
u

0

' \
I I
\._,)

BASIC 5.0f5.1
Interfacing Techniques

Vol. 1: General Topics

HP 9000 Series 200/300 Computers

HP Part Number 98613-90022

Ffin- HEWLETT
.:~PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETT-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1987

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3Xii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Use of this manual and flexible disc(s) or tape cartridge(s) supplied for this pack is restricted to this product only. Additional copies of the programs
can be made for security and back-up purposes only. Resale of the programs in their present form or with alterations, is expressly prohibited.

Copyright© AT&T, Inc. 1980, 1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

(. ..__.,/

(
I .

"--"

Printing History
New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

January 1987 ... Edition 1

November 1987 ... Edition 2. This edition reflects the 5.0 corrections and 5.1 additions.

98613-90022, rev: 11/87 iii

,)

(~
')

iv

u

(
~I

(' -.._.,./

Table of Contents

Chapter 1: Manual Overview
Introduction. 1-1
Manual Organization .. 1-1

Where to Begin. 1-1
Chapter Previews ... 1-2

Interfacing Techniques Volume 1 . 1-2
Interfacing Techniques Volume 2 . 1-3

Chapter 2: Interfacing Concepts
Terminology . 2-1
Why Do You Need an Interface? .. 2-4

Electrical and Mechanical Compatibility . 2-5
Data Compatibility . 2-6
Timing Compatibility . 2-6
Additional Interface Functions . 2-6

Interface Overview . 2-7
The HP-IB Interface .. 2-7
The RS-232C Serial Interface . 2-8
The Datacomm Interface. 2-9
The GPIO Interface .. 2-10
The BCD Interface ... 2-11

Data Representations. 2-12
Bits and Bytes . 2-12
Representing Numbers .. 2-13
Representing Characters . 2-14
Representing Signed Integers . 2-14
Representing Real Numbers . 2-17

The I/0 Process . 2-19
I/0 Statements and Parameters 2-19
Data Handshake . 2-20

I/0 Examples . 2-21
Example Output Statement . 2-21
Example Enter Statement . 2-23

Table of Contents v

Chapter 3: Directing Data Flow
Specifying a Resource . 3-2

String-Variable Names ... 3-2
Device Selectors . 3-4
HP-IB Device Selectors . 3-6
1/0 Path Names .. 3-7

Assigning 1/0 Path Names ... 3-9
Re-Assigning 1/0 Path Names 3-11
Closing 1/0 Path Names .. 3-11

1/0 Path Names in Subprograms . 3-12
Assigning 1/0 Path Names Locally Within Subprograms 3-12
Passing 1/0 Path Names as Parameters 3-14
Declaring 1/0 Path Names in Common 3-14

Benefits of Using 1/0 Path Names . 3-15
Execution Speed . 3-15
Re-Directing Data . 3-16
Attribute Control . 3-17

Chapter 4: Outputting Data
Introduction .. 4-1
Free-Field Outputs. 4-2

The Free-Field Convention ... 4-2
Item Separators and Terminators . 4-3
Changing the EOL Sequence (Requires 10) . 4-6

Using END in Freefield OUTPUT 4-8
Additional Definition . 4-8

Outputs that Use Images . 4-10
The OUTPUT USING Statement 4-10

Images .. . 4-11
Example of Using an Image 4-12

Image Definitions During Outputs 4-13
Numeric Images .. . 4-14
String Images .. . 4-17
Binary Images .. . 4-18
Special-Character Images .. . 4-20
Termination Images 4-21

Additional Image Features 4-22
Repeat Factors 4-22
Image Re-Use .. . 4-23
Nested Images .. . 4-24

END with OUTPUTs that Use Images 4-25
Additional END Definition 4-26

vi Table of Contents

()

·~
I

f)

/
l I

"--"'

(I

"-''

Chapter 5: Entering Data
Free-Field Enters 0 5-1

Item Separators 0 5-2
Item Terminators 0 0 0 0 0 0 0 o o 0 5-2
Entering Numeric Data with the Number Builder 0 5-3
Entering String Data 0 5-8

Terminating Free-Field ENTER Statements 0 5-11
EOI Termination o o o o o o o o o o o o o o 0 5-12

Enters that Use Images 0 5-14
The ENTER USING Statement 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 5-14

Images 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 5-15
Example of an Enter Using an Image 0 5-15

Image Definitions During Enter 0 5-17
Numeric Images 0 5-17
String Images 0 5-19
Ignoring Characters 0 5-20
Binary Images 0 5-21

Terminating Enters that Use Images 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-22
Default Termination Conditions 0 o 0 5-22
EOI Re-Definition 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-23
Statement-Termination Modifiers 0 5-24

Additional Image Features 0 5-26
Repeat Factors 0 5-26
Image Re-Use 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5-26
Nested Images 0 5-26

Chapter 6: Registers
Interface Registers 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-2

The STATUS Statement 0 0 0 0 o 0 0 0 0 0 0 0 o 0 6-2
The CONTROL Statement 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 6-3

1/0 Path Registers 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 6-5
Summary of 1/0 Path Registers 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 6-9

For All 1/0 Path Names 0 o 0 0 0 0 0 0 0 0 o o 0 0 6-9
1/0 Path Names Assigned to a Device 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 6-9
1/0 Path Names Assigned to an ASCII File 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 6-9
1/0 Path Names Assigned to a BDAT File 0 6-10
1/0 Path Names Assigned to an HP-UX File 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 6-10
I/0 Path Names Assigned to a Buffer 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 6-11

Direct Interface Access 0 o o 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 6-12

Table of Contents vii

Chapter 7: Interrupts and Timeouts
Overview of Event-Initiated Branching 7-1 Types of Events . 7-1 A Simple Example .. 7-2

LCon~itions dRSequi~e? foEr Inittiating a Branch · . · 7
7
-
6
5 n oggmg an erv1cmg ven s . -Servicing Pending Events . 7-12 Interface Interrupts . 7-14 Enabling Interrupt Events . 7-15 Service Requests . 7-17 Interrupt Conditions ... 7-19 Interface Timeouts ... 7-20 Setting Up Timeout Events 7-20 Timeout Limitations . 7-21

Chapter 8: 1/0 Path Attributes
The FORMAT Attributes . 8-2 Two FORMAT Attributes Are Available 8-2 Assigning Default FORMAT Attributes 8-4 Specifying I/0 Path Attributes . 8-5 Restoring the Default Attributes . 8-5 ;---., Additional Attributes. 8-6 :) The BYTE and WORD Attributes 8-6 Converting Characters . 8-11 Changing the EOL Sequence 8-15 Parity Generation and Checking 8-16 Determining the Outcome of ASSIGN Statements 8-18 Concepts of Unified I/0 . 8-19 Data-Representation Design Criteria . 8-20 I/0 Paths to Files . 8-20 BDAT Files . 8-21 Data Representation Summary . 8-24 Applications of Unified I/0 . 8-25 I/0 Operations with String Variables. 8-25 Taking a Top-Down Approach . 8-32 Conclusion . 8-40

()
!

viii Table of Contents

u

u

Chapter 9: Advanced Transfer Techniques
The Purpose of Transfers . 9-1
Overview of Buffers and Transfers 9-2

Inbound and Outbound Transfers 9-2
Supported Transfer Sources and Destinations . 9-3
Examples of Transfer . 9-4

A Closer Look at Buffers . 9-5
Types of Buffers . 9-5
Creating Named Buffers . 9-5
Assigning 1/0 Path Names to Named Buffers 9-6
Assigning 1/0 Path Names to Unnamed Buffers 9-6
Buffer-Type Registers . 9-7
Buffer Life Time . 9-7
Buffer Size Register . 9-8
Buffer Pointers . 9-8

A Closer Look at Transfers .. 9-12
Transfer Methods .. 9-12
OUTPUT and ENTER and Buffers 9-13
Transfer Formatting .. 9-13
Transfer Termination Branching . 9-13

Choosing Transfer Parameters ... 9-14
Continuing Transfers Indefinitely 9-14
Waiting for a Transfer to End (Non-Overlapped Transfers) 9-15
Continuous Non-Overlapped Transfers 9-15
Transferring a Specified Number of Bytes 9-15
Delimiter Characters ... 9-15
Using the END Indication with Transfers 9-16
Transferring Records ... 9-16
Multiple Termination Conditions 9-16
TRANSFER Records and Termination 9-17
Transfer Event-Initiated Branching 9-18
Overlapped Nature of TRANSFER 9-19

Terminating a Transfer ... 9-20
More Transfer Examples . 9-22
Special Considerations .. 9-26

Transfer with Care ~ 9-26
Error Reporting ... 9-29
Suspended Transfers . 9-30

Table of Contents ix

Transfer Performance 0 9-31
Sector Size 0 9-31
Internal Disc Drives of Models 226 and 236 Computers o 0 0 0 0 0 0 0 o 0 0 0 0 0 o 9-31
Overlapped Transfers and Disc Drives 0 9-31
Transfer Methods and Rates 0 0 0 0 0 o 0 9-34 :-}

Restrictions 0 9-36
Interactions with Other Keywords 0 9-37

Changing Buffer Attributes 0 0 o 0 0 o 0 0 0 o 0 9-39
Buffer Status and Control Registers 0 9-40

x Table of Contents

I

(i ._,__,

Table of Contents

Chapter 1: Manual Overview
Introduction. 1-1
Manual Organization . 1-1

Where to Begin . 1-1
Chapter Previews . 1-2

Interfacing Techniques Volume 1 . 1-2
Interfacing Techniques Volume 2 . 1-3

Manual Overview 1
Introduction
This manual is intended to present the concepts of computer interfacing that are relevant
to programming the HP Series 200/300 computers. However, it is not a text dealing with
computer architecture or hardware in general. It is intended to present the topics that
.will increase your understanding of interfacing devices to these computers. If you would
like a more detailed discussion of general hardware interfacing concepts, you may want
to consult a text on computer architecture.

Manual Organization
This manual is organized by topics. The text is arranged to focus your attention on
interfacing concepts rather than to present only a serial list of the BASIC-language
I/0 statements. Once you have read this manual and are familiar with the general
and specific concepts involved, you can use either this manual or the BASIC Language
Reference when searching for a particular detail of how a statement works. Keep in
mind that this manual has been designed as a learning tool, not as a reference.

Where to Begin
This manual is designed for easy access by both experienced programmers and beginners.

• Less experienced users may want to begin with Chapter 2, "Interfacing Concepts",
before reading about general or interface-specific techniques.

• Experienced users may decide to go directly to the chapter that describes the par
ticular interface to be used (such as HP-IB or GPIO). It is also usually helpful to
become familiar with display and keyboard I/0 operations, since these are helpful
in seeing results while testing I/0 programs.

• If more background is required, the information in chapters 3 through 8 will provide
further explanation.

The brief descriptions in the next section will help you determine which chapters you
will need to read for your particular application.

Manual Overview 1-1

Chapter Previews

Interfacing Techniques Volume 1
Chapter 2: Interfacing Concepts
This chapter presents a brief explanation of relevant interfacing concepts and terminology.
This discussion is especially useful for beginners as it covers much of the "why" and "how"
of interfacing. Experienced programmers may also want to skim this material to better
understand the terminology used in this manual.

Chapter 3: Directing Data Flow
This chapter describes how to specify which computer resource is to send data to or
receive data from the computer. Uses of device selectors, string variable names, and
"1/0 path names" in 1/0 statements are described.

Chapter 4: Outputting Data
This chapter presents methods of outputting data to devices. All details of this process
are discussed, and several examples of free-field output and output using images are
given. Since this chapter completely describes outputting data to devices, you may only
need to read the sections relevant to your application.

Chapter 5: Entering Data
This chapter presents methods of entering data from devices. All details of this process
are discussed, and several examples of free-field enter and enter using images are given.
As with Chapter 4, you may only need to read sections of this chapter relevant to your application.

Chapter 6: Registers
This chapter describes the use and access of registers. The uses of registers are ex
plained, and programming techniques used to examine and change register contents are
presented. Individual interface register definitions are not contained in this chapter, but are discussed in the corresponding interface chapter.

Chapter 7: Interrupts and Timeouts
This chapter describes event-initiated branching from an interface's point of view. The
uses of both interrupts and timeouts are discussed, and several examples are given.
Again, the interface-dependent details are not given in this chapter, but are covered in
the chapter dedicated to discussing programming techniques for each interface.

1-2 Manual Overview

If)

r",
I

u

I I

0

Chapter 8: 1/0 Path Attributes
This chapter presents several powerful capabilities of the I/0 path names provided by the
BASIC language system. Interfacing to devices is compared to interfacing to mass storage
files, and the benefits of using the same statements to access both types of resources are
explained. This chapter is highly recommended to all readers.

Chapter 9: Advanced Transfer Techniques
This chapter describes advanced I/0 techniques which can be used when communicating
with devices. These techniques are generally used with devices which have data-transfer
rates either much faster or much slower than the computer's normal transfer rate(s).

Interfacing Techniques Volume 2
Chapter 10: Display Interfaces
This chapter describes accessing your CRT display through its interface to the computer.
Since these devices can be accessed like most other interfaces (via OUTPUT, ENTER,
CONTROL, and STATUS), most of the programming techniques presented in Chapters
3 through 9 are applicable to these devices. If you have no experience in programming
interfaces, you will find this chapter very useful; many tools are presented that will help
you program and understand the other interfaces.

Chapter 11: Keyboard Interfaces
As with the display chapter, this chapter describes several programming techniques ap
plicable to interfacing to the keyboards available with Series 200/300 computers.

Chapter 12: The HP-18 Interface
This chapter describes programming techniques specific to the HP-IB interface. Details
of HP-IB communications processes are also included to promote better overall under
standing of how this interface may be used.

Chapter 13: RS-232 Serial Interface
This chapter describes programming techniques specific to using the asynchronous
protocol capabilities of the HP 98626 and HP 98644 Serial Interfaces, as well as the
built-in serial interfaces of some computer models (Models 216, 217, 310, etc).

Chapter 14: The Datacomm Interface
This chapter describes the HP 98628 Data Communications Interface and presents pro
gramming techniques for using the asynchronous or HP Data Link protocols provided by
this interface.

Manual Overview 1-3

Chapter 15: Powerfail Protection
This chapter describes programming techniques for achieving powerfail protection (Op
tion 050, available only on Models 226 and 236, is required to use these capabilities).

Chapter 16: The GPIO Interface n
This chapter describes programming techniques specific to using the HP 98622 GPIO
Interface.

Chapter 17: The BCD Interface
This chapter describes programming techniques specific to using the HP 98623 BCD
Interface.

Chapter 18: EPROM Programming
This chapter describes how to program EPROMs (erasable programmable read only
memory) using the HP 98255 EPROM Memory Cards and HP 98253 EPROM Program
mer Card.

Chapter 19: The HP-HIL Interface
This chapter describes how to access HP-HIL (Human Interface Link) devices from a low
level. The chapter lists the categories of HP-HIL devices, and shows which ones already
have BASIC drivers and which ones do not. For the devices that do not have BASIC
drivers, this chapter describes how to write device drivers.

1-4 Manual Overview

(~
I

u
Table of Contents

Chapter 2: Interfacing Concepts
Terminology . 2-1
Why Do You Need an Interface? .. 2-4

Electrical and Mechanical Compatibility . 2-5
Data Compatibility . 2-6
Timing Compatibility . 2-6
Additional Interface Functions . 2-6

Interface Overview . 2-7
The HP-IB Interface .. 2-7
The RS-232C Serial Interface 2-8
The Datacomm Interface. 2-9
The GPIO Interface .. 2-10
The BCD Interface . 2-11

Data Representations. 2-12
Bits and Bytes ... ; 2-12
Representing Numbers .. 2-13
Representing Characters .. 2-14
Representing Signed Integers . 2-14
Representing Real Numbers 2-17

The I/0 Process . 2-19
I/0 Statements and Parameters 2-19
Data Handshake ... 2-20

I/0 Examples . 2-21
Example Output Statement . 2-21
Example Enter Statement . 2-23

u
Interfacing Concepts 2
This chapter describes the functions and requirements of interfaces between the computer
and its resources. Concepts in this chapter are presented in an informal manner. All
levels of programmers can gain useful background information that will increase their
understanding of the why and how of interfacing.

Terminology
These terms are important to your understanding of the text of this manual. The purpose
of this section is to make sure that our terms have the same meanings.

computer

hardware

software

firmware

is herein defined to be the processor, its support hardware, and the BASIC
language operating system; together these system elements manage all
computer resources.

describes both the electrical connections and electronic devices that make
up the circuits within the computer; any piece of hardware is an actual
physical device.

describes the user-written, BASIC-language programs.

refers to the pre-programmed, machine-language programs that are in
voked by BASIC-language statements and commands. As the term implies,
firmware is not usually modified by BASIC users. The machine-language
routines of the operating system are firmware programs.

Interfacing Concepts 2-1

computer
resource

is herein used to describe all of the "data-handling" elements of the system.
Computer resources include: internal memory, CRT display, keyboard, and
disc drive, and any external devices that are under computer control.

(includes operating
system and user
memory)

Internal
Memory

Processor

I/0

output

input

bus

Data and
Control Buses

CRT
Display

Disc
Drive

Keyboard

Built-In
HP-IB
Interface

Backplane
Connectors

25

Figure 2-1. Block Diagram of the Computer

Resource
Connectors

HP-IB
Connector

is an acronym that comes from "Input and Output"; it refers to the process
of copying data to or from computer memory.

involves moving data from computer memory to another resource. During
output, the source of data is computer memory and the destination is any
resource, including memory.

is moving data from a resource to computer memory; the source is any
resource and the destination is a variable in computer memory. Inputting
data is also referred to as "entering data" in this manual for the sake of
avoiding confusion with the INPUT statement.

refers to a common group of hardware lines that are used to transmit
information between computer resources. The computer communicates
directly with the internal resources through the data and control buses.

2-2 Interfacing Concepts

,!)

u
computer
backplane

is an extension of these internal data and control buses. The computer
communicates indirectly with the external devices through interfaces con
nected to the backplane hardware.

Processor

The Processor Communicates with the Interfaces
through Backplane Hardware

Connectors
in the Card Cage

Figure 2-2. Backplane Hardware

Interfacing Concepts 2-3

Why Do You Need an Interface?
The primary function of an interface is, obviously, to provide a communication path for
data and commands between the computer and its resources. Interfaces act as interme
diaries between resources by handling part of the "bookkeeping" work, ensuring that this
communication process flows smoothly. The following paragraphs explain the need for
interfaces.

First, even though the computer backplane is driven by electronic hardware that gen
erates and receives electrical signals, this hardware was not designed to be connected
directly to external devices. The electronic backplane hardware has been designed with
specific electrical logic levels and drive capability in mind.

CAUTION

EXCEEDING BACKPLANE HARDWARE RATINGS WILL
DAMAGE THIS ELECTRONIC HARDWARE.

Second, you cannot be assured that the connectors of the computer and peripheral are
compatible. In fact, there is a good probability that the connectors may not even mate
properly, let alone that there is a one-to-one correspondence between each signal wire's
function.

Third, assuming that the connectors and signals are compatible, you have no guarantee
that the data sent will be interpreted properly by the receiving device. Some peripherals
expect single-bit serial data while others expect data to be in 8-bit parallel form.

2-4 Interfacing Concepts

I~

i

_)

Fourth, there is no reason to believe that the computer and peripheral will be in agree
ment as to when the data transfer will occur; and when the transfer does begin the
transfer rates will probably not match. As you can see, interfaces have a great responsi
bility to oversee the communication between computer and its resources. The functions
of an interface are shown in the following block diagram.

Computer

r--------------

Computer
Compatible
Connector

Logic
Level
Matcher

Interface
Logic

Interface

Logic
Level
Matcher

Cab!:.__fl

D~
Compatible
Connector

~-------------------~

Figure 2-3. Functional Diagram of an Interface

Electrical and Mechanical Compatibility

Peripheral
Device

Electrical compatibility must be ensured before any thought of connecting two devices
occurs. Often the two devices have input and output signals that do not match; if so,
the interface serves to match the electrical levels of these signals before the physical
connections are made.

Mechanical compatibility simply means that the connector plugs must fit together prop
erly. All of the 9826 interfaces have 100-pin connectors that mate with the computer
backplane. The peripheral end of the interfaces may have unique configurations due to
the fact that several types of peripherals are available that can be operated with the
9826. Most of the interfaces have cables available that can be connected directly to the
device so you don't have to wire the connector yourself.

Interfacing Concepts 2-5

Data Compatibility
Just as two people must speak a common language, the computer and peripheral must
agree upon the form and meaning of data before communicating it. As a programmer,
one of the most difficult compatibility requirements to fulfill before exchanging data is
that the format and meaning of the data being sent is identical to that anticipated by
the receiving device. Even though some interfaces format data, most interfaces have
little responsibility for matching data formats; most interfaces merely move agreed-upon
quantities of data to or from computer memory. The computer must generally make the
necessary changes, if any, so that the receiving device gets meaningful information.

Timing Compatibility
Since all devices do not have standard data-transfer rates, nor do they always agree as to
when the transfer will take place, a consensus between sending and receiving device must
be made. If the sender and receiver can agree on both the transfer rate and beginning
point (in time), the transfer can be made.

If the data transfer is not begun at an agreed-upon point in time and at a known rate, the
transfer must proceed one data item at a time with acknowledgement from the receiving
device that it has the data and that the sender can transfer the next data item; this
process is known as a "handshake". Both types of transfers are utilized with different
interfaces and both will be fully described as necessary. {j
Additional Interface Functions
Another powerful feature of some interface cards is to relieve the computer of low-level
tasks, such as performing data-transfer handshakes. This distribution of tasks eases
some of the computer's burden and also decreases the otherwise-stringent response-time
requirements of external devices. The actual tasks performed by each type of interface
card vary widely and are described in the next section of this chapter.

2-6 Interfacing Concepts

r--\
! I

(',
~..,_,;

Interface Overview
Now that you see the need for interfaces, you should see what kinds of interfaces are
available for the computer. Each of these interfaces is specifically designed for specific
methods of data transfer; each interface's hardware configuration reflects its function.

The HP-18 Interface
This interface is Hewlett-Packard's implementation of the IEEE-488 1978 Standard Dig
ital Interface for Programmable Instrumentation. The acronym "HP-IB" comes from
Hewlett-Packard Interface Bus, often called the "bus".

Backplane
Connector

Data and

HP-IB
Interface

Hardware
and
Firmware

Data

8

Handshake

3

Control

5

Logic and Shield
Grounds

8

0
u
Q)
c
c
0
0
c

0:::
.;.,
C\1

Figure 2-4. Block Diagram of the HP-IB Interface

Shielded Cable
to Device(s)

The HP-IB interface fulfills all four compatibility requirements (hardware, electrical,
data, and timing) with no additional modification. Just about all you need to do is
connect the interface cable to the desired HP-IB device and begin programming. All
resources connected to the computer through the HP-IB interface must adhere to this
IEEE standard.

The "bus" is somewhat of an independent entity; it is a communication arbitrator that
provides an organized protocol for communications between several devices. The bus
can be configured in several ways. The devices on the bus can be configured to act as
senders or receivers of data and control messages, depending on their capabilities.

Interfacing Concepts 2-7

The RS-232C Serial Interface
The serial interface changes 8-bit parallel data into bit-serial information and transmits
the data through a two-wire (usually shielded) cable; data is received in this serial format
and is converted back to parallel data. This use of two wires makes it more economical.
to transmit data over long distances than to use 8 individual lines.

Backplane
Connector

Parallel Data

Serial
Interface
Hardware

I
1 Parallel/Serial

Converter
1 (UART)
I
I

Bit-Serial Data

(In)

Special Purpose

6

Grounds

7

Figure 2-5. Block Diagram of the Serial Interface

0
t5
Q)
c
c
0
()

c
0::
Lb
C\J

Shielded Cable
to a Device

Data is transmitted at several programmable rates using either a simple data handshake
or no handshake at all. The main use of this interface is in communicating with simple
devices.

2-8 Interfacing Concepts

u

The Datacomm Interface
This interface also changes 8-bit parallel data into bit-serial data (and vice versa) in
a manner similar to the serial interface described above. However, the datacomm in-·
terface is controlled by a Z-80A microprocessor resident or the interface board, which
implements high-level features such as inbound and outbound data buffers and the use
of control blocks. The datacomm interface is intended for general data communications
applications, most of which cannot be adequately handled by the serial interface.

Backplane

Connector

Parallel .-------, Parallel 1-------,-Bit-Seriol Data
Micro-

Data Data
Processor

Controlled

Do to

Buffer

and

Protocol

Handler

Dotocomm

Interface

Hardware

I Porollei/Seriol

Converter

Special Purpose

6

Grounds

7

Figure 2-6. Block Diagram of the Datacomm Interface

Shielded Coble

to o Device

Interfacing Concepts 2-9

The GPIO Interface
This interface provides the most flexibility of all the interfaces. It consists of 16 output
data lines, 16 input-data lines, two handshake lines, and other assorted control lines.
Data is transmitted using programmable handshake conventions and logic senses.

Backplane
Connector

GPIO
Interface
Hardware

Parallel Data Out
16

Parallel Data In
16

Handshake

4

Special Purpose

6

Grounds

7

0
t5
Q)
c
c
0
()

c
0:::
6
l!l

Figure 2-7. Block Diagram of the GPIO Interface

2-10 Interfacing Concepts

Shielded Cable
to a Device

,tj

u

u

The BCD Interface
This interface is designed to be used with peripheral devices that implement a binary
coded decimal (BCD) data representation. Forty input lines allow up to ten BCD char
acters to be entered with one handshake cycle. Eight lines are available for data output.
The interface provides great flexibility by allowing two peripheral devices to be connected
and by featuring a binary-data operating mode.

Backplane

Connector

Data and

Control
BCD

Interface

Hardware

Parallel Data Out

8

Parallel Data In

Handshake

4

Special Purpose

5

Grounds

7

c
0::
I

'<!"
<0

Figure 2-8. Block Diagram of the BCD Interface

Interfacing Concepts 2-11

Data Representations
As long as data is only being used internally, it really makes little difference how it
is represented; the computer always understands its own representations. However,
when data is to be moved to or from an external resource, the data representation is
of paramount importance.

Bits and Bytes
Computer memory is no more than a large collection of individual bits (binary digits),
each of which can take on one of two logic levels (high or low). Depending on how
the computer interprets these bits, they may mean on or not on (off), true or not true
(false), one or zero, busy or not busy, or any other bi-state condition. These logic levels
are actually voltage levels of hardware locations within the computer. The following
diagram shows the voltage of a point versus time and relates the voltage levels to logic
levels.

Voltage of
a Point

+5v

Logic Ground L----+-----+-----+----,1 ...
(Ov)

Figure 2-9. Voltage and Positive-True Logic

Logic High

Logic Low

In some cases, you want to determine the state of an individual bit (of a variable in
computer memory, for instance). The logical binary functions (BIT, BINCMP, BINIOR,
BINEOR, BIN AND, ROTATE, and SHIFT) provide access to the individual bits of data.

In most cases, these individual bits are not very useful by themselves, so the computer
groups them into multiple-bit entities for the purpose of representing more complex data.
Thus, all data items in computer memory are somehow represented with binary numbers.

r)

The computer's hardware accesses groups of sixteen bits at one time through the internal
data bus; this size group is known as a word. With this size of bit group, 65 536 (=2j 16)
different bit patterns can be produced. The computer can also use groups of eight bits at ~
a time; this size group is known as a byte. With this smaller size of bit group, 256 (=2j8) ·
different patterns can be produced. How the computer and its resources interpret these
combinations of ones and zeros is very important and gives the computer all of its utility.

2-12 Interfacing Concepts

I '

_)

Representing Numbers
The following binary weighting scheme is often used to represent numbers with a single
data byte. Only the non-negative integers 0 through 255 can be represented with this
particular scheme.

Most-Significant Bit Least-Significant Bit

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

1 0 0 1 0 1 1 0

Value=128 Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=1

Notice that the value of a 1 in each bit position is equal to the power of two of that
position. For example, a 1 in the Oth bit position has a value of 1 (=210), a 1 in the 1st
position has a value of 2 (=2i 1), and so forth. The number that the byte represents is
then the total of all the individual bit's values.

Determining the Number Represented

0 X 2° = 0
1 X 21 = 2
1 X 22 = 4
0 X 23 = 0
1 X 24 = 16
0 X 25 = 0
0 X 26 = 0
1 X 27 = 128

Number represented=

2 + 4 + 16 + 128 = 150

The preceding representation is used by the "NUM" function when it interprets a byte
of data. The next section explains why the character "A" can be represented by a single
byte.

100 Number=NUM ("A")
110 PRINT" Number= ";Number
120 END

Printed Result

Number = 65

Interfacing Concepts 2-13

Representing Characters
Data stored for humans is often alphanumeric-type data (alphabetic characters: A-Z or a
z, and numeric characters: 0-9, +, -, etc.). Since less than 256 characters are commonly
used for general communication, a single data byte can be used to represent a character.
The most widely used character set is defined by the ASCII standard 1 . This standard
defines the correspondence between characters and bit patterns of individual bytes. Since
this standard only defines 128 patterns (bit 7 = 0), 128 additional characters are defined
by the computer (bit 7 = 1). The entire set of the 256 characters on the computer is
hereafter called the "extended ASCII" character set.

When the CHR$ function is used to interpret a byte of data, its argument must be
specified by its binary-weighted value. The single (extended ASCII) character returned
corresponds to the bit pattern of the function's argument.

100 Number=65 Bit pattern is 11 01000001 11

110 PRINT 11 Character is 11
"

120 PRINT CHR$(Number)
130 END

Printed Result

Character is A

Representing Signed Integers
There are two ways that the computer represents signed integers. The first uses a binary
weighting scheme similar to that used by the NUM function. The second uses ASCII
characters to represent the integer in its decimal form.

Internal Representation of Integers
Bits of computer memory are also used to represent signed (positive and negative)
integers. Since the range allowed by eight bits is only 256 integers, a word (two bytes)
is used to represent integers. With this size of bit group, 65536 (=2j16) unique integers
can be represented.

The range of integers that can be represented by 16 bits can arbitrarily begin at any
point on the number line. In the computer, this range of integers has been chosen for
maximum utility; it has been divided as symmetrically as possible about zero, with one
of the bits used to indicate the sign of the integer.

1 ASCII stands for "American Standard Code for Information Interchange". See the Useful Tables appendix in the BASIC Language Reference for the complete table.

2-14 Interfacing Concepts

(_)

With this "2's-complement" notation, the most significant bit (bit 15) is used as a sign
bit. A sign bit of 0 indicates positive numbers and a sign bit of 1 indicates negatives. You
still have the full range of numbers to work with, but the range of absolute magnitudes
is divided in half (-32768 through 32767). The following 16-bit integers are represented
using this 2's-complement format.

Binary representation

1111
0000
1111
0000

sign bit_d!t
2!14~
2 t 13

1111
0000
1111
0000

2!8 ___ ____.

1111 1111
0000 0001
0000 0001
1111 1111

L Lto
217

Decimal equivalent

-1
1

-255
255

Interfacing Concepts 2-15

The representation of a positive integer is generated according to place value, just as
when bytes are interpreted as numbers. To generate a negative number's representation,
first derive the positive number's representation. Complement (change the ones to zeros
and the zeros to ones) all bits, and then to this result add 1. The final result is the two's-
complement representation of the negative integer. This notation is very convenient ~
to use when performing math operations. Let's look at a simple addition of 2 two's
complement integers.

Example: 3+(-3) =?

First, + 3 is represented as:
Now generate -3's representation:

first complement + 3,
then add 1

- 3' s representation:

Now add the two numbers:

2-16 Interfacing Concepts

final carry
not used

0000 0000 0000 0011

1111 1111 1111 1100
+ 0000 0000 0000 0001

1111 1111 1111 1101

1111 1111 1111 1101
+ 0000 0000 0000 0011

1~ 1~ carry on
0000 0000 0000 0000 all places

u

ASCII Representation of Integers
ASCII digits are often used to represent integers. In this representation scheme, the
decimal (rather than binary) value of the integer is formed by using the ASCII digits 0
through 9 {CHR$(48) through CHR$(57), respectively}. An example is shown below.

Example

The decimal representation of the binary value "1000 0000" is 128. The ASCII-decimal
representation consists of the following three characters.

Character Decimal Code Binary Code

1 49 00110001

2 50 00110010

8 56 00111000

Representing Real Numbers
Real numbers, like signed integers, can be represented in one of two ways with the
computers. They are represented in a special binary mantissa-exponent notation within
the computers for numerical calculations. During output and enter operations, they can
also be represented with ASCII-decimal digits.

Internal Representation of Real Numbers
Real numbers are represented internally by using a special binary notation1 . With this
method, all numbers of the REAL data type are represented by eight bytes: 52 bits of
mantissa magnitude, 1 bit for mantissa sign, and 11 bits of exponent. The following
equation and diagram illustrate the notation; the number represented is 1/3.

Byte

Decimal value
of character

Binary value
of characters

1

63

~0111111

I

2

213

11010101

mantissa sign exponent

3

85

01010101

Real number = (_ 1)mantissa sign • 2exponent-1023 •(1. mantissa)

4 ... 8

85 "' 85

01010101 "' 01010101

mantissa

1 The internal representation used for real numbers is the IEEE standard 64-bit floating-point notation.

For further details, consult the "Numeric Computation" chapter of the BASIC Programming Techniques

manual.

Interfacing Concepts 2-17

Even though this notation is an international standard, most external devices don't use it; most use an ASCII-digit format to represent decimal numbers. The computer provides a means so that both types of representations can be used during I/0 operations.

ASCII Representation of Real Numbers
The ASCII representation of real numbers is very similar to the ASCII representation of integers. Sign, radix, and exponent information are included with ASCII-decimal digits to form these number representations. The following example shows the ASCII representation of 1/3. Even though, in this case, 18 characters are required to get the same accuracy as the eight-byte internal representation shown above, not all real numbers represented with this method require this many characters.

ASCII characters

Decimal value
of characters

0

48

3

46 51

2-18 Interfacing Concepts

3

51

3 3 3 3 3

51 51 51 51 51

3 3 3 3 3 3 3 3 3

51 51 51 51 51 51 51 51 51

(~

l)

u

The 1/0 Process
When using statements that move data between memory and internal computer re
sources, you do not usually need to be concerned with the details of the operations.
However, you may have wondered how the computer moves the data. This section takes
you "behind the scenes" of 1/0 operations to give you a better intuitive feel for how the
computer outputs and enters data.

1/0 Statements and Parameters
The 1/0 process begins when an 1/0 statement is encountered in a program. The
computer first determines the type of I/0 statement to be executed (such as, OUTPUT,
ENTER USING, etc.). Once the type of statement is determined, the computer evaluates
the statement's parameters.

Specifying a Resource
Each resource must have a unique specifier that allows it to be accessed to the exclusion
of all other resources connected to the computer. The methods of uniquely specifying
resources (output destinations and enter sources) are device selectors, string variable
names, and 1/0 path names. These specifiers are further described in the next chapter.

For instance, before executing an OUTPUT statement, the computer first evaluates the
parameter which specifies the destination resource. The source parameter of an ENTER
statement is evaluated similarly.

OUTPUT Dest_parameter;Source_item

ENTER Sourc_parameter;Dest_item

Firmware
After the computer has determined the resource with which it is to communicate, it "sets
up" the moving process. The computer chooses the method of moving the specified data
according to the type of resource specified and the type of 1/0 statement. The actual
machine-language routine that executes the moving procedure is in firmware. Since
there are differences in how each resource represents and transfers data, a dedicated
firmware routine must be used for each type of resource. After the appropriate firmware
routine has been selected, the next parameter(s) must be evaluated (i.e., source items
for OUTPUT statements and destination items for ENTER statements).

Interfacing Concepts 2-19

Registers
The computer must often read certain memory locations to determine which firmware routines will be called to execute the 1/0 procedure. The content of these locations, known as registers, stores parameters such as the type of data representation to be used
and type of interface involved in the 1/0 operation. n
An example of register usage by firmware is during output to the CRT. Characters output to this device are displayed beginning at the current screen coordinates. After the computer has evaluated the first expression in the source-item list, it must determine where to begin displaying the data on the screen. Two memory locations are dedicated to storing the "X" and "Y" screen coordinates. The firmware determines these coordinates and begins copying the data to the corresponding locations in display memory.

The program can also determine the contents of these registers. The statements that provide access to the registers are described in the "Registers" chapter. The contents of all registers accessible by the program are described in the interface programming chapters.

Data Handshake
Each byte (or word) of data is transferred with a procedure known as a data-transfer handshake (or simply "handshake"). It is the means of moving one byte of data at a time when the two devices are not in agreement as to the rate of data transfer or as to what point in time the transfer will begin. The steps of the handshake are as follows.

1. The sender signals to get the receiver's attention.
2. The receiver acknowledges that it is ready.

3. A data byte (or word) is placed on the data bus.

4. The receiver acknowledges that it has gotten the data item and is now busy. No further data may be sent until the receiver is ready.
5. Repeat these steps if more data items are to be moved.

2-20 Interfacing Concepts

,r)

1/0 Examples
Now that you have seen the steps taken by the computer when executing an I/0 u statement, let's look at how two typical I/0 statements are executed by the computer.

/
~)

u

Example Output Statement
Data can be output to only one resource at a time with the OUTPUT statement (with
the exception of the HP-IB Interface). This destination can be any computer resource,
which is specified by the destination parameter as shown below.

~the destination parameter

OUTPUT Destination; Strin9$tCHR$(C+32) t"That's all"

the source items are expressions

The source of data for output operations is always memory. Either string or numeric
expressions can specify the actual data to be output. The flow of data during output
operations is shown below. Notice that all data copied from memory to the destination
resource by the OUTPUT statement passes through the processor under the control of
operating-system firmware.

Internal Memory

I Source I String I Expression(s) Variable
!

0 I
I
! Data Bus

D ata Flow i To Other Resources

,). I
~------

J
Processor

Figure 2-10. Data Flow During Output Operations

Interfacing Concepts 2-21

Source-Item Evaluation
The source items, listed after the semicolon and separated by commas, can be any valid
numeric or string expression. As the statement is being executed, these expressions must
be individually evaluated and the resultant data representation sent to the specified ~
destination. The results of the evaluation depend on the type of expression (numeric or ')
string) and on which data representation (ASCII or internal) is to be used during the
I/0 operation.

If the expression is a variable and the internal data representation is to be used, the
data is ready to be copied byte-serially (or word-serially) to the destination; otherwise,
the expression must be completely evaluated. The representation generated during the
evaluation is stored in a temporary variable within memory. In both cases, once the
beginning memory location and length of the data are known, the copying process can
be initiated.

Copying Data to the Destination
The computer employs "memory-mapped" I/0 operations; all devices are addressable as
memory locations. All output operations involve a series of two-step processes. The first
step is to copy one byte (or word) from memory into the processor. The second step is
then to copy this byte (or word) into the destination location (a memory address). Each
item in the list is output in this serial fashion. The appropriate handshake firmware
routine is executed for each byte (or word) to be copied.

Since there may be several data items in the source list, it may be necessary to output
an item-terminator character after each item to communicate the end of the item to
the receiver. If the item is the last item in the source list, the computer may signal
the receiver that the output operation is complete. Either an item terminator or end
of-line sequence of characters can be sent to the receiver to signal the end of this data
transmission. The OUTPUT statement is described in full detail in Chapter 4.

2-22 Interfacing Concepts

/
i)
\..._..-

(.

' I --

Example Enter Statement
Data can be entered from only one resource at a time. This source can be any resource
and is specified by the source parameter as shown in the following statement.

/the source parameter

ENTER Source;NuMbertStrin~$

destination items are program variables

The destinations of enter operations are always variables in memory. Both string and
numeric variables can be specified as the destinations. The flow of data during enter
operations is shown below.

Internal Memory

I Destination I
I

String

I Variables Variable

~
I

~ y Data B us

Do ta Flow I From Other Resources

~ ~-~-

Processor

Figure 2-11. Data Flow During Enter Operations

Destination-Item Evaluation
The destination(s) of data to be entered is (are) specified in the destination list. Either
string or numeric variables can be specified, depending on the type of data to be entered.
In general, as each destination item is evaluated, the computer finds its actual memory
location so that data can be copied directly into the variable as the enter operation is
executed. However, if the ASCII representation is in use, numeric data entered is stored
in a temporary variable during entry.

Interfacing Concepts 2-23

Copying Data into the Destinations
As with output operations, entering data is a series of two-step processes. Each data
byte (or word) received from the sender is entered into the processor by the appropriate
handshake firmware. It is then copied into either a temporary variable or a program
variable. If more than one variable is to receive data, each incoming data item must be
properly terminated. If the internal representation is in use, the computer knows how
many characters are to be entered for each variable. If the ASCII representation is in
use, a terminator character (or signal) must be sent to locate the end of each data item.
When all data for the item has been received, it is evaluated, and the resultant internal
representation of the number is placed into the appropriate program variable. Further
details concerning the ENTER statement are contained in Chapter 5.

2-24 Interfacing Concepts

n
)

(')
I

/ \
\..._)

(:
'-__)

Table of Contents

Chapter 3: Directing Data Flow
Specifying a Resource ... 3-2

String-Variable Names ... 3-2
Device Selectors . 3-4
HP-IB Device Selectors . 3-6
I/0 Path Names .. 3-7

Assigning I/0 Path Names ... 3-9
Re-Assigning I/0 Path Names 3-11
Closing I/0 Path Names .. 3-11

I/0 Path Names in Subprograms 3-12
Assigning I/0 Path Names Locally Within Subprograms 3-12
Passing I/0 Path Names as Parameters 3-14
Declaring I/0 Path Names in Common 3-14

Benefits of Using I/0 Path Names 3-15
Execution Speed ... 3-15
Re-Directing Data . 3-16
Attribute Control .. 3-17

,r)

u

(I

~)

Directing Data Flow 3
As described in the previous chapter, data can be moved between computer memory and
several resources, including:

• Computer memory (BASIC string variables)

• Internal devices (such as the display and keyboard)

• Mass storage files

• External devices (such as instruments and printers)

• Buffers (variables in memory with special capabilities for high-speed, background
process transfers)

This chapter describes how string variables and devices are specified in I/0 statements.
Specifying mass storage files in I/0 statements is briefly described in the "I/0 Path
Attributes" chapter of this manual, and in the "Data Storage and Retrieval" chapter
of BASIC Programming Techniques. Buffers are described in the "Advanced Transfer
Techniques" chapter of this manual.

Directing Data Flow 3-1

Specifying a Resource
Each resource must have a specifier that allows it to be accessed to the exclusion of all
other computer resources. String variables are specified with their names, while devices
can be specified with either their device selector or with a new data type known as an
I/0 path name. This section describes how to specify these resources in OUTPUT and
ENTER statements.

String-Variable Names
Data is moved to and from string variables by specifying the string variable's name in an
OUTPUT or ENTER statement. Examples of each are shown in the following program.

100 DIM To_dest$[80] ,From_source$[80]
110 DIM Data_out$[80]
120 !
130 From_source$="Source data"
140 Data_out$="0UTPUT data"
150
160 PRINTER IS CRT
170 PRINT "To_dest$ before OUTPUT= ";To_dest$
180 PRINT
190
200 OUTPUT To_dest$;Data_out$; ! ";" suppresses CR/LF.
210 PRINT "To_dest$ after OUTPUT= ";To_dest$
220 PRINT
230
240 ENTER From_source$;To_dest$
250 PRINT "To_dest$ after ENTER= ";To_dest$
260 PRINT
270
280 END

Printed Results

To_dest$ before OUTPUT= (null string)

To_dest$ after OUTPUT= OUTPUT data

To_dest$ after ENTER= Source data

3-2 Directing Data Flow

0
I)

u

I u

u

As with 1/0 operations between the computer and other resources, the source and
destination of data are specified in software (in an 1/0 statement within a BASIC

program). The data is then moved through a hardware path under operating-system
firmware control. An overview of this process is illustrated in the following diagram.

r
ENTER

Variables Area
of Computer Memory

Operating
System
Hardware

Default
Attribute

1--------'---------

Operating System
Firmware

Control

BASIC Program

1
OUTPUT

Figure 3-1. Diagram of the Default 1/0 Path Used for String-Variable 1/0 Operations

Data is always copied to the destination string (or from the source string) beginning at
the first position of the variable; subscripts cannot be used to specify any other beginning

position within the variable.

The use of outputting to and entering from string variables is a very powerful method of
buffering data to be output to other resources. With OUTPUT and ENTER statements

that use images, the data sent to the string variables can be explicitly formatted before

being sent to (or while being received from) the variable. Further uses of string variables

are described in the "Applications of Unified 1/0" section of the "1/0 Path Attributes"

chapter.

Directing Data Flow 3-3

Device Selectors
Devices include the built-in CRT and keyboard, external printers and instruments, and all other physical entities that can be connected to the computer through an interface. Each interface has a unique number by which it is identified, known as its interface select
code.

Select Codes of Built-In Interfaces
The internal devices are accessed with the following, permanently assigned interface
select codes.

Table 3-1. Internal Device Select Codes

Built-In Interface/Device Select Code
Alpha Display 1

Keyboard 2
Graphics Display 3
(non-bit-mapped alpha/ graphics displays)

Flexible Disc Drive 4
(Models 226 and 236 only)

Powerfail Protection 5
(optional with Models 226 and 236 only)

Graphics Display 6
(bit-mapped alpha/ graphics displays)

Built-in HP-IB 1
7

Built-in serial1
9

Parity-checking (memory), 32 (pseudo)
cache memory,
and floating-point math hardware

Not all computer models have built-in HP-IB and serial interfaces.

3-4 Directing Data Flow

u

(' "-"')

u

Select Codes of Optional Interfaces
Optional interfaces all have switch-setable select codes. The valid range of select codes
is 8 through 31 (they cannot use select codes 1 through 7, since these may be used by
built-in devices). The following settings on optional interfaces have been made at the
factory but can be reset to any unique select code between 8 and 31. See the interface's
installation manual for further instructions.

Table 3-2. Factory Settings for Interface Select Codes

Built-In Interface/Device Select Code

HP-IB (HP 98624) 8

Serial (HP 98626, HP 98644) 91

BCD (HP 98623) 11

GPIO (HP 98622) 12

High-Speed (HP-IB) Disc (HP 98625) 14

Data Communications (HP 98628) 20

Shared Resource Manager (HP 98629) 21

EPROM Programmer (HP 98253) 27

Color Output (HP 98627) 28

Bubble Memory (HP 98259) 30

Examples of using interface select codes to access devices are shown below.

OUTPUT 1; "Data to CRT"
ENTER CRT;Crt_line$

Int_sel_code=12
OUTPUT Int_sel_code;String$&"Expression",Num_expression
ENTER Int_sel_code;Str_variable$,Num_variable

Number=2
ENTER 7+Number;Serial_data$
OUTPUT 11-Number; "Data to serial card"

The device selector can be any numeric expression which rounds to an integer in the
range 1 through 31. If the interface select code specifies an HP-IB interface, additional
information must be specified to access a particular HP-IB device, since more than one
device can be connected to the computer through HP-IB interfaces.

1 Use another select code if there is already a built-in serial interface at this select code.

Directing Data Flow 3-5

HP-18 Device Selectors
Each device on the HP-IB interface has a primary address by which it is uniquely
identified; each address must be unique so that only one device is accessed when one
address is specified. The device selector is then a combination of the interface select code
and the device's address1 . Some examples are shown below.

Table 3-3. HP-IB Device Selector Examples

Device
Device Location Selector

interface select code 7 722
at primary address 22

interface select code 10 1013
at primary address 13

interface select code 10 1001
at primary address 01

To numerically represent the device selector, you multiply the select code by 100 and
add the device's primary address to it. For example, the device selector for a device
connected to an interface with select code 7 and a primary address of 22 is determined
in the following manner:

devz'ce selector=(z'nterface select code x 100) + bus address

(7 X 100) + 22 = 722

The HP-IB also has additional capabilities that add to this definition of device selectors. See the chapter called "The HP-IB Interface" for further details.

3-6 Directing Data Flow

!')

/

('--_./

i ' u

Accessing devices with device selectors in BASIC statements is described in the following
diagram.

Variables Area
of Computer Memory

Operating
System
Hardware

Default
Attribute

OUTPUT-

Interface
Hardware

r-------~---------~--------~

Operating System
Firmware

Control

BASIC Program

Device

Figure 3-2. Diagram of the Default 1/0 Path Used when a Device Selector is Specified

Disc drives are also considered to be devices and are connected to the computer through
interfaces. However, files on the disc media cannot be uniquely accessed with only the
select code of its interface; additional information specifying which file is to be accessed
must be included. Accessing mass storage files is fully described in the "Data Storage
and Retrieval" chapter of the BASIC Programming Techniques manual; these tasks are
compared to accessing devices in the "1/0 Path Attributes" chapter of this manual.

1/0 Path Names
As shown in the previous diagrams, all data entered into and output from the computer
is moved through an "1/0 path". An I/0 path consists of the hardware and operating
system firmware used to carry out this moving process. When a string variable or device
selector is specified in an ENTER or OUTPUT statement, the operating system first
evaluates the expression that specifies a resource and then chooses the corresponding
default I/0 path through which data will be moved.

With the I/0 language of the computer, the I/0 paths to devices and mass storage files
can be assigned special names; I/0 paths to string variables can only be assigned names
if the variable is declared as a buffer. Assigning names to I/0 paths provides many
improvements in performance and additional capabilities over using device selectors,
described in "Benefits of Using I/0 Path Names" at the end of this chapter.

Directing Data Flow 3-7

The concept of using I/0 path names is shown in the following diagram; by comparing
it to the previous diagram, you will find several major differences between using I/0
path names and device selectors in I/0 operations. These differences are described in
the section of this chapter called "Benefits of Using I/0 Path Names".

Variables Area
of Computer Memory

Operating
System
Hardware

Attribute
can be
specified

OUTPUT-

Interface
Hardware

~--------~---------~--------~
Operating System
Firmware

Control

BASIC Program

Device

Includes Internal Devices
and Disc Drive

Figure 3-3. 1/0 Paths to Devices and Mass-Storage Files

3-8 Directing Data Flow

u

I

I ' \._)

Assigning 1/0 Path Names
An I/0 path name is a new data type that can be assigned to either a device or a data
file on a mass storage device. Any valid name1 preceded by the "@" character can be
used. Examples of the statement that makes this assignment are as follows.

Examples

ASSIGN ~Display TO 1

ASSIGN ~Printer TO 701

ASSIGN ~Serial TO 9

ASSIGN ~Gpio TO 12

Now you can use the I/0 path names instead of the device selectors to specify the resource
with which communication is to take place.

OUTPUT ~Display;"Display message"

OUTPUT ~Printer;"Message to the Printer"

ENTER ~Serial;Variable,Variable$

ENTER ~Gpio;Word1,Word2

1 A "name" is a combination of 1 to 15 characters, beginning with an uppercase alphabetical character or
one of the characters CHR$(161) through CHR$(254) and followed by up to 14 lowercase alphanumeric
characters, the underbar character (_), or the characters CHR$(161) through CHR$(254). Numeric
variable names are examples of valid names.

Directing Data Flow 3-9

Since an I/0 path name is a data type, a fixed amount of memory is allocated, or
"reserved", for the variable similar to the manner in which memory is allocated for other
program variables (INTEGER, REAL, and string variables). Since the variable does
not initially contain usable information, the validity flag, shown below, is set to false.
When the ASSIGN statement is actually executed, the allocated memory space is then
filled with information describing the I/0 path between the computer and the specified
resource, and the validity flag is set to true.

Table 3-4. 1/0 Path Variable Contents

validity flag

type of resource

device selector
of resource

additional information,
if any, depends on the
type of resource

Attempting to use an I/0 path name that does not appear in any program line results
in error 910 (Identifier not found in this context). This error message indicates that
memory space has not been allocated for the variable. However, attempting to use an
I/0 path name that does appear in an ASSIGN statement in the program but which
has not yet been executed results in error 177 (undefined I/O path name). This error
indicates that the memory space was allocated but the validity flag is still false; no valid
information has been placed into the variable since the I/0 path name has not yet been
assigned to a resource.

This I/0 path information is only accessible to the context in which it was allocated,
unless it is passed as a parameter or appears in the proper COM statements1 . Thus, an
I/0 path name cannot be initially assigned from the keyboard, and it cannot be accessed
from the keyboard unless it is presently assigned within the current context. However, an
I/0 path name can be re-assigned from the keyboard, as described in the next section.

This information describing the I/0 path is accessed by the operating system whenever
the I/0 path name is specified in subsequent I/0 statements. A portion of this
information can also be accessed with the STATUS and CONTROL statements described
in the "Registers" chapter. For now, the important point is that it contains a description
of the resource sufficient to allow its access.

1 See the BASIC Language Reference or the "Subprograms" chapter of BASIC Programming Techniques for details.

3-10 Directing Data Flow

,f)

u

(I "'-)

Re-Assigning 1/0 Path Names
If an I/0 path name already assigned to a resource is to be re-assigned to another
resource, the preceding form of the ASSIGN statement is also used. The resultant action
is that the validity flag is first set false, implicitly "closing" the I/0 path name to the
device. A "new assignment" is then made just as if the first assignment never existed.
Making this new assignment places information describing the specified device into the
variable and sets the validity flag true. An example is shown below.

100 ASSIGN ~Printer TO 1 Initial assignment.
110 OUTPUT ~Printer; "Data1"
120
130 ASSIGN ~Printer TO 701 2nd ASSIGN closes 1st
140 OUTPUT ~Printer;"Data2" and makes a new assignment.
150 PAUSE
160 END

The result of running the program is that "Datal" is sent to the CRT, and "Data2" is
sent to HP-IB device 701. Since the program was paused (which maintains the program
context), the I/0 path name @Printer can be used in an I/0 statement or re-assigned
to another resource from the keyboard.

Closing 1/0 Path Names
A second use of the ASSIGN statement is to explicitly close the name assigned to an I/0
path. When the name is closed, the validity flag is set false, labeling the information
as invalid1. Attempting to use the closed name results in error 177 (Undefined I/O path
name). Examples of statements that close path names are as follows.

Examples

ASSIGN ~Printer TO *

ASSIGN ~Serial_card TO *

ASSIGN ~Gpio TO *

After executing this statement for a particular I/0 path name, the name cannot be used
in subsequent I/0 statements until it is re-assigned. This same name can be assigned
either to the same or to a different resource with a subsequent ASSIGN statement.
However, if it is used prior to being re-assigned, error 177 occurs.

1 Additional action may also be taken when the I/0 path name assigned to a mass storage file is closed.

Directing Data Flow 3-11

1/0 Path Names in Subprograms
When a subprogram (either a SUB subprogram or a user-defined function) is called,
the "context" is changed to that of the called subprogram1 . The statements in the
subprogram have access only to the data of the new context, Thus, in order to use an
I/0 path name in any statement within a subprogram, one of the following conditions
must be true.

• The I/0 path name must already be assigned within the context (i.e., the same
instance of the subprogram).

• The I/0 path name must be assigned in another context and passed to this context
by reference as a parameter (i.e., specified in both the formal-parameter and pass
parameter lists).

• The I/0 path name must be declared in a variable common (with COM statements)
and already be assigned within a context that has access to that common block.

The following paragraphs and examples further describe using I/0 path names in
subprograms.

Assigning 1/0 Path Names Locally Within Subprograms
Any I/0 path name can be used in a subprogram if it has first been assigned to an I/0
path within the same context of the subprogram. A typical example is shown below.

10 CALL Subprogram_x
20 END
30
40 SUB Subprogram_x
50 ASSIGN ~Log_device TO 1 ! CRT.
60 OUTPUT ~Log_device;"Subprogram"
70 SUBEND

1
Subprograms and user-defined functions are fully discussed in the "Subprograms" chapter of BASIC Programming Techniques.

3-12 Directing Data Flow

,f)

(_)

u

When the subprogram is exited, all 1/0 path names assigned locally within the subpro
gram are automatically closed. If the program (or subprogram) that called the exited
subprogram attempts to use the 1/0 path name, an error results. An example of this
closing local 1/0 path names upon return from a subprogram is shown below.

10 CALL Subprogram_x
11 OUTPUT (DLog_device; "Main" -----Insert into previous example.
20 END
30 !
40 SUB Subprogram_x
50 ASSIGN (DLog_device TO 1 ! CRT.
60 OUTPUT (DLog_device;"Subprogram"
70 SUBEND

When the above program is run, error 177, Undefined I/O path name, occurs in line 11.

Each context has its own set of local variables, which are not automatically accessible to
any other context. Consequently, if the same 1/0 path name is assigned to 1/0 paths
in separate contexts, the assignment local to the context is used while in that context.
Upon return to the calling context, any 1/0 path names accessible to this context remain
assigned as before the context was changed.

1 ASSIGN (DLog_device TO 701 • 1 Insert into previous example.
2 OUTPUT (DLog_device;"First Main".__.l
10 CALL Subprogram_x
11 OUTPUT (DLog_device; "Second Main"-Change this line.
20 END
30 !
40 SUB Subprogram_x
50 ASSIGN (DLog_device TO 1 ! CRT.
60 OUTPUT (DLog_device;"Subprogram"
70 SUBEND

The results of the above program are that the outputs "First Main" and "Second Main"
are directed to device 701, while the output "Subprogram" is directed to the CRT. Notice
that the original assignment of @Log_ device to device selector 701 is "restored" when the
subprogram's context is exited, since the assignment of @Log_device made to interface
select code 1 was local to the subprogram.

Directing Data Flow 3-13

Passing 1/0 Path Names as Parameters
I/0 path names can be used in subprograms if they are assigned and have been passed
to the called subprogram by reference; they cannot be passed by value. The I/0 path
name(s) to be used must appear in both the pass-parameter and formal-parameter lists.

1 ASSIGN ~Log_device TO 701
2 OUTPUT ~Log_device;"First Main"
10 CALL Subprograrn_x(~Log_device)---Add pass parameter.
11 OUTPUT ~Log_device;"Second Main"
20 END
30 !
40 SUB Subprograrn_x(~Log) -------Add formal parameter.
50 ASSIGN ~Log TO 1 ! CRT.
60 OUTPUT ~Log;"Subprograrn"
70 SUBEND

Upon returning to the calling routine, any changes made to the assignment of the I/0
path name passed by reference are maintained; the assignment local to the calling context
is not restored as in the preceding example, since the I/0 path name is accessible to both
contexts. In this example, @Log_device remains assigned to interface select code 1; thus,
"Subprogram" and "Second Main" are both directed to the CRT.

Declaring 1/0 Path Names in Common
An I/0 path name can also be accessed by a subprogram if it has been declared in a
COM statement (labeled or unlabeled) common to calling and called contexts, as shown
in the following example.

1 COM ~Log_device ----------Insert COM statement.
3 ASSIGN ~Log_device TO 701
4 OUTPUT ~Log_device;"First Main"
10 CALL Subprograrn_x ----,.......-----Parameters not necessary.
11 OUTPUT ~Log_device;"Second Main"
20 END
30 !
40 SUB Subprograrn_x ---------Parameters not necessary.
41 COM ~Log_device Insert COM statement.
50 ASSIGN ~Log_device TO 1 ! CRT.
60 OUTPUT ~Log_device;"Subprograrn"
70 SUBEND

If an I/0 path name in common is modified in any way, the assignment is changed for all
subsequent contexts; the original assignment is not "restored" upon exiting the subpro
gram. In this example, "First Main" is sent to HP-IB device 701, but "Subprogram" and
"Second Main" are both directed to the CRT. This is identical to the preceding action
when the I/0 path name was passed by reference.

3-14 Directing Data Flow

/ I u

I ..
\._...;!

Benefits of Using 1/0 Path Names
Devices can be accessed with both device selectors and 1/0 path names, as shown in
the previous discussions. With the information presented thus far, you may not see
much difference between using these two methods of accessing devices. This section
describes these differences in order to help you decide which method may be better for
your application.

Execution Speed
When a device selector is used in an 1/0 statement to specify the 1/0 path to a device,
the numeric expression must be evaluated by the computer every time the statement is
executed. If the expression is complex, this evaluation might take several milliseconds.

device selector expression

0 U T PUT l.Jctl u e _1 +BIT (l,l a 1 u e _ 2 , 5·) * 2 ··· 3 ; 11 Data 11

If a numeric variable is used to specify the device selector, this expression-evaluation time
is reduced; this is the fastest execution possible when using device selectors. However,
more information about the 1/0 process must be determined before it can be executed.

In addition to evaluating the numeric expression, the computer must determine which
type of interface (HP-IB, GPIO, etc.) is present at the specified select code. Once the
type of interface has been determined, the corresponding attributes of the 1/0 path must
then be determined before the computer can use the 1/0 path. Only after all of this
information is known can the process of actually copying the data be executed.

If an 1/0 path name is specified in an OUTPUT or ENTER statement, all of this
information has already been determined at the time the name was assigned to the 1/0
path. Thus, an 1/0 statement containing an 1/0 path name executes slightly faster than
using the corresponding 1/0 statement containing a device selector (for the same set of
source-list expressions).

Directing Data Flow 3-15

Re-Directing Data
Using numeric-variable device selectors, as with 1/0 path names, allows a single statement to be used to move data between the computer and several devices. Simple examples of re-directing data in this manner are shown in the following programs.

Example of Re-Directing with Device Selectors
100 Device=!
110 GOSUB Data_out

200 Device=9
210 GOSUB Data_out

410 Data_out: OUTPUT Device;Data$
420 RETURN

Example of Re-Directing with 1/0 Path Names
100 ASSIGN ~Device TO 1
110 GOSUB Data_out

200 ASSIGN ~Device TO 9
210 GOSUB Data_out

410 Data_out: OUTPUT ~Device;Data$
420 RETURN

The preceding two methods of re-directing data execute in approximately the same amount of time. As a comparison of the two methods, executing the "Device=" statement takes less time than executing the "ASSIGN @Device" statement. Conversely, executing the "OUTPUT Device" statement takes more time than executing the "OUTPUT @Device" . However, the overall time for each method is approximately equal.

There are two additional factors to be considered. First, device selectors cannot be used to direct data to mass storage files; 1/0 path names are the only access to files. If the data is ever to be directed to a file, you should use 1/0 path names. A good example of re-directing data to mass storage files is given in the "1/0 Path Attributes" chapter. The second additional factor is described below.

3-16 Directing Data Flow

u

Attribute Control
1/0 paths have certain "attributes" which control how the system handles data sent
through the 1/0 path. For example, the FORMAT attribute possessed by an 1/0 path
determines which data representation will be used by the path during communications.
If the path possesses the attribute of FORMAT ON, the ASCII data representation will
be used. This is the default attribute automatically assigned by the computer when 1/0
path names are assigned to device selectors. If the 1/0 path possesses the attribute of
FORMAT OFF, the internal data representation is used; this is the default format for
BDAT files. Further details of these and additional attributes are discussed in the "1/0
Path Attributes" chapter.

The second additional factor that favors using 1/0 path names is that you can control
which attribute(s) are to be assigned to the 1/0 path to devices (and also to the 1/0
paths to files and buffers). If device selectors are used, this control is not possible. The
"1/0 Path Attributes" chapter describes how to specify the attributes to be assigned to
an 1/0 path and gives several useful techniques for using the available attributes.

Directing Data Flow 3-17

:~

3-18 Directing Data Flow

u

u

u

Table of Contents

Chapter 4: Outputting Data
Introduction 0 0 0 0 0 o 0 4-1
Free-Field Outputs 0 4-2

The Free-Field Convention 0 4-2
Item Separators and Terminators 0 4-3
Changing the EOL Sequence (Requires IO) 0 4-6

Using END in Freefield OUTPUT o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 4-8
Additional Definition 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 4-8

Outputs that Use Images 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 4-10
The OUTPUT USING Statement o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 4-10

Images 0 o 0 0 o o 0 o o o o 0 o 0 0 0 0 0 0 4-11
Example of Using an Image 0 4-12

Image Definitions During Outputs 0 4-13
Numeric Images 0 4-14
String Images 0 4-17
Binary Images 0 4-18
Special-Character Images 0 4-20
Termination Images 0 o o 0 0 0 0 0 0 0 0 4-21

Additional Image Features 0 o o 0 0 0 0 0 0 0 4-22
Repeat Factors 0 o 0 0 0 0 0 0 0 0 0 0 0 4-22
Image Re-Use 0 o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-23
Nested Images 0 o o o 0 o 0 0 0 0 0 0 0 0 0 0 4-24

END with OUTPUTs that Use Images 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 o 0 0 4-25
Additional END Definition 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o 4-26

u

u

' ' \._.)

Outputting Data 4
Introduction
The preceding chapter described how to identify a specific device as the destination of
data in an OUTPUT statement. Even though a few example statements were shown,
the details of how the data is sent were not discussed. This chapter describes the
topic of outputting data to devices. Outputting data to string variables, buffers, and
mass storage files is described in the "1/0 Path Attributes" and "Advanced Transfer
Techniques" chapters of this manual, in the "Data Storage and Retrieval" chapter of
BASIC Programming Techniques, and in the BASIC Language Reference.

There are two general types of output operations. The first type, known as "free-field
outputs", use the computer's default data representations1

. The second type provides
precise control over each character sent to a device by allowing you to specify the exact
"image" of the ASCII data to be output.

1 The ASCII representation described briefly in the preceding chapter is the default data representation
used when communicating with devices; however, the internal representation can also be used. See the
"I/0 Path Attributes" chapter for further details.

Outputting Data 4-1

Free-Field Outputs
Free-field outputs are invoked when the following types of OUTPUT statements are executed.

Examples

OUTPUT ~Device;3.14*Radius-2

OUTPUT Printer;"String data";Num_1

OUTPUT 9;Test,Score,Student$

OUTPUT Escape_code$;CHR$(27)&"&A1S";

The Free-Field Convention
The term "free-field" refers to the number of characters used to represent a data item. During free-field outputs, BASIC does not send a constant number of ASCII characters for each type of data item, as is done during "fixed-field outputs" which use images (described later in this chapter). Instead, a special set of rules is used that govern the number and type of characters sent for each source item. The rules used for determining the characters output for numeric and string data are described in the following paragraphs.

Standard Numeric Format
The default data representation for devices is to use ASCII characters to represent numbers. The ASCII representation of the value of each expression in the source list is generated during free-field output operations. Even though all REAL numbers have 15 (and INTEGERs can have up to 5) significant decimal digits of accuracy, not all of these digits are output with free-field OUTPUT statements. Instead, the following rules of the free-field convention are used when generating a number's ASCII representation.

All numbers between 1E-5 and 1E+6 are rounded to 12 significant digits and output in floating-point notation with no leading zeros. If the number is positive, a leading space is output for the sign; if negative, a leading "-" is output.

Examples

32767
-32768
123456.789012

-.000123456789012

4-2 Outputting Data

n

u

(!

~I

(_)

If the number is less than lE-5 or greater than 1E+6, it is rounded to 12 significant digits
and output in scientific notation. No leading zeros are output, and the sign character is
a space for positive and "-" for negative numbers.

Examples

-1.23456789012E+6
1.23456789012E-5

Standard String Format
No leading or trailing spaces are output with the string's characters1 .

String characters.
No leading or trailing spaces.

Item Separators and Terminators
Data items are output one byte (or word) at a time, beginning with the left-most item
in the source list and continuing until all of the source items have been output. Items
in the list must be separated by either a comma or a semicolon. However, items in the
data output may or may not be separated by item terminators, depending on the use of
item separators in the source lists.

The general sequence of items in the data output is as follows. The end-of-line (EOL)
sequence is discussed in the next section.

optional optional optional

1 This statement describes the FORMAT ON attribute (ASCII data representation). When sending data
with the FORMAT OFF attribute, however, the internal representation of string data is used; for strings,
the data consists of a four-byte length header that contains the number of characters in the string,
followed by the string characters. With FORMAT ON, there is no length header; only the ASCII string

characters are sent.

Outputting Data 4-3

Using a comma separator after an item specifies that the item terminator (corresponding to the type of item) will be output after the last character of this item. A carriage-return, CHR$(13), and a line-feed, CHR$(10), terminate string items.

OUTPUT Device;"Item",-1234

The default EOL sequence is a CR/LF.

A comma separator specifies that a comma, CHR$(44), terminates numeric items.

OUTPUT Device;-1234,"Item"

If a separator follows the last item in the list, the proper item terminator will be output instead of the EOL sequence.

OUTPUT Device; "Item", OUTPUT Device;-1234,

I e m I CR I LF I 1- 2 3 4

Using a semicolon separator suppresses output of the (otherwise automatic) item's terminator.

OUTPUT 1; "Item1"; "Item2" OUTPUT 1;-12;-34

If a semicolon separator follows the last item in the list, the EOL sequence and item terminators are suppressed.

OUTPUT 1; "Item1" ; "Item2" ;
I I I e I m I 1 I 1 I t I e J m I 2 Neither of the item terminators nor the EOL sequence are '--_j__.L____j__...L_:......J._.J__.:.......J....::..._.~-L. -=--.1 output.

4-4 Outputting Data

f)
I

I~

u

u

If the item is an array, the separator following the array name determines what is output
after each array element. (Individual elements are output in row-major order.)

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

OPTION BASE 1
DIM Array(2,3)
FOR Row=1 TO 2

FOR Column=1 TO 3
Array(Row,Column)=Row*10+Column

NEXT Column
NEXT Row
!

OUTPUT CRT;Array(*) No trailing separator.
!
OUTPUT CRT;Array(*). Trailing comma.

OUTPUT CRT;Array(*); Trailing semi-colon.

OUTPUT CRT; "Done"
END

Resultant Output

1 1 1 2 1 3 2 1

1 1 1 2 1 3 2 1

1 1 1 2 1 3 2 1 2 2 2

D 0 N E EOL
sequence

2 2 2 3 EOL)I
sequence

2 2 2 3 . I
3

Outputting Data 4-5

Item separators cause similar action for string arrays.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250

OPTION BASE 1
DIM Array$(2,3)[2]
FOR Row=1 TO 2

FOR Column=! TO 3
Array$(Row,Column)=VAL$(Row*10+Column)

NEXT Column
NEXT Row

OUTPUT CRT;Array$(*) No trailing separator.

OUTPUT CRT;Array$(*). Trailing comma.

OUTPUT CRT;Array$(*); Trailing semi-colon.
!
OUTPUT CRT; "Done"
END

Resultant Output

1 1 CR LF 1 2 CR LF 1 3 CR LF 2 1 CR LF 2

1 1 CR LF 1 2 CR LF 1 3 CR LF 2 1 CR LF 2

1 1 1 2 1 3 2 1 2 2 2 3

D 0 N E EOL
sequence

2 CR LF 2 3 EOL
sequence

2 CR LF 2 3 EOL
sequence

A pad byte may be sent following the last character of the EOL sequence when using an I/0 path that possesses the WORD attribute. See the "I/0 Path Attributes" chapter for further information.

Changing the EOL Sequence (Requires 10)
An end-of-line (EOL) sequence is normally sent following the last item sent with OUTPUT. The default EOL sequence consists of a carriage-return and line-feed (CR/LF), sent with no interface-dependent END indication. When the IO binary is loaded, it is also possible to define your own special EOL sequences that include sending special characters, sending an interface-dependent END indication, and delaying a specified amount of time after sending the EOL sequence.

4-6 Outputting Data

n
/

!~

/
l I

'"-"'

i i_.,,

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0 path must be used. The EOL sequence is specified in one of the ASSIGN statements
which describe the I/0 path. An example is as follows.

ASSIGN ~Device TO 12;EOL CHR$(10)&CHR$(10)&CHR$(13)

The characters following EOL are the new EOL-sequence characters. Any character in the
range CHR$(0) through CHR$(255) may be included in the string expression that defines
the EOL characters; however, the length of the sequence is limited to eight characters or
less. The characters are put into the output data before any conversion is performed (if
CONVERT OUT is in effect).

If END is included in the EOL attribute, an interface-dependent "END" indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is
sent, the END indication is also suppressed. The following statement shows an example
of defining the EOL sequence to include an END indication.

ASSIGN ~Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent
with the last EOL character. The individual chapter that describes programming each
interface further describes each interface's END indication (if implemented).

If DELAY is included, the system delays the specified number of seconds (after sending
the last EOL character and/or END indication) before executing any subsequent BASIC
statement.

ASSIGN ~Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

This parameter is useful when using slower devices which the computer can "overrun" if
data are sent as rapidly as the computer can send them. For example, a printer connected
to the computer through a serial interface set to operate at 300 baud might require a
delay after receiving a CR character to allow the carriage to return before sending further
characters.

The default EOL sequence is a CR and LF sent with no END indication and no delay;
this default can be restored by assigning EOL OFF to the I/0 path.

EOL sequences can also be sent by using the "L" image specifier. See "Outputs that Use
Images" for further details.

Outputting Data 4-7

Using END in Freefield OUTPUT
The secondary keyword END may be optionally specified following the last source-item
expression in a freefield OUTPUT statement. The result is to suppress the End-of-Line
(EOL) sequence that would otherwise be output after the last byte of the last source item.
If a comma is used to separate the last item from the END keyword, the corresponding
item terminator will be output as before (carriage-return and line-feed for string items
and comma for numeric items).

Examples

ASSIGN ~Gpio TO 12

OUTPUT ~Gpio;-10,END

I - I 1 I 0 I . I Item terminator, but no EOL sequence, is sent.

OUTPUT ~Gpio;-10;END
OUTPUT ~Gpio;-10 END

I - I 1 I 0 I Neither item terminator nor EOL sequence is sent.

OUTPUT ~Gpio; 11 AB 11 ,END

I A I B I CR I LF I Item terminator, but no EOL sequence, is sent.

OUTPUT ~Gpio; 11 AB 11 ;END
OUTPUT ~Gpio; 11 AB 11 END

I A I B I Neither item terminator nor EOL sequence is sent.

OUTPUT ~Gpio

The EOL sequence is sent.

OUTPUT ~Gpio; END No EOL sequence is sent.
OUTPUT ~Gpio; 11 11 END

The END keyword has additional significance when the destination is a mass storage
file. See the "Data Storage and Retrieval" chapter of BASIC Programming Techniques
for further details.

Additional Definition
BASIC defines additional action when END is specified in a freefield OUTPUT statement
directed to either HP-IB or Data Communications interfaces.

4-8 Outputting Data

I

' "-...-/

END with HP-IB Interfaces
With HP-IB interfaces, END has the additional function of sending the End-or-Identify
signal (EO I) with the last data byte of the last source item; however, if no data are sent
from the last source item, EOI is not sent. For further description of the EOI signal, see
the "HP-IB Interface" chapter.

Examples

ASSIGN ~Device TO 701

OUTPUT ~Device;-10,END

I - I 1 I o I . I

EOI sent with the last character
(numeric item terminator).

OUTPUT ~Device; "AB" ;END
OUTPUT ~Device;"AB" END

I A I B I,_.,
EOI sent with the last character of the item.

OUTPUT ~Device;END
OUTPUT ~Device;"" END Neither EOL sequence nor EOI is sent, since no data is ser

END with the Data Communications Interface
With Data Communication interfaces, END has the additional function of sending an
end-of-data indication to the interface. See the "Datacomm Interface" chapter for further
details.

Outputting Data 4-9

Outputs that Use Images
The free-field form of the OUTPUT statement is very convenient to use. However, there
may be times when the data output by the free-field convention is not compatible with
the data required by the receiving device.

Several instances for which you might need to format outputs are: special control char
acters are to be output; the EOL sequence (carriage-return and line-feed) needs to be
suppressed; or the exponent of a number must have only one digit. This section shows
you how to use image specifiers to create your own, unique data representations for
output operations.

The OUTPUT USING Statement
When this form of the OUTPUT statement is used, the data is output according to the
format image referenced by the "USING" secondary keyword. This image consists of one
or more individual image specifiers which describe the type and number of data bytes
(or words) to be output. The image can be either a string literal, a string variable, or
the line label or number of an IMAGE statement. Examples of these four possibilities
are listed below.

100 OUTPUT 1 USING 11 6A,SDDD.DDD,3X 11 ; 11 K= 11 ,123.45

100 Image_str$= 11 6A,SDDD.DDD,3X 11

110 OUTPUT CRT USING Image_str$; 11 K= 11 ;123.45

100 OUTPUT CRT USING Image_stmt; 11 K= 11 ;123.45
110 Image_stmt: IMAGE 6A,SDDD.DDD,3X

100 OUTPUT 1 USING 110; II K= II; 123.45
110 IMAGE 6A,SDDD.DDD,3X

4-10 Outputting Data

,f)

(··•

u

u

Images
Images are used to specify the format of data during I/0 operations. Each image consists
of groups of individual image (or "field") specifiers, such as 6A, SDDD.DDD, and 3X
in the preceding examples. Each of these field specifiers describe one of the following
things:

• It describes the desired format of one item in the source list. (For instance,
6A specifies that a string item is to be output in a "6-character Alpha" field.
SDDD.DDD specifies that a numeric item is to be output with Sign, 3 Decimal digits
preceding the decimal point, followed by 3 Decimal digits following the decimal
point.)

• It specifies that special character(s) are to be output. (For instance, 3X specifies
that 3 spaces are to be output.) There is no corresponding item in the source list.

Thus, you can think of the image list as either a precise format description or as a
procedure. It is convenient to talk about the image list as a procedure for the purpose
of explaining how this type of OUTPUT statement is executed.

Again, each image list consists of images that describe the format of data items to be
output. The order of images in the list corresponds to the order of data items in the
source list. In addition, image specifiers can be added to output (or to suppress the
output of) certain characters. The following example steps through exactly how BASIC
executes all of the preceding equivalent statements.

Outputting Data 4-11

Example of Using an Image
We will use the first of the four, equivalent output statements shown above. Don't worry
if you don't understand each of the image specifiers used in the image list; each will be
fully described in subsequent sections of this chapter. The main emphasis of this example
is that you will see how an image list is used to govern the type and number of characters
output.

OUTPUT CRT USING 11 6A. SDDD 0 DDD. 3X 11
; II K= II ,123 0 45

The data stream output by the computer is as follows.

Step 1.

Step 2.

Step 3.

Step 4.

I+ 2 3

6A S D D D

4 5 0

D D D 3X default EOL
sequence

The computer evaluates the first image in the list. Generally, each group of
specifiers separated by commas is an "image"; the commas tell the computer
that the image is complete and that it can be "processed". In general, each
group of specifiers is processed before going on to the next group. In this
case, 6 alphanumeric characters taken from the first item in the source list
are to be output.

The computer then evaluates the first item in the source list and begins
outputting it, one byte (or word) at a time. After the 4th character, the
first expression has been "exhausted". In order to satisfy the corresponding
specifier, two spaces (alphanumeric "fill" characters) are output.

The computer evaluates the next image (note that this image consists of
several different image specifiers). The "S" specifier requires that a sign
character be output for the number, the "D" specifiers require digits of a
number, and the "." specifies where the decimal point will be placed. Thus,
the number of digits following the decimal point have been specified. All of
these specifiers describe the format of the next item in the source list.

The next data item in the source list is evaluated. The resultant number is
output one digit at a time, according to its image specifiers. A trailing zero
has been added to the number to satisfy the "DDD" specifiers following the
decimal point.

4-12 Outputting Data

n
I

~\
' I

)

u
Step 5.

Step 6.

The next image in the list ("3X")is evaluated. This specifier does not "re
quire" data, so the source list needs no corresponding expression. Three
spaces are output by this image.

Since the entire image list and source list have been "exhausted", the com
puter then outputs the current (or default, if none has been specified) "end
of-line" sequence of characters (here we assume that a carriage-return and
line-feed are the current EOL sequence).

The execution of the statement is now complete. As you can see, the data specified in
the source list must match those specified in the output image in type and in number of
items.

Image Definitions During Outputs
This section describes the definitions of each of the image specifiers when referenced by
OUTPUT statements. The specifiers have been categorized by data type. It is suggested
that you scan through the description of each specifier and then look over the examples.
You are also highly encouraged to experiment with the use of these concepts.

Outputting Data 4-13

Numeric Images
These image specifiers are used to describe the format of numbers.

Table 4-1. Sign, Digit, Radix and Exponent Specifiers
(~

J Image Specifier Meaning
s Specifies a "+" for positive and a "-" for negative numbers is to be output.

M Specifies a leading space for positive and a "-" for negative numbers is to
be output.

D Specifies one ASCII digit ("0" through "9") is to to be output. Leading
spaces and trailing zeros are used as fill characters. The sign character,
if any, "floats" to the immediate left of the most-significant digit. If the
number is negative and no S or M is used, one digit specifier will be used
for the sign.

z Same as "D" except that leading zeros are output. This specifier cannot
appear to the right of a radix specifier (decimal point orR).

* Like D, except that asterisks are output as leading fill characters (instead
of spaces). This specifier cannot appear to the right of a radix specifier
(decimal point orR).

Specifies the position of a decimal point radix-indicator (American radix)
within a number. There can be only one radix indicator per numeric image
item.

R Specifies the position of a comma radix indicator (European radix) within
a number. There can be only one radix indicator per numeric image item.

E Specifies that the number is to be output using scientific notation. The "E"
must be preceded by at least one digit specifier (D, Z, or *). The default
exponent is a four-character sequence consisting of an "E", the exponent
sign, and two exponent digits, equivalent to an "ESZZ" image. Since the
number is left-justified in the specified digit field, the image for a negative
number must contain a sign specifier (see the next section).

ESZ Same as "E" but only 1 exponent digit is output.
ESZZZ Same as "E" but three exponent digits are output.
K, -K Specifies that the number is to be output in a "compact" format, similar to

the standard numeric format; however, neither leading spaces (that would
otherwise replace a "+" sign) nor item terminators (commas) are output,
as would be with the standard numeric format.

H,-H Like K, except that the number is to be output using a comma radix (Eu-
ropean radix).

4-14 Outputting Data

Numeric Examples

OUTPUT (ODevice USING "DDDD";-123.769

('\

u
OUTPUT (ODevice USING "4D";-1.2

I - 11 I se~~~ce I
OUTPUT (ODevice USING "ZZ.DD"; 1.675

OUTPUT (ODevice USING "Z.D"; .35

OUTPUT (ODevice USING "DD.E";12345

OUTPUT (ODevice USING "2D.DDE";2E-4

I 2 I 0 I · I 0 I 0 I E I - I 0 I 5 I se~~~ce I
OUTPUT (ODevice USING "K";12.400

OUTPUT CRT USING "MDD.2D";-12.449

Outputting Data 4-15

OUTPUT CRT USING "MDDoDD";2009

OUTPUT 1 USING "SDoD";20449 n

OUTPUT 1 USING "SZ oDD" ; .49

I + I o I 0 I 4 I 9 I se~u~~ce I
OUTPUT CRT USING "SDDODDE";-2035

OUTPUT <QDevice USING "**OD";2o6

OUTPUT <QDevice USING "DRDD";301416

OUTPUT <QDevice USING "H";301416

(~
.)

4-16 Outputting Data

String Images
These types of image specifiers are used to specify the format of string data items.

u Table 4-2. Character Specifiers

Image Specifier Meaning

A Specifies that one character is to be output. Trailing spaces are used as fill
characters if the string contains less than the number of characters specified.

"literal" All characters placed in quotes form a string literal, which is output exactly
as is. Literals can be placed in output images which are part of OUTPUT
statements by enclosing them in double quotes.

K, -K, H,-H Specifies that the string is to be output in "compact" format, similar to the
standard string format; however, no item terminators are output as with
the standard string format.

String Examples

OUTPUT <QDevice USING "8A";"Characters"

u I c I h I a I r I a I c I t I e I se;~~ce I

OUTPUT <QDevice USING "K,""Literal""";"AB"

OUTPUT <QDevice USING "K";" Hello

OUTPUT <QDevice USING "5A";" Hello "

I \ u

Outputting Data 4-17

Binary Images
These image specifiers are used to output bytes (8-bit data) and words (16-bit data) to
the destination. Typical uses are to output non-ASCII characters or integers in their
internal representation.

Table 4-3. Binary Specifiers

Image Specifier Meaning
B Specifies that one byte (8 bits) of data is to be output. The source expres

sion is evaluated, rounded to an integer, and interpreted MOD 256. If it is
less than -32 768, CHR$(0) is output. If is greater than 32 767, CHR$(255)
is output.

W Specifies that one word of data (16 bits) are to be sent as a 16-bit, two's
complement integer. The corresponding source expression is evaluated and
rounded to an integer. If it is less than -32 768, then -32 768 is sent; if it
is greater than 32 767, then 32 767 is sent.

If either an I/0 path name with the BYTE attribute (see the "I/0 Path
Attributes" chapter) or a device selector is used to access an 8-bit interface,
two bytes will be output; the first byte is most significant. If an I/0 path
name with the BYTE attribute is used to access a 16-bit interface, the
BYTE attribute is overridden and one 16-bit word is output in a single
handshake operation.

If an I/0 path name with the WORD attribute is used to access a 16-bit
interface, a pad byte, CHR$(0), is output whenever necessary to achieve
alignment on a word boundary.

If the destination is a BDAT or HPUX file, string variable, or buffer, the
WORD attribute is ignored and all data are sent as bytes; however, pad
byte(s) will also be output whenever necessary to achieve alignment on a
word boundary. The pad byte may be changed by using the CONVERT
attribute (see the "I/0 Path Attributes" chapter for details).

Y Like W, except that no pad bytes are output to achieve alignment on a
word boundary. If an I/0 path with the BYTE attribute is used to access
a 16-bit interface, the attribute is not overridden (as with theW specifier).

4-18 Outputting Data

Binary Examples

OUTPUT <DDevice USING "B,B,B";65,66,67

U I A I 8 I C I se~~~ce I

u

I \

_)

OUTPUT <DDevice USING "B";13

OUTPUT <DDevice USING "W";256*65+66

I A I 8 I se~~~ce I

For this example, assume that @Device possesses the WORD attribute and that the EOL
sequence consists of the characters "123" with an END indication.

OUTPUT <DDevice USING "K,W";"Odd",256*65+66

\ o \ d \ d \NuL\ A \ 8 I 1 I 2 I 3 \NuL\

' Word 1 Word 2 Word 3 Word 4 Word 5 END Indication Sent Here

For this example, assume that @Device possesses the WORD attribute and that the EOL

sequence is the default (CR/LF).

OUTPUT <DDevice USING "K,Y";"Odd",256*65+66

I 0 I d I d I A I 8 I CR I LF \NUL\

Word 1 Word 2 Word 3 Word 4

Outputting Data 4-19

Special-Character Images
These specifiers require no corresponding data in the source list. They can be used to
output spaces, end-of-line sequences, and form-feed characters.

Table 4-4. Special-Character Specifiers

Image Specifier Meaning
X Specifies that a space character, CHR$(32), is to be output.

I Specifies that a carriage-return character, CHR$(13), and a line-feed char-
acter, CHR$(10), are to be output.

@ Specifies that a form-feed character, CHR$(12), is to be output.

Special-Character Examples

OUTPUT <DDevice USING "A,4X,A"; "M" ."A"

OUTPUT <DDevice USING "50X"

<-(50 spaces)--.>

OUTPUT <DDevice USING "<D./"

OUTPUT <DDevice USING "/"

4-20 Outputting Data

n

()
/

()
, I

' ' u

u

Termination Images
These specifiers are used to output or suppress the end-of-line sequence output after the
last data item.

Table 4-5. Termination Specifiers

Image Specifier Meaning

L Specifies that the current end-of-line sequence is to be output. The default
EOL characters are CR and LF; see "Changing the EOL Sequence" for
details on how to re-define these characters. If the destination is an 1/0
path name with the WORD attribute, a pad byte will be output after each
EOL sequence when necessary to achieve word alignment.

Specifies that the EOL sequence that normally follows the last item is to
be suppressed.

% Is ignored in output images but is allowed to be compatible with ENTER
images.

+ Specifies that the EOL sequence that normally follows the last item is to
be replaced by a single carriage-return character (CR).

- Specifies that the EOL sequence that normally follows the last item is to
be replaced by a single line-feed character (LF).

Termination Examples

OUTPUT (DDevice USING "4A,L";"Data"

I 0 I a I t I a I se;~~ce I se;u~~ce I
OUTPUT (DDevice USING "#,K";"Data"

I D I a I t I a I
OUTPUT (DDevice USING "#,B";12

Outputting Data 4-21

OUTPUT (ODevice USING "+,K";"Data"

I D I a I t I a I CR I

OUTPUT (ODevice USING "-,L,K";"Data"

Additional Image Features
Several additional features of outputs which use images are available with the computer. Several of these features, which have already been shown, will be explained here in detail.

Repeat Factors
Many of the specifiers can be repeated without having to explicitly list the specifier as many times as it is to be repeated. For instance, to a character field of 15 characters, you do not need to use "AAAAAAAAAAAAAAA"; instead, you merely specify the number of times that the specifier is to be repeated in front of the image ("15A"). The following specifiers can be repeated by specifying an integer repeat factor; the specifiers not listed cannot be repeated in this manner.

Repeatable Specifiers Non-Repeatable Specifiers
D, Z, *,A, X, j, @, L 8, M, ., R, E, K, H, B, W, Y, #, %, +, -

Examples

OUTPUT (ODevice USING "4Z.3D";328.03

OUTPUT (ODevice USING "6A"; "Data bytes"

I 0 I a I 1 I a I I b I se:~~ce I

4-2~ Outputting Data

n

(_)

/ \

_,)

OUTPUT CQDevice USING "5X,2A";"Data"

OUTPUT CQDevice USING "2L,4A";"Data"

OUTPUT CQDevice USING "8A,2CQ";"The End"

OUTPUT CQDevice USING "2/"

I CR I LF I CR I LF I se~~~ce I

Image Re-Use
If the number of items in the source list exceeds the number of matching specifiers in the
image list, the computer attempts to re-use the image(s) beginning with the first image.

110 ASSIGN CODevice TO CRT
120 Num_1=1
130 Num_2=2
140
150 OUTPUT CQDevice USING "K";Num_1,"Data_1",Num_2,"Data_2"
160 OUTPUT CQDevice USING "K ,/" ;Num_1, "Data_1" ,Num_2, "Data_2"
170 END

Resultant Display

1Data_12Data_2
1
Data_1
2
Data_2

Outputting Data 4-23

Since the "K" specifier can be used with both numeric and string data, the above OUT
PUT statements can re-use the image list for all items in the source list. If any item
cannot be output using the corresponding image item, an error results. In the following
example, "Error 100 in 150" occurs due to data mismatch.

110 ASSIGN ~Device TO CRT
120 Num_1=1
130 Num_2=2
140
150 OUTPUT ~Device USING "DD.DD";Num_1,Num_2,"Data_1"
160 END

Nested Images
Another convenient capability of images is that they can be nested within parentheses.
The entire image list within the parentheses will be used the number of times specified
by the repeat factor preceding the first parenthesis. The following program is an example
of this feature.

100 ASSIGN ~Device TO 701
110
120 OUTPUT ~Device USING "3(B) ,X,DD,X,DD";65,66,67,68,69
130 END

Resultant Output

This nesting with parentheses is made with the same hierarchy as with parenthetical
nesting within mathematical expressions. Only eight levels of nesting are allowed.

4-24 Outputting Data

0
J

u

L .. ! /

L/

END with OUTPUTs that Use Images
Using the optional secondary keyword END in an OUTPUT statement that uses an image
produces results which differ from those of using END in a freefield OUTPUT statement.
Instead of always suppressing the EOL sequence, the END keyword only suppresses the
EOL sequence when no data are output from the last source-list expression. Thus, the
"#" image specifier generally controls the suppression of the otherwise automatic EOL
sequence, while the END keyword suppresses it only in less common usages.

Examples

Device=12

OUTPUT Device USING "K";"ABC",END
OUTPUT Device USING "K"; "ABC" ;END
OUTPUT Device USING "K";"ABC" END

The EOL sequence is not suppressed.

OUTPUT Device USING "L,/ ,'"'Literal"" ,X,<O"

In this case, specifiers that require no source-item expressions are used to generate
characters for the output; there are no source expressions. The EOL sequence is output
after all specifiers have been used to output their respective characters. Compare this
action to that shown in the next example.

OUTPUT Device USING "L,/ ,""Literal'"' ,X,<O" ;END

The EOL sequence is suppressed because no source items were included in the statement;
all characters output were the result of specifiers which require no corresponding
expression in the source list.

Outputting Data 4-25

Additional END Definition
The END secondary keyword has been defined to produce additional action when included in an OUTPUT statement directed to HP-IB and Data Communications inter
faces.

END with HP-IB Interfaces
With HP-IB interfaces, END has the additional function of sending the End-or-Identify signal (EOI) with the last character of either the last source item or the EOL sequence (if sent). As with freefield OUTPUT, no EOI is sent if no data is sent from the last source item and the EOL sequence is suppressed.

Examples

ASSIGN ~Device TO 701

OUTPUT ~Device USING "K";"Data",END
OUTPUT ~Device USING "K"; "Data",'"' ,END

I 0 I a I I a lse~~~cel
"---r-'

EOI sent with last character
of the EOL sequence.

OUTPUT ~Device USING "#,K";"Data" END

I D I a I t I a I
"---r-'

EOI sent with this character.

EOI is sent with the last character of the last source item when the EOL sequence is suppressed, because the last source item contained data which was used in the output.

OUTPUT ~Device USING "#,K";"Data"."".END
OUTPUT ~Device USING """Data""";END

The EOI was not sent in either case, since no data were sent from the last source item and the EOL sequence was suppressed.

END with Data Communications Interfaces
With Data Communications interfaces, END has the additional definition of sending an end-of-data indication to the interface in the same instances in which EOI would be sent on HP-IB interfaces. See the "Datacomm Interface" chapter for further details.

4-26 Outputting Data

n
I

n

~'
c)

u

u

Table of Contents

Chapter 5: Entering Data
Free-Field Enters . 5-1

Item Separators. 5-2
Item Terminators . 5-2
Entering Numeric Data with the Number Builder 5-3
Entering String Data . 5-8

Terminating Free-Field ENTER Statements 5-11
EOI Termination .. 5-12

Enters that Use Images . 5-14
The ENTER USING Statement 5-14

Images . 5-15
Example of an Enter Using an Image 5-15

Image Definitions During Enter . 5-17
Numeric Images . 5-17
String Images . 5-19
Ignoring Characters . 5-20
Binary Images ... 5-21

Terminating Enters that Use Images. 5-22
Default Termination Conditions... 5-22
EOI Re-Definition. 5-23
Statement-Termination Modifiers . 5-24

Additional Image Features . 5-26
Repeat Factors . 5-26
Image Re-Use . 5-26
Nested Images . 5-26

(~ .)
I

Entering Data 5
(•.

\..__) This chapter discusses the topic of entering data from devices. You may already be
familiar with the OUTPUT statement described in the previous chapter; many of those
concepts are applicable to the process of entering data. Earlier in this manual, you were
told that the data output from the sender had to match that expected by the receiver.
Because of the many ways that data can be represented in external devices, entering data
can sometimes require more programming skill than outputting data. In this chapter,
you will see what is involved in being the receiving device. Both free-field enters and
enters that use images are described, and several examples are given with each topic.

(.
_,)

(_)

Free-Field Enters
Executing the free-field form of the ENTER invokes conventions which are the "converse"
of those used with the free-field OUTPUT statement. In other words, data output using
the free-field form of the OUTPUT statement can be readily entered using the free-field
ENTER statement; no explicit image specifiers are required. The following statements
exemplify this form of the ENTER statement.

Examples

100 ENTER @Voltmeter;Reading

100 ENTER 724;Readings(*)

100 ENTER From_string$;Average,Student_name$

100 ENTER @From_file;Data_code,Str_element$(X,Y)

Entering Data 5-1

Item Separators
Destination items in ENTER statements can be separated by either a comma or a
semicolon. Unlike the OUTPUT statement, it makes no difference which is used; data
will be entered into each destination item in a manner independent of the punctuation
separating the variables in the list. However, no trailing punctuation is allowed. The
first two of the following statements are equivalent, but an error is reported when the
third statement is executed.

Examples

ENTER ~From_a_device;N1,N2,N3
These first two statements are equivalent. ENTER ~From_a_device;N1;N2;N3

ENTER ~From_a_device; N1, N2, N3, Executing this statement causes an error
{because of trailing comma).

Item Terminators
Unless the receiver knows exactly how many characters are to be sent, each data item
output by the sender must be terminated by special character(s). When entering ASCII
data1 with the free-field form of the ENTER statement, the computer does not know
how many characters will be output by the sender.

Item terminators must signal the end of each item so that the computer enters data into
the proper destination variable. The terminator of the last item may also terminate the
ENTER statement (in some cases). The actual character(s) that terminate entry into
each type of variable are described in the next sections.

In addition to the termination characters, each item can be terminated (only with selected
interfaces) by a device-dependent END indication. For instance, some interfaces use a
signal known as EOI (End-or-Identify). The EOI signal is only available with the HP-IB,
CRT, and keyboard interfaces. EOI termination is further described in the next sections.

When using an I/0 path that possesses the WORD attribute, an additional byte may be
entered (but ignored). See the "I/0 Path Attributes" chapter for further information.

1 The ASCII data representation described briefly in Chapter 2 is the default data representation used with devices; however, the internal representation can also be used. See the "1/0 Path Attributes" chapter for further details.

5-2 Entering Data

/ ~ \ \

I I

_)

Entering Numeric Data with the Number Builder
When the free-field form of the ENTER statement is used, numbers are entered by a
routine known as the "number builder". This firmware routine evaluates the incoming
ASCII numeric characters and then "builds" the appropriate internal-representation
number. This number builder routine recognizes whether data being entered is to be
placed into an INTEGER or REAL variable and then generates the appropriate internal
representation.

The number builder is designed to be able to enter several formats of numeric data.
However, the general format of numeric data must be as follows to be interpreted properly
by the computer.

Mantissa Mantissa E Exponent Exponent Terminator
sign digit(s) sign digit(s) (character or

END indication)

Optional At least one Optional Required
digit is required

Numeric characters include decimal digits "0" through "9" and the characters ".", "+",
"-", "E", and "e". These last five characters must occur in meaningful positions in the
data stream to be considered numeric characters; if any of them occurs in a position in
which it cannot be considered part of the number, it will be treated as a non-numeric
character.

Entering Data 5-3

The following rules are used by the number builder to construct numbers from incoming
streams of ASCII numeric characters.

1. All leading non-numerics are ignored; all leading and imbedded spaces are ignored.
Example 0)

100 ASSIGN ~Device TO Device_selector
110 ENTER ~Device;Number ! Default is data type REAL.
120 END

2

Ignored Number

Consumed
,.-J--.

3 I LF I
Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that
Number receives a value of 123. The line-feed (statement terminator) is required since
Number is the last item in the destination list.

5-4 Entering Data

I '
\ :
'-.._.)

2. Trailing non-numerics terminate entry into a numeric variable, and the terminating
characters (of both string and numeric items) are "consumed". In this manual,
"consumed" characters refers to characters used to terminate an item but not
entered into the variable; "ignored" characters are entered but are not used.

Example

ENTER ~Device;Real_number,String$

Consumed Consumed
.............

2 3 I 4 I A I B I C D I LF (or CR/LF) I

Ignored Real_number Numeric String$ Terminator (for both
item and statement) item terminator

The result of entering the preceding data with the given ENTER statement is that
Real_number receives the value 123.4 and String$ receives the characters "BCD". The
"A" was lost when it terminated the numeric item; the string-item terminator(s) are also
lost. The string-item terminator(s) also terminate the ENTER statement, since String$
is the last item in the destination list.

Entering Data 5-5

3. If more than 16 digits are received, only the first 16 are used as significant digits.
However, all additional digits are treated as trailing zeros so that the exponent is
built correctly.

Example

ENTER ~Device;Real_number_1

2 3 4 5 6 7 8 9 0

Real_number_1

Consumed ,..........._

2 3 4 5 I 6 I LF I
.._,...;

Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number_1 receives the value 1.234567890123460 E+15. In order to see all digits,
use a statement like this: OUTPUT CRT USING "D.15DESZZ" ;Real_number_1.

Example

ENTER ~Device;Real_number_2

2 3 4 5 6 7 8 9 0

Real_number .2

Used only to build
the exponent. Consumed

,..........._

2 3 4 5 6 7 I 8 I LF I
.._,...;

Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that
Real_number _2 receives the value 1.234567890123460 E+17.

5-6 Entering Data

,f)
/

u

/ '

\._)

4. Any exponent sent by the source must be preceded by at least one mantissa digit
and an "E" (or "e") character. If no exponent digits follow the "E" (or "e"), no
exponent is recognized, but the number is built accordingly.

Example

ENTER ~Device;Real_number

E 8 8 5

Ignored ReaLnumber

Consumed
~

2 c I 0 I u I LF I

Numeric Ignored
item terminator

Terminator

The result of entering the preceding data with the given ENTER statement is that
Real_number receives a value of 8.85 E-12. The character "C" terminates entry into
Real_number, and the characters "oul" are entered (but ignored) in search of the required
line-feed statement terminator. If the character "C" is to be entered but not ignored,
you must use an image. Using images with the ENTER statement is described later in
this chapter.

5. If a number evaluates to a value outside the range corresponding to the type of the
numeric variable, an error is reported. If no type has been declared explicitly for
the numeric variable, it is assumed to be REAL.

Example

ENTER ~Device;Real_number

Consumed __..._..,

2 3 4 E I + 3 0 7 I LF I Evaluates to 1 .234 E + 309.

~--------------~------------~~
The resultant value cannot
be stored in Real_number.

Terminator (for both items
and statement)

The data is entered but evaluates to a number outside the range of REAL numbers.
Consequently, error 19 is reported, and the variable Real_number retains its former
value.

6. If the item is the last one in the list, both the item and the statement need to be
properly terminated. If the numeric item is terminated by a non-numeric character,
the statement will not be terminated until it either receives a line-feed character or
an END indication (such as EOI signal with a character). The topic of terminating
free-field ENTER statements is described later in this chapter in the section of the
same name.

Entering Data 5-7

Entering String Data
Strings are groups of ASCII characters of varying lengths. Unlike numbers, almost any
character can appear in any position within a string; there is not really any defined
structure of string data. The routine used to enter string data is therefore much simpler
than the number builder. It only needs to keep track of the dimensioned length of the
string variable and look for string-item terminators (such as CR/LF, LF, or EOI sent
with a character).

String-item terminator characters are either a line-feed (LF) or a carriage-return followed
by a line-feed (CR/LF). As with numeric-item terminators characters, these characters
are not entered into the string variable (during free-field enters); they are "lost" when
they terminate the entry. The EOI signal also terminates entry into a string variable,
but the variable must be the last item in the destination list (during free-field enters).

All characters received from the source are entered directly into the appropriate string
variable until any of the following conditions occurs:

• an item terminator character is received.

• the number of characters entered equals the dimensioned length of the string
variable.

• the EOI signal is received.

The following statements and resultant variable contents illustrate the first two condi
tions; the next section describes termination by EOI. Assume that the string variables
Five_char$ and Ten_char$ are dimensioned to lengths of 5 and 10 characters, respectively.

5-8 Entering Data

~~

u

i •
_/'

Example

ENTER ~Device;Five_char$

Consumed ,......_,
A B c D E F G H I CR I LF I

Five_char$ Ignored Terminator (for both
item and statement)

The variable Five_char$ only receives the characters "ABCDE", but the characters

"FGH" are entered (and ignored) in search of the terminating carriage-return/line-feed
(or line-feed). This happens because Five_char$ is the last variable at the end of the
ENTER statement.

Example

ENTER ~Device;Ten_char$

Consumed ,......_, Consumed

A B c D E F I G I LF J or A B c D E F G I CR I LF I
~--------~--------~~

Ten_char$ Terminator (for
both item and statement)

Ten_char$ Terminator (for both
item and statement)

The result of entering the preceding data with the given ENTER statement is that

Ten_char$ receives the characters "ABCDEFG" and the terminating LF (or CR/LF) is

lost.

The following example illustrates possible interactions between the two terminating

conditions for strings.

Example

10
20
30
40
50
60
70

DIM A$[5] ,B$[4] ,C$[4] ,D$[4] ,E$[4] ,F$[4] ,G$[4] ,H$[4]

ASSIGN ~File TO "File";FORMAT ON
ENTER ~File;A$,B$,C$,D$,E$,F$,G$,H$
DISPLAY FUNCTIONS ON
PRINT A$&"i"&B$&" i"&C$&"i"&D$&"i"&E$&"i"&F$&"i"&G$&"i"&H$;
DISPLAY FUNCTIONS OFF
END

Entering Data 5-9

The file called File contains the data:

I A I B I c lcRitFI E IF I G I H lcRitFI I I J I K I LIM IN ltFI o I P I Q IRIs I T I u I vI w I xI Y I z I
When RUN, this program prints:

ABCD1t
I IEFGHIJKLIMNIDPQRISTUV

which shows that: A$ received the first five characters and entry to the item was terminated because the string variable was filled completely; B$ terminated on the line feed; C$ received EFGH and terminated; D$ terminated on carriage return/line feed;
E$ received the next four characters; F$ terminated on carriage return/line feed after receiving two characters; and G$ and H$ took four characters each.

The important points here are:

• carriage returns are not consumed unless the line feed would also fit into the string,
• no "scan ahead to the terminator" is performed except for the last variable in an

ENTER statement.

In order to avoid the above behavior, always dimension strings which will be used in this manner to be at least two characters longer than the longest data item which might be read into them. This will allow room for the carriage return/line feed sequence to be read and consumed.

5-10 Entering Data

,f)
I

r--\
I I

u

(_)

Terminating Free-Field ENTER Statements
Terminating conditions for free-field ENTER statements are as follows.

1. If the last item is terminated by a line-feed or by a character accompanied by EOI,
the entire statement is properly terminated.

2. If an END indication is received while entering data into the last item, the statement
is properly terminated. Examples of END indications are encountering the last
character of a string variable while entering data from the variable, receiving EOI
with a character, and receiving a control block while entering data through the
Data Communications interface

3. If one of the preceding statement-termination conditions has not occurred but entry
into the last item has been terminated,up to 256 additional characters are entered
in search of a termination condition. If one is not found, an error occurs.

One case in which this termination condition may not be obvious can occur while entering
string data. If the last variable in the destination list is a string and the dimensioned
length of the string has been reached before a terminator is received, additional characters
are entered (but ignored) until the terminator is found. The reason for this action is that
the next characters received are still part of this data item, as far as the data sender
is concerned. These characters are accepted from the sender so that the next enter
operation will not receive these "leftover" characters.

Another case involving numeric data can also occur (see the example given with "rule
4" describing the number builder). If a trailing non-numeric character terminates the
last item (which is a numeric variable), additional characters will be entered in search of
either a line-feed or a character accompanied by EOI. Unless this terminating condition
is found before 256 characters have been entered, an error is reported.

Entering Data 5-11

EOI Termination
A termination condition for the HP-IB Interface is the EOI (End-or-Identify) signal.
When this message is sent, it immediately terminates the entire ENTER statement,
regardless of whether or not all variables have been satisfied. However, if all variable
items in the destination list have not been satisfied, an error is reported.

Example

ENTER ~Device;String$

I A I B I c I o I E I F I or I A I B I c I o I E I F I LF I or I A I B I c I D I E I F I CR I LF I,_.
Sent with

EOI

......,_.
Sent with

EOI

......,_.
Sent with

EOI

The result of entering the preceding data with the given ENTER statement is that String$
receives the characters "ABCDEF". The EOI signal being received with either the last
character or with the terminator character properly terminates the ENTER statement.
If the character accompanied by EOI is a string character (not a terminator), it is entered
into the variable as usual.

Example

ENTER ~Device;Number

Used to build Number .-.....
2 1 3 1 4 1 5 1 or

Number Sent with
EOI

2 3 4

Number

Consumed
,-"-.,

I 5 I A I or ..__..
Sent with

EOI

Consumed .-.....
2 3 4 I 5 I LF I

~------~----~~
Number Sent with

EOI
The result of entering any of the above data streams with the given ENTER statement
is that Number receives the value 12345. If the EOI signal accompanies a numeric
character, it is entered and used to build the number; if the EOI is received with a
numeric terminator, the terminator is lost as usual.

5-12 Entering Data

~
')

)

I '
·~

u

Example

ENTER ~Device;Number,String$

I 2 I 3 I 4 I s I
~----v-----~~

Number Sent with
EOI

An error is reported
(Error 153 Insufficient data for ENTER).

The result of entering the preceding data with the given statement is that an error is
reported when the character "5" accompanied by EOI is received. However, Number
receives the value 12345, but String$ retains its previous value. An error is reported
because all variables in the destination list have not been satisfied when the EOI is
received. Thus, the EOI signal is an immediate statement terminator during free-field
enters. The EOI signal has a different definition during enters that use images, as
described later in this chapter.

The EOI signal is implemented on the HP-IB Interface, described in the "HP-IB
Interface" chapter of this manual. Since it is often convenient to to use the keyboard
and CRT for external devices, these internal devices have been designed to simulate this
signal. Further descriptions of this feature's implementation in the CRT display and
keyboard are contained in the "Display Interfaces" and "Keyboard Interfaces" chapters
of this manual, respectively.

Entering Data 5-13

Enters that Use Images
The free-field form of the ENTER statement is very convenient to use; the computer
automatically takes care of placing each character into the proper destination item.
However, there are times when you need to design your own images that match the
format of the data output by sources. Several instances for which you may need to use
this type of enter operations are: the incoming data does not contain any terminators;
the data stream is not followed by an end-of-line sequence; or two consecutive bytes of
data are to be entered and interpreted as a two's-complement integer.

The ENTER USING Statement
The means by which you can specify how the computer will interpret the incoming data
is to reference an image in the ENTER statement. The four general ways to reference
the image in ENTER statements are as follows.

1. 100 ENTER CQDevice_x USING "6A,DDD.DD";String_var$,Num_var

2. 100 Image_str$="6A,DDD.DD"
110 ENTER CQDevice_x USING Image_str$;String_var$,Num_var

3. 100 ENTER CQDevice USING Image_stmt;String_var$,Num_var
110 Image_stmt: IMAGE 6A,DDD.DD

4. 100 ENTER CQDevice USING 110;String_var$,Num_var
110 IMAGE 6A,DDD.DD

5-14 Entering Data

u
Images
Images are used to specify how data entered from the source is to be interpreted and
placed into variables; each image consists of one or more groups of individual image
specifiers that determine how the computer will interpret the incoming data bytes (or
words). Thus, image lists can be thought of as a description of either:

• the format of the expected data, or

• the procedure that the ENTER statement will use to enter and interpret the
incoming data bytes.

The examples given here treat the image list as a procedure.

All of the image specifiers used in image lists are valid for both enters and outputs.
However, most of the specifiers have a slightly different meaning for each operation. If
you plan to use the same image for output and enter, you must fully understand how
both statements will use the image.

Example of an Enter Using an Image
This example is used to show you exactly how the computer uses the image to enter
incoming data into variables. Look through the example to get a general feel for how these
enter operations work. Afterwards, you should read the descriptions of the pertinent
specifier(s).

Assume that the following stream of data bytes are to be entered into the computer.

I T I e I m I P I · I = I
Ignored Degrees

.__
Units$ Ignored _j

Assume EOI is sent
with this character

Entering Data 5-15

Given the preceding conditions, let's look at how the computer executes the following
ENTER statement that uses the specified IMAGE statement.

300 ENTER ~Device USING Image_l;Degrees,Units$
310 Image_1: IMAGE 8X,SDDD.D,A

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

The computer evaluates the first image of the IMAGE statement. It is a
special image in that it does not correspond to a variable in the destination
list. It specifies that eight characters of the incoming data stream are to be
ignored. Eight characters, "Temp.= ", are entered and are ignored (i.e., are
not entered into any variable).
The computer evaluates the next image. It specifies that the next six
characters are to be used to build a number. Even though the order of the
sign, digit, and radix are explicitly stated in the image, the actual order of
these characters in the incoming data stream does not have to match this
specifier exactly. Only the number of numeric specifiers in the image, here
six, is all that is used to specify the data format. When all six characters
have been entered, the number builder attempts to form a number.
After the number is built, it is placed into the variable "Degrees"; the
representation of the resultant number depends on the numeric variable's
type (INTEGER, REAL, or COMPLEX1).

The next image in the IMAGE statement is evaluated. It requires that one
character be entered for the purpose of filling the variable "Units$" . One byte
is then entered into Units$.

All images have been satisfied; however, the computer has not yet detected a
statement-terminating condition. A line-feed or a character accompanied by
EOI must be received to terminate the ENTER statement. Characters are
then entered, but ignored, in search of one of these conditions. The statement
is terminated when the EOI is sent with the "t". For further explanation, see
"Terminating Enters that Use Images", near the end of this chapter.

The above example should help you to understand how images are used to determine the
interpretation of incoming data. The next section will help you to use each specifier to
create your desired images.

5-16 Entering Data

{~

(_)

i I
"-.-1

I
~I

Image Definitions During Enter
This section describes the individual image specifiers in detail. The specifiers have been
categorized into data and function type.

Numeric Images
Sign, digit, radix, and exponent specifiers are all used identically in ENTER images. The
number builder can also be used to enter numeric data.

Table 5-l. Numeric Specifiers

Image Specifier Meaning

D Specifies that one byte is to be entered and interpreted as a numeric
character. If the characters is non-numeric (including leading spaces and
item terminators), it will still "consume" one digit of the image item.

z, * Same action as D. Keep in mind that A and * can only appear to the left
of the radix indicator (decimal point orR) in a numeric image item.

S,M Same action as D in that one byte is to be entered and interpreted as a
numeric character. At least one digit specifier must follow either of these
specifiers in an image item.

Same action as D in that one byte is to be entered and interpreted as a
numeric character. At least one digit specifier must accompany this specifier
in an image item.

R Same action as D in that one byte is to be entered and interpreted as a
numeric character; however, when R is used in a numeric image, it directs
the number builder to use the comma as a radix indicator and the period
as a terminator to the numeric item. At least one digit specifier must
accompany this specifier in the image item.

Entering Data 5-17

Table 5-l. Numeric Specifiers (Continued)

Image Specifier Meaning
E Equivalent to 4D, if preceded by at least one digit specifier (Z, *, or D) in

the image item.

The following specifiers must also be preceded by at least one digit specifier.

ESZ Equivalent to 3D.
ESZZ Equivalent to 4D.

ESZZZ Equivalent to 5D_.
K,-K Specifies that a variable number of characters are to be entered and

interpreted according to the rules of the number builder (same rules as
used in "free-field" ENTER operations).

H,-H Like K, except that a comma is used as the radix indicator, and a period
is used as the terminator for the numeric item.

Examples of Numeric Images

ENTER <flDevice USING "SDD.D";Number
ENTER <flDevice USING "3D.D";Number
ENTER <flDevice USING "5D";Number These 5 are equivalent.
ENTER <flDevice USING "DESZZ";Number
ENTER <flDevice USING "**.DD";Number

ENTER Device USING "K" ;Number Use the rules of the number builder.

ENTER <flDevice USING "DDRDD"; Number Enter five characters,
using comma as radix.

ENTER <flDevice USING "H" ;Number Use the rules of the number

5-18 Entering Data

builder, but use the comma as radix
and period as terminator.

n

\~
I

(~

u

'
_;

(i
_)

String Images
The following specifiers are used to determine the number of and the interpretation of
data bytes entered into string variables.

Table 5-2. String Specifiers

Image Specifier Meaning

A Specifies that one byte is to be entered and interpreted as a string character.
Any terminators are entered into the string when this specifier is used.

K,H Specifies that "free-field" ENTER conventions are to be used to enter data
into a string variable; characters are entered directly into the variable until a
terminating condition is sensed (such as CR/LF, LF, or an END indication).

-K, -H Like K, except that line-feeds (LF's) do not terminate entry into the string;
instead, they are treated as string characters and placed in the variable.
Receiving an END indication terminates the image item (for instance,
receiving EOI with a character on an HP-IB interface, encountering an
end-of-data, or reaching the variable's dimensioned length).

L,@ These specifiers are ignored for ENTER operations; however, they are
allowed for compatibility with OUTPUT statements (that is, so that one
image may be used for both ENTER and OUTPUT statements). Note
that it may be necessary to skip characters (with specifiers such as X or
/) when ENTERing data which has been sent by including these specifiers
in an OUTPUT statement. Even greater care must be given to cases in
which pad bytes may be sent; see "The BYTE and WORD Attributes" in
the "I/0 Path Attributes" chapter for further explanation.

Examples of String Images

ENTER CilDevice USING "10A";Ten_chars$ Enter 10 characters.

ENTER CilDevice USING "K";Any_string$ Enter using the free-field rules.

ENTER CilDevice USING "5A,K" ;String$,Number$ Enter two strings.

ENTER CilDevice USING "5A,K"; String$,Number Enter a string and a number.

ENTER CilDevice USING "-K";All_chars$ Enter characters until string
is ''full" or END is received.

Entering Data 5-19

Ignoring Characters
These specifiers are used when one or more characters are to be ignored (i.e., entered but not placed into a string variable).

Table 5-3. Specifiers Used to Ignore Characters

Image Specifier Meaning
X Specifies that a character is to be entered but ignored (not placed into a

variable).
"literal" Specifies that the number of characters in the literal are to be entered but

ignored (not placed into a variable).
I Specifies that all characters are to be entered but ignored (not placed into a

variable) until a line-feed is received. EOI is also ignored until the line-feed
is received.

Examples of Ignoring Characters

ENTER CODevice USING "5X,5A";Five_chars$ Ignore first five and use
second five characters.

ENTER CODevice USING "SA, 4X ,lOA"; S_1$, S_2$ Ignore 6th through 9th characters.

ENTER <ODevice USING "/,K";String2$ Ignore 1st item of unknown length.

ENTER CODevice USING 111111 zz "" , AA 11
; S_2$ Ignore two characters.

5-20 Entering Data

(~

u

i .
I !
'.,_)

Binary Images
These specifiers are used to enter one byte (or word) that will be interpreted as a number.

Table 5-4. Binary Specifiers

Image Specifier Meaning

B Specifies that one byte is to be entered and interpreted as an integer in the
range 0 through 255.

w Specifies that one 16-bit word is to be entered and interpreted as a 16-bit,
two's complement INTEGER. If either an I/0 path name with the BYTE
attribute (see the "I/0 Path Attributes" chapter) or a device selector is
used to access an 8-bit interface, two bytes will be entered; the first byte
entered is most significant. If an I/0 path name with the BYTE attribute
is used to access a 16-bit interface, the BYTE attribute is overwritten and
one word is entered in a single operation. If an I/0 path name with the
WORD attribute is used to access a 16-bit interface, one byte is entered and
ignored when necessary to achieve alignment on a word boundary. If the
source is a file, string variable, or BUFFER, the WORD attribute is ignored
and all data are entered as bytes; however, one byte may still be entered
and ignored when necessary to achieve alignment on a word boundary.

y Like W, except that pad bytes are never entered to achieve word alignment.
If an I/0 path name with the BYTE attribute is used to access a 16-bit
interface, the BYTE attribute is not overwritten (as with the W specifier).

Examples of Binary Images

ENTER <ODevice USING "B. B, B" ; N1, N2. N3 Enter three bytes, then look
for LF or END indication.

ENTER <ODevice USING "W, K"; N, N$ Enter the first two bytes as an
INTEGER, then the rest as string data.

Assume that @Device possesses the WORD attribute.

ENTER <ODevice USING "B, W" ;Num_1,Num_2 Enter one byte, ignore one (pad}
byte, enter one word, then search
for terminator.

@Device may possess either BYTE or WORD attribute.

ENTER <ODevice USING "B. Y"; Num_1, Num_2 Enter one byte, enter one word,
then search for terminator.

Entering Data 5-21

Terminating Enters that Use Images
This section describes the default statement-termination conditions for enters that use images (for devices). The effects of numeric-item and string-item terminators and the ~~ end-or-identify (EOI) signal during these operations are discussed in this section. After ·.) reading this section, you will be able to better understand how enters that use images work and how the default statement-termination conditions are modified by the #, %, +, and - image specifiers.

Default Termination Conditions
The default statement-termination conditions for enters that use images are very similar to those required to terminate free-field enters. Either of the following conditions will properly terminate an ENTER statement that uses an image.

• An END indication (such as the EOI signal or end-of-data) is received with the byte that satisfies the last image item or within 256 bytes after the byte that satisfied the last image item.

• A line-feed is received as the byte that satisfies the last image item (exceptions are the "B" and "W" specifiers) or within 256 bytes after the byte that satisfied the last image item.

5-22 Entering Data

(,'

~·

EOI Re-Definition
It is important to realize that when an enter uses an image (when the secondary keyword

"USING" is specified), the definition of the EOI signal is automatically modified. If the
EOI signal terminates the last image item, the entire statement is properly terminated, as

with free-field enters. In addition, multiple EO! signals are now allowed and act as item

terminators; however, the EOI must be received with the byte that satisfies each image

item. If the EOI is received before any image is satisfied, it is ignored. Thus, all images

must be satisfied, and EOI will not cause early termination of the ENTER-USING-image
statement.

The following table summarizes the definitions of EOI during several types of ENTER
statement. The statement-terminator modifiers are more fully described in the next
section.

Table 5-5. Effects of EOI During ENTER Statements

Free-Field ENTER ENTER ENTER
ENTER USING USING USING

Statements without # or % with# with%

Definition of EOI Immediate Item terminator Item terminator Immediate
statement or statement or statement statement
terminator terminator terminator terminator

Statement Yes Yes No No

Terminator
Required?

Early No No No Yes

Termination
Allowed?

Entering Data 5-23

Statement-Termination Modifiers
These specifiers modify the conditions that terminate enters that use images. The first one of these specifiers encountered in the image list modifies the termination conditions for the ENTER statement. If another of these specifiers is encountered in the image list, it again modifies the terminating conditions for the statement.

Table 5-6. Statement-Termination Modifiers

Image Specifier Meaning
Specifies that a statement-termination condition is not required; the

ENTER statement is automatically terminated as soon as the last image item is satisfied.
% Also specifies that a statement-termination condition is not required. In addition, EOI is re-defined to be an immediate statement terminator, allowing early termination of the ENTER before all image items have

been satisfied. However, the statement can only be terminated on a "legal
item boundary". The legal boundaries for different specifiers are as follows.
Specifier Legal Boundary

K,-K With any character, since this specifies
a variable-width field of characters.

S,M,D,E Only with the last character that satisfies
Z,.,A,X the image (e.g., with the 5th character
"literal" of a "5A" image). If EOI is received
B,W with any other character, it is ignored.

I Only with the last line-feed character
that satisfies the image (e.g., with the
3rd line-feed of a "3/" image);
otherwise it is ignored.

+ Specifies that an END indication is required to terminate the ENTER statement. Line-feeds are ignored as statement terminators; however, they will still terminate items (unless a - K or - H image is used for strings).
- Specifies that a line-feed is required to terminate the statement. EOI is ignored, and other END indications (such as EOF or end-of-data) cause an error if encountered before the line-feed.

5-24 Entering Data

()
I I

Examples of Modifying Termination Conditions

ENTER (QDevice USING 11 #,B 11 ;Byte Enter a single byte.

ENTER (QDevice USING 11 #, W11
; Integer Enter a single word.

ENTER (QDevice USING 11 ,K 11 ;Array(*) Enter an array, allowing
early termination by EO!.

ENTER (QDevice USING 11 + ,K 11 ;String$ Enter characters into String$
until line-feed received,
then continue entering characters
until END received.

ENTER (QDevice USING 11
-, K 11

; String$ Enter characters until
line-feed received;
ignore EO!, if received.

Entering Data 5-25

Additional Image Features
Several additional image features are available with this BASIC language. Some of these
features have already been shown in examples, and all of them resemble the additional 0,)
features of images used with OUTPUT statements.

Repeat Factors
All of the following specifiers can be preceded by an integer that specifies how many
times the specifier is to be used.

Repeatable Specifiers Non-Repeatable Specifiers
D, Z, *,A, X,/,@, L S, M, ., R, E, K, H, B, W, Y, #, %, +, -

Image Re-Use
If there are fewer images than items in the destination list, the list will be re-used,
beginning with the first item in the image list. If there are more images than there are
items, the additional specifiers will be ignored.

Examples

ENTER <ODevice USING "#,B";B1,B2,B3 The "B" is re-used.

ENTER <ODevice USING "2A, 2A, W"; A$, B$ The "W" is not used.

Nested Images
Parentheses can be used to nest images within the image list. The hierarchy is the same
as with mathematical operations; evaluation is from inner to outer sets of parentheses.
The maximum number of levels of nesting is eight.

Example

ENTER <OSource USING "2(B,5A,/)./";N1,N1$,N2,N2$

5-26 Entering Data

,,..-.,
)

\~)

Table of Contents

Chapter 6: Registers
Interface Registers . 6-2

The STATUS Statement . 6-2
The CONTROL Statement . 6-3

I/0 Path Registers . 6-5
Summary of I/0 Path Registers .. 6-9

For All I/0 Path Names ... 6-9
I/0 Path Names Assigned to a Device 6-9
I/0 Path Names Assigned to an ASCII File 6-9
I/0 Path Names Assigned to a BDAT File . 6-10
I/0 Path Names Assigned to an HP-UX File 6-10
I/0 Path Names Assigned to a Buffer 6-11

Direct Interface Access ... 6-12

r---,
I /

u

I\._;)

Registers 6
A register is a memory location. Some registers are memory locations on interface cards,
while others are memory locations in the computer which are maintained by BASIC to
keep track of various conditions related to interfaces. Some registers store parameters
that describe the operation of an interface, some store information describing the I/0
path to a device, and some are in locations at which interface cards reside (remember
that the computer implements "memory-mapped I/0").

Registers are accessed by the computer when executing I/0 statements that specify an
interface select code, a device selector, or an I/0 path name. Thus, each interface and
I/0 path has its own set of registers. The general programming techniques used to
access these registers and the specific definitions of all I/0 path registers are given in
this chapter; however, the specific definitions of the interface registers are given in the
chapter that describes each interface.

There are three levels of register access.

• Firmware register(s) are automatically accessed by BASIC when an I/0 statement
is executed.

OUTPUT ~File;Data$
ENTER ~Buffer;Numeric_item

Changes file pointer registers.
Changes buffer pointer registers.

• STATUS and CONTROL (firmware) registers are explicitly accessed by BASIC
statements:

100 STATUS CRT,13;Crt_height
110 CONTROL CRT,13;Crt_height+3

• Interface (hardware) registers are directly read or written.

100 READIO 15,0;Card_id
110 WRITEIO 15,3;Intr_mask ! Write to Breadboard card reg. 3

Registers 6-1

Interface Registers
A simple example of an interface register being accessed explicitly by the program and
then automatically by 1/0 statements is shown in the following program. Register 0
of interface select code 1 is the "X" screen coordinate at which subsequent characters
output to the the CRT will begin being displayed; register 1 is the corresponding "Y"
coordinate.

100 STATUS CRT;Reg_O,Reg_1 ! Pgrm accessing X & Y coords.
110 OUTPUT CRT;"Print coordinates before 1st OUTPUT:"
120 OUTPUT CRT;"X=";Reg_O," Y=";Reg_1
130 OUTPUT CRT
140
150 OUTPUT CRT; "1234567"; ! Note ";" is used to suppress EOL sequence.
160 STATUS CRT;Reg_O,Reg_1
170 OUTPUT CRT
180 OUTPUT CRT;"Print coordinates after OUTPUTs:"
190 OUTPUT CRT;"X=";Reg_O," Y=";Reg_1
200 OUTPUT CRT;" II

210
220 END

The STATUS Statement
The contents of a STATUS register can be read with the STATUS statement. Typical
examples are shown below. A complete listing of each interface's registers is given in the
chapter that describes programming each interface; the definitions of 1/0 path registers
are described later in this chapter.

Example

STATUS register 7 of the interface at select code 2 is read with the following statement.
The first parameter identifies the interface and the optional second parameter identifies
which register is to be read. The specified numeric variable receives the register's current
contents.

Interface select code

/
STATUS 2~7 Reg_7"'

Register number
(optional)

6-2 Registers

Numeric variable(s) to
receive register(s) contents

I~

I ' 0/

Example

STATUS register 0 of the 1/0 path <OKeyboard is read with the following statement. (Note
that this is not the same register as keyboard register 0.) Since the second parameter is
optional and has been omitted in this instance, register 0 is accessed.

100 STATUS <OKeyboard;Reg_O

Example

STATUS registers 4 and 5 of the interface at select code 7 are read with the following
statement.

100 STATUS 7,4;Reg_4,Reg_5

Since two numeric variables are to receive register contents, the next register (5) is
accessed. If more than two variables are specified, successive registers are read.

The CONTROL Statement
When some 1/0 statements are executed, the contents of some CONTROL registers
are automatically changed. For instance, in the above example registers 0 and 1 were
changed whenever the OUTPUT statements to the CRT were executed. The program
can also change some register's contents with the CONTROL statement, as shown in the
following examples. Again, all of the CONTROL register definitions for each interface
are given in the chapter that describes programming each interface.

Registers 6-3

Example

Register 0 of interface select code 1 is modified with the following statement. This register
determines the "X" screen coordinate at which subsequent characters output to the CRT
display will appear.

Interface select code

/
CONTROL 1 ; X_pos

' Numeric expression(s) to be sent
to the appropriate register(s)

Example

Register 1 of interface select code 1 is modified with the following statement. This
register's contents determine the "Y" screen coordinate at which subsequent characters
output to the CRT display will appear; changing the contents of this register also allows
scrolling the display.

100 CONTROL

6-4 Registers

1 , 1\.ine_pos

Register number ~\
I I

/

,rj

1/0 Path Registers
At this point you know how to access the registers associated with interfaces and I/0
path names, but you may not know much about the differences or about the interaction
between these two types of registers. Let's first review the definition of an I/0 path
name.

An I/0 path name is a data type that contains a description of an I/0 path between the
computer and one of its resources sufficient to allow accessing the resource. You learned
in the "Directing Data Flow" chapter that the computer uses this information whenever
the I/0 path name is used in an I/0 statement. Much of this information stored in this
I/O-path-name table can be accessed with the STATUS and CONTROL statements.

When an I/0 path name is used to specify a resource in an I/0 statement, BASIC
accesses the first table entry (the validity flag) to see if the name is currently assigned.

• If the I/0 path name is assigned, the computer reads I/0 path register 0 which
tells the computer the type of resource involved.

• If the resource is a device, BASIC must also access the registers of the interface
specified by the device selector.

• If the resource is a file, the table contains additional entries that govern how
the I/0 process is to be executed.

Registers 6-5

As you can see, the set of 1/0 path registers is not the same set of registers associated
with an interface. The following program is an example of using 1/0 path register 0 to
determine the type of resource to which the 1/0 path name has been assigned.

700 Find_type: STATUS ~Resource;Reg_O
710 !
720
730
740
750
760
770
780
790
800
810

IF Reg_O=O THEN GOTO Not_assigned

IF Reg_0=1 THEN GOTO Device

IF Reg_0=2 THEN GOTO File
!

PRINT "Resource type unrecognized"
PRINT "Program STOPPED."
STOP

820 Not_assigned: PRINT "I/0 path name not assigned"
830 GOTO Common_exi t
840
850 Device:
860
870
880
890
900

STATUS ~Resource,1;Reg_1
PRINT "~Resource assigned to device"
PRINT "at intf. select code ";Reg_1
GOTO Common_exit

910 File: STATUS ~Resource,1;Reg_1,Reg_2,Reg_3
920
930
940
950
960

PRINT "File type ";Reg_1
PRINT "Device selector ";Reg_2
PRINT "Number of sectors ";Reg_3

970 !
980 Common_exit: Exit point of this routine.

Once the type of resource has been determined, it can be further accessed with the 1/0
path registers or the interface registers, depending on the resource type.

• If the 1/0 path name has been assigned to a device, the interface registers should
be accessed for further information.

• If the name has been assigned to a mass storage file, the 1/0 path registers should
be accessed for further information.

6-6 Registers

n
I

I/0 path names can be assigned to device selectors, files, and buffers. The following
program shows an example of determining the interface select code of the resource to
which the I/0 path name has been assigned.

100 Example of determining select code
110 ! to which an I/0 path name is assigned.
120 !
130 Show_sc: IMAGE "'(Dio_path' assigned to ",K,"; Select code ".D,L
140 !
150 ASSIGN (Dio_path TO 701 ! Device selector.
160 Device_selector=FNSc((Dio_path)
170 OUTPUT CRT USING Show_sc;"device 701",Device_selector
180 !
190 ASSIGN (Dio_path TO "Datal" ! ASCII file.
200 Device_selector=FNSc((Dio_path)
210 OUTPUT CRT USING Show_sc;"ASCII file",Device_selector
220
230 ASSIGN (Dio_path TO "Chap1" ! BDAT file.
240 Device_selector=FNSc((Dio_path)
250 OUTPUT CRT USING Show_sc;"BDAT file",Device_selector
260
270 ASSIGN (Dio_path TO BUFFER [1024] ! Buffer.
280 Device_selector=FNSc((Dio_path)
290 OUTPUT CRT USING Show_sc;"BUFFER",Device_selector
300
310 END
320
330 DEF FNSc((Dio_path) ! *************************************
340 Read I/0 path register 0.
350 STATUS (Dio_path;Resource_code
360 SELECT Resource_code
370 CASE 0 ! Not assigned.
380 RETURN -1 ! Return a select code out of range.
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530

CASE 1 ! Assigned to a device selector.
STATUS (Dio_path,1;Select_code
RETURN Select_code

CASE 2 ! Assigned to a file specifier.
STATUS (Dio_path,2;Device_selector
RETURN Device_selector MOD 100 ! Remove addressing.

CASE 3 ! Assigned to a buffer.
RETURN 0 ! No error, but cannot determine source

! or destination of transfer to/from buffer.
END SELECT

FNEND ! **

Registers 6-7

The following printout shows a typical example of the program's output.

'<Qio_path' assigned to device 701; Select code = 7

'<Qio_path' assigned to ASCII file; Select code = 7

'<Qio_path' assigned to BDAT file; Select code = 7

'<Qio_path' assigned to BUFFER; Select code = 0

The user-defined function called FNSc interrogates 1/0 path registers to find the select
code. If the 1/0 path name is currently not assigned, the function returns an arbitrary
value of -1 (an invalid value of select code). Since STATUS Register 2 of 1/0 path
names assigned to files contains the entire device selector, which may include addressing
information, the function removes any addressing information (Device_selector MOD
100).

Notice that buffers have no select code associated with them, since they are a data type
resident in computer memory; thus the function returns a value of 0.

The SC function is a feature of the "Main" BASIC system. The following statements
show examples of using this function.

Select_code=SC(<Qio_path)
IF SC(<QFile)=4 THEN Device_type$="INTERNAL"

The only difference in this language-resident function and the preceding example is that
the SC function reports an error if the 1/0 path specified as its argument is not assigned,
rather than returning a select code out of range.

6-8 Registers

/~
I

I~

I .
_)

Summary of 1/0 Path Registers
The following list describes the information contained in I/0 path STATUS and CON
TROL registers. Note that only STATUS register 0 is identical for all types of I/0 paths;
the rest of the I/0 path registers' contents depend on the type of resource to which the
name is assigned.

For All 1/0 Path Names
STATUS Register 0 0 =Invalid I/0 path name

1 = I/0 path name assigned to a device
2 = I/0 path name assigned to a data file
3 = I/0 path name assigned to a buffer

1/0 Path Names Assigned to a Device
STATUS Register 1

STATUS Register 2

STATUS Register 3

Interface select code

Number of devices

Address of 1st device

If assigned to more than one device, the addresses of the other devices are available
starting in STATUS Register 4.

1/0 Path Names Assigned to an ASCII File
STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

STATUS Register 6

File type= 3

Device selector of mass storage device

Number of records

Bytes per record = 256

Current record

Current byte within record

Registers 6-9

1/0 Path Names Assigned to a BOAT File
STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

STATUS Register 8

CONTROL Register 8

File type= 2

Device selector of mass storage device

Number of defined records

Defined record length

Current record

Set record

Current byte within record

Set current byte within record

EOF record

Set EOF record

Byte within EOF record

Set byte within EOF record

1/0 Path Names Assigned to an HP-UX File
STATUS Register 1

STATUS Register 2

STATUS Register 3

STATUS Register 4

STATUS Register 5

CONTROL Register 5

STATUS Register 6

CONTROL Register 6

STATUS Register 7

CONTROL Register 7

File type= 4

Device selector of mass storage device

Number of defined records

Defined record length (fixed record length = 1)

Current record

Set record

Current byte within record

Set current byte within record

EOF record

Set EOF record

STATUS Register 8 Byte within EOF record

CONTROL Register 8 Set byte within EOF record

6-10 Registers

/~
I

/~
~ I

I

(I

_.)

lfO Path Names Assigned to a Buffer
When the status ofregister 0 indicates a buffer (3), the status and control registers have
the following meanings.

STATUS Register 1 Buffer type (l=named, 2=unnamed)

STATUS Register 2 Buffer size in bytes

STATUS Register 3 Current fill pointer

CONTROL Register 3 Set fill pointer

STATUS Register 4 Current number of bytes in buffer

CONTROL Register 4 Set number of bytes

STATUS Register 5 Current empty pointer

CONTROL Register 5 Set empty pointer

STATUS Register 6 Interface select code of inbound TRANSFER

STATUS Register 7 Interface select code of outbound TRANSFER

STATUS Register 8 If non-zero, inbound TRANSFER is continuous

\.....) CONTROL Register 8 Cancel continuous mode inbound TRANSFER if zero

STATUS Register 9 If non-zero, outbound TRANSFER is continuous

CONTROL Register 9 Cancel continuous mode outbound TRANSFER if zero

STATUS Register 10 Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0 TRANS- TRANS- TRANS- Device Byte Record Match
FER FER FER Termi- Count Count Character
Active Aborted Error nation

Value=O Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

Registers 6-11

STATUS Register 11

Bit 7 Bit 6

0 TRANS-
FER
Active

Value=O Value=64

STATUS Register 12

STATUS Register 13

Termination status for outbound TRANSFER

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANS- TRANS- Device Byte Record 0
FER FER Termi- Count Count
Aborted Error nation

Value=32 Value=16 Value=8 Value=4 Value=2 Value=O

Total number of bytes transferred by last inbound TRANS
FER

Total number of bytes transferred by last outbound TRANS
FER

Direct Interface Access
The third level of register access provides direct access to interface hardware; this level /~1 of access is identical to that possessed by the operating-system firmware. Consequently,
these interface-access techniques should only be used if you have a complete understand-
ing of both the specified register's definition and of the consequences of reading from
or writing to these registers. The READIO and WRITEIO interface register definitions
and access methods are listed in the chapter that describes each interface.

~
' \

i

6-12 Registers

i ' v'

Table of Contents

Chapter 7: Interrupts and Timeouts
Overview of Event-Initiated Branching. 7-1

Types of Events . 7-1
A Simple Example .. 7-2
Conditions Required for Initiating a Branch 7-5
Logging and Servicing Events. 7-6
Servicing Pending Events . 7-12

Interface Interrupts . 7-14
Enabling Interrupt Events . 7-15
Service Requests . 7-17
Interrupt Conditions . 7-19

Interface Timeouts . 7-20
Setting Up Timeout Events 7-20
Timeout Limitations . 7-21

~ . \

J

L~

Interrupts and Timeouts 7
The computer can sense and respond to the occurrence of several types of interrupt
events. This chapter describes programming techniques for handling the interface events
called "interrupts" and "timeouts" which can initiate program branches. For more
details on event-initiated branches, consult the "Program Structure and Flow" chapter
of BASIC Programming Techniques, and the BASIC Language Reference descriptions of
the keywords described in this chapter.

Overview of Event-Initiated Branching
Event-initiated branches are very powerful programming tools. With them, the computer
can execute special routines or subprograms whenever a particular event occurs; the
program doesn't have to take time to periodically check for each event's occurrence.

This section describes the general topic of event-initiated branching. Subsequent sections
take a closer look at interrupt events.

Types of Events
The statements that enable events to initiate branches are summarized as follows:

ON CDIAL-occurs when one of the nine "knobs" (rotary pulse generators) of an
HP 46085 Control Dial Box is turned. (See the "Communicating with the Operator"
chapter of BASIC Programming Techniques for details.)

ON END-occurs when the computer encounters the end of a mass storage file while
accessing the file. (See the "Data Storage and Retrieval" chapter of BASIC Programming
Techniques for details.)

ON ERROR-occurs when a program-execution error is sensed. (See the "Handling
Errors" chapter of BASIC Programming Techniques for details.)

ON KEY-occurs when a currently defined softkey is pressed. (See the "Program
Structure and Flow" chapter of BASIC Programming Techniques or the "Keyboard
Interfaces" chapter of this manual for details.)

Interrupts and Timeouts 7-1

ON KNOB-occurs when the "knob" (rotary pulse generator) is turned. (See the
"Program Structure and Flow" chapter of BASIC Programming Techniques and the
"Keyboard Interfaces" chapter of this manual for details.)

ON INTR-occurs when an interrupt is requested by a device or when an interrupt .r)
condition occurs at the interface. (Discussed in this chapter.)

ON TIMEOUT-occurs when the computer has not detected a handshake response from
a device within a specified amount of time. (Discussed in this chapter.)

A Simple Example
The following program shows how events are serviced by the computer. Subprograms
called "Key _l" and "Key _2" are the service routines for the events of pressing softkeys
[ill and @] ([IT] and [ill on 98203 keyboards) being pressed; the software priorities
assigned to these events are 3 and 4, respectively. Run the program and alternately
press these softkeys; the branch to each key's service routine is initiated by pressing the
key. The system priority is "graphed" on the CRT display.

150 ON KEY 1,3 CALL Key_1
160 ON KEY 2,4 CALL Key_2
170 !

! Set up events and
! assign priorities.

180 OUTPUT CRT;" System", "Priority"
190 V$=CHR$(8)&CHR$(10) ! BS & LF.
200 OUTPUT CRT;" 4 11 &V$& 11 3 11 &V$& 11 211 &V$& 11 111 &V$& 11 0 11

210 !
220 Main: CALL Bar_graph(7, 11 *11

)

230
240
250
260
270

BEEP 100, .1
FOR Jiffy=1 TO 5000
NEXT Jiffy

Sys. prior. is
always >= 0.
Low tone.

280 GOTO Main
290

Main loop.

300 END
310
320 SUB Key_1
330 CALL Bar _graph (4 , 11 * 11)

340 BEEP 300, .1
350 FOR Iota=1 TO 2000
360 NEXT Iota
370 CALL Bar_graph(4, 11 ")

380 SUBEND
390
400 SUB Key_2
410 CALL Bar_graph(3, 11 *11)

420 BEEP 400, .1
430 FOR Twinkle=1 TO 2000

7-2 Interrupts and Timeouts

Plot priority.
Middle tone.

Erase.

Graph priority.
High tone.

I ,
"-"'

I j

"--"

440
450
460
470

NEXT Twinkle
CALL Bar_graph(3," ")

SUB END

480 SUB Bar_graph(Line,Char$)

Erase.

490 CONTROL 1,1;Line ! Locate line.
500 OUTPUT 1;Char$! Bar-graph character.
510 SUBEND

If [][] is pressed after [ill is pressed, but while the Key _l routine is being executed,
execution of Key _1 is temporarily interrupted and the Key _2 routine is executed. When
Key _2 is finished, execution of Key _l is resumed at the point where it was temporarily
interrupted. This occurs because [][] was assigned a higher software priority than [ill.

System
Priority

4

3

2

1

0

Main program•s
lines being

executed.

pressed

"Key_1"
being

executed.

pressed

11Key _ 1*' execution pre-empted.

"Key_2"
being

executed.

"Key_1"
execution

completed.

Main program•s
execution
continued.

Figure 7-1. Events with Higher Software Priority Take Precedence

Interrupts and Timeouts 7-3

On the other hand, if lliJ is pressed while @] is being serviced, the computer finishes
executing Key _2 before executing Key _1. The event of pressing lliJ was "logged" but not
processed until after the routine having higher software priority was completed. This
is a very important concept when dealing with event-initiated branching. The action
of the computer in logging events and determining assigned software priority is further r)
described in the next section.

System
Priority

4

3

2

0
y

Main program's
execution
continued. I

kz

pressed

y
"Key_2"

being executed.

t
)(k1

pressed

I

y
"Key_1"

being executed.

time

y
Main program's

lines being
executed.

Figure 7-2. An Event with Lower Software Priority Must Wait

7-4 Interrupts and Timeouts

(~
I

(~

u

,· '

\._ . .-/

Conditions Required for Initiating a Branch
In order for any event to initiate a branch, the following prerequisite conditions must be
met. The preceding section showed a simple example of softkey events, which are similar
to interface interrupts. This section describes the additional requirements for servicing
interface interrupts. Later sections show more details of meeting these requirements.

1. The branch must be set up by an ON-event-branch statement, and the sermce
routine must exist.

100 ON INTR GOSUB Check_device

920 Check_device: ! Service routine for interface interrupts.

The term service routine is any legal branch location for the type of branch specified
(GOSUB, GOTO, CALU, or RECOVER) and current context. The "Program
Structure and Flow" chapter of BASIC Programming Techniques and the BASIC
Language Reference fully describe the differences between these types of branches.

2. Before an event (which is set up) can initiate a branch, it must first be enabled to
do so. With non-interrupt events (such as ON KEY, and ON KNOB), the event is
automatically enabled when the ON-event statement is executed. However, with ON
INTR, you must explicitly enable the interrupt to initiate its corresponding branch.
For example, to enable the interface at select code 7 to initiate an interrupt branch:

110 ENABLE INTR 7;Intr_mask

Further details of enabling these events are described in the "Interface Interrupts"
and "Interface Timeouts" sections of this chapter.

3. The event must occur and be logged by the BASIC system. (For instance, the HP
IB "Service Request" signal is sent from the device to the computer and is logged
by the BASIC operating system.)

4. The software priority assigned to the event must be greater than the current SYS
TEM PRIORITY2 .

When all of these conditions have been met, the branch is taken.

1 Parameters cannot be passed to the service routine in an ON INTR CALL statement; any variables
to be used jointly by the service routine and other contexts must be defined in common. See the
"Subprograms" chapter of BASIC Programming Techniques or the BASIC Language Reference for further
details.

2 Software priority is specified in the event's set-up statement; the range of priorities that can be specified
in this statement is 0 through 15. Interfaces also have a "hardware" priority which is different from the
software priority. The following sections describe details of hardware and software priority.

Interrupts and Timeouts 7-5

Logging and Servicing Events
The preceding events may occur at any time; however, the BASIC program is only "notified" if these events have been "set up" to initiate a branch. An example of ignoring an event is seen when an undefined softkey is pressed. Since the event has not been set up, the operaing system detects the event, but does not notify the BASIC program. In this example, the computer beeps. No BASIC service routine is executed, even though the operating system was "aware" of the event. Thus, only when an event is first set up and then occurs does the BASIC program "service" its occurrence.

Software Priority
The computer first "logs" the occurrence of an event which is set up. 1 After recording that the event occurred, the computer then checks the event's software priority against that of the routine currently being executed. The priority of the routine currently being executed is known as system priority. If no service routine is being executed, the system priority is 0; otherwise the system priority is equal to the assigned software priority of the routine currently being executed. The following table lists the software priority structure of the BASIC system; priority increases from 0 to 17.

Table 7-1. Software Priorities of Events

Software Priority
(SYSTEM PRIORITY)

0

1 thru 15

16

17

Explanation
System priority when no service routine is being exe
cuted (known as the "quiescent level").
Software-assignable priorities of service routines.
Effective software priority of ON END and ON TIME
OUT; the software priorities of these events cannot be
changed.

Effective software priority of ON ERROR; the software
priorities of these events cannot be changed.

In the above example, system priority was 0 before either of the events occurred. When lliJ was pressed, the system priority became 3. When @] was subsequently pressed, the system first logged the event and then checked its priority against the current system priority. Since @] had been assigned a priority of 4, it pre-empted lli]'s service routine because of its higher software priority.

1
The process of logging event occurrences is described in the section called "Hardware Priority".

7-6 Interrupts and Timeouts

!~

(~
;

u

It is important to note that BASIC only services event occurrences when a program line
is exited. This change of lines occurs either:

• at the end of execution of a line, or

• when the line is exited when a user-defined function is called.

When the program line is changed, the computer attempts to service all events that have
occurred since the last time a line was exited. The next sections further describe logging
and servicing events.

When execution of Key _2 started, the system priority was set to 4. If any event was
to interrupt the execution of this service routine, it must have had a software priority
of 5 (or greater). When execution of Key _2 completed, the Key _1 service routine had
the highest software priority, so its execution was resumed at the point at which it was
interrupted.

If[]] was pressed again while its own service routine was being executed, execution of
the first service routine was finished before the service routine was executed again. Thus,
if an event occurs that has the same software priority as the system priority, its service
routine will not interrupt the current routine. The service routine will only be executed
if the event's software priority becomes the highest priority of any event which has been
logged (i.e., after all other events of higher software priority have been serviced).

Interrupts and Timeouts 7-7

Changing System Priority
Events are assigned a software priority to allow the computer to respond to occurrences
of events with high software priority before those with lower priorities. Occasionally,
service routines may contain code segments that should not be interrupted once their
execution begins. In such cases, the entire service routine may not require a high software
priority, even though a portion of the routine needs a high priority to ensure that it will
not be interrupted by most other processes.

The SYSTEM PRIORITY statement can be used in these cases to set the system priority
to a level higher than the BASIC system would otherwise set it when the branch to the
service routine is taken. The current system priority can also be determined by calling
SYSTEM$("SYSTEM PRIORITY"), which returns a string value of the current system
priority in the range 0 through 15. Examples are shown in the following program.

100 GINIT ! Use default plotter is CRT.
110 GRAPHICS ON
120 VIEWPORT 0,131,30,100
130 WINDOW 0,2000,0,7
140
150 ON KEY 1 LABEL "Prior.1",1 GOSUB Key_1
160 ON KEY 2 LABEL "Prior.2",2 GOSUB Key_2
170 ON KEY 3 LABEL "Prior.2",3 GOSUB Key_3
180 !
190 Sys_prior$="SYSTEM PRIORITY" ! Define string for SYSTEM$.
200 !
210 Main_program: !
220 DISP "Quiescent system priority level= 0."
230 X=X+1
240 Sys_prior=VAL(SYSTEM$(Sys_prior$))
250 GOSUB Plot_priority
260 GOTO Main_program
270 !
280 Key_1: FOR Iota=! TO 100
290
300
310
320
330
340
350

DISP "Key 1; priority 1."
X=X+1
Sys_prior=VAL(SYSTEM$(Sys_prior$))
GOSUB Plot_priority

NEXT Iota
RETURN

7-8 Interrupts and Timeouts

~)

(~
i

[\,_/

360 Key_2:
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560 Key_3:
570
580
590
600
610
620
630

FOR Twinkle=1 TO 100
DISP "Key 2; priority 2."
X=X+1
Sys_prior=VAL(SYSTEM$(Sys_prior$))
GOSUB Plot_priority

NEXT Twinkle

! Critical routine raise system priority.
SYSTEM PRIORITY 3
FOR Split_second=1 TO 100

DISP "Subroutine set system priority to 3."
X=X+1
Sys_prior=VAL(SYSTEM$(Sys_prior$))
GOSUB Plot_priority

NEXT Split_second
!
! System priority lowered when finished.
SYSTEM PRIORITY 0
RETURN

FOR Jiffy=1 TO 100
DISP "Key 3; priority 3."
X=X+1
Sys_prior=VAL(SYSTEM$(Sys_prior$))
GOSUB Plot_priority

NEXT Jiffy
RETURN

640 Plot_priority:
650 IF X>2000 THEN

GCLEAR
MOVE 0,0
X=O

Draw new plot.
660
670
680
690 END IF
700 PLOT X, Sys_prior
710 RETURN
720
730
740 END

The subroutine called Key _2 raised the system priority from its current level, 2, to level 3
during the time that the second FOR .. NEXT loop was being executed. During this time,
pressing [QJ will not interrupt the routine, since a priority of 4 or greater is required to
interrupt the Key _2 routine.

Interrupts and Timeouts 7-9

By setting the system priority level in this manner, routines can selectively allow and
disallow other routines from being executed; routines with higher software priority are
allowed to pre-empt the routine, while those with the same or lower priority are not. If
no other events are to interrupt the process, system priority can be set to 15. However,
keep in mind that END, ERROR, and TIMEOUT events have effective software priorities ()
higher than 15 and can therefore interrupt the service routine (if a branch for one of these
events is currently set up).

When the "critical" code has been executed, the program returns the system priority to
the value set by the BASIC system when the branch was taken (which was 2 since the
Key _2 event was being serviced). Of course, if an event with higher software priority
occurs while the code segment is being executed, its service routine will pre-empt the
critical code segment.

This technique can also be used within SUB and FN subprograms. Keep in mind that
when program control is returned from a context, the system priority is returned to the
value it had when the context was called.

Hardware Priority
There is a second event priority, hardware priority, that also influences the order in which
the computer responds to events.

• Hardware priority determines the order in which events are logged by the system
(explained in following paragraphs).

• Software priority determines the order in which events are serviced.

The hardware priority of an interface interrupt is determined by the priority-switch
setting on the interface card itself1. Hardware priority is independent of the software
priority assigned to the event by the ON INTR statement.

1
Setting hardware priority on an optional interface is described in the interface's installation manual.

7-10 Interrupts and Timeouts

u

. ..

_)

All events have a hardware priority, but not all have hardware priorities that can be
changed. The following table lists the hardware-priority structure of Series 200/300
computers. Only the optional interfaces' hardware priorities can be changed.

Table 7-2. Hardware Priorities of Interfaces

Hardware lnterface(s) and Event(s)
Priority at This Priority

0 (Quiescent level; no interface is currently interrupting)

1 Built-in Keyboard
(KEY and KNOB events)

2 Built-in Disc Drive of 226/236
(END event)

3 Built-in HP-IB or Serial interfaces
(INTR and TIMEOUT events)

3-6 Optional Interface Cards
(INTR and TIMEOUT events)

7 Non-Maskable Interrupts, such as the I RESET) (I Break j)
key

In order to fully understand the differences between hardware and software priority, it
is helpful to first understand how the computer logs and services events. When any
event occurs, the interface (at which the event has occurred) signals it to the computer.
The computer responds by temporarily suspending execution of its current task to poll
(interrogate) the currently enabled interfaces.

When the computer determines which interface is interrupting, it records that it has
occurred on this interface (i.e., logs the event) and disables further interrupts from this
interface. This event is now logged and pending service by the computer. The computer
can then return to its former task (unless other events have occurred which have not
been logged).

If other events have occurred but have not yet been logged, they will be logged in order of
descending hardware priority. This occurs because events with hardware priority lower
than that of the event currently being logged are ignored until all events with the current
hardware priority are logged.

Interrupts and Timeouts 7-11

Servicing Pending Events
If BASIC was interrupted while executing a program line, execution of the line is resumed
(after logging all events) and continues until either the line is completely executed or a
user-defined function causes the line to be exited. When the line is exited, BASIC begins
servicing all pending events.

When servicing pending events, the following rules are used to determine the order in
which they are serviced:

1. Highest software priority first, lowest software priority last.
2. If two or more events have the same software priority, the BASIC services the events

in order of descending interface select codes.

3. If events have both the same software priority and interface select code (such as
softkeys with the same software priority), the events are serviced in the order in
which they occurred.

The process of logging of events is still taking place while events are being serviced. This
concurrent action has two major effects.

1. Events of higher hardware priority will interrupt the current activity to be logged
by the computer.

2. Events which also have higher software priority will interrupt the computer's present
activity to be serviced.

Thus, events of high hardware and software priority can potentially occur and be serviced
many times between program lines.

For example, suppose that the following events have been set up and enabled to initiate
branches. Assume that the events have the hardware priorities shown in the program's
comments.

100 ON INTR 8,15 CALL Serv_8
110 ON INTR 7,14 CALL Serv_7
120 ON KEY 0,5 CALL Serv_kO

7-12 Interrupts and Timeouts

Hardware priority 6.
Hardware priority 3.
Hardware priority 1.

(~
' }

The following diagram shows the INTR event on interface select code 8 occurring and
being serviced several times after one program line has been exited.

Program line
being

executed.

t t t
~

Une
exited.

These three events
occur and are logged.

Serv_7
executed.

Serv_B Serv_k1 Serv_B Serv_k1 Next line
executed. begun. executed. finished. executed.

t t
INTR on interface INTR on interface

select code 8 select code 8
occurs and occurs and

is logged. is Jogged.

Figure 7-3. INTR Event Servicing Example

Hardware priority's main function is to keep events of lower hardware priority from being
logged so that more "urgent" events can be serviced quickly. Decreasing the system's
response time to these urgent events may also increase overall system throughput.

Interrupts and Timeouts 7-13

Interface Interrupts
All interfaces have a hardware line dedicated to signal to the computer that an interrupt
event has occurred. The source of this signal can be either the device(s) connected to the {)
interface or the interface hardware itself. These possibilities are shown in the following
diagram.

Interrupt ----+---._
from Device

Interrupt
from
Interface
Hardware

Logical OR of the Two Signals

Computer

Both types of interrupts are
signalled to the computer in
the same manner.

Figure 7-4. Interface Interrupts

There are two general types of interrupt events.

• One type of event occurs when a device determines that it requires the computer
to execute a special procedure.

• The second type occurs when the interface itself determines that a condition exists
or has occurred that requires the computer's attention.

The first type of interrupt event is usually called a service request. Service requests
originate a.t the device. An example is a voltmeter signaling to the computer that it
has a reading; another is a printer generating a service request when it is out of paper.
The service routine takes the appropriate action, and the program (usually) resumes
execution.

The second type of interrupt event is used to inform the computer of a specific condition
at the interface. This type of event originates at the interface. An example of this
interrupt event is the occurrence of a parity error detected by the serial interface. This
error usually requires that the erroneous data just received be re-transmitted. The service
routine can often correct this error by telling the sender to keep sending the data until
the error no longer occurs, after which the computer can resume its former task.

7-14 Interrupts and Timeouts

u

(i

~)

The specific abilities of each interface to detect interrupt conditions and to pass on service
requests from devices are described in the interface programming chapters.

Enabling Interrupt Events
Before the INTR event can initiate its branch, it must be enabled to do so. The following
examples show how to enable interrupt events to initiate branches.

Example

Enable interrupts occurring at interface select code 7 to initiate the branch set up by an
ON-event-branch statement.

ENABLE INTR 7;Mask

The bit pattern of Mask is copied into the "interrupt-enable" register of the specified
interface; in this case, register 4 of the built-in HP-IB interface receives Mask's bit
pattern. Individual bits of the mask r.1-re used to enable different types of interrupt
events for each interface. Each bit which is set (i.e., which has a value of 1) in the mask
expression enables the corresponding interrupt condition defined for that bit.

For instance, bit 1 of the HP-IB's interrupt-enable register is used to enable and disable
service-request interrupts. To enable this event to initiate a branch, bit 1 must be set
to a "1". Specifying a mask parameter of "2" causes a value of 2 to be written into this
register, thus enabling only service requests to initiate branches.

ENABLE INTR 7;2
Most Significant Bit

Bit 15 Bit 14

Value= Value=
-32 768 16 384

Bit 3 Bit 2

Oth er interrupt causes -----+-------<~:
describe d in subsquent sections

Value = 8 Value = 4

Figure 7-5. HP-IB Interrupt-Enable Register

Bit

Bit 0

See
Subsequent

Sections

Value= 1

Interrupts and Timeouts 7-15

The mask parameter is optional.

• If it is included, the specified value is written into the appropriate register of the
specified interface.

• If this parameter is omitted, the mask specified in the last ENABLE INTR is used.
If no ENABLE INTR statement has been executed for the specified interface, a
value of 0 is used (all interrupt events disabled).

Example

Re-enable a previously enabled interrupt event.

ENABLE INTR 7

Since no interrupt-enable mask is specified, the last mask used to enable interrupts on
this interface is used.

Enabling and Disabling Events with WRITEIO
This section shows how to use WRITEIO to perform the same functions as ENABLE

It)
/

INTR and DISABLE INTR statements. The examples are shown for the HP 98630
Breadboard Interface, an interface for which no driver is installed (and therefore will not 0,

1 permit ENABLE INTR and DISABLE INTR to be used) ..

ON INTR and OFF INTR statements may be executed for any I/0 card plugged into
the computer. However, if there is no driver currently loaded for an interface card, all
other I/0 statements (CONTROL, STATUS, ENABLE INTR, OUTPUT, ASSIGN, etc.)
will generate an ERROR 163 I/0 interface not present message. Before an interrupt can
be generated by a "driverless" interface card, you must emulate the EN ABLE INTR
statement by using WRITEIO. For example, if an HP 98630 Breadboard card is at select
code 17, the following statements set up the service routine "My _card_isr" and enable
interrupts for this card:

100 ON INTR CALL My_card_isr
110 WRITEIO 17,Mask_reg;Mask_value Set the mask.
120 WRITEIO 17.3; 128 Enable interrupts.

The two WRITEIO statements simulate the function of the ENABLE INTR statement.

7-16 Interrupts and Timeouts

(_)

When the Breadboard card interrupts, BASIC clears bit 7 of WRITEIO register 3 (the
interrupt enable bit) and logs the interrupt so that the service routine will be called
the next end-of-line (if system priority permits). No other actions are taken during the
hardware interrupt-logging routine; however, the software service routine is free to do
whatever you want it to do.

To perform a DISABLE INTR function, execute this statement:

300 WRITEIO 17,3;0 ! Disable interrupts.

Use this information as required, especially if you wish to use the HP 98630 Breadboard
card for customized 1/0.

Service Requests
You can program a service routine to perform any task(s) that is "requested" by the
device that initiated the branch. If this event can occur for only one reason, the service
routine just performs the specified action. However, with many devices, the service
request can occur for several different reasons. In this case, the program must have a
means of determining which event(s) occurred and then take action.

Example

The following program shows an example of using a service routine that can be initiated
by only one cause- a service request from a device at address 22 on the built-in HP-IB
interface.

Interrupts and Timeouts 7-17

The program shows the sequence of steps required to set up and enable interrupt events.
These steps are as follows.

1. The interrupt event is set up to be logged, as in line 120. This statement also
assigns the event's software priority; in this case, the priority is 5.

2. The event must be enabled to initiate its branch, as in line 150. The mask value
specifies that only service requests (enabled by setting bit 1) can initiate branches.

3. When the event occurs it is logged. Any further interrupts from this interface are
automatically disabled until this interrupt event is serviced.

4. Determine the interrupt's cause. On HP-IB interfaces, a serial poll (line 230) must
be performed by the service routine, clearing the interrupt-cause register so that the
same event will not cause another branch upon return to the interrupted context.
The value obtained from the serial poll operation can then be used to determine the
interrupt's cause. (The serial poll is particular to the HP-IB interface, but analogous
actions can be performed to determine interrupt causes on other interfaces.)

5. The actual requested action is performed (line 250).

6. If subsequent events are to also initiate branches, they must be re-enabled before
resuming execution of the previous program segment, as in line 270. Since no
interrupt-enable mask is explicitly specified, the previous mask is used.

7-18 Interrupts and Timeouts

(_)

Interrupt Conditions
The conditions that can be sensed by each type of interface are different. All interrupt
conditions signal to the computer that either its assistance is required to correct an error
situation or an operating mode of the interface has changed and must be made known
to the computer.

The following service routine demonstrates typical action taken when a receiver-line
status ("RLS") interrupt condition is sensed by the serial interface.

100
110
120
130
140
150

600
610
620
630
640
650
660
670
680
690
700
710
720

! Example of interface-condition interrupt event.

ON INTR 9,4 CALL Intr_9 Set up for interface select
code 9 and priority of 4.
Bit 2 in mask enables
"RLS"-type interrupts only.

ENABLE INTR 9;4

•
• Main program .
•

SUB Intr_9

STATUS 9,10;Intr_cause ! Clear intr.-cause reg.

! Check errors and branch to "fix" routines.
!
IF BIT(Intr_cause,3)=1
IF BIT(Intr_cause,2)=1
IF BIT(Intr_cause,1)=1
IF BIT(Intr_cause,0)=1
ENABLE INTR 9,4
SUB EXIT

THEN GOTO Framing error
THEN GOTO Parity_error
THEN GOTO Overrun_error
THEN GOTO Recv_buf_full
Ignore others, re-enable
INTRs, and return.

730 Framing_error: "Fix" and re-enable.
740 SUBEXIT
750
760
770
780
790
800
810

Parity_error: ! "Fix" and re-enable.
SUBEXIT

Overrun_error: ! "Fix" and re-enable.
SUB EXIT

820 Recv_buf_full: ! "Fix" andre-enable.
830 SUBEXIT
840 SUBEND

Interrupts and Timeouts 7-19

Interface Timeouts
A "timeout" occurs when the handshake response from any external device takes longer
than the specified amount of time. The time specified for the timeout event is usually
the maximum time that a device can be expected to take to respond to a handshake
during an I/0 statement.

Setting Up Timeout Events
The following statements set up this event-initiated branch. The software priority of this
event cannot be assigned by the program; it is permanently assigned priority 15. The
maximum time that the computer will wait for a response from the peripheral can be
specified in the statement with a resolution of 0.001 seconds.

Example

Set up a timeout to occur after the Serial Interface has not detected a response from the
peripheral after 0.200 seconds. Branch to a subroutine called "Serial_down".

ON TIMEOUT 9, .2 GOSUB Serial_down

Example

Set up a timeout of 0.060 for the interface at select code 8.

ON TIMEOUT 8, .06 GOTO Hp_ib_status

7-20 Interrupts and Timeouts

(~
I

Timeout Limitations
Timeout events cannot be set up for any of the internal interfaces except the built-in
HP-IB.

l.__/ Event-initiated branches are only executed at certain times during program execution,
usually after a program line has been executed. Consequently, BASIC may wait up to
25% longer than the specified time to detect a timeout event; however, it will always
wait at least the specified amount of time before generating the interrupt.

;
I
___/

There is no default timeout time parameter. Thus, if no ON TIMEOUT is executed for a
specific interface, the computer will wait indefinitely on the device to respond. The only
way that the computer can continue executing the program is for the operator to use the
I CLR 1/0 I (I Break I) key. This key aborts the I/0 operation that was left "hanging" by the
failure of the device to respond to and complete the handshake.

The times specified for timeouts are passed to subprograms. Thus, unless the time for a
timeout event is changed in the subprogram, it remains the same as it was in the calling
routine. If the time parameter is changed by the subprogram, it is restored to its former
value upon return to the calling context.

Interrupts and Timeouts 7-21

7-22 Interrupts and Timeouts

Table of Contents

Chapter 8: 1/0 Path Attributes
The FORMAT Attributes 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 8-2

Two FORMAT Attributes Are Available 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-2
Assigning Default FORMAT Attributes 0 0 0 0 0 o o 0 8-4
Specifying 1/0 Path Attributes 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 8-5
Restoring the Default Attributes 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-5

Additional Attributes 0 0 0 0 0 o o 0 8-6
The BYTE and WORD Attributes 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 8-6
Converting Characters o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-11
Changing the EOL Sequence 0 8-15
Parity Generation and Checking 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-16
Determining the Outcome of ASSIGN Statements 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 o o o o 8-18

Concepts of Unified 1/0 8-19
Data-Representation Design Criteria 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o o o o 0 0 0 8-20
1/0 Paths to Files 0 o 8-20
BDAT Files 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-21
Data Representation Summary 0 0 0 0 0 o o 0 o o 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 8-24

Applications of Unified 1/0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o 0 0 0 o o 0 8-25
1/0 Operations with String Variables 0 0 o 0 0 0 0 0 o 0 o 0 8-25
Taking a Top-Down Approach 0 0 0 0 0 o o 0 0 0 0 0 o 0 o o 0 8-32
Conclusion 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 8-40

' u

I .
\._,)

u

1/0 Path Attributes 8
This chapter contains two major topics, both of which involve additional features pro
vided by I/0 path names.

• The first topic is that I/0 path names can be given attributes which control the
way that the system handles the data sent and received through the I/0 path.
Attributes are available for such purposes as controlling data representations, gen
erating and checking parity, and defining special end-of-line (EOL) sequences.

• The second topic is that one set of I/0 statements can be used to access most
system resources, including the CRT display, the keyboard, mass storage files, and
buffers (instead of using a separate set of BASIC statements to access each class of
resources). This second topic, herein called "unified I/0", may be considered an
implicit attribute of I/0 path names.

I/0 Path Attributes 8-1

The FORMAT Attributes
All I/0 paths used as means to move data have certain attributes, which involve both
hardware and software characteristics. For instance, some interfaces handle 8-bit data,
while others can handle either 8-bit or 16-bit data. Some I/0 operations involve sending
ASCII data (for "human consumption"), while others may involve sending data in an "in
ternal" form (that is easier for the computer to understand). This second characteristic,
data representation, is what the format attributes control.

Two FORMAT Attributes Are Available
All I/0 paths possess one of the two following attributes:

• FORMAT ON-means that the data are sent in ASCII representation1 .

• FORMAT OFF-means that the data are sent in BASIC internal representation1
.

Before getting into how to assign these attributes to I/0 paths, let's take a brief look at
each one.

FORMAT ON
With FORMAT ON, internally represented numeric data must be "formatted" into its
ASCII representation before being sent to the device. Conversely, numeric data being
received from the device must be "unformatted" back into its internal representation.
These operations are shown in the diagrams below:

Internal-Form Data ASCII Data

Computer v " ~ ~ Computer "Formatter" Memory ~ -v Routine 1'-r -v Resource

Figure 8-1. Numeric Data Transformations with FORMAT ON

For more information about the ASCII data format, see the "Interfacing Concepts"
chapter. For details of how items and I/0 statements are terminated, see the "Outputting
Data" and "Entering Data" chapters.

1
Complete descriptions of these data representations are given in the "Interfacing Concepts" chapter.

8-2 I/0 Path Attributes

/~
'· I

!~

u

FORMAT OFF
With FORMAT OFF, however, no formatting is required. The data items are merely
copied from the source to the destination. This type of I/0 operation requires less time,
since fewer steps are involved.

Internal-Form Data

Computer ~ Computer

' Memory 1'\. / Resource ...

Figure 8-2. Numeric Data Transfer with FORMAT OFF

The only requirement is that the resource also use the exact same data representations
as the internal BASIC representation.

Here is how each type of data item is represented and sent with FORMAT OFF:

• INTEGER: two-byte (16-bit), two's complement.

• REAL: eight-byte (64-bit) IEEE floating-point standard.

• COMPLEX: same as two REAL values.

G • String: four-byte (32-bit) length header, followed by ASCII characters. An addi
tional ASCII space character, CHR$(32), may be sent and received with strings in
order to have an even number of bytes.

Here are the FORMAT OFF rules for OUTPUT and ENTER operations:

• No item terminator and no EOL sequence are sent by OUTPUT.

• No item terminator and no statement-termination conditions are required by EN
TER.

• No non-default CONVERT or PARITY attribute may be assigned to the I/0 path
(discussed later in this chapter).

• If either OUTPUT or ENTER uses an IMAGE (such as with OUTPUT 701 USING
"4D.D"), then the FORMAT ON attribute is automatically used.

I/0 Path Attributes 8-3

Assigning Default FORMAT Attributes
As discussed in the "Directing Data Flow" chapter, names are assigned to I/0 paths be
tween the computer and devices with the ASSIGN statement. Here is a typical example:

ASSIGN Any_name TO Device_selector

This assignment fills a "table" in memory with information that describes the I/0 path.
This information includes the device selector, the path's FORMAT attribute, and other
descriptive information. When the I/0 path name is specified in a subsequent I/0
statement (such as OUTPUT or ENTER), this information is used by the system in
completing the I/0 operation.

Different default FORMAT attributes are given to devices and files:

• Devices-since most devices use an ASCII data representation, the default attribute
assigned to devices is FORMAT ON. (This is also the default for ASCII files and
BUFFERs, as discussed later in this chapter and in the next chapter.)

• BDAT and HPUX files-the default for BDAT and HPUX files is FORMAT OFF.
(This is because for numeric quantities, the FORMAT OFF representation requires
no translation time for numeric data; this is possible because humans never see
the data patterns written to the file, and therefore the items do not have to be in
ASCII, or humanly readable, form.)

One of the most powerful features of this BASIC system is that you can change the
attributes of 1/0 paths programmatically.

8-4 I/0 Path Attributes

(~
I

u

Specifying 1/0 Path Attributes
There are two ways of specifying attributes for an 1/0 path:

• Specify the desired attribute(s) when the 1/0 path name is initially assigned. For
example:

100 ASSIGN ~Device TO Dev_selector; FORMAT ON
or

100 ASSIGN ~Device TO Dev_selector ! Default for devices i~ FORMAT ON.

• Specify only the attribute(s) in a subsequent ASSIGN statement:

250 ASSIGN ~Device; FORMAT OFF ! Change only the attribute.

The result of executing this last statement is to modify the entry in the 1/0 path name
table that describes which FORMAT attribute is currently assigned to this 1/0 path.
The implicit ASSIGN ~Device TO *, which is automatically performed when the "TO ... "
portion is included, is not performed. Also, the 1/0 path name must currently be assigned
(in this context), or an error is reported.

Restoring the Default Attributes
If any attribute is specified, the corresponding entry in the 1/0 path name table is
changed (as above); no other attributes are affected. However, if no attribute is assigned
(as below), then all attributes, except WORD, are restored to their default state (such
as FORMAT ON for devices.)

340 ASSIGN ~Device ! Restores ALL default attributes.

1/0 Path Attributes 8-5

Additional Attributes
The first section discussed the FORMAT attributes of I/0 path names. Several other
attributes are available to direct the BASIC system to perform the following operations
whenever data are moved through the I/0 path possessing the attribute:

• specify that data are to be sent and received on a byte or word basis

• perform conversions on a character-by-character basis on inbound and/or outbound
data

• check for parity on inbound data, and generate parity on outbound data

• re-define the end-of-line sequence normally sent after the last data item in output
operations

It is also possible to direct the system to return a numeric code to a variable which
describes the outcome of an attempted ASSIGN operation. This section describes im
plementing these functions by using the additional I/0 path attributes.

The BYTE and WORD Attributes
The HP Series 200/300 computers are capable of handling data as either 8-bit bytes or
16-bit words when using 16-bit interfaces. This section describes how to use the BYTE
and WORD attributes to determine which way the system will handle data when using
these interfaces.

Unless otherwise specified, the system treats data as bytes during 1/0 operations. For
instance, when the following I/0 statement is executed:

OUTPUT Device_selector;Integer_array(*)

the 16-bit INTEGER values are normally sent one byte at a time, with the most signifi
cant byte of each INTEGER sent first. Executing the following statement:

OUTPUT Device_selector USING "W";Integer_array(*)

directs the system to send the data as words if the interface has the ability to handle data
as words. With a 16-bit interface, such as the HP 98622 GPIO Interface, the INTEGER
data are sent one word at a time (i.e., one word per handshake cycle). If the interface
is not capable of sending one word in a single operation, the word is sent as two bytes ~
with the most significant byte first.

8-6 I/0 Path Attributes

/ '
_;

\ ' '-...../!

When the BYTE attribute is assigned to an I/0 path name, the system sends and receives
all data through the I/0 path as bytes; one byte is sent (or received) per operation. Thus,
BYTE directs the system to treat a 16-bit interface as if it were an 8-bit interface. The
following statements show examples of assigning the BYTE attribute to an I/0 path:

ASSIGN ~Printer TO 701; BYTE
ASSIGN ~Device TO 12; BYTE

In the first statement, the BYTE attribute is redundant, because the WORD attribute
cannot be assigned to the HP-IB Interface (since it is an 8-bit interface).

When the I/0 path name assigned to an interface possesses the BYTE attribute, the
system sends and receives all subsequent data through the interface one byte per hand
shake operation. As an example, executing either of the following statements (when the
I/0 path possesses the BYTE attribute):

OUTPUT ~Device;Integer_array(*)
OUTPUT ~Device USING "W";Integer_array(*)

directs the system to send the data as bytes, even though the interface is capable of
sending the data as words (and in the second example the "W" specifier was used).
Stated again, the BYTE attribute directs the system to treat 16-bit interfaces as if they
were 8-bit interfaces. With BYTE, only the 8 least significant bits of the interface are
used to send and receive data; the most significant bits are always zeros. Keep in mind
that the logic sense of the signal lines used to send and receive these bits is determined
by switch settings on the interface card.

The WORD attribute specifies that all data sent and received through the I/0 path are
to be moved as words. In other words, this attribute directs the system to use all 16
data lines of a 16-bit interface for all subsequent 1/0 operations that use the I/0 path
name. This attribute is designed to improve performance in two types of situations (on
16-bit interfaces): when sending and receiving FORMAT OFF data, and when sending
and receiving INTEGERs with FORMAT ON. The WORD attribute can also be used
under other situations; however, results may show some unexpected "side effects," which
are explained later in this section. The interface to which the I/0 path name is assigned
must be capable of handling data words; if not, an error will be reported when the
ASSIGN is executed.

When an I/0 path possesses the WORD attribute, an even number of data bytes will
always be sent or received by any one I/0 statement that uses the I/0 path. Conse
quently, when an operation involves an odd number of data bytes, the system will place
pad byte(s) in outbound data or enter (but ignore) additional byte(s) of inbound data.
These operations can be thought of as "aligning data on word boundaries." This is the
main side effect that can occur with the WORD attribute.

I/0 Path Attributes 8-7

With the FORMAT OFF attribute, all data items are represented by an even number
of bytes (see the discussion in "The FORMAT OFF Attributes" earlier in this chapter
for details). Since these representations use an even number of bytes, no pad bytes are
necessary.

When WORD is used with FORMAT ON, the data will be buffered (automatically by
the system) when necessary to allow sending all data as words. Sending INTEGERs does
not usually require this type of buffering, because each INTEGER consists of two bytes
of data. However, sending strings of odd length often requires that the system perform
this automatic buffering. The first byte of each word is placed in a two-character buffer
(created by the system); when the second byte is placed in this buffer, the two bytes are
sent as one word, with the most significant eight bits representing the first byte. If an
odd number of data bytes would otherwise be sent, a Null character, CHR$(0), is placed
in the buffer to "flush" the last byte.

The following statements show assigning the WORD attribute and using the I/0 path
to send data through the GPIO Interface at select code 12. Remember that the default
FORMAT attribute assigned to 1/0 paths to devices is FORMAT ON.

110 ASSIGN ~Gpio TO 12;WORD
120 OUTPUT ~Gpio;"Odd"
130 OUTPUT ~Gpio USING "K,L,K";"Odd","Even"

The following diagrams show the characters that would be sent by the OUTPUT state
ments in lines 120 and 130, respectively.

Word 1 Word 2 Word 3

I 0 I d I d I CR I LF INuLI E I v I e I n I CR I LF I
Word 1 Word 2 Word 3 Word 4 Word 5 Word 6

Figure 8-3. Characters Sent by OUTPUT Statements Shown Above

In the first statement, a Null was sent after the EOL characters to flush the buffer and
force word alignment for a subsequent OUTPUT. The second statement shows that a
pad byte will be sent after any EOL sequence when required to achieve word alignment;
the Null pad byte was not needed after the second EOL sequence. In addition, if a buffer
or file pointer currently has an odd value, a leading pad byte will be output to force word alignment before any data are sent by the OUTPUT statement.

8-8 I/0 Path Attributes

'~ ' }

()_.,

When executing an ENTER statement from an I/0 path with the WORD attribute, the
system always reads an even number of bytes from the source device, since data are sent as
words. In cases where an odd number of data bytes are sent, such as when an odd number
of string characters are sent with an even number of statement-terminator characters, the
system enters (but ignores) the last byte sent (after the statement-terminator characters).
The following statements show an example of entering the data sent by the OUTPUT
statements in the preceding example.

ASSIGN ~Device TO 12;WORD
ENTER ~Device;String_var1$
ENTER ~Device;String_var2$
ENTER ~Device;String_var3$

The variables receive the following values:

String_var1$="0dd"
String_var2$="0dd"
String_var3$="Even"

Notice that three ENTER statements were used to enter the data sent by the two pre
ceding OUTPUT statements. This method was used to handle the pad bytes generated
by the OUTPUT statement. If two ENTER statements would have been used, the pad
byte sent after the second "Odd" and EOL sequence would have to have been skipped
by an "X" image specifier. The following ENTER statements show how this could be
done.

ENTER ~Device USING "K,X,K";String_var1$,String_var2$
ENTER ~Device USING "K";String_var3$

If the "X" specifier would not have been used, a pad byte would have been placed in
String_var2$. Thus, a general recommendation for entering data OUTPUT through an
1/0 path with the WORD and FORMAT ON attributes is to enter only one item per
ENTER statement.

1/0 Path Attributes 8-9

When the WORD attribute is in effect, the "W" image specifier sends data that are always aligned on word boundaries. For instance, the following statement shows how the system defines "W" with the WORD attribute during OUTPUT.

OUTPUT <ODevice USING "B,W";65,256*66+67

I A INuLI s I c I CR I LF I
Word 1 Word 2 Word 3

The Null (NUL) pad byte was sent before the "W" image data to align the INTEGER specified by the "W" on a word boundary.

During ENTER, a pad byte is entered (but ignored) when necessary to align the "W" item on a word boundary. For instance, the following statement would enter the preceding data items in the same manner as they were sent.

ENTER <ODevice USING "B,W";One_byte,One_word

Keep in mind that these examples have been provided only to show potential problems
that can arise when sending an odd number of data bytes while using the WORD at- (~ tribute. It would be more appropriate to use only images that send an even number of bytes when using WORD during OUTPUT, and it will simplify matters to send only one item per OUTPUT statement. Similarly, it is generally much simpler if only one item is entered per ENTER statement.

Furthermore, if pad bytes pose a problem when working with INTEGER data (with FORMAT ON), you can also use the "Y" specifier. During OUTPUT, the "Y" does not force word alignment by sending a pad byte; during ENTER, the "Y" does not skip a byte to achieve word alignment.

Note also that the Null character pad byte may be converted to another character by using the CONVERT attribute; see the next section for further details.

The BYTE and WORD attributes affect any ENTER, OUTPUT, or TRANSFER statements that use the I/0 path name. However, only the attribute specified on the nonbuffer I/0 path end of the TRANSFER is used; BYTE or WORD is ignored on the
'
!,-..._\'

buffer end.
1

8-10 I/0 Path Attributes

('

~)

(

0

i '
\._./

Unlike other attributes, the BYTE and WORD attribute cannot be changed once as
signed to an 1/0 path name. For instance, executing:

ASSIGN ~Printer TO 12

implicitly assigns the BYTE attribute to @Printer, since it is the default attribute.
Executing the following statement results in error 600 (Attribute cannot be modified):

ASSIGN ~Printer;WORD

The converse situation is true for the WORD attribute. Furthermore, if WORD has been
assigned to the 1/0 path, then BYTE is not restored when ASSIGN ~Device is executed;
all other default attributes would be restored. For instance, executing:

ASSIGN ~Device TO 12;WORD,FORMAT OFF

assigns the specified non-default attributes to the 1/0 path name @Device. Executing:

ASSIGN ~Device

restores the default attribute of FORMAT ON (and also other default attributes, if
currently non-default), but it does not restore the default BYTE attribute.

Converting Characters
The CONVERT attribute is used to specify a character-conversion table which is to be
used for OUTPUT or ENTER operations. If data are to be converted in both directions,
a separate conversion table must be defined for each direction. Two conversion methods
are available-by index and by pairs. This section shows simple examples of each.

CONVERT ... BY INDEX specifies that each original character's code is used to index
a replacement character in the specified conversion string. For instance, CHR$(10) is
replaced by the lOth character in the conversion string. The only exception is that
CHR$(0) will be replaced by the 256th character in the conversion string. If the string
contains less than 256 characters, characters with codes that do not index a conversion
string character will not be converted. If the string contains more than 256 characters,
error 18 is reported.

1/0 Path Attributes 8-11

The following program shows an example of setting up a conversion by index for OUTPUT operations.

100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

DIM Conv_string$[256]
INTEGER Index_val
!
! Generate conversion string.
FOR Index_val=1 TO 255

SELECT Index_val
CASE NUM ("a") TO NUM ("z") ! Change to uppercase. Conv_string$[Index_val]=UPC$(CHR$(Index_val))
CASE ELSE ! No conversion.

Conv_string$[Index_val]=CHR$(Index_val)
END SELECT

NEXT Index_val
Conv_string$[256]=CHR$(0)

! Set up conversions.

256th element has an
effective index of 0.

ASSIGN ~Device TO 1;CONVERT OUT BY INDEX Conv_string$

OUTPUT ~Device;"UPPERCASE LETTERS ARE NOT CONVERTED." OUTPUT ~Device;"Lowercase letters are converted."
OUTPUT 1; "Conversions are made only "
OUTPUT 1; "when the I/0 path is used."

END

The program is designed to convert lowercase characters to uppercase characters. In order to make the conversion, the program first computes the characters in the conversion string; the characters are computed one at a time. If the character's original code is not in the range 97 to 122 ("a" to "z"), then no change is made. If it is in the range, an uppercase character is placed in the string at the location indexed by the original (lowercase character's) code.

The example program's output is as follows.

UPPERCASE LETTERS ARE NOT CONVERTED.
LOWERCASE LETTERS ARE CONVERTED.
Conversions are made only
when the I/O path is used.

To perform the lowercase-to-uppercase conversion, it was not necessary to include characters with codes 123 through 255 in the conversion string, since these characters are not to be converted. They were included to emphasize that the 256th character must be included in the string if CHR$(0) is to be converted with this method. The CONVERT

8-12 1/0 Path Attributes

.~
i

u
attribute is then assigned to the I/0 path, and all subsequent data sent through the I/0
path (while CONVERT is in effect) will be converted.

CONVERT ... BY PAIRS specifies that the conversion string contains pairs of characters,
each pair consisting of an original character followed by its replacement character. Before
each character is moved through the interface, the original characters in the conversion
string (the odd characters) are searched for the character's occurrence. If the character is
found, it will be replaced by the succeeding character in the conversion string; if it is not
found, no conversion takes place. If duplicate original characters exist in the conversion
string, only the first occurrence is used. The string variable must contain an even number
of characters; if not, error 18 is reported.

The following program shows an example of setting up the same conversion as in the
preceding example, except that conversion by pairs is used.

100 DIM Conv_string$[512]
110 !
120 ! Define conversion string.
130 Conv_string$="aAbBcCdDeEfFgGhHiijJkK1LmMnNoOpP"
140 Conv_string$=Conv_string$&"qQrRsStTuUvVwWxXyYzZ"
150 !
160 ! Set up conversions.
170 ASSIGN ~Device TO 1;CONVERT OUT BY PAIRS Conv_string$
180
190 OUTPUT ~Device;"UPPERCASE LETTERS ARE NOT CONVERTED."
200 OUTPUT ~Device;"Lowercase letters are converted."
210 OUTPUT !;"Conversions are made only "
220 OUTPUT 1; "when the I/0 path is used. "
230
240 END

The pairs method only requires that each character to be replaced (and its replacement)
is included in the conversion string. Note that the first character of each pair is the
original character and the second is the replacement. If a character does not appear in
the conversion string, it will not be converted.

Conversion of inbound characters can also be performed with both of these methods.
In the second example, for instance, the conversion is implemented with the following
statement.

ASSIGN ~Device;CONVERT IN BY PAIRS Conv_string$

I/0 Path Attributes 8-13

Conversions in both directions will continue until disabled. The following statement
could be used to disable conversions of outbound data.

ASSIGN ~Device;CONVERT OUT OFF

It is important to note that the conversion string specified in the ASSIGN statement is
used for each OUTPUT or ENTER statement that uses the I/0 path while the conversion
is enabled. Note that the conversion string's contents are not contained in the I/0 path
data type; only a pointer to the string variable is maintained. Thus, any changes to
the string's value will immediately affect any subsequent OUTPUT or ENTER that uses
that I/0 path.

It is also important to note that the string must be defined for at least as long as the
I/0 path which references it; this "lifetime" requirement has several implications. If
the I/0 path and conversion string are defined in different COM blocks, an error will
be reported. If the I/0 path is to be used as a formal parameter in a subprogram, the
conversion string variable must either appear in the same formal parameter list or be
defined in a COM block accessible to that subprogram. If the I/0 path name is passed
to subprogram(s) by including it as a pass parameter, the string variable must currently
be defined in the context which defined the I/0 path.

When CONVERT OUT is in effect, the specified conversions are made after any end
of-line (EOL) sequence has been inserted into the data, but before parity generation is
performed (with the PARITY attribute). When CONVERT IN is in effect, conversions
are made after parity is checked (if enabled), but before the data are checked for any
item- or statement-termination characters.

Keep in mind that no non-default CONVERT attribute can be assigned to an I/0 path
that currently possesses the FORMAT OFF attribute, and vice versa.

8-14 I/0 Path Attributes

u
Changing the EOL Sequence
An end-of-line (EOL) sequence is normally sent following the last item sent with free
field OUTPUT statements and when the "L" specifier is used in an OUTPUT that
uses an image. The default EOL characters are carriage-return and line-feed (CR/LF),
sent with no device-dependent END indication. With AP2.0, it is also possible to define
your own special EOL sequences that include sending special characters, sending an END
indication, and delaying a specified amount of time after sending the last EOL character.

In order to define non-default EOL sequences to be sent by the OUTPUT statement, an
I/0 path must be used. The EOL sequence is specified in one of the ASSIGN statements
which describe the I/0 path. An example is as follows.

ASSIGN ~Device TO 12;EOL CHR$(10)&CHR$(10)&CHR$(13)

The characters following the secondary keyword EOL are the EOL characters. Any char
acter in the range CHR$(0) through CHR$(255) may be included in the string expression
that defines the EOL characters; however, the length of the sequence is limited to eight
characters or less. The characters are put into the output data before any conversion is
performed (if CONVERT OUT is in effect).

('

\.._.-/ If END is included in the EOL attribute, an interface-dependent "END" indication is sent
with (or after) the last character of the EOL sequence. However, if no EOL sequence is
sent, the END indication is also suppressed. The following statement shows an example
of defining the EOL sequence to include an END indication.

ASSIGN ~Device TO 20;EOL CHR$(13)&CHR$(10) END

With the HP-IB Interface, the END indication is an End-or-Identify message (EOI) sent
with the last EOL character. The individual chapter that describes programming each
interface further describes each interface's END indication (if implemented).

If DELAY is included, the system delays the specified number of seconds (after sending
the last EOL character and/or END indication) before executing any subsequent BASIC
statement.

_) ASSIGN ~Device;EOL CHR$(13)&CHR$(10) DELAY 0.1

I/0 Path Attributes 8-15

This parameter is useful when using slower devices which the computer can "overrun"
if data are sent as rapidly as the computer can send them. For example, a printer
connected to the computer through a serial interface set to operate at 300 baud might
require a delay after receiving a CR character to allow the carriage to return before !~
sending further characters. Note that the DELAY parameter is not exact; it specifies)
the minimum amount of delay.

The default EOL sequence is a CR and LF sent with no end indication and no delay;
this default can be restored by using the EOL OFF attribute.

Parity Generation and Checking
Parity is an indication used to help determine whether or not a quantity of data has
been communicated without error. The sending device generates the parity indication,
which is then checked against the parity expected by the receiving device. If the two
indications don't agree, a parity error is reported.

With this system, parity may be indicated by the most significant bit of a data byte. The
parity bit is generated (during OUTPUT) or checked (during ENTER) by the system
according to the current PARITY attribute in effect for the I/0 path through which the
data bytes are being sent or received.

Unless otherwise specified, the system will not generate or check parity (the default mode
is PARITY OFF). The following optional PARITY attributes are available:

(~
I

8-16 I/0 Path Attributes

Table 8-1. Optional PARITY Attributes

Option Effect During ENTER Effect During OUTPUT
OFF No check is performed No parity is generated
EVEN Check for even parity Generate even parity
ODD Check for odd parity Generate odd parity
ONE Check for parity bit set (1)

Set parity bit (1)

ZERO Check for parity bit clear (0) Clear parity bit (0)

If PARITY EVEN is specified, the parity bit will be a 1 when required to make the total
number of 1 's in the byte an even number; for instance, a byte with a value of 1 will
have the parity bit set to 1 with even parity. Conversely, PARITY ODD specifies that
the parity bit will be a 1 when required to make the total number of 1's odd. PARITY
ONE specifies that the parity bit will always be 1, while PARITY ZERO specifies that
it will always be 0. PARITY OFF disables parity generation and checking, if currently
enabled for the I/0 path.

To enable parity generation during OUTPUT and ENTER operations, assign a PARITY 0 1 option to an I/0 path. For example:

ASSIGN ~Serial TO 9;PARITY ODD

specifies that all data sent through the I/0 path @Serial will use the most significant
bit of each byte for parity. However, only 128 different characters will be available, since
one bit of the eight is not available for data representation.

If the system detects a parity error while executing an ENTER statement, error 152
(Parity error) will be reported. All characters entered up to (but not including) the
erroneous byte will be assigned to the appropriate variable, after which the system will
report the error.

If the receiving device detects a parity error, it will be responsible for communicating
the error to the computer. A typical means would be to enable the interface to signal
the error by generating an interrupt. See the chapters that describe interrupts in general
and interrupts for the specific interface.

I i

\ .. _/ Parity is generated after conversions have been made during OUTPUT and is c.!:J.ecked
before conversions during ENTER. After parity is checked on inbound data, the parity
bit is cleared; however, when PARITY OFF is in effect, bit 7 is not affected.

1/0 Path Attributes 8-17

Disabling parity generation and checking is accomplished by assigning the PARITY OFF
attribute to the I/0 path.

ASSIGN ~Serial;PARITY OFF

Parity is also disabled when an I/0 path name is explicitly closed and then re-assigned,
when an I/0 path name is re-assigned without being closed, and when the default at
tributes are restored with statements such as ASSIGN @Serial.

Keep in mind that a non-default PARITY attribute cannot be assigned to an I/0 path
that currently possesses the FORMAT OFF attribute, and vice versa.

Determining the Outcome of ASSIGN Statements
Although RETURN is not an attribute, including it in the list of attributes directs the
system to place a a numeric code that indicates the outcome of the ASSIGN operation into
the specified numeric variable. The following statement shows an example of enabling
this error check:

ASSIGN ~Device TO 12;RETURN Outcome

• If the operation is successful, a 0 is returned.

• If a non-zero value is returned, it is the error number which otherwise would have
been reported. For instance, if an interface was not present at select code 12, the
system would have placed a value of 163 in Outcome. This value is the error code
for I/0 interface not present.

The following statement shows a method of determining the Open/Closed status of the
I/0 path.

ASSIGN ~Device;RETURN Closed_status

If @Device is currently Open, then 0 is returned; if it is Closed, then 177 is returned (un
defined I/O path name). When RETURN is used in this manner, the default attributes
are not restored.

When RETURN is used in this manner, ON ERROR is normally disabled during the
ASSIGN statement; however, there are certain errors which cannot be trapped by using
RETURN in the ASSIGN statement.

If more than one error occurred during the ASSIGN, there is no assurance that the error
number returned is either the first or the last error.

8-18 I/0 Path Attributes

/')

~
' I

u

I '

"-..-/

Concepts of Unified 1/0
This BASIC language system and hardware provide the ability to communicate with
several system resources using the OUTPUT and ENTER statements.

• The "Display Interfaces" and "Keyboard Interfaces" chapters describe how to com
municate with the operator (through the CRT and keyboard) by using these I/0
statements.

• The section of this chapter entitled "Applications of Unified I/0" describes how
data can be moved to and from string variables with OUTPUT and ENTER state
ments.

• The "Advanced Transfer Techniques" chapter describes how to use OUTPUT and
ENTER with buffers, which can also be used to communicate with several system
resources.

• The "HP-IB Interface" chapter describes how these I/0 statements are used to
communicate with HP-IB peripheral devices.

• And, if you have read about mass storage operations (in the "Data Storage and
Retrieval" chapter of BASIC Programming Techniques), you know that the ENTER
and OUTPUT statements are also used to move data between the computer and
mass storage files.

This ability to move data between the computer and all of its resources with the same
statements is a very powerful capability of the computer's BASIC language.

Before briefly discussing I/0 paths to mass storage files, the following discussion will
present some background information that will help you understand the rationale behind
implementing the two data representations used by the computer. The remainder of this
chapter then presents several uses of this language structure.

I/0 Path Attributes 8-19

Data-Representation Design Criteria
As you know, the computer supports two general data representations-the ASCII and
the internal representations. This discussion presents the rationale of their design.

The data representations used by the computer were chosen according to the following
criteria.

• to maximize the rate at which computations can be made

• to maximize the rate at which the computer can move the data between its resources
• to minimize the amount of storage space required to store a given amount of data
• to be compatible with the data representation used by the resources with which

the computer is to communicate

The internal representations implemented in the computer are designed according to
the first three of the above criteria. However, the last criterion must always be met if
communication is to be achieved. If the resource uses the ASCII representation, this
compatibility requirement takes precedence over the other design criteria. The ASCII
representation fulfills this last criterion for most devices and for the computer opera
tor. The first three criteria are further discussed in the following description of data
representations used for mass storage files.

1/0 Paths to Files
There are three types of data files: ASCII, BDAT, and HPUX.

• Only the ASCII data representation is used with ASCII files.

• But either the ASCII (FORMAT ON) or the internal (FORMAT OFF) represen
tation can be used with BDAT and HPUX files.

I/0 paths to files are briefly described in this section to further justify the internal data
representations implemented with this system, and to preface the applications presented
in the last section of this chapter.

8-20 I/0 Path Attributes

/~
I

u

Li

BOAT Files
BDAT (BASIC Data) and HPUX files 1 have been designed with the first three of the
preceding design criteria in mind. Both numeric and string computations are much faster.
These internal data representations generally allow much more data to be stored on a disc
because there is no storage overhead (for numeric items); that is, there are no "record
headers" for numeric items.

The transfer rates for each data type have also been increased. Numeric output operations
are always much faster because there is no time required for "formatting". Numeric
enter operations are also faster because the system does not have to search for item- and
statement-termination conditions.

In addition, 1/0 paths to BDAT and HPUX files can use either the ASCII (FORMAT
ON) or the internal (FORMAT OFF) representation.

The following program shows a few of the features of BDAT files. The program first
outputs an internal-form string (with FORMAT ON), and then enters the length header
and string characters with FORMAT OFF. (Note that this example is intended only to
show how string data items are preceded by a 4-byte length header. Mixing FORMAT
ON and FORMAT OFF data in this manner is not recommended.)

100 OPTION BASE 1
110 DIM Length$[4] ,Data$[256] ,Int_form$[256]
120 !
130 ! Create a BDAT file (1 record; 256 bytes/record.)
140 ON ERROR GOTO Already_created
150 CREATE BDAT "B_file",1
160 Already_created: OFF ERROR
170 !
180 ! Use FORMAT ON during output.
190 ASSIGN <Oio_path TO "B_file";FDRMAT ON
200
210
220
230

Length$=CHR$(0)&CHR$(0) ! Create length header.
Length$=Length$&CHR$(0)&CHR$(252)
!

1 Examples of HPUX files are shown in the "Porting and Sharing Files" chapter of BASIC Programming
Techniques.

1/0 Path Attributes 8-21

240 ! Generate 256-character string.
250 Data$="01234567"
260 FOR Doubling=1 TO 5
270 Data$=Data$&Data$
280 NEXT Doubling
290 ! Use only 1st 252 characters.
300 Data$=Data$[1,252]
310
320 ! Generate internal-form and output.
330 Int_form$=Length$&Data$
340 OUTPUT ~Io_path;Int_form$;
350 ASSIGN ~Io_path TO *
360
370 ! Use FORMAT OFF during enter (default).
380 ASSIGN ~Io_path TO "B_file"
390 !
400 ! Enter and print data and # of characters.
410 ENTER Data$
420 PRINT LEN(Data$);"characters entered."
430 PRINT
440 PRINT Data$
450 ASSIGN ~Io_path TO * Close I/0 path.
460
470 END

ASCII Files
ASCII files are designed for interchangeability with other HP computer systems. This
interchangeability imposes the restriction that the data must be represented with ASCII
characters. Each data item sent to these files is a special case of FORMAT ON represen
tation, cons£st£ng of a two-byte length header followed by the ASCII characters. In order
to maintain this compatibility, there are two additional restrictions placed on ASCII files:

• The FORMAT OFF attribute cannot be assigned to an ASCII file
• You cannot use OUTPUT .. USING or ENTER .. USING with an ASCII file.

The following program shows the 1/0 path name @lo_path being assigned to the ASCII
file named ASC_FILE. Notice that the file name is in all uppercase letters; this is also a
compatibility requirement when using this file with some other systems.

8-22 1/0 Path Attributes

(~
I

(~
, I

,r;

u

The program creates an ASCII file and then outputs program lines to the file. The
program then gets and runs this newly created program. (If you type in and run this
program, be sure to save it on disc, because running the program will load the program
it creates, destroying itself in the process.)

100 DIM Line$(1:3) [100] ! Array to store program.
110
120 ! Create if not already on disc.
130 ON ERROR GOTO Already_exists
140 CREATE ASCII "ASC_FILE",1 ! 1 record.
150 Already_exists: OFF ERROR
160 !
170 ASSIGN (Qio_path TO "ASC_FILE"
180 STATUS (Qio_path,6;Pointer
190 PRINT "Initially: file pointer=" ;Pointer
200 PRINT
210 !
220 Line$(1)="100 PRINT ""New program.""
230 Line$(2)="110 BEEP"
240 Line$(3)="120 END"
250
260 OUTPUT (Qio_path;Line$(*)
270 STATUS (Qio_path,6;Pointer
280 PRINT "After OUTPUT: file pointer=";Pointer
290 PRINT
300
310 GET "ASC_FILE"
320
330 END

Implicitly closes I/0 path.

I/0 Path Attributes 8-23

Data Representation Summary
The following table summarizes the control that programs have on the FORMAT at
tribute assigned to 1/0 paths.

Table 8-2. Program Control of the FORMAT Attribute

Type of Default FORMAT Can Default FORMAT
Resource Attribute Used Attribute Be Changed?

Devices FORMAT ON Yes (if an I/0 path is used) 1

BDAT files FORMAT OFF Yes

HPUX files FORMAT OFF Yes

ASCII files FORMAT ON2 No

String variables FORMAT ON No

Buffers FORMAT ON Yes

FORMAT ON is always used whenever an OUTPUT .. USING or ENTER .. USING statement is used,
2

regardless of the FORMAT attribute assigned to the I/0 path.
The data representation used with ASCII files is a special case of the FORMAT ON representation.

8-24 1/0 Path Attributes

r')

~
J

Applications of Unified 1/0
This section describes two uses of the powerful unified-I/O scheme of the computer. The
first application contains further details and uses of I/0 operations with string variables.
The second application involves using a disc file to simulate a device.

1/0 Operations with String Variables
Chapter 3 briefly described how string variables may be specified as the source or desti
nation of data in 1/0 statements, but it described neither the details nor many uses of
these operations. This section describes both the details of and several uses of outputting
data to and entering data from string variables.

Outputting Data to String Variables
When a string variable is specified as the destination of data in an OUTPUT statement,
source items are evaluated individually and placed into the variable according to the free
field rules or the specified image, depending on which type of OUTPUT statement is used.
Thus, item terminators may or may not be placed into the variable. The ASCII data
representation is always used during outputs to string variables; in fact, data output to
string variables is exactly like that sent to devices through 1/0 paths with the FORMAT
ON attribute.

G Characters are always placed into the variable beginning at the first position; no other
position can be specified as the beginning position at which data will be placed. Thus,
random access of the information in string variables is not allowed from OUTPUT and
ENTER statements; all data must be accessed serially. For instance, if the characters
"1234" are output to a string variable by one OUTPUT statement, and a subsequent
OUTPUT statement outputs the characters "5678" to the same variable, the second
output does not begin where the first one left off (i.e., at string position five). The
second OUTPUT statement begins placing characters in position one, just as the first
OUTPUT statement did, overwriting the data initially output to the variable by the first
OUTPUT statement.

The string variable's length header (4 bytes) is updated and compared to the dimensioned
length of the string as characters are output to the variable. If the string is filled before
all items have been output, an error is reported; however, the string contains the first n
characters output (where n is the dimensioned length of the string).

1/0 Path Attributes 8-25

Example

The following program outputs string and numeric data items to a string variable and
then calls a subprogram which displays each character, its decimal code, and its position
within the variable.

100 ASSIGN ~Crt TO 1 ! CRT is disp. device.
110
120 OUTPUT Str _ var$; 12, 11 AB 11

, 34
130
140 CALL Read_string(~Crt,Str_var$)
150 !
160 END
170
180

190 SUB Read_string(~Disp,Str_var$)
200 !
210 ! Table heading.
220 OUTPUT ~Disp; 11 --------------------- 11

230 OUTPUT ~Disp; 11 Character Code Pos. 11

240 OUTPUT ~Disp; 11
--------- ----

11

250 Dsp_img$= 11 2X,4A,5X,3D,2X,3D 11

260
270 Now read the string's contents.
280 FOR Str_pos=1 TO LEN(Str_var$)
290 Code=NUM(Str_var$[Str_pos;1])
300 IF Code<32 THEN ! Don't disp. CTRL chars.
310 Char$= 11 CTRL 11

320 ELSE
330 Char$=Str_var$[Str_pos;1] Disp. char.
340 END IF
350
360 OUTPUT ~Disp USING Dsp_img$;Char$,Code,Str_pos
370 NEXT Str_pos
380 !
390 ! Finish table.
400 OUTPUT ~Disp; 11 ---------------------~~
410 OUTPUT ~Disp ! Blank line.
420
430 SUBEND

8-26 I/0 Path Attributes

u

I :
"-._./

Figure 8-4. Final Display

Character Code Pos.

32 1
1 49 2
2 50 3

44 4
A 65 5
B 66 6
CTRL 13 7
CTRL 10 8

32 9
3 51 10
4 52 11
CTRL 13 12
CTRL 10 13

Outputting data to a string and then examining the string's contents is usually a more
convenient method of examining output data streams than using a mass storage file. The
preceding subprogram may facilitate the search for control characters, because they are
not actually displayed, which could otherwise interfere with examining the data stream.

I/0 Path Attributes 8-27

Example

The following example program shows how outputs to string variables can be used to
reduce the overhead required in ASCII data files. The first method of outputting data to
the file requires as much media space for overhead as for data storage, due to the two-byte
length header that precedes each item sent to an ASCII file. The second method uses
more computer memory, but uses only about half of the storage-media space required by
the first method. The second method is also the only way to custom-format data sent
to ASCII data files.

100 PRINTER IS CRT
110 !
120 ! Create a file 1 record long
130 ON ERROR GOTO File_exists
140 CREATE ASCII "TABLE" ,1
150 File_exists: OFF ERROR
160
170

(=256 bytes).

180
190
200
210
220
230

! First method outputs 64 items individually ..
ASSIGN <OAscii TO "TABLE"
FOR Item=1 TO 64 ! Store 64 2-byte items.

OUTPUT <0Ascii;CHR$(Item+31)&CHR$(64+RND*32)
STATUS <0Ascii,5;Rec,Byte
DISP USING Image_1;Item,Rec,Byte

240 NEXT Item

8-28 I/0 Path Attributes

,!)

u

250 Image_!: IMAGE "Item ".DD," Record ",D." Byte ",3D
260 DISP
270 Bytes_used=256*(Rec-1)+Byte-1
280 PRINT Bytes_used;" bytes used with 1st method."
290 PRINT
300 PRINT
310
320
330 Second method consolidates items.
340 DIM Array$(1:64)(2] ,String$[128]
350 ASSIGN CQAscii TO "TABLE"
360
370 FOR Item=1 TO 64
380 Array$(Item)=CHR$(Item+31)&CHR$(64+RND*32)
390 NEXT Item
400
410 OUTPUT String$;Array$(*); Consolidate.
420 OUTPUT CQAscii;String$ OUTPUT as 1 item.
430 !
440 STATUS CQAscii,5;Rec,Byte
450 Bytes_used=256*(Rec-1)+Byte-1
460 PRINT Bytes_used; " bytes used with 2nd method. "
470 !
480 END

The program shows many of the features of using ASCII files and string variables. The
first method of outputting the data items shows how the file pointer varies as data are sent
to the file. Note that the file pointer points to the next file position at which a subsequent
byte will be placed. In this case, it is incremented by four by every OUTPUT statement
(since each item is a two-byte quantity preceded by a two-byte length header).

The program could have used a BDAT file, which would have resulted in using slightly
less disc-media space; however, using BDAT files usually saves much more disc space
than would be saved in this example.

The program also does not show that ASCII files cannot be accessed randomly; this is
one of the major differences between using ASCII and BDAT files.

1/0 Path Attributes 8-29

Example

Outputs to string variables can also be used to generate the string representation of a
number, rather than using the VAL$ function (or a user-defined function subprogram).
The main advantage is that you can explicitly specify the number's image. The following
program compares the string generated by the VAL$ function to that generated by
outputting the number to a string variable.

100 X=12345678
110
120 PRINT VAL$(X)
130
140 OUTPUT Val$ USING
150 PRINT Val$
160
170 END

Printed Results

(1. 2345678E+7 I 123.E+05

11 #,3D.E";X

Entering Data From String Variables
Data items are entered from string variables in much the same manner as output to the
variable. All ENTER statements that use string variables as the data source interpret the
data according to the FORMAT ON attribute. Data is read from the variable beginning
at the first string position; if subsequent ENTER statements read characters from the
variable, every read operation also begins at the first position. If there are fewer data
items in the string than in the ENTER statement, an error is reported; however, all
data entered into the destination variable(s) before the end of the string was encountered
remain in the variable(s) after the error occurs.

When entering data from a string variable, the computer keeps track of the number of
characters taken from the variable and compares it to the string length. Thus, statement
termination conditions are not required; the ENTER statement automatically terminates
when the last character is read from the variable. However, item terminators are still
required if the items are to be separated and the lengths of the items are not known. If
the length of each item is known, an image can be used to separate the items.

8-30 1/0 Path Attributes

(~
' /

_)

Example

The following program shows an example of the need for either item terminators or
length of each item. The first item was not properly terminated and caused the second
item to not be recognized.

100 OUTPUT String$;"ABC123"; ! OUTPUT w/o CR/LF.
110 !
120 ! Now enter the data.
130 ON ERROR GOTO Try_again
140 !
150 First_ try: !
160 ENTER String$;Str$,Num
170 OUTPUT !;"First try results:"
180 OUTPUT 1; "Str$= "; Str$, "Num="; Num
190 BEEP ! Report getting this far.
200 STOP
210
220
230
240
250
260
270
280
290
300
310

Try_again: OUTPUT 1;"Error";ERRN;" on 1st try"
OUTPUT 1; "STR$="; Str$, "Num="; Num
OUTPUT 1
OFF ERROR ! The next one will work.

ENTER String$ USING "3A,3D";Str$,Num
OUTPUT !;"Second try results:"
OUTPUT 1 ; "Str$= " ; Str$, "Num=" ; Num

END

This technique is convenient when attempting to enter an unknown amount of data or
when numeric and string items within incoming data are not terminated. The data can
be entered into a string variable and then searched by using images.

Example

ENTERs from string variables can also be used to generate a number from ASCII nu
meric characters (a recognizable collection of decimal digits, decimal point, and exponent
information), rather than using the VAL function. As with outputs to string variables,
images can be used to interpret the data being entered.

30 Number$="Value= 43.5879E-13"
40
50
60
70

ENTER Number$;Value
PRINT "VALUE=";Value
END

1/0 Path Attributes 8-31

Taking a Top-Down Approach
This application shows how the computer's BASIC-language structure may help simplify
using a "top-down" programming approach. In this example, a simple algorithm is first
designed and then expanded into a program in a general-to-specific, stepwise manner. !~
The top-down approach shown here begins with the general steps and works toward the)
specific details of each step in an orderly fashion.

One of the first things you should do when programming computers is to plan the proce
dure before actually coding any software. At this point of the design process, you need
to have a good understanding of both the problem and the requirements of the program.
The general tasks that the program is to accomplish must be described before the order
of the steps can be chosen. The following simple example goes through the steps of
taking this top-down approach to solving the problem.

Problem: write a program to monitor the temperature of an experimental oven for one
hour.

Step 1. Verbally describe what the program must do in the most general terms.
You may want to make a chart or draw a picture to help visualize what is
required of the program.

Initialize the monitoring equipment. Start the timer and turn the oven on. Begin mon
itoring oven temperature and measure it every minute thereafter for one hour. Display
the current oven temperature, and plot the temperatures vs. time on the CRT.

8-32 1/0 Path Attributes

/\
)

\. _ _/

Step 2. Verbally describe the algorithm. Again, try to keep the steps as general as
possible.

This process is often termed writing the "pseudo code". Pseudo code is merely a written
description of the procedure that the computer will execute. The pseudo code can later
be translated into BASIC-language code.

Setup the equipment.·

Set the oven temperature and turn it on.

Initialize the timer.

Perform the following tasks every minute for one hour.

Read the oven temperature.

Display the current temperature and elapsed time.

Plot the temperature on the CRT.

Turn the oven and equipment off.

Signal that the experiment is done.

I/0 Path Attributes 8-33

Step 3. Begin translating the algorithm into a BASIC-language program.

The following program follows the general flow of the algorithm. As you become more
fluent in a computer language, you may be able to write pseudo code that will translate
more directly into the language. However, avoid the temptation to write the initial
algorithm in the computer language, because writing the pseudo code is a very important
step of this design approach!

100
110
120
130
140
150
160
170
180
190
200

This program: sets up measuring equipment,
turns an oven on, and initializes a timer.
The oven's temperature is measured every
minute thereafter for one hour. The temp.
readings are displayed and plotted on the
CRT.

210

dgs_interval=60
Test_length=60
Minutes=O
Seconds=O

220 CALL Equip_setup
230 CALL Set_temp
240 GOSUB Start_timer
250
260 ! Keep monitoring
270 LOOP
280 GOSUB Timer
290

60 seconds between readings.
Run test for 60 minutes.

300 IF Seconds>=Rdgs_interval THEN
310 Minutes=Minutes+1
320 CALL Read_temp
330 CALL Plot_temp
340 END IF
350 EXIT IF Minutes>=Test_length
360 END LOOP
370 CALL Off_equip
380 PRINT "End of experiment."
390
400 STOP
410

8-34 I/0 Path Attributes

u

420
430
440
450
460
470
480
490
500

First the subroutines.

Start_ timer: Init_time=TIMEDATE
PRINT "Timer initialized."
PRINT
PRINT
RETURN

510 Timer:
520 Seconds=TIMEDATE-Minutes*60-Init time
530
540
550
560

DISP USING Time_image;Minutes,Seconds
Time_image: IMAGE "Time: ",DD," min ".DD.D," sec"

RETURN

570 END
580
590
600
610
620
630
640
650
660
670
680
690
700
710
720

Now the subprograms.

SUB Equip_setup
PRINT "Equipment setup."
SUB END

SUB Set_temp
PRINT "Oven temperature set."
SUB END

SUB Read_temp
PRINT "Temp.= xx degrees F ";
SUB END

1/0 Path Attributes 8-35

730 SUB Plot_temp
740 PRINT " (plotted) . "
750 PRINT
760 SUB END
770
780 SUB Off_ equip
790 PRINT
800 PRINT "Equipment shut down."
810 PRINT
820 SUB END

At this point, you should run the program to verify that the general program steps are
being executed in the desired sequence. If not, keep refining the program flow until all
steps are executed in the proper sequence. This is also a very important step of your
design process; the sooner you can verify the flow of the main program the better. This
approach also relieves you of having to set up and perform the actual experiment as the
first test of the program.

Notice also that some of the program steps use CALLs while others use GOSUBs. The
general convention used in this example is that subprograms are used only when a pro
gram step is to be expanded later. GOSUBs are used when the routine called will
probably not need further refinement. As the subprograms are expanded and refined,
each can be separately stored and loaded from disc files, as shown in the next step.

8-36 1/0 Path Attributes

.r)

(~
/

i
~i

Step 4. After the correct order of the steps has been verified, you can begin program
ming and verifying the details of each step (known as stepwise refinement).

The computer features a mechanism by which the process of expanding each step can be
simplified. With it, each subprogram can be expanded and refined individually and then
stored separately in a disc file. This facilitates the use of the top-down approach. Each
subprogram can also be tested separately, if desired.

In order to use this mechanism, first STORE or SAVE the main program; for instance,
execute:

STORE "MAIN1"
or
SAVE "MAIN1"

Then, isolate the subprogram by deleting all other program lines in memory. In this
case, executing:

DEL 10,620
and
DEL 660,900

would delete the lines which are not part of the "Equip_setup" subprogram currently in
memory.

620 SUB Equip_setup
630 PRINT "Equipment setup."
640 SUBEND
650

At this point, two steps can be taken:

• Write the temperature-measuring device's initialization routine.

• Write a test routine that simulates the device by returning a known set of data.

1/0 Path Attributes 8-37

The "Equip_setup" subprogram might be expanded as follows to create a disc file and fill
it with a known set of temperature readings so that the program can be tested without
having to write, verify, and refine the routine that will set up the temperature-measuring
device. In fact, you don't even need the device at this point.

100 CALL Equip_setup(~Temp_meter,Temp)
110 END
120
130 SUB Equip_setup(~Temp_meter,Temp)
140
150
160
170
180
190

This subroutine will set up a BDAT file as
be used to simulate a temperature-measuring
device. Refine to set up the actual
equipment later.

200 ON ERROR GOTO Already
210 CREATE BDAT "Temp_rdgs",1
220

230 Output fictitious readings.
240 ASSIGN ~Temp_meter TO "Temp_rdgs"
250 FOR Reading=! TO 60
260 OUTPUT ~Temp_meter;Reading+70
270 NEXT Reading
280 ASSIGN ~Temp_meter TO * ! Reset pointer.
290 !
300 Already: OFF ERROR
310
320
330

ASSIGN ~Temp_meter TO "Temp_rdgs"
!

340 PRINT "Equipment setup."
350 SUBEND

Notice that two pass parameters have been added to the formal parameter list. These
parameters allow the main program (and subprograms to which these parameters are
passed) to access this I/0 path and variable. The CALL statements in the main pro
gram must be changed accordingly before the main program can be run with these
subprograms. These parameters can also be passed to the subprograms by declaring
them in variable common (that is, by including the appropriate COM statements).

After the subprogram has been expanded, tested, and refined, you should store it in a
file with the STORE statement (not SAVE). For instance, execute:

STORE "SETUP1"

8-38 I/0 Path Attributes

r)

(._ /
·~

I

~I

When the main program is to be tested again, the "Equip_setup" subprogram can be
loaded back into memory by executing:

LOADSUB ALL FROM "SETUP!"

Since this subprogram names an 1/0 path which is to be used to simulate the
temperature-measuring device, the "Read_remp" subprogram can also be expanded at
this point. The "Read_ temp" subprogram only needs to enter a reading from the measur
ing device (in this case, the disc file which has been set up to simulate the temperature
measuring device.) The following program shows how this subprogram might be ex
panded.

660 SUB Read_temp (~Temp_meter,Temp)
661 ENTER ~Temp_meter;Temp
670 PRINT "Temp. =";Temp;" degrees F. "
680 SUBEND

This subprogram can also be stored in a disc file by executing:

STORE "READ_T1"

Now that both of the expanded subprograms have been stored, the main program can
be retrieved and modified as necessary. Execute:

LOAD "MAIN1"
or
GET "MAIN1"

Add the pass parameters to the appropriate CALL statements (lines 200 and 320). Since
the main program still contains the initial versions of the expanded subprograms, these
two subprograms should be deleted. Executing these two statements:

DELSUB "Equip_setup"
and
DELSUB "Read_temp

will delete only these two subprograms and leave the rest of the program intact.

1/0 Path Attributes 8-39

Now that the main program has been modified to CALL the expanded/refined subpro
grams, you may want to store (or save) a copy of the program on the disc. This will
relieve you of the effort of deleting the old subprograms from the main program every
time it is retrieved. Execute:

STORE "MAIN2
or
SAVE "MAIN2"

Now load the subprograms into memory by executing:

LOADSUB ALL FROM "SETUP1"
and
LOADSUB ALL FROM "READ_T1"

Running the program "sets up" the device simulation and then accesses the file as it
would access the actual temperature-measuring device.

Conclusion
As you can see, this approach can be used very easily with Series 200/300 BASIC.
In addition, the "Read_temp" subprogram does not have to be revised to access the
real device. Only "Equip_setup" needs to be changed to assign the 1/0 path name
"@Temp_meter" to the real device. This unified 1/0 scheme makes this system very
powerful and reduces "throw away" code when using this "top down" approach.

8-40 1/0 Path Attributes

iJ

'~I
J

u

' I
' ' _)

Table of Contents

Chapter 9: Advanced Transfer Techniques
The Purpose of Transfers 0 0 0 0 0 o o 0 9-1
Overview of Buffers and Transfers 0 9-2

Inbound and Outbound Transfers 0 9-2
Supported Transfer Sources and Destinations 0 9-3
Examples of Transfer 0 9-4

A Closer Look at Buffers 0 9-5
Types of Buffers 0 9-5
Creating Named Buffers 0 9-5
Assigning I/0 Path Names to Named Buffers 0 9-6
Assigning I/0 Path Names to Unnamed Buffers 0 9-6
Buffer-Type Registers 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-7
Buffer Life Time 0 9-7
Buffer Size Register , 0 9-8
Buffer Pointers 0 9-8

A Closer Look at Transfers 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-12
Transfer Methods 0 9-12
OUTPUT and ENTER and Buffers 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-13
Transfer Formatting 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-13
Transfer Termination Branching 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 9-13

Choosing Transfer Parameters 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 9-14
Continuing Transfers Indefinitely 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-14
Waiting for a Transfer to End (Non-Overlapped Transfers) 0 0 0 0 0 0 0 0 0 0 0 o 9-15
Continuous Non-Overlapped Transfers 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o o 0 0 9-15
Transferring a Specified Number of Bytes 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o 9-15
Delimiter Characters 0 0 0 0 o o o 0 0 0 0 0 0 0 0 o o o o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 o 0 0 0 0 9-15
Using the END Indication with Transfers 0 0 0 0 0 0 0 0 0 0 o o o o o 0 0 0 0 0 0 0 0 0 0 0 0 9-16
Transferring Records 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 9-16
Multiple Termination Conditions 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o o o o o o 0 0 9-16
TRANSFER Records and Termination 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 9-17
Transfer Event-Initiated Branching 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 9-18
Overlapped Nature of TRANSFER 0 0 0 0 0 0 o o o o o o 0 0 0 0 0 0 0 0 0 0 0 o o o 0 o o o o 0 0 9-19

Terminating a Transfer 0 9-20
More Transfer Examples 0 o o o o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o o o 9-22
Special Considerations 0 o o o o o 0 0 0 0 0 0 0 0 o o o o o 9-26

Transfer with Care 0 o o o o o 0 0 0 0 0 0 0 0 0 o o o 9-26

Error Reporting ... 9-29
Suspended Transfers . 9-30

Transfer Performance ... 9-31
Sector Size . 9-31
Internal Disc Drives of Models 226 and 236 Computers 9-31
Overlapped Transfers and Disc Drives . 9-31
Transfer Methods and Rates . 9-34

Restrictions . 9-36
Interactions with Other Keywords. 9-37

Changing Buffer Attributes . 9-39
Buffer Status and Control Registers . 9-40

2 Table of Contents

~~

u
Advanced Transfer Techniques 9
This chapter discusses data transfer techniques available with the TRANS binary. While
many applications will not need the specialized techniques presented here, these tech
niques aid in communicating with very slow and very fast devices.

The Purpose of Transfers
When using OUTPUT and ENTER to communicate with peripheral devices, special
problems can arise. Normally, program execution does not leave the statement until all
data items are satisfied; therefore, a very slow device will keep the computer waiting
between each byte or word. A great amount of time may be wasted while the com
puter waits for the device to be ready for the next item. Another problem exists when
communicating with a very fast device. The device may attempt to send data faster
than the computer can accept it. To overcome both problems, an alternate method of
communication has been implemented-the TRANSFER statement.

The TRANSFER statement allows you to exchange information with a device or file
through 1/0 paths. The most important difference between using TRANSFER and the
regular methods of communication (OUTPUT and ENTER) is that a transfer can take
place concurrently with continued program execution. Thus a transfer can be thought
of as a "background" process or an "overlapped" operation. This has far-reaching con
sequences that affect the behavior of the BASIC system.

Advanced Transfer Techniques 9-1

Overview of Buffers and Transfers
Before any transfer takes place, an area of memory is reserved to hold the data being
transferred (examples are shown on the following pages). This area of memory is called
a buffer. Defining a buffer is somewhat analogous to creating a high-speed device inside
the computer. Two advantages are gained by simulating a device in memory:

• The buffer is fast enough to accept incoming data from almost any device.
• The actual transfer operation can be handled concurrently with continued program

execution (that is, it is a "background process" which can be "overlapped" with
concurrent processing of other BASIC program lines).

Inbound and Outbound Transfers
Every transfer will use a buffer as either its source or its destination. From the buffer's
point of view, there are two types of transfers.

An inbound transfer moves data from a device or file into the buffer.

device TRANSFER ENTER
or buffer program
file variable PARITY CONVERT

Figure 9-1. Inbound Transfer

An outbound transfer moves data from the buffer to a device or file.

OUTPUT TRANSFER device
program
variable buffer or EOL CONVERT PARITY file

Figure 9-2. Outbound Transfer

9-2 Advanced Transfer Techniques

,()
' I

Data logging is the process of combining inbound and outbound transfers.

device TRANSFER TRANSFER device

u or buffer or
file file

Figure 9-3. Data Logging

Supported Transfer Sources and Destinations
TRANSFER operations are allowed for the following types of interfaces and files:

Interfaces Files

HP-IB (98624, built-in) BDAT

GPIO (98622) HPUX

Serial (98626, 98644, built-in)

Datacomm (98628)

Restrictions
A transfer cannot involve a CRT display, a keyboard, or a BCD interface.

__) One and only one buffer can be specified in a TRANSFER statement. Transfers from
buffer to buffer or from device to device are not allowed.

Transfers to and from files on volumes with 512-byte sectors (formatting option 2) is not
allowed, since volumes with 512-byte sectors are not supported by BASIC.

Further restrictions are listed in the "Restrictions" section of this chapters.

Advanced Transfer Techniques 9-3

Examples of Transfer
Here are two complete programs that show the steps in creating and using buffers. The
following paragraphs describe the individual steps of the programs.

DIM Text$[1025] BUFFER
ASSIGN ~Buff TO BUFFER Text$
ASSIGN ~Print TO PRT

FOR I=1 TO 25

'PRT' returns 701 for printer

10
20
30
40
50
60
70
80
90
100
110
120
130
140

OUTPUT ~Buff;"How many times do I need to print this?"
NEXT I

TRANSFER ~Buff TO ~Print Start the transfer
Transfer continues as

FOR I=1 TO 450 a "background" process.
PRINT TABXY(I MOD 15,0);"As many times as it takes."

NEXT I
END

Lines 10 and 20 create a named buffer. Line 30 assigns a printer that will be used as
the destination for the transfer. The OUTPUT statement in line 60 fills the buffer with
data (25 lines of 41 characters, including the CR/LF EOL sequence). Line 90 contains
the TRANSFER statement that sends the data in the buffer to the printer. Running the
program shows the overlapped operation of transfers. Buffered data is being printed on r) the printer while the program prints on the CRT.

A similar technique can be used for inbound transfers, as shown in the following example
program.

10 DIM Text$[256] BUFFER,A$(100)[80]
20 ASSIGN ~Buff TO BUFFER Text$
30 ASSIGN ~Device TO 12 Some device at select code 12 40
50 TRANSFER ~Device TO ~Buff;CONT Start the transfer
60
70 FOR I=1 TO 100
80 ENTER ~Buff;A$(I) Enter the items
90 NEXT I
100 ABORTIO ~Device Terminate TRANSFER 110
120 END

A named buffer is created in lines 10 and 20. A device is assigned in line 30 that will
be used as the source for the transfer. The buffer is filled by the TRANSFER in line 50 and the ENTER statement in line 80 empties the buffer.

()
!

9-4 Advanced Transfer Techniques

A Closer Look at Buffers
A buffer is a section of computer memory reserved to hold the data being transferred.

U Types of Buffers
Two types of buffers can be created and assigned to I/0 path names.

• A named buffer is a string scalar, or an INTEGER, COMPLEX, or REAL array.

100 DIM Num_array(1:512) BUFFER ! Named buffer.
110 ASSIGN ~Buff TO BUFFER Num_array

• An unnamed buffer is a section of memory which has no associated variable name.

100 ASSIGN ~Buff TO BUFFER [1024] ! Unnamed buffer.

A named buffer can be accessed by its variable name (for instance, by using OUTPUT
or assigning the variable). However, an unnamed buffer can be accessed only by its I/0
path name.

Creating Named Buffers
Named buffers are buffers which use variables declared in DIM, COM, COMPLEX,
REAL, or INTEGER statements. Note that a buffer cannot be allocated by an ALLO
CATE statement. Named buffers are declared by placing the keyword BUFFER after
the variable name. For instance:

100 DIM A$[256] ,B$[256] BUFFER,C$

110 COM Block(1000),Temp(100) BUFFER,INTEGER X(10,10) BUFFER,Y,Z

120 REAL Fools_buff(1000), Real_buff(10) BUFFER, No_buff(10)

Only the variable name immediately preceding the keyword BUFFER becomes a buffer.
In the first example statement, B$ is a buffer while A$ and C$ are not buffers. Declaring
a variable as a buffer does not prevent it from being used in its normal manner, but care
must be taken not to corrupt the information in the buffer if it is assigned to an I/0
path name.

Advanced Transfer Techniques 9-5

Assigning 1/0 Path Names to Named Buffers
Once a named buffer has been declared, an I/0 path name can be assigned to it by an
ASSIGN statement. For instance:

ASSIGN ~Path TO BUFFER B$

ASSIGN ~Buff TO BUFFER X(*)

ASSIGN ~Buffer TO BUFFER Real_buff(*)

The I/0 path name can now be used to access the buffer. The keyword BUFFER must
appear in both the variable declaration statement and the ASSIGN statement for named
buffers.

Assigning 1/0 Path Names to Unnamed Buffers
Unnamed buffers are created in ASSIGN statements and can be accessed only by their
I/0 path names. The following statement shows a typical unnamed buffer assignment.

ASSIGN ~Buff to BUFFER [65536]

The value in brackets indicates the number of bytes of memory to be reserved for the
buffer. An unnamed buffer can be larger than the maximum length (32 767 bytes) of a
string variable. Named buffers using REAL, COMPLEX, and INTEGER arrays can also
be larger than 32 767 bytes.

Using unnamed buffers ensures data integrity since the buffer cannot be accessed by a
variable name. Closing an I/0 path assigned to an unnamed buffer (ASSIGN ~Path TO *)
releases the memory reserved for the buffer. This is similar to the behavior of allocated
variables.

9-6 Advanced Transfer Techniques

0
!

(_)

Buffer-Type Registers
Assigning an I/0 path name to a buffer creates a control table. This control table defines
STATUS and CONTROL registers which can monitor and interact with the operation
of the buffer.

All I/0 path names, including 1/0 path names assigned to buffers, use register 0 to
indicate the path type.

STATUS Register 0 0 =Invalid 1/0 path name
1 = 1/0 path assigned to a device
2 = 1/0 path assigned to a data file
3 = 1/0 path assigned to a buffer

Register 0 returns a 3 when the 1/0 path is associated with a buffer. Register 1 indicates
whether the buffer is named or unnamed.

STATUS Register 1 Buffer type (1=named, 2=unnamed)

Buffer Life Time
When 1/0 path names are assigned to buffers, the buffer must exist as long as the 1/0

1 path name is valid. Consider the example of a buffer created locally in a context and
__) then assigned an 1/0 path name declared in COM. When execution leaves the local

context, the 1/0 path name would still be valid but the buffer would no longer exist. If
this happens, an error is reported:

ERROR 602 Improper BUFFER lifetime.

This error also occurs if the buffer and the 1/0 path name being assigned are in different
COM areas.

Advanced Transfer Techniques 9-7

Buffer Size Register
Once a buffer has been assigned an I/0 path name, Status register 2 returns the buffer's
capacity (maximum size, in bytes).

STATUS Register 2 Buffer size in bytes

Buffer Pointers
In order to understand I/0 involving buffers, it is essential to understand how a buffer
is set up and maintained.

When an ASSIGN statement associates an I/0 path name with a buffer, it also creates
and initializes a buffer control table. Among the entries in the control table are two
pointers and a counter which are used to monitor and control all data transfer to and
from the buffer through the I/0 path.

• The buffer fill pointer points to the next byte of the buffer which can accept data.

• The empty pointer points to the next byte of data which can be read from the
buffer.

• The byte count shows the number of bytes currently in the buffer (usually equal to
fill pointer - empty pointer).

The current values of the pointers can be checked by using the STATUS statement with
the following registers.

STATUS Register 3

STATUS Register 4

STATUS Register 5

Current fill pointer

Current number of bytes in buffer

Current empty pointer

9-8 Advanced Transfer Techniques

I~
I

.0

:)
_,-

(.
_/I

As data is written into the buffer (OUTPUT or TRANSFER), the fill pointer is advanced
as necessary to point to the next available byte of buffer storage, and the counter is
incremented by the number of bytes added to the buffer.

(inbound} TRANSFER taDevice TO taBuffer

~ fill pointer

.... ata data data data data data data data data d

f empty pointer

(outbound} TRANSFER taBuffer to taFile

Similarly, when data is read from the buffer (ENTER or TRANSFER), the empty pointer
is advanced to point to the first unread byte, and the counter is decremented by the
number of bytes which have been read.

It is also important to realize that the buffers used with the TRANSFER statement are
circular. This means that when the last byte of buffer storage has been accessed, the
system will wrap around and access the first byte of buffer storage. The only thing which
prevents writing more data into the buffer is the byte count (Register 4) becoming equal
to the buffer capacity (Register 2) which indicates that the buffer is full. Similarly, once
the system has read the data from the last byte of buffer storage, it will next read from
the first byte, but reading must cease when the byte count reaches zero which indicates
that the buffer is empty.

A full or empty buffer has the fill pointer and the empty pointer referencing the same
byte of buffer storage. The system distinguishes between full and empty by examining
the byte count. If it is zero, the buffer is empty. If it is equal to the buffer's capacity,
the buffer is full.

It is impossible to perform any operation which would cause the byte count to take on a
value less than zero or greater than the buffer capacity. Attempting to OUTPUT more
data into a full buffer or ENTER data from an empty buffer produces:

ERROR 59 End of file or buffer found

Since fill and empty pointers are updated independently of each other and a TRANSFER
can execute concurrently with other statements, it is possible for one TRANSFER to be
putting data into the buffer while another TRANSFER is removing data.

Advanced Transfer Techniques 9-9

The amount of data which can be moved by a single transfer operation is not limited
by the buffer's capacity. When two TRANSFER statements involving the same buffer
are of comparable speed and execute concurrently, the buffer's fill and empty pointers
may never reach the empty or full state. If the two TRANSFER statements execute
at different speeds because of the transfer mode which must be used or because of the
throughput capacity of the devices involved, it is still possible to keep two TRANSFER
statements running concurrently by specifying the CONT parameter on both (discussed
in subsequent sections). CONT directs a transfer not to terminate when the buffer
becomes full or empty. Instead, the transfer "goes to sleep" until the buffer is again
ready for the transfer process to continue.

Accessing Named Buffers via Variable Names
If you plan to transfer data through a buffer without using the 1/0 path name (such as by
using the string varible's name or numeric array variable's name), it will be necessary to
change the values of the pointers. CONTROL registers 3, 4, and 5 control the positioning
of the pointers.

If either the fill or empty pointer is changed the appropriate pointer is modified and
no other action is taken. Assuming no active transfer, if the byte count is changed,
the empty pointer is set to zero and the fill pointer is set to correspond to the length
specified. If a transfer is active in both directions, you cannot change the byte count or
either pointer. If an inbound transfer is active, the empty pointer will be adjusted to set
the byte count as specified. Similarly, if an outbound transfer is active, the fill pointer
will be adjusted to match the byte count specified.

When the byte count is set along with either the fill or empty pointer, the pointer is
moved to the position specified and the remaining pointer is adjusted to correspond to
the specified length.

If all three pointers are changed, they must be a consistent set to prevent the following
error:

ERROR 19 Improper value or out of range.

If both fill and empty pointers are set to the same value, the length must be either zero
(buffer empty) or the maximum buffer length (buffer full).

9-10 Advanced Transfer Techniques

!-..,
' I I

(_)

I
I
_/'

Attempting to change a pointer used by an active TRANSFER will result in the error:

ERROR 612 Buffer pointer(s) in use

The fill pointer can be changed during an outbound transfer, but not during an inbound
transfer. Similarly, the empty pointer can be changed during an inbound transfer, but
not during an outbound transfer.

Note

When string variables are used as buffers, the length of the string
should not be changed. Although this does not affect the operation
of the buffer, it can prevent access to the contents of the buffer by
the variable name.

Advanced Transfer Techniques 9-11

A Closer Look at Transfers
Once a buffer has been created and an I/0 path name assigned to it, data can be
transferred into or out of the buffer by a TRANSFER statement. Every TRANSFER
will need a buffer as either its source or destination. For example:

TRANSFER ~Source TO ~Buffer
or
TRANSFER ~Buffer TO ~Destination

From the buffer's point of view, there are two types of transfers; inbound and outbound.
• An inbound transfer will move data from a device or file into the buffer, updating

a fill pointer and byte count as it proceeds.

• An outbound transfer will remove data from the buffer, updating an empty pointer
and byte count as necessary.

For a complete explanation, see the "Closer Look at Buffer Pointers" section near the
end of this chapter.

Transfer Methods
The actual method of transfer is device dependent and is chosen automatically by the
BASIC system (you cannot explicitly choose a method). The three possible transfer
methods are:

• DMA (direct memory access)

• FHS (fast handshake)

• INT (interrupt)

Descriptions of each method and how the system chooses one for each TRANSFER are
covered in the section called "Transfer Methods and Rates".

9-12 Advanced Transfer Techniques

('\
!

u
OUTPUT and ENTER and Buffers
The OUTPUT and ENTER statements may be used to interact with the data sent
through the buffer. If the I/0 path name of the buffer is used as the source for an
ENTER or the destination for an OUTPUT, the control table (pointers, size, etc.) will
be updated automatically.

Accessing the data in a named buffer by using the variable name will not update the
buffer pointers. This could easily lead to corruption of the data in the buffer.

Transfer Formatting
OUTPUT and ENTER statements can format data according to a given IMAGE list
and transform the data according to the attributes specified in the ASSIGN statement.
No data formatting or transformation occurs, however, when data are transferred by a
TRANSFER statement.

Transfer Termination Branching
The ON EOT (End Of Transfer) statement allows you to define a branch to be taken
upon the completion of a transfer (see the next few pages for details of TRANSFER
termination conditions). When the data being transferred has been divided into records,
the ON EOR (End Of Record) statement can be used to define a branch to be taken
after each record is transferred.

Note

An active TRANSFER will not be terminated by stopping or paus
ing a program. You may use I Reset I (I RESET I) or ABORTIO to
terminate a TRANSFER prematurely. The I Break I (I CLR 110 I) key
will not terminate a TRANSFER.

Visually Determining Transfer Status
If a TRANSFER is active while a program is paused, the "I/0" indicator (I\0 or Trans
fer) is displayed in the lower-right corner of the CRT instead of the "Pause" indicator
(- or Paused). When the "I/0" indicator is displayed, any action which would make the
program non-continuable (such as GET, LOAD, SCRATCH, entering a program line,
etc.) will wait until the transfer completes before executing. This can give the appear
ance of the system being "hung." Indeed, if the TRANSFER will not complete, the

(; system is "hung." In this last case, use I Reset I to recover.

"-"'

Advanced Transfer Techniques 9-13

Choosing Transfer Parameters
For a standard inbound transfer, data from the device (or file) is placed in the buffer,
and the TRANSFER is terminated when the buffer is full. For an outbound transfer, ~~
data is removed from the buffer, and the TRANSFER is terminated when the buffer is ·)
empty.

Continuing Transfers Indefinitely
To allow a TRANSFER to continue indefinitely, the CONT parameter can be specified.
The TRANSFER will not terminate when the buffer is full or empty.

TRANSFER ~Source TO ~Buffer;CONT

Several interesting things happen when a continuous TRANSFER is specified. Execution
cannot leave the current program context unless the buffer and 1/0 path name are in
COM (or passed as parameters), and you will not be able to LOAD, GET, or EDIT a
program. During program development, you can terminate a transfer by I RESET I (I Reset I)
or ABORTIO @Non_buff (use the 1/0 path name assigned to either the device or file).
ABORTIO can be used in a program or executed from the keyboard.

A continuous TRANSFER can also be canceled by writing to a CONTROL register (use .~
the 1/0 path name assigned to the buffer). Note that the CONTROL register only .
cancels the continuous mode. The TRANSFER is still active until the buffer is full or
empty.

CONTROL ~Buff. 8; 0 for inbound transfers

CONTROL ~Buff, 9; 0 for outbound transfers

When the CONT parameter is specified for an inbound transfer, the transfer fills the
buffer and is then suspended while program execution continues. The suspended transfer
"sleeps" until another operation removes some data from the buffer. The transfer then
"wakes up" and continues the transfer operation. When the CONT parameter is specified
for an outbound transfer, the transfer empties the buffer and is then suspended. As soon
as more data are available, the transfer "wakes up" and continues the transfer operation.
This process proceeds until the transfer is terminated (such as with I Reset I or ABORTIO)
or the CONT mode is canceled.

~~
I

9-14 Advanced Transfer Techniques

(__j

L>

(_)

Waiting for a Transfer to End (Non-Overlapped Transfers)
By default, transfers take place concurrently with continued program execution. To defer
program execution until a transfer is complete, use the WAIT parameter. This allows
transfers to take place serially (non-overlapped).

TRANSFER ~Source TO ~Buffer;WAIT

When the WAIT parameter is specified, the program statement following the TRANS
FER will not be executed until the transfer has completed.

Continuous Non-Overlapped Transfers
By combining both the CONT and WAIT parameters, a continuous non-overlapped
TRANSFER can be defined. However, this is only legal if you already have an active
TRANSFER for the buffer in the opposite direction.

TRANSFER ~Source TO ~Buffer;WAIT,CONT

Transferring a Specified Number of Bytes
The COUNT parameter tells a transfer how many bytes are to be transferred. The
following TRANSFER specifies 32 bytes to be transferred. The transfer will terminate
after 32 bytes have been transferred (or when the buffer becomes full for non-continuous
transfers) .

TRANSFER ~Source TO ~Buffer;COUNT 32

Delimiter Characters
The DELIM parameter can be used to terminate an inbound transfer when a specified
character is received. The following TRANSFER will terminate when the delimiter
(comma) is sent or when the buffer is full (unless the CONT parameter is specified).
The DELIM parameter is not allowed on outbound transfers or WORD transfers. If the
DELIM string is the null string, the DELIM clause is ignored. This allows programmatic
disabling of DELIM checking. An error results if the DELIM string contains more than
one character.

TRANSFER ~Source TO ~Buffer;DELIM II II .

Advanced Transfer Techniques 9-15

Using the END Indication with Transfers
The END parameter can also be used to terminate a TRANSFER. On an outbound
transfer on an HP-IB interface, for example, specifying END causes an End-or-Identify
(EOI) signal to be sent with the last character of the transfer.

TRANSFER ~Buffer TO ~Device;END

Using an END parameter with an inbound transfer causes the transfer to be terminated
by an interface-dependent signal (for devices) or by encountering the current end-of-file
(for files).

TRANSFER ~Device TO ~Buffer;END

The END parameter is discussed in detail following the introduction of the RECORDS
parameter.

Transferring Records
It is often desirable to divide the data into records. The RECORDS parameter is then
used to indicate the size of each record.

Whenever RECORDS is used, there must be a parameter which signals the end of a
record. The EOR (End-Of-Record) parameter can use COUNT, DELIM, or END (dis
cussed later) to signify the end of a record. For example, the following statement specifies
4 records of 15 bytes per record are to be transferred.

TRANSFER ~Source TO ~Buffer;RECORDS 4,EOR(COUNT 15)

Multiple Termination Conditions
When multiple termination conditions are specified, the transfer will terminate when any
one of the conditions occurs.

TRANSFER ~Source TO ~Buffer;COUNT 128,DELIM ";",END
TRANSFER ~Source TO ~Buffer;RECORDS 100,EOR(COUNT 15,END)

r)

As in all transfer operations, unless the CONT parameter is specified, the TRANSFER
will also terminate when the buffer is full or empty. n

9-16 Advanced Transfer Techniques

i

/ ' u

(I

_/

f ~
\ I

"'-._../

The END parameter specifies an inbound transfer will be terminated by receiving an

interface-dependent signal (for devices) or by encountering the current end-of-file (for

files). Some devices on the HP-IB send an EOI concurrently with the last byte of data.

Unless the END parameter is specified, receiving an EOI will generate an error. For files,

encountering the end-of-file will generate an error unless the END parameter is specified.

Using the END parameter with an outbound transfer on the HP-IB will result in the

EOI signal being sent concurrently with the last byte of the transfer. If EOR(END) is

specified, EOI will be sent with the last byte of each record. For files, END will cause

the end-of-file pointer to be updated at the end of the transfer. Using EOR(END) will

cause the pointer to be updated at the end of each record.

TRANSFER Records and Termination

The following tables show the different system responses to the END and EOR(END)

parameters.

Table 9-1. Inbound TRANSFER

Parameter File Device

No END Terminate prematurely. Terminate prematurely.
Bit 3 of Register 10 is set. Bit 3 of Register 10 is set.
Error 59 waiting. Error 59 waiting.

END Terminate normally. Terminate normally.
Bit 3 of Register 10 is set. Bit 3 of Register 10 is set.

EOR(END) Finish current record. Terminate normally.

ON EOR triggered. Bit 3 of Register 10 is set.

Start new record.

END ,EOR(END) Terminate normally. Terminate normally.
Bit 3 of Register 10 is set. Bit 3 of Register 10 is set.

An error is logged when a transfer terminates prematurely. For overlapped transfers,

this error is "waiting" and will be reported the next time the non-buffer I/0 path name

is referenced (for example, in an ASSIGN statement). At that time, any ON ERROR

or ON TIMEOUT branches will be triggered. (If the WAIT parameter is specified, the

error is reported immediately.) See "Error Reporting" for further explanation.

Advanced Transfer Techniques 9-17

An ON END branch will be triggered only if the END parameter is not specified.

Table 9-2. Outbound TRANSFER

Parameter File Device
No END No special action. No special action.
END Update EOF pointer after Send an EOI with the last

TRANSFER is finished. byte of each record.
EOR(END) Update EOF pointer after Send an EOI with the last

each record. byte of each record.
END,EOR(END) Update EOF pointer after Send an EOI with the last

each record and when the byte of each record and
TRANSFER is finished. with the last byte of the

TRANSFER.

For an outbound transfer to a device, no special action is taken if the device does not support EOI. The Serial, Datacomm and GPIO interfaces do not support EOI.

Transfer Event-Initiated Branching
Two types of event-initiated branches can be defined for a transfer.

• The ON EOT statement defines and enables a branch to be taken upon completion of a transfer.

• The ON EOR statement defines and enables a branch to be taken every time a record is transferred.

ON EDT ~Device CALL Process
ON EDR ~File GOTO Parse

No ON EOR branches will be triggered unless the EOR parameter is specified in the TRANSFER statement and an item is transferred which satisfies one of the end-of-record conditions (COUNT, DELIM, or END).

To ensure that a branch receives service, the transfer must complete before attempting to leave the context in which the branches are defined. If the I/0 path names are local to a program context, encountering SUBEND, SUBEXIT, or RETURN before the transfer has completed will cause the context switch to be deferred until completion of the transfer. If this happens, any ON EOR or ON EOT branch will not be serviced. ,~

9-18 Advanced Transfer Techniques

u

Overlapped Nature of TRANSFER
Certain statements wait until a transfer is completed before they are executed. A com
plete list of these statements is provided later in this chapter. These statements can be
used to prevent overlapped operation or defer a context switch until completion of the
transfer. For example, if the following I/0 path names were used in a TRANSFER,
either of the following statements will cause program execution to wait until the transfer
is finished.

ASSIGN <OPath TO * (can be a device, file, or buffer)

WAIT FOR EDT <ONon_buff (can be a device or file)

When a TRANSFER is used inside a loop, the entire loop may execute before the transfer
has completed. If this happens, the second execution of the TRANSFER statement
will wait until the completion of the first. Any event-initiated branch defined for the
TRANSFER (ON EOT or ON EOR) will be serviced.

Disabling Overlapped TRANSFER Mode
While the WAIT parameter can be specified to ensure completion of a transfer before
proceeding with the next statement (thus ensuring a branch can be serviced), this defeats
any advantage of overlapped operation.

The WAIT FOR statement can be used to allow overlapped operation up to the point
where the WAIT FOR statement is encountered. The WAIT FOR statement ensures the
servicing of an event-initiated branch defined for the end-of-transfer or end-of-record.

Advanced 'Iransfer Techniques 9-19

Terminating a Transfer
A transfer is usually terminated by satisfying the conditions specified by the transfer parameters. There are times, especially during program development, when you may {) wish to prematurely terminate (abort) a transfer.

A transfer can be aborted by pressing the I Reset I (I RESET I) key, which will stop the program, close all 1/0 paths, and destroy all buffer pointers.

To abort a transfer without stopping the program, the ABORTIO statement can be used from the program or the keyboard. For example:

ABORTID ~Non_buff

This statement will terminate any active transfer associated with the 1/0 path. ABORTIO has no effect if a transfer is not in progress. Using ABORTIO does not ensure all data in the buffer is transferred, but it does leave the buffer pointers and byte count in their correct state.

Note

If the destination of a TRANSFER is a mass storage file, aborting
a TRANSFER with ABORTIO will not cause data already placed
in the disc buffer to be written to the disc. Up to 255 bytes of data
could be lost.

While most transfers are terminated by fulfilling the conditions specified by the parameters, a continuous TRANSFER (using the CONT parameter) requires a bit more effort to terminate.

To terminate a continuous TRANSFER without leaving data in the buffer, first cancel the continuous mode (with CONTROL), then wait for the transfer to complete. Use register 8 for inbound transfers and register 9 for outbound transfers. The following two methods are the safest ways of terminating a continuous TRANSFER.
CONTROL ~Buff,8;0
WAIT FOR EDT ~Path

CONTROL ~Buff,8;0
ASSIGN ~Path TO *

9-20 Advanced Transfer Techniques

' I I

_)

I)

0

Remember that the buffer pointers are not reset to the beginning of the buffer when the
transfer is finished. The RESET statement (RESET @Buff) can be used to reset the
buffer pointers to the beginning of the buffer and the byte count to zero.

Transfers are not terminated by pausing the program. The 1/0 indicator in the lower
right corner of the CRT will indicate when a transfer is in progress.

While transfers may continue when the computer is in the paused state, all transfers must
terminate before entering the stopped state. Pressing I Return I or I ENTER I, after editing
or adding a program line, will attempt to put the computer in the stopped state. If a
transfer is still in progress, the computer will "hang" until the transfer is completed. To
abort the transfer without performing a hardware reset, press I Break I (I CLR 1/0 I) to clear
the I Return I or I ENTER I and then execute an ABORTIO on the non-buffer 1/0 path name
for each active TRANSFER. If a hardware reset can be tolerated, press I Reset I (I RESET I)
to terminate the transfer.

Advanced Transfer Techniques 9-21

More Transfer Examples
Here is a short program which sets up a continuous transfer from a device through the
buffer to a BDAT file. A program of this type is useful when the data being received
must be saved for later analysis.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150

Data Logging Example

a multiple of disc sector (256) size. Buffer size should be
ASSIGN ~Device TO 717
ASSIGN ~Buf TO BUFFER [512]
ASSIGN ~File TO "LOG_FILE"

TRANSFER ~Device TO ~Buf;CONT
TRANSFER ~Buf TO ~File;CONT

Program execution continues

! Assign source device on HPIB
Assign BUFFER
Assign destination file

Continuous TRANSFER
Continuous TRANSFER

Data logging continues as a "background" task ...

PAUSE
END

TRANSFER continues in paused state

9-22 Advanced Transfer Techniques

/~ . !

(\
}

~I

u

The following program creates and fills a BDAT file and then sends its contents to a
printer. Notice that the OUTPUT statement used to fill the file placed a CR/LF at the
end of each record. The TRANSFER statement (line 90) looks for the carriage-return
as a record delimiter.

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330

ON ERROR CALL Makefile
ASSIGN <OFile TO "BDAT_FILE"
OFF ERROR
ASSIGN <OBuff TO BUFFER [2046]
ASSIGN <OPrint TO PRT

Cr$=CHR$(13)
PRINT "Start"

Test for file's existence

Assign buffer
Assign destination

ASCII character for carriage return

TRANSFER <OFile TO <OBuff;RECORDS 10,END,EOR (DELIM Cr$)

TRANSFER <OBuff TO <OPrint
FOR I=1 TO 10000

PRINT "TRANSFERS RUNNING",I
STATUS <0Buff,11;Stat
IF NOT BIT(Stat,6) THEN 180

NEXT I

OUTPUT <OPrint;CHR$(12)
PRINT "File is printed"
END

SUB Makefile
OFF ERROR
CREATE BDAT "BDAT_FILE",10,12

ASCII character for formfeed

ASSIGN <OFile TO "BDAT_FILE";FORMAT ON
FOR I=1 TO 10

DISP "Writing";I
READ Word$
OUTPUT <OFile;Word$

NEXT I
DISP
DATA ONE,TWO,THREE,FOUR,FIVE,SIX,SEVEN,EIGHT,NINE,TEN

SUB END

Advanced Transfer Techniques 9-23

The next program continually shows the activity of the buffer. Note that a continuous
TRANSFER is used (line 90). Data is placed in the buffer a few bytes at a time (line
130) and the status is displayed by the SUB called from line 140. After a few hundred
bytes are transferred, the continuous mode is canceled (line 180), the program waits for
the transfer to finish (line 190), and the final status is displayed.

20
30
40
50
60
70
80
90
100
120
130
140
150
160
180
190
200
210

PRINTER IS CRT
PRINT USING "CO"
COM COBuff,COPrint,B$[47] BUFFER
INTEGER Characters
ASSIGN COBuff TO BUFFER B$
ASSIGN COPrint TO PRT
DISP "printer is off line"
TRANSFER COBuff TO COPrint;CONT
DISP
REPEAT

OUTPUT COBuff ; "AB " ·
CALL Buff_status
Times=Times+1

UNTIL Times>100
CONTROL C0Buff,9;0
WAIT FOR EDT COPrint
CALL Buff_status
END

Clear Screen
Declare variables

Assign I/0 path name to buffer
Assign I/0 path name to 701
Transfer hangs if no printer
Continuous transfer
Clear display line

Fill buffer with data

Cancel continuous mode
Wait for buffer empty
Show final status

230 SUB Buff_status ! ---240 COM COBuff,COPrint,B$ BUFFER
250 STATUS COBuff;RO
260 PRINT TABXY(1,1); "Buffer Status: ";
270 STATUS COBuff,1;R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13
280 IF R1=1 THEN PRINT "Named ";
290 IF R1=2 THEN PRINT "Unnamed";
300 PRINT "Buffer[";VAL$(R2);"]"
310 PRINT TABXY(1,3);RPT$(" ",55)
320 PRINT TABXY(R3,3); "v" Show fill pointer position
330 PRINT TABXY (1, 4); 11111111

; B$; 11111111 Show buffer contents
340 PRINT TABXY(1,5);RPT$(" 11 ,55)
350 PRINT TABXY (R5, 5) ; n-n Show empty pointer position
360 PRINT
370 PRINT "Fill pointer: ";R3
380 PRINT "Bytes in use: ";R4
390 PRINT "Empty pointer: ";R5
400 PRINT
410 PRINT " inbound/outbound"
420 PRINT "Select code: ";R6; "/" ;R7
430 PRINT "Continuous?: ";R8;"/";R9
440 PRINT "Term. status: ";R10;"/";R11
450 PRINT "Total bytes: "; R12; "1"; R13
460 SUBEND

9-24 Advanced Transfer Techniques

n

n
)

l.)

Data currently in the buffer can be reused or ignored by manipulating the pointers (with
CONTROL). When it is necessary to move data through the buffer without using 1/0
path names, the CONTROL statement can be used to modify the pointers, thus allowing
a TRANSFER to take place. The next program uses this technique. The array size used
in the next program is for the Model 236; change the array size in lines 50 and 60 for
other computer models.

10 GINIT
20 GCLEAR
30 GRAPHICS ON
40 PRINT CHR$(12)
50 INTEGER I,Graph(1:12480) BUFFER
60 Gbytes=2*12480
70 ASSIGN ~Buff TO BUFFER Graph(*)
80 ON ERROR GOTO Record
90 ASSIGN ~Read TO "PHOTOS"
100 ASSIGN ~Read TO *
110 GOTO Playback
120
130 Record:OFF ERROR
140 CREATE BOAT "PHOTOS",5,Gbytes
150 ASSIGN ~Write TO "PHOTOS"
160 FOR I=1 TO 5
170 GRID I*4,I*4
180 GSTORE Graph(*)
190 GCLEAR
200 DISP "SAVING #";I
210 CONTROL ~Buff,4;Gbytes
220 TRANSFER ~Buff TO ~Write;WAIT
230 NEXT I
240 ASSIGN ~Write TO *
250
260 Playback:OFF ERROR
270 ASSIGN ~Read TO "PHOTOS"
280 FOR I=1 TO 5
290 DISP "LOADING #";I
300 TRANSFER ~Read TO ~Buff;WAIT
310 GLOAD Graph(*)
320 CONTROL ~Buff,4;0
330 NEXT I
340 DISP "DONE"
350 END

Uses graphics

Clear the screen
(1:7500) FOR 9826/9816
2 * 7500 FOR 9826/9816

Enable ERROR trap
Test if file exists
Close file
If file exists then Playback

5 "PHOTOS" of graphics screen
to be written to the BOAT file

Fill buffer with GSTORE

Tell TRANSFER "The buffer is full"

Tell TRANSFER "The buffer is empty"

The program creates five "photos" of the graphics raster and writes them to a disc file.
The file is then read and each picture is loaded back into the graphics raster.

Advanced Transfer Techniques 9-25

Special Considerations

Transfer with Care
Whenever possible, a transfer will take place concurrently with continued program ex
ecution. You must carefully construct a program using transfers. A poorly designed
transfer may take longer to execute than using OUTPUT and ENTER.

A TRANSFER which uses a local I/0 path name must terminate before a SUBEXIT,
SUBEND, or RETURN (from a function) can return execution to the calling context.
The system will detect that such a transfer is in progress and will make the SUBEXIT
wait for the transfer to terminate. If this happens, the system will not process any ON
EOT (or ON EOR) branch which had been defined for the transfer. To allow servicing
of the branch, any statement which cannot execute in overlap with the TRANSFER can
be inserted in the subprogram before the SUBEXIT. Two of the most sensible choices
are:

WAIT FOR EDT ~Non_buff
or
ASSIGN ~Path to *

A TRANSFER which uses only non-local I/0 path names can execute in overlap with a
SUBEXIT. One word of caution is necessary; if a local ON EOT (or ON EOR) statement
is used in the subprogram, its branch will not be serviced if the SUBEXIT is encoun
tered before termination of the TRANSFER. To ensure the possibility of servicing the
branch, insert a statement that cannot execute in overlap with the TRANSFER. This is
essentially the same technique discussed in the preceding paragraph.

More than one I/0 path name can be assigned to a named buffer; however, each path
name will maintain its own set of pointers. Using multiple path names on the same buffer
could lead to corruption of the data in the buffer.

Special care should be taken when using REAL and COMPLEX arrays as buffers, since
a device may send a bit pattern that is not a valid real number. Accessing the data as a REAL or COMPLEX value may produce an error.

9-26 Advanced Transfer Techniques

;--,\
!)

Statements Which Affect Concurrency
The following statements do not wait for the completion of a TRANSFER statement.

u Buffer in Use Device in Use

STATUS <OBuf STATUS <ODev

CONTROL <OBuf ON EOR <ODev

SCRATCH A ON EDT <ODev
OFF EOR <ODev
OFF EDT <ODev

Statements which wait for completion of inbound transfers.

OUTPUT <OBuf
TRANSFER <ODev TO <OBuf

Statements which wait for completion of outbound transfers.

ENTER <OBuf
TRANSFER <OBuf TO <ODev

Advanced Transfer Techniques 9-27

Statements which wait for completion of inbound and outbound transfers.

Buffer in Use

ASSIGN ~Buf TO *
ASSIGN ~Buf TO BUFFER[bytes]

ASSIGN ~Buf TO BUFFER B$

ASSIGN ~Dev

ASSIGN ~Dev; (new attributes)

END

SUB EXIT

SUB END

SCRATCH C

SCRATCH

LOAD "PRDG"

GET "PROG"

STOP

9-28 Advanced 'fransfer Techniques

Device in Use

ASSIGN ~Dev TO *

ASSIGN ~Dev

ASSIGN (DDev; (new attributes)
WAIT FOR EDT ~Dev
OUTPUT (DDev
ENTER (DDev
TRANSFER (DBuf TO (DDev
TRANSFER ~Dev TO (DBuf

END

SUB EXIT

SUB END

SCRATCH C

SCRATCH

LOAD "PRDG"

GET "PROG"

STOP
CONTROL ~Dev

:)

I
I ',

_../

Error Reporting
If an error is encountered during an overlapped transfer, the error is logged in the non
buffer I/0 path name and reported the next time the non-buffer I/0 path name is
referenced. Thus, the error line reported will be the most recently executed line contain
ing the I/0 path name and usually not the line containing the TRANSFER statement.
For example:

10 This program shows delayed error reporting for TRANSFER
20
30 ON ERROR GOTO Ok
40 PURGE "bdat_file"
50 Ok:OFF ERROR
60
70
80
90
100
110
120

CREATE BDAT "bdat_file",1
ASSIGN <ONon_buf TO "bdat_file"!
INTEGER B(100) BUFFER
ASSIGN <OBuf TO BUFFER B(*)
PRINT

130 WAIT 2
140 LIST 150,150

Zap file if it already exists

CREATE an empty file
ASSIGN I/0 path name to the file
Declare a variable as a buffer
Assign I/0 path name to buffer

150 TRANSFER <ONon_buf TO <OBuf;CONT Error occurs in this line
160
170 WAIT 2
180 LIST 190,190
190 STATUS <0Buf,10;Status_byte
200
210 WAIT 2
220 LIST 230,230
230 STATUS <ONon_buf;Status_byte
240 END

Error not reported with <OBuf

Error reported with <ONon_buf

The error displayed as a result of running the above program is:

ERROR 59 IN 230 End of file or buffer found

which indicates that the error occurred on line 230 of the program. However, the actual
error occurred on line 150. The reason for the error is that the file called bdat_file was
empty and there was no END option used with the TRANSFER statement.

Advanced Transfer Techniques 9-29

Since a continuous TRANSFER was specified, the error that occurs in line 150 is reported
in line 230 when the non_buffer I/0 path name is referenced. For continuous transfers,
the error is always logged with the non-buffer I/0 path name. Referencing the buffer's
I/0 path name (line 190) does not cause the error to be reported. After running the ~ program, change the CONT parameter in line 150 to WAIT. The program will now report (J the error in line 150 since the WAIT parameter specified a serial TRANSFER.

At the time the error is reported, any ON END (for files), ON TIMEOUT (for devices),
or ON ERROR statements will be triggered. However, ON END is not triggered when
the END parameter is specified.

Suspended Transfers
When a TRANSFER statement is executed, that transfer is said to be "active". The
transfer proceeds until either a termination condition is reached, or until there is nothing
else the transfer can do for the time being. An example of the latter is a continuous
TRANSFER, which does not terminate when the buffer is full and has not yet met any
other termination conditions.

This TRANSFER will be "suspended" to give some other TRANSFER operation a
chance to empty the buffer. It will not be reactivated until one of the following occurs:

1. The other TRANSFER operation reaches a record boundary, fills or empties the
buffer, terminates, or is suspended.

2. An OUTPUT or ENTER operation active in the other direction fills or empties the
buffer, or terminates.

3. A CONTROL statement is executed to change the fill or empty pointers, or buffer's
byte count.

4. A CONTROL statement is executed to cancel continuous mode.

A TRANSFER cannot be suspended unless it has CONT as one of its transfer parameters.

9-30 Advanced Transfer Techniques

(~
. I

Transfer Performance

Sector Size
For the best performance when transferring BDAT and HP-UX files, the buffer size should
be a multiple of 256 or 1024 bytes (the size of a sector on the disc). 1 If the buffer is not a

multiple of 256 bytes, the system must do sector buffering; this is handled automatically,
but reduces the transfer rate.

Internal Disc Drives of Models 226 and 236 Computers
While a TRANSFER can be assigned to the internal disc drives in the Model 226 and

Model 236, no noticeable increase in speed (compared to OUTPUT or ENTER) will

result. Transfers to and from external mass storage (except the 9885) will show an

increase in speed, especially if a DMA card is present.

Overlapped Transfers and Disc Drives
Some of the discs are capable of overlapped operation. This means that other processing

can occur while a non-continuous TRANSFER to or from the disc is taking place. In

other words, the program can execute other statements before the transfer has completed.

Overlapped discs include:

\._.) • CS80 discs (such as the HP 9153)

• SS80 discs (such as the HP 9122)

• "Amigo" discs (such as the HP 9895 and 82901)

Discs which are not capable of overlapped operation are called serial discs. When exe
cuting a non-continuous TRANSFER to or from a serial disc, the program will not leave

the TRANSFER statement until it completes. Serial discs include the internal discs (of

Models 226 and 236 computers) and the HP 9885 8-inch flexible disc drive. With files on

HFS and SRM volumes, the TRANSFER statement runs in overlapped mode until the

BASIC system encounters a statement that accesses the same volume (such as CAT or

ASSIGN); at such times, the BASIC system performs an implicit WAIT FOR EOT.

1 Discs with 512-byte sectors are not supported by BASIC.

Advanced Transfer Techniques 9-31

The following example illustrates the difference between a serial disc and an overlapped disc.

10 OPTION BASE 1
20 INTEGER B(128,10) A 10-sector buffer 30 LINPUT "Enter msus:".Msus$
40 CREATE BDAT "bdat"&Msus$,10
50 ASSIGN !OFile TO "bdat"&Msus$
60 ASSIGN !OBuffer TO BUFFER [2560] ;FORMAT OFF 70 OUTPUT !OBuffer;B(*) Fill !OBuffer's with 10 sectors 80 ON EDT @File GOTO Serial_eot Branch taken if TRANSFER is serial 90 TRANSFER !OBuffer TO !OFile
100 ON EDT !OFile GOTO Overlapped_eot! Branch taken if TRANSFER is overlapped 110 LOOP
120 !=!+1
130 PRINT !,"OVERLAPPED"
140 END LOOP
150 Serial_eot:
160 PRINT "SERIAL"
170 Overlapped_eot: !
180 ASSIGN !OFile TO *
190 PURGE "bdat"&Msus$
200 END

If this program is used with a serial disc, the program stays in the TRANSFER statement until the transfer is complete. Upon completion of the transfer, the ON EOT branch to Serial_eot is taken.

If this program is used with an overlapped disc, the TRANSFER statement begins the transfer, but the program executes the next statement before the transfer completes. In this program, the next statement changes the ON EOT branch. During the transfer, a count and the word "OVERLAPPED" are printed. When the transfer is complete, the ON EOT branch to Overlapped_eot is taken.

If the CONT parameter is specified for a TRANSFER with a serial disc, the transfer may appear overlapped in certain cases because the program executes any statements which follow the TRANSFER statement before the transfer terminates. Here is what really happens in this case. The transfer proceeds until the buffer is full (for inbound transfers) or empty (for outbound transfers). The transfer is then suspended because CONT was specified. The TRANSFER statement is exited and the next statement is executed. The transfer will remain suspended until the continuous mode is terminated or until the buffer is filled (for inbound transfers) or until the buffer is emptied (for outbound transfers). If there is a second TRANSFER active for the buffer, an EOR or EOT condition for the second TRANSFER can also wake up the suspended TRANSFER.

9-32 Advanced Transfer Techniques

()

(~
' '

u

(i

\.._/

In contrast to serial discs, overlapped discs would allow the statement following the

TRANSFER to execute before the buffer was full or empty.

The following program illustrates a transfer to a serial device which appears overlapped.

10 OPTION BASE 1
20 INTEGER B(128,10) ! A 10-sector buffer
30 LINPUT "Enter Overlapped msus:",Overlapped$
40 CREATE BDAT "bdat"&Overlapped$,10
50 LINPUT "Enter Serial msus:",Serial$
60 CREATE BDAT "bdat"&Serial$,10
70 ASSIGN <OOverlapped TO "bdat"&Overlapped$
80 OUTPUT <OOverlapped;B(*)
90 RESET <OOverlapped ! Position to beginning
100 ASSIGN <OBuffer TO BUFFER [512] ;FORMAT OFF
110 ASSIGN <OSerial TO "bdat"&Serial$
120 ON EDT <OOverlapped GOTO Eof
130 TRANSFER <OOverlapped TO <OBuffer;END,CONT
140 TRANSFER <OBuffer TO <OSerial;CONT
150 LOOP
160 !=!+1
170 PRINT !,"OVERLAPPED"
180 END LOOP
190 Eof:
200 CONTROL <0Buffer,9;0
210 ASSIGN <OOverlapped TO *
220 PURGE "bdat"&Overlapped$
230 ASSIGN <OSerial TO *
240 PURGE "bdat"&Serial$
250 END

In this example, an overlapped disc is used to fill the buffer while a serial disc empties the

buffer. Any overlapped device could have been used. After both TRANSFER statements

are executed, the program prints the count and the word "OVERLAPPED" while reading

from one disc and writing to the other disc. The inbound transfer is terminated when it

encounters the end of the file. The outbound transfer is terminated when the CONTROL

statement cancels the CONT mode.

Advanced Transfer Techniques 9-33

Transfer Methods and Rates
The BASIC system chooses the fastest possible transfer method when executing a TRANSFER (you cannot explicitly choose the method).

Available Methods
There are three types of transfers available to the BASIC system.

• DMA (direct memory access)

• FHS (fast handshake)

• INT (interrupt)

DMA Mode
All transfers use DMA mode whenever possible. However, any one of the following reasons will prevent a DMA transfer.

• The DMA card is not present

• Both DMA channels are busy

• The device involved is not HP-IB or GPIO

• The DELIM parameter is specified

If DMA cannot be used with the HP-IB or GPIO interfaces, the FHS mode will be used if the WAIT parameter was specified and INT mode will be used if the WAIT parameter was not specified.

INT Mode
The INT mode will always be used for the Serial and Datacomm interfaces. Note also that the handshake lines are not used for Serial and Datacomm transfers. Therefore, on inbound transfers through the Serial interface, it is easy to overrun the 1-byte hardware buffer on the card. The maximum transfer rate with Serial interfaces is hard to specify, because it may be affected by other operations that attempt to alter the BASIC interruptlogging structure (statements such as ON INTR and ON KEY). In general, using the WAIT parameter will result in a higher transfer rate, with a lower potential for overrun errors, than other methods. The WAIT parameter specifies that the TRANSFER is to complete before the next BASIC statement is executed (that is, it specifies that the ~ transfer is to be performed in non-overlapped mode). :)

9-34 Advanced Transfer Techniques

u
If a very slow device is sending a few bytes at a time, the most efficient method of

transfer would be to interrupt the processor whenever data is ready. Both DMA and

INT modes operate in this way. The DMA hardware "steals" a single memory cycle

from the processor to transfer each byte. The INT mode must completely interrupt the
processor and therefore takes more time.

Either type of interrupt (DMA or INT) can occur at any time and will be handled

immediately by the system. The interrupt doesn't have to wait for a statement to end
before it is serviced. This is not the same as event-initiated branches which are serviced
only at the end of a statement.

Burst Interrupt Mode
The INT transfers implemented on the HP-IB and GPIO interfaces use a specialized

"burst interrupt" mode. When an interrupt occurs, the system's interrupt service routine

will transfer the byte (or word) then wait approximately 20 J-tS for another byte. If the

device is fast enough to accept or generate another byte each 20 f.-tS, the net transfer rate

will be much faster than if the system must exit the service routine and then re-enter

the routine for the next byte.

Approximate Transfer Rates for Devices
The following table shows the approximate transfer rates of various devices.

Table 9-3. Device Transfer Rates

Burst Fast Burst
Device Interrupt Handshake DMA DMA

HP-IB (98624 and built-in)
inbound 55K 130K 350K -

outbound 75K 120K 290K -

(bytes/second)

GPIO (98622)
inbound 65K 115K 54 0K 930K

outbound 75K 115K 525K 1050K

(transfers/ second)

Serial (98626, 98644, and 19200 Baud1 - - -

built-in)

Datacomm (98628) 19200 Baud - - -

1 Note that the maximum rate for inbound transfers through a Serial interface is generally much lower

than this for two reasons: TRANSFER does not use the handshake lines, and there is only a !-character

hardware buffer on Serial cards.

Advanced Transfer Techniques 9-35

Restrictions
All data must be buffered. This means every TRANSFER statement will have one I/0
path assigned to a buffer and one I/0 path assigned to a device (or file). Additionally, ~
transfers are not permitted with: 1

•)

• The CRT or keyboard

• The HP 98623 BCD Interface card

• ASCII type files

In addition, TRANSFER to or from a mass storage device with hierarchical directories
(such as HFS and SRM volumes) will not operate in overlapped mode (because of the
"extensible" nature of files on these volumes).

A buffer can have only one inbound and one outbound I/0 operation (using I/0 path
names) at any given time. The I/0 operation can use TRANSFER, OUTPUT, or EN
TER statements. A second I/0 operation in the same direction must wait until the
completion of the current operation. A second I/0 operation in the opposite direction
does not have to wait.

The HP-IB and GPIO interfaces support only one I/0 operation at any given time. ,~ A second operation must wait until the completion of the first operation. The Serial
and Datacomm interfaces allow concurrent inbound and outbound transfer operations if
each TRANSFER has a unique I/0 path name assigned to the device. An OUTPUT
or ENTER must wait until completion of transfers in both directions. Thus, concurrent
operation requires using TRANSFER statements and not a mixture of TRANSFER,
OUTPUT, and ENTER statements.

The I/0 path name assigned to a device can be used in only one I/0 operation at a
time. However, the path name can be used with OUTPUT, ENTER, and TRANSFER
interchangeably. An OUTPUT or ENTER to the I/0 path name will be deferred until
completion of any active TRANSFER for that path name. All file operations (includ
ing CAT, CREATE, OUTPUT, and ENTER) will be deferred until completion of any
TRANSFER using the same interface select code.

9-36 Advanced Transfer Techniques

Interactions with Other Keywords
The TRANSFER statement restricts some of the interrupts on various devices. If an ON
INTR statement and an ENABLE INTR statement have been executed for an interface,
not all possible ON INTR conditions will be triggered during a transfer.

GPIO
For the GPIO interface, the PFLG (data ready) interrupt is not triggered during a
transfer that uses the interface. The EIR (External Interrupt Request) interrupt is
triggered even if there is a transfer in progress.

Serial
For the Serial interface, the Transmitter Holding Register Empty and Receiver Buffer
Full interrupts are not triggered during a transfer that uses the interface. The Receiver
Line Status and Modem Status Change interrupts are triggered even if there is a transfer
in progress.

Datacomm
For the Datacomm interface, all interrupt conditions are triggered even if a transfer is in
progress.

HP-18
For the HP-IB interface, all interrupt conditions are triggered if they occur during a
transfer. However, certain interrupt conditions may occur which will cause the transfer
operation to be prematurely terminated.

With the exception of the Handshake Error, the majority of interrupt conditions only
occur when the HP-IB interface is configured as a non-controller. If any of the following
interrupt conditions are enabled and the given interrupt occurs during a transfer to
or from the interface, the user interrupt will be logged and the TRANSFER will be
prematurely terminated.

• Parallel Poll Configuration Change

• My Talk Address Received

• My Listen Address Received

• Talker /Listener Address Change

• Trigger Received

Advanced Transfer Techniques 9-37

• Handshake Error

• Unrecognized Universal Command

• Secondary Command While Addressed

• Clear Received

• Unrecognized Address Command

If one of these interrupt conditions occurs and the given interrupt condition has not been
enabled, the interrupt will be ignored and the TRANSFER will not be terminated.

Note

When an abortive interrupt condition is ignored, it is possible for
data to be corrupted. It is recommended that abortive interrupt
conditions be enabled during a transfer.

The Active Controller and IFC Received interrupt conditions will always prematurely
terminate a TRANSFER, even if they have not been enabled.

Premature Termination
When an overlapped TRANSFER is prematurely terminated because of an abortive
interrupt condition, the following error is logged in the non-buffer I/0 path name asso
ciated with the given TRANSFER. The error will then be reported the next time the
I/0 path name is referenced.

ERROR 167 I/0 interface status error

Note that if an ON INTR condition is triggered during a transfer, the ON INTR service
routine will be executed at the next end-of-line. However, if a TRANSFER is using the
interface specified in an ENABLE INTR statement, the ENABLE INTR statement will
wait for the transfer to complete. This means that only one interrupt condition can be
triggered during a TRANSFER since the interface's interrupts cannot be re-enabled until
completion of the transfer.

9-38 Advanced Transfer Techniques

!~

/ \

Changing Buffer Attributes
You can change the I/0 path name's attributes without changing the current buffer
pointers. Just execute another ASSIGN statement with the new attributes. For example:

u ASSIGN CQPath;PARITY OFF

'
(i
\...._,_,/

You will not be able to change all possible attributes in this manner. The BYTE and
WORD attributes cannot be changed once assigned.

By specifying just the I/0 path name, the default attributes (except BYTE) can be
restored. For example:

ASSIGN CQPath

See the ASSIGN statement in the BASIC Language Reference for a complete list of
attributes.

Note

It is possible to assign more than one I/0 path name to a single
named buffer. Using two I/0 path names on the same buffer could
lead to the corruption of the data in the buffer. Although each
path name maintains a separate set of buffer pointers, they are
pointing to the same buffer.

Advanced Transfer Techniques 9-39

Buffer Status and Control Registers
STATUS Register 0 0 =Invalid I/0 path name

1 = I/0 path assigned to a device
2 = I/0 path assigned to a data file
3 = I/0 path assigned to a buffer

When the status of register 0 indicates a buffer (3), the status and control registers have the following meanings.

STATUS Register 1 Buffer type (1=named, 2=unnamed)
STATUS Register 2 Buffer size in bytes
STATUS Register 3 Current fill pointer
CONTROL Register 3 Set fill pointer
STATUS Register 4 Current number of bytes in buffer
CONTROL Register 4 Set number of bytes
STATUS Register 5 Current empty pointer
CONTROL Register 5 Set empty pointer
STATUS Register 6 Interface select code of inbound TRANSFER
STATUS Register 7 Interface select code of outbound TRANSFER
STATUS Register 8 If non-zero, inbound TRANSFER is continuous
CONTROL Register 8 Cancel continuous mode inbound TRANSFER if zero
STATUS Register 9 If non-zero, outbound TRANSFER is continuous
CONTROL Register 9 Cancel continuous mode outbound TRANSFER if zero
STATUS Register 10 Termination status for inbound TRANSFER

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 TRANS- TRANS- TRANS- Device Byte Record Match FER FER FER Termi- Count Count Character Active Aborted Error nation

Value=O Value=64 Value=32 Value=16 Value=8 Value=4 Value=2 Value=l

9-40 Advanced Transfer Techniques

(.

\..._./

(
\.,_ .. ./

(;
\._./

STATUS Register 11

Bit 7 Bit 6

0 TRANS-
FER
Active

Value=O Value=64

STATUS Register 12

STATUS Register 13

Termination status for outbound TRANSFER

Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

TRANS- TRANS- Device Byte Record 0
FER FER Termi- Count Count
Aborted Error nation

Value=32 Value=16 Value=8 Value=4 Value=2 Value=O

Total number of bytes transferred by last inbound TRANS
FER

Total number of bytes transferred by last outbound TRANS
FER

Advanced Transfer Techniques 9-41

(~
< I

9-42 Advanced Transfer Techniques

(\

\._)

Index

a
Abort message . 12-20
ABORT statement . 12-10, 12-13, 14-54
ABORTIO statement .. 9-20
Above-Screen Lines . 10-23
Absolute Positioners . 19-25
Active controller . 12-29
Additional Interface Functions . 2-6
Address, primary . 3-6
Addressed to listen, HP-IB ... 12-7
Addressed to talk, HP-IB . 12-7
Addressing multiple listeners on the HP-IB bus . 12-8
Addressing, Non-Active HP-IB Controller . 12-36
Addressing, Secondary . 12-9
ALPHA HEIGHT statement . 10-5, 10-6, 10-7
Alpha pen colors . 10-10
ALPHA PEN statement . 10-8, 10-32
ASCII and Non-ASCII Keys .. 11-4
ASCII Data Transfers . 14-40
ASCII Files . 8-22
ASCII Representation of Integers . 2-17
ASCII Representation of Real Numbers 2-18
ASCII representations . 16-18
ASSIGN statement . 3-9, 3-11, 8-4, 9-6
ASSIGN Statements, Determining the Outcome of 8-18
Assigning 1/0 Path Names .. 3-9
Assigning 1/0 Path Names Locally Within Subprograms 3-12
Async and Data Link Operation, BOTH 14-10
Async Operation ONLY ... 14-10
Asynchronous Communication Protocol . 14-3
Asynchronous Data Communication 13-2
Attention Line (ATN), HP-IB . 12-47
Attribute, BYTE . 8-6
Attribute control .. 3-17
Attribute, WORD . 8-6

Index 1

Attributes, Additional . 8-6
Attributes, Changing Buffer . 9-39
Attributes, FORMAT . 8-2
Attributes, I/0 Path . 8-1
Attributes, Restoring the Default . 8-5
Auto-poll on the HP 1000, Disabling . 14-64
Auto-repeat, keyboard . 11-11
Automatic Answering Applications, Datacomm . 14-68
Automatic Dialing with the HP 13265A Modem 14-28

b
Background Datacomm Program Routines 14-34
Backplane, computer . 2-3
Bar Code Reader, Using a ... 19-49
Battery-backup . 15-1
Baud rate (RS-232C) . 13-10
Baud Rate, RS-232C Handshake and . 13-6
Baud Rate Select Switches . 13-8
BCD binary data representation . 17-7
BCD binary mode . 17-8
BCD binary mode entry ... 17-22
BCD cable configuration . 17-17
BCD data entry .. 17-19
BCD data output .. 17-10, 17-30
BCD Data Representation .. 17-2
BCD ENABLE INTR ... 17-36
BCD handshake configuration . 17-15
BCD hardware priority ... 17-14
BCD Interface ... 2-11, 17-1
BCD interface configuration . 17-12
BCD Interface Interrupts . 17-36
BCD interface reset ... 17-18
BCD interface select code . 17-14
BCD Interface Timeouts . 17-33
BCD interrupt service routines . 17-37
BCD interrupts, setting up and enabling . 17-36
BCD operation ... 17-2
BCD optional format . 17-5, 17-27
BCD output routines using CONTROL and STATUS 17-30
BCD peripheral status switches . 17-14
BCD Representation . 16-27

2 Index

()
/

(')

(_)

BCD standard format . 17-3

BCD STATUS and CONTROL Registers . 17-38

BCD STATUS statement entry .. 17-26

BCD timeout service routines . 17-34

BCD timeout time parameter . 17-33

BCD type 1 timing ... 17-15

BCD type 2 timing ... 17-16

BCD-Mode standard format ... 17-20

BDAT Files . 8-21

Binary Images . 5-21

Binary images .. 4-18

Binary specifier . 4-18

Bits and Bytes .. 2-12

Branch, Conditions Required for Initiating a 7-5

BREAK Message ... 13-17

Break received . 13-15

Break Timing, Datacomm . 14-23

Buffer Attributes, Changing .. 9-39

Buffer, Named . 9-5

Buffer Pointers . 9-8

Buffer Size Register . 9-8

BUFFER statement . 8-4, 9-5, 9-6

Buffer Status and Control Registers . 9-40

Buffer, Unnamed . 9-5

Buffer-Type Registers . 9-7

Buffers, A Closer Look at . 9-5

Buffers and Transfers, Overview of ... 9-2

Buffers, Creating Named .. 9-5

Buffers, Types of . 9-5

Burst Interrupt Mode . 9-35

Bus ... 2-2

BYTE Attribute . 8-6

BYTE attribute ... 8-7, 8-11

Byte count . 9-8

c
i , Cable Options and Functions, Datacomm . 14-73

__/. Cable options, RS-232C . 13-29

Caps Lock Mode .. 11-9

CDIAL function .. 19-24

Chapter Previews . 1-2

Index 3

Character conversions . 16-30
Character Format and Parity, RS-232C 13-11
Character Format Definition, Datacomm 14-22
Character Format Parameters, RS-232C 13-7
Character Length (RS-232C) . 13-7
Character specifier . 4-17
Characters, Converting . 8-11
Characters, Ignoring . 5-20
Characters, Representing . 2-14
Circuit Driver /Receiver Functions, Optional . 13-31
Clear Lockout/Local message . 12-20
Clear message . 12-19
CLEAR SCREEN statement . 10-5
CLEAR statement . 12-10, 12-13
Clear to Send (CTS), RS-232C . 13-6
Clearing the Screen . 10-5
Closing I/0 Path Names ... 3-11
Closure Keys .. 11-24
CMD secondary keyword .. 12-27
Color Enhancements .. 10-20
Comma separator . 4-4
Communicating with HP-IB devices 12-3
Communication Between Desktop Computers, Datacomm 14-72
Computer As a Non-Active Controller on the HP-IB Bus 12-29
Computer backplane . 2-3
Concurrency .. 9-27
Conditions, Interrupt . 7-19
Configuration Switches . 13-47
Configuring Parallel Poll Responses . 12-16
Continuous-Memory Registers . 15-2, 15-8
Control Block Contents, Datacomm . 14-18, 14-24
Control Characters . 10-16
Control characters, generating . 11-6, 11-7, 11-8
Control, Passing . 12-31
CONTROL statement . 6-3
Control-Character Functions . 10-18
Controller address, HP-IB . 12-29
Controller status, HP-IB . 12-29
Controller's Address, Changing the HP-IB . 12-31
CONVERT IN statement ... 8-14
CONVERT OUT statement .. 8-14

4 Index

n

/~
/

CONVERT statement ... 8-11
CONVERT ... BY INDEX statement .. 8-11

CONVERT ... BY PAIRS statement .. 8-13

u Cooperating Programs .. 14-45

Copying Data into the Destinations .. 2-24
Copying Data to the Destination . 2-22
COUNT parameter .. 9-15
CRT STATUS and CONTROL Registers 10-37

CRTA display driver ... 10-2
CRTB display driver ... 10-2

d
Data Carrier Detect (DCD or CD), RS-232C 13-6
Data Communication Equipment (DCE), RS-232C 13-29
Data Compatibility . 2-6
Data, Entering . 5-1

Data entry, RS-232C . 13-13
Data Flow, Directing ... 3-1
Data Formats for Datacomm Transfers 14-40

Data Handshake . 2-20
/ \

_) Data Link Communication Protocol 14-4
Data Link Connections, Datacomm . 14-27
Data Link Operation ONLY ... 14-11
Data Loss Prevention on the HP 1000 14-63
Data message ... 12-7, 12-19
DATA messages .. 12-26
Data on the HP-IB bus, Sending ... 12-26
Data output, RS-232C . 13-12
Data, Outputting .. 4-1

Data, Re-Directing . 3-16
Data Representation Summary .. 8-24

Data Representations . 2-12
DATA secondary keyword ... 12-27

Data Set Ready (DSR), RS-232C .. 13-6
Data Terminal Equipment (DTE), RS-232C 13-29
Data to the Keyboard, Sending .. 11-16
Data Transfers, RS-232C . 13-12

Data Valid (DAV), HP-IB ... 12-47
Data-Link Baud Rates .. 14-25

Data-Representation Design Criteria 8-20
Datacomm adapter options and functions 14-73

Index 5

Datacomm automatic answering applications 14-68
Datacomm, Break Timing .. . 14-23
Datacomm character format definition 14-22
Datacomm communication between desktop computers 14-72
Datacomm connection 14-10
Datacomm control block contents 14-24
Datacomm Data Transfers Between Computer and Interface 14-5
Datacomm ENABLE INTR . 14-18
Datacomm Error Detection and Program Recovery 14-55
Datacomm error recovery . 14-54
Datacomm Errors and Recovery Procedures 14-52
Datacomm Exit Conditions . 14-39
Datacomm handshake ... 14-25
Datacomm interface . 2-9, 9-37, 14-1
Datacomm Interface Protocol . 14-3
Datacomm Interrupt Service Routines 14-35
Datacomm interrupt system, setting up the . 14-31
Datacomm Interrupts . 14-32, 14-35
Datacomm interrupts . 14-31
Datacomm line connection . 14-26
Datacomm Line Timeouts . 14-18, 14-25
Datacomm Options for Async Communication 14-17
Datacomm Options for Data Link Communication 14-23
Datacomm parity . 14-26
Datacomm Parity option:

EVEN ... 14-3
NONE ... 14-3
ODD .. 14-3
ONE .. 14-3
ZERO ... 14-3

Datacomm program operator inputs, setting up . 14-32
Datacomm Programming . 14-9
Datacomm Programming Helps .. 14-63
Datacomm prompt recognition . 14-21
Datacomm Protocol and Link Operating Parameters . 14-10
Datacomm Protocol Selection . 14-15
Datacomm Service Routines for ON KEY Interrupts 14-44
Datacomm Start bits . 14-3
Datacomm STATUS and CONTROL Registers 14-78
Datacomm Stop bits ... 14-3
Datacomm Time gap .. 14-3

6 Index

t)

u

(.

'-.....-/'

Datacomm timeouts 0 14-18

Datacomm Transfers, Data Formats for 0 14-40

Datacomm transmitted block size 0 14-26

DCE cable option o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 13-29

DCE Cable Options 0 14-73

DCE cable options o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 13-31

DCE Cable, RS-232C 0 13-31

Declaring I/0 Path Names in Common 0 3-14

Default protection time 0 15-9

DELAY statement 0 o o o 0 o o 0 8-15

DELIM parameter 0 0 0 0 0 0 0 0 0 0 0 o 0 9-15

Delimiter Characters 0 0 0 o 0 9-15

Device Selectors 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 3-4

Dialing Procedure for Switched (Public) Modem Links 0 14-27

Digit specifier o 0 4-14

DIGITIZE statement o 0 0 0 0 0 o o 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 19-23

Direct Connection Links, Datacomm 0 14-27

Direct Interface Access 0 0 0 0 0 0 0 0 o 0 6-12

Direct memory access (DMA) 0 9-12

Directing Data Flow 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 3-1

DISABLE INTR statement 0 7-16

Disabling Auto-poll on the HP 1000 14-64

Disabling the Cursor Character o 0 10-32

DISP Line 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 10-31

Display Features, Overview of 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 10-3

Display Functions Mode 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 10-21

DISPLAY FUNCTIONS statement 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 10-21

Display interfaces 0 10-1

Display Line, Output Area and the 0 o 0 0 0 0 0 0 0 0 0 0 0 0 10-5

Display regions 0 10-4, 10-8

Display Regions Affected by Pen Color Statements 0 10-9

Display types 0 10-1

Display-Enhancement Characters 0 o 0 0 0 0 0 0 0 0 0 0 0 10-19

DMA Mode 0 0 0 0 0 0 0 0 0 0 o 0 9-34

DRS and SRTS Modem Lines, Programming the 0 0 o 0 o 13-18

DTE Cable Options 0 14-73

DTE cable options 0 13-31

DTE Cable, RS-232C 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 o o 0 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 13-30

Index 7

e
Electrical and Mechanical Compatibility 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 o 0 0 o 0 0 o 0 0 o o 0 0 0 o 0 0 o 0 0 2-5
Empty pointer 0 9-8
ENABLE INTR, BCD 0 0 0 0 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 0 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 17-36 () ENABLE INTR, Datacomm 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 0 o 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0 14-18
ENABLE INTR, GPIO o 0 0 0 o 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 o 0 0 0 o 0 0 o o 0 0 0 0 0 o 0 0 16-32
ENABLE INTR statement 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 o 0 0 0 7-16, 12-14, 14-31, 14-32
Enabling and setting up GPIO events o 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 0 o 0 0 o 0 0 16-31
Enabling Local Control 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 o 0 0 0 o 0 o 0 0 o o 0 0 o 0 0 0 0 0 0 o 0 0 o o 0 0 o 0 0 o 0 0 o 12-12
Enabling the Insert Mode 0 o 10-33
END in Freefield OUTPUT 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 o 0 0 0 o 0 0 o 0 0 0 o 0 0 o 0 0 o 4-8
End or Identify Line (EOI) 0 o 0 0 0 0 0 o 0 0 o o 0 0 0 0 0 12-48
END parameter 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 9-16, 9-17
END with Data Communications Interfaces 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 o 0 0 0 0 0 0 4-26
END with HP-IB Interfaces 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 4-9, 4-26
END with OUTPUTs that Use Images 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 4-25
END with the Data Communications Interface 0 4-9
End-of-line (EOL) 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-3
End-of-line Recognition, Datacomm 0 14-21
End-of-line sequence 0 4-6, 8-1, 8-15 ~ End-or-identify 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 5-23 :) End-or-identify signal 0 5-12
Enhanced Keyboard Control 0 11-29
ENTER and Buffers, OUTPUT and 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 9-13
ENTER images 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 o 0 4-21
ENTER statement 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2-19, 2-23, 2-24, 3-2, 5-1, 5-14
ENTER USING statement 0 5-14
Entering Data 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 o 0 5-1
Entering Data from the Keyboard 0 11-13
Entering from the CRT 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 o 0 10-28
Entering String Data 0 0 0 0 0 o 0 0 o 0 0 o 0 0 0 0 0 o 0 5-8
Enters that Use Images 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 5-14
EOI Re-Definition 0 5-23
EOI Signal, Sending the 0 0 o 0 0 o 0 0 o 0 11-15
EPROM Addresses and Unit Numbers 0 0 0 0 0 o 0 18-3
EPROM Catalogs 0 0 0 o 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 18-10
EPROM data storage rates 0 18-13 ,~ EPROM Directories 0 0 0 0 o 0 o 0 18-10
EPROM hardware operation 0 0 0 0 0 0 0 0 0 0 o 0 18-5
EPROM memory initialization 0 0 0 0 0 0 0 0 o 0 18-3
EPROM memory overview 0 o 0 18-2

8 Index

I
\._)

(:
~!

EPROM memory, reading ... 18-20
EPROM memory which is unused .. 18-13
EPROM Programmer Select Code . 18-3
EPROM programming . 18-1, 18-11
EPROM, Programming Individual Words and Bytes in 18-16
EPROM, reading data files stored in . 18-20
EPROM, storing data in .. 18-11
EPROM to store programs, using the 18-16
EPROM unit initialization . 18-9
ERRL function .. 14-55
ERRN function .. 14-55
Error Detection and Program Recovery, Datacomm 14-55
Error Detection, RS-232C . 13-4
Error Recovery, Datacomm . 14-54
Error Reporting ... 9-29
Event-Initiated Branching ... 7-1
Events, Enabling Interrupt . 7-15
Events, Logging and Servicing ... 7-6
Events, Servicing Pending .. 7-12
Events, Types of . 7-1
Execution Speed .. 3-15
Exit Conditions, Datacomm . 14-39
Explicitly close .. 3-11
Exponent specifier . 4-14
External interrupt request . 16-32

f
Fast handshake (FHS) ... 9-12
Files, ASCII .. 8-22
Files, BDAT . 8-21
Files, I/0 Paths to .. 8-20
Fill pointer . 9-8
Firmware ... 2-19
FORMAT attributes . 8-2
FORMAT Attributes, Assigning Default . 8-4
FORMAT OFF statement . 3-17, 8-2, 8-3
FORMAT ON statement ... 3-17, 8-2
FORMAT statement .. 8-2
Formatting, Transfer ... 9-13
Framing error (RS-232C) . 13-4, 13-14
Free-Field ENTER Statements . 5-11

Index 9

Free-Field Enters 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 5-1
Free-field output 0 o 0 0 0 0 0 o 0 0 0 0 0 o 4-1, 4-2
Freefield OUTPUT, END in 0 4-8
Function Box, Activating the 0 19-34
Function Box and Vectra Keyboard 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 19-33
Function Box key presses, Trapping 0 19-36
Function Box Keys, Assigning Functions to 0 19-39

g
GPIO control output lines, driving the 0 o 0 0 0 0 16-40
GPIO data handshake methods 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 16-5
GPIO data logic sence 0 16-5
GPIO data-in clock source 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 16-7
GPIO ENABLE INTR 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16-32
GPIO events, enabling and setting up 0 0 0 0 0 0 0 0 o 0 16-31
GPIO Full Handshake Transfer 0 16-37
GPIO full-mode handshakes 0 0 0 0 0 0 o 0 16-8
GPIO handshake lines 0 16-6
GPIO handshake logic sence 0 0 o 0 o 0 16-6
GPIO handshake modes 0 16-6
GPIO hardware interrupt priority 0 16-5
GPIO interface o 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 2-10, 9-37, 16-1
GPIO interface configuration 0 0 o 0 16-4
GPIO interface reset 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 16-17
GPIO Interface Select Code 0 o 0 0 0 o 0 16-5
GPIO interrupt transfers o 0 0 0 0 0 0 0 o 0 16-38
GPIO interrupts 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 o 0 16-31
GPIO optional peripheral status check 0 0 o 0 16-7
GPIO OUTPUT of data 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 17-31
GPIO, Outputs and Enters through the 0 0 o 0 16-18
GPIO pulse-mode handshakes 0 o 0 16-11
GPIO ready interrupt transfers 0 0 o 0 16-38
GPIO special-purpose lines 0 16-40
GPIO statements that enter data bytes 0 16-20
GPIO statements that enter data words 0 0 o 0 0 o 0 16-23
GPIO statements that output data bytes o 0 16-19
GPIO statements that output data words 0 0 0 o 0 16-22

10 Index

()
I

u

u

GPIO STATUS and CONTROL Registers . 16-43
GPIO status input lines, interrogating the . 16-41
GPIO Timeouts . 16-24
GPIO transfer design . 16-36
GPIO, Types of Interrupt Events . 16-31

h
Half-duplex telecommunications . 14-65
Handshake . 12-7
Handshake and Baud Rate, RS-232C . 13-6
Handshake Character Assignment, Datacomm Protocol 14-21
Handshake, Data . 2-20
Handshake, Datacomm . 14-19, 14-25
Handshake Lines, HP-IB .. 12-47
Hardware priority ... 7-10
HIL Devices, Re-Configuring . 11-3
HIL SEND statement .. 19-4
HILBUF$ function . 19-5
HIL_ID program . 19-7
HIL_ID program explanation ... 19-8
HP 1000, Disabling Auto-poll on the . 14-64
HP 13264A Data Link Adapter ... 14-2
HP 13265 Modem . 14-2
HP 13265A Modem, Automatic Dialing with the . 14-28
HP 13266A Current Loop Adapter .. 14-2
HP 92916A (Bar-Code Reader) .. 19-28
HP 98626 RS-232 Serial Interface . 13-46
HP 98628 Data Communications Interface 14-1
HP 98644 RS-232 Serial Interface . 13-46
HP-HIL Device Characteristics . 19-29
HP-HIL device preview .. 19-3
HP-HIL devices . 19-20
HP-HIL Devices, Communicating with 19-29
HP-HIL Devices, Interaction Between Multiple . 19-53
HP-HIL devices supported by the HIL Interface driver . 19-6
HP-HIL ID Module Data, Interpreting 19-31
HP-HIL ID Modules, Note about Installing and Removing 19-32
HP-HIL initialization . 19-2
HP-HIL Interface . 19-1
HP-HIL Interface, Communicating through the 19-4
HP-HIL interface driver statements . 19-4

Index 11

HP-HIL Keyboards 0 o o 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 0 0 0 o o 0 0 0 o 0 0 0 0 o o 0 0 0 o 0 0 0 o o 0 0 0 o 0 0 0 o 0 0 0 19-21
HP-HIL Link, Identifying All Devices on the 0 0 0 0 o 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 19-6
HP-HIL, Other Devices 0 19-27
HP-HIL Security Device 0 o 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o o 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 19-26 ~
HP-IB ABORT o 0 0 0 0 o o o 0 0 0 o 0 0 0 o o 0 0 0 0 0 0 0 0 0 o 0 0 0 o o 0 0 0 o 0 0 0 o 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 12-10 1)

HP-IB active controller 0 12-6, 12-29
HP-IB Address Commands and Codes 0 12-22
HP-IB addressed to listen 0 12-7
HP-IB addressed to talk 0 12-7
HP-IB attention line (ATN) 0 12-47
HP-IB attention signal line (ATN) 0 12-6
HP-IB Bus Activity, Aborting o 0 12-13
HP-IB bus, Addressing multiple listeners on the 0 12-8
HP-IB Bus Commands and Codes 0 0 0 o 0 0 0 o 0 12-21
HP-IB Bus Management o 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 o 0 12-10
HP-IB Bus Management, Advanced 0 0 0 0 0 0 o 0 l2-19
HP-IB Bus Message Types 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 12-19
HP-IB Bus Messages, Explicit 0 0 0 0 0 0 0 0 0 0 o 0 12-24
HP-IB bus sequences 0 12-7
HP-IB Bus-Line States, Determining 0 12-50
HP-IB CLEAR 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 12-10
HP-IB Control Lines 0 o o 0 0 o 0 0 0 0 o 0 0 0 o 0 12-46
HP-IB controller address 0 0 o 0 0 0 0 0 0 0 o 0 12-29
HP-IB controller status 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 o 0 12-29
HP-IB data movement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 12-4
HP-IB Data Valid (DAY) 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12-47
HP-IB Device Selectors 0 0 0 0 0 0 0 o 0 0 0 o 0 3-6, 12-3
HP-IB Devices, Clearing o 0 12-13
HP-IB devices, Communicating with o 0 12-3
HP-IB Devices, Polling 0 0 0 o 0 0 0 o 0 12-16
HP-IB Devices, Triggering o 0 0 0 o 0 0 0 0 o 0 12-12
HP-IB ENABLE INTR 0 o o 0 0 o o 0 0 0 o 0 0 o o 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12-14
HP-IB end-or-identify line (EOI) 0 0 0 o 0 12-48
HP-IB Handshake Lines 0 o o 0 0 0 o 0 12-47
HP-IB Installation and Verification 0 12-2
HP-IB Interface o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 2-7, 12-1

()

HP-IB interface o 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 9-37 ~
r I HP-IB, Interface Clear Line (IFC) 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 12-48

HP-IB Interface-State Information 0 0 0 0 0 o o 0 0 o 0 12-42
HP-IB interlocking handshake 0 12-47
HP-IB Interrupts that Require Data Transfers, Servicing 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 12-43

12 Index

u

HP-IB LOCAL . 12-10
HP-IB LOCAL LOCKOUT . 12-10
HP-IB Message Mnemonics .. 12-27
HP-IB messages . 12-19
HP-IB NDAC holdoff . 12-53
HP-IB Not Data Accepted (NDAC) . 12-47
HP-IB Not Ready for Data (NRFD) . 12-47
HP-IB ON INTR . 12-14
HP-IB PPOLL . 12-10
HP-IB PPOLL CONFIGURE . 12-10
HP-IB PPOLL UNCONFIGURE . 12-10
HP-IB REMOTE . 12-10
HP-IB remote enable line (REN) ... 12-48
HP-IB Secondary Addressing ... 12-9
HP-IB select code . 12-3
HP-IB SEND . 12-10
HP-IB Service request . 12-38
HP-IB service request line (SRQ) . 12-49
HP-IB Service Requests . 12-14
HP-IB SPOLL . 12-10
HP-IB SRQ Interrupts . 12-14
HP-IB SRQ Interrupts, Servicing . 12-15
HP-IB STATUS and CONTROL Registers 12-51
HP-IB Structure . 12-5
HP-IB system controller . 12-29
HP-IB TRIGGER . 12-10
HP-IB:

Abort message . 12-20
Clear Lockout/Local message . 12-20
Clear message . 12-19
Data message . 12-19
Local Lockout message . 12-20
Local message . 12-20
Pass Control message . 12-20
Remote message ... 12-19
Service Request message . 12-20
Status Bit message . 12-20
Status Byte message . 12-20
Trigger message . 12-19

HP 35723A (HP-HIL/Touchscreen) 19-26
HP 45911A (11 x 11 G rap hies Tablet) . 19-26

Index 13

HP 46020/21A Keyboard . 19-21
HP 46030A (Vectra Keyboard) ... 19-28
HP 46060A (HP-Mouse) ... 19-22
HP 46083A (Rotary Control Knob) 19-22
HP 46084A (HP-HIL ID Module) ... 19-26 n
HP 46086A (Function Box) .. 19-27
HP 46087 A (A-size Digitizer) . 19-26
HP 46088A (B-size Digitizer) . 19-26
HP 46094A (HP-HIL/Quadrature Port) 19-22
HP 98203C Keyboard . 19-21, 19-22
HP 98622 Interface . 16-1
HP 98626 and HP 98644 Card ID Register . 13-46
HP 98626 Optional Driver Receiver Circuits . 13-47
HP 98644 Baud-Rate and Line-Control Registers . 13-50
HP 98644 Card ID Register . 13-49
HP 98644 Coverplate Connector . 13-48
HP 98644 Optional Driver /Receiver Registers . 13-49

.
I

Image Definitions During Outputs ... 4-13
Image OUTPUT ... 4-1
Image output . 4-2
Image Re-Use .. 4-23, 5-26
Image Repeat Factors . 4-22
Images . 4-11, 5-15
Images, binary .. 4-18
Images, ENTER .. 4-21
Images, nested . 4-24
Images, numeric . 4-14
Images, Outputs that Use .. 4-10
Images, Special-Character . 4-20
Images, string ... 4-17
Images, Terminating Enters that Use 5-22
Inbound and Outbound Transfers .. 9-2
Inbound Control Blocks, Datacomm . 14-6
Inbound Datacomm Data Messages .. 14-8
Inbound transfer ... 9-2
Initiating the Datacomm Connection 14-30
Input ... 2-2
INPUT statement . 14-32
INT Mode . 9-34

14 Index

(~
I

u

u

u

Integers, ASCII Representation of 0 2-17

Integers, Internal Representation of 0 2-14

Integers, Representing Signed 0 2-14

Integral Keyboard 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o o o o o 0 19-21

Interactive Keyboard 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o o 0 11-34

Interface Access, Direct 0 6-12

Interface Clear Line (IFC), HP-IB 0 12-48

Interface Functions, Additional 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 2-6

Interface Interrupts 0 o o o 0 7-14

Interface, primary function of an 0 2-4

Interface ready o 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 o o 0 16-32

Interface Registers 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 o 0 6-2

Interface Reset, RS-232C 0 0 0 0 0 0 0 o 0 13-9

Interface Timeouts o 0 0 0 0 0 0 o o o 0 0 0 0 0 0 o o 0 7-20

Interfaces, Select Codes of Built-In 0 3-4

Interfaces, Select Codes of Optional 0 3-5

Interfacing Concepts 0 2-1

Internal Representation of Integers 0 0 0 o 0 0 0 0 0 0 o 0 2-14

Internal Representation of Real Numbers 0 2-17

Internal representations 0 0 0 0 0 0 0 o 0 0 0 0 0 0 o 0 16-18

Interrupt Conditions 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 0 0 o 0 7-19

Interrupt events 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 15-3

Interrupt (INT) 0 9-12

Interrupt Mask Bits for Async Operation 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 o o o 0 0 0 0 o 0 0 0 0 0 o o 0 0 0 14-32

Interrupt Mask Bits for Data Link Operation o 0 0 0 0 0 o 0 0 0 0 0 o o 0 0 0 0 o 0 0 0 0 0 0 o o 0 0 0 14-33

Interrupt service routine (ISR) 0 14-37

Interrupt service routines 0 16-33

Interrupt Service Routines, Datacomm 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o o 0 0 0 0 0 0 0 0 0 0 0 14-35

Interrupts and Timeouts 0 7-1

Interrupts, Non-Active HP-IB Controller 0 12-32

I/0 2-2

I/0, Applications of Unified 0 8-25

I/0, Concepts of Unified 0 o 0 8-19

I/0 Examples 0 o 0 0 0 0 o 0 0 0 0 o 2-21

I/0 Operations with String Variables 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ° 0 0 0 0 0 0 0 0 0 0 8-25

I/0 Path Attributes 0 o 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 o 0 8-1

I/0 Path Attributes, Specifying 0 o 0 0 8-5

I/0 Path Benefits 0 o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 o 0 0 0 0 o 0 0 3-15

I/0 path name 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 3-10

I/0 Path Names 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 3-7, 6-9, 8-1

I/0 path names 0 9-7

Index 15

I/0 Path Names as Parameters, Passing 3-14
I/0 Path Names Assigned to a BDAT File 6-10
I/0 Path Names Assigned to a Device 6-9
I/0 Path Names Assigned to an ASCII File 6-9
I/0 Path Names Assigned to an HP-UX File 6-10
I/0 Path Names, Assigning .. 3-9
I/0 Path Names, Closing ... 3-11
I/0 Path Names in Common, Declaring 3-14
I/0 Path Names in Subprograms .. 3-12
I/0 Path Names Locally Within Subprograms, Assigning 3-12
I/0 Path Names, Re-Assigning .. 3-11
I/0 Path Names to Named Buffers, Assigning 9-6
I/0 Path Names to Unnamed Buffers, Assigning 9-6
I/0 Path Register Summary . 6-9
I/0 Path Registers . 6-5
I/0 Paths to Files . 8-20
I/0 Process .. 2-19
I/0 Statements and Parameters . 2-19
Item Separators . 4-3, 5-2
Item Terminators . 4-3, 5-2
ITF Keyboards .. 10-35

k
KBD$ function 11-28, 11-29, 11-30, 11-31, 19-21, 19-23
KBD LINE PEN statement . 10-8
KBD Status and Control Registers 11-37
KEY LABELS ON/OFF statement 10-35
KEY LABELS PEN statement . 10-8
Keyboard auto-repeat . 11-11
Keyboard CAPS LOCK mode .. 11-9
Keyboard ENTER ... 11-13
Keyboard features . 11-4
Keyboard, Interactive . 11-34
Keyboard Interfaces . 11-1
Keyboard Interrupts, Servicing Datacomm 14-41
Keyboard, Locking Out the .. 11-35

n

Keyboard Operating Modes .. 11-9 1) Keyboard OUTPUT . 11-16
Keyboard types . 11-1
Keyboards, Description of . 11-1
Keystrokes, Trapping . 11-30

16 Index

u
Knob Rotation ... 11-27
KNOBX function . 11-28
KNOBY function . 11-28

I
Line connection, Datacomm ... 14-26
Line Speed (Baud Rate), Datacomm 14-19
Line Speed, Datacomm . 14-25
Line-Control Switches, RS-232C . 13-9
LINPUT statement ... 14-32
LOADSUB ALL FROM .. 8-39
Local Control, Enabling . 12-12
Local Lockout message . 12-20
LOCAL LOCKOUT statement . 12-10, 12-11
Local message . 12-20
LOCAL statement . 12-10
Locking Out Local Control
Locking Out the Keyboard

m

12-11
11-35

() '-..._./ Manual Organization . 1-1
Mechanical Compatibility, Electrical and . 2-5
Modem Control Register, RS-232C 13-17
Modem Handshake Lines, RS-232C 13-17
Modem Line Handshaking, RS-232C 13-13
Modem-initiated ON INTR Branching Conditions, Datacomm 14-18
Modem-Line Disconnect Switches ... 13-7
Modifiers, Statement-Termination . 5-24
Monochrome Enhancements ... 10-19
Mouse Keys ... 11-33
Multiple Termination Conditions .. 9-16

n
Named buffer . 9-5
Named Buffers, Assigning I/0 Path Names to 9-6
Named Buffers, Creating .. 9-5
Named Buffers via Variable Names, Accessing 9-10
NDAC holdoff, HP-IB .. 12-53
Nested Images . 4-24, 5-26
Non-Active HP-IB Controller Addressing . 12-36

Index 17

Non-Active HP-IB Controller Interrupts . 12-32
Non-ASCII Data Transfers .. 14-41
Non-ASCII Keystrokes . 11-16
Non-Data Datacomm Characters, Handling of 14-20
Not Data Accepted (NDAC), HP-IB 12-47
Not Ready for Data (NRFD), HP-IB 12-47
Number builder . 5-3
Numbers, Representing .. 2-13
Numeric Format, Standard .. 4-2
Numeric Images . 4-14, 5-17
Numeric Outputs ... 10-15
Numeric specifier . 5-18

0
OFF HIL EXT statement 19-4
OFF INTR statement .. 7-16
OFF KBD statement . 11-29, 11-31
ON CDIAL statement .. 7-1
ON END statement .. 7-1
ON ERROR statement . 7-1, 13-16, 14-55
ON HIL EXT statement . 19-4
ON INTR Branching Conditions, Datacomm 14-25
ON INTR Branching Conditions, Datacomm Modem-initiated 14-18
ON INTR statement . 7-2, 7-16, 12-14, 14-31, 14-32
ON KBD statement . 11-28, 11-29, 11-30, 11-31
ON KEY Interrupts, Datacomm Service Routines for 14-44
ON KEY statement . 7-1
ON KNOB statement . 7-2, 11-27, 11-33
ON TIMEOUT statement 7-2, 7-21, 17-33
One-Second-Left Interrupt . 15-12
ON/OFF CDIAL statement ... 19-24
ON/OFF KBD statement . 19-21, 19-22
ON/OFF KEY statement ... 19-21
ON/OFF KNOB statement .. 19-23
Operating Parameters, RS-232C ... 13-6
Outbound Control Blocks, Datacomm 14-5
Outbound Datacomm Data Messages 14-7
Outbound transfer . 9-2
Outbound Transfers, Inbound and .. 9-2
Output ... 2-2
OUTPUT and ENTER and Buffers .. 9-13

18 Index

(\

0

Output Area and the Display Line . 10-5
OUTPUT statement . 2-19, 2-21, 3-2, 4-2, 5-1
Output to the CRT ... 10-15
OUTPUT USING statement .. 4-10
Output-Area Memory ... 10-23
Outputs that Use Images ... 4-10
Outputting Data ... 4-1
Overheat Protection Timer ... 15-3
Overrun error (RS-232C) . 13-4, 13-14

p
PAIRS conversions .. 8-13
Parallel Poll, Conducting a . 12-17
Parallel Poll Responses, Configuring 12-16
Parallel Poll Responses, Disabling . 12-17

Parallel Polls, Responding to . 12-39
Parity bit, RS-232C . 13-3
Parity, Datacomm . 14-26
Parity Enable (RS-232C) . 13-7
Parity error (RS-232C) . 13-4, 13-14
Parity Generation and Checking .. 8-16
Parity option:

EVEN ... 13-4
NONE ... 13-4
ODD .. 13-4
ONE .. 13-4
ZERO ... 13-4

Parity options, Datacomm .. 14-3
Parity, RS-232C Character Format and 13-11
Parity Sense (RS-232C) . 13-7
PARITY statement .. 8-16
Pass Control message . 12-20
Passing Control . 12-31
Passing 1/0 Path Names as Parameters 3-14
Path name, 1/0 ... 3-10
Pen Colors, Changing . 10-32
Pen Colors in Display Regions, Changing . 10-8
Peripheral Status line (PSTS) . 16-42
Plotting Selected Locations on a Touchscreen . 19-45
Pointers, Buffer . 9-8
Power Back Delay . 15-3, 15-8

Index 19

Power Back Timer . 15-3
Power-Is-Back Interrupt . 15-12
Powerfail protection . 15-1
Powerfail protection capabilities . 15-1
Powerfail Status and Control Registers . 15-14
Powerfail Status register . 15-6
Powerfail Timer . 15-3
Powerfail Timer register . 15-6
Powerfail-Protection Timers . 15-3
PPOLL CONFIGURE statement . 12-10, 12-16
PPOLL statement .. 12-10, 12-17
PPOLL UNCONFIGURE statement 12-10, 12-17
Premature Termination . 9-38
Previews, Chapter .. 1-2
Primary address . 3-6, 12-3
Primary function of an interface . 2-4
Primary keyboard ... 11-3
PRINT ALL mode . 11-10
Print All Mode . 11-10
PRINT PEN statement . 10-8, 10-32
PRINT position .. 10-25
Priority, Changing System ... 7-8
Priority, Hardware .. 7-10
Priority, Software .. 7-6
Private Telecommunications Links . 14-27
Program control (RS-232C) . 13-9
Program flow (RS-232C) . 13-12
Prompt Recognition, Datacomm . 14-21
Protection time, default . 15-9
Protection Timer, Overheat .. 15-3
Protocol Handshake Character Assignment, Datacomm 14-21

r
Radix specifier . 4-14
Re-Assigning I/0 Path Names .. 3-11
Re-Directing Data . 3-16
READ LOCATOR statement . 19-23
Reading a Screen Line .. 10-28
Reading the Entire Output-Area Memory 10-29
READIO and WRITEIO Interface Hardware Registers 13-20
READIO and WRITEIO Registers 13-19

20 Index

,()
' I

READIO statement 13-19

Real Numbers, ASCII Representation of 0 0 o 0
0 0

2-18
••• 0 0 •••••• 0 ••••••••• 0 •••••••• 0 •• 0 ••••• 0 ••••••••••••

Real Numbers, Internal Representation of 0
0

0 0
0 0

2-17

Real Numbers, Representing 0
0

0 2-17

Real-Time Clock 0 0 0 0 o 0 0 0 0 0 ° 0
0

0 15-2

Received BREAKs 0 o 0 0 0 0 ° 0 0 0 0 0 o 0 13-4

RECORDS parameter 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0
0

0 9-16

Records, Transferring 0
0 0

9-16

Registers 0 0 0 0 ° 0 0 0 o 0 0 0 0 o 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 2-20, 6-1

Registers, Buffer-Type 0 9-7

Registers:
Interface o 0 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 o 0 6-2

I/0 Path 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6-5

Relative Positioners 0 19-22

Remote Control of HP-IB Devices 0 12-11

Remote Enable Line (REN), HP-IB 0 0 0 0 0 0 0 0 0 o 0 12-48

Remote message 0 12-19

REMOTE statement 0 12-10, 12-11

Repeat and Delay Intervals 0 0 0 0 0 o 0 11-11

Repeat Factors 0 0 0 0 0 0 o 0 5-26

Repeat Factors, Image 0 0 0 0 o 0 0 o 0 0 o 0 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4-22

Representing Real Numbers 0 2-17

RESET statement 0 0 0 0 0 0 0 0 0 o 0 9-21

Resetting the Datacomm Interface 0 14-15

Resource, Specifying a 0 3-2

RESUME INTERACTIVE statement 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 11-34

RETURN attribute o 0 o o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 8-18

Ring Indicator (RI), RS-232C o 0 0 0 0 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13-6

Rotary Control Knob 0 11-33

RS-232C character format 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 13-2

RS-232C Character Format Parameters 0 13-7

RS-232C compatible cables 0 13-49

RS-232C Data Error Detection and Handling, Incoming o 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 13-14

RS-232C Data Transfers Between Computer and Peripheral 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 o 0 0 13-5

RS-232C DTE and DCE cable configurations 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 o 0 13-29

RS-232C Error Detection 0 13-4

RS-232C framing errors 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 13-4

RS-232C Handshake and Baud Rate 0 13-6

RS-232C Interface Defaults to Simplify Programming, Using 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 13-7

RS-232C, List of Signals 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 o 0 0 0 0 o 0 0 o 0 14-76

RS-232C Modem Control Register 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 o 0 13-17

Index 21

RS-232C Modem Handshake Lines 13-17 RS-232C operating parameters . 13-6 RS-232C Optional Circuit Driver/Receiver Functions 14-74 RS-232C overrun errors . 13-4 RS-232C parity bit . 13-3 {) RS-232C parity errors . 13-4 RS-232C received BREAKs ... 13-4 RS-232C Serial Interface . 2-8, 13-1 RS-232C Serial Interface Self-test Operations . 13-18 RS-232C Serial STATUS and CONTROL Registers . 13-36 RS-232C:
Clear to Send (CTS) . 13-6 Data Carrier Detect (DCD or CD) . 13-6 Data Set Ready (DSR) ... 13-6 Ring Indicator (RI) . 13-6

s
Screenwidth, determining ... 10-7 Scrolling, Disabling . 11-10 Scrolling the Display . 10-26 Secondary Addressing . 12-9 Sector size . 9-31 Select Codes of Built-In Interfaces . 3-4 Select Codes of Optional Interfaces . 3-5 Selectors, Device . 3-4 Selectors, HP-IB Device . 3-6 Semicolon separator . 4-4 SEND statement . 12-10, 12-24 Separator, Comma . 4-4 Separator, semicolon . 4-4 Serial Interface . 13-1 Serial interface . 9-37 Serial Interface Errors, Trapping . 13-16 Serial Interface Programming . 13-6 Serial Interface, RS-232C . 2-8 Serial Poll, Conducting a . 12-18 Serial Polls, Responding to . 12-41 Series 300 Built-In 98644 Interface . 13-51 Service request, HP-IB . 12-38 Service Request Line (SRQ), HP-IB 12-49 Service Request message . 12-20

22 Index

(,_)

Service Request (SRQ) . 12-14

Service Requests . 7-17

Service routine .
 7-5

SET TIME function ... 15-2

SET TIMEDATE function . 15-2

Shift and Control Keys . 11-5

Sign specifier .
 4-14

Signal functions, RS-232C . 13-29

Signed Integers, Representing ... 2-14

Softkey Interrupts, Datacomm ... 14-31

Softkey Label Colors . 10-36

Softkey Labels . 10-33

Softkeys .
 11-26

Softkeys and Knob Rotation ... 11-33

Software priority . 7-3, 7-6

Special-Character Images ... 4-20

Specifiers:
Binary ...

.... 4-18

Character .
 . 4-17

Digit ...
..... 4-14

Exponent .
 . 4-14

Numeric .
 . . 5-18

Radix ..
...... 4-14

Sign ...
...... 4-14

Special-Character ... 4-20

Termination ..
4-21

Specifying a Resource . 3-2

Speed, Execution .. 3-15

SPOLL statement .. 12-10, 12-18

SRQ Interrupts, HP-IB ... 12-14

SRQ Interrupts, Servicing HP-IB ... 12-15

Start bits, Datacomm .. 14-3

Statement-Termination Modifiers . 5-24

8tatus Bit message . 12-20

Status Byte message . 12-20

STATUS statement . 6-2

Stepwise refinement . 8-37

Stop bits, Datacomm . 14-3

Stop Bits (RS-232C) . 13-7

String Data, Entering . 5-8

String Format, Standard . 4-3

Index 23

String Images 0 5-19 String images 0 o 0 o 0 4-17 String Variables, Entering Data From 0 8-30 String Variables, Outputting Data to 0 o 0 0 0 o 0 0 0 0 o 0 0 0 o 0 0 0 0 o 0 o 0 o 0 o 0 0 0 0 o 0 o 0 0 0 0 0 8-25 1.~ String-Variable Names 0 o 0 0 0 0 o 0 3-2) SUSPEND INTERACTIVE statement 0 0 0 0 0 0 0 0 o 0 o 0 0 0 o 0 0 o 0 o 0 o 0 o 0 o 0 o 0 0 o o 0 0 o 0 11-34 SUSPENDED statement 0 0 0 0 0 0 0 o 0 o 0 o 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 o 0 o 0 0 o 0 0 0 0 0 o 0 o 0 0 0 0 0 0 o 14-53 Suspended Transfers 0 0 o 0 0 0 0 o 0 0 0 o 0 o 0 0 o 0 o 0 0 0 o 0 0 0 0 o 0 0 0 o o 0 9-30 Switched (Public) Modem Links, Dialing Procedure for 0 0 0 o 0 o 0 o 0 o o 0 0 0 0 0 0 0 o 0 0 14-27 Switched (Public) Telephone Links 0 14-26 System controller 0 12-5, 12-29 SYSTEM PRIORITY statement 0 o 0 o 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 0 0 7-8 SYSTEM$("CRT ID") function o 0 o 0 o 0 0 o 0 o 0 o 0 0 0 0 o 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o 10-7 SYSTEM$("SERIAL NUMBER") 0 0 o 0 o 0 0 0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 o 0 o 0 o 0 19-26

t
Telecommunications Links, Private 0 14-27 Telephone Links, Switched (Public) 0 14-26 Terminal Emulator 0 0 o 0 o 0 0 o 0 o 0 o 0 0 0 0 0 o 0 0 0 o 0 o 0 14-56 Terminal Identification, Datacomm 0 o 0 0 0 0 0 o 0 14-25 Terminal Prompt Messages 0 0 0 o 0 0 0 0 0 0 o 0 14-63 Terminating a Transfer o 0 9-20 Terminating Enters that Use Images 0 0 0 0 0 0 0 0 o 0 5-22 Termination Conditions, Default 0 5-22 Termination Conditions, Multiple o 0 0 0 o 0 9-16 Termination, premature o 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 o 0 9-38 Termination specifier o 0 o 0 o 0 0 0 o 0 o 0 o 0 4-21 Terminology o 0 o 0 0 0 0 0 0 o o 0 0 o 0 o 0 o 0 0 0 0 0 o 0 2-1 Time gap, Datacomm 0 0 0 0 0 o o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 14-3 TIMEDATE function 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 15-2 Timeout Events, Setting Up 0 7-20 Timeout Limitations 0 0 o 0 0 0 0 0 0 o 0 7-21 Timeout service routines 0 0 0 0 o 0 0 0 o 0 16-25 TIMEOUT time parameter 0 0 o 0 0 0 0 o 0 16-24 Timeouts, Datacomm o 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 o 0 o 0 14-18 Timeouts, Interface 0 0 ° 0 0 0 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 7-20 Timeouts, Interrupts and 0 0 0 0 0 0 0 o 0 0 0 0 0 0 0 0 0 0 o 0 7-1 Timing Compatibility o 0 0 o 0 o 0 0 0 0 0 0 o 0

0 0 0
2-6 Top-Down Approach, Taking a 0 0 0 o 0 o 0 0 0 0 0 0 0 o 0 8-32 Touchscreen, Using a 0 0 0 ° 0 ° 0 0 0 0 o 0 0 0 0 0 0 0 0 0 o 0 19-44 TRANS binary 0 0 0 ° 0 o 0

0
9-1

24 Index

,1)

u

u

L·'

Transfer Event-Initiated Branching .. 9-18

Transfer examples . 9-22

Transfer Formatting ... 9-13

Transfer methods .. 9-12

Transfer Methods and Rates . 9-34

Transfer parameters ... 9-14

Transfer performance . 9-31

Transfer rates . 9-35

TRANSFER Records and Termination 9-17

Transfer restrictions . 9-3, 9-36

Transfer Sources and Destinations, Supported . 9-3

TRANSFER statement 9-1, 9-9, 9-10, 9-12, 9-37, 16-36

Transfer status .. 9-13

Transfer techniques . 9-1

Transfer, Terminating a .. 9-20

Transfer Termination .. 9-13

Transfer types . 9-34

Transferring a Specified Number of Bytes 9-15

Transferring Records ... 9-16

Transfers and Disc Drives, Overlapped . 9-31

Transfers, Continuous Non-Overlapped 9-15

Transfers, Inbound and Outbound .. 9-2

Transfers Indefinitely, Continuing .. 9-14

Transfers, Non-Overlapped ... 9-15

Transfers, RS-232C Data . 13-12

Transfers, Suspended . 9-30

Transfers, The Purpose of . 9-1

Transmitted Block Size, Datacomm 14-26

Trapping Function Box key presses . 19-36

Trapping Keystrokes . 11-30

Trapping Serial Interface Errors . 13-16

Trigger message . 12-19

TRIGGER statement . 12-10, 12-12

Types of Events . 7-1

u
UART Registers ... 13-22

Unified I/0 . 8-25

Unnamed buffer . 9-5

Unnamed Buffers, Assigning I/0 Path Names to 9-6

Index 25

w
WAIT FOR statement ... 9-19
WAIT parameter .. 9-19
WORD attribute .. 8-6, 8-7, 8-11 ~·~ WRITEIO Registers, READIO and 13-19 .) WRITEIO statement . 7-16, 13-19

('1
I

iJ

26 Index

HP Part Number
98613-90022
Microfiche No. 98613-99022
Printed in U.S.A. 11/87

FJ/o- HEWLETT
~~PACKARD

98613-90674
For Internal Use Only

fold--

MANUAL COMMENT CARD

BASIC 5.0/5.1
Interfacing Techniques

HP Part Number 98613-90022 11/87

Please help us improve this manual. Circle the numbers in the following
statement that best indicate how useful you found this manual. Then add
any further comments in the spaces below. In appreciation of your time, we
will enter your name in a quarterly drawing for an HP calculator. Thank
you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments: --------------------------------------~----------

Name: __ __

Job Title: -------------------------
Company: __ _

Address: __ __

D Check here if you wish a reply.

Please Tape Here

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND, COLORADO

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

	Title Page
	Printing History
	Table of Contents
	1. Manual Overview
	2. Interfacing Concepts
	3. Directing Data Flow
	4. Outputting Data
	5. Entering Data
	6. Registers
	7. Interrupts and Timeouts
	8. I/O Path Attributes
	9. Advanced Transfer Techniques
	Index
	Back Cover
	Manual Comment Card

