
D.C. Hayes Associates, Inc.
MICROCOMPUTER PRODUCTS

1 MICROMODEM H™ l For the APPLE 11· Personal Computing System

MICROMODEM II CW\IER'S MANUAL

Written by Donald J. Hyde

Second Edition, May, 1979

NarE:

APPLE II is a registered trademark of Apple Computer. Inc.
MICROMODEM II and MICROCOUPLER are trademarks of D. C. Hayes Asociates, Inc.
TELETYPE is a registered trademark of Teletype Corporation.
BASIC is a registered trademark of the Trustees of Dartmouth College
APPLE CLOCK is a trademark of Mountain Hardware, Inc.

Second edition copyright 1979, D.C. Hayes Associates. Inc.
First edition copyright 1978, D.C. Bayes Associates. Inc.

Printed in U.S.A.

MICROMODEM II ™NER'S MANUAL

TABLE OF CONTENTS

Chapter Title Page

l INTRODUCTION ••••••••••••••.•••••••••• !
Hardware ••••••••••••.•••.•••••••.•• 1
Firnware ••••••••••••••••••••••••••• 1
Terminal Program ••••••••••••••••••• 1
Remote Console ••••••••••••••••••••• 2
Operating Under Program Control •••. 2

2 INSTALlATION ••••••••••••••.•••••••••• 3
Identifying the Parts •••••••••••••• 3
Installing the Micromodern II ••••••• 3
Connecting to the Telephone Network 6
Legal and Technical Details •••••••• fi
Plugging in to the Telephone Line •• 8
Using Micromodem II's Selftest ••••• 8

3 TERMINAL PR(x:;RAM ••••••••••••••••••••• 11
Attention! •••••••••••••••••••••••• 12
Ctrl-H and Ctrl-F •.••••••••••••••• 12
Ctrl-X •••••••••••••••••••••••••••• 13
Ctrl-Q •••••••••••••••••••••••••••• 13
Ctrl-Z ••••••••••••••••.•.•••••••.. 14
Ctrl-1 and Ctrl-3 ••••••••••••••••• 15
Ctrl-S •••••••••••••••••••••••••••• 15
Using a Printer in Terminal Mode •• lfi
Example Session ••••••••••••••••••• 16

4 REMOTE CONSOLE •••••••••••••••••••••• 20
Special Control Characters •••••••• 21
Ctrl-S •••••••••••••••••••••••••••• 21
Ctrl-Y ••••••••••••••••••••••••••.• 22
Ctrl-R •••••••••••••••••••••••••••• 22
Ctrl-T •••••••••••••••••••••••••••• 22
Ctrl-Z •••••••••••••••••••••••••••• 22
Ctrl-N •••••••••••••••••••••••••••• 23
Discard Characters •••••••••••••••• 23
Hanging up on the Micromodem II ••• 23
Note on Cursor Movement ••••••••••• 23
Hint for D.O.S. Users ••••••••••.•• 24
Example Session ••••••••••••••••.•• 24

5 ELEMENTARY PR(x:;RAMMIJ',K; •••••••••••••• 26
Dialing the Telephone ••••••••••••• 2fi
Hanging up the Phone •••••••••••••• 28
Answering the Phone ••••••••••••.•• 28
Transmitting Data ••••••••••••••••• 29
Receiving Data •••••••••••••••••••• 29
Example Program ••••••••••••••••••• 29

Chapter Title Paqe

6 ADVANCED PR(x::;RAMMI!'l; •••••••••••••••• 33
A Program's Eye View •••••••••••••• 33
The r'irmware •••••••••••••••••••••• 35
More Advanced Techniques •••••••••• 36
Changing Baud Rates and Formats ••• 36
Character Format Table •••••••••••• 37
Waiting for the Nth Ring ••••• ~ •••• 37
Turning off the Carrier ••••••••••• 38
Entering Terminal Mode from Program39

7 INSPIRATIONAL PR(x::;RAMS •••••••••••••• 41
PICKUP, Pick Up the Phone ..•• ~ •••• 41
AUTO DIAL, Repertory Dialer ••••••• 43
DUMBO, Dumb Terminal in BASIC •••• 45
TRANSFER, Text File Transfer •••••• 47
BASICEX, Extract a BASIC Program •• 50
FILTER, Filter Out Characters ••••• 52
ALARM, Computerized Wake-up Call •• 55

8 BACKGROUND INFORMATION •••••••••••••• 57
Compatibility With Bell 103 ••••••• 57
What IS a Modem Anyway? ••••••••••• 57
Baud Rates •••.•.•••••••••••••••••• 59
Half- and Full-Duplex ••••••••••••• 60
Ringing and Dialing ••••••••••••••• 63.

9 FIRMWARE SPECIFICATION •••••••••••••. 67
Entry Points •••••••••••••••••••••• 67
Default Initialization •••••••••••• 67
Default Settinqs •••••••••••••••••• 67
Features of Input ••••••••••••••••• 67
Features of Output •••••••••••••••• 68
Features of DIALI!ll; •••.•.••••••••• 69
Features of Ter~inal Mode ••••••••• 70
Subtle Points Not Covered Elsewhere70
Software-Controlled Options ••••••• 71

10 TABLE OF MEMORY LOCATIONS ••••••••••• 73

Appendix Title Page

A MODIFYIN:i THE [()W-JQNES PACKAGE ••••• 77
B MODIFYIN:i AND USIN:i DATAMOVER ••••••• 79

MICRCM>DF.M II CHAPTER 1 INTRODUCTIOO PJtGE 1

INTRODUC'l'IOO

The o.c. Hayes Associates, Inc. Micrornodem II, with its Microcoupler forms
a complete low-speed data comnunications subsystem for the Apple II computer.
Its small package combines all of the functions normally needed to perform most
conmon data corcmunications functions. These include a modem which is compatible
with the popular Bell system 103-type modem, the Microcoupler data access
arrangement which allows you to connect the modem to the telephone line, and all
the programs you need to make it work in an on-board read-only memory (RO'!).

This manual tells you how to install and use this powerful system. Since
many of its functions and features are due to the on-board firmware, much of the
manual is devoted to describing its operation and use.

This is a user's manual. It is intended for people who are primarily
interested in using the Micrornodem II, so it contains background information,
detailed instructions, hints, suggestions, and a detailed description of the
functions of all progranmable registers and controls. It does not contain much
information about the construction or design of the equipnent.

The Micromodem II is contained on a single small printed circuit board
which fits in one of the peripheral slots of the Apple II computer. Its main
feature is a low-speed modem which is compatible with a Bell System 103-type
modem. It is capable of operating in either originate or answer mode at 110 or
300 baud. Also on the card are circuits which make it possible to perform
automatic answering and automatic dialing.

Probably most important of all to the user is the lk-byte ROM containinq
all the programs necessary to make the rest of the circuitry useful. Programs
stored in a ROM in this fashion are often called firrnware.

FIIMiARE

The Micromodem II RO'! firrnware supports three distinctly different
operating modes. All three modes are designed to be as simple as possible to
use, while retaining all the flexibility needed for the most complex
applications.

Terminal Program

With a few keystrokes, you can activate the built-in terminal program which
simulates the operation of a dumb CRT terminal. In this mode you can use your
Apple II computer to call and corcmunicate with any computer equipped with a Bell
System 103-type compatible modem, such as a time-sharing service or another
Apple II computer equipped with a Micromodem II.

MICROMODEM II CHAPTER 1 INTRODUCTION PftGE 2

A unique feature of this terminal program is that all its options and
features are controlled by codes typed in from the keyboard. By typing a few
simple codes, you can colllTland your Micromodem II to dial the phone, hang up the
phone, or change baud rates.

Remote Console

Any time that the Micromodem II has control of the Apple II keyboard, it is
constantly checking to see if the phone is ringing. If the phone rings, the
Micromodem II will answer it, and if the caller is using modem, he will get
control of the Apple II keyboard.

So to use your Apple II like a time-sharing computer, all you need is a
dumb terminal and a Bell System 103-type compatible modem. Of course, another
Apple II computer with a Micromodem II is an ideal terminal for this purpose.

Operating under Program Control

A BASIC program in the Apple II can dial the phone, answer the phone,
transmit data, receive data, and hang up the phone. All of these functions are
accomplished easily with regular BASIC INPUT and PRINT statements. PEEK's,

__ J>OKE's, and machine-language subroutines are not needed for most applications.

But if you do need to do something more esoteric, all the modem and
telephone functions can be controlled with a few PEEK 1 S and POKE's.

With this progranmable power, you can write BASIC programs that can:

*dial your friends phone nmnbers when you type their names
*disseminate information to anyone who calls with a modem
*call a big time-sharing computer for help with large problems
*access a large data base for information such as stock market

reports

And with a few other peripherals, your Apple II can:
*turn off the lights on corrrnand from a distant terminal
*call another computer for help if the basement floods

MICRCM)DEM II CHAPTER 2 INSTALLATION

INSTALLATION

Identifying the Parts

PPGE 3

Your Micromodern II is packed with several necessary items. You should take
them out of the box and verify that they are all present and in good condition.
They are:

1) Micromodem II printed circuit board.
2) Microcoupler for attachment to the telephone line.
3) Ribbon cable to connect Micromodern II to Microcoupler.
4) Modular telephone cable to connect Microcoupler to telephone line.

fig 1

Installing the Micromodern II in the Computer

1111111 ! ! 1 ! ! 1 ! 11111111111 ! ! ! ! ! ! ! ! ! ! ! ! 1111111111111 ! ! !
----- MAKE SURE THE COMPUTER IS TURNED OFF 1 ---
11 ! 1 ! 1 ! 1 ! 1 ! ! ! ! 111 ! 111 ! 1 ! ! ! 11 ! ! ! ! ! ! ! ! ! ! 11 ! 1111 ! ! 1 ! ! ! ! !

MICROMODEM II CHAPTER 2 INSTALLATION P})GE 4

Remove the cover from your computer. Along the back wall of the case, you
will see a row of eight rectangular printed circuit edge connectors. They are
numbered Oto 7 from left to right. If you look closely, you will see that they
are marked with their numbers on the edge of the main circuit board right next
to the back wall.

The Micromodem II will work in any of these slots except slot 0, the
leftmost one. This socket is reserved for special functions such as extended
BASIC fimware. Slots 6 and 7 are reserved for disk controllers, so although
the Micromodem II will work there, it is best to save those slots.

Are you sure the computer is turned off?

Once you have chosen a slot, insert the gold-plated fingers of the
Micromodem II circuit board into a slot and press it in firmly. It helps to
rock the board back and forth slightly. Make sure that it is firmly seated all
the way into the socket.

fig 2

/

on the end of the circuit board toward the keyboard, you will see a

MICROMODEM II CHAPTER 2 INSTALLATION PPGE 5

connector which consists of group of small pointed prongs. This is the
connector for the ribbon cable which connects the Micromodem II to the
Microcoupler. If you look closely, you will see that one of the prongs has been
cut off. Look at the connector on the end of the ribbon cable. . one of the
holes in the connector is filled with a white plastic block. The filled hole
matches the missing pin and forms a key which makes it difficult to plug it in
wrong.

Both ends of the ribbon cable a·re the same, and are interchangeable. Pick
one end and plug it into the Micromodem II board. If you have any difficulty
plugging it in, try turning it over -- _it might be backward. When the connector
is properly mated, all of the pins will fit easily into their corresponding
holes, and the connector body will be flush with the printed circuit board.

Run the ribbon cable out through one of the cable slots in the back wall of
the case. You may now replace the cover.

The other end of the ribbon cable connects.to the Microcoupler. on one end
of the Microcoupler you will see two connectors. In the center of the end wall
is a rectangular hole about an inch long. Just peeking through this hole you
will see another set of pins just like the ones on the Micrornodem II board.
They are also keyed in the same fashion.

Plug the remaining end of the ribbon cable into this connector. Again, if
you have any difficulty, check that it is turned the right way.

You are now ready to connect your computer to the national telephone
network.

MICRCJt10DEM II CHAPTER 2 INSTALIATION

CONNECl'IOO TO THE TELEPHONE NE'I\\10RK

PIGE fi

There are a few details that we need to take care of now before you can
legally connect your computer to the telephones.

Legal and Technical Details

First you CANNOT legally connect your computer to either a party line or a
pay phone.

Next you need a place to plug it in. If your home or office is already
equipped with modular telephone jacks. then you already have this. You can
recognize a modular telephone jack by the small squarish hole (about 3/8") where
the modular plug goes in. If .you have jacks with four round holes about 3/4"
inch apart. then you don't have modular -jacks. but an older type of connector.

. .

A four-prong to modular adaPter plug . is available from your computer
dealer.

fig 4

If you don't have modular jacks, your telephone company will be glad to
install them for you. They will charge you for a service call (roughly $35.00
in Atlanta) plus a small fee for each jack installed (about $3~00 in Atlanta).
If you have them installed, you should have several put .in so that in the future
you will be able to plug in phones and all the other new telephone goodies like
moderns and answering machines.

Modular jacks come in two varieties, a style which fits into a standard
electrical box such as the ones that light switches and electrical outlets are
mounted in, and a style which is mounted in a small plastic box which can be

MICROMODEM II CHAPTER 2 INSTALIATION Pl1GE 7

screwed onto a wall or baseboard. Your phone company will probably know what
you mean if you ask for modular plugs, but the official telephone canpany
Uniform service Order Code or USOC for the electrical box version is RJllW and
for the baseboard-mounted version it is RJllC. Use these mnbers when you order
and there should be less possibility for confusion.

If you want to plug your computer into a jack that already has a telephone
in it (and you don't want to have to unplug the telephone), you can get a Y
adapter which has one male plug on one side and two female jacks on the other
side.

Before you plug anything into the telephone line ·you must notify the
telephone company. one reason this is necessary that they normally test all
their lines on a regular basis. To do this they need to know what's attached to
each line, and how many ringers there are on the line. The test measures how
much current is drawn on the line. If it draws too much or too little, then
they will know that there is something broken or that someone has been tampering _
with the line. This is how they find illegal extension P1<>nes.

You should call the telephone company business office (their teleP1<>ne
m.unber is probably printed on your phone bill) and tell them that you are
preparing to install an FCC registered device and wish to notify them. They
will need to know what line you are connecting it to (the phone m.lllber), the Fa=
registration ntunber (BI986H-62226-PC-E), and the ringer equivalence nunber
(0.48). If you plan to move your computer around, you are allowed to give the
phone company a list of phone nlm'.>ers. Then you won't have to notify them agaln
as long as you move it to one of the lines on your list.

If your phone company has any additional questions about the Microcoupler,
tell them to call us in Atlanta.

You are also required to notify the pione company whenever you permanently
remove the Microcoupler.

If you experience trouble with your telephone line, you must first
disconnect the Microcoupler and make sure that it is not causing the problem.
The phone canpany cannot be responsible for problems caused by your equipnent
connected to their lines.

In the unlikely event that your Microcoupler causes trouble with your
telephone line, you must discomect it and not use it until it has been
repaired. In order to keep FCC approval in force (and thereby be legal), all
repairs must be performed by o.c. Hayes Associates, Inc. or our authorized
agents. We have a very efficient repair department which seldom has any work to
do, so we can repair any problem with your Microcoupler or your Micromodem II
very promptly. Please see your warranty for full details.

One more legal technicality and you can plug it in. We are obliged to
inform you that the telephone company has the right to change their equipnent
and is under no obligation to make sure that their new equipnent is compatible
with your Microcoupler. It is very likely that they will change their
equiµnent, but it is extremely unlikely that those changes will remer your

MICRCMDF.M II CHAPTER 2 INSTALIATI~ PllGE 8

Micromodem II or your Microcoupler unusable. The interface between the
Microcoupler and the telephone line is functionally identical to the interface
between a standard dial phone and the telephone line. Since the phone companies
have roughly 100,000,000 dial phones oper~ting today, they are very unlikely to
install any new equipnent that will render them all obsolete. It would cost too
much to replace all those telephones.

Plugging in to the Telephone Line

Pick up the modular telephone cable. You will see that there is a snall
plug on each end. The plug is molded of clear plastic and has 4 gold contacts
on one side and a small plastic tab on the other. The plastic tab forms a latch
which will hold the plug in the jack. Insert one of the plugs into the modular
jack on the Microcoupler. It will only go in one way, and when you put it all
the way in, it will make a small snap as the latch takes hold •. Pull on the
cord. It will not unplug unless you press on the plastic tab.

fig 7

Now you can plug the other end of the modular cable into the telephone jack
on the wall.

This completes the installation of your Micromodem II and you are now ready
to try it out. The next chapter will show you how to use the built-in terminal
simulation program to call any time-sharing system or other computer system.

Using the Micromod~m II's built-in self-test capability

The Micromodem II hardware has a self-test capability built in. This
feature is controlled by a bit in the modem control register. When this feature

MICRCMIDF.M II CHAPTER 2 INSTALIATIOO PIGE 9

is selected, the modem transmitter and receiver both operate on the same
frequency band so that the receiver can receive the data sent by the
transmitter. The Micromodern II hardware is designed so that when it is
disconnected from the Microcoupler, there is a calibrated •1eak• from the output
to the input. This leak simulates the losses which would be encountered on a
typical phone connection. Using this capability, a program can actually test
virtually all of the hardware on the Micromodern II circuit board without even
being connected to a phone line.

The selftest program below is written in integer BASIC, and will run in any
Apple II configuration. It does not use any IN# or PR# statements, so it will
run under o.o.s. without modification. The program utilizes a special entry
point in the Micromodern II fiI11Mare which allows it to get around a •false read•
problem which would otherwise be encountered due to certain peculiarities of the
6502 microprocessor.

The· program tests the Micromodern II hardware by setting it up in each of
the four possible combinations of mode and baud rate. sending all 128 valid
ASCII characters through the modem, and verifying that they are all received
correctly. Most of the testing is performed by two subroutines; at 10000, which
performs the test and at 20000, which sets up the modem for the next test.

Lines 200-425 assign names to the various memory addresses used by the test
routines. The tests are called by lines 700 and 900. Line 1000 adds the number
of errors in each test to the total errors. which is reported at the end of the
test by lines 1250-1400. ·

The test subroutine starts by clearing the ACIA and setting it up in normal
mode in lines 10300 and 10400. The number of characters sent and received are
set to O in line 10450.

Lines 10500-10600 form a loop in which the Receiver Register Full and
Transmitter Register Empty bits are checked in the ACIA status register. When a
character is present in the receiver, line 10550 detects this and goes to line
11100 where the character is read and checked for correctness. Whenever the
transmitter register is empty, line lOfiOO drops through to lines 10700--11000
which send the next character unless all 128 have aleady been sent.

Lines 10800 and 10850 use a special entry point in the Micromodem II
fiI'IIMare to send each byte. Line 10900 bunps the count of characters sent,
which also forms the next character to send.

Line 11100 reads the character which has been received. and line 11200
checks it. If it is incorrect, line 11300 counts the error. then line 11400
increments the received character count.

Line 20000 turns off the modem carrier, and 20050 resets the ACIA. The
program waits at line 20100 until the carrier detect circuit responds (it has a
built-in delay of about 1/2 second).

Lines 20150-20270 tell the operator what's happening, then line 20300 turns
the modem on in the next mode to be tested. The next set of test conditions is

MICRCMDEM II CHAPTER 3 TERMINAL PRffiRAM P>GE 12

From Apple II BASIC: -......
Unless you are using a printer as described at the end of this section, you

should also have a PRIO statement in effect when you are using the terminal
mode. If you have a PRl3 statment in effect when you enter terminal mode, you
may find that your characters are being doubled at the other end of the line, or
other strange things may happen.

ATTENTIOil

A~l the comnands fran the keyboard begin with an •attention• code: -•
When the Micromodem II fimMare recognizes ·this code. it displays on the

screen:

MICIDD>EM II:?

• Once you have its attention, you may type any of 8 ccmnand codes which
control the operation of the terminal program and the modem.

&a CD

l!l anc1 II
These are the comnands that start the terminal program. -l!I

starts the terminal in half-duplex mode (see BACKGROUND (p. 60) for an
explanation of this term). and

starts it in full-duplex mode. When you type either of these comnands, the
Micranodem II displays:

MICR(H)DEM II CHAPTER 3 TERMINAL PROORAM P.AGE 13

MICR(H)DEM II:BffiIN TERM

If you are calling another Apple II equipped with a Micromodem II set up in
remote console roode, you must use full duplex. If you want to coomunicate with
another Apple II which is in teminal . mode, both computers should operate
half-duplex.

cm •
This corrmand tells the Micrornodem II to exit terminal mode. This

re-establishes collll\unication between the keyboard and programs {such as the
monitor) in the Apple II When you type this conmand, the Micromodem II ·
displays:

MICROMODEM II:END TERM

When you exit from terminal mode, whatever program you might have left will
still be EXACTLY where you left it; i.e. if you left a BASIC program which . was
waiting for you to type something, it will still be waiting.

This collll\and is accepted only in terminal mode when the telephone is hung
up. It instructs the Micromodem II to pick up the phone and start dialing.
When you type it, the Micrornodem II responds:

MICRO,.ODEM II:DIALif,l;:

The Micromodem II then picks up the phone to start dialing. The flashing
cursor disappears from the screen for two seconds while the Micromodem II waits
for a . dial tone. When it reappears you may start typing in the digits of the
phone number. Each digit is dialed as you type it. and while it is being
dialed, the cursor again disappears. It reappears when the Micromodem II is
ready for another digit. Since the keyboard buffers one character, you may type
the next digit as soon as the previous one appears on the screen.

The Micrornodem II accepts and dials the digits O thru 9. An asterisk {*)
instructs the Micromodem II to delay 2 seconds. This is useful for dialing
through a PBX where it is necessary to wait for a second dial tone.

You can see the digits being dialed if you look at the off-hook LED on the
Microcoupler. You can also hear the faint clicking of the off-hook relay in the
Microcoupler. Don't try to pick up another extension and hear the Microcoupler

MICRCM)l)EM II CHAPTER 3 TERMINAL PROORAM PJtGE 14

dialing, though, because the second phone will prevent the dial pulses from
being recognized by the telephone exchange.

When you have typed in all the digits, type RE'1URN and the Micromodem II
will begin listening for another modem to answer and turn on its carrier. If
there is no carrier after 30 seconds, the Micromodern II will display:

MICRCM>DEM II:NO CARR.

MICRCM:>DEM I I : HUN:; UP

You can try again by typing:

anq retyping the phone number.

When the Micromodem II does hear a carrier, it displays:

MICRCM>DEM II:CCHJ.

At this point you have a connection with whatever has answered the phone,
and you and it may begin exchanging data. Anything you 'type is transmitted to
it, and anything it transmits is displayed on your screen.

Any time after you finish dialing, you can pick up on another extension and
listen to the line. This is a good idea if you have tried dialing and not
gotten through. You might find that your friend's computer is not on the line
and a person has answered, or that you got a busy signal or a wrong number.

Once the modems have started their tones, you should hang up, because any
noise you make will interfere with the modem signals. And the second telephone
on the line reduces the strength of the signal, which increases the probability
of errors.

-II
This coomand tells the. Micromodem II to hang up the phone. While you are

dialing and when the Micromc>qem II is waiting for a carrier tone, you do not
need to precede this coomand with a -II
(you already have its attention). When you type this coomand, the Micromodem II

MICROMODEM II

responds:

MICRCM>DEM II:H~ UP

CHAPTER 3 TERMINAL PROORAM PAGE 15

If at any time during a call, the carrier tone disappears for a half second
or more, the Micromodem II will display: ·

MICROMODEM II:NO CARR.

MICROMODEM II:H~ UP

And it will hang up the phone. This is done so that if the line goes down or
the modem at the other end hangs up. the Micromodern II will hang up too rather
than hold the line so that it will be busy.

These codes change the baud rate of the Micromodem II.

sets the baud rate to llO baud (with . 2 stop bits), which is needed to
conmunicate with a model 33 or a model 35 Teletype. -II
sets the baud rate to 300 baud (with 1 stop bit), which is preferable in most
cases because it is 3 times faster. Sometimes if you are having difficulty with
a poor phone connection, the slower baud rate may be helpful because it is
slightly less susceptible to errors.

These conmands do not have any displays.

CD

II
This corcmand simulates the effect of holding down the break key which is

found on many terminals. On some time-sharing systems, this function is used to
stop unwanted output (somewhat like

MICRCM>DEM II CHAPTER 3 TERMINAL PR(x;RAM P.ltGE Hi -• for an Apple BASIC program).
The break condition remains in effect t.ntil you type any other character.

This comnand does not have any display.

USiti:; A PRINTER IN TERMINAL K>DE

If you have a printer on your Apple II, it is possible to cause the output
in terminal mode to be sent to the printer instead of to the display. In order
to do this, simply select the printer for output just as you normally would
before entering terminal mode in the Micromodem II.

Depending on which printer interface and what printer you are using, this
may or may not work. In order to avoid losing characters that are arriving down
the telephone line at· a steady rate of 10 or 30 per second, it is essential that
the printer be able to print themATLF.AST that fast.

If your printer is connected via a parallel printer interface card, it will
most likely buffer a whole line at a time and then print the whole line after it
receives a carriage return. since putting characters into a buffer is very
fast, there is little likelyhood that any of the characters will be missed. B111',
when the carriage return comes down the line, the printer will go to work.
Printing a whole line can take a fair amount of time (a second or more), during
which time you will have missed quite a few characters on the next line.

Most timesharing computers send a few rubout or null characters at the em
of .a line to allow enough time for printers to return their printheads to the
left margin, but this delay is generally only a few tenths of a secom at most.

If you are dialing into an Apple II with a Micromodem II, you can select a
delay after carriage return of up to 2.55 secoms, which is adequate for most
printers.

If your printer is connected via a high-speed serial interface card, all
that is necessary is that the baud rate of the printer be at least as great as
the baud rate you are using on the modem. If the baud rates are equal, it is
essential that the character format also be the same. Please note that the
high-speed serial card defaults to a character format with 2 stop bits, am that
at 300 baud the Micromodem II (and most of the systems you might call with it)
defaults to 1 stop bit • . The additional stop bit will make the printer about 101
slower than the modern and will cause about 1 character out of 10 to be lost.

EXAMPLE SESSI<»,I

We have just finished installing our new Micromodem t~ in slot 3 am are
going to use it to call the xyz time-sharing corp's BIG9999 computer system. ·

MICROMODEM II CHAPTER 3 TERMINAL PRcx;RAM P.AGE 17

First we turn on our computer and press: -••111;11%111
to clear the screen and bring up the Apple II monitor's prompt. Our fiCr:~ri .
looks like:

*

To connect the keyboard input of the Apple II to the Micromodem II, we
type: -llllldhiii

Now we have another * from the monitor. To start the terminal program
running, we then type:

ea a ••
We knew beforehand that the BIG9999 operated in full duplex mode . (most

timesharing machines do) which is why we typed

&ml SD

• instead of l!I
If you do not know whether the system you are calling is full or half

duplex, it's easier to assume half-duplex to begin with. If you are wrong, each
character you type to the time-sharing machine will appear twice on your screen.
You can type:

tiiD D ••
any time and it will change the mode of the terminal program in your computer.
None of the conmands are sent to the time-sharing machine.

We also knew beforehand that the BIG9999 was set up to run at 300 baud.
Since this is the speed the Micromodem II assumes as a default value, we didn't
need to type any corrmands to set the baud rate.

At this point our screen shows:

MICR(M)l)EM II CHAPTER 3 TERMINAL PROORAM

MICRCMJDEM II:?

MICR<M)[)EM II:BEX;IN TERM

Then we type: --1111

PJtGE 18

to tell the Micromodem II we want to dial a telephone number. The Micromodem II
responds:

MICRCMJDEM II:?

MICR040DEM II :DIALit«;:

At this point the Micromodem II has picked up its telephone. It waits 2
seconds for a dial tone, and then puts up a cursor right after the word
DIALI!«i:. We type in the 1X1one number, one digit at a time. The cursor
reappears whenever the Micromodem II is ready to dial ano~er digit. To make
the display more readable, we type parentheses and dashes at the appropriate
places. They are ignored by the Micromodem II. ·

When we have typed in all the digits of the phone number, we press:·

-
Then we look over the m.unber we've dialed to make -sure it's right. If we

made a mistake, we can type: · -•
and the Micranodem II will hang up so we can try again. So now the display
shows:

MICROMODEM II:DIALIJ\13:1(404)555-1212
MICRCM>DEM II:AWAIT CARR.

The Micranodem II will wait up to 30 seconds for a roodem to answer the
phone and send its carrier. Since we are lucky and the moon is full, the
BIG9999 is up and answers on the first ring. The display now shows:

MICROM:>DEM II:DIALit«;:1(404)555-1212
MICRCM>DEM II:AWAIT CARR.

MICROMODEM II CHAPTER 3 TERr-1INAL PR<X;RAM

MICROMODEM II:CONN.

HELLO THIS IS THE XYZ CORP BIG9999 TIME-SHARI!'IK; SYSTEM.

PLEASE SIGN ON:

PPGE 19

Now we sign on and work with the time-sharing machine. As often happens,
something goes wrong and the BIG9999 crashes. We wait a few minutes to see if
it will recover, but soon lose patience and decide we want to play with our own
computer. So we type:

BiDCiiD

IIIJ
and the Micromodem II hangs up. Now our display shows:

BLAH BLAH BLAH.

*****•**
•• **** *****

** ****** *
**

BOOM!

MICROMODEM II:?

MICROMODEM 11:HUN:i UP

We could also have simply pressed

•

<--- (BIG9999 crashing)

whici.1 would also have disconnected the Micromodern II from the Apple II' s
keyboard and hung up the phone.

MICR<M>DF.M II CHAPTER 4 REM)TE CONSOLE PAGE 20

It is extremely easy to set up the Micromodem II so that it will answer the
phone and allow you to call in with any terminal and use your Apple II computer.
In this example, I am assuming for simplicity that your Micromodem II is in slot
3. If yours is in another slot, substitute the proper slot number where 3's
appear. If you are in the monitor, simply type:

-11111;\lh/ii
m

llllidh/fi
If you are in BASIC, then type: -• . IJ,llllidh/fi -llllllllidh/ii

MICHOMODEM II CHAPTER 4 REMOTE CONSOLE PPGE 21

These corrmands cause the Apple II keyboard to be routed through the
firm.vare on the Micromodem II card. Whenever any program in the Apple II is
requesting input from the keyboard (which is most of the time), the Micromodem
II firmware will check to see if the phone is ringing. When the phone rings. it
displays:

MICROMODEM II:RING

It then waits until the end of a ring and answers the phone. At this point
it displays:

MICROMODEM II:AWAIT CARR.

It then turns on its carrier and waits up to 30 seconds for a modem at the
other end of the line to respond with its carrier. When it detects this ,
carrier, it displays:

MICROMODEM II:CONN.

When it connects, the Micromodem II sends a

l;/lf'\;jfi
to the Apple II's input. The RETURN will cause the Apple II to send out its
prompt so that the caller can tell whether theAppleII is in BASIC or in the
monitor.

The Apple I I is now under remote control. Almost anything that you · could
do from the Apple II's own keyboard you can do from the remote terminal. If you
are sitting next to the Apple II, you can see everything that is going on,
because all output to the modem also appears oh the screen. The local keyboard
is also active and anything you type on it will be c1ccepted as input to the
Apple II.

Special Control Characters

There are six special control characters which are accepted ONLY FROM A
REMOTE TERMINAL. These control characters may be disabled by setting the code
transparency bit (TRAN) in the FLAG word.

This code (stop) tells the Micromode~ II to temporarily stop sending
output. This is useful if you want to stop to look at some output which is
scrolling by too fast for you to read. It is also valuable if you are sending

MICRCM>DEM II CHAPTER 4 REMYl'E C(H;()LE P>GE 22

to another computer or to some printers which are designed to send this code
when their buffers fill up.

Sending any other code than controls will restart output. Sending another
control Swill cause one more character to be sent.

-II
This control code has the same effect (almost) as pressing the RESET button

on the Apple II's keyboard. The difference is that it does not produce a
hardware reset pulse (which would reset the Micromodem II and make it hang up),
and it does not return the Apple II's input and output to the keyboard and
display (which would disconnect the Micromodem II and hence the remote
terminal).

This code will get the Apple II out of the terminal program if it should
have been in that program when you called. With this cmmand·, you can •take
over• control of an Apple I I computer which you are connected to and use all of
its facilities, or camamicate with a program which is running in it.

-II
This coomand is the reverse of control R. It re-enables the Apple II's

keyboard and starts the terminal program running. It could be useful if you
wanted to type back and forth with someone sitting next to the Apple I I. . Any
data or prograns in the Apple II will be undisturbed until you type control R
from the remote terminal or the person with the Apple II types control A control
X to stop the terminal program.

m
II

This tells the Micranodem II to hang up the phone. Nothing else will be
changed. All prograns and data in the Apple II will remain undisturbed. If you
call back again, the Micromodern II will answer the phone and you will be right
back where you were.

MICROMODEM II CHAP'fER 4 RF.MOTE CONSOLE PPGE 23

The Micromodem II will also display:

MICROMODEM II:H~ UP

m
II

This conmand sets up the Micromodem II for coomunications with a printing
terminal. It does several things • . First it enaqles the insertion of a line
feed after carriage returns. Wtthout this, most pr,inting terminals (and many
CRT terminals) will print over and over again on the same line. It also enables
a short delay after the line feed to allow time for the physical movement of .the .
print head. This delay is initially set to 30 msec. This may be changed by
setting location CRDLY ($5F8+N, Decimal 1528+N). This delay is in increments of
10 msec. i.e •. a value of 3 specifies a 30 msec. delay. It also clears the Apple .
II's screen and disables the local display. This effectively disables·. the Apple
II's internal line-folding algorithm so that you will be able to . use the ft.ill
widtli of your terminal.

Discard Olaracters

On input, the Micromodem II automatically discards three characters which
could interfere .with proper operation of the Apple II's firnMare. These are
NULL (all zeroes), RUBOIJl' (all ones) and LINE FEED. · This feature is also
disabled if you .select the code transparency option.

Hanging up on the Micromodem Ii'

If you should hang up the phone while- you are dialed in to the Micromodem
II, it will detect the loss of carrier and hang up. This means that you will be
able to dial back in and it will answer again so you can get back to where you
were. The Micromodem II displays: ·

MICROMODEM II:NO CARR.

MICROMODEM II:HUN; UP

Note on cursor Movement

When you are using the Apple II computer from its own keyboard, there are
several cursor movement coomands that are very useful for editing programs or
other material which may be displayed on the screen. Some. but not all, of

M!CRCM)DEM II . CHAPTER 4 REM>TE CONSOLE P.AGE 24

these colIIDands may also be used from a remote terminal.

The Apple II keyboard left-arrow (ASCII BS, Ctrl-H) character causes the
Apple I I to move its cursor left one position on the screen aoo causes it to
discard the last character from its input buffer. This code is as valid from a
remote terminal as from the keyboard, but your terminal win · not necessarily
backspace, since this cursor movement is a function of the Apple I I's display.
The Apple II firnware does echo this character. aoo many CRT terminals do
recognize this standard ASCII character as a backspace.

The Apple II keyboard right-arrow (ASCII NAK, Ctrl-U) character causes the
Apple II to move its cursor right one position and take the character under the
cursor on the screen as its input. This sort of works from a remote terminal,
if the Apple !I's local display is enabled. If the local display is not
enabled, then the cursor will not move and it will always pick up the same
character. If the display is enabled, The Apple II will pick up the next
character from the screen, but your terminal will not move its cusror unless it
recognizes the ASCII character ACK as a conmaooto move its cursor forward.
Since this is not a standard ASCII character function, it will not be likely to
work on your terminal. · ·

The four escape sequences which cause~ursor movement on the Apple II work,
but are pretty mUch useless unless you are able to see the Apple II's screen.
Since these codes are not echoed by the Apple H's firnware, it would not be
possible for your terminal to move its cursor the same way even if it were
designed to recognize these character sequences.

Hint for D.O.S. Users

When D.O.S. is booted, it executes an INftO and a PRtO statement. If you
are connected via a Micromodem U, these statements will effectively disconnect
you. You can get around this problem by adding appropriate INf: and PRt
statements to the "hello" program that·D.O.S. executes when it is booted.

EXAMPLE

Before leaving for work in the morning, we turn on our computer, press
RESET, then: -11111;\ff'HE -llillMdf'HE

At lunch time, we go into the terminal room at the office and borrow one of
the terminals. we then dial up our home number and the Apple II answers. The
terminal shows:

MICROMODEM II CHAPTER 4 ruM>TE CONSOLE PIIGE 25

FF FF FF FF FF
*

The row of FF's above the* prompt is a portion of a memory dump printed by
the Apple II monitor program. It is there because the Apple I I's monitor was
given a RE'IUHN when the Micranodem II answered the phone. 'Ibis helps you to
verify that you did reach your Apple II. The * is the Apple II monitor's
propnt.

We then type:

-lliiif·HE
We now receive the Apple.II BASIC prompt> which tells us that the Apple II

is ready,. to run BASIC. We then type in the BASIC program we have been thinking
about all morning while we were supposed to be working. It sure beats working,
but all too soon lunch hour is over, so we hang up and go back to work.

That evening when we get home, we go to our computer and press:

mm

··-
This disconnects the Micromodem II and gets us back into BASIC. The BASIC

program we typed in at lunch is still there and we have had a great idea. to
improve it. So we put in our new idea and try it. Then we save the program on
tape or disk.

MICR(M)DEM II CHAPTER 5 ELEMENTARY PROORAMMif>X; PAGE 2n

PROORAMMit,X; THEMICROMODEM II

The Micromodem II and its built-in firnMare are designed to be easy to use
from BASIC programs in the Apple II. Most of the c001110nly needed functions can
be performed with the ordinary BASIC INPUT, PRINT, INi, and PR# statements.
Dialing and hanging up the phone require the use of a couple of control
characters, but it is quite simple to put these characters into strings in the
BASIC program;

There are several more advanced functions such as nonstandard data formats
and code transparent operation which will require a few PEEK . and POKE
statements. In fact, it is possible to access all the Micromodem II's hardware
features through PEEK and POKE statements.

LAK;U.AGE NCYI'E

All of the examples in this section were written in INTEX;ER BASIC. Most of
them will also work unchanged in APPLESOFT II, but they do not take advantage of
some of APPLESOFT II's features, in particular the CHR$ function, which can make
programs much more readable.

D.O.S. NOTE

These examples contain many INI and PR# statements. To work with D.O.S.,
you will need to modify those statements as described in the D.O.S. manual.

Elementary aASIC Progranming

There are five primary operations that programs are most likely to need to
perform in order to use the Micromodem II. These are:

1) Dial the telephone
2) Hang up the telephone
3) Wait for the telephone to ring and answer it
4) Transmit data via the Micromodem II
5) Receive data via the Micromodem II

Dialing the Telephone

To dial the telephone, we must select the Micromodem II for output.and send
it a control Q followed by a phone nlltlber in ASCII followed by a RETURN.
Assuming (as before) that the Micromodem II is in slot 3, the following program

MICROMODEM II CHAPTER 5 ELEMENTARY PROORAMMI~

fragment will dial long distance information for the Atlanta area:

100 DIAL$=""
200 PRf3:PRINT DIAL$;"1(404)555-1212"
300 END

PAGE 27

Note that the empty-looking quotes in statement 100 are not really empty.
They contain a control Q, which does not show on ·the listing because it is a
non-printing character. You can type control characters into quoted strings and
they will be there (you can verify this with the LEN function) even though you
cannot see them. If you are using APPLESOFI' II, you can make your programs more
readable by using the CHR$ function. In APPLESOFI' II, you can replace line 100
with:

100 DIAL$=CHR$(l7)

Statement 200 does all the work. First it selects the .Micromodem II for
output (PRt3), then it sends it a control Q followed by the phone number. The
RETURN is automatically Supplied by BASIC at the end of any PRINT statement
unless the statement ends with a semicolon(;).

When statement 200 is executed, the Micromodem II will display:

MICRCJIIODF.M II:DIALI~:1(404)555-1212
MICRCM>DF.M II:AWAITI~ CARR.

Once it has dialed the telephone, the Micromodem II will begin waiting for
a carrier. It will wait up to 30 seconds before it gives up. Statement 300
will not be executed until either the 30 seconds has elapsed or the Micromodem
II has detected a carrier. If it gives up, it will display:

MICROMODEM II:NO CARR.

MICR(H)DF.M II:IRH; UP

If it detects a carrier it will display:

MICRCM>DF.M II:CCIIINECT

Since it is possible for the dialing to be unsuccessful, the program should
check to be sure that a carrier was detected. The following program fragment
will type "GOT IT" if a carrier was detected and "NOT HOME" if no carrier is
detected.

400 IF PEEK(1656+3)>127 THEN GOTO 700
500 PRINT "NOT HOME"
600 DJD
700 PRINT "GOT IT"
800 END

Memory location 1656 + <slot number> contains the modem control word. The

MICROK>DEM II CHAPTER 5 ELF.Mm'l'ARY PROORAftll!IJ«; P.AGE 28

most significant bit of this word (which has a binary weight of 128) controls
the telephone switch hook. This bit is one any time the Micromodern II has the
phone off the hook. This memory location and several others containing
Micromodem II status bits of several kinds are described in more detail in
ADVANCE.I> PROORAMMit,i; (p. 3 3) •

An asterisk character(*) in a phone nl.lllber causes the Micromodem II to
delay for 2 seconds. You·may find this useful if you connect your Mcromodem II
to a PBX (private switchboard) in which it is necessary to dial a nl.lllber to get
an outside line. The delay allows time for the outside dial tone.

If the last character of the phone nl.lllber is a control-J (LINE FEED)
character, the Micromodem II will skip its usual sequence of listening for a
carrier tone. This can be useful if you want your computer to dial the phone
for some other purpose than to establish comnunications with another computer.
Using this feature, you can program your Apple II to work as a repertory dialer.

Hanging up the phone

To tell the Micromodem II to hang up the phone, all the BASIC.program needs
to do is to output a control z to it. The following program fragment will hang
up the phone.

1000 BYE$=""
1100 PRl3:PRINT BYE$
1200 DID

As in the first example, the empty-looking quotes really contain a
non-printing control character. In this case it is a control z. When statement
1100 is executed, the Micromodem II will display:

MICRCK>DEM II :HU:r«; UP

Answering the phone

To wait for the phone to ring and answer it when it rings, all a BASIC
program needs to do is select the Micromodem II for input and perform an INPUT
statement. The following fragment will wait for the phone to ring, answer the
phone, wait for a carrier, and then transmit a short message identifying itself:

2000 INf3:INPUT I$
2100 PRl3:PRINT "HELLO, THIS IS AN EXAMPLE PROORAM"
2200 DID

There will be no outward·sign that anything is happening when statement
2000 is · executed until the phone rings. When it rings, the Micromodem II will
perform its usual phone-answering chores and will display:

MICR(M)[)EM 11:Rl:t«;

MICRCM>DF.M 11:AWAIT CARR.

MICROMODEM II CHAPTER 5 ELF.MENTARY PRCX,RAMMir«i PAGE 29

It will wait up to 30 seconds for a carrier. If it does not detect one, it
will display:

MICROMODEM II:NO CARR.

MICR(M)l)EM II:HlHi UP

If it does detect a carrier, it will display:

MICRCMJDEM II:CONNECT

When a carrier is detected aoo only when a carrier is detected, the
Micromodem II will seoo a RE'l'UAN to the Apple II' s input. This will satisfy the
BASIC INPUT statement at line 2000 aoo allow the execution of the BASIC program
to continue at line 2100.

The BASIC program will then transnit its message and stop at line 2200.

Transmitti.ng Data via the Micromodem II

once the Micranodem II has detected a carrier and established a connection,
all the BASIC program needs to do to transmit data is to select the Micromodem
II for output (if it has not aleady done so) and seoo the data using PRINT
statements.

Receiving Data via the Micromodem II

To recieve data from a remote device via the Micromodem II, all that is
needed is to select the Micromodem II for input (if it hasn't already been
selected) and perform an INPUT statement.

EXAMPLE PRCX,RAM

The following example program was designed to illustrate the use of the
concepts described here. It is a simple store-and-forward message switching
program, which uses all the features described in this chapter.

It was written in INTEGER BASIC and will run on a minimal 4K Apple II
·computer. If you wish to use it in a o.o.s. system, you will need to modify all
the INI and PR# statements as described in the o.o.s. manual.

What the Example Program Does

The purpose of this program is to obtain a short message and store it in
its memory for a period of time before forwarding it to another computer. This
could be a useful function if the Apple II were connected to a WATS line or some
other low-cost transmission facility. It could also save money by holding a
message until late evening when the phone rates are their lowest.

When the phone rings, this program answers it and sends a short description

MICRCM:>DF.M II CHAPTER 5 ELF.MFNl'ARY PROORAMMIN:; PP.GE 30

of itself. Then it asks for and verifies a secret password. If the password is
not correct after 3 tries, it hangs up on the caller.

Then it requests the telephone nunber to which the message is to be
forwarded, and inputs it. After explaining its limitations (5 lines of 40
characters), it inputs the message. Next it asks how long it should wait before
forwarding the message and obtains a time. It then gives the caller a chance to
verify all his input and start over if it is incorrect.

Once it has correct input, it tells the caller good bye and hangs up the
phone. After waiting the specified length of time it dials the m..unber supplied
by the user. If it fails to detect a carrier, it hangs up, waits five minutes
and tries again. It does this up to 3 times before giving up and restarting
itself.

Once it has connected, it waits a few seconds for the machine it has called
to finish identifying itself before sending the message it has stored. Once it
has sent its message, it hangs up and goes back to waiting for the phone to
ring.

How It Works

Line 90 makes sure that the variables used in the timing loop at
30000-30300 are declared at the beginning of the symbol table. This makes sure
that the timing will not change if t;J1e program is changed.

Line 400 defines which slot the Micraoodem II is plugged into. If your
Micraoodem II is not in slot 3 then you will need to change this line.

Line 1000 defines the secret password which is checked in line 2000. You
will probably want to make up your own password. It is like the combination to
a lock, and you should treat it as one. This program has a password because it
is capable of making lpng distance phone calls and thus spending your JOOney.

Line 1100 sets up the control codes for the Micromodem II and gives them
convenient names. Line 1300 selects the Micraoodem II for output and makes sure
that the phone is hung up. Then the program waits for the phone to ring in line
1400. Notice that it conveniently displays on the screen what it is doing.
Line 1500 checks the off-hook bit in the modem control word to see if a carrier
has been detected. If there is no carrier, it goes back to waiting for a modem
to call.

Lines 1800 thru 2500 solicit and check the password. Note that the number
of tries is counted so that it can hang up on a caller·who does not know the
password.

Line 2900 gets the phone number, and lines 3000-3900 get the message. The
waiting time is gotten in line 4200. Lines 4300 through 5500 show the caller
his input and allow him to try again if it is not correct.

The program then hangs up in line 5700,. waits T minutes in lines 5900-6100.
It dials the phone in line 6300,. checks for a valid modem connection in line

MICROMODEM II CHAPTER 5 ELF.MENTARY PROORAMMIN:i PJ\GE 31

6400, and does retries in lines 6500-7000.

Lines 7375 through 7900 send the message, line 8000 hangs up, and line 8100
goes back to waiting for the phone to ring.

MICRCMX>Dl II

90 I=O:J=O:K..:O
100 REM SIDI' KJST • SI.Dr MICR(M)DEM

II IS IN
400 Sl..0T=3
500 DIM .MES1$(40),MES2$(40),ME:S3$

(40)
600 DIM MES4$(40).MES5$(40)
700 DIM ~(20).I$(40)
800 DIM PASSS(20)
900 REM THIS SETS UP THE P.ASS\tDID

1000 PASS$=•sECRET PASS«>RD"
1100 BYE$•••:DIAL$•••
1300 PRISLOT: PRINT BYE$
1400 INISLCYI': INPUT "WAITit«; FOR THE

PH<»IE TO Rn.::;• ,I$
1500 IF PEEK (1656+SID1') <128 THEN

GOTO 1300
1600 PRINT "HELLO. 'fflIS IS A S'1'00E AN

D FORWARD•
1700 PRINT •piu;RAM RUNNI~ 00 AN APP

LE u•
1800 I=O
1900 INPUT •p.ASSN)R[) •,1$
2000 IF I$•PASS$ THEN GOTO 2500
2100 PRINT •1NCORR!X:T pAS&l«)RD•
2200 I:sI+l
2300 IF 1)2 '1'HfJI GOTO 1300 .
2400 GOTO 1900
2soo PRINT •cORRECT PASS«>RD·
2600 PRINT 9THIS PtmRAM WILL POIW\RD

A SlllRT"
2700 PRINT •MESSIIGE TO ANOTHER <D1PUT

ER OR TERMINAL•
2800 PRINT
2900 INPUT •p~E ENTER ITS PHO,IE NU

MBER •.NUfe.
3000 PRINT
3100 PRINT •you MAY ENl'ER A MESSAGE 0

F 5 LINES op•
3200 PRINT •UP TO 40 aww::TERS EAaf.

•
3300 PRINT
3400 INPUT •1)".MES1$
3500 INPUT •2)•,MES2$
3600 INPUT •3)•,MES3$
3700 INPUT •4)•.MES4$
3800 INPUT •s)•,MESS$
3900 PRINT
4000 PRINT •1 CAN WAIT A F&tl MINUTES

BEFORE•
4100 PRINT •1 ~ THE MESSIGE. •

PJ'tiGE 3?.

4300 PRINT
4400 PRINT "THANK you•
4500 PRINT •IN •;T1• MINl1l'ES, I WILL

FCINRD THE•
41;00 PRINT •FOu.oaN; MESSJ'tGE TO•

;NUMBERS .
4700 PRINT
4800 PRINT MES!$.
4900 PRINT MES2$
5000 PRINT MES3$
5100 PRINT MES4$
5200 PRINT MESS$
5300 PRINT
5400 INPUT •1s mAT (J(?• ,I$
5500 IF I$(1,l)f•y• 'ftlEN GO'l'O 2600

5600.PRINT •GOOD BYE"
5700 PRINT BYES
5750 FOR I•l TO 700: NEXT ~
5800 REM NCM WAIT T MINUTES
5850 IF T<l THEN GOTO 6200
5900 FOR I•l TOT
6000 GOSUB 30000
6100 NEXT I
6200 I=O
6300 PRINT DIAL$;NUM8ER$
6400 IF PEEK (1656+SLOT)>127 'DIEN

GO'l'O 7100
6500 I•I+l
6600 IF I> 3 THEN GO'l'O 1300
6700 FOR L-1 TO 5
6800 GOSUB 30000
'5900 NEXT L
7000 GOTO 6300
7100 REM FIRST GIVE HIM SOME TIME
7200 REM FOO AN AN&liERBACK MESSAGE
7350 FOR I•l TO 2000: NEXT I
7375 PRINT •HELLO, MESSJ'tGE POLL<H3:•

7400 PRINT MES1$
7500 PRINT MES2$
7600 PRINT MES3S
7700 PRINT MES4$
7800 PRINT MESS$
7900 PRINT
8000 PRINT BYE$
8100 GOTO 1300

29900 REM SUBRCm'INE TO DE1AY 1 MINUT
E

30000 FOR J=l TO 60
30100 FOR K=l TO 700
30200 NEXT K,J

4200 INPUT "HCM MANY MINUTES, 0-32767 30300 RE'lURN
•,T

MICROMODEM II CHAPTER " ADVANCED PROORAMMII\Ki PJ'IGE 33

ADVANCED PROORN+1II\Ki

This chapter describes concepts and design information needed for
progranming more advanced or sophisticated applications. First I will describe
the hardware and the on-board finrware from a progranmer's point of view. Then
building on this knowledge, I will describe several useful techniques which _you
might find valuable in designing your own systems.

A Program's Eye View of the Micromodem II

As far as a program in the Apple II is concerned, the Micromodem II
consists of 11 memory locations which have some special properties. These 11
locations are tabulated and described in the table at the end of the manual
"Memory Locations Used By the Micromodem II" (p. 73). For additional details
please consult the table.

Three of these locations· correspond to six hardware registers on the
Micromodein II circuit board. These locations are not like read/write memory
locations because instead of a single read/write cell, each of these memory
locations consists of a pair of cells, one read-only and the other write-only.
The two cells in each pair are related to each other. In a few rare cases it is
possible to read back what you have written to a location, but in general what
you write to one of these locations and what you read back are tl.\10 different
things.

DATA, $C087+NO = -16249+l'i*N dee.

one of the three pairs is for modem data. Data which is written to this
location is transmitted through the modem, and data which is received from the
modem is read from the same location. In self-test mode, data which is written
to this location can be read back from the same location one character time
later.

STATUS/CR!, $C08'i+NO = -1625o+lfi*N dee.

The second pair of cells reads the status and writes the controls of the
Motorola 6850 ACIA chip. This chip performs all the parallel-to-serial
conversion on output and serial-to-parallel conversion on input data. The bits
of the status register each have separate meanings, and report on many important
conditions in the chip. The most important of them are Receiver Register Full,
which tells the program that there is a valid character present in the received
data register (described above), and Transmitter Register Empty. which tells the·
program that it is ok to write another byte to the transmitter data register.
Other bits report various errors which the ACIA chip is capable of detecting on
received data.

RI/CR2, $C085+NO = -l'i251+16*N dee.

The third location pairs n10dem controls and ring detect. Codes output to

MICRCM>DEM I I CHAPTER 6 ADVANCED PROORAMMIN:; PNiE 34

·this location control such functions as taking the phone off hook, turning on
the modem transmitter, and setting its mode and baud rate. A program can
deteremine whether the phone is ringing by reading this location.

CN, NO, OiAR

Three more locations are actual memory used by the Micromodem II firnware
for temporary storage of variables. These locations are located in an area of
the Apple !I's memory which is set aside specifically for temporary variable
storage by firnware on peripheral cards. These locations may be shared by other
peripherals in your Apple II. The Micromodem II f irnware is designed to follow
a standard method of sharing this memory so that it will not interfere with
other peripher_als or be interfered with by them.

The Micromodem II firnware uses five other memory locations that are set
aside specifically for the slot in which it resides. In order to be able to use
these locations, the Micromodem II firnware is able to determine which slot it
resides in. In order for~ program to use these locations to ct>rrmunicate
with the Micromodem II firnware, YoU will need to tell it what location the
Micromodem II is plugged into.

r«>DEM, $678-+N = 1656-+N dee., and ACIA, 7F8-+N = 2040-+N dee.

Two of these locations are used to store the current contents of the two
control registers described above. As you might recall, these registers are
write-only, and if the firnware needs to know what it wrote to these registers
before, it will have to remember what it wrote. It does.

If you intend to modify the settings of the two control registers, usually
it is preferable to write to these two memory locations · and then let the
firniiare take care of writing it to the actual hardware registers. · It does this
each time it transmits a byte of data to the modem, so all you need to do is
POKE the byte you want into the appropriate memory location and then output one
or more bytes with a PRINT statement.

LOCSE,. $6F8-+N = 1784+N dee.

This memory location contains a value which is exclusive-or'ed with all
lower-case letters which are received through the modem. If this location
contains the hex value 20,. then all lower-case letters wil,l be translated to the
corresponding upper case letter. This location is initialized to hex 20 when
the Micromodem II firrrware initializes itself (the first time it is used, either
for input or for output}. If you write a o to this location,. that will disable
the lower-terupper case · translation, and lower-case letters will be passed
through.

FI.JIGS, $778+N = 1912+N dee.

The fourth location contains flags which turn various firnware options on
and off. Several of the flags are used internally by the Micromodem II firnware
and if they are set by another program, the results are unpredictable. Four of
them, however, are potentially useful and so are of interest to the progranmer.

MICROK>DF.M II CHAPTER 6 ADVANCED PROORAMMIII(; PN;E 35

Bit 7, the most significant bit, controls the display of modem output.
Normally all output to the Micromodem II is also displayed on the Apple II's
display screen. This can be inhibited by setting this bit. In terminal mode,
this bit determines the difference between half- and full-duplex. It is set for
full-duplex, and reset for half-duplex.

Bit 1 controls whether the Micrornodem II firrrware accepts data fran the
local keyboard when it is selected for input. Normally data is accepted either
from the modem input or from the Apple II's own keyboard. If this bit is o, the
local keyboard will be disabled as long as the Micromodem II is selected for
input. Even when it is disabled, it will still respond to control-a and RESET.

Bit 2 selects code transparency. Normally the Micromodem II firrrware
responds to several control codes sent out by the program or received from the
modem. In some cases this could interfere with your applications. This control
bit allows you to turn these features off so that you can transmit and receive
all 128 ASCII characters.

Bit 4 selects line feed insertion after carriage return. Normally, the
Apple . II firrrware does not use line feed characters for any purpose, however
most printing terminals and many CRT's require line feed characters to advance
to the next line. Without line feeds, they print on the same line over and over
again. This option also enables an adjustable delay after the line feed
character. This delay is needed on most printing terminals to allow sufficient
time for paper movement.

CRDLY, $5F8+N = 1528+N dee.

The 'remaining location holds the setting for the optional delay after a
carriage return. The contents of this location specify the delay in increments
of 10 milliseconds. ·

The Firnware

The firnMare on the Micromodem II resides in a single 2708 ROM chip. It
occupies two discontinuous areas of maoory space in the Apple II. Each
peripheral slot in the Apple II has 256 bytes of memory space allotted to it for
firrrware. The address of this space is determined by the slot nllllber. Programs'
which occupy this space must be written so that they will work no matter what
address they occupy, since.the address varies depending on which slot they are
plugged into.

The Apple I I also allots a single 2048-byte area which can be shared by all
peripheral boards in the machine for their firnware. This area always has the
same address, which simplifies programning, but since it must be shared with all
the other peripherals which may be in the machine, it has to have a bank switch.
This switch turns the R<Jlt in this area on when the Micromodem II is operating,
and turns it off when the Micromodem II is inactive so that other peripherals
may use the memory space. When the Micromodem II is operating, the entire 1024
bytes of the onboard ROM are mapped into the lower half of this space.

MICRCMJDE.M II CHAPTER 6 ADVANCED PRffiRM"'1IM:; PAGE 3fi

There is one location in the 256-byte slot-dependent area which you might
need to access via a CALL statement. This is a speciai output data routine
(located at CN02 hex= -16382+256*N decimal) which outputs the byte stored in
location CHAR (778 hex= 1912 decimal) through the modem. A special routine is
needed in some applications which are operating in full-duplex (such as the
self-t~st. program), due to an incompatibility between the 6502 microprocessor's
indexed write timing and the 4;850 ACIA chip. The BASIC POKE statement uses an
indexed write, and a POKE to the DATA location will cause any data which the
ACIA has received to be discarded. For an example of the use of this entry, see
the self-test program lines 10800 and 10850 (p. 8).

MORE ADVANCED TECHNIQUES

Assu!rJ>tions Made in the Exaq>les

The examples 1n the following discussions all assume for convenience that:

1) The variable SLOT.has previously been initialized to the slot number of the
Micraoodem II.
2) The system is not running under D.O.S. i.e. the simple form of · the INI and
PRt statements is acceptable.

Changing Baud Rates and <llaracter Formats

You may need to change the baud rate of the modem and the number of data
bits, stop bits and parity of the data sent and received by the modem. The two
most coltlTIOn combinations, 300 baud no parity and 1st.op bit and 110 baud with no
parity and 2 stop bits are provided for· by the firnware, but many more
combinations are possible and some of them may be used by systems you want to
conmunicate with.

Before you try to change these options, you should make sure that the
Micraoodem II has initialized itself. If you don't, then the first time you
select the Micromodem II for input or output, it will initialize itself and
change the options you have set back to the standard ones. The following line
of BASIC will make sure that the initialization has been done:

100 PRtSLOT:PRINT

The baud rate is controlled by' the least significant bit of the modem
control byte. As described above, it is preferable to change the byte in memory
and allow the firnware to take care of actually putting it in the hardware
register. The following lines will change the baud rate without affecting any
other modem functions:

To Select 300 Baud

500 POKE 1656+sLOT,PEEK(l656+sLOT)/2*2+1

MICROMODEM II CHAPTER 6 ADVANCED PROORAf'NIN:i

To Select 110 Baud

500 POKE 1656+sLOT,PEEK(1656+sLOT)/2*2

PAGE 37

The format of characters sent and received by the modem is controlled by
bits 2, 3, and 4 of the ACIA control byte. Again it is preferable to change the
byte in memory and then let the firnware take care of the actual hardware. This
byte normally contains a 1 in the least significant bit plus the appropriate
bits in bits 2, 3, and 4 to select the appropriate format. The following line
of code can be used to set a character format:

700 POKE 2040+sLOT,FSW

The value of FSW can be selected from the following table:

Start Char. Parity Stop Total FSW FSW
Bit Length Bit Bits Length Decimal Hex

1 + 7 + EVEN + 2 = 11 1 01
1 + 7 + ODD + 2 = 11 : 5 05
1 + 7 + EVEN + 1 = 10 : 9 09
1 + 7 + ODD + 1 = 10 . . 13 OD
'l + 8 + NOOE + 2 = 11 17 11
1 + 8 + NOOE + 1 = 10 21 15
l + 8 + EVEN + 1 = 11 . 25 19 .
1 + 8 + ODD + 1 = 11 : 29 lD

Waiting for the Nth Ri!:!9 Before Answering

The following program fragment will wait for the Nth ring then answer the
phone. It assumes that SLOT contains the slot number of the Micromodem II, and
that the variable N contains the desired number of rings.

800 STI'=-16251+16*SLOT
900 X=O
1000 IF PEEK(ST1')>127 THEN GOTO 1000
1100 X=X+l .
1200 IF X>=N THEN GOTO 1500
1300 IF PEEK{ST1')<128 THEN GOTO 1300
1400 GOTO 1000
1500 INISLOT:INPlrl' I$
1600 IF PEEK(l656+sLOT)<l27 THEN GOTO 900

Line 1000 waits for the phone to ring. Lines 1100 and 1200 count the
rings. Line 1300 waits for the end of the ring before going back to 1000 to
await the next ring. Line 1500 selects the Micromodem II for input and lets the
fiarware take care of answering the phone •. Line 1600 then checks to see whether
the fiarware detected a valid carrier.

MICRCM)DF.M II CHAPTER 6 ADVANCED PROORAt,t.1I~ P.AGE 38

If you hang up on any program, the Micromodem II will hang up the phone as
soon as it detects the loss of carrier. It will subsequently answer on the
first ring and try to re-establish comnunications exactly where you left off.
If you want your Apple II to go . back to answering only after the Nth ring, you
will have to make sure that your BASIC program understands that you are finished
with it and hangs up on you so that it can then go back to waiting for the . Nth
ring.

Turning off the carrier without Hanging Up

You may find it d.esirable to be able to turn off the rnodem carrier without
breaking the telephone connection. For example you might write a game for two
Apple II's. It would be nice if between rounds, you and your opponent could
pick up your telephones and talk about the last round. With the modem
transmitters running, all you would be able to hear would be the squealing of
the two modems.

The following program fragments will allow your program to turn off the
modem so that you can talk (pretty simple, actually), and then turn the
t ransmitters back on and reestablish cOITlflunication (this is a little more
complicated). While the carriers are turned off, you must not attempt to
execute any INPUT statements from the Micromodem II because if you do, the
firmware will detect the loss of carrier and hang ·up the phone. So this program
ass1.1nes that it is comnunicating with a similar program in another Apple II and
that both programs know that it is time to turn off the carrier.

To Turn the carrier Off

1000 POKE -16251+16*SLOT,136

To Turn the carrier Back On and Reestablish Conmunications

1900 PRIO:INIO:INPUT •pRESS RETURN WHEN DONE WITH PHOOE•,I$
2000 PRISLOT:PRINT
2100 IF PEEK(-16250+16*SLOT) MOD 8 < 4 THEN GCYI'O 2400
2200 X=PEEK(-16249+16*SLOT)
2300 GOTO 2100
2400 PRISLOT:PRINT •cONNECTION REESTABLISHED•

Line 1000 turns off the modem carrier by writing directly to the modem
control port with a word containing the bits which keep the phone off hook and
prevent the Micromodem II firmware from performing its initialization. Since
the transmitter enable bit is off, the transmitter is turned off.

Line 1900 waits for you to press return when you are finished with the
telephone. Line 2000 outputs a carriage return to the Micromodem II, which
causes the firmware to copy its remembered status back into the modem control
port. Since the last the firmware knew, the transmitter was turned on, this

MICROMODEM II CHAPTER 6 ADVANCED PROORAr-tm1:; PIIGE 39

turns the transnitter back on. Line 2100 reads the ACIA status port and checks
the carrier detect bit to see if there is a carrier from the other end yet.
Remember that we can't .do an INPUT statement again until we have a valid carrier
or the firnware will hang up the phone. Line 2200 unloads the ACIA data
register. This obscure operatiqn is necessary to satisfy the ACIA chip, and is
pretty hard to explain but it is necessary. Line 2400 then sends a message to
the other program so that it will know we have reestablished conmunication. In
a real program you would probably send some other message to tell the other
computer that it was time to get back to the game or whatever.

Entering Terminal Mode from a Program

It is often convenient to go back and forth between a BASIC program and
terminal mode, especially when you are operating with two Apple II computers
with Micromodem II's.

The terminal program in the Micromodem II firmware is entered fran the
input entry point if the TERM bit is set in the FLAG byte. So, for a program to
activate the terminal mode, all it needs to do is to set that bit and then call
for input from the Micromodem II. The following program fragment illustrates
this technique.

1000 POKE 1912+51.0T,10
1100 INPtrl' I$

Location . 1912+51.0T is the FLIIG byte. The 10 is the Sl.111 of 8 + 2, where 8
is the binary weight of the TERM bit, and 2 is the binary weight of · the KBDE
bit. Whenever you go into terminal mode, you should be sure to set the KBDE bit
or the .Apple's keyboard will be inactivated except for ctrl-a sequences. Since
we did not set the DISPO bit (weight 128), this program will start the terminal
mode program in half-duplex (which is what you want toconmunicate with another
Micromodem II in terminal mode). If you need to start it in full duplex mode
all that is needed is to add the binary weight of the DISPO bit (128) to the
constant which is POKE'd into the FLIIG byte. Note that the binary weights of
the bits are included in the tables at the back of the manual (p. 73).

If your program is conmunicating with another Micromodem II-equipped Apple .
II, it can also put the other computer into terminal mode by sending it a
control-T. In order for this to work properly, the other Apple II must be
waiting for input from its Micrornodem II (be executing an INPtrl' or GET
statement), and should not have the Micromodem II selected for output. The
half/full-duplex status will depend on the setting of the DISPO bit in that
computer.

Exiting Terminal Mode back to a Program

When you exit from terminal mode after entering it with this technique, you
will return to the INPtrl' statement (line 1100 in the example). That input
statement will be waiting for you to type a carriage return, just as always. As
soon as you have satisfied it, your progran will continue executing at the very

MICROK>DEM II

next line.

CHAPTER 6 ADVANCED PROORM+1IN3 PAGE 40

Your program can also take the other computer back out ·· of terminal mode.
All it needs to do is to send a control-R to the other Micromodem II. If the
other computer got foto terminal mode by setting the DISPO bit and executing an
INPl11' statement, then its program will be restarted if the control-R is followed
by a RETURN. Like this:

1100 INPl11' I$ <- the same statement 1100 as above
1200 PRtswr
1300 PRINT CONRTOLR$

The string variable CONTROLR$ is asswned to contain a control-R. Since
line 1300 did not end witl) a semicolon, BASIC will supply a RETURN at the end of
the line.

MICRCMX>F.M II CHAPTER 7 · INSPIRATI<J,.IAL PROORAMS P>GE 41

INSPIRATICIW. PRX;RNil>

The programs in this section, although useful in themselves are primarily
intended to serve as inspiration for ~ to write better programs to serve your
needs. They are designed to answer some of the questions we have answered
during the first few months of Micromodem II production. Tl'x>se questions
usually begin •ttow do I ••• ".

This chapter has seven sample programs designed to solve some of the most
frequently-encountered camunications problems. The programs and the problems
they solve are:

PICKUP
AUTO DIAL
DUMBO
TRANSFER
EXTRACT
FILTER
ALARM

PR>BID1

Picks up the phone in answer mode.
Automatically dials numbers fran a menu.
Dlltlb terminal written in BASIC.
Transfers D~o.s. text files fran Apple II to Apple II.
Extracts a BASIC program fran another system.
Filters unwanted characters (such as ctrl-c) fran input.
A totally different use for the Micromodem II.

Pla<UP

The Problem

If you are talking on the Jitone to a friend and decide that you would like
to have your computers on the line. it would be nice to be able to have them
pick up the phones and begin conmunicating. It is no problem to make a
Micromodem II pick up the phone in originate mode. Simply go into terminal mode
and dial a null phone nuit>er (i.e. just a RETURN). But for two modems to
conrnunicate with each other. one llllst be in originate mode and the other in
answer mode. There is no simple way to make a Micromodem II pick up the Jilone
in answer mode unless the phone actually rings. ·

Wlat the Program Does

This program is designed to run in Applesoft II under o.o.s. With a o.o.s.
system, all you need to do to pick up the phone is to type:

RUN PICKUP

Assuming. of course that,you have previously stored this program on your disk
under the name PIO<UP. The program takes the phone off the hook, turns on the
Micromodem II in answer mode. waits for a carrier. then puts you into terminal
mode.

ADD:

MICHOfwODEM ·II CHAPTER 7 INSPIRATIONAL PRCGRAMS PPGE 42

How the Program Works

Line 100 defines the slot the Micromodem II is in. Lines 300 and 400
select the Micromodem II for output and make sure that it is initialized by
sending it a carriage return. Line 500 sets up the modem control v.10rd to be off
hook in answer mode, and line 600 selects the standard character format. When
line 650 transmits its carriage return, the Micrornodem II firmware copies the
data we POKE'd in 500 and600 into the actual hardware registers, causing them
to take effect.

Lines 700-900 wait for a carrier. This technique is described in ADVANCED
PRCGRAMMING (p. 38). Once a · carrier is detected, lines 1000-1200 turn off
Micrornodem II output, enable Micromodem II input, and let the user know where
things stand. The POKE at 1300 selects FLPG bits TERM and KBDE, which cause
the Micromodem II firnware to go into half-duplex terminal mode when the INPUT
statement is executed at line 1400. If you wanted to answer full-duplex, you
could add 128, the binary weight of the DISPO bit to disable the local echo of
characters.

0 REM PROORAM TO PICK UP PHONE
1 REM IN ANSWER ,-ODE
2 REM WRI'ITEN BY DON HYDE
3 HEM COPYRIGHT 1979,
4 REM D.C. HAYES ASSOCIATES, INC.
90. ONERR GOTO 9000
100 MSLOT = 3
200 0$ = CHR$ (4)
300 PRINT D$;"PR#";MSL0T
400 PRINT
500 POKE 1656 + MSLOT,128+8+2+1
600 POKE 2040 + MSLOT,21
650 PRINT
700 IF PEEK (- 16250 + 1~ * MSLOT)

PICKUP

= 2 THEN 1000
800 X = PEEK (- 1~249 + 1~ * MSLOT)
900 GOTO 700
1000 PRINT D$; "PR#O"
HOO PRINT D$;"IN#";MSL0T
1200 PRINT "CONNECTION ESTABLISHED"
1300 POKE 1912 + MSLOT, 8 +?.
1400 INPUT I$
1500 END
9000 PRINT CHR$ (26) : PRINT D$; "PR#

O"
9998 REM COPYRIGHT 1979,
9999 REM D.C. HAYES ASSOCIATES, INC.

610 POKE -16250+16*MSLOT,21

MICROT-l)DEM II CHAPTER 7 INSPIRATIONAL PROORAMS

AUTO DIAL

'lhe Problem

P.AGE 43

Dialing up the systems we want to talk to would be much easier if the
computer would remember their phone numbers for us and call them automatically.

Wlat the Program.Does

AUTO DIAL puts up a menu of telephone numbers and asks you to select one by ·
its line number. If you select a valid line, it dials the phone. If it
succesfully reaches another modem, it puts you into terminal mode, otherwise it
asks if you would like to try another. If you ask for line 0, it assl.llles you
want to dial manually and simply puts you into terminal mode. A negative line
number exits the program.

The phone numbers on the menu included in this program are mostly
£omputerized Bulletin· Board §_ystem's (CBBS 1s). They are mostly operated by ·
computer hobbyl.sts, and several ·of them use D.c. Hayes Associates, Inc. modems.

I would like to thank Ken welk for this program and his generous permission
to use it.

How the Program Works

This program runs under D.o.s. in Applesoft II. It could easily be
modified to run without D.O.S., but it needs DATA statements, and would be much
more difficult to write in integer BASIC.

After clearing the screen and initializing a few vairables, .the program
proceeds to READ the DATA statements into an array in lines 20-60. As they are
READ, they are also .PRINT'ed to create the menu. The first DATA statement tells
how many lines of additional DATA statements to expect. The rest of the DATA
statements each consist of two strings; a name, and its corresponding phone
number.

Lines 70-100 get the line number and check it for validity. Then lines
110-115 dial the phone. Line 116 checks whether the call was successful. Lines
120-140 put you into terminal mode.

When you exit from terminal mode, you will return to the INPUT statement in
line 140. If you type a RETURN, you will satisfy that statement and the program
will continue execution at line 150 where it will ask whether you want to place
another call.

MICRc»ODEM II CHAPTER 7 INSPIRATIONAL PR(X;RAMS PJIGE 44

AUTO DIAL

5 TEXT: HOME
10 Q$ = CHR$(17):D$= CHR$(4)
15 PRINT D$;"NOMON I,0,.C" 160
20 RF.AD NC 200
30 DIM PN$(NC,2) 215
35 PRINT "CBBS'S & OTHER SYSTF.MS": PR 220
INT " - -- ": PRINT 230
40 FOR I = 1 TO NC 240
50 RF.AD PN${I,1),PN$(I,2) 250
55 PRINT I; TAB(6);PN$(I,1); TAB(24 260
) 1PN$ (I ,2) 261
60 NEXT 265
70 INPUT "YOUR CHOICE?";CH

AU.?";A$: IF LEFT$ (A$,l) = "Y"
THEN RUN
END
DATA 13
DATA ATLANTA,1-(404)-394-4220
DATA BClST(l'.1,1-(617)-963-8310
DATA CHICAGO,l-(312)-528-7141
DATA S.J.C.A.,1-(609)-665-8881
DATA DALIAS,l-(214)-641-8759
DATA MAYNARD,l-(617)-897-0190
DATA PASADENA,l-(213)-795-3788
Ilt\TA SAN FERNANDO,l-(213)-340-

0135
80 IF CH < 0 THEN END
90 IF CH > NC THEN 70

266 DATA SANTA CLARA,1-(408)-246-
2805

100 IF CH= 0 THEN 120
110 PRINT D$;"PRt3"
115 P~NT Q$;" ";PN$(CH,2)
116 IF PEEK (1659) < 128 AND CH<

10 THEN PRINT D$;"PRtO":
PRINT "NO AN&WER OR BUSY! ":

POKE -16368,0: GOTO 150
120 PRINT D$;"PRt0"

267 DATA WASHit,l;TON,1-(703)-281-
2125

270 DATA SAN DIEnO CBBS,1-(714)-565-0
> 961

280 DATA SAN DIEnO ABBS,1-(714)-582-9
557

285 DATA SAN DIEnO C.S.,1-(714)-697-2
176

130 PRINT D$;"INl3" 900 REM THANKS TO KEN WELK
REM IN SAN DIEX;O FOR
REM THIS USEFUL PR(X;RAM.

140 POKE 1915,142: INPUT I$ 910
150 PRINT D$;"INIO": INPUT "ANCJI'HER C 920

MICROMODEM II CHAPTER 7 INSPIRATIONAL PROORAMS

DUMOO

The Problem

PAGE 45

Although the durt> terminal program included in the Micromodem II's ROM is
pretty general and was designed to accomodate most of the odd requirements you
might run into when coomunicating with various systems, it can't possibly do
everything for everybody. If it doesn't do just what you need, all is not lost
for it is quite possibly (though not particularly easy) to write one in BASIC.

Several customers have expressed an interest in writing some sort of
intelligent terminal program that would use the power available from the Apple
II, but they didn't know quite where to start. This should help, because I have
already worked out some of the harder parts.

What the Program Does

After asking a few questions to determine what options you want, this
program dials the phone number you have supplied then enters a loop in which it
directly interrogates the keyboard and the modem input port and transfers bytes
between them, the screen, and the modem output. It checks for error conditions
on the modem, and reports them to the user.

It does not check any of the characters coming from either the keyboard or
the modem with one exception. It detects ctrl-g (BELL) from the modem, and
calls a special short beep routine. It seems that the beep the Apple II
fimware generates is 100 msec. long, which is 3 character times at 300 baud.
This means that each time the remote computer sends a BELL', the program will
detect several errors when it misses the two characters following the beep.

This program easily keeps up at 300 baud, and has a fair amount of tune
left over, which means that you could add logic to test for various control
codes and still have a program which will keep up with the stream · of . data
arriving from the modem.

How the Program Works

The left column is pretty ltllch all initialization, inclucing dialing the
phone, and the right column is the terminal loop, including the modem error
handler.

Most of the initialization is pretty straightforward except for a couple of
things. Lines 100 and 135 set up a simulated cHRS function, which makes it
easier to print the data we have obtained via PEEK's as characters rather than
as m.,nbers. The technique used here was described in more detail in corr>er 2
(p. 7).

Line 151 installs a machine-language program that makes short beeps. It
simply loads a smaller constant into the Y register then junps into the
beep-making routine in the Apple II's monitor ROM. The machine code is:

MICRCM)l)EM II

300: WY
302: JMP

1$23
$FBE4

CHAPTER 7 INSPIRATIONAL PRCX;RAMS P.AGE 4'1

Lines 155-185 are pretty straightforward. Then we go into the terminal
loop from lines 200-9500. 200-240 are the status-checking loop. Lines 250-275
handle characters read from the keyboard, data is displayed on the screen on
lines 1000-1020, input from the modem is handled by the SOOO's and the 9000's
handle errors.

If you examine the STATUS register, you will see that during normal
operation, only the two least significant bits have any reason to be on.
Therefor if line 210 finds a value greater than 3, it knows that there is some
error condition to take care of. The expression X MOD 2 in line 220 effectively
tests X for being odd. If it is odd that means that the least_significant bit
is a one. That in turn means that there is a character ready in the receiver
data register, so the program goes to 5000 to handle it.

Line 230 reads the keyboard port, line 240 tests whether there is a
character there, and line 250 releases it if there is one. Lines 260 and 270
transmit the character via the Micromodem II.

Line 1000 is the simulated CHR$, and line 1010 displays the character on
the Apple II's screen.

A character is read from the Micromodem II in line 5000. Line 5005 makes
sure that the most significant bit is set. This makes sure that we will
recognize the characters correctly no matter what parity option has been
selected. Line 5010 looks for BELL characters. Most characters are displayed .
by. the code at 1000, but BELL's are handled specially by calling our custom
short beep routine located at $300 = 7n8 dee.

The first thing the error routine looks for at line 9000 is loss of
carrier. We single this error out by a quick test based on our knowledge that
its binary weight is 4. We know that the program could only get here if X>3
(line 210). If the carrier has been lost, the X value will be between 4 and 7
(assuning that no other error bits are set). It is possible that other error
bits may get set when carrier is lost, but they will go away when the error is
cleared, and the carr~er will still be lost so we'll catch it next time.

If the error is not a loss of carrier, we read the data register, which
clears the error condition, and give the user an error message before we go back
to the terminal loop.

When we detect a loss of carrier, we select the Micromodem II for output
and send it a string of characters (at line 9100) which contains a couple of
spaces followed by a control-z. The control-z hangs up the phone. The spaces
are a good idea when you hang up because they insure that the last useful
characters have been transmitted before the phone is hung up. The ACIA chip
buffers a couple of characters, and whatever is receiving the data at the other
end of the line probably buffers a character or two also, so there could still
be data on its way for several character times after you sent your last

MICROMODEM II CHAPTER 7 INSPIRATIONAL PR(X;RAMS

character.

DUMBO

0 REM DUMB TERMINAL PRCX;RAM
l REM IN APPLE II INT.ffiER BASIC
2 REM WRITTEN BY 00N HYDE
3 REM COPYRIGHT 1979,
4 REM D.C. HAYES ASSOCIATES, INC.
5 REM

100 A$="X"
105 X=O
110 SI.00'=3
115 CR1=-1625o+l6*SLOT
120 DTA=CRl+l
125 CHAR=l912
130 SEND=-16382+256*SLOT
135 AD=2053
140 0$=""
145 KBD=-16384
150 KBRL=KBDH6
151 POKE 768,160: POKE 769,35: POKE

200 X= PEEK (CRl)
210 IF X>3 'DIEN 9000
220 IF X MOD 2 THEN 5000
230 X= .. PEEK (KBD)
240 IF X<l28 THEN 200
250 POKE KBRL,0
260 POKE CHAR,X
270 CALL SEND
275 IF F THEN 200

1000 POKE AD,X
1010 PRINT AS;
1020 GOTO 200
5000 X= PEEK (DTA)
5005 IF X<l28 THEN X=X+l28
5010 IF X<>l35 THEN GOTO 1000
5020 CALL 768
5030 GOTO 200
9000 IF X<8 THEN 9095
9010 X= PEEK (DTA)

PAGE 47

770,76: POKE 771,228: POKE 772,251
153 DIM PH$(25)
155 PRINT "DUMB TERMINAL PRCX;RAM"
160 INPUT "HALF OR FULL DUPLEX? TYP

9015 PRINT : PRINT "ERR, I71'A= ";X
9020 GOTO 200

E H OR F. " ,'fl$
165 F=O: IF A$="F" THEN F=l
170 IF F=O AND Mt"H" THEN 160
175 INPUT "PHmE NUMBER?",PH$
180 PRINT D$;"PR1";SLOT: PRINT u;P

8$
185 PRINT D$;"PRl0"

9095 PRINT D$;"PRl"1SLOT
9100 PRINT" "
9200 PRINT D$;"PRt0"
9300 PRINT "LOST CARRIER!"
9500 GOTO 155
9998 REM COPYRIGRI' 1979,
9999 REM D.C. HAYES ASSOCIATES, INC •.

TRANSFER

'lbe Problem

To be able to transfer text files fran one Apple II to another.

\'flat the Program Does

This . Applesoft II program is designed to conmunicate with another copy of
itself which is loaded into another Apple II computer. When it starts, it puts
you into terminal mode so that you can conmunicate with the operator of the
other Apple II and establish who will send what to whom.

Once you have agreed on what to send, either one of you may type ctrl-a
ctrl-x to exit terminal mode, followed by a RETURN. Both computers will then

MICRCMlDF.M II CHAPTER 7 INSPIRATIONAL PRcx;RAMS PAGE 48

ask for a file name, and will open the appropriate disk file. Then they will
ask whether you wish to SEND or to RCVE a. file. As soon as both operators have
answered both questions, the programs will start transferring the file one line
at a time, with the data being displayed on both screens as it is being sent.
The two programs comnunicate back and forth to make sure that they stay in sync
with each other so that no data will be lost.

When the last line has been sent, the sending computer sends a ctrl..;.c to
the receiving computer, which tells it that all the data has been sent, then
both machines close their files and go back into terminal mode.

How the Program Works

After a little initialization, the program goes £ran line 300 to line 3500,
which puts the Micromodern II into terminal mode. After the exit- £ran terminal
mode and the entry of a RE'IURN, the program-continues at 3650, which transmits a
ctrl-r followed by a·RETURN, which takes the other computer out of terminal mode
and satisfies its statement 3600, thus restarting it.

By now you might have already noticed the use of the handy subroutines at
lines 400-700 which save a lot of writing in doing the INI and PR# statements.

The actual work starts at 900. Asking the questions and opening the file
is easy. Then we go into either the sending loop (lines 1500-2500) or the
receiving loop (lines 4000-4800).

The first thing the sending loop does is to execute an ONERR statement so
that it will be able to trap the Ol11' OF MTA error when it gets to the end of_
the file. It then enters its loop at 2300. There, it de-selects the Micranodem
II for output and selects it for input. Line 2400 then waits until it gets an
ACK character, discarding any other data it may receive. It is waiting for the
receiving loop in the other canputer to tell it that it is ready for some data.
The PRINT in line 2500 is needed to make sure that o.o.s. will respond
correctly, then we go back to 1800.

Next we turn off the Micromodem II input, and turn on the output. Line
1850 tells o.o.s. that we want to read data fran the file, and lines 1900-2100
read it into I$. This method using GET statements makes it possible to read
data which contains conmas and o.o.s. comnands. Line 2200 sends the line to the
other computer. The OS is needed to cancel the o.o.s. RF.AD. This gets us back
to 2300 where we started.

When we get to the end of the file, the ONERR is executed and control goes
to line 3000 where we first check to make sure that we reached end of file and
not sane other error condition. If it was end of file, then we send our ctrl-c
to let the other guy know we're done, tell the user we're done, and return to
terminal mode.

The receiving loop begins at 4000 by issuing a PRINT to make sure that
D.o.s. will hear us properly. Then we ask D.O.S. to display the data we will be
writing to the disk. At line 4050, we call FRE to make sure that our string

MICRCM)DEM II CHAPTER 7 INSPIRATI~ PROORAMS PAGE 49

space is all in order and that we won't suddenly lose precious time when
Applesoft II has to go collect mused string space. If that happened, we would
almost surely lose some characters.

At line 4100, we select local display for output, and Micranodan II for
input. Then we set I$ to the null string preparatory to filling it with data we
receive fran the Micromodem II. We are now ready to start receiving data, so we
transmit an ACK character at line 4250. Sending it this way helps to keep from
getting o.o.s. confused. Then we start GET'ting the characters in line 4300.
we check each character for end of line (CR$) or end of file (EF$) and collect
the rest of than into I$. When we see a CR$, we write the line to disk in lines
4600 and 4700, then go back to 4050 to get ready for another line.

When we recognize the ctrl-c (EF$) that marks the end of the file, we go to
5000 to close the file, then we go back into terminal mode.

0 Rm. TEXT FILE TRANSFER PRCX;RAM
1 REM WRI'l"lDI BY CC. HYDE
2 RF.M COPYRIGHT 1979 D.C. HAYES

ASSOCIATES, INC.
100 MSLOT • 3
200 D$ = CH (4):AK$ = CH (6):

CR$• CH (13)
225 EF$ • ClfRS C3):RE$ = CH (18)
250 PRINT D$; •NCJOlI ,0 ,C-

2500 PRINT: GOTO 1800
3000 X = PEEK (222): PCJ<E 216,0
3100 G<BJB 400: GOSU8 500
3200 IF X < > 5 THEN 9000
3300 GOSUB 700: PRINT EF$;EP$: GOSUB

500
3400 PRINT: PRINT •FILE SENT•
3500 GCSJB 600: PCl<E 1912 + f6LOT .8 +2

300 GCSJB 500: GOTO 3500 3600 INPUT F$
400 PRINT DS;•n1to•: RETURN 3650 G<BJB 700: PRINT RE$
500 PRINT D$; •pRfO•: RETURN 3700 GOTO 900
600 PRINT D$;•INr1ttSLOT: RETURN 4000 PRINT
700 PRINT D$;•par1f6LO'l': RETURN 4025 PRINT DS;·~ o•
900 GOSU8 400: GOSU8 500 4050 X • mE (0)
1000 INPUT •FILE NAME? •;F$ 4100 G<BJB 500: GOSU8 600
1100 PRINT [)$;•OPEN •;F$ 4200 I$•••
1200 INPUT "SEND OR RCVE? "1I$ 4250 PCJ<E 1912,134: CALL - 16382 +
1300 IF I$ = 9RCVE" THm 4000 256 * MSLO'l'
1400 IF I$ < > •sm>" THEN 1200 4300 GET A$: IF A$ • CR$ THEN 4600
1500 ONERR GO'OO 3000 4400 IF ,S -= EF$ THEN 5000
1550 POKE 1912 + MSLOT,2 4500 I$ • I$ + AS: GOTO 4300
1600 GOTO 2300 4600 PRINT: PRINT D$;"WR1TE ";PS
1800 G<BJB 700: GOSU8 400 4700 PRINT I$
1850 PRINT D$;•RF..N> "1PS 4800 GOTO 4050
1900 I$ • • • 5000 PRINT : GOSUB 400
2000 GET A$: IF A$ • CR$ THEN 2200 5100 PRINT DS;•ct.00£ ";F$
2100 I$ • I$ + A$: GOTO 2000 5200 PRINT "FILE RECEIVm•
2200 PRINT D$;I$ 5300 GOTO 3500
2300 GOOUB 500: GOSUB 600 9999 Rm. CCPYRIGHT 1979 D.C. HAYES
2400 GET A$: IF A$ < > AK$ THEN 2400 ASSOCIATES, INC.

MICROMODEM II CHAPTER 7 INSPIRATIONAL PRcx:;RAMs

BASICEX

The Problem

PAGE 50

If you use a time-sharing system and have created some useful BASIC
programs, you might well want to move them over to your Apple II computer and
modify them so ·that you can run them there. This can be fairly challenginq to
do since time-sharing systems are usually not set up to be able to transmit
BASIC programs to another computer, and the BASIC interpreters in the Apple II
are not designed to be able to accept programs from another computer.

What the Program Does

This program is designed to extract a BASIC program from another dialup
computer and save it in a D.O.S. text file. Once you have a BASIC program in a
text file, you can manipulate it with a BASIC program of your own (to make
simple changes such as changing semicolons to colons), and you can present it to
Applesoft II by sutmitting it as an EXEC file.

As you might have noticed, Applesoft II's input editor will allow you to
enter and edit programs which cannot possibly be run in Applesoft II. This
could be convenient in this application because you can then use all your normal
program editing facilities to work on the foreign program while you are
converting it to ·· Applesof t I I.

The BASIC program is extracted by issuing a series of LIST conrnands. It is
assumed that you have some knowledge of the line numbering of the program you
are attempting to extract, preferably the exact knowledge that would come from
having used the RENUMBER conrnand which many BASIC's have.

The first thing the program does is to ask you for the low line number, the
high line number, and the line increment. It uses the information you supply to
issue a series of LIST corrmands that will each ask for about 10 lines. It has a
buffer that will hold 30 lines, so if you are off by a little, it won't blow up~
but it does help to have an accurate guess.

One important assumption this program makes is that the BASIC interpreter
it is conversing with puts out some recognizable sequence of characters when it
is finished doing a LIST conrnand so that the program can know when the BASIC
interpreter is done so that it can go put those lines away on the disk. This
program was tested dialing into a system using Microsoft BASIC, which puts out a
line that says "ok" whenever it has finished with any co!Tllland.

Most likely, whatever system you hope to use this program with will be
different in this respect, and you will have to make some changes to this part
of the program. I have also written and tested a version which recognizes the]
prompt which Applesoft II issues. These two cases; a line containing some
recognizable message, and a prompt character will probably cover most
situations. ·

MICROMODEM II CHAPTER 7 INSPIRATIONAL PROORAMS

The changes for Applesoft II extraction are:

1400 OKS="]"
2415 J=O
2480. IF J<3 AND .A$=OK$ THEN 2850
2485 J=J+l
2600 delete

How the Program Works

PPiGE 51

There's nothing very complicated up to line 2050. This line sets the FLAG
byte to all zeroes. which enables the Micromodem !I's local display of output
and disables the local keyboard. Line 2100 instructs Applesoft II to perform
storage reclamation which will insure that this time-consuming process does not
happen unexpectedly when we are trying to keep up with the data coming at us
from the other computer.

The POKE at 2250 causes the LIST corrmand which line 2300 transmits to the
other computer to appear on our screen in reverse video. The POKE at 2350
restores normal video. Line 2400 turns the Micromodem II around, i.e. instead
of outputting to the Micromodem II, w input from it.

As you may recall. it takes a finite amount of time for the characters w
send to reach the other end of the line, mostly due to the delays inherent in
converting it into a serial bit stream. By the time w reach line 2402, there
are probably one or two characters from line 2300 which have still not reached
the other computer. Since most computers echo each character as it is received,
when we reach this point, the data which we see arriving from the Micranodem II
is just our own data being echoed back to us. Line 2402 simply waits until it
sees the RETURN, which was the last character that we sent. If the system you
are corrmunicating with operates half-duplex, that means that it doe~ not echo
characters so you will want to delete line 2402.

Lines 2410-2510 GET (line 2425) characters as they arrive from the
Micromodem II, display them, and append them to the current line (IS(L)). This
complication is necessary because if we tried to use an INPUT statement,
Applesoft I I wuld get upset about the COlllllaS that are bound to occur in any
BASIC program. At line 2600 we check for the ok which tells us we've got all
we're going to in this batch of lines.

Once we have a batch of lines, lines 2900-3400 write them onto the disk.
Then at line 3300 we compute the next line number to ask for, check to see if
we've gotten them all at line 3600, and if necessary go back to 2100 for another
batch. If we've got them all, we close the file, issue a message, and put the
Micromodem II into terminal mode.

Lines 9000-9300 are a convenient ONERR routine which switches our input and
output back to the keyboard and console and prints an error message if anything
goes wrong while we are conmunicating. This will make it easier to fix it.

MICHOMODEM II CHAPTER 7 INSPIRATIONAL PRffiRAMS PAGE 52

since we know we don't have to worry which computer we are typing to.

HINT: If you are debugging a modified version of the program. it could be
helpful to enable the local keyboard (line 2050) and aod a test for control-c,
so that you can stop the program if it doesn't seem to be behaving properly.

BASICEX

0 REM BASIC PR<X;RAM EXTRACTOR
1 REM WRI'ITEN BY DON HYDE
2 REM COPYRIGHT 1979,
3 REM D.C. HAYES ASSOCIATES, INC.
8 ONERR Garo 9000
9 CLEAR
10 CR$= CHRS (13)
20 GCYI'O 1000
100 PRINT D$; 0 IN#O": RE'IURN
200 PRINT D$; 0 PR:ft0": RETURN
300 PRINT D$;"IN#";MSLar: RETURN
400 PRINT D$; 11 PRi 11 ;MSLar: RETURN
1000 ML= 10
1100 DIM !$(ML* 3)
1200 D$ = CHR$ (4)
1250 PRINT DS;"NOMONI,O,C"
1300 MSLar = 3
1400 OK$ = ·"OK"
1500 GOSUB 100: GOSUB 200
1600 INPUT "LCW LINE NUMBER? ";LL
1700 INPUT "HIGH LINE NUMBER? ";HL
1800 INPUT 0 LINE INCREMENT? ";LI
1900 INPUT "FILE NAME? ";FS
2000 PRINT D$; "OPEN "; F$
2050 POKE 1912 + MSLCYr,O
2100 X = FRE (0)
2200 L = 0
2250 POKE 50 ,fi3
2300 GOSUB 400: PRINT "LIST ";LL;"-";

2410 IS(L) = ""
2425 GET AS
2450 IF A$ = CR$ THEN 2575
2475 PRINT A$;
2500 IS(L) = IS(L) + AS
2510 Garo 2425
2575 PRINT
2fi00. IF IS(L) = OK$ THEN 2900
2700 L = L + 1
2800 Garo 2410
2900 GOSUB 100
3000 PRINT D$; 11WRITE ";F'S
3100 FOR I= 0 TO L - 1
3200 PRINT IS(I)
3300 NEXT I"
3400 PRINT D$
3500 LL = LL + (ML - 1) * LI + 1
3fi00 IF LL< HL THEN 2100
3700 PRINT D$;"CL0SE ";F'S
3800 PRINT "FILE SAVED ON DISK."
3900 GOSUB 300: POKE 1912 + MSLar,128

4000
4100
9000
9100

9200

+ 8 + 2
INPUT F$
Garo 1500
GOSUB 100: GOSUB 200
PRINT "ERROR NUMBER"; PEEK (222)

PRINT "AT LINE "; PEEK (218) +
PEEK (219) * 25fi

INT (LL + (ML - 1) * LI) 9300 END
2350 POKE 50,255 9998 REM COPYRIGHT 1979,
2400 GOSUB 200: GOSUB 300 9999 REM D.C. HAYES ASSOCIATES, INC.
2402 GET A$: IF A$ < > CR$ THEN 2402

FILTER

The Problem

Sometimes we have an application program which we would like to be able to
put on-line so that other people can use it. This soMetimes presents a problen

MICROMODF.M II CHAPTER 7 INSPIRATI~ PROORAM; PltGE 53

because some people are more interested in crashing the system than they are in
using it. If you put a BASIC progr• on-line, it is pretty easy to crash it if
you type a control-C and wipe out the prograll. If you are using Applesoft II,
you can issue an ONERR statement, which will trap out control-C's and any other
error the caller might provoke. But this only works for Applesoft II, and
requires that each progr• you put on-line be modified.

Wult the Program Does

'111is one is actually two progras. The filter is pair of S1118ll
machine-language routines. Ole is a custcm INI routine which modifies o.o.s.
pointers so that the filter routine is inserted between the Micrcmodtm II and
o.o.s. 's input.

The other progr• is a BASIC progran which installs and initializes the
machine-language routines. O'ICe they are installed, to select the Micrcmodem II
for input, you should CALL 7f;8 instead of doing the usual INI statement. Note
that it is not necessary to put the CALL statement into a PRINT statement as you
would do withthe INI stataoent.

How the Program Work

The BASIC progr• is pretty simple, consisting mostly of REM statements.
It asks o.o.s. to load the aachine-language progr• at line 400, at 550 it
modifies the first instruction of the machine-language progr• to correspond to
the correct slot number for the Micranodell II. and at ,;oo it calls the custml
INI routine. If you put your Micromodem II in another slot, all you need to
change is line 100. ·

The machire-language routines reside in an area of ...,ry reserved for just
such snall routines as this one. This area is not used by either specie of
BASIC or by D.o.s. except during a boot, so once it is installed. it will not go
away Wll.ess you or one of your programs write something else there.

The custom INI routine occupies locations $300-$327. It first loads a
constant ($C3 for slot 3) which reflects the Micramodan II's current slot
nllllber. Next it uses this constant to modify the JSR instruction at location
$32A. It then makes sure that the TAM (code transparency) bit is set in the
FUG word. This disables the potentially dangerous control-Y function of the
Micranodem II fimware. It then canputea an address based on a pointer which
o.o.s. maintains at locations $3E7 and S3EJJ and stores the result in locations
$2A and $28. It then indirectly stores the address of the filter routine at
this ccmputed address. This effectively installs the filter routine between
D.o.s. and the Micromodell II finware.

If you are not using o.o.s., the section from $30~$325 could be replaced
by a IIUCh s~ler one that slal>ly stores the address of the filter routine in
locations S38 and $39 (KSWL and ICSe) •

The filter routine itself occupies locations $328-S33C. It first saves the

MICROMODEM II CHAPTER 7 INSPIRATIONAL PRcx;RAMS PAGE 54

Y register on the stack, then calls the Micromodem II input routine. When the·
Micromodem II firmware returns, there is a character in the A register. It then
loads a loop count (4) into the Y register and loops through a table starting at
location $33D, comparing each table entry to the contents of the A register. If
a match is found, that means that the character in the A register is one of the
discard characters, so it branches back to the JSR at #32A to get a new one from
the Micromodem II. If the character does not match any of those in the discard
table, then it restores the Y register, destroying the A register in the
process. Fortunately, the Micromodem II firmware left a copy of the character
in location $778, so we are able to restore that before we return to D.O.S. with
our safe character in the A register.

If you wish to modify the discard list or add to it, you may do so by
simply entering the hex values for the characters you wish to filter out into
the table with the monitor. If you add more characters to the t~ble, be sure to
change the loop counter (location #32E). The loop counter contains the count of
the characters in the discard table. If you modify the table, you will probably
want to BSAVE it as described in line 26 of the BASIC program.

FILTER

0 REM INSTALL FILTER
1 REM WRITI'EN BY InJ HYDE
2 REM COPYRIGHT 1979,
3 REM D.C. HAYES ASSOCIATES, INC.

·10 REM
11 REM THIS PROORAM INSTALLS A
12 REM FILTER ROUTINE WHICH FILTERS
13 REM OUT SOME .CHARACTERS FROM
14 REM MODEM INPUT.
15 REM
16 REM THE MACHINE-I...AKiUAGC FILTER
17 REM ROUTINE OCCUPIES 50 HEX
18 REM BYTES STARTillli AT 300 HEX.
19 REM
20 REM ITS TABLE OF DISCARD CHARACT

ERS
21 REM BEX;INS AT HEX 33D=829 DEC.
22 REM THE L.ENGTH OF THE TABLE
23 REM IS AT HEX 32E=814 DEC.

24 REM IF YOU MODIFY IT, SAVE IT
25 REM BY TYPIN:i:
26 REM BSAVE FILTER,~300,L$50 ·
27 REM
28 REM OOCE IT IS INSTALLED, INSTEAD

29 REM OF INftMSLOT, DO CALL 768
30 REM

100 MSLOT=3: REM MODEM SLOT NUMBER
200 0$=0

": REM CTRL-D!
300 PRINT D$; 0 PR#";MSLOT
400 PRINT D$; 0 BLOAD FILTER"
500 PRINT
550 POKE 7fi9,MSLCYI1+192
600 CALL 768
700 END

9998 REMCOPYRIGHT 1979,
9999 REM D.C. HAYES ASSOCIATES, INC.

MICROMODEM II CHAPTER 7 INSPIRATIONAL PROORAMS PAGE 55

THIS IS THE FILTER PROORAM ITSELF

0300- AO C3 LDY f$C3 0327- 60 RTS
0302- 8C 2C 03 ST'x' $032C 0328- 98 T'x'A
0305- 89 B8 Ofi LOA $0688,Y 0329- 48 PHA
0308- 09 04 ORA 1$04 032A- 20 07 C3 JSR SC307
030A- 99 88 0'1 STA $0FiB8,Y 03~ AO 08 LOY 1$04
0300- 38 SEC 032F- D9 3C 03 CMP $033C,Y
030E- AD E7 03 LOA $03E7 0332- ro Ffi BEQ $032A
0311- E9 68 SBC 1$68 0334- 88 DEY
0313- 85 2A STA $2A 0335- DO F8 BNE S032F
0315- AD E8 03 LOA $03El3 0337- '18 PIA
0318- E9 00 SBC #$00 0338- AA TAX
031A- 85 28 STA $28 0339- AD 78 07 LOA $0778
031C- AO 00 LDY 1$00 033C- 60 RTS
031E- A9 28 LOA 1$28 0330- 80
0320- 91 2A STA ($2A) ,Y 033E- FF
0322- A9 03 LOA 1$03 033F- 83
0324- C8 INY 0340- 84
0325- 91 2A STA ($2A) ,Y 0341- 00

The Problem

Isn't there anything useful you can do with one of these things?

\<flat the Poqram Does

I call this program a remote alarm clock. It might better be described as
a computerized wake-up call. It uses a Micromodem II and a Mountain Hardware
Apple Clock to make a phone call at a specified time and generate a distinctive
sound when the phone is answered. This could be a useful program, though I am
somewhat hesitant to publish it because I fear that it has great nuisance
potential.

How the Program Works

After some initialization, the program reads the clock at line 1000 and
displays the current time at line 1200. It then gets (and checks) a time and a
phone number. At line 2000, it builds a display which tells what it is doing.
Lines 2200-2700 are a loop in which the program reads the clock, updates the
time on the display, and checks to see if the time has arrived.

When the time arrives, the program places the phone call in line 2800 (note
the use of the line feed character (LFS) in the phone number). The loop in
lines 2900-3600 generates a distinctive sound which is sort of like a European

MICRQr,oDEM II CHAPTER 7 INSPIRATIONAL PRffiRAMS PAGE 5~

siren by switching the Micromodem II back and forth between originate and answer
modes. Line 3000 turns the Micromodem II's transmitter off but keeps the phone
off the hook by POKE'ing a byte containing just the off-hook bit (OH). Line
3100 then turns it back on in the originate mode by setting the OH, .MODE, and
TXE bits. After a short delay, line 3300 turns the transmitter off again and
line 3400 turns it back on in the answer mode. After another short delay, the
process repeats, and after 30 seconds or so, the program drops through to line
3700 and hangs up the phone.

It is necessary to turn the modem transmitter off before you change the
mode or it will not operate properly. There are actually four tones the
Micromodem II can generate, a MARK tone and a SPACE ione in each of the two
bands. Normally, when the Micromodem II is not transmitting any data, it
continually generates the MARK (higher frequency) tone of the band which is
selected. To switch to the lower tone, you must POKE a 9n dee. _into the ACIA
control register (CRl).

0 REM TELEPH~E ALARM CLOCK PR<X;RAM 1700 HA$=I$(l,2)
1800 ~=I$(4,S)

1 REM IN APPLE II INTEGER BASIC 1900 CALL -936
2 REM USIN:; MICROMODF.M II .AND 2000 VTAB 10: PRINT PH$;" WILL RIN:; A
3 REM APPLE CLOCK. T "; HA$; " : "; MA$
4 REM WRITTEN BY 000 HYDE 2100 Vl'AB 15: TAB 1: PRINT "TIME Na-/
5 REM COPYRIGlfI' 1979, IS"
6 REM D.C. HAYES ASSOCIATES, INC. 2200 PRtTSLOT: INITSLCYI': INPUT 11 11 ,I$

100 REM . 2300 lfI'S=IS (7 ,8)
200 DIM I$ (25) ,PH$ (10) .~ (2) 2400 MT$=!$ (10,11)
300 DIM MA$(2),HT$(2);MT$(2) 2500 PR#O: VTAB 15: TAB 13: PRINT HT$
400 TSLOT=4: REM APPLE CLOCK ; 11 :•;MT$: VTAB 23: TAB 1
500 MSLOT=3: REM MICROMODEM II 2600 IF H1\S=HT$ ANDMA$=MTS THEN 2800
600 CR2=-16251+16*MSLOT: REM MODEM 2700 GOTO 2200

CONTROL 2800 PRIMSLOT: PRINT DIAL$;PHS;LF$;
700 DIAL$=11 ":BY&CS=1111 :LF$=1111 2900 FOR I=l TO 50
800 CALL -936 3000 POKE CR2,128
900 PRINT "REMCYI'E ALARM CLOCK11

: 3100 POKE CR2,134
PRINT 3200 FOR J=l TO 100: NEXT J

1000 PRtTSLaI': IN#TSLOT: INPUT " 11 ,I$ 3300 POKE CR2,128
1100 IN#O: PR#O 3400 POKE CR2,130
1200 PRINT "TIME N°'f IS "; I$ 3500 FOR J=l TO 100: NEXT J
1300 PRINT: INPUT "TIME FOR ALARM -- 3600 NEXT I
HH:1'91 ",I$ 3700 PRINT BYE$
1400 IF LEN(I$)i5 THEN 1200 3800 INIO: PRIO
1500 IF I$(3,3)JII:" .THEN 1200 3900 GOTO 800
1600 INPUT "PHONE NUMBER TO Rit,.K; ",PH$ 9000 REM COPYRIGHT 1979,

9001 REM D.C. HAYES ASSOCIATES, INC.

MICROMODEM II CHAPTER 8 BACKGROUND INFORMATIOO P.AGE 57

BACKGROUND INFORMATIOO

The information in this chapter is not essential to using the Micromodem
II. But I believe that you will find it to be helpful and possibly even
interesting. Data caJ11U1ications is a fairly complex topic, ccrnbining as it
does aspects of several related technologies, each of which is a complex and
interesting subject in itself.

Data conmunications is a very confusing subject for most people, including
data processing professionals. The subject in inherently complex, and the
terminologies are often misleading. This is partly because of the mix of
da~processing, electronic, and telephone technologies. Frequently the same
words mean different things in the different fields, and when words from the
different fields are combined to describe concepts which combine the different
fields, they often carry a built-in confusion factor.

I have chosen several of the most important and most confusing topics and
have attempted to describe them in plain English. I hope that I have succeeded
at least to some extent.

Coapatibility With the Bell System 103 Modem

The Microoiodem II is designed to be completely . canpatible with the
conmuniation frequencies and modulation techniques of_ the _ Bell · System (Western
Electric) model 103 low-speed modem. The Bell system 103 (and its various
equivalents) is by far the most widely-used modem in North America. It is used
by ·virtually all time-sharing systems and dial-up data access systems as their
standard mode of access. This popularity is due partly to the relative
simplicity of the 103's FSK modulation technique and the reasonable cost of the
circuitry required to implement it and partly due to the fact that there are so
many other !OJ-compatible modems already installed to talk to.

Wlat IS a. modem anyway? ·

Early in . the history of computing (back in the dim distant days of the
19SO's),when computers will still huge · like dinosaurs · and people were just
beginning to discover their data processing power, it occurred to someone that
you could do a lot of neat things if you had two computers with a wire between
them, or a computer and a typewriter if they had a wire connecting them. When
they started thinking about wires that ran across the country, they soon began
to think about how nice it would be if they could use all the phone wires that
were already there.

Unfortunately, as we all know, computers talk digital and telephones are
designed to carry the hmaan voice. And the Bell System has lots of smart people
who've been working for years and years building black-magic widgets of all
kinds that mash and tear up those voice signals in all sorts of inconceivable
ways to get them into long-distance wires in the most efficient possible way.

MICROMODEM JI CHAPTER 8 BACKGROUND INFORMATI~ P.AGE 58

They spent decades researching the hwnan voice so that they knew exactly how
much they could mash and distort it and still have it come out recognizable at
the other end of the line. If you could send digital data on the phone, who
knows what all those widgets·might do.to it before it got to the other end of
the line. ·

The phone company was worried that digital signals might hurt their various
widgets, or migh~ interfere with normal voice signals. so they weren't very
encouraging at first.

But the problem did get some study, and some experiments were carried out
(mostly by the Bell System) • It seems that one thing all the widgets are
careful not to disturb is the frequencies of the tones making up a voice. They
may distort the amplitude or the phase, but they are careful not to distort
frequencies. So a device was built which encoded. digital data · consisting of
ones and zeroes into a signal containing different frequencies for ones and
zeroes. This was called a modulator. That was pretty easy. The hard pa('.t was
building something to un-do the modulating, and turn the.tones back into digital
ones and zeroes. Suffice it to say that they did figure out a way. They called
the un-doer a demodulator. ·

It turned out that the modulator and the demodulator worked pretty good
(better than most people expected). So the phone people put one of each into a
box, and started to ·sell it as data tran.smission service.· Like most engineering
types, they weren't at their best with words, so they just took pieces of the
words for the parts and·stuck them together to make a word for the box.
MOdulator :+ OF.Modulator = KX>F.M. thus the modem was born.

Well, a lot of things have happened sirice those distant days when dinosaurs
first spoke to each other over the phone. A lot of research was done on modems.
They got faster. And they got bigger and more expensive. In fact, the speed
and price have tracked very closely, and there is a conmon rule of thl.l'llb that
modems cost about a dollar a baud. But that didn't matter much because the
computers they worked with were even bigger and more· expensive.

Things happened even faster when the Supreme Court decided to allow
competition in the modem business.

At first the phone company insisted that they.had a. legal monopoly in the
modem business because modems were part of the telephone system and they had a
legal monopoly to run the phones. Nobody argued. After all, it was pretty
obvious that a modem had to be wired up to the phone line, and that certainly
made it part of the phones didn't it?. But what about the computer wired to the
modem? Certainly it wasn't a telephone and the phone company couldn't claim a
monopoly on making computers, too. Then along came the acoustic coupler, a
modem that wasn't wired up to the pione line. It talked into the phone just
like a human, making noises into the mouthpiece, and listening to the noises
coming from the earpiece.

The phone company insisted that an acoustic coupler was also a violation of
their protected monopoly~ - The Carterfone company, which built an
acoustically-coupled device for use with two-way mobile radios, went to court

MICROMODF.M II CHAPTER 8 BACKGROUND INFORMATI~ PAGE 59

after the phone company put them out of business by telling their customers that
the acoustic coupler was illegal and threatening to disconnect their telephones
if they didn't stop using it •.

The court eventually decided in favor of Carterfone (awarding them
considerable damages, wiich helped them to get back in business), and ruled that
acoustic couplers were legal. More recent decisions have broadened the rules
for intercomect, giving the FCC the power to li~nse devices for use on the
telephone network in much the same way that they have long licensed radio
transmitters, and limiting the phone company's protected monopoly to ruming the
network wiich connects the piones together.

Today the dinosaurs, though still very much alive and very nuch still with
us, are giving up center stage to the much smaller, more · advanced
microcomputers. Snall, inexpensive computers need small inexpensive modems, so
the old reliable 103-style modem is now even more popular than ever.

Baud Rates

The term baud often confuses people. Am with good reason. It means
different things depending on who is using the term, and wien. In its narrowest
technical definition, a baud is defined as being a measure of the rate at wiich
signals are transnitted through a conmunications chamel,- with one baud
corresponding to a rate of one signal element per second.

Well, that sounds pretty straightforward, but what's a signal element?
With digital data it seems pretty reasonable that a signal element should be the
same thing asa bit so that 300 baud would be the same thing as 300 bits per
second. Right!? Well, sanetimes.

Baud rate is concerned with the stuff (like tones) going down the
conmunications chamel (in this case a phone line), and NOT with the stuff (like
ones and zeroes) we're turning it into at the other encr.-1n a 103-style modem,
each possible change fran one frequency to the other is a signal element. Since
that is how we code a single bit, o~ baud equals one bit per second. But the
phone line has a very finite rate at which it can carry signal elements. The
rate is related to the frequency range the line can accomodate and the
modulation technique (as well as the error rate one is willing to tolerate). In
general, 1200 baud is about the highest the phones will accomodate with any
degree of reliability. So the fastest that a modem can be is 1200 baud (unless
you're using some other kind of telephones).

Well were do 480o-baud modems come fran then? Well, the answer is that
they aren't 4800-baud modems at all. They are 4800 bit-per-second modems. They
do it by very cleverly encoding 4 bits of digital data onto a single signal
transition (corresponding to a single cycle of a 1200 Hz carrier tone). As you
can imagine, it is quite a trick encoding them that way, and even more of one to
get them back out at the other end. That's why they're so expensive - it ain't
easy.

But that's not the only confusing part. As data corrmunications users, you

MICROMODEM II CHAPTER 8 BACKGROUND INFORMATIC'N PAGE 60

and I don't care how many funny little bauds go down the phone line. In fact we
really don't care about the bits even. we are trying to get some bytes moved
around, but we'll probably settle for moving ASCII characters.

So how fast can I send characters with a 300 bit-per-second modem? Usually
about 30 characters per second, but it can vary. You see, in order to be able
to pick the characters out .at the receiving end, we have to put on sone extra
bits . to tell where the character begins and ends, etc. So our 7-bit ASCII
character i.s accompanied by one st;u:·t bit, one stop bit, an optional parity bit
for error-checking; and an optio11al extra stop bit (I don't quite know why. it
-just slows things down). Thus , our ASCII . character could get from 2 to 4 extra
bits as travelling companions • .

The most conmon usage is one each of start bits, stop bits, and pc:1rity
bits. This 1i¥Orks out nicely because that means 10 bits per character .which
makes the character rate at 300 baud simple to calculate as 30. characters per
second.

fig 8 --,
START DATA BITS

5,8,7, or 8

OPTIONAL
PARrTY

STOPBIT(S)
1 OR2

. Normally, there is no good reason to transmit any slower than you have to
(you just get a bigger phone bill), except that it won't work if you send faster
than whatever's at the other end can receive it. There are an awful lot of
model 33 Teletypes still kicking around. They can send and receive only at 110
baud. Between all those TTY's and the machines built to talk to them, there are
still a lot of 103-type modems connected to things that only run at 110 baud.

Half- and Full- Duplex

This is another very confusing aspect of data cormiunications, and like. baud
rates is mostly confusing because the. terms have been used so loosely and with
so little regard for their original very narrow technical meaning.

A corrrnunications link which carries data from one point to another in only
.one direction is said to be a simplex link. Most of the devices (such as radio)
which are used for corrmunication are basically simplex devices. To get a
two-way cOl'!lllunication link, we have to use two simplex links, one going in each
direction. This is called a duplex communications link. The telephone is a
duplex corrrnunications link. The people at both ends of the phone can hear each
other. They can even both talk at the same time (except on lonq-distance
sometimes).

MICROMODEM II CHAPTER 8 B.\CKGROUND INFORMATim PAGE lil

If we have a simplex link which can be turned around, then we can have
two-way conmunications with only one c011111unication path. This is called
half-duplex, because it has the effect of a duplex link but with only half as
much stuff. CB radio is half-duplex. When one person finishes talking, he has
to say •over" or "10-4" or something so the person at he other end knows it's
his turn to talk. If they both try to talk at the same time, neither one can
hear anything.

To have a full-duplex radio channel, each person would have to have a
separate transmitter and receiver, and both people's transmitters would have to
run all the time. In order for the two transmitters not to interfere with each
other, they would have to use different channels. So full-duplex takes two
channels.

Full-duplex conmunications is easier to use than half-duplex (at least for
people) , because it is more like normal face-to-face comnunication. So, even
though it takes more stuff to make it work, the phones are built to work
fu~l-duplex. The phone in your house has a clever transformer called a hybrid
which allows the two signal paths going in opposite directions to share the same
pair of wires to the central office. But once it gets to the office, there are
more circuits that sort them out, and they are kept that way until they leave
another central office on their way to someone's phone.

Long-distance phone circuits always occur in pairs -- one circuit going in
each direction. On calls that are over a few hundred miles, there is a problem
with a full-duplex link. It takes the signals a finite length of time to get
from one end to the other. When they arrive, part of the signal goes back into
the pi}one and is sent back where it came from. You get an echo. To fix that,
there are gizmos called echo suppressors in the lines. An .echo suppressor is a
voice-controlled switch that makes the phone line really work half-duplex, but
it seems to be full-duplex because the echo suppressors turn around in the space
between two syllables.

well, the 103-type modem was designed to be able to take advantage of all
those full-duplex conmunication paths. 'lbe designers of the 103 divided the
frequency band of the telephone into two narrower bands, and assigned one for
sending in one direction and the other for sending in the other. This gave them
two channels to work with (like using two CB channels). It worked. Data could
go in both directions at the same time. It worked on long distance, and the
modems weren't at all bothered by the echos, because the modems were design9d to
talk on one frequency and listen on the other. They didn't care about the echos
because they couldn't hear them.

MICHOMODEM II CHAPTEH 8 BAC~GROUND INFORMATION

fig 9

VOLUME

FREQUENCY
RESPONSE OF
ORIGINATE MODE
FILTER

MARKl270
SPACE 1070

r 300
\..FREQUENCY RESPONSE OF

THE TELEPHONE LINE

2225 MARK
2025 SPACE

FREQUENCY
RESPONSE OF
ANSWER MODE
ILTER

FREQUENCY

3000

PAGE 1;2

The only problem was those echo suppressors. They kind of messed things
up. Fortunately, someone had already thouqht of that anc1 put a special disable
circuit into the echo suppressors. that made them turn off if they heard a tone
in a certain band. One of the tones used by the 103 just hc1ppens to correspond
to . this signal. So as soon as an echo suppressor hears the cc1rrier from a 103
modem, it turns itself off.

Not all modems are full-duplex. In fact. until recently the 103-type was
the only full-duplex modern. Most of the faster modems are half-duplex. This
makes them more complicated to use beause then the coraputers at lx>th ends have
to say "over" or "10-4" or something and all that. That, of course means a lot
of complicated prograr.ming.

One nice thing about a full-duplex modern is that you can echo· the
characters. Virtually all time-sharing and data access systems echo each
character back as it is received. and the character is not displayed or printed
on the terminal until it has been for a full round trip to the distant computer
and back. This gives the person typinq a clear indication whether what he typed
was received correctly. What he sees is what the computer sees. If a character
gets garbled in the phone line, it shows up oc1rble0 on his terminal. If it qets
lost co1:tpletely. then nothing shows up on his terminc1l i'lt nll. This technique
has a very catchy nane. echo-plex.

MICRCM)DEM II CHAPTER 8 BACKGROUND INFORMATIOO P.AGE fi3

fig 10

It is because of this practice that most terminals have a switch marked
full- or half-duplex. If the terminal is connected to a half-duplex modem,
echo-plex won't work because the computer can't send back the characters it
receives. Some systems don't use echo-plex even when they can because it
introduces a slight delay which some people find objectionable. In this case,
the terminal must display the characters that it sends to the computer. This is
all a full-/half-duplex switch does on any terminal. Often the sane switch
appears on modems (especially acoustic couplers) mostly because it's cheap and
looks impress.i ve.

Ringing and Dialing

Ringing and dialing are two aspects of what the telephone company calls
signaling. Signaling is the process by which a connection is established on the
switched (dial) telephone network. As is the case with many corrmonplace things,
telephone signalling is much more complicated than it looks.

First let's consider what has to happen when you place a call. The dialog
looks something like this:

YOU
I want to make a call.

My girlfriend.

PlmE CCM>ANY

OK. Who do you want to call?

OK. I'll let her know you want to talk.

I'm sorry, she's talking to saneone else.

MICHOMODEM II CHAPTER 8 BACKGROlJND INFORMATION PAGE fi4

Now, that's not such a complicated dialoq, but there are a few difficult
limitations. For one thing, as we all know, there is seldom a person at the
phone company, but some kind of a machine.

Everything that we say to the phone company has to be simple and exact
enough for a machine, and everything the phone company says to us has to be
simple enough that a machine can make the sounds. Whatever we do, we have to co
it with just the two .. wire~ that connect us to the central office. And most
limiting of all, we have to do.it all with technology that was avaialable in
1894, because that's when the dial.telephone was invented.

Let's start simple. How does the phone company find out that we've picked
up the phone to make a call? Your telephone has a switch on which the receiver
normally rests when not in use (.the switch hook). When you lift the receiver,
this switch establishes a connection between the two wires and allows current to
flow from a battery at the central office. This current can be detected at the
central office by a light bulb in series with the line~ or by a relay.

fig 11

To tell you that it is listening, the central offic~ machinery connects the
line to a generator which produces an audible dial tone in your receiver. · ·

To tell the machine who you want to talk to, you dial that person's
telephone number. The dial in your phone has a switch that is in series with
the switch hook. This switch momentarily breaks the connection between the two
wires. When the connection breaks, it causes the relay at the central office to
drop out momentarily.

The dial makes a series of these pulses very rapidly. The number of pulses
corresponds to the digit you have dinled, from l to 10 pulses for the digits 1
to O. At the central office these pulses are counted by Strowger relays and
other more recent devices.

MICROMODEM II CHAPTER 8 BACKGROUND INFORMATIOJ PPGE 65

fig 12

~---JI

Once you have dialed, a whole bunch of complicated machines that I won't
attempt to describe find the pair of wires corresponding to the number you have
dialed. ·

If the line is busy, its phone will be off hook and the relay connected to
it will be closed. The machine will then connect your line to another generator
which makes a busy signal.

If the line is not busy, then it will connect that line to yet another
generator. This one puts out 115 volts AC at 20 Hertz. Your friend's telephone
has a bell which is connected to the line via a capacitor. The capacitor
prevents the DC current from the battery from flowing through the bell, but
allows the AC ring signal to pass through, thus making a loud noise.

When your friend picks up his phone, his switch hook makes connection,
drawing current from the battery and activating the relay connected to his line.
This causes the ring generator to be disconnected and stops the ringing.

MICRCM)DEM II CHAPTER 8 BACKGROUND INFOOMATION PAGE 66

fig 13

over the years, many refinements and variations have been added, including
tone dialing, l,.I1 which tones are used instead of the current pulses I have
described. · Tone dialing may eventually replace pulse dialing, but now and for
many years to come, all automatic telephone exchanges accept pulses even if they
are designed for tone dialing. Many older exchanges are able to accept only .
pulse dialing, so for now, pulse dialing is the only universally usable
technique.

Well, if you understand everything this far, you can consider yourself to
be a minor expert on telephones and data comnunications. And as the owner of a
Micranodem II, you are now equipped to use that knowledge to advance the state
of the art by discovering and developing new applications. Good luck.

MICROMODEM II CHAPTER 9 FIRl'-'WARE SPECIFICATION PAGE f,7 ·

Name

ENTO

OUTA

001'

IIN

Specification for Micromodem II finrware

Entry Points

Address Function

<NOO Initial input or output call from Apple II monitor. If MM2 is
reset, Apply defaults. Determine by examination of console
switch locations whether call is for input or output. Modify
input or output console switch locations as necessary to direct
further input and output to correct routines. Perform input or
output function as deteremined above.

<N02 Special output call for full duplex operation. Output a byte
from location CHAR in a manner which avoids the 6502 false read
problem.

<NOS

0107

Normal output call. Output byte in A reg subject to all output
options etc.

Normal input location. <l>tain a byte from either modem or
keyboard in accordance with options set, and return it in the A
reg.

Default Initialization

Default initialization is performed on entry via ENTO if the RESET signal
is present from the modem. This signal is removed by operations performed by
the initialization sequence and does not return unless a hardware reset occurs
or someone clears the SET bit in the modem control register.

Default Settings

l)Lower-to-upper-case translation enabled.
2)KBDE E'LAG bit set, all other FLAG bits reset.
3)Data format 8 data bits, no parity, 1 stop bit.
4)High baud rate (300).
S)Phone on hook. modem turned off.
6)30 msec line feed delay selected but not enable

Features of Input Routine (IIN)

l)If TERM flag set, enter TERMINAL mode.
2) If on-hook ignore . input from modem.
3)1£ on-hook and phone rings, answer it:

i)Display:

MICROMODEM II: RIN:;

MICRCM>DEM II CHAPTER 9 FIRl4'JARE SPECIFICATIOO

ii)At end of ring take phone off hook.
iii)Display:

MIICROMODEM II: AWA.IT CARR.

iv)Put modem in answer mode.
v)Turn on carrier
vi)Wait up to 30 sec. for other carrier.
vii)If no carrier, abandon call.
viii) If carrier detected., display:

MICROMODEM II: CONN.

4)If TRAN flag not set, following control characters accepted from modem:

Character

ctrl-T
ctrl-N

ctrl-Y
line feed
null
delete

Response

Set TERM flag and enter TERMINAL mode.
i)Set LFOO flag to enable line feed insertion
ii)Disable display (DISPO=l)
iii)Clear Apple II screen.
Jump directly to Apple II monitor (FFf55).
discard
discard

· discard

PNiE 68

S)If TRAN flag not set and LOCSE = 20H then translate lower-case characters to
equjvalent upper-case.
6)If off-hook and no carrier is present, abandon call.
7)All ctrl-A sequences described in TERMINAL mode except ctrl-A ctrl-Q (start
dialing) accepted from keyboard and processed regardless of status of KBDE
(keyboard enable).
8)If KBDE flag set, accept all characters typed as valid input. If KBDE flag
reset, ignore all keyboard input except ctrl-A sequences.
9)When call is abandoned:

i)Hang up phone.
ii)turn off modern.
iii)Display:

MICROMODEM II: NO CARR.
MICROMODEM II: HUN3 UP

Features of Output Routine (OUT)

l)If on hook and character ctrl-Q sent, initiate DIALir-.Ki sequence.
2)If dialing in progress, dial characters as sent (see DIALIIIK,).
3)If TRAN flag not set, and ctrl-Z sent, hang up phone, display:

MICROMODEM II: HUr-.Ki UP

MICROMODEM II CHAPI'ER 9 FIRftltlARE SPECIFICATIOO PJt!GE 69

4)If DISPO flag is zero (display selected),, copy all modem output directly to
the Apple II's display.
S)During actual transmission via the modem,, the following characters are
accepted from the modem input if TRAN is not set:

Character

ctrl-S
ctrl-Y

Response

Stop transmitting until any other character is received.
Jump directly to Apple II monitor (at FF65).

Features of DIALIN:;

!)Initiated by output of ctrl-Q if on hook regardless of state of TRAN flag.
2)Initiated bya ctrl-A ctrl-Q in TERMINAL mode.
3)0nce DIALIN:; is initiated, it is not exited until a line feed,, carriage
return, or ctrl-Z character is detected.
4)0n initiation,, the following occurs:

i)The following message is displayed:

MICROMJDEM II: DIALIN:;:

ii)The phone is taken off hook.
iii)A two-second delay is timed out to allow telephone exchange to return a

dial tone.
S)The timing of dial pulses is in accordance with Bell System specifications:

Each pulse = 61 msec on hook
Interpulse delay= 39 msec
Interdigit delay= 600 msec minilllllII

6)Characters output while DIALIN:; are handled as follows:

Character

Digits 1-9
Digit 0
*
{return}

Response

Dialed as 1 to 9 pulses
Dialed as 10 pulses
2-second delay (for second dial tone)
i)Terminate dialing,
ii)Set modem to originate mode,
iii)Display:

MICROMODEM II: AWAIT CARR.

{line feed}
{ctrl-Z}
all others

iv)Wait up to 30 seconds for ans'Nering carrier,
v)If carrier is detected,, enable modem transmitter,
vi)If no carrier detected,, abandon .call.
Terminate DIALIN:;, do not enable modem or wait for response.
Abandon call.
Display but otherwise ignore.

7)Ctrl-Z received from keyboard any time during 30-second wait for answering
carrier causes call to be abandoned.

MICROMODEM II CHAP'fER 9 FI~ SPECIFICATION

8)When call is abandoned, the following message is displayed:

MICROMODEM II: NO CARR.
MICROMODEM II: HUI'-(; UP

Features of TERMINAL mode

PAGE 70

l)Entered from input (IIN) when ctrl-A ctrl-F or ctrl-A ctrl-H sequences
entered from keyboard.
2)Entered from input (!IN) if TERM flag set prior to calling IIN.
))Exited (back to IIN) if ctrl-A ctrl-X entered from keyboard.
4)Exited (back to IIN) if ctrl-R received from modem and TRAN flag not set.
5)Entered if TRAN not set and ctrl-T received fro~ modem.
6)0n entry display message:

MICROMODEM II: BEGIN TERM

7)0n exit display message:

MICROMODEM II: END TERM

8)Local display is switched through the console switch locations CSWL, CSWH and
is compatible with Apple II serial and parallel printer interface cards.
9)The following control.sequences are recognized from the keyboard.

Sequence

ctrl-A ctrl-1
ctr.I-A ctrl-3
ctrl-A ctrl-H
ctrl-A ctrl-F
ctrl-A ctrl-Z
ctrl-A ctrl-Q
ctrl-A ctrl-S
ctrl-A ctrl-X

· Response

Set modem speed to 110 baud, format 8 data bits 2 stop bits.
Set modem speed to 300 baud, format 8 data bits 1 stop bit.
Set half duplex (enable display, DISPO=O)
Set full duplex (disable display, DISPO=l)
Hang up phone and turn off JllOdem.
Initiate dialing sequence.
Transmit Break until any other character typed.
Exit TERMINAL mode.

Subtle Points Not Covered Elsewhere

l)Shared HOM's are shut off by access to CFFF when entered from any of the four
valid entry points.
2)Flashing cursor is removed from Apple II display when a character is received.
))Flashing cursor is placed on screen when awaiting a character in TERft1INAL
mode.
4)Random number location (RNDH) incremented while awaitinq characters.
S)X and y registers and status of interrupt enahle are preserved thru all
entries.
l))ACIA control register (CHl) and modem control register (CR2) are refreshed
from their RAM storage locations each time a character is transmitted.
7)The hex value CN (n=slot number) is maintained at loc 7F8 durinq all
operations.

MICROMODEM II CHAPTER 9 FIRr+IARE SPECIFICATION P~E 71

8)Shared ROM's are shut off after possible call to another peripheral card after
characters displayed in TERMINAL mode.

Software-Controlled Options

There are many softwar~ontrolled options. This is an attempt merely to
enumerate the most important ones. For operational details of individual
options, please see the appropriate section of this manual.

Data Format

Two standard data fonnats may be selected via ctrl-A sequences from the
keyboard: 8 bits, no parity, 2 stop bits at 110 baud, and 8 bits no parity, 1
stop bit at 300 baud. Other data formats may be selected by storing appropriate
values in the RAM location for the ACIA regist er.

Baud Rate

300 baud is the default speed. 110 baud may be selected via a ctrl-A
keyboard sequence. The rates may also be selected under software control by
1nodifying the contents of the RAM location for the modem control register.

Lower-to-upper Case Translation

Normally enabled (20H in LOCSE), may be disabled by writing Oto LOCSE.

Options Selected via Bits in FLJIG Byte

Several 'softwar~ontrolled options are selected by setting or clearing
appropriate bits in the FLAG byte in RAM.

Bit

DISPO

LFI

TERM

TRAN

Option Controlled

Local display of data transmitted via modem.

Insertion of line feed after carriage return, all?<> enables delay
after return. Duration of delay is controlled by contents of
location WAIT, which contains a delay factor in 10 msec units.

When set causes entry to TERMINAL mode from IIN.

Code transparency.
control characters
exceptions:

When
from

set disables recognition of all
any source with the following

i)ctrl-A sequences from keyboard.
ii)ctrl-Q output if on hook
iii){line feed} if LFON is selected

MICRCM>DEM II

KBDE

CHAPTER 9 FIRl+IARE SPECIFICATION PAGE 72·

Keyboard Enable. If not set, no characters accepted from local
keyboard except ctrl-A sequences.

MICRCM>OEM II TABLE OF MEMORY LOCATIOOS

TABLE OF MEMORY LOCATIOOS

Note: In all addresses. N stands for the number of the slot
iii"""'wnich the Micranodem II resides.

NO $6.F8 = 1784 dee.

PAGE 73

Contains the hex value NO any time the Micromodem II is in control
computer.

CHAR $778 = 1912 dee.

Each character sent or received is temporarily stored here. Also used by
self-test program, see SELFTEST (p. 8 ') for more information.

$7F8 = 2040 dee.

Contains the hex value CN any time the Micromodem II has control of the
computer.

$678-+N = 1656-+N dee.

Contains a copy of the modem control byte. The actual hardware register is
updated from this location each time a byte is transmitted. For further details
see description for CR2 (p. · 16) •

FI..NiS $778+N = 1912+N dee.

Contains 7 o~it flags which control various functions of the Micromodem
II firnware. The bits are:

bit no.

name

weight

7 6

DISPO DlS

128

5

X

32

4 3 2 1 0

LFI TERM j TRAN I KBDE I ors l
16 8 4 2 1

MICROMODEM II TABLE OF MEMORY LOCATIO<IS PAGE 74

DISPO - When zero, causes all output to Micromodem II to be displayed on Ap1,la
II Is display screen. TIIIS 81T Ae.ru111.,y r,rr fl/¥ DIAPLE'X.MIO&. I/IIIEAI 1r'J,,Z6Aq JIAI.F ()UPl.£X
(loC.ltl. ,eJ/o) /$ ~rl.lVEQ. '11116,J ,rs St:T r, II OIJE ,:uu DIAPJ.E~ {111 """'' £eNP, rr tl"utflD,

DLS - Used internally, indicates that Micromodem II finrware is preparing to
start dialing.

X - Unused.

LFI - Enables line feed insertion after carriage return on output. Also enables
delay after line feed, which is adjustable by setting location CRDLY.

TERM - Indicates that the terminal program is running. If this bit is set. the
terminal program will begin running the next time the Micromodem II is polled
for .input~

TRAN - Transparent text l!IOde. Causes Micromodem II finrware to ignore the usual
control codes, except. that control Q is still recognized if the Micromodem II is
hung up. This is useful for some program-controlled applications.

KBDE - Keyboard enable. When this bit is set. the Micrornodem II will accept
input either from the Apple II's keyboard or from a remote keyboard connected
via the telephone line. When this bit is reset, the Micranodern II will accept
input only from the remote device, except for control-A sequences.

DLG - Used inte~nally. Flag indicates that cUaling is in progress.

ACIA $7F8-+N = 2040-+N dee.

Contains a copy of the ACIA control byte. The actual hardware register is
updated from this location each time a byte is transmitted. For further
details. see descrption of CR! (p. 75·).

LOCSE $nF8iN • 1784-+N dee.

Upper/lower case . translation flag. Normally contains $20 = decimal 32
which enables lower-to-upper case translation, or Oto disable translation.

DATA SC087-+NO = -ln249+ln*N dee.

ACIA data input and output port. BASIC programs may read this port. rut
should not write to it. See description of self-test program (p. 8) for
further details.

MICRCM)l)F.M II TABLE OF MEMORY LOCATICNS PPGE 75

STA'IUS/CRl $C086+NO = -162Sl+l~*N dee.

ACIA status and control ports. '!be following tables describe the bits used
in the Micromodem II. For additional data please see the manufacturer's data
sheet (Motorola ftC6850). The status bits are:

bit no. 7

name X PE

weight . 128 64

X - Unused.

PE - Parity error ~etected.

OVRN - Receiver overrun error.

FE - Framing error.

5 4 3 2 1 0

OVRN FE I RESET I CD

32 lli 8 4 2 1

RESET - When set indicates that Apple I I has been RESET since the last time the
Micromodem II was initialized. ·

CD - Not carrier detect. When set indicates that no carrier is present, or
carrier has been momentarily lost since the last data character was read.

TRE - Transmitter Register Empty. Indicates readiness of ACIA transnitter to
accept another character.

RRF - Receiver Register Full. Indicates presence of a valid data character in
receiver register.

'ffle control bits are:

bit no. 7 5 4 3 2 1 0

name 0 0 0 LS3 LS2 LS! 0 1

weight 128 64 32 16 8 4 2 1

O - Must always be o.
LS3-LS1 - 3-bit character length select code. Please see AJJVANCED PROORA"'1I~
(p. 37) for details.

MICROMODEM II TABLE OF MEMORY LOCATIONS PAGE ?fl

1 - Must always be 1.

RI/CR2 $C08SiNO = -16251+16*N dee.

Modem status and control ports. On input. the most significant bit is O when
the phone is ringing. The output bits are:

bit no. 7 'i 5 4 3 2 1 0

name OH X X ST SET MODE TXE BRS

weight 128 64 32 l'i 8 4 2 1

OH - Off hook. When this bit is set, the Micromodem II •picks up the phone•.

X - Unused.

ST - Self Test. When set causes Micromodem II to enter self-test mode. For
details see description of self-test program (p. 8).

SET - Initialization flag. Used in conjunction with RESET status flag to
control initialization of Micromodem II.
When this bit is set to zero, the RESET status flag goes to 1. When the

Micfomodem II is. called for input or output imnediately after an INt or PRt
statement, the RESET flag is checked, and if it is set. the default values are
applied.

MODE - selects originate or answer mode. 1 = originate.

TXE - Transmitter enable. Turns on modem transmitter when set.

BRS - Bit rate select. Selects high (300 baud) rate when set.

OHffl teeooz+tloo =-l6'SB2. l'lf'6.,.IJ

s.oi,,AL o 11.T Pr.IT C41Lc. Lr,f,,Ar101J. A t.&L OJfl v'SI(r, r111s I.OC,111'10/J w,u. e,, 1,1S£ tH, 8Yrc IJJ
CJ/lflf (f'J 76 fJ~ l'l/2 DGe,.) f"o IJE flU'TNT 1o IH~ .N\11Dl'Ail,

MICROMODEM II APPENDIX A MODIFYit,l; DCM JONES PACKAGE

MJDIFYit<K; THE ro'1 JONES STOCK REPORTER PACKJIGE

REVISED 2/22/79

PAGE 77

The Apple I I Dow-Jones Stock Reporter Package is designed to run with the
Apple Communications board. It requires some slight modifications to run with
your Micromodem II, so that it will automatically dial the Dow-Jones computer
and hang up when you are done.

This software package runs under Applesoft II, the Apple floating-point
BASIC interpreter. Depending on the configuration of your machine, you may need
to load this interpreter from tape or disk, or you may have it already loaded in
ROM in your machine. In any case, the first step.is to get Applesoft II
running. You can recognize it by its prompt character (]).

Once you have the proper BASIC running, you will need to LOAD the Dow-Jones
Stock Reporter package from the cassette on which it is supplied. once you have
it loaded into your computer, you can enter the following changes which will
make the program run with the Micromodem II. Once you have made these changes,
you should SAVE the program on a new tape so that you will not have to type in
the changes again.

The table below shows the statements that need to be changed or added. If
you are familiar with the Apple II's editing features, you may prefer to use
them to save a little typing, otherwise it will probably be easier to simply
retype the whole statements.

Line 20 should contain the telephone ntnnber of your nearest Dow-Jones
access port, which you can obtain from the Dow-Jones manual with your stock
reporter package.

Some of the lines will be longer than the screen is wide. This will cause
them to fold over into two or more lines. This will not bother the computer, so
you should not let it bother you either.

MICIOIDEM II APPENDIX A JD>IFYit«; DCM JOIES PACVtGE

TABLE OP QIAM;ES

LlNB CHAt(;E

20 DIM NUMBEI$ (15) : NUMBR • •your local dow-jones access m.anber"
1004 PRICSLOT: PRINT: POKE 1912+CSIDr.128: PRIO
1330 PRICSLOT : PRINT CHI$ (17>, NUMBER$: PRIO
1340 IF PEBK(l656iCSLC71') > 127 THEN GOTO 1360
1350 INPUT "NO ANSWER. PRESS RETURN TO TRY AGAIN" 1 M
1355 GC71'0 1330
1630 PRICSLOT : PRINT CIR$ (26) : PRIO
2275 PRINT• 1. CtW«;E A STOCK•
2292 PRINT• S. HAN:; UP PfDE•
2295 PRINT:PRINT -i'YPB 1.2.3.4 OR 5 •,
2310 IF I<l OR I>5 'DIEN 2294
2320 ON I GOTO Jooo.11000.12000.2350.2325
2325 PRICSLOT:PRINT CHR$ (26) : PR#O
2327 LGIN-0: GOTO 2235
10045 PRICSLOT : PRINT OB$ (26) : PRIO

PIGE 78

Once you have entered all the changes you should use the LIST ccmnand to
check your work. Siq,ly type:

LIST <line number>

Replacing <line number> with the line number you are checking.

When you are sure that all the changes have been made correctly. you should
use the SAVE cormiand to save your work on another tape (or on disk) •

MICROMODEM II APPENDIX B · MODIFY!~ AND USIIIG nATAKJVER

Procedures and Information for usinq Datamver
With the MlaDIDF>'I II

First it is necessary to install a patch to your copy of Datamover.

1) Load the Datanover. It resides at locations 800 thru A4F hex.

PliGE 79

2) Start the Apple mini-assembler (F6'ifiG. see page 69 in Apple II Reference .
Manual).
3) Enter the following lines:

897:WX 7F8
LM IA
STA 688,.X
JSR FDOC
JMP FF65

4) Save the patched program on tape or disk for later use.

The Datamover program and its operation are docmented in the
Camunications Interface Card Addendwn to the Installation and
Marnia p by App e Computer. Inc. en us ng e M cromodem II w s
program. at the points lltbere you are instructed to put the JX1one in the acoustic
coupler. simply type {CTRL}A {CTRL}Q {phone nuii>er}{RETURN} and the Micranodan
II will establish the necessary telephone connection.

Exanple Session Using Datanover to Load and
Run the Telepong Game Program, With D.o.s.

In this exanple, it is asstned that the patches to Datanover have already
been made and the results BSAVE'd in a file called DATN«lVER. and that the
Telepong program has been SAVE'd in a file called TELEPCH;. Both coq>Uters are
asstned to be equipped with a Micranodem II in slot 3. Canputer 1 is asstllled to
have a Disk II in slot 6. Computer 2 may otherwise be a minimal Apple II
configuration.

Data to be typed by the operators is in lower case, and upper case is used ·
to denote data printed by the computers. {return}'s are not indicated, wt are
needed . at some places. This should be obvious in mst cases.

MICRCM>DEM II APPENDIX B MODIFY!~ AND·us1~ n,&.TM-OVER

Computer 1

{reset}
*6{ctrl}p
>print •{ctrl}d inft3"
>print •{ctrl}d pr#O"
>load telepong
>{ctrl}a
MICRCM>DEM II:?{ctrl}h
{ctrl}a
MICROMODEM II:?{ctrl}q
MICRCM>DEM II:DIALI~ {phone number}
MICROMODEM II:AWAITI~ CARR.
MICRCM>DEM II:CONNECT
{ctrl}a
MICROK)l)EM II:? {ctrl}x
{return}
>brun datamover

(HEX DISPLAY OF MTAK>VER PGM)

(•NOTHil'l, HAPPENS" FOR ABOUT
30 SECONDS)

FINISHED
MICROMODEM II:BffiIN TERM
{ctr1}r

{ctrl}a
MICRCM>DEM II:? {ctrl}x
run
COMMUNICATION CARD swr? 3

(THE GAME RUNS)

(END OF GAME)

{BEEP}
>

Canputer 2

{reset}
*{ctrl}b
>in#3

MICROMODEM II:Ril'l,
MICROMODEM II:CONNECT

(HEX DISPLAY OF DATAfOVER PGM)

(9NOTHI~ HAPPENS" FOR ABOUT
30 SECOIDS)

FINISHED
MICRC»oODEM' II:BffiIN TERM
MICRCM)[)EM II :DID TERM
>

CCJtMJNICATION CARD swr? 3

(THE GAME RUNS)

(END OF GAME)

{BEEP}
>

(both operators wish to play another game)

P.AGE 80

intJ (note that this must come first)
run

inl3

(ANOTHER GAME)

(operators wish to conmunicate with each other)

inl3

MICROMODEM II APPENDIX B MODIFYit.K; AND USI'!'IK; DATNOVER P.AGE 81

{ctrl}a {ctrl}a
MICR()ft()DEM II:? {ctrl}h MICROMODF.M II:? {ctrl}h
MICROMODEM II:B.EXiIN TERM MICROMODEM II:B.EXiIN TERM

(operators converse by typing to each other)

(THIS COULD GO CJ'1 INDEFINITELY)

I ' i I
I I

• I I

•

•

..

.. •

.. •

ii
I! ·~

n

n

. . . -
! j u

... .. ~
I I i

iU

I =EI
D i

I! ;I
I I

s i ~
! ! j !

i ~ ! I •

•

•

..

N

1• ,,
!I

Ii

•

i I · 1 ! § ~ = I -

I !f i " -..

MICRCM)l)F.M II ASCII CODE TABLE

American Standard Code for Information Interchange

CODE HEX DEC CODE HEX DEC CODE HEX DEC COOE HEX DEC

NUL 00 0 SP 20 32 @ 40 64 ' fiO 9fi
son 01 1 21 33 A 41 65 a fil 97
STX 02 2 II 22 34 B 42 66 b 62 98
ETX 03 3 I 23 35 C 43 fi7 C 63 99
EQT 04 4 $ 24 36 D 44 68 d 64 100
ENO 05 5 % 25 37 E 45 69 e 65 101
ACK 06 6 & 26 38 F 46 70 · f fin 102
BEL 07 7 27 39 G 47 71 g 67 103
BS 08 8 (28 40 H 48 72 h fi8 104
HT 09 9) 29 41 I. 49 73 i 69 105
LF OA 10 * 2A 42 J 4A 74 · j 6A 106
VT OB 11 + 28 43 . K 4B 75 k 68 107
FF oc 12 , 2C 44 L 4C 76 1 fiC 108
CR OD 13 20 45 M 40 77 m 6p 109
so OE 14 2E 46 N 4E 78 n l:;E 110
SI OF 15 I 2F 47 0 4F 79 0 fiF 111
OLE 10 16 0 30 48 p 50 80 p 70 112
DCl 11 17 1 31 49 Q 51 81 q 71 113
DC2 12 18 2 32 50 R 52 82 r 72 114
DC3 13 19 3 33 51 s 53 83 s 73 115
DC4 14 20 4 34 52 T 54 84 t 74 116
NAK 15 21 5 35 53 u 55 85 u 75 117
SYN 16 22 fi 36 54 V Sfi 86 V 76 118
ETB 17 23 7 37 55 w 57 87 w 77 119
CAN 18 24 8 38 56 X 58 88 X 78 120
EM 19 25 9 39 57 y 59 89 y 79 121
SUB lA 26 . : 3A 58 ·z SA 90 z 7A 122
ESC 18 27 ; 38 59 [58 91 { 7a 123
FS lC 28 < 3C 60 \ SC 92 I 7C 124
GS lD 29 = 30 61) SD 93 } 7b 125
RS lE 30 > 3E i:;2 .. SE 94 7E 126
us lF 31 ? 3F 63 SF 95 DEL 7F 127

NUL Null. or all zeros DCl Device Control 1
sou Start of Heading DC2 Device Control 2
STX Start of Text DC3 Device Control 3
ETX End of Text DC4 Device Control 4
Ear End of Transmission NAK Negative Acknowledge
ENQ Enquiry SYN Sync
ACK Acknowledge ETB End Transmission Block
BEL Bell, or Alarm CAN Cancel
BS Backspace EM End of Medium
HT Horizontal Tab SUB Substitute
LF Line Feed ESC Escape
VT Vertical Tab FS File Separator
FF Form Feed GS Group Separator
CR Carriage Return RS Record Separator
SO . Shi ft Out us Uhit Separator
SI --Shift In SP Space
OLE Data Link Escape DEL Delete

D.C. Hayes Associates, Inc.
16 PERIMETER PARK DR. SUITE 101

P.O. BOX 9884 ATLANTA, GEORGIA, 30319 (404) 455-7663

