTRY 

CSECT 

CSECT_ 

CSECT 

* ENTRY 

CSECT 
ENTRY 

• ENT!!.Y 

EXTRN 
EXT RN 
EXT RN 

LABEL LOADED REL-FR 

ILBDDBGO 0032AO 0032AO 
ILBDDBGl 0033F6 
ILBDDBG2 003564 
ILBDDBG3 003702 
ILBDDBG4 00370C 
ILBDDBG5 00376A 
ILBDDBG6 0037EC 
STXITPSW 003898 
ILBDDBG7 003800 
SORTEP 003A38 

ILBDFLWO 005818 005819 
ILBDFLW2 005984 
ILBDFLW1 005BD8 

ILBOOSPO 005038 005038 
ILBDDSSO 005038 
ILBDDSSl 005590 
ILBDDSS2 005628 
ILBDDSS3 0057EO 

IJJCPDVl 004800 004800 
IJJCPDV2 004800 

TES TR UN 003CEO 003CE0 

IJFFBZZN 004790 004790 
IJFFZZZN 0011790 
IJFFBZZZ 004790 
IJFFZZZZ 004790 

ILBOSAEO 005010 005010 
ILBOSAEl 005D30 

ILBDMNSO 005008 005008 

ILBDIMLO OOSCBO OOSCBO 

ILBDADRO 004CEO 004CE0 
ILBDADRl 004CEC 

IJJCPDl 004EqQ 0041::40 
IJJCPDlN 004E40 
IJJCPD3 004E40 

ILBDSTNO 
ILBDSRTO 
ILBDTEF3 

•Figure 22. Qsing the Symbolic Debugging Features to Debug the 
Program TESTRUN {Part 7 of 12) 

Appendix F: Symbolic Debugging Feature 334.19 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

SYMoMP CONTROL CARDS 

(!) TESTRUN,009,MT, (HEX) 

(!) 71,0N 1,4, IHEXl;COUNT,NAME-FIELD,NO-OF-DEPENDENTS,RECORD-NO 

(!) 80, !HEXl,WORK-RECORD,B 

NO ERRORS FOUND IN CONTROL CARDS 

© 
TYPE CODES USED IN SYMDMP OUTPUT 

CODE MEANING 

© 

A 
AN 
ANE 
D 
DE 
F 
FD 
NB 
NB-S 
ND 
ND-OL 
ND-OT 
ND-SL 
ND-ST 
NE 
NP 
NP-S 

• 
TESTRUN AT CARD 0000~1 

LOC CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000041 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

TEST RUN AT CARD 000071 
LOC CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000047 02 NAJll1E-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

TESTRUN AT CARD 000071 
LOC CARD LV NA.ME 

003DCB 000040 02 COUNT 

003E00 000047 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

ALPHABETIC 
ALPHANUMERIC 
ALPHANUMERIC EDITED 
DISPLAY (STERLING NONREPORT) 
DISPLAY EDITED (STERLING REPORT) 
FLOATING POINT (COMP-1/COMP-21 
FLOATING POINT DISPLAY (EXTERNAL FLOATING POINT) 
NUMERIC BINARY UNSIGNED (COMP) 
NUMERIC BINARY SIGNED 
NUMERIC DISPLAY UNSIGNED (EXTERNAL DECIMAL! 
NUMERIC DISPLAY OVERPUNCH SIGN LEADING 
NUMERIC DISPLAY OVERPUNCH SIGN TRAILING 
NUMERIC DISPLAY SEPARATE SIGN LEADING 
NUMERIC DISPLAY SEPARATE SIGN TRAILING 
NUMERIC EDITED 
NUMERIC PACKED DECIMAL UNSIGNED (COMP-3) 
NUMERIC PACKED DECIMAL SIGNED 
SUBSCRIPTED 

TYPE VALUE 

NB-S +01 
(HEX) 0001 

AN A 

AN 0 

ND 0001 

TYPE VALUE 

NB-S +05 
(HEX) 0005 

AN E 

AN 4 

ND 0005 

TYPE VALUE 

NB-S +09 
(HEX) 0009 

AN I 

AN 3 

ND 0009 

• 1',igure 22. Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 8 of 12) 

334.20 Supplementary Material 

I 

"'-" 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

TESTRUN AT CARD 000071 
LOC CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000047 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

TESTRUN AT CARD 000071 
LOC CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000047 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

TESTRUN AT CARD 000071 
L0C CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000047 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

TESTRUN AT CARD 000071 
LOC CARD LV NAME 

003DC8 000040 02 COUNT 

003EOO 000047 02 NAME-FIELD 

003EOB 000053 02 NO-OF-DEPENDENTS 

003E02 000049 02 RECORD-NO 

@ 
TESTRUN AT CARD 000080 

LOC CARD LV NAME 

003EOO 
003EOO 
003E01 
003E02 
003E06 
003E07 
003EOA 
003EOB 
003EOD 

000046 01 WORK-RECORD 

0000117 
OOOOlHl 
0000119 
000050 
000051 
000052 

,000053 
000054 

02 NAME-FIELD 
02 FILLER 
02 RECORD-NO 
02 FILLER 
02 LOCATION 
02 FILLER 
02 NO-OF-DEPENDENTS 
02 FILLER 

003E18 000057 02 B 

IHEXI 

!HEX) 

CHEXl 

<HEX) 

(HEX) 

lHEXI 

TYPE 

NB-S 

AN 

ND 

TYPE 

NB-S 

AN 

AN 

ND 

TYPE 

NB-S 

AN 

AN 

ND 

TYPE 

NB-S 

AN 

AN 

ND 

TYPE 

AN 
AN 
ND 
AN 
A 
AN 
AN 
AN 

NP-S 

VALUE 

+13 
OOOD 

M 

2 

0013 

VALUE 

+17 
0011 

Q 

L 

0017 

VALUE 

+21 
0015 

u 

0 

0021 

VALUE 

+25 
0019 

y 

0025 

VALUE 

Cl40FOFO FOF140D5 E8C340FO 
A 

0001 

NYC 

0 

• 1•2• 3+ 
FlF2F3C4 

• Figure 22. Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 9 of 12) 

40404040 40404040 

Appendix F: Symbolic Debugging Feature 334. 21 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

COBOL ABEND DIAGNOSTIC AIDS 

INTERRUPT CODE 7 LAST PSW ADDR BEFORE ABEND C00045DC -----<J) 
PROGRAM TESTRUN 

LAST CARD NUMBER/VERB NUMBER EXECUTED -- CARD NUMBER 000080/VERB NUMBER 01. 

FLOW TRACE 
TESTRUN 000067 000071 000067 000071 000067 000071 000067 000071 000076 000079 ~ 

DATA DIVISION DUMP OF TESTRUN 

CD 
TASK GLOBAL TABLE LDC VALUE 

SAVE AREA 0040C8 OOSE9103 102D4780 00005C10 800045BC 00004506 40004508 00003EBO 00003FF8 
0040E8 0000001A 00003EBO 500046CC 00003DC8 00003F3C 00003FF8 00004696 00003CEO 
004108 400045DC 000042D8 

SWITCH 004110 3C00004B 
TALLY 004114 00000000 
SORT-SAVE 004118 00000000 
ENTRY-SAVE 001111C 00004360 
SORT-CORE-SIZE 004120 00000000 
NSTD-REELS 004124 9508 
SORT-RETURN 004126 4000 
WORKING CELLS 004128 00003EBO 00003F90 OOOOOOlA 00003EBO 500046CC F41E9101 102C4710 E940FOFO 

004148 F2F640D5 E8C340FO 40404040 40404040 F30E9604 10595820 10280201 20001058 
004168 04012000 F43E9104 10154780 F3FC9400 102D07FE 4400FOCA 47FOF3F6 OOFFFFFF 
004188 FFFF9601 10104400 F01C4580 F00694BE 101047FO FOC29620 105996Q8 105947FO 
0041A8 F3D21309 04130504 02190216 00080000 01000000 A71849FF 00000078 000044AC 
0041C8 OOOOOOlA 01004740 0000449A 00005038 50004488 000044AE 0000001A OOOOOOlA 
0041E8 00003DFF 500046CC 000030CB 00003F28 00003FF8 00004696 00003CEO 5000448A 
004208 00004208 F3F29001 00781804 181545FO F0229001 D0781802 00029400 00004140 
004228 D08245FO F01891100 00821200 117BOFOOE 96020082 5000F03E 4E1D0068 4EOD0070 
004248 F157D060 D068D204 D065D073 91020082 

SORT-FILE-SIZE 004258 00000000 
SORT-MODE-SIZE 00425C 00000000 
PGT-VN TBL 004260 9101D082 
TGT"'-VN TBL 004264 078E9801 
SORTAB ADDR 004268 D07807FE 
VN TBL LENGTH 00426C 3B9A 
SORTAB LENGTH 00426E CAOO 
PROGRAM-ID 004270 TESTRUN 
AIINITll 004278 00003CEO 
UP SI-SWITCHES 00427C 47FOF02A 07011052 
TGT-DBG TABLE 004284 00000200 
CURRENT PRIORITY 004288 00 
TRANSIENT AREA LENGTH 004289 CC4530 
PROCEDURE-BLOCK 00428C F13C9826 
UNUSED 004290 FlCC9104 
OVERFLOW CELLS <NONE) 
BL CELLS 004294 00003F3C 00003FF8 000030C8 
DTFADR CELLS 0042AO 00003E38 00003EBO 
TEMP STORAGE 0042A8 00000000 0000026C 
BLL CELLS 0042BO 00000000 
VLC CELLS (NONEI 
SBL CELLS <NONE) 
INDEX CELLS (NONEI 
OTHER (SEE MEMORY MAPl 0042B4 00003DE3 00003DFF 000044D6 00004406 00004140 OAOOOA2C 0000099C 5482F068 

• Figure 22. 

004204 4640FOSA 

Using the symbolic Debugging Features to Debug the 
Program TESTRUN (Part 10 of 12> 

334. 22 Supplementary Material 

\I 

''-,,/ 



LOC CARD 

000017 

003E20 
003E38 
003E58 
003E78 
003E98 

000028 
003F3C 
003F3C 000029 

000018 

003E98 
003EBO 
003EDO 
003EFO 
003F10 

\_) 
000036 

003FF8 
003FF8 000037 

000039 
003DC8 
003DEO 
003DF8 
003DC8 000040 
003DCA 000041 

000042 

003DCA 
003DCB 
003DCC 
0030CD 
003DCE .. 0030CF 
003000 
003001 
003D02 
003003 
003004 
003005 
003DD6 
003007 
003008 
003DD9 
003DDA 
003DDB 
003DDC 
003DDD 
003DDE 

• Figure 22 • 

Order No. GC28-639~~2, Page Revised 5/15/72 by TNL GN28-0~89 

LV NAME 

FD FILE-1 @ 

01 RECORD-1 CE) 
02 FIELD-A 

FD FILE-2 @ 

01 RECORD-2 ® 
02 FIELD-A 

01 FILLER © 

02 COUNT 
02 ALPHABET 
02 ALPHA 

@ (SUBl> 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

PRE-DTF 
DTFMT 

PRE-DTF 
DTFMT 

DATA DIVISION DUMP OF TESTRUN 

TYPE VALUE 

STANDARD SEQUENTIAL, ASSIGNED TO SYS008, CLOSED 

010100111 00000000 00000000 00000000 OFOOOOOO 00000000 
000.09200 0C000108 00003E70 00003E78 10004790 1160E2E8 E2FOFOF8 
00000000 00000000 00000000 86BCF018 41EOE001 58201044 01003F28 
00003.F90 00003F90 0000001'1 00003FF3 00640063 00000000 00000000 
01010014 00000000 00000000 00000000 OFOOOOOO 00000000 00008200 

(HEX) 

AN 
D840FOFO F1F740D5 EBC340Fl 40404040 40404040 
Q 0017 NYC 1 

STANDARD SEQUENTIAL, ASSIGNED TO SYS008, OPEN INPUT 

01010014 
00008200 
10000000 
00003FF8 
00000000 

(HEXI 
AN 

00000000 00000000 00000000 OFOOOOOO 00000000 
OC000108 00003EE8 00003EF0 10004790 11EBE2E8 E2.FOFOF8 
24004500 00000001 86BCF018 UEOEOOl 58201044 02004060 
00003FF8 000000111 000011055 00640063 00000000 00005030 
00000000 00000000 00000000 96011058 47.FOF3FC E940FOFO 

C140F0FO FOF14005 EBC340FO 40404040 40404040 
A 0001 NYC 0 

40400162 
2000<W64 
60005010 
OC000108 

40400272 
00000064 
00005D10 
F2F640D5 

(HEXI 001AC1C2 C3C4C5C6 C7CBC9D1 D2D3DllD5 D6D7D809 E2E3E4E5 
E6E7E8E9 OOlAFOFl F2F3F4FO F1F2F3F4 FOF1F2F3 F4FOF1F2 
F3F4FOF1 F2F3F4FO 

NB-S 
AN 

•AN 

+26 
ABCDEFGHIJJ<:LMNOPQRSTUVWXYZ 

A 
B 
c 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
p 

Q 
R 
s 
T 
u 

Using the Symbolic Debugging Features to Debug the 
Program TESTRUN (Part 11 of 12) 

Appendix F: Symbolic Debugging Feature 33Lt. 23 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

Loe CARD 

003DDF 
003DEO 
003DE1 
003DE2 
003DE3 
003DE4 000043 
003DE6 000044 

000045 

003DE6 
003DE7 
003DE8 
003DE9 
003DEA 
003DEB 
003DEC 
003DED 
003DEE 
003DEF 
003DF0 
003DF1 
003DF2 
003DF3 
003DF4 
003DF5 
003DF6 
003DF7 
003DFB 
003DF9 
003DFA 
0030FB 
003DFC 
003DFD 
003DFE 
003DFF 

000046 
003EOO 
003E00 000047 
003E01 0000118 
003E02 000049 
003E06 000050 
003E07 000051 
003EOA 000052 
003E0B 000053 
003EOD 0000511 

000055 
003El8 
003El8 000056 
003E18 000057 

• Figure 22. 

DATA DIVISION DUMP OF TESTRUN 

LV NAME TYPE VALUE 

22 v 
23 w 
24 x 
25 y 
26 z 

02 NUMBR NB-S +26 
02 DEPENDENTS AN 01234012340123401234012340 
02 DEPEND •AN 

® (SUBll 
1 0 
2 1 
3 2 
4 3 
5 4 
6 0 
7 1 
8 2 
9 3 

10 4 
11 a 
12 1 
13 2 
14 3 
15 4 
16 0 
17 1 
18 2 
19 3 
20 4 
21 0 
22 1 
23 2 
211 3 
25 4 
26 a 

01 WORK-RECORD 0 (HEX) Cl40FOFO FOF140D5 E8C340FO 
02 NAME-FIELD AN A 
02 FILLER AN 
02 RECORD-NO ND 0001 
02 FILLER AN 
02 LOCATION A NYC 
02 FILLER AN 
02 NO-OF-DEPENDENTS AN 0 
02 FILLER AN 

01 RE CORDA © (HEX) F1F2F3C4 
02 A 

©-
ND-OT +1234 

02 B NP-S •1•2•3• 

END OF COBOL DIAGNOSTIC AIDS 

using the symbolic Debugging Features to Debug the 
Program TESTRUN (Part 12 Of 12) 

334.24 Supplementary Material 

' ! ' \_,' 

'\_) 

40404040 4040110110 



r 
'\__,;·· 

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

Program Product Information -- Version 3 

APPENDIX G: 3525 COMBINED FUNCTION PROCESSING 

The IBM 80-column card punch device offers more flexible 
processing ·capabilities than former card devices. When equipped 
with appropriate special features, the 3525 can be used separately 
as a card reader, as a card punch, or as a card printer. <Either 
2-line printing or 25-line printing is available.) Any two or all 
three of these functions can be combined, so that those functions 
specified are all performed during one pass of a card through the 
device. 

For any one data card, the operations, when specified, must be 
performed in the following order: read, punch, print. Any one 
function may be omitted -- that is, no file need be defined for that 
function. The remaining functions must still be performed in the 
order shown. All operations on one card must be completed before 
operations on the next card are begun, or there is an abnormal 
termination of the job. When such combined function processing is 
to be used, the programmer must be aware of the special 
considerations needed to accomplish the desired results. 

COBOL handles each of the separate functions to be combined as a 
separate logical file. Each such logical file has its own file 
structure and procedural processing requirements. However, because 
such combined function files refer to one physical unit, the user 
must observe certain restrictions during processing. The following 
sections explain the programming requirements for combined function 
processing in DOS American National Standard COBOL. 

For combined function processing there are special considerations 
for the SPECIAL-NAMES Paragraph, and for the SELECT, ASSIGN, and 
RESERVE Clauses. 

SELECT Clause 

For each of the functions (reading, punching, printing> to be 
combined, a unique fil~~~~~~ must be defined. 

Appendix G: 3525 combined Function Processing 334. 25 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

ASSIGN Clause 

For combined function card files, the ASSIGN clause has the 
following format: 

P Y[R] ~' R ~ ~X [R]~ 
SYSnnn-3525 - [-name] 

W V[R] 
M . Z 

where !!!!!! is a 3-digit number between 000 and 221, inclusive. Each 
of the associated logical files must be specified with the same 
SYSnnn field. (The field represents the symbolic unit to which the 
logical file is assigned.) The~ field has the same meaning it 
has for other files. 

The device and Q~~~g!~~~iog fields are interdependent. The 
following entries are valid: 

Device 

3525R 
(reader> 

3525P 
<punch) 

3525W 
(2-line 
printer) 

3525M 
(multiline 
printer) 

V[R] 
X[R] 

read/print associated file 
read/punch/print associated f.il.e 

NQte: The optional g code in the 
organization field specifies RCE 
(Read column Eliminate) card reading. 

x read/punch/print associated 
y read/punch associated file 
z punch/print associated file 

v read/print associated file 
x read/punch/print associated 
z punch/print associated file 

v read/print associated file 
x read/punch/print associated 
z punch/print associated file 

file 

file 

file 

For a combined function structure, the files assigned to the read 
function and the punch function must each specify RESERVE NO 
ALTERNATE AREA(S). 

A file assigned to the print function may specify either NO or 1 
ALTERNATE AREA(S). 

For each logical file defined in the Environment Division for the 
combined function structure, there must be a corresponding FD entry 
and 01 record desc.ription entry in the File Section of the Data 
Division. 

334.26 supplementary Material 

__;,) 



~ 

j 

j 

Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

III -- PROCEDURE DIVISION CONSIDERATIONS 

When combined function processing is to be used, input/output 
operations must proceed in a specified order in the Procedure 
Division. In the 3525 device, the card passes first through the 
reading station, next through the punching station, and last through 
the printing station. Therefore, the following combined functions 
may be specified, in the order shown: 

Functions to be Order of Associated COBOL 
Combined Ope!:~~!.~!!§. ~-§tat~~en:t___ __ 

read/punch/print read READ . 
punch WRITE 

[print] WRITE 

read/punch read READ 
punch WRITE 

read/print read READ ... AT END 
[print] WRITE 

punch/print punch WRITE 
[print] WRITE 

All operations on one card must be completed before the next card 
is obtained, or there is an abnormal termination of the job. 

The following Procedure Division considerations in the COBOL 
source program apply: 

Combined function files may be opened in any sequence. The read 
function file must be opened INPUT; the punch and print function 
files must be opened OUTPUT. All files must be opened before 
processing begins; if they are not, the job is terminated. 

For combined function files, the READ statement, if the function 
is specified, must be the first input/output operation specified, A 
second READ statement must not be issued before all necessary 
combined function operations for the same card have been completed, 
or abnormal termination of the job results. 

When the punch function is used, then after the READ statement is 
issued, the next input/output operation must be a WRITE statement 
for the punch £unction file. 

If the user wishes to punch additional data into some of the 
cards and not into others, he must issue a dummy WRITE statement for 
the null cards, first filling the output area with SPACES. 

Appendix G: 3525 Combined Function Processing 334. 27 



Order No. GC28-6394-2, Page Revised 5/15/72 by TNL GN28-0489 

After the punch function operations (if specified> are completed, 
the user can issue WRITE statement(s) for the print function file. 

If the user wishes to print additional data on some of the data 
cards and not on others, he may omit the WRITE statement for the 
null cards. 

For a 2-line print file, the lines are printed on line 1 <top 
edge of card) and line 3 (between rows 11 and 12). Up to 64 
characters may be printed on each line. 

For a multiline print file up to 25 lines of characters may be 
printed. Up to 64 characters may be printed on each line. 

Line control may not be specified for the print function file,; 
automatic single spacing is provided. 

Note: This means the ADVANCINGf~flli~loptions may not be 
specified for the print function file. 

Any attempt to write beyond the limits of the card results in 
abnormal termination of the job. 

When processing is completed, a CLOSE statement must be issued 
for each of the combined function files. After a CLOSE statement 
has been issued for any one of the functions, an attempt to perform 
processing for any of the functions results in abnormal termination. 

334.28 supplementary Material 

\ 
\__,I 

' ' ; j 
~ 



ACCESS 

ACCESS: The manner in which files are referenced by the computer. 
Access can be sequential (records are referred to one after another in 
the order in which they appear on the file>, or it can be random (the 
individual records can be referred to in a nonsequential manner),. 

~£t~~!_Dec!~~!_Point: The physical representation, using either of the 
decimal point characters(. or,>, of the decimal point position in a 
data item. When specified, it will appear in a printed report, and it 
requires an actual space in storage. 

ACTUAL KEY: A key which can be directly used by the system to locate a 
logical record on a mass storage device. 

~h~Q~t!£_£heracter: A character which is one of the 26 characters of 
the alphabet, or a space. In COBOL, the term does gQE include any other 
characters. 

Alphanumeric Character: Any character in the computer's character set. 

Alphanumeric Edited Character: A character within an alphanumeric 
character string which contains at least one B or o. 

~!th~~ti£_~~~ession: A statement containing any combination of data­
names, numeric literals, and figurative constants, joined together by 
one or more arithmetic operators in such a way that the statement as a 
whole can be reduced to a single numeric value. 

Arithmetic Operator: A symbol (single character or two-character set) 
which directs the system to perform an arithmetic operation. The 
following list shows arithmetic operators: 

Meaning 
Addition 
Subtraction 
Multiplication 
Division 
Exponentiation 

* / 

** 

Assumed Decimal Point: A decimal point position which does not involve 
the-exlstenceC>t-an-actual character in a data item. It does not occupy 
an actual space in storage, but is used by tbe compiler to align a value 
properly for calculation. 

BLOC~: In COBOL, a group of characters or records which is treated as 
an entity when moved into or out of the computer. The term is 
synonymous with the term Physical Record. 

Buffer: A portion of main storage into which data is read or from which 
it is 1111ritten. 

gyt~: A sequence of eight adjacent binary bits. When properly aligned, 
t11110 bytes form a halfword, four bytes a fullword, and eight bytes a 
doubleword. 

£h~~~~!= A device that directs the flow of information between the 
computer main storage and the input/output devices. 

Character: one of a set of indivisible symbols that can be arranged in 
sequences to express information. These symbols include the letters A 
through z, the decimal digits 0 through 9, punctuation symbols, and any 
other symbols which will be accepted by the data-processing system. 

IBM American National Standard COBOL Glossary 335 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Character Set 

Character Set: All the valid COBOL characters. The complete set of 51 
characters-is listed in "Language Considerations." 

Character String: A connected sequence of characters. All COBOL 
characters are valid. 

Qh~£~eQint: A reference point in a program at which information about 
the contents of core storage can be recorded so that, if necessary, the 
program can be restarted at an intermediate point. 

Class Condition: A statement that the content of an item is wholly 
alphabetic-or wholly numeric. It may be true or false. 

Clause: A set of consecutive COBOL words whose purpose is to specify an 
attribute of an entry. There are three types of clauses: data, 
environment, and file. 

COBOL Character: Any of the 51 valid characters Csee CHARACTER) in the 
COBOL character set. The complete set is listed in "Language 
Considerations." 

Collating Seguence: The arrangement of all valid characters in the 
order of their relative precedence. The collating sequence of a 
computer is part of the computer design -- each acceptable character has 
a predetermined place in the sequence. A collating sequence is used 
primarily in comparison operations. 

COLUMN Clause: A COBOL clause used to identify a specific position 
within a report line. 

COfil!!!~gt: An annotation in the Identification Division or Procedure 
Division of a COBOL source program. A comment is ignored by the 
compiler. As an IBM extension, comments may be included at any point in 
a COBOL source program. 

compile Time: The time during which a COBOL source program is 
translated by the COBOL compiler into a machine language object program. 

£2!.!!P!.!~: A program which translates a program written in a higher 
level language into a machine language object program. 

compiler Directing Statement: A COBOL statement which causes the 
compiler to take a specific action at compile time, rather than the 
object program to take a particular action at execution time. 

Compound condition: A statement that tests two or more relational 
expressions. It may be true or false. 

£Q!!9:i.tion: 

• one of a set of specified values a data item can assume. 

• A simple conditional expression: relation condition, class 
condition, condition-name condition, sign condition, switch-status 
condition, NOT condition. 

conditional Statement: A syntactically correct statement, made up of 
data names, and/or literals, and/or figurative constants, and/or logical 
operators, so constructed that it tests a truth value. The subsequent 
action of the object program is dependent on this truth value. 

conditional Variable: A data item that can assume more than one value; 
one-or-more o~he values it assumes has a condition-name assigned to 
it. 

condition Name: The name assigned to a specific value, set of values, 
or-range-otvalues, that a data item may assume. 

336 Supplementary Material 

. ) 
'...._/ 



\ ...... / 

Condition-name condition 

Condition-name condition: A statement that the value of a conditional 
variable is one of a set (or range) of values of a data item identified 
by a condition-name. The statement may be true or false. 

CONFIGURATION SECTION: A section.of the Environment Division of the 
COBOL program. It describes the overall specifications of computers. 

connective: A word or a punctuation character that does one of the 
following: 

• Associates a data-name or paragraph-name with its qualifier 

• Links two or more operands in a series 

• Forms a conditional expression 

CONSOLE: A COBOL mnemonic-name associated with the console typewriter. 

conti~ous Items: consecutive elementary or group items in the Data 
Division that have a definite relationship with each other. 

control Break: A recognition of a change in the contents of a control 
data item that governs a hierarchy. 

Control Byt~s: Bytes associated with a physical record that serve to 
identify the record and indicate its length, blocking factor, etc. 

control Data Item: A data item that is tested each time a report line 
is to be printed. If the value of the data item has changed, a control 
break occurs and special actions are performed before the line is 
printed. 

CONTROL FOOTING: A report group that occurs at the end of the control 
group of which it is a member. 

Control Group: An integral set of related data that is specifically 
associated with a control data item • 

CONTROL HEADING: A report group that occurs at the beginning of the 
control group of which it is a member. 

control Hierarchy: A designated order of specific control data items. 
The highest level is the final control; the lowest level is the minor 
control. 

core storage: storage within the central processing unit of the 
computer. so called because this storage exists in the form of magnetic 
cores. 

Cylinder Index: A higher level index, always present in indexed data 
organization. Its entries point to track indexes. 

Data Description Entry: An entry in the Data Division that is used to 
describe the characteristics of a data item. It consists 0£ a level 
number, followed by an optional data-name, followed by data clauses that 
fully describe the format the data will take. An elementary data 
description entry (or item) cannot logically be subdivided further. A 
group data description entry (or item) is made up of a number of related 
group and/or elementary items. 

DAT.A DIVIS.ION: One of the four main component parts 0£ a COBOL program. 
The Data Division describes the £iles to be used in the program and the 
records contained within the files. It also describes any internal 
Working-Storage records that will be needed (see anata Division" for 
full details). 

IBM American National Standard COBOL Glossary 337 



Data Item 

Data Item: A unit of recorded information that can be identified by a 
symbolic name or by a combination of names and subscripts. Elementary 
data items cannot logically be subdivided. A group data item is made up 
of logically related group and/or elementary items and can be a logical 
group within a record or can itself be a complete record. 

Data-name: A name assigned by the programmer to a data item in a COBOL 
program. It must contain at least one alphabetic character. 

DECLARATIVES: A set of one or more compiler-directing sections written 
at the beginning of the Procedure Division of a COBOL program. The 
first section is preceded by the header DECLARATIVES. The last section 
is followed by the header END DECLARATIVES. There are three options: 

1. Input/output label handling 

2. Input/output error-checking procedures 

3. Report Writing procedures 

Each has its standard format (see "Procedure Division"). 

Device-number: The reference number assigned to any external device. 

Digit: Any of the numerals from 0 through 9. In COBOL, the term is not 
used in reference to any other symbol. 

DIVISION: One of the four major portions of a COBOL program: 

• IDENTIFICATION DIVISION, which names the program. 

• ENVIRONMENT DIVISION, which indicates the machine equipment and 
equipment features to be used in the program. 

• DATA DIVISION, which defines the nature and characteristics of data 
to be proce,ssed. 

• PROCEDURE DIVISION, which consists of statements directing the 
processing of data in a specified manner at execution time. 

Division Header: The COBOL words that indicate the beginning of a 
particular division of a COBOL program. The four division headers are: 

• IDENTIFICATION DIVISION. 

• ENVIRONMENT DIVISION. 

• DATA DIVISION. 

• PROCEDURE DIVISION. 

Division-name: The name of one of the four divisions of a COBOL 
program. 

EBCDIC Character: Any one of the symbols included in the eight-bit 
EBCDIC (Extended Binary-Coded-Decimal Interchange Code) set. All 51 
COBOL characters are included. 

Editing character: A single character or a fixed two-character 
combination used to create proper formats for output reports <see 
"Language considerations" for a complete list of editing characters). 

338 Supplementary Material 

: ) 
\.._-1 



l . 
\..__/ 

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Elementary Item 

~!~~~~t~EY._!t~~= A data item that cannot logically be subdivided. 

~!!~E~= Any consecutive set of descriptive clauses terminated by a 
period, written in the Identification, Environment, or Procedure 
Divisions of a COBOL program. 

:!j;!!~!:Y=-m~.!!!~= A programmer-specified name that establishes an entry point 
into a COBOL subprogram. 

ENVIRONMENT DIVISION: One of the four main component parts Of a COBOL 
program. The Environment Division describes the computers upon which 
the source program is compiled and those on which the object program is 
executed, and provides a linkage between the logical concept of files 
and their records, and the physical aspects of the devices on which 
files are stored (see "Environment Division" for full details). 

Execution Time: The time at which an object program actually performs 
the instructions coded in the Procedure Division, using the actual data 
provided. 

~!QQ!!en!:,: A number, indicating how many times another number (the base) 
is to be repeated as a factor. Positive exponents denote multiplica­
tion, negative exponents denote division, fractional exponents denote a 
root of a quantity. In COBOL, exponentiation is indicated with the 
symbol ** followed by the exponent. 

F-mode Records: Records of a fixed length, each of which is wholly 
contained-Within a block. Blocks may contain more than one record. 

Figurative Constant: ~ reserved word that represents a numeric value, a 
character, or a string of repeated values or characters. The word can 
be written in a COBOL program to represent the values or characters 
without being defined in the Data Division (see "Language considera­
tions" for a complete list> .. 

FILE-CONTROL: The name and Header of an Environment Division paragraph 
in-which-the data files for a given source program are named and 
assigned to specific input/output devices. 

~!.!.~ Description: An entry in the File Section of the Data Division 
that provides information about the identification and physical 
structure of a file. 

File-name: A name assigned to a set of input data or output data. A tiie=name must include at least one alphabetic character. 

FILE SECTION: A section of the Data Division that contains descriptions 
of all externally stored data <or files) used in a program. Such 
information is given in one or more file description entries. 

Flo~!:,inq-Point Literal: A numeric literal whose value is expressed in 
floating-point notation -- that is, as a decimal number followed by an 
exponent which indicates the actual placement of the decimal point. 

Function-name: A name, supplied by IBM, that identifies system logical 
units, printer and card punch control characters, and report codes. 
When a function-name is associated with a mnemonic-name in the 
Environment Division, the mnemonic-name can then be substituted in any 
format in which substitution is valid. 

@EQ~e_!tem: A data item made up of a series of logically related 
elementary items. It can be part of a record or a complete record. 

Header Label: A record that identifies the beginning of a physical file 
or a volume. 

IBM American National Standard COBOL Glossary 339 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
High Order 

High-Order The leftmost position in a string of characters. 

IDENTIFICATION DIVISION: Qne of the four main component parts of a 
COBOL program. The Identification Division identifies the source 
program.and the object program and, in addition, may include such 
documentation as the author's name, the installation where written, date 
written, etc. (see "Identification Division" for full details). 

Identifier: A data-name, unique in itself, or made unique by the 
syntactically correct combination of qualifiers, subscripts, and/or 
indexes. 

!fileerative-Statement: A statement consisting of an imperative verb and 
its operands, which specifies that an action be taken, unconditionally. 
An imperative-statement may consist of a series of imperative­
statements. 

Index: A computer storage position or register, the contents of which 
identify a particular element in a table. 

Index Data Item: A data item in which the contents of an index can be 
stored-without-conversion to subscript form. 

Index-name: A name, given by the programmer, for an index of a specific 
table. An index-name must contain at least one alphabetic character. 
It is one word (4 bytes) in length. 

Indexed Data-name: A data-name identifier which is subscripted with one 
or more index-names. 

INPUT-OUTPUT SECTION: In the Environment Division, the section 
names the files and external media needed by an object program. 
provides information required for the transmission and handling 
during the execution of an object program. 

that 
It also 

of data 

INPUT PROCEDURE: A set of statements that is executed each time a 
record-isJ=°eleased to the sort file. Input procedures are optional; 
whether they are used or not depends upon the logic of the program. 

Igt~~g~: A numeric data item or literal that does not include any 
character positions to the right of the decimal point, actual or 
assumed. Where the term "integer" appears in formats, "integer" must 
not be a numeric data item. 

INVALID KEY Condition: A condition that may arise at execution time in 
which the value of a specific key associated with a mass storage file 
does not result in a correct reference to the file (see the READ, 
REWRITE, START, and WRITE statements for the specific error conditions 
involved>. 

1~Q~£Q~TRQ~: The name, and the header, for an Environment Division 
paragraph in which object program requirements for specific input/output 
techniques are specified. These techniques include rerun checkpoints, 
sharing of same areas by several data files, and multiple file storage 
on a single tape device. 

KEY: One or more data items, the contents of which identify the type or 
the location of a record, or the ordering of data. 

li~~~Q~~: A reserved word whose employment is essential 
and structure of a COBOL statement. In this manual, key 
indicated in the formats of statements by underscoring. 
included in the reserved word list. 

340 Supplementary Material 

to the meaning 
words are 
Key words are 

i 

\....._,; 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 

Level Indicator 

Level Indicator: Two alphabetic characters that identify a specific 
type of file, or the highest position in a hierarchy. The level 
indicators are: FD, SD, RD. 

Level Number: A numeric character or two-character set that identifies 
the properties of a data description entry. Level numbers 01 through 49 
define group items, the highest level being identified as 01, and the 
subordinate data items within the hierarchy being identified with level 
numbers 02 through 49. Level numbers 66, 77, and 88 identify special 
properties of a data description entry in the Data Division. 

LiQrary::.!!e_~: The name of a member of a data set containing COBOL 
entries, used with the COPY and BASIS statements. 

LINKAGE SECTION: A section of the Data Division that describes data 
made available from another program. 

~!£~£~1= A character string whose value is implicit in the characters 
themselves. The numeric literal 7 expresses the value 7, and the 
nonnumeric literal "CHARA.CTERS" expresses the value CHARACTERS. 

12g!~~l_QE~£~£2r: A COBOL word that defines the logical connections 
between relational operators. The three logical operators and their 
meanings are: 

OR <logical inclusive -- either or both) 

AND <logical connective -- both> 

NOT (logical negation> 

<See "Procedure Division" for a more detailed explanation.) 

~Qg!~~l_B~~£~: The most inclusive data item, identified by a level-01 
entry. It consists of one or more related data items. 

Lo~Eder: The rightmost position in a string of characters. 

Main Program: The highest level COBOL program involved in a step. 
<Programs written in other languages that follow COBOL linkage 
conventions are considered COBOL programs in this sense.) 

Mantissa: The decimal part of a logarithm. 'I'herefore, the part of a 
floating-point number that is expressed as a decimal fraction. 

Ma~~-§tor~q~: A storage medium -- disk, drum, or data cell -- in which 
data can be collected and maintained in a sequential, direct, or indexed 
organization. 

~22_§tQ~qg_E!le: A collection of records assigned to a mass storage 
device. 

Mass Storage File Segment: A part of a mass storage file whose 
beginning and end are defined by the FILE-LIMIT clause in the 
Environment Division. 

Master Iqdex: The highest level index, which is optional, in the 
indexed data organization. 

Mnemonic-name: A programmer-supplied word associated with a specific function=name in the Environment Division. It then may be written in 
place of the function-name in any format where such a substitution is 
valid. 

MODE: The manner in which records of a file are accessed or processed. 

IBM American National Standard COBOL Glossary 341 



Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436 
Name 

Name: A word composed of not more than 30 characters, which defines a 
COBOL operand <see "Language Considerations" for a more complete 
discussion>. 

NonCQ!!tiquQ!!§._Item: A data item in the Working-Storage Section of the 
Data Division which bears no relationship with other data items. 

~QQQ~~gEi£_~itgf~l: A character string bounded by quotation marks, 
which means literally itself. For example, "CHARACTER" is the literal 
for and means CHARACTER. The string of characters may include any 
characters in the computer's set, with the exception of the quotation 
mark. Characters that are not COBOL characters may be included. 

Numeric Character: A character that belongs to one of the set of digits 
0-through-9~---~ 

Numeric Edited Character: A numeric character which is in such a form 
that it may be-u8ed ina printed output. It may consist of external 
decimal digits 0 through 9, the decimal point, commas, the dollar sign, 
etc., as the programmer wishes (see "Data Division" for a fuller 
explanation). 

Numeric Item: An item whose description restricts its contents to a 
value represented by characters from the digits 0 through 9. The item 
may also contain a leading or trailing operational sign represented 
either as an overpunch or as a separate character. 

~~~~~i£_~it~~al: A numeric character or string of characters whose 
value is implicit in the characters themselves. Thus, 777 is the
literal as well as the value of the number 777.

QBJECT-COMPUT§g: The name of an Environment Division paragraph in which
the computer upon which the object program will be run is described.

QQi~£t_gfQgf~~: The set of machine la~guage instructions that is the
output from the compilation of a COBOL source program. The actual
processing of data is done by the object program.

QQi~£t_Ti~~: The time during which an object program is executed.

QQ~f~!!g: The "object" of a verb or an operator. That is, the data or
equipment governed or directed by a verb or operator.

Qe.~tiQlli!.l_Sigg: An algebraic sign associated with a numeric data
item, which indicates whether the item is positive or negative.

QQtiQ!!~±-~Qf~: A reserved word included in a specific format Only to
improve the readability of a COBOL statement. If the programmer wishes,
optional words may be omitted.

OUTPUT PROCEDURE: A set of programmer-defined statements that is
executed-each"t:ime a sorted record is returned from the sort file.
Output procedures are optional; whether they are used or not depends
upon the logic of the program.

overl~: The technique of repeatedly using the same areas of internal
storage during different stages in processing. a problem.

g~@~: A physical separation of continuous data in a report. The
separation is based on internal requirements and/or the physical
characteristics of the reporting medium.

PAGE FOOTING: A report group at the end of a report page which is
printed-before a page control break is executed.

~&~&DI~~: A report group printed at the beginning of a report page,
after a page control break is executed.

342 Supplementary Material

i
_,/

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

Paragraph

Par~9_f.aph: A set of one or more COBOL sentences, making up a logical
processing entity, and preceded by a paragrar:>h-name or a paragraph
header.

Pa£~£~Eh_Header: A word followed by a period that identifies and
precedes all paragraphs in the Identification Division and Environment
Division.

Paraqraph::.!!.ame: A programmer-defined word that identifies and precedes
a paragraph.

f~£~m~t~£: A variable that is given a specific value for a specific
purpose or process. In COBOL, parameters are most often used to pass
data values between calling and called programs.

IBM American National Standard COBOL Glossary 342.1

I

\-_;

Physical Record

Physical Record: A physical unit of data, synonymous with a block. It
can be composed of a portion of one logical record, of one complete
logical record- or of a group of logical records.

Print Group: An integral set of related data within a report.

Priority-N:wqber: A nURtber, ranging in value from O to 99, which
classifies source program sections in the Procedure Division (see
"Segmentatio~" for more information).

Procedure: One or more logically connected paragraphs or sections
within the Procedure Division. which direct the computer to perform some
action or series of related actions.

PROCEDPRE D.!VISION: One of the four main component parts of a COBOL
program. The Proc~dure Division contains instructions for solving a
problem. The Procedure Division may contain imperative-statements,
conditional statements, paragraphs, procedures, and sections Csee
"Procedure Division" for full details).

Procedure-name: A word that precedes and identifies a procedure, used
by the programmer to transfer control from one point of the program to
another.

Process: Any operation or combination of operations on data.

Proqram-name: A word in the Identification Division that identifies a
COBOL source program.

Punctuation Character: A comma, semicolon, period, quotation mark, left
or right parenthesis, or a space.

Qualifier: A group data-name that is used to reference a non-unique
data-name at a lower level in the same hierarchy, or a section-name that
is used to reference a non-unique paragraph. In this way, the data-name
or the paragraph-name can be made unique.

Random Acceps: An access mode in which specific logical records are
obtained from, or placed into, a mass storage file in a nonsequential
manner.

RECORD: A set of one or more related data items grouped for handling
either internally or by the input/output systems (see "Logical Record").

Record Description: The total set of data description entries
associated with a particular logical record.

Record-name: A data-name that identifies a logical record.

Reel: A module of external storage associated with a tape device.

Relation Character: A character that expresses a relationship between
two operands. The following are COBOL relation characters:

Character
>

<

Mea.ninq
Greater than

Less than

Equal to

~elation ~opdit~on: A statement that the value of an arithmetic
expression or data item has a specific relationship to another
arithmetic expression or data item. The statement may be true or false.

IBM American National Standard COBOL Glossary 343

Relational Operator

Relational Operator: A reserved word, or a group of reserved words, or
a group of reserved words and relation characters. A relational
operator plus programmer-defined operands make up a relational
expression. A complete listing is given in "Procedure Division."

REPORT: A presentation of a set of processed data described in a Report
File.

Report Desc~iption Ent:r;y: An entry in the Report Section of the Data
Division that names and describes the format of a report to be produced.

Report F-ile: A collection of records, produced by the Report Writer,
that can be used to print a report in the desired format.

REPORT. FOOTlNG: A report group that occurs, and is printed, only at the
end of a report.

Report Group: A set of related data that makes up a logical entity in a
report.

REPORT HEADJNG: A report group that occurs, and is printed, only at the
beginning of a report.

Report ~ine: One row of printed characters in a report.

Report-name: A data-name that identifies a report.

REPORT SECTION: A section of the Data Division that contains one or
more Report Description entries.

Reserved Word: A word used in a COBOL source program for syntactical
purposes. It must not appear in a program as a user-defined operand.

Routine: A set of statements in a program that causes the computer to
perform an operation or series of related operations.

Run Unit: A set of one or more object programs that function, at object
time, as a unit to provide problem solutions. This compiler considers a
run unit to be the highest level calling program plus all called
subprograms.

S-mode Recor-Os: Records that span physical blocks. Records may be
fixed or variable in length. Blocks may contain one or more segments.
A segment may contain one record or a portion of a record. Each segment
contains a segment-length field and a control field indicating whether
or not it is the first and/or last or an intermediate segment of the
record. Each block contains a block-length field.

SECTION: A logically related sequence of one or more paragraphs. A
section must always be named.

Section Header: A combination of words that precedes and identifies
each section in the Environment, Data, and Procedure Divisions.

section-name: A word specified by the programmer that precedes and
identifies a section in the Procedure Division.

Sentence: A sequence of one or more statements, the last ending with a
period followed by a space.

Separator: An optional word or character that improves readability.

Sequential Access: An access mode in which logical records are obtained
from, or placed inte, a file in such a way that each successive access
to the file refers to the next subsequent logical record in the file.
The order of the records is established by the programmer when creating
the file.

344 Supplementary Material

Sequential Processing

Sequential Processing: The processing of logical records in the order
in which records are accessed.

Sign Condition: A statement that the algebraic value of a data item is
less than, equal to, or greater than zero. It may be true or false.

Simple Condition: An expression that can have two values, and causes
the object program to select between alternate paths of control,
depending on the value found. The expression can be either true or
false.

Slack Bytes: Bytes inserted between data items or records to ensure
correct alignment of some numeric items. Slack bytes contain no
meaningful data. In some cases, they are inserted by the compiler; in
others, it is the responsibility of the programmer to insert them. The
SYNCHRONIZED clause instructs the compiler to insert slack bytes when
they are needed for proper alignment. Slack bytes between records are
inserted by the programmer.

Sort File: A collection of records that is sorted by a SORT statement.
The sort file is created and used only while the sort function is
operative.

Sort File D~scription Entry: An entry in the File Section of the Data
Division that names and describes a collection of records that is used
in a SORT statement.

Sort-file-~: A data-name that identifies a Sort File.

Sort-kex: The field within a record on which a file is sorted.

sort-work-file: A collection of records involved in the sorting
operation as this collection exists on intermediate device(s).

SOURCE-COMPUTER: The name of an Environment Division paragraph. In it,
the computer upon which the source program will be compiled is
described.

Source P;roqram: A problem-solving program written in COBOL.

Special character: A character that is neither numeric nor alphabetic.
Special characters in COBOL include the space (>, the period(.), as
well as the following:

+ * / = $ ")

SPECIAL-NAMES: The name of an Environment Division paragraph, and the
paragraph itself, in which names supplied by IBM are related to
mnemonic-names specified by the programmer. In addition, this paragraph
can be used to exchange the functions of the conuna and the period, or to
specify a substitution character for the currency sign, in the PICTURE
string.

special Register: compiler-generated storage areas primarily used to
store information produced with the use of specific COBOL features. The
special registers are: TALLY, LINE-COUNTER, PAGE-COUNTER, CURRENT-DATE,
TIME-OF-DAY, COM-REG, SORT-RETURN, SORT-FILE-SIZE, SORT-CORE-SIZE,
SORT-MODE-SIZE, and NSTD-REELS.

standard Data Format: The concept of actual physical or logical record
size in storage. The length in the Standard Data Format is expressed in
the number of bytes a record occupies and not necessarily the number of
characters, since some characters take up one full byte of storage and
others take up less.

IBM American National Standard COBOL Glossary 345

Statement

Statement: A syntactically valid combination of words and symbols
written in the Procedure Division. A statement combines COBOL reserved
words and programmer-defined operands.

Subject of entry: A data-name or reserved word that appears immediately
after a level indicator or level number in a Data Division entry. It
serves to reference the entry.

Subprogram: A COBOL program that is invoked by another COBOL program.
(Programs written in other languages that follow COBOL linkage conven­
tions are COBOL programs in this sense.)

Subscript: An integer or a variable whose value references a particular
element in a table.

Switch-statys Condition: A statement that an UPSI switch has been set
to an ON or OFF condition. The statement may be true or false.

SYSIP!: The system input device.

SYSLST: The system output device.

SYS.PCB: The system punch device.

SYSPUNCij: An alternate name for the system punch device.

System~name: A name, specified by IBM, that identifies any particular
external device used with the computer, and characteristics of files
contained within it.

Table: A collection and arrangement of data in a fixed form for ready
reference. such a collection follows some logical order, expressing
particular values (functions) corresponding to other values (arguments)
by which they are referenced.

Table Element: A data item that belongs to the set of repeated items
comprising a table. An argument together with its corresponding
function(s) makes up a table element.

Test Condition: A statement that, taken as a whole, may be either true
or false, depending on the circumstances existing at the time the
expression is evaluated.

Trailer Label: A record that identifies the ending of a physical file
or of a volume.

U-mode Records: Records of undefined length. They may be fixed or
variable in length; there is only one record per block.

Unary Operator: An arithmetic operator (+ or -) that can precede a
single ~ariable, a literal, or a left parenthesis in an arithmetic
expression. The plus sign multiplies the value by +1: the minus sign
multiplies the value by -1.

UNIT: A module of external storage. Its dimensions are determined by
IBM.

v-mode Records: Records of variable length, each of which is wholly
contained within a block. Blocks may contain more than one record.
Each record contains a record length field, and each block contains a
block length field.

variable: A data item whose value may be changed during execution of
the object program.

Verb: A COBOL reserved word that expresses an action to be taken by a
COBOL compiler or an onject program.

346 Supplementary Material

\ .
~

i

_,1

Volume

Volume: A module of external storage. For tape devices it is a reel;
for mass storage devices it is a unit.

Volume switch Procedures: Standard procedures executed automatically
when the end of a unit or reel has been reachea before end-of-file has
been reached.

1. In COBOL: A string of not more than 30 characters, chosen from the
following: the letters A through z, the digits 0 through 9, and
the hyphen (-). The hyphen may not appear as either the first or
last character.

2. In system/360: A fullword is 4 bytes of storage; a doubleword is 8
bytes of storage; a halfword is 2 bytes of storage.

word Boundary: Any particular storage position at which data must be
aligned for certain processing operations in System/360. The halfword
boundary must be divisible by 2, the fullword boundary must be divisible
by 4, the doubleword boundary must be divisible by a.
WORKING-STORAGE SECTION: A section-name (and the section itself) in the
Data Division. The section describes records and noncontiguous data
items that are not part of external files, but are developed and
processed internally. It also defines data items whose values are
assigned in the source program.

IBM American National Standard COBOL Glossary 347

.,.

..

() '-".

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

\When more than one page reference is given, the major reference appears first.)

tsee bracesl
(see brackets)
<see pound sign>
<see period)

(see ellipsis)
< used in relation conditions
(and) used in

142,143

arithmetic expressions 137,138
compound conditions 147-149
PICTUKE clause 113,114
subscripting and indexing

+ (see plus symbol>
269-271

$ (see currency symbol, dollar sign)
* used in arithmetic expressions
137,138,311

(see also asterisks, used in PICTURE
clause>

** used in arithmetic
expressions 137,138,311

: used in Data Division and Procedure
Division entries 36,100

(see also semicolon>
- (see either hyphen, or minus symbol)
/ used in

arithmetic expressions
sterling report items

, <see comma)

137,138,311
306-308

> used in relation conditions
used in

COMPUTE statement 163
relation conditions 142,143

142,143

• or " used in nonumeric literals
(see also quotation mark>

40,35

A, used in a PICTURE clause
alphabetic items 112
alphanumeric edited items
alphanumeric items 112

abbreviations

108,112,114

114

in CORRESPONDING option 160,1621 166
in END-OF-PAGE option 193
in Identification Division Header
in JUSTIFIED clause 106
in PICTURE clause 107
of relation conditions
of relational operators
of reserved words 38
in SYNCHRONIZED clause
in TYPE clause 247
in USAGE clause 124

absolute
column number 249
LINE clause 244,245
line spacing in a report
values in MOVE statement

148,149
142

118.2

244,245
180

55

ACCEPT statement
access, definition
access methods

197,198
335

for direct files 58-60
for indexed files 59,60
for sequential files 58,59

ACCESS MODE clause 71,72,70
actual decimal point

description 109
in special insertion editing
in zero suppression editing

ACTUAL KEY clause
description 72-74
with direct files

creation 59
general use 58,59
random access 59
sequential access 58

examples 74,31,32,314,315
format 72
and READ statement 191,192
record identifier component
and REWRITE statement 197
and SEEK statement 190
symbolic portion 74,73
track identifier components
and WRITE statement 192,196

ADD statement
CORRESPONDING option 162,160
description 162,163
examples 15,22,315
formats 162
GIVING option 162
SIZE ERROR option 162,163

addition 162,163
addition operator 137,138
addressi~g schemes

direct 58,59,72,73
indexed 59,75,76
sequential 58

115
118

74,73

72-74.1

track identifier 59,72-74.1
ADVANCING option of the WRITE statement

193,194
AFTER ADVANCING option of the WRITE
statement 193-195,232

AFTER POSITIONING option of the WRITE
statement 193-195

algebraic value in a sign condition 146
algorithm

ACTUAL KEY example 314, 315
direct indexing 276,277
for intermediate results 311,312
relative indexing 279
slack bytes

and blocked records 123
elementary computational items 119
group items with an OCCURS clause

120-123

Index 349

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

inter-record 123
intra-record 119-122

alignment of data items
for comparisons 144
decimal point 115,109
editing 114-116
File Section Items 119
JUSTIFIED clause 106
Linkage Section Items 119
PICTURE clause 108 1 109
SYNCHRONIZED clause 118.2-123
VALUE clause 126
Working-Storage items 119

All literal figurative constant
description 40.1,41
in a MOVE statement 181
in a STOP statement 177

ALL option of the EXAMINE statement
counting 182,183
replacing 183

ALL option of the SEARCH statement
description 285
format 282

275
335

and KEY option of OCCURS clause
alphabetic character, definition
alphabetic class test 140
alphabetic collating sequence for sort

223, 224
alphabetic data items

allowable symbols
in a class test
description 112

112
140

.internal representation
JUSTIFIED clause 106
in a move 180,181
permissible comparisons
as a receiving item 180
in a relation condition
USAGE clause 124
VALUE clause 126

112

145

143-145

alphabetized cross-reference listing
CSXREFl 334. 8

alphanumeric character, definition 335
alphanumeric collating sequence for sort

223, 224
alphanumeric data item

allowable symbols 112
140 in a class test

description 112
internal representation
JUSTIFIED clause 106
in a move 180,181
permissible comparisons
as a receiving item 180
in a relation condition
USAGE clause 124
VALUE clause 126

112

145

143-145

alphanumeric edited character, definition
335

alphanumeric edited item
allowable symbols 114
description 114

350

in a move 180,181
permissible comparisons 145
as a receiving item 180
in a relation condition 143-145
USAGE clause 124.1
VALUE clause 126

alphanumeric literals
description 40
permissible comparisons 145
permissible moves 181

ALTER statement
in debug packets 301
description . 169
effect on GO TO statement 169
examples 28,32
format 169
with segmentation 292
in a sort procedure 225,226

altering characters 184-186
altering execution sequence 168-178
altering usage of data items 104
alternative grouping of data

REDEFINES clause 102-105
RENAMES clause 128-130

AND logical operator
compound conditions 146-149
description 146
order of evaluation 147,148

apostrophe (see quotation mark>
APPLY clause

CORE-INDEX option
descripbion 82
and REDEFINES clause 82

CYL-INDEX option 81
CYL-OVERFLOW option 82
EXTENDED-SEARCH option 80
MASTER-INDEX option 82
WRITE-ONLY option 81
WRITE-VERIFY option 82

arabic numerals in fixed-point numeric
items 110

Area A
description 48,49
in reference format

Area B
description 48,49
in reference format

47

47
arithmetic expressions

characters used 37,137
in compound conditions
in the COMPUTE statement
definition 137,335
evaluation rules 138

147
163

arithmetic operations, improving
efficiency 119-123,163

arithmetic operators
definition 137,335
list 37,137,335
order of evaluation

arithmetic statements
ADD 162,163
COMPUTE 163
CORRESPONDING option
DIVIDE 164

137

160,162,166

GIVING option 160
intermediate results
MULTIPLY 165
overlapping operands
REMAINDER option 164
ROUNDED option 160,161

311,312

161

SIZE ERROR option 161
SUBTRACT 166,'167

ASCENDING option
of the OCCURS clause 273,275,276

\ -..._../

(.
~/

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

of the SORT statement
ascending sequence

sort 222-224
table handling 275,276

222-224

ASCII considerations 334.1-334.7
ASSIGN clause

ASCII considerations 334~1,334.6,334.7
data organization 69,70
format 67
and NSTD-REELS special register
with sort

218.1

68,42

file in GIVING option
sort work units 219

system-name 68,69
assignment of priority numbers
assumed

290, 291

decimal point
description 109
insertion editing 115
in numeric items 109-114
sterling nonreport items

decimal scaling positions
108,109,112,126

pound separator
shilling separator

asterisk

304
304

used for comments 49,213
used in a PICTURE clause

check protect symbol 110

305

in editing 114,117,118,307
numeric edited items 114
sterling report items 307,304

AT END phrase
of the READ statement
of the RETURN statement
of the SEARCH statement

191,192
228
281-285

AUTHOR paragraph 55
automatic

advancing of printer page
end-of-volume 191,192
error procedures 156.4
label handling 155,97,98

B, used in a PICTURE clause
alphanumeric edited items
floating insertion editing
function 108
numeric edited items 114

194

114
117

simple insertion editing 115
sterling report items 307

BASIS card 296
BB (cell) component of ACTUAL KEY
BEFORE ADVANCING option of the WRITE
statement 193,194

BEFORE REPORTING option of the USE
statement 256,257

binary collating sequence
binary data item

143,223

73

allowable characters in PICTURE clause
110

description 124.1,124.2
internal representation
in a move 191
permissible comparisons
in a relation condition

124.4

145
145

SYNCHRONIZED clause 118.2-123
USAGE clause 124

blank (see space)
BLANK clause (see BLANK WHEN ZERO clause>
blank figurative constant (see SPACE
figurative constant>

blank line
definition and use 49
for spacing reports 245,246
for spacing source program listing 302

blank as word separator 38
BLANK WHEN ZERO clause

description 105
format 105
with sterling report items 308

BLOCK CONTAINS clause
ASCII considerations 334.2
description 92,93
format 92

block, definition 335
block-length control field 95
block size 93
blocked records

and APPLY WRITE-ONLY clause 80
and BLOCK CONTAINS clause 92,93
inter-record slack bytes 123
and recording mode 95-96

body print group 238,239
boundary alignment 118.2-123
braces in formats 50
brackets in formats 50
British Standards Institution IBSI>
sterling representation 303

buffer
allocation 70,78
definition 335
truncation 80

BY option of the PERFORM statement
170, 172-176

bypassing label processing <see also
OMITTED option of the LABEL .RECORDS
clause)

LABEL RECORDS clause 97,98
MULTIPLE FILE TAPE clause 79
nonstandard labels 79,97
user labels 79,97

byte, contents of
alphabetic and alphanumeric items 110
binary item 124,124.4
definition 335
external decimal items 124.1,124.4
external floating-point items
113,124.5

internal decimal items 124.2,124.5
internal floating-point items

124. 2, 124. 5

c, used in PICTURE clause of sterling
report items 306,307

CALL statement
boundary alignment of identifiers 119
description 205,206
examples 208,209
format 205,207

Index 351

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

limitations with segmentation
USING option 207-209

292

called and calling programs
capitalized words in formats
carriage control character

205, 207-209
50

definition 64
in WRITE statement 193-195

categories of data <see PICTURE clause and
classes of data)

cc (cylinder> component of ACTUAL KEY
cell (BB) component of ACTUAL KEY 73
CF (see CONTROL FOOTING report group>
CH (see CONTROL HEADING report group)
CHANGED option of the EXHIBIT statement

299
CHANGED NAMED option of the EXHIBIT
statement 299

changing description of data items in
REDEFINES clause 103,104

channel, definition 335
channel carriage control, description

64,193-195
character, definition
character set

335

for arithmetic expressions
COBOL 35
definition 336

37

EBCDIC (Extended Binary Coded Decimal
Interchange Code)
143, 40, 49, 212, 223, 224

for editing 37
for punctuation 36
for relation-conditions
for words 35

character string
definition 336

37

and item size 108
in NOTE statement
in PICTURE clause
truncation 106

212, 213
107,108

CHARACTERS option of the BLOCK CONTAINS
clause 92,93

73

check protect symbol (see asterisk, used in
PICTURE clause)

checking labels 154-156. 4
checkpoint 77,78,220
class condition, definition
class field of system-name
class test 140
classes of data 107
classification, segment
clause, definition 336
CLOSE statement

description 200-204
example 29,32
format 200

290

NO REWIND option 201.203
random file options 204
REEL option 201,203

336
68

and REVERSED option of the OPEN
statement 201

sequential file options
UNIT option 201,203
WITH LOCK option 201-204

CODE clause 236,237,65
coding form, COBOL 47
collating sequence

alphabetic 223

352

203

alphanumeric 223
ASCII 334.6
binary 223
definition 336
EBCDIC 143,223,224 1 334.6
external decimal 223
external floating-point 223
internal decimal 223
internal floating-point 223
numeric edited 223
for sort 223,224

COLUMN clause 249
comma, exchanging with period

64,65,109,308.1
comma, punctuation rules 36,100
comma, use in a PICTURE clause

floating insertion editing 117
function 109
insertion editing 115
numeric edited items 114
zero suppression and replacement
editing 118

comment, definition 336
comment-entry

contents 55
in DATE-COMPILED paragraph 56
when used 55,56

comment lines
in every division 49 1 213
in Procedure Division 212,213

common exit point for procedures
177,178,171

communication
operating system

41,42,64,65,177,197,198
operator 177,197,198
sort feature 229
subprogram 205-211

COMP items (see binary data items>
COMP-1 items <see short precision internal
floating-point items)

COMP-2 items (see long precision internal
floating-point data items>

COMP-3 items (see internal decimal items>
comparison

index data items 280,281,144,145
index-names 280,281,144,145
operands 143-145
in relation conditions 142-145
permissible 145

compilation of
copied text 294 1 295
debugging packet 301

compile-time debugging packet 301
compile time, definition 336
compiler, definition 336
compiler directing statements

BASIS 296
COPY 293-295
DEBUG 301
definition 336
DELETE 296,297
EJECT 302
ENTER 212
INSERT 296
list of 136
NOTE 212,213
SKIP 302

~i

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

compiler options
current-date 42
quotation mark 35
sequence checking 47
truncation 108

compound conditions
definition 336
evaluation rules 147
implied subjects and
relational-operators 148,149

logical operators 146
permissible symbol pairs 148
SEARCH statement 283

COMPUTATIONAL items (see binary data items)
COMPUTATIONAL option of the USAGE clause

124-129.5,121,122
COMPUTATIONAL-1 items <see short precision
internal floating-point items)

COMPUTATIONAL-1 option of the USAGE clause
124,124.2,121,i22

COMPUTATIONAL-2 items <see long precision
internal floating-point data items)

COMPUTATIONAL-2 option of the USAGE clause
124,124.2,121,122

COMPUTATIONAL-3 items (see internal decimal
items)

COMPUTATIONAL-3 option of the USAGE clause
124,124.2,121,122

COMPUTE statement
description 163
example 22,32
format 163
ROUNDED option 160,161
SIZE ERROR option 1.61

computer-name
OBJECT-COMPUTER paragraph 63
SOURCE-COMPUTER paragraph 62

COM-REG special register 42
condition, definition 336,139
conditional sentence, definition 150
conditional statement

in debugging 300,300.1
definition 336,150
examples 23,24 1 26 1 28,32
IF statement 150-152
list of 135
ON statement 300

conditional variable
assigning values to 125,127,100,141
condition-name condition 141
definition 336
example 100,127,141
qualification of 45

condition-name
assigning values to 125,127,100,141
definition 336
example 100,127,141
format 100,141
qualification 45
range of values 125,127
REDEFINES clause 103
in switch-status condition 146,64,65
VALUE clause 125,127,100,103

condition-name condition
definition 337
description 141
format 141
in a SEARCH statement 283

condition-name entries, REDEFINES clause
103

conditions
compound conditions 146-149
in a PERFORM statement 170,172-176
in a SEARCH statement 282-286
test conditions 139-146

configuration Section
copying 293
description 62
example 31,287
format 62
OBJECT-COMPUTER paragraph
SOURCE-COMPUTER paragraph
SPECIAL-NAMES paragraph

62,63
62

63-65
connective, definition 337
CONSOLE

in ACCEPT statement
definition 337

197,198

in DISPLAY statement 199
in SPECIAL-NAMES paragraph

constant
definition 39
figurative 40,41
literal 39,40

64

contiguous items, definition 337
continuation area

in conunent lines 49, 213
in reference format 47

continuation line 47, 48
continuation of

conunents 49,213
lines 47,48
nonnumeric literals 48
numeric literals 48
words 48

continued line 50,51
control breaks 237,238,232,233,253,254
control bytes

BLOCK CONTAINS clause 93
definition 337
and inter-record slack bytes 123
in s-mode records 95
in v-mode records 95

CONTROL clause 237,238
control data item, definition 337
CONTROL FOOTING report group

CONTROL clause 237,238
definition 337
incrementing counters 252,253
LINE clause 245 1 246
NEXT GROUP clause 246
PAGE LIMIT clause 239,240
report group description entry 241
sununation 252
TERMINATE statement 255
TYPE clause 247 1 248

control group, definition 337
CONTROL HEADING report group

CONTROL clause 237,238
definition 337
GENERATE statement 254
LINE clause 245
NEXT GROUP clause 245 .
PAGE LIMIT clause 238
report group description entry 241
TYPE clause 247-249

control hierarchy 237,238

Index 353

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

control of sort procedures
controls in report writer
COPY statement

226
237,238,232

description 293,212
formats 294,293
REPLACING option 294,295
in a source program 294,295,48
SUPPRESS option 294

copying
entire program 296
part of a program 293-295

CORE-INDEX option of the APPLY clause
core storage, definition 337
core storage for sort 220,221,229
CORRESPONDING option

arithmetic statements
ADD 162,160
description 160
SUBTRACT 166,160

MOVE statement 179,180,160,122
counter updating 253-255
CR, used in a PICTURE clause

description 109,108
fixed insertion editing 116
numeric edited items 114
sterling report items 308

creating files
direct 58,59,74
indexed 57,76,81
sample programs 314-317
standard sequential 58,79,80

creating labels 154-156.4
credit symbol <see CR, used in a PICTURE
clause)

cross-footing 252
CSP function-name defined
CURRENCY-SIGN clause

description 65
format 64
international considerations
restriction 65

currency symbol

308.1

82

used in CURRENCY SIGN clause
used in PICTURE clause

65,308.1

dollar sign
description 110
fixed insertion editing
floating insertion editing
116,117

numeric edited items
substitution 110

114

pound sign 304,306
specification 64,65

CURRENT-DATE special register 42

116

cylinder (CC) component of ACTUAL KEY
cylinder index, definition 337
cylinder overflow 81

73

CYL-INDEX option of the APPLY clause 81
CYL-OVERFLOW option of the APPLY clause

81
C01 through C12 function-names defined

D, used in a PICTURE clause
sterling nonreport items 304
sterling report items 305-307

354

64

data, categories of (see PICTURE clause>
data conversion

in DISPLAY statement 199
in EXAMINE statement 182,183
first character of program-name 56
during a move 180,181
in GIVING option 160
in TRANSFORM statement 184-186

data description clauses
BLANK WHEN ZERO 105
data-name 101
FILLER 101
JUSTIFIED 106
OCCURS 272-279,106
PICTURE 106-118
REDEFINES 102-105
RENAMES 128-130
SYNCHRONIZED 118.2-123
USAGE 124-124.5,279,280
VALUE 125-127

data description, definition 85
data description entry

ASCII considerations 334.3
definition 337,99
indentation 89
maximum length 99
<see also "data description clauses">

Data Division
ASCII considerations 334.2,334.3
description 86-90
definition 337
example 19-21,31
organization 86
report writer considerations

File Section 234,235
Report Section 236-253

sort considerations 221,222
structure 86
table handling considerations 272-279

data item
assigning a value to 125-127
definition 338
maximum length 99
overlapping 161

data item alignment
for comparisons 144
decimal point 109
editing 115-118
JUSTIFIED clause 106
in a move 180
PICTURE clause 108,109,115-117
SYNCHRONIZED clause 118.2,118.3
VALUE clause 126

data item description entry
definition 99
Linkage Section 90,91
Working-Storage Section 90

data management techniques 60
data manipulation statements

EXAMINE 182,183
MOVE 179-181
TRANSFORM 184-186

data-name
definition 338,39
option of the LABEL RECORDS clause 97
qualification of 45,46
in reference format 49

data-name clause 101 l
\._)

.,.

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

data organization
and ASSIGN clause 69,70
definition 57
direct 57,58
indexed 58
sequential 57

DATA RECORDS clause
description 98,98.1
format 98
report writer considerations 235
sort considerations 221 1 222

data reference methods 45 1 46
data transformation examples 184
DATE-COMPILED paragraph 56
DATE-WRITTEN paragraph 55
DB, used in a PICTURE clause

description 109 1 110
fixed insertion editing 116
numeric edited items 114
sterling report items 308

DE <see DETAIL report group>
debit symbol <see DB, used in a PICTURE

clause) ·
DEBUG card 301
debugging facilities, Version 3 334.8
debugging language

output 298
packet 301
statements

DEBUG card 301
EXHIBIT 298-300
ON 300
READY/RESET TRACE 298

decimal point (see period, used in a
PICTURE clause)

decimal point alignment
during a move 180
period insertion character 109,115
in rounding 160,161
in a size error 161

DECIMAL-POINT IS COMMA clause
64,65,109,308.1

declaratives
error processing 156,4-158
EXIT statement in 177,178
label handling 154-156.4
report writer 256,159,233
section

description 153,133,134
format 153,134

USE sentence 153,154
defaults

ACCESS MODE clause 71
81 APPLY CYL/MASTER-INDEX clause

BLOCK CONTAINS clause 93
cylinder overflow area for indexed
files 81

69 name-field in system-name
page format in Report Writer
printer spacing 193,194
priority number 291
quotation mark character
record size

35

for CONSOLE 199
for SYSIPT 198
for SYSLST 199
for SYSPCH/SYSPUNCH

recording mode 95,96
199

240

segment limit 291
sequence checking 47
truncation of binary items
USAGE clause 124

108

definitions of terms 335-347
DELETE card for copying 296,297
delete code for indexed files 76
delimiter characters 306,307
DEPENDING ON option

of GO TO statement
description 168
maximum number of operands

of the OCCURS clause
description 274-279

168

logical record size considerations
94

slack bytes 120-122
and the SYNCHRONIZED clause
and the VALUE clause 125

depth of a report page 238-240
DESCENDING option

120-122

of the OCCURS clause
of the SORT statement

descending sequence

275,276
223,224

in sort 223,224
in table nandling

DETAIL report group
description 247

275,276

GENERATE statement 253.254,247
LINE clause 244,245
NEXT GROUP clause 246
SUM counters 252
TYPE clause 247

detail reporting 253
devic.e field of system-name
device number, definition
device type specification
difference <in subtraction,

166
digit, definition 338

68
338
68
defined>

direct access device <see mass storage
device>

direct data organization, definition
57,58

direct files
accessing techniques 58~60

ACTUAL KEY clause 72-74,58,59
AP.PLY EXTENDED-SEARCH clause 80,74
ASSIGN clause 67-70
BLOCK CONTAINS clause 93
error processing 158
initiating access 189,190
invalid key condition

READ statement 192
REWRITE statement 197
WRITE statement 196

random access 58,59
READ statement 191,192
recording mode 95,96
REWRITE statement 197
sequential access 58
user labels 97
WRITE statement 192,193,196

direct indexing 278,270
DISPLAY option of the USAGE clause

alignment 118.2,118.3
alphanumeric edited items 112
description 124,124.1

Index 355

Order No, GC28-6394-2. Page Revised 4/15/71 by TNL GN-0436

external decimal items 124,124,1
external floating-point items

124,124.1
numeric edited items 124
SYNCHRONIZED clause 118.3

DISPLAY...:ST data item 303-307
DISPLAY-ST option of the USAGE clause

304-308,306
DISPLAY statement 198-200
DIVIDE statement

description 164
formats 164
GIVING option 164 1 160
REMAINDER option 164
ROUNDED option 164,160,161
SIZE ERROR option 164,161

dividend 164
division, arithmetic operation 164
division by zero 164,161
division header

definition 338
description 48

division-name, definition 338
division operator 137,138,37
division of a program, definition 338
dollar sign (see currency symbol, dollar

sign)
double spacing

printer page 194,195
source program listing 302

doubleword
binary items 124.2
SYNCHRONIZED clause 118.3

DOWN BY option of the SET statement 286
dummy files 67,188,192,203
duplication of names in a source program

45,46

E, used in
external floating-point items

113,124.1
floating-point numeric literals

EBCDIC character, definition 338
40

EBCDIC collating sequence (Extended Binary
Coded Decimal Interchange Codel 143,224

editing

356

insertion
fixed 116
floating 116,117
simple 115
special 115

replacement 117,118
sign control symbols

description 108-110
in fixed insertion editing 116
in floating insertion editing

116,117
in sterling report items 308

symbols
in alphanumeric edited items
in arithmetic statements 160
description 108-110

114

in numeric edited items
in SUM counter description

zero suppression 117,118

114
252

editing character
definition 338
description 108-110,37
insertion

fixed 116
floating
simple
special

116, 117
115

115
302 EJECT statement

elementary item
definition 339
description 87,88
(see also data description clauses>
renaming 128-130 1 88
slack bytes 119 1 120
SYNCHRONIZED clause 118.2-119

ellipsis (•• ,) in formats 51
ELSE option

IF statement 150-152
nested IF statements
ON statement 300.1

151,152

END DECLARATIVES. 153,133,134
end of file

when reading 191,192
when sorting 228

end of page condition 195
END-OF-PAGE (EOP> option of the WRI'.r·E
statement 195

end of volume positioning
ENTER statement 212
entry, definition 339
entry-name, definition
entry point 205-207
ENTRY statement 206,207

201-203,188

339

Environment Division
ASCII considerations
Configuration Section

definition 339

334. 1. 334. 2

description 62-65
OBJECT-COMPUTER paragraph
SOURCE-COMPUTER paragraph
SPECIAL-NAMES paragraph

Input-Output Section
definition 340

63
62

63-65

FILE-CONTROL paragraph 66-76
I-0 CONTROL paragraph 77-82

international considerations 303
organization 61
segmentation considerations
sort considerations 217-221

291, 62, 63

EOP option of the WRITE statement
equal sign (=)

in COMPUTE statement
in relation condition

163
142

equal size operands in a relation
condition 144

equivalents
reserved words and abbreviations
THROUGH and THRU 38

error bytes 157,158

195

38

error conditions, arithmetic operations
(see SIZE ERROR option in arithmetic
statements)

ERROR PROCEDURE option of USE statement.
156.4-158

error processing declaratives
and ACTUAL KEY 74
description 156.4-158

\ i .,.._,,,

_.,,;

\

\""~ /

Order No. GC28-63~4-2, Page Revised 4/15171 by TNL GN-0436

format 156.4
GIVING option 157
and Linkage Section 157
with sort 226
table of capabilities 158

evaluation rules
arithmetic expressions 137
compound conditions 147,148
IF statements 150-152

EXAMINE statement
description 182,183
examples 183
formats 182
with sterling items 308.1

execution of a CALL statement 205-210
execution, order of in Procedure Division

134
execution time, definition 339
EXHIBIT statement 298
EXHIBIT CHANGED statement 299
EXHIBIT CHANGED NAMED statement 299
EXHIBIT NAMED statement 299
exit point for procedures

error processing 156. 4, 1.57
EXIT statement 177,178,228,229
label handling 155,156
PERFORM statement 171,177,178
sort input/output procedures
225,226,229

EXIT PROGRAM statement 211
EXIT statement

description
format 177

177,178

with the PERFORM statement 171
with sort procedures 228,229

explanatory comments 212,213,49
exponent

+ or - preceding
definition 339

113,124,1

external floating-point items
113,124.1

floating-point numeric literals
internal floating-point items
representation 124.2,40

40
124.2

exponentation operation 137,138
Extended Binary Coded Decimal Interchange

Code tEBCDIC)
collating sequence
nonnumeric literals

extended search
for direct files

143,224
40

80,59
when reading 192

EXTENDED-SE.ARCH option of the APPLY
clause 80

extended source program library facility
296

extent of redefinition 102,105
external data 85
external decimal items

class test 140
collating sequence for sort 223,224
definition 110
internal representation 124.4
in a move 181
in a relation condition 145
USAGE clause 124,160

external floating-point items
collating sequence for sort 223,224

definition 113
internal representation 124, 4
in a move 181
in a relation condition 145
USAGE clause 124
VALUE clause 126

external-name in ASSIGN clause

F-mode records
definition 339
fixed length format 95,96
and OPEN REVERSED 188
recording mode 95,96
RECORDING MODE clause
in sort 221,222

96

FD (see file description entry>
figurative constants

definition 339
description 40.1
as delete code 76

69

in the EXAMINE statement
in a move 181

182,183

permissible comparisons 145
in a relation condition 145
in the TRANSFORM statement 184,185
in the VALUE clause 125 1 126

file
definition 85
disposition of

CLOSE statement
OPEN statement

example 19,20,21

201-204
188

66-76 and FILE-CONTROL paragraph
inter-record slack bytes 122,123

FILE-CONTROL paragraph
ACCESS MODE clause 71
ACTUAL KEY clause 72,73
ASSIGN clause 67-69,218,1,219
copying 293
definition 339
example 18,31
FILE-LIMIT clause
format 66

71

NOMINAL KEY clause 75
PROCESSING MODE clause
RECORD KEY clause 76
RESERVE clause 70,218.1

72

SELECT clause 67,218,218.l, 219
sort considerations 218,212.1,219
TRACK-AREA clause 76

file description entry
BLOCK CONTAINS clause
content 92,89
copying 293

92,93

DATA RECORDS clause
format 92

98

LABEL RECORDS clause
RECORD CONTAINS clause
RECORDING MODE clause
REPORT clause 234,235
report writer 234,235
sort 221,222
VALUE OF clause

FILE-LIMIT clause
98

71

97
94, 95

95,96

Index 357

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

file-name, definition 339
file processing technique

definition 57
input/output errors 156.4-158
general description 57-60
sample programs 31 1 32,313-319
statements and clauses 333-336
summary 333-336,57

File Section
ASCII considerations 334.2
boundary alignment 119
condition-name entries
content 89,92,99
copying 293
example 19 1 20,31
format 89

125

naming data 101
record description
REDEFINES clause
sort considerations
use of FILLER 101
VALUE clause 125

entry format
102

221,222

file size for sort 222
files sharing same storage area
FILLER

78

in CORRESPONDING option 160
used for inter-record slack bytes
use in record description entry

FINAL control
definition 237
TYPE clause 247,248

final controls 247,248,237
final phase of sort 226-228
FIRST option of the EXAMINE statement

182,183
fixed insertion editing 116

99,101

123
101

fixed length record format (see F mode
records>

fixed length records
and recording mode 95,96
size of print line for reports

fixed point numeric items 110,112
fixed point numeric literal 40
fixed portion of a segmented program

289,291
floating insertion editing
floating-point data items

external 112
internal 112
internal representation
in a move 181

116,117

124.5

in a relation condition 145
floating-point numeric literal

definition 40
in a move 181

flowchart
nested IF statement
PERFORM statements

152

235

varying one identifier
varying three identifiers
varying two identifiers

174
176

175
SEARCH statement 284

footing report groups 247-249,237-241,
243-246,251,252

FOR MULTIPLE REEL/UNIT option of the ASSIGN
clause 67,68

form overflow <see END-OF-PAGE option of
the WRITE statement)

358

format
DISPLAY statement output
EXHIBIT statement output
logical records 94,95
report page 238-240

199,200
298,299

format control of the source program
listing 302

format F records Csee F-mode recordsl
format notation 50,51
format S records (see S-mode records)
format sununary 321-329
format u records <see u-mode records)
format V records <see V-mode recordsl
fractions, internal floating-point items

124. 2
FROM option

PERFORM statement 170,172-176
REWRITE statement 197
TRANSFORM statement 184-186
WRI'I'E statement 192, 193

fullword
binary item 124.2
SYNCHRONIZED clause
word boundary for

function-name

118.2-119
347

and CODE clause
definition 339

263, 65

in Report Writer 263,65
in SPECIAL-NAMES parargaph 63-65
in switch-status condition 146,65
in WRITE statement 192-195,64

GENERATE statement 253,254,233
GIVING option

arithmetic statements
ADD 162
description
DIVIDE 164
MULTIPLY 165
SUBTRACT 166

160

error handling declarative
SELECT sentence format for
SORT statement

156. 4-158
218. 1

description
glossary 335-347
GO TO MORE-LABELS
GO TO statement

226,227

155,156

in a debug packet 301
description 168,169
in error processing procedures
example 24,25,26,27,32
formats 168
with the ALTER statement 169
with the IF statement 150
in label handling procedures
with PERFORM statement 171
with segmentation 292
in a sort procedure 225,226

GOBACK statement
description
example 209

211,210

group
collating
contents
example
report

sequence
87,88

88
241-243

for sort

157

155,156

223

\
(J
".._>'

\.J

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

GROUP INDICATE clause
group item

definition 339
description 87,88
in a move 181

250,253

in an OCCURS clause 273,274
permissible comparisons 145
in a relation condition 145
renaming 128,129,102-105
in a report 241-243
slack bytes 120-123
USAGE clause 124
VALUE clause 125,126

halfword
binary item 124.2
SYNCHRONIZED clause 118.2-119

halting execution 177,210,211
head <HH> component of ACTUAL KEY 73
header labels

definition 339
nonstandard 97,154-156.4,43
standard 97,154
user 97,154-156.4

heading print groups
247,248,238-246,254,255

HH (head) component of ACTUAL KEY 73
hierarchy

arithmetic expressions 137
controls in report writer 237
qualification 45,46
relations 146,147
structure of a record 87,88

high-order, definition 339
HIGH-VALUE (HIGH-VALUES) figurative

constant
delete code for indexed files 76
description 41
in a move 181
permissible comparisons 145
in a RECORD KEY 76
in TRANSFORM 184

hyphen
in collating sequence 143,224
and continuing lines 48
in program-names 56
in words 35

I-0 files
effect of CLOSE options 201-204
error handling 156.4-158
label handling 154-156
and OPEN statement 187-189

I-0 option of the OPEN statement 187-189
I-0-CONTROL paragraph

APPLY clause 80-82
copying 293
definition 340
format 77
MULTIPLE FILE TAPE clause 79
purpose 77
RERUN clause 77,78
SAME AREA clause 78
sort considerations 219,220

IBM sterling representation
ID Division header 55
Identification Division

conunent-entry in 55,56
DATE-COMPILED paragraph
definition 339
example 17,31

303

55

header 55
PROGRAM-ID paragraph
structure of 55

55,56

identifier, definition
identifying records

45,340

by indexing 269-271,46
by name 101
by qualification
in reports 241
by subscripting

IF statement

45,46

269-271,46

examples 26,27,23,24,32
format and description 150-152
nested 151,152

IGN parameter of ASSGN job control
statement 67,188,192,203

imperative statements
arithmetic 160-167
data-manipulation 179-186
declarative 153-159,256
definition 134,340
input/output 187-204
procedure branching 168-178
report writer 253-256
sort 222-228
table handling 281-286

implied subjects and relational-operators
149

IN qualifier connective
for indexes 271
for names 45
for subscripts

incrementing
270

LINE-COUNTER special register
PAGE-COUNTER special register
SUM counters 254 1 252

indentation of level numbers
independent segment 289,291
index data item

definition 340

89

255
255

in a move 181
permissible comparisons
in a relation condition
USAGE clause 279,280

280,145
280,145

index, definition 340
index-name

definition 340
description 276,277,46
modifying values in 279,270, 271, 286
in a move 181
in OCCURS clause 276-279
in PERFORM statement 170,172
permissible comparisons 280,145
in a relation condition 280,145
in SEARCH statement 281-285
in SET statement 286
value in 276,276.1,277

INDEX option of the USAGE clause 279,280
INDEXED BY option of the OCCURS clause

276-279, 273, 270
indexed data-name, definition 340

Index 359

Order No. GC28-6394-2, Page Revised 4/15171 by TNL GN-04.36

indexed data organization, definition
indexed files

58

access techniques 59,60
ASSIGN clause 69,70
blocking factor 93
CORE-INDEX option Of APPLY clause 82
CYL-INDEX option of APPLY clause 81
CYL-OVERFLOW option Of APPLY clause
error processing 158,188
index in core 82
initiating processing
invalid key condition

READ 192
REWRITE 197
START 189
WRITE 196

189

LABEL RECORD clause 97
MASTER-INDEX option of APPLY clause
NOMINAL KEY clause 75
OPEN statement 188,189
overflow areas 81
READ statement 191,192
RECORD KEY clause 76
recording mode 95,96
restrictions on processing of
START statement 189

189, 59

indexes used with qualifiers
indexing tables

270, 271

description 276-279,270,271
direct 278,270
examples 271,272,277,278
relative 278,279,270

initializing
index values 286
report writer special registers
sort special registers 229
values of data items 126

INITIATE statement 254,255,233
initiating

access to a mass storage file
file processing 187-189

255

190

processing of a direct file 189,190
processing of an indexed file 189
processing of a report 254,255

input files
APPLY EXTENDED-SEARCH
effect of close options
error handling 156-158
inter-record slack bytes
intra-record slack bytes
label handling 154-156.4
and OPEN statement 187,188

80
201-204

119, 123
119-122

record size 94
47-49

187,188
70

input format for source programs
INPUT option of OPEN statement
input/output areas (buffers>
input/output error

360

bytes 157,158
declarative 156.4-158
information 157,158
and INVALID KEY option

READ statement 191,192
REWRITE 197
SEEK 190
START 189
WRITE 193,196

table of processing capabilities 158

81

81

Input-output Section
copying 293
definition 340
example 18,31
File-control paragraph
I-0-Control paragraph
sort considerations

input/output statements
ACCEPT 197,198
CLOSE 200-204
DISPLAY 199,200
OPEN 187-189
READ 191 1 192
REWRITE 197
SEEK 190
START 189
WRITE 192-196

66-76
77-82

218-220

input phase of sort 224,225
INPUT PROCEDURE option for sort
INSERT card for copying 296
insertion of

asterisks 110
commas 109
periods 109
spaces 109
zeros 109

224,225

insertion character, effect on size of item
fixed 116
floating 116,117
replacement 117,118
simple 115
special 115
zero suppression

insertion editing
fixed 116
floating 116,117
simple 115
special 115

117,118

INSTALLATION paragraph 55
integer, definition 340
integer literals Csee fixed-point numeric
literals>

123 inter-record slack bytes
intermediate results

arithmetic statements
compiler algorithms for
compound conditions 148

311,312
312

internal data 90
internal decimal items

allowable characters 124.2
in a class test 140
collating sequence for sort
definition 124.2

223,224

internal representation 124. 5
in a move 181
permissible comparisons 145

145 in a relation condition
slack bytes 118
SYNCHRONIZED clause 118.2
USAGE clause 124,124.2

223
internal floating-point items

collating sequence for sort
description 124.2
internal representation 124. 5
in a move 181
permissible comparisons
in a relation condition
USAGE clause 124,124.2

145
145 '. j

~

(
·~

O:i;der No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

internal representation
binary items 124.4
external decimal items 124.4
external floating-point items
internal decimal items 124.5
internal floating-point items
numeric items 124.4,124.5
sterling items 303

124,5

124,5

international currency considerations
308, 64, 65

INTO option
of the READ statement
of the RETURN statement

intra-record slack bytes
invalid key conditions

definition
general 340
for a READ 191,192
for a REWRITE 197
for a START 189

191
228

119-122

for a WRITE 193,194,196
processing of with SEEK 190

INVALID KEY option
of the READ statement 191,192
of the REWRITE statement 197
and the SEEK statement 190
of the START statement 189
of the WRITE statement 193,194,196

justification during a move 180
JUSTIFIED clause 106

KEY clauses
ACTUAL
NOMINAL
RECORD

72-74
75

76
key, definition 340
KEY option

of OCCURS clause 275,276
and SEARCH ALL statement 282,285
of SORT statement 223,224

key words
definition 340
description 38
in format notation

keys
for SORT statement
for table SEARCH

label handling

50

223,224
275, 276, 282, 285

assigning a value 154-156,97
and CLOSE options 201-204
declarative statement 154-156.4
LABEL RECORDS clause 97
when opening a file 188
when reading a multivolume file
for sort 221,222

192

USE sentence 154-156
writing 196

LABEL PROCEDURE option Of the USE
statement 154-156,4

LABEL RECORDS clause
ASCII considerations 334.2
description 97,98
and label procedures 154

LEADING option of the EXAMINE statement
counting 182,183
replacing 182,183

leading zeros, suppression 117,118
left justification 106
length

binary items 124.1,124.2
and BLOCK CONTAINS clause 92,93
of data-name in APPLY CORE-INDEX 82
external decimal items 124.1
external floating-point items 124 1
internal decimal items 124.2
internal floating-point items 124 2
and RECORD CONTAINS clause 95,96

level indicator
definition 3411 87,45
in file description entry 92
in reference format 49
in report writer feature 234,236,87
in sort feature 221,87
summary of 87

level number
data description entry 99
definition 341,87
identation of 89
in the reference format 49
special 87,99,100 1 128-130
use 87-91

level number 01 items
boundary alignment 119,208
CALL statement 208
copying 293
in the File Section 89,119
in the Linkage Section 90,119,208
in reference format 49
in the Report Section 242,243
SYNCHRONIZED clause 118.2-119
in the Working-Storage Section 90,119

level number 02-49 items
in data description clauses 99,100
description 88
indentation 89
in reference format 49
in Report Section 242,243
slack bytes 119-123
SYNCHRONIZED clause 118
in Working-Storage Section 90

level number 66 items
definition 88
format 99,100
indentation 89
in RENAMES clause 128-130
renaming restrictions 100
rules for use 100

level number 77 items
boundary alignment in Linkage Section

119,208
in a CALL statement 208
copying 293
description 88

Index 361

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

in reference format 49
use 90,100
VALUE clause 126
in Working-Storage Section 90,100

level number 88 items
definition 89
format 99,100
indentation 89
rules for use 100
VALUE clause 125-127

library facility Csee source program
library facility>

library-name 294,295,341
limit bf a file 71
LINE clause 243-245
LINE-COUNJER special register

description 257,233
and GENERATE statement 254
and INITIATE statement 255

lines per page in a report
257,233,238-240

lines, spacing of
in program output 193-195
in a report 243-245
in a source program 302,49

Linkage Section
boundary alignment 119,208
content 90,86
copying 293
data item description entry 99,100
definition 341
error declarative 157
format 90
intra-record slack bytes 119
naming data 100
record description entry 99,100
structure 86
use of FILLER 101
USING option of the CALL
statement 207-209

VALUE clause 125
linkage statements for subprograms (see

subprogram linkage statements>.
literal

alphanumeric 40
definition 39,341
as a function-name 64,65,236
in a move 181
nonnumeric 40
numeric

fixed-point 40
floating-point 40

permissible comparisons 145
VALUE clause 125-127

location of slack bytes 120-123
logical connectives

in compound conditions 146-149
definition 38

logical identifier for a direct file
logical opera·tors 146-149, 38, 341
logical record

362

definition 341,86
determination of size 94
redefining 102-105
renaming 128-130
restriction on redefinition in File
section 102

slack bytes in 119-123

58

long-precision internal floating point
items

description 124.2
internal representation 124.5
USAGE clause 124

low order, definition 341
LOW-V,ALUE CLOW-VALUES) figurative constant

in ACTUAL KEY clause 74
description 41
in a move 181
in track identifier 74
in TRANSFORM 184

lower-case words in formats 50

magnetic tape (see tape>
magnitude of floating-point items 112
main program, definition 341,210
major

control break 237,248
controls 237,248
report group 242 1 243,248

mantissa
+or - preceding 113,124.1
definition 40
representation in PICTURE clause
113,124.1

mass storage, definition 341
mass storage devices

error information 157,158
list of 68

mass storage file segment, definition 341
mas·s storage files

definition 341
function of CLOSE statement

200,203,204
function of OPEN statement 187-189
function of READ statement 191,192
function of REWRITE statement 197
function of SEEK statement 190
function of START statement 189
function of WRITE statement 193,196

master index, definition 341
MASTER-INDEX option 6f the APPLY clause

81
maximum length

arithmetic operands
binary items 124.2
character string 107

162-165, 167

data description entries 99
external decimal items 112,124.1
external floating-point items 113
internal decimal items 112
internal floating-point items 124. 2
items in EXHIBIT statement 299
keys in table handling 275
numeric edited items 114
record

CONSOLE
data 99

199

SYLST 199
SYSPCH/SYSPUNCH

table elements 273
maximum number

index-names 276
keys

sort 224

199

)
\.._/

Order No. GC28-6394-2; Page Revised 4/15/71 by TNL GN-0436

table handling 275
procedure-names in GO TO statement

maximum size <see maximum length}
maximum value

168

ACTUAL KEY track identifier 73
binary item and PICTURE clause
floating-point items 40,124.1
NSTD-REELS special register 42
ON statement integer 300
RERUN clause integer 78
RESERVE clause integer 70
of a subscript 269

MEMORY SIZE clause 63
methods of data reference
minimum value

floating-point items
of a subscript 269

minor
control break 248
controls 237,248
report group 248

minus symbol

45, 46

40,124.1

108

in arithmetic expressions 137,138,37
in collating sequence 143,224
in external floating-point literals
in indexing 279,270,271
in the PICTURE clause

description 109
external floating-point items
113,124.l

40

fixed insertion editing 116
floating insertion editing 116,117
numeric edited items 114,116,117
sterling items 304,306,308

as unary operator 137,138
mnemonic-name

in the ACCEPT statement
assignment of 64;65

198

in the CODE clause 237,64,65
definition 341,39
in the DISPLAY statement 199
in SPECIAL-NAMES paragraph 64,65
when used 64,65,198,199,237
in the WRITE statement 194

mode, definition 341
mode F records <see F-mode records)
mode u records <see u-mode records)
mode V records (see V-mode records>
modification

library text
DELETE card
INSERT card

sort records
after sorting
before sorting

MOVE statement

296,297
296,297

225,226
224,225

absolute values in
CORRESPONDING option
description 179-181

180
179,180

examples 25,27,32,315,317,319
formats 179
overlapping operands in
permissible moves 181
rules 180

179,161

with sort special registers
with sterling items 308.1
Version 3 improvement 334,8

MULTIPLE FILE TAPE clause 79

229

MULTIPLE REEL/UNIT option Of the ASSIGN
clause 67,68,219

multiple results
ADD statement 162
SUBTRACT statement

multiplication operator
MULTIPLY statement

description 165
example 23,32
formats 165

166
137,138,37

GIVING option 160,165
overlapping operands 161
ROUNDED option 160,161,165
SIZE ERROR option 161,165

multivolume processing
and ASSIGN clause 67,68
and NSTD-REELS special register

42,67,68
and options of CLOSE statement
reading 192
writing 196. 1

name
for a data item 101,39
definition 342
description of 39
field in system-name 69
indexing of 270,271
qualification 45,46
for a record 101,39
subscripting of 269-271

201-204

negative operand in a sign condition 146
negative value

in external floating point items 113
in PERFORM statement 171,172
in sign condition 146

nested
IF statements 151,152
OCCURS clauses 273,274,276,277
PERFORM statements 171
REDEFINES clauses 105

NEXT GROUP clause
description 245,246
effect of PRINT-SWITCH
format 245

256,257

NEXT PAGE option of the LINE clause
243-245

NEXT SENTENCE option
of the IF statement 150
of the SEARCH statement

nnn field in system-name
281-285

68
NO REWIND option

of the CLOSE statement
of the OPEN statement

NOMINAL KEY clause
description 75
format 75
indexed files 59,75

200,201,203
187,188

and READ statement 191,192
and REWRITE statement 197
and START statement 189,76
and WRITE statement 196

noncontiguous data items 88,90,99,342

Index 363

Order No, GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

nonnumeric literals
continuation of 48
definition 342 1 40
in the EXAMINE statement 182,183
in a move 181
permissible comparisons 145
in a relation condition 145
in the TRANSFORM statement 184-186
VALUE clause 125-127

nonnumeric operands in a relation
condition 145

nonstandard labels
declarative 154-156.3
GO TO MORE-LABELS 155,156,156.2
LABEL RECORDS clause 97
multiple tape files 67,68,42
NSTD-REELS special register 42
processing of 154,155
reversed reading 79
sequential tape files

67,68,79,154-156.3,42
system procedures 155
USE statement 154-156.3

normal print group 238
NOT condition construction

in abbreviated conditions 149
in compound conditions 146-149
in test conditions 139

NOT logical operator
description 146
evaluation rule 147
with implied subjects and relational
operands 149

meaning 146
NOTE statement 212,213
NSTD-REELS special register 42,68
null report group 241
number of input/output units 67,68,219
numeric character

definition 342
position in a PICTURE clause 109,111

numeric class test 140
numeric data item

BLANK WHEN ZERO clause 105
in the class test 140
in the EXAMINE statement 182,183
fixed-point

binary 112,124.1,124.2
external decimal 112,124.1
internal decimal 112,124.2

floating-point
external 112,113,124.1
internal 124.2,112

internal representation 124.3,124.4
in a move 181
permissible comparisons 145
in PICTURE clause 112,113
as a receiving item 180,181
in a relation condition 145
VALUE clause 125-127

numeric edited character, definition 342
numeric edited items

364

BLANK WHEN ZERO clause 105
definition 114
in a move 181
as a receiving item 180
in a relation condition 145
USAGE clause 124.1

numeric item, definition 342,112
numeric literal

continuation of 48
definition 342
fixed point 40
floating point 40
in a move 181
permissible comparisons 145
in a relation condition 145
in VALUE clause 125-127

numeric operands
in ADD statement 162,163
in COMPUTE statement 163
in DIVIDE statement 164
in EXAMINE statement 182,183
in MOVE statement 180,181
in MULTIPLY statement 165
permissible comparisons 145
in relation conditions 145
in SUBTRACT statement 166,167

OBJECT-COMPUTER paragraph
computer-name 63
copying 293
definition 342,63
format 63
MEMORY SIZE clause 63
SEGMENT-LIMIT clause 291,63
system/370 instruction generation 63

object of a condition, definition 142
object program definition 342,55
object time, definition 342
obtaining data from the console 197,198
OCCURS clause

algorithm for slack bytes 120
DEPENDING ON option 274,275
description 272-279
direct indexing 278
examples 276-278
formats 273
INDEXED BY option 276-279
KEY option 275,276
redefining restriction 102
relative indexing 279
renaming restriction 128
slack bytes 120-122
value restriction 125

OF qualifier connective
with indexes 271
with a name 45
with subscripts 270

OFF STATUS IS clause of SPECIAL-NAMES
paragraph 64,65

OMITTED option of the LABEL RECORDS
clause 97

ON statement 300,300.1
Version 3 improvement 300.1,334.9

ON STATUS IS clause of SPECIAL-NAMES
paragraph 64,65

OPEN statement
description 187-189
and ERROR declarative 188
example 21,32,315,317,319
format 187
and LABEL declarative 188

\

' !
\.._/

•. i
"'--"!

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

operand, definition 342
operands, overlapping

arithmetic statements 161
MOVE statement 180,161

operational sign
absent in a move 180
binary items 124.2
description 109
in the EXAMINE statement 182
in external decimal items 124.1,124.3
in external floating-point items
113,124.1,124.5

in fixed-point numeric items 112
in floating-point numeric literals 40
in internal decimal items 124.2,124,S
in internal floating point items
124.2,124.5

position in PICTURE character string
109' i11

as unary operator 137,138
operator corrununication 177,197-199
optimized object code, Version 3 334.8
OPTIONAL key word in SELECT clause

67,188,192,203
optional words in formats 38,50,342
OR logical operator in compound
conditions 146-149

OR option in ASSIGN clause for sort 218.1
order of evaluation for compound

conditions 147,148
order of execution, in Procedure Division

134
organization

of COBOL program 43,44
of data 57,58
Data Division 86-90
Data Division entries 87-89
Environment Division 61
field of system-name 69,70
Identification Division 55
Procedure Division 133-136

OTHERWISE option
of the IF statement
of the ON statement

output files

150-152
300,300.1

effect of CLOSE options 201-204

123
119-122

error handling 156.4-158
inter-record slack bytes
intra-record slack bytes
label handling 154-156.3
and OPEN statement 187-189

OUTPUT opt~on of OPEN statement
OUTPUT PROCEDURE option in sort

225-227,342
output source listing format

of compiler 47
control of 302

187-189

overflow records 81
overlapping data groupings
overlapping operands

128-130

arithmetic statements 161
MOVE statement 180,161

overlay, definition 342
overlayable fixed segment 289,291
overlaying procedures 289-292

P, in PICTURE clauses lsee assumed decimal
point>

packed decimal format 124.2,124.5,112
padding in a physical record 93,123
page change in a report 238-240,245,246
PAGE clause (see PAGE LIMIT clause)
page condition 238-240
PAGE-COUNTER special register

desc~iption 257,233
GENERATE statement 254
INITIATE statement 255

page, definition 342
PAGE FOOTING report group

definition 239,342
LINE clause 245
NEXT GROUP clause 246
PAGE LIMIT clause 239,240
TERMINATE statement 255
TYPE clause 247,248

page format in Report Writer 238-240
PAGE HEADING report group

definition 239,342
GENERATE statement 254
LINE clause 245
NEXT GROUP clause 246
PAGE LIMIT clause 239,240
TYPE clause 247,248

page number of a report 257
pairing

ELSE in nested IF statements 151-153
parentheses in arithmetic expressions

137,138
parentheses in subscripts and indexes

269-271
symbols in arithmetic expressions 138
symbols in compound conditions 148

paragraph
DATE-COMPILED 56
definition 133,342.1
FILE-CONTROL 66-76
I-0-CONTROL 77-82
OBJECT-COMPUTER 63
in Procedure Division
PROGRAM-ID 55,56
SOURCE-COM:i?U'I'ER 6 2

133,48

SPECIAL-NAMES 63-65
paragraph header, definition
paragraph-name

definition 342.1
qualification 45,46
in reference format
rules for forming

48
133

342.1 parameter, definition
parentheses

342.1

in arithmetic expressions 137,138
in compound conditions 147,148
in PICTURE clause 108
as punctuation character 36
in subscripting and indexing 269-271
in test conditions 139

parity checking 81
pence

nonreport items 304,305
report items 306-308
representations

BSI 303
IBM 303
internal 304,305

Index 365

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

PICTURE 304 1 306
report 306-308

symbols allowed
nonreport 304,305
report 307,308

PERFORM statement
301

155,156.4,256
in debug packets
declarative section
description 170-176
examples 26-28 1 32
flowcharts 174,176
formats 170
with segmentation
in sort procedures

period

292,173
225,22b

in a data description entry
after a division header

48,55,61,86,133

100

after END DECLARATIVES
to end section-header
to end sentence 133

134,153
133.1,48

exchanging with comma 63,65,109,308.1
fixed-point numeric literals 40
floating-point numeric literals 40
after a paragraph-name 133,48
in a PICTURE clause

external floating-point items
indicated by P 108,109
indicated by V 109

113

numeric edited items 112,115
sterling nonreport items 304 1 305
sterling report items 306-308

after section-name 133,48
permanent segment 289,291
permissible

comparisons in relation conditions
moves 181
symbol pairs

arithmetic expressions 138
compound conditions 148

PF (see PAGE FOOTING report group)
PH (see PAGE HEADING report group)
physical file, definition 85
physical record

definition 343,85
, size specification 92, 93

PICTURE clause
allowable symbols
ASCII consideration
categories of data

108-110
334.3,334.7

366

alphabetic 112
alphanumeric 112
alphanumeric edited
numeric .112,113
numeric edited 114
table of 107

character string
classes of data
editing

108
107

114

fixed insertion
floating insertion
simple insertion
special insertion

116
116,117

115
115

zero suppression and replacement
117,118

format 107
precedence of symbols in 111
repetition of symbols 108

145

plus symbol
in arithmetic expressions 137,138
in collating sequence 143,224
in indexing 270,271,278,279
in the PICTURE clause

external floating-point items 113
fixed insertion editing 116
floating insertion editing 116, 117
numeric edited items 114
precedence in 111
sterling items 308

as unary operator 137.138
pocket select characters

definition 64
used in a WRITE statement 192-195

POSITION option of the MULTIPLE FILE TAPE
clause 79

positioning a file 187,188,201-204
POSITIONING option of the WRITE statement

193-195
positive operand in sign condition
positive value

in external floating-point items
in PERFORM statement 172
in sign condition 146

pound-report-string 306
pound separator 304
pound-separator-string
pound sign

306

assigned as currency symbol 304
report item 306
representation

internal 304
PICTURE 304,306
report 306

343
235

print group, definition
print line size for report
PRINT-SWITCH 256,257,255,246
printed report 232-268
printer support, version 3
priority numbers

334. 8

292,169
292

290

146

113

and ALTER statement
and called programs
description 290,291
information for u'se
and PERFORM statement
on a section header
segment limit · 291

292,173
290,291,48,134

procedure branching statements
ALTER statement 169
EXIT statement 177,178
GO TO statement 168,169
PERFORM statement 170-176
STOP statement 177

procedure, definition
Procedure Division

content 133-136
copying 293

343

definition 343
organization 133-136
Report Writer considerations

GENERATE statement 253,254
INITIATE statement 254,255
overall 233
TERMINATE statement 255,256

sort considerations
EXIT statement
RELEASE statement

228-,229
227

r,

l I

""--'

Order No. GC28-6394-2. Page Revised 4/15/71 by TNL GN-0436

RETURN statement 228
SORT statement 222-227

statement list 135,136
statements

compiler-directing 212,213 1 293-298
conditional 150-152,300,300.1
imperative

153-211,222-228,253-256,281-286,
298-300

sterling considerations 308,1
structure 134
table handling considerations

relation conditions 280
SEARCH statement 281-285
SET statement 286

USING option on the division header
207-209,133,134

procedure-name, definition 343,39
procedures, Declarative 153-158,256,257
process, definition 343
processing

index in core 82
indexed file at other than first
record 189

labels 153-155,97,98
reports

generating
initiating
terminating

sort records

253,254
254,255
255,256

after sorting
before sorting

PROCESSING MODE clause
PROGRAM-ID paragraph
program-name

225-227
224,225,227

72
55,56

conversion of characters in
definition 343,56

program termination 177,210,211
punctuation character

definition 343
in formats 50
in a source program 36

56

quadruple spacing of source program
listing 302

qualification
and condition-names 127
description of 45,46
index-names 270,271
names 45 1 46
subscripts 269,270

qualifier connective, definition 38
qualifier, definition 343
quotation mark

default option 35
and nonnumeric literals 40

QUOTE (QUOTES> figurative constant
41,181,184

quotient 164

R <record> component of ACTUAL KEY
random access

ACCESS MODE clause 71,72
CLOSE statement 203,204
definition 343,58
direct files 58,59,196
error processing 158
indexed files 59,75
READ statement 191,192
REWRITE statement 197
SEEK statement 190
WRITE statement 193,196

random file processing
effect of CLOSE options 203,204
function of a read 191

randomly accessed multivolume files
definition 200
effect of CLOSE options 203,204

randomly accessed single-volume files
definition 200

73

effect of CLOSE option
range of a PERFORM statement

203, 204
171,177,178

range of values
condition-name 125,127
priority numbers 290,291
sequence numbers on DELETE card

RD (see report description entryl
READ statement

description 191,192
error processing 158
examples 22,32
format 191

reading backwards 188
reading nonstandard labels
READY/RESET TRACE statement
receiving data item

154,155
298

justification 106
in a MOVE statement
truncation 106

record
description
level number
naming 101

85,87,88
88

180,181

(R) component of ACTUAL KEY
slack bytes

between records
within records

RECORD CONTAINS clause
description 94,95
format 94
for Report Writer
for Sort 221,222

123
119-122

235

record description, definition
record description entry

contents 99,100,87,88
definition 99
File Section 89
formats 99
Linkage Section 90,91
maximum length 99
Sort records 221,222,224
Working-storage Section 90

73

343

297

RECORD KEY clause 76,59
record length for sort records
record-name, definition 343
record size default

221,222

for DISPLAY statement
for report write~ 235

199

Index 367

Order No. GC28-6394-2, Page Revised 4/15/71 $y TNL GN-0436

recording mode
ASCII considerations
default 95, 96
specification
types 95

96

RECORDING MODE clause 96

334.3

ASCII considerations 334,3
RECORDS option of the BLOCK CONTAINS
clause 92,93

REDEFINES clause
and APPLY CORE-INDEX option
description 102-105
examples 103-105
format 102

82

position in a data description entry
100,101

VALUE clause
redefinition

126

altering usage 104
102-105 data descriptions

examples 103-105
extent of 102,105
rearranging 104
storage area 102-105
subordinate items 105
and SYNCHRONIZED items

reel, definition 343
103,118.3,119

REEL option of the CLOSE statement
200-203

reference format 47
registers (see special registers>
regrouping data items 102-105,128-130
reinitializing subprograms 206
relation character

definition 37,343
in relation conditions 142,143

relation conditions
ASCII considerations 334.4-334.6
characters used 37
condition-name as abbreviation 141
definition 343
implied subject and relational
operators 148,149

operands
index data items 280,281,144,145
index-names 280,281,144 1 145
nonnumeric items 143
numeric items 143
permissible comparisons 145

in table handling 280-285
relational-operators

compound conditions 147-149
definition 344,142
implied 148,149

relational statement (see relation
condition>

relative indexing 279,270,271
relative LINE clause 244 1 245
RELEASE statement in sort 227
relocation factor, Version 3 334,8
remainder, definition 164
REMAINDER option for the DIVIDE statement

164
REMARKS paragraph 55
RENAMES clause 128-130,99,100,88
renaming

368

data items 128-130,99,100,88
logical records 128-130,102-105

repetition of symbols in a PICTURE
108,109

replacement

clause

of a character 182-186
with the COPY statement
of the currency symbol
of a record 197

293-295
63,65,308.1

of zeros 105,109,110,117,118
replacement editing 117,118
REPLACING option

COPY statement 294-296
EXAMINE statement 182,183

replacing a zero with a space
105,109,117,118

REPORT clause 234,235,98.1
report, definition 241,344
report description entry

CODE clause 236,237
CONTROL clause 237,238
COPY statement 293
definition 344 1 236
and GENERATE statement 253,254
PAGE LIMIT clause 238-240

report file, definition 344
REPORT FOOTING report group

descrip~ion 247,248
LINE clause 245

246
239

256

NEXT GROUP clause
PAGE LIMIT clause
TERMINATE statement
TYPE clause 247,248

report group description entry
COLUMN clause 249
COPY statement 293
description 241-243
formats 242
GROUP INDICATE clause
LINE clause 243-245

250

NEXT GROUP clause 245,246
RESET clause 250 1 251
SOURCE clause 251 1 252
SUM clause 251-253
TYPE clause 247-249
USAGE clause 249
VALUE clause 251,253

report groups
definition 344
page format 239
sequence of printing 248,249
types 247-249
USE sentence 256,257

REPORT HEADING report group
description 247,248
GENERATE statement 254
LINE clause 244
NEXT GROUP clause 246
PAGE LIMIT clause 239
TYPE clause 247,248

report line, definition 344
report-name, definition 344
report page format effect on

LINE-COUNTER special register 257,258
PAGE-COUNTER special register 257
PAGE LI.MIT clause 238-240

Report Section
content 236-253,232,233,86
COPY statement 293
definition 344

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

formats
report description entry 236
report group description entry 242

general format 236,242,86
structure 86
VALUE clause 125

Report Writer
Data Division considerations

File Section 234,235
overall description 232,233
Report Section 236-253

Procedure Division considerations
declarative 256,257,158
GENERATE statement 253,254
INITIATE statement 254,255
overall description 233
TERMINATE statement 255,256
USE statement 256,257,158

sample program
coding 259-262
output 264-268

special registers 257,258
report-name 236,253-255
RERUN clause

ASCII considerations 334.2,334.7
for processing programs 77,78
for sort feature 220

required words in formats
RESERVE clause 70,70.1
reserved words

definition 38
in formats 50
list of 326,325,324

RESET clause, Report Writer
RESET TRACE statement 298
resetting

50

called program items
LINE-COUNTER 255

206

PAGE-COUNTER 255
PRINT-SWITCH 255
SUM counter 255

restarting a program
retrieving an indexed

and access methods

77
file

59

250-251

and READ statement
and START statement

191, 192
189

return code
for multi-volume files
for sort 229

return from sort

67,68

input procedure 225
output procedure 226

RETURN statement in sort 228
returning control to the operating system

177, 210
REVERSED option of the OPEN statement

187, 188, 57
reversed reading of a file
rewinding a tape file

188

and CLOSE statement
and OPEN statement

REWRITE statement

201-203
187,188

description 197
error processing 158

rewriting
direct file 195-197,58,59
indexed file 197,59

RF (see REPORT FOOTING report group)

RH (See REPORT HEADING report groupl
right justification 106
rolling counters forward 252
Roman alphabet in alphabetic items 112
ROUNDED option in arithmetic statements

ADD 162,163
COMPUTE 163
description 160,161
DIVIDE 164
MULTIPLY 165
SUBTRACT 166,167

rounding 160,161
rounding in a size error condition 161
routine, definition 344
rules for

defining initial values for data items
125-127

evaluating arithmetic expressions
137,138

evaluating compound conditions 147,148
key items in sort 223,224
moving data items 180
punctuation in a source program 36
qualification 45,46
record discription entry format 99,100
replacement in the EXAMINE statement

182,183
transformation 184-186

RUN option of the STOP statement
in calling and called programs 210
description 177

run unit, definition 344

s, used in a PICTURE clause
binary items 124.2,124.4
description 109
external decimal items 124.4
fixed-point numeric items 112
internal decimal items 124.2,124.5
precedence 111
sterling nonreport items 305

s-mode records
BLOCK CONTAINS clause 93
description 95
RECORDING MODE clause 96

SAME AREA clause 78
SAME SORT AREA clause 220,221
sample programs

creation of a direct file 314,315
creation of an indexed file 316,317
random retrieval of a direct file

31,32
random retrieval
indexed file

report writer
sort 230,231

and updating of an
318, 319
259-262

table handling 287,288
scaling, effect on rounding
scaling position character <P>

108,109,111

161

scientific decimal item (see external
floating-point itemsl

SEARCH statement
ALL option 282,285
conditions 282,283,285
description 281-285
example 288

Ind.ex 369

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

flowchart 284
formats 281,282
index-names in 282,283,285
modifying indexes 282,283,285

section
classification in segmentation 290,291
definition 133
format 134,290

section header 133,48
section-name 48,134,290
SECURITY paragraph 55
SEEK statement 190
segment classification
SEGMENT-LIMIT clause

description 291
format 291,63

segmentation
and ALTER statement
and called programs
classifying segments
control of 290

290,291

292,169
292

290

fixed portion 289,291
and GO TO statement 292
independent segments 289,291
overlayable fixed segments 289,291
and PERFORM statement 292,173
permanent segments 289,291
priority numbers 290,291
program organization 289
restrictions on program flow
segment limit 291

SELECT clause
COPY statement
description 67

293

292

file named in GIVING option of SORT
statement 218,218.1

format 67,218,1,219
sort-file 219
sort work units 219

SELECT OPTIONAL clause
semicolon

67

used in a data description entry · 100
used in source program 36,100,133

sentence
definition 344
description 133
termination 133

SEPARATE CHARACTER option of SIGN clause
118.1

separator
definition 344
of statements 133
in sterling items 304,306,307
of words 38

sequence
entries in the Data Division 86
execution of Procedure Division
execution of segmented programs
report groups 241
sorting 223,224

134
290

sequence checking default for compilation
47

sequence-number-field for copying
sequence number in a source program
sequential access

370

ACCESS MODE clause 71,72
ACTUAL KEY clause 72,73
APPLY WRITE-ONLY clause 80

296,297
47

ASSIGN clause 67-70
definition 344,58
direct files 58
indexed files 59
NOMINAL KEY clause 75
recording mode 95
RECORDING MODE clause 96
RESERVE clause 70
sequential files 58
size of records 96

sequential data organization, definition
57

sequential files
access techniques 58
ACTUAL KEY clause 72,73
APPLY WRITE ONLY clause
ASSIGN clause 67-70

80

effect of CLOSE options 201-203
error processing 156-158
nonstandard labels 97,153-155
NOMINAL KEY clause 75
reading 191,192
recording mode 95
RECORDING MODE clause 96
RESERVE clause 70, 70, .1
writing 192-196

sequential multivolume files
definition 196.1,200
effect of CLOSE options 201-203

sequential processing, definition 345
sequential single-volume files

definition 196
effect of CLOSE

serial search of a
series connective,
SET statement

options 201,203
table 282-284
definition 38

description
formats 286

286

with index data items 279
with indexes 270,277,278

setting values for index-names
286,270,277,278

shading in text, explained lsee Preface>
sharing storage between files 78
shilling representation

BSI and IBM conventions
internal 304
nonreport items
PICTURE clause
report items

304
304,306

306-308.1
symbols allowed

nonreport 304,305
report 307,308

303

shilling separator 304 1 307
short-precision internal floating-point

items
description 124,124.2,124.5
internal representation 124.5
USAGE clause 124,124.2,124.5

sign
binary items 124.2,124.4
external-decimal items 124.4
fixed-point numeric literals 40
floating-point numeric literals 40
internal-decimal items 124.2,124.5
internal floating-point items
124.2,124.5

internal representation 124.5

Order No. GC28-6394-Z Page Revised 4/15/71 by TNL GN-0436

PICTURE clause 109
SIGN clause 118.1,118.2
sterling nonreport items 305
sterling report items 306,308
in subscripts 269
as unary operator 137,138

SIGN Clause
ASCII considerations 334.3,334.7
description 118.1,118.2
format 118.2
SEPARATE CHARACTER option 118.1
Version 3 feature 334.9

sign condition 146
sign field of starting item 305,308
simple condition, definition 345
simple insertion editing 115
single digit level number 88
single spacing

printer page 192-195
source program listing 302

SIZE ERROR option in arithmetic statements
ADD 162,163
COMPUTE 163
description 161
DIVIDE 164
MULTIPLY 165
SUBTRACT 166,167

SKIP statements 302
slack bytes

definition 345,119
in elementary computational items
119,120

in group items containing an OCCURS
clause 120-122

inter-occurrence 121
inter-record 123
intra-occurrence 120,121
intra-record 119-123
in logical records 119-123
and physical record size 93

sort
ascending and descending sequence

223,224
ASCII considerations 334.6,334.7
checkpoints 220,77
collating sequence 223,224
control of procedures 227
Data Division considerations 221,222
elements of the feature 217
Environment Division considerations

File-Control paragraph 218,219
I-0-Control paragraph 219,220

file, definition 345
file description entry 221,222
final phase 225,226
input phase 224 1 225
keys 223,224
modification of records 224-226
optimizing performance 229
Procedure Division considerations

describing sorting operation
222-228

sample program 230,231
special registers 229
work units 219,221 1 222

SORT-CORE-SIZE special register 229
sort-file

COPY statement 293

definition 345
description entry
SELECT clause 219

221,222

229
sort-file name, definition 345
SORT-FILE-SIZE special register
sort-key, definition 345
SORT-MODE-SIZE special register 229
SORT-RETURN special register 229
SORT statement

ASCENDING/DESCENDING option
description 222-226
and EXIT statement 226
format 222

223,224

GIVING option 226,219
INPUT PROCEDURE option
OUTPUT PROCEDURE option
and RELEASE statement
and RETURN statement
USING option 225

224,225
225,226

225
226

sort-work-file 219,221-229,345
sorting operation 222-229
SORTWKl, SORTWK2 in sort 219
SOURCE clause

description
format 251

251

with report groups
CONTROL FOOTING 248,249
CONTROL HEADING 247,249
REPORT FOOTING 248
REPORT HEADING 247

SOURCE-COMPUTER paragraph
source program

definition 345,55
and reference format
structure 43,44

47-49

source program library facility
COPY statement 293-296,212
extended

BASIS
DELETE
INSERT

space

296
296, 297
296,297

in alphabetic items 110

62

in collating sequence 143,224
in external floating-point items 113
as a replacement character 109,117,118
in simple insertion editing 115
as a word separation 38

space insertion 117,118,109
SPACE (SPACES) figurative constant

definition 40.1
in a move 181
permissible comparisons 145
in TRANSFORM 184

spacing program output 193-195
spacing source program listing 302,48
special cha.racters

in CURRENCY-SIGN clause 65
definition 345
in Formats 50

special insertion editing 115
special level number? 88,99,100
special-names, definition 39

(see also mnemonic-name)
SPECIAL-NAMES paragraph

COPY statement 293
CURRENCY SIGN clause 64,65,110,308. 1

Index 371

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

DECIMAL-POINT IS COMMA clause
64,65,308.1

definition
description
format 64

345
63-65

OFF/ON STATUS IS clause 64,65
special registers

definition 345
report writer

LINE-COUNTER
PAGE-COUNTER
PRINT-SWITCH

257,258
257
256,257

sort
SOR'I'-CORE-SIZE 229
SORT-FILE-SIZE 229
SORT-MODE-SIZE 229
SORT-RETURN 229

system
COM-REG 42
CURRENT-DATE 42
NSTD-REELS 42,68
TALLY 41,182 1 183 1 198,199,251,253
TIME-OF-DAY 42

square brackets in formats 50
stacked items in formats 50
standard data format

alphabetic items 112
alphanumeric edited items 112
alphanumeric items 112
definition 345
fixed-point numeric items 112
logical records 94,108
numeric edited items 114
physical records 92,93

standard labels 97,154
STANDARD option of the LABEL RECORDS
clause 91

standard sequential file
BLOCK CONTAINS clause 92,93
definition 57
error declarative capabilities 158
labels 95
recording mode 95,96
WRITE-ONLY option of the APPLY clause

80
standard system procedures

error routines 156,158
label handling 154,155

START statement
description 189
error processing 158
format 189
indexed files 75,158,59
and NOMINAL KEY 75

statement
categories

compiler-directing, list 136
conditional, list 135
description 134
imperative, list 135,136

definition 346,133
statement number option, Version 3 334.8
sterling currency

372

international considerations 308.1
nonreport items

allowable characters 304,305,303
description 304,305
format 305

in a move 181
permissible comparisons 145
in a relation condition 145
sign representation 305

Procedure Division considerations
308.1

report items
allowable characters 306-308,303
de~cription 306-307
format 306
in a move 181
permissible comparisons 145
in a relation condition 145
separator characters 307

representation 303
STOP RUN statement 177, 211
STOP statement

in calling and called programs 211
example 32
format and description 177

storage available for Sort 229
structure of

COBOL language 35-42
Data Division 86
Environment Division 61
Identification Division 55
Procedure Division 134

subdivisions of data records 87-89
subject

of a condition
.explicit 142
implied 143,148,149

of entry, definition 346
of an OCCURS clause 273

subprogram, definition 346,210
subprogram linkage statements

CALL 205,206
ENTRY 206,207
EXIT PROGRAM 211
GOBACK 211,210
STOP RUN 210,211
termination considerations 210
USING option 207-210

subscripts
condition-name 127
description 269,270
formats 269,270
qualification of 270
as qualifier 269,270,45
restrictions on use 271

substitution
comma for period 64,65,308.1
dollar sign 64 1 65,303, 308.1

subtotaling in a report 251,252,254
SUBTRACT statement

CORRESPONDING option 166,160
example 22,32
formats 166
GIVING option 166,167,160
overlapping operands 161
ROUNDED option 166,167,160, 161
SIZE ERROR option 166,161

subtraction operator 136,137,37
SUM clause 251,252
SUM counter

definition 251
GENERATE statement 254
INITIATE statement 255

)
\..._/

i
~i

i '
~

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

and RESET clause 250-251
resetting to zero 250,251,254,255

summary reporting 253
summation in a report 250-25.5
SUPPRESS option of COPY statement 294
suppress spacing 194,195
suppression of

library entry listing 294
printing of a report group 256,257
sequence checking 47
spacing in WRITE statement 194,195
zeros in PICTURE clause 109,117 1 118

suppression and replacement editing
117,118

suppression symbols 109,117
switch-status condition

condition-name in 146
definition 146
and system-names 146,64,65

symbol pair in a compound condition 148
symbolic debugging, Version 3 334.8
symbolic portion of ACTUAL KEY 74
symbols

in arithmetic expressions
137,138,37

in floating-point literals 40
in PICTURE clause 108-110
in relation conditions 142,37
in sterling currency formats 303

SYNCHRONIZED clause
description 118.2-123
format 118.2
index data items 279,280
and OCCURS clause 120-122
slack bytes 119-123

SYSIPT 197,198,64
SYSLST 199,64

68 SYSnnn field in system-name
SYSPCH and SYSPUNCH 199,64
system closing conventions
system features

201-204

COM-REG special register 42
CURRENT-DATE special register
NSTD-REELS special register
TALLY special register

41, 182, 183, 251, 252, 269

42
42,68

TIME-OF-DAY special register 42
UPSI Cuser program status indicator)
switches 64,65

system logical input device
system logical output device
system-name

in ASSIGN clause 68,69
definition 346
in RERUN clause 77,78,220
in the Sort Feature 220

197,198,64
198,199,64

system procedures <see standard system
procedures)

system routines
error 156.4
label handling 155

system switches 64,65
System/370 support, Version 3 63,334.8
SYS001,SYS002 in Sort 219
SOl and 802 function-names

definition 64

table, definition 346
table elements 273,269,346
Table Handling

ascending/descending sequence 275,278
Data Division considerations

OCCURS clause 272-279
USAGE clause 279

examples 271,272,276-278,285,287,288
indexing

description 276-278,270,271
direct 278,270
relative 278,279,270

Procedure Division considerations
relation conditions 280,281
SEARCH statement 281-285
SET statement 286

sample program 287, 288
subscripting 269-271

TALLY special register
in ACCEPT statement 19 8
description 41
in DISPLAY statement 199
in the EXAMINE statement 182,183
in a SOURCE clause 251
as a subscript 269
in a SUM clause 252

tape device, error information 157,158
tape file, label handling

description 97,154-156.3
and NO REWIND option 188,201-203
and REVERSED option 188,201-203
and USE statement 154-156. 3

TERMINATE statement 255 1 256,233
termination of

execution 177
main programs 210,211,177
report processing 255,256
subprograms 210,211

test conditions
class 140
compound 146-149
condition-name 141
definition 346
relation 142-145
sign 146
switch-status 146

THEN
used in IF statement 150
used in sentences 36,133

THRU option
of the PERFORM statement 170,172-176
and THROUGH, equivalence of 38
of the VALUE clause 125,127

TIME-OF-DAY special register description
42

TIMES option of the PERFORM statement
170-172

TO operand of the TRANSFORM statement
184-186

TRACE statement 298
track address

algorithm example 314
component of ACTUAL KEY 72-74.1
direct file 57,72-74,74.1,314

TRACK-AREA clause 76
trailer labels 154-156.3,97

Index 373

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN~0436

169
205,206

transfer of control
ALTER statement
CA.LL statement
between calling and called programs

205-211
to DECLARATIVES 153
to end of series of procedures
177,228,229

EXIT statement 177,228,229
GO TO statement 168,169
GO TO ~ORE LABELS 155-156,1
GOBACK statement 211
to operating system 177,210,211
to bperator 177,197,198
PERFORM statement 170-176
within a program
153-158,168-177,205-211, 227,228,290

RELEASE statement 227
RE'I'URN statement 228
among segments 290
and SORT feature 227,228,229
to USE procedures 153

TRANSFORM statement 185,186,307
ASCII considerations 334.4-334.6

transformation rules 185,186
transmission errors 156
triple spacing

printer page 193-195
source program listing 302

truncation
of alphabetic items 180,106
of alphanumeric items 180,106
in arithmetic operations 162,108
of buffers 80
in floating insertion editing 117
during a move 180,108,106
of numeric items 180,108
in receiving field 180,108,106

TYPE clause 247-249

U-mode records
definition 346
description 96
recording mode 95,96
specification 95,96
specification of physical record size

92, 93
UHL <user header label> 97
unary+ 137,138
unary - 137,138
unary operator, definition 346
undefined record format (see U mode
records I

unique names
by indexing 270,271,46
by qualification 45,46
by subscripting 269,270,46

unit, definition 55
in formats 51
in storage 346,187

UNIT option of the CLOSE statement
201-203

unit record volume
definition 200
effect of CLOSE options 201-203

374

error information 157
list 70

unsigned numeric operands considered
positive 40,111,113,124.4,145,185

UNTIL FIRST option Of the BXAMINE
statement 182,183

UNTIL option of the PERFORM statement
170, 172

UP BY option of the SET statement 28b
updating a file

REWRITE statement 197
sample programs 31,32,318,319
WRITE statement 193,196

UPON option of the SUM clause 251,252
UPSI-0 through 7 <User Program Status
Indicator bits) 64,65

USAGE clause
alphabetic items 124.1
alphanumeric items 124.1
alteration by redefining 104
ASCII consideration 334.3,334. 7
binary items 124.1,124.2,124.4,111
default option 124
description 124-124.5,279,304,306
external decimal items 124.1,124.4
external floating-point items

124.1,124,5,111,112
format 124,279,304,306
index data items 279,124
internal decimal items 124.2,124.5,111
internal floating-point items

124.2,124.5
use of coding form 47-49
USE statement

error processing 156.4-158
on a declarative section header
and nondeclarative procedures
nonstandard label processing
report writer 256,257,159

153
153

154-156.4

user label processing 154-156.4
user-created libraries 293-297
user error procedures 156.4-158
user header label (UHL> 97
user labels

description 97
GO TO MORE-LABELS 155,156
procedures for handling 154-156.4,188
standard systems procedure

155,156.4,201,202
user program status indicator bits
user trailer label {UTL) 97

65

USING option in calling and called programs
boundary alignment of identifiers 119
in a CALL statement 205,206,208
in a called program 207-209
in a calling program 205-209
in the ENTRY statement 206,207
on the Procedure Division header

206-208,133,134,47
USING option of the SORT statement

222,225
utility device

class field in system-name
list 68

UTL <user trailer labell 97

68

(i

"-"!

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

v, used in a PICTURE clause
definition 109
external floating-point items
113,124.2

fixed point numeric items 112,124,1
numeric edited item 114
with P 109
sterling nonreport items 303,304

V-mode records
and APPLY WRITE-ONLY clause 80
definition 346
description 95,96
inter-record slack bytes 123
intra-record slack bytes 122
recording mode 95;96
in sort 221
specification 95,96
specification of physical record size

92,93,94
VALUE clause

condition-names 125-127,99,100
description 125-127
examples 127,100,141
formats 125
report writer data items 251,253
sterling items 305,308

VALUE information for Report Writer
251,253,233

VALUE OF clause 97
variable, definition 346
variable-length record format (see V-mode

records)
variable-length records

description 94-96
and recording mode 94-96
size of print line in a report 235
in sort 221

variable length table 273-275,277
VARYING option

of the PERFORM statement 170,172-176
of the SEARCH statement 281,282

verb, definition 346
vertical positioning of a printed line

193-195
volume, definition 347
volume positioning with the CLOSE

statement 201-203
volume switch

and CLOSE options 201-203
label processing 154-156,3
procedures, definition 347
and READ statement 192
and WRITE statement 196.1

WHEN option of the SEARCH
statement 281-285

WITH LOCK option of the CLOSE statement
200,201-204

WITH NO REWIND option of the CLOSE
statement 200,201,203

word
characters used in 35
continuation of in a source program 48
definition 347,35,38
separators 38

types
name 39
reserved word 38
special name 39

word boundary 118.2,118.3,124. 2,347
Working-Storage Section

boundary alignment 1.19
condition-name entries 126
content 90,86
in COPY statement 293
data item description entry 99,100,88
definition 347
examples 21,31
format 90
level-numbers in 100 1 88
naming data 101
record description entry 99,100,88
renaming entries in 128-130
structure 86
used in error processing 157
use of FILLER 101
values of items 126
Version 3 support 334.8

WRITE-ONLY option Of the APPLY clause 80
WRITE statement

AFTER ADVANCING option 193,194
AFTER POSITIONING option 193-195
BEFORE ADVAl~CING option 193-195
END-OF-PAGE (EOP) option 193,195
error processing 158
example 25,32
formats 193
FROM option 193
INVALID KEY option 193,196

WRITE-VERIFY option of the APPLY clause
81

writing user labels 154-156.3,188,189

X, used in a PICTURE clause
108,109,111,112,114

z, used in a PICTURE clause
description 109
numeric edited items 114
sterling report items 306-308
zero suppression editing 117,118

. ZERO. (ZEROES, ZEROS) figurative constant
deStcription 41
in a move 181
permissible comparisons 145
in place of numeric literal 41
in a relation condition 145
in TRANSFORM 184-186

zero divisor 164,161
zero insertion 109,111,114,115
zero operand

DIVIDE statement 164
and internal floating-point items 161
relation condition 142,145
sign condition 146

zero, simple insertion editing 115
zero suppression and replacement editing

117,118
zone bits, external decimal items

124. 1, 124. 4
zoned decimal format 112,124.1,124.4

Index 375

Order No. GC28-6394-2, Page Revised 4/15/71 by TNL GN-0436

o, used in a PICTURE clause
alphanumeric edited items 114
cescription of use 109
floating insertion editing 115
numeric edited items 114
precedence 111
simple insertion editing 115

01-49 level numbers 99,100 1 88
6, used in a sterling nonreport PICTURE
clause 304

b6 level number 99,100,128,88
7, used in a sterling nonreport PICTURE

clause 304
77 level number 99,100,88
8, used in a PICTURE clause

376

sterling nonreport items 304
sterling report items 307

88 level number 99 1 100,127,88
9, used in a PICTURE clause

alphanumeric edited items 114
description of use 109
external floating-point items 112,113
fixed-point numeric items
112,124.2,124.4,124.5

numeric edited items 112
numeric items 112
precedence 111
sterling nonreport items 304,305
sterling report items 306-308

3211 printer support, Version 3 334.8

' i
\._/

' l
'._/

1.._.

\. , .. /

''-'

{

\..J

I ,
\._.,!

GC28-6394-2

International Business Machines Corporation
Data Processing Division
1133 Westchester Avenue, White Plains, New York 10604
{U.S.A. only)

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International)

''--""'

co
5::
CJ)

----w
en
0

0
0
(/)

-n
c

)>
3
(!) ..,
z
Ql

~

CJ)
c..
()
0
co \,_,!
0
r

.,,
::!.
:J
(1)
c..
:J

c
en
~

I

\-.._.;

t ,,.,

' ...

Technical Newsletter File No. 8360-24

Re: Order No.

This Newsletter No.

GC28-6394-2

GN28-0436

Date: April 15, 1971

IBM SYSTEM/360 DISK OPERATING SYSTEM
FULL AMERICAN NATIONAL STANDARD COBOL
© IBM Corp. ~968, 1969, 1970, 1971

Previous Newsletter Nos.

This Technical Newsletter provides replacement pages for IBM System/360
Disk Operating System: Full American National Standard COBOL, Order No .
GC28-6394-2. For the Versi 2 Compiler, it corresponds

Changes for the Program
5736-LM2, are also included. ,

Pages to be inserted are:

Cover-2
3.:...4
7-14. 1
29-30
39-40.1
41-42
61-70.1
73-74.1
77-78
93-98.1
103-104

Summary of Amendments

107-118.3
119-120
123-124.5
125-126
145-146
153-:-156.4
161-162
171-172
193-196.1
197-198
217-218.1

223-224
261-262
273-276.1
293-294
297-300.1
305-308.1
309-312
321-328
334.1-334.9
335-336
339-342.1
Index

Descriptions of Program Product Version 3 items: the addition of the
SIGN clause, and ASCII capabilities, and a list of Version 3 features,
as well as changes in the implementation of the OBJECT-COMPUTER para­
graph and the ON statement.

Changes for all Versions include: clarifications of LABEL RECORDS,
PICTUllli and USAGE clause descriptions, addition of a PICTURE table of
precedence, and a sample program for user label processing. Many
examples have been added.

Minor omissions and errors that appeared in the previous edition have
also been corrected.

A change to the text or a small change to an illustration is indicated
by a vertical line to the left of the change. A changed or added
illustration is denoted by the symbol • to the left of the caption.

Note: Please file this cover letter at the back of the manual to
provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N. Y. 10020

PRINTED IN U. S. A.

None

\
I

_,/

•

"'' ...

Technical Newsletter

IBM DOS FULL AMERICAN
NATIONAL STANDARD COBOL
©IBM Corp. 1968, 1969, 1970, 1971

File No.

Re: Order No.

This Newsletter No.

Date:

8360-24

GC28-6394-2

GN28-0489

May 15, 1972

Previous Newsletter Nos. GN 2 8-0 4 3 6

This Technical Newsletter provides new pages and replacement pages
for IBM DOS Full American National Standard COBOL, Order No. GC28-
6394-2 as amended by TNL GN28-0436. Changes for Release 2 of the
Version 3 Program Product Compiler, Program Nos. 5736-CB2,
5736-CB3, and 5736-LM2, are included. Pages to be inserted are:

Front Cover
Preface
Table of Contents
11-14
69-70.4
77-78.l

Summary of Amendments

81-82
291-292
309
323-324
334. 7-334 .• 28

Documentation for Version 3 Release 2 System/370 device support is
added. Two new appendixes explain the Version 3 symbolic debug
feature and Version 3 3525 combined function processing.

Changes to text are indicated by a vertical line to the left of the
change. Added illustrations have the symbol • to the left of the
caption.

Note: Please file this cover letter at the back of the manual
to provide a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

© IBM Corp. 1972 PRINTED IN U. S. A.

. J.
\~

!

'"'-"'

	final001
	final002
	final003
	final004
	final005
	final006
	final007
	final008
	final009
	final010
	final011
	final012
	final013
	final014
	final015
	final016
	final017
	final018
	final019
	final020
	final021
	final022
	final023
	final024
	final025
	final026
	final027
	final028
	final029
	final030
	final031
	final032
	final033
	final034
	final035
	final036
	final037
	final038
	final039
	final040
	final041
	final042
	final043
	final044
	final045
	final046
	final047
	final048
	final049
	final050
	final051
	final052
	final053
	final054
	final055
	final056
	final057
	final058
	final059
	final060
	final061
	final062
	final063
	final064
	final065
	final066
	final067
	final068
	final069
	final070
	final071
	final072
	final073
	final074
	final075
	final076
	final077
	final078
	final079
	final080
	final081
	final082
	final083
	final084
	final085
	final086
	final087
	final088
	final089
	final090
	final091
	final092
	final093
	final094
	final095
	final096
	final097
	final098
	final099
	final100
	final101
	final102
	final103
	final104
	final105
	final106
	final107
	final108
	final109
	final110
	final111
	final112
	final113
	final114
	final115
	final116
	final117
	final118
	final119
	final120
	final121
	final122
	final123
	final124
	final125
	final126
	final127
	final128
	final129
	final130
	final131
	final132
	final133
	final134
	final135
	final136
	final137
	final138
	final139
	final140
	final141
	final142
	final143
	final144
	final145
	final146
	final147
	final148
	final149
	final150
	final151
	final152
	final153
	final154
	final155
	final156
	final157
	final158
	final159
	final160
	final161
	final162
	final163
	final164
	final165
	final166
	final167
	final168
	final169
	final170
	final171
	final172
	final173
	final174
	final175
	final176
	final177
	final178
	final179
	final180
	final181
	final182
	final183
	final184
	final185
	final186
	final187
	final188
	final189
	final190
	final191
	final192
	final193
	final194
	final195
	final196
	final197
	final198
	final199
	final200
	final201
	final202
	final203
	final204
	final205
	final206
	final207
	final208
	final209
	final210
	final211
	final212
	final213
	final214
	final215
	final216
	final217
	final218
	final219
	final220
	final221
	final222
	final223
	final224
	final225
	final226
	final227
	final228
	final229
	final230
	final231
	final232
	final233
	final234
	final235
	final236
	final237
	final238
	final239
	final240
	final241
	final242
	final243
	final244
	final245
	final246
	final247
	final248
	final249
	final250
	final251
	final252
	final253
	final254
	final255
	final256
	final257
	final258
	final259
	final260
	final261
	final262
	final263
	final264
	final265
	final266
	final267
	final268
	final269
	final270
	final271
	final272
	final273
	final274
	final275
	final276
	final277
	final278
	final279
	final280
	final281
	final282
	final283
	final284
	final285
	final286
	final287
	final288
	final289
	final290
	final291
	final292
	final293
	final294
	final295
	final296
	final297
	final298
	final299
	final300
	final301
	final302
	final303
	final304
	final305
	final306
	final307
	final308
	final309
	final310
	final311
	final312
	final313
	final314
	final315
	final316
	final317
	final318
	final319
	final320
	final321
	final322
	final323
	final324
	final325
	final326
	final327
	final328
	final329
	final330
	final331
	final332
	final333
	final334
	final335
	final336
	final337
	final338
	final339
	final340
	final341
	final342
	final343
	final344
	final345
	final346
	final347
	final348
	final349
	final350
	final351
	final352
	final353
	final354
	final355
	final356
	final357
	final358
	final359
	final360
	final361
	final362
	final363
	final364
	final365
	final366
	final367
	final368
	final369
	final370
	final371
	final372
	final373
	final374
	final375
	final376
	final377
	final378
	final379
	final380
	final381
	final382
	final383
	final384
	final385
	final386
	final387
	final388
	final389
	final390
	final391
	final392
	final393
	final394
	final395
	final396
	final397
	final398
	final399
	final400
	final401
	final402
	final403
	final404
	final405
	final406
	final407
	final408
	final409
	final410
	final411
	final412
	final413
	final414
	final415
	final416
	final417
	final418
	final419
	final420
	final421
	final422
	final423
	final424
	final425
	final426
	final427
	final428
	final429
	final430
	final431
	final432
	final433
	final434

