
Starbase Programming with Xll

HP 9000 Series 300/800 Computers

HP Part Number 98592-90000

Ff/n- HEWLETT
~~PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

Notices
The information contained in this document is subject to change without notice.

Hewlett-Packard makes no warranty of any kind with regard to this manual,
including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. Hewlett-Packard shall not be liable for errors
contained herein or direct, indirect, special, incidental or consequential damages
in connection with the furnishing, performance, or use of this material.

Warranty. A copy of the specific warranty terms applicable to your Hewlett
Packard product and replacement parts can be obtained from your local Sales
and Service Office.

Copyright © 1988 Hewlett-Packard Company

This document contains information which is protected by copyright. All rights
are reserved. Reproduction, adaptation, or translation without prior written
permission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend. Use, duplication or disclosure by the U.S. Govern
ment Department of Defense is subject to restrictions as set forth in para
graph (b) (3) (ii) of the Rights in Technical Data and Software clause in
FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack
is restricted to this product only. Additional copies of the programs can be made
for security and back-up purposes only. Resale of the programs in their present
form or with alterations, is expressly prohibited.

Copyright © AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software
Distribution under license from the Regents of the University of California.

Printing History
(i New editions of this manual will incorporate all material updated since the
~ previous edition. Update packages may be issued between editions and contain

replacement and additional pages to be merged into the manual by the user.
Each updated page will be indicated by a revision date at the bottom of the
page. A vertical bar in the margin indicates the changes on each page. Note that
pages which are rearranged due to changes on a previous page are not considered
revised.

u

The manual printing date and part number indicate its current edition. The
printing date changes when a new edition is printed. (Minor corrections and
updates which are incorporated at reprint do not cause the date to change.) The
manual part number changes when extensive technical changes are incorporated.

December 1988 ... Edition 1. This manual is valid for HP-UX release 6.5 on all
HP 9000 Series 300 Models, and HP-UX release 3.1 on all HP 9000 Series 800
Models.

iii

Preface
With the HP9000 Series 300 6.5 HP-UX release and the HP9000 Series 800
HP-UX 3.1 release, Starbase graphics has been integrated with the Xll window
environment. This environment supports a Starbase program running inside of an
Xll window with full Starbase functionality and performance comparable to raw
mode (non-window) performance. This manual is intended to help you develop
Starbase programs that run in an Xll window. Information is also provided to
enable you to move graphics applications from other window environments (for
example, XlO) to the Xll environment.

This manual provides the following:

• A description of the window systems supported on Hewlett-Packard's HP
UX workstations and the graphics libraries that are supported in each
window system.

• A description of the following topics, with the focus being on Starbase
graphics in an Xll window:

o Window system architecture 1')

o Graphics output
o Raster text operation
o Input operation
o Graphics hardcopy operation

• Application development guidelines to assist you in developing Starbase
programs that run in an Xll window.

Note that programming examples in this manual are used primarily to demon
strate new programmatic capabilities. However, where the programmatic in
terface has not changed but the functionality has changed, the manual focuses
on describing the functionality changes. For example, the Starbase double-buffer
procedures and parameters have not changed; however, the functionality provided
by these procedures in an Xll window differs slightly from the functionality pro
vided in raw mode. Therefore, this manual describes the functionality differences
between raw mode operation and operation in an Xll window.

Audiences

While this manual is aimed primarily at users who already know Starbase and
Xll, some introductory material is provided so that programmers who are new

iv

I~

to Hewlett-Packard's HP-UX workstation will be able to obtain an overview of
the supported graphics libraries and window systems.

LJ Releases of X11

u

Starbase graphics was not fully integrated into the initial release of XU. This
initial release of XU is designated in this manual as "XU revision A.OO. dd"
The "00" indicates that this is the first release. The "dd" denotes two decimal
digits used internally by Hewlett-Packard; these can be ignored. The release of
XU which supports Starbase graphics in an XU window is designated as "XU
revision A.Ol.dd".

When XU is referenced in this manual, it refers to the release which supports
XU revision A.Ol.dd. When the initial release is discussed, it is explicitly referred
to as "Xll revision A.OO". Because Xll was introduced with the 3.1 (Series 800)
and 6.5 (Series 300) HP-UX releases, "3.1/6.5" is used to refer to these releases.
"Pre-3.1/6.5" is used in discussing capabilities prior to these releases.

If you're not sure which version of Xll you have, you can use the what command,
as follows:

what /usr/bin/X11/X

This returns the revision number of the Xll server. It returns a revision number
of the form A. 01. dd if you are using a tape, and a number of the form A. 01
otherwise.

Recommendations

It is recommended that new Starbase applications be designed to run in an
XU window. In developing a Starbase program to run in an XU window, you
should be familiar with both how Starbase works in raw (non-window) mode and
how XU works. This manual should then be referenced for information on how
Starbase works in an XU window.

Application Sharing of Workstation Resources

A key feature of Starbase programs operating in an X11 window is that any
program can access any of the workstation input devices and use any of the
display resources without interfering with other programs which are also accessing
the same input and display resources. This ability to share the input and display
resources is beneficial because it permits independently developed applications to
run simultaneously in different XU windows without interfering with each other.

v

(I

\._)

u

I
_.)

Contents

1. Graphics Libraries and Window Systems
Graphics Libraries

Building on Starbase
Graphics Libraries Notes

Window Systems 0

Graphics Libraries Supported Within Windows 0

2. Graphics and Window System Architecture
Raw Mode Starbase Architecture 0

Notes on Raw Mode Starbase Architecture
HP Windows/9000 Architecture
X Window System Architecture

Client/Server Relationship 0

The Xlib Library 0

Starbase Operation in an X Window
Parallel Processing with Starbase-on-X

Xll and Graphics Architecture 0

Operating Environments

3. Using Starbase with the Xll Windows System
Introduction 0

Setting Up Your "XOscreens" File
The Oper~ting Modes 0

So Which Mode Should I Use?
Linking the Xll Libraries

Running A Window-Dumb Program With Xll
Creating the Xll Graphics Window
Opening the X11 Window
An Example Program 0

1-2
1-3
1-3
1-5
1-6

2-2
2-2
2-3
2-4
2-4
2-5
2-6
2-7
2-8
2-8

3-1
3-2
3-2
3-4
3-5
3-6
3-6
3-7
3-8

Contents-1

The "Focus Window" and What It Means 3-11
Color Maps and the Focus Window 3-11

Window-Dumb X11 Graphical Input 3-14 ,r) Handling Input Devices 3-14

4. Graphics Output Operation
Introduction 4-1

Chapter Organization . 4-1
Raw Mode and HP Windows/9000 4-2
Overview of Starbase Output 4-3

Xlib Graphics versus Starbase Graphics 4-4
Example Interactions Between Starbase and X11 4-4

Sharing Display Resources with X11 4-5
Display-Control Data 4-5
Drawing-Control Data 4-6
Display-Control Policy 4-7
Selection of the Display-Control Focus Window 4-8
Effects on Double-Buffering Operation 4-8

X11 Server Operating Modes 4-9 rt) Determining the Server Operating Mode 4-11
Supported Visual Classes 4-11
Selecting the Server Operating Mode 4-15
Guidelines for Visuals . 4-15

Example: Specifying "Combined Mode" and Creating
Windows . 4-15

Guidelines for Portability 4-17
Transparency Index . 4-17

HP 98720 Display 4-17
HP 98730 Display 4-18
HP 98550 Display: 4-18

Supported Starbase Drivers ' 4-19
Notes on the Xll Server Modes 4-20

Use of Starbase Graphics Accelerators 4-21
Opens Done with Accelerator Drivers 4-21 t) HP 98556A Driver: 4-21

HP 98732A Device Driver: 4-22
Z Buffer . 4-23

X11 Color Map Control 4-24

Contents-2

u

Hardware and Software Color Maps ..
X11 versus Starbase Color Map Modes

Notes on Color Map Modes
Starbase Use of Color Maps

Starbase Interactions with the Xll Color Maps
INIT Present
INIT Absent
Multiple Processes Opening a Single Window
Non-interacting Color Maps
Xll and Starbase Color Map Cooperation

Xll Double-Buffering Operation . . .
Xll Support of Double Buffer Mode
Starbase Support of Double Buffering
Display-Control Policy and Double Buffering .
Applications That Do Not Use Double Buffering
Summary

Backing Store Operation
Backing Store Cases
Creating an Xll Window Which Supports Backing Store

Using xwcreate(1)
Using XCreateWindow

Enabling Backing Store after Window Creation
Enabling Starbase Backing Store .
Intermixed Starbase and Xlib Calls
Backing Store Control
Depth of Backing Store
Backing Store Operation With Graphics Accelerators
Multiple Starbase Opens
Summary
Window Re-Sizing . . .
Summary of Steps

Window Resizing Operation
Starbase Window Size
Effects of Re-sizing the Window

Affect on Xlib
Xll Cursor and Starbase Echo Operation

Starbase Raster and Vector Echoes ..
Hardware Support for Cursorsand Echoes .

4-24
4-24
4-25
4-25
4-26
4-27
4-29
4-30
4-30
4-31
4-32
4-32
4-33
4-34
4-34
4-35
4-36
4-36
4-37
4-37
4-37
4-38
4-38
4-39
4-39
4-39
4-40
4-40
4-41
4-41
4-41
4-42
4-42
4-42
4-43
4-44
4-44
4-45

Contents-3

Picking up the Cursor or Echo 4-45
Raw Mode Starbase Echoes 4-45
Xll Cursors and Starbase Echoes 4-46 ()
Starbase Tracking in an X11 Window 4-49
HP 98732A Hardware Cursor 4-49
HP 98556A Star base Echo Operation 4-50

Xll and Starbase Synchronization 4-51

5. Raster Text Operation
Introduction 5-1
Font Formats and Character Sets . 5-1

8-Bit Fonts versus 16-Bit Fonts . 5-2
HP-15 5-2
Summary of Changes 5-3

Raster Text Capabilities . 5-4
Font Libraries 5-4
Character Sets (Fonts) 5-4
Font File Formats 5-5

Main Points From the Previous Table 5-6 II)
Fonts Used by the FA/FM Library 5-7

6. Input Operation
Introduction 6-1
Overview of Input Operation 6-2

Input Device Sharing 6-2
Input Through A Window 6-3
Input Focus 6-3
Input Focus Policy 6-4

Starbase Input in a Raw Environment 6-6
Starbase Input in HP Windows/9000 6-8
Input in an XlO Environment 6-10

Main Points of the Previous Diagram 6-10
Xll Revision A.OO 6-12

Main Points of the Previous Diagram 6-12 ()
X11 Input Operation 6-14

Input Data Paths . 6-14
Main Points of the Previous Diagram 6-15

Selecting the Right Input Driver or Library 6-17

Contents-4

(I

_.)

Input Device/Window Combinations 0 0 0 0 0 0 0

Main Points for the Previous Diagram 0 0 0 0 0

Opening a Starbase Device/Window Combination
Implicit Specification 0 0 0 0 0 0 0 0

Explicit Specification 0 0 0 0 0 0 0 0

Starbase Input from the X11 Pointer Device
The HP Two-Button Mouse 0 0 0 0 0 0

Details of Starbase Input from the X Server's Pointer
Device 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Locator and Choice Ordinals 0 0 0 0 0 0 0 0 0 0 0

Receiving Input When the Pointer Device is Outside of
the Window 0 0 0 0 0 0 0 0

Starbase Sampling of the Xll Pointer 0 0 0 0 0 0 0

Starbase Tracking of the Xll Pointer 0 0 0 0 0 0 0

Starbase Requests and Events with the Xll Pointer
Starbase Input from Non-Pointer Devices 0 0 0 0 0

Keyboard Input 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Starbase Sampling, Requests, Tracking and Events 0

Details of Starbase Sampling of Non-Pointer Devices
Tracking Non-Pointer Devices 0 0 0 0 0 0 0 0 0 0

Starbase Input Examples 0 0 0 0 0 0 0 0 0 0 0 0 0

Example 1: Application that uses a Tablet and a Button
Box 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Example 2: Application That Works in an HP
Windows/9000 Environment 0 0 0 0 0

Example 3: Application Using the SOXll Driver
Example Code Segment 0 0 0 0 0 0 0 0 0 0 0

Additional Guidelines for Device/Window Combinations

7. Graphics Hardcopy Operation
Graphics Printers versus Vector Plotters

Starbase and Xll Hardcopy Documentation
Procedures and Commands

Notes on the Previous Diagram
Method Selection 0 0 0 0 0 0 0 0

6-19
6-19
6-20
6-21
6-22
6-25

01 6-25

6-25
6-26

6-26
6-27
6-28
6-28
6-29
6-29
6-30
6-30
6-31
6-32

6-32

6-33
6-33
6-34
6-35

7-2
7-2
7-3
7-4
7-5

Contents-5

8. Program Development Guidelines
Starbase in X11 Windows 8-1
Source and Object Code Compatibility 8-2 ,f\

Source Code Changes 8-2
Unlinked Object Code Compatibility 8-2
Pre-3.1/6.5 Linked Object Code Compatibility 8-2

Linking Your Program 8-3
Starbase Link Sequence 8-3
Raw Mode Starbase Operation . 8-4
Starbase Operation in HP Windows/9000 8-4
Xlib Operation . 8-4
Starbase Operation 8-4

Using Both Libraries 8-4
Star base Retained Rasters (Backing Store) 8-5
Starbase Drivers to Link Into Your Application 8-5

Application Development Guidelines 8-6
Moving HP Windows/9000 to Xll 8-7

Window Types . 8-7 .r) Input 8-7
Moving from XlO to Xll 8-7
Moving from Xll Revision A.OO to Xll 8-8

Glossary

A. Documentation Bibliography
Introduction A-1

AGP /DGL Documentation A-1
Fast Alpha/Font Manager Documentation A-1
HP-GKS Documentation A-1
HP-UX Documentation A-1
HP Windows/9000 Documentation A-2
Starbase Display List Documentation A-2
Starbase Documentation A-2
XlO Documentation A-2 ,'~
Xll Documentation A-2 I

Index

Contents-6

1
Graphics Libraries and Window Systems

This chapter describes the graphics libraries and window systems that are
supported on the HP-UX workstations. For information on which displays are
supported, refer to the Starbase Device Drivers Library Manual

The graphics libraries supported on the HP 9000 Series 300 and Series 800
workstations are:

• Starbase Graphics Library
• Starbase Display List
• HP-GKS
• AGP/DGL
• Xlib Graphics

The window systems which are supported on the HP 9000 Series 300 and/or the
Series 800 workstations are:

• HP Windows/9000 (Series 300 only)
• XlO
• Xll revisions

o Xll revision A.OO
o Xll revision A.Ol

These window systems are described in detail in the "Window Systems" section
of this chapter.

Graphics Libraries and Window Systems 1-1

Graphics Libraries
The different graphics libraries which are supported on Hewlett-Packard's HP-UX :)
workstations are:

• Starbase: Starbase is Hewlett-Packard's 2D and 3D graphics library.
It provides a wide variety of input and output capabilities and offers
very high performance. Starbase graphics operations are based on three
coordinate systems: device (display) coordinates, floating point virtual
coordinates and integer virtual coordinates. Advanced 3D capabilities
include hidden-surface removal, shading, and light sources. Starbase is
supported by a wide variety of device drivers that permit your Starbase
program to output to graphics terminals, plotters, and bitmapped
displays. The Starbase drivers are discussed in the Starbase Device
Drivers Library Manual

• Starbase Display ListStarbase Display List:! The Starbase display list is
built "on top of" Starbase and is used to organize, manipulate and execute
Starbase graphics operations. For example, an interactive graphics editor
could take the user's inputs from a data tablet and use Display List to
store Starbase procedures in a data structure which corresponds to these
inputs. Subsequently, when the user wants to view the output, the Display
List can be traversed to generate the image on a display.

• HP-GKS: HP-GKS is a 2D graphics library. It is Hewlett-Packard's
implementation of the ANSI Graphical Kernel System.

• AGP /DGL: DGL (Device-Independent Graphics Library) is a 2D graphics
library. AGP (Advanced Graphics Package) is a 3D graphics library. AGP
resides "on top of" DGL (that is, AGP calls are translated into DGL calls).
DGL and AGP are typically referenced together as "AGP /DGL" because
of this architectural connection. AGP and DGL are only recommended
when you are porting an existing application; Starbase is recommended
for new applications.

()
I

• Xlib Graphics: The X Window System library (called "Xlib") provides r-"\
a 2D device-coordinate graphics interface. Xlib provides vector-, raster- ')
and input operations within an X window.

1-2 Graphics Libraries and Window Systems

Building on Starbase

(
1

Starbase forms the platform for DGL, HP-GKS and the Starbase Display List;
_../ i.e., DGL, HP-GKS and the Starbase Display List are supported in Starbase.

(I_,;

DGL and HP-GKS calls are translated into Starbase calls. Because Starbase is,
in turn, built on top of many different device drivers, HP-GKS and DGL can
access most of the devices that Starbase supports. Refer to HP-GKS and DGL
documentation for a list of Starbase devices which are accessible by HP-GKS and
DGL.

Because AGP resides on top of DGL, AGP is also built (indirectly) on the
Starbase platform (separated by the DGL layer). The following diagram shows
this architecture:

AGP

DGL

DGL Directl j_
Drivers I DGL-to-Starbase Third Party

Handler Starbase
Graphics libraries HP-GKS

• Display List
Applications and

Starbase Library

Starbase-On X
Input Drivers

Drivers Other Drivers Plotter Drivers Terminal Driver Display Drivers
(HIL. kbd)

(Xn and SOX11)

+
}

Starbase
Drivers

Display

Hardware

Figure 1-1. Graphics Libraries Built on Top of Starbase

Graphics Libraries Notes

1. The Display Drivers communicate directly to the bitmapped display
hardware. Refer to the Starbase Device Drivers Library Manual for a
discussion of the supported display drivers.

Graphics Libraries and Window Systems 1-3

2. DGL, and indirectly, AGP, also support direct drivers. That is, there are
drivers which permit DGL programs to communicate directly with the
graphics hardware without using Starbase and the Starbase drivers.

3. Many third-party graphics libraries and application programs are built
on top of the Starbase platform. For information on these libraries and
application programs, see your Hewlett-Packard sales representative.

4. The Starbase-On-X driver translates Starbase calls into Xlib calls. For
example, the Starbase call draw2d is translated by this driver into the Xlib
call XDrawLine. This driver permits Starbase to work in an X window.
However, because not all Starbase calls (for example, 3D solids-modeling
calls) can be translated into Xlib calls, this driver does not support
full Starbase functionality. However, since Xlib works over the network
between a client and a server, the Starbase-On-X driver does permit
Starbase to work over the network, albeit with reduced functionality
and performance compared to Starbase running with the Starbase display
drivers. There are two versions of the Starbase-On-X Driver:

I~
·.)

• Xn Driver: This Starbase driver translates Starbase calls into XlO r)
Xlib calls and was introduced with XlO.

• Starbase-on-X11 {SOX11} Driver This Starbase driver translates
Starbase calls into Xll Xlib calls and was introduced with Xll
revision A.OO.

For more details on the Xn and SOXll drivers, refer to the Starbase Device
Drivers Library Manual.

1-4 Graphics Libraries and Window Systems

u

u

Window Systems

The window systems supported on HP-UX workstations are only supported
on bitmapped displays, not on graphics terminals. In the case of raw-mode
operation, which means no window system at all is running, a graphics application
has control of the entire display.

The window systems plus raw-mode operation are described below:

• Raw Mode: In raw mode, the graphics application has control of the
entire display. When moving applications from raw mode to the X11
environment, application developers need to know how graphics operation
in an X11 window differs from graphics operation in raw mode. A large
part of this manual is devoted to this subject.

• HP Windows/9000: This window system was developed by Hewlett
Packard for the HP 9000 Series 300 computers and is not supported on
the HP 9000 Series 800 computers. HP Windows/9000 supports terminal
emulator windows and graphics windows on a local workstation only.
This means that the program making window calls must be on the same
computer that is running the window system.

• XlO: XlO was developed at MIT and was introduced by Hewlett-Packard
in March, 1987. XlO provides a distributed (network-transparent) window
system. The program making Xlib calls can be on a different computer
than the program running the window system.

• Xll revisions:

o XU revision A.OO: XU was also developed at MIT. XU release
A.OO was introduced by Hewlett-Packard in June, 1988 and was
initially supported with the 6.2/3.0 release.

o XU revision A.Ol: This release of XU supports- full-functional
ity Starbase in an XU window with performance comparable to
raw-mode Starbase. Starbase graphics became fully integrated
with XU, but from a programmer's point of view, the two XUs
are the same. XU release A.01 is the version discussed in this
manual.

The term X Window System is a capability that is common to XlO, and to both
revisions of XU.

Graphics Libraries and Window Systems 1-5

Graphics Libraries Supported Within Windows
a: ,r~, The following table shows which graphics libraries run in the diuerent window J

systems that are supported on the the HP 9000 Series 300 and Series 800
workstations.

Window
Systems

Raw Mode

HP Win-
dows/9000
(Series 300
only)

XlO

Xll
(revision
A.OO)

Xll

Table 1-1. Graphics Libraries Supported
in the Different Window Systems

Star base
and Starbase AGP/
Display List DGL HP-GKS

Yes Yes Yes

Yes Yes Yes

Yes, via the Xn No No
driver

Yes, via the SOXll No Yes, via the SOXll
driver driver

Yes, via the SOXll No Yes, via the SOXll
driver or the Starbase driver or the Starbase
Display Drivers Display Drivers

1-6 Graphics Libraries and Window Systems

Xlib
Graphics

No

No

Yes

Yes

Yes

,f)
/

2
Graphics and Window System Architecture

The architectural information in this chapter is provided to assist you in under
standing the different local and remote graphics, and the windows capabilities
provided on the HP-UX workstation, and to assist you in moving applications to
the Xll environment.

Graphics and Window System Architecture 2-1

Raw Mode Starbase Architecture
The architecture of raw mode Starbase is shown in the following diagram:

Application
Program

Starbase Library,
-lsb1 & -lsb2

Starbase
Display Driver

+
Display Hardware

Figure 2-1. Raw Mode Starbase Archi
tecture

Notes on Raw Mode Starbase Architecture

1. The application program, Starbase library, and display driver execute as
one process.

2. This architecture permits Starbase to write directly to the display
hardware via the Starbase display driver. Starbase can also write directly
to the display hardware when operating in an X11 window.

3. The graphics libraries which run on top of Starbase (such as HP-GKS)
also run in raw mode.

4. While it is possible to run multiple Starbase applications at one time
in raw mode, Starbase does not provide a means to coordinate access to
shared resources (for example, the hardware color map). This means that
a program can have the hardware colormap changed without its knowledge

rtJ

if other programs are also running in raw mode. The implementation of .~
X11 addresses such resource-sharing issues.

2-2 Graphics and Window System Architecture

(u

HP Windows/9000 Architecture
The Window Manager accesses the display hardware in creating and moving
windows. The diagram below shows how Starbase operates in parallel with
the HP Windows/9000 window manager. This architecture permits Starbase
to render directly to the display through the display drivers without interacting
with the Window Manager. This architecture is similar to the Xll architecture,
which also permits Starbase to render directly to the display hardware.

Window

Application Program

Storbose Library,
-lsb1 & -lsb2

Storbose Display
Driver, for example,

libdd98550.o

Figure 2-2. Starbase Drivers Directly Ac
cess Display Hardware with HP
Windows/9000

Graphics and Window System Architecture 2-3

X Window System Architecture
This section describes elements of the X Window System architecture common ~f"J
to both XlO and Xll and shows how the Starbase-on-X driver (either Xn or
SOXll) operates within the X window system.

Client/Server Relationship

The client is the program that needs the services and processes of the server in
order to run; the server is the computer which provides the needed services. The
client/server relationship is shown in the following diagram of the X Window
System.

X Protocol

Figure 2-3. X Client/Server Architecture

The main points shown in the previous diagram are:

• Two or more processes are associated with the X window system, the
X Display Server (or X Server, for short) and one or more clients. The
X Server software controls the X windows themselves and interacts with
the user via the keyboard and pointer device. The client programs make
requests to the X Server (for example, draw a line, create a window, or
get keyboard input) using the X protocol.

2-4 Graphics and Window System Architecture

(I

\)

• The client program can be run on the same computer as the X server
(called local operation) or can be run on a different computer than the
X server (called remote operation). In fact, a client program can be
developed to provide network transparency, which means that the same
program will work both as a local client or a remote client-at run time,
you just re-direct the client's input/output to a different server.

• Combinations of local and remote clients can communicate simultaneously
to the X server. For example, a remote client can make Xlib calls to render
in one window while a local client can make Xlib calls to receive input
from a second window.

• When a new display is developed (along with a new X server which
supports this display), old client object code will still run because the
client/server communications protocol remains unchanged.

The Xlib Library

The Xlib library is used by client programs for X window operations. For
example, the Xlib procedure XDrawDashed results in communications being sent
to the X server to draw a dashed line on the display. There are two versions
of Xlib, XlO and Xll, associated with the XlO and XU servers; refer to
the appropriate XlO or Xll documentation for a detailed description of the
procedures provided by these libraries.

The client box in the previous diagram can be expanded to show how the client's
application program resides "on top" of the Xlib library, as shown in the following
diagram.

Application
Pr'ogram

1------1 X Client
Xlib Library

X Protocol

Figure 2-4. X Client Based on Xlib Library

Graphics and Window System Architecture 2-5

Starbase Operation in an X Window

Starbase can operate in an X window in two ways:

1. Run Starbase in the version of Xll which supports full-functionality
Starbase with performance comparable to raw-mode Starbase.

2. Use the Starbase-on-X driver. There are two versions of this driver,
an XlO-based version (Xn) and an XU-based version (SOXll). The
Starbase-on-X driver translates Starbase calls into X protocols for
communication with the X server.

The diagram below shows two clients, one which makes only Xlib calls (X Client
#1) and one which makes Starbase calls (X Client #2). These Starbase calls are
translated into Xlib calls by the Starbase-on-X Driver.

Application
Program

1-------1 X Client # 1

Xlib Library

Application Program

Starbase Library

1---------1 X Client #2
Starbase-On-X Driver

(Xn or SOX 11)

Figure 2-5. Starbase-on-X Driver Architecture

2-6 Graphics and Window System Architecture

/~
/

/~ .)

/ '
(:
~

u

Note the following:

• The Starbase-on-X driver permits client programs to generate Starbase
graphics inside an X window. These Starbase procedures are translated
by the Starbase-on-X Driver into Xlib calls.

• Several Starbase procedures are NOPs, that is, the Starbase-on-X driver
does not attempt to translate them into Xlib calls, because Starbase
provides both 2D and 3D graphics primitives while Xlib provides 2D
coordinate graphics. Refer to the "X Windows Device Driver" and the
"XlO/Xn and SOXll" chapters in the Starbase Device Drivers Library
Manual for a list of the Starbase calls which are not supported by the
Starbase-on-X drivers.

• Because the client/server connection can be local or remote, this
architecture provides Starbase over the network. However, both the
functionality and performance are less than what is provided by Starbase
within an Xll window. Starbase works over the network with the
Starbase-on-X driver, but without this driver, Starbase only works for
local operation.

Parallel Processing with Starbase-on-X

Starbase performance using the Starbase-on-X Driver is less than the performance
provided by Star base rendering directly to an Xll window. This is to be expected
because of the overhead associated with translating Starbase calls into Xlib
calls, plus the client/server communications overhead. However, the performance
impact is tempered because there are two computers working on the task. While
the client computer is doing the Starbase-to-X translation, the server computer
is (in parallel) rendering the previously received display requests.

Graphics and Window System Architecture 2-7

X11 and Graphics Architecture
The Xll server shares the display with Starbase. Thus, there are two paths to
the display hardware, as shown below:

X11

Application Program

Storbase Library,
-lsb1 & -lsb2

Starbase Display
Driver

Figure 2-6. Starbase and X11 Architecture

Operating Environments

The Xll server supports three operating environments:

1. Standalone XU server operation without Starbase being used.

2. Starbase operating in raw (non-window) mode without the XU server
being used.

3. Starbase rendering directly to the XU window. This requires that the
Starbase program be run on the same machine that is running the Xll
server. However, the SOXU driver can be used with the XU server to
achieve remote Starbase.

2-8 Graphics and Window System Architecture

(

The following table compares SOXll Starbase to Starbase rendering directly to
an Xll window.

.) Table 2-1. Starbase Features Using SOX11 Driver and Starbase Display Drivers

Starbase Directly to
Feature SOXll an XU Window

Performance Less than performance Full performance, comparable to raw
achieved by Starbase display mode Starbase
drivers.

Functionality Subset of Starbase Full functionality, same as raw mode
Star base

Operates Over Yes No
the Network

u

Graphics and Window System Architecture 2-9

u

Using Starbase with the X11 Windows
System

Introduction

3

When using a window system, a computer's working capacity can be divided
between several processes, each of which has its own dedicated area of the display
for input and/or output. This is perhaps the major benefit of a windowing system.
The user can address each window at will, and cause programmatic input/output
to be associated with a particular window.

This chapter discusses how Starbase operates with the Xll Windows system.
Specifically, this chapter:

• Describes how to take an existing Starbase program and run it in an
Xll window. Such a program is called "window-dumb" because it does
not call Xlib window procedures. This is in contrast to "window-smart"
programs which do make Xlib window calls.

• Provides details on window-dumb and window-smart program develop-
ment to assist you in planning your development activities.

The guidelines in this chapter do not cover the more complex interactions between
Xlib and Starbase. For example, these guidelines assume that your Xll server is
operating in the server mode necessary to support your graphics program. For
example, it is assumed that your server is operating in double-buffer mode if
that is what your program expects. A large number of Starbase programs should
be able to run in an Xll window by just following the guidelines presented in
this chapter. However, if you have difficulty, refer to the other documentation
mentioned below.

Using Starbase with the X11 Windows System 3-1

Setting Up Your "XOscreens" File

In the directory lusrllibiX11, there is a file named XOscreens that contains ,r)
configuration information required by your X server. It specifies the mode in
which the X server operates, the device files to use when communicating with
the hardware, the depth(s) of the windows you will be using, and whether to set
up color maps for single-buffered or double-buffered operation.

The Operating Modes

There are four different modes in which your Xll server can operate. These are
specified by various combinations of parameters in your XOscreens file. In the
following discussion, example lines for the XOscreens file are given. Assume for
the examples below that I dev I ocrt specifies your overlay planes, and I dev I crt
specifies your image planes. Note also that not every depth is valid for every kind
of hardware. See the Starbase Device Drivers Library Manual for details.

The four operating modes are:

• Overlay mode: The Xll server operates only in the overlay planes.

/dev/ocrt {Uses only overlay planes.)

• Image mode: The Xll server operates only in the image planes. Displays
without overlay planes always operate in Image mode.

/dev/crt depth 6 depth 8

/dev/crt depth 6 doublebuffer

{Uses only image planes. Win
dows are single-buffered, and ei
ther six or eight planes deep.)
{Uses only image planes. Win
dows are double-buffered, and six
planes deep; i.e., 3/3.)

• Stacked Screen mode: The Xll server operates in the overlay planes and
the image planes as two separate screens. This configuration is similar
to a comhbi~ation of Overlay mode and Image mode. In fact, it is the ,')
same as avmg two separate screens, one with only image planes and the ;
other with only overlay planes. You can switch between the two screens
by moving the X window cursor off the left or right edge of the screen.

3-2 Using Starbase with the X11 Windows System

('
_../'

u

If there are more than two screens (for example, two physically separate
screens, each operating in Stacked Screen mode, for a total of four
screens), moving off the left edge moves up the list of screens while moving
off the right edge moves down the list. If one end of the list is passed, the
screen at the other end is displayed.

/dev/ocrt

/dev/crt depth 16 doublebuffer

/dev/ocrt

/dev/crt depth 24

(Uses the overlay planes and the
image planes as separate logical
devices. Windows are double-
buffered, and sixteen planes deep;
i.e., 8/8.}
(Uses the overlay planes and the
image planes as separate logical
devices. The windows are single-
buffered, and twenty-four planes
deep.}

Note that Stacked mode is the only operating mode in which the
XOscreens file has two lines per physical display device. All the other
modes have one line per physical display device.

• Combined mode: The Xll server operates in both the overlay planes
and image planes simultaneously. This mode was introduced with Xll
revision A.Ol and was not supported with Xll revision A.OO. When an
image-plane window is created, a mask of that window is created in the
overlay planes and is filled with the transparency color. Thus, the image
plane windows and the overlay plane windows appear to be in the same
set of planes. Image plane and overlay plane windows can obscure each
other.

/dev/ocrt /dev/crt depth 8 double buffer (Allows windows in the overlay
planes and the image planes. The
windows in the image planes are
double-buffered, and eight planes
deep; i.e., 4/4.}

/dev/ocrt /dev/crt depth 8 depth 24 (Allows windows in the overlay
planes and the image planes. Win
dows are single-buffered, and ei
ther eight or twenty-four planes
deep.)

Using Starbase with the X11 Windows System 3•3

So Which Mode Should I Use?

In the context of graphics programming, we'll analyze each of the options above
and select the best one for the purposes of this example.

• Overlay mode: Since, in this mode, the Xll server operates only in
the overlay planes, it is obviously not the one to choose for a graphics
environment. You need the image planes to do any serious graphics.

• Image mode: This mode, because it uses the image planes, would allow
advanced graphics. However, in this mode, since everything happens in
the image planes, the window borders share the hardware color map
with the windows. Thus, when the color map for the focus window is
downloaded into the hardware, the window borders temporarily assume
different colors. Contrast this with Combined mode, in which the only
other windows that temporarily assume different colors are those in the
image planes. If you can live with the window borders changing colors,
Image mode would be satisfactory. (If your hardware has no overlay
planes, Image mode is required.)

• Stacked Screen mode: This mode is fine if you never want to have the
windows in the image planes and the windows in the overlay planes visible
simultaneously. For the purpose of our example here, let's say we want
to have them both visible at the same time. Therefore, we wouldn't use
Stacked mode in this situation.

• Combined mode: This mode allows windows in the overlay planes and
the image planes. Since they use different color maps, changing the focus
to and from a window in the image planes does not cause changes in the
window frames' colors; only the colors of the Starbase images themselves.
Thus, for graphics purposes, it is perhaps a bit "cleaner" than using Image
mode.

3-4 Using Starbase with the X11. Windows System

/~
/

/~
/

!~
')

Linking the X11 Libraries

' \ The appropriate libraries must be included in the link list in order to get a { :
\,_..! Starbase-on-Xll program to run. The libraries required for running through the

u

sox11 driver are as follows:

... -lddsox11 -lsb1 -lsb2 -lX11 ...

The libraries required for running fully functional Starbase to an Xll window
are as follows:

... -lXwindow -lsb1 -lsb2 -1Xhp11 -lX11 ...

The libraries listed above (as pertains to Xll) must be be linked in the order
given. For example, -lXwindow before -lsb1 and -lsb2, and -1Xhp11, -1Xr11,
and -lX11 after -lsb1 and -lsb2.

The library -lXwindow must be linked to permit the program to run in an Xll
window. The libraries -1Xhp11 and -lX11 must be linked because the library
-lXwindow is present, even though the application program itself does not call
any of the procedures in these libraries.

Using Starbase with the X11 Windows System 3-5

Running A Window-Dumb Program With X11

Even though a window-dumb program does not make Xlib calls, it can be
directed to run within an XU window. For example, suppose you have a
Star base application that works in "raw mode"; that is, no window system at
all. Obviously, such a program would be window-dumb. However, it can remain
window-dumb and still run in an XU window. The XU window to which the
program sends its output, however, must be created before the program runs.

Creating the X11 Graphics Window

To create a window to which you can send Starbase output, use the xwcreate
command. For example:

xwcreate -geometry 800x600+20+10 -depth 8 GraphWin

This command creates a window of width of 800 pixels and a height of 600
pixels. Its upper left corner is at location 20, 10 on the display, and it is eight
planes deep. The window is identified by the name GraphWin, in the directory
specified by $WMDIR. For example, if the environment variable $WMDIR is set
to /dev/screen (the default value), xwcreate creates the special device file
/dev/screen/GraphWin, which can be used to access the window (see the manual
Using the X Window System, Version 11 for the xwcreate(l) reference page).
In this example, we will assume that the device file is in /dev/screen. Note that
the $WMDIR directory is not automatically accessed by a user program as it is by
xwcreate; the entire pathname must be used in the gopen statement.

Note Some drivers do not support the use of the "-r" parameter when
creating a window to be used for Starbase graphical output.
These drivers do not support backing store (retained rasters) for
windows. See the Starbase Device Drivers Library Manual for
further details on your particular device.

3-6 Using Starbase with the X11 Windows System

Opening the X11 Window

1
•. Once the destination window has been created, the appropriate information needs U to be communicated to the program. This can be accomplished in any of three

different ways:

I \ u

• Hard-coding the desired values into the gopen statement. This has the
disadvantage of requiring recompilation to change devices.

• Pass the values for gopen's (path) and (driver) parameters into the
program via argc and argv. This is much better than the above approach,
but it has the disadvantage of requiring the values to be specified every
time the program is run.

• Pass the values for gopen's (path) and (driver) parameters into the
program via environment variables. This is often better than both the
above approaches, because you can set the values once and use them many
times, and yet be able to change them without recompiling.

It is the third approach we will take here. By convention, the environment vari
ables' names are SB_OUTDEV, SB_OUTDRIVER, SB_OVDEV, SB_OVDRIVER, SB_INDEV,
and SB_INDRIVER for image planes, overlay planes, and input devices, respec
tively.

To allow the window-dumb program to access the Xll window we created above,
merely set SB_OUTDEV to be /dev/screen/GraphWin, and leave the value of
SB_OUTDRIVER as it was.

As for the other two parameters to gopen, (kind) and (mode), they are defined
as follows. The (kind) parameter is OUTDEV, INDEV, or OUTINDEV, whatever
is appropriate for the program. This parameter is unaffected by running the
program in an Xll windows environment.

The (mode) parameter is also the same as when running in a non-windows
environment, with one important exception. When opening an Xll window for
graphics, you should never set the (mode) flag to RESET_DEVICE. To initialize
the window, use the INIT flag. The RESET_DEVICE flag resets the entire display
completely and will interfere with operation of the Xll server.

Using Starbase with the X11 Windows System 3-7

An Example Program

Compile and run the simple example program below, sending the output to an
eight-plane Xll window created via xwcreate. All the program does is write the

names of eight different colors in the colors named. That is, it writes the word
"Red" with red letters, the word "Orange" with orange letters, the word "Yellow"
with yellow letters, and so forth. It also does some color map operations, but
these will not be explored until the next section. For now, it is just a window
dumb program that should run in a (previously existing) Xll window merely by
setting the environment variable SB_OUTDEV to an appropriate value.

#include <starbase.c.h>
#include <stdio.h>
#define Red 1.0, 0.0,
#define Orange 1.0, 0.5,
#define Yellow 1.0, 1.0,
#define Green 0.0, 1.0,
#define Cyan 0.0, 1.0,
#define Blue 0.0, 0.0,
#define Magenta 1.0, 0.0,
#define White 1.0, 1.0,
#define BoldSerif 8
#define EndDfLine FALSE
#define ShowColor(rgb,name)

main(argc, argv)
int
char
{

argc;
*argv[];

int
float
int

fildes;
ColorEntry[3];
Entry;

0.0
0.0
0.0
0.0
1.0
1.0
1.0
1.0

I* get Starbase definitions *I
I* get standard IID functions *I
I* RGB for red *I
I* RGB for orange *I
I* RGB for yellow *I
I* RGB for green *I
I* RGB for cyan *I
I* RGB for blue *I
I* RGB for magenta *I
I* RGB for white *I
I* sent to "text_font_index" *I
I* sent to "text2d" *I
Entry = rgb_to_index(fildes, rgb); \
inquire_color_table(fildes, Entry, 1, \

ColorEntry); \
printf("[%3d] %s %.2f, %.2f, %.2f\n", \

Entry, name, ColorEntry[O], \
ColorEntry[1], ColorEntry[2]);

I* program "NewColorMap.c" *I

I* file descriptor *I
I* color map entry *I
I* loop control variable *I

3-8 Using Starbase with the X11 Windows System

,!)

~I
' /

/

_;'

u
}

1*--- do necessary initialization ---------------------------------------*1
if ((fildes = gopen(getenv("SB_OUTDEV"), OUTDEV, getenv("SB_OUTDRIVER"),

!NIT)) == -1) {

}

fprintf(stderr, "%s %s\n", "Error: gopen failed using environment",
"variables SB_OUTDEV and SB_OUTDRIVER.");

exit(-1);

vdc_extent(fildes, 0.0, 0.0, 0.0, 1.25, 1.0, 0.0);
view_window(fildes, 0.0, 0.0, 1.0, 1.0);
text_font_index(fildes, BoldSerif);
character_height(fildes, 0.15);
character_expansion_factor(fildes, 0.8);
text_alignment(fildes, TA_CENTER, TA_HALF, 0.0, 0.0);
if (argc > 1) { I* if user supplied random seed ... *I

sscanf(argv[1]. "%d", &Entry); I* grab it ... *I
srand(Entry); I* and set random number generator *I

}

for (Entry = 1; Entry < 256; Entry++) { I* randomize color map *I

}

ColorEntry[O] (rand()% 101) * 0.01; I* red *I
ColorEntry[1] = (rand() % 101) * 0.01; I* green *I
ColorEntry[2] = (rand() % 101) * 0.01; I* blue *I
define_color_table(fildes, Entry, 1, ColorEntry);

text_color(fildes, Red); ShowColor(Red, "Red: ");
text2d(fildes, 0.25, 0.8, "Red", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Orange); ShowColor(Orange, "Orange: ");
text2d(fildes, 0.25, 0.6, "Orange", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Yellow); ShowColor(Yellow, "Yellow: ");
text2d(fildes, 0.25, 0.4, "Yellow", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Green); ShowColor(Green, "Green: ");
text2d(fildes, 0.25, 0.2, "Green", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Cyan); ShowColor(Cyan, "Cyan: ");
text2d(fildes, 0.75, 0.8, "Cyan", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Blue); ShowColor(Blue, "Blue: ");
text2d(fildes, 0.75, 0.6, "Blue", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, Magenta); ShowColor(Magenta, "Magenta:");
text2d(fildes, 0.75, 0.4, "Magenta", WORLD_COORDINATE_TEXT, EndOfLine);
text_color(fildes, White); ShowColor(White, "White: ");
text2d(fildes, 0.75, 0.2, "White", WORLD_COORDINATE_TEXT, EndOfLine);
make_picture_current(fildes); I* flush pipeline *I
getchar(); I* maintain graphics resources *I
gclose(fildes); I* 'bye *I

Using Starbase with the X11 Windows System 3-9

Note Note that because of the color map redefinition, the displayed
colors (assuming the window in question is the focus window),
although close to what they call themselves, are probably not
exactly correct. In all likelihood, though, they will be quite close
and easily recognizable.

3-10 Using Starbase with the X11 Windows System

/~
! I
\ /

()
' /

n

I

0

The "Focus Window" and What It Means
In an X Window environment, there is a concept called the "focus window." It
is the window with which the keyboard is currently associated. In a typical X
environment, for example, when the pointer enters a window, the window border
changes and all keystrokes are sent to that window. This is the focus window.

In the context of Starbase, the focus window also comes into play. Suppose you
have two Starbase programs running simultaneously, and they both change the
default color map to the arrangements they require. Isn't this asking for trouble?
It would seem that the program that changed the color map most recently would
be the only one with the correct understanding of the current colors. The other
program(s) would be using a different one than what they need.

Color Maps and the Focus Window

The above scenario would be true were it not for the hpwm window manager, which
arbitrates between Starbase programs contending for the graphical resources. In
our divergent-color-map scenario, each Starbase program has its own software
color map, which no other program can affect. However, there is only one
hardware color map; this is the one used by the display hardware when generating
pictures. And here is where the focus window becomes important: the hardware
color map is loaded with the software color map from the current focus window.
Thus, the image in the focus window will have the correct colors, while all others
may not. When you change the focus window, a new software color map is
downloaded into the hardware color map, and the image in the new focus window
suddenly looks right. Meanwhile, the program running in the previous focus
window continues to run, but perhaps displaying unexpected colors.

Important Only the hpwm window manager does these color map download
ing operations.

Now we'll explore more of the features of the example program listed above. If
you'll look at the program again, you'll see that it shuffles the color map before
it uses it. Then, when selecting a color, requests it via its RGB values instead
of its color map index; indeed, since we shuffled the color map, we don't know
where the colors are.

Using Starbase with the X11 Windows System 3-11

Notice also that the random-number seed can be set by passing an integer into
the program. This allows the color map to be set up in a different (random) order
in different invocations of the program1. This capability will turn out useful in ~~
this next discussion. I !

Using the xwcreate command as described earlier in the chapter, create two
graphics windows. Then, run the example program listed above, passing different
random-number seeds to them. The different random-number seeds cause
different color map definitions. But since RGB routines were used to select the
text colors, "Red" is still printed in red, "Orange" is still printed in orange, and
so forth. And here is where the fun starts.

When both windows have the images drawn into them, you'll notice that one (or
possibly both) has its words written in the wrong colors. This is not because of
a bug in the program, it is an effect of the interaction between multiple software
color maps and a single hardware color map: only one of the software color
maps can be loaded into the hardware color map at any one time. The choice of
software color map to load is determined by the current focus window.

Say, for example, that your two windows are named W1 and W2. Move the mouse
back and forth between these two windows. When W1 is the focus window, it
software color map is loaded into the hardware color map, and its color are
correct. The colors in W2, however, are wrong. Conversely, when W2 is the focus
window, its software color map is loaded into the hardware color map, and its
color are correct. And, the colors in W1 are wrong.

1 When passing a value into the program as the seed for the random-number
generator, you probably wouldn't want to use the value 1, as this is the default.
Therefore, passing in 1 would yield the same random number series as not passing
in anything.

3-12 Using Starbase with the X11 Windows System

This process works for as many windows as you have on the screen. If, for
example, you have seven Starbase graphics windows visible at once-all with

(different software color maps-only the focus window's image will appear correct. -,_;
Note

u

The Starbase color map is associated with the program, not with
the window. When a program quits, it deallocates all its graphics
resources, including the color map. Therefore, the program must
still be running in order for color-map downloading to occur
(hence the get char()). To see the downloading in action, you
will probably want to run the program from two separate hpterm
windows. Both programs will draw their images, and then wait
until you press I Return I in the hpterm windows before terminating.

Using Starbase with the X11 Windows System 3-13

Window-Dumb X11 Graphical Input

Input devices work similarly. Suppose you have two Starbase programs running ~~
simultaneously in two different windows, and they both use graphical input.
Where does the input device's information go? Again, it is sent to the window
that is currently the focus window.

To illustrate how to use window-dumb input in an Xll window, run the program
Trackmouse. c (listed in Chapter 6). Before you run it, though, set up the
environment variables thus:

SB_INDEV=/dev/screen/(window)
SB_INDRIVER=hp98730
SB_OUTDEV=/dev/screen/(window)
SB_OUTDRIVER=hp98730

where (window) is the name of the graphics window in which the program is
running, and of course, the driver names should be appropriate for your hardware.
It should run as before.

Handling Input Devices

The approach to handling input devices is the same as handling output devices:
the gopen (path) parameter is passed into the program to permit an input device
to be opened in either raw mode or in an Xll window.

The Starbase hp-hil, kbd and lkbd drivers can be used in both raw mode
and in an Xll window, based on the gopen (path) parameter. Shown below
is an example where an HP-HIL device is opened in raw mode and in an Xll
window. This example is for an HIL device that is not the window system pointer
device. An HIL tablet is used; this tablet is identified as the FIRST_TABLET. This
nomenclature is explained in detail in Chapter 6; suffice it to say that it represents
the first tablet on the HP-HIL loop.

fildes = gopen("/dev/hil1", INDEV, "hp-hil", !NIT);

fildes = gopen("/dev/screen/win1 FIRST_TABLET", INDEV, "hp-hil", !NIT);
(raw)
(X11}

The window system pointer device (typically a mouse) cannot be directly opened
by the Starbase HP-HIL driver. This is because the Xll server "grabs" this
device. However, it is possible to obtain input from the mouse using the
libXwindow library. This library permits the program to obtain the position
of the window system cursor (which is controlled by the mouse). To do so, the

3-14 Using Starbase With the X11 Windows System

r)

/ u

u

output driver (say, the hp98550 driver) is opened as either an INDEV or OUTINDEV.
The (path) parameter specifies the window. An example gopen is shown below:

fildes = gopen("/dev/screen/win1", OUTINDEV, "hp98550", !NIT)

The above gopen procedure opens the window as both an input device and an
output device. When executing Starbase input procedures, the input is returned
from the Xll window cursor. If your program attempts to directly open the
window system pointer device with the Starbase HP-HIL driver, an error is
generated and the open fails.

The Starbase kbd and lkbd drivers can be opened in raw mode and in an Xll
window as follows:

fildes = gopen("/dev/console", INDEV, "kbd", !NIT);
fildes = gopen("/dev/ttyq3", INDEV, "kbd", !NIT);

(raw mode open)
(X11 open}

The example special device file /dev/ttyq3 used by the Xll open can be
determined by typing tty in the window from which you want to obtain keyboard
input. This returns the pty file for the window (for example, /dev/ttyq3).
Again, the recommendation is to pass the (path) parameter into your program
so that you can select the appropriate path parameter at runtime. The input
devices are added to our example program below. In order for mouse input to
be available in raw mode or in an Xll window, its gopen procedure is separated
from the display open.

#include </usr/include/starbase.c.h>
#include </usr/include/stdio.h>
main(argc, argv)
int argc;
char *argv[];
{

}

int outfildes, mousefildes, kbdfildes, tabletfildes;

outfildes gopen(arg [1] , OUTDEV, "hp98550", !NIT) ;
mousefildes gopen(arg[2] ,INDEV, arg[3], !NIT);
kbdfildes gopen(arg[4], INDEV, "kbd", !NIT);
tabletfildes gopen(arg[5], INDEV, "hp-hil", !NIT);

gclose(outfildes);
gclose(mousefildes);
gclose(kbdfildes);
gclose(tabletfildes);

Using Starbase with the X11 Windows System 3-15

The program is linked as follows:

cc -o prog1 prog1.o -ldd98550 -lddhil -lddkbd -lXwindow \
-lsb1 -lsb2 -1Xhp11 -1X11

The program is run in raw mode as shown below. The five parameters listed
after prog1 correspond to arg [1] through arg [5]. This assumes that the special
device files are as follows:

Raw display: /dev/crt

/dev/hil2

/dev/console

Mouse:

Keyboard:

prog1 /dev/crt /dev/hil2 hp-hil /dev/console /dev/hil1

The program is run in an Xll window using either of the following:

prog1 /dev/screen/win1 /dev/screen/win1 hp98550 /dev/ttyq3 \
"/dev/screen/win1 FIRST_TABLET"

3-16 Using Starbase with the X11 Windows System

(~)

() ,_., 4
Graphics Output Operation

Introduction
The sharing of graphics output resources with emphasis on Starbase output
operation in an Xll window, and the interaction of Xlib and Star base procedures
are discussed in this chapter.

The concept of programs sharing workstation resources means that a Starbase
program running in an Xll window can access all input devices and display
resources (for example, the color map) as if the program is running by itself on a
non-window (raw mode) display. You can also mix Xlib and Starbase procedure
calls in the same program.

This ability to share the input and display resources is a significant benefit
because it permits independently developed applications to run simultaneously
in different windows without interfering with each other. The ability to mix Xlib
and Starbase calls is beneficial because it permits programs to optimize use of
workstation resources.

Chapter Organization

This chapter will cover the following topics:

• How the integration of Starbase graphics with Xll affects raw mode
Star base output and Starbase output in HP Windows/9000.

• How Starbase output works in an Xll window.

Graphics Output Operation 4-1

Raw Mode and HP Windows/9000

This section describes changes to Starbase raw mode operation with the 3.1/6.5 .')
releases. It also describes the changes to HP Windows/9000 operation with the

6.5 release. The major changes are:

1. The process /usr/lib/grmd, which is used to manage graphics resources
used by Starbase, the XU server, and HP Windows/9000, is started
whenever the display is opened in raw mode (except for the HP 9836A
device driver) or whenever the HP Windows/9000 window manager is
started, and should be left undisturbed. When the last Starbase display
driver is closed, the grmd process terminates automatically.

2. Previously, HP Windows/9000 mapped in shared memory for storage of
unoptimized fonts, retained window contents, and other data structures
in up to five shared memory segments of two megabytes each. Now,
this shared memory is allocated as one shared memory segment. The
maximum amount of shared memory allocated is controlled by the
environment variable WSHMSPC (as described in wmstart(1) in the HP .r)
Windows/9000 Reference. 1

The previous maximum value of WSHMSPC was 10 Mbytes. The new
limit is 4 Mbytes, which may be increased by increasing the value of
the configurable operating system parameter shmmax. The adjustment of
this parameter is described in the HP- UX System Administrator Manual.
Because the entire shared memory maximum is allocated at one time,
increasing the WSHMSPC variable can increase the swap space that is
required even when the window system does not need all the space
allowed.

4-2 Graphics Output Operation

Overview of Starbase Output
,) The integration of Starbase and Xll provides full-functionality Starbase in an

Xll window with performance comparable to raw mode Starbase. Starbase
performance in an Xll window is slightly less than raw mode Starbase due to
some additional overhead involved with operating within a window.

Full-functionality Starbase in an Xll window means that those graphics libraries
built on top of Starbase (for example, HP-GKS) also achieve full functionality.
Because Starbase operates in Xll windows, most of the libraries which reside on
top of Starbase (for example, HP-GKS) also run in Xll windows. The exception
is AGP /DGL, which is not supported in Xll windows (AGP /DGL is, however,
supported in raw mode).

Another important capability provided with the integration of Starbase and
Xll is that programs can share the output resources without contention. Each
program in each Xll window can utilize the display resources, such as the color
map, without interfering with other programs using the same resources. This is in
contrast to HP Windows/9000, where access to the color map is not arbitrated;
any program in any window can change the color map values set by another
program.

Graphics Output Operation 4-3

Xlib Graphics versus Starbase Graphics

The following table assumes that Starbase is operating with its direct display
drivers, not the Xn or SOXll drivers.

Table 4-1. Comparison of Xlib Graphics and Starbase Graphics

Feature Xlib Graphics Starbase Graphics

Coordinate Systems 2D, device coordinate only 2D and 3D, supports
advanced shading and
rendering, virtual device
coordinates

Performance Performance constrained Higher than Xlib
by client/server protocol because Starbase drivers

communicate directly to the
display hardware.

Vendor Independence Yes No

Operates Over Yes No. The Xn or SOXll
Network driver can be used

but this provides less
Starbase functionality and
performance.

Xll supports two types of drawables, windows and pixmaps. Starbase can only
open Xll windows, not pixmaps. Xlib can access both windows and pixmaps.

Example Interactions Between Starbase and X11

In doing Star base output in an Xll window, there are several interactions between
Starbase operation and Xll window operation. Examples are:

• In order for Starbase double buffering to work, the Xll server should be
started in double-buffer mode.

• If Starbase is rendering to an obscured, retained window and the window
is resized, the retained rendering of the image is discarded.

• Starbase color map calls can affect the color map associated with an Xll
window.

4-4 Graphics Output Operation

/~
' I

:)

u

Sharing Display Resources with X11
A program rendering in an Xll window controls rendering through the following
two groups of control data:

• Display-control data
• Drawing-control data

Display-Control Data

The display-control data affects what is seen on the entire display. An example is
the display-enable mask. The display-enable mask affects the visual appearance
of your program's output and of the entire display. Display-control data affects
what you see on the display because only one set of supporting hardware is
provided for each display-control data item.

The bitmapped displays support one hardware color map. Each program can have
its own software color map. When a program's software color map is downloaded
into hardware, the colors for that program will be shown as expected. Other
programs in other windows will not have correct colors unless their color maps
are identical to the one currently in hardware. Display-control data does not
affect what is written into the frame buffer; it only affects what is seen on the
display.

Graphics Output Operation 4-5

Typical display-control data items for Starbase and Xlib are shown m the
following table:

Table 4-2. Starbase and Xlib Display Control Data

Display
Control Data Starbase Usage Xlib Usage

Display Enable Specified for each open Not supported; all planes
enabled by Xlib

Plane Blinking Control Specified for each open Not supported by Xlib

Colormap Specified for each open Xlib permits creation of multiple
software color maps

Double Buffer Control Starbase can specify for Server must be started in desired
each window opened. double-buffer mode
The server, however,
should be started in
double-buffer mode.

The only display-control data that Xlib can change is the color map. Double
buffer control is specified when the Xll server is started up, not by Xlib calls.
A set of display-control data is associated with each Starbase open of an Xll
window.

Drawing-Control Data

In contrast to the display-control data, the drawing-control data affects what is
written to the frame buffer. It only affects the visual appearance of the contents
of the window which is currently being rendered. Typical drawing control data
includes the following:

• Replacement rule

• Write-enable control. The write-enable mask can be set directly, using

:fJ

Starbase write_enable or Xlib XChangeGC, or indirectly, using such calls 1'~,, as Starbase's dbuff er _switch. ,,)

• Line color, type, and width

Whenever a program using Xlib or Starbase renders to a window, that program's
drawing control data is used.

4-6 Graphics Output Operation

(
I ,

\._)

(!
-._.)

When using both Xlib and Starbase within the same program to draw to a
window, you may choose to make the Xlib and Starbase drawing-control data
the same using the appropriate Xlib and Starbase procedure calls. This permits
rendering to be done in a consistent manner for both Xlib and Starbase. For
example, to set the default replacement rule to EXCLUSIVE-OR for both Xlib and
Starbase, use XSetFunction to set the Xll value and drawing_mode to set the
Starbase value.

Note that the default drawing-control data is, for the most part, the same for Xlib
and Starbase. For example, the replacement rule is source, the write enable mask
is all ones, the line type is solid, the foreground color is white and the background
color is black. An application that uses only the default values may not require
any action at all to make Xlib and Starbase output consistent. An application
that changes the drawing-control data needs to decide whether to make identical
changes to both Xlib and Starbase or if different values are acceptable.

Display-Control Policy

The display control policy, specifies how the display-control data is handled.
Remember, the display-control data affects what is seen on the screen but not
the actual data written into the frame buffer.

The condition for the display-control data of a window to be downloaded into
hardware are specified by the display-control policy. The display-control focus
window is the window where you want graphics output to appear "true" (perhaps
at the expense of the appearance of graphics in other windows). The display
hardware registers will always contain the display-control data for the current
display-control focus window. In essence, the display-control focus window
"owns" the display-control hardware. As the display-control focus window
changes from one window to another, the new window's display-control data
is downloaded into the hardware.

The display-control focus window is not to be confused with an input focus
window; the input focus window is described in Chapter 6. While the display
control focus window and the input focus window may be the same window (for
example, both may follow the mouse position), they can also be independently
controlled.

Rendering still occurs in windows that are not the display control focus window
so data rendered to these windows is not lost. Changes made to display-control

Graphics Output Operation 4-7

data while a window is not the display-control focus window will be downloaded
and displayed when the window becomes the display-control focus window.

Selection of the Display-Control Focus Window

The hpwm window manager implements the display-control policy. This window
manager, developed by Hewlett-Packard, has the display-control policy built in.
Refer to Using the X Window System, Version 11 for a description.

At Xll startup time, you can specify that the display-control policy should be
tied to the position of the window system pointer device (typically a mouse). The
display-control policy is based on the window where the window cursor currently
resides; this window will have its display-contol data downloaded into display
hardware. Some examples are:

• When the cursor leaves one window and enters another window that has
been opened by Starbase, the new window's Starbase display-control data
is downloaded into the display hardware.

• When the cursor leaves a window and enters a non-Star base (that is, X ~
only) window, the display-control data for that window is downloaded. '.)

• When the cursor leaves the window and goes to the "desktop" , control of
the display control data reverts to the Xll server because the "desktop"
is actually the Xll root window.

Effects on Double-Buffering Operation

The effect of the display-control focus window on double buffering operation is
perhaps the most noticeable. When a program in one window is using double
buffering while a program in another window is not (that is, it's using all available
planes to render its image), and if the window in which double buffering is
occurring is not the display-control focus, there will be some flashing of the
image as the clearing and drawing associated with double buffering operation
occurs. When the double-buffered window is the display-control focus window,
the image in the non-double-buffered window will flash when the display-enable ~
changes associated with double buffering are made. i)

4-8 Graphics Output Operation

(

[I
_!

~!

X11 Server Operating Modes

Displays that have only image planes (no overlay planes) support only one server
operating mode while displays that have overlay planes support from two to
four server modes. The server operating mode affects the Starbase graphics
capabilities that are supported within an Xll window.

The four Xll server operating modes are:

• Overlay Mode: The Xll server operates only in the overlay planes.

• Image Mode: The Xll server operates only in the image planes. Displays
without overlay planes always operate in image mode.

• Stacked Screen Mode: The Xll server operates in the overlay planes and
the image planes as 2 separate screens. This configuration is similar to
a combination of overlay mode and image mode. In fact, it is the same
as having two separate screens, one with only image planes and the other
with only overlay planes. You can switch between the two screens by
moving the X window cursor off the left or right edge of the screen.

When there are more than two screens (for example, two physically
separate screens, each operating in stacked screen mode, for a total of
four screens), moving off the left edge moves up the list of screens while
moving off the right edge moves down the list. When one end of the list
is passed, the screen at the other end is displayed.

• Combined Mode: The Xll server operates in both the overlay planes and
image planes simultaneously. When an image plane window is created,
a mask of that window is created in the overlay planes and is filled with
the transparency color. Thus, the image plane windows and the overlay
plane windows appear to be in the same set of planes. Image plane and
overlay plane windows can obscure each other.

Selection of the operating mode is controlled by the Xnscreens file at Xll server
startup. Refer to Programming With Xlib, Version 11 for a description of this
file. The following table summarizes the key features of the four server modes.

Graphics Output Operation 4-9

Table 4-3. Features of the Four X11 Server Modes

Stacked Screen

Feature Overlay Mode Image Mode Mode Combined Mode /~
J

Planes Where Overlay planes Image planes Two screens, One screen
XU Server one in overlay combining
Operates planes, one in image and

image planes overlay planes.

Location of Overlay planes Image planes Overlay planes Overlay planes
Root Window for overlay

plane screen,
image planes
for image plane
screen.

Planes Overlay plane Image plane Image and Any window
Accessible by windows can windows can overlay plane can be opened
Star base be opened by be opened by windows can by Starbase,

Starbase, image Starbase, raw be opened raw mode
planes can be mode Starbase by Starbase, Starbase is not
opened in raw not supported raw mode supported in

()
/

mode. in overlay Starbase is not any planes.
planes. supported in

any planes.

Double Buffer No, in overlay Yes, for image Yes, for image Yes, for image
Support plane windows; plane windows plane windows plane windows

yes, in image only only
planes in raw
mode.

Planes All overlay All image Overlay-all Image-all
Supportd by planes planes supported supported
Backing Store supported supported for for Xlib and for Xlib, 8

for Xlib and Xlib, 8 planes Star base. planes max for
Star base. maximum for Star base.

Star base

4-10 Graphics Output Operation

Determining the Server Operating Mode
You can use the procedure XHPGetServerMode to find the XU server operating
mode if needed. See Programming With Xlib, Version 11 for details on this
procedure.

Supported Visual Classes

The XU Window System developed by MIT supports six visual classes which
determine how color is used in Xll windows. Four of these are supported by the
XU server, as shown in following table.

Table 4-4. Visual Classes Supported by X11

Visual Class Supported by XU
PseudoColor Yes
DirectColor Yes
StaticGray Yes
GrayScale Yes

StaticColor No
TrueColor No

Refer to Programming With Xlib, Version 11 for a description of these visual
classes.

Graphics Output Operation .4-1.1

The following table shows the depths and visual classes supported by each display
operating in the four server modes.

Table 4-5. Supported Visuals in The Four X11 Server Modes

Stacked
Overlay Image Screen Combined

Displays Mode Mode Mode Mode

300 318M: 1 plane
Hi-Res (SG) with B/S
Dis- 98544A: 1 plane
plays (SG) with B/S

98545A: 4 planes
(PC) with B/S

2/2(PC) with
B/S

98547A: 6 planes
(PC) with B/S

3/3 planes(PC)
with B/S

300 98542: 1 plane
Medium (SG) with B/S
Res
Dis- 98542A: 4 plane
plays (PC) with B/S

2/2(PC) with
B/S

98548A 1 plane(GS) with
B/S

4-12 Graphics Output Operation

I~

Displays

98549
and
319C

98550A

98721A u

Table 4-5. Supported Visuals in The Four X11 Server Modes
Continued

Stacked
Overlay Image Screen Combined
Mode Mode Mode Mode

6 plane(PC) with
B/8

3/3 (PC) with
B/8

2 overlay 8 planes(PC) 2 overlay planes
planes (8G) with B/8 (8G) with B/8
(3 colors plus 4/ 4(PC) with 8 image planes
transparency) B/8 (PC) with B/8
with B/8

4/4 (PC) with
B/8

3 overlay planes 4/4 image planes 3 overlay planes
(PC, 8 colors) (PC) with B/8 (PC, 8 colors)
with B/8 8 image planes with B/8

(PC) with B/8 4/4 image planes

8/8 image planes (PC) with B/8

(PC) with X B/8 8 image planes

12/12 image (PC) with B/8

planes (DC) with 8/8 image planes
X B/8 (PC) with X B/8

24 image planes 12/12 image
(DC) with X B/8 planes (DC) with

X B/8

24 image planes
(DC) with X B/8

Graphics Output Operation 4-13

Table 4-5. Supported Visuals in The Four X11 Server Modes
Continued

Stacked
Overlay Image Screen Combined

Displays Mode Mode Mode Mode

98732A 3 overlay planes 4/4 image planes 3 overlay planes 3 overlay planes
(PC, 8 colors) (PC) with B/8 (PC, 8 colors) (PC, 7 colors) with
with B/8 8 image planes with B/8 B/8
4 overlay planes (PC) with B/8 4 overlay planes 4 overlay planes
(PC, 16 colors) 8/8 image planes (PC, 16 colors) (PC, 15 colors)
with B/8 (PC) with X B/8 with B/8 with B/8

12/12 image 4/4 image planes 4/4 image planes

planes (DC) with (PC) with B/8 (PC) with B/8

XB/8 8 image planes 8 image planes

24 image planes (PC) with B/8 (PC) with B/8

(DC) with X B/8 8/8 image planes 8/8 image planes
(PC) with X B/8 (PC) with X B/8

12/12 image 12/12 image planes
planes (DC) with (DC) with X B/8
X B/8 24 image planes
24 image planes (DC) with X B/8
(DC) with X B/8

Definitions for the previous table:

• "B/S" indicates that Backing Store is supported for both Xlib and
Star base.

• "X B/S" indicates that Backing Store is supported only for Xlib.

• "n/n" indicates that double buffering is supported, with n planes in each
buffer.

• "PC" indicates that PseudoColor is supported.

• "GS" indicates that GrayScale is supported.

• "SG" indicates that StaticGray is supported.

• "DC" indicates that DirectColor is supported

4-14 Graphics Output Operation

Selecting the Server Operating Mode

/ The following guidelines are provided to help you select the server operating
_.; mode:

• Combined Mode is recommended for the HP 98730. This mode offers the
greatest choice of visuals and permits terminal emulator windows to be
placed in the overlay planes so they won't interfere with graphics in the
image planes.

• Image Mode or Stacked Screen Mode is recommended for the HP 98550.
The eight image planes provide more capability than the two overlay
planes.

Guidelines for Visuals

As discussed in the document Using the X Window System, Version 11, the
XOscreens file is used to specify the server operating mode and the visual(s).
Several guidelines that should be followed are:

1. In Combined Mode on the 98730A with a 24-plane system operating
in double-buffered mode, the following combinations of visuals are
supported:

• 4/4 and 12/12
• 8/8 and 12/12

4/4 and 8/8 together are not supported.

2. In Combined Mode on the 98730A with a 24-plane system that is not
operating in double-buffered mode, 8- and 24-plane visuals can be enabled
simultaneously.

3. In Stacked Screens Mode with a 24-plane system operating in double
buffered mode, only one visual is supported at a time (4/4, 8/8 or 12/12).

4. In Stacked Screens Mode with a 24-plane system that is not operating in
double-buffered mode, 8- or 24-plane visuals can be enabled, but not at
the same time.

Example: Specifying "Combined Mode" and Creating Windows

This section discusses how the server mode is specified and how windows are
subsequently created. Combined Mode is used as an example since this is the most

Graphics Output Operation 4-15

complex (and capable!) mode. The following example XOscreens file specifies a
Combined Mode server:

ldevlocrt ldevlcrt depth 8 depth 24 doublebuffer

This specifies the following:

• Operation is Combined Mode since I dev I ocrt and I dev I crt are provided
in the same line.

• The server will supports both 4/4 double-buffered windows (eight planes
total) and 12/12 double-buffered windows (24 planes total) in the image
planes.

• The depth of the server in the overlay planes is controlled by the
I dev I ocrt special device file. This special device file can specify either
3-plane or 4-plane overlay operation (refer to the Starbase Device Drivers
Library Manual for information on the special device files).

When you create a window with the XCreateWindow procedure, the depth
parameter must correspond to a depth supported by the server. In double-buffer
mode, the depth parameter is set equal to the depth of each buffer (for example,
12), not the total number of planes.

If ldevlocrt specifies three-plane operation and the XCreateWindow depth
parameter specifies a three-plane window, the window will be created in the
overlay planes. Likewise, for the above XOscreens file, a window created with a
depth equal to 12 is automatically placed in the image planes.

Additionally, the correct visual must be specified. Thus, to get a 12-bit
window, the depth must be 12 and the visual must be the visual returned from
XGetVisualinfo corresponding to the 12-bit, "DirectColor" visual.

If a window is to be created in a visual different from that of the window's parent,
the client must supply a colormap (CWColormap attribute) that is of the visual
type requested and a border pixel or pixmap (CWBorderPixel or CWBorderPixmap
attribute.)

n

.:)
I

If a depth is requested (for example, 2) in XWindowCreate that does not n
correspond to the server operating mode, an error is generated. .1

Now let's look at another example XOscreens file:

ldevlocrt ldevlcrt depth 8 doublebuffer

4-16 Graphics Output Operation

Assume that ldevlocrt specifies four-plane operation in the overlay planes. The
above XOscreens file specifies 4/4 double buffering in the image planes. If you

1 were to then use XCreateWindow to create a window with a depth of four, it U is ambiguous whether this window should be placed in the overlay planes or the
image planes. Therefore, this XOscreens file is not allowed if I dev I ocrt specifies
a four-plane system; if ldevlocrt specifies a three-plane system, this will work.

u

As Table 4-5 shows, there is a particular visual class (for example, DirectColor)
associated with each window depth. Thus, if you are using the 98730A display
in Combined Mode and you create a 24-plane window, its visual class is always
DirectColor.

Guidelines for Portability

For portability across different XU window operating environments on HP
workstations, it is recommended that application programs do the following:

1. Use XHPGetServerMode to determine which server mode is active.

2. Use XGetVisualinfo to obtain a list of visual structures that match the
desired visual attributes. Alternatively, XMatchVisualinfo can be used
to obtain the visual information that matches the desired depth and class.

3. Once a visual is found that matches the needs of your application, you can
use XCreateWindow to create a window of the desired depth and visual
class. If this visual class is not the default visual class, you will have to
create a color map for the window.

Transparency Index
This section describes the transparency index used in the overlay planes.

HP 98720 Display

Even though there are three overlay planes, the HP 98720 display only supports
seven (not eight) colors in the overlay planes. One color is used as the
transparency color to see through to the image planes; color index 7 or
15,depending on the overlay depth. Anywhere this color index is written into
the overlay planes, the values in the image planes, and not those in the overlay
planes, are visible.

Graphics Output Operation 4-17

HP 98730 Display

There are four overlay planes in the HP 98730 display. Even though these planes
can display 16 colors simultaneously, only 15 are available because one color (J
is reserved for the transparency color. By default, this color is index 7 or 15,
depending on the overlay depth. When the transparency colors index is written
into the overlay planes, the observed color is that of the image planes. The
transparency color is set when the Xll server is started and cannot be changed
until the server is shut down.

HP 98550 Display:

The HP 98550 display has two overlay planes. Only three colors are available
because index 0 is a transparent color.

4-18 Graphics Output Operation

.~
I

(I

_..;'

Supported Starbase Drivers

The following table shows which Starbase drivers can be used in the overlay and
image planes for the different server operating modes. If a particular driver is
not listed for a particular display and server operating mode, then the driver is
not supported for that configuration.

Table 4-6. Starbase Drivers Supported in the Four X11 Server Modes

Overlay Image Stacked Combined
Displays Mode Mode Screen Mode Mode

300 hp300h
Hi-
Res
Dis-
plays

300 hp300l
Med.
Res
Dis-
plays

98548 98550

98549 98550
and
319C

98550 Overlay plane Image plane Overlay or image
and window can be window can be plane windows
98556 opened by the opened by the can be opened

98550 or 98556 98550 or 98556 by the 98550 or
drivers. The driver. Raw mode 98556 drivers.
image planes can open cannot be
be opened by the done by any
98550 or 98556 driver.
driver in raw
mode.

Graphics Output Operation 4-19

Table 4-6. Starbase Drivers Supported in the Four X11 Server Modes
Continued

Overlay Image Stacked Combined

Displays Mode Mode Screen Mode Mode

98720 Overlay plane Image plane Either overlay or
(Note window can be window can only image can be
2) opened by the be opened by the opened by the

98720 driver. The 98720 driver. Raw 98720 driver. Raw
image planes can mode open cannot mode open cannot
be opened by the be done by any be done by any
98720 or 98721 driver. driver.
drivers in raw
mode. This is the
only server mode
where the 98721
driver can be used
(but only in raw
mode).

98730 Overlay plane Image plane Window can only Window can be
windows can be windows can be be opened by the opened by the
opened by the opened by the 98730 driver. Raw 98730 (image or
98730 driver but 98730 or 98731 mode open cannot overlay planes) or
not by the 98731 drivers. Raw be done by any the 98731 image
driver. The image mode open cannot driver. planes only). Raw
planes can be be done by any mode open cannot
opened by the driver. be done by any
98730 or 98731 driver.
drivers in raw
mode.

Notes on the X11 Server Modes

1. In image mode, raw mode access to the overlay planes is not supported.
Graphics in the overlay planes may obscure the window system and may

interfere with overlay plane cursor operation.

2. The HP 98720w driver, which was developed to support HP Windows/9000,

cannot be used with any server mode (neither within a window nor in raw
mode).

4-20 Graphics Output Operation

n
' /

,f)
/

u

u

Use of Starbase Graphics Accelerators

The X11 server does not use the graphics accelerators for its window and
rendering operations. Therefore, Xlib performance is comparable with or
without the HP 98556A, HP 98721A or HP 98732A graphics accelerators installed.
Starbase performance in an X11 window, however, benefits greatly from usage of
the HP 98556A or HP 98732A graphics accelerators. The HP 98721A accelerator
is not supported by Starbase within an Xll window; it can, however, be used to
accelerate raw mode graphics in the image planes with the Xll server in overlay
mode. You can create the appearance of accelerated graphics in an Xll window
on the HP 98721A by appropriately positioning the overlay plane window borders
over a HP 98721A-generated image in the image planes.

Opens Done with Accelerator Drivers

This section describes the number of Starbase opens that can be done in an Xll
window using the HP 98732A and HP 98556A accelerator drivers. You can mix
and match open commands using accelerated drivers and open commands using
non-accelerated drivers, subject to limits on the number of accelerated windows
as discussed below.

HP 98556A Driver:

The number of windows that can be opened with the 98556A accelerator driver
is:

1. A maximum of 31 opens can be active simultaneously using the HP 98556A
accelerated driver. This limits accelerated graphics to a maximum of 31
windows. If some of the windows contain multiple open commands using
the HP 98556A driver, the limit is correspondingly lower.

2. When 31 open commands of the HP 98556A are currently active and
another open of the HP 98556A is done, a Star base error is generated
and the open command will fail. When one of the previous HP 98556A
opens is closed, the first open command can be tried again.

3. In addition to the 31 open commands that can be done with the
accelerated driver, any number of other windows may be opened with
the unaccelerated HP 98550 Starbase device driver.

Graphics Output Operation 4-21

HP 98732A Device Driver:

The number of windows that can be opened with the HP 98732A accelerated
driver are: ()

1. The HP 98732A driver supports up to 31 accelerated windows operating
simultaneously. Furthermore, it permits an accelerated window to be
obscured by, at most, 31 other rectangles (for example, corners of
windows).

2. When an image plane window is rendered to by the accelerator and
is obscured by more than 31 rectangles, rendering is halted until that
window has moved up enough in the window stack to be obscured by
fewer than 31 rectangles. It is possible for a program to detect when this
occurs by passing a procedure address to the Starbase gescape procedure
with opcode CLIP _OVERFLOW. This procedure is then called whenever the
clip list overflows. Refer to the HP 98730 chapter in the Starbase Device
Drivers Library Manual for information on this gescape opcode.

!

3. When a window is about to become obscured by more than 31 windows
and the accelerator hardware is currently rendering to that window, ()
the window system is locked until the accelerator is finished with the
current set of primitives. The calling process will become blocked and
the CLIP _OVERFLOW procedure will be called by Starbase.

The above guidelines only apply to windows in the image planes. For example,
in combined mode, overlay plane windows which overlap image plane windows
do not count against the limit of 31 obscuring rectangles. The limit only applies
to image-plane windows which overlap other image-plane windows. Therefore,
it is recommended that non-graphical windows (for example, terminal emulator
windows) and graphical windows that don't need to use the graphics accelerator
be placed in the overlay planes.

Note that accelerated overlay windows are not supported with the HP 98731
driver.

4-22 Graphics Output Operation

~~
.)

u

Z Buffer

For graphics operations that require a Z buffer such as hidden-surface removal, a
dedicated Z buffer board must be installed in the HP 98732A. When the Z buffer
board is installed and an accelerated image-plane Xll window is opened, the Xll
server also associates a corresponding portion of the Z buffer with the window.
This Z-buffer allocation is automatically moved and resized as the window 1s
moved and resized. It is also obscured by other windows in the image planes.

Graphics Output Operation 4-23

X11 Color Map Control
This section assumes that you are familiar with what a color map is and the ~)
Starbase and Xlib procedures which affect the color map. For a description of
color maps and how Starbase controls the color map, refer to the chapter "Color
Graphics" in Starbase Graphics Techniques For a description of Xlib control of
the color map, refer to Programming With Xlib, Version 11.

The hpwm window manager implements the display-control policy. This window
manager automatically downloads each window's associated color map into the
display hardware when the window cursor enters the window. This policy applies
to operation before and after an Xll window is opened by Starbase.

The color map policy is an additional mechanism needed to control the interaction
of Starbase and Xlib color map procedures.

Hardware and Software Color Maps

It is necessary to distinguish between hardware color maps and software color
maps. The hardware color map provides the actual physical translation between
a pixel value in the frame buffer and the color generated on the screen. There
is only one hardware color map for each display. The software color map is the
program's representation of the color map. There can be numerous software color
maps. Colormap calls always affect the software color map; they may or may not
affect the hardware color map.

X11 versus Starbase Color Map Modes

Starbase supports the three color map modes listed below; refer to the Starbase
Graphics Techniques for information on these modes.

• CMAP _NORMAL
• CMAP _FULL
• CMAP_MONOTONIC

4-24 Graphics Output Operation

n
' /

'~
i)

(..

0

u

The following table shows how the Starbase color map modes and Xll visual
classes are related:

Table 4-7. X11 and Starbase Color Map Modes

Usable Starbase
Color Map Modes

Xll Mode Description (default=*)

PseudoColor Definable RGB triples. CMAP_NORMAL*
CMAP_FULL
CMAP MONOTONIC

GrayScale (see Like PseudoColor but CMAP_MONOTONIC
notes) R=G=B CMAP_NORMAL*

StaticGray Like GrayScale but CMAP_NORMAL*
pre-defined RGB values CMAP_MONOTONIC

DirectColor Three independent RGB CMAP_FULL*
values

Notes on Color Map Modes

Xll mode using GrayScale should keep operation gray scale, but Starbase can
override this.

Starbase Use of Color Maps

In a non-window (raw mode) application, a Starbase program has complete
control of the hardware color map. The program can set and change the color
map values at any time. The ability of a program to control the color map is
preserved to support porting of raw mode programs to the Xll window system
without requiring source code changes.

Graphics Output Operation 4-25

Starbase Interactions with the X11 Color Maps

There are three phases of Starbase interaction with the Xll color maps:
• Phase 1: When an Xll window is first created.
• Phase 2: When the Xll window is opened by Starbase.
• Phase 3: After the Xll window is closed by Starbase.

There are two cases of interest which depend on the mode parameter of gopen
that you provide when you open the Xll window: INIT being present, and INIT
being absent. The following sections decribe these two cases.

4-26 Graphics Output Operation

if)

,,-,.,
)

I u

u

INIT Present

The following diagram shows the 3 phases:

Shared Memory

I Color Map 11

I Color Map 21

Hardware Color Map

I Color Map 11

Phose 1:

X11 Only

Shared Memory

New Color

I Color Map 11

I Color Map 21

New Calor Map

Phose 1:

X11 Window1
opened by Storbose

Shared Memory

I Color Map 11

I Color Mop 21

Hardware Color Map

Window Default
Color Map

Phose 1:

X11 Window1
closed by Storbose

Figure 4-1. Color Map Control with !NIT Present

All Starbase and Xlib software color maps are stored in shared memory controlled
by the Graphics Resource Manager (GRM). In Phase 1, assume that the shared
memory already contains two color maps for two windows. Assume also that the
window cursor is in Window 1, so that Color Map 1 is automatically downloaded
into the hardware color map.

When Window 1 is opened by Starbase during Phase 2, a new X11 color map
(called New Color Map) is created for the X11 window. New Color Map has the
following characteristics:

Graphics Output Operation 4-27

1. It has the same visual class that Window 1 currently has. For example,

when Window 1 has the visual class PseudoColor with depth equal to 8,
New Color Map also has the visual class PseudoColor with depth equal ~

to 8.
1

•

2. Because INIT is present, New Color Map is initialized with the Starbase
default color map values for the particular display (see the Starbase Device

Drivers Library Manual for these default initialization values).

3. When the window cursor is in Window 1, New Color Map is automatically

downloaded into the hardware color map as soon as it is created. When

the window cursor is in another window, New Color Map is still created

and initialized in shared memory but it is not downloaded into the

hardware color map until the window becomes the display-control focus

window.

Starbase color map operation is as follows during Phase 2:

1. Starbase color map calls affect only New Color Map, not any of the other
color maps; Xlib calls can be used to change the other color maps.

2. When New Color Map has been downloaded into the hardware color map,

Starbase color map calls modify both shared memory's New Color Map
and hardware's copy of New Color Map. When New Color Map is not

downloaded into hardware, Starbase color map calls affect only shared
memory's copy of the color map.

3. When an Xlib call selects a different color map for Window 1 (for example,
Color Map 1) than the color map Star base "believes" is the current color
map then:

• You can detect a color map change using the ColormapNotify
event by passing ColormapChangeMask to XSelectinput.

• You can use the Starbase gescape READ_COLOR_MAP to modify the
newly selected color map. This gescape causes Starbase to view
this newly selected Color Map 1 as its current color map.

,fj

When you close the window in Phase 3, the color map created when the window r)
was opened (New Color Map) is destroyed; Color Map 1 and Color Map 2 continue
to exist.

4-28 Graphics Output Operation

u

u

u

INIT Absent

The following diagram shows the three phases of interest:

Shared Memory

I Color Map 11

I Color Mop 21

Hardware Color Map

I Color Map 11

Phose 1:

X11 Only

Shared Memory

I Color Map 21

Hardware Color Map

Phase 1:

X11 Window1
opened by Storbose

Shared Memory

I Color Map 11

I Color Map 21

Hardware Color Map

I Color Map 11

Phose 1:

X11 Window1
closed by Storbose

Figure 4-2. Color Map Control with INIT Absent

In Phase 1, assume shared memory already contains two color maps for two
windows, and that the window cursor is in Window 1, so that Color Map 1 is
automatically downloaded into the hardware color map.

In Phase 2, after the Starbase open of Window 1 is done with INIT absent,
Starbase will receive the ID of Window 1's color map (Color Map 1) and begin
using it. The Starbase default values will not be loaded into Color Map 1
because INIT is false. However, subsequent Starbase color map calls will affect
the contents of Color Map 1. When Color Map 1 is installed in the hardware

Graphics Output Operation 4-29

color map, Starbase color map calls affect the hardware color map. Starbase will

also respect read-only attributes of cells in the software color map and will not

change them. r')
In Phase 3, after the window is closed, color map operation is again under control

of the Xlib library.

Multiple Processes Opening a Single Window

Assume two processes (Process 1 and Process 2) open a single window, and that

Process 1 opens the window with INIT followed by Process 2 opening the window

without INIT. Consider the following sequence:

1. Process 1 opens with INIT: A new color map (New Color Map) is created.

2. Process 2 opens without INIT: Process 2 inherits the window's current

color map (New Color Map) as its color map.

3. Process 1 closes the window: At this point, Process 1's New Color Map

is disassociated from the window. While the color map will continue to

:~~a~:rs::~le~a~ee~~r:n~:fe~;: :feit:c~:~:~~n~: ~~~~:s 2~i~~:::~:;: n
be able to download the color map into the hardware color map.

4. Process 2 can detect color map changes as described previously, namely

using the ColormapNotify event by passing ColormapChangeMask to

XSelectinput. Process 2 can re-associate New Color Map with the

window using XSetWindowColormap. Process 2 can inherit the current

color map using READ_COLOR_MAP. This will permit Process 2 to access

a color map that the window manager can download into the hardware

color map.

Non-interacting Color Maps

The Xlib and Starbase color map calls only interact when Starbase opens an

Xll window. For example, when the Xll server is operating in the HP98732A

overlay planes and your program does a raw mode open of the image planes,

there is no color map interaction because the overlay planes and image planes

each have their own separate color maps. If the Xll server and Starbase are used

on the HP 98547 A display (where both Xlib and Starbase output go to the image

planes), both Xlib and Starbase affect the single hardware color map.

4~30 Graphics Output Operation

/~
/

X11 and Starbase Color Map Cooperation
Application developers are encouraged to design color map cooperation into their
application programs. Suggestions for implementing color map cooperation are:

• Use the Xll color maps and color map calls whenever possible.
• Initialize a few identical entries in all color maps and use these colors for

borders, foreground/background, text, and any other commonly displayed
information.

• Minimize the number of different X color maps that are used.
• Start up Xll using the default Starbase color map when running window

dumb Starbase applications that do not alter the color map. You can use
the Xini tcolormap utility to initialize the color map immediately after
starting the server.

Graphics Output Operation 4-31

X11 Double-Buffering Operation

This section describes double buffering operation with the Xll server. For a ,rj
description of how Starbase double buffering works in raw mode, refer to the

chapter "Frame Buffer Control and Raster Operations" in the Starbase Graphics
Techniques manual. For a description of double buffering support provided by
the Xll server, refer to Programming With Xlib, Version 11.

The buffer sizes in double-buffer mode are denoted as 2/2, 4/4, etc. For example,

4/4 means that there are four planes in each buffer for a total of eight planes. In
effect, the device contains two separate frame buffers, each with four planes.

X11 Support of Double Buffer Mode

As described in Programming With Xlib, Version 11, the Xll server can be

started in double-buffer mode. Once the Xll server is started, the double-buffer

mode cannot be enabled or disabled. Likewise, the size of each of the two buffers

is fixed at server startup time and cannot be changed after starting. Double
buffering of the Xll server is controlled by the Xnscreens file, where n denotes ,r-;
the display number (0 is used in our discussions). The follpwing example contents
of the XOscreens file starts the Xll server in 4/4 double-buffer mode.

/dev/crt depth 8 doublebuffer

The Xll server operates in double-buffer mode as follows:

• Instead of selectively rendering in one buffer or the other, Xlib renders the
same data simultaneously to both buffers. Thus, as the displayed buffer is
toggled between buffers, the appearance of the Xll window borders and
Xlib rendering is unchanged.

• The Xll default color map is initialized so it has the same colors for each
of the two buffers. Subsequent Xlib color map calls automatically change
the color map for both buffers.

• The depth of visual supported for clients is the depth of one buffer.

4-32 Graphics Output Operation

u
Starbase Support of Double Buffering

When the Xll server starts in double-buffer mode, Starbase programs may
operate in double-buffer mode. Use the Starbase call inquire_display_mode to
determine whether a Starbase program is operating in single- or double-buffer
mode, the size of each buffer, and the active buffer. Refer to the Starbase
Reference for details on this procedure.

When the Xll server is operating in single-buffer mode, the Starbase application
should operate in single-buffer mode.

Starbase programs that do double buffering will "inherit" the double-buffer
environment that the Xll server uses at startup. The following cases illustrate
how Xll and Starbase double buffering interact:

• When the Xll server starts in 4/4 double-buffer mode on an eight-plane
system, a Starbase application can operate in 4/4 double-buffer mode.

• When the Starbase program requests less than 4/4 double-buffer mode
(for example, 2/2 double buffering), it will only have access to the two
lower planes of each four-plane buffer.

• When a Starbase program requests larger buffers (for example, 8/8 double
buffering) than is provided by the Xll server (for example, 4/4 double
buffering), Starbase will be limited to 4/4 double-buffer mode.

• When a Starbase program enables double buffering with a server that is
not operating in double-buffer mode, the Starbase program will be allowed
to operate in double-buffer mode. However, because the Xll server is not
operating in double-buffer mode, it will use the entire display depth for
its window borders and Xlib rendering. As the buffers are alternately
displayed by Starbase, partial segments of the display data rendered by
Xlib will flash on the screen. Because this may be visually disruptive,
Starbase programs should only use double-buffer mode when the Xll
server is started in double-buffer mode.

When the Xll server is started in double-buffer mode, your program can open a
window and specify double-buffer operation using the Starbase double_buffer
procedure. This permits your program to write to the non-displayed buffer while
the other buffer is displayed. Note that switching between buffers is based on
synchronization with Starbase calls, not on synchronization with Xlib calls. The
Starbase graphics library supports double buffering by automatically making a

Graphics Output Operation 4-33

double_buffer call when an X11 window is opened. It does so with the following
parameters of the double_ buffer procedure:

MODE

DFRONT

TRUE

TRUE

Number of planes Same as X11 server double-buffer mode

One example is where an eight-plane display is operating in 4/4 double-buffer
mode. When an X11 window is opened, the Starbase double_buffer call is au
tomatically made by Starbase to initiate Starbase double-buffer operation in that
window. If you then call the Starbase procedure inquire_fb_configuration,
you'll be informed that you have a four-plane device, not an eight-plane device.

Display-Control Policy and Double Buffering

In order for double buffering to appear visually correct within a window, the
window must be the current display-control focus window. This allows the
Starbase driver to change the display-enable register when switching from one

:fJ

buffer to the other for this window (remember that the display-enable register ')
is a display-control value). Rendering still occurs when the window is not the (.
display-control focus window. However, Starbase double-buffer switches in the
non-focus window do not affect which buffer is displayed (the double-buffer
switches do affect which buffer is written to). Because X11 renders to both
buffers simultaneously, the window borders will always appear correct, regardless
of the contents of the window. Likewise, windows containing only Xlib rendering
will always appear correct.

Applications That Do Not Use Double Buffering

It is recommended that your Starbase application use inquire_display_mode
to determine the double-buffer startup mode of the X11 server and respond
accordingly with Starbase double-buffer calls. If the X11 server is operating in
double-buffer mode but your Starbase application does not use double buffering
(that is, does not use dbuffer_switch and double_buffer), your single-buffered /~

Starbase application only writes to the lower buffer. If another Starbase .)
application operating in the display control focus window calls dbuff er _switch,
which switches the displayed buffer to the upper buffer, your single-buffered image
will "disappear" until the lower buffer is display-enabled again. When a window

4-34 Graphics Output Operation

I I
I :
_/

(i

"-"'

(\
\._./

running a single-buffered Starbase program becomes the display-control focus
window, the lower buffer is immediately displayed and the window appears correct
(and the display stops toggling between the upper and lower buffers).

Summary

The steps to use double buffering are:

1. If you have control of the Xll server double-buffer mode, you know it
meets the double-buffer needs of your program. However, if your appli
cation program is intended to operate with each of the four Xll server
modes on the various displays, you should use inquire_ display _mode to
determine the Xll server double-buffer mode when the window is opened
and then respond accordingly with Starbase double-buffer calls.

2. When moving a raw mode Starbase program to Xll, you need to
be aware of the double-buffer mode it requests. You can use in
quire_di splay _mode to determine the Xll server double-buffer mode
and then make the appropriate Starbase double-buffer calls.

3. Backing store for obscured windows is supported in double-buffer mode.
Refer to the next section for a description of how backing store operates
in double-buffer mode.

Graphics Output Operation 4-35

Backing Store Operation
This section describes backing store support provided by X11. Two terms which (-:i
essentially mean the same thing are:

• backing store (Xlib terminology)
• retained raster (HP Windows/9000 terminology)

In our discussions, the term backing store is used. Backing store is memory
used to retain graphics data rendered to obscured portions of a window. Rather
than "lose" the graphics information, it is stored in memory. When the obscured
portion of the window is exposed, the retained graphics data is transferred from
memory to the display frame buffer. A window that has backing store associated
with it is referred to as retained.

Backing store memory can be either virtual memory or display offscreen memory.
The X11 server first attempts to allocate backing store memory for a window in
offscreen memory. However, depending on the size of offscreen memory (which
varies from display to display) and other usages of offscreen memory (for example,
storage of fonts), there may not be enough offscreen memory to support backing 1~1
store. In this case, the Xll server uses virtual memory.

The advantage of offscreen backing store memory is that rendering is faster.
Because the functionality is the same for virtual and off-screen backing store,
programs should not need to know where the backing store memory is located;
therefore, no mechanism is available to programmatically determine the location
of backing store memory.

Use of backing store is optional. When it is not used, graphics operations intended
for obscured portions of the window are lost. You can use the X11 window
exposure event XExposeEvent to re-generate your image. Window exposure
events are described in the manual Programming With Xlib, Version 11.

Backing Store Cases

There are three cases involving obscured windows and backing store that should
be considered: (J

• Combined mode: In the case of overlay plane windows covering up image
plane windows, backing store is not required. The overlay planes reside
"on top" of the image planes in physically separate frame buffer planes,

4-36 Graphics Output Operation

(: "-'I

so the graphics rendered to an image plane window which is obscured by
an overlay plane window is not lost. However, combined mode backing
store is needed to save the contents of an obscured window when one of
the following occurs:

o An overlay-plane window obscures another overlay-plane window.
o An image-plane window obscures another image-plane window.
o An image-plane window obscures an overlay-plane window.

• Saving the Contents Beneath a Window: This capability is not automat
ically supported by the Xll server. In order to save the contents of the
windows beneath a new window, the windows being obscured must be
retained windows.

• Saving and rendering to an obscured portion of a window: This is the
main focus of this section and is discussed in detail below.

Creating an X11 Window Which Supports Backing Store

When an Xll window is created, you can request the window to support backing
store. Xll windows which support backing store can be created using either the
xwcreate(1) command or the XCreateWindow procedure, as follows:

Using xwcreate(1)

The -r parameter of xwcreate is used to specify that a window supports backing
store. The following example creates a 300x300-pixel window which supports
backing store:

xwcreate -r -geometry300x300+10+10 -depth 8 GraphWin

Using XCreateWindow

When an Xll window is created with the XCreateWindow procedure, it can
be created as a retained window using the backing_store parameter of the
attributes structure. backing_store can have these three values:

NotUseful

WhenMapped

Always

No backing store.

Backing store provided only when the window is mapped to the
screen.

Backing store provided as long as the window exists.

Graphics Output Operation 4-37

Enabling Backing Store after Window Creation

The backing_store parameter in the XSetWindowAttributes structure can .r-'j
be changed after the window is created using the XChangeWindowAttributes ' I

procedure, which will enable backing store in a window which was created without
it.

Enabling Starbase Backing Store

When a window which supports backing store is then opened for Starbase
output, the Starbase graphics will not be retained unless you also link the
Starbase byte driver (lusr/lib/libddbyte. a) and/or the Starbase bit driver
(lusr /li b/li bddbi t . a) as appropriate for the depth of the window's visual. For
obscured portions of a window, these Starbase drivers draw to virtual memory
instead of the display. When the previously obscured portion of the window
becomes unobscured, the information is fetched from memory and written to the
display by the Xll server.

The bit driver is used for monochrome displays (for example, the HP98548 ~
display) while the byte driver is used for color displays. The bit driver provides r)

backing store for monochrome displays if it is linked into your program and the
window is retained. Likewise, the byte driver provides backing store for color
displays if it is linked into your program and the window is retained.

Backing store memory may be either in virtual memory or display offscreen
memory. The bit and byte drivers are required only for virtual memory backing
store; the Starbase display drivers do the rendering for offscreen backing store.
However, because it is typically not possible to guarantee that display offscreen
memory will be used for backing store, the bit and/ or byte drivers should always
be linked into your application when Starbase backing store support is required.

Note The bit driver is only supported on the HP 9000 Series 300
computers, not on the HP 9000 Series 800 computer. This is
because there are no monochrome displays supported on the
Series 800 computers.

4-38 Graphics Output Operation

Intermixed Starbase and Xlib Calls

Backing store is supported for Starbase and Xlib when these calls are intermixed
in the same program. Both Starbase and Xlib render to the same backing store
memory. However, Starbase backing store operation is not affected by the Xlib
attributes backing_planes and backing_pixel. The planes used by Starbase
for backing store are controlled by the Starbase procedure wri te_enable.
Xlib backing store operation, however, is affected by the backing_planes and
backing_pixel attributes.

Backing Store Control

The following table shows how the backing_store attribute and linkage of the
Starbase bit and/or byte drivers control backing store operation:

Table 4-8. Control of Backing Store

backing_store Bit/Byte Driver Bit/Byte Drivers
Value Linked Not Linked

NotUseful Neither Xlib nor Neither Xlib nor Starbase
Starbase retained retained

WhenMapped Xlib and Starbase Xlib retained when window
retained when window is is mapped, Starbase not
mapped retained

Always Xlib and Starbase Xlib always retained,
always retained Starbase not retained

Depth of Backing Store

Hewlett-Packard displays have various depths, from one-plane monochrome
displays to 24-plane full-color displays. For Starbase, the fact that backing store
is supported by the Starbase bit driver and byte driver indicates the depth of
Starbase backing store. Single-plane backing store is provided for monochrome
displays by the bit driver and eight-plane backing store is provided for systems
with eight planes or less by the byte driver.

When the number of planes being used by Star base exceeds eight planes, Star base
backing store is not supported. Thus, for example, when you are using the

Graphics Output Operation 4-39

HP 98721A in 8/8 double-buffer mode, 12/12 double-buffer mode or 24-plane

mode, backing store is unavailable. When you set the backing_store attribute

to Always or WhenMapped and the byte driver is linked in, you won't get an error,

but nothing will be rendered into backing store memory.

Xlib backing store, however, can exceed eight planes. When the backing_store

attribute is specified, Xlib backing store is supported for 8/8, 12/12 and 24-plane

systems.

Backing Store Operation With Graphics Accelerators

Backing store for the HP 98721A accelerator is not supported because Star base

does not support rendering with the HP 98721A accelerator to an Xll window.

When you use the optional HP 98732A and HP 98556A accelerators, the images

in the frame buffer are generated by the accelerator hardware, not by software,

and there is no way for the accelerator output to be "fetched" for retention in

backing store memory when the window is obscured. Therefore, when a window

being rendered into by the HP 98732A or HP 98556A accelerators is obscured, any

,f)

graphics generated by the accelerator that is intended for the obscured portion .:)

is lost.

Users of HP Windows/9000 may recall that the HP 98550 driver (if linked) will

automatically be used to render to an obscured window in lieu of the HP 98556

driver. This capability is not supported in an Xll window.

Backing store is supported with the HP 98721A and HP 98732A displays when

you use the non-accelerator drivers (that is, the HP 98720 and HP 98730 drivers).

However, these drivers provide less functionality than the accelerated drivers.

Also, as discussed above, Starbase backing store is only supported for eight planes

or less. With the HP 98732A driver, backing store support is only provided for

retention of graphics data, not Z-buffer data.

Multiple Starbase Opens

When an Xll window which supports backing store on a color monitor is opened

by two Starbase programs, the first program linked with a byte driver and the

second program not linked with a byte driver, only Starbase graphics rendered

by the first program are retained.

4-40 Graphics Output Operation

Summary

The main points of backing store operation in double-buffer mode are:

• Because Starbase backing store is supported by the byte driver, a
maximum of eight total planes can be retained in backing store. Thus,
in double-buffer mode, 4/4 is retainable but 8/8 is not retainable (due to
having greater than eight total planes).

• Xlib backing store supports any number of planes up to 12/12 in double
buffer mode.

Window Re-Sizing

When a window which supports backing store is re-sized (either decreased or
increased in size), all backing store information is lost. After the resizing occurs,
rendering to backing store memory resumes.

Summary of Steps
(·.

_) The steps to use backing store are:

1. Create a retained Xll window as described previously using either the
xwcreate(1) command or the XCreateWindow procedure. Alternately, the
XChangeWindowAttribute procedure can be used to enable backing store
after the window is created. All these methods ensure that Xlib rendering
will be retained.

2. To enable Starbase backing store, link the bit driver and/or byte driver
into your application.

3. Open the window with a Starbase driver that supports backing store. The
HP 98732A and HP 98556A accelerator drivers are examples of drivers
which do not support backing store.

Graphics Output Operation 4-41

Window Resizing Operation

Starbase Window Size

An Xll window of any size up to 32Kx32K pixels can be created. When
this window is opened by Starbase with a gopen call, the Starbase library
automatically learns the window size. You can then use the Starbase procedure
inquire_sizes to determine the size (in pixels) of the window.

Effects of Re-sizing the Window

If you change the size of the window after it is opened by Starbase, rendering will
be in the same position relative to the upper left corner of the window. However,
the Starbase graphics library is not aware that the window has changed size; the
Starbase procedure inquire_sizes will return the old (prior to re-sizing) window
dimensions. Because the Starbase library is not aware of window re-sizing, the
scaling of Starbase graphics is not changed. For example, if your 400x300 pixel
Xll window is opened by Starbase and then you later reduce the window size (~
to 200x200 pixels, Starbase will not reduce the scaling of its graphics. Starbase
does, however, clip output to the window's new size when rendering extends
beyond the it.

If you want to change the scaling of your Starbase graphics, you can detect a
resize request with the Xll event ConfigureNotify; window size information is
provided with the event. The subsequent steps that a program should take depend
on whether the window has been increased or decreased in size, as follows:

• If the window size is decreased in size, you can call the Star base procedure
set_p1_p2 to specify a correspondingly smaller drawing area. If you
want to change the size of the region of world coordinate space that is
visible in the window, you can use either the vdc_extent or viewport
procedure. The fact that the Starbase graphics library does not know that
the window is smaller is not a problem because the set_p1_p2 procedure
limits Starbase output to the smaller boundaries marked by Process 1 and
Process 2. This re-scaling does not apply to Starbase device coordinate
graphics. If your program is using device coordinate procedures, you may
want to adjust any program scaling based on the re-sized window.

4-42 Graphics Output Operation

0 ' /

c~

• If the window size is increased, it is not possible to use the Starbase
procedure set_p1_p2 to enlarge the drawing area to encompass the larger
window. Because the Starbase library is not aware of the increase in
window size, it does not allow the set_p1_p2 procedure to be used to
increase the drawing area beyond the original size of the window.

In order for the Starbase library to be aware of a change in window size, it is
necessary to close the window with the gelose procedure and then re-open the
window with the gopen procedure. After the window is opened, Starbase will be
aware of the new size and inquire_sizes can be used to obtain the size.

Affect on Xlib

Because Xlib graphics primitives are in device coordinates (that is, pixels), there
are no Xlib scale factors which require changing if the window size is changed.
If the window is increased in size, the program can use the larger area without
any additional steps. If your application provides its own scaling (for example,
does 2D transformations), you can detect the X11 event ConfigureNotify and
change your program's scale factor accordingly.

Graphics Output Operation 4-43

X11 Cursor and Starbase Echo Operation

Echoes and cursors refer to graphical entities on the screen which track the motion

of some type of input device (for example, the server's pointer device). Several

terms which are often used interchangeably are:
• Cursor
• Echo
• Sprite
• Pointer

In this manual, only the terms cursor and echo are used. These terms are defined
as follows:

• Cursor: This is the graphics entity which follows the Xll pointer device.

This is referred to as the X11 cursor.

• Echo: This is the graphics entity controlled by Starbase, also called the
Starbase echo. The Starbase echo can be "attached" to an input device
(for example, an HP-HIL tablet). As the input device moves, the Starbase

echo tracks this motion. Starbase also provides the capability to position rJ
the echo programmatically.

Starbase Raster and Vector Echoes

Starbase supports both raster echoes and vector echoes. A vector echo is
composed of one or more vectors. An example of a vector echo is a full-screen

cross hair. A raster echo is composed of a user defined bit pattern which is
specified by the Starbase procedure define_raster_echo. For more information

on Starbase echoes, refer to Starbase Graphics Techniques and to the specific
Starbase driver documentation in the Starbase Device Drivers Library Manual.

The Appendix in the Starbase Device Drivers Library Manual describes several
gescape opcodes that provide additional control of Starbase echoes.

The type of echo chosen affects whether the echo is placed in the overlay planes

or the image planes on certain displays. Vector cursors are best suited for the
overlay planes because they are typically monochromatic (the default is white)

and can live with the limited colors available in the overlay planes. Raster cursors
typically reside in the image planes, permitting them to use the colors that are
available in the image plane's color map.

4-44 Graphics Output Operation

ri)
;

I .
\ I ..._..,;

Hardware Support for Cursors and Echoes

Certain displays provide hardware support for cursors and echoes. For example,
the HP 98720 display reserves one of its four overlay planes as a cursor plane.
Likewise, the HP 98730 display provides a cursor plane when only three of the
four overlay planes are being used by the Xll server. In addition, the HP 98730
provides a hardware cursor. Refer to the Starbase Device Drivers Library Manual
for a description of the cursor support provided by each display.

Picking up the Cursor or Echo

Whenever Xlib or Starbase rendering occurs in a window which contains an Xll
cursor or a Starbase echo, the cursor or echo is momentarily "picked up". This
means that the echo or cursor is removed from the screen and the graphics data
that was previously there is restored. This allows rendering to occur with the
correct data in the frame buffer. Once the rendering is done, the cursor or echo
is moved back on the screen after a copy of the area "under" the cursor is saved
(this saving only occurs for raster echoes).

Starbase vector echoes in the cursor planes do not need to be picked up and
restored when rendering is performed in the image planes. This is because the
cursor planes reside in physically separate planes "on top" of the image planes.

Raw Mode Starbase Echoes

Because the image planes can be opened in raw mode by Starbase when the Xll
server is operating in overlay mode, it is possible to have a raw-mode Starbase
echo operating in the image planes at the same time Starbase echoes are operating
in overlay plane windows. Because opening of the overlay planes is not supported
when the Xll server is operating in Image Mode, it is not possible to have overlay
plane Starbase echoes while X is running.

Graphics Output Operation 4-45

X11 Cursors and Starbase Echoes

The following table shows default positions where the Starbase echo and X11
cursor reside for each of the Xll server operating modes. The Starbase gescape
R_OVERLAY_ECHO can be used to change the default echo placement from the
image planes to the overlay planes. "Shares" means that the echo or cursor is
rendered into the same planes used by Starbase or Xlib for rendering.

300
Medium
and
High
Res
Displays

98548A,
98549A

98550

Table 4-9. Default Starbase Echo and X11 Cursor Placement
in the Four X11 Server Modes

Overlay Mode Image Mode Stacked Screen Mode Combined Mode

Echo and cursor
share the image
planes

Echo and cursor
share the image
planes

Echo placed Echo and cursor Echo and
1n whatever share image cursor share
planes (image planes. overlay planes
or overlay) are if overlay plane
opened. Cursor Xll window
always in overlay opened. Echo
planes. and cursor share

image planes
if image-plane
window opened.

4-46 Graphics Output Operation

,:)

u

(I
""-/

HP98721

Table 4-9. Default Starbase Echo and X11 Cursor Placement
in the Four X11 Server Modes

Continued

Overlay Mode Image Mode Stacked Screen Mode Combined Mode

Echo shares 3 Raster echo in Echo shares 3
overlay planes image planes if overlay planes
if overlay plane image plane Xll if overlay plane
XU window window opened. XU window
opened. Raster Vector echo in opened. Raster
echo in image cursor plane if echo in image
planes if image image plane XU planes if image
planes opened. window opened. plane XU
Vector echo in Cursor shares window opened.
cursor plane if image planes. Vector cursor in
image planes cursor plane if
opened in raw image plane XU
mode. Cursor window opened.
shares 3 overlay Cursor shares
planes. image planes

for image plane
window, shares
overlay plane for
overlay plane
window.

Graphics Output Operation 4-47

HP98731

Table 4-9. Default Starbase Echo and X11 Cursor Placement

in the Four X11 Server Modes
Continued

Overlay Mode Image Mode Stacked Screen Mode Combined Mode

If Xll server Starbase echoes If the Xll server If the overlay

is in 3 overlay from a gopen of is in 3 overlay plane window is
planes and an image-plane planes and an 3 planes and the
Starbase image window placed in image-plane Starbase echo is
planes are the cursor plane. window is a vector cursor,
opened, raster Xll cursor uses opened, Starbase it is placed in the
and vector echoes hardware cursor. echoes are placed cursor plane.
are in cursor in the cursor If the overlay
plane. If Xll plane. If the plane window
server is in 4 X 11 server is is 4 planes, all
overlay planes in 4 overlay Starbase echoes
and Starbase planes and an are in the overlay
image planes image-plane planes. If an
opened, no window is overlay plane
Starbase echoes opened, Starbase window (3-
are supported. echoes are not or 4-plane) is
Xll cursor uses supported. opened, Starbase
hardware cursor. Xll cursor echoes share the
If an overlay uses hardware overlay planes.
plane window cursor. If an Xll cursor uses
(3- or 4-plane) overlay-plane hardware cursor.
window is window (3- or
opened, Starbase 4-plane) window
echoes share the is opened,
overlay planes. Starbase echoes

share the overlay
planes.

4-48 Graphics Output Operation

,:)

L/

u

Starbase Tracking in an X11 Window

Starbase echo tracking is permitted from any Starbase input device (including an
Xll window) to any Starbase output device (again, including an Xll window).
Listed below are several examples of Starbase tracking:

1. Same Window Used for Input and Output: This case is activated by
doing a Starbase gopen of the Xll window as both an input device and
an output device (with the gopen (kind) parameter set to OUTINDEV). In
this case, the Star base echo tracks the position of the Xll cursor. Because
the Xll cursor and Starbase echo both point to the same spot, the Xll
cursor is removed while asynchronous tracking is enabled in the same
window that contains the Xll cursor. When tracking is disabled, the
Xll cursor returns. If the pointer device is used in an attempt to move
the Starbase echo outside of the window, the echo is "pegged" against the
inside border of the window and the Xll cursor re-appears outside of the
window.

2. Different Input and Output Windows: It is possible to open one Xll
window as the input window and open another as the output window,
then enable tracking between them. When the Xll cursor is moved in the
input window, the Starbase echo tracks its position in the output window.
Tracking is proportionally correct when the windows are different sizes.

3. Non-Window Related Input Device: In this case, input is obtained from
an input device not associated with a window (for example, a tablet). The
Xll cursor is not affected (that is, it keeps tracking the window pointer
device) and the Starbase echo tracks the tablet. The Xll cursor and the
Starbase echo can be active in the same window.

HP 98732A Hardware Cursor

The HP 98732A color map supports a single, independent hardware raster or
vector cursor. The hardware cursor is a 64x64x2 bit raster pattern that is
conceptually in front of the overlay planes. It is defined with a 64x64 bit/pixel

('
1

color pattern and a 64x64 bit/pixel transparency pattern. When the Xll server
"'-"' is started, it uses the hardware cursor for the window cursor.

As with the overlay planes, one of the colors is a transparency color used to see
through to the overlay and image planes. This means that a raster cursor can
have no more then two significant colors (one additional color is used for the

Graphics Output Operation 4-49

transparency pattern). The two colors used by the cursor are based on 24-bit
RGB values and are independent of the other color maps.

When the Xll server is using the hardware cursor and a program defines a ·tJ
Starbase echo in an image window, the echo is placed by default in the cursor
plane. When a cursor plane is not available, the HP 98730 driver renders the
cursor in the image planes. The echo colors will be chosen from the color map
associated with that window. When it is an image plane window, the X standard
color map is used. This means that when an image plane window is the focused
window, the X standard color map will be loaded into the overlay plane hardware
color map.

HP 98556A Starbase Echo Operation

Only one Starbase echo is supported in a window by the HP 98556 driver. When a
window is opened multiple times by the HP 98556 driver, only one of these opens
should specify a Starbase echo, because the HP 98556 driver can "pick up" only
one Starbase echo and one Xll cursor. When a window is opened twice by the
HP 98556 driver and each open specifies a Star base echo, the first invocation of
the driver will not be able to pick up the echo generated by the second invocation
of the driver.

4-50 Graphics Output Operation

()

t)

G'

\ ; -..._.;

X11 and Starbase Synchronization
Both Xlib graphics and Starbase graphics are buffered to improve their perfor
mance. These buffering schemes are implemented in separate processes and are
completely independent. When your application is rendering both Xlib and Star
base graphics to the same window and when the order in which the graphics
primitives are rendered is important, you should synchronize your program.

XSync is used to flush and wait for all Xlib graphics primitives to be rendered to
the window by the Xll server. The procedure make_picture_current is used
to flush the Starbase output buffer. The outline of a program mixing Xlib and
Starbase graphics calls, and providing synchronization follows:

X initialization
Starbase initialization

X graphics primitives
X sync (...)

Starbase graphics primitives
make_picture_current()

X graphics primitives

X graphics primitives
Xsync (...)

Starbase graphics primitives

Starbase graphics primitives
make_picture_current()

Graphics Output Operation 4-51

r)

()

(i

"-./ 5
Raster Text Operation

Introduction
This chapter assumes that you are already familiar with the programmatic
interface for the particular font library that you plan to use. This combined
with the information in this chapter will enable you to successfully develop your
raster text application.

Raster text is represented by patterns of individual pixels which form a character
on the display. Stroke text is represented by a combination of short vectors
which form the character. This chapter describes only raster text. The stroke
text provided by Starbase is discussed in Starbase Graphics Techniques.

Font Formats and Character Sets
Generation of raster text requires accessing files on disc which contain the actual
raster patterns; these are called font files. In discussing font files, we need to
distinguish between font file format and font character set, as follows:

The font file format (or font format) is the disc format the font is stored in. The
font format specifies the organization of the raster data in the file. There are
several different font formats. For example, the font format associated with the
6.2 release of HP Windows/9000 is different than the font format associated with
the 6.5 release of HP Windows/9000.

The font character set (sometimes called the "character set" or just "font")
specifies the raster pattern of characters that are displayed on the screen.
The character sets provided with HP Windows/9000 are referred to as the
Fast Alpha/Font Manager (FA/FM) fonts. In some cases, the same character
set is available in different font file formats. For example, both Xll and

Raster Text Operation 5-1

HP Windows/9000 provide the RomanS character set but in different font file

formats. Character sets are further distinguished by:

• The number (or index) that is used to access each character. For example, .·')

the character "A" is character number 65 in most character sets.

• The size of the index. Seven bits (specifying up to 128 characters), eight
bits (specifying up to 256 characters) and 16 bits (specifying up to 64K

characters).

• The character set cell size specifies the width and height of the space
occupied by each character (for example, 8 pixels by 16 pixels).

• The character style specifies different ways of presenting a character set
(for example, bold or italics).

8-Bit Fonts versus 16-Bit Fonts

An 8-bit font means that the characters can be indexed by an 8-bit value. This
limits 8-bit fonts to a maximum of 256 characters. A 16-bit font is indexed by
a 16-bit value and thus can represent up to 64K characters. 16-bit fonts are ()

typically used for Far East fonts such as Kanji.

To display a particular 8-bit character string, you pass the character string (for
example, "ABC") into the font library procedure. With 16-bit fonts (supporting

up to 64K characters), you have to provide an array of 16-bit indices to the font
procedures which specifies the characters to display instead of typing characters
into the font procedure's character string.

HP-15

HP-15 is an encoding scheme developed by Hewlett-Packard that is often used
to represent Asian fonts. For example, there is an HP-15 Kanji font which
specifies the encoding of several thousand raster patterns representing the Kanji
characters. HP-15 supports mixed 8- and 16-bit fonts. This means that you can

provide an array of numeric indices which reference both 8- and 16-bit fonts. 1~ The font procedure sorts out whether an 8- or 16-bit character is being accessed J

by each index. This is done as follows: The first byte of each 16-bit index is
examined by the font procedure to determine the range of the byte. A certain
range indicates that the byte r~presents a single character (an 8-bit font). Another
range indicates that the byte represents the first byte of a two byte index. In this

5-2 Raster Text Operation

case, the font procedures examine both bytes to determine the two-byte (16-bit)
index. In this manner, you can specify both 8-bit fonts and 16-bit fonts in one
array of indices. HP-15 fonts such as Kanji are shipped in various file formats,

~~ depending on the intended window environment.

u

u

Summary of Changes

The major changes to text operation that have occurred with the 6.5 (Series 300)
and 3.1 (Series 800) releases of HP-UX are:

• The Fast Alpha/Font Manager (FA/FM) libraries can be used in an Xll
window. Prior to the 3.1 (Series 800) and 6.5 (Series 300) HP-UX releases,
these libraries were only usable in raw mode and with HP Windows/9000
(Series 300 only). As with raw mode or HP Windows/9000 operation, the
file descriptor returned by the Starbase open of the Xll window is used
by the FA/FM routines.

• The FA/FM libraries and the Xll raster font procedures now share a
common font file format. This format is based on the Xll format, not on
the FA/FM font file format. This permits any FA/FM font or Xll font
to be used by either the FA/FM libraries or the Xll font library.

Raster Text Operation 5-3

Raster Text Capabilities

In describing the raster text capabilities in each of the window environments, we ~~
need to discuss the different:

• Font libraries
• Character sets (fonts)
• Font file formats

Font Libraries

The three font libraries are:

• Fast Alpha/Font Manager (FA/FM) Libraries: These libraries were
originally developed as part of the HP Windows/9000 product but can
also be used by raw mode Starbase.

• XlO font library: Refer to X10 Xlib Programming Manual for a description
of the X10 font library.

• XU font library: Refer to Programming With Xlib, Version 11 for a
description of the XU font library. The XU font library is the same as
the X11 revision A.OO font library.

Character Sets (Fonts)

The three major groups of fonts available are listed below. These font groups
should not be confused with the various font file formats that the fonts are

provided in. For example, the FA/FM fonts are available in two file formats,
a pre-3.1/6.5 format and a format based on the XU format.

• FA/FM fonts: FA/FM fonts are encoded as 8-bit fonts and HP-15 fonts.
HP-15 is used to encode the Kanji font.

• XlO fonts: These fonts were released by MIT with X10 and are 8-bit fonts.

• XU fonts: These fonts were released by MIT with XU and contain both
8-bit fonts and 16-bit fonts.

5-4 Raster Text Operation

.r)
/

{ I
'.__;

Font File Formats

The font file formats that are supported on disc are:

• Fast Alpha/Font Manager (FA/FM) font file format: The FA/FM font
file format supports 8-bit fonts and HP-15 fonts.

• XlO font file format: XlO, as released by MIT, only supported 8-bit font
files. HP has extended the XlO server to support loading of HP-15 bit
font files in X10 format.

• Xll Server Natural Format (SNF) font files: Xll, as released by MIT,
supported 8-bit and 16-bit SNF fonts. HP has provided an SNF HP-
15 font. SNF, however, has system dependencies (for example, the byte
padding at the end of records can vary), so vendors have developed fonts
with different Server Nat ural Formats.

• Bitmap Distribution Format (BDF), developed by Adobe Systems, Inc.:
While SNF may change from one implementation to another, BDF is
expected to remain unchanged. A font compiler is provided with Xll
to compile BDF fonts into SNF fonts; refer to Programming With Xlib,
Version 11 for more details.

Raster Text Operation 5-5

The table below summarizes the font libraries, font character sets and font
file formats which are supported in the different window systems. Raw mode
and HP Windows/9000 are grouped together because the font capabilities are ~

identical. ·

Table 5-1. Font Libraries, Font Character Sets and Font Formats

Supported
Window System Font Library Supported Fonts Font File Format

Pre-3.1/6.5 FA/FM Library 8-Bit: FA/FM fonts; FA/FM format
Raw Mode and HP-15: FA/FM fonts
Windows /9000

XlO X10 font 8-Bit: X10 fonts; XlO format
procedures HP-15: HP XlO Kanji

XU revision A.OO Xll font 8-bit: XU fonts; 16-bit: Server Natural
procedures XU Kanji; HP-15: HP Format (SNF),

XU Kanji BDF

xu XU Xlib font 8-bit: XU fonts, SNF,BDF
procedures, FA/FM fonts; 16-bit:
FA/FM Library XU Kanji; HP-15: HP

XU Kanji

3.1/6.5 Raw Mode FA/FM Library 8-bit: XU fonts, SNF,BDF
FA/FM fonts; HP-15:
HP XU Kanji

3.1/6.5\HP FA/FM Library 8-bit: FA/FM fonts; SNF,BDF
Windows/9000 HP-15: HP XU Kanji

Main Points From the Previous Table

• Only the Xll font procedures can be used in an Xll revision A.OO window.
Both the Xll font procedures and the FA/FM font procedures can be used
in an Xll window.

• In 3.1/6.5 raw mode, the FA/FM library can access either the FA/FM
fonts or the Xll fonts. However, in 3.1/6.5 HP Windows/9000, only
the FA/FM and HP-15 fonts can be used. Use of the Xll fonts is not
supported.

5-6 Raster Text Operation

()
I

Fonts Used by the FA/FM Library
The 3.1/6.5 FA/FM font loader (which loads fonts from disc into virtual memory)
has been modified to only load SNF fonts, not fonts in the pre-3.1/6.5 FA/FM font
format. Therefore, the FA/FM fonts have been converted to SNF and provided
with the 3.1/6.5 HP-UX releases. Several points should be noted about this:

• The functionality of the FA/FM libraries is unchanged, only the font file
format is changed. Access to Xll fonts by the FA/FM libraries is only
supported in raw mode. HP Windows/9000 does not support use of Xll
fonts.

• The pre-3.1/6.5 FA/FM font files cannot be loaded by a later FA/FM font
loader. To support pre-3.1/6.5 executables which reference FA/FM fonts,
the FA/FM font files are shipped with the 3.1/6.5 releases of HP-UX.

• When you compile a pre-3.1/6.5 FA/FM program (which references the
pre-3.1/6.5 FA/FM font files by name) and then link the program with
the later FA/FM libraries (which only know how to load SNF fonts) the
following support is provided to avoid changing the font file names in your
source code.

When the referenced FA/FM font file is not an SNF font, the FA/FM
font loader looks for a related SNF font in an associated subdirectory.
For example, if your pre-3.1/6.5 program accesses the FA/FM font
/usr/lib/raster/8x16/lp.8U, this font cannot be loaded by the 3.1/6.5
FA/FM font loader because it is not an SNF font. Therefore, the font
loader looks for the SNF font /usr/lib/raster/8x16/SNF /lp. 8U. snf
and loads it.

Raster Text Operation :5-7

The following diagram shows several examples of how the FA/FM SNF and non

SNF fonts are related:

FA/FM fonts: /usr /lib/raster /8x 16/

pre-3.1 /6.5

FA/FM fonts in

lp.8U

math.OM

3.1/6.5

FA/FM fonts in SNF

SNF /lp.8U.snf

SNF /math.OM.snf

Figure 5-1. FA/FM Fonts in FA/FM Format and in SNF

The following table summarizes what font is used based on the nature of your
program:

Table 5-2. FA/FM Font File Usage

Application Font File Used Example Font File

Pre-3.1/6.5 executable Pre-3.1/6.5 usr/lib/raster/8x16/lp.8U
FA/FM fonts in
FA/FM format

Pre-3.1/6.5 source which FA/FM font files usr/lib/raster/8x16/SNF/-
references pre-3.1/6.5 in SNF lp.8U.snf
FA/FM fonts but is linked
with later libraries

FA/FM program which FA/FM font files usr/lib/raster/8x16/SNF/-
references 3.1/6.5 FA/FM in SNF lp.8U.snf
fonts

5-8 Raster Text Operation

/~
/

~')

(.
'---..J 6

Input Operation

Introduction
This chapter assumes that you are already familiar with how Star base input works
in a raw environment; if not, refer to the "Starbase Input" chapter in Starbase
Graphics Techniques. This chapter also assumes that you are familiar with Xlib
input operation and the Xll input extensions. For more information on Xlib
input operation, refer to Programming With Xlib, Version 11. Only input from
HP-HIL devices is covered in this chapter. Programmers may also choose to
obtain input from non-HIL devices, such as RS-232 terminals or HP-IB plotters.
While the HP Xll environment supports the sharing of HIL devices by different LJ programs, it does not support the sharing of non-HIL devices.

The main topics covered in this chapter are:

• Input device sharing.

• Input focus policy.

• Starbase input in a raw, HP Windows/9000, XlO, and Xll (revision A.OO)
environment.

• Starbase input in an Xll environment.

• Examples to aid in moving a Starbase input application to the Xll
environment.

Input Operation 6-1

Overview of Input Operation
Starbase input in an Xll window provides full-functionality Starbase input :~
through a window. Input devices can be shared with other programs with the
Xll server arbitrating which program receives input at any given moment. It is
possible for programs to work in an Xll environment without any code changes;
when code changes are required, the reasons will probably be:

• The program has hard-coded values for the parameters of the Starbase
gopen statement(s).

• The program is written in a device-dependent manner that make it
impossible to work in a window without code changes.

It is always desirable to write programs in as portable and device-independent
a manner as possible. Typically, all that needs to be changed in order for your
program to run in an Xll window is the program link sequence and the gopen
statement. When the gopen parameters are passed into the program at startup
time, no source code changes should be required.

Input Device Sharing

Input device sharing means that multiple programs operating in different windows
may obtain input from the same HIL input device. This is beneficial because
independently developed programs can access any of the HIL input devices
without interfering with other programs which might also be accessing these
same devices. For example, with Xll, multiple programs operating in different
windows may each read the position of the window system's pointer device.

A program permits an input device to be shared with other programs by opening
the device in shared access mode. Exclusive access mode means that only one
program can open and access an input device at a time. Raw mode Starbase
supports only exclusive access to input devices. When a raw mode Starbase
program opens a mouse with the Starbase HP-HIL driver, another Starbase
program cannot obtain input from the same mouse.

Several Star base drivers permit programs running in an Xll environment to share ' ')
the same HIL devices. While this is a new feature with Xll, input device sharing
has always been supported to some extent by other window systems. For example,
programs operating in different XlO windows can each receive input from the X

6-2 Input Operation

i
I '

~/

server's pointer and keyboard. HP Windows/9000 also permits programs to share
the window manager's locator and keyboard.

With XU, programs can share the pointer device and keyboard, and the other
HIL devices. Input operation has been expanded to include both Xlib and
Starbase sharing of the same input devices.

Note Even in an XU window, the user can still do an exclusive open
of an HIL device. However, this is not recommended because
it impacts the ability of other programs to share the same
workstation resources.

Input Through A Window

A device/window combination means that a program receives input from a
combination of a certain device and window. Thus, a program desiring input
must specify both an HIL device and a window. The manner in which programs
specify the device and window depends on the input library used. Programs using
Xll Xlib specify the desired input device and window with the XSelectinput
procedure. Starbase programs specify the desired input device and window with
the gopen procedure. The path parameter of the gop en procedure specifies both
the device and window. The file designator returned by the gopen procedure is
used to receive input from the designated device/window combination.

Input Focus

The capability to direct the input to one window at a time is supported by
Xll. The window that receives the input from a particular device is said to
be "focused" (XU terminology) or "selected" (HP Windows/9000 terminology).
Because of the emphasis placed on Xll, the term "focused" is used in this manual.
When a window comes into focus, the input stream from the requested device(s)
is directed to that window. When a window goes out of focus, the input stream
from the requested device(s) no longer goes to that window.

Input Operation 6-3

Input Focus Policy

The policy which controls how the input focus changes from one window to 0
another is referred to as the focus policy. Different window systems implement '

different focus policies. For example, HP Windows/9000 implements an explicit
window selection policy for keyboard input. The selected window receives all
keyboard input regardless of the position of the HP Windows/9000 locator.

The X Window System implements a default focus policy which can be changed

by a window manager. The default Xll focus policy for keyboard input is a

cursor tracking policy. The window which contains the X11 cursor receives the

keyboard's input. Some window managers (for example, uwm) do not implement

a focus policy which means that the default server policy is used. Other window

managers implement an explicit focus policy similar to HP Windows/9000. Still
others (for example, hpwm) implement the cursor tracking policy by default, while

allowing a user to explictly select a window. Refer to the documentation for your

window manager to determine what type of focus policy, if any, it implements.

6-4 Input Operation

u

The diagram below should help clarify the concept of input focus. Program 1 has
requested an input event through Window 1 from the HIL input device. Program
2 has requested an input event through Window 2 from the same input device.
Assume that the focus policy is a cursor tracking policy and that the X11 cursor
is in Window 1, causing Window 1 to be focused. In this case, the input event
is propagated only through Window 1 to Program 1. Program 2 will have no
visibility of the input event.

FOCUSED
WINDOW + X11 cursor

Client Program #2

Window2

Figure 6-1. Input Focus Rule: Routing of Input
Events

Input Operation 6-5

Starbase Input in a Raw Environment

In porting an application from raw mode to Xll, no window system is running ~

in raw mode, so Xlib input cannot be used. Starbase input procedures and input • ,

from the libraries built on top of Starbase are supported. For more information
on Starbase raw mode input, refer to Starbase Graphics Techniques.

The following diagram shows the data paths for Starbase input in a raw
environment:

Application Program

Starbase Library

~I' n

Starbase Keyboard Starbase HP-HIL

Drivers (kbd, lkbd) Driver
INPUT LIBRARIES

~I' ~

ITE

'' Non-keyboard

HIL Devices
INPUT DEVICES

HIL Keyboard

Figure 6-2. Starbase Input in Raw Mode

The main points about Starbase input in a raw environment are:

1. Three Starbase drivers can be used to obtain raw mode input from HIL
devices: n

a. Starbase kbd driver
b. Starbase lkbd driver
c. Starbase HP-HIL driver.

6-6 Input Operation

2. The Starbase HP-HIL driver can access any HIL device. The Starbase
kbd and lkbd drivers can only access keyboards. The kbd, lkbd or HIL

(. drivers should not be used to simultaneously access the same keyboard.
~

3. The kbd and lkbd drivers receive their information through the ITE
(Internal Terminal Emulator) file. See the HP- UX System Administrator
Manual for more information.

Refer to the Starbase Device Drivers Library Manual for more information about
these drivers.

Input Operation 6-7

Starbase Input in HP Windows/9000
Understanding the Starbase input model for HP Windows/9000 is useful in
porting an application from from HP Windows/9000 to Xll. Prior to reading
this section, you should read "HP Windows/9000 Device Driver" in the Starbase
Device Drivers Library Manual

The following diagram shows the data paths for Star base input in an HP Windows/
9000 environment:

I Application Program

Starbase Library

libwindow.a Starbase Keyboard Starbase HP-HIL

library Drivers (kbd, lkbd) Driver
INPUT LIBRARIES

~~

Window Manager All keyboards Other HIL
through terminal

Locator emulator pty files Devices
INPUT DEVICES

Figure 6-3. Starbase Input in HP Windows/9000

The main points concerning Starbase input in HP Windows/9000 are:

1. The window manager's locator device can be shared by multiple programs.
To obtain Starbase input from the window manager's locator device, the
program must be linked with the library li bwindow as shown. The
program must also do a Starbase gopen of the window using the raw
mode display driver (for example, hp98550) and specify that the window
is either an INDEV or OUTINDEV.

2. The HP Windows/9000 window manager opens all keyboards on the HIL
loop. Therefore, Starbase cannot open these keyboards with the HIL
driver.

6-8 Input Operation

(~
I

.f)
I

3. The Starbase kbd and lkbd drivers receive input via termO window pty
files. This parallels raw mode Starbase where these drivers receive input
from tty files. Since HP Windows/9000 shares keyboard input among
multiple termO windows, keyboard input can be shared between multiple
Starbase programs. The selected window will receive the keyboard input.

4. Sharing of other HIL devices (for example, a data tablet) is not supported
by HP Windows/9000; the HIL devices are available on a first-come, first
served basis only.

Input Operation 6-9

Input in an X1 0 Environment
The diagram below shows the data paths for Xlib and Starbase input in an XlO
environment:

Application Program

Starbase Library

INPUT LIBRARIES

INPUT DEVICES

Figure 6-4. Input Operation in an X10 Window

Main Points of the Previous Diagram

1. By default, the HP XlO server opens and uses all input devices on the
HIL loop at startup. The server treats every device either as a part of a
logical pointer device or a logical keyboard device. The server can be told
which devices to use and will still treat each device as a part of a logical
pointer or keyboard device, not as separate physical devices. Therefore,
the boxes, "Other Keyboards" and "Other HIL Devices" describe HIL
devices that the XlO server isn't using.

~~
I

2. Programs using Xlib can only receive input from the server's logical ;')
pointer and keyboard. These devices are shared with other programs.

6-10 Input Operation

I u

3. The Starbase Xn device driver communicates with the X server via Xlib
and therefore only receives pointer and keyboard input. These devices
are shared with other programs.

4. The Starbase keyboard drivers (kbd and lkbd) can receive input from the
XlO server's keyboard via terminal emulator window pty files. Since the
X server shares keyboard input with all windows, keyboard input can be
shared between multiple Starbase programs.

5. The Starbase keyboard drivers can also receive input from keyboards that
the XlO server isn't using via the ITE's device file. Refer to the HP- UX
System Administrator Manual for a description of these device files.

6. The Starbase HP-HIL driver can be used to receive input from other
keyboards and other HIL devices. These devices can only be opened for
exclusive access.

Input Operation 6-11

X11 Revision A.OO
This section provides an overview of input in an Xll revision A.OO environment.
Understanding this information is useful in porting an application from this
environment to the newer Xll environment. The following diagram shows the
data paths for Xlib and Starbase input in an Xll (revision A.OO) window:

Application Program

INPUT LIBRARIES

Keyboard Keyboards Devices
INPUT DEVICES

Figure 6-5. Input Operation in an X11 Revision A.OO Window

Main Points of the Previous Diagram

1. The Xll (revision A.OO) server, by default, only opens and uses one
keyboard and one pointer device. All other devices on the HIL loop
are available for use by other applications. The server can be configured
to open more than one physical device to use as its logical pointer and

6-12 Input Operation

~~
)

,!\
r }

:~
/

(I

~

keyboard (this provides backwards compatibility with the HP XlO server).
Therefore, the boxes, "Other Keyboards" and "Other HIL Devices"
describe HIL devices that the server isn't using as its logical keyboard
and logical pointer.

2. Programs using Xlib and the HP Xlib input extension can receive input
from all HIL devices. These devices are shared with other programs.

3. The Starbase SOXll device driver communicates with the server via Xlib
but only receives input from the server's pointer and keyboard. These
devices are shared with other programs.

4. The Starbase keyboard drivers can receive input from the server's
keyboard via terminal emulator window pty files. Since the server shares
keyboard input with all windows, keyboard input can be shared between
multiple Starbase programs.

5. The Starbase keyboard drivers can also receive input from keyboards that
the server is not using via the ITE file.

6. The Starbase HP-HIL driver can receive input from other keyboards and
other HIL devices. These devices can only be opened for exclusive access;
shared mode access is not supported by revision A.OO of Xll.

7. Each of the other keyboards and other HIL devices can only be used by
the X server (and thus shared by multiple programs) or by one Starbase
program (exclusive access) at one time.

Input Operation 6-13

X11 Input Operation
There are two ways to receive input in an Xll window:

1. Xlib input procedures: Programs can make Xll Xlib calls to obtain input
from HIL devices. Note that Xll input works the same as Xll revision
A.OO, except that the HP Xlib input extension has been enhanced to
support input features required for Starbase input within Xll. Xll input
operation is described in the manual Programming With Xlib, Version 11.

2. Starbase input procedures: Starbase input procedures can be used to
obtain input from HIL devices. There are five input libraries and drivers
which provide Starbase input through an Xll window.

Input Data Paths

The following diagram shows the data paths for Xlib and Starbase input in an
Xll environment. The HIL input devices are grouped into the following four
categories: r-'\

• X Server Pointer Device: This is the pointer device used by the Xll
server (typically a mouse). When the server is configured to use more
than one physical device as one logical pointer device, this box represents
all of those devices.

• X Server Keyboard: This is the keyboard used by the Xll server. When
the server is configured to use more than one physical keyboard as one
logical keyboard device, this box represents all of these keyboards.

• Other Keyboards: This represents all keyboards other than the X Server
Keyboard.

• Other HIL Devices: This represents all HIL devices other than the above
three categories.

The arrows from the "Input Devices" to the "Input Libraries" indicate the paths

)

that the input libraries support. :)

6-14 Input Operation

i

0

{ .
0

Application Program

Starbase

INPUT LIBRARIES

Keyboard Keyboards Devices
INPUT DEVICES

Figure 6-6. Input Operation with X11

Main Points of the Previous Diagram

1. Xlib input

• Programs using Xlib and the HP Xlib input extension can receive
input from all HIL devices. These devices are shared with other
programs. Xlib input is described in Programming With Xlib,
Version 11.

2. SOXll input

• The Starbase SOXll device driver receives input from the server's
pointer and keyboard. These devices are shared with other
programs.

3. libXwindow library input

Input Operation 6-15

• The Starbase libXwindow library receives input from the X
server's pointer device and always opens the pointer for shared
access.

4. kbd, lkbd input

• These Starbase keyboard drivers can receive input from the Xll
server's keyboard via terminal emulator window pty files. Since
the Xll server shares keyboard input with all windows, keyboard
input can be shared between multiple Starbase programs.

• The Starbase keyboard drivers can also receive input from
keyboards that the Xll server isn't using via the ITE file.

5. HP-HIL input

• The Starbase HP-HIL driver has been enhanced for the 3.1/6.5
release of HP-UX to support input device sharing. With raw mode
Starbase input and Starbase input prior to the 3.1/6.5 release, the
HP-HIL driver supported only exclusive access to HIL devices.

• Each of the "Other Keyboards" and "Other HIL Devices" can
either be opened for shared or exclusive access. A device is opened
for shared or exclusive access on a first-come, first-serve basis. The
guidelines are:

o When a device is first opened for shared access, it can be
opened for shared access by other programs.

o A device that has been opened for shared access cannot
be opened for exclusive access until all programs that have
opened the device for shared access close the device.

o When a device is first opened for exclusive access, it cannot
be opened for either shared or exclusive access by another
program. Once a device opened for exclusive access is
closed, other programs can then open the device.

• A program can receive input from both Xlib and Starbase, but
can only use one method per each device/window combination.

6-16 Input Operation

I~
' J

i_,;

(-...._.;

The following table summarizes the input methods supported by Xll.

Table 6-1. Input Methods Supported in an X11 Environment

Usable Usable
XLIB/ in Raw in an Exclusive/ Supported

Star base Mode xu Shared HIL
Input Library Star base Window Access Devices

Xlib No Yes Shared All HIL input

Star base: SOXll No Yes Shared X server pointer
driver device and

keyboard

Star base: No Yes Shared X server pointer
libXwindow

Star base: kbd, lkbd Yes Yes Shared or Terminal emulator
driver Exclusive pty files or ITE file

Star base: HP-HIL Yes Yes Shared or All HP-HIL
driver Exclusive devices except X

server pointer and
keyboard

Selecting the Right Input Driver or Library
The five input drivers and libraries suported in Xll windows are:

• Xlib library
• HP-HIL driver
• libXwindow library
• kbd and lkbd drivers
• SOXll driver

The following table shows the advantages and disadvantages of these input drivers
and libraries.

Input Operation 6-17

Table 6-2. Advantages and Disadvantages of the Input Driver and Libraries

Driver or
Library Advantages Disadvantages .~

/

Xlib
• Industry standard • Must structure Library
• NLS keyboard support program to be event
• Supports toolkits(for driven

example, HP widgets) • Cannot receive input
in virtual coordinates

• Does not work in raw
mode

HP-HIL
• Works in raw mode • Cannot receive input Driver

and Xll window from Xll pointer or
keyboard

• Does not provide NLS
keyboard support

libXwindow
• Can access Xll pointer • Does not support raw Library
• Supports toolkits (for mode input r)

example, HP widgets)
• For local operation,

code size is smaller
than when using
SOXll

kbd and
• Works with any • Not able to detect key lkbd

Drivers tty/pty releases
• Does not support NLS

SOXll
• Supports Starbase • Does not work in raw driver

input across the mode
network • When used for input,

• Provides input from code size is large
Xll keyboard because of unused

Xlib output code r)

6-18 Input Operation

()
"-"

Input Device/Window Combinations

The phrase "device/window combination" means that a program receives input
from a certain device through a certain window. The only way to open a device
for shared access in an Xll window is to request input from a device/window
combination. Only one device/window combination can be active at one time.
The following diagram and discussion will help clarify this concept. This diagram
shows two programs attempting to get input from a single HIL tablet.

Window1 Window2

Figure 6-7. Input Device/Window Combinations

Main Points for the Previous Diagram

1. Path 1 and Path 2 represents a device/window combination consisting of
the HIL tablet and Window 1. Likewise, Path 3 and Path 4 represents
a different device/window combination consisting of the HIL tablet and
Window 2.

2. Only one program can access a device/window combination at a time. In
the above diagram, Paths 1 and 2 cannot be used at the same time. The
same is true of Paths 3 and 4. However, Paths 1 and 4 (or 2 and 3) can be
used when these Paths represent different device/window combinations.

Input Operation 6-19

The fact that Paths 1 and 2 (or 3 and 4) cannot be used at the same
time is not usualy a hindrance since multiple programs will not attempt
to obtain input from the same window.

3. Within a program, a given device/window combination can only be
exercised by one driver at a time. For example, when Client Program
1 uses Xlib to obtain input through Window 1, it cannot also use the
HP-HIL driver to obtain input from the same tablet through this same
window. However, Client Program 1 could use the HP-HIL driver through
Window 2 at the same time as Xlib because this represents a different
device/window combination.

4. While a program cannot use both Xlib and Starbase input calls to obtain
input from the same device/window combination, a program can use
both Xlib and Starbase input calls in the same program and window
to access different HIL devices. The different HIL devices ensure that the
device/window combinations do not conflict.

Opening a Starbase Device/Window Combination

Starbase programs open device/window combinations using the gopen procedure.
A particular device/window combination is specified by the (path), (kind), and
(driver) parameters of the gopen procedure.

6-20 Input Operation

!r)

(~
;

{ ' "--)

The following shows how the HP 300h device driver can be used to open a raw
display, open a window created by the xwcreate(l) command, and open a window
created by the XCreateWindow(3x) procedure.

Raw display:

xcreate:

XCreateWindow:

fildes = gopen(" /dev/crt", OUTDEV, "hp300h",
INIT);

fildes = gopen("/dev/screen/(windowname)".
OUTDEV, "hp300h", INIT);

fildes = gopen("X11 hpsys: 0.1 Ox123456",
OUTDEV. "hp300h II ' INIT) ;

The above demonstrates three different syntaxes for the (path) parameter.

1. The syntax in the first example is that of a special device file and is
denoted as a (special-device-file).

2. The syntax in the second example is that of a pty file created by the
xwcreat e command. This specifies a window and is denoted as (window
syntax).

3. The syntax in the third example is that of a path string which associates
a display with the ID of a window created programmatically. This is also
denoted as (window-syntax).

The following section describes how the (window-syntax) is used to open input
devices. Input devices can be specified implicitly or explicitly.

Implicit Specification

Implicit specification means that the input device does not have to be specified
explicitly but is implied through a combination of other parameters. The
following are examples of implicit specification:

fildes = gopen("/dev/screen/windowname", OUTINDEV, "hp98550", !NIT);
fildes = gopen("X11 hpsys :0.1 Ox123456", OUTINDEV, "hp98550", !NIT);

In both cases, the (path) parameter specifies (window-syntax) and denotes the
(

1
window of interest. The (kind) parameter specifies that the window is being

'-./ opened for both input and output. Whenever a window is opened for input using
an output driver, the input is always obtained from the Xll server's pointer
device. Therefore, the Xll server pointer device does not have to be referenced
explicitly.

Input Operation 6-21

The fildes returned from the two gopen calls listed above works for output as
well as input since the (kind) parameter is OUTINDEV. In this example, by opening
the window as an OUTINDEV with a display driver, the input device is implicitly
specified to be the X server's pointer device.

Another set of examples follows:

fildes = gopen("/dev/screen/windowname", OUTINDEV, "SOX11", !NIT);
fildes = gop en("X11 hpsys: 0.1 Ox123456", OUTINDEV, "SOX11", !NIT) ;

In the above, the Starbase-on-Xll (SOXll) driver is being used to open the
window as both an input device and an output device. Starbase input calls obtain
input from either the Xll server's pointer device or the Xll server's keyboard.
Refer to "The Starbase-on-Xll Device Driver" in the Starbase Device Drivers
Library Manual for details on input operation with the SOXll driver. Note that
neither the pointer device nor keyboard is referenced explicitly.

The table shows the devices that are implictly specified when a (window-syntax)
(path) parameter is used.

Explicit Specification

In the case of explicit specification of an input device, the (path) parameter
identifies both a window and an input device. The following examples show how
the first tablet on the HIL loop is opened by the Starbase HP-HIL driver for
input through a window.

fildes = gopen("/dev/screen/windowname FIRST_TABLET", INDEV, "hp-hil", !NIT);
fildes = gopen("X11 hpsys :0.1 Ox123456 FIRST_TABLET", INDEV, "hp-hil", !NIT);

In these examples, the (path) parameter of the gopen procedure defines the
combination of a particular window and a particular device (FIRST_TABLET).
The string FIRST_KEYBOARD is a specific example of a general syntax used to
specify an HIL device. This is denoted as the (device-syntax) and is defined as
follows:

(device-syntax) = (position)_ (device-type)

If}

where (position) represents the position of the device on the interface loop (FIRST, ~~
SECOND, THIRD, etc.) and is determined by following the HIL cable from the 1

workstation to the device and counting how many devices there are of the same
type. (device-type) is a name that specifies the type of device.

6-22 Input Operation

I

l i .._,;

u

u

The (device-type) must be one of the following names:
• MOUSE
• TABLET
• KEYBOARD
• BUTTONBOX
• ONE_KNOB
• NINE_KNOB
• TRACKBALL
• QUADRATURE

Xll supports more device types than shown above but these are the only valid
device types for use with Starbase.

For example, when a workstation is configured with a keyboard and two graphics
tablets, connected in that order, the valid (device-syntax) strings are:

• FIRST_KEYBOARD
• FIRST_TABLET
• SECOND_TABLET

Input Operation 6-23

The following table specifies the values of the gopen parameters to use when
opening various devices using the Starbase input drivers that are supported in
Xll windows.

Table 6-3. gopen Parameters for Starbase Input in an X11 Window

Input Devices Shared/ gopen Path (kind) (driver)
Library Accessed Exclusive Parameter Parameter Parameter

SOXll X server pointer shared (window-syntax) INDEV or SOXll
OUTINDEV

X server keyboard shared (window-syntax) INDEV or SOXll
OUTINDEV

lib- X server pointer shared (window-syntax) INDEV or hp98550,
window OUTINDEV hp300h, etc.

kbd, X server keyboard shared (pty-pathname) INDEV kbd, lkbd
lkbd Other Key boards exclusive dev/console INDEV kbd, lkbd

HP-HIL Other Keyboards shared (device-syntax) INDEV hp-hil
Other HIL shared (device-syntax) INDEV hp-hil

Devices
Other Keyboards exclusive (special-device- INDEV hp-hil
Other HIL file)

Devices exclusive (special-device- INDEV hp-hil
file)

6-24 Input Operation

Starbase Input from the X11 Pointer Device
The SOXll driver and the libXwindow library permit Starbase programs to
receive input from the pointer device through the Xll server. This input consists
of both locator and choice input and is identical for both the SOXll driver and
the libXwindow library.

The libXwindow library is used by display drivers (for example, the HP 98550
device driver) to receive input from the X server's pointer device. It is
analogous to the libwindow library, used by programs in an HP Windows/9000
environment. The libXwindow library provides the procedures that allows
Starbase display drivers to access the Xll pointer device.

The HP Two-Button Mouse

Because of the mouse-oriented nature of the X Window System, the HP Xll
server treats the two-button mouse as having three buttons; the third ("middle")
button goes down when both buttons are pressed at the same time. To be
consistent with Xll, the SOXll driver and libXwindow library treat the two
button mouse as having three buttons.

Details of Starbase Input from the X Server's Pointer Device

Starbase supports the following four types of input; refer to Starbase Graphics
Techniques for a description of each of these types:

• Sampling
• Requests
• Tracking
• Events

Furthermore, Starbase supports two classes of input devices:
• Locator Devices
• Choice Devices

Input Operation 6-25

Locator and Choice Ordinals

When opened by the li bXwindow library, the X pointer provides one Star base
locator ordinal and two Starbase choice ordinals. The SOXll driver also provides
one locator ordinal, but provides three Starbase choice ordinals; the additional
choice ordinal is used for keyboard input.

The locator ordinal provides pointer position information. Location information
is returned in Starbase virtual device coordinates (VDC's).

The two choice ordinals provide information about the pointer's buttons. The
choice ordinals are different formats of the same information. The definitions of
the two choice ordinals are listed below (note the similarity with the HP-HIL
driver and HP Windows/9000 libwindow library):

• Choice ordinal 1: This selection returns button numbers If the TRIG
GER_DN_RELEASE gescape is enabled, a button release causes choice or
dinal 1 to return a negative value of the same magnitude as the button
number. If the TRIGGER_ON_RELEASE gescape is not enabled, or if the IG-
NORE_RELEASE gescape is enabled, a button release causes choice ordinal r--...
1 to return zero. r)

• Choice ordinal 2: This selection returns a 32-bit-wide bitmap. The least
significant bit equals button 1 and the most significant bit equals button
32. A value of 1 in a bit indicates that the corresponding button is
currently pressed. Conversely, a value of zero in a bit indicates that the
corresponding button is currently released.

Receiving Input When the Pointer Device is
Outside of the Window

When the pointer device moves outside of the window, the pointer location
returned by Starbase is the position on the window boundary where the pointer
device exited the window.

A program can continue to receive input from the pointer even when the pointer
is out of the window when: r--..)

1. Initially, all buttons are up.

2. One or more buttons are pressed while in the window.

6-26 Input Operation

3. One or more of the buttons is still down, and the pointer is moved out of
the window.

4. The program continues to receive pointer input until all buttons are
released.

In X terminology, this is called a grab. Another effect of grabs is that sometimes a
program will not receive button press/release information. Some X programs use
grabs to keep other programs from receiving pointer information. For example,
when a window manager brings up a menu, it typically grabs the pointer until
the user is done selecting a menu item.

Starbase Sampling of the X11 Pointer

Locator and choice sampling of the X11 pointer device operates as follows:

1. The X server's locator position can be sampled anytime, and is re
turned relative to the window. By default, when the X pointer is
on a different screen than the window, the (valid) parameter of the
sample_locator procedure is returned as FALSE. When the gescape
DLD_SAMPLE_ON_DIFF _SCREEN is used, the (valid) parameter is returned
as TRUE when the X pointer is on a different screen. In this case, the
pointer position returned by sample_locator is either the last value of
the X locator on that screen or the value (0, 0) if the pointer has never
been on that screen. To restore the default ((valid) set to FALSE) behavior
use the BAD_SAMPLE_ON_DIFF _SCREEN gescape.

2. The pointer's button(s) can be sampled anytime and always return valid
values.

3. Choice ordinal 1 contains the number of the last button pressed when
a button is still down, or zero when no buttons are down. If the
TRIGGER_ON_RELEASE gescape is enabled, button releases cause the value
to be a negative button number.

Input Operation 6-27

Starbase Tracking of the X11 Pointer

Starbase tracking of the Xll pointer device operates as follows:

1. The X pointer may be tracked to the same window or to any other window

or display.

2. When tracking is enabled, the X cursor will not be visible while over

the output window (so as not to interfere with the Starbase echo). The

Starbase tracking process will move the Starbase echo according to the

movement of the X pointer while the pointer is over the window.

3. When tracking is turned off, the X cursor will once again be visible while

over the window and the Starbase tracking daemon will no longer move

the Starbase echo.

Starbase Requests and Events with the X11 Pointer

Starbase requests are satisfied and caused by "triggers." The details of Starbase

triggers with the Xll pointer are as follows:

1. Triggers are button presses or releases while the X locator is over the

unobscured portions of the window. Also, when a button press causes the

Starbase application to grab the pointer, until all buttons are released,

other button presses or releases will also be triggers.

2. Triggers do not include button presses or releases which are grabbed by

another X client (e.g., a window manager).

6-28 Input Operation

Starbase Input from Non-Pointer Devices
The previous section covered Starbase input from the Xll pointer device; this
section covers Starbase input from the three remaining groups of devices:

• X Server Keyboard
• Other Keyboards
• Other HIL Devices

These three groups of devices are referred to as the "non-pointer devices." The
HP-HIL and SOXll drivers provide input from the non-pointer devices. The
Starbase kbd and lkbd drivers are not discussed because they receive input from
a terminal emulator pty file in contrast to the above drivers which receive input
directly through a graphics window. The discussion of HP-HIL is for shared
access, not exclusive access.

Keyboard Input

The keyboard input values returned by the Starbase HP-HIL driver are different
f . than the keyboard input provided by the SOXll driver. The SOXll driver
"'---) provides NLS support and uses Xll key definitions. The HP-HIL driver does

not provide NLS support and ignores the user's Xll key definitions. The HP
HIL driver returns the same values for raw mode Starbase and Starbase in an
Xll window. Refer to the Starbase Device Drivers Library Manual for more
information on the type of input returned by each driver.

Input Operation 6-29

Starbase Sampling, Requests, Tracking and Events

The following table shows which input drivers can be used to access locator and ~~

choice devices for each of the four types of Starbase input.)

Type of
Input Device

Locator Device
(Other HIL
Devices)

Choice Device
(Xll Keyboard
& Other
Keyboards)

Table 6-4. Input Drivers Used to Access
Starbase Locator and Choice Devices

Sampling Tracking Requests

HP-HIL Driver HP-HIL Driver HP-HIL Driver

HP-HIL Driver HP-HIL Driver
SOXll Driver SOXll Driver
Xllkbd Driver Xllkbd Driver

Details of Starbase Sampling of Non-Pointer Devices

Events

HP-HIL Driver

HP-HIL Driver
SOXll Driver
Xllkbd Driver

Starbase locator sampling with the non-Pointer devices works as follows:

• Locator and choice devices can be sampled anytime. New data is not
normally provided if the input device's window is out of focus. The
exception is when a button press causes a grab to occur. Then, the
program continues to receive input after the window goes out of focus,
until all buttons have been released on the device.

• If the window is out of focus, the (valid) parameter of sample_locator is
returned as TRUE and the locator position returned by sample_locator
is either the last value of the locator when that window was in focus, or
the value (0, 0) if the window has never been in focus.

• When a window goes out of focus and later comes back into focus, the
locator or choice value is the same as it was when the window went out
of focus.

• Choice ordinal 1 will contain the number of the last button pressed
when a button is still down, or zero when no buttons are down. If the

6-30 Input Operation

~~
/

TRIGGER_ON_RELEASE gescape is enabled, button releases cause the value
to be a negative button number.

(;

~ Tracking Non-Pointer Devices

The details of tracking Starbase locator devices are as follows:

• The locator device may be tracked to the same window or any other
window or display.

• When tracking is turned on and the window is in focus, the Starbase
tracking process will move the Starbase echo according to the movement
of the locator.

• When a window goes out of focus and later comes back into focus, the
locator value will be the same as it was when the window went out of
focus.

• When tracking is turned off the Starbase tracking process will no longer
move the Starbase echo.

Input Operation 6-31

Starbase Input Examples
This section provides examples to demonstrate some typical changes that are :')
required to make a raw mode program work in an Xll window.

Example 1: Application that uses a Tablet and a Button Box

Assume that you have a program called "example" that runs in a raw environment
and receives input from a tablet and a button box. You want to be able to run
your program in an Xll window. Also assume that the (path) and (driver)
parameters of the gopen procedure calls are passed into the program via the
following environment variables:

• TABLET_DEVICE
• TABLET_DRIVER
• BUTTONBOX_DEVICE
• BUTTONBOX_DRIVER

No source code modifications are required to run the program in an Xll window
Because the parameters of the gop en statement are passed into the program. The :~
program only needs to be linked with the correct libraries, have its environment
variables set to the correct values, and run. The following is an example link
sequence where the program will only be run on an HP 300h device:

cc -o example example.o -ldd300h -lddhil -lXwindow -lsb1 -lsb2
-1Xhp11 -1X11 -lm

\

Use the xwcreate procedure to create the window. The following example creates
a window called "example_ window":

xwcreate example

Assume that the 32-button box is not used as the X server's keyboard device.
The correct values of the buttonbox environment variables are:

BUTTONBOX_DEVICE = "/dev/screen/example_window FIRST_BUTTONBOX"
BUTTONBOX_DRIVER = hp-hil

When the tablet is the server's pointer and the window that the program runs in
is called "example_ window", set the tablet environment variables to the following
values:

TABLET_DEVICE = "/dev/screen/example_window"
TABLET_DRIVER = hp300h

6-32 Input Operation

'~
I

Otherwise, the tablet is an extra (DTHER-HIL) device, and the environment
variables should be set to:

TABLET_DEVICE="/dev/screen/example_window FIRST_TABLET"
TABLET_DRIVER=hp-hil

Finally, start the program!

Example 2: Application That Works in an HP Windows/9000
Environment

A Starbase program can receive input from the window system pointer device
from both HP Windows/9000 and Xll. A window-dumb application that
already works in a Windows/9000 environment and only receives input from the
Windows/9000 locator device will work in an Xll environment with no source
code changes (because of the input code). Even if the (path) parameter of the
gopen procedure is hard-coded, you only need to create a window of that name
using the xwcreate command.

(,_) Example 3: Application Using the SOX11 Driver

i '
_.,'

The SOXll driver allows an application to run in a window on a remote host,
while the Starbase display drivers (for example, the HP 98550 device driver)
support Starbase in a local Xll window. It is straightforward to write an
application that either works in a local window using a display driver or in a
remote window using the SOXll driver. Note that a problem may occur if the
program uses Starbase features not supported by the SOXll driver. Refer to the
chapter "SOXll Device Driver" of the Starbase Device Drivers Library Manual
for more information.

Assume that the program requires input from the X server's pointer device and
a button box. The following guidelines should be followed:

• To open both the window and the device, the gopen procedure is used to
open the window as an OUTINDEV.

• To open the button box, the gopen procedure is used to open the button
box with the HP-HIL driver using the (device-syntax) (path) parameter.

Input Operation 6-33

Example Code Segment

main(argc, argv)
int argc;
char *argv[];
{

}

int window_fildes, buttonbox_fildes;

if (argc < 4) {

}

printf("Sorry, not enough arguments!\n");
printf ("Usage: \n %s %s %s \n",

"pgm_name",
"window out_driver",
"button_box");

return(!);

window_fildes = gopen(argv[1], OUTINDEV, argv[2], !NIT);
buttonbox_fildes = gopen(argv[3], OUTINDEV, "hp-hil", !NIT);

gclose(window_fildes);
gclose(buttonbox_fildes);

6-34 Input Operation

,1\
}

(\ .)

Additional Guidelines for Device/Window Combinations
This section assumes you understand Xlib input, particularly passive grabs. for
information on how passive grabs work, refer to the chapter "Window Manager
Functions," in Programming With Xlib, Version 11.

There are cases where it is advantageous for an application to use both Xlib and
Starbase calls to receive input from the same device/window combination.

For example, suppose that you desire to enhance a Starbase application to use Xt
Intrinsics and HP Widgets to provide three-dimensional menus. One alternative
is to have a large (main) window with a sub-window for Starbase to run inside.
The toolkit code can work inside other sub-windows of the main window. In this
way, the toolkit code and Starbase each use different windows to talk with the X
server's pointer. The only disadvantage to this is that the user can never bring
up a widget (that is, the menu) by pressing a button in the Starbase window.

Another approach is to bring up a menu from a button press in a Starbase
window, using passive grabs to make sure that programs see button releases for

\ 1 which a button press was seen. Only one program or Starbase driver can establish
.._; a passive grab per device/window combination. Passive grabs are granted by the

X server according the window hierarchy tree. The program could use Xlib to
establish a passive grab on the program's main window, which is an ancestor of
the Starbase window. Then, when the user presses a button in the Starbase sub
window, the X server first offers the button press to the Xlib connection. If the
program's response to that press is to pop up a menu, the toolkit code could be
called. If not, the program can replay the event and then Starbase would see the
button press. In this way, the rule of one open or connection per device/window
combination is followed, but the program appears to have two open connections
to the same device/window combinations.

For more information, refer to the manual Programming With Xlib, Version 11.

Input Operation 6-35

~~

7
Graphics Hardcopy Operation

The term graphics hardcopy refers to the ability to print an image from a display
or a file to a graphics printer, as shown in the following diagram:

Store image
in file

Print image
from display

Retrieve image
from file

Print image
from file

Figure 7-1. Graphics Hardcopy from a Display or File

The image can be printed either directly from the display or from the file.

Graphics Hardcopy Operation 7-1

Graphics Printers versus Vector Plotters

Graphics hardcopy is performed by copying the pixels on the display to dots on
the printer. Such printers are often called graphics printers or raster printers and
are distinct from plotters which use pens to draw lines; these are typically called
vector plotters or pen plotters.

While the image on your display may be composed of many vectors, the graphics
hardcopy procedures described in this chapter do not permit these vectors to be
copied from your display to a vector plotter. However, if you are using Starbase
you can open a Starbase driver (for example, the Starbase HPGL driver), which
interfaces to vector plotters. You can then direct the output to a vector plotter
instead of the display.

Starbase and X11 Hardcopy Documentation

Both Starbase and Xll provide graphics hardcopy capabilities, procedures
(library subroutines), and utilities (user commands). Starbase's capabilities are /---..,
described in the chapter "Storing, Retrieving and Printing Images" in Starbase ·)
Graphics Techniques. Xll hardcopy capabilities are described in Programming
With Xlib, Version 11. Note that neither XlO nor Xll revision A.OO support
graphics hardcopy capabilities.

7-2 Graphics Hardcopy Operation

u

Procedures and Commands
The following diagram shows the relationship of Xll and Starbase hardcopy
procedures and utilities.

X11 Window

image

XhpWindowToFile()
XhpPixmopToFile()
XhpFileToWindow()
XhpFileToPixmop()
XhpQuerylmogeFile()

X11 Pixmop

Storbose bitmap files

roster printer

0

image data

Figure 7-2. Relationship of X11 and Starbase Hardcopy Procedures and
Utilities

Graphics Hardcopy Operation 7-3

Notes on the Previous Diagram

• The supported file formats for the raster data are the Xll and Starbase :~
formats. "XWD format" denotes Xll files, where XWD stands for "Xll
Window Dump." Starbase files are denoted as Starbase bitmap files.
Procedures are provided to translate from XWD format to Starbase
format (xwd2sb) and from Starbase format to XWD format (sb2xwd).

• Printing with Xll always requires the display image to be stored in
the XWD file first. Starbase procedures are provided to do a graphics
hardcopy directly from the display as well as from a file.

• Four ways to print an image are:

1. Use the Xll command xpr to print XWD format files, which can
then be piped into the lp spooler for output to the printer.

2. Use the pel trans command to print Starbase bitmap files, which
pipe into the lp spooler for output to the printer.

3. Use Starbase procedures within a program to output Starbase ()
bitmap files to the printer.

4. Use Starbase procedures within a program to print hardcopy
directly from the display to a printer.

• The xwd and xwud commands store and retrieve the entire window. The
XHPimageiO procedures permit storage of a subrectangle of the window
and provide access to pixmaps. For example, the XHPWindowToFile
procedure supports an x and y start position, and length and width
parameters to specify the subrectangle to be stored in the XWD file.

• The xwd and xwud commands were provided with the Xll revision A.OO
server; the XHPimageiOprocedure, and the xpr, xwd2sb, and sb2xwd
commands were first introduced with the Xll server.

• The xwd and xwud commands work only within an Xll window, not from
an Xll pixmap. The XHPimageiO procedure works on both windows and
pixmaps.

7-4 Graphics Hardcopy Operation

u

Method Selection
Several factors must be considered when determining whether to use the Xll or
Starbase method:

• In general, the Xll command xpr is simple and quick while the Starbase
hardcopy methods are more sophisticated but slower. The xpr command
is most appropriate for hardcopy of text and simple graphics. For
example, xpr is best for doing a hardcopy of a terminal emulator window,
while Starbase hardcopy is best for complex graphics such as shaded 3D
images. The dithering/diffusion process of Starbase hardcopy introduces
artifacts which reduce text readability. Thus, Starbase hardcopy is not
recommended for applications such as generating hardcopy of a terminal
emulator window.

• When your application requires image file interchange, you should
consider using the Xll dump/hardcopy procedures since the XWD file
format is more widely used than is the Starbase file format.

• Because the Xll hardcopy procedures and utilities are executed by the
client, the graphics printer must be connected to the client. When the
client happens to be a remote computer (that is, connected to the server
over the network), the pixels to be printed have to first be moved from
the server to the client over the network. This is time consuming and
can degrade network performance. Therefore, where possible, your client
application doing the graphics hardcopy should be run locally.

• When using Star base remotely over the network via the SOXll driver,
you can use the Starbase hardcopy procedures and utilities on a remote
computer. In this case, the graphics printer would be connected to the
same computer running the SOXll driver. This has the disadvantage that
pixels are transferred over the network. A solution is to open the same
Xll window that the SOXll driver is drawing to and then use local-only
Starbase hardcopy procedures. The remote client must communicate the
window's ID to the local client to open the correct window.

• When you want to do a graphics hardcopy of the entire display, you can
specify the root window.

Graphics Hardcopy Operation 7-5

/~
I

r)

I
\.__/

8
Program Development Guidelines

Starbase in X11 Windows
Reading Chapter 3 prior to reading this chapter will help you understand the
program.

Several topics are discussed in this chapter:

• The degree of Starbase source and object code compatibility provided
with the 3.1 and 6.5 releases of HP-UX.

• The libraries that need to be linked with your program.

• The guidelines to be followed in developing your application.

• Tips on porting a Starbase application from the following environments
to Xll.

o HP Windows/9000
o XlO
o Xll

Program Development Guidelines 8-1

Source and Object Code Compatib~lity

In order for a Starbase program to work in an X11 window, it must be linked
with the Starbase libraries provided with the 3.1 (Series 800) and 6.5 (Series 300)
releases of HP-UX (or later releases). The X11 server must be 3.1/6.5 (revision
A.01) or later and must be from the same or later release as Star base.

Source Code Changes

The only source code change potentially required for a window-dumb program to
operate in an X11 window is to modify the Starbase gopen statement to permit
the parameters to be passed in at run time.

Unlinked Object Code Compatibility

A pre-3.1/6.5 compiled Starbase program can be linked with the 3.1/6.5 Starbase
libraries and executed in an X11 window, assuming the gopen parameters are
passed into the program at run-time. You may get a floating-point warning from
the linker, but this can be ignored.

Pre-3.1 /6.5 Linked Object Code Compatibility

Pre-3.1/6.5 Starbase programs will work with the 3.1/6.5 (or later) releases of
HP-UX in raw mode but will not run in an X11 window.

8-2 Program Development Guidelines

.r)
/

I~

(.
0

Linking Your Program

The 3.1/6.5 software release Starbase drivers operate in these environments:
• Raw mode
• HP Windows/9000
• Xll

Starbase Link Sequence

The order in which the Starbase libraries are linked is shown below. Libraries
which are optional (depending on your application) are marked with a "*".

1. Your program. c

2.

3.

4.

5.

Appropriate Starbase input drivers and/or output drivers (in any order).

* Starbase bit and/or byte drivers, -lddbyte, -lddbi t (in either order).
These are required for Starbase backing store.

* -!window. This is required to run Starbase in a Windows/9000 window.

* -lXwindow. This is required to run Starbase in an Xll window.

6. * -lsbdl. This is required if the program uses the Starbase display list.

7. -lsb1

8. -lsb2

9. * -lXr. This is required to use the Xray library in your program.

10. * -lXw. This is required to use X Widgets in your program.

11. * -lXt. This is required to use the X Toolkit in your program.

12. * -1Xhp11. This is required if your program is intended to execute in
an Xll window, regardless of whether your program is window-dumb or
smart.

13. * -lX11. This is required if your program is intended to execute in an Xll
window, regardless of whether your program is window-dumb or smart.

Example link sequences are provided in the following sections. The Starbase
driver /usr/lib/libdd98550.a is used in these examples.

Program Development Guidelines 8-3

Raw Mode Starbase Operation

The link sequence for raw operation is:

cc -o prog prog.o -ldd98550 -lsb1 -lsb2

Starbase Operation in HP Windows/9000

The link sequence for a Starbase program to operate in HP Windows/9000 is:
cc -o prog prog.o -ldd98550 -!window -lsb1 -lsb2

As with pre-3.1/6.5 HP Windows/9000 operation, the library libwindow must
be linked in. A Starbase pr~gram linked as above can still be run in raw mode.

Xlib Operation

The link sequence for a non-Starbase (Xlib only) program is:

~c -o prog prog.o -1Xhp11 -1X11

Refer to Programming With Xlib, Version 11 for more details.

Starbase Operation

The link sequence for a Starbase program to operate in Xll windows is:
cc -o prog prog.o -ldd98550 -lXwindow -lsb1 -lsb2 -1Xhp11 -1X11

The libXwindow library permits Starbase to perform necessary communications
with the Xll server (for example, obtaining X clip lists, or permitting Starbase
to get input from the X pointer device). Note that a program linked as above
can still be run in raw mode.

Using Both Libraries

libXwindow and libwindow can both be linked into your application. This will
permit the application to run in raw mode, in HP Windows/9000 and in Xll

I~

~)
' J

windows. For example: .~

cc -o prog prog.o -ldd98550 -!window -lXwindow -lsb1 -lsb2 -1Xhp11 -1X11

8-4 Program Development Guidelines

\"-/

Starbase Retained Rasters (Backing Store)

To support Starbase retained raster (backing store), the bit and/or byte
driver must be linked as shown below. Because backing store only applies
to window systems, linking the bit and/ or byte driver is only necessary when
your application is intended for operation within a window and you intend to
use backing store. Again, both the libXwindow and libwindow drivers can be
included, as shown below:

cc -o prog prog.o -ldd98550 -lddbyte -lddbit -lwindow -lXwindow \
-lsb1 -lsb2 -1Xhp11 -1X11

The bit driver /usr/lib/libddbit.a (-lddbit) is used to provide backing store
for monochrome displays. The byte driver /usr /li b/li bddbyt e . a (-lddbyt e)
is used to provide backing store for color displays.

The bit and byte drivers are only used to provide backing store for Starbase. The
Xll server already includes the necessary routines to support backing store for
Xlib applications without linking in the bit and byte drivers.

L 1 Starbase Drivers to Link Into Your Application

(;

"'"-"'

Many application developers find it convenient to develop one executable with
all supported drivers linked into the application. The end user then typically
passes in the Starbase gopen parameters to cause the program to access the
desired display. The alternative to one large executable with all drivers linked
in is separate executables, one for each display. This leads to smaller individual
executables but a greater number of them.

Program Development Guidelines 8·5

Application Development Guidelines
This section provides application development guidelines to assist in developing 1J
Starbase programs which run in an Xll window.

• To ensure maximum Starbase performance, Starbase should be operated
in buffered mode. This is not related to double buffering, but refers to
the ability of Starbase to buffer multiple operations before obtaining a
lock on the display.

• Starbase make_picture_current calls should be kept to a minimum since
they flush the buffer and thus reduce performance by reducing the effective
buffer size.

• It is possible to have name conflicts in header files. For example, the
Starbase header file contains this line:

#define line_width c_line_width

Likewise, the header file X11/Xlib. h defines line_ width to be a member
of the XGCValues structure. If your program contains both header files 1')

and refers to the line_ width member of the XGCValues structure, you will
. get a fatal compile-time error. You may be able to work around this by
using a seperately compiled procedure of your own to hide a conflicting
procedure. For example, you could create a my _line_ width procedure
which calls line_width and compile this separately.

• It is common for a raw mode Starbase program to do a Starbase open of
an HIL mouse to get locator input. This same program will not work in
an Xll window because the Xll server grabs the mouse for its pointer
device. Therefore, the Starbase program should get its locator input from
the pointer device mouse using the libXwindow library by changing the
gopen parameters.

• Use the utility /usr/lib/X11/xwininfo to get the window's ID for use in
a Starbase open of an existing window (for example, a terminal emulator
window). When executed with the -tree option, it permits you to obtain
the window ID of all existing windows on your display. The window ID
can then be used in formulating your Starbase gopen (path) string.

• Use backing store sparingly, as it degrades performance.

8-6 Program Development Guidelines

(:
\~

i ' I ,
"-/

Moving HP Windows/9000 to X11
For a information on converting your window system from HP Windows/9000 to
Xll, refer to HP Windows/9000 to X Window System Conversion Guide.

Window Types

HP Windows/9000 defines both a graphics window type and a terminal window
type. Only the graphics window type can be used for Starbase output. Xll,
however, defines one type of window which can be used for both. graphics and
terminal output.

Input

The Starbase libXwindow library permits input to be received from the Xll
server's pointer. The pointer device is always opened for shared access. This
library provides Starbase input similar to the HP Windows/9000 libwindow
library.

Moving from X1 0 to X11
Starbase in an XlO window is only supported by the Xn driver, which converts
Starbase calls to XlO protocols. In moving a Starbase program to Xll, you have
two choices:

1. Re-link with the SOXll driver: This will support remote Starbase.

2. Use Starbase directly in an Xll window: You can link your Starbase
program with the 3.1/6.5 software release Starbase drivers so that the
program operates directly in an Xll window. This will greatly increase
performance, but remote operation will be lost.

Program Development Guidelines 8-7

Moving from X11 Revision A.OO to X11
Starbase in an Xll revision A.OO window is supported by both the Xn driver
and the SOXll driver. In moving the Starbase program to Xll, you have two
choices:

1. Continue using the SOXll driver: If your approach requires remote
Starbase you will want to continue with this approach. You must to use
the SOXll drivers if you only have access to the executable and cannot
link in other drivers.

2. Use Starbase directly in an X11 window: You can link your Starbase
program with the 3.1/6.5 software release Starbase drivers so that the
program operates directly in an Xll window. This will greatly increase
performance, but remote operation will be lost.

8-8 Program Development Guidelines

(~
I

,0
' /

('

'"--"'

Glossary

Backing Store
Memory used to store graphics data that is rendered in obscured portions
of the window.

Bit Driver
Used to provide backing store for monochrome displays.

Byte Driver

Client

Used to provide backing store for color displays.

A program which needs the services and processes of a server machine in
order to run.

Color Map Policy
A mechanism used to control the interaction of Starbase and Xlib color
map procedures.

Combined Mode

Cursor

The Xll server operates in both the overlay planes and image planes
simultaneously.

The graphics entity which follows the Xll pointer device. Also called X11
cursor.

Display Control Data
Data that affects what is seen on the entire display, but does not affect
the actual data stored in the frame buffer.

Display Control Focus Window
The window where rendering appears valid. Because only one software
color map can be downloaded into hardware at a time, the other windows

Glossary-1

use the display control focus window's color map, which is in hardware,
to render their displays.

Display Control Policy
Specifies how the display control data is handled.

Drawing Control Data

Echo

Data that controls what is actually written into the frame buffer. An
example is the replacement rule.

The graphics entity controlled by Starbase; can be "attached" to an input
device. Also called Starbase echo.

Focus Policy
The policy which controls how the input focus changes from one window
to another.

Font Character Set
Specifies the raster patterns of characters displayed on the screen.

Font Files
Files on disc which contain actual raster text patterns.

Font File Format
The disc format the font is stored in.

Graphics Hardcopy
The ability to print an image from a display or file to a graphics printer.

Hardware Color Map
Provides the actual physical translation between a pixel value in the frame
buffer and the color generated on the screen. The display control focus
window's software color map is downloaded into the hardware color map,
so there is only one hardware color map but can be numerous software
color maps.

Image Mode
The Xll server operates only in the image planes.

Input Focus
The ability to direct input to one window at a time in Xll.

Glossary-2

:~
I

I
I.__;

u

Input Focus Window
The window that receives input events.

Local Operation
Operating a program on the same computer as the X server.

Network Transparency
Can run a program as either a local operation or a remote operation
without re-writing the program.

Overlay Mode
The Xll server operates only in the overlay planes.

Raster Text
Text which is represented by patterns of individual pixels which form a
character on the display. Compare stroke text.

Raw Mode
Indicates that a window system is not running on the display. In raw
mode, a graphics application typically has control of the entire display.

Raw Mode Operation
A program which is operating in raw mode, i.e., no window system is
being run with the program.

Remote operation
Operating a program across a network on another computer. For example,
a remote client operates on a different computer than the X server.

Retained Window
A window that has backing store associated with it.

Root Window
The window where the X11 system is started up.

Server
A computer which provides services and processes to a client program.

Software Color Map
The program's representation of the color map; there can be numerous
software color maps.

Glossary-3

Stacked Screen ~ode
The Xll server operates in the overlay and image planes as two separate
screens.

Starbase Echo
The graphics entity controlled by Starbase; can be "attached" to an input
device. Also called echo.

Stroke Text
Text which is represented by a combination of short/ vectors. Compare
raster text.

Window-Smart Program
A program that uses window library calls. A window smart program can
only be run within a window.

Window-Dumb Program
A program which does not make any window calls. Such a program can '
typically be run both in raw mode and within a window.

(~
' 1

Window System .~
A package that includes the user interface, any available clients, the
library of routines that manipulate the windows, and the server.

Window System Pointer Device
The device used to point to the currently desired window for an operation;
a mouse is typically used.

Xll Cursor
The graphics entity which follows the Xll pointer device. Also called
cursor.

X Window Syst~!ll
A window system whose' characteristics are common to XlO and both
revisions of Xll~{revisiQE: A.OO and A.Ol).

Glossary-4

i
'._)

A
Documentation Bibliography

Introduction
The following are references you may find useful when working with the given
topics:

AGP fDGL Documentation

• AGP Programmer's Manual
• DGL Programmer's Manual
• DGL/AGP Device Driver's Manual

Fast Alpha/Font Manager Documentation

• Fast Alpha Font Manager Programmer's Manual

HP-GKS Documentation

• HP-GKS Device Drivers Library
• HP-GKS FORTRAN Pocket Reference
• HP-GKS User's Guide

HP-UX Documentation

• HP- UX Software Catalog published by Technical Systems Sector
• HP- UX System Administrator Manual

Documentation Bibliography A-1

HP Windows/9000 Documentation

• HP Windows/9000 Programmer's Manual
• HP Windows/9000 Reference
• HP Windows/9000 to X Window System Conversion Guide

Starbase Display List Documentation

• Starbase Display List Programmer's Manual

Starbase Documentation

• A Beginner's Guide to Using Starbase
• Starbase C Pocket Reference
• Starbase Device Driver's Library Manual
• Starbase FORTRAN Pocket Reference
• Starbase Graphics Techniques
• Starbase Pascal Pocket Reference
• Starbase Reference Manual !tj

X1 0 Documentation

• Getting Started With the X Window System
• Programming with the X Window System
• X10 Xlib Programming Manual

X11 Documentation

• Beginning User's Manual
• Configuring the X Window System
• Programming with the HP XWidgets and Xlntrinsics
• Programming with Xlib, Version 11
• Programming with Xrlib
• Using the X Window System, Version 11
• X11 Programming Manual by O'Reilly
• X11 Reference Manual by O'Reilly
• Xlib Quick Reference Guide

A-2 Documentation Bibliography

u

L'

Index

A
AGP/DGL 1-2, 4-3
Architecture

B

HP Windows/9000 2-3
Starbase-on-X Driver 2-6
X Client/Server 2-4
X Window System 2-4
Xll and Graphics 2-8

Backing store 3-6, 4-36, Glossary-!
Bit driver Glossary-!
Byte driver Glossary-!

c
Character Sets 5-1
Client 2-4, Glossary-!
Color map 3-11

Control 4-24
Hardware 4-24
Policy Glossary-!
Software 4-24

Combined mode 3-3, 4-9, Glossary-!
Cursor 4-44, Glossary-!

D
Definitions

INIT 3-7, 4-27
RESET_DEVICE 3-7

Device specification (input) 6-22
Display control

Data Glossary-!

lndex-1

Focus window 4-8, Glossary-!
Policy 4-7, 4-34, Glossary-2

Display hardware 2-2
Display resources

Shared 4-4
Display-control data 4-5
Display-enable mask 4-5
Double buffering 3-2, 4-4, 4-8, 4-32, 4-34
Drawing control data 4-6, Glossary-2
Driver

sox11 2-6, 3-5
driver parameter 3-7

E
Echo 4-44, Glossary-2
Environment variable

SB_INDEV 3-7
SB_INDRIVER 3-7
SB_OUTDEV 3-7
SB_OUTDRIVER 3-7
SB_OVDEV 3-7
SB_OVDRIVER 3-7
Setting 3-7
WMDIR 3-6

Environments
Operating 2-8

Events 6-28, 6-30
Examples

NewColorMap 3-8

F
File

XOscreens 3-2
Focus

Policy Glossary-2
Focus window

Display control 4-8
Input 4-7

Focus Window 3-11
Font

16-bit 5-2

lndex-2

(I

..._.;

G

8-bit 5-2
Character set 5-1, Glossary-2
File 5-1, Glossary-2
File format Glossary-2
File formats 5-5
Format 5-1
Libraries 5-4

Graphics Accelerator 4-21, 4-40
Graphics hardcopy 7-1, Glossary-2
Graphics libraries 1-2
GRM (Graphics Resource Manager) 4-2

H
Hardcopy 7-1
Hardware color map 4-24, Glossary-2
HP Windows/9000 1-5, 4-2

Architecture 2-3
HP-15 5-2
HP-GKS 1-2, 4-3
hpwm window manager 4-24

Image mode 3-2, 4-9, Glossary-2
INIT definition 3-7, 4-27
Input

Device sharing 6-2
Device specification 6-22
Device/window combinations 6-19
Events 6-30
Focus 6-3
Focus policy 6-4
Introduction 6-1
Pointer Device 6-25
Requests 6-30
Sampling 6-30
Tracking 6-30

Input focus Glossary-2
Window 4-7, Glossary-2

Input through a window 6-3

lndex-3

K
kind parameter 3-7

L
libddsox11 library file 3-5
Library

Graphics 1-2
libddsox11 3-5
libsb1 and libsb2 3-5
libX11 3-5
libXhp11 3-5
libXr11 3-5
li bXwindow 3-5
Xlib 2-5

libsb1 and libsb2 libraries 3-5
libX11 library file 3-5
libXhp11 library file 3-5
libXr11 library file 3-5
libXwindow library file 3-5
Local operation 2-4, Glossary-3

M
Memory

shared 4-2
Mode

Combined 3-3, 4-9
Image 3-2, 4-9
Overlay 3-2, 4-9
Stacked Screen 3-2, 4-9

mode parameter 3-7
Modes, operating 3-2
Multiple Starbase opens 4-40

N
Network transparency 2-4, Glossary-3
NewColorMap program 3-8

0
Object code compatibility 8-2
Operating

Environments 2-8

lndex-4

.0
I

(~
I

u

Modes 3-2
Modes (Xll Server) 4-9

Overlay mode 3-2, 4-9, Glossary-3

p

Parallel processing 2-7
Parameter

driver 3-7
kind 3-7
mode 3-7
path 3-7

path parameter 3-7
Pixmaps 4-4
Program

R

Development 8-1
NewColorMap 3-8

Raster text 5-1, Glossary-3
Raw mode 1-5, 2-2, 4-2, Glossary-3
Raw mode operation Glossary-3
Remote operation 2-4, Glossary-3
Replacement rule 4-6
Requests 6-30
RESET_DEVICE definition 3-7
Retained raster 3-6, 4-36
Retained window Glossary-3
Root window Glossary-3
Routines

xwcreate (Xll Windows) 3-6

s
Sampling 6-30
SB_INDEV environment variable 3-7
SB_INDRIVER environment variable 3-7
SB_DUTDEV environment variable 3-7
SB_DUTDRIVER environment variable 3-7
SB_OVDEV environment variable 3-7
SB_OVDRIVER environment variable 3-7
Server 2-4, Glossary-3
Setting

lndex-5

Environment variables 3-7
Shared

Display resources 4-4
Memory 4-2

Software color map 4-24, Glossary-3
Source code compatibility 8-2
SOX11 6-33
sox11 driver 2-6, 3-5
Stacked Screen mode 3-2, 4-9, Glossary-3
Starbase 1-2

Display List 1-2
Echo Glossary-4
-on-X Driver Architecture 2-6

Stroke text Glossary-4
Synchronization 4-51

T
Tracking 4-49, 6-28, 6-30

v
Visual class 4-11

w
Window

-dumb program Glossary-4
Focus 3-11
Manager 2-3
Manager (hpwm) 4-24
-smart program Glossary-4
System Glossary-4
System pointer device Glossary-4

WMDIR
Environment variable 3-6

Write-enable mask 4-6

X
X Client/Server

Architecture 2-4
X Window System Glossary-4

Architecture 2-4
XOscreens file 3-2

lndex-6

__,J

XlO 1-5
Xll

Cursor Glossary-4
Graphics Architecture 2-8
Revision A.OO 1-5
Revision A.01 1-5
Server operating modes 4-9

Xll Windows
Backing store 3-6
Double-buffering 3-2
Operating modes 3-2
Retained raster 3-6

Xlib
Graphics 1-2
Library 2-5

xwcreate routine (Xll Windows) 3-6

z
Z buffer 4-23

lndex-7

('
\

Win an HP Calculator!
Your comments and suggestions help us determine how well we meet your needs.

Returning this card with your name and address enters you into a quarterly
drawing for an HP calculator*.

Starbase Programming with X11

Agree Disagree

The manual is well.organized. 0 0 0 0 0
It is easy to find information in the manual. 0 0 0 0 0
The manual explains features well. 0 0 0 0 0
The manual contains enough examples. 0 0 0 0 0
The examples are appropriate for my needs. 0 0 0 0 0
The manual covers enough topics. 0 0 0 0 0
Overall, the manual meets my expectations. 0 0 0 0 0

You have used this product:

Less than 1 week

Less than 1 month

_ Less than 1 year

_ 1 to 2 years

_ More than 2 years

('
'· 'fold--·

Please write additional comments, particularly if you disagree with a statement

above. Use additional pages if you wish. The more specific your comments, the

more useful they are to us.

Comments: __ ___

*Offer expires 1/1/1991. (Manual: 98592·90000 E1288)

Please Tape Here

Please print or type your name and address.

Name: __ __
Company: __ __
Address: __ ___

City, State, Zip: --
Telephone: ---

Additional Comments: -------------------------------------

Starbase Programming with X11
HP Part Number 98592-90000
E1288

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37 LOVELAND, COLORADO

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Learning Products Center
3404 East Harmony Road
Fort Collins, Colorado 80525-9988

''··'·''····'·'···'·'·'·'·'·'··'·'··'··'·'··'··''··'

NO POSTAGE
.NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
98592-90000
Microfiche No. 98592-99000
Printed in U.S.A. E1288

Ff/0'1 HEWLETT
~~PACKARD

98592-90636
For Internal Use Only

	Cover
	Preface
	Contents
	1. Graphics Libraries and Window Systems
	2. Graphics and Window System Architecture
	3. Using Starbase with the X11 Windows Systems
	4. Graphics Output Operation
	5. Raster Text Operation
	6. Input Operation
	7. Graphics Hardcopy Operation
	8. Program Development Guidelines
	Glossary
	A. Documentation Bibliography
	Index
	Reader Response Card
	Back Cover

