RTE-6/VM
 Debug Subroutine

Reference Manual

RTE-6/VM

Debug Subroutine

Reference Manual

PRINTING HISTORY

The Printing History below identifies the Edition of this Manual and any Updates that are included. Periodically, Update packages are distributed which contain replacement pages to be merged into the manual, including an updated copy of this Printing History page. Also, the update may contain write-in instructions.

Each reprinting of this manual will incorporate all past Updates, however, no new information will be added. Thus, the reprinted copy will be identical in content to prior printings of the same edition with its user-inserted update information. New editions of this manual will contain new information, as well as all Updates.

To determine what software manual edition and update is compatible with your current software revision code, refer to the appropriate Software Numbering Catalog, Software Product Catalog, or Diagnostic Configurator Manual.

First Edition Dec 1981

NOTICE

The information contained in this document is subject to change without notice.
HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable for errors contained herein or for incidental or consequential damages in connection with the furnishing, performance or use of this material.

Hewlett-Packard assumes no responsibility for the use or reliability of its software on equipment that is not furnished by Hewlett-Packard.

This document contains proprietary information which is protected by copyright. All rights are reserved. No part of this document may be photocopied, reproduced or translated to another program language without the prior written consent of Hewlett-Packard Company.

Preface

This manual references DBUGR, the debugger for MLDSB, the debugger for $L O A D R$, and the debugger for MLLDR. Most commands are the same for both versions of the debugger. Commands that apply to only one version will be so noted with a reference to LOADR or MLLDR.

Table of Contents

Chapter 1 Introduction
Operating Environment
1-1
1-1
Loading and Using DBUGR 1-2
Controls 1-3
Expressions 1-3
Terms
1-4
1-4
Operators
1-4
1-4
Conventions Followed In The Text
1-5
1-5
Limitations 1-5
Chapter 2 Output Modes
Output Modes 2-1
Printout as Symbolic Instructions 2-2
Printout As Numeric Constants 2-3
Changing The Radix of Numeric Printout
2-4
2-4
Alphanumeric (ASCII) Printout
2-5
2-5
Address Pointers 2-7
Defining Symbolic Addresses In DBUGR
2-8
2-8
Deleting Symbols From The Symbol Table 2-12
Assigning a Symbol to an Address Just Printed 2-13
Print Momentarily In Master Mode 2-13
Chapter 3 Memory Examination and Modification
Examine Memory Only-Location Counter Does Not Change 3-1
Examine Memory And Set The Location Counter 3-2
Change The Contents of Memory 3-2
Memory Change Controls 3-3
Memory/Location Counter Changes 3-5
Special Register Modification And Examination 3-6
Special Register Display 3-7
MEM Status Special Mode 3-8
Map Examination Special Mode
3-8
3-8
Temporarily Change To The Print Mode 3-10

Chapter 4 Load, Punch, and Verify Paper Tape

Program Load 4-1
Dumping Tables and Patches 4-1
Tape Verification 4-2
Chapter 5 Memory Search and Clear
Memory Search 5-1
The Search Mask 5-1
Logical Product Reviewed 5-1
Address Range 5-2
Equality Search 5-2
Inequality Search 5-3
Clear Or Set Memory 5-4
Effective Address Search 5-4
Chapter 6 Breakpoint/Trace Debugging
Introduction 6-1
Setting A Breakpoint (MLLDR) 6-3
How A Switch Enables New Breakpoints 6-4
How a Breakpoint Can Persist Through Path Switches. 6-4
Conditional Breakpoint 6-5
Restrictions 6-7
Controls 6-8
Magic Symbols 6-13
Appendix A More About Operators
Plus, Blank And Minus A-I
Inclusive OR A-1
The Mark \Q A-2
Using DBUGR To Do Simple Arithmetic A-2
Octal Addition And Subtraction A-2
Other Conversions A-2
Decimal Addition And Subtraction A-3
Octal To Decimal Conversion A-3
Decimal To Octal Conversion A-3
Appendix B Error Messages
Appendix C DBUGR at a Glance
Mode Control C-2
Symbol Manipulation C-4
Location Examination C-5
Program Load And Verify C-6
Dumping C-6
Memory Search And Clear C-7
Breakpoints And Program Control C-7
Special Registers C-9
Map Registers C-9
Appendix D Block Mode Operation of DBUGR
Appendix E HP Character Set
List of Illustrations
Figure 2-1. Symbolic, Address Pointer, and Octal Constant. 2-10
List of Tables
Table C-l. Quick Reference to Frequently Used Commands . . . C-l

Chapter 1 Introduction

DBUGR is a utility program for debugging programs run on HP 1000 series computers. It features:
* Symbolic or octal printout
* Symbol definition
* Register examination and change
* Cassette tape loading and verification (LOADR version only).
* Memory search
* Memory clear
* Breakpoints
* Map examination.
* Memory examinations and change in user partition and systems.

Operating Environment

DBUGR runs on any HP 1000 series computer equipped with DMS and teleprinter (or CRT) running the RTE-6/VM operating system. DBUGR itself is approximately 3.7 K words in length including symbol table and excluding the breakpoint table. The user symbol table space is fixed at 50 words in length. Two locations are required for symbols of one or two characters, while three locations are required for symbols of three to six characters. The breakpoint table, which uses 50 words of memory, consists of 10 breakpoints of 5 words each.

Cassette tape operations are configured to dump to LU 4 and read from LU 5.

Loading and Using DBUGR

DBUGR must be loaded with the program to be debugged. This can be done in one of two ways. The first is to use the DB loader option. LOADR will set the primary entry point of the program to DBUGR and save the program's actual start address in DBUGR. For example:

RU,LOADR,,\%PROG,,DB or RU,MLLDR,,\%PROG,,DB
or:
RU, LOADR
or RU,MLLDR
OP, DB
RE, \%PROG
OP, DB
TR, /PROG
where /PROG contains:

M
RE, \%PROG
END
Note that this is the only way that segment or path breakpoints can be made available.

The second method is for the program to call DBUGR directly by the following calling sequence:

Assembly	Fortran
EXT DBUGR	CALL DBUGR (1u\#-optional
JSB DBUGR	
DEF RTN	
DEF 1u\# of console (optional)	
EQU *	

For the MLLDR version, use MLSDB in place of DBUGR.
When the user's program begins execution, DBUGR takes control and prints START DBUGR on the optional console logical unit or, if not included, on the logical unit passed to DBUGR through the system subroutine LOGLU. At this point the user can initiate a debug operation. All debug operations are conducted at the Assembly Language level. A load map and assembly listing of the program is essential. If debugging a program written in a higher level language, a mixed listing of source and assembly is required. The Macro Assembler LIST MEDIUM option is most useful.

Controls

Controls, consisting of special characters and letters preceded with escape or ALTMODE, act as DBUGR commands. In the text that follows, escape will be denoted by $\$, carriage return by $C R$, control by CTRL, tab by TAB and line feed by LF. (CTRL-J is optional LF on 264 x terminals.) Escape prints as a backslash (on a TTY or CRT. Some controls are:

1
!
\s
$=$
$+$
For multipoint terminals or terminals using driver DVR07, refer to Appendix D .

NOTE
Some terminals do not print the first backslash after an escape (e.g., the 2640). The control "\U" will cause DBUGR to print two backslashes for each escape.

Expressions

An expression, which will be denoted in the text by the letter n, consists of one or more terms, combined by operators as in the following:
$A A+10$

Terms

A term may be a symbol (denoted in the text by the letter s), a number, or a special notation called a mark. The following are terms:

BB A symbol is defined as a letter or a period followed by any number of letters, digits or periods. Only the first six characters are significant. For example:

ABC	A5	•B
A. $Z Z Z Z Z$.4	..

Each symbol may be assigned a value. The symbol and its value are equated by entries in the DBUGR symbol table. Values for symbols lie in the range of -32768 through 32767 .

3775 An octal number.
386. A decimal number. The decimal point is used to characterize the number as decimal rather than octal. A decimal point in a number other than as the last character is not meaningful.

- and * Period and Asterisk are marks. When used as terms in an expression their value is equal to that of the current value of DBUGR's program location counter.
\Q Esc-Q is a mark. It refers to the last quantity typed.

Operators

Legal operators are:

```
+ Add terms
    Space Add terms (this is manually faster than shifting and depressing the + key.)
- Subtract term
, Inclusive \(O R\) terms (inclusive \(O R\) is used to selectively set individual bits within a word).
```

Operators are discussed in more detail in Appendix A.

Conventions Followed in the Text

1. What you input to DBUGR is underlined in the examples. When you must enter an underline, the example shows an underline with a blank above it.
2. Use of a control that does not cause print-out is denoted by brackets ([]). These will not be underlined.
3. All values referenced in the text are octal unless otherwise noted.
4. Vertical and horizontal spacing shown in the examples is not exactly as it appears on a teletype or CRT printout.

Limitations

DBUGR reads and interprets each character as it is entered so that many commands may be invoked by a single keystroke. Since one character is read at a time, it is possible for the user to get ahead of DBUGR and get a system prompt. When this happens the user should increase the priority of the program being debugged with the PR command. Alternatively, through use of the $\backslash U$ command, DBUGR can accept a continuous string or line of characters as would be sent from a $264 x$ terminal by a soft key, cartridge tape unit, or a Multipoint 264 x terminal using driver DVR07.

Chapter 2
 Output Modes

Output Modes

Information can be displayed in one of four modes:

1. Symbolic instructions
2. Numeric constants
3. Address pointers
4. ASCII characters
Although a printing mode normally remains in effect until changed, it is possible to either:
a. momentarily invoke a different mode for the display of only one number, or
b. temporarily invoke a different mode for a series of examinations until a carriage return is entered.

Printout as Symbolic Instructions

DBUGR is in symbolic mode when it is loaded.
In symbolic mode the contents of a memory location are printed as symbolic instructions; the operation codes are represented as mnemonics. The address field of one-word memory reference instructions will be printed as octal numbers with the page number merged with the page offset. Only the first word of multi-word instructions will be interpreted.

It is important to note that in symbolic mode every location is printed as a symbolic instruction whether that location contains an instruction, data, or an address. The bit pattern in memory is simply interpreted as an instruction. For example, the octal value 1767 would appear in memory as:

Notice that bits 6 through 15 correspond to the bit pattern for the ALF instruction. The lower 6 bits are similarly treated as instructions. The printout appears as:

ALF, CLE, ALF
Also notice that not all shift rotate instructions are defined. In those cases DBUGR will print the valid opcodes merged with the remaining bits. For example, the octal value 1747 will be printed as ALF,CLE,7.

DBUGR's symbol table does not contain instructions referencing the overflow register, therefore overflow instructions will be printed as $1 / 0$ instructions with a select code of 1.

The operand field for I / O and double shift instructions will be printed correctly except when the operand is zero, in which case a blank is printed instead of a zero. Therefore STF 0 will be printed as STF, and RRL 16 (actual operand is 0) will be printed as RRL.
"I" and "C" are special symbols in DBUGR's symbol table with the octal values of 100000 and 1000 , respectively. Therefore 100000 and 1000 will be reverse assembled as I and C. I means the reference is indirect; C means the reference is on the current page.

From this discussion, it is obvious that we must know whether we are looking at data or instructions. It is also obvious that it is desirable to be able to print data or address words as octal numbers. DBUGR provides this capability.

Printout as Numeric Constants

We can either momentarily change the printing mode to octal so the last item printed will be reprinted as octal, with subsequent printouts continuing in the master mode; or we can change the master mode to octal so that all subsequent printouts will be in octal.

Conversely, if we change the master mode to octal, we have the capability of momentarily switching back to symbolic; it works both ways. The examples below demonstrate printing modes. In these examples the following controls are used:
$n /$ Prints the contents of memory location n. These contents can be modified at this point, but that is discussed later.
\C Set master print mode to numeric constant. Remember, C means constant.
$=\quad$ Print the last quantity (typed by either the user or DBUGR) as a numeric constant. This is a momentary mode change.
\= Same as $=$, except constant mode remains in effect until a carriage return. This is a temporary mode change.
\S Set master print mode to symbolic instruction. Remember, S means symbolic.
! Print the last quantity typed as a symbolic instruction. This is a momentary mode change.
\! Same as !, except symbolic mode remains in effect until a carriage return. This is a temporary mode change.

Changing the Radix of Numeric Printout

An interesting feature of $D B U G R$ is that the numeric output (in any mode) does not have to be octal. The radix of output values can be from 2 to 33. Thus, it is possible to print data as a decimal value or examine memory in hexadecimal. If the radix is decimal, numbers are followed by a period. You can change the output radix by using the control $n \backslash R$. DBUGR interprets all values as l6 bit unsigned numbers, regardless of radix.
$\mathrm{n} \backslash \mathrm{R}$. where n can be any decimal value from 2 to 33 (or octal value from 2 to 41 . Remember, R means radix.

For example:

2420/ ADA $2745 \backslash$ [LF]	Select numeric constant
	master mode
2421/ 3004 2\R [LF]	Select binary output
10100010010/10000010000 10\R [CR]	Select octal output*
\S [LF]	Select symbolic master mode
2423/ JMP 2714,I [LF]	
2424/ SZA [LF]	
2425/ JMP 2714,I $2 \backslash \mathrm{R}$ [LF]	Select binary output
\bullet	
*The radix could have been specified	in decimal as 8.\R.
Note that numeric input is always in	either octal or decimal.
10100010110/ JMP 10111001101, ${ }^{\text {20 }}$ (R	[CR] Select hexadecimal output
$\backslash \mathrm{S}$ [LF]	Select symbolic master mode
517/ JSB 331, I [LF]	
518/ CLA, SSA, SLA,SZA \C [LF]	Select constant master mode
519/ 51A [LF]	
51A/ 9B3E 10\R [CR]	Select octal output
2471/ 3004 10. \R [LF]	Select decimal output
1338./ 1040. [LF]	
1339./ 44464. [LF]	
1340./ 1026. [LF]	

Alphanumeric (ASCII) Printout

It may be necessary to examine alphanumeric information. If so, DBUGR allows us to change the printing mode so that the contents of each memory location are printed as two ASCII characters. In this mode DBUGR will interpret the 16 bits as two 8-bit ASCII codes, whether the memory location contains data, an instruction, or an address. The controls are:
$\backslash \mathrm{H} \quad$ Sets master printing mode to ASCII characters.
' Prints the last quantity typed as two ASCII characters. Then prints a double quote.
\' Same as ', except ASCII mode remains in effect until a carriage return.

Remember, H means Hollerith.

Study the following example carefully:

From an examination of the octal equivalents of the printed characters, several observations can be made:

1. A character will be printed only if the upper and/or lower 8 bits of a word contain bit patterns that represent legitimate ASCII characters.
2. If either 8-bit field does not represent an ASCII character, it is not printed. There is no way to determine whether a single printed character fell in the upper or lower half of the word without looking at the octal equivalent. At location 2522 above, only the lower half of the word converts to the character S.
3. If neither half word contains an ASCII code, but does contain binary information, nothing is printed (location 2534 above). If a non-printing ASCII character is encountered, DBUGR performs the function that ASCII code represents. For example, encountering a 007 causes the bell to sound, and encountering a 012 causes a line-feed.

Address Pointers

There is one more printing mode, It allows DBUGR to print a l6-bit memory location as an address pointer. Keep in mind that in HP 1000 computer programming, many words are set up to contain a full l5-bit address plus a bit to indicate direct or indirect use of that address. In the following code:

3000	LDA	POINT, I
3010 POINT	-	
	DEF	DATA
7000 DATA	BSS	

the DEF pseudo operation generates a full ly-bit address at location 3010. The address generated is that of the symbol DATA; i.e., 7000, and this address is used as a pointer by instructions such as the LDA at 3000 to access the data stored at DATA. The contents of location 3010 look like:

Memory locations containing address words can easily be examined in numeric constant mode. In fact, if we switch to the printing mode that allows us to print the contents of memory locations as addresses, there appears to be no difference in output. The example below demonstrates the apparent identity. The control (underline) prints the last quantity typed in address pointe \bar{r} mode.

$\frac{\text { lC }}{}$	[CR]		
$\frac{1510 /}{}$	60247	-60247	[LF]
$1511 /$	3004	-3004	[LF]
$1512 /$	102000	$-2000, I$	[LF]

The two modes return almost identical results! What then is the use of address pointer mode?

Printing in address pointer mode is useful only in conjunction with another feature of DBUGR; i.e., the capability of associating symbols with numeric addresses.

Defining Symbolic Addresses in DBUGR

Remember that when a program is in memory for execution, all symbols associated with program locations at assembly time have been converted to absolute addresses; they are gone! As DBUGR maintains its own symbol table, we can associate arbitrary symbols with specific locations. This is useful because we may wish to see locations and address references printed as symbols rather than words.

Before we see how symbols are manipulated, it is necessary to learn how DBUGR sequences through a program. For example, to begin debugging at location 2500, we would type:

2500/
DBUGR will respond by typing the contents of location 2500 (assume we are in numeric constant print mode). The output would look 1ike:

$$
\underline{2500 / 171572}
$$

If we strike LF or CTRL-J on a 264 x , the next sequential location in memory is displayed:

$2500 /$	171572	[LF]
$2501 /$	723	[LF]
$2502 /$	5241	

Although it was not explicitly mentioned, in all previous examples advancing to the next line of print was accomplished by LF.

Obviously, DBUGR maintains a location counter similar to the P-Register of the computer, and LF is the control for sequentially examining memory. Later we will see that the contents of the memory location just printed can be changed before executing the LF.

If we wish to associate a symbol with the address 2500 , we can type the following:
$\mathrm{n}<\mathrm{s}$: where n is an expression resulting in a 16 -bit value and s is a symbol. The symbol is then said to be defined.

Thus, "less than" (<) is a control to designate a value, and "colon" (:) is a control to define a symbol.

2500 <SYM:
will associate the symbol SYM with the address 2500 .
In the following example, notice how symbols replace numeric notation after location 2500. Assume we are in numeric constant mode, and SYM has been defined as above.

$2476 /$	126720	$[\mathrm{LF}]$
$2477 /$	115476	$[\mathrm{LF}]$
SYM/	2734	$[\mathrm{LF}]$
SYM $+1 /$	115471	$[\mathrm{LF}]$
SYM $+2 /$	25460	$[\mathrm{LF}]$
SYM $+3 /$	126666	$[\mathrm{LF}]$
•		
:		

A strange thing happens after location SYM+l0:

SYM $10 / 10 /$	165715	[LF]
$2511 /$	7004	[LF]
$2512 /$	77113	

Except for symbols of one or two characters (for which the numeric offset has no limits), symbolic addresses are associated relative to a particular symbol for eight (octal l0) locations. If we wish to continue using symbolic addressing, we have to define another symbol:

$$
\begin{array}{ll}
\frac{\text { SYM }+130 /}{2631 / 7004} & 165715 \\
\text { [CR] } & \text { [LF] } \\
\frac{2631 / ~ S Y M 2: ~}{\text { SYM2+1/7F] } 7713} &
\end{array}
$$

Notice the use of $C R$ above. Unlike $L F$ it only returns us to the next print line; the location counter does not change. Actually it is generally not necessary to strike a CR before typing a new address or using a new control. You can continue on the same line.

For symbols of one or two characters, where the numeric offset has no limit:

```
2631<S: [CR]
S+5000/ 7004 [LF]
S+5001/ 165715 [LF]
```

 -
 -
 This mode is useful with relocatable code where we might define a symbol for the origin of each module. The offsets would then be the same as those printed on the assembly listings.

Another form of symbol definition that would have been more efficient at location 2631 above is illustrated below:

$$
\begin{aligned}
& \text { SYM+130/ } 165715 \text { [LF] } \\
& \text { 2631/ } 7004 \text { SYM2: [LF] } \\
& \text { SYM2+1/ } 77113
\end{aligned}
$$

When no value is explicitly designated for a symbol definition, the current value of the location counter is used.

Now let us look more closely at the printout in symbolic instruction mode (Column A of Figure 2-1). Notice that we may specify the address at which to begin printing by using its symbolic form:

A		B	C
SYMBOLIC	NSTRUCTION	ADDRESS POINTER	OCTAL CONSTANT
SYM $+1 /$	JSB 1471，I	＜－15471，	＝115471
SYM＋27	JMP 1460	＜－25460	三25460
SYM $+3 /$	JMP SY＋35，I	＜－26666，I	三126666
SYM $+4 /$	JSB 1454，I	＜－15454，I	三115454
SYM＋5／	CLA，CLE，INA，SZA，RSS	＜－SYM＋7	三2507
SYM $+6 /$	CLE，SEZ，SSA	＜－2120	三2120
SYM＋7／	JMP 2716，	＜－26716，I	三126716
SYM $+10 /$	JSB 1453，I	＜－15453，I	三115453
SYM $+11 /$	CLA，CLE，SSA，SZA，RSS	＜－SY＋13	三2513
SYM $+12 /$	CLE，SEZ，SSA	＜－2120	三2120
SYM＋13／	JMP 2716，I	＜－26716，I	三126716
SYM $+14 /$	JSB 1762，I	＜－15762，	三115762
SYM＋15／	CLA，CLE，SSA，RSS	＜－SY＋21	三2521
SYM＋16／	2746	＜－SY＋115	三2746

Figure 2－1．Symbolic，Address Pointer，and Octal Constant

Notice that not only are the locations printed in symbolic form， but some addresses referenced by memory reference instructions also appear using the offset limits；i．e．， 10 for multicharacter symbols or no limit（but >0 ）for one or two character symbols．

Referring to the octal printout in Column C ，notice that the entire word is printed as an octal constant，even if that constant represents an address that can be represented symbolically，as at location SYM＋7．

In symbolic instruction mode，symbolic addresses appear only if that word is a one－word memory reference instruction．Address pointers will not be printed symbolically．They will appear either as octal constants，as locations SYM＋l6 or as meaningless instructions as at location SYM＋ll．

A glance at Column B in Figure $2-1$ immediately reveals that address pointer mode is the only mode that will print ly－bit addresses in symbolic form．Notice that the control＜－is used to momentarily invoke address pointer mode．To set the master printing mode to address pointer，use the control：
$\backslash A$ Sets the master printing mode to address pointer． Remember A means address．

The control $\backslash<-$ can be used to temporarily invoke address pointer mode until a carriage return is executed．

Deleting Symbols from the Symbol Table

Using the control $\backslash K$ will kill all symbol definitions that we have defined. Symbols defined by DBUGR remain. Remember K means kill.

CAUTION

Do not use the following to define address labels:

1. Instruction mnemonics; if a symbol is redefined, theoriginal value is lost.
2. The letters C and I; these are defined as 1000 and100000 octal, respectively.
3. Special Register Symbols.

Assigning a Symbol to an Address Just Printed

In addition to being able to define a symbol equal in value to a specific address or to the current value of the location counter, we can equate a symbol equal in value to an address just printed by DBUGR:
s\& Defines symbol s equal in value to the address of the last quantity typed, if an instruction. If not an instruction, the operation is undefined (error U).

For example:

1476/	JMP 305 XFER\&	[CR]	
$305 /$	SLA+17	[CR]	The symbol XFER is defined
XFER/	SLA+17	[LF]	
XFER+1/	SLA+20		

Print Momentarily in Master Mode

This section described how to print the last quantity typed in the master mode if you have just momentarily changed modes.
; Prints last quantity typed in master mode.

For example:

$$
\begin{aligned}
& \text { 1700/ HLT } 77=102077 \text {; HLT } 77 \text { [CR] } \\
& \text { 1777/ } 40502 \text { ' } \overline{\text { AB' }} ; 405 \overline{0} 2
\end{aligned}
$$

Chapter 3 Memory Examination and Modification

Examine Memory Only-Location Counter Does Not Change

We have already used two controls to examine memory locations:
n / To open and print the contents of location n.
LF To open and print the contents of the next sequential location.

Actually these controls do more than print the contents of the memory location; they "open" the location for possible modification. Before we explore that possibility, let us look at some other controls for examining memory:
/ Opens and prints the contents of the location pointed to by the last quantity typed. The quantity typed is used as a l5-bit address, regardless of the printing mode.

For example:
2007/ 20602 / 67 [LF] Opens and prints contents of 20602.
2010/30501 115723 Opens and prints contents of 30501.
Notice that DBUGR's location counter does not change. We can continue sequential examination of memory simply by using LF.

V/ Opens and prints the contents of the location pointed to by the last quantity typed. Unlike /, the last quantity typed is interpreted as a memory reference instruction and only the ll-bit address field is used as the effective address. The location counter does not change.
$\backslash L$ Prints the contents of the next 16 sequential locations; the last printed location is left open.
$n \backslash L$ Same as the $\backslash L$, the quantity n premanently replacing 16 as the number of locations listed.

For example:

$5010 /$	ELA $\quad \frac{5 \backslash L}{2}$
$5011 /$	ADA 2042
$5012 /$	CMA, INA
$5013 /$	SSA,RSS
$5014 /$	JMP 3066
$5015 /$	JSB 2076

Examine Memory and Set the Location Counter

The following two controls are similar to / and V, but notice that the location counter is set to the address of the memory location being examined.

CTRL-I (TAB) (compare with /)	Opens and prints the contents of the location pointed to by the last quantity typed. This quantity is used as a l5-bit address pointer. DBUGR's location counter is changed to contain this address. For example:
	$2312 /$ 2031 $\frac{\text { [CTRL-I] }}{2031 /}$ 126313 $26313 /$ 43734 [CTRL-I]\quadLocation counter change to 2031
\CTRL-I (\backslash TAB) (Compare with V/)	Same as CTRL-I except that the last quantity typed is interpreted as an instruction and only the ll-bit address field is used as the pointer.
	For example:
	$\frac{5002 /}{5007 /} \underset{\mathrm{SLB}+56}{\mathrm{JMP}} 5007 \geq$ [CTRL-I] \quadLocation counter changes to 5007

Change the Contents of Memory

To change the contents of a memory location, simply open that location, then type the quantity desired followed by one of the controls discussed below. The quantity you type is designated by n.

Memory Change Controls

$n C R \quad n$ is the quantity that we want stored in the open location. nLF The control that follows this quantity executes as n^{\wedge} previously described.

For example:

Note that an asterisk is used to imply an address equal in value to the current value of the location counter. A period can be used in place of an asterisk.

5012/	27006	6655	[LF]	Contents of 5012 changed to 6655.
$\begin{aligned} & 5013 / \\ & 5012 / \end{aligned}$	$\begin{aligned} & 2060 \\ & 6655 \end{aligned}$	-	[CR]	Verify by sequencing backward.
$5012 /$	6655	44444		Contents of 5012 changed to octal
$5011 /$	7777	[LF]		44444. Verify by sequencing
5012/	44444			forward.

IMPORTANT: The use of CR will close the currently open memoryregister!

For example:

Note that a period is used above to refer to an address equal in value to the current value of the location counter.

DBUGR provides a control for storing one or two ASCII characters in a word. It has the form s " where s is a symbol.

Type the ASCII input and the quote followed by any of the memory change controls discussed above:

$$
\frac{1700 /}{* / 40502} 20532 \text { AB' }^{\frac{A B}{\prime \prime}} \quad \text { [CR] }
$$

Only letters, digits, or the period, may be used; other characters, including blanks, are illegal. For these other characters, use the octal values given in Appendix E. If there
are two characters, combine the octal values of the last byte and the right byte into one number

For example:

$$
\begin{array}{lllll}
35012 / & 0 & \text { STA 1,I } & \text { [CR] } \\
36012 / & \text { STA } & 1, \mathrm{I} & &
\end{array}
$$

The next two controls allow us to store a new address in an open memory location and then open and examine the contents of the location pointed to by that address:
$n \%$ Stores the quantity n in the currently open memory location; then opens and prints the contents of the location pointed to by n. N is used as a l5-bit address pointer. The location counter does not change.

Notice that this control is similar to / with the added capability of changing the currently open memory location.

For example:
5011/ 7777 55\% 102055 [CR]
The contents of 5011 are changed to contain the quantity 55; then location 55 is opened and its contents are printed.
$n \backslash \%$ Same as $n \%$ except that n is interpreted as an instruction, and only the ll-bit address field is used as a pointer to the location to be opened and printed.

For example:
$4011 /$ ADB 215 ADB 312
% 4445 [CR]
$312 / 4445$ [CR]
4001/ ADB 312
The contents of 4001 are changed to point to location 312. Location 312 is then opened and its contents printed. It is then opened again for comparison. Notice that we reprint location 4001 to verify the change.

Memory/Location Counter Changes

The following controls allow us to store a new address in the currently opened location and then open, print and set the location counter to the address into which we have just stored.
nCTRL-I Stores n in the currently open register and then opens and prints the contents of the location pointed to by n. Remember that the quantity is interpreted as a l5-bit address. The location counter is set to this address.

For example:
36012/ ISZ 36772,I / ISZ $36773=3677336770$ [CNTL-I] 36770/ STB 37770,I $=177770$ [CR]
36772/ ISZ $36770=36770$
Location 36012 contains an indirect reference to location 36772 , which contains 36773. Before 36770 CTRL-I is typed location 36772 is the open location. Typing 36770 CTRL-I changes the contents of 36772 to the value 36770 and then opens and prints the contents of location 36770, with the location counter set to this address.
$n \backslash C T R L-I$ Same as nCTRL-I except that n is interpreted as an instruction.

For example:

$36012 /$	JMP 36077 JMP	$36200 \backslash[C T R L-I]$
$36200 /$	JMP 36477 [CR]	
$36012 /$	JMP 36200	

Location 36012 originally contains a JMP 36077. This is changed to a JMP 36200, and location 36200 is opened, printed the location counter is set to location 36200 .

This control is excellent for making in-core patches. For example, suppose it is necessary to insert instructions between locations 3737 and 3740:

3737/ ADA 200
3740/ SSA
The inserted code must be stored at locations remote from the in-line code, therefore, we must jump to the added instructions from location 3737 and return to location 3740 .

Memory Examination And Modification

Assuming that memory is available at location 3745 , we can use DBUGR as follows:

Note that the ADA 200 was moved to the beginning of the inserted code to make room for the JSB instruction.

Special Register Modification and Examination

To examine user or system maps, modify or examine $0-, \quad E-, X-$, Y-Registers, or examine the DMS status as of the last breakpoint, special modes are required.

Special Register Display

Two other symbols available to the user are:
WRTLU The EXEC control word of the device for DBUGR output (refer to the RTE-6/VM Programmer's Reference Manual regarding EXEC calls). This can be modified so that output will go to an $L U$ or spool device other than the user's terminal.

BRFLG 0 means check for break in program loops being debugged, and allow user to regain interactive control.
l means no check will be made for break (speeds up loop processing).

Memory Examination And Modification

MEM Status Special Mode

The following special mode displays the MEM status.
? displays the MEM status as of the last breakpoint in the following format:

$$
\mathrm{MS}=\mathrm{X} 15 \mathrm{Xl4} \mathrm{XI} 3 \mathrm{X12} \mathrm{X10} \mathrm{YYYY}
$$

where $\mathrm{Xl5}, \mathrm{Xl4}, \mathrm{X13}, \mathrm{Xl2}$,Xll and $\mathrm{XlO}=\mathrm{MEM}$ status register bits 15, 14, 13, 12, 11 , and 10 , respectively. YYYY is the four digit octal number representing the base page fence.

Map Examination Special Mode

The following special mode allows examination of the system and user maps and cross load.
$\backslash J$ puts $D B U G R$ into this special mode and responds with a CR LF and three spaces.

UM Displays the user map.
SM Displays the system map.
XL Sets up this special mode to cross load from an address in the alternate map.

PA Displays the port A maps.
PB Displays the port B maps.
A Aborts the special mode with no change.

UM:

$$
\begin{array}{rlrl}
0 & =\text { MR0 } & 20 & =\text { MR20 } \\
1 & =M R 1 & 21 & =M R 21 \\
2 & =M R 2 & 22 & =M R 22 \\
3 & =M R 3 & 23 & =M R 23 \\
4 & =M R 4 & 24 & =M R 24 \\
5 & =M R 5 & 25 & =M R 25 \\
6 & =M R 6 & 26 & =M R 26 \\
7 & =M R 7 & 27 & =M R 27 \\
10 & =M R 10 & 30 & =M R 30 \\
11 & =M R 11 & 31 & =M R 31 \\
12 & =M R 12 & 32 & =M R 32 \\
13 & =M R 13 & 33 & =M R 33 \\
14 & =M R 14 & 34 & =M R 34 \\
15 & =M R 15 & 35 & =M R 35 \\
16 & =M R 16 & 36 & =M R 36 \\
17 & =M R 17 & 37 & =M R 37
\end{array}
$$

The system map registers (MR) routine operates the same as the user map registers routine except "UM" is replaced by "SM".

The cross load routine begins by outputting a CR, LF and six spaces with XL followed by three more spaces. The operator then enters an address and a slash to display the contents of that address in the alternate map. DBUGR will return to allow additional cross loads.

For example:

XL

XL ADDRESS/ (contents from alternate map)
XL
An LF will also increment the address counter as in the case of examining memory locations in the user map.

Temporarily Change to the Print Mode

There are several controls that we can use in place of $n /$ and $n \backslash /$ (refer to paragraph 3-1). As with $\backslash!, \backslash=, \quad \backslash \prime$ and $\backslash<-$ they temporarily change the print mode until we execute a carriage return, thereby returning to master mode. However, unlike $\backslash!, \=$, $\backslash '$ and $\backslash<-$, they open and print the contents of a location.
$\mathrm{n} \$ \quad$ Same as $\mathrm{n} / \mathrm{except}$ sets temporary print mode to symbolic instruction.
n\# Same as $n /$ except sets temporary print mode to numeric constant.
n@ Same as $n /$ except sets temporary print mode to address pointer.
n) Same as $n /$ except sets temporary print mode to ASCII.
$\mathrm{n} \backslash \$$ Same as $\mathrm{n} \backslash /$ except sets temporary print mode to symbolic instruction.
$\mathrm{n} \backslash \#$ Same as $n \backslash /$ except sets temporary print mode to numeric constant.
$n \backslash @$ Same as $n \backslash /$ except sets temporary print mode to address pointer.

These controls can be used without a preceding address expression (n), in which case they can be used in place of / and $/ /$. However, the mode change will be momentary only. Below are given two examples.

Memory Examination And Modification

Example \#l:

Example \#2:

$\backslash 5$				Begin in symbolic mode
$4012 /$	LDB	1717	[LF]	
4013/	ADB	5273	[LF]	
4014/	CLA		[LF]	
4015/	STA	1, I	[LF]	
4016/	LDA	4103	[LF]	
5000\#	2003	172053	[LF]	Change to constant temporary mode
5001/	12677		[LF]	
5002/	73240		[LF]	
5003/	12306		[LF]	
5004/	73242		[LF]	
$\begin{aligned} & 5005 / \\ & {[\mathrm{LF}]} \end{aligned}$	2400		[CR]	Return to master mode
5006/	STA	1, I	[LF]	
5007/	LDA	5240	[LF]	

Chapter 4 Load, Punch, and Verify Paper Tape

Program Load

Y means yank, for loading absolute relocatable records:
$\backslash Y$ Loads absolute relocatable records from LU 5. Enable LU 5 before typing \Y. Loading will terminate at end of file, or upon any attempt to load beyond the upper address limit of the program. DBUGR will report an error for any attempt to load over itself.

Dumping Tables and Patches

Using DBUGR in symbolic instruction mode:
$\frac{2050 /}{2051 /} \mathrm{RBR} \quad \frac{\mathrm{RAR}}{\mathrm{SSB}} \xrightarrow{\text { SSA }}$ [LF]

One record is created for each word changed.

Tape Verification

To verify a file, we use the following control:
\V Verifies LU 5 against memory. Remember V means verify. Enable LU 5 prior to typing $\backslash V$. Mismatches are listed as follows:

Address/ [contents of memory] [contents of tape]
If the word on tape is zero, no mismatch is listed. Verification will finish at end of file or upon any attempt to verify beyond the upper address limit of the program. DBUGR will report mismatches within itself.

Chapter 5
 Memory Search and Clear

Memory Search

Abstract

We can search memory within an address range for words that are either equal or not equal under a logical mask to a value.

Actually, memory is searched for a quantity that is equal or not equal to a value formed by taking the logical product (AND) of the mask and each memory location examined. This allows us to search for only a set of bits within each word.

The Search Mask

The mask is stored at a location referenced by the symbol "MASK". Initially it is set to 177777. Now let us open and print location MASK:

MASK/ 177777 We can now change the mask.

Logical Product Reviewed

If we take the logical product between a mask and another word, we end up with a result that saves the original value (either or l) of all bits in the word masked by l's and clears or extracts all bits in the word masked by 0's. Suppose we wish to search on the lower eight bits in a word:

$$
\begin{align*}
& \text { Mask }=000377=0000000011111111 \\
& \text { Word }=073123^{8}=0111011001010011_{2}^{2} \\
& 8 \tag{2}
\end{align*}
$$

Memory Search and Clear

The result of the operation is to clear out all bits in which we are not interested and to save only the lower eight bits for comparison against some 8-bit value.

Address Range

The following controls establish the range of addresses applied to a search:
nl Sets the lower limit to nl.
n2 Sets the upper limit to n2.
The limiting addresses are included in the search.

Equality Search

$n \backslash W$ Searches within the address range for all words equal under the mask to n. Remember, W means word.

Example \#l: Search within locations 2000 and 3000 inclusive for all halt instructions (1020xx).

MASK/ 177777 [LF] Change mask to ignore
2000<3000>102000\W
2234/ 102002
2337/ 102002
2361/ 102011
2572/ 102002
2641/ 102002
2710/ 102002
2743/ 102002
2756/ 102002

Example	\#2:	Search inclusive program.	within for	$\begin{aligned} & \text { locations } \\ & 11 \text { halt } 51 \end{aligned}$	36012 and instructions	$\begin{array}{r} 36041 \\ \text { in the } \end{array}$
MASK/	177					
$\begin{aligned} & 36012<3 \\ & 36027 / \end{aligned}$	1021	$\begin{aligned} & 102051 \backslash W \\ & 51 \end{aligned}$				

Inequality Search

The listing shows that locations 2300 through 2310 contain zero.

Clear or Set Memory

Abstract

$n \backslash \backslash Z$ Zero, or set memory within the limits specified to n. Remember, Z means zero.

Example \#l: Set memory locations 2300 to 2310 inclusive to 177777 (octal); then print these locations to verify the operation. $2300<2310>177777 \backslash \mathrm{Z} \quad[\mathrm{CR}]$ 2270<2310>177777 W 2300/ 177777 2301/ 177777 2302/ 177777 2303/ 177777 2304/ 177777 2305/ 177777 2306/ 177777 2307/ 177777 2310/ 177777 Example \#2: Zero locations 2300 to 2310 inclusive. $\underline{2300<2310>0 \backslash \backslash Z}$

Effective Address Search

The effective address is the location an instruction must reference to acquire or store data. Many times in HP1000 programming addresses are referenced indirectly:

LDA 1772,I
The above instruction must further reference location 1772 to obtain an effective address from which to load the A-register. If the contents of $1772=02340$, the LDA instruction would acquire data from location 02340 .
$\mathrm{n} \backslash \mathrm{E}$ Finds all instructions within the limits specified that effectively address location n. Indirect chains are followed to a depth of 16 . Normally the mask is set to all l's, but if not, n is treated as specifying a range of addresses, and all instructions effectively referencing addresses within that range are printed. Remember, E means effective address.

Memory Search and Clear

Chapter 6 Breakpoint/Trace Debugging

Introduction

Abstract

Breakpoint trace debugging is simply a matter of forcing the computer to halt at a particular point in its program execution so we can look at what is happening. We can examine operational registers, dump memory and make memory patches. Of course, we must have a means of resuming execution after a breakpoint and the ability to control the number of times we actually break within a programmed loop.

Combining memory examination and change controls, search and print controls, and binary patching with the breakpoint trace capability makes DBUGR the powerful tool that it is.

To aid in the tracing operations of a program, a breakpoint may be set at most instructions. When control reaches that instruction, it is not immediately executed; DBUGR gains control and prints out the following:

ADDRESS (INSTRUCTION) A B EO STATUS

1. Program location counter (P-Register) (in address mode).
2. The "broken" instruction (in instruction mode).
 mode may be changed - refer to Chapter 3).
3. As one word the extend and overflow registers (in constant mode - refer to Chapter 3).

Non-segmented breakpoints are set using the following format:
$\mathrm{n} \backslash \mathrm{B} \quad$ Where n is the address where the breakpoint is to be set.
Segment breakpoints exist for segmented programs (type 5 EXECcalls and MLS segments) with DBUGR appended to them by theRTE-6/VM loaders. Breakpoints may be set in four different modes(the brackets [] are separators).

1. $[" A] \backslash B \quad$ Break at entry to ALL segments/paths.
2. ["N] $\mathrm{B} \quad$ Break at entry to NO segments/paths.
3. [xxxxx] $\backslash B$ Break at entry to a specific segment/path (xxxxx).
4. $n[x x x x x] \backslash B$ Break at a defined address (n) within a specifiedsegment/path (xxxxx).
A breakpoint will be set when the specified segment/path is loaded during execution. Thereafter, breakpoints remain in effect until a new segment/path is loaded during execution. At that time breakpoints associated with the newly loaded segment/path will be set. At such time as the previous segment/path is re-executed, the breakpoints associated with that segment/path will be set, and the breakpoints associated with its predecessor will become dormant.

Setting a Breakpoint (MLLDR)

Breakpoints in MLS programs are associated with nodes and not segments. Nodes are associated with paths of the node tree. An address breakpoint is defined using both the logical address and the node's path number. A path switch breakpoint is defined in terms of the node's path number.

The path number of a node is the ordinal node number of its subtree's leftmost leaf node. Nodes are numbered in preorder. The ordinal number of the root node is zero. For example:

Therefore, to set a breakpoint in node 8 at logical address 50123 the user would give the command:

50123 [9] $\backslash B$

How a Switch Enables New Breakpoints

Assume path 2 is the current path and breakpoints have been defined at 50123[9] and 502037[10] where node 8 has a logical address range of 50000 B to 60000 B . The first time node 8 is referenced (through path 9) the breakpoint 50123[9] will be enabled and the breakpoint 50237[10] will not be enabled. This is because the breakpoint at 50123 is associated with path 9, the other breakpoint associated with path 10 is not yet switched in, and node 8 lies in path 9 only at this time.

How a Breakpoint Can Persist Through Path Switches

When node 10 is referenced the breakpoint 50237[10] will be enabled in node 8. Moreover, the breakpoint 50123[9] in node 8 will still be enabled and will persist.

When two paths flow through a common node, breakpoints for the common node are added to the breakpoints table as each path is enabled, and stay as long as a path exists with the common node. Only after a path switch occurs (like to path 3) and node 8 is switched out will the breakpoints become disabled. Thus, breakpoints become enabled when their associated path is switched in, and persist until the node they reside in is switched out.

A segment/path entry breakpoint displayed just after segment/path access would look like:

| PATH | XXXXX | SWITCH | | (if MLLDR) | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| SEGMENT | XXXXX | BREAK | | (if LOADR) | | |
| ADDRESS (INSTRUCTION) | A | B | X \quad Y | EO STATUS | | |

When a segment entry breakpoint is defined, DBUGR makes no check for the validity of the segment name. Therefore, segment names should not begin with ("A) or ("N).

Conditional Breakpoint

A conditional breakpoint can be set that will only break when a particular memory location is equal (or not equal) to a particular value after being masked. Location CBVAL, CBMASK, CBADDR, and CBTEST are used to set up the conditions required for the breakpoint to occur. The conditions are set up as follows:

CBVAL Compare Value
CBMASK Mask Value
CBADDR Memory Address to be tested (A-Register=0, B-Register=1)
CBTEST Condition required for break. For equality enter "SZA" or 2002; for inequality enter "SZA, RSS" or 2003. Note that the comparison is logical and not arithmetical.

The conditional breakpoint may be invoked only upon an existing breakpoint. Moreover, the program must be proceeding from that breakpoint. The conditional test will be applied only at that particular breakpoint.

The conditional breakpoint is invoked by the double escape P command ($\ \backslash P$). Each time the breakpoint is encountered, the contents of the address specified by CBADDR will be XOR'ed with the contents of CBVAL. The result will be AND'ed with CBMASK and this final result will be tested with the instruction in CBTEST (SZA or SZA,RSS). The equation for this test appears in the " $\backslash \mathrm{M}^{\prime \prime}$ display:

$$
\left(\text { CBVAL-CBADDR,I) }{ }^{\text {^CBMASK }}=\right.\text { CBTEST }
$$

[^0]In order to delete a breakpoint from the breakpoint table, give the \B command. Then the breakpoint table will be listed:

0		M+347
1	SEG1	77777, breakpoint in main memory
2 SEG2	BETA	segment entry breakpoint
3 SEG3	PHIT5	breakpoint in SEGl
ENTER INDEX OF BP TO DELETE, A to END 2		
ENTER INDEX OF BP TO DELETE, A to END $\frac{1}{A}$ [CR]		

Breakpoint 1 , the segment entry breakpoint for SEGl, was deleted.

A faster command for deleting breakpoints is $\backslash \backslash B$ which deletes all breakpoints at once.

If an attempt is made to enter more breakpoints than the capacity of the breakpoint table, an error message will be displayed.

NO MORE ROOM FOR BREAKPOINTS
The user should either delete some breakpoints or create a larger breakpoint table module to be loaded with the DBUGR in the future.

Restrictions

We are, however, restricted in the instructions at which a breakpoint can be set. This is because DBUGR gains control at the breakpoint by replacing the programmed instruction with a jump to DBUGR itself. After the break has been accomplished, the instruction is either executed from its temporary location within DBUGR or execution resumes at another address specified by the user via \G.
DO NOT set breaks at the following:

1. Instruction used as data.
2. Instruction that is used as an address pointer in an indirect chain of an instruction.
3. Instruction that is program modified (e.g., a configured I/O instruction).
4. EIG or DMS instructions listed in Figure 6-l.

CAUTION
In DBUGR, an attempt to JSB to a point below the MP fence (except in an EXEC call) as the result of a trace or proceed command causes DBUGR to reject the command and to print the break message for the violating instruction followed by "MP?". You can get around this problem if the offending instruction is no longer a breakpoint. The solution then is to move the breakpoint to a point after the system call and then proceed.

Figure 6-1. Untraceable Instructions

Controls

Breakpoint controls in DBUGR are:

$n \backslash B$	Set a breakpoint at n. Remember, B means breakpoint.
$\backslash B$	List breakpoint table and enter remove breakpoint mode.
$\backslash \backslash B$	Remove all breakpoints.
["A] ${ }^{\text {c }}$ B	Break at entry to ALL segments or path switches.
$[" N] \backslash B$	Break at entry of NO segments or paths (remove breakpoint).
[SEGl] ${ }^{\text {P }}$	Break at entry to a segment named SEGl (LOADR)
[VALUE] ${ }^{\text {a }}$	Break on switch to path <value> (VALUE is decimal) (MLLDR).
$\mathrm{n}[\mathrm{SEGG1}] \backslash \mathrm{B}$	Break at n within a segment named SEGl (LOADR).
n [VALUE] $\backslash \mathrm{B}$	Break at n octal path \# <VALUE> (MLLDR).
$\backslash \mathrm{P}$	Proceed with program execution after a break. Remember, P means proceed.
P	Proceed with conditional breakpoint invoked.
$\mathrm{n} \backslash \mathrm{P}$	Proceed; do not trap until n breaks from now. All breakpoints encountered contribute to the count.
$n \backslash \backslash P$	Proceed with conditional breakpoint invoked. Do not trap until n breaks from now. Breakpoints encountered other than the particular conditional breakpoint may contribute towards this count.
$\backslash 0$	Change break point and trace register print mode to the current master print mode.
$n \backslash G$	Go to location n; begin execution with flags and accumulators as they were at break. Remember, G means go.

n \X	Execute the instruction n, then return control to DBUGR. If the instruction is a jump, DBUGR loses control. DBUGR prints a carriage return/line-feed before and after executing the instruction. If the instruction performs a skip, DBUGR prints an additional carriage return/line-feed. Remember, X means execute.
$\backslash \mathrm{T}$	Trace one line of code. DBUGR simulates (executed by software instead of hardware) the instruction printed in the last break message and then prints a new break message with the new location, instruction and registers. Two-word instructions also print the address used by the instruction. Tracing data may be unpredictable.
$\mathrm{n} \backslash \mathrm{T}$	Trace n instructions. Causes n break messages to be printed.
$\backslash \backslash T$	Trace through a subroutine call. Unlike a \T trace of a JSB, a one-shot breakpoint is placed at "..+1". Control passes to the subroutine and is regained upon return with a break. The one-time breakpoint is thus removed. This command should not be used when the JSB is followed by an argument list. Also, it should not be used when the called subroutine may return to somewhere other than "..tl".

Example \#l: Break at location 77710.

$77710 \backslash \mathrm{~B}$					Set breakpoint at 77710 .
77700\G					Begin execution at 77700
77710 (CLA)	173775	13	14	0	DBUGR prints this.
EOREG/	0				Examine EOREG for flags.

Example \#2: Breakpoint within a loop.

LOOP $+15 \backslash \mathrm{~B}$							Set breakpoint at LOOP +15.
LOOP\G							Begin execution at LOOP.
LOOP+15	(CLE)	4324	17	0	41	3	DBUGR prints this.
EOREG/	3	3					Examine EOREG for flags.
$10 \backslash \mathrm{P}$							Proceed
$\overline{\text { LOOP }}+15$	(CLE)	5721	5	2	24	3	DBUGR prints this
$\backslash \mathrm{P}$							Continue execution.

Breakpoint/trace Debugging

Breakpoint/trace Debugging

Example \#4:

The ten breakpoints available in DBUGR reside in a relocatable module named \%SGBPT (for LOADR) or \%MLBPT (for MLLDR). If the user desires to change the number of available breakpoints, the user may write his own SGBPT/MLBPT module and load the new code in place of the system library routine SGBPT/MLBPT. This can be done by using the loader LI, \%SGBPT or LI, \%MLBPT command to search the user's \%$\%$ GGBPT or \%MLBPT file before the system library is searched.

The routine for osGBPT looks like:

ASMB, R, Q			
	NAM	SGBPT, 7	
	ENT	SGBPT, SGBPE	
SGBPT	DEF	*+1	start of table points
	REP	10	determines number of breakpoints
SGBPE	OCT	0,0,0,0,0	
	DEF		end of table pointer
	END		

DEF * end of table pointer

The routine for $\%$ MLBPT looks like:
ASMB, R, Q
NAM MLBPT,7
ENT MLBPT,MLBPE
MLBPT DEF *+1 start of table points
REP 10 determines number of breakpoints (10)
OCT $0,0,0,0,0$ end of table pointer
END

Magic Symbols

DBUGR has two magic symbols, dot (.) and double dot (..). A magic symbol is one of DBUGR's working registers (variables) that is also in its symbol table. We already know about "." which is DBUGR's location counter. Normally "." is set to some value with one of the many commands that open a register, but it also may be set this way:

$$
\frac{201<\cdot:}{\frac{0=201}{202 /} \text { CLA }} \text { [LF] verify "." was set }
$$

".." is defined, whenever DBUGR is entered or processing a break point message, to be the next instruction's address. Thus if we have just broken:

3011 (CLA) $10 \quad 4010 \quad 12 \quad 77 \quad 2 \quad \ldots=3011$
".." is set each trace and/or break. This provides a convenient way of opening the broken location but is even more powerful when we use it to move the trace location. Thus:

3011 (CLA) $10 \quad 4010 \quad 12 \quad 77 \quad 2$ [CR]
..-1/ STA 3040 JMP 3022 [CR] patch previous instruction

Appendix A
 More About Operators

Abstract

Now that we have used most of the controls in DBUGR let's take a closer look at the use of operators (refer to Chapter l.) within address expressions.

Plus, Blank and Minus

The minus sign (-) performs subtraction. The operators plus (+) or blank are used to perform addition. Suppose we wish to change the jump at location 2513:

2513/ JMP	2522	JMP 2522+3	Type jump address as a relative address and verify by reexamining	
$\underline{\text {. } / ~}$	JMP	2525		

Or, let's print the contents of SYM+5, a symbol we have defined as being equal to 2500:

SYM $+5 /$ INA Type the symbolic address and verify by printing the contents of the same address expressed in in octal.
2505/ INA

Inclusive OR

Now we use the operator comma (,) to inclusive OR a CLA with an INA, thereby creating the combined register operation CLA, INA:
62572/ CLA CLA,INA [CR] Change register 62572. - 2404 Verify new contents in octal.
or in octal:

$$
\begin{array}{lll}
\frac{\backslash C}{62572 /} & 2400 \quad \underline{002400,002004}
\end{array}
$$

The Mark \Q

Note that in the previous example we had to retype the CLA to use it in the inclusive OR expression. This is not really a lot of trouble, but we do have a mark that, when in an expression, implies the last quantity typed. Thus,

```
62572/ CLA CLA,INA Can also be accomplished by the
```

62572/ CLA $\frac{\text { CQ,INA }}{.1} \quad$ CLA, INA $\quad \equiv 2404$

The mark $\backslash Q$ implies the last quantity typed, in this instance CLA. Remember that Q means last quantity typed.

For example:

$$
\underline{2050 / 2004} \underline{\underline{Q}+\backslash Q} \equiv 4010 \quad \underline{Q+100000} \equiv 104010
$$

Using DBUGR to do Simple Arithmetic

We can use DBUGR to evaluate simple expressions, and to convert decimal or octal numbers to other radices. The following sections illustrate this capability.

Octal Addition and Subtraction

[CR]
$234+766=1222$
5444-45=5377
$4564+567-34+125=5444$

Other Conversions

$2 . \backslash R$	Change to binary output
$23=1001$	Convert octal to binary
$\frac{16 \backslash R}{}$	Change to hexadecimal output
$14=C$	Convert octal to hexadecimal
$78 .=4 \mathrm{E}$	Convert decimal to hexadecimal

Decimal Addition and Subtraction

```
10.\R
45.+56.=101.
578.+9788.=10366.
400.-45.-26.-78.=251.
```


Octal to Decimal Conversion

```
10.\R
245=165.
256+77+654-147=562.
```

Decimal to Octal Conversion
$\frac{8 . \backslash \mathrm{R}}{89 .=131}$

$7859 .=17263$
$78 .+59 .=211$
$998 .-997 .=1$

Appendix B Error Messages

DBUGR will recognize various types of errors. The messages and their meanings are as follows:
$X \quad$ You pressed the RUB OUT key to delete a typing mistake. DBUGR will ignore any prior partial expression.
? You used an unassigned control (including backspace). Any prior expression is ignored. Input Error in special mode.
$U \quad$ The symbol last used was undefined and a definition was required. The entire preceding expression is ignored.

P? Page error: You caused a memory reference instruction to reference an address not in the current page or the base page. The expression is ignored. DBUGR's conception of the "current page" can be changed by examining any location in the desired page.

CHK A checksum error has occurred while reading from LU 5.
MP? DBUGR detected a possibly legal instruction that it cannot trace (or proceed with the break point at) without violating memory protect. Move the break point and proceed.

IN? An instruction that is legal in the $2 l X X$ base set but not executable by DBUGR was detected and DBUGR cannot trace (or proceed with the breakpoint at). Move the breakpoint and proceed. User attempted to set a breakpoint on an instruction DBUGR cannot proceed from. Execution of an instruction using the (instruction) Ex feature of DBUGR was attempted using a two or more word instruction (not supported - only one word instructions can be executed using this feature).

TP? An attempt to trace, set breakpoint, or paper tape load into DBUGR. Loading, tracing, or setting of breakpoint is terminated.

0? Symbol table overflow.
DM? An attempt to access memory that is beyond the program.

Appendix C DBUGR at a Glance

Table C-1. Quick Reference To Frequently Used Commands

Mode Control

DBUGR has several basic printing modes:

* As symbolic instructions. This is the mode DBUGR is in when loaded. Controls are:
$\backslash S \quad$ Set the master printing mode to symbolic instruction.
! Print the last quantity typed as an instruction.
\! Set temporary printing mode to instruction, and print the last quantity typed as an instruction.
* As address pointer.
$\backslash A \quad$ Set the master printing mode to address. If only initial symbols are defined, this is equivalent to constant.
<- Print the last quantity typed as an address pointer.
\<- Set temporary printing mode to address, and print last quantity typed as an address.
* As constants, in a specified radix.
$\backslash C$ Set the master printing mode to constants, in the current radix.
$=\quad$ Print the last quantity typed as a constant.
$\backslash=$ Set the temporary printing mode to constant, and print the last quantity typed as a constant.
$n \backslash R$ Set the output radix to n.

DBUGR at a Glance

* As ASCII characters in halfwords.
$\backslash H$ Set the master printing mode to ASCII characters in half-words.

1 Print the last quantity typed as two ASCII characters. Then print ".
\' Set the temporary printing mode to ASCII, and print the last quantity typed as ASCII.
s" The symbol s, of one or two characters right-adjusted, is taken as a term on input.

* To print a quantity in the current master print mode:
; Print last quantity typed in current mode.
* To change the breakpoint register print mode to current master print mode:
$\backslash 0$
* To operate in character or block mode (multipoint terminals). Refer to Appendix D.

U Switch from character to block mode or vice versa.
* To change a print mode temporarily:
\$ Same as bar (/), but set temporary print mode to symbolic instruction. Temporary mode is in effect over a series of examinations, until carriage return is typed by you, then the master mode becomes in effect again.
$\backslash \$$ Same as escape bar, but set temporary print mode to symbolic instruction.
@ Same as bar, but set temporary print mode to address pointer.
\@ Same as escape bar, but set temporary print mode to address pointer.
\# Same as bar, but set temporary print mode to constant.

\# Same as escape bar, but set temporary print mode to constant.
) Same as bar, but set temporary print mode to ASCII.

) Same as escape bar, but set temporary print mode to ASCII.

Symbol Manipulation

s: Define the symbol s as having value specified by the location counter.
s\& Define symbol s as having value equal to the address of the last quantity typed, if an instruction.
$\backslash K$ Kill all symbol definitions other than the initial symbol table.

Location Examination

$n /$ Print the contents of location n, in the current master print mode, and open the location for possible modification. The location counter is set to n.
/ Open and print the contents of the location pointed to by the last quantity typed, taken as a direct 15-bit address. The location counter is not changed.

V/ Open and print the contents of the location pointed to by the last quantity typed, taken as a memory reference address instruction. The location counter is not changed.
\L Open and print the contents of the next 16 sequential locations starting with the current location. The location counter is advanced by 16.
$\mathrm{n} \backslash \mathrm{L}$ Same as $\backslash \mathrm{L}$, except list n lines.
[CR] Close any open location. No change is made.
$\mathrm{n}[\mathrm{CR}]$ Store the quantity n in the open location, if any, and close the location.
[LF] Open and print the contents of the next sequential location as determined by the location counter. The location counter is advanced by one.
$n[L F]$ Store the quantity n in the open location, if any; then open and print the contents of the next sequential location. The location counter is advanced by one.

- Open and print the contents of the previous sequential register. The location counter is decremented by one.
n^{\wedge} Store the quantity n in the open location, if any; then open and print the contents of the previous sequential location. The location counter is decremented by one.

CTRL-I Open, set the location counter to, and print the contents
(TAB) of the location pointed to by the quantity typed, taken as an address pointer.
nCTRL-I Store the quantity n in the open location, if any. Then
($n T A B$) open, set the loction counter to, and print the contents of the location pointed to by n, taken as an address.

$\backslash T A B$ Open, set the location counter to, and print the contents of the location pointed to by the last quantity typed, taken as an instruction.
 $n \backslash T A B$ Store the quantity n in the open location, if any. Then open, set the location counter to, and print the contents of the location pointed by n, taken as an instruction.
 n\% Store the quantity n in the open location, if any. Then open and print the contents of the location pointed to by n, taken as an address. The location counter is not changed.
 $\mathrm{n} \backslash \frac{\%}{\%}$ Store the quantity n in the open location, if any. Then open and print the contents of the location pointed to by n , taken as an instruction. The location counter is not changed.

Program Load and Verify

\Y Load absolute record from LU 5.
\V Verify cassette tape against memory (LU 5).

Dumping

$n \backslash D \quad$ Store n into the open location, if any. Then dump the last register (with the new contents n, if stored) to LU 4.
$\mathrm{nl}\langle\mathrm{n} 2\rangle \backslash \mathrm{D}$ Dump locations nl to n 2 , inclusive.

Memory Search and Clear

$\mathrm{n}<$	Set the lower limit for search or
$n>$	Set the upper limit for search or clear to n .
$\mathrm{n} 1<\mathrm{n} 2>\mathrm{n} 3 \backslash \mathrm{~W}$	Search between the limits $n l$ and $n 2$ for all words equal under mask to n3.
$\mathrm{n} 1<\mathrm{n} 2>\mathrm{n} 3 \backslash \mathrm{~N}$	Search between the limits $n 1$ and $n 2$ for all words not equal under mask to n3.
$\mathrm{n} 1<\mathrm{n} 2>\mathrm{n} 3 \backslash \mathrm{E}$	Effective address search: find all instructions between the limits $n 1$ and $n 2$ which, under mask, effectively address location n3.
$\mathrm{n} 1<\mathrm{n} 2>\mathrm{n} 3 \backslash \backslash$	Zero, or clear core between the limits $n 1$ and $n 2$, to n3. If n3 is omitted, it is taken as zero.
MASK	Examine/modify search mask.

Breakpoints and Program Control

$n \backslash B$	Set a breakpoint at n. If n is in space, use last segment/path loaded as the segment name/path. Error if no segment lo	segment/path associated oaded yet.
\B	List breakpoint table and enter remove mode.	breakpoint
$\backslash \backslash B$	Remove all breakpoints	
n [NAME] $\backslash \mathrm{B}$	Set a breakpoint in segment NAME at (LOADR).	location n
n [VALUE] ${ }^{\text {d }}$ B	Set a breakpoint in path <VALUE> at (MLLDR) .	location n
[NAME] \backslash B	Break at entry to Segment NAME (LOADR).	
[VALUE] ${ }^{\text {a }}$	Break at entry to path <value> (MLLDR).	
["A] ${ }^{\text {B }}$	Break at entry to ALL Segments/Paths.	

["N]\B Break at entry to NO Segments/paths except for those specified.
$\backslash P \quad$ Proceed with program execution after a break trap.
$\backslash \backslash P \quad$ Proceed with conditional breakpoint invoked.
$\mathrm{n} \backslash \mathrm{P} \quad$ Proceed; do not trap until n breakpoints from now.
$\mathrm{n} \backslash \backslash \mathrm{P} \quad$ Proceed; do not trap until n breakpoints, including conditional breakpoints.
$n \backslash G \quad$ Go to location n; begin execution with flags and accumulators as saved.
$n \backslash X \quad$ Execute the instruction n, then return control to DBUGR.
$\backslash T \quad$ Trace one instruction.
$\mathrm{n} \backslash \mathrm{T} \quad$ Trace n instructions.

T Trace an entire subroutine call with no argument list or alternate returns.

Trace/Breakpoint simulation:
DBUGR simulates instructions when it:
a) Proceeds from the current breakpoint location
b) Traces
c) Executes an instruction

DBUGR will correctly simulate all instructions including EXEC calls in its symbol table when tracing, with the exceptions noted in Figure 6-1. A breakpoint may not be set on any of these instructions.

A method to get around instruction exceptions is to set up a subroutine containing the desired instruction(s) and execute a JSB <subroutine>\X. DBUGR will give up control to the subroutine and execute it, regaining control on the return.

Special Registers

Map Registers

```
\J: SM Examine system maps.
    UM Examine user maps.
    PA Examine port A maps.
    PB Examine port B maps.
    XL Cross load A- or B-Registers.
\? Display MEM status register.
```


Appendix D Block Mode Operation of DBUGR

DBUGR can be operated in block mode．Multipoint（DVR07）terminals run in block mode only．

Escape，return and line feed cannot be used in block mode．
The following are the differences between character and block mode．

```
CHAR MODE BLOCK MODE
```

```
<escape> \
```

<escape> \
<cr>]
<cr>]
<lf> <enter for multipoint>
<lf> <enter for multipoint>
<return for non-multipoint>

```
    <return for non-multipoint>
```

In order to invoke block mode operation on a non－multipoint terminal enter the following command：

U
When in block mode this command will set DBUGR back to character mode for non－multipoint terminals．

Since DBUGR does not receive any character until the enter or return is entered，a series of commands may be entered on one line．

For example：
$\frac{200 / 201 / 202 / \text {＜enter }}{\text { JSB 4，I } 203} 245$
$\frac{200 / \text {＜enter }}{\text { JSB } 4, I}$
201／ 203 〈enter〉
202／245 ］＜enter〉

Appendix E HP Character Set

${ }^{6} 7 \frac{}{b_{6} \frac{b_{5}}{}}$					${ }_{0} 0_{0}$	${ }^{0} 0_{1}$	0_{1}	$\mathrm{o}_{1_{1}}$	${ }^{1} 0_{0}$	${ }^{1} 0_{1}$	${ }^{1}{ }_{0}$	${ }^{1} 1_{1}$
$\begin{array}{\|c\|} \hline \text { BITS } \\ b_{4} b_{3} b_{2} b_{1} \\ \hline \end{array}$					0	1	2	3	4	5	6	7
0	0	0	0	0	NUL	DLE	SP	0	@	P		p
0	0	0	1	1	SOH	DC1	$!$	1	A	Q	a	q
0	0	1	0	2	STX	DC2	"	2	B	R	b	r
0	0	1	1	3	ETX	DC3	\#	3	C	S	c	s
0	1	0	0	4	EOT	DC4	\$	4	D	T	d	t
0	1	0	1	5	ENQ	NAK	\%	5	E	U	e	u
0	1	1	0	6	ACK	SYN	\&	6	F		f	\checkmark
0	1	1	1	7	BEL	ETB	,	7		w	g	w
1	0	0	0	8	BS	CAN	1	8			h	\times
1	0	0	1	9	HT	EM	1	9		Y		y
1	0	1	0	10	LF	SUB	*	:	J	Z	i	z
1	0	1	1	11	VT	ESC	+	;	K	1	k	\{
1	1	0	0	12	FF	FS	,	$<$	L	1	1	
1	1	0	1	13	CR	GS	-	$=$	M	1	m	\}
1	1	1	0	14	So	RS	.	$>$	N	\wedge	n	\sim
1	1	1	1	15	St	us	1	$?$	0	-	o	DEL
					32 CONTROL CODES							

EXAMPLE: The representation for the character " K " (column 4, row 11) is.

$$
\begin{array}{llllllll}
& b_{7} & b_{6} & b_{5} & b_{4} & b_{3} & b_{2} & b_{1} \\
\text { BINARY } & 1 & \underbrace{0}_{1} 0 & 0 & 1
\end{array} \underbrace{0}_{3} 1 \begin{array}{lll}
0 & 1
\end{array}
$$

[^1]HEWLETT-PACKARD CHARACTER SET FOR COMPUTER SYSTEMS
This table shows HP's implementation of ANS X3.4-1968 (USASCII) and ANS X3.32-1973. Some devices may substitute alternate characters from those shown in this chart (for example, Line Drawing Set or Scandanavian font). Consult the manual for your device. The left and right byte columns show the octal patterns in a 16 bit word when the character occupies bits 8 to 14 (left byte) or 0 to 6 (right
byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For example, "AB" byte) and the rest of the bits are zero. To find the pattern of two characters in the same word, add the two values. For example, "AB"
produces the octal pattern 040502. (The parity bits are zero in this chart.)
The octal values 0 through 37 and 177 are control codes. The octal values 40 through 176 are character codes.

Decimal Value	Octal Values		Mnemonic	Graphic ${ }^{1}$	Meaning	Decimal Value	Octal Values		Character	Meaning
	Left Byte	Right Byte					Left Byte	Right Byte		
0	000000	000000	NUL	N	Null	32	020000	000040		Space, Blank
1	000400	000001	SOH	5	Start of Heading	33	020400	000041	!	Exclamation Point
2	001000	000002	STX	5	Start of Text	34	021000	000042	"	Quotation Mark
3	001400	000003	EXT	${ }_{5}$	End of. Text	35	021400	000043	\#	Number Sign, Pound Sign
4	002000	000004	EOT	ε_{T}	End of Transmission	36	022000	000044	\$	Dollar Sign
5	002400	000005	ENQ	ε_{0}	Enquiry	37	022400	000045	\%	Percent
6	003000	000006	ACK	${ }_{k}$	Acknowledge	38	023000	000046	\&	Ampersand, And Sign
7	003400	000007	BEL		Bell, Attention Signal	39	023400	000047	,	Apostrophe, Acute Accent
8	004000	000010	BS	85	Backspace	40	024000	000050	(Left (opening) Parenthesis
9	004400	000011	HT	${ }^{4}$	Horizontal Tabulation	41	024400	000051)	Right (closing) Parenthesis
10	005000	000012	LF	L_{F}	Line Feed	42	025000	000052	*	Asterisk, Star
11	005400	000013	VT	${ }_{T}$	Vertical Tabulation	43	025400	000053	+	Plus
12	006000	000014	FF	F_{F}	Form Feed	44	026000	000054	,	Comma, Cedilla
13	006400	000015	CR	c_{R}	Carriage Return	45	026400	000055	-	Hyphen, Minus, Dash
14	007000	000016	so	5	Shift Out ${ }^{\text {a }}$	46	027000	000056	-	Period, Decimal Point
15	007400	000017	SI	5	Shift In \int Set	47	027400	000057	1	Slash, Slant
16	010000	000020	DLE	q	Data Link Escape	48	030000	000060	0)
17	010400	000021	DC1	D_{1}	Device Control 1 (X-ON)	49	030400	000061	1	
18	011000	000022	DC2	D_{2}	Device Control 2 (TAPE)	50	031000	000062	2	
19	011400	000023	DC3	D_{3}	Device Control 3 (X-OFF)	51	031400	000063	3	
20	012000	000024	DC4	D_{4}	Device Control 4 (TAPE)	52	032000	000064	4	
21	012400	000025	NAK	'k	Negative Acknowledge	53	032400	000065	5	Digits, Numbers
22	013000	000026	SYN	5	Synchronous idle	54	033000	000066	6	
23	013400	000027	ETB	E	End of Transmission Block	55	033400	000067	7	
24	014000	000030	CAN	G	Cancel	56	034000	000070	8	
25	014400	000031	EM	E_{4}	End of Medium	57	034400	000071	9)
26	015000	000032	Sub	早	Substitute	58	035000	000072	:	Colon
27	015400	000033	ESC	E_{τ}	Escape ${ }^{2}$	59	035400	000073	;	Semicolon
28	016000	000034	FS	F_{5}	File Separator	60	036000	000074	<	Less Than
29	016400	000035	GS	5	Group Separator	61	036400	000075	$=$	Equals
30	017000	000036	RS	F_{5}	Record Separator	62	037000	000076	>	Greater Than
31	017400	000037	US	4	Unit Separator	63	037400	000077	?	Question Mark
127	077400	000177	DEL	㷓	Delete, Rubout ${ }^{3}$					

:	
$\stackrel{\text { ¢ }}{\text { ¢ }}$	
产 ${ }_{\text {E. }}^{\text {¢ }}$	

[^2]\qquad

A

```
address pointers, 2-7
address range, 5-2
address search, effective, 5-4
alphanumeric ASCII printout, 2-5
alphanumeric mode, 2-5
assigning a symbol to an address just printed, 2-13
```


B

blank sign, $A-1$
block mode operation of DBUGR, $D-1$
breakpoint MLLDR, setting, 6-3
breakpoints and program control, $\mathrm{C}-7$
breakpoints, through path switches, 6-4

C
changing the radix of numeric printout, 2-4
clear or set memory, 5-4
conditional breakpoint, 6-5
contents of memory, 3-2
controls, 1-3, 6-8
change the contents of memory, 3-2
examine memory and set the location counter, 3-2
memory change, 3-3
memory/location changes, 3-5
temporarily change to the print mode, 3-10 conventions followed in the text, 1-5

D

```
DBUGR,
    at a glance, C-l
    loading and using, l-2
    size, l-l
decimal addition and subtraction, A-3
decimal to octal conversion, A-3
defining symbolic addresses in DBUGR, 2-8
deleting symbols from the symbol table, 2-12
dumping, C-6
dumping tables and patches, 4-1
```


E

```
equality search, 5-2
error messages, B-1
examine memory, 3-2
expressions, l-3
```


I

inclusive OR, $A-1$
inequality search, 5-3
introduction, 1-1, 6-1

L

limitations, 1-5 loading and using DBUGR, l-2 location counter changes, 3-5 location examination, $\mathrm{C}-5$ logical product reviewed, 5-1

M

```
magic symbols, 6-13
map examination special mode, 3-8
map registers, C-9
mark, l-4
mark \Q, A-2
master mode, momentarily in, 2-l3
MEM status special mode, 3-8
memory change controls, 3-3
memory counter changes, 3-5
memory search, 5-1
memory search and clear, C-7
memory, contents, 3-2
minus sign, A-l
MLLDR breakpoint, setting, 6-3
mode control, 2-1, 3-10, C-2
```


N

numeric mode, 2-3

```
octal addition and subtraction, A-2
octal to decimal conversion, A-3
operating environment, l-1
operators, l-4
other conversions, A-2
output modes, 2-1
```


P

```
path switches, 6-4
plus sign, A-1
print mode, temporarily change, 3-10
print momentarily in master mode, 2-13
printout as numeric constants, 2-3
printout as symbolic instructions, 2-2
program load, 4-1
program load and verify, C-6
```

 R
 registers,
map, $\mathrm{C}-9$
special, $\mathrm{C}-9$
restrictions, 6-7
S
search mask, 5-1
set or clear memory, 5-4
set the location counter, 3-2
setting a breakpoint MLLDR, 6-3
special register modification and examination, 3-6
special registers, $\mathrm{C}-9$
symbol, l-4
symbol manipulation, $C-4$
symbol table, 2-12
symbolic addresses in DBUGR, 2-8
symbolic mode, 2-2

T

```
tables and patches, dumping, 4-1
```

tape verification, 4-2
temporarily change to the print mode, 3-10

INDEX

terms, 1-4

U
using DBUGR to do simple arithmetic, A-2

V
verify, tape, 4-2

READER COMMENT SHEET

RTE-6/VM
DEBUG SUBROUTINE
Reference Manual

Update No.
(If Applicable)

We welcome your evaluation of this manual. Your comments and suggestions help us improve our publications. Please use additional pages if necessary.

FROM:

Name

Company
Address \qquad

BUSINESS REPLY MAIL FIRST CLASS PERMIT NO. 141 CUPERTINO, CA.

- POSTAGE WILL BE PAID BY -

Hewlett-Packard Company
Data Systems Division
11000 Wolfe Road
Cupertino, California 95014
ATTN: Technical Marketing Dept.

Product Line Sales/Support Key
Key Product Line
A Analytical
CM Components
C Computer Systems Sales only
CH Computer Systems Hardware Sales and Services
CS Computer Systems Software Sales and Services
E Electronic Instruments \& Measurement Systems
M Medical Products
P Personal Computation Products

* Sales only for specific product line
** Support only for specific product line
IMPORTANT:These symbols designate general product line capability.They do not insure sales or support availability for all products within a line, at all locations.Contact your local sales office for information regarding locations where HP support is available for specific products.

HP distributors are printed in italics.

HEADQUARTERS OFFICES

If there is no sales office listed for your area, contact one of these headquarters offices.

AFRICA AND

MIDDLE EAST

Hewlett-Packard S.A.
Mediterranean and Middle East
Operations
Atrina Centre
32 Kifissias Ave.
Paradissos-Amarousion, ATHENs
Greece
Tel: 6828811
Telex: 21-6588 HPAT GR
Cable: HEWPACKSA Athens
NORTH/CENTRAL AFRICA
Hewlett-Packard S.A.
7, Rue du Bois-du-Lan
CH-1217 MEYRIN 2, Switzerland
Tel: (022) 831212
Telex: 27835 hpse
Cable: HEWPACKSA Geneve

ASIA

Hewlett-Packard Asia Ltd.
47/F, 26 Harbour Rd.,
Wanchai, HONG KONG
G.P.O. Box 863, Hong Kong

Tel: 5-8330833
Telex: 76793 HPA HX
Cable: HPASIAL TD

CANADA

Hewlett-Packard (Canada) Ltd.
6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
Telex: 610-492-4246

EASTERN EUROPE

Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O.Box 72

A-1222 VIENNA, Austria
Tel: (222) 2365110
Telex: 134425 HEPA A

NORTHERN EUROPE

Hewlett-Packard S.A.
Uilenstede 475
P.O.Box 999

NL-1180 AZ AMSTELVEEN
The Netherlands
Tei: 20437771

SOUTH EAST EUROPE

Hewlett-Packard S.A.
World Trade Center
110 Avenue Louis Carol
1215 Cointrin, GENEVA, Switzerland
Tel: (022) 989651
Telex: 27225 hpse.
EASTERN USA
Hewlett-Packard Co.
4 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 258-2000
MIDWESTERN USA
Hewlett-Packard Co. 5201 Tollview Drive ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
SOUTHERN USA
Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005

ATLANTA, GA 30348
Tel: (404) 955-1500
WESTERN USA
Hewlett-Packard Co.
3939 Lankershim Blvd.
P.O. Box 3919

LOS ANGELES, CA 91604
Tel: (213) 506-3700

OTHER INTERNATIONAL

 AREASHewlett-Packard Co. Intercontinental Headquarters
3495 Deer Creek Road
PALO ALTO, CA 94304
Tel: (415) 857-1501
Telex: 034-8300
Cable: HEWPACK

ANGOLA

Telectra
Empresa TAEcnica de Equipamentos
R. Barbosa Rodrigues, 41-IDT.

Caixa Postal 6487
LUANDA
Tel: 35515,35516
E,P
ARGENTINA
Hewlett-Packard Argentina S.A.
Avenida Santa Fe 2035
Martinez 1640 BUENOS AIRES
Tel: 798-5735, 792-1293
Cable: HEWPACKARG
A,E,CH,CS,P
AUSTRALIA
Adelaide, South Australia Office
Hewlett-Packard Australia Ltd.
153 Greenhill Road
PARKSIDE, S.A. 5063
Tel: 272-5911
Telex: 82536
Cable: HEWPARD Adelaide
A*,CH,CM,CS,E,M,P
Brisbane, Queensland
Office
Hewleit-Packard Australia Ltd. 10 Payne Road
THE GAP, Queensland 4061
Tel: 30-4133
Telex: 42133
Cable: HEWPARD Brisbane
A,CH,CS,CM,E,M,P
Canberra, Australia
Capital Territory
Office
Hewlett-Packard Australia Ltd.
121 Wollongong Street
FYSHWICK, A.C.T. 2609
Tel: 804244
Telex: 62650
Cable: HEWPARD Canberra
C,CH,CM,CS,E,P
Melbourne, Victoria
Office
Hewlett-Packard Australia Ltd.
31-41 Joseph Street
BLACKBURN, Victoria 3130
Tel: 895-2895
Telex: 31-024
Cable: HEWPARD Melbourne
A,CH,CM,CS,E,M,P
Perth, Western Australia

Office

Hewlett-Packard Australia Ltd.
261 Stirling Highway
CLAREMONT, W.A. 6010
Tel: 383-2188
Telex: 93859
Cable: HEWPARD Perth
A,CH,CM,CS,E,M,P

Sydney, New South
Wales Office
Hewlett-Packard Australia Ltd.
17-23 Talavera Road
P.O. Box 308

NORTH RYDE, N.S.W. 2113
Tel: 888-4444
Telex: 21561
Cable: HEWPARD Sydney
A,CH,CM,CS,E,M,P

AUSTRIA

Hewlett-Packard Ges.m.b.h.
Grottenhofstrasse 94
A-8052 GRAZ
Tel: (0316) 291566
Telex: 32375
CH,E
Hewlett-Packard Ges.m.b.h.
Lieblgasse 1
P.O. Box 72

A-1222 VIENNA
Tel: (0222) 2365 11-0
Telex: 134425 HEPA A
A,CH,CM,CS,E,M,P

BAHRAIN

Green Salon
P.O. Box 557

Manama
BAHRAIN
Tel: 255503-255950
Telex: 84419
P
Wael Pharmacy
P.O. Box 648

BAHRAIN
Tel: 256123
Telex: 8550 WAEL BN
E,M

BELGIUM

Hewlett-Packard Belgium S.A./N.V
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,M,P

BERMUDA

Applied Computer Technologies
Atlantic House Building
Par-La-Ville Road
Hamilton 5
Tel: 295-1616
P
BRAZIL
Hewlett-Packard do Brasil
l.e.C. Ltda.

Alameda Rio Negro, 750
Alphaville
06400 BARUERI SP
Tel: (011) 421.1311
Telex: (011) 33872 HPBR-BR
Cable: HEWPACK Sao Paulo
A,CH,CM,CS,E,M,P

SALES \& SUPPORT OFFICES

Arranged alphabetically by country

BRAZIL (Cont'd)
Hewlett-Packard do Brasil
Le.C. Ltda.
Avenida Epitacio Pessoa, 4664
22471 RIO DE JANEIRO-RJ
Tel: (021) 286.0237
Telex: 021-21905 HPBR-BR
Cable: HEWPACK Rio de Janeiro
A,CH,CM,E,M,P*
Convex/Van Den
Rua Jose Bonifacio
458 Todos Os Santos
CEP 20771
RIO DE JANEIRO, RJ
Tel: 249-7121, 591-4946
Telex: 33487
ANAMED I.C.E.I. Ltda.
Rua Bage, 103
04012 SAO PAULO
Tel: (011) 570-5726
Telex: 021-21905 HPBR-BR

M

CANADA

Alberta

Hewlett-Packard (Canada) Ltd.
3030 3rd Avenue N.E.
CALGARY, Alberta T2A $6 T 7$
Tel: (403) 235-3100
A,CH,CM,E*,M, P*
Hewlett-Packard (Canada) Lid. 11120-178th Street
EDMONTON, Alberta T5S 1 P2
Tel: (403) 486-6666
A,CH,CM,CS,E,M,P

British Columbia

Hewlett-Packard (Canada) Ltd.
10691 Shellbridge Way
RICHMOND,
British Columbia V6X 2W7
Tel: (604) 270-2277
Telex: 610-922-5059
A,CH,CM,CS,E*,M,P*
Hewlett-Packard (Canada) Ltd.
121-3350 Douglas Street
VICTORIA, British Columbia V8Z 3L1
Tel: (604) 381-6616
CH,CS

Manitoba

Hewlett-Packard (Canada) Ltd. 1825 Inkster Blvd.
WINNIPEG, Manitoba R3H OY1
Tel: (204) 786-6701
A,CH,CM,E,M,P*
New Brunswick
Hewlett-Packard (Canada) Ltd. 37 Shediac Road
MONCTON, New Brunswick E1A 2R6
Tel: (506) 855-2841
CH,CS
Nova Scotia
Hewlett-Packard (Canada) Ltd.
Suite 111
900 Windmill Road
DARTMOUTH, Nova Scotia B2Y $3 Z 6$
Tel: (902) 469-7820
CH,CM,CS, E*, M, P*

Ontario

Hewlett-Packard (Canada) Ltd.
3325 N. Service Rd., Unit 6
BURLINGTON, Ontario P3A 2A3
Tel: (416) 335-8644
$\mathrm{CS}, \mathrm{M}^{*}$
Hewlett-Packard (Canada) Ltd
496 Days Road
KINGSTON, Ontario K7M 5R4
Tel: (613) 384-2088
CH,CS
Hewlett-Packard (Canada) Ltd.
552 Newbold Street
LONDON, Ontario N6E 2S5
Tel: (519) 686-9181
$\mathrm{A}, \mathrm{CH}, \mathrm{CM}, \mathrm{E}^{*}, \mathrm{M}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd. 6877 Goreway Drive
MISSISSAUGA, Ontario L4V 1M8
Tel: (416) 678-9430
A,CH,CM,CS,E,M,P
Hewlett-Packard (Canada) Ltd.
2670 Queensview Dr. OTTAWA, Ontario K2B 8K1
Tel: (613) 820-6483
$\mathrm{A}, \mathrm{CH}, \mathrm{CM}, \mathrm{CS}, \mathrm{E}^{*}, \mathrm{MS}, \mathrm{P}^{*}$
Hewlett-Packard (Canada) Ltd.
1855 Lasalle Boulevard SUDBURY, Ontario, P3A 2A3
Tel: (705) 560-5450
CH
Hewlett-Packard (Canada) Ltd. 220 Yorkland Blvd. Unit \#11
WILLOWDALE, Ontario M2J 1R5 Tel: (416) 499-9333
CH

Quebec

Hewlett-Packard (Canada) LId. 17500 South Service Road Trans-Canada Highway KIRKLAND, Quebec H9J 2M5
Tel: (514) 697-4232
A,CH,CM,CS,E,M,P*
Hewlett-Packard (Canada) Ltd.
1150 Rue Claire Fontaine QUEBEC CITY, Quebec G1R 5G4
Tel: (418) 648-0726
CH,CS
Hewlett-Packard (Canada) Ltd.
\#7-130 Robin Crescent
SASKATOON, Saskatchewan S7L 6M7
Tel: (306) 242-3702

CH,CS

CHILE

ASC Ltda.
Austria 2041
SANTIAGO
Tel: 223-5946, 223-6148
Telex: 340192 ASC CK
P, C
Jorge Calcagniy Cia. Ltda.
Av. Italia 634 Santiago
Casilla 16475
SANTIAGO 9
Tel: 222-0222
Telex: 440283 JCYCL CZ
CM,E,M

Metrolab S.A.
Monjitas 454 of. 206
SANTIAGO
Te: 395752,398296
Telex: 340866 METLAB CK
A
Olympia (Chile) Ltda.
Av. Rodrigo de Araya 1045
Casilla 256-V
SANTIAGO 21
Tel: 225-5044
Telex: 340892 OLYMP
Cable: Olympiachile Santiagochile $\mathrm{CH}, \mathrm{CS}, \mathrm{P}$

CHINA, People's
Republic of
China Hewlett-Packard Co., Ltd.
6th Floor, Sun Hung Kai Centre
30 Harbour Road
HONG KONG
Tel: 5-8323211
Telex: 36678 HEWPA HX
A,C,CH,CS,E,M,P
China Hewlett-Packard Rep. Office
P.O. Box 418

1A Lane 2, Luchang St.
Beiwei Rd., Xuanwu District
BEDING
Tel: 33-1947, 33-7426
Telex: 22601 CTSHP CN
Cable: 1920
A,CH,CM,CS,E,P
COLOMBIA
InstrumentaciAOn
H. A. Langebaek \& Kier S.A.

Carrera 4A No. 52A-26
Apartado Aereo 6287
bogota 1, D.E.
Tel: 212-1466
Telex: 44400 INST CO
Cable: AARIS Bogota
CM,, , M
Nefromedicas Ltda.
Calle 123 No. 9B-31
Apartado Aereo 100-958
bOGOTA D.E., 10
Tel: 213-5267, 213-1615
Telex: 43415 HEGAS CO
A
Procesa, S.A.
CRA 7 No. 24-89 Piso 25
Torre Colpatria
Apartado Aereo No. 49667

bOGOTA D.E.

Tel: 2344925, 2344958, 2344742
Telex: 43127 COVER CO
C,P
Compumundo
Avenida 15\# 107-80
bogota d.E.
Tel: 214-4458
Telex: 45466 MARICO
P

COSTA RICA

Cientifica Costarricense S.A.
Avenida 2, Calle 5
San Pedro de Montes de Oca
Apartado 10159
SAN JOSE
Tel: 24-38-20, 24-08-19
Telex: 2367 GALGUR CR
CM,E,M
CYPRUS
Telerexa Ltd.
P.O. Box 4809

14C Stassinos Avenue

NICOSIA

Tel: 62698
Telex: 2894 LEVIDO CY
E,M,P

DENMARK

Hewlett-Packard A/S
Datavej 52
DK-3460 BIRKEROD
Tel: (02) 81-66-40
Telex: 37409 hpas dk
A,CH,CM,CS,E,M,P
Hewlett-Packard A/S
Rolighedsvej 32
DK-8240 RISSKOV, Aarhus
Tel: (06) 17-60-00
Telex: 37409 hpas dk
CH,E
DOMINICAN REPUBLIC
Microprog S.A.
Juan Tomás Mejía y Cotes No. 60
Arroyo Hondo
SANTO DOMINGO
Tel: 565-6268
Telex: 4510 ARENTA DR (RCA)
P
ECUADOR
CYEDE Cia. Ltda.
Avenida Eloy Alfaro 1749
y Belgica
Casilia 6423 CCl
QUITO
Tel: 450-975, 243-052
Telex: 2548 CYEDE ED
$C M, E, P$
Hospitalar S.A.
Robles 625
Casilla 3590
aulto
Tel: 545-250, 545-122
Telex: 2485 HOSPTL ED
Cable: HOSPITALAR-Quito
M

P, A

Quito
Tel: 2-238-951
Telex: 2298 ECUAME ED

EGYPT

Egyptian International
Office for Foreign Trade
P.O. Box 2558

42 El-Zahraa Street
Dokki, CAIRO,
Tel: 712230
Telex: 93337 EGPOR UN
Cable: EGYPOR
Tel: 2-238-931

EGYPT (Cont'd)
INFORMATIC FOR SYSTEMS
22 Talaat Harb Street
CAIRO,
Tel: 759006
Telex: 93697 SAFLM UN CS
International Engineering Associates
24 Hussein Hegazi Street
Kasr-el-Aini
CAIRO,
Tel: 23829, 21641
Telex: 93830 IEA UN
Cable: INTEGASSO
E
S.S.C. Medical

40 Gezerat El Arab Street
Mohandessin
CAIRO,
Tel: 803844, 805998, 810263
Telex: 20503 SSC UN M^{*}
EL SALVADOR
IPESA de El Salvador S.A.
29 Avenida Norte 1216
SAN SALVADOR
Tel: 26-6858, 26-6868
Telex: 20539 IPESASAL
A,CH,CM,CS,E,P
FINLAND
Hewlett-Packard Oy
Piispankalliontie 17
02200 ESPOO
Tel: 00358-0-88721
Telex: 121563 HEWPA SF
CH,CM,SS,P
Hewlett-Packard Oy
(Olarinluoma 7)
PL 24
02101 ESPOO 10
Tel: (90) 4521022
A,E,M
Hewlett-Packard Oy
Aatoksenkatv 10-C
SF-40720-72 JYVASKYLA
Tel: (941) 216318
CH
Hewlett-Packard Oy
Kainvuntie 1-C
SF-90140-14 OULU
Tel: (981) 338785
CH
FRANCE
Hewlett-Packard France
Z.I. Mercure B

Rue Berthelot
F-13763 Les Milles Cedex
AIX-EN-PROVENCE
Tel: (42) 59-41-02
Telex: 410770F
A,CH,E,M,P*
Hewlett-Packard France
64, rue Marchand Saillant
F-61000 ALENCON
Tel: (33) 290442

Hewlett-Packard France
Boite Postale 503
F-25026 BESANCON
28 rue de la Republique
F-25000 BESANCON
Tel: (81) 83-16-22
Telex: 361157
CH, M
Hewlett-Packard France
13, Place Napoleon III
F-29000 BREST
Tel: (98) 03-38-35
Hewlett-Packard France
Chemin des Mouilles
Boite Postale 162
F-69130 ECULLY Cedex (Lyon)
Tel: (78) 833-81-25
Telex: 310617F
A,CH,CS,E,M
Hewlett-Packard France
Parc d'Activite du Bois Briard
Ave. du Lac
F-91040 EVRY Cedex
Tel: 6 077-8383
Telex: 692315F
E
Hewlett-Packard France
5, Avenue Raymond Chanas
F-38320 EYBENS (Grenoble)
Tel: (76) 62-67-98
Telex: 980124 HP GRENOB EYBE
CH
Hewlett-Packard France
Centre d'Affaire Paris-Nord
Bâtiment Ampère 5 étage
Rue de la Commune de Paris
Boite Postale 300
F-93153 LE BLANC MESNIL
Tel: (1) 865-44-52
Telex: 211032F
$\mathrm{CH}, \mathrm{CS}, \mathrm{E}, \mathrm{M}$
Hewlett-Packard France
Parc d'Activités Cadera
Quartier Jean Mermoz
Avenue du Président JF Kennedy
F-33700 MERIGNAC (Bordeaux)
Tel: (56) 34-00-84
Telex: 550105F
CH,E,M
Hewlett-Packard France
Immueble "Les 3 B"
Nouveau Chemin de la Garde
ZAC de Bois Briand
F-44085 NANTES Cedex
Tel: (40) 50-32-22
Telex: 711085F
$\mathrm{CH}^{* *}$
Hewlett-Packard France
125, rue du Faubourg Bannier
F-45000 ORLEANS
Tel: (38) 680163
Hewlett-Packard France
Zone Industrielle de Courtaboeuf
Avenue des Tropiques
F-9 1947 Les Ulis Cedex ORSAY
Tel: (6) 907-78-25
Telex: 600048F
A,CH,CM,CS,E,M,P

Hewlett-Packard France
Paris Porte-Maillot
15, Avenue de L'Amiral Bruix
F-75782 PARIS CEDEX 16
Tel: (1) 502-12-20
Telex: 613663 F
CH,M, P
Hewlett-Packard France
124, Boulevard Tourasse
F-64000 PAU
Tel: (59) 803802
Hewlett-Packard France
2 AllAEe de la Bourgonnette
F-35100 RENNES
Tel: (99) 51-42-44
Telex: 740912F
CH,CM,E,M,P*
Hewlett-Packard France
98 Avenue de Bretagne
F-76100 ROUEN
Tel: (35) 63-57-66
Telex: 770035F
$\mathrm{CH}^{* *}$, CS
Hewlett-Packard France
4 Rue Thomas Mann
Boite Postale 56
F-67033 STRASBOURG Cedex
Tel: (88) 28-56-46
Telex: 890141F
CH,E,M,P*
Hewlett-Packard France
Le PAEripole
20, Chemin du Pigeonnier de la
CAEpiGEere
F-31083 TOULOUSE Cedex
Tel: (61) 40-11-12
Telex: 531639 F
A,CH,CS,E,P*
Hewlett-Packard France
9 , rue Baudin
F-26000 Valence
Tel: (75) 427616
Hewlett-Packard France
Carolor
ZAC de Bois Briand
F-57640 VIGY (Metz)
Tel: (8) 7712022
CH
Hewlett-Packard France
Immeuble PEricentre
F-59658 VILLENEUVE D'ASCO Cedex
Tel: (20) 91-41-25
Telex: 160124F
CH,E,M,P*
GERMAN FEDERAL
REPUBLIC
Hewlett-Packard GmbH
Geschäftsstelle
Keithstrasse 2-4
D-1000 BERLIN 30
Tel: (030) 24-90-86
Telex: 0183405 hpln d
A,CH,E,M,P
Hewlett-Packard GmbH
Geschäitsstelle
Herrenberger Strasse 130
D-7030 BOBLLINGEN
Tel: (7031) 14-0
Telex: 07265739
A,CH,CM,CS,E,M,P

Hewlett-Packard GmbH
Geschäftsstelle
Emanuel-Leutze-Strasse 1
D-4000 DUSSELDORF
Tel: (0211) 5971-1
Telex: 085/86 533 hpdd d
A,CH,CS,E,M,P
Hewlett-Packard GmbH
Geschäftsstelle
Schleefstr. 28a
D-4600 DORTMUND-Aplerbeck
Tel: (0231) 45001
Hewlett-Packard GmbH
Vertriebszentrale Frankfurt
Berner Strasse 117
Postfach 560140
D-6000 FRANKFURT 56
Tel: (0611) 50-04-1
Telex: 0413249 hpffm d
A,CH,CM,CS,E,M,P
Hewlett-Packard GmbH
Geschäftsstelle
Aussenstelle Bad Homburg
Louisenstrasse 115
D-6380 BAD HOMBURG
Tel: (06172) 109-0
Hewlett-Packard GmbH
Geschäftsstelle
Kapstadtring 5
D-2000 HAMBURG 60
Tel: (040) 63804-1
Telex: 02163032 hphh d
$\mathrm{A}, \mathrm{CH}, \mathrm{CS}, \mathrm{E}, \mathrm{M}, \mathrm{P}$
Hewlett-Packard GmbH
Geschättsstelle
Heidering 37-39
D-3000 HANNOVER 61
Tel: (0511) 5706-0
Telex: 0923259
A,CH,CM,E,M,P
Hewlett-Packard GmbH
Geschäftsstelle
Rosslauer Weg 2-4
D-6800 MANNHEIM
Tel: (0621) 70050
Telex: 0462105
A,C,E
Hewlett-Packard GmbH
Geschäftsstelle
Messerschmittstrasse 7
D-7910 NEU ULM
Tel: 0731-70241
Telex: 0712816 HP ULM-D
A,C,E*
Hewlett-Packard GmbH
Geschäftsstelle
Ehhericherstr. 13
D-8500 NÜRNBERG 10
Tel: (0911) 5205-0
Telex: 0623860
СН,СМ,Е,М, Р
Hewlett-Packard GmbH
Geschäftsstelle
Eschenstrasse 5
D-8028 TAUFKIRCHEN
Tel: (089) 6117-1
Telex: 0524985
A,CH,CM,E,M,P
GREAT BRITAIN
See United Kingdom

A.,

See United Kingdom

GREECE
Hewlett-Packard A.E. 178, Kitissias Avenue 6th Floor Halandri-ATHENS
Greece
Tel: 6471673, 6471543, 6472971
A,CH,CM**,CS**,E,M,P
Kostas Karaynnis S.A.
8 Omirou Street
ATHENS 133
Tel: 3230303,3237371
Telex: 215962 RKAR GR
$A, C H, C M, C S, E, M, P$
PLAISIO S.A.
Eliopoulos Brohers Ltd.
11854
ATHENS
Tel: 34-51-911
Telex: 216286
P
GUATEMALA
IPESA
Avenida Reforma 3-48, Zona 9
GUATEMALA CITY
Tel: 316627, 314786
Telex: 4192 TELTRO GU
A,CH,CM,CS,E,M,P

HONG KONG

Hewlett-Packard Hong Kong, Ltd.
G.P.O. Box 795

5th Floor, Sun Hung Kai Centre

30 Harbour Road

HONG KONG
Tel: 5-8323211
Telex: 66678 HEWPA HX Cable: HEWPACK HONG KONG
E,CH,CS,P
CET Lid.
10th Floor, Hua Asia
Bldg. Gloucester
64-66 Gloulester Road
HONG KONG
Tel: (5) 200922
Telex: 85148 CETHX CM
Schmidt \& Co. (Hong Kong) Ltd. 18th Floor, Great Eagle Centre
23 Harbour Road, Wanchai
HONG KONG
Tel: 5-8330222
Teiex: 74766 SCHMC HX
A, M
ICELAND
Elding Trading Company inc. Hafnarnvoli-Tryggvagotu
P.O. Box 895

IS-REYKJAVIK
Tel: 1-58-20, 1-63-03
M

INDIA

Computer products are sold through Blue Star Ltd.All computer repairs and maintenance service is done through Computer Maintenance Corp.

Blue Star Ltd.
Sabri Complex II Floor
24 Residency Rd.
BANGALORE 560025
Tel: 55660
Telex: 0845-430
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E$
Blue Star Ltd.
Band Box House
Prabhadevi
BOMBAY 400025
Tel: 422-3101
Telex: 011-3751
Cable: BLUESTAR
A, M
Blue Star Ltd.
Sahas
414/2 Vir Savarkar Marg
Prabhadevi
BOMBAY 400025
Tel: 422-6155
Telex: 011-71193
Cable: FROSTBLUE
$A, C H^{*}, C M, C S^{*}, E, M$
Blue Star Ltd.
Kalyan, 19 Vishwas Colony
Alkapuri, BORODA, 390005
Tel: 65235
Cable: BLUE STAR
A
Blue Star Ltd.
7 Hare Street
CALCUTTA 700001
Tel: 12-01-31
Telex: 021-7655
Cable: BLUESTAR
A, M
Blue Star Lid.
133 Kodambakkam High Road
MADRAS 600034
Tel: 82057
Telex: 041-379
Cable: BLUESTAR
A, M
Blue Star Ltd.
Bhandari House, 7th/8th Floors
91 Nehru Place
NEW DELHI 110024
Tel: 682547
Telex: 031-2463
Cable: BLUESTAR
$A, C H^{*}, C M, C S^{*}, E, M$
Blue Star Ltd.
15/16:C Wellesley Rd.
PUNE 411011
Tel: 22775
Cable: BLUE STAR
A
Blue Star Ltd.
2-2-47/1108 Bolarum Rd.
SECUNDERABAD 500003
Tel: 72057
Teiex: 0155-459
Cable: BLUEFROST

Blue Star Ltd.
T.C. $7 / 603$ Poornima

Maruthankuzhi
TRIVANDRUM 695013
Tel: 65799
Telex: 0884-259
Cable: BLUESTAR
E
Computer Maintenance Corporation Ltd.
115, Sarojini Devi Road
SECUNDERABAD 500003
Tel: 310-184, 345-774
Telex: 031-2960
CH^{*} *
INDONESIA
BERCA Indonesia P.T.
P.O.Box 496/Jkt.

JI. Abdul Muis 62
JAKARTA
Tel: 21-373009
Telex: 46748 BERSAL IA
Cable: BERSAL JAKARTA
P
BERCA Indonesia P.T.
P.O.Box 2497/Jkt

Antara Bldg., 17th Floor
J. Medan Merdeka Selatan 17

JaKARTA-PUSAT

Tel: 21-344-181
Telex: BERSAL IA
A,CS,E,M
BERCA Indonesia P.T.
P.O. Box 174/SBY.
J. Kutei No. 11

SURABAYA
Tel: 68172
Telex: 31146 BERSAL SB
Cable: BERSAL-SURABAYA
A^{*}, E, M, P

IRAQ

Hewlett-Packard Trading S.A.
Service Operation
AI Mansoor City 9B/3/7
BAGHDAD
Tel: 551-49-73
Telex: 212-455 HEPAIRAQ IK
CH,CS
IRELAND
Hewlett-Packard Ireland Ltd.
82/83 Lower Leeson Street
DUBLIN 2
Tel: 0001608800
Telex: 30439
А,СН,СМ,CS,E,M,P
Cardiac Services Ltd.
Kilmore Road
Artane
DUBLIN 5
Tel: (01) 351820
Telex: 30439
M
ISRAEL
Eldan Electronic instrument Ltd.
P.O.Box 1270

JERUSALEM 91000
16, Ohaliav St.
JERUSALEM 94467
Tel: 533 221, 553242
Telex: 25231 AB/PAKRD IL
A, M

Computation and Measurement
Systems (CMS) Ltd.
11 Masad Street
67060
TEL-AVIV
Tel: 388388
Telex: 33569 Motil IL
CH,CM,CS,E,P
ITALY
Hewlett-Packard Italiana S.p.A
Traversa 99C
Via Giulio Petroni, 19
|-70124 BARI
Tel: (080) 41-07-44
M,CH
Hewlett-Packard Italiana S.p.A.
Via Martin Luther King, 38/III
I-40132 BOLOGNA
Tel: (051) 402394
Telex: 511630
CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Via Principe Nicola 43G/C
1-95126 CATANIA
Tel: (095) 37-10-87
Telex: 970291
CH
Hewlett-Packard Italiana S.p.A.
Via G. Di Vittorio 9
I-20063 CERNUSCO SUL
naviglio
(Milano)
Tel: (02) 923691
Telex: 334632
A,CH,CM,CS,E,M,P
Hewlett-Packard Italiana S.p.A.
Via C. Colombo 49
I-20090 TREZZANO SUL
NAVIGLIO
(Milano)
Tel: (02) 4459041
Telex: 322116
CH,CS
Hewlett-Packard Italiana S.p.A.
Via Nuova San Rocco a
Capodimonte, 62/A
|-80131 NAPOLI
Tel: (081) 7413544
Telex: 710698
$A^{* *}, \mathrm{CH}, \mathrm{CS}, \mathrm{E}, \mathrm{M}$
Hewlett-Packard Italiana S.p.A.
Viale G. Modugno 33
I-16156 GENOVA PEGLI
Tel: (010) 68-37-07
Telex: 215238
E,C
Hewlett-Packard Italiana S.p.A.
Via Pelizzo 15
I-35128 PADOVA
Tel: (049) 664888
Telex: 430315
A,CH,CS,E,M
Hewlett-Packard Italiana S.p.A.
Viale C. Pavese 340
I-00144 ROMA EUR
Tel: (06) 54831
Telex: 610514
A,CH,CS,E,M,P*

,

ITALY (Cont'd)
Hewlett-Packard Italiana S.p.A.
Via di Casellina 57/C
I-50018 SCANDICCI-FIRENZE
Tel: (055) 753863
CH,E,M
Hewlett-Packard Italiana S.p.A.
Corso Svizzera, 185
l-10144 TORINO
Tel: (011) 744044
Telex: 221079
A*,CS,CH,E

JAPAN

Yokogawa-Hewlett-Packard Ltd.
152-1, Onna
ATSUGI, Kanagawa, 243
Tel: (0462) 28-045
CM, C*, E
Yokogawa-Helwett-Packard Ltd.
Meiji-Seimei Bldg. 6F
3-1 Hon Chiba-Cho
CHIBA, 280
Tel: 472257701
E,CH,CS
Yokogawa-Hewlett-Packard Ltd.
Yasuda-Seimei Hiroshima Bldg.
6-11, Hon-dori, Naka-ku
HIROSHIMA, 730
Tel: 82-241-0611
Yokogawa-Hewlett-Packard Ltd.
Towa Building
2-3, Kaigan-dori, 2 Chome Chuo-ku
KOBE, 650
Tel: (078) 392-4791
C,E
Yokogawa-Hewlett-Packard Ltd.
Kumagaya Asahi 82 Bldg
3-4 Tsukuba
KUMAGAYA, Saitama 360
Tel: (0485) 24-6563
CH,CM, E
Yokogawa-Hewlett-Packard Ltd. Asahi Shinbun Daiichi Seimei Bldg
4-7, Hanabata-cho
KUMAMOTO, 860
Tel: (0963) 54-7311
CH,E
Yokogawa-Hewlett-Packard Ltd.
Shin-Kyoto Center Bldg.
614, Higashi-Shiokoji-cho
Karasuma-Nishiiru
Shiokoji-dori, Shimogyo-ku
KYOTO, 600
Tel: 075-343-0921
CH,E
Yokogawa-Hewlett-Packard Ltd.
Mito Mitsui Bldg
4-73, Sanno-maru, 1 Chome
MITO, Ibaraki 310
Tel: (0292) 25-7470
CH,CM,E
Yokogawa-Hewlett-Packard Ltd.
Meiji-Seimei Kokubun Bldg. 7-8
Kokubun, 1 Chome, Sendai
MIYAGI, 980
Tel: (0222) 25-1011
Telex:
C,E

Yokogawa-Hewlett-Packard Ltd
Sumitomo Seimei 14-9 Bldg.
Meieki-Minami, 2 Chome
Nakamura-ku
NAGOYA, 450
Tel: (052) 571-5171
CH,CM,CS,E,M
Yokogawa-Hewlett-Packard Ltd Chuo Bldg.,
4-20 Nishinakajima, 5 Chome
Yodogawa-ku
OSAKA, 532
Tel: (06) 304-6021
Telex: YHPOSA 523-3624
A,CH,CM,CS,E,M,P*
Yokogawa-Hewlett-Packard Ltd.
27-15, Yabe, 1 Chome
SAGAMIHARA Kanagawa, 229
Tel: 0427 59-1311
Yokogawa-Hewlett-Packard Ltd. Daiichi Seimei Bldg.
7-1, Nishi Shinjuku, 2 Chome
Shinjuku-ku,TOKYO 160
Tel: 03-348-4611
CH,E
Yokogawa-Hewlett-Packard Ltd. 29-21 Takaido-Higashi, 3 Chome
Suginami-ku TOKYO 168
Tel: (03) 331-6111
Telex: 232-2024 YHPTOK
A,CH,CM,CS,E,M,P*
Yokogawa-Hewlett-Packard Ltd.
Daiichi Asano Building
2-8, Odori, 5 Chome
UTSUNOMIYA, Tochigi 320
Tel: (0286) 25-7155
CH,CS,E
Yokogawa-Hewlett-Packard Ltd.
Yasuda Seimei Nishiguchi Bldg.
30-4 Tsuruya-cho, 3 Chome
YOKOHAMA 221
Tel: (045) 312-1252
CH,CM,E

JORDAN

Scientific and Medical Supplies Co.
P.O. Box 1387

AMMAN

Tel: 24907, 39907
Telex: 21456 SABCO JO
CH,E,M,P
KENYA
ADCOM Ltd., Inc., Kenya
PO.Box 30070

NAIROBI

Tel: 331955
Telex: 22639
E,M
KOREA
Samsung Hewlett-Packard Co. Ltd. 12 FI. Kinam Bldg.
San 75-31, Yeoksam-Dong
Kangnam-Ku
Yeongdong P.O. Box 72
SEOUL
Tel: 555-7555, 555-5447
Telex: K27364 SAMSAN
A,CH,CM,CS,E,M,P

KUWAIT
Al-Khaldiya Trading \& Contracting
P.O. Box 830

SAFAT
Tel: 424910, 411726
Telex: 22481 AREEG KT
Cable: VISCOUNT
E,M,A
Photo \& Cine Equipment
P.O. Box 270

SAFAT
Tel: 2445111
Telex: 22247 MATIN KT
Cable: MATIN KUWAIT
P
W.J. Towell Computer Services
P.O. Box 75

SAFAT
Tel: 2462640/1
Telex: 30336 TOWELL KT
C
LEBANON
Computer information Systems
P.O. Box 11-6274

BEIRUT
Tel: 894073
Telex: 42309
C,E,M,P

LUXEMBOURG

Hewlett-Packard Belgium S.A./N.V
Blvd de la Woluwe, 100
Woluwedal
B-1200 BRUSSELS
Tel: (02) 762-32-00
Telex: 23-494 paloben bru
A,CH,CM,CS,E,M,P

MALAYSIA

Hewlett-Packard Sales (Malaysia)
Sdn. Bhd.
1st Floor, Bangunan British
American
Jalan Semantan, Damansara Heights
KUALA LUMPUR 23-03
Tel: 943022
Telex: MA31011
A,CH,E,M, ${ }^{*}$
Protel Engineering
P.O.Box 1917

Lot 6624, Section 64
23/4 Pending Road
Kuching, SARAWAK
Tel: 36299
Telex: MA 70904 PROMAL
Cable: PROTELENG
A,E,M
MALTA
Philip Toledo Ltd.
Notabile Rd.
MRIEHEL
Tel: 447 47, 45566
Telex: Media MW 649
E,P,M

MEXICO

Hewlett-Packard Mexicana, S.A.

de C.V.

Av. Periferico Sur No. 6501
Tepepan, Xochimilco
16020 MEXICO D.F.
Tel: 6-76-46-00
Telex: 17-74-507 HEWPACK MEX
A,CH,CS,E,M,P

Hewlett-Packard Mexicana, S.A.
de C.V.
Czda. del Valle
409 Ote. 1° Piso
Colonia del Valle
Municipio de Garza Garciá
66220 MONTERREY, Nuevo LeAOn
Tel: 784241
Telex: 038410
CH
Equipos Cientificos de Occidente, S.A.
Av. Lazaro Cardenas 3540
GUADALAJARA
Tel: 21-66-91
Telex: 0684186 ECOME A
Infograficas y Sistemas del Noreste, S.A.
Rio Orinoco \#171 Oriente
Despacho 2001
Colonia Del Valle
MONTERREY
Tel: 782499, 781259A
A

MOROCCO

Dolbeau
81 rue Karatchi
CASABLANCA
Tel: 3041-82, 3068-38
Telex: 23051, 22822
E
Gerep
2 rue d'Agadir
Boite Postale 156
CASABLANCA
Tel: 272093, 272095
Telex: 23739
P
Sema-Maroc
Rue Lapebie
CASABLANCA
Tel: 26.09.80
CH,CS, P

NETHERLANDS

Hewlett-Packard Nederland B.V.
Van Heuven Goedhartlaan 121
NL 1181KK AMSTELVEEN
P.O. Box 667

NL1180 AR AMSTELVEEN
Tel: (020) 47-20-21
Telex: 13216 HEPA NL
A,CH,CM,CS,E,M,P
Hewlett-Packard Nederland B.V.
Bongerd 2
NL 2906VK CAPELLE A/D IJSSEL
P.O. Box 41

NL 2900AA CAPELLE A/D IJSSEL
Tel: (10) 51-64-44
Telex: 21261 HEPAC NL
A,CH,CS,E
Hewlett-Packard Nederland B.V.
Pastoor Petersstraat 134-136
NL 5612 LV EINDHOVEN
P.O. Box 2342

NL 5600 CH EINDHOVEN
Tel: (040) 326911
Telex: 51484 hepae nl
A,CH**,E,M

Arranged alphabetically by country

Imtac LLC
P.O. Box 8676

MUTRAH
Tel: 601695
Telex: 5741 Tawoos On
A,C,M
PAKISTAN
Mushko \& Company Ltd.
House No. 16, Street No. 16
Sector F-6/3
ISLAMABAD
Tel: 824545
Cable: FEMUS Islamabad
A, E, M, P^{*}
Mushko \& Company Ltd.
Oosman Chảmbers
Abdullah Haroon Road
KARACHI 0302
Tel: 524131, 524132
Telex: 2894 MUSKO PK
Cable: COOPERATOR Karachi
A, E, M, P^{*}
PANAMA
ElectrOnico Balboa, S.A.
Calle Samuel Lewis, Ed. Alfa
Apartado 4929
PANAMA 5
Tel: 63-6613, 63-6748
Telex: 3483 ELECTRON PG
A,CM,E,M,P
PERU
Cia Electro Médica S.A.
Los Flamencos 145, San Isidro
Casilla 1030
LIMA 1
Tel: 41-4325, 41-3703
Telex: Pub. Booth 25306
$C M, E, M, P$
SAMS
Rio De La Plata 305
SAN ISIDRO
Tel: 419928
Telex: 39420450 PELIBERTAD
p
PHILIPPINES
The Online Advanced Systems
Corporation
Rico House, Amorsolo Cor. Herrera
Street
Legaspi Village, Makati
P.O. Box 1510

Metro MANILA
Tel: 815-38-11 (up to 16)
Telex: 63274 Online PN
A,CH,CS,E,M
Electronic Specialists and
Proponents Inc.
690-B Epifanio de los Santos
Avenue
Cubao, QUEZON CITY
P.O. Box 2649 Manila

Tel: 98-96-81, 98-96-82, 98-96-83
Telex: 40018, 42000 ITT GLOBE MAC-
KAY BOOTH
P

PORTUGAL
Mundinter
Intercambio Mundial de ComAErcio
S.A.R.L.
P.O. Box 2761

Av. Antonio Augusto de Aguiar 138
PLISBON
Tel: (19) 53-21-31, 53-21-37
Telex: 16691 munter p
M
Soquimica
Av. da Liberdade, 220-2
1298 LISBOA Codex
Tel: 56 2181/2/3
Telex: 13316 SABASA
P
Telectra-Empresa Técnica de
Equipmentos Eléctricos S.A.R.L.
Rua Rodrigo da Fonseca 103
P.O. Box 2531

P-LISBON 1
Tel: (19) 68-60-72
Telex: 12598
CM,E
Rarcentro Ltda
R. Costa Cabral 575

4200 PORTO
Tel: 499174/495173
Telex: 26054
CH,CS
PUERTO RICO
Hewlett-Packard Puerto Rico
101 MuANoz Rivera Av
Esu. Calle Ochoa
HATO REY, Puerto Rico 00918
Tel: (809) 754-7800
A,CH,CS,CM,M,E,P

QATAR

Computer Arabia
P.O. Box 2750

DOHA

Tel: 883555
Telex: 4806 CHPARB
P
Nasser Trading \& Contracting
P.O.Box 1563

DOHA

Tel: 422170
Telex: 4439 NASSER DH
M
SAUDI ARABIA
Modern Electronic Establishment
Hewlett-Packard Division
P.O. Box 281

Thuobah
AL-KHOBAR
Tel: 895-1760, 895-1764
Telex: 671106 HPMEEK SJ
Cable: ELECTA AL-KHOBAR
CH,CS,E,M
Modern Electronic Estabishment
Hewlett-Packard Division
P.O. Box 1228

Redec Plaza, 6th Floor
JEDDAH
Tel: 6443848
Telex: 402712 FARNAS SJ
Cable: ELECTA JEDDAH
A,CH,CS,CM,E,M, P

Modern Electronic Establishment
Hewlett-Packard Division
P.O.Box 22015

RIYADH
Tel: 491-97 15, 491-63 87
Telex: 202049 MEERYD SJ
CH,CS,E,M
Abdul Ghani EI Ajou
P.O. Box 78

RIYADH
Tel: 4041717
Telex: 200932 EL AJOU
P
SCOTLAND
See United Kingdom
SINGAPORE
Hewlett-Packard Singapore (Sales)
Pte. Ltd.
\#08-00 Inchcape House
450-2 Alexandra Road
P.O. Box 58 Alexandra Rd. Post

Office
SINGAPORE, 9115
Tel: 631788
Telex: HPSGSO RS 34209
Cable: HEWPACK, Singapore
A,CH,CS,E,MS,P
Dynamar International Ltd.
Unit 05-11Block 6
Kolam Ayer Industrial Estate
SINGAPORE 1334
Tel: 747-6188
Telex: RS 26283
CM

SOUTH AFRICA

Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 120

Howard Place CAPE PROVINCE 7450
Pine Park Center, Forest Drive, Pine-
lands
CAPE PROVINCE 7405
Tel: 53-7954
Telex: 57-20006
A,CH,CM,E,M,P
Hewlett-Packard So Africa (Pty.) Ltd.
P.O. Box 37099

Overport Drive 92
DURBAN 4067
Tel: 28-4178
Telex: 6-22954
CH,CM
Hewlett-Packard So Africa (Pty.) Ltd.
6 Linton Arcade
511 Cape Road
Linton Grange
PORT ELIZABETH 6001
Tel: 041-301201
CH
Hewlett-Packard So Africa (Pty.) Ltd.
Fountain Center
Kalkden Str.
Monument Park
Ext 2
PRETORIA 0105
Tel: 45-5723
Telex: 32163
CH, E

SOUTH AFRICA (Cont'd)
Hewlett-Packard So Africa (Pty.) Ltd.
Private Bag Wendywood
SANDTON 2144
Tel: 802-5111, 802-5125
Telex: 4-20877
Cable: HEWPACK Johannesburg
A,CH,CM,CS,E,M,P

SPAIN

Hewlett-Packard Española S.A.
Calle Entenza, 321
E-BARCELONA 29
Tel: 322.24.51, 321.73.54
Telex: 52603 hpbee
A,CH,CS, E,M,P
Hewlett-Packard Española S.A.
Calle San Vicente S/No
Edificio Albia II 7B
E-BILBAO 1
Tel: 423.83.06
A,CH,E,M
Hewlett-Packard Española S.A.
Crta. de la Coruña, Km. 16, 400
Las Rozas
E-MADRID
Tel: (1) 637.00.11
Telex: 23515 HPE
CH,CS,M
Hewlett-Packard Española S.A.
Avda. S. Francisco Javier, S/no
Planta 10. Edificio Sevilla 2,
E-SEVILLA 5
Tel: 64.44.54
Telex: 72933
A,CS,M,P
Hewlett-Packard Española S.A.
C/lsabel La Catolica, 8
E-46004 VALENCIA
Tel: 0034/6/35159 44
CH, P
SWEDEN
Hewlett-Packard Sverige AB
Sunnanvagen 14 K
S-22226 LUND
Tel: (046) 13-69-79
Telex: (854) 17886 (via Spånga
office)
CH
Hewlett-Packard Sverige $A B$
Östra Tullgatan 3
S-21128 MALMÖ
Tel: (040) 70270
Telex: (854) 17886 (via Spånga
office)
Hewlett-Packard Sverige AB
Våstra Vintergatan 9
S-70344 ÖREBRO
Tel: (19) 10-48-80
Telex: (854) 17886 (via Spånga
office)
CH
Hewlett-Packard Sverige AB
Skalholtsgatan 9, Kista
Box 19
S-16393 SPÅNGA
Tel: (08) 750-2000
Telex: (854) 17886
Telefax: (08) 7527781
A,CH,CM,CS,E,M,P

Hewlett-Packard Sverige AB
Frötallisgatan 30
S-42 132 VÄSTRA-FRÖLUNDA
Tel: (031) 49-09-50
Telex: (854) 17886 (via Spånga
office)
CH,E,P

SWITZERLAND

Hewlett-Packard (Schweiz) AG
Clarastrasse 12
CH-4058 BASEL
Tel: (61) 33-59-20
A
Hewlett-Packard (Schweiz) AG
7, rue du Bois-du-Lan
Case Postale 365
CH-1217 MEYRIN 2
Tel: (0041) 22-83-11-11
Telex:27333 HPAG CH
CH,CM,CS
Hewlett-Packard (Schweiz) AG
Allmend 2
CH-8967 WIDEN
Tel: (0041) 57312111
Telex: 53933 hpag ch
Cable: HPAG CH
A,CH,CM,CS,E,M,P

SYRIA

General Electronic Inc.
Nuri Basha Ahnaf Ebn Kays Street
P.O. Box 5781

DAMASCUS
Tel: 33-24-87
Telex: 411215
Cable: ELECTROBOR DAMASCUS
E
Middle East Electronics
P.O.Box 2308

Abu Rumnaneh
DAMASCUS
Tel: 334592
Telex: 411304
M

TAIWAN

Hewlett-Packard Taiwan
Kaohsiung Office
11/F 456, Chung Hsiao 1st Road
KAOHSIUNG
Tel: (07) 2412318
CH,CS,E
Hewlett-Packard Taiwan
8th Floor Hewlett-Packard Building
337 Fu Hsing North Road
TAIPEI
Tel: (02) 712-0404
Telex: 24439 HEWPACK
Cable:HEWPACK Taipei
A,CH,CM,CS,E,M,P
Ing Lih Trading Co.
3rd Floor, 7 Jen-Ai Road, Sec. 2
TAIPEI 100
Tel: (02) 3948191
Cable: INGLIH TAIPEI
A

THAILAND

Unimesa
30 Patpong Ave., Suriwong
BANGKOK 5
Tel: 235-5727
Telex: 84439 Simonco TH
Cable: UNIMESA Bangkok
A,CH,CS,E,M
Bangkok Business Equipment Ltd.
5/5-6 Dejo Road
BANGKOK
Tel: 234-8670, 234-8671
Telex: 87669-BEQUIPT TH
Cable: BUSIQUIPT Bangkok
P
TOGO
Societe Africaine De
Promotion
B.P. 12271

LOME
Tel: 21-62-88
Telex: 5304
P
TRINIDAD \& TOBAGO
Caribbean Telecoms Ltd.
Corner McAllister Street \&
Eastern Main Road, Laventille
P.O. Box 732

PORT-OF-SPAIN
Tel: 624-4213
Telex: 22561 CARTEL WG
Cable: CARTEL, PORT OF SPAIN
CM,, , M,P
Computer and Controls Ltd.
P.O. Box 51

66 Independence Square
PORT-OF-SPAIN
Tel: 623-4472
Telex: 3000 POSTLX WG
P

TUNISIA

Tunisie Electronique
31 Avenue de la Liberte
TUNIS
Tel: 280-144
CH,CS,E,P
Corema
1 ter. Av. de Carthage
TUNIS
Tel: 253-821
Telex: 12319 CABAM TN
M
TURKEY
E.M.A

Mediha Eldem Sokak No. 41/6
Yenisehir
ANKARA
Tel: 319175
Telex: 42321 KTX TR
Cable: EMATRADE ANKARA

M

Kurt \& Kurt A.S.
Mithatpasa Caddesi No. 75
Kat 4 Kizilay
ANKARA
Tel: 318875/6/7/8
Telex: 42490 MESR TR

Saniva Bilgisayar Sistemleri A.S.
Buyukdere Caddesi 103/6
Gayrettepe

ISTANBUL

Tel: 1673180
Telex: 26345 SANI TR

C, P

Teknim Company Ltd.
Iran Caddesi No. 7
Kavaklidere
ANKARA
Tel: 275800
Telex: 42155 TKNM TR
E,CM

UNITED ARAB

EMIRATES

Emitac Ltd.
P.O. Box 1641

SHARJAH,
Tel: 591181
Telex: 68136 EMITAC EM
Cable: EMITAC SHARJAH
E, C, M, P, A
Emitac Ltd.
P.O. Box 2711

ABU DHABI,
Tel: 820419-20
Cable: EMITACH ABUDHABI
Emitac Ltd.
P.O. Box 8391

DUBAI,
Tel: 377951
Emitac Ltd.
P.O. Box 473

RAS AL KHAIMAH,
Tel: 28133, 21270
UNITED KINGDOM
GREAT BRITAIN
Hewlett-Packard Ltd.
Trafalgar House
Navigation Road
ALTRINCHAM
Cheshire WA 14 INU
Tel: 0619286422
Telex: 668068
A,CH,CS,E,M,M,P
Hewlett-Packard Ltd.
Miller House
The Ring, Bracknell
Berks RG12 1XN
Tel: 44344424898
Telex: 848733
E
Hewlett-Packard Ltd.
Elstree House, Elstree Way
bOREHAMWOOD, Herts WD6 1SG
Tel: 012075000
Telex: 8952716
E,CH,CS,P
Hewlett-Packard Ltd.
Oakfield House, Oakfield Grove
Clifton BRISTOL, Avon BS8 2BN
Tel: 0272736806
Telex: 444302
CH,CS,E,P

SALES \& SUPPORT OFFICES

Arranged alphabetically by country

GREAT BRITAIN (Cont'd)

Hewlett-Packard Ltd.
Bridewell House
Bridewell Place
LONDON EC4V CBS
Tel: 015836565
Telex: 298163
CH,CS,P
Hewlett-Packard Ltd.
Fourier House
257-263 High Street
LONDON COLEY
Herts. AL2 1HA, St. Albans
Tel: 072724400
Telex: 1-8952716
CH,CS
Hewlett-Packard Ltd.
Pontefract Road
NORMANTON, West Yorkshire WF6 1RN
Tel: 0924895566
Telex: 557355
CH,CS,P
Hewlett-Packard Ltd.
The Quadrangle
106-118 Station Road
REDHILL, Surrey RH1 1PS
Tel: 073768655
Telex: 947234
CH,CS,E,P
Hewlett-Packard Ltd.
Avon House
435 Stratford Road
Shirley, SOLIHULL, West Midlands
B90 ABL
Tel: 0217458800
Telex: 339105
CH,CS,E,P
Hewlett-Packard Ltd.
West End House
41 High Street, West End
SOUTHAMPTON
Hampshire S03 3DQ
Tel: 042186767
Telex: 477138
CH,CS,P
Hewlett-Packard Ltd.
King Street Lane
Winnersh, WOKINGHAM
Berkshire RG115AR
Tel: 0734784774
Telex: 847178
A,CH,CS,E,M,P
Hewlett-Packard Ltd.
Nine Mile Ride
Easthampstead, WOKINGHAM
Berkshire, 3RG11 3LL
Tel: 0344773100
Telex: 848805
CH,CS,E,P

IRELAND

NORTHERN IRELAND
Hewlett-Packard Ltd.
Cardiac Services Building
95A Finaghy Road South
BELFAST BT 10 OBY
Tel: 0232 625-566
Telex: 747626
CH,CS

SCOTLAND
Hewlett-Packard Ltd. SOUTH QUEENSFERRY
West Lothian, EH30 9TG
Tel: 0313311188
Telex: 72682
СН,СМ,CS,E,M,P

UNITED STATES

Alabama

Hewlett-Packard Co.
700 Century Park South, Suite 128
BIRMINGHAM, AL 35226
Tel: (205) 822-6802
C,CH,CS,P*
Hewlett-Packard Co.
420 Wynn Drive
P.O. Box 7700

HUNTSVILLE, AL 35807
Tel: (205) 830-2000
C,CH,CM,CS,E,M*

Alaska

Hewlett-Packard Co.
3601 C St., Suite 1234
ANCHORAGE, AK 99503
Tel: (907) 563-8855
CH,CS,E

Arizona

Hewlett-Packard Co. 8080 Pointe Parkway West
PHOENIX, AZ 85044
Tel: (602) 273-8000
A,CH,CM,CS,E,M
Hewlett-Packard Co.
2424 East Aragon Road
TUCSON, AZ 85706
Tel: (602) 573-7400
CH ,EM**

California

Hewlett-Packard Co.
99 South Hill Dr.
BRISBANE, CA 94005
Tel: (415) 330-2500
CH, CS
Hewlett-Packard Co.
P.O. Box 7830 (93747)

5060 E. Clinton Avenue, Suite 102
FRESNO, CA 93727
Tel: (209) 252-9652
CH,CS,M
Hewlett-Packard Co
1421 S. Manhattan Av.
FULLERTON, CA 92631
Tel: (714) 999-6700
CH,CM,CS,E,M
Hewlett-Packard Co.
320 S. Kellogg, Suite B
GOLETA, CA 93117
Tel: (805) 967-3405
CH
Hewlett-Packard Co.
5400 W. Rosecrans Blvd
LAWNDALE, CA 90260
P.O. Box 92105

LOS ANGELES, CA 90009
Tel: (213) 643-7500
Telex: 910-325-6608
CH,CM,CS,M

Hewlett-Packard Co
3155 Porter Drive
PALI ALTO, CA 94304
Tel: (415) 857-8000
CH,CS,E
Hewlett-Packard Co.
4244 So. Market Court, Suite A
P.O. Box 15976

SACRAMENTO, CA 95813
Tel: (916) 929-7222
A*,CH,CS,E,M
Hewlett-Packard Co.
9606 Aero Drive
P.O. Box 23333

SAN DIEGO, CA 92123
Tel: (619) 279-3200
CH,CM,CS,E,M
Hewlett-Packard Co.
2305 Camino Ramon 'C'
SAN RAMON, CA 94583
Tel: (415) 838-5900
CH, CS
Hewlett-Packard Co.
3005 Scott Boulevard
SANTA CLARA, CA 95050
Tel: (408) 988-7000
Telex: 910-338-0586
A,CH,CM,CS,E,M
Hewlett-Packard Co.
5703 Corsa Avenue
WESTLAKE VILLAGE, CA 91362
Tel: (213) 706-6800
$\mathrm{E}^{*}, \mathrm{CH}^{*}, \mathrm{CS}^{*}$

Colorado

Hewlett-Packard Co.
24 Inverness Place, East
INGLEWOOD, CO 80112
Tel: (303) 649-5000
A,CH,CM,CS,E,M
Connecticut
EH. Dec. 1, 1984
Hewlett-Packard Co.
500 Sylvan Av.
BRIDGEPORT, CT 06606
Tel: (203) 371-6454
CH,CS,E
Hewlett-Packard Co.
47 Barnes Industrial Road South
P.O. Box 5007

WALLINGFORD, CT 06492
Tel: (203) 265-7801
A,CH,CM,CS,E,M

Florida

Hewlett-Packard Co.
2901 N.W. 62nd Street
P.O. Box 24210

FORT LAUDERDALE, FL 33307
Tel: (305) 973-2600
CH,CS,E,M, P*
Hewlett-Packard Co.
4080 Woodcock Drive, Suite 132
JACKSONVILLE, FL 32207
Tel: (904) 398-0663
C*, $\mathrm{CH}^{*}, \mathrm{M}^{* *}$

Hewlett-Packard Co. 6177 Lake Ellenor Drive
P.O. Box 13910

ORLANDO, FL 32859
Tel: (305) 859-2900
A,C,CH,CM,CS,E,P*
Hewlett-Packard Co.
4700 Bayous Blvd.
Building 5
PENSACOLA, FL 32505
Tel: (904) 476-8422
A,C,CH,CM,CS,M
Hewlett-Packard Co.
5550 Idlewild, \#150
P.O. Box 15200

TAMPA, FL 33684
Tel: (813) 884-3282
$A^{*}, C, C H, C S, E^{*}, M^{*}, P^{*}$

Georgia

Hewlett-Packard Co.
2000 South Park Place
P.O. Box 105005

ATLANTA, GA 30348
Tel: (404) 955-1500
Telex: 810-766-4890
A,C,CH,CM,CS,E,M, P*
Hawaii
Hewlett-Packard Co.
Kawaiahao Plaza, Suite 190
567 South King Street
HONOLULU, HI 96813
Tel: (808) 526-1555
A,CH,E,M

Illinois

Hewlett-Packard Co
304 Eldorado Road
P.O. Box 1607

BLOOMINGTON, IL 61701
Tel: (309) 662-9411
CH ,M**
Hewlett-Packard Co.
525 W. Monroe, \#1300
CHICAGO, IL 60606
Tel: (312) 930-0010
CH, CS
Hewlett-Packard Co.
1200 Diehl
NAPERVILLE, IL 60566
Tel: (312) 357-8800
CH^{*}, CS
Hewlett-Packard Co.
5201 Tollview Drive
rive

\qquad

\qquad

'
\square

\author{
\author{

}
}

\qquad
1
1
0
\square
\square
\square

\qquad

ROLLING MEADOWS, IL 60008
Tel: (312) 255-9800
Telex: 910-687-1066
A,CH,CM,CS,E,M

Indiana

Hewlett-Packard Co. 11911 N. Meridian St.
CARMEL, IN 46032
Tel: (317) 844-4 100
A,CH,CM,CS,E,M

Iowa

Hewlett-Packard Co.
4070 22nd Av. SW
CEDAR RAPIDS, IA 52404
Tel: (319) 390-4250
CH,CS,E,M
\square

,

.
,CS,E,M
\square

\qquad

都

UNITED STATES (Cont'd)

Hewlett-Packard Co.
4201 Corporate Dr.
WEST DES MOINES, IA 50265
Tel: (515) 224-1435
A**, $\mathrm{CH}, \mathrm{M}^{* *}$

Kentucky

Hewlett-Packard Co. 10300 Linn Station Road, \#100
LOUISVILLE, KY 40223
Tel: (502) 426-0100
A,CH,CS,M
Louisiana
Hewlett-Packard Co.
160 James Drive East
ST. ROSE, LA 70087
P.O. Box 1449

KENNER, LA 70063
Tel: (504) 467-4100
A,C,CH,E,M,P*

Maryland

Hewlett-Packard Co. 3701 Koppers Street BALTIMORE, MD 21227
Tel: (301) 644-5800
Telex: 710-862-1943
A,CH,CM,CS,E,M
Hewlett-Packard Co.
2 Choke Cherry Road
ROCKVILLE, MD 20850
Tel: (301) 948-6370
A,CH,CM,CS,E,M
Massachusetts
Hewlett-Packard Co.
1775 Minuteman Road
ANDOVER, MA 01810
Tel: (617) 682-1500
A,C,CH,CS,CM,E,M,P*
Hewlett-Packard Co.
32 Hartwell Avenue
LEXINGTON, MA 02173
Tel: (617) 861-8960 CH,CS,E
Michigan
Hewlett-Packard Co.
4326 Cascade Road S.E.
GRAND RAPIDS, MI 49506
Tel: (616) 957-1970
CH,CS,M
Hewlett-Packard Co. 39550 Orchard Hill Place Drive
NOVI, MI 48050
Tel: (313) 349-9200
A,CH,CS,E,M
Hewlett-Packard Co.
1771 W. Big Beaver Road
TROY, M1 48084
Tel: (313) 643-6474
сн,CS

Minnesota

Hewlett-Packard Co.
2025 W. Larpenteur Ave.
ST. PAUL, MN 55113
Tel: (612) 644-1100 A,CH,CM,CS,E,M

Missouri
Hewlett-Packard Co.
1001 E. 101st Terrace
KANSAS CITY, MO 64131
Tel: (816) 941-0411
A,CH,CM,CS,E,M
Hewlett-Packard Co.
13001 Hollenberg Drive
BRIDGETON, MO 63044
Tel: (314) 344-5100
A,CH,CS,E,M
Nebraska
Hewlett-Packard 10824 Old Mill Rd., Suite 3
OMAHA, NE 68154
Tel: (402) 334-1813
СМ, M

New Jersey

Hewlett-Packard Co.
120 W. Century Road
PARAMUS, NJ 07652
Tel: (201) 265-5000
A,CH,CM,CS,E,M
Hewlett-Packard Co. 20 New England Av. West
PISCATAWAY, NJ 08854
Tel: (201) 981 1-199
A,CH,CM,CS,E

New Mexico

Hewlett-Packard Co
11300 Lomas Blvd.,N.E.
P.O. Box 11634

ALBUQUERQUE, NM 87112
Tel: (505) 292-1330
CH,CS,E,M

New York

Hewlett-Packard Co.
5 Computer Drive South
ALBANY, NY 12205
Tel: (518) 458-1550
A,CH,E,M
Hewlett-Packard Co.
9600 Main Street
P.O. Box AC

CLARENCE, NY 14031
Tel: (716) 759-8621
CH,CS,E
Hewlett-Packard Co.
200 Cross Keys Office Park
FAIRPORT, NY 14450
Tel: (716) 223-9950
A,CH,CM,CS,E,M
Hewlett-Packard Co.
7641 Henry Clay Blvd.
LIVERPOOL, NY 13088
Tel: (315) 451-1820
A,CH,CM,CS,E,M
Hewlett-Packard Co.
No. 1 Pennsylvania Plaza
55th Floor
34th Street \& 8th Avenue
MANHATTAN NY 10119
Tel: (212) 971-0800
CH,CS, M ${ }^{*}$
Hewlett-Packard Co.
15 Myers Corner Rd.
WAPPINGER FALLS, NY 12590
CM, E

Hewlett-Packard Co.
250 Westchester Avenue
WHITE PLAINS, NY 10604
Tel: (914) 684-6100
CM,CH,CS,E
Hewlett-Packard Co.
3 Crossways Park West
WOODBURY, NY 11797
Tel: (516) 921-0300
A,CH,CM,CS,E,M
North Carolina
Hewlett-Packard Co.
305 Gregson Dr.
CARY, NC 27511
Tel: (919) 467-6600
C,CH,CM,CS,E,M,P*
Hewlett-Packard Co.
$9600-\mathrm{H}$ Southern Pine Blivd.
CHARLOTTE, NC 28210
Tel: (704) 527-8780
CH^{*}, CS^{*}
Hewlett-Packard Co.
5605 Roanne Way
P.O. Box 26500

GREENSBORO, NC 27420
Tel: (919) 852-1800
A,C,CH,CM,CS,E,M,P*
Ohio
Hewlett-Packard Co.
9920 Carver Road
CINCINNATI, OH 45242
Tel: (513) 891-9870
CH,CS,M
Hewlett-Packard Co.
16500 Sprague Road
CLEVELAND, OH 44130
Tel: (216) 243-7300
A,CH,CM,CS,E,M
Hewlett-Packard Co. 980 Springboro Pike
MIAMISBURG, OH 45343
Tel: (513) 859-8202
A,CH,CM, E*, M
Hewlett-Packard Co. 675 Brooksedge Blvd. WESTERVILLE, OH 43081
Tel: (614) 436-1041
СН,CM,CS,E*

Oklahoma

Hewlett-Packard Co.
304 N. Meridian, Suite A
P.O. Box 75609

OKLAHOMA CITY, OK 73147
Tel: (405) 946-9499
C,CH,CS,E*,M
Hewlett-Packard Co.
3840 S. 103rd E. Ave., \#100
P.O. Box 35747

TULSA, OK 74153
Tel: (918) 665-3300
$\mathrm{A}^{* *}, \mathrm{C}, \mathrm{CH}, \mathrm{CS}, \mathrm{M}^{*}, \mathrm{E}, \mathrm{P}^{*}$

Oregon

Hewlett-Packard Co.
9255 S. W. Pioneer Court
P.O. Box 328

WILSONVILLE, OR 97070
Tel: (503) 682-8000
A,CH,CS,E*,M

Pennsylvania

Hewlett-Packard Co.
50 Dorchester Rd.
P.O. Box 6080

HARRISBURG, PA 17111
Tel: (717) 657-5900
C
Hewlett-Packard Co.
111 Zeta Drive
PITTSBURGH, PA 15238
Tel: (412) 782-0400
A,CH,CS,E,M
Hewlett-Packard Co.
2750 Monroe Boulevard
P.O. Box 713

VALLEY FORGE, PA 19482
Tel: (215) 666-9000
A,CH,CM,CS,E,M
South Carolina
Hewlett-Packard Co.
Brookside Park, Suite 122
1 Harbison Way
P.O. Box 21708

COLUMBIA, SC 29221
Tel: (803) 732-0400
A,C,CH,CS,M
Hewlett-Packard Co.
100 Executive Cntr. Dr.
Koger Executive Center
Chesterfield Bldg., Suite 124
GREENVILEE, SC 29615
Tel: (803) 297-4120
C

Tennessee

Hewlett-Packard Co.
One Energy Centr. \#200
Pellissippi Pkwy.
P.O. Box 22490

KNOXVILLE, TN 37933
Tel: (615) 966-4747
A,C,CH,CS,M
Hewlett-Packard Co.
3070 Directors Row
MEMPHIS, TN 38131
Tel: (901) 346-8370
A,C,M
Hewlett-Packard Co.
220 Great Circle Road, Suite 116
NASHVILLE, TN 37228
Tel: (615) 255-1271
C,M, ${ }^{*}{ }^{*}$

Texas

Hewlett-Packard Co.
11002-B Metric Boulevard
AUSTIN, TX 78758
Tel: (512) 835-6771
C,CM,E,P*
Hewlett-Packard Co.
5700 Cromo Dr
P.O. Box 12903

ELPASO, TX 79913
Tel: (915) 833-4400
CH, $\mathrm{E}^{*}, \mathrm{M}^{*}$ *

SALES \& SUPPORT OFFICES

Arranged alphabetically by country

UNITED STATES (Conl'd)
Hewlett-Packard Co. 3952 Sand Shell St FORT WORTH, TX 76137
Tel: (817) 232-9500
A,C,CH,E,M
Hewlett-Packard Co.
10535 Harwin Drive
P.O. Box 42816

HOUSTON, TX 77042
Tel: (713) 776-6400
A,C,CH,CS,E,M, P*
Hewlett-Packard Co. 511 W. John W. Carpenter Fwy.
Royal Tech. Center \#100
IRVINE, TX 75062
Tel: (214) 556-1950
C,CH,CS,E
Hewlett-Packard Co.
930 E. Campbell Rd.
P.O. Box 83/1270

RICHARDSON, TX 75083-1270
Tel: (214) 231-6101
A,CH,CM,CS,E,M,P*
Hewlett-Packard Co.
1020 Central Parkway South
P.O. Box 32993

SAN ANTONIO, TX 78232

Tel: (512) 494-9336
A,C,CH,CS,E,M,P*

Utah

Hewlett-Packard Co.
3530 W. 2100 South
P.O. Box 26626

SALT LAKE CITY, UT 84126
Tel: (801) 974-1700
A,CH,CS,E,M

Virginia

Hewlett-Packard Co.
4305 Cox Road
GLEN ALLEN, VA 23060
P.O. Box 9669

RICHMOND, VA 23228
Tel: (804) 747-7750
A,C,CH,CS,E,M,P*

Washington

Hewlett-Packard Co.
15815 S.E. 37th Street BELLEVUE, WA 98006
Tel: (206) 643-4000
A,CH,CM,CS,E,M

Hewlett-Packard Co. 708 North Argonne Road P.O. Box 3808 SPOKANE, WA 99220-3808
Tel: (509) 922-7000
CH, CS

West Virginia

Hewlett-Packard Co.
4604 MacCorkle Ave.
CHARLESTON, WV 25304
Tel: (304) 925-0492

A,M

Wisconsin
Hewlett-Packard Co. 275 N. Corporate Dr. BROOKFIELD, WI 53005
Tel: (414) 784-8800
A,CH,CS,E*,M

URUGUAY

Pablo Ferrando S.A.C. el.
Avenida Italia 2877
Casilla de Correo 370
MONTEVIDEO
Tel: 80-2586
Telex: Public Booth 901
$A, C M, E, M$
Mini Computadores, Ltda.
Avda. del Libertador Brig
Gral Lavalleja 2071
Local 007
MONTEVIDEO
Tel: 29-55-22
Telex: 901 P BOOTH UY P
Olympia de Uruguay S.A.
Maquines de Oficina
Avda. del Libertador 1997
Casilla de Correos 6644
MONTEVIDEO
Tel: 91-1809, 98.-3807
Telex: 6342 OROU UY
P

VENEZUELA

Hewlett-Packard de Venezuela C.A.
3RA Transversal Los Ruices Norte
Edificio Segre 1, 2 \& 3
Apartado 50933
CARACAS 1071
Tel: 239-4133
Telex: 251046 HEWPACK
A,CH,CS,E,M,P
Hewlett-Packard de Venezuela C.A.
Residencias Tia Betty Local 1
Avenida 3 y con calfe 75
MARACAIBO, Estado Zulia
Apartado 2646
Tel: (061) 75801-75805-75806-
80304
Telex: 62464 HPMAR
C, ${ }^{*}$
Hewlett-Packard de Venezuela C.A.
Urb. Lomas de Este
Torre Trebol - Piso 11
VALENCIA, Estado Carabobo
Apartado 3347
Tel: (041) 222992/223024
CH,CS,P
Albis Venezolana S.R.L.
Av. Las Marias, Ota. Alix,
EI Pedregal
Apartado 81025
CARACAS 1080A
Tel: 747984, 742146
Telex: 24009 ALBIS VC
A
Tecnologica Medica del Caribe, C.A.
Multicentro Empresarial del Este
Ave. Libertador
Edif. Libertador
Nucleo "C" - Oficina 51-52

CARACAS

Tel: $339867 / 333780$
M

CIZUCA

Cientifica Zulia C.A.
Calle 70, Los Olivos
No. 66-86
Apartado 1843
MARACAIBO
Tel: 54-64-37, 54-63-85, 54-64-94
Telex: 62144
A
YUGOSLAVIA
Do Hermes
General Zdanova 4
Telex: YU-11000 BEOGRAD
$A, C H, E, P$
Hermes
Titova 50
Telex: YU-61000 LJUBLJANA
CH,CS,E,M,P
Elektrotehna
Titova 51
Telex: YU-61000 LJUBLJANA
CM
ZAMBIA
R.J. Tilbury (Zambia) Ltd.
P.O. Box 32792

LUSAKA
Tel: 215590
Telex: 40128
E
ZIMBABWE
Field Technical Sales
45 Kelvin Road, North
P.B. 3458

SALISBURY
Tel: 705231
Telex: 4-122 RH
E,P
August 1984
HP distributors are printed in italics.

[^0]: If the test instruction "skips", the conditional breakpoint will "break". If not, DBUGR will proceed. The conditional breakpoint may be counted with the $n \backslash \backslash p$ command. In this case the conditions will be checked before the breakpoint is counted. A count is made only if a break would have been made. Therefore, $n \backslash \backslash P$ will count n breaks before printing a break message.

[^1]: * Depressing the Control key while typing an upper case letter produces the corresponding control code on most terminals. For example,
 Control-H is a backspace.

[^2]: Notes: 'This is the standard display representation. The software and hardware in your system determine if the control code is
 ${ }^{2}$ Escape is the first character of a special control sequence. For example, ESC followed by " J " clears the display on a 2640
 ²Delete may be displayed as "__", "@", or space.
 ${ }^{4}$ Normally, the caret and underline are displayed. Some devices substitute the up arrow and back arrow.
 5Some devices upshift lower case letters and symbols (' through -) to the corresponding upper case character (@
 through A). For example, the left brace would be converted to a left bracket.

