

Hum~ingbird Basic Language TM
• . ·;<; , d ·ts Gui e

If:_~
&' ~ ~, c ' '

8157-6M

tlummingbird™

Hummingbird Basic Language Programmer's Guide
0800 8 l 57-6M
05131102

Hummingbird Ltd.
1 Sparks Avenue, Toronto, Ontario, Canada M2H 2W 1
Tel: + 1-416-496-2200 Toll Free Canada/USA: 1-877-FLY-HUMM (1-877-359-4866)
Fax: + 1-416-496-2207
E-mail: support@hummingbird.com or getinfo@hummingbird.com
FTP: ftp.hummingbird.com
For more information, visit www.hummingbird.com

RESTRICTED RIGHTS LEGEND. Unpublished rights reserved under the copyright laws of the United States. The SOFTWARE is provided with
restricted rights. Use, duplications, or disclosure by the U.S. Government is subject to restrictions as set forth in subparagraph (c) (1)(ii) of The
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013, subparagraph (c)(1) and (2) (a) (15) of the Commercial Cc.mputer
Software-Restricted Rights clause at 48 CFR 52.227-19, as applicable, similar clauses in the FAR and NASA FAR Supplement, any successor or
similar regulation.

Information in this document is subject to change without notice and does not represent a commitment on the part of Hummingbird Ltd. Not all
copyrights pertain to all products.

© 1990-2002 Hummingbird Ltd. All rights reserved.

Exceed, Exceed 3D, Exceed onDemand, Exceed PowerSuite, Exceed X Development Kit, Exceed Web, HostExplorer Print Services, HostExplorer,
HostExplorer Web, HostExplorer Deployment Wizard, Hummingbird Connectivity Security Pack, Hummingbird Basic Language,
Hummingbird Portal, Hummingbird Core Services, Hummingbird e-Toolkit, JuMP, Enterprise Toolkit for JuMP, Hummingbird e-Gateway,
Hummingbird FTP, Hummingbird G2G, Hummingbird Web Server, Hummingbird SOCKS Client, NFS Maestro Client, NFS Maestro Gateway,
NFS Maestro Server, NFS Maestro Solo, PrintExplorer, and XWeb are trademarks of Hummingbird Ltd. and/or its subsidiaries.

ACKNOWLEDGEMENTS Portions of the code have been contributed by MIT. Portions copyright © Blue Sky Software Corporation. All rights
reserved. All other copyrights, trademarks, and tradenames are the property of their respective owners.

DISCLAIMER Hummingbird Ltd. software and documentation has been tested and reviewed. Nevertheless, Hummingbird Ltd. makes no
warranty or representation, either express or implied, with respect to the software and documentation included. In no event will Hummingbird Ltd.
be liable for direct, indirect, special, incidental, or consequential damages resulting from any defect in the software or documentation included with
these products. In particular, Hummingbird Ltd. shall have no liability for any programs or data used with these products, including the cost of
recovering such programs or data.

ii

Related Documentation and Services

Manuals
All manuals are available in print and online. The online versions require Adobe Acrobat Reader 5.0 and are installed
only if you do a Complete installation.

Help
The online Help is a comprehensive, context-sensitive collection of information regarding your Hummingbird product.
It contains conceptual and reference information, and detailed, step-by-step procedures to assist you in completing your
tasks.

Release Notes
The release notes for each product contain descriptions of the new features and details on release-time issues. They are
available in both print and HTML. The HTML version can be installed with the software. Read the release notes before
installing your product.

iii

Hummingbird Expose Online

Hummingbird Expose Online is an electronic mailing list and online newsletter. It was created to facilitate the delivery

of Hummingbird product-related information. It also provides tips, help, and interaction with Hummingbird users. To
subscribe/unsubscribe, browse to the following web address:

http://www.hurrrrningbird.com/expose/about.html

User Groups and Mailing Lists
The user group is an unmoderated, electronic mailing list that facilitates discussion of product-related issues to help
users resolve common problems and to provide tips, help, and contact with other users.

To join a user group:

Send an e-mail to listserv@hurrrrningbird.com. Leave the Subject line blank. In the body of the e-mail message, type the
following:

subscribe exceedusers Your Name

subscribe hostexplorer-users Your Name

subscribe nfsmaestro-users Your Name

To unsubscribe:

Send an e-mail to listserv®hurrrrningbird. com. Leave the Subject line blank. In the body of the e-mail message, type the

following:

unsubscribe exceedusers Your Name

unsubscribe hostexplorer-users Your Name

unsubscribe nfsmaestro-users Your Name

To post a messages to the user group:

Send your e-mail to:

exceedusers@hummingbird.com

hostexplorer-users@hummingbird.com

nfsmaestro-users@hummingbird.com

To search the mailing list archives:

Go to the following web site:

http://www.hummingbird.com/support/usergroups.html

iv

Contents

Chapter 1: Introducing Hummingbird Basic 1
About Hummingbird Basic ... 3

Development Tools .. 4
Hummingbird Basic Features .. 4

Chapter 2: Hummingbird Basic Scripts 7
Sample Scripts .. 9

Programming Terminology .. 11
Structure of a Hummingbird Basic Script .. 12

Variable Scope .. 13
Functions and Control Statements .. 13
Control Statements .. 16

Variables, Constants, and Data Types .. 16
Variables and Constants ... 17
Data Types .. 18

Expressions and Operators .. 26
Numeric Operators .. 26
String Operators ... 26
Comparison Operators .. 27
Logical Operators ... 27

v

Hummingbird Basic Language Programmer's Guide

Programming Tips and Coding Suggestions ... 28
Naming Variables and Constants ... 28
Global Variables ... 28
Declaring Variables .. 28
Option Base .. 28
Dynamic Array ... 28
Runtime Error .. 29
Controls .. 29
Compatibility ... 29
Checking for the Existence of PC Files ... 29
Using Win32 API .. 30
Network Log on Name .. 30
Always Visible Message Box ... 31
Working with Windows Registry ... 32
OLE Functions .. 33

Error-Handling and Debugging ... 34
Error Types ... 34

Debugging Scripts for Syntax and Logic Errors 35
Handling Runtime Errors ... 36
Trapping Errors .. 36

Chapter 3: Using Development Tools to Edit Scripts 43

About Hummingbird Basic Workbench .. 45
The Workbench Interface ... 45
Creating a Script File at a Glance .. .47

Compiling and Running a Script File ... 49
Running a Script File .. 49

vi

Contents

Chapter 4: Designing Dialog Boxes 51
About Dialog Editor .. 53

Dialog Editor Interface .. 53
Adding Controls to a Dialog Box .. 56
Aligning Controls in the Dialog Box .. 57
Setting Control Properties ... 58

Dialog Box Properties .. 59
Button Control Properties ... 60
OptionButton Control Properties .. 61
Text Control Properties ... 62
TextBox (Edit) Control Properties .. 63
CheckBox Control Properties .. 64
ListBox Control Properties .. 64
StaticComboBox Control Properties ... 65
DropComboBox Control Properties .. 66
DropListBox Control Properties .. 67
GroupBox Control Properties .. 68
Picture Control Properties ... 69

Integrating a Dialog Box into Your Script .. 70
Defining the Dialog Box ... 70
Displaying the Dialog Box ... 71

Dialog Statements and Functions ... 71
Writing a Dialog Function ... 74

Putting It All Together ... 77

vii

Hummingbird Basic Language Programmer's Guide

Chapter 5: Hummingbird Basic Language Reference 81

Hummingbird Basic Statements and Functions .. 83

Arrays ... 83

Compiler Directives ... 83

Control Flow .. 84

Dates and Times ... 85

Declarations .. 86

Defining Dialog Boxes .. 87

Running Dialog Boxes .. 88

Dynamic Data Exchange (DDE) .. 89

Environment Control ... 89

Error-Handling Functions ... 90

Disk and Directory Control ... 90

File Control .. 91

File Input/Output ... 91

Financial Functions .. 92

Numeric Functions ... 93

Trigonometric Functions ... 93

Objects .. 94

Screen Input/Output .. 94
String Functions ... 95

String Conversions ... 96

Variants .. 96

Calling External Functions in a .dll .. 97

Sample Script: Calling External Functions in a .dll 97

Using Dynamic Data Exchange .. 98

DDE Sample Script ... 99

Appendix A: Technical Support and Accessibility 101

Accessibility .. 103

Microsoft Accessibility Options ... 104

Technical Support ... 105

Glossary 107

Index 111

viii

Chapter 1

Introducing Hummingbird Basic

About Hummingbird Basic
Development Tools
Hummingbird Basic Features

3
4
4

Chapter 1: Introducing Hummingbird Basic

About Hummingbird Basic

Hummingbird Basic is a fully functional language that includes a
Workbench for writing and compiling scripts, and a graphical drag-and
drop Dialog Editor for creating and designing an interface. Hummingbird
Basic can be used to create scripts for the tasks you frequently perform and
want to automate. For example, scripts can be created to automate routine
tasks. The following are some common tasks that may require a
Hummingbird Basic script:

• If you often edit specific files on your PC, then transfer these files to
several UNIX hosts. Create a script using the FTP API functions that
will connect to the host, transfer the designated files, and then
disconnect.

• If you need to perform the same actions on several IBM 3270 or 5250
hosts at the same time. Create a script file with the HLLAPI functions.
This saves you from maintaining the same shell script on a number of
different 3270 hosts.

• If you configure your computer differently depending on what you are
working on, you could write a script to change your PC configuration
back and forth. The script file would allow you to quickly and easily
change the configuration without having to manually edit the files each
time.

In addition to the Hummingbird Basic statements and functions, there is a
set of API and OLE function calls which you can use to customize the
following Hummingbird applications:

• FTP

• HostExplorer

Hummingbird Basic also supports a number of Xlib API functions. These
functions are used to create X clients for your PC.

Note: Xlib API commands are available only if you purchased the
Exceed product. Use only the applications that have OLE API
libraries with Hummingbird BASIC.

3

Hummingbird Basic Language Programmer's Guide

4

Development Tools
Hummingbird Basic includes the following development tools:

Workbench A development environment to write, compile and debug

your scripts.

Dialog Editor Accessed from Workbench, this drag-and-drop dialog box

editor lets you design a dialog box without having to manually code one.

When you are finished designing, the code for the dialog box is

automatically generated and updated into your script.

Hummingbird Basic Features
If you are familiar with older versions of BASIC (those that predate

Windows), you will notice that Hummingbird Basic includes many new

features and changes from the language you have learned. Hummingbird

Basic more closely resembles other higher level languages popular today,

such as C and Pascal.

The topics below describe some of the differences you will notice between

the older versions of BASIC and Hummingbird Basic.

Line Numbers and Labels

Older versions of BASIC require numbers at the beginning of every line.

More recent versions do not support these line numbers; in fact, they will

generate error messages.

If you want to reference a line of code, you can use a label. A label can be any

combination of text and numbers. Usually, it is a single word followed by a

colon(:), which is placed at the beginning of a line of code. These labels are

used by the Goto statement.

Subroutines and Modularity of the Language

Hummingbird Basic is a modular language; code is divided into

subprocedures and functions. The subprocedures and functions you write

use the Hummingbird Basic statements and functions to perform actions.

Variable Scope

The placement of variable declarations determines their scope.

Chapter 1: Introducing Hummingbird Basic

Data Types
Modern BASIC is now a typed language. In addition to the standard data
types-numeric, string, array, and record-Hummingbird Basic also
includes variants and objects.

Variables that are defined as variants can store any type of data. For
example, the same variable can hold integers one time, and then, later in a
procedure, it can hold strings.

Objects give you the ability to manipulate complex data supplied by an
application, such as Windows, Forms, or OLE objects.

Dialog Box Handling
Hummingbird Basic contains extensive dialog box support to give you great
flexibility in creating and running your own custom dialog boxes. You
define a dialog box with dialog control statements between the Begin

Dialog ... End Dialog statements, and then display it using the Dialog
statement (or function).

Hummingbird Basic stores information about the selections the user makes
in the dialog box. When the dialog box is closed, your program can access
this information.

Hummingbird Basic also includes statements and functions to display other
types of boxes:

• Message Boxes-Notify the user of an event.

Password Boxes-Do not echo the user's keystrokes on the screen.

• Input Boxes-Prompt for a single line of input.

Financial Functions Hummingbird Basic includes a list of financial
functions for calculating such things as loan payments, internal rates of
return, or future values based on a company's cash flow.

Date and Time Functions The date and time functions have been
expanded to make it easier to compare a file's date to today's date, set the
current date and time, time events, and perform scheduling-type functions
(such as finding the date for next Tuesday).

5

Hummingbird Basic Language Programmer's Guide

6

Object Handling Hummingbird Basic is an OLE automation controller.
Any OLE-enabled application can be communicated with or controlled
through a Hummingbird Basic script.

The object data type permits your Hummingbird Basic code to access other
software applications by manipulating the available OLE properties and
methods of the other application.

Environment Control Hummingbird Basic includes the ability to call
another software application and send keystrokes to the application. Other
environment control features include the ability to run an executable
program, temporarily suspend processing to allow the operating system to
process messages, and return values in the operating system environment.

Chapter 2

Hummingbird Basic Scripts

Sample Scripts

Programming Terminology

Structure of a Hummingbird Basic Script
Variable Scope
Functions and Control Statements
Control Statements

Variables, Constants, and Data Types
Variables and Constants
Data Types

Expressions and Operators
Numeric Operators
String Operators
Comparison Operators
Logical Operators

Programming Tips and Coding Suggestions
Naming Variables and Constants
Global Variables
Declaring Variables
Option Base
Dynamic Array
Runtime Error
Controls
Compatibility
Checking for the Existence of PC Files
Using Win32 API

9

11

12
13
13
16

16
17
18

26
26
26
27
27

28
28
28
28
28
28
29
29
29
29
30

Network Logan Name

Always Visible Message Box

Working with Windows Registry

OLE Functions

Error-Handling and Debugging

Error Types
Debugging Scripts for Syntax and Logic Errors

Handling Runtime Errors

Trapping Errors

30
31
32
33

34
34
35
36
36

Chapter 2: Hummingbird Basic Scripts

Sample Scripts

Before starting, you may find it useful to review the provided sample scripts.
Source files (. ebs) and their associated compiled files (. ebx) are located in
the user directory under

Applications
Data\Hurmningbird\Connectivity\version\Accessories\Eb

The following sample scripts are provided:

dialog.ebs This sample script displays the various types of dialogs that
Hummingbird Basic can use. It also stores information as shown below that
you either select or press, and displays it when you press Exit.

• Input Boxes

• OK, Cancel Button

• Text Boxes

• Combo Boxes

• Drop Down Lists

• List Boxes

• Option Groups

• Push Buttons

testftp.ebs FTP automation using OLE. This sample script demonstrates
how you can use FTP OLE functions to log onto a host and download a file
automatically.

dde.ebs This sample script creates a Program Group called "XXX".

filelist.ebs This OLE example is a Hummingbird Basic macro that
facilitates the downloading of files from a CMS or TSO account. It must be
run from the "Ready" prompt of a CMS or TSO HostExplorer session.

pastword.ebs This macro copies a screen from HostExplorer, starts
Microsoft Word and pastes the screen to Word. You need to have
HostExplorer running before you run the script.

9

Hummingbird Basic Language Programmer's Guide

10

sendrecv.ebs This Hummingbird Basic macro prompts for the name of a

. bat file and executes any file transfer commands (that is Send or Receive)

found within it. It must be run from the "Ready" prompt of a CMS or TSO

HostExplorer session.

Note: This sample script is provided as is, and is intended solely

to help you create your own scripts. It is not supported by

Hummingbird Ltd.

testl.ebs This sample script lists the index of the field attribute which

contains the field at the given position. You can also simply list each row of

the screen instead. The current OIA is displayed below the list box.

(Demonstrates usage of host. rows and host. columns methods).

test2.ebs This script demonstrates how to access information using the

Field object. In TCP3270, you can access the screen as an entire string, row

by row, or using field objects. The advantage of the field objects is that they

are not dependent upon their position.

test3.ebs This is a demonstration of configuring TN3270 using the

appropriate method. The Cfg3270 sub-object configures the emulator.

Anything that can be configured via the user dialogs can be configured

using the Cfg3270 object.

test4.ebs This sample script demonstrates how to perform file transfers to

a host system. The file transfer is implemented in an asynchronous manner

allowing the script to continue to run while the file transfer is taking place.

The method IsXfer tests if the file transfer is complete. You can also use the

WaitXfer method to wait until the file transfer completes.

testS.ebs This sample script demonstrates some of the window functions.

Chapter 2: Hummingbird Basic Scripts

Programming Terminology

For more information, see
"Structure of a
Hummingbird Basic
Script" on page 12.

For more information, see
"Expressions and
Operators" on page 26.

A program or a script is a logical series of instructions. Each instruction is
based on a set of syntax rules. These rules are interpreted by the compiler. If
the syntax in your script is clean and there are no errors, the compiler
creates an . ebx file which you can run to carry out your task.

The following elements make up a Hummingbird Basic script:

• Variables-Variables are place holders for values. Variables are declared,
named, and assigned a data type.

• Statements-Statements define how a task in the script is carried out.
They provide the conditional logic or looping for a procedure. They
also define the state of a dialog box such as its display and
configuration.

• Functions-A function is a construct which, when executed, returns a
value. Hummingbird Basic contains a variety of built-in functions you
can use in your scripts. You can also write your own functions.

• Procedures-A procedure contains a set of variables and statements
which you defined for the script. There are two different types of
procedures in Hummingbird Basic: functions and subprocedures. A
Hummingbird Basic script can contain one main subprocedure. When
the script is run, the main subprocedure will be executed first.
Expressions-An expression is a collection of terms which perform a
mathematical or a logical operation. The terms are either variables or
functions that are combined with an operator to evaluate a result. There
are several types of operators.

• Error Handling-Error handling is a special set of instructions that
enable your script to trap errors which may occur while your script is
running.

Additional terminology is included in the Glossary.

11

Hummingbird Basic Language Programmer's Guide

Structure of a Hummingbird Basic Script

12

A Hummingbird Basic script is broken up into manageable procedures,

each performing a specific task or set of tasks.

There are two procedure types in Hummingbird Basic:

• Subprocedure-Subprocedures define parameters and do not return

values.

• Function procedure-Function procedures return values.

A subprocedure is defined with the Sub ... End Sub statement. You invoke it,

either with the Call statement, or by entering it on a line by itself. If you use

the Call statement, enclose any arguments you are passing to the

subprocedure in parentheses. For example, the following two statements are

equivalent:

GetFTP filel,file2,file3

Call GetFTP(filel,file2,file3)

A procedure must be defined in the script before it is invoked. If you don't

place your procedure above a procedure that references it, then use the

Declare statement to forward declare a procedure.

All Hummingbird Basic scripts must contain a main subprocedure. The

main subprocedure is the starting point of the script. All function

procedures must eventually trace back to the main subprocedure. Since the

main subprocedure usually calls other procedures, it can be placed near the

end of the script.

Note: A Hummingbird Basic script can contain only one main

subprocedure.

Chapter 2: Hummingbird Basic Scripts

Variable Scope
The placement of variable declarations determines their scope.

Scope Definition

Local Dimensioned inside a subprocedure or function. The variable is
accessible only to the subroutine or function from which it was
dimensioned.

Module Dimensioned outside any subroutine or function. The variable is
accessible to any subprocedure or function in the same file.

Global Dimensioned outside any subroutine or function using the
Global statement. The variable is accessible to any subroutine
or function in any module (file).

Functions and Control Statements
Functions and control statements determine the results of your script. A
function calculates and returns values as determined by its arguments. A
control statement directs the flow of logic during the execution of
commands.

Functions and Function Arguments
Functions return values. You can use arguments to pass information
required to compute a returned value. Functions may or may not have
arguments.

Arguments may or may not be enclosed within parentheses ().Whether or
not you use parentheses depends on how you want to pass the argument to
the function subprocedure. The argument can be passed either by value or
by reference.

13

Hummingbird Basic Language Programmer's Guide

14

If an argument is passed by value, it means that the variable used for that

argument retains its value when the function returns to the caller. If an

argument is passed by reference, it means that the variable's value might be

(and probably will be) changed for the calling procedure. For example,

suppose you set the value of a variable X to 5, and pass X as an argument to

a subprocedure, named mysub. If you pass X by value to mysub, the value of

X will always be 5 after mysub returns. If you pass X by reference to mysub,

however, X could be 5 or any other value depending on the outcome of

mysub.

To pass an argument by value, use one of the following syntax options:

or

Call mysub ((X))
mysub(X)

y=myfunction ((X))

Call myfunction ((X))

To pass an argument by reference, use one of the following options:

or

Call mysub (X)
mysub X

y=myfunction(X)
Call myfunction(X)

Externally declared subprocedures and functions (such as .dll functions)

can take byVal arguments. In this case, those arguments are always passed

by value.

Named Arguments

When you call a function that takes arguments, you usually supply values

for those arguments by listing them in the order shown in the syntax for the

statement or function.

For example, suppose you define a function this way:

myfunction(id$,action%,suppvalue&)

Chapter 2: Hummingbird Basic Scripts

Myfunction requires three arguments: id, action, and value. When you call
this function, you supply those arguments in the order shown. If the
function contains just a few arguments, it is fairly easy to remember the
order of each of the arguments. However, if a function has several
arguments, and you want to be sure the values you supply are assigned to
the correct arguments, use named arguments.

Named arguments are identified by name rather than by their position in
the syntax. To use a named argument, use the following syntax:

namedarg:=value

Using this syntax for myfunction, you get:

myfunction id:=l, action:="get", value:=O

The advantage of named arguments is that you do not need to remember
the original order in which they were listed in the syntax.

The following function call is also correct:

myfunction action:="get",value:=O,id:=l

With named arguments, order is not important. The other significant
advantage to using named arguments is that when you call functions or
subroutines that have a mix of required and optional arguments, you do not
need to use commas as place holders in the syntax for the optional
arguments. You can specify just the arguments you want to use and their
values, and forget about their order in the syntax.

For example, if myfunction is defined as:

myfunction(id,action,value, Optional counter)

You could use named arguments as follows:

or

myfunction id:="l",action:="get",value:="O"

myfunction value:="0",counter:="10",action:="get",id:="l"

Note: Although you can shift the order of named arguments, you
cannot omit required arguments.

15

Hummingbird Basic Language Programmer's Guide

Control Statements
Control statements provide the flow of logic in your script. These

statements direct the script as to when, if, and how a set of commands are

performed and executed. The following control statements can be included

in your script:

If ... Then ... Else

For ... Next

Do ... Loop

While ... Wend

Select Case

On ... Goto

This example shows the use of an If ... Then ... Else conditional statement:

Sub Main
If myvariable = 0 Then

msgbox "Are you sure you want to restart?"

Else
msgbox "Are you sure you want to quit?"

End If
End Sub

Variables, Constants, and Data Types

16

Variables store values that are returned from statements and functions. A

variable is given a name, and then assigned a data type. Its data type

determines the kind of value that is stored by the variable.

Hummingbird Basic supports standard BASIC data types such as Numeric,

String, record, array, and Variant data types. With the exception of Variant

type variables, the variable you define can contain only data of the declared

type. In addition to this, Hummingbird Basic also supports Dialog Box

Records and Objects as data types.

For more information on
variable scoping, see
"Structure of a
Hummingbird Basic
Script" on page 12.

Chapter 2: Hummingbird Basic Scripts

Variables and Constants
The following may be defined in a script:

• Dimensioned Variables

• Defined Constants

• Global Variables

• Static Variables

Note: The name you give to a variable or constant can contain
letters, numbers, and underscores. It is generally a good idea to
give your variables meaningful names so that they can be easily
recalled and understood when debugging your script.

To declare a variable in Hummingbird Basic, use the Dim statement. When a
variable is declared, it is valid only in the commands that follow the
declaration.

Dimensioned Variables
If a variable is declared at the beginning of your script with the Dim
statement, it is available throughout the script. To reduce the scope of a
variable to a function or a subprocedure, either declare the variable in the
function, or in the body of the subprocedure. For example:

Function interact(id$)

Dim myvariable as Integer

End Function

Defined Constants
Defined constants retain the value they are assigned throughout a script,
whenever they are referenced in a function or statement.

Constant variables are declared with the Const statement. For example:

Const conPI= 3.14159265358979

17

Hummingbird Basic Language Programmer's Guide

For more information on
static variables, see
Hummingbird Basic
Language Help.

18

Global Variables

Declare a global variable only if you want to keep the same variable type for
all of your related Hummingbird Basic modules. Global data is shared
across all loaded modules. If an attempt is made to load a module that has a
global variable of a different data type than the existing global variable of
the same name, the module load will fail.

Note: It is best to limit global variable usage.

Static Variables
A Static variable retains its value when it is called from one function to
another. These variable types are generally used by advanced users.

Data Types
As you name and declare your variable, you assign it a data type. The data
type determines what kind of value is stored in the variable. The variable

can only contain data of the declared type, except when you implicitly or
explicitly declare a variable as a Variant data type.

If a variable is not explicitly defined with the Dim or Global statements, or is
not declared a data type (implicitly declared), then it defaults to the Variant
data type.

Note: It is generally good programming practice to explicitly
declare all your variables. If variables have not been declared, it
may be impossible to track errors that arise in a long and
complicated script. To force variable declaration, use the Option
Explicit command.

The following data types are supported by Hummingbird Basic:

• Variant

• Numeric

• String

• Object

Chapter 2: Hummingbird Basic Scripts

Another way to explicitly declare a variable and its type, without having to
type out the entire syntax, is to use data type characters. Data type
characters are appended to the end of your variable name.

For example, these two statements are equivalent:

Dim bird As String

Dim bird$

The following data type characters can be used:

i

Character I H~~~~- - n -- -

$ I Dynamic String

%

&

?

@

Variant

Integer

Long Integer

Portable integer

Single precision floating point

Double precision floating point

Currency exact fixed point

Description

Alphanumeric

1 byte

2 bytes

1 byte

2 bytes

A Variant variable can hold any type of data. This variable changes its data
type depending on how it is assigned. To examine the type of data that a
Variant variable contains, use the VarType function.

Values returned by this function are explained in the table below.

I

Variant •
e Name Size of Data

:

Range

0 Empty 0 N/A

1
Null 0 N/A

2 Integer 2 bytes (short) -32768 to 32767

3 Long 4 bytes (long) -2.147E9 to 2.147E9

19

Hummingbird Basic Language Programmer's Guide

20

Variant / , Name
Type

Size of Data Range

4

5

6

7

8

9

Single 4 bytes (float) -3.402E38 to -1.401 E-45 (negative)

Double 8 bytes (double) -1.797E308 to -4.94E-324 (negative)

I 4.94E-324 to 1.797E308 (positive) -- -- - -- -- r -- -- --------- --- ----- ---- -
Currency i 8 bytes (fixed)

1
-9.223E14 to 9.223E14

Date

String

8 bytes (double) I January 1st, 0100 to December 31st,

9999

Oto ~64kbytes Oto ~64 characters

Object
1

N/A N/A

Any newly defined Variant defaults to the Empty type to signify that it

contains no initialized data. An empty Variant converts to zero when used

in a numeric expression, or an empty string in a string expression.

Null Variants have no associated data, and serve only to represent invalid or

ambiguous results. Null is not the same as Empty, which indicates that a

Variant has not yet been initialized.

Numeric
If the variable you declare in your script is a number, you should define its

type. There are six Numeric types. These types are shown in the table below.

_rv_P_e __ f--1 Fr~~- ___________ _

Integer

Long

Single

I -32,768

-2,147,483,648

-3. 402823e + 38
0.0,
1 .401298e-45

32,767
- t -- ·------ ---- ·--- --·. ------

-- ~· 147,48~,64_~ -- --- --- -- ---

-1.401298e-45,

3. 402823466e + 38

Chapter 2: Hummingbird Basic Scripts

Type

Double

From

-1.797693134862315d+308
0.0,
2.2250738585072014d-308

To

-4, 940656458412 4 7 d-308 I

- ·---- ·--1
Currency : -922,337,203,685,477.5808

1 .797693134862315d+308

922,337,203,685,477.5807

Port Int In Windows it is the same as In Windows NT and Windows 95
Integer.

1

environments, it is the same as Long.

Note: Hummingbird Basic has no true Boolean variables.
Hummingbird Basic considers O to be False and any other
numeric value to be True. Only numeric values can be used as
Booleans. Comparison operator expressions always return O for
False and -1 for True.

Integer constants can be expressed in decimal, octal, or hexadecimal
notation. Decimal constants are expressed by using the decimal
representation. To represent an octal value, precede the constant with &O or
&o. For example, &ol 77. To represent a hexadecimal value, precede the
constant with &Hor &h. For example, &HBOOl.

Note: Constants can also be followed by data type characters.

String
String variables contain text. String length can be either fixed or dynamic.
Fixed strings have a length specified when they are defined, and the length
cannot be changed. Fixed strings cannot be of 0 length. Dynamic strings
have no specified length. A string can vary in length from 0 to 32,767
characters. There are no restrictions on the type of characters which can be
included in a string. For example, the character whose binary value is 0 can
also be embedded in strings.

21

Hummingbird Basic Language Programmer's Guide

22

Object

An object is a special data type. Objects let you communicate with another

Windows application using OLE automation. You can use Hummingbird

Basic as an automation controller to manipulate another application. An

object is a complex data type in which the elements of the data type are the

methods and properties of the other application.

Properties This determines how an object behaves. For example, width

can be a property of a range of cells in a spreadsheet; colors are a property of

graphs; and margins are a property of word processor documents.

Methods This causes the application to do something. Examples are:

Calculate for a spread sheet, Snap to Grid for a graph, and Autosave for a

document.

Note: The Hummingbird Telnet application is an OLE automation

server. Telnet contains its own object methods and properties that

you can access and manipulate with a Hummingbird Basic script.

Use the Dim statement to declare an OLE Object as follows:

Dim Telnet as Object

Array

An Array is a predefined range or series of variables. You must specify the

data type of an array. Hummingbird Basic arrays can be any one of the

following:

• Numeric

• String

• Variant

• Record

Arrays of arrays, and dialog box records, are not supported.

Chapter 2: Hummingbird Basic Scripts

Use the following syntax for declaring an array variable:

Dim variablename (SubscriptRange, ...)As datatype

where SubscriptRange is of the format:

StartSubscript To EndSubscript

For example:

Dim lifespan(O to 75) As Integer

Subscripts specify the beginning and ending index for each dimension. If
you specify only an ending index, then the beginning index depends on the
Option Base setting. The Option Base statement specifies the lower bound
to be used for array subscripts. The lower bound can be either 0 or 1. If no
Option Base is specified, then the default of 0 is used.

Note: The Option Base statement is not allowed inside a
procedure, and must precede any use of arrays in the module.
Only one Option Base statement is allowed per module.

Dynamic Array
If you do not know what the size of your array is going to be, then use a
dynamic array. Dynamic arrays differ from fixed arrays in that you do not
specify a subscript range for the array elements when you declare the array.
Instead, the subscript range is set using the ReDim statement.

For example, you might want to use an array to store a set of values entered
by a user, but you do not know in advance how many values the user will
enter. In this case, dimension the array without specifying a subscript range,
and then execute a ReDim statement (which reallocates memory) each time
the user enters a new value.

If the dynamic array is dimensioned with the Dim statement, then 8 is the
maximum number of dimensions it can have. To create dynamic arrays with
more dimensions (up to 60), do not Dim the array; instead, use the ReDim
statement inside your procedure.

23

Hummingbird Basic Language Programmer's Guide

24

The following procedure uses a dynamic array, varray, to hold cash flow
values entered by the user:

Sub Main
Dim aprate as Single
Dim varray () as Double
Dim cf lowper as Integer
Dim msgtext
Dim x as Integer
Dim netpv as Double

cflowper = InputBox ("Enter number of cash flow periods")
ReDim varray(cflowper)
For x = 1 to cf lowper

varray(x) = InputBox("Enter cash flow amount for period
#" & X & II:")

Next x

aprate = InputBox ("Enter discount rate: ")
If aprate > 1 then

aprate = aprate/100
End If

netpv = NPV(aprate,varray())
msgtext = "The net present value is: "
msgtext = msgtext & Format (netpv, "Currency")
MsgBox msgtext

End Sub

Chapter 2: Hummingbird Basic Scripts

Record
A record, or record variable, is a data structure containing one or more
elements, each of which has a value.

Where an array defines a range of values, all of the same data type (for
example, String or Integer), a record variable references a range of values
that can be of different data types.

Note: You cannot use data type character suffixes when using
record data types.

Before defining a record element as a variable, you must assign each element
a type, using the Type statement.

The following example defines phone_ number as a data type:

Type phone_number
phone as String
area code as String
End Type

By declaring phone_ number as a Type, you can use it to declare a variable.
The elements of each record type are referenced using dot notation. For
example:

Dim Joe as phone_number
Joe.phone = "967-2222"

Note: Records can contain elements that are, themselves,
records.

Dialog box records are treated as record data types as well. Elements or
controls are referenced using the same dialogname. controlname syntax. The
difference is that each element is tied to a control of a dialog box.

25

Hummingbird Basic Language Programmer's Guide

Expressions and Operators

26

Expressions perform calculations, set variables, or concatenate strings.

Operators are used in expressions to combine one or more terms. The terms

are variables, constants, or functions which are combined with an operator,

evaluating to a string or numeric result.

There are several different categories of operators:

•

•

•

•

Numeric Operators

String Operators

Comparison Operators

Logical Operators

Numeric Operators
These operators are used in arithmetic expressions:

Operand Explanation

Exponentiation

* ,/ Numeric multiplication or division. For division, the result is Double.

\ Integer division. The operands can be Integer or Long.

MOD Modulus or remainder. The operands can be Integer or Long.

-, + Numeric addition and subtraction. These can also be used to

indicate whether the number is positive or negative.

String Operators
These operators are used to combine or concatenate two or more strings:

Operand Explanation

& String Concatenation

+ String Concatenation

Chapter 2: Hummingbird Basic Scripts

Comparison Operators
When using comparison operators with numbers, the operands are
widened to the type with the smallest size (Integer is preferred over Long,
which is preferred over Double). For String operators, the comparison is
case-sensitive, and is based on the collating sequence used by the language
specified in the Windows Control Panel.

_o_p_er_a_n_d_--+-
1
_E~~-'a_n~~~on ___ _ _ I Returns

' O for False and -1 for True ---~--- __ j~ea_~~-tha~---
- j_L_e~s ~~n

Equal to

< 0 for False and -1 for True

O for False and -1 for True

< = . ·-· 1 :Less than or equal to O for False and -1 for True
----···---- ----------· ·--- ----- ·-------1- ------- ------ ---- ---------

> = Greater than or equal to I O for False and -1 forTrue _ ---------·--- -- ------- ------- ------ -+-- --------- -- ---- ---
< > Not equal to [O for False and -1 for True

Logical Operators
The logical operators perform logical evaluations on one or more
expressions. The result of logical operations is either True or False.

Operand

Not

Explanation

Not operands can be Integer or Long. The operation is performed
bitwise (ones complement).

And And operands can be Integer or Long. The operation is performed
bitwise.

Or

Xor

Eqv

Imp

Inclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Exclusive Or operands can be Integer or Long. The operation is
performed bitwise.

Equivalence operands can be Integer or Long. The operation is
performed bitwise. (A Eqv B) is the same as (Not (A Xor B)).

Implication operands can be Integer or Long. The operation is
performed bitwise (A Imp B) and is the same as ((Not A) Or B).

27

Hummingbird Basic Language Programmer's Guide

Programming Tips and Coding Suggestions

28

The following tips and suggestions are intended to help reduce the errors

returned when creating scripts with Hummingbird Basic.

Naming Variables and Constants
The name you give to a variable or to a constant can contain letters,

numbers, and underscores. It is advisable to give variables and constants

meaningful names so they can be easily recalled and understood when

debugging a script.

Global Variables
Limit the use of global variables to avoid a module load failure. Global data

is shared across all loaded modules, so when you attempt to load a module

which has a different data type variable than that of the existing global

variable with the same name, it results in the module failing to load.

Declaring Variables
Explicitly declare all variables, especially so that error tracking is possible in

long and complicated scripts. Use the Option Explicit command to force

the use of variable declarations.

Option Base
The Option Base statement specifies the lower bound to be used for array

subscripts. This statement is not allowed inside a procedure, and it must

precede any use of arrays in the module. Only one Option Base statement is

allowed per module.

Dynamic Array
Eight is the maximum number of dimensions for a dynamic array being

dimensioned using the Dim statement. However, to create dynamic arrays

with more dimensions (up to 60), use the ReDimstatement instead of the Dim

statement inside your procedure.

Chapter 2: Hummingbird Basic Scripts

Runtime Error
Have a routine in your script that handles runtime errors, such as if the user
tries to log onto a non-existent host, or enters text into a field where only
numbers are accepted.

Controls
Before aligning the controls for a dialog box, click the Grid toolbar button to
turn the grid on.

Compatibility
You can use a single set of source code to create applications that run on
Windows NT/95/98/Me/2000. To create an application, load the source
code into Hummingbird Basic and make an . ebx file.

Checking for the Existence of PC Files
Hummingbird Basic does not provide any built-in means of indicating
whether a particular file is on a PC. The usual BASIC technique to check if a
file exists is to use either the DIR or the DIR$ function, as shown below. To do
this, pass the file name to the DIR function and check the return value of the
function. If the function returns nothing, then that file does not exist.

TheFile$ = Dir$ ("C:\Program Files\Hurrrrningbird\Connectivity\
version\Exceed\exceed.exe
If len(theFile$) < 1 then

msgbox "no such file"
else

msgbox theFile$
end if

To find a file on a Unix computer, use the same technique, but instead of
DIR$, use the string returned by the UNIX ls f i 1 e name command.

29

Hummingbird Basic Language Programmer's Guide

30

Using Win32 API
You do not need the Win32 SDK to make Windows API calls from
Hummingbird Basic. Take advantage of Windows API functions to extend
the Hummingbird Basic functionality, provided they are properly declared.

Declare function GetUserName Lib "advapi32.dll" Alias
"GetUserNameA" (ByVal lpBuffer As String, nSize AS Long) As

Long

Sub Main
strBuffer$ = String$ (255, O)
RetVal& = GetUserName (strBuffer$, 255)
UserName$ = Trim$ (strBuffer$)
UserName$ = Left$ (UserName$, Len(UserName$) - 1)
MsgBox UserName$, , Len(UserName$)

End Sub

Network Logon Name
To retrieve a user's network logon name, make the following API call:

Declare function GetUserName Lib "advapi32.dll"
Alias "GetUserNameA" (ByVal lpBuffer As String, nSize As

Long) As Long
sub main

strBuffer$ = String$ (255, 0)
RetVal& = GetUserName(strBuffer$, 255)
UserName$ = Trim$ (strBuffer$)
UserName$ = Left$(UserName$, Len(UserName$) - 1)
msgbox UserName$, ,Len(UserName$)

end sub

Chapter 2: Hummingbird Basic Scripts

Always Visible Message Box
At times, a message box that was hidden behind other windows may appear
giving the impression your application is hung. When this happens, check
the Taskbar to discover the message box. If that is problematic, then use the
MessageBox API function, instead of the MsgBox function which allows you
to call the message box with the MB_ SYSTEMMODAL flag, as shown below. This
method always displays your message box on top of all other windows.

Declare Function MessageBox Lib "user32" Alias "MessageBoxA"
(ByVal hwnd As Long, ByVal lpText As String, ByVal lpCaption As

String, ByVal uType As Long) As Long

Const MB ICONEXCLAMATION = &H30&
Const MB_yesno = &H4&
Const IDYES = 6
Const IDNO = 7
Const text= "Please click on one of the buttons below."
Const msg_$ = "Now click on your desktop anywhere outside this
box!"
Const caption_$ = "HUMMINGBIRD Basic Tips"

Sub Main
dim boxCaption$
dim boxMsg$
boxType& = MB_SYSTEIVJMODAL + MB_ICONEXCLAMATION + MB YESNO
if (MessageBox (0, text, caption_$, boxType&) = IDYES) then

boxCaption$ = "YES Pressed !"
boxMsg$ = msg_$

' if you click outside this message box it will stay visible
else

boxCaption$ = "NO Pressed !"
boxMsg$ msg_$

end if

MsgBox boxMsg$, ,boxCaption$
End Sub

31

Hummingbird Basic Language Programmer's Guide

32

Working with Windows Registry
The following example shows the usage of some of the main registry

functions, and how they have to be declared.

Declare function RegOpenK.ey Lib 11 advapi32.dll 11

Alias 11 RegOpenK.eyA 11 (ByVal hkey?, ByVal SubKey$, key&) As

Long
Declare function RegSetValueEx Lib "advapi32.dll" _

Alias 11 RegSetValueExA11 (ByVal hkey&, ByVal subKeyStr$,
ByVal

fdwType&, ByVal dattype%, ByVal data$, ByVal datLen&) As

Long
Declare function RegCloseKey Lib 11 advapi32 .dll 11 (ByVal hkey&)

As Long

Function SetValue$(keyname$, value$)
dim key&

if RegOpenK.ey (HKEY_CLASSES_ROOT, 1111
, key) <>

ERROR SUCCESS then
SetValue = "Cannot open key: HKEY CLASSES ROOT"
Exit Function

end if

if RegSetValueEx (key, keyname, REG_SZ, 0, value,
len(value)) <>ERROR SUCCESS then

SetValue = "Cannot set value of key: " + keyname
end if

if RegCloseKey (key) <> O then
Set Value

end if

11 CannOt Close key: II + keyname

End function

Sub Main

Chapter 2: Hummingbird Basic Scripts

OLE Functions
Use OLE automation to work with FTP and Telnet using Hummingbird
Basic.

The following two examples show you how you could execute an FTP
sess10n.

1 You have to declare an object as a data type before you can use the
object's methods.

dim FtpEngine As Object
dim FtpSession As Object
dim FtpSessions As Object

' Must first initialize Ftp Engine
Set FtpEngine = CreateObject (11 HclFtp.Engine 11

)

'Create collection of sessions
on error goto FtpSessionsError
Set FtpSessions = FtpEngine.Sessions

'Create FTP session
on error goto FtpSessionError
SetFtpSession = FtpSessions.NewSession

FtpSessions.LocalDefaultDirectory = 11 c:\temp 11

'normally should be_ taken via dialog

2 Make all other initializations.

FtpSession.ConnectToHost
FtpSession.Userlogin
FtpSession.Mget "hostfiles'" transfer files
FtpSession.DisconnectFromHost

'close connection and destroy objects
Set FtpSession Nothing
SetFtpSessions = Nothing
FtpEngine.Quit
Set FtpEnging = Nothing

33

Hummingbird Basic Language Programmer's Guide

The following example shows how the start of a Telnet session can look:

' if current EMPTY telnet session exists, get it as a tn
object or step to the next line:

Set tn = GetObject (, "Hurruningbird.Telnet")
'if failed to get existing object, create new telnet_ object

If tn is Nothing then
Set tn = CreateObject("Hurruningbird.Telnet")

end if

loginEvent = tn.LookForString(loginPrompt)
'look for the login_ and password prompt

passwordEvent = tn.LookForString(passwordPrompt)

Use the methods and properties of the tn object.

Error-Handling and Debugging

34

Error-handling refers to a set of functions and statements that trap errors
arising during the execution of the script. Error-handling is generally one of
the most problematic processes.

Error Types
After you compile or run your script, any or all of the following types of
errors may be detected:

• Syntax errors-These are errors which occur in the script as a result of
misspelling a statement or function or using either one incorrectly, for
example, errors in language syntax and programming logic. To help you
fix syntax errors, the Hummingbird Script Editor highlights language
syntax errors in red after a script is compiled.

Note: A common syntax error is typing Endif instead of End If.
There is a space between the word End and the word If.

Chapter 2: Hummingbird Basic Scripts

• Logic errors-These are errors that occur because of faulty logic, for
example, infinite loops and incorrect values returned by functions.
These types of errors generally cause unexpected results during the
execution of your script.

• Runtime errors-These errors occur because the user takes an
unforeseen action. For example, the user tries to log on to a host that
does not exist, or types text into a field that accepts only numbers. You
should have a routine for these scenarios included in your script that
handles runtime errors. Runtime errors are handled through a set of
error-handling functions and statements.

Debugging Scripts for Syntax and Logic Errors
The debugger assists you in locating and correcting syntax and logic errors
in your Hummingbird Basic program. It allows you to slow down or
suspend the execution of your program so that the flow of the program and
the contents of declared variables can be examined. Debug mode is invoked
in the following ways:

• Clicking the Step Into toolbar button-This causes the execution of the
Main subprocedure in the current script file. Execution is suspended
and the debugger is activated. The first line of the Main subprocedure is
highlighted.

Setting breakpoints in the current buffer-Execution is suspended
when one of the lines that contains a breakpoint is about to be executed.
The debugger is activated, and it highlights the line containing the
breakpoint.

• Pressing the Pause toolbar button when a program is executing
Execution is suspended, and the debugger is activated. The line that was
about to be executed is highlighted.

• During execution, the program encounters an unhandled runtime
error-Execution is suspended, the debugger is activated, and the line
containing the error is highlighted.

35

Hummingbird Basic Language Programmer's Guide

36

When in debug mode, the Call Stack Control displays all Hummingbird
Basic subprocedures and function calls that got you to the current line.
Open the Variables window to examine the contents of variables in the
currently selected call frame.

Note: Lines that contain syntax errors appear in red text. The Error
Messages and a short description of the error, if available, are
displayed in the Output window.

Handling Runtime Errors
Hummingbird Basic provides the following functions and statements to
deal with runtime errors in your script:

Function/Statement Explanation

Assert Trigger an error, if a condition is false.

Erl Return the line number where a runtime error occurred.

Err Function Return a runtime error code.

Err Statement Set the runtime error code.

Error Generate an error condition.

Error Function Return a string representing an error.

On Error Control runtime error handling.

Resume End an error-handling subprocedure.

Trapping Errors
Hummingbird Basic provides two methods for handling errors:

On Error Resume Next Use this statement to bypass an error and
continue to execute the script. The On Error Resume Next statement must
appear before the line that produces the error.

Chapter 2: Hummingbird Basic Scripts

On Error Goto label Use this statement to direct the execution of the
script to the specified label. When this error trap is set, it remains in effect
until the procedure finishes running. You can redirect the error trap with
another On Error statement in the procedure. If you want to cancel the
existing error trap without setting up another one, use the On Error GoTo o
statement.

All error handling subprocedures begin with the On Error statement and
end either with the Resume statement or the Goto statement. Unless an On
Error statement is used, any run-time error terminates the execution of the
script. Error-handling procedures are embedded within a subprocedure,
usually near the end of a subprocedure. If a Goto statement is used, the
Resume statement is expected at the end of the error-handling code.

To display a description of an error, use the Error(err) function as shown
below:

err = 11
msgbox Error$(Err)

The "Division by zero" message is displayed.

Examples of Trapping General Errors
The following examples illustrate the different methods of error trapping.

Example I

This example places error-handling code immediately following the
statement in which the error occurred. It uses the Resume Next statement to
direct the code to continue execution when an error has occurred.

Sub Main
Dim userdir

inl : userdri ve = InputBox (11 Enter Drive: 11
, ,

11 C: 11
)

On Error Resume Next

End Sub

Err = O
ChDrive userdrive
If Err = 68 then

MsgBox "Invalid Drive. Try Again. 11

Goto inl
End If

37

Hummingbird Basic Language Programmer's Guide

38

The On Error statement identifies the line of code to go to if an error occurs.
In this case, the Resume Next parameter continues execution on the next line
of code after the error. In this example, the line of code that handles errors is
the If statement. It uses the Err statement to determine which error code is
returned.

Example2

This example places error-handling code immediately following a label.

Note: Resume is placed at the end of the error-handling code.

Sub Main
Dim userdir, msgtext

on error goto Errhdlrl
in2: userdir = InputBox ("Enter Directory.")

error generated here
Chdir userdrive & "\" & userdir

MsgBox "New Default Directory is: " & userdrive & "\" &
userdir

Exit Sub

Errhdlrl:' handle error here
Select Case Err

Case 75

occured"

End Sub

msgtext
Case 76

msgtext
Case else

msgtext

End Select

"Path is invalid"

"Path not found"

"Error" & err & 1111 & Error$ & "

MsgBox msgtext & "Try Again."
Resume in2' resume normal execution

The On Error statement used in Option 2 specifies a label to jump to if an
error occurs. The code segment is part of the main subprocedure, and it
uses the Err statement to determine which error code is returned. To make
sure your code does not accidentally fall through to the error handler,
precede it with an Exit statement.

Chapter 2: Hummingbird Basic Scripts

Examples of Trapping Runtime Errors
These examples show the two ways to set and trap user-defined errors. Both
examples use the Error statement to set the user-defined error to the value
30000.

Example 1

To trap the error, the following example places error-handling code directly
before the line of code that could cause an error.

Sub Main
Dim custname as String
On Error Resume Next

inl: Err = 0
custname = InputBox$("Enter customer name:")
if custname = 1111 then

Error 30000' generate error here
Select Case Err' handle error here

Case 30000
MsgBox "You must enter a customer name."
Goto inl

Case Else
MsgBox "Undetermined Error. Try Again."
Goto inl

End Select
End if
MsgBox "The name is: " & custname

End Sub

Example2

The following example contains a labeled section of code that handles any
user-defined errors. You can also generate an error code in a subprocedure,
and then have the main procedure handle it (similar to example 1 on
page 39).

Sub Main
Dim custname as String
on Error Goto Errhandler

inl: Err = O
custname = InputBox$("Enter customer name:")

39

Hummingbird Basic Language Programmer's Guide

40

If custname = 11
" then

Error 30000' generate error here
End If
MsgBox "The name is: " &custname
Exit Sub

Errhandler:

End Sub

Select Case Err' handle error here
Case 30000

MsgBox "You must enter a customer name."
Case Else

MsgBox "Undetermined Error. Try Again."
End Select
Resume inl

Trappable Errors

The following table lists the runtime errors that Hummingbird Basic
returns. These errors can be trapped by On Error. The Err function can be
used to query the error code, and the Error function can be used to query
the error text.

Error code

5

6

7

9

10

11

13

14

19

20

28

35

Error Text

Illegal function call

Overflow

Out of memory

Subscript out of range

Duplicate definition

Division by zero

Type mismatch

Out of string space

No resume

Resume without error

Out of stack space

Sub or Function not defined

Chapter 2: Hummingbird Basic Scripts

Error code Error Text

48 Error in loading DLL

52 Bad file name or number

53 File not found

54 Bad file mode

55 File already open

58 File already exists

61 Disk full

62 Input past end of file

63 Bad record number

64 Bad file name

68 Device unavailable

70 Permission denied

71 Disk not ready

74 Can't rename with different drive

75 Path/File access error

76 Path not found

91 Object variable set to Nothing

93 Invalid pattern

94 Illegal use of NULL

102 Command failed

429 Object creation failed

438 No such property or method

439 Argument type mismatch

440 Object error

901 Input buffer would be larger than 64K

41

Hummingbird Basic Language Programmer's Guide

Error code

902

903

904

905

906

907

908

910

42

Error Text

Operating system error

External procedure not found

Global variable type mismatch

User-defined type mismatch

External procedure interface mismatch

Pushbutton required

Module has no MAIN

Dialog box not declared

Chapter 3

Using Development Tools to
Edit Scripts

About Hummingbird Basic Workbench
The Workbench Interface
Creating a Script File at a Glance

Compiling and Running a Script File
Running a Script File

45
45
47

49
49

Chapter 3: Using Development Tools to Edit Scripts

About Hummingbird Basic Workbench

Hummingbird Basic includes an easy-to-use development environment and
a graphical dialog box editor. This chapter describes how to use a
development tool to write, compile, and debug your scripts.

The Hummingbird Basic Workbench is a special text editor you can use to
write, edit, compile and debug your scripts. By default, Hummingbird Basic
script files are stored in your home directory. The script source files have an
. ebs file extension. A compiled script file has an . ebx file extension.

The Hummingbird Basic Scripting Tool is similar to the Workbench, but
only one file can be opened at a time. To start Hummingbird Basic, select it
from the Windows Start menu.

The Workbench Interface
The Workbench is divided into the following areas:

Hummingbird Buie -Wt>rkbe-nch ~ pr~ r=

ff1~77rf:i r~ ~~7~~~~;;; ~17"~2~r; ru~~~-:-~s~*2;>~ ~~ -
C\Pro~r~mro1t;;\~;;\;;;~-~~~~=~-~~- --~"'"'~r ~ Mar~w: ;ill;fWr:'},,_f

01ces as St g
n Error Resur+ Hext
choices.,"All".-chr$(9)•"Hothing"

Begin Dialog testdlg 286, 245, "Interactiue Dialog"
OkButton 144, 221, 40, 14, .bok
CancelButton 237, 221, 40, 14, .bcancel

nd Dialog 'Dialog definition ends

Tool bar

Di111 td as Testdlg 'Dialog box defined as a uariable
Dialog td 'Dialog statement to display the dialog boi<

fErr=102 then

______ Variables

Window
Else MsgBox "You pressed Cancel"

MsgBox '"Vou pressed OK."
End If

------it,._ Output Window

••••••••••••I- Status Bar

45

Hummingbird Basic Language Programmer's Guide

For more information about
structuring your scripts,
see "Structure of a
Hummingbird Basic
Script" on page 12.

46

Code Window
Statements and functions are typed into the Code window. To get help on a
specific function or statement, click the right mouse button while the cursor
is on the statement or function. Alternatively, highlight the statement or
function in the Code window and press F 1.

A Hummingbird Basic script must contain one main subprocedure.
Functions referenced in your main subprocedure must be declared before
the main subprocedure.

Variables Window
Select Variables on the Window menu to display the Variables window. This
window displays the variables you declared in your script. A plus sign beside
a heading in magenta text indicates there is an expandable list. Place the
cursor next to a plus sign and double-dick to see all the variables.

Variables I - - I
+Global
·-testdlg

0 .. 4):
101

!! •. 4):
pict$: ""
eualue:
eline:
errorReturn%: -2

-~iain

-tr! (testrllg)
tb1$:
cb1%: O
optua1%: O
scb1$: ""
deb$: ""
lb%: 0
dlb%: 0

There are three main headings in the Variables window:

• Globals-All global variables declared in any Hummingbird Basic
module are shown under this heading.

• Name of your script-The name of the currently loaded script appears
as the heading. Variables are listed by their scope in the script.

• The name of the Current Subprocedure-This heading lists all declared
variables in the current subprocedure.

Chapter 3: Using Development Tools to Edit Scripts

Output Window
To open the Output window, either select Output window on the Window
menu or click the Output toolbar button.

The Output window provides information about your script after it has been
compiled. This window indicates whether the script has been successfully
compiled or not. If errors were detected, then they are displayed by an Error
Message. Clicking the Next or Previous toolbar button highlights each error
in the script.

Status Bar
The status bar indicates the mode in which you are currently working.
There are three modes: Edit, Debug and Run. In Edit mode, you can write
and compile your script. In Debug mode, you can check for syntax errors
and create breakpoints. To revert to Edit mode when you are in Debug
mode, click Stop on the toolbar. In Run mode the compiled script is
executing. To stop running the script and revert to Edit mode, click Pause.
The status bar also lists the number of errors in your script after it has
finished compiling.

Call Stack Control
The Call Stack control is visible only while you are in Debug mode. This
control indicates which subprocedure the script is executing. This is useful
when you are debugging your script for errors. The Call Stack control can
also be used to jump to a subprocedure in an open module by selecting one
from the drop-down list box.

Creating a Script File at a Glance
You can use Hummingbird Basic scripts for many tasks. These examples
describe situations where Hummingbird Basic scripts are beneficial:

• Repetitive tasks-Downloading a file from a remote host to a directory
on your PC while you are doing something else.

• Create a simpler interface-Connecting to a host by specifying your
login information, selecting the appropriate settings file, and then
running a frequently used program in the background while you are
doing something else.

47

Hummingbird Basic Language Programmer's Guide

Refer to "Structure of a
Hummingbird Basic
Script" on page 12 for
more information on the
order of the functions and
statements. For more
information on writing
Error-Handling routines,
see "Error-Handling and
Debugging" on page 34.

48

• Exchange information between applications-Create a Hummingbird
Basic script with OLE automation to transfer data from a Telnet session
to an Excel spreadsheet.

The process of creating script files is as simple or as complex as the series of
tasks you want to automate.

Creating a script can be broken down into these steps:

1 Identify the task you want to automate and divide it into a sequence of
actions.

2 Translate the sequence of actions into Hummingbird Basic commands,
and then type them into the Hummingbird Basic Workbench.

a) Write your script file.

b) Save your script file.

c) Compile your script file.

d) Run and test your script file.

e) Debug your script file if there are problems.

3 Install a program item icon for your script file.

The following sections describe a simplified process for developing scripts.

To translate the task into a Hummingbird Basic script:

1 Plan your script by writing down an outline of tasks and end results that
you want to accomplish with a script.

2 Find the Hummingbird Basic functions and statements you need in the
Hummingbird Basic Language Reference Help.

3 Include Error Handling routines that deal with runtime errors, and any
other anticipated user actions in your script.

Chapter 3: Using Development Tools to Edit Scripts

Compiling and Running a Script File

Before you compile your script, open the Output window. Any error
messages that occur in the script appear after the script has finished
compiling. To compile your script, either click Check on the toolbar or dick
Compile on the File menu.

Errors detected in the compiled script appear in red text. To view the errors
sequentially through the script, click Next Error and Previous Error on the Edit
menu.

Running a Script File
You can run the script only if it has been successfully compiled.

Note: The phrase "successfully compiled" indicates that the script
is free of syntax errors. There may be other types of errors in your
script, such as runtime or logic errors. Executing the script allows
you to test for these other types of errors.

To execute a successfully compiled script file, either click Run on the File
menu or click Execute on the toolbar.

Running a Script in Animated Mode
When a script is run in Animated mode, each line of code is highlighted in
the Code window as it is executed. This mode is useful for examining loops
and other control statements in your script. To run your script in Animated
mode, either dick Animate on the toolbar or click Animate on the Debug
menu.

49

Hummingbird Basic Language Programmer's Guide

50

The following toolbar buttons are available to help you compile and run
your script file:

Toolbar Button

Output Window

Check Script

Execute Script

Run Script in
Animated Mode

Explanation

Opens the output window.

Compiles your script. All errors will be listed in an open
Output window.

Runs a successfully compiled script.

Runs a successfully compiled script in animated mode.

Chapter 4

Designing Dialog Boxes

About Dialog Editor 53
Dialog Editor Interface 53

Adding Controls to a Dialog Box 56

Aligning Controls in the Dialog Box 57

Setting Control Properties 58
Dialog Box Properties 59
Button Control Properties 60
OptionButton Control Properties 61
Text Control Properties 62
TextBox (Edit) Control Properties 63
CheckBox Control Properties 64
ListBox Control Properties 64
StaticComboBox Control Properties 65

DropComboBox Control Properties 66
DropListBox Control Properties 67
GroupBox Control Properties 68
Picture Control Properties 69

Integrating a Dialog Box into Your Script 70
Defining the Dialog Box 70
Displaying the Dialog Box 71

Dialog Statements and Functions 71

Writing a Dialog Function 74

Putting It All Together 77

Chapter 4: Designing Dialog Boxes

About Dialog Editor

Hummingbird Basic provides both functions and statements, and a
graphical Dialog Editor to create dialog boxes. You can run Dialog Editor
from either the Workbench's Edit menu or dick the Dialog toolbar button.

Dialog Editor lets you create and design dialog boxes by dragging and
dropping controls on to a form. As you drop the controls, code is
automatically generated and can be dynamically updated into your script as
you design the dialog box.

When you first run Dialog Editor, it provides you with a standard-sized
dialog box that contains an OK button and a Cancel button. To add a new
control, select one on the Control menu, or dick the equivalent button on
the Control Palette and drag it onto the dialog box window.

Dialog Editor Interface
Dialog Editor is divided into the following areas:

Tool bar

Dialog Box

~egin Dialog GetFtplnlo 0, 0. 298, 190. "MODULE_NAME"
Text 12,6,42, 12, "&Host"
TextBox 78. 6.144.12, host
Text 12, 24, 42, 12, "&User Name"

llllR!lllllR!lllllR!lllllR!lllllR!lllllRllll TextBox78.24,144,12,user
Text 12,42,42, 12. "&Password"
TextBoxNoEcho 78, 42, 144, 12, password
T exl 12. 60. 60. 12. "&Connection Type "
OptionGroup.t_ype

Opt1on8utton 78,60,42, 12. "Active" .. OptionButton4
Opt1on8utton 126, 60, 54, 12. "P.:Mive", OptionButton5

Gfoup801< 6, 78. 288, 108, "&File Transfer Information"
Text 12, 96, 54, 12. "Host Directory"
TextBox 72, 96.132, 12 hostDir
Text 210.150. 78.12,"eg \temp"
Text 12 114 54 12 "HostFileS ec"

Dialog
Code
Window

Control
Palette

Status Bar

53

Hummingbird Basic Language Programmer's Guide

54

Tool bar
The toolbar contains the most frequently used commands from the drop
down menus. To get a short description of the toolbar button, place the
mouse pointer over top of a button and wait a few seconds for the ToolTip
to appear.

Dialog Box
This is the area where you create the dialog box. The dialog box you create
will appear in your running script exactly as it appears in the Dialog Box
window. By default, when the Editor is first opened there is an OK button
and a Cancel button.

Dialog Code Window
This window lets you view and edit the code for the dialog box that you are
creating. Click Update to integrate the generated code into your open
module.

Note: The Dialog Code window must be closed in order to add or
alter controls in the dialog box.

Chapter 4: Designing Dialog Boxes

Control Palette
The Control Palette contains all of the controls that can be added to a dialog
box. The following table explains what each control is and how to use it.

Control Palette
Button

PushButton Control

OptionButton Control

Text Control

TextBox (Edit) Control

CheckBox Control

ListBox Control

DropComboBox
Control

Explanation

The PushButton control is used to create standard
command buttons in the dialog box.

The OptionButton is used to present a set of choices.
Each option button belongs to a particular OptionGroup,
which is configurable from the OptionButton Group
drop-down combo box in the OptionButton Properties
dialog box.

The Text control is used to label other controls that do
not have a visible label. To use them as a navigation aid,
place them immediately before the control they are
labeling in the Tab Order.

The TextBox control accepts text input from a user. A
TextBox control is customized (size, position, and so on),
by double-clicking it and making the appropriate
settings in the TextBox Properties dialog box.

The CheckBox control is used to present the user with a
two state switch. The switch can be On/Off, Yes/No,
Enable/Disable, and so forth.

The ListBox control is used to present users with a
choice from a list of strings.

The DropComboBox control is similar to the DroplistBox
Control, except that users may type in a new string in
addition to selecting one from the list of strings.

55

Hummingbird Basic Language Programmer's Guide

Control Palette
Button

GroupBox Control

DroplistBox Control

• Picture Control

Explanation

The GroupBox control visually groups controls in a
dialog box. In addition, they can be used to provide a
navigational hierarchy to the dialog box user.

The DroplistBox control differs from the ListBox control
in appearance only. If a string from the control is
selected, it appears in the control. When the user clicks
the down arrow, the control expands to present the list of
strings.

The Picture control is used to place bitmaps into the
dialog box. Picture controls get their contents from either

the clipboard or a Windows bitmap (.bmp) file.

Adding Controls to a Dialog Box

56

Different controls gather specific types of information from the user. An
effectively designed interface also helps the user to enter the correct data
and to navigate through your program.

There are two ways to add new controls to your dialog box:

• Select a control either on the Control Palette or on the Control menu then
drag out a rectangle in the dialog box. The control of the selected type is
created and sized to that rectangle.

• Use the drag-and-drop method to place a control of a default size into
your dialog box.

Chapter 4: Designing Dialog Boxes

To use the drag-and-drop method:

I On the Control Palette, click the control you want to add.

2 Press and hold the mouse button, then move the mouse into the dialog
box window. A rectangle appear indicating the placement of the control
you want to create. You can move the rectangle with the mouse.

3 Release the mouse button to place the control.

Note: To abort creating the control, move the mouse outside of
the dialog box window, and release the button.

Aligning Controls in the Dialog Box

There are a number of commands from the Layout menu that can help you
align and lay out controls on the dialog box.

To align the controls, select one by clicking it with the mouse. To select
multiple controls, drag a rectangle across all of the controls you want
selected. Selected controls have a dotted black outline. When the controls
are selected, choose a command from the Layout menu.

The following commands are available from this menu:

• Align Controls-Allows you to move selected controls left, right, top,
bottom, vertically, or horizontally.

Space Evenly-Allows you to space selected controls evenly, down, or
across.

• Center in Dialog-Allows you to center the selected dialog either
vertically or horizontally in the dialog box.

• Arrange Buttons-Allows you to arrange the selected button control to
the right or the bottom of the dialog box.

• Make Same Size-Causes selected controls to size exactly the same.

• Size to Content-Causes a control that accepts user input to size itself
according to its content.

57

Hummingbird Basic Language Programmer's Guide

You may find it useful to turn the grid on before you begin aligning the

controls. The grid is enabled by clicking the Grid toolbar button. To change

the incremental units of the grid, select Options on the Edit menu. Enabling

the Snap To Grid check box in the Option dialog box aligns the controls to the

nearest grid unit.

Setting the Tab Order

When the tab order is set, press the tab key to shift the focus from control to

control. Setting the tab order allows you to specify the order of control focus

when the tab key is pressed.

To set the tab order:

1 On the Layout menu, click Set Tab Order. Small numbers will appear on

the left corner of each control.

2 Click each control in the order you want the focus to shift when the user

tabs through the dialog box. As you click, a new number appears on

each control.

Note: One of the controls in the dialog window will be the primary

control. It is identified by the darker black outline when selected.

The primary control is always the first in the tab order. All controls

will be set relative to the primary control.

Setting Control Properties

58

Once the controls are placed and aligned on the dialog box, you can begin

setting specific properties for each of the controls added. Control properties

are settings that affect the attributes and the behavior of the control.

Examples of control properties include position and size, and whether or

not an expression is attached to the control. Also, most of the controls have

a Control ID. The Control ID is an identifier that you use to reference and

access the control from a function in your Hummingbird Basic script.

Chapter 4: Designing Dialog Boxes

To display the properties for a control:

• Double-dick the control for which you would like to edit the
properties.

• If a single control is selected, press the Enter key.

• To access Dialog Properties, double-dick an empty area of the dialog
box.

Dialog Box Properties
The following properties can be set for a dialog box:

Dialog ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Caption Type & Caption These fields allow you to enter a title for the
dialog box. There are three caption types to choose from:

• None-If the caption type is set to None, then the application's default
caption is used, and the Caption field is disabled.

• String-Select this type to enter a title for the dialog box into the
Caption field.

• Expression-Select this type to enter a Hummingbird Expression into
the Caption field.

Macro Function Name Enter the name of the function you are using to
update fields with. The function name is appended to the Begin Dialog
statement. This field is only used in dynamic dialog boxes.

Button Group ID To reference a group of related buttons through the
dialog box, enter a name for the group of buttons.

59

Hummingbird Basic Language Programmer's Guide

60

Size and Position A dialog box is positioned relative to the upper left

comer of the application. By default, dialog boxes are centered on the

application.

• X and Y Position-To specify the position of the dialog box, enable the

Edit dialog position box and type the desired values in the X and Y fields.

Type either numeric values or Hummingbird Basic expressions into the

X and Y fields. If you type a new numeric value in either of these fields,

Dialog Editor moves the dialog box accordingly. If you type an

expression (non-numeric value), the position of the control or dialog

box is interpreted when you execute the script file containing this dialog

box.

• Width and Height-These fields allow you to change the size of the

dialog box. Enter a value in pixels in the Width and Height fields. Dialog

Editor sizes the dialog box accordingly.

Button Control Properties
Button controls are the command buttons that you put on to your dialog

box. The following properties can be set for a button control:

Button Type There are three different kinds of push buttons you can add

to a dialog box:

• OK-This is like a normal button, except its label cannot be modified.

There can be only one OK Button in a dialog box.

• Cancel-This is like a normal button, except its label cannot be

modified. There can be only one Cancel Button in a dialog box.

• Normal-If the button is not an OK or a Cancel button, then use this

type. This button allows you to assign a label and an ID.

Button Label This property inserts text on to the button. If you selected

either an OK button or a Cancel button, then its label cannot be changed. If

you want to assign a shortcut key for the selected control, type an

ampersand (&) before the letter you want to use as a shortcut key. For

example, if you type the label for a help button as H&elp, users will be able to

access help by pressing Alt+ E.

Button ID The ID is a string you assign to identify the control in your

Hummingbird Basic script file. For easy recognition, you should assign IDs

using a consistent naming convention.

Chapter 4: Designing Dialog Boxes

Use label as a macro input expression If you want to assign a
Hummingbird Basic expression as the label, then enable this check box. The
label will then be calculated or interpreted when the script is executed.

Size and Position A dialog box is positioned relative to the upper-left
corner of the application. By default, dialog boxes are centered on the
application. Controls are positioned relative to the upper-left corner of the
dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. Type either numeric values or
Hummingbird Basic expressions into the X and Y fields. If you type a
new numeric value in either of these fields, Dialog Editor moves the
control accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

OptionButton Control Properties
Option button controls allow a user to enable or disable a function. Option
buttons have the following property settings:

OptionButton label This property inserts text beside the button. If you
want to assign a shortcut key for the selected control, type an ampersand (&)
before the letter you want to use as a shortcut key. For example, if you type
the label for a help button as H&elp, users will be able to access help by
pressing Alt+ E.

OptionButton ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

OptionButton group This option allows you to enter a single string for a
group of related option buttons. When referring to the group in your
function, you can then use this string.

61

Hummingbird Basic Language Programmer's Guide

62

Use label as a macro input expression If you want to assign a

Hummingbird Basic expression as the label, then enable this check box. The

label will then be interpreted when you execute the script containing this

dialog box.

Size and Position A dialog box is positioned relative to the upper-left

corner of the application. By default, dialog boxes are centered on the

application. Controls are positioned relative to the upper-left corner of the

dialog box:

• X and Y Position-To specify the position of the control, type the

desired values in the X and Y fields. You can type either numeric values

or Hummingbird Basic expressions into these fields. If you type a new

numeric value in either of these fields, Dialog Editor moves the control

accordingly. If you type an expression (non-numeric value), the

position of the control is interpreted when you execute the script file

containing this dialog box.

• Width and Height-These fields allow you to change the size of the

control. Enter a value in pixels in the Width and Height fields. Dialog

Editor sizes the control accordingly.

Text Control Properties
Use text controls to label another control that typically does not have a

label. The following properties are available for Text Controls:

Text Label This property inserts a label for a control. If you want to assign

a shortcut key for the selected control, type an ampersand (&) before the

letter you want to use as a shortcut key. For example, if you type the label for

a help button as &Help, users will be able to access help by pressing Alt+ H.

Text ID The ID is a string you can assign to identify the control in your

Hummingbird Basic script file. For easy recognition, assign IDs using a

consistent naming convention.

Use label as a macro input expression If you want to assign a

Hummingbird Basic expression as the label, then enable this check box. The

label will then be interpreted when you execute the script containing this

dialog box.

Chapter 4: Designing Dialog Boxes

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

TextBox (Edit) Control Properties
The following properties can be set for TextBox controls:

TextBox ID The ID is a string you assign to identify the control in your
Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

Password\no Echo When this option is enabled, any text the user types
into the text field is echoed back as asterisks. This feature is used if the
textbox control will accept passwords as input.

Size and Position Hummingbird Basic positions controls relative to the
upper-left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
control. Enter a value in pixels in the Width and Height fields. Dialog
Editor sizes the control accordingly.

63

Hummingbird Basic Language Programmer's Guide

64

CheckBox Control Properties
Check boxes provide the user with the ability to enable or disable a function

in the program. The following properties can be set for a CheckBox control:

CheckBox Label This property inserts a label for a control. If you want to

assign a shortcut key for the selected control, type an ampersand (&) before

the letter you want to use as a shortcut key. For example, if you type the

label for a help button as H&elp, users will be able to access help by pressing

Alt+H.

CheckBox ID The ID is a string you assign to identify the control in your

Hummingbird Basic script file. For easy recognition, assign IDs using a

consistent naming convention.

Use label as a macro input expression If you want to assign a

Hummingbird Basic expression as the label, then enable this check box. The

label will then be interpreted when you execute the script containing this

dialog box.

Size and Position Hummingbird Basic positions controls relative to the

upper-left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric

values or Hummingbird Basic expressions. If you type a new numeric

value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the

position of the dialog box is interpreted when you execute the script file

containing this dialog box.

Width and Height-These fields allow you to change the size of the

control. Enter a value in pixels in the Width and Height fields. Dialog

Editor sizes the control accordingly.

ListBox Control Properties
A ListBox provides a list of strings from which to choose. You can also add

new strings at runtime. The following properties are available for a ListBox

control:

ListBox ID The ID is a string you assign to identify the control in your

Hummingbird Basic script file. For easy recognition, assign IDs using a

consistent naming convention.

Chapter 4: Designing Dialog Boxes

ListBox Contents This field allows you to enter the strings that will form
the contents of the ListBox.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the ListBox, enable this
check box. The contents of the ListBox will be interpreted when you execute
the script containing this dialog box.

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

StaticComboBox Control Properties
A StaticComboBox is a text box with an attached list box. When the user
selects a value from the list box, it is placed in the text box. The following
properties can be set for a StaticComboBox control:

StaticComboBox ID The ID is a string you assign to identify the control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

StaticComboBox Contents This field allows you to enter the strings
which will make up the contents of the StaticComboBox. A user can then
select one of the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the StaticComboBox,
enable this check box. The contents of the StaticComboBox will be
interpreted when you execute the script containing this dialog box.

65

Hummingbird Basic Language Programmer's Guide

66

Size and Position Hummingbird Basic positions controls relative to the

upper left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the

desired values in the X and Y fields. These values can be either numeric

values or Hummingbird Basic expressions. If you type a new numeric

value in either of these fields, Dialog Editor moves the control

accordingly. If you type an expression (non-numeric value), the

position of the control is interpreted when you execute the script file

containing this dialog box.

• Width and Height-These fields allow you to change the size of the

dialog control. Enter a value in pixels in the Width and Height fields.

Dialog Editor sizes the control accordingly.

DropComboBox Control Properties
A DropComboBox is a text box with an attached list box. The list box

remains hidden until the user selects the arrow beside the text box to drop

down the list box. When the user selects a value from the list box, it is placed

in the text box. The following properties can be set for a DropComboBox

control:

DropComboBox ID The ID is a string you assign to identify the control

in your Hummingbird Basic script file. For easy recognition, assign IDs

using a consistent naming convention.

DropComboBox Contents This field allows you to enter the strings

which will make up the contents of the DropComboBox. A user can then

select one of the strings from the box.

Use content as a macro input expression If you want to assign a

Hummingbird Basic expression to the contents of the DropComboBox,

enable this check box. The contents of the DropComboBox is interpreted

when you execute the script containing this dialog box.

Chapter 4: Designing Dialog Boxes

Size and Position Hummingbird Basic positions controls relative to the
upper left corner of the dialog box:

• X and Y Position-To specify the position of the dialog box, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

DroplistBox Control Properties
A DropListBox is a list box that remains closed, showing only one value,
until the user selects the arrow on the right-hand side to expand it. The
following properties can be set for a DropListBox control:

DropListBox ID The ID is a string you assign to identify the control in
your Hummingbird Basic script file. For easy recognition, assign IDs using a
consistent naming convention.

DropListBox Contents This field allows you to enter the strings which
will make up the contents of the DropListBox. A user can then select one of
the strings from the box.

Use content as a macro input expression If you want to assign a
Hummingbird Basic expression to the contents of the DropListBox, then
enable this check box. The contents of the DropListBox will be interpreted
when you execute the script containing this dialog box.

67

Hummingbird Basic Language Programmer's Guide

68

Size and Position Hummingbird Basic positions controls relative to the

upper left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the

desired values in the X and Y fields. These values can be either numeric

values or Hummingbird Basic expressions. If you type a new numeric

value in either of these fields, Dialog Editor moves the control

accordingly. If you type an expression (non-numeric value), the

position of the control is interpreted when you execute the script file

containing this dialog box.

• Width and Height-These fields allow you to change the size of the

dialog box or control. Enter a value in pixels in the Width and Height

fields. Dialog Editor sizes the control accordingly.

GroupBox Control Properties
Group Box controls are used as a design feature to group a series of related

controls together. The following properties can be set for a GroupBox

control:

Group Box Label This is the title of the group box. The title you type here,
appears on the dialog box.

GroupBox ID The ID is a string you assign to identify the GroupBox

control in your Hummingbird Basic script file. For easy recognition, assign

IDs using a consistent naming convention.

Use label as a macro input expression If you want to assign a

Hummingbird Basic expression as the label, then enable this check box. The

label will then be interpreted when you execute the script containing this

dialog box.

Chapter 4: Designing Dialog Boxes

Size and Position Hummingbird Basic places controls relative to the
upper-left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the
desired values in the X and Y fields. These values can be either numeric
values or Hummingbird Basic expressions. If you type a new numeric
value in either of these fields, Dialog Editor moves the control
accordingly. If you type an expression (non I-numeric value), the
position of the control is interpreted when you execute the script file
containing this dialog box.

• Width and Height-These fields allow you to change the size of the
dialog box or control. Enter a value in pixels in the Width and Height
fields. Dialog Editor sizes the control accordingly.

Picture Control Properties
Pictures are graphics that are used in dialog boxes and windows. The
following properties can be set for picture controls:

Picture source This property indicates the source of the bitmap to be
displayed: Clipboard or File.

Picture file name Type the name of the bitmap file to display in your
dialog box.

Picture ID The ID is a string you assign to identify the GroupBox control
in your Hummingbird Basic script file. For easy recognition, assign IDs
using a consistent naming convention.

Suppress Message Enabling this check box causes the picture control not
to display the "missing picture" warning if the picture for the dialog box
cannot be located.

Use file name as a macro expression If you selected File as the picture
source, enable this check box to assign a Hummingbird Basic expression
corresponding to the file name. The file name is interpreted when you
execute the script containing this dialog box.

69

Hummingbird Basic Language Programmer's Guide

Size and Position Hummingbird Basic positions controls relative to the

upper-left corner of the dialog box:

• X and Y Position-To specify the position of the control, type the

desired values in the X and Y fields. These values can be either numeric

values or Hummingbird Basic expressions. If you type a new numeric

value in either of these fields, Dialog Editor moves the control

accordingly. If you type an expression (non-numeric value), the

position of the control is interpreted when you execute the script file

containing this dialog box.

• Width and Height-These fields allow you to change the size of the

dialog box or control. Enter a value in pixels in the Width and Height

fields. Dialog Editor sizes the control accordingly.

Integrating a Dialog Box into Your Script

70

A dialog box must be defined and declared before you can refer to it in your

script. Dialog boxes are defined using the Begin Dialog ... End Dialog

statements.

To integrate a dialog box into your script follow these steps:

1 Define the dialog box with the Begin Dialog ... End Dialog statements

and dialog box definition statements such as TextBox, OkButton.

2 Create a dynamic dialog function to handle dialog box interactions.

3 Display the dialog box using the Dialog Function.

Defining the Dialog Box
The Begin Dialog ... End Dialog statement defines a dialog box. The last

parameter to the Begin Dialog statement is the name of a function, prefixed

by a period. This function handles interaction between the dialog box and

the user.

For more information, see
"Writing a Dialog
Function" on page 7 4.

Chapter 4: Designing Dialog Boxes

After defining your dialog box, you must declare a variable of this data type.
In the following example, the variable named td refers to the dialog box
named testdlg.

Begin Dialog testdlg 286, 245, "Interactive Dialog", .interact
<Statements that define the controls on your dialog box>
End Dialog
Dim td as testdlg

If you are writing a function to accept user input and to define what occurs
in the dialog box, then enter the function at the end of the Begin Dialog
statement. In the above example this is a function called interact.

If you use Dialog Editor, the Begin Dialog End Dialog statement is
inserted into your code. You must add the function parameter to the Begin
Dialog statement and the variable information after the End Dialog
statement.

Displaying the Dialog Box
To display the dialog box, you can use the Dialog function. In a Dialog
function, the argument to display a dialog box is the variable name that you
previously declared. From the example above, this would be td.

Dialog Statements and Functions

The dialog function and the dialog statement differ slightly in their use:

• The Dialog Function-This function both displays a dialog box and
returns a number when the user presses any of the command buttons.

• The Dialog Statement-This statement displays a dialog box.

In most cases, use the Dialog Function. If you use a Dialog statement to
display the dialog box, then you have to write an error-handling routine at
the end of your main subprocedure using the On Error statement.

71

Hummingbird Basic Language Programmer's Guide

72

Dynamic dialog box functions and statements can be used only while a

dialog box is displayed on the screen and is calling a dialog control function.

These functions and statements are used to get or set information about a

particular control in a dialog box.

The functions and statements in this category are:

Function

DlgControl Function

DlgEnable Function

DlgEnable Statement

DlgFocus Function

DlgFocus Statement

DlgListBoxArray
Function

DlgListBoxArray
Statement

DlgText Function

DlgText Statement

DlgValue Function

DlgValue Statement

DlgVisible Function

DlgVisible Statement

Explanation

Returns the numeric ID of a control.

Returns True (-1) if the specified control is enabled,

or O (False) if it is not.

Enables or disables a control.

Returns the ID of the control having input focus.

Sets focus to a control.

Returns the contents of a list box or combo box.

Sets the contents of a list box or combo box.

Returns the text value for a control.

Sets the text for a control.

Returns the value of a control.

Set the value of a control.

Returns True (-1) if the specified control is visible, or

False (O) if it is not.

Makes a control visible or invisible.

Most of these functions and statements take the Control ID as the first

argument. For example, consider the following check box definition:

CheckBox 20, 30, 50, 15 "My checkbox", .checkl

Use the following command to disable the check box:

DlgEnable "checkl", O

Chapter 4: Designing Dialog Boxes

The following function returns -1 if the check box is selected, or 0 if it is not:

DlgValue ("checkl")

Control IDs are case-sensitive. In dynamic dialog box functions and
statements, control IDs are in quotation marks and do not include the
period that is required in control definitions (between Begin Dialog
... End Dialog statements).

Dynamic dialog functions and statements can also work with numeric IDs,
which are automatically assigned in the order in which dialog controls are
defined. For example, if a check box is the first control defined in the dialog
record, DlgValue (o) is equivalent to DlgValue ("Checkl 11

). Control
numbering begins at 0. Labels are not numbered.

The example below creates a dialog box with a drop-down combo box
within it, and the three buttons: OK, Cancel, and Help. The Dialog Function
used here enables the subprocedure to trap when the user clicks any of these
buttons.

Sub Main

Box"

Dim cchoices as String
cchoices = 11All 11 + Chr$(9) + "Nothing"

Begin Dialog UserDialog 180, 95, "Hurrmingbird Dialog

Text 9, 3, 69, 13, "File name:", .Textl
ButtonGroup .ButtonGroupl
ComboBox 9, 17, 111, 41, cchoices, .ComboBoxl
OKButton 131, 8, 42, 13
CancelButton 131, 27, 42, 13
PushButton 132, 48, 42, 13, "Help", .Pushl

End Dialog
Dim mydialogbox As UserDialog

answer = Dialog(mydialogbox)
Select Case answer
Case -1

MsgBox "You pressed OK"
Case O

MsgBox "You pressed Cancel"
Case 1

MsgBox "You pressed Help"
End Select

End Sub

73

Hummingbird Basic Language Programmer's Guide

74

Writing a Dialog Function
A function defines the behavior of the dialog box. For example, your
function could disable a check box based on the user's action. The body of
the function uses the Hummingbird Basic statements and functions
prefixed with Dlg to define dialog box actions.

To define the function itself, use the Function ... End Function statement, or
declare it using the Declare statement before using the Begin Dialog
statement.

The name of the function is entered in dot notation at the end of the Begin
Dialog statement. In the example below, interact is appended to the end of
the Begin Dialog statement. Interact is a function that determines what
occurs when a user presses a button on the dialog box.

Begin Dialog testdlg 286, 245, "Interactive Dialog", .interact
<Statements that define the controls on your dialog box>
End Dialog
Dim td as testdlg

The function receives the following three parameters from the Begin
Dialog statement:

• The Identifier parameter-The first argument, id$, identifies the
control associated with the call to the Dialog Function. It is the same
value which appeared in the definition of the control. This is the control
ID string that identifies each of the buttons and fields in your dialog
box.

• The Action parameter-Action% is an integer between I and 5
identifying the reason why the Dialog Function is called.

• The Suppval parameter-This parameter supplies additional
information to the dialog box function, suppval& gives more specific
information than the action argument.

The Dialog Function does not return until the dialog box is closed. To leave
the dialog box open after the user clicks a command button (such as the OK
button), return a non-zero suppval.

Chapter 4: Designing Dialog Boxes

The following table explains the meaning of each value that action% can
contain:

Value Meaning

1 Corresponds to dialog box initialization. This value is passed before the
dialog box becomes visible.

2 Corresponds to choosing a command button or changing the value of a
dialog box control (except for typing in a text box or combo box).

3 Corresponds to a change in a text box or combo box. This value is
passed when the control loses the input focus (the user presses the Tab
key or clicks another control).

4 Corresponds to a change of control focus. Id$ is the ID of the control
gaining focus, and suppvalue& contains the numeric ID of the control
losing focus. A Dialog Function cannot display a message box or dialog
box in response to an action value 4.

s Corresponds to an idle state. When the dialog box is initialized (action 1 is
passed), the Dialog Function will be continuously called with action 5, if
no other action occurs. If the dialog function wants to receive this
message continuously, while the dialog box is idle, it should return a non
zero value. If 0 (zero) is returned, action 5 will be passed only while the
user is moving the mouse. For this action, Id$ is equal to empty string ("")
and suppvalue& is equal to the number of times action 5 was passed
before.

75

Hummingbird Basic Language Programmer's Guide

76

When action% is 2 or 3, suppval& depends on the type of the control. The
following table summarizes the possible values for suppval:

Control Suppval

List box Number of the item selected, 0-based.

Check box 1 if selected, 0 if cleared, -1 if filled with gray.

Option button Number of the option button in the option group, 0-based.

Text box Number of characters in the text box.

Combo box

OK Button

The number of the item selected (0-based) for action 2, the

number of characters in its text box for action 3.

Cancel Button 2

Push button An internal button ID. This is not the same as the numeric ID of

the button control.

In most cases, the return value of the Dialog Function is ignored. The
exceptions are the return values from action% s (as discussed above), and
from action% 2. If action% 2 is called because the user clicked the OK button,
Cancel button, or a command button (as indicated by id$), and the Dialog
Function returns a non-zero value, the dialog box will not be closed. To close
the dialog box when a user clicks a button, return a 0 to the function.

You can use the information these parameters provide to change the
behavior of the dialog. For example:

Function interact%(Id as String, Action as Integer, Suppval as
Long Integer)
If Id = "bcancel" and action = 2 Then interact = O
End If
End Function

This example shows that if the user presses the Cancel button, the dialog

box closes. Id = bcancel (the button ID for cancel), Action = 2 indicates

that the user has chosen a command button. If this occurs, interact = o,
which causes the dialog box to close. If the function returned 1, for example

interact = 1, then the dialog box would stay open.

Chapter 4: Designing Dialog Boxes

Putting It All Together

The following script shows a dialog box with a text field, a check box, and a
hide/show picture button. When you enter text into the text field, it
becomes the title for the group box. Clicking the check box enables or
disables the Bell button. When you click the Hide button, the picture is
pasted to the Windows clipboard. Note the position and order of the
dynamic dialog box functions. Comments are preceded by an apostrophe
(') and are ignored by the compiler.

option explicit' force declarations
dim pict$' name of the picture file
dim evalue' last error value
dim eline' last error line
const errorReturn = -2' use -2, as -1 OK, O
positive
' numbers are used by other buttons

function interact%(id$, action%, suppval&)
' start of dialog function

dim s$' scratch string
dim i?' scratch portint
on error goto ehandler' error handling

Cancel and

select case action' switch on the action type
case 1' dialog box initialization

dlgValue "cbl", 1' set the checkBox 'ON'
dlgFocus "tbl"' force focus to text field
exit function' exit

case 2' control changes, allow
case 3' text field changes, allow
case 4' change of focus

interact = 1' make sure event continues
exit function' exit

end select

interact = 1' default = Don't terminate
select case id' switch on the control
case "tbl '" text field

msgbox "Sample Text Field was changed", 64, "Change Of
Focus"

77

Hummingbird Basic Language Programmer's Guide

78

text

text

case "hide"' hide control
if dlgVisible("pict") = o then' check the state

dlgVisible "pict", l' make picture visible
dlgVisible "bird", l' make the option visible
dlgVisible "clipboard", l' make the option visible
dlgtext "pg", "Picture'" make the text visible
dlgtext "hide", "Hide &Picture"' change button

else
dlgVisible "pict", 0' hide the picture
dlgVisible "bird", 0' hide the option
dlgVisible "clipboard", O' hide the option
dlgtext "pg", ""' set the text to Null
dlgtext "hide", "Show &Picture'" change button

end if

case "bird"' switch to bird picture
DlgSetPicture "pict", pict, O

case "clipboard"' switch to clipboard
DlgSetPicture "pi ct" , " " , 3

case "bbell 111 sound the bell
beep

case "cbl"' Check.Box
dlgEnable "bbell", suppval' enable/disable bell

case "copy"' update group text
dlgText "gl", DlgText("tbl")

case "bok" , "bcancel"
interact = 0' terminate

case "berror"
s "abc"
i = cint(s)' invalid conversion

end select
exit function

ehandler:' error handler label
evalue = err' save the error
eline = erl' save the error line
resume postError

postError:
dlgend errorReturn' exit as error

end function

Chapter 4: Designing Dialog Boxes

Sub Main' start of Main subprocedure
dim i?' variable to hold result of dialog box
pict = homeDir' get bird picture
if right$(pict, 1) <>"\"then pict = pict + "\"
pict = pict + "BIRDY3.BMP"

Begin Dialog testdlg 286, 245, "Interactive Dialog",
.interact

OKButton 144, 221, 40, 14, .bok
CancelButton 237, 221, 40, 14, .bcancel
GroupBox 7, 11, 133, 107, "Group", .gl
Text 13, 24, 62, 8, "Sample Text Field: "
TextBox 13, 40, 120, 13, .tbl
CheckBox 13, 66, 35, 10, "Bell On", .cbl
Button 64, 64, 60, 14, "&Bell", .bbell
Button 13, 92, 120, 14, "&Sample Text Field To Group Name",

.copy
GroupBox 144, 11, 133, 107, "Picture", .pg
Picture 173, 25, 75, 51, pict, 0, .pict
OptionGroup .optval
OptionButton 171, 80, 24, 10, "Bird", .bird
OptionButton 203, 80, 42, 10, "Clipboard", .clipboard
Button 171, 97, 80, 14, "Hide &Picture", .hide
Button 190, 221, 40, 14, "&Error", .berror

End Dialog

dim td as testdlg' dialog box testdlg declared as variable

do' loop handles when clicking Cancel or OK
select case dialog(td)
case -1

if msgbox("Dialog terminated by OK. Restart?", 36,
"TestDlg") = 7 then exit do

case O
if msgbox("Dialog terminated by Cancel. Restart?", 36,

"TestDlg") = 7 then exit do
case errorReturn

if msgbox(error$(evalue) + "on line" + cstr(eline) + "
Restart?", 36, "TestDlg") = 7 then exit do

case else
if msgbox("Dialog terminated by a button other than OK

or Cancel. Restart?", 36, "TestDlg") = 7 then exit do
end select

loop' end of loop
End Sub

79

Chapter 5

Hummingbird Basic Language
Reference

Hummingbird Basic Statements and Functions
Arrays
Compiler Directives
Control Flow
Dates and Times
Declarations
Defining Dialog Boxes
Running Dialog Boxes
Dynamic Data Exchange (DDE)
Environment Control
Error-Handling Functions
Disk and Directory Control
File Control
File Input/Output
Financial Functions
Numeric Functions
Trigonometric Functions
Objects
Screen Input/Output
String Functions
String Conversions
Variants

Calling External Functions in a .dll
Sample Script: Calling External Functions in a .dll

Using Dynamic Data Exchange
DDE Sample Script

83
83
83
84
85
86
87
88
89
89
90
90
91
91
92
93

93
94
94
95
96
96

97
97

98
99

Chapter 5: Hummingbird Basic Language Reference

This chapter provides a quick reference to the statements and functions
available in Hummingbird Basic. The functions and statements are
separated into categories by type. Each function and statement is
accompanied by a short description.

For information about the specific syntax and usage of a statement or
function, see HostExplorer Programming Help.

Hummingbird Basic Statements and Functions

Arrays

Function

Erase

LBound

ReDirn

UBound

Description

Re-initialize contents of an array.

Return the lower bound of an array's dimension.

Declare dynamic arrays and reallocate memory.

Return the upper bound of an array's dimension.

Compiler Directives

Function

$CStrings

$Include

$NoCStrings

Line Continuation

Rem

Description

Treat the backslash in character string as an escape
character, such as in 'C'.

Tell the compiler to include statements from another file.

Tell the compiler to treat a backslash as a normal
character.

Continue a long statement across multiple lines.

Treat the remainder of the line as a comment.

83

Hummingbird Basic Language Programmer's Guide

84

Control Flow

Function

Call

Do ... Loop

Exit

For ... Next

Goto

If ... Then
Else

Description

Transfer control to a subprogram.

Control repetitive actions.

Cause the current procedure or loop structure to return.

Loop a fixed number of times.

Send control to a line label.

Branch on a conditional value.

Let Assign a value to a variable.

Lset Left-align one string or a user-defined variable within

another.

On ... Goto Branch to one of several labels, depending upon value.

Rs et Right-align one string within another.

Select Case Execute one of a series of statement blocks.

Set Set an object variable to a value.

stop Stop program execution.

While . . . wend Control repetitive actions.

With Execute a series of statements on a specified variable.

Dates and Times

Function

Date Function

Date Statement

DateSerial

Date Value

Day

Hour

IsDate

Minute

Month

Now

Second

Time Function

Time Statement

Timer

TirneSerial

Time Value

Weekday

Year

Chapter 5: Hummingbird Basic Language Reference

Description

Return the current date.

Set the system date.

Return the date value for year, month, and day specified.

Return the date value for string specified.

Return the day of month in a date-time value.

Return the hour of day in a date-time value.

Determine whether a value is a legal date.

Return the minutes in a date-time value.

Return the month in a date-time value.

Return the current date and time.

Return the seconds in a date-time value.

Return the current time.

Set the current time.

Return the number of seconds since midnight.

Return the time value for the hour, minute, and second
specified.

Return the time value for the string specified.

Return the day of the week for the specified date-time
value.

Return the year in a date-time value.

85

Hummingbird Basic Language Programmer's Guide

86

Declarations

Function

Const

Declare

Def type

Dim

Function
Function

Global

Option Base

End

Option Compare

Option Explicit

ReDim

Static

Sub ... End Sub

Type

Description

Declare a symbolic constant.

Forward declare a procedure in the same module or in a
dynamic link library.

Declare the default data type for variables.

Declare variables.

Define a function.

Declare a global variable.

Declare the default lower bound for array dimensions.

Declare the default case-sensitivity for string
comparisons.

Force all variables to be explicitly declared.

Declare dynamic arrays and reallocate memory.

Define a static variable or subprogram.

Define a subprogram.

Declare a user-defined data type.

Chapter 5: Hummingbird Basic Language Reference

Defining Dialog Boxes

Function Description

Begin Dialog Begin a dialog box definition.

Button Define a button dialog box control.

ButtonGroup Begin the definition of a group of button dialog box
controls.

CancelButton Define a Cancel button dialog box control.

Caption Define the title of a dialog box.

CheckBox

Combo Box

DropComboBox

DropListBox

GroupBox

ListBox

OKButton

OptionButton

OptionGroup

Picture

PushButton

StaticComboBox

Text

Text Box

Define a check box dialog box control.

Define a combo box dialog box control.

Define a drop-down combo box dialog box control.

Define a drop-down list box dialog box control.

Define a group box in a dialog box.

Define a list box dialog box control.

Define an OK button dialog box control.

Define an option button dialog box control.

Begin definition of a group of option button dialog box
controls.

Define a picture control.

Define a push-button dialog box control.

Define a static combo box dialog box control.

Define a line of text in a dialog box.

Define a text box in a dialog box.

87

Hummingbird Basic Language Programmer's Guide

88

Running Dialog Boxes

Function

Dialog Function

Dialog Statement

Description

Display a dialog box, and return the button pressed.

Display a dialog box.
------------------ --------------

DlgControlid Return the numeric ID of a dialog control.

DlgEnable Function Return whether a dialog control is enabled or disabled.

DlgEnable Statement Enable or disable a dialog control.

DlgEnd

DlgFocus Function

DlgFocus Statement

DlgListBoxArray
Function

DlgListBoxArray
Statement

DlgSetPicture

DlgText function

DlgText Statement

DlgValue Function

Close the active dialog box.

Return the ID of the dialog control having input focus.

Set focus to a dialog control.

Return the contents of a list box or combo box.

Set the contents of a list box or combo box.

Change the picture in the picture control.

Return the text associated with a dialog control.

Set the text associated with a dialog control.

Return the value associated with a dialog control.

DlgValue Statement Set the value associated with a dialog control.

DlgVisible Function Return whether a control is visible or hidden.

DlgVisible Show or hide a dialog control.
Statement

Chapter 5: Hummingbird Basic Language Reference

Dynamic Data Exchange (DOE)

Function

DDEAppRetumCode

DDEExecute

DDEinitiate

DDEPoke

DDERequest

DDETerminate

Description

Return a code from an application on a ODE channel.

Send commands to an application on a ODE channel.

Open a dynamic data exchange DOE channel.

Send data to an application on a DOE channel.

Retrun data from an application on a ODE channel.

Close a ODE channel.

Environment Control

Function

AppActivate

Corrmand

Date Statement

DoEvents

Environ

Randomize

Send.Keys

Shell

Description

Activate another application.

Return the command line specified when the MAIN sub
was run.

Set the current date.

Let the operating system process messages.

Return a string from the operating system's environment.

Initialize the random-number generator.

Send keystrokes to another application.

Run an executable program.

89

Hummingbird Basic Language Programmer's Guide

Error-Handling Functions

Function Description

Assert Trigger an error if a condition is false.

Erl Return the line number where a runtime error occurred.

Err Function Return a runtime error code.

Err Statement Set the runtime error code.

Error Generate an error condition.

Error Function Return a string representing an error.

On Error Control runtime error-handling.

Resume End an error-handling procedure.

Disk and Directory Control

Function Description

ChDir Change the default directory for a drive.

ChDrive Change the default drive.

Cur Dir Return the current directory for a drive.

Dir Return a file name that matches a pattern.

MkDir Make a directory on a disk.

RmDir Remove a directory from a disk.

90

File Control

Function

FileAttr

FileCopy

FileDateTime

FileLen

GetAttr

Kill

Name

SetAttr

Chapter 5: Hummingbird Basic Language Reference

Description

Return information about an open file.

Copy a file.

Return the modification date and time of a specified file.

Return the length of a specified file in bytes.

Return the attributes of specified file, directory, or volume
label.

Delete files from a disk.

Rename a disk file.

Set attribute information for a file.

File Input/Output

Function

Close

Eof

Free File

Get

Input Statement

Line Input

Loe

Lock

Lof

Open

Print

Description

Close a file.

Check for end of file.

Return the next unused file number.

Read bytes from a file.

Read data from a file or from the keyboard.

Read a line from a sequential file.

Return the current position of an open file.

Control access to some or all of an open file by other
processes.

Return the length of an open file.

Open a disk file or device for 1/0.

Print data to a file or to the screen.

91

Hummingbird Basic Language Programmer's Guide

Function

Put

Reset

Seek Function

Seek Statement

Spc

Tab

Unlock

Width

Write

Description

Write data to an open file.

Close all open disk files.

Return the current position for a file.

Set the current position for a file.

Send the given number of spaces for output.

Move the print position to the given column.

Control access to some or all of an open file by other
processes.

Set the output-line width for an open file.

Write data to a sequential file.

Financial Functions

Function

FV

IPmt

IRR

NPV

Pmt

PPmt

PV

Rate

92

Description

Return the future value of a cash flow stream.

Return the interest payment for a given period.

Return the internal rate of return for a cash flow stream.

Return a constant payment per period for an annuity.

Return a constant payment per period for an annuity.

Return the principal payment for a given period.

Return the present value of a future stream of cash flows.

Return the interest rate per period.

Chapter 5: Hummingbird Basic Language Reference

Numeric Functions

Function

Abs

Exp

Int

Fix

IsNurneric

Log

Rnd

Sgn

Sqr

Description

Return the absolute value of a number.

Return the value of e raised to a power.

Return the integer part of a number.

Return the integer part of a number.

Determine whether a value is a legal number.

Return the natural logarithm of a value.

Return a random number.

Return a value indicating the sign of a number.

Return the square root of a number.

Trigonometric Functions

Function

Atn

Cos

Sin

Tan

Description

Return the arc tangent of a number.

Return the cosine of an angle.

Return the sine of an angle.

Return the tangent of an angle.

93

Hummingbird Basic Language Programmer's Guide

Objects

Function

Class List

Clipboard

CreateObject

GetObject

Is

Me

New

Nothing

Object

Typeof

With

Description

List of available classes.

Access the Windows Clipboard.

Create an OLE automation object.

Retrieve an OLE object from a file, or get the active OLE
object for an OLE class.

Determine whether two object variables refer to the same
object.

Get the current object.

Allocate and initialize a new OLE object.

Set an object variable to not refer to an object.

Declare an OLE automation object.

Check the class of an object.

Execute statements on an object or a user-defined type.

Screen Input/Output

Function

Beep

Input Function

Input

InputBox

MsgBox Function

MsgBox Statement

PasswordBox

Print

94

Description

Produce a short beeping tone through the speaker.

Return a string of characters from a file.

Read data from a file or from the keyboard.

Display a dialog box that prompts for input.

Display a Windows message box.

Display a Windows message box.

Display a dialog box that prompts for input. Don't echo
input.

Print data to a file or to the screen.

String Functions

Function

GetField

Hex

InStr

LCase

Left

Len

Like Operator

LTrim

Mid Function

Mid Statement

Oct

Right

RTrim

SetField

Space

Str

StrComp

String

Trim

UCase

Chapter 5: Hummingbird Basic Language Reference

Description

Return a substring from a delimited source string.

Return the hexadecimal representation of a number as a
string.

Return the position of one string within another.

Convert a string to lower case.

Return the left portion of a string.

Return the length of a string or size of a variable.

Compare a string against a pattern.

Remove leading spaces from a string.

Return a portion of a string.

Replace a portion of a string with another string.

Return the octal representation of a number as a string.

Return the right portion of a string.

Remove trailing spaces from a string.

Replace a substring within a delimited target string.

Return a string of spaces.

Return the string representation of a number.

Compare two strings.

Return a string consisting of a repeated character.

Remove leading and trailing spaces from a string.

Convert a string to uppercase.

95

Hummingbird Basic Language Programmer's Guide

String Conversions

Function Description

Ase Return an integer corresponding to a character code.

CCUr Convert a value to currency.

CDbl Convert a value to double-precision floating point.

Chr Convert a character code to a string.

Cint Convert a value to an integer by rounding.

CLng Convert a value to long by rounding.

CSng Convert a value to single-precision floating point.

CS tr Convert a value to a string.

CVar Convert a number or string to a variant.

CVDate Convert a value to a variant date.

Format Convert a value to a string using a picture format.

Val Convert a string to a number.

Variants

Function Description

IsEmpty Determine whether a variant has been initialized.

IsNull Determine whether a variant contains a NULL value.

Null Return a null variant.

VarType Return the type of data stored in a variant.

96

Chapter 5: Hummingbird Basic Language Reference

Calling External Functions in a .dll

The Hummingbird Basic language contains an extensive set of API
(Application Programming Interface) calls that can be used to customize
some of the applications included in the Hummingbird product line.

API refers to a set of specialized functions that allow you to communicate
directly with the Windows application layer.

The following applications contain custom API function calls:

• FTP

• HostExplorer

For information about using TN3270 or TN5250 API function calls, refer to
HostExplorer Programming Help, located in the HostExplorer folder.

Sample Script: Calling External Functions in a .dll
The following sample script demonstrates how to declare and call a
function from an external . dll. The . dll in this example is called user. dll
and it contains a function called GetTickCount&.

Declare Sub MessageBox LIB "user32" Alias "MessageBoxA" (ByVal
h%, ByVal t$, ByVal c$, ByVal u%)
Declare Function GetTickCount& LIB "kernel32. dll" ()
' Function CAT$ concatenates two strings with a space between
them
Function Cat$(a$, b$)

Cat = a & " " & b
End Function
' Subprogram Say computes the time and displays a message box

Sub Say(what$)
Dim min, sec, hrs

sec = GetTickCount () /1000
min = sec I 60 : sec = sec mod 60
hrs = min I 60 : min = min mod 60

Dim eTime as variant

97

Hummingbird Basic Language Programmer's Guide

eTime = Format$ (hrs, "00") & " : " & Format$ (min, "00") &
11

•
11 & Format$ (sec, "00")

MessageBox o, what, "Elapsed Time is " & eTime, 64

End Sub

Sub Main
Dim msg$

If (Command$ = 1111
) Then msg$ "World" Else msg$

Command$
Say Cat$ ("Hello", msg$)

End Sub

Using Dynamic Data Exchange

98

Dynamic Data Exchange allows two applications to communicate and to

exchange data. One of these applications can be your Basic program. To talk

to another application and send it data, you need to open a connection with

the application (called a DDE channel) using the statement DDEinitiate.

However, if you have OLE automation available, we recommend you use it
instead of DDE, since OLE is used more.

Note: The application must already be running before you can
open a ODE channel. To start an application, use the Shell
command.

DDEinitiate requires two arguments:

• The DDE Application name

• A Topic name

The DDE application name is usually the name of the . exe file used to start

the application, without the . exe extension. For example, the DDE name

for Microsoft Word is Winword The topic name is usually a file name to get

or send data to, although there are some reserved DDE topic names, such as

System. Refer to the documentation for the application to get a list of topic

names.

Chapter 5: Hummingbird Basic Language Reference

After opening a channel to the application, you can get text and numbers
(DDERequest), send text and numbers (DDEPoke), or send commands
(DDEExecute). When you have finished communicating with the
application, you should close the DDE channel with the DDETerminate
function.

Note: There are a limited number of channels available for you to
use at one time. Close channels as soon as you are finished using
them. You can use up to 1 O channels.

The other DDE command available in Hummingbird Basic is
DDEAppReturnCode. This command is used for error checking. After getting
or sending text, or executing a command, use DDEAppReturnCode to make
sure the application performed the task as expected. If an error did occur,
your program can notify the user of the error.

DOE Sample Script
The following sample script opens the Microsoft Word application and uses
DDERequest to obtain a list of available topics:

Sub main
Dim channel as Integer
Dim appname as String
Dim topic as String
Dim path as string
Dim msgtext as string
Dim ttext as string

appname="Excel"
topic="Sheetl"
path="d:\office97\office\"
channel = -1
ttext = "Hello, world"
x=Shell (path & appname & ".EXE")
channel = DDEinitiate(appname, topic)
If channel= -1 then

msgtext="Excel not found
Else

please place on your path."

On Error Resume Next
DDEPoke channel, "R3C2", ttext

99

Hummingbird Basic Language Programmer's Guide

100

DDEExecute channel, "[SELECT(" + Chr$(34) + "R4C4" +

Chr$ (34) + II)] II

DDETerminate channel
If Err<>O then

msgtext="DDE Access failed."
End If

End If
End sub

Appendix A

Accessibility
Microsoft Accessibility Options

Technical Support

Technical Support
and Accessibility

103
104

105

0 0

h' -'' -~ {l &, c~ &~
\ : : ~ ,.

Accessibility

Appendix A: Technical Support and Accessibility

Hummingbird products are accessible to all users. Wherever possible, our
software was developed using Microsoft Windows interface standards and
contains a comprehensive set of accessibility features.

Keyboard shortcuts All menus have an associated keyboard shortcut. To
access any menu, press Alt and the underlined letter in the menu name as it
appears on the interface. For example, to access the File menu in any
Hummingbird application, press Alt + F.

Once you have opened a menu, you can access a menu item by pressing the
underlined letter in the menu item name, or you can use the arrow keys to
navigate the menu list. For menu items with an associated keyboard
shortcut, the shortcut is listed on the menu to the right of the item.

Directional arrows Use the directional arrows on the keyboard to
navigate through menu items or to scroll vertically and horizontally. You
can also use the directional arrows to navigate through multiple options.
For example, if you have a series of radio buttons, you can use the arrow
keys to navigate the possible selections.

Tab key sequence To navigate through a dialog box, press the Tab key.
Selected items appear with a dotted border. You can also press Shift + Tab to
go back to a previous selection within the dialog box.

Spacebar Press the Spacebar to toggle check boxes on and off or to select
buttons in a dialog box.

Esc Press the Esc key to close a dialog box without implementing any new
settings.

Enter Press the Enter key to select the highlighted item or to close a dialog
box with the new settings. You can also press the Enter key to close all About
boxes.

ToolTips ToolTips appear for all functional icons. This feature lets users
use Screen Reviewers to make interface information available through
synthesized speech or through a refreshable Braille display.

103

Hummingbird Basic Language Programmer's Guide

104

Microsoft Accessibility Options
Microsoft Windows environments contain accessibility options that let you
change how you interact with the software. This feature can add sound,
increase the magnification, and create sticky keys.

To access the Microsoft Windows Accessibility options, open Control Panel
and click Accessibility.

If you installed the Microsoft Accessibility components for your Windows
system, you can also find other Accessibility tools on the Start menu under
Programs/ Accessories/ Accessibility.

To add the Accessibility components:

1 Navigate to Control Panel and Open Add/Remove Programs.

2 On the Windows Setup tab, select the Accessibility Options check box and
click Apply.

3 Click OK.

Appendix A: Technical Support and Accessibility

Technical Support

You can contact the Hummingbird Technical Support Department Monday
to Friday between 8:00 a.m. and 8:00 p.m. Eastern Time.

Hummingbird Ltd.
1 Sparks Avenue, North York, Ontario, Canada M2H 2W1

_ _ __ . j Can.1'.da and t~ USA _[l~-~rnation~~- _

Technical Support: 1-800-486-0095
1

+ 1-416-496-2200 =-_?e;.,ral ErJquiry 1-877-FLY.H~MM_ - _ l + 1-416496-2200 - _ _

Main: + 1-416-496-2200

Fax: + 1-416-496-2207

E-mail: support@hummingbird.com

FTP: ftp.hummingbird.com

Online Request Form T~. h~~mingbird.com/sup~~fre;~est.ht;!-
Web Site: · www.hu~mingbird.com/about/contact.html

105

Application Programming Interface
(API)
A set of routines, protocols, and tools that
programmers use to build software
applications. Most operating systems have
an API which programmers use to write
applications that are consistent with that
operating environment. APis ensure that
all programs using that API have a similar
interface. This makes it easier for users to
learn new programs.

Breakpoint
A location in a program at which execution
is halted so that a programmer can
examine the status of the program, the
contents of variables, and so on. A
breakpoint is set and cleared within a
debugger, and is usually implemented by
inserting at that point some kind of jump,
call, or trap instruction that transfers
control to the debugger.

Glossary

Compiler
A program that translate all of the source
code of a program written in a high-level
language into object code prior to
execution of the program.

Control
A control statement determines the results
of your script. It also directs the flow of
logic during the execution of commands.

DDE
Dynamic Data Exchange. DDE allows
communication and data exchange
between two applications through
connections called DDE channels.

Debug
To detect, locate, and correct logical or
syntactical errors in a program, or
malfunctions in hardware.

Dialog box
In a graphical user interface, a special
window displayed by the system or
application to solicit a response from the
user.

Hummingbird Basic Language Programmer's Guide

Emulation
The process of a computer, device, or
program imitating the function of another
computer, device, or program. Terminal
emulation drivers included in
communications software enable a PC to
emulate a terminal type. This makes it
possible for a user to log on to a
mainframe.

Error
A value or condition that is not consistent
with the true, specified, or expected
condition. In computers, an error results
when an event does not occur as expected,
or when impossible or illegal maneuvers
are attempted. In data communications, an
error occurs when there is a discrepancy
between the transmitted and received data.

Error-Handling
A special set of instructions that enable
your script to trap errors that may occur
while your script is running.

Expression
A collection of terms that perform a
mathematical or a logical operation. The
terms are either variables or functions that
are combined with an operator to evaluate
a result. There are several types of
operators.

108

Function
A construct which, when executed,
calculates and returns a value as
determined by its arguments.
Hummingbird Basic contains a variety of
built-in functions you can use in your
scripts. You can also write your own
functions.

Interpreter
A program that translates, and then
executes, each statement in a program
written in an interpreted language.

Logic Error
Occurs because of incorrect coding that
causes unexpected results (such as infinite
loops or incorrect values returned by
functions) during the execution of the
script. These types of errors generally cause
unexpected results during the execution of
your script.

Object Linking and Embedding {OLE)
A compound document standard that
allows you to create objects with one
application and link or embed the objects
in a second application. Embedded objects
retain their original format and links.

Windows and Macintosh operating
systems support OLE.

Operator
A symbol or other character indicating an
operation that acts on one or more
elements.

Procedure
A procedure contains a set of variables and
statements that you defined for the script.
There are two different types of procedures
in Hummingbird Basic: functions and
subprocedures. A Hummingbird Basic
script can contain one main subprocedure.
When the script is run, the main
subprocedure is executed first.

Runtime Error
Can be caused by an unforeseen action
taken by the user, a coding error, or the
data your script is using (the script
attempts to read a file containing no data).
Runtime errors are handled through a set
of error-handling functions and
statements.

Glossary

Statement
An instruction written in a high-level
programming language that defines how a
task in the script is carried out. It provides
the conditional logic or looping for a
procedure. It also defines the state of a
dialog box, such as its display and
configuration.

Syntax Error
Usually the result of spelling a statement or
a function incorrectly. It can also be the
result of using either a statement or
function incorrectly. To help you fix syntax
errors, the Hummingbird Script Editor
highlights language syntax errors in red
after a script is compiled.

Trappable error
See Error.

Variable
Placeholders for values that are declared,
named, and assigned a data type.

109

A
accessibility features 103

directional arrow keys 103
Enter key ... 103
Esc key .. 103
in Microsoft Windows 104
Keyboard shortcuts 103
Spacebar ... 103
Tab key sequence 103
T oolTips ... 103

action argument.. ... 74
action value table ... 75
adding controls to a dialog 56
Animated mode ... 49
API and OLE function calls 3
API calls ... 97
arguments .. 13

byVal. .. 14
Control ID .. 72
DDEinitiate .. 98
named ... 14
pass by value, by reference 14

arrays .. 22, 83
Dynamic ... 23

B
BASIC

early versions .. 4
modern ... 5
support of data types 16

Begin Dialog 59, 70, 73, 74

Index

Button ID ... 60
Button Label. .. 60
Button Type, Label, ID 60
Button Group ID .. 59
byVal argument ... 14

c
Call Stack control... .. 4 7
calling external functions 97
Caption Type & Caption 59
Check Script button 50
CheckBox ... 72, 87

ID and Label ... 64
Code window ... 46
command

DDEAppReturnCode 99
Option Explicit 18

comparison operators 27
compiler directives ... 83
constants .. 16, 17

decimal ... 21
defined .. 17
integer ... 21
terms in operators 26

control flow .. 84
Control ID ... 58, 73
control palette buttons 55

Hummingbird Basic Language Programmer's Guide

control properties DDE.ebs ... 9
Button ... 60 Debug mode .. 47
CheckBox .. 64 decimal constants .. 21
DropComboBox 66 declarations .. 86
DropListBox ... 67 dialog box
GroupBox ... 68 adding controls 56
ListBox .. 64 defining .. 70, 87

OptionButton ... 61 description of functions 87
StaticComboBox 65 displaying ... 71
text .. 62 example .. 73
TextBox (Edit) .. 63 handling ... 5

control statements 13, 16 integrating into script 70
controls properties ... 59

adding to a dialog box 56 running, description of functions 88
Call Stack .. 47 Size and Position 60-70
CheckBox Control button 55 Dialog Editor ... 4
DropComboBox Control button 55 aligning controls 57
DropListBox Control button 56 control palette .. 55

GroupBox Control button 56 creating the dialog box 54

ListBox Control button 55 Dialog Code window 54
OptionButton Control button 55 dialog function and statement 71
Picture Control button 56 integrating dialog box into script 70
PushButton Control button 55 interface .. 53
Text Control button 55 Layout menu commands 57
TextBox (Edit) Control button 55 setting control properties 58-70

creating a dialog box setting dialog box tab order 58
example ... 73 toolbar .. 54

current subprocedure46 dialog function ... 71
parameters .. 7 4

D writing .. 74

data type Dialog ID ... 59

assigning the variable 18 Dialog.ebs .. 9

characters .. 19 Dim statement ... 23

object ... 22 disk and directory control 90

overview .. 16 DropComboBox .. 66

dates and times ... 85 ID and Contents 66

DDE DropListBox .. 67

channel. .. 98, 99 DropListBox ID and Contents 67

description of functions 89 Dynamic Array .. 23, 28

sample script ... 99
using .. 98

112

Index

E objects ... 94
EB subdirectory ... 9 running dialog boxes 88
EBS and EBX file extension 45 screen input/output 94
EBX .. 11 string ... 95
Edit mode .. 4 7 string conversions 96
End Dialog ... 70 trigonometric .. 93
environment control 6, 89 variant ... 96
error handling

defined .. 11 G
functions ... 90 Global variable ... 18

Execute Script button 50 GlossaryEntry ... 107
expressions ... 26 GroupBox ... 68

defined .. 11 description .. 87
Label and ID ... 68

F
file control. ... 91 H
file input/ output .. 91 Hummingbird accessibility 103
FILELIST.ebs ... 9 Hummingbird Basic
financial functions ... 92 calling external functions 97
FTP API ... 3 DDE command 99
FTP OLE dialog box handling 5

sample script .. 9 environment control 6
function financial functions 5

environment control 89 object handling ... 6
procedure ... 12 script structure 12-16

functions .. 13 statements and functions reference 83
arguments ... 13 support ofBASIC data types 16
compiler directives 83 utilities .. 4
control flow .. 84 Workbench45-4 7
dates & times .. 85 Hummingbird Information Resources
DDETerminate 99 Technical Support 105
declarations .. 86 Hummingbird Telnet 22
defined .. 11
defining dialog boxes 87
disk and directory control... 90 IBM 3270 or 5250 .. 3
dynamic dialog box 72 identifier
error handling .. 90
file control .. 91

Begin Dialog statement 7 4
Control ID .. 58

file input/output 91
financial .. 92
Hummingbird Basic 83
interact .. 7 4

information resources, Hummingbird
Technical Support 105

integer constants .. 21

numeric .. 93

113

Hummingbird Basic Language Programmer's Guide

K
Keyboard shortcuts 103

L
ListBox

ID and Contents 65
logic errors .. 35
logical operators ... 27

M
macro expression

file name ... 69
Macro Function Name 59
macro input expression

content 65, 66, 67
label... 61, 62, 64, 68

main subprocedure46
Microsoft Windows accessibility options 104

N
numeric functions .. 93
numeric IDs ... 73

numeric operators .. 26

0
object .. 94
object data type .. 22
OLE ... 5, 6

automation ... 98
automation server 22
object. .. 22

operators
comparison ... 27
logical .. 27
numeric ... 26
overview .. 26
string ... 26

Option Base statement.. 23
Option Explicit command 18
OptionButton

label and ID .. 61
OptionButton group 61

114

Output window ... 4 7
Output Window button 50
overview

programming ... 11

p
Password-no Echo ... 63
Pastword.ebs .. 9
picture controls .. 69
primary control... ... 58
procedures

defined .. 11

R
record variable ... 25
ReDim statement ... 23
resources, Hummingbird information

Technical Support 105
return value .. 76
Run mode .. 47
Run Script in Animated Mode button 50
running dialog boxes 88
runtime errors .. 35

s
sample script

calling external functions 97
DDE .. 99
DLGTEST.EBS 77
overview ... 9

screen input/ output 94
script

compiling and running 49
creating a file .. 4 7
elements ... 11
errors .. 49
toolbar buttons 50
translating tasks, actions 48

Scripting Tool
See Workbench

Sendrecv.ebs .. 10

Index

setting control properties 58 string variables ... 21
button controls 60 subprocedure 11, 12, 71
CheckBox ... 64 Call Stack control 47
dialog box ... 59 function .. 13
ListBox .. 64 main .. 46
OptionButton ... 61 SubscriptRange format 23
StaticComboBox 65 Suppress Message ... 69
text controls .. 62 suppval parameter .. 7 4

shortcuts, Keyboard 103 suppval value table ... 76
statements syntax errors .. 34, 35

Begin Dialog 59, 70, 73, 74
Call ... 12 T
Const .. 17 Technical Support .. 105
control .. 16 Testl.ebs ... 10
DDEinitiate .. 98 Test2.ebs ... 10
defined .. 11 Test3.ebs ... 10
Dim ... 23 Test4.ebs ... 10
Dim or Global .. 18 Test5.ebs ... 10
dynamic dialog box 72 T estFTP .ebs .. 9
End Dialog .. 70, 73 Text Label ... 62
Function ... End Function 7 4 Text Box ID ... 63
Hummingbird Basic. 83 trapping errors
On Error ... 71 Option 1 .. 37
Option Base .. 23 Option 2 .. 38
ReDim .. 23 trapping user defined errors
Sub ... End Sub ... 12 Option 3 .. 39
Type .. 25 Option 4 .. 39

StaticComboBox trigonometric functions 93
described .. 87 Type statement ... 25
ID and Contents 65

string u
conversions ... 96 UNIX hosts .. 3
functions ... 95
operators .. 26

115

Hummingbird Basic Language Programmer's Guide

v Variables window .. 46

variable declarations variant .. 96

scope ... 4 Empty ... 20

variables ... 16, 17 Null ... 20

array .. 22 variable ... 19

as terms ... 26 Variant data type ... 18

Boolean ... 21 varray, Dynamic Array 24

constant .. 17
declaring ... 18 w
Delaring .. 28 Workbench .. 4
dimensioned ... 17 Workbench/Scripting Tool
element of Hummingbird Basic 11 Call Stack control 47
Global. .. 18, 28 Code window ... 46
global. .. 46 Output window 4 7
glossary definition 109 status bar .. 4 7
in procedures .. 109 Variables window 46
naming .. 28 writing a dialog function 7 4
numeric types ... 20
record .. 25 x
scope of declarations 13 Xlib API
set by expressions 26 commands and functions 3
Static ... 18
string ... 21
SubscriptRange format 23
terms in expressions 108
Variables window46
variant ... 19

116

Notes

