
TM 

SmartKey 

Users' Manual 

Heritage Software, Inc. 
2130 So. Vermont Ave. 

Los Angeles, CA 90007 
(213) 737-7252 

COPYRIGHT NOTICE 

Copyright (c) 1982 by FBN Software. All rights reserved. No part of this document may be 
·. reproduced in any form without the prior written permission of either Heritage Software Inc. or the 
copyright holder. 

DISCLAIMER 

While considerable care has been taken to ensure that the programs forming the package 
.. conform to the specifications herein, neither Heritage Software Inc. nor FBN Software make any 

,,~:';,warranty of fitness of the products described for any purpose whatsoever. 

·~ CP/M is a trademark of Digital Research 
PO Box 579, Pacific Grove, California, USA 93950 

• 



0 
CUR'tBn'fS 

INTRODUCTION 1 

OVERVIEW 1 

GENER.At, INFORMATION 
Using This Manual C 
Notation 
Distribution Disk 
Program Compatibility 
Memory Requirements 

PROGRAM OPERATION C 
Execution 
Termination 
Escape Character 
Key Definition 
Hexadecimal Input • Using Saved Definitions 
FIXKEY Utility Program 
FBNSOB Utility Program 

ADAPTING SMARTKEY 

0 Key Codes ( 
Function Strings 

INSTALLATION 11 
Default Escape Character 12 
Function Strings 12 
Eight Bit Key Codes 12 
Console Status Checking 13 
Warm Boot Handling 13 
User Patch Area 13 

IMPLEMENTATION NOTES 14 
Program Information 14 ( 

Definition File Structure 14 

APPENDICES 
A. System interface details 15 
B. The ASCII code 16 

( 

INDEX 17 

0 



) 

-o 

) 

> 

INTRODUCTION 

SMARTKEY is a CP/M utility program designed to 
provide intelligent keyboard facilities. It is hardware 
independent and compatible with both Version 1.4 and Version 
2.2 of the CP/M Operating System • 

. 
The program is self relocating, in a similar manner 

to the Digital Research program DDT, and once installed is 
transparent to the system user, allowing full use of all 
CP/M facilities and functions. By intercepting calls to the 
Basic I/0 System (BIOS), it allows individual keys of the 
console keyboard to be redefined to represent different 
character codes from that produced by the hardware. 

OVERVIEW 

SMARTKEY provides the following facilities for the 
CP/M console user 

a. The logical layout of the keyboard can be altered 
to suit the convenience of the user. Por 
instance, frequently used control characters can 
be redefined to be represented by unused graphic 
or special keys, saving the time delaying use of 
the control shift key. 

b. 

c. 

Characters which are not available on the 
particular keyboard can be allocated to unused 
keys. Non ASCII keyboards can be redefined to 
produce ASCII key codes. 

Keys may be defined to represent a string of 
characters, thus providing a form of keyboard 
macro facility. For example, defining a key to 
represent the sequence '15Tl5L<CR>' is a simple 
way to implement a 'Page' command in the CP/M 
EDitor for consoles with a 16 line display. 

All key definitions are 'dynamic' - keys can be 
defined, redefined, or made to revert to their hardware 
codes at any time, regardless of whether a program is in 
operation or not. · 

For additional ease of use, SMARTKEY may be executed 
with an existing set of definitions. These are still 
capable of being dynamically altered1 the facility is 
provided to save repeated specificat~on of commonly used 
definitions. The current set of definitions may be saved or 
cleared or a new set loaded without removing SMARTKEY from 
memory 

1 

• 



0 

0 

0 

• 

GERERAL INFORMATION 

Using the Manual 

No familiarity with assembly language programming or 
with the details of CP/M implementation or interfacing is 
necessary to use SMARTKEY and the 'overview' and 'prog~am 
operation' sections of this manual reflect this. In other 
sections, describing how the program functions, the reader 
is assumed to be familiar with the basics of CP/M as 
described in the Digital Research publications 'CP/M 
Interface Guide' and 'CP/M System Alteration Guide'. 

Rotation 

In this manual, ASCII control characters are denoted 
by their normal ASCII abbreviation enclosed in broken 
brackets. For example: <CR> (carriage return), <B'r> 
(horizontal tab). Symbolic names in lower case and enclosed 
in broken brackets are used to label concepts which are 
defined in the text. For example: <filename> Ca CP/M file 
name), <key> Ca console keyboard depression). 

Distribution Disk 

The following files will be found on the distributed 
disk: 

SMARTKEY.COM 
FIXKEY.COM 
SKPATCH.COM 
FBNSOB.COM 
USRPATCB.ASM 
CRYPTO.DEF 
MORE.DEF 
README.AAA 

The SMARTKEY program 
SMARTKEY utility 
SMARTKEY installation program 
Extended SUBMIT utility 
Oser patch area listing 
Sample SMARTKEY definition file 
ditto 
Stop press information 

IBPORTABT: The first thing you should do after 
receipt of the distribution disk is to make a working copy 
of the files on another disk using PIP or some other 
utility. The original disk should then be used for backup 
purposes only. 

2 

• 

( 



0 

) 

J 

) 

0 

Program Compatibility 

SMARTKEY is compatible with any transient program 
which complies with the standard CP/M conventions for input
output and for determining the size of the available memory. 
SARTKEY is also compatible with other FBN Software 'non
transient' programs which relocate to high memory. The only 
constraint on using such programs simultaneously is that 
they must be loaded in reverse order from that in which they 
will be terminated. The reason for this is that a 
terminating program will effectively disable any program 
loaded 'below• itself. 

Due to the non-standard system access methods 
employed by the Digital Research utility programs XSOB and 
DESPOOL, these programs are not compatible with SMARTKEY. 
FBNSUB, a compatible XSUB replacement is supplied with 
SMARTKEY. UNSPOOL, a compatible background print utility 
similar in functions to DESPOOL is available from FBN 
Software. 

Further information on compatibility with specific 
programs and systems is given later under 'Installation•. 

Meaory Requireaents 

Th$ residual portion of SMARTKEY, that part ~f the 
program which remains permanently in memory, occupies 2K 
bytes at the top of the Transient Program Area CTPA). In 
addition, SMARTKEY loads below the CP/M Console Command 
Processor CCCP) and prevents this being overlayed. The 
effective reduction in memory size is therefore 4K bytes. 
Appendix A contains a memory map showing program locations 
in the TPA. 

PBOGlWI OPBRA'?IOR 

Execution 

SMARTKEY may be executed by typing one of the following 
command lines: 

A>SMARTKEY 
A>SMARTKEY <filename> 

Where <filename> conforms to the CP/M syntax for unambiguous 
file names. If the three character extension is omitted it 
will be forced to '.DEF' by the program'. 

3 

• 



0 

0 

0 

• 

The first command line invokes the program without 
any keys defined. The second loads the definitions 
previously saved in <f ilename>.DEF. Examples of valid 
command lines are: 

A>SMARTKEY 
A>SMARTKEY MYDEFS 
A>b:smartkey olddefs.def 
A>SMARTKEY B:ALTDEFS 

On execution, the program will respond with a name 
and version number, followed by 1READY'7 the CP/M prompt 
'A>' will reappear, and the system is ready for further use. 
Until characters are redefined, the user should be unaware 
of the presence of SMARTKEY, the only difference being the 
small reduction in available memory. 

Ter.ination 

SMARTKEY will remain in operation until terminated 
by the operator (see FIXKEY below) or until the occurrence 
of a Cold Boot or Reset which reloads the entire system. 
Normal Warm Boots produced by the operator typing <ETX> 
(Control C) or by a program jumping to location OOOOB will 
not affect the operation of the program. 

Escape Character 

One keyboard character is allocated as an escape 
character and is used to signal SMARTKEY that a key is being 
re-defined. This character may be altered while the program 
is in operation by the use of the FIXKEY utility. When 
SMARTKEY is in operation, the escape character cannot be 
used for any other purpose although, if no further 
definitions are required, it can be changed to a value not 
generated by your keyboar~, thus allowing use of all the 
keys. 

In the distributed version of the program the 
default value used is <ESC> CA[, ASCII code lB). This will 
be the escape character when SMARTKEY is initially executed 
and will remain so unless it is altered by FIXKEY. SKPATCB, 
the interactive field-installation program for SMARTKEY 
allows the default value of the character to be altered and 
instructions are given later on how to achieve this. In the 
remainder of this manual, <ESC> will be used to represent 
the escape character. 

You should ensure that the escape character you use 
is not required as an input character by any program you 
plan to use with SMARTKEY. In particular note that <ESC> 
should not be used with WORDSTAR as the latter uses this 
character as an error reset. 

4 

• 



)0 

, 

, 

Key Definition 

Key definitions take the following form: 

iESC><key><definition-string><ESC> 

where <key> represents· the key to be defined and 
<definition-string> is any arbitrary string of characters 
not including <ESC>. In other words: to define a key, type 
<ESC>, then the key to be defined, then the key or keys 
which form the definition and finally, another <ESC> 

The definition has the effect of redefining <key> so 
that every time it is entered, the characters represented by 
<definition-string> are sent in succession to the program 
requesting input. Key definitions may be entered at any 
time that console input is requested, either by CP/M or by a 
transient program and are effective as soon as the last 
<ESC> has been entered. 

When the <ESC> escape character is entered, SMARTKEY 
sends a <CR><LF> to the console. The character to be 
redefined is displayed on the new line, followed 
automatically by a space and then the characters of 
<definition-string> as they are typed. Control characters 
are displayed using the CP/M convention •""c•, '""B' etc. 
Characters with bit 7 set (which will only appear as the 
defined ~haracter since SMARTKEY resets bit 7 of all 
characters sent to CP/M) are denoted by a leading period 
1 .""x 1 , •.z• etc. 

Both the escape characters and the characters of the 
definition are processed within SMARTKEY. The program 
requesting input does not see them. Instead, SMARTKEY 
returns a single <CR>-for ea6h key definition entered. 

It is important to note that the keys forming the 
definition string represent their hardware codes. 
Definitions are not recursive! For example, if '@' is 
defined to represent the string 'Englebert', subsequent use 
of the '@' key in a definition string does NOT insert 
'Englebert' into the definition. 

To return a key to its original (hardware) 
definition, the sequence <ESC><key><ESC> may be used. (Note 
that <ESC><key><key><ESC> would have the same effect, but 
uses an additional byte of the available space for 
definitions). Keys may be redefined any number of times, 
the previous definitions are lQst and the last one entered 
takes effect. Similarly, if you make a mistake in entering 
a definition, just finish it with an <ESC> and then start 
again. 

5 

• 



C 

0 

0 

• 

The following are examples of key definitions: 

DISPLAY INPUT STRING 

A> <ESC>@lSTlSL<CR><ESC> 
@ 15T15L"M 
A> 

A> <ESC>l<HT><ESC> 
/ "I 
A> 

A> <ESC>*<ESC> 
* 
A>. 

The fir st of these defines 1 @' as the ED I Page' 
macro referred to above. The second defines 1 / 1 as a 
horizontal tab and the third removes any definition 
previously attached to '*' 

Bexadeci•al Input 

To cater for keyboards which cannot generate all 
ASCII codes, a hexadecimal input mode is provided. This 
mode is entered by typing <ESC><ESC> which causes SMARTKEY 
to toggle between ASCII and BEX modes. Each time, a message 
giving the current mode is sent to the console. Note that 
this syntax precludes attempts to redefine the escape 
character. 

In hexadecimal mode, the characters in <definition
string> comprise hexadecimal numbers in the ASCII range COO 
to 7F), terminated by a non-hex character. Only the last 
two hex characters before the non-hex delimiter are 
recognized and numbers outside the 00 to 7F range are 
ignored so,if you make a mistake, just keep typing. 
SMARTKEY does not echo the characters as they are typed but, 
instead, echoes the character corresponding to each value 
entered. The console display is therefore identical to that 
in ASCII mode. 

Appendix B contains a copy of the ASCII code giving 
the hexadecimal value of each character. 

6 

~-

• 

• 

C, 

{ 



) 

) 

'0 

) 

The following is an example of Bex mode input, 
defining 1 \ 1 to represent <DC2>, note that the non-hex 
delimiter ('h' in this case) is required before the final 
<ESC>. 

DISPLAY 

A> 
SMARTKEY: HEX Mode 
A> 
\ "'R 
A> 

Using Saved Definitions 

INPUT STRING 

<ESC><ESC> 

<ESC>\12h<ESC> 

To save re-entering commonly used definitions each 
time SMARTKEY is used, the 'SMARTKEY <filename>' form of the 
command line may be used. This allows previously saved 
definitions to be loaded. Program operation is identical 
with that described above, with the exception that some keys 
will have already been defined. Definition files may also 
be loaded while the program is in operation as described 
below. 

PillEY Utility Prograa 

In order to minimise memory requirements for 
SMARTKEY, a number of less frequently used functions are 
contained in a separate utility program called FIXXEY. 
These functions are therefore available at any time that the 
GP/M Console Command Processor (CCP) is in operation. 

FIXKEY is executed with either of the following 
command lines: 

A>FIXKEY 
A>FIXKEY <parameters> 

The program initially checks that SMARTKEY is 
present in memory. If the first form of the command line 
was used, FIXKEY responds with the following menu: 

0 
l 
2 
3 
4 
5 
6 
7 

• 

COMMAND MENU 
Exit to CP/M 
Pack and Save current definitions 
Load a definition file 
List contents of a definition file 
List current definitions 
Clear current definitions 
Alter escape character 
Terminate SMARTKEY 

7 



() 

0 

0 

• 

If SMARTKEY is not present, a message is given and all 
selections but O and 3 are disabled. 

The required function may then be selected by typing 
the appropriate number, followed by <CR>. Selection of any 
of the first three functions will cause the program to 
prompt for the name of a definition file to be saved, loaded 
or listed. The user must enter a CP/M file name, eg., 
B:newdefs.def. If a drive specification is not included the 
current default drive is used. The effect of each command is 
listed below. 

Bzit to CP/X: Self explanatory. This terminates 
FIXKEY and returns the user to CP/M. 

Pact and Save current definitions: The existing set of 
def in i ti On S in US e by 5 MART KEY i S Che Ck e d f Or 
consistency and, if valid, is saved under the specified 
file name. Before the file is saved, the space 
occupied by definitions which are no longer valid is 
recovered, thus compacting the table in memory. 

Load a definition file: The contents of the specified 
file are checked for consistency and, if valid, are 
loaded into memory and replace the definitions 
currently in use. 

List a definition file: The keys redefined in the 
specified file are listed together with their 
corresponding codes. 

List current definitions: The currently redefined keys 
and their corresponding codes are listed. 

Clear current definitions: The definition table is 
reinitialised, causing all currently defined keys to 
revert to their hardware codes. 

Alter escape character: The program prompts for a new 
character to replace the escape character in current 
use. 

Ter•inate SXllTXEY: The program is removed from core 
and system linkages are restored to their state prior 
to initial execution 

The second form of the command line may be used to 
speed up operations and to use FIXKEY within a SUBMIT file. 
Use of this form suppresses display of the menu. The 
<parameters> are menu selections and file names, separated 
by spaces. The following are examples of the use of the 
FIXKEY <parameters> form: 

8 

• 

l 



0 

) 

J 

Save, then clear the current set of definitions and 
exit to CP/M: 

A>FIXKEY 1 frodo.def 5 0 

Load a new defini;ion file and exit: 

A>fixkey 2 b:newdefs 0 

Terminate SMARTKEY and return to CP/M: 

A>fixkey 7 0 

PBRSUB Utility Program 

XSUB, the Digital Research 'extended submit' utility 
distributed with CP/M Version 2.2 is incompatible with 
SMARTKEY and other non-transient programs. FBNSOB, which is 
distributed with SMARTKEY performs an identical function to 
XSOB and will operate with SMARTKEY loaded. 

FBNSUB is executed by including the command 
'FBNSUB' in a SUBMIT file before any p~ogram reading input 
from the SUBMIT sequence is invoked. It will remain in 
memory, sending an 'CFBNSUB active)' message to the console 
at each warm boot, until the end of the submit sequence when 
it is automatically terminated. 

This behaviour, incidentally, is identical to that 
of XSOB. The CP/M User's Guide is incorrect in stating that 
XSUB needs to be invoked only once and will remain active 
past the end of a SUBMIT processing sequence. 

Note that although SMARTKEY can be loaded by a 
SUBMIT sequence, the SMARTKEY command should appear BEFORE 
the FBNSUB command in the SUBMIT file. The reason for this 
restriction is that if FBNSUB is loaded first, it will 
remove SMARTKEY from memory when it is automatically 
terminated at the end of the SUBMIT sequence. 

9 

• 



0 

0 

• 

ADAPTING SMAR'l'KEY 

The distributed version of the program will work 
with any terminal and CP/M system. SM~TKEY may be adapted, 
however, to use additional features provided by some 
terminals. 

Key Codes 

The standard ASCI1 code uses only the least 
significant s,even bi ts of each byte. Many keyboards, 
however, generate an 8 bit key code with ~ursor control, 
editing, numeric keypad or other special function keys 
having the high bit .set. SMARTKEY can use this feature to 
distinguish between these and the basic keys, providing an 
effective increase in the number of keyboard functions 
available. 

CP/M specifies that the high bit of each character 
be reset by the BIOS, limiting characters sent.to CP/M to 
the 7 bit ASCII set. Since SMARTKEY intercepts characters 
sent from the BIOS, this feature will not be immediately 
useable unless your BIOS does not reset the high bit (in 
contravention of the CP/M specifications>. You will 
therefore need to provide some method for SMARTKEY to be 
sent all eight bits. A number of methods for achieving this 
are discussed under Installation below. 

Function Strings 

Some terminals such as the Televideo 900 series, the 
Heath/Zenith 19 and others have special function keys which 
generate a short character string rather than a single code. 
SMARTKEY has the ability to detect these strings and convert 
them into a unique character which may then be defined in 
the normal way. For this feature to be used, the following 
conditions must be met: 

a. 
b. 
c. 

The strings must start with the same character. 
They must be of the same length. 
They must have at least one character position for 
which each function key generates a different code. 

SMARTKEY uses the initial character to recognize 
that a function key has been pressed and then strips off the 
non-significant header and trailer portions of the string. 
The function character is then modified {bit 7 is set). The 
modified character may then be used directly CSMARTKEY 
resets bit 7 before passing it on to the system) or 
redefined in the normal way. 

10 

C 

(. 

( 



0 

l 

To differentiate between the leading character of 
a function string and the same character typed by the 
operator, a timing check is used. If a second character 
follows the lead-in character sufficiently quickly (too 
quick for manual typing), SMARTKEY recognizes the sequence 
as the start of a string. Otherwise, the program assumes 
that the lead-in character has been typed manually and 
passes it to the system. 

This system requires that a program be waiting for 
input before you press the function key since, if input is 
requested midway through a string, the lead-in character 
will be missed. This applies regardless of whether 
SMARTKEY is in use or not - it is a characteristic of the 
terminal. The moral is not to be too impatient when using 
these keys. 

Examples 

The following examples illustrate the definition 
of function keys and keys having bit 7 set. The operations 
are identical and differ from normal key definitions only in 
that a leading period indicates that the high bit of the 
character to be defined is set. Assume that <keyl> is the 
Fl key of a Televideo 920C terminal which generates AA@AM 
and <key2> is the numeric keypad 'l' of a Xerox B20 which 
generates 0Bl hex. 

DISPLAY 

A> 
• @ this 
A> 

A> 
.l this 
A> 

is Fl 

is pad l 

INPUT STRING 

<ESC><keyl>this is Pl<ESC> 

<ESC><key2>this is pad l<ESC> 

IBST~IOR 

To perform field alterations on SMARTKEY, ensure 
that both SKPATCB.COM and a copy of SMARTKEY are on the 
default disk and then type SKPATCB. SMARTKEY should not be 
in memory during the installation process. SKPATCB will 
then prompt for the name of the file containing the SMARTKEY 
program and for the modifications t~ be made. The areas 
covered are listed below. 

11 

• 



0 

0 

• 

Default Escape Character 

The default escape character may be altered. This 
is the character which initiates definitions and the default 
is the value when SMARTKEY is initially executed. Note that 
PIXKEY will still allow the value to be altered while 
SMARTKEY is in m·emory. SKPATCB prompts for the new code 
which may be entered directly (by hitting the required key) 
or as a decimal or hexadecimal value. 

Function Strings 

The parameters for function strings described above 
may be set to suit different terminals. SKPATCB asks for 
the initial character of the strings, the number of 
characters before the function character (the one which is 
different for each string) and the number of trailing 
characters. For the Televideo series, for example, the 
strings are of the form <SOB>c<CR> where c is the function 
character. The initial character is therefore AA (<SOB>) 
and the length of the leader and trailer are each l. 

Bight bit Key Codes 

Special input arrangements may be set up for 
terminals which generate 8 bit ,key codes. SKPATCB provides 
limited interactive assistance in determining the 
requirements for individual systems. 

There are basically three options for ensuring_ that 
SMARTKEY receives eight bit codes from keyboards which have 
this facility. The first, which requires no modifications 
to SMARTKEY is to alter your CBIOS so that you may toggle 
between eight bit and seven bit codes, eg., by changing the 
value of IOBYTE. The second is to patch SMARTKEY with a 
jump to a monitor routine which returns the full code and 
the third is to patch an input routine directly into 
SMARTKEY. These input routines will only be called after the 
Console Status routine has indicated that a character is 
ready and thus only need to read the input port into the 
accumulator. 

SKPATCB first checks whether 8 bit codes can be 
received. If not, the user is prompted for the address of a 
suitable monitor routine to be used for input. If no 
monitor routine is available, the program prompts for the 
address of the console input port and patches SMARTKEY to 
read this port when console input is required. If neither 
monitor nor port address are available, the adaptation is 
beyond the capability of SKPATCB and the program must be 
manually patched. 

12 

l 

( 

( 



) 

0 

) 

, 

) 

> 
0 

Console Status Checking 

SMARTKEY normally returns 'ready' (OFF hex) to calls 
to the CP/M console status routine which occur while a 
multi-character definition is being expanded. This is 
compatible with most programs but a small number (notably 
dBase II by Ashton Tate Software) require a 'not ready' 
value to be returned. SKPATCB allows selection of either 
value so that you may create a special version for use with 
these programs if you require. 

Wana Boot Band1ing 

During a warm boot, the normal procedure is for the 
whole of CP/M with the exception of the BIOS to be reloaded 
from disk. This is necessary since the CCP may have been 
overlayed by user programs and must be re-instated. In 
todays systems where 48K+ is standard for memory, allowing 
the CCP to be overlayed is necessary for only a few giant 
programs -- the technique is mostly a historical remnant 
from the days of expensive memory when 16K was a major 
investment. 

When SMARTKEY is in memory, the CCP cannot be 
overlayed and there is therefore no need to reload the 
system. SMARTKEY contains code which will trap warm boot 
requests and reinitialize CP/M without reloading. SKPATCB 
allows you to enable this code if you wish. 

Advantages of doing this are a faster response and 
the prevention of system crashes when attempting to warm 
boot with a disk which does not contain a copy of CP/M. The 
possible disadvantage is the loss of some housekeeping 
functions which your BIOS may carry out during a warm boot 
so experiment with care initially. 

Note that some systems which do not comply fully 
with the CP/M specifications may require this facility to be 
used. Some Superbrain and Osborne I models incorrectly 
reload the BIOS as ~ell as the remainder of CP/M during a 
warm boot, causing SMARTKEY to appear to 'go away'. Also 
some versions of CP/M for Northstar incorrectly use high 
memory as a scratchpad during warm boots, causing the system 
to hang. If you experience similar problems, you should 
attempt to correct them by re-installing SMARTKEY to trap 
and bypass warm boot requests. 

User Patch Area 

SKPATCB makes its modifications to a patch area of 
SMARTKEY initially loaded at address 0180B. A commented 
listing of the area is included on the SMARTKEY distribution 
disk in file USRPATCB.ASM. This file contains patching 
instructions and may be used to make additional 
modifications. 

13 

• 



0 

0 

0 

IJIPLBIIEN'l'ATION NO'rES 

Program Information 

• 

When initially executed, SMARTKEY is loaded into the 
base of the TPA by CP/M and assumes control at location 
01008. SMARTKEY then checks the size of the system and 
relocates itself to the top of the TPL 

Before•control is returned to CP/M, the BOOS entry 
jump at location 00058 is altered to point to the base of 
SMARTKEY which, in turn, contains the BDOS jump. The reason 
for this is that the jump address field at 00068 is u_sed by 
some programs to determine the size of the available TPA and 
SMARTKEY is thus protected against overwriting. 

Finally, the Console Input and Console Status jumps 
in the BIOS are altered to point to the appropriate routines 
in SMARTKEY. 

Definition Pile Structure 

A standard SMARTKEY definition file is lK bytes in 
length and consists of the following two sections: 

a. A 512 byte Key Table, and 

b. A 512 byte Definition 'Heap'. 

The key table contains one word for each of the 256 
possible key codes returned by the BIOS. · Each word ·contains 
a pointer to the start of the definition string in the heap 
corresponding to that key. The pointers are relative to the 
start of the heap. 

The first byte of the definition heap contains the 
escape character. Key table pointers for keys which have 
not been defined all point to this byte. The next 509 bytes 
contains definition strings, with the last (or only) byte of 
each string marked by having bit 7 set. The last two bytes 
of the heap contain a pointer to the next free space 
available. 

Definition strings are added to the heap in the 
order in which they are entered. There is no 'garbage 
collection• system in SMARTKEY and when the heap is full, an 
error message is issued. Should this happen, the FIXKEY 
Save function may be used to compact the table by removing 
definitions which are no longer valid. 

14 

• 

t 

( 



0 

) 

'O 

> 
0 

APPENDIX A 

System Interface 

The memory map.below shows the memory image in a 32K 
CP/M system with SMARTKEY loaded. This map shows the method 
used to intercept the jump to the BDOS normally located at 
000SH. 

VERSION 
1.4 

321[ CP/JI MDORY MAP 

8000B ----------------------
BIOS 

VERSION 
2.2 

8000B 

79008 ----------------------- 7A00B 

BDOS 

7100B ----------------------- 6C008 

CCP 

6900B ----------------------- 64008 
I 
I SMARTKEY 
I JMP BDOS 

6100B ----------------------- SCOOB 

TPA 

I 
I 
I 
I 
I 
I 
I 
I 
I 

01008 ----------------------- 01008 
I 
10005: JMP SMARTKEY 
10000: JMP BIOS 

OOOOH -----------------------

15 

00008 



0 

0 

0 

• 

APPENDIX B 

'l'be ASCII Code 

In the, table below, the first hexadecimal digit of 
each character is given by the column heading and the second 
by the row heading. For example, 'J' is hexadecimal 4A. 

0 l 2 3 4 5 6 7 

0 NOL OLE SPACE 0 @ p p 

l SOB DCl l l A 0 a q 

2 STX DC2 • 2 B R b r 

3 ETX DC3 t 3 C s C s 

4 EQT DC4 $ 4 D T d '? 

5 ENG NAK ' 5 E 0 e u 

6 ACK SYN & 6 F V f V 

7 BEL ETB 7 G w g w 

8 BS CAN ( 8 H X h X 

9 HT EM ) 9 I y i y 

A LF SUB * J z j z 

B VT ESC + • K k { 
' 

C FF PS , < L \ l 

D CR GS = M ] m } 

E so RS > N 
.. 

• n 

F SI vs I ? 0 .. 0 DEL 

16 

C 

(. 

{. 

( 

( 



) 

0 

) 

l 

• 

• 

• 

INDEX 

BIOS•••••••••••~•••••••••••••••••••••••• 
Clearing Definitions •••••••••••••••••••• 
Compatibility ••••••••••••••••••••••••••• 
Console Status Checking ••••••••••••••••• 
Control characters •••••••••••••••••••••• 
DBase II •••••••••••••••••••••••••••••••• 
Defining keys ••••••••••••••••••••••••••• 
Definition File Structure ••••••••••••••• 
DES POOL • ••••••••••••••••••••••••••• • •••• 
Distribution Disk ••••••••••••••••••••••• 
Eight bit Key Codes •••••••• ~•••••••••••• 
Escape Character •••••••••••••••••••••••• 
ExeCution••••••••••••••••••••••••••••••• 
FBNSOB•••••••••••••••••••••••••••••••••• 
PIXKEY • •• , •••••••••••••••••••••••••••••• 
Function Keys ••••••••••••••••••••••••••• 
Beath •••••••••••••••••••••••••••••••••• 
Hexadecimal Input •• ~•·•··••••••••••••••• 
IMPLEMENTATION•••••••••••••••••••••••••• 
INSTALLATION •••••••••••••••••••••••••••• 
Key Codes (8 bit)••••·••·••···•··••••••• 
Key Definition •••••••••••••••••••••••••• 
Listing Definitions ••••••••••••••••••••• 
Loading Definitions ••••••••••••••••••••• 
Memory Requirements ••••••••••••••••••••• 
NorthStar••••••••••••••••••••••••••••••• 
Notation •••••••••••••••••••••••••••••••• 
Osborne I ••••••••••••••••••••••••••••• ~. 
Packing Definitions •·····••·····••••••• 
Saving Definitions •••••••••••••••••••••• 
SRPATCB ••••••••••••••••••••••••••••••••• 
Status Checking ••••••••••••••••••••••••• 
S'OBMIT ••• ••••••••••••••••••••••••••••••• 
SuperBrain •••••••••••••••••••••••••••••• 
Televideo ••••••••••••••••••••••••••••••• 
Termination ••••••••••••••••••••••••••••• 
ONSPOOL •••• ••••••••••••••••••••••••••••• 
User Patch Area ••••••••••••••••••••••••• 
Warm Boot • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 
WORDST.AR • ••••• •·• •••••••••••••••••••••••• 
XSOB •••••••••••••• •••••••••••• •·• ••••• •. • 
Zenith•••••••••••••••••••••••••••••••••• 

17 

1,12,14 
9 
3,13,14 

13 
2, 4 

13 
5,ll 

14 
3 
2 

10,11,12 
4, 9; 11 
3 
2, 9 
2, 4, 7, 8 

10,11,12 
10 

6 
14 
ll 
10,11,12 

5,11 
8, 9 · 
7, 8 
3,1S 

13 
2 

13 
8,14 
8 
4,ll,12,13 

13 
9 

13 
10,ll 

4, 9 
3 

13 
4,13 
4 
3, 

10 
9 



0 

0 

0 

• 

SMARTKEY - APPLICATION ROTE 01/82 

USE WITH RON-~ANDARD CP/M SYSTEMS 

SMARTKEY is designed to run as shipped with all 
standard implementations of CP/M versions 1.4 and 2.2. The 
program will also operate satisfactorily with some, but not all, 
of the so-called 'CP/M compatible' operating systems. The 
purpose of this note is to provide information which will allow 
an experienced programmer to ascertain if SMARTKEY will run with 
a non standard system and to provide the necessary patching 
details for adapting the program to do so. · 

A reasonable level of familiarity with the basics of 
CP/M and the use of DDT is assumed, as is a working knowledge of 
SMARTKEY and the various options available using SMKPATCH. 

BIOS Jump Table 

SMARTKEY alters the Warm Boot, Console Status, Console 
Input and Console Output jumps in the BIOS jump table and 
redirects control to internal routines. There are three possible 
problem areas here: the jump table must be used by the system 
itself1 it must be a genuine jump table and not part of some 
other code and finally (although we have never run across one) a 
BIOS implemented in ROM will obviously not work. 

In some systems, the jump table is there simply to 
provide CP/M compatibility and is not used by the system itself -
SMARTKEY will not run satisfactorily on these systems since it is 
not able to intercept console input and thus has nothing to 
translate. TURBODOS and CDOS are two systems which are known to 
have a 'dummy' jump table. A simple way to check other systems 
is to use DDT to alter the console output jump to a RETurn 
instruction and check that output to the terminal ceases until 
the jump is corrected. 

Some 64K implementations of CP/M for Northstar use two 
BIOS tables due to the requirement to accommodate the memory 
mapped disk controller at ESOOH. The BDOS uses one table at 
E700H and the second one is at the start of the BIOS at F300H. 

l 

Unfortunately, the jump at location zero points to the second ( 
table and this must be altered before SMARTKEY w i 11 war k 
successfully. 

We are aware of only one instance of the second 
problem. In the BIOS of the NSTAR distributed multi-user system 
of Molecular Computer, the Console Input and Output jumps in the ( 
BIOS jump table form part of the status checking loop and thus 
diverting them causes a stack overflow. Before SMARTKEY can run, 
the loops must be altered to jump to a local address rather than 
back to the jump tabl~ 

The code used to intercept the BIOS jump table 
commences at 0357h and may be jumped out for diagnostic purposes: 



0 

) 

• 

lhld OOOlh 
mvi 1,4 
lxi d,wboot 
mov m,e 
inx h 
mov m,d 
dcx h 
lhld 0001h 
••• 

CCP Length 

;get address of bios table 
;step to warm boot jump address 
;get address of our own routine 
; and put it in the table 

;redundant 
;the code above is replicated for the 
;constat, coninp and conout jumps 

There is no way to determine the length of the CCP from 
within a transient program so SMARTKEY assumes a CCP length of 
2K bytes (800 Hex) which is correct for CP/M 1.4 and 2.2. To 
save memory, if the program detects that it is running below DDT 
or another non-transient such as. ONSPOOL, no allowance is made 
for the CCP. The program uses the following code, which 
commences at Oleah, for determining its load point: 

. l: 

lhld 0006h 
rnov a,1 
cpi 6 
push psw 
mvi 1,0 
lxi d,-0800h 
dad d 
pop psw 
jnz .1 
lxi a,-oaooh 
dad d· 
shld loadpoint 

;check whether another non-transient present 
; bdos address is always xx06h but ddt and 
; other programs alter it to yyOOh 
;save result of test 
;adjust load point for length of smartkey 

;restore result of test 
;skip if not running in a 'clean' system 
;adjust load point for length of ccp 

;and save it 

This code must be altered in systems where the CCP/CLI 
length is greater than 2K. If the address of the system.entry 
point ends in 06h, all that is necessary is to adjust the second 
lxi d, ••• instruction to allow for the new length. If not, 
either the cpi ••• instruction can be altered to check for the 

·correct value of the lsb of the address or the first lxi d, ••• 
can be changed to allow for both the length of SMARTKEY and the 
length of the CCP. 

Returning to CP/M 

The transient portion of SMARTKEY returns to CP/M at 
address Olc4h using a RST O instruction. To run the program 
under DDT for diagnostic purposes, change .this to RST-7 <and dont 
forget to clear the default fcb by doing an i<space> instruction 
before glOO). Olc4h may also be changed to a RET instruction to 
return to the CCP without doing a warm boot although this will 
cause problems when using SMARTKEY in a SUBMIT sequence due to a 
bug in CP/M • 

• 



0 

0 

• 

War. Boot Simulation 

If SMARTKEY is set to trap warm boot requests and 
prevent reloading of the system, the program resets the default 
DMA address to 0080h, loads the current drive/user combination 
from location 0004h and returns to the CCP. For systems where 
the drive code at location 0004h is not implemented, the 
instruction: LDA 0004h at 0984h shold be NOP'ed out -- the 
preceding code obtains the same value via bdos calls so the c 
register will still be correct on entry to the CCP. 

If the flag in the user patch area is set to require 
warm boot requests to be trapped, The CCP entry point is 
determined at location 0323h by the following code: 

lhld 0006 ;get bdos entry address 
mov a,1 ;check whether SMARTKEY is running below 
cpi 6 ; a non-transient program such as ddt 
jnz .1 ;skip if it is 
mvi 1,3 ;usi autoload disable entry point in ccp 
lxi d,-800 ;adjust page I to start of ccp 
dad d 
shld ccpentry ;save entry point address 
ret 

.1: xra a ;another non-transient is present 
sta trapflag ; so disable warm boot trap request 

This may be altered as required for different ccp entry 
points or for systems where the bdos entry point address is other 
than xx06h. 

System Patching 

It will sometimes be necessary to make a minor patch 
the system to allow SMARTKEY to run -- the 64K Northstar system 
referred to above is an example. A convenient way to do this is 
to use the 16 byte area at 018ah (see USRPATCH.ASM), patching the 
jump at 0l00h to jump to the start of this code and falling 
through to the beginning of SMARTKEY proper at 019ah. If this is 
done, location 0189h must contain a zero and SMKPATCB should not 

• 

be used to try and insert a custom input routine. as the patch l 
code will be overwritten. 



0 

l 

• 

• 

SMAR.TREY - APPLICATION NOTE 02/82 

KISCELLAREOOS PATCH INFORMATION 

The following notes describe patches which may be made 
to SMARTKEY version 3.2 for various purposes. The patch 
information is given in the form of a terminal listing using DDT 
and was taken from an actual session using our SPOOL program to 
save the console output. Operator input is underlined - the 
comments following the==> on the right are to describe what is 
going on and should not be entered. 

Additional Function Keys for 'Plain Vanilla' Terminals 

A number of modern terminals generate short character 
strings rather than single characters in response to some 
function and editing keys. SMARTKEY contains code to recognize 
these and can treat them as a single character to which a new 
definition can be attached. If your terminal does not generate 
these strings, however, this code is unused. Mike Draper of the 
Kingston Computer Group, Kingston, Ontario, has suggested using 
it to provide additional keyboard functions. 

When code recognition is enabled, SMARTKEY checks each 
input character, looking for the 'lead in' character which marks 
the start of a string. Once one has been found, the program uses 
a timing check to distinguish between a genuine string and the 
lead in character typed by the operator. If the next character 
arrives fast enough, it's the start of a string~ 

By disabling the timing check, the specified character 
is always recognized as the start of a string. This means that 
you can define some character such as '\' as a lead-in character 
for your keyboard. When you type this, SMARTKEY will swallow it 
and will tag the next character. Although typing '\a' or 'a', 
for example, will each pass an 'a' to the system, SMARTKEY knows 
the difference and can redefine 1\a 1• without affecting the use of 
the 'a' key~ You can even retain the use of the lead-in 
character since typing 1\\ 1 will pass 1 \ 1 to the system • 

The following DDT session shows how to disable the 
timing check: 

A>g;g.t ~U..C.t.U~~ 
DDT VERS 2.2 
NEXT PC 
0E00 0100 
-~~ 
0B9B ca D, 
0B9C 3A .., 
-sD. 
A>.:a.a.2.e ll .:am~m 
A> 

• 

==> load smartkey using ddt 

••> set memory at 0B9BH 
==> change CSH to OOH 
==> enter I I to leave set mode . 
•=> back to cp/m 
==> save the new program 



0 

• 

Now use SKPATCH to modify SMK.COM and answer 'y' to the 
question about terminal function keys. Specify your choice of a 
lead-in character (anything but <NULL>), set a header length of 
1, a trailer length of 0 and the rest of the options to suit your 
system. 

After running SMK, you should get the following 
response at the console - assume that,-, was specified as the 
lead-in character 
input: -abcd-ef--
input: <ESc>-apqr-st<ESC> 

input: 

display: 
display: 

display: 

A>abcdef
A> 
.a pqrst 
A> 
A>pqrstbcdef-

Stopping SMARTXEY from Re-setting Bit 7 

Although SMARTKEY can recognize characters with bit 7 
set and distinguish them from the same character with the bit 
reset, it resets the bit on all characters it passes to the 
system. This is done to conform with the BIOS specification for 
Console Input (Alteration Guide Pl8). 

Experimentation with the system, however, has indicated 
that it couldn't care less whether the bit was set or not and 
feedback from a small number of customers has shown that some 
commercial programs to use this bit to interact with particular 
terminals. The following DDT session shows how to patch 
SMARTKEY, to stop it re-setting bit 7 of characters it fetches 
from the BIOS. Note that it will still allow only characters 
with bit 7 reset in definition strings but will have the side 
effect that single character definitions will all be returned 
with this bit set 

A>.w3.t .sruu:.U~.Y~~.m 
DDT VERS 2 .2 
NEXT PC 
0E0O 0100 
-Q..a.Q.Q 
0AB0 7F il 
0ABl C3 ~ 
-,g.Q 
A>~ l.J _s~,g.m 
A> 

==> change. ANI 7F to ANI FF 
=•> exit set mode with"." 
==> back to cp/m 
==> save the modified program 

• 

C 



0 

) 

, 

'0 

) 

, 

0 

a. 

b. 

C 

SMARTKEY VERSION 3.2 UPDATE 
FOR VERSION 3.1 OWNERS 

Version 3.2 of SMARTKEY includes the following ·changes: 

INSTALL has been renamed SMKPATCH to remove conflict 
with the inst~llation utilities of other packages. 

FIXKEY now compacts the definition heap each time it 
saves a definition file. This removes all overwritten 
entri~s and should reduce the incidence of definition 
table overflows. 

SMARTKEY has piovision to prevent the system from 
reloading CP/M during each warm boot. This should be 
satisfactory in most systems and is required in some 
Northstar, SuperBrain and Osborne I systems which do 
not comply fully with the CP/M specifications. This 
option may be set using SMKPATCH. 

d. SMKPATCH also allows the option of having SMARTKEY 
return 'not ready' in response to a console status 
request while a definition is being expanded instead of 
the default value of 'ready'. This change is necessary 
to use SMARTKEY successfully with dBase II which 
otherwise ignores some characters in definitions. 

e. Users with Televideo type terminals no longer have to 
specify a timing constant when installing SMARTKEY to 
use the function-key strings. The program is now able 
to recognize these keys within a wide range of 
processor and terminal speeds. 

Definition files made with previous versions are 
compatible with version 3·.2 of SMARTKEY. The associated 
utilities (FIXKEY, INSTALL and SMKPATCH) however, are only 
compatible with the SMARTKEY version they were supplied with. We 
recommend that you archive the earlier versions and use version 
3.2 exclusively. 

• 




